
University of the Witwatersrand
Johannesburg, South Africa

Masters Dissertation

Lightning Return Stroke Electromagnetics
- Time Domain Evaluation and

Application

Author:
Carson William Ian McAfee

Supervisor:
Prof. Kenneth John Nixon

October 17, 2016

A dissertation submitted to the Faculty of Engineering and the Built
Environment, University of the Witwatersrand, Johannesburg, in fulfilment of

the requirements for the degree of Master of Science in Engineering
in the

Lightning and EMC Research Group
School of Electrical and Information Engineering

Faculty of Engineering and the Built Environment

Declaration of Authorship

I declare that this dissertation is my own unaided work. It is being submitted to the
Degree of Master of Science in Engineering to the University of the Witwatersrand,
Johannesburg. It has not been submitted before for any degree or examination to any
other University.

...
(Signature of Candidate)

.......... day of year

i

Abstract

The work presented extends and contributes to the research of modelling lightning return
stroke (RS) electromagnetic (EM) fields in the time domain. Although previous work in
this area has focused on individual lightning electromagnetic pulse (LEMP) modelling
techniques, there has not been an investigation into the strengths and weaknesses of
different methods, as well as the implementation considerations of the models. This
work critically compares three unique techniques (Finite Antenna, FDTD, and Single
Cell FDTD) under the same ideal simulation parameters. The research presented will
evaluate the EM fields in the range of 50m to 500m from the lightning channel. This
range, often referred to as the near field distance, has a significant effect on lightning
induced overvoltages on distribution lines, which are primarily created by the horizon-
tal EM fields of the RS channel. These close distances have a significant effect on the
model implementations, especially with the FDTD method. Each of these modelling
methods is explained and tested through examples. The models are implemented in
C++ and have been included in the Appendix to aid in future implementation. From
the model simulations it is clear that the FDTD method is the most comprehensive
model available. It allows for non-ideal ground planes, as well as complex simulation
environments. However, FDTD has a number of numerical related errors that the Fi-
nite Antenna method does not suffer from. The Single Cell FDTD method is simple to
implement and does not suffer from the same numerical errors as a full FDTD imple-
mentation, but is limited to simple simulation environments. This work contributes to
the research field by comparing and evaluating three techniques and giving considera-
tion to the implementation and the applicability to lightning EM simulations.

ii

Acknowledgements

I would like to acknowledge Professor Ken Nixon and thank him for all the enthusiasm
and commitment. I would also like to thank him for always having more faith in me
than I did, and for constantly improving the engineering potential of those around him.
I would like to thank Ms Yu-Chieh (Jessie) Liu, and Mr Hugh Hunt for all the help,
advice and stimulating conversations over the years. I would like to thank Mr Kerren
Ortlepp for the programming help, without which none of the simulations would have
been possible.

Funding and support from the following organisations is also gratefully acknowledged:

• The financial assistance of the National Research Foundation (NRF) towards this
research is hereby acknowledged. Opinions expressed and conclusions arrived at,
are those of the author and are not necessarily to be attributed to the NRF.

• The NRF for direct funding of the Research Group.

• Eskom for the support of the Lightning/EMC Research Group through the Ter-
tiary Education Support Programme (TESP) programme.

• The Department of Trade and Industry (DTI) for Technology and Human Re-
sources for Industry Programme (THRIP) funding.

• The CrunchYard (www.crunchyard.com) for providing computational resources.

Finally I would like to thank my parents for all their love and support. Thank you for
making it possible for me to live an interesting life, filled by the pursuit of knowledge
and adventure.

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables x

List of Symbols xi

Nomenclature xii

1 Introduction 1

2 Approach Taken 3

2.1 Problem Description . 3

2.2 Solution Planning . 5

2.3 Model Concepts . 6

2.4 Chapter Summary . 7

3 Background 8

3.1 Lightning Flash . 8

3.2 Current Impulse Models . 12

iv

Contents v

3.3 Return Stroke Models . 18

3.4 Electromagnetic Theory . 23

3.5 Curvilinear Co-ordinate Systems . 25

3.6 Chapter Summary . 27

4 Finite Antenna Method 28

4.1 Overview . 28

4.2 Model Development . 29

4.3 Model Simulations . 33

4.4 Chapter Summary . 35

5 3D FDTD Method 36

5.1 Overview . 36

5.2 Model Development . 38

5.2.1 3D FDTD Equations . 39

5.2.2 Stability and Dispersion . 44

5.2.3 Boundary Conditions . 46

5.2.4 Simulation space objects . 49

5.2.5 Computational Considerations 50

5.3 Model Simulations . 52

5.4 Chapter Summary . 60

6 2D FDTD Method 61

6.1 Overview . 61

6.2 Model Development . 64

6.2.1 2D FDTD Equations . 64

6.2.2 Stability and Dispersion . 67

6.2.3 Boundary Conditions . 68

6.2.4 Simulation space objects . 70

6.2.5 Computational Considerations 71

Contents vi

6.3 Model Simulations . 72

6.4 Chapter Summary . 76

7 Single Cell FDTD Method 78

7.1 Overview . 78

7.2 Model Development . 80

7.3 Model Simulations . 83

7.4 Chapter Summary . 85

8 Discussion and Future Work 87

9 Conclusion 90

References 91

Bibliography 96

Appendix A SAUPEC Conference Paper 99

Appendix B SIPDA Conference Paper 104

Appendix C 2D Spherical Finite Antenna Code 111

Appendix D 3D Cartesian FDTD Code 119

Appendix E 2D Cylindrical FDTD Code 135

Appendix F 2D Spherical Single Cell FDTD Code 144

List of Figures

2.1 Complete LIOV Model Block Diagram 4

3.1 Lightning - Horizontal Motion . 9

3.2 Lightning - Vertical Motion . 9

3.3 Lightning Flash, and its Stroke Components 10

3.4 Lightning Stroke. Steps 1-3 . 10

3.5 Lightning Stroke. Steps 4-6 . 11

3.6 DE, Heidler, Terespolsky function plot - Rise Time 14

3.7 DE, Heidler, Terespolsky function plot - Wave Shape 14

3.8 Subsequent Stroke Current impulse plot - Function comparison. 16

3.9 Subsequent Stroke Current impulse differential plot - Function comparison. 16

3.10 Basic RS Physical Model . 18

3.11 Engineering RS Models for: TL, MTLL and MTLE. 22

3.12 3 Direction EM Field Creation and Propagation 24

3.13 Cartesian, Cylindrical and Spherical Geometry 26

4.1 Finite Antenna EM field above ground geometry 29

4.2 Finite Antenna - Eθ Field Components - r = 50m, θ = π/2 32

4.3 Finite Antenna - E Fields - r= 100m - Variable Angle 33

4.4 Finite Antenna - E Fields in Cartesian and Spherical Co-Ordinates . . . 34

5.1 3D Lightning simulation space divided into cells 37

5.2 3D Yee Cell - Cartesian Co-ordinates - H Field centred 38

vii

Figures viii

5.3 3D FDTD - Ez Yee Cell Field Mathematics 42

5.4 3D FDTD - Hz Yee Cell Field Mathematics 44

5.5 Cell Requirements for Ez at X Upper Boundary (2nd Order Mur) . . . 47

5.6 Cell Requirements for Ez at Boundary edges (1st Order Mur) 48

5.7 Cell Requirements for Ez at Corners (1st Order Mur) 49

5.8 3D FDTD Lightning Current Source Component - Jiz Current Density . 50

5.9 EM Fields assigned to FDTD Simulation Space 51

5.10 FDTD Software Flow Diagram . 52

5.11 Basic FDTD Model Structure . 53

5.12 EM Reflections on Simulation Space Boundaries 54

5.13 3D FDTD Fields - Variable Grid Size . 55

5.14 Yee Cell - Discrete Location of Nodes and Fields 56

5.15 3D FDTD Fields - 1
2∆Cell field shift. 57

5.16 3D FDTD Fields - Variable Simulation Space. 58

5.17 3D FDTD Fields - With and Without ABC 59

6.1 3D Simulation space divided into cells - Cylindrical 62

6.2 3D Yee Cell - Cylindrical Co-ordinates - H Field centred 63

6.3 2D Simulation space divided into cells - Showing 3D Cylindrical area . . 63

6.4 Ez field on Lightning Channel . 66

6.5 EM Fields assigned to 2D FDTD Simulation Space 68

6.6 Cell Requirements for Hφ at D̂ Upper Boundary (2nd Order Mur) . . . 69

6.7 Cell Requirements for Hφ at Corner Boundary Cells (2nd Order Mur) . 70

6.8 2D Cylindrical Simulation Space Objects 71

6.9 Basic 2D Model Space - With Discrete Location Yee Cell Nodes and Fields 73

6.10 2D FDTD Fields - Variable Grid Size . 74

6.11 2D FDTD Fields - Fine Scale Yee Cells 75

6.12 2D FDTD Fields - Variable Simulation Space 76

7.1 3D Yee Cell - Spherical Co-ordinates - H Field centred 79

Figures ix

7.2 2D Yee Cell - Spherical Co-ordinates - r̂ − θ̂ plane 82

7.3 Single Cell Er Field - Different θObs. 84

7.4 Single Cell Er Field - Different Cell Size. 85

7.5 Single Cell Er Field - Different Time Step. 86

List of Tables

2.1 EM Field Propagation Models - Evaluation Characteristics 6

3.1 200 kA Current Impulse Parameters . 15

3.2 Subsequent Stroke Current Impulse Parameters 17

3.3 Return Stroke Wavefront Velocity . 21

3.4 Return Stroke Channel Height . 21

5.1 Example Case: Yee Cell Field Locations (m) 56

5.2 Example Case: Cell Computer Memory Requirements 57

5.3 Example Case: Computer Memory for different Simulation Space Dimen-
sions . 59

6.1 Example Case: Cell Computer Memory Requirements 2D VS 3D 75

8.1 EM Field Propagation Models - Property Summary 88

x

List of Symbols

~E | [V/m1] Electric Field Intensity Vector
~D | [C/m2] Electric Flux Density Vector
~B | [Vs/m2] OR [T] Magnetic Field Intensity Vector
~H | [A/m1] Magnetic Flux Density Vector
J | [A/m2] Current Density
σ | [S/m1] Conductivity of medium
ρq | [C/m3] Volume Charge Density
ε | [F/m1] Permittivity of a medium
εr | | Relative Permittivity
ε0 8.854 187 817 6× 10−12 [F/m1] Permittivity of free space
µ | [H/m1] OR [N/A2] Permeability of a medium
µr | | Relative Permeability
µ0 4π × 10−7 [H/m1] OR [N/A2] Permeability of free space
λ λ = c/f [m] Wavelength
c 299 792 458 [m/s1] Speed of Light
h 6.626 069 57× 10−34 [J s] Planck’s constant
ω ω = 2πf [rad/s1] Angular Wave Frequency
k k = 2π/λ [rad/m1] Wavenumber
A | | DE Current Scaling Factor
Ip | [A] Peak Current for DE Current
α | [s−1] DE Fall Time Constant
β | [s−1] DE Rise Time Constant

xi

Nomenclature

Transverse Wave The motion of a wave is perpendicular
to the direction of wave propagation.

Longitudinal Wave The motion of a wave is parallel
to the direction of wave propagation.

FDTD Finite Difference Time Domain
EM Electromagnetics
CEM Computational Electromagnetics
PDE Partial Differential Equations
FDE Finite Difference Equations
LIOV Lightning Induced Overvoltage
LEMP Lightning Electromagnetic Pulse
RS Return Stroke
TL Transmission Line.
MTLE Modified Transmission Line Exponential.
MTLL Modified Transmission Line Linear.
DE Double Exponential.
CP Current Propagation.
CBC Channel Base Current.
CFL Courant-Friedrichs-Lewy.
TE Transverse Electric.
TM Transverse Magnetic.
ABC Absorbing Boundary Conditions
RBC Radiation Boundary Conditions
PML Perfectly Matched Layer

xii

Chapter 1

Introduction

Lightning electromagnetic (EM) fields are responsible for deleterious effects in electrical
distribution networks. In order to design protection against these effects it becomes
necessary to first model the EM fields surrounding the overhead distribution lines. EM
fields in this case are directly linked to the current that flows in the lightning channel,
known as the return stroke channel. Lightning EM fields are unique in the field of
electromagnetic modelling due to the magnitude of return stroke current, as well as the
high speed transient nature of the current waveform. Typically EM fields are modelled
in the frequency domain, however due to the return stroke current there are a number
of benefits to evaluating the problem in the time domain.

This work will review three different methods of evaluating lightning EM fields in the
time domain: Finite Antenna, FDTD and Single Cell FDTD. The Finite Antenna
Method is the classic approach used in this field, and the second is the Finite-Difference
Time-Domain (FDTD) method. More specifically the FDTD method will be imple-
mented in two different variations: 3D FDTD and 2D FDTD. The Single Cell FDTD
method is the final technique and is a combination of the previous two. Each of these
implementations have their own benefits for specific situations.

Simulating the EM fields that surround a lightning channel is not a trivial problem.
There are many different sub system models, and hundreds of variables that construct
a full model. Therefore this work answers the question of how EM fields are modelled
at a single point in space (located near the lightning channel). This is not simply
an implementation, but a methodology to de-constructing this complex problem into
manageable components and understanding the limitations and strengths of models. In
addition to this all the models used in this work are kept in the time domain.

Another important aspect to highlight is the distinction of Return Stroke electromag-
netics (which result from the current flow in the lightning channel), and cloud potential
electromagnetics (which result from the charge difference between cloud and ground).
With reference to lightning protection on distribution lines it is only the return stroke
electromagnetic fields that have a significant effect on the lightning induced overvolt-
ages (LIOV) that develop on the lines [1–4]. Another important consideration is that

1

Introduction 2

this effect is only relevant to lightning strokes that occur near (50m to 500m) distribu-
tion lines [5]. This distance restriction has an important effect on the models used to
simulate lightning EM fields.

Chapter 2 will discuss the approach taken in this research, and add context to the
research question and solutions. It will also discuss the concept of a model, and its
applicability in the area of lightning research.

Chapter 3 will provide a review of the essential lightning process theory, as well as
all the relevant sub models needed by the EM models. This is by no means a fully
comprehensive review of these research fields, and is meant only to provide sufficient
knowledge in these areas to construct later models. A number of assumptions and
validations are also made in this chapter that are used throughout the document.

Chapter 4 presents the basic theory of the Finite Antenna Method, as well as all the
mathematical functions describing a solution. Example cases are discussed with field
solutions for reference. These fields will then be used for comparison against the FDTD
model implementations. This method is the classical choice used in the research prob-
lem, however it is limited to simple simulation environments.

Chapter 5 and 6 discuss the 3D FDTD and 2D FDTD theory and implementations of
lightning simulations respectively. Chapter 5 will present the 3D FDTD theory and
lightning related assumptions in detail. The concepts from this chapter are equally
applicable in the special 2D FDTD variation, which is discussed in Chapter 6. The
primary advantage of using a 2D FDTD implementation over a 3D implementation is
the simulation space size, which ultimately is limited by computer memory and com-
putational time. However a 3D implementation allows for greater complexity in the
simulation environment.

Chapter 7 presents the Single Cell FDTD method. This is effectively a hybrid between
the Finite Antenna Method, and the FDTD method. It relies on a simple implementa-
tion of FDTD in combination with the simplified mathematics from the Finite Antenna
Method. In addition to this the method avoids the complex numerical issues of a full
FDTD implementation, as well as the complicated mathematics of the Finite Antenna
method. The primary disadvantage of this method is that it only caters for simple sim-
ulation environments.

Chapter 8 discusses and summarises the findings of the presented research, and Chap-
ter 9 provides the concluding remarks. By combining the findings of this research with
the code examples in the Appendix, a reader will be able to not only understand the
theory of lightning EM models, but also implement models. In addition to this there is
enough insight added to aid in adapting models for more complex simulations.

Chapter 2

Approach Taken

This chapter describes the process involved in decomposing the research question. This
is done by providing a problem description, and from this description formulating an
appropriate solution. In this work the success of a solution will be judged by the
strengths of the models. Lightning is a natural event that is difficult (near impossible)
to recreate accurately in a lab environment [6, 7]. Therefore this research uses models as
a means of evaluating the research problem. Typically a research project involves steps
of identifying a problem, theorising a solution, testing and experimentation, and then
critical analysis of results. This research relies on a model based approach for testing
and analysis, without any real world experimental results.

2.1 Problem Description

Many areas of the world suffer from high lightning flash rate densities, and South
Africa is one of them. The South African Highveld has a typical flash rate den-
sity of 15 flashes/year/km2, and in the south of Mpumalanga a flash rate of up to
50 flashes/year/km2 [8]. As a result of these high flash rate densities, there is on aver-
age R500Million in lightning related insurance claims in South Africa each year, as well
as a lightning death rate that is 4 times higher than the global average [8].

There are a number of areas in engineering where the effects of lightning needs to be
considered. One such area is lightning protection for distribution lines [9]. There are
two mechanisms of lightning that can affect distribution lines. The first is a “Direct
Strike”, where a lightning stroke attaches directly to a distribution line, and injects
current into the line. This current pulse propagates along the line, and affects all the
line components. The second mechanism is an “Indirect Strike”, where a lightning stroke
terminates on the ground at a location near a distribution line, within the range of 50m
to 500m [5]. The effects of an indirect strike are typically caused by the coupling of the
lightning EM fields to the distribution line [9]. This coupling induces a current along
the distribution line which forms an impulse current. This pulse causes a rise in line
voltage, and is often referred to as a lightning induced overvoltage (LIOV) [2].

3

Approach Taken 4

When considering the design of lightning protection for distribution lines, it is the
indirect strikes rather than the direct strikes that are of most concern [1–4, 10]. This
is due to the fact that although a direct stroke injects a higher current into the line,
the frequency of indirect strikes is far higher than direct strikes. In addition to this,
the currents associated with a direct strike are high enough for most line protection to
activate, and prevent a line surge damaging line components. However for an indirect
strike the currents may be low enough to pass standard line protection, and still be
high enough to cause damage to line components. On transmission lines the induced
overvoltage levels are often not considered high enough to be of major concern, so this
effect is primarily associated with low to medium voltage overhead lines. Additional
examples of these can also include telecommunications lines, and railway power lines.
Distribution line networks are generally quite extensive in most countries, and have a
direct effect on many users. This is a real world problem that has a significant financial
cost, as well as a significant effect on the lives of people who depend on a stable power
supply [1–4].

In order to better protect line equipment, as well as improve electricity supply quality, it
becomes necessary to better design lightning protection of distribution lines. This work
evaluates the EM models needed in the design process. LIOVs are directly dependant
on the lightning EM fields surrounding the lines [2]. This leads to the research question
of the work: “How are the electromagnetic fields from a lightning return stroke
modelled at a single point in space near the channel.” By answering this question
the process can be repeated for multiple points along a distribution line. These fields
are then used in conjunction with a “Field to Line” coupling model [11] to determine
the LIOV.

EM Source Model

Return Stroke
Model

Current
Model

EM Field
Propagation Model

Ground
Model

Field to Transmission
Line Coupling Model

Corona
Model

Ground
Model

Complete Model

Figure 2.1: Physical system overview. Note: The sinusoidal wave illustrates the propagating
EM wave that attenuates with distance. It does not indicate the waveshape of a LEMP.

Approach Taken 5

The answer to the proposed question does not simply take the form of: “Use equation X”.
Lightning is a complex natural event, as seen in Figure 2.1, which shows the typical sub-
models involved with a LIOV simulation [3]. This figure shows three primary models,
and their subcomponents [2, 7, 12–14]. Each of these models and subcomponents form
their own fields of research. Deciding what models to use, what variables to consider,
and how to implement them is a non-trivial process.

This work will focus on the EM source model and the EM propagation models to describe
the lightning EM field at a single point in space. However for a full LIOV problem
the ideal solution would be to know the EM field at every point in space for every
step in time. Therefore simply describing the fields has become a four dimensional (4D)
problem before even considering the variables that affect the fields.

2.2 Solution Planning

The research question is now clearly defined, but in order to find a solution it is necessary
to define a boundary for the available models. As seen in Figure 2.1, the EM source
model is dependant on the lightning current. As will be discussed in Chapter 3, the
lightning current waveform is a transient impulse. Because of this there are a number
of advantages to evaluating the problem in the time domain. The frequency domain
is typically used for EM models, and has been used for LEMP simulations using the
method of moments (MoM) implementation [9, 15]. The frequency domain is best
suited when dealing with a periodic single frequency source. For LEMP simulations
in the frequency domain, the method requires a sample set of periodic sources being
transformed into the frequency domain. The resulting fields are then computed in the
frequency domain (for each of the sources), and then transformed back into the time
domain. The total field is then a summation of multiple sources. This whole process
is needlessly complex, and requires a fine resolution of periodic sources that aim to
represent the broad band frequency response of a lightning impulse [16]. A time domain
solution would not involve this complex management of the current source. This is the
primary motivation for evaluating this problem in the time domain in addition to the
benefit of the technique being more physically intuitive [13, 17]. Another reason for
using the time domain is to include the effects of time varying mediums. The properties
of the propagation medium surrounding the lightning channel may change with time
due to heating effects and field intensity caused by the lightning current intensity.

With reference to Figure 2.1, the EM source relies on models for the lightning current,
and the return stroke model. Both of these have many unique options available, and
are already in a time domain format. These models are discussed in Chapter 3.

There are three time domain models for the EM propagation component. The first time
domain method is the Finite Antenna Method, which is the classical approach taken
for lightning EM fields in the time domain. The second method is the Finite-Difference
Time-Domain (FDTD) method, which will be presented in two different implementa-
tions: 3D FDTD and 2D FDTD. The final method is Single Cell FDTD, which is a
novel combination of the previous two methods. Each of these four implementations
have strengths and weaknesses as shown in Table 2.1.

Approach Taken 6

Table 2.1: EM Field Propagation Models - Evaluation Characteristics

Finite 3D 2D Single
Antenna FDTD FDTD Cell

Single Point EM Fields D × × D

Multiple Points along a line × D × ×
Complex 3D Environment × D × ×
Computational Efficiency D × D D

Non-Ideal ground × D D ×
Large Distance Applications D × D D

Each of these four implementations will be presented in detail in the following chapters.
Normally a model is verified through an experimental process, but as stated this is not
possible for this particular application. Instead these models will be compared against
each other. The first two methods have uniquely different and accepted derivations,
and therefore the FDTD implementations will be verified against the Finite Antenna
Method. As will be shown, all methods produce the same results when using a simple
simulation environment.

2.3 Model Concepts

Lightning is a highly complex natural event that occurs throughout the world in vastly
different locations, and environments. Because of this it is important to try and predict
the physical effects that result from lightning strokes. This is done by modelling a
lightning stroke, as well as the resulting effects. A model can simply be described as
a mathematical construct that is used to describe observed phenomena [18]. If every
aspect of a physical event was understood, then there would be no need for a model.
A model is used when some aspects of a physical process is not fully understood. An
example of this is a lightning return stroke (RS) model. The current at every point
in a lightning channel cannot be measured [19]. Therefore a RS model is used to
mathematically describe the spatial and temporal variation of the current along the
channel.

When using a model it is important to remember that it aims to describe the observed
phenomena, and not the process itself. As such, a model may use unproven theories,
and constants that have no physical meaning, but result in the observed outcomes.
Because of this, a requirement of a model is that it must be able to predict alternative
physical events (other than the observed case). The strength of a model is described by
the range of observed outcomes that can be accurately described by a model.

The limitations of lightning models are important. There are so many variables that
affect the physical effects, and additionally lightning is difficult to measure. This is due
to the fact that lightning strokes are not repeatable. Each stroke is unique, and therefore
its location, current path, current peak, current waveshape, as well as the environmental
factors, cannot be controlled. This makes model reconstruction difficult due to the

Approach Taken 7

lack of measurements. This also means that there are many different models that each
operate under a select range of variables.

Regardless of this limitation the use of models in lightning simulations is invaluable.
When creating a model there is always a feeling of needing to incorporate as many
variables possible into the model, so as to better approximate the real results. However
there is a limit to the value that this adds. For example, consider a real lightning stroke
with a number of branches (shown in Figures 3.1 and 3.2). If a RS model were to
consider the spatial and temporal variation of current in each of the branches, as well
as the primary channel, then the resulting EM field models would probably match the
expected fields more closely, however the benefit of this option needs to be considered.
Firstly, would it be possible to measure or model this current distribution, and if it were,
how complex would the model be. The second consideration is how much value would it
add to the results. Do these branches have a significant effect. The third consideration
is whether this model would add real value. Even if a single event could be modelled
perfectly, and the results match recorded values perfectly, it would never be able to
predict future events because it would not be possible to predict the exact lightning
current path of a future event. Every lightning stroke is unique, and constructing a
general model that applies well to most lightning strokes is more useful than a model
that only fits a single event.

As such, the field of lightning electromagnetic research relies on theoretical models more
than experimental models, to aid in predicting the effects caused by future lightning
events. This choice is purely caused by the difficulty in making lightning EM measure-
ments.

2.4 Chapter Summary

This chapter has described the research problem and identified the research question as
being: “How are the electromagnetic fields from a lightning return stroke modelled at a
single point in space near the channel?”. A guide to the proposed solution was derived
from understanding the problem. The solution involves constructing time domain mod-
els for the systems shown in Figure 2.1. Four different EM field propagation models
have been proposed, and the advantage of each are shown in Table 2.1.

The next chapter will discuss the relevant background theory to the lightning process,
as well as the basics of electromagnetic theory. It will also discuss in detail the models
required for the EM Source model in a lightning EM simulation.

Chapter 3

Background

This chapter discusses the theory of lightning and highlights the various different pro-
cesses of a lightning event, as well as their respective model components. An experienced
lightning researcher may skip this chapter, however for a new lightning researcher this
chapter aims to present all the important theory relevant to the problem of lightning
electromagnetics, and more specifically creating a model for the EM Source.

Section 3.1 defines the correct lightning terms and development processes involved in
lightning strokes. Section 3.2 discusses the current impulse models used to represent
lightning currents in models. Section 3.3 discusses the Return Stroke models used
to describe the spatial and temporal current values along a lightning channel. And
Section 3.4 and 3.5 gives a brief overview of Maxwell’s equations, and the co-ordinate
systems used in 3D models.

3.1 Lightning Flash

This section presents the theory regarding a lightning flash and lightning stroke. A light-
ning flash, or lightning event is a complex process with numerous physical reactions. As
such, this section is not meant to be a comprehensive review of all the different physical
events, but will rather focus directly on the physics that will aid in understanding how
a lightning flash creates a lightning electromagnetic pulse. First the different terminol-
ogy will be discussed, and then the full lightning stroke process will be presented.

There are four main classifications of cloud to ground lightning: Downward Negative,
Downward Positive, Upward Negative, and Upward Positive [20]. Regardless of the type,
lightning is simply described as the movement of electrical charge between clouds, and
between clouds and ground. The process of how charge accumulates in clouds is beyond
the scope of this work, but essentially it forms as a result of the physical movement
between the three states of water that form and move through clouds during storms.

Figure 3.1 shows an example of a “Cloud to Cloud” lightning stroke. Notice that the
stroke travels horizontally, and does not terminate on the ground.

8

Background 9

Figure 3.1: Lightning - Johannesburg, South Africa. Figure shows the horizontal channel
traversing the sky. Taken by Author.

Figure 3.2: Lightning - Johannesburg, South Africa. Figure shows the vertical channel with
numerous downward branches. Taken by Author.

Figure 3.2 shows an example of a downward “Cloud to Ground” lightning stroke. Ninety
percent of cloud to ground lightning is Downward Negative, which occurs when negative
charge moves down towards earth from the cloud [20]. This work will only consider
negative downward lightning.

It is important to recognize the difference between a lightning flash, lightning strike,
and lightning stroke. The term “strike” is the incorrect terminology used in describing
a lightning event, which should be described as a lightning “flash”. The word “strike”

Background 10

C
u
rr
en
t

Time

Lightning Flash

Subsequent StrokesFirst Stroke

Figure 3.3: Lightning Flash, and its Stroke Components

insinuates a physical force exerted by the lightning, which is not the case. However there
are certain terms such as “Direct Strike” and “Indirect Strike” that are commonly used.
The difference between these two terms is purely based on English interpretation, but
for the remainder of this dissertation the term lightning flash will be used to describe a
lightning event [20]. A lightning flash is an event seen by an observer as a bright pulsing
light typically followed by a loud clapping sound. A lightning flash consists of multiple
lightning strokes, as seen in Figure 3.3. The relevance of the current and the waveshape
in this figure will be discussed shortly.

A lightning flash typically consists of a first stroke followed by a number of subsequent
strokes. Each stroke consists of a downward leader followed by an upward return stroke.

Step 1 Step 2 Step 3

Figure 3.4: Lightning Stroke. Steps 1-3

Background 11

Step 4 Step 5 Step 6

Figure 3.5: Lightning Stroke. Steps 4-6

The physics regarding a lightning first stroke is illustrated in Figures 3.4 and 3.5, and
described in 6 steps [20–22].

Step 1 A charged cloud is formed, with a typical three layer charge distribution [23].

Step 2 A stepped downward leader is formed. The stepped leader propagates down-
ward in bursts, and often forms branches (not shown in the figure). As each
stepped path is formed, negative charge is deposited in the channel [20].

Step 3 As the stepped leader gets closer to ground, the electric field strength increases
and upward leaders form. These upward leaders cause a slow increase in positive
charge to flow up toward the leader.

Step 4 The stepped downward leader then attaches to an upward leader. The positive
ground charge then “sees” a conductive path from the ground up to the cloud.

Step 5 An impulse of positive charge then rushes up into the channel to neutralize the
negative charge. This impulse is known as the Return Stroke current.

Step 6 As the positive impulse travels up the leader channel, the current is attenuated
due to charge neutralization, as well as charge loss in the corona sheath [24].

The upward flowing current impulse is known as the return stroke current. The current
measured at the RS ground point is known as the channel base current (CBC). The

Background 12

channel base current typically has a peak current value in the range of 4 kA - 90 kA
[25], and it is this return stroke current (not leader current) that is responsible for
lightning damage to ground objects, either through direct attachment to the ground
object (direct strike) or induced effects (indirect strike) [18]. Figure 3.3 shows the
first return stroke current, followed by subsequent return stroke currents. The first
return stroke has a slower (longer) wavefront, but generally has a higher peak current.
Subsequent strokes typically have a faster (shorter) wavefront, but a lower peak current
[20]. This makes intuitive sense as the first return stroke has to form the conductive
channel between the cloud and ground. The subsequent strokes are able to flow in the
pre-established conductive channel.

It is worth mentioning that there are two distinct processes responsible for creating EM
fields during a lightning flash. The difference in charge between the cloud and ground
establishes a semi-static vertical electric field. This field intensity drops in steps after
each stroke as charge is neutralised. This collapsing field results in a propagating EM
field, with a predominantly vertical electric field. The second process is the EM fields
radiated from the RS channel current. The RS channel is considered as a vertical
antenna above the ground, which radiates EM fields in the Vertical and Horizontal
planes. It is the horizontal fields that have the greatest effect on the LIOVs induced on
distribution lines [9, 26]. This work is only concerned with the EM field components
created by the RS channel current, and not the fields created by the charge distribution
between the cloud and ground.

This section has highlighted the elements and theory of a lightning flash. To simulate
the expected EM fields radiating from a lightning stroke it is necessary to create a model
that describes the current distribution on the channel during the lightning stroke. This is
known as a Return Stroke (RS) model. This model depends on a CBC model to describe
the current impulse waveshape.

3.2 Current Impulse Models

A channel base current model is defined by a current impulse model. This model
is a mathematical description of the observed current flow at the base of the lightning
channel (point of attachment). Three current impulse models are reviewed here: Double
Exponential, Heidler, and Terespolsky functions [27] (Appendix A).

1. Double Exponential (DE)

iDE(t) = IpA · (e−αt − e−βt) (3.1)

Where
A = Scaling Factor
Ip = Peak Current
α = Time Constant
β = Time Constant

This function has been used in a number of lightning related research areas, how-
ever as seen in Figure 3.6 and 3.7, the wavefront rises instantaneously at time 0 s.

Background 13

This is physically unrealisable in the real world, and does not match the physics
described in Section 3.1. Section 3.1 explains that the current should rise slowly
as the leader approaches the ground, and then rise rapidly after attachment oc-
curs. This rising edge of the wavefront is important, and has a significant effect
on the EM fields produced [28].

2. Heidler Function

iH(t) =
Ip
η

·

(
(t
τ1
)n

(t
τ1
)n + 1

)
· e−

t
τ2 (3.2)

Where
η = Scaling Factor
Ip = Peak Current
n = Steepness Factor
τ1 = Time Constant
τ2 = Time Constant

The Heidler function is a widely used current impulse model, and is also used in
lightning protection standards [25]. Figures 3.6 and 3.7 show that the waveshape
of the Heidler function is in better agreement with the physics described in Sec-
tion 3.1. The only problem with this function is that it cannot be analytically
integrated [28–30]. This becomes relevant when evaluating the EM fields.

3. Terespolsky Function

iBT (t) =
Ip
η

·

1− e−ω0t

 na∑
j=0

ωj
0t

j

j!

 · e−
t
τ2 (3.3)

∫
iBT (t) dt =

Ipτ2e
−t(1

τ2
+ω0)

η
·

−eω0t +

na∑
i=0

i∑
j=0

ωi
0τ

j
2 t

i−j

(i− t)!(τ2ω0 + 1)j+1

+C (3.4)

i′BT (t)BT =
Ip
η

·

e−ω0tωna+1
0 tna

na!
− 1

τ2
+

e−ω0t

τ2

 na∑
j=0

ωj
0t

j

j!

 · e−
t
τ2 (3.5)

Where
η = Scaling Factor
Ip = Peak Current
na = Steepness Factor
ω0 = Rise Time Constant
τ2 = Time Constant

Equation 3.3 shows the Terespolsky function, which is a Heidler Function approx-
imation [30, 31]. Figures 3.6 and 3.7 show the Terespolsky function has a maxi-
mum error of 1.5% when compared to the Heidler function. This function has the
benefit of an analytical integral solution (Equation 3.4), as well as an analytical
differential solution (Equation 3.5).

Background 14

0 10 20 30 40 50
0

50

100

150

200

Time (µs)

C
u
rr
en
t
(k
A
)

Terespolsky Function
Heidler Function

Double Exponential

Figure 3.6: DE, Heidler, Terespolsky function plot - Rise Time

0 50 100 150 200
0

50

100

150

200

Time (µs)

C
u
rr
en
t
(k
A
)

Terespolsky Function
Heidler Function

Double Exponential

Figure 3.7: DE, Heidler, Terespolsky function plot - Wave Shape

Background 15

Table 3.1: 200 kA Current Impulse Parameters

Variables DE Heidler Terespolsky
Ip 200 kA 200 kA 200 kA
A 1.025 - -
η - 0.93 0.93
α 2.05× 10−3 s−1 - -
β 5.64× 10−5 s−1 - -
n - 10 -
na - - 33
τ1 - 19µs -
τ2 - 485 µs 485 µs
ω0 - - 1 768 211 s−1

Figures 3.6 and 3.7 show the three impulse models plotted on different time ranges.
Figure 3.6 emphasizes the differences in the wavefront rise time characteristics, and
clearly shows that the DE model is not physically realisable with an instantaneous rise
time [29]. The waveshape shown in the figures is a 200 kA, 10/350 µs impulse. This is
the recommended waveshape for a level one lightning protection standard (IEC 62305-
1) for a first positive RS [25]. The parameters used in the current impulse models are
shown in Table 3.1 [25, 32]. The standard also states that for a lightning protection
level one (the highest level), a first negative stroke current impulse should have a peak
of 100 kA, and a subsequent stroke should have a peak of 50 kA [25].

Popular Current Impulse Model

A popular current impulse model, commonly used in research papers, was first presented
by C.A. Nucci [33]. The model, described by Equation 3.6, is a combination of the
Heidler Function (with n = 2) and a DE function. The waveshape is intended to
represent a subsequent RS with a fast rise time.

i(t) =
I1
η

·

(
(t
τ1
)2

(t
τ1
)2 + 1

)
· e−

t
τ2 + I2(e

−t
τ3 − e

−t
τ4) (3.6)

However due to the Heidler Function component, this equation cannot be analytically
integrated. The Terespolsky equivalent function (na = 3) is described by Equation 3.7.

i(t) =
I3
η

·

1− e−ω0t

 na∑
j=0

ωj
0t

j

j!

 · e−
t
τ2 + I2(e

−t
τ3 − e

−t
τ4) (3.7)

Background 16

0 2 4 6 8 10
0

2

4

6

8

10

12

Time (µs)

C
u
rr
en
t
(k
A
)

Terespolsky Version
Heidler Version

Figure 3.8: Subsequent Stroke Current impulse plot - Function comparison.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Time (µs)

C
u
rr
en
t
D
iff
er
en
ti
al

(k
A
/µ

s)

Terespolsky Version
Heidler Version

Figure 3.9: Subsequent Stroke Current impulse differential plot - Function comparison.

Background 17

Table 3.2: Subsequent Stroke Current Impulse Parameters

Variables Heidler Version Terespolsky Version
I1 9.9 kA -
I2 7.5 kA 7.5 kA
I3 - 9.55 kA
η 0.845 0.845
n 2 -
na - 3
ω0 - 41.66 /(µs)
τ1 0.072 µs -
τ2 5 µs 5 µs
τ3 100 µs 100 µs
τ4 6 µs 6 µs

Figure 3.8 shows the small difference between the current impulse function described by
Nucci in [33], and the equivalent Terespolsky function. Figure 3.9 shows a plot of the
time differential current. Although this figure shows a negligible time difference between
the functions, the important characteristic is the peak differential value. Therefore using
the Terespolsky version is acceptable, and the values it produces in later simulations
can be compared to other research texts using Equation 3.6.

Table 3.2 shows the parameter values used to create the impulse plots in Figures 3.8
and 3.9. The values used in the Heidler version are taken directly from [33]. Note the
difference between the n and na values, as well as the τ1 and ω0 values used in Table 3.1
and 3.2. When adapting a Heidler Function to a Terespolsky Function, the choice of
these values is critical. For a Heidler Function with n = 10 (which is recommended in
lightning protection standard [25]), the choice of na is set to 33.

However when n does not equal 10, such as Equation 3.6, determining the values for na

and ω0 is complicated. From author experience the use of Equation 3.8 is recommended.
This reduces the problem to one unknown variable. In addition to this na can only be a
whole number. This equation serves as a rough guide, and will not provide the optimal
match.

ω0 =
na

τ1
(3.8)

The choice of the waveshape and parameters used in the different current impulse models
is left at the readers discretion. The values presented in this section serve only as
an example, and not necessarily the best choice for simulations. In addition to this
it is recommended that the DE function is not used in electromagnetic simulations.
Although this function is simpler to manipulate mathematically, its waveshape does
not match the observed characteristics. Therefore the Heidler Function or Terespolsky
Function should be used.

Background 18

3.3 Return Stroke Models

A Return Stroke (RS) model is simply a mathematical expression that describes cur-
rent along a lightning channel, at different points in time. RS models are needed by
electromagnetic field calculations, because the spatial and temporal variation of current
is the source of electromagnetic radiation [18]. There are other uses of RS models, how-
ever these will not be discussed here.

With reference to Section 2.3 it is important to identify the limits and assumptions
of the RS models presented in this section. One assumption used in all the models is
that the RS path is perfectly straight and perpendicular to a flat ground plane. From
Figure 3.2 it is clear that this assumption does not accurately represent a real lightning
channel. A real lightning channel consists of multiple tortuous paths, along with many
side branches that do not terminate. Adding these parameters to a model would not
contribute significant value to a simulation due to the fact that every lightning stroke is
unique, and therefore would not be applicable to any other event. The best decision is
to approximate the lightning channel to being perfectly straight and perpendicular to
the ground. Other assumptions include a finite channel height, and a constant velocity
for the upward travelling current impulse.

Figure 3.10 is a graphical representation of the physical system being modelled by the
return stroke model. This figure shows the model assumptions already mentioned, and
also shows that the RS current originates at the ground plane attachment point, and
travels up the channel with a finite velocity.

x

y

z

(0, 0, 0)

Ground Plane

Lightning Channel

Source of RS Current

Finite Channel Height

Current Direction, with
Finite Velocity

Figure 3.10: Basic RS Physical Model

Background 19

There are 4 categories of RS models:

Electro-Thermodynamic models Models of this sort aim to describe a number of
lightning phenomena, such as current-voltage characteristics, acoustic radiation,
plasma development, plasma heating, and plasma channel dimensions [18]. This
category is more relevant for researchers in the physics field.

RLC Transmission line models This method models the current path between ground
and cloud as a transmission line consisting of Resistive (R), Inductive (L) and Ca-
pacitive (C) elements. These RCL per unit components shape and attenuate the
current impulse as it travels upward along the channel [18]. This model requires
a complicated circuit model to define the current channel.

Electromagnetic models These models rely on the theory of EM radiation through
different mediums. By changing the properties of the medium surrounding the
current carrying lightning channel, it is possible to shape, attenuate and slow
the RS current [15]. This model integrates directly into Finite-Difference Time-
Domain (FDTD) simulations [34–37], but it does add additional complexity.

Engineering Models These models are a division of the transmission line models,
where the transmission line between cloud and ground is ideal (no loss or compo-
nents). These models represent the spatial and temporal variation of the current
mathematically.

Of these four types only the Engineering Models will be reviewed. The first two cat-
egories do not integrate well with the work to follow. Electromagnetic models are a
good solution when working with FDTD, as they provide a single model solution to
describe RS current as well as the resulting EM fields. The Engineering models used in
this section are actually a special case of Electromagnetic models known as the “Phased
Current Source Array” or “Type 7” [37], and therefore integrate easily into FDTD simu-
lations. Due to this, only the Engineering models will be discussed, however the reader
needs to be aware that the Electromagnetic RS models do exist, and do have additional
advantages when using FDTD [15, 34, 36, 37].

Engineering RS Models

Engineering RS models are recognised for relating the current along the channel (in
space and time) to the current at the channel base [15, 18, 34]. These models also
describe the speed and current attenuation of the impulse as it propagates upward along
the channel. There are three subcategories of engineering models: Current Propagation
(CP), Current Generation (CG) and Current Dissipation (CD) models [18]. Only the CP
models will be presented here, as they produce all the required results, and are simple to
implement. Unless specified otherwise, “RS models” will refer to “Engineering Current
Propagation Return Stroke models”. The channel created by the downward leader is
described by CP models as a uniform lossless transmission line (TL). In these models
the RS current propagates up the channel with a mathematically described current

Background 20

attenuation and speed. Equation 3.9 shows a generic format for the RS model.

iRS(z, t) = Att(z) · ichan(z, t) t >
z

vc
(3.9a)

iRS(z, t) = Att(z) · ichan(z, t) · U(t− z

vc
) (3.9b)

iRS(z, t) = Att(z) · ichan(0, t−
z

vc
) · U(t− z

vc
) (3.9c)

Equations 3.9a, 3.9b and 3.9c are all equivalent, and show the standard format of the RS
model, where iRS(z, t) describes the current at channel height (z) in time. The function
Att(z) controls the attenuation of the channel current (ichan) with height. Equation 3.9a
also shows that the function can only exist for values of t > z

vc
(due to the finite travel

time of the wavefront). Equation 3.9b includes a unit step function to describe the time
value limitation of Equation 3.9a. Equation 3.9c shows that the height component can
be considered as a time shift. The importance of this is shown in Equation 3.10, where
the channel current at ground level is equivalent to the channel base current.

iCBC(t) ≡ ichan(0, t) (3.10)

Equation 3.11 shows an alternative notation for the generic return stroke models as
described in Equations 3.9. In this function the iCBC(t) can be any acceptable current
impulse function, as described in Equations 3.1, 3.2 or 3.3.

iRS(z, t) = Att(z) · iCBC(t−
z

vc
) · U(t− z

vc
) (3.11)

There are three commonly used RS models which use the same format as Equation 3.11,
except they differ in their implementation of the current attenuation function Att(z).

Transmission Line with no current decay - TL

iRS(z, t) = 1 · (iCBC(t−
z

vc
)) · (U(t− z

vc
)) (3.12)

Modified Transmission Line with Linear current decay - MTLL

iRS(z, t) = (1− z

H
) · (iCBC(t−

z

vc
)) · (U(t− z

vc
)) (3.13)

Modified Transmission Line with Exponential current decay - MTLE

iRS(z, t) = exp(− z

λc
) · (iCBC(t−

z

vc
)) · (U(t− z

vc
)) (3.14)

Equation 3.12 is the TL model, and it has no current attenuation along the line. Equa-
tion 3.13 is the MTLL model, which has a linear current attenuation with increasing
height. Equation 3.14 is the MTLE model, which has an exponential current decay with
increasing height.

Background 21

All of these models use a constant velocity vc to describe the RS wavefront motion
over the entire channel. Table 3.3 shows some variations of vc values as well as paper
references. In a physical lightning stroke event the RS wavefront velocity vc does change
with height (vc(z)). Therefore using a constant vc value is not entirely accurate, however
the complexity of adding a height variable velocity to the system model is high, and the
overall change in outcome is not significant enough to validate using it. Therefore the
velocity is kept constant between 1

4 c and 1
2 c.

Table 3.3: Return Stroke Wavefront Velocity

Paper Velocity ms−1 Speed of Light c

Uman et al [38] 80000000 0.267 c
ISHII et al [39] 99930819 1

3 c
Napolitano et al [13] 149896229 1

2 c
Jiang et al [40] 110000000 0.367 c
Azzouz et al [41] 100000000 0.334 c
Popov et al [42] 120000000 0.4 c

In Equation 3.13 the constant H represents the channel height. Table 3.4 shows a
selection of different channel heights used in past research papers. The channel height
ranges between 2000m to 8000m. The value for λc in Equation 3.14 is selected to be
2000m [18, 24, 33, 43].

Table 3.4: Return Stroke Channel Height

Paper Min Height m Height m Max Height m

V. Cooray [18] - 7500 -
Baba et al [15] 5000 - 8000
Jiang et al [40] - 7500 -
S. Rusck [44] - 2000 -
Bo et al [45] - 7500 -
Uman et al [19] 2700 - 8000
Uman et al [38] - 4000 -

Figure 3.11 shows the difference between the three RS models. Figure 3.11a shows the
CBC used for all three functions. The CBC is described by a DE current impulse func-
tion (Equation 3.1), where A = 1, Ip = 7500A, τ3 = 100× 10−6 s−1, τ4 = 6× 10−6 s−1,
α = 1/τ3 and β = 1/τ4. The DE function, and its parameters do not represent a realistic
RS current, and were chosen to demonstrate the impulse waveshape. This figure also
shows four randomly selected time points during the CBC. Assuming that the reference
time for this example begins at 0 s, then after 5 µs the current passing the channel base
is 3800A. During this time current has moved up the lightning channel, as seen in Fig-
ure 3.11b. Figures 3.11b to 3.11e show the current along the lightning channel at the
different times of the RS channel base current. The “X” axis plots the current, and the
“Y” axis plots the channel height.

These figures plot the three different RS models (with vc=0.5 c). The “Solid” (Blue) line
is the TL model. The “Dashed” (Purple) line is the MTLL model (with H=8000m),
and the “Dashed and Dotted” (Red) line is the MTLE model. At time step 1, as seen

Background 22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

0

1000

2000

3000

4000

5000

6000

Time 1

Time 2

Time 3

Time 4

Channel Base Current Waveshape

Time S

C
u
rr

e
n
t
A

(a) RS Channel Base Current

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

7000

8000
Time 1 = 0.05e−4 s

Current A

H
e

ig
h

t
Z

 m

(b) Time Step 1

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

7000

8000
Time 2 = 0.16e−4 s

Current A

H
e

ig
h

t
Z

 m

(c) Time Step 2

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

7000

8000
Time 3 = 0.40e−4 s

Current A

H
e
ig

h
t
Z

 m

(d) Time Step 3

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

7000

8000
Time 4 = 0.533e−4 s

Current A

H
e

ig
h

t
Z

 m

(e) Time Step 4

Figure 3.11: Engineering RS Models for: TL, MTLL and MTLE.

Background 23

in Figure 3.11b, the wavefront has not had enough time to move far up the channel,
and therefore the attenuation functions are not significantly affecting the currents. Pro-
gressing in time, Figures 3.11b to 3.11e show that the TL model current is unattenuated
as it propagates up the channel, and the waveshape remains the same as the CBC.
As expected, the MTLL model decays linearly as the wavefront moves up the channel,
and the MTLE (with the lowest current at the relevant heights) decays exponentially
with height. These figures show that the RS model chosen has a significant effect in
representing the RS current on the channel.

The MTLL model was first proposed by Rakov et al in [46], and is typically more
accurate when measurements are made near (50m) to the ground attachment point
(rocket triggered lightning) [21]. The MTLE model was first proposed by Nucci et al
in [24]. According to the theory outlined in Section 3.1, the RS current is observed to
attenuate at height as the CBC neutralises the negative charge in the channel. Therefore
either of the modified TL models more accurately represent the observed process [12].
However the standard TL method is commonly used in literature, and for convenience
in comparing results with other work the TL method will be used for the remainder of
this work [16].

3.4 Electromagnetic Theory

The purpose of this section is to introduce the basics regarding electromagnetic theory
and Maxwell’s equations. It is not intended as a complete review of the theory. For a
more in-depth analysis the reader is referred to [47–49]. There are four equations that
make up Maxwell’s Equations:

Faraday’s Law This law essentially states that a time varying magnetic field induces
an electric field. This is seen in Equation 3.15, with the integral form on the
left hand side (LHS), and the differential form on the right hand side (RHS).
The differential form results from applying Stoke’s theorem to the integral form.
An alternative loose interpretation of the law is that magnetic field lines passing
through a surface is equal to the electric field lines enclosing the surface. This is
illustrated in Figure 3.12.∮

c

~E · dl = −
∫
s

∂ ~B

∂t
· ds → ∇× ~E = −∂ ~B

∂t
(3.15)

Gauss’s Law This law is based on the observations of Gauss who correctly identified
that electric charges attract or repel due to a force that is related to the distance
between the charges. This force is caused by the electric flux density (D) that
emanates out of (or into) an electric charge. The LHS of Equation 3.16 states
that the charge density within a volume is equal to the electric flux density on the
surface of a conceptual container surrounding the charge.∮

s

~D · ds =
∫
v
ρ̃ dv → ∇ · ~D = ρ̃ (3.16)

Background 24

x
y

z

(0, 0, 0)

Hz

E

Hx E

Hy

E

Ez

H

Ex

H Ey

H

Figure 3.12: 3 Direction EM Field Creation and Propagation

Ampere’s Law This is a generalisation of Ampere’s Law, which states that the integral
of the magnetic field (B) around a conceptual contour must equal the current
within the contour (Figure 3.12). This is seen in Equation 3.17, which also shows
that a time varying electric field induces a magnetic field. This is closely related
to Equation 3.15.

∮
c

~H · dl =
∫
s
J · ds +

∫
s

∂ ~D

∂t
· ds → ∇× ~H = J +

∂ ~D

∂t
(3.17)

Magnetic Dipole Law This equation is derived from the fact that magnets (as far as
science currently understands) can only exist in dipole pairs, with a positive and
negative pole. This is in contrast to electric charges that can either be positive
or negative. Given this fact, it makes intuitive sense that the magnetic field lines
that leave one magnetic pole, must connect to the other. Therefore any conceptual
surface that surrounds a magnetic dipole, must have an equal number of magnetic
field lines leaving and entering the surface. This is mathematically described by
Equation 3.18. ∮

s

~B · ds = 0 → ∇ · ~B = 0 (3.18)

Other parameters of interest when investigating EM field propagation are the Perme-
ability, Permittivity, and Conductivity of the propagating medium.

Permeability The permeability value (µ) of a material describes the ability of that
material to support and maintain a magnetic field. The permeability of a material
relates the magnetic field intensity (~B) to the magnetic flux density (~H) through
the relationship shown in Equation 3.19.

~H =
1

µ
. ~B (3.19)

Background 25

The permeability of free space (µ0) is by definition 4π × 10−7Hm−1. The relative
permeability (µr) of a material is described by Equation 3.20, which is the ratio
of the materials permeability to the permeability of free space.

µr =
µ

µ0
(3.20)

Permittivity The permittivity value (ε) of a material describes the resistance (ability)
of the material to support electric fields. The electric field intensity (~E) and
electric flux density (~D) are related by the permittivity as seen in Equation 3.21.

~D = ε. ~E (3.21)

The permittivity of free space (ε0) is derived as 8.854 187 817 6× 10−12 Fm−1.
The relative permittivity (εr) of a material is described by Equation 3.22.

εr =
ε

ε0
(3.22)

Conductivity The conductivity value (σ) of a material, is the inverse of the materials
electrical resistivity. A high resistivity results in a low conductivity, and a low
resistivity results in a high conductivity. A materials current density (J) and
electric field (E) are related to the materials conductivity by Equation 3.23. From
this equation, if an electrical conductor has a current flow, then a line segment
would have a high current density. In addition to this, a conductor would have a
low resistivity, and therefore a high conductivity. Therefore from Equation 3.23,
the resulting electric field would be very low. This is to be expected, as electrical
conductors should have an even charge distribution, and therefore no difference
in charge to establish an electric field. The connection between Ohm’s Law and
Equation 3.23 should be easy to make.

σ =
J

E
→ E =

J

σ
(3.23)

3.5 Curvilinear Co-ordinate Systems

Section 3.4 has outlined the basic theory of Maxwell’s Equations, as well as the relevant
parameters. As seen in Equations 3.15 to 3.18, Maxwell’s equations describe vector
fields. There are three different co-ordinate systems that describe vector fields in a 3D
plane: Cartesian Co-ordinates, Cylindrical Co-ordinates and Spherical Co-ordinates.
These are illustrated in Figures 3.13a to 3.13c. Unit vectors are identified with “̂”.
By convention the ground Distance to observation point “P ” in the cylindrical plane is
represented by ρ, however in this text the variable “D” is used.

Equations 3.24a to 3.24c show a vector field “F ” described by the three different co-
ordinate systems of Figures 3.13a to 3.13c respectively.

Background 26

x

y

z

P

yobs
xobs

ẑ

x̂

ŷ

zobs

(a) 3D Cartesian Geometry

x

y

z

P

D
φ

D̂̂
φ

ẑ

D̂

φ̂

zobs

(b) 3D Cylindrical Geometry

x

y

z

P
r

φ

θ θ̂

φ̂

r̂

(c) 3D Spherical Geometry

Figure 3.13: Cartesian, Cylindrical and Spherical Geometry

~F =Fx(x, y, z) x̂+ Fy(x, y, z) ŷ + Fz(x, y, z) ẑ (3.24a)
~F =FD(D,φ, z) D̂ + Fφ(D,φ, z) φ̂+ Fz(D,φ, z) ẑ (3.24b)
~F =Fr(r, θ, φ) r̂ + Fθ(r, θ, φ) θ̂ + Fφ(r, θ, φ) φ̂ (3.24c)

Equations 3.25a to 3.25c show the nabla operator for the three co-ordinate systems.

∇ =
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ (3.25a)

∇ =
∂

∂D
D̂ +

1

D

∂

∂φ
φ̂+

∂

∂z
ẑ (3.25b)

∇ =
∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

1

r. sin(θ)

∂

∂φ
φ̂ (3.25c)

Chapter Summary 27

Equations 3.26a to 3.26c show the divergence (Dot product) of vector field “F ” in the
different co-ordinate systems.

∇ · F =
∂

∂x
Fx(x, y, z) +

∂

∂y
Fy(x, y, z) +

∂

∂z
Fz(x, y, z) (3.26a)

∇ · F =
1

D

∂

∂D
D.FD(D,φ, z) +

1

D

∂

∂φ
Fφ(D,φ, z) +

∂

∂z
Fz(D,φ, z) (3.26b)

∇ · F =
1

r2
∂

∂r
r2.Fr(r, θ, φ) +

1

r. sin θ

∂

∂θ
sin θ.Fθ(r, θ, φ)

+
1

r. sin θ

∂

∂φ
Fφ(r, θ, φ) (3.26c)

Equations 3.27a to 3.27c show the gradient (Cross product) of vector field “F ” in the
different co-ordinate systems.

∇× F =

[
∂Fz

∂y
− ∂Fy

∂z

]
x̂+

[
∂Fx

∂z
− ∂Fz

∂x

]
ŷ +

[
∂Fy

∂x
− ∂Fx

∂y

]
ẑ (3.27a)

∇× F =
1

D

[
∂Fz

∂φ
−

∂Fφ

∂z

]
D̂ +

[
∂FD

∂z
− ∂Fz

∂D

]
φ̂+

1

D

[
∂Fφ

∂D
− ∂FD

∂φ

]
ẑ (3.27b)

∇× F =
1

r. sin θ

[
∂(Fφ. sin θ)

∂θ
− ∂Fθ

∂φ

]
r̂ +

1

r

[
1

sin θ

∂Fr

∂φ
−

∂(Fφ.r)

∂r

]
θ̂

+
1

r

[
∂(Fθ.r)

∂r
− ∂Fr

∂θ

]
φ̂ (3.27c)

3.6 Chapter Summary

This chapter serves as a background and comprehensive theory for new and experi-
enced lightning researchers. A discussion of the physics and terminology associated
with a lightning flash and a lightning stroke has been presented. A section detailing the
current impulse (or CBC) models used, as well as a detailed section on return stroke
models has also been provided. These two sections make up the EM source model iden-
tified in Figure 2.1. From these sections it is recommended that the Heidler Function
(Equation 3.2) or the Terespolsky Function (Equation 3.3) be used for the CBC model
in conjunction with the MTLE RS model (Equation 3.14). A popular current impulse
model (Equation 3.7) has also been presented with all the variables for both the Heidler
and Terespolsky Functions.

A section detailing basic electromagnetic theory is included. Maxwell’s equations, and
associated medium properties are presented in detail. The relevance of these equa-
tions are discussed, and explained with figures. A comprehensive review of the three
available co-ordinate systems is presented with all the required equations for EM field
manipulations presented in later chapters.

The next chapter presents the Finite Antenna Method, with an emphasis on the method
theory, equations and implementation considerations. Most importantly the chapter
will present examples, and discuss the method strengths.

Chapter 4

Finite Antenna Method

This chapter presents the background and basic theory of the Finite Antenna method,
but does not attempt to derive the governing EM field equations. The physical layout
of the model, and the related EM equations are presented and discussed in a simple
manner. These equations are then applied to a number of test cases to demonstrate the
fields that result from a lightning stroke.

4.1 Overview

In the field of lightning electromagnetics this method was first proposed by Uman et al
[38], where the lightning RS channel is modelled as a finite linear antenna. This work
has been improved, and is described in greater detail in [50]. There are three equivalent
approaches to evaluating EM fields with this method [50], however the most appropriate
for this project is the Lorentz condition (dipole technique).

In this method the lightning channel is directed along the ẑ axis, which is then divided
into small dz elements. Each dz element is then modelled as an electric dipole. The
electric dipole model requires that the dz element length is far less than the distance
to the observation point, and that the current in the element is constant across its
length [50]. To ensure these assumptions are satisfied, the equation for vector potential
at the observation point integrates the channel current over the channel length. The
equation for vector potential is then used in conjunction with the Lorentz condition
to evaluate the EM fields at the observation point. The Lorentz condition adds an
additional equation component that considers the integral of the channel current over
time.

For a high level overview, this methods can be thought of as integrating the channel
current over time, and over the channel length in order to evaluate the effect that each
channel length element has at the observation point.

28

Finite Antenna Method 29

4.2 Model Development

The geometry describing the EM fields in this section are in Spherical co-ordinates, as
seen in Figure 3.13c. From this figure, it is clear that the system is symmetrical around
the lightning channel (ẑ axis). Therefore if the distance to the point P is kept constant
(r), as well as the angle θ, then the angle φ will not affect the EM fields. Therefore the
problem can be described in 2D, as seen in Figure 4.1.

This figure shows the current channel above ground, as well as the image channel below
ground. The image channel is caused by considering ground as an ideal conductor
(resistance = 0Ω). Therefore the horizontal electric field at ground must be zero, or the

z

−z

dz

dz

L(t)
L′(t)

L′′(t)

θ

α(z)
β(z)

r̂

θ̂

φ̂

ẑ

PR(z)

R′(z)

r

Current Channel

Image Current Channel

Where
L(t) = Maximum Channel Height
L′(t) = Maximum height “seen” at observation point
z = Variable height along the channel
dz = Infinitesimal length of height at z
r = Length from channel origin to observation point
R(z) = Length from channel at height z to observation point
θ = Angle between vertical channel and r

θ̂,φ̂,r̂ = Unit vectors for spherical co-ordinate system
ẑ = Unit vector for channel height
L′′(t) = Maximum height of channel image “seen” at observation point
R′(z) = Length from channel at height −z to observation point
α(z),β(z) = Angles with a height dependence

Figure 4.1: Finite Antenna EM field above ground geometry

Finite Antenna Method 30

field will induce a voltage (E = V/d) on the ground and Ohm’s Law will no longer hold
true [50]. To compensate for this, an image channel is included on the model, where the
current in the image channel is equal in magnitude, but flowing in the opposite direction
to the current channel. This ensures that the tangential electric fields on the ground
plane are zero.

In this figure L(t) represents the height of the lightning channel current in time. The
channel above this point has no current, and therefore does not need to be considered in
further calculations. However it takes time for an EM field to travel from a point on the
line to the observation point (R(z)

c). Therefore with reference to the observation point,
fields appear to come from a lower point on the channel (L′(t)). Stated differently, at the
time when fields from the current at L′(t) reach the observation point, the true current
height would be at L(t). This is known as the retarded time effect, and is accounted for
in Equation 4.1. For the image channel L′′(t) use Equation 4.1, but substitute θ with
π − θ [50].

L′(t) =
r

1− (vc
2

c2)

(
−vc

2

c2
cos θ +

vct

r
− vc

c

√
1− vc2

c2
+

vc2t2

r2
+

vc2

c2
cos2 θ − 2vct

r
cos θ

)
(4.1)

Where
c = Speed of light
vc = Velocity of the return stroke.

What follows is the analytical expressions for calculating the electric and magnetic fields
at the observation point P that are radiated from the lightning channel (ẑ axis). Equa-
tions 4.2 and 4.3 describe the electric fields directed along the r̂ and θ̂ directions. Equa-
tion 4.4 describes the magnetic field directed along the φ̂ unit vector (“into the page”).
The full derivation of these equations are presented by Thottappillil in [50]. From these
equations it is clear that the fields depend on the geometric model components, and the
return stroke current model (iRS(z, t)).

~E(r, θ, t) r̂ = ~Er(r, θ, t) =

− 1

4πε0

∫ L′(t)

0

cos θ − 3 cosα(z) cosβ(z)

R3(z)

{∫ t

tb

iRS(0, τ − R(z)

c
− z

vc
)dτ

}
dz r̂ (4.2a)

− 1

4πε0

∫ L′′(t)

0

cos θ − 3 cosα(−z) cosβ(−z)

R3(−z)

{∫ t

tb

iRS(0, τ − R(−z)

c
− z

vc
)dτ

}
dz r̂

(4.2b)

− 1

4πε0

∫ L′(t)

0

cos θ − 3 cosα(z) cosβ(z)

cR2(z)

{
iRS(0, t−

R(z)

c
− z

vc
)

}
dz r̂ (4.2c)

− 1

4πε0

∫ L′′(t)

0

cos θ − 3 cosα(−z) cosβ(−z)

cR2(−z)

{
iRS(0, t−

R(−z)

c
− z

vc
)

}
dz r̂ (4.2d)

− 1

4πε0

∫ L′(t)

0

cos θ − cosα(z) cosβ(z)

c2R(z)

{
∂iRS(0, t− R(z)

c − z
vc
)

∂t

}
dz r̂ (4.2e)

− 1

4πε0

∫ L′′(t)

0

cos θ − cosα(−z) cosβ(−z)

c2R(−z)

{
∂iRS(0, t− R(−z)

c − z
vc
)

∂t

}
dz r̂ (4.2f)

Finite Antenna Method 31

~E(r, θ, t) θ̂ = ~Eθ(r, θ, t) =

+
1

4πε0

∫ L′(t)

0

sin θ + 3 cosα(z) sinβ(z)

R3(z)

{∫ t

tb

iRS(0, τ − R(z)

c
− z

vc
)dτ

}
dz θ̂ (4.3a)

+
1

4πε0

∫ L′′(t)

0

sin θ + 3 cosα(−z) sinβ(−z)

R3(−z)

{∫ t

tb

iRS(0, τ − R(−z)

c
− z

vc
)dτ

}
dz θ̂

(4.3b)

+
1

4πε0

∫ L′(t)

0

sin θ + 3 cosα(z) sinβ(z)

cR2(z)

{
iRS(0, τ − R(z)

c
− z

vc
)

}
dz θ̂ (4.3c)

+
1

4πε0

∫ L′′(t)

0

sin θ + 3 cosα(−z) sinβ(−z)

cR2(−z)

{
iRS(0, τ − R(−z)

c
− z

vc
)

}
dz θ̂ (4.3d)

+
1

4πε0

∫ L′(t)

0

sin θ + cosα(z) sinβ(z)

c2R(z)

{
∂iRS(0, τ − R(z)

c − z
vc
)

∂t

}
dz θ̂ (4.3e)

+
1

4πε0

∫ L′′(t)

0

sin θ + cosα(−z) sinβ(−z)

c2R(−z)

{
∂iRS(0, τ − R(−z)

c − z
vc
)

∂t

}
dz θ̂ (4.3f)

~B(r, θ, t) φ̂ = ~Bφ(r, θ, t) =

+
1

4πε0c2

∫ L′(t)

0

sinα(z)

R2(z)

{
iRS(0, t−

R(z)

c
− z

vc
)

}
dz φ̂ (4.4a)

+
1

4πε0c2

∫ L′′(t)

0

sinα(−z)

R2(−z)

{
iRS(0, t−

R(−z)

c
− z

vc
)

}
dz φ̂ (4.4b)

+
1

4πε0c2

∫ L′(t)

0

sinα(z)

cR(z)

{
∂iRS(0, t− R(z)

c − z
vc
)

∂t

}
dz φ̂ (4.4c)

+
1

4πε0c2

∫ L′′(t)

0

sinα(−z)

cR(−z)

{
∂iRS(0, t− R(−z)

c − z
vc
)

∂t

}
dz φ̂ (4.4d)

Where:

cos α(z) =
−(z − r cos θ)

R(z)
(4.5)

cos β(z) =
(r − z cos θ)

R(z)
(4.6)

sin α(z) =
r sin θ

R(z)
(4.7)

sin β(z) =
z sin θ

R(z)
(4.8)

tb = +
R(z)

c
+

z

vc
(4.9)

Finite Antenna Method 32

0 1 2 3 4 5

−5

0

5

10

15

20

25

Time (µs)

E
fi
el
d
(k
V
/
m
)

Total Eθ field
Eθ static field

Eθ induction field
Eθ radiation field

Figure 4.2: Finite Antenna - Eθ Field Components - r = 50m, θ = π/2

Equations 4.5 to 4.8 show the angle variables used in the EM equations. Equation 4.9
shows the lower limit of the time integral. This is the earliest starting time, before
which there would be no current in the lightning channel. This is also considered in the
RS models with the unit step function.

These equations are composed of unique terms, and each of these terms (field compo-
nents) contribute to the total field. Traditionally the total field is said to consist of
“Electrostatic” (or “Static”), “Induction” and “Radiation” fields [38, 50, 51]. The terms
with the time integral of the RS current are referred to as the “Static” fields (Equations
4.2a, 4.2b, 4.3a, 4.3b), and have a 1/R3 distance relationship (near field). The terms
with the straight RS current are referred to as the “Induction” fields (Equations 4.4a,
4.4b, 4.2c, 4.2d, 4.3c, 4.3d) and have a 1/R2 distance relationship. The terms with the
time differential of the RS current are referred to as the “Radiation” fields (Equations
4.4c, 4.4d, 4.2e, 4.2f, 4.3e, 4.3f) and have a 1/R distance relationship (far field). These
field components are not unique, and may have different values when derived through
other means [50, 52].

Figure 4.2 shows each of the field component waveshapes as well as the total field. The
figure used Equation 3.7 for the CBC model, with the RS model in Equation 3.12
(lossless transmission line). The observation point was located on the ground plane
(θ = π/2) at a radial distance of 50m. This example is comparable to the work in [50],
which used Equation 3.6 (Heidler Function) for the CBC model.

All the variables in Equations 4.2 to 4.4 have been discussed, and the EM fields can be
calculated by choosing a CBC model, a RS model, vc value, and a observation point
in the plane. However inspecting the electric field Equations 4.2 and 4.3, it becomes

Finite Antenna Method 33

clear that solving these equations is not trivial. This is specifically related to the Static
field equations with the integral of the RS model. Attempting to numerically solve
the integral is difficult due to the fact that the result needs to be a function of z [53].
Therefore there are two options available to simplify the evaluation.

The first is to move the observation point far from the lightning channel. In doing so
the R(z) (which is related to r) becomes larger, and the 1/R3(z) distance relationship
of the Static field attenuates the field value. Typically for distances greater than a few
kilometres only the radiation field components are significant, and the other components
can be neglected. However this simplification is not applicable to this work, which
requires the distance to be within a range of 50m to 500m. And as seen in Figure 4.2,
the static field component cannot be neglected within the required range.

The second option is to simplify the time integral. If a Heidler function is used as the
CBC model, then the integral cannot be analytically integrated [53]. However this is
not a problem with the Terespolsky function. This function was first introduced in
2014 [30], and before this date there was no current impulse model available that had
the waveshape of the Heidler function, as well as having an analytical integral solution.

4.3 Model Simulations

This section demonstrates the simulated resulting fields when the above theory is applied
to theoretical lightning events. Figures 4.3a and 4.3b show the Er and Eθ fields located
at 100m from the channel base, at different angles (θ) off the vertical lightning channel.
Equation 3.7 is used for the CBC model (Terespolsky version of the popular current
impulse model), and the lossless transmission line model is used for the RS model
(Equation 3.12). The ground is assumed to be a perfect electrical conductor (PEC),
and the RS current velocity is chosen to be 150× 106ms−1 (Table 3.3).

Figure 4.3a shows Er = 0 when θ = 90°. This conforms to the requirement for the PEC
ground plane. This figure also shows that the field value increases as θ decreases, which

0 0.5 1 1.5 2
0

5

10

15

20

25

Time (µs)

E
r
fi
el
d
(k
V
/
m
)

Er 10°
Er 30°
Er 60°
Er 90°

(a) Er

0 0.5 1 1.5 2
0

15

30

45

60

75

Time (µs)

E
θ
fi
el
d
(k
V
/
m
) Eθ 10°

Eθ 30°
Eθ 60°
Eθ 90°

(b) Eθ

Figure 4.3: Finite Antenna - E Fields - r= 100m - Variable Angle

Finite Antenna Method 34

makes intuitive sense as the observation point gets closer to the lightning channel.
It is also interesting to compare the field waveshapes in Figure 4.3a, to the current
impulse waveshape in Figure 3.8. The current impulse peaks within 0.5 µs, but has a
low attenuation time lasting several µs. The Er field (with θ = 10°) peaks within 0.5µs,
but attenuates rapidly to 10% within 2 µs.

A similar analysis of the fields in Figure 4.3b shows that the peaks all occur after 0.5µs.
Another observation is that at larger angles of θ (further away from the channel, and
closer to the PEC ground plane) the fields tend to rise sooner, and peak later. Both
Figures 4.3a and 4.3b can be compared to the work in [50].

Figures 4.4a to 4.4d show the electric field components (in both spherical and Cartesian
co-ordinates) of two observation points situated 50m away from the lightning channel
base along the x̂ axis. The first observation point is 50m away from the lightning
channel (xObs), and is situated 10m off the ground (yObs). In spherical co-ordinates this
would be at r = 50.99m, θ = 78.69°. The second observation point is situated on the

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

Time (µs)

E
r
fi
el
d
(k
V
/
m
) Er 90.00°

Er 78.69°

(a) Er Variable Angle - xObs = 50m

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

Time (µs)

E
θ
fi
el
d
(k
V
/m

) Eθ 90.00°
Eθ 78.69°

(b) Eθ Variable Angle - xObs = 50m

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

Time (µs)

E
x
fi
el
d
(k
V
/m

) Ex 90.00°
Ex 78.69°

(c) Ex Variable Angle - xObs = 50m

0 0.5 1 1.5 2 2.5 3

0

−5

−10

−15

−20

−25

Time (µs)

E
z
fi
el
d
(k
V
/
m
) Ez 90.00°

Ez 78.69°

(d) Ez Variable Angle - xObs = 50m

Figure 4.4: Finite Antenna - E Fields in Cartesian and Spherical Co-Ordinates

Finite Antenna Method 35

ground plane, and 50m from the lightning channel (r = 50 , θ = 90°). The CBC and
RS models are the same as before.

In terms of LIOVs the first observation point is the worst case position of an overhead
distribution line to a lightning stroke channel. Distances closer than this have a higher
probability of becoming a direct strike [5], and further than this the fields would atten-
uate. The second observation point illustrates a potential simplification to the problem.
This point is the same distance from the RS channel, but located on the ground plane.
Under this situation the field equations are simplified, and the Er (Ex) field is zero due
to the PEC ground.

Figures 4.4a and 4.4b show the fields in spherical co-ordinates. The Eθ fields in Fig-
ure 4.4b show a negligible difference (0.5%) between the two observation points. How-
ever if the assumption is made that that the fields at both observation points are the
same, then the entire Er field in Figure 4.4a would be lost. This is clearer in Figures
4.4c and 4.4d which show the fields in Cartesian co-ordinates. The co-ordinate shift is a
simple transform where Ex and Ez are composed of the vector components Er and Eθ.
The difference between the Ez fields is now more recognisable. More importantly the
amplitude of the Ex field is larger than anticipated (when compared with the Er field).
This may not have been an intuitive conclusion when reviewing the fields in spherical
co-ordinates. The horizontal electric fields have the most effect on LIOVs, which is why
the Ex field value is highlighted. This example shows that the ground point simplifica-
tion method is not acceptable for LIOV based simulations.

4.4 Chapter Summary

This chapter has presented the basic theory and the required model equations for the
Finite Antenna Method. Insights into the practical implementation of the model (in-
cluding simplifications) have been discussed and demonstrated in example cases. An
important outcome of the examples showed that fields located 10m above the ground
plane (typical height of a distribution line) cannot be approximated by the fields on the
ground plane. This assumption is generally only applicable to distances further from
the lightning channel.

This is a simple model to implement, but suffers from a lack in model variability, such
as including a real ground plane, or complex physical environments. The next chapter
will introduce the FDTD method in three dimensions, which allows for these advanced
simulations.

Chapter 5

3D FDTD Method

This chapter presents the FDTD method for three dimensional (3D) lightning based
electromagnetic simulations. The FDTD technique forms a complete field of engineer-
ing, and demands the attention of full books. The purpose of this chapter is to present
enough information on the method in order to apply it to lightning based electromag-
netic simulations, and therefore does not aim to present all aspects of the FDTD method.

A brief overview of the method is discussed, followed by the basic mathematical deriva-
tion of the EM update equations. The FDTD EM equations are evaluated at discrete
time steps, and are known as the “update equations”. These equations are then linked
to the “Yee Cell”, a fundamental building block used to construct the simulation space
(physical environment of interest). The requirements for numerical stability of the simu-
lation are briefly discussed, as well as one possible method for dealing with the boundary
conditions (2nd Order Mur) of the simulation space. The process of adding source
elements and objects to the simulation space is presented along with options for ad-
vanced applications. There is also a section to discuss the practical computational con-
siderations of the method, which is not often recognised or discussed in typical FDTD
literature. The final section of this chapter demonstrates a number of example situa-
tions in order to show field waveforms, as well as the effects of different simulation space
parameters.

5.1 Overview

The Finite-Difference Time-Domain (FDTD) method is a specific version of a Finite
Difference Equation (FDE) [54]. FDE’s are a mathematical approach used to discretize
Partial Differential Equations (PDE’s), which are common in nature and can be seen
in Maxwell’s Equations, thermal equations, and others [48]. The FDTD method, also
known as the Yee Algorithm, is specifically focussed on evaluating Maxwell’s equations
in the time domain [48]. This method is a generic approach, and can be used for
most EM simulations. The primary advantage of the method is due to its time domain
element, which is well suited to evaluating the transient EM source created by lightning.

36

3D FDTD Method 37

x

y

z

(0, 0, 0)

(Nx − 1, Ny − 1, Nz − 1)

(Nx − 1, 0, 0)

(0, 0, Nz − 1)

(Nx − 1, Ny − 1, 0)

Ground Plane

Lightning Channel

Figure 5.1: 3D Lightning simulation space divided into cells

The technical description of the FDTD method is: A means of representing continuous
derivative equations (such as Maxwell’s), by second order accurate, two-point centred
difference FDE’s, that use the “leapfrog” method to update the fields in time [48].
This complicated description is basically directed at the discretization method used for
the spatial and time derivatives of Maxwell’s equations. For an in-depth discussion
on alternative FDE’s with higher orders (relating to error), and alternative update
equations, the reader is encouraged to read [48]. However for the purposes of this work,
the standard FDTD method is sufficient, and better suited to the scope.

The FDTD method is simply a mathematical approach used to discretize Maxwell’s
equations. This is done by breaking down the propagation medium into smaller areas
(cubes), and evaluating the discrete electromagnetic field changes across these cubes (fi-
nite difference), at discrete steps in time (time domain). This is illustrated in Figure 5.1,
which shows an example simulation environment divided into smaller cubes, where each
cube is defined between spatial nodes (black dots) that are located on the corners of
each cube [49].

An example of a cube, hereafter referred to as a cell, is shown in Figure 5.2. This is
known as the Yee Cell [54]. This figure shows how the electric and magnetic fields are
interleaved across the cell with half unit distance, which is a part of the second-order
accuracy requirements. The placement of electric fields on integer boundaries (between
nodes), and magnetic fields on half integer boundaries (cell sides) is arbitrary, and was
chosen so that the electric fields of the cell would align with the boundaries of the
simulation space.

The next section will show that the fields in each cell depend on the fields in the cells
surrounding it (at a previous step in time). Therefore the FDTD method updates the
electric and magnetic fields in every cell of the simulation space, for every step in time;
and by doing so the EM fields move through the simulation space. One of the benefits
of this method, is that the properties of every cell, such as the medium permittivity,

3D FDTD Method 38

x

y

z

(0, 0, 0)

Ez

Ez

Ez

Ex

Ex

Ex

Ey

Ey

Ey

Hx

Hx

Hy

Hy

Hz

Hz

(i, j + 1, k + 1)

(i, j + 1, k)

(i + 1, j, k + 1)

(i + 1, j, k)

(i + 1, j + 1, k)

∆x

∆z

∆y

Figure 5.2: 3D Yee Cell - Cartesian Co-ordinates - H Field centred

permeability and conductivity, as well as the boundary conditions, can be individually
defined. By changing the properties of these cells it is possible to add objects into the
simulation space, and simulate the effects of the objects on the EM fields within the
space. In a simple Lightning simulation, one object would be the lightning channel
(current source), and another would be the ground plane. In more complex simulations
it would be possible to simulate buildings, transmission lines, multilayer grounds, buried
conductors and almost any other object of interest.

What follows this section is an explanation of how the discrete equations for the EM
fields in a Yee Cell are derived in Cartesian co-ordinates. These equations are discrete
and easily applied to numerical techniques in software [9]. Therefore FDTD is part of the
Computational Electromagnetics (CEM) family. This method inherently has a number
of numerical errors that need to be designed for, and understood when interpreting the
results. The two most important are the simulation stability, and the simulation space
boundary conditions.

5.2 Model Development

FDTD in the 3D Cartesian space is the most intuitive method for explaining the FDTD
method, and allows for complex simulation environments to be constructed. The conse-
quence of this system is that it requires high computer memory for evaluating the three
dimensional simulation space.

3D FDTD Method 39

5.2.1 3D FDTD Equations

Equations 3.15 (Faraday’s Law) and 3.17 (Ampere’s Law) are the two Maxwell’s equa-
tions used in deriving FDTD equations. Consider Equation 3.17, which relates the
magnetic field change in space to the current density and the electric field change in
time. The current density can be written as having two components as seen in Equa-
tion 5.1. The ~Ji is an externally imposed current in the cell. This is the source com-
ponent that adds to the fields in the evaluation space, and without this component the
FDTD method would only describe how a pre-existing EM field propagates in the eval-
uation space [48, 49]. The ~Jc component is conduction current that flows in electrically
conducting media (σe) when there is an electric field present in the material. This com-
ponent is the loss term associated with a material.

~J = ~Ji + ~Jc

= ~Ji + σe ~E (5.1)

These components are reflected in Equation 5.2. Equation 5.3 shows the same method-
ology applied to the magnetic fields in Faraday’s law, where Mi is a source of magnetic
fields, and σm is the magnetic conductivity of a material (loss term). Both of these terms
are theoretical, and hold no real world properties (with our current understanding of
electromagnetics). For the remainder of this text these magnetic terms will remain zero,
however they are available for EM field manipulation.

∇× ~H = ~Ji + σe ~E + ε
∂ ~E

∂t
(5.2)

∇× ~E = − ~Mi − σm ~H − µ
∂ ~H

∂t
(5.3)

The Permittivity (ε), Permeability (µ) and Conductivity (σe) in Equations 5.2 and 5.3
can be uniquely defined at all points in space, and therefore have a spatial dependence
(x, y and z). These variables describe the properties of the material in which the EM
fields propagate, and as such are critical in adding objects to the simulation space. These
variables can have complex non-linear dependencies, and even a directional dependence
(µx, µy and µz), however this work assumes that ε, µ and σe are isotropic simple
constants in a homogeneous medium.

∇× ~E =

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

 = −µ
∂ ~H

∂t

= x̂

(
∂Ez

∂y
− ∂Ey

∂z

)
− ŷ

(
∂Ez

∂x
− ∂Ex

∂z

)
+ ẑ

(
∂Ey

∂x
− ∂Ex

∂y

)
(5.4)

∇× ~H =

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Hx Hy Hz

 = ε
∂ ~E

∂t
+ σe ~E + ~Ji

= x̂

(
∂Hz

∂y
− ∂Hy

∂z

)
− ŷ

(
∂Hz

∂x
− ∂Hx

∂z

)
+ ẑ

(
∂Hy

∂x
− ∂Hx

∂y

)
(5.5)

3D FDTD Method 40

Equations 5.4 and 5.5 show the expansion of Equations 5.2 and 5.3 using the nabla
operator for Cartesian co-ordinates (Equation 3.25a). By grouping the unit vector
components, the following six unique identities can be created.

∂Ex

∂t
=

1

ε

(
∂Hz

∂y
− ∂Hy

∂z
− σe

xEx − Jix

)
∂Hx

∂t
=

1

µ

(
∂Ey

∂z
− ∂Ez

∂y

)
∂Ey

∂t
=

1

ε

(
∂Hx

∂z
− ∂Hz

∂x
− σe

yEy − Jiy

)
∂Hy

∂t
=

1

µ

(
∂Ez

∂x
− ∂Ex

∂z

)
∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y
− σe

zEz − Jiz

)
∂Hz

∂t
=

1

µ

(
∂Ex

∂y
− ∂Ey

∂x

)
(5.6)

To discretize the identities in Equations 5.6, consider for example the identity containing
the time derivative of Ez, which is expanded in Equations 5.7. The LHS of Equations
5.7 shows the continuous form, and the RHS shows the discrete form of the Ez example
case terms [54]. This discretization process is used throughout the remaining chapters.

ε
∂Ez

∂t
= ε(i,j,k+ 1

2
)

Ez

∣∣∣n+1

(i,j,k+ 1
2
)
− Ez

∣∣∣n
(i,j,k+ 1

2
)

∆t
(5.7a)

∂Hy

∂x
=

Hy

∣∣∣n+ 1
2

(i+ 1
2
,j,k+ 1

2
)
−Hy

∣∣∣n+ 1
2

(i− 1
2
,j,k+ 1

2
)

∆x
(5.7b)

∂Hx

∂y
=

Hx

∣∣∣n+ 1
2

(i,j+ 1
2
,k+ 1

2
)
−Hx

∣∣∣n+ 1
2

(i,j− 1
2
,k+ 1

2
)

∆y
(5.7c)

σeEz = σe
(i,j,k+ 1

2
)
E

n+ 1
2

z = σe
(i,j,k+ 1

2
)

Ez

∣∣∣n+1

(i,j,k+ 1
2
)
+ Ez

∣∣∣n
(i,j,k+ 1

2
)

2
(5.7d)

~Jiz = Jiz

∣∣∣n+ 1
2

(i,j,k+ 1
2
)

(5.7e)

The indices for the spatial locations have been taken from the cell in Figure 5.2, which are
necessary for the FDTD second-order characteristic. The notation used in Equations 5.7,
as well as the rest of this document are summarised in Equation 5.8 [48], where F is an
arbitrary field that has a spatial and time dependence.

F
∣∣∣n
(i,j,k)

= F (i, j, k, n) → F (i.∆x, j.∆y, k.∆z, n.∆t) = F (x, y, z, t) (5.8)

The integer indices i, j and k are used to define the spatial location of nodes throughout
the evaluation space, where each node is a corner of a Yee Cell. The n integer index
defines the discrete steps in the evaluation time. Originally the FDTD equations were
used to derive the Yee Cell, but it is equally valuable to use the Yee Cell to understand
the FDTD equations. In Figure 5.2 the electric fields of the cell are defined at the spatial
locations between the nodes, which is why Ez is located at (i, j, k + 1

2) for all integer
increments of the indices (throughout the evaluation space).

Figure 5.2 also shows that the magnetic field intensity vectors are located on the cell
sides. These locations are situated between four nodes, and therefore have two half

3D FDTD Method 41

integer locations. This is why Hz fields are located at (i+ 1
2 , j+

1
2 , k) locations throughout

the evaluation space. The same is true for the other EM vector fields.

After studying the cell in Figure 5.2, a pattern emerges where the electric fields have the
half integer increment added to the index with the same direction as the field (z → k).
Similarly the magnetic fields have the half integer increment added to the indices that
do not share the same direction (z → i, k).

The time indices of Equations 5.7 are not clearly represented in Figure 5.2, and is a
function of the differencing schemes used in the FDTD equations [48]. These equations
require electric fields to exist at integer time steps (n), and magnetic fields to exist at
half integer time steps (n + 1

2). An example of this is seen by the requirement for the
center time difference (n+ 1

2) of Equation 5.7a needing to match the time index of the
spatial difference in Equations 5.7b and 5.7c. This time requirement of the difference
equations is further emphasised in Equation 5.7d, where the electric field loss term is
discretely averaged (not differenced) in order for the unit time step to be maintained.

To simplify the notation used in Equations 5.7, it is noted that the ε, σe and J com-
ponents (as well as µ for Hn+ 1

2 field equations) are all situated at the same location as
the field under review (LHS of Equations 5.7).

Using the above notation and assumptions, the Equation components 5.7a to 5.7e can
be combined and simplified. Equations 5.9 shows the step by step process of finding the
discrete update equation for Ez at a point on the Yee Cell. Equation 5.9b is known as
the FDTD update equation for the Ez field, where the term “Update” refers to the field
at the next point in time.

ε

Ez

∣∣∣n+1

(i,j,k+ 1
2
)
− Ez

∣∣∣n
(i,j,k+ 1

2
)

∆t

+ σe

Ez

∣∣∣n+1

(i,j,k+ 1
2
)
+ Ez

∣∣∣n
(i,j,k+ 1

2
)

2

 =

(
2ε+ σe∆t

2.∆t

)
Ez

∣∣∣n+1

(i,j,k+ 1
2
)
−
(
2ε− σe∆t

2.∆t

)
Ez

∣∣∣n
(i,j,k+ 1

2
)
= −Jiz

+

Hy

∣∣∣n+ 1
2

(i+ 1
2
,j,k+ 1

2
)
−Hy

∣∣∣n+ 1
2

(i− 1
2
,j,k+ 1

2
)

∆x
−

Hx

∣∣∣n+ 1
2

(i,j+ 1
2
,k+ 1

2
)
−Hx

∣∣∣n+ 1
2

(i,j− 1
2
,k+ 1

2
)

∆y

(5.9a)

Ez

∣∣∣n+1

(i,j,k+ 1
2
)
=

(
2ε− σe∆t

2ε+ σe∆t

)
Ez

∣∣∣n
(i,j,k+ 1

2
)
−
(

2∆t

2ε+ σe∆t

)
Jiz

+

(
2∆t

2ε+ σe∆t

)
Hy

∣∣∣n+ 1
2

(i+ 1
2
,j,k+ 1

2
)
−Hy

∣∣∣n+ 1
2

(i− 1
2
,j,k+ 1

2
)

∆x
−

Hx

∣∣∣n+ 1
2

(i,j+ 1
2
,k+ 1

2
)
−Hx

∣∣∣n+ 1
2

(i,j− 1
2
,k+ 1

2
)

∆y

(5.9b)

3D FDTD Method 42

Ez

Hx

Hx

Hy

Hy

(i, j, k)

(i, j, k + 1)

(i + 1, j, k)

(i − 1, j, k)

(i, j + 1, k)

(i, j − 1, k)

(a) Ez field components

Ez

Hx

Hx

Hy

Hy

(b) Ampere’s Law

Figure 5.3: 3D FDTD - Ez Yee Cell Field Mathematics

The LHS of Equation 5.9b shows that the Ez value at the updated time step, is equal to
the Ez value at its previous point in time (same location), plus the magnetic field values
surrounding the Ez location at a half time step, and minus the source current density.
This is known as the “leapfrog” update equation, because new values are evaluated by
previous time step values, as well as previous half time step values [48].

Figure 5.3 illustrates the components of Equation 5.9b assuming that J = 0. Figure 5.3a
shows the Ez field located on an edge between four Yee Cells. This figure also shows the
magnetic field vectors on the cell walls surrounding the Ez field, which are the primary
components of Equation 5.9b. Figure 5.3b shows how the electric field update equation
is linked to Ampere’s Law. The electric field passing through a surface is related to the
magnetic field surrounding the contour of the surface.

The update equations for the remaining electric and magnetic field components are
found by applying the same process seen in Equations 5.7 and 5.9 to the Equations in
5.6. The discretized versions of these electric and magnetic fields are shown in Equations
5.10 to 5.15.

Ex

∣∣∣n+1

(i+ 1
2
,j,k)

= CeeEx

∣∣∣n
(i+ 1

2
,j,k)

+ CeJix

+ Ce

Hz

∣∣∣n+ 1
2

(i+ 1
2
,j+ 1

2
,k)

−Hz

∣∣∣n+ 1
2

(i+ 1
2
,j− 1

2
,k)

∆y
−

Hy

∣∣∣n+ 1
2

(i+ 1
2
,j,k+ 1

2
)
−Hy

∣∣∣n+ 1
2

(i+ 1
2
,j,k− 1

2
)

∆z

 (5.10)

Ey

∣∣∣n+1

(i,j+ 1
2
,k)

= CeeEy

∣∣∣n
(i,j+ 1

2
,k)

+ CeJiy

+ Ce

Hx

∣∣∣n+ 1
2

(i,j+ 1
2
,k+ 1

2
)
−Hx

∣∣∣n+ 1
2

(i,j+ 1
2
,k− 1

2
)

∆z
−

Hz

∣∣∣n+ 1
2

(i+ 1
2
,j+ 1

2
,k)

−Hz

∣∣∣n+ 1
2

(i− 1
2
,j+ 1

2
,k)

∆x

 (5.11)

3D FDTD Method 43

Ez

∣∣∣n+1

(i,j,k+ 1
2
)
= CeeEz

∣∣∣n
(i,j,k+ 1

2
)
+ CeJiz

+ Ce

Hy

∣∣∣n+ 1
2

(i+ 1
2
,j,k+ 1

2
)
−Hy

∣∣∣n+ 1
2

(i− 1
2
,j,k+ 1

2
)

∆x
−

Hx

∣∣∣n+ 1
2

(i,j+ 1
2
,k+ 1

2
)
−Hx

∣∣∣n+ 1
2

(i,j− 1
2
,k+ 1

2
)

∆y

 (5.12)

Hx

∣∣∣n+ 1
2

(i,j+ 1
2
,k+ 1

2
)
= Hx

∣∣∣n− 1
2

(i,j+ 1
2
,k+ 1

2
)

+ Ch

Ey

∣∣∣n
(i,j+ 1

2
,k+1)

− Ey

∣∣∣n
(i,j+ 1

2
,k)

∆z
−

Ez

∣∣∣n
(i,j+1,k+ 1

2
)
− Ez

∣∣∣n
(i,j,k+ 1

2
)

∆y

 (5.13)

Hy

∣∣∣n+ 1
2

(i+ 1
2
,j,k+ 1

2
)
= Hy

∣∣∣n− 1
2

(i+ 1
2
,j,k+ 1

2
)

+ Ch

Ez

∣∣∣n
(i+1,j,k+ 1

2
)
− Ez

∣∣∣n
(i,j,k+ 1

2
)

∆x
−

Ex

∣∣∣n
(i+ 1

2
,j,k+1)

− Ex

∣∣∣n
(i+ 1

2
,j,k)

∆z

 (5.14)

Hz

∣∣∣n+ 1
2

(i+ 1
2
,j+ 1

2
,k)

= Hz

∣∣∣n− 1
2

(i+ 1
2
,j+ 1

2
,k)

+ Ch

Ex

∣∣∣n
(i+ 1

2
,j+1,k)

− Ex

∣∣∣n
(i+ 1

2
,j,k)

∆y
−

Ey

∣∣∣n
(i+1,j+ 1

2
,k)

− Ey

∣∣∣n
(i,j+ 1

2
,k)

∆x

 (5.15)

Where:

Cee =
2ε− σe∆t

2ε+ σe∆t
(5.16a)

Ce =
2∆t

2ε+ σe∆t
(5.16b)

Ch =
∆t

µ
(5.16c)

These six equations are the foundation for implementing the FDTD algorithm in soft-
ware, as discussed later in Section 5.2.5. Equations 5.16 are the simulation space con-
stants that define the properties of every Yee Cell in the simulation space. In these
equations the ε, σe and µ components are defined at the location of the update field.

Figure 5.4 illustrates how the H field update equations (5.13 to 5.15) are linked to
Faraday’s law. Figure 5.4a shows the Hz field defined between two Yee Cells, as com-
pared to four in Figure 5.3a, and requires the electric fields located on the edges of the
Yee Cell’s face. Figure 5.4b shows Faraday’s law, which links the magnetic field lines
passing through a surface to the electric fields around the contour of the surface.

3D FDTD Method 44

Hz

Ey

EyEx

Ex

(i, j, k)

(i + 1, j, k) (i, j + 1, k)

(i + 1, j + 1, k)

(a) Hz field components

Hz

Ey

EyEx

Ex

(i + 1, j, k) (i, j + 1, k)

(b) Faraday’s Law

Figure 5.4: 3D FDTD - Hz Yee Cell Field Mathematics

5.2.2 Stability and Dispersion

In electromagnetics there are a number of natural effects that hinder the propagation of
EM fields, and often the purpose of simulating EM field propagation is to study these
effects. A consequence of FDE’s and FDTD methods is that they introduce numerical
issues, due to the discretization process, that can be misinterpreted as a natural effect.
This process can also cause instability in wave propagation due to a misrepresentation
of the natural system.

Some of these numerical issues include dispersion (variation of phase velocity “vp” with
frequency), dissipation (attenuation of fields), anisotropy (variation of phase velocity
“vp” with propagation direction) and instability (uncontrolled growth of a field). Each
of these discretization errors exhibit different effects depending on the FDE used.

The FDTD algorithm has a number of benefits due to its two point centred difference
scheme coupled with the “leapfrog” time update property. For FDTD all four of these
effects are minimised, or resolved by adhering to the Courant-Friedrichs-Lewy (CFL)
stability criteria [48]. There are a number of rigorous proofs of the CFL law for FDE’s
and FDTD, however the most intuitive proof is to consider the physical laws of the
environment, such as velocity (Equation 5.17). This equation holds true for the con-
tinuous time and space domain, and should equally hold true in the discrete time and
space domain of the FDTD environment.

Velocity =
Displacement

Time
(5.17)

Equation 5.18 shows Equation 5.17 represented in discrete time and discrete space. The
velocity “vc” represents the true physical constant propagation velocity of the system.
The velocity “vdis” represents the effective velocity “seen” in the discrete domain. Ideally
these velocities should equate, however this may not be numerically realisable due to
limited numerical step values. Without considering FDE’s or FDTD, this equation
should make practical and physical sense for any objects motion. Equation 5.18 is an

3D FDTD Method 45

exact solution to the CFL for one dimensional motion in the x̂ direction.

vc →
∆x

∆t
= vdis; (5.18)

From Equation 5.18, it is clear that if these velocities do not match, then there will
be a discrepancy between the real system velocity, and the discrete numerical velocity
representing the system. Under this situation, if the numerical velocity is greater than
the real velocity, then propagating wavefronts moving through a discrete spatial domain
will move further during each time step, and overlap (sum) with lagging wavefronts.
This results in an unstable system. Therefore the discrete velocity should be kept equal
to or less than the constant physical velocity “vc” of the system. The CFL stability
criteria in one dimension is now more accurately defined in Equation 5.19. This allows
the selection of the spatial grid to determine the simulation time steps.

∆t ≤ ∆x

vc
(5.19)

Equation 5.20 shows three dimensional equation for the CFL stability criteria in the
Cartesian co-ordinate system. If ∆x = ∆y = ∆z, then Equation 5.21 is used, where
“Dimension” is replaced by the number of dimensions under review. The derivation
for these higher order displacement components do not relate to the “corner to corner”
distance of a cell, but rather the displacement of the wavefront through the cells [48].

∆t ≤ 1

vc
√

1
∆x2 + 1

∆y2
+ 1

∆z2

(5.20)

∆t ≤ ∆x

vc
√

Dimension
(5.21)

The CFL stability criteria in the above equations is critical in FDTD. If it is not met,
even for small discrepancies, then the system becomes unstable. The CFL condition also
controls the numerical dispersion, dissipation and anisotropy. To minimize dispersion
effects the ∆t value should be kept as close to the “magic time step” (optimal time
step) as possible. This is achieved by equating the CFL condition, and results in the
FDTD algorithm having no numerical dispersion. With regards to dissipation the ∆t
value may be less than the “magic time step”. Other FDE’s experience numerical field
attenuation due to ∆t being set too small, however FDTD remains unaffected.

With regards to anisotropy the CFL condition must also be met, but is mostly affected
by the number of Yee cells used to represent the wavelength of the EM source fre-
quency. A recommended minimum is 10 cells per wavelength, which causes a maximum
anisotropy error (vp/c) of 1.5% [48]. However these effects cannot be fully eliminated
due to the finite cell size [48].

The CFL stability criteria creates a practical limitation on simulations. Typically a fine
spatial resolution is required by advanced simulations. This spatial resolution (cell size),
in conjunction with the CFL, force a small time step. This results in not only a high
number of Yee cells in the evaluation space, but also a high number of computational
steps to evaluate the simulation.

3D FDTD Method 46

5.2.3 Boundary Conditions

Figures 5.3a and 5.4a show the spatial cell arrangement needed for update Equations
5.12 and 5.15 to be solvable. Similar cell/field requirements exist for the remaining field
update equations. Using these figures as a reference it becomes clear that there are
problems in solving the electric field, but not the magnetic field, update equations that
exist on the simulation space boundaries.

Figure 5.9 shows an example simulation space of Yee Cells. This figure shows that Hy,
Ey and Ez fields exist on the “X-max” boundary (Y-Z plane at the maximum X node).
Figure 5.3a shows that the Ez fields on the boundary cannot be solved, because the cells
containing the Hz(imax+

1
2 , ∗j, ∗k) do not exist. The same is true for all the electric fields

that fall on the boundaries of the simulation space. Therefore the standard update
equations cannot be used for the electric fields on the boundaries. As seen in Figure
5.4, the same is not true for the magnetic fields that fall on the boundaries (provided
the electric fields are known).

If the electric fields on the boundaries are not solved then these fields will remain fixed
at 0Vm−1. This property makes the boundary resemble a perfect electrical conductor
(PEC), as discussed in Chapter 4. In certain circumstances this property is useful,
such as trying to model a PEC ground plane. However for most simulations this simply
results in the internal EM fields reflecting off the boundaries. One solution is to make the
simulation space sufficiently big that reflections do not interfere with locations of interest
within the simulation space. However this method requires a large computer memory,
and unnecessarily long processing times (Section 5.2.5). This work used Absorbing
Boundary Conditions (ABC’s) to solve the boundary fields.

An absorbing boundary condition is a mathematical expression that approximates the
fields on the boundary by using the fields surrounding the boundary point at previous
steps in time. Equations 5.22 and 5.23 show the 2nd order Mur ABC for the Ez field at
the Lower X boundary (Y-Z plane at X minimum), and Upper X boundary (Y-Z plane
at X maximum) [48].

Ez

∣∣∣n+1

(imin,j,k+
1
2
)
=

− Ez

∣∣∣n−1
(imin+1,j,k+ 1

2
)
−
(
∆x− vp∆t

∆x+ vp∆t

)(
Ez

∣∣∣n+1

(imin+1,j,k+ 1
2
)
+ Ez

∣∣∣n−1
(imin,j,k+

1
2
)

)
+

(
2∆x

∆x+ vp∆t

)(
Ez

∣∣∣n
(imin,j,k+

1
2
)
+ Ez

∣∣∣n
(imin+1,j,k+ 1

2
)

)
+

(
∆x(vp∆t)2

2(∆y)2(∆x+ vp∆t)

)(
Ez

∣∣∣n
(imin,j+1,k+ 1

2
)
− 2Ez

∣∣∣n
(imin,j,k+

1
2
)
+ Ez

∣∣∣n
(imin,j−1,k+ 1

2
)

+Ez

∣∣∣n
(imin+1,j+1,k+ 1

2
)
− 2Ez

∣∣∣n
(imin+1,j,k+ 1

2
)
+ Ez

∣∣∣n
(imin+1,j−1,k+ 1

2
)

)
+

(
∆x(vp∆t)2

2(∆z)2(∆x+ vp∆t)

)(
Ez

∣∣∣n
(imin,j,k+

3
2
)
− 2Ez

∣∣∣n
(imin,j,k+

1
2
)
+ Ez

∣∣∣n
(imin,j,k− 1

2
)

+Ez

∣∣∣n
(imin+1,j,k+ 3

2
)
− 2Ez

∣∣∣n
(imin+1,j,k+ 1

2
)
+ Ez

∣∣∣n
(imin+1,j,k− 1

2
)

)
(5.22)

3D FDTD Method 47

Ez

∣∣∣n+1

(imax,j,k+
1
2
)
=

− Ez

∣∣∣n−1
(imax−1,j,k+ 1

2
)
−
(
∆x− vp∆t

∆x+ vp∆t

)(
Ez

∣∣∣n+1

(imax−1,j,k+ 1
2
)
+ Ez

∣∣∣n−1
(imax,j,k+

1
2
)

)
+

(
2∆x

∆x+ vp∆t

)(
Ez

∣∣∣n
(imax,j,k+

1
2
)
+ Ez

∣∣∣n
(imax−1,j,k+ 1

2
)

)
+

(
∆x(vp∆t)2

2(∆y)2(∆x+ vp∆t)

)(
Ez

∣∣∣n
(imax,j+1,k+ 1

2
)
− 2Ez

∣∣∣n
(imax,j,k+

1
2
)
+ Ez

∣∣∣n
(imax,j−1,k+ 1

2
)

+Ez

∣∣∣n
(imax−1,j+1,k+ 1

2
)
− 2Ez

∣∣∣n
(imax−1,j,k+ 1

2
)
+ Ez

∣∣∣n
(imax−1,j−1,k+ 1

2
)

)
+

(
∆x(vp∆t)2

2(∆z)2(∆x+ vp∆t)

)(
Ez

∣∣∣n
(imax,j,k+

3
2
)
− 2Ez

∣∣∣n
(imax,j,k+

1
2
)
+ Ez

∣∣∣n
(imax,j,k− 1

2
)

+Ez

∣∣∣n
(imax−1,j,k+ 3

2
)
− 2Ez

∣∣∣n
(imax−1,j,k+ 1

2
)
+ Ez

∣∣∣n
(imax−1,j,k− 1

2
)

)
(5.23)

The derivation for these equations can be found in [48]. The ABC equations for Ey on
the X boundaries, Ez and Ex on the Y boundaries, and Ex and Ey on the Z boundaries
can be found from Equations 5.22 and 5.23 through simple index manipulation.

Figure 5.5 is a graphical representation of the fields and cells required for Equation
5.23 (without the time dependence). This figure shows that when evaluating Ez on
the boundary (bold field in figure), the fields surrounding it need to be known. This
again causes a problem, as the fields on the boundary plane edges and corners cannot
be evaluated using Equations 5.22 and 5.23.

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez
(imax, j, k + 1

2
)

(imax, j − 1, k − 1
2
)

(imax, j − 1, k + 1
2
)

(imax, j − 1, k + 3
2
)

(imax − 1, j + 1, k − 1
2
)

(imax − 1, j + 1, k + 1
2
)

(imax − 1, j + 1, k + 3
2
)

Figure 5.5: Cell Requirements for Ez at X Upper Boundary (2nd Order Mur)

3D FDTD Method 48

Equations 5.24 and 5.25 are a rudimentary implementation of a 1st order Mur boundary
condition for the plane edges and corners respectively [55]. This is by no means the
best implementation for these boundary conditions, and will be responsible for higher
reflections than those resulting from Equations 5.22 and 5.23.

Ez

∣∣∣n+1

(imin,jmin,k+
1
2
)
= Ez

∣∣∣n
(imin+1,jmin+1,k+ 1

2
)

(5.24a)

Ez

∣∣∣n+1

(imax,jmin,k+
1
2
)
= Ez

∣∣∣n
(imax−1,jmin+1,k+ 1

2
)

(5.24b)

Ez

∣∣∣n+1

(imin,jmax,k+
1
2
)
= Ez

∣∣∣n
(imin+1,jmax−1,k+ 1

2
)

(5.24c)

Ez

∣∣∣n+1

(imax,jmax,k+
1
2
)
= Ez

∣∣∣n
(imax−1,jmax−1,k+ 1

2
)

(5.24d)

Ez

∣∣∣n+1

(imin,jmin,kmax− 1
2
)
= Ez

∣∣∣n
(imin+1,jmin+1,kmax− 3

2
)

(5.25a)

Ez

∣∣∣n+1

(imax,jmin,kmax− 1
2
)
= Ez

∣∣∣n
(imax−1,jmin+1,kmax− 3

2
)

(5.25b)

Ez

∣∣∣n+1

(imin,jmax,kmax− 1
2
)
= Ez

∣∣∣n
(imin+1,jmax−1,kmax− 3

2
)

(5.25c)

Ez

∣∣∣n+1

(imax,jmax,kmax− 1
2
)
= Ez

∣∣∣n
(imax−1,jmax−1,kmax− 3

2
)

(5.25d)

Figure 5.6 shows the graphical representation of Equations 5.24, which are applied to
every X-Y layer of the simulation space. Figure 5.7 shows the graphical representation
of Equations 5.25. A full implementation of all these boundary conditions can be found
in the example code of Appendix D.

These equations and figures are only applicable to the Ez field boundary conditions.
These equations need to be adapted to the remaining electric fields, and applied to the
relevant edges and corners.

En+1
z

En+1
z

En+1
z

En+1
z

En
z

En
z

En
z

En
z

(imin, jmin, k + 1
2
)

(imax, jmin, k + 1
2
)

(imin, jmax, k + 1
2
)

(imax, jmax, k + 1
2
)

Figure 5.6: Cell Requirements for Ez at Boundary edges (1st Order Mur)

3D FDTD Method 49

En+1
z

En+1
z

En+1
z

En+1
z

En
z

En
z

En
z

En
z

(imin, jmin, kmax − 1
2
)

(imax, jmin, kmax − 1
2
)

(imin, jmax, kmax − 1
2
)

(imax, jmax, kmax − 1
2
)

Figure 5.7: Cell Requirements for Ez at Corners (1st Order Mur)

There are two recommendations for improving the boundary conditions. The first is to
implement higher order Mur conditions for the edges and corners of the evaluation space.
The second is to use the Perfectly Matched Layer (PML) method. The PML method
involves creating a padded layer of fictitious material between the simulation space and
the boundaries. The properties of the cells in these layers are designed to minimise
reflections of waves entering the material, and then attenuate the waves sufficiently as
they move through the material. In doing so any waves that do reflect back into the
simulation space are negligible, and create the effect that the EM fields propagated past
the boundaries.

5.2.4 Simulation space objects

Objects are added to a simulation space in order to simulate the effects that these objects
have on the EM fields. In terms of lightning these objects could be trees, buildings,
people, distribution lines, ground planes, complex terrain, etc. For a simple lightning
FDTD simulation space, as seen in Figure 5.1, only two objects are needed. The first
is a ground plane, and the second is the lightning channel current (EM source).

Adding physically modelled objects to the simulation space is done by modifying the
Yee Cells (permittivity (ε), permeability (µ) and conductivity (σe)) at the location of
the object in the simulation space [49]. In doing this the ε, µ and σe terms become
spatially dependent, which means that the multiplication constants in Equations 5.16
also become spatially dependant.

If ε, µ and σe of a ground plane are known then these parameters can be used to create
a multilayer ground inside the simulation space. The same is true for any other object
of interest. The limitation is that these objects can only be made out of cells, which is
a problem for spherical objects, or objects with curved surfaces. Methods for dealing
with these problems are beyond the scope of this work, but are discussed in [49].

3D FDTD Method 50

IRS(z, t)

(i, j, k)

(i, j, k + 1)

(i + 1, j, k)

(i − 1, j, k)

(i, j + 1, k)

(i, j − 1, k)

∆y ∆x

∆y ∆x

Figure 5.8: 3D FDTD Lightning Current Source Component - Jiz Current Density

Adding the lightning channel current to the simulation is equally trivial. Figure 5.8
shows how a current element is added between two nodes, at the same location as the
electric field. The current at this location is defined by the return stroke model (IRS),
where its height (z) and time (t) are defined by (k + 1

2) ∗∆z and n ∗∆t respectively.
This is done for all the nodes that make up the lightning channel.

The current density between these nodes is then defined by Equation 5.26. The area
used for this current density is the cell X-Y plane area, and not the cross sectional
area of the lightning channel, as seen in Figure 5.8. The current density Jiz is then
used in Equation 5.12 for all the locations that make up the lightning channel. For the
simulations in this work the lightning channel is placed at the center of the X-Y plane,
along the entire Z direction (Jiz). No other sources are used, and therefore Jix and Jiy
are zero.

Jiz(z, t) =
IRS(z, t)

∆x.∆y
(5.26)

It is also possible to model resistors, capacitors, inductors, diodes and voltage sources
between nodes. This would allow for full distribution lines to be modelled within the
simulation space, as well as voltage and current measurements to be simulated on the
distribution line in the presence of the EM field. This is a significant advantage of the
method with regards to LIOV based work. The traditional approach would be to use
one model to describe the lightning EM fields at multiple points along a distribution
line, and a separate model to describe the lightning induced voltage [11]. By using the
3D FDTD model it is possible to extract the same simulation results from a single model.

5.2.5 Computational Considerations

Figure 5.9 shows an example FDTD simulation space which has 3 ∗ 4 ∗ 2 Yee Cells
in the X, Y, and Z directions respectively. This same simulation space can also be
described by the nodes, where there are 4∗5∗3 nodes in the X,Y and Z directions. The
variables Nx, Ny and Nz are the number of nodes in each direction. Another important
consideration is the number scheme used in this work. The programming language used

3D FDTD Method 51

(Nx − 1, 0, 0)

(Nx − 1, Ny − 1, 0)

(0, Ny − 1, 0)

(Nx − 1, 0, Nz − 1)

(0, Ny − 1, Nz − 1)

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ey

Ey

Ey

Ey

Ey

Ey

Ey

Ey

Ey

Ey

Ey

Ey

Ex

Ex

Ex

Ex

Ex

Ex

Ex

Ex

Ex

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hy

Hy

Hy

Hy

Hy

Hy

Hx

Hx

Hx

Hx

Hx

Hx

Hx

Hx

Figure 5.9: EM Fields assigned to FDTD Simulation Space

for the simulations is C++, which uses “0” to address the first variable in an array [55],
rather than “1” which is used in MATLAB® [49]. This indexing arrangement can be
the cause of numerous “one off errors” in code, which is why understanding the indexing
and numbering arrangement is important.

Similar “one off” issues occur due to the Yee Cell arrangement. Consider the Ez fields
in Figure 5.9. In the X direction there are Nx nodes, and Nx×Ez fields. The same is true
for the Y direction, however in the Z direction there are Nz nodes, and (Nz−1)×Ez fields.
Therefore the Ez memory matrix has “Nx.Ny.(Nz−1)” elements. Similar equations exist
for the other two electric fields. The inverse is true for the magnetic fields, where Hz

has Nz field components in the Z direction, (Nx − 1) in the X direction and (Ny − 1) in
the Y direction. Therefore the Hz memory matrix has “(Nx−1).(Ny−1).Nz” elements.

The primary concern regarding the field matrix sizes, is the computer memory required
for the simulation. Equations 5.27 show the exact and approximate number of memory
elements.

Nmem = (Nx − 1).Ny.Nz +Nx.(Ny − 1).Nz +Nx.Ny.(Nz − 1)

+Nx.(Ny − 1).(Nz − 1) + (Nx − 1).Ny.(Nz − 1) + (Nx − 1).(Ny − 1).Nz

(5.27a)

Nmem ' 6.Nx.Ny.Nz (5.27b)

For example, consider a simulation space that describes a lightning channel 8000m high,
located at the center of an X-Y plane that extends 200m in both positive and negative
X, Y directions. Assuming a Yee Cell that is 1m3 (∆x = ∆y = ∆z = 1m), there would
be approximately 7.68 ∗ 109 elements. Assuming a “double” variable type (8 bytes) is
used, the total memory required to store the EM field data during a simulation would be
57GB. If the simulation space consists of a complex environment, then Equations 5.16
would become a matrix (rather than a constant) and double the memory requirement.

Figure 5.10 shows the generic flow diagram of an FDTD code implementation [49]

3D FDTD Method 52

Start

Define Simulation Variables

Create Simulation Space Objects/Matrix

Create EM Field Matrix

For Each Time Step:

Evaluate Magnetic Field Update Equations

Evaluate Electric Field Update Equations

Add source components to Electric Fields

Evaluate Boundary Conditions

Output Field Data

Time Steps Complete?

End

No
Yes

Figure 5.10: FDTD Software Flow Diagram

(example code in Appendix D). The simulation variables define the simulation space
size, grid size, lightning stroke parameters, and various other parameters. The EM field
matrices are reserved in computer memory for the duration of the simulation. Given
the high memory requirements of this method it may be possible to distribute the field
matrices into a SWAP partition, however the speed of the simulation is drastically
reduced. Therefore it is preferable to keep all simulation matrices in memory, rather
than in storage media. For the average computer user this memory requirement poses a
problem. A simple solution is to decrease simulation space size, decrease Yee Cell size,
or decrease simulation time. The effects of these options are discussed in Section 5.3.

5.3 Model Simulations

This section uses the above mentioned theory to produce some example fields. These
fields are then compared to the fields produced by the Finite Antenna method to demon-
strate the discrete effects of the FDTD method.

Figure 5.11 shows an FDTD model environment for a basic lightning simulation. The
simulation space is (2.Xdis) ∗ (2.Ydis) ∗ Zdis m3 in size. The lightning channel is placed
in the center of the X-Y plane, and runs perpendicular for the full height (Zdis). The

3D FDTD Method 53

y

z

x

(0, 0, 0)

(Nx − 1, Ny − 1, Nz − 1)

(Nx − 1, 0, 0)

(0, 0, Nz − 1)

(Nx − 1, Ny − 1, 0)Ground Plane

Lightning Channel

P

(xObs, yObs, zObs)

−Xdis

+Xdis −Ydis

+Ydis

+Zdis

Figure 5.11: Basic FDTD Model Structure

lightning channel current is described by the transmission line (TL) return stroke model
(Equation 3.12) with the current impulse described by Equation 3.7 (Terespolsky version
of the popular current impulse), and a return stroke speed of 0.5c. The observation
point of interest is defined at location P . For simplicity in field co-ordinate conversions
the observation point in the following examples is kept on the X-Z plane where yObs = 0.

The ground plane is assumed to be a perfect electrical conductor (PEC). Rather than
add ground layers with the relevant conductance values (σe = 1), it is possible to take
advantage of the PEC property of the simulation space boundary conditions. Therefore
no boundary conditions will be solved for the Z = 0 plane. This simplifies the process
of adding ground plane objects, and additional matrices for the FDTD algorithm.

The area surrounding the lightning channel is assumed to be free space, where µr = µ0,
εr = ε0, σe = 0, and propagation velocity Vp = c throughout the simulation space. The
only variables that still need to be defined are the simulation space dimensions, Yee Cell
dimensions and the simulation run time.

Figure 5.12 shows the shortest paths of the EM fields that reflect off the X, Y and Z
boundaries. If the simulation time (Tsim) is known, as well as the observation point
location, it is possible to calculate the dimensions of the simulation space such that the
reflections only reach the observation point at the end of the simulation. Equations
5.28 show the calculations for the minimum simulation space dimensions with zero
effects from boundary reflections. The simulation space can be made larger, but this
will have no effect on the observed field, and will only increase memory requirements of
the simulation. The −Xmin distance will be less than the +Xmin distance, however for
symmetrical convenience they are kept equal.

3D FDTD Method 54

y

z

x

P

−Xmin

+Xmin

−Ymin

+Ymin

+Zmin

Figure 5.12: EM Reflections on Simulation Space Boundaries

+Xmin = xObs +

√
(Tsim.Vp)2 − z2Obs − xObs

2
(5.28a)

+Ymin =

√
(Tsim.Vp)2 − x2Obs − z2Obs

2
(5.28b)

+Zmin = zObs +

√
(Tsim.Vp)2 − x2Obs − zObs

2
(5.28c)

The simulation time Tsim is a combination of the time taken to reach the observation
point, and the time required to observe the field at point P . The following examples
will demonstrate the effects of varying the simulation space, as well as the Yee Cell
dimensions.

Example Case

The observation point is set to 50m from the lightning channel, and 10m off the ground.
This follows the example given in Section 4.3 (Figure 4.4), which aims to evaluate the
worst case position of a distribution line with respect to a lightning RS channel. The
field review time is chosen to be 3µs, which means the simulation time is 3170 ns.

Using the simulation time and observation point, the simulation space has Xdis, Ydis and
Zdis set to 501m, 474m and 479m respectively. These are the minimum dimensions for
the simulation space where reflections from the boundaries will not affect the observation
point fields.

3D FDTD Method 55

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

Time (µs)

E
x
fi
el
d
(k
V
/m

)

FinAnt
∆Cell =1.0 m
∆Cell =1.5 m
∆Cell =2.5 m
∆Cell =5.0 m
∆Cell =10.0 m

0 0.5 1 1.5 2 2.5 3

−20

−15

−10

−5

0

Time (µs)

E
z
fi
el
d
(k
V
/
m
)

FinAnt
∆Cell =1.0 m
∆Cell =1.5 m
∆Cell =2.5 m
∆Cell =5.0 m
∆Cell =10.0 m

Figure 5.13: 3D FDTD Fields - xObs = 50m, zObs = 10m - Variable Grid Size

The Yee Cells are chosen to have a uniform dimension where ∆x = ∆y = ∆z = ∆cell.
Figure 5.13 shows the Ex and Ey fields at the observation point produced by the 3D
FDTD method with various Yee Cell sizes. This figure also shows the fields produced
by the Finite Antenna method at the same observation point.

The Ez fields in Figure 5.13 all show good agreement, however the Ex fields do not.
This figure has the equivalent fields produced by the Finite Antenna method to indicate
what the fields should be at this location. Reviewing the Ex fields exposes a number
of properties of the FDTD method. The first observation is that using a Yee Cell with
∆Cell = 10m produces a field that is significantly different (almost 20% error) from the
expected field produced by the Finite Antenna method. In addition to this the field
appears to be unstable. In this situation the jagged curve is not a result of instability,
but rather a coarse time step. Due to the size of the cell being relatively large, the
time step derived by the CFL Equation 5.21 is also large. This time step could be
made smaller, however the code that implemented this simulation (Appendix D) used
the maximum allowable time step to reduce computation time. This time step also
enhanced the effects of the source start up transient, which is caused by the discrete
changes in the source. This is why the curve becomes more stable as time progresses,
rather than growing exponentially, which would indicate numerical instability. The
other FDTD fields will also contain the effects of the start up transient, however these
are damped sooner due to the finer cell size, and smaller time steps.

The second observation is that the FDTD fields tend towards the Finite Antenna values
when the cell size is made smaller. This makes intuitive sense given that the finer
resolution would indicate a higher level of accuracy, however this is not entirely true.
The Ex field in the figure shows that the ∆Cell = 1.5m field is worse than the ∆Cell =
5m field and all the smaller cells. The reason for this difference is the discrete placement
of Yee Cell fields and nodes on the FDTD space, as illustrated in Figure 5.14.

This figure shows a single Yee Cell, and the fields associated with the corner node
situated at the observation point (P). One of the fundamental features the FDTD
method is that all six fields are located at different points in space, as compared to the
Finite Antenna method (3 fields due to axial symmetry) that has all its fields located

3D FDTD Method 56

x

y

z

(0, 0, 0)

Ez

Ex

Ey

Hx

Hy

Hz

P
zObs

xObs

1
2
∆x

1
2
∆z

Figure 5.14: Yee Cell - Discrete Location of Nodes and Fields

at the same point in space (P). Table 5.1 shows the X-Y co-ordinate locations for the
effective observation point node, the Ex field location and the Ez field locations for each
of the Yee Cells in Figure 5.13.

This table shows that the ∆Cell = 1.5m field is centred around a different effective
observation point. This difference in observation point is caused by the discretization
of the FDTD simulation space into the Yee Cells, where the cell corner nodes must be
located at integer multiples of cell dimensions. The table also shows that the Ex and
Ez fields are located at half integer cell dimensions from the effective observation point.
This explains why the ∆Cell = 1.5m field had a significantly different field and trend
from the other fields.

Table 5.1 also helps to show that the differences in the fields of Figure 5.13 are not
technically errors, but rather incorrectly referenced to the observation point location.
Figures 5.15 show the Ex and Ez fields produced by the FDTD method using an Yee
Cell with ∆Cell = 5m, as well as the fields produced by the Finite Antenna method at
the original and shifted observation points.

Figures 5.15 show that the fields of the Finite Antenna method at the shifted locations

Table 5.1: Example Case: Yee Cell Field Locations (m)

∆cell (xObs,zObs) (m) Ex Field Location Ez Field Location
1 (50.0 , 10.0) (50.50 , 10.0) (50.0 , 10.50)

1.5 (49.5 , 9.0) (50.25 , 9.0) (49.5 , 9.75)
2.5 (50.0 , 10.0) (51.25 , 10.0) (50.0 , 11.25)
5 (50.0 , 10.0) (52.50 , 10.0) (50.0 , 12.50)
10 (50.0 , 10.0) (55.00 , 10.0) (50.0 , 15.00)

3D FDTD Method 57

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

Time (µs)

E
x
fi
el
d
(k
V
/m

)

∆Cell =5.0 m

FinAnt (50,10)

FinAnt (52.5,10)

0 0.5 1 1.5 2 2.5 3

−20

−15

−10

−5

0

Time (µs)

E
z
fi
el
d
(k
V
/
m
)

∆Cell =5.0 m

FinAnt (50,10)

FinAnt (50,12.5)

Figure 5.15: 3D FDTD Fields - xObs = 50m, zObs = 10m - 1
2∆Cell field shift.

on the Yee Cell compare well with the fields of the FDTD method. This highlights a lim-
itation of the FDTD method. It is possible to achieve acceptably accurate results with
FDTD, even when using large Yee Cells (spatial discretization), however the tradeoff is
that the observation points are limited to the discrete locations.

The FDTD Ex field of Figure 5.15 also shows the jagged effects of the start up transient,
which in comparison to Figure 5.13, have been significantly reduced. These effects can
be further reduced by using smaller Yee Cells to define the simulation space. Another
reason to use smaller Yee Cells is to reduce the problem of the shifted fields described
above. The problem with discretizing the simulation space into smaller Yee Cells is
that the simulation would require larger amounts of computer memory to store the field
values.

Table 5.2 shows the memory requirements for different Yee Cell dimensions (using the
simulation space of the example). From this table it becomes clear that establishing a
fine scale spatial resolution in the simulation space can be practically difficult. In ad-
dition to this, smaller Yee Cells require smaller time steps, which also means that the
simulations will take longer to complete. Therefore there is a trade-off between produc-
ing smooth waveforms with fine spatial resolution, and the computational limitations.
One method to aid this limitation is to decrease the simulation space.

Table 5.2: Example Case: Cell Computer Memory Requirements

∆cell (m) Effective xObs (m) Effective zObs (m) Mem (GB)
0.25 50 10 1302
0.5 50 10 162.7
1 50 10 20.34

1.5 49.5 9 6.03
2.5 50 10 1.3
5 50 10 0.163
10 50 10 0.02

3D FDTD Method 58

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

Time (µs)

E
x
fi
el
d
(k
V
/m

)

FinAnt (50.5,10)

70% Min Sim Space

60% Min Sim Space

50% Min Sim Space

(a) Ex

0 0.5 1 1.5 2 2.5 3

−20

−15

−10

−5

0

Time (µs)

E
z
fi
el
d
(k
V
/
m
)

FinAnt (50,10.5)

70% Min Sim Space

60% Min Sim Space

50% Min Sim Space

(b) Ez

1.5 2 2.5 3
4

4.25

4.5

4.75

Time (µs)

E
x
fi
el
d
(k
V
/
m
)

FinAnt (50.5,10)

70% Min Sim Space

60% Min Sim Space

50% Min Sim Space

(c) Ex Magnified

1 1.5 2 2.5 3

−21

−20.5

−20

−19.5

−19

Time (µs)

E
z
fi
el
d
(k
V
/
m
)

FinAnt (50,10.5)

70% Min Sim Space

60% Min Sim Space

50% Min Sim Space

(d) Ez Magnified

Figure 5.16: 3D FDTD Fields - xObs = 50m, zObs = 10m - Variable Simulation Space.

All the FDTD example fields presented so far have used the minimum dimensions re-
quired for no boundary reflections to reach the observation point. Equations 5.28 define
these minimum boundaries, and it is clear that these equations are time dependant. A
long simulation time allows EM fields to travel further, which means that the boundaries
of the simulation space need to be further away from the observation point. Therefore it
is preferable to make the simulation time as short as possible. However it is also possible
to reduce the simulation space and rely on the absorbing boundary conditions (ABC)
to manage the reflections. Figures 5.16 show the electric fields at the observation point
using different percentages of the minimum simulation space size, and a ∆Cell = 1m.

The fields in Figure 5.16 show that as the simulation space is made smaller, the bound-
ary reflected fields have a greater effect on the simulated fields. It is important to un-
derstand that this effect is a numerical consequence of the boundary planes, and not a
modelled physical phenomena. From the figures it is clear that using 70% of the min-
imum simulation space (for each dimension) produces an acceptable field value. The
benefit of this spatial reduction is outlined in Table 5.3, which shows that the computer
memory requirements have been reduced to 34% of the original memory (0.7*0.7*0.7).

3D FDTD Method 59

Table 5.3: Example Case: Computer Memory for different Simulation Space Dimensions

% of Min Boundary Xdis Ydis Zdis Mem (GB)

100% 501 474 479 20.3401
90% 450.9 426.6 431.1 14.8279
80% 400.8 379.2 383.2 10.4141
70% 350.7 331.8 335.3 6.97665
60% 300.6 284.4 287.4 4.39346
50% 250.5 237 239.5 2.54251

All the fields shown in this section were produced with a simulation space using the
ABC’s discussed in Section 5.2.3. Figure 5.17 shows the electric fields produced with a
70% dimension simulation space, with and without ABC’s implemented on the bound-
aries. This shows that using ABC’s can significantly reduce the simulation space with-
out significantly affecting the fields at the observation point. As discussed in Section
5.2.3, by using higher order ABC’s it is possible to reduce the simulation space further.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

Time (µs)

E
x
fi
el
d
(k
V
/m

)

FinAnt (50.5,10)

70% With ABC

70% Without ABC

(a) Ex

0 0.5 1 1.5 2 2.5 3

−20

−15

−10

−5

0

Time (µs)

E
z
fi
el
d
(k
V
/
m
)

FinAnt (50,10.5)

70% With ABC

70% Without ABC

(b) Ez

2 2.25 2.5 2.75 3
4

4.1

4.2

4.3

4.4

4.5

Time (µs)

E
x
fi
el
d
(k
V
/m

)

FinAnt (50.5,10)

70% With ABC

70% Without ABC

(c) Ex Magnified

2 2.25 2.5 2.75 3
−21

−20

−19

−18

−17

−16

Time (µs)

E
z
fi
el
d
(k
V
/
m
)

FinAnt (50,10.5)

70% With ABC

70% Without ABC

(d) Ez Magnified

Figure 5.17: 3D FDTD Fields - xObs = 50m, zObs = 10m - With and Without ABC.

3D FDTD Method 60

5.4 Chapter Summary

This chapter has presented a comprehensive development of the 3D FDTD method for
lightning based simulations. It has discussed the theory of the FDTD method, as well
as the essential mathematics. In addition to this the various numerical effects have been
discussed along with the methods for reducing the effects. The process of developing a
lightning simulation space was dealt with in great detail, as well as the methodology for
expanding the model for complex environments. A section also discussed the practical
computational limitations of the FDTD method, which affects the manner in which a
simulation is implemented.

Section 5.3 showed the resulting electric fields from a 3D FDTD lightning simulation,
as well as how critical FDTD variables affect these simulated fields. The modelled
environment for this example case was deliberately kept simple so that the resulting
fields from the Finite Antenna method could be used for comparison, however it is
important to highlight the fact that this is a special case. The 3D FDTD method offers
far more simulation variability that the Finite Antenna method cannot. The 3D FDTD
method allows for complex ground planes, complex structures, as well as electrical
component simulations. This is important because it would allow for distribution line
elements to be included in the simulation space, which would then allow for LIOV
simulations to be completed with the same EM simulation. The Finite Antenna method
cannot include such complex simulation environments, and would require a separate
model and simulation to gain LIOV simulation results.

The one major drawback to this method is that it is best suited for observation points
relatively close to the lightning channel. Points that are further away (in the km scale)
require large amounts of computer memory, and although this may not be a problem
for institutions with large computing facilities, it does pose a problem for private PC
owners. The next section will present the 2D FDTD method, which can produce EM
fields at a finer spatial resolution than the 3D FDTD method, and use less computer
memory. The drawback to this method is that it can only consider relatively simple
simulation environments, but still consider complex ground planes.

Chapter 6

2D FDTD Method

The previous chapter introduced the FDTD method in 3D Cartesian co-ordinates. The
advantage of this method is that it allows for highly complex and variable model envi-
ronments to be simulated. The disadvantage is that the method requires high computer
memory to achieve simulations with a fine spatial resolution. If the model environment
is chosen to be axially symmetric around the lightning channel, then it is possible to
reduce a 3D environment into a 2D environment and still achieve the same field infor-
mation. The advantage of reducing the dimensions is a significant reduction in memory
requirements, however the model is limited to axially symmetric simulation spaces. This
chapter presents the theory and basic mathematical steps involved in creating a 2D
FDTD model of lightning electromagnetics. The FDTD theory presented in Chapter 5
is also applicable in this chapter, and therefore will not will be discussed in detail.

6.1 Overview

This method requires the lightning RS channel to be kept straight and perpendicular to
the ground plane. If this is true then the fields at a fixed radial distance from the channel
will remain constant circling the channel. This is known as axial symmetry, and using
Cylindrical co-ordinates (Figure 3.13b) allows for this symmetry to be advantageous.

Figure 6.1 shows an example simulation space divided into Yee Cells with nodes defined
in cylindrical co-ordinates. The (i, j, k) co-ordinate indices are different to those in the
previous chapter, and are defined by D̂, φ̂ and ẑ respectively from Figure 3.13b. In
comparison to Figure 5.1 (Cartesian grid), this figure reveals a number of interesting
properties. The first is that the cell nodes are defined at discrete angular increments.
In addition to this any node defined at a 0° is the same as 360° (Nφ − 1). Therefore
360°/∆φ must be an integer. This also requires a unique FDTD update equation for
fields on the 0° axis.

Additionally the Yee Cells in Figure 6.1 are not uniform throughout the simulation
space, as they are in Figure 5.1. Figure 6.2 shows a Yee Cell defined in Cylindrical
co-ordinates, and the equivalent Cartesian cell is shown in Figure 5.2. This figure shows
that the Yee Cell has a fixed ∆z and ∆D throughout the simulation space, however

61

2D FDTD Method 62

Ground Plane

Lightning Channel

D D

z

(ND − 1, Nφ − 1, 0)

(ND − 1, 0, 0)&

(ND − 1, Nφ − 1, Nz − 1)

(ND − 1, 0, Nz − 1)&

φ

Figure 6.1: 3D Simulation space divided into cells - Cylindrical

the arc distance on the cells are dependant on the radial distance (D). There are two
consequences of this. The first is that for large values of D (observation point far from
the channel), the Yee Cells become large. This also means that the spatial resolution
throughout the simulation space changes, and gets worse as the distance D increases.

The second consequence is seen at observation points near, or on the channel. As the
observation point gets closer to the channel the nodes defined at (i, j, k) and (i, j+1, k)
converge to the same point (D = 0 therefore D.∆φ = 0). Therefore there is no angular
dependence at points on the channel. These points also require a unique FDTD update
equation, which is different to the rest of the simulation space.

It is possible to implement a full 3D Cylindrical FDTD simulation space, however for
complex environments it would be better to use the 3D Cartesian FDTD method de-
scribed in Chapter 5. Therefore if the simulation space is kept axially symmetric around
the lightning channel it is possible to evaluate the 3D Cylindrical simulation space in 2
dimensions defined by D̂ and ẑ.

This is intuitive when considering a fixed (DObs and zObs constant) observation point.
The fields at this point would not change as φObs is varied between 0° and 360°. An
analogy to this is the ripples formed when dropping a pebble into a pond. The ripples
radiate away from the center with a constant amplitude. Mathematically this can be
represented by Equation 6.1, which describes fields that have no angular difference.

d

dφ
.field = 0 (6.1)

2D FDTD Method 63

x

y

z

Eφ

Eφ

Eφ

HD

Hz

Hz

Hφ

Hφ
Ez

Ez

Ez

ED

ED

ED

(i, j, k)

(i + 1, j, k)

(i + 1, j + 1, k)

(i + 1, j + 1, k + 1)

(i, j + 1, k + 1)

(i, j, k + 1)

φ

∆D

∆z

D.∆φ

Figure 6.2: 3D Yee Cell - Cylindrical Co-ordinates - H Field centred

Because of this angular independence an “D-Z” plane would be the same at any angle
φ. Therefore a 2D plane is able to provide the same field information as a 3D plane.
Figure 6.3 shows the 2D plane that will be evaluated.

Ground Plane

Lightning Channel

D

D

z

φ

Figure 6.3: 2D Simulation space divided into cells - Showing 3D Cylindrical area. Elec-
tric field in black, Magnetic field in gray.

2D FDTD Method 64

6.2 Model Development

The development follows the same process as that in Chapter 5. The primary difference
is that the Cylindrical co-ordinate system is used in developing the FDTD equations.

6.2.1 2D FDTD Equations

Equations 3.15 (Faraday’s Law) and 3.17 (Ampere’s Law), in combination with Equation
3.27b (Section 3.5) are used to define the required Maxwell’s equations in Cylindrical co-
ordinates. Equations 6.2 and 6.3 show the expanded differential form of these equations.

∇× ~E =

 D̂ φ̂ ẑ
∂
∂D

1
D

∂
∂φ

∂
∂z

ED Eφ Ez

 =
1

D

 D̂ Dφ̂ ẑ
∂
∂D

∂
∂φ

∂
∂z

ED D.Eφ Ez

 = −µ
∂ ~H

∂t

= D̂
1

D

(
∂Ez

∂φ
−

∂(D.Eφ)

∂z

)
− φ̂

(
∂Ez

∂D
− ∂ED

∂z

)
+ ẑ

1

D

(
∂(D.Eφ)

∂D
− ∂ED

∂φ

)
(6.2)

∇× ~H =

 D̂ φ̂ ẑ
∂
∂D

1
D

∂
∂φ

∂
∂z

HD Hφ Hz

 =
1

D

 D̂ Dφ̂ ẑ
∂
∂D

∂
∂φ

∂
∂z

HD D.Hφ Hz

 = +ε
∂ ~E

∂t
+ σ ~E + ~Ji

= D̂
1

D

(
∂Hz

∂φ
−

∂(D.Hφ)

∂z

)
− φ̂

(
∂Hz

∂D
− ∂HD

∂z

)
+ ẑ

1

D

(
∂(D.Hφ)

∂D
− ∂HD

∂φ

)
(6.3)

Grouping the common vector components of Equations 6.2 and 6.3 produces the 6
identities shown in Equation 6.4.

ε
∂ED

∂t
=

(
1

D

∂Hz

∂φ
−

∂Hφ

∂z

)
− σe

DED − JiD
∂HD

∂t
=

1

µ

(
∂Eφ

∂z
− 1

D

∂Ez

∂φ

)
ε
∂Eφ

∂t
=

(
∂HD

∂z
− ∂Hz

∂D

)
− σe

φEφ − Jiφ
∂Hφ

∂t
=

1

µ

(
∂Ez

∂D
− ∂ED

∂z

)
ε
∂Ez

∂t
=

1

D

(
∂(D.Hφ)

∂D
− ∂HD

∂φ

)
− σe

zEz − Jiz
∂Hz

∂t
=

1

D.µ

(
∂ED

∂φ
−

∂(D.Eφ)

∂D

)
(6.4)

These 6 identities are simplified by assuming that the area of interest (simulation space)
will consist of free space, and a PEC ground plane. Therefore all σ terms will equal
zero. A further simplification is made by assuming that the source (lightning current)
is only directed along the ẑ direction. Therefore JiD and Jiφ are also zero. The last
simplification is achieved using Equation 6.1 which states that field differentials in the
φ direction are zero. After applying these simplifications the 6 identities are grouped
into two mutually independent sets of equations shown in Equations 6.5 and 6.6.

2D FDTD Method 65

∂ED

∂t
=

1

ε

(
−
∂Hφ

∂z

)
(6.5a)

∂Ez

∂t
=

1

D.ε

(
∂(D.Hφ)

∂D

)
− 1

ε
Jiz (6.5b)

∂Hφ

∂t
=

1

µ

(
∂Ez

∂D
− ∂ED

∂z

)
(6.5c)

∂HD

∂t
=

1

µ

(
∂Eφ

∂z

)
(6.6a)

∂Hz

∂t
=

1

D.µ

(
−
∂(D.Eφ)

∂D

)
(6.6b)

∂Eφ

∂t
=

1

ε

(
∂HD

∂z
− ∂Hz

∂D

)
(6.6c)

Equations 6.5 are defined as the Transverse Electric (TE) mode equations because the
electric fields propagate across the plane [48]. The same is true for Equations 6.6 which
are defined as being Transverse Magnetic (TM) mode equations. It is important to re-
emphasize that the TE and TM mode equations are completely uncoupled, and do not
share any common fields. Therefore these two equation sets can be evaluated separately,
as compared to the 3D Cartesian implementation where all the field equations are linked.
Another observation is that the TM mode equations have no source components “J”.
Making the assumption that all field components start with a zero value, the TM mode
field will not change without a source. Therefore the TM mode equations will remain
zero, and only the TE mode equations need to be evaluated to describe the fields of the
Cylindrical system.

Equations 6.7 to 6.9 show the discrete versions of the TE mode difference Equations 6.5.
The process of converting from differential to difference equations is the same as seen
in Equations 5.7 of Section 5.2.1. These are the update equations of the system, and
form the foundation for implementing the FDTD algorithm. Equations 6.7 to 6.9 are
more intuitively understood when studied in conjunction with the Yee cell in Figure 6.2
and the example simulation space is shown in Figure 6.5. The update equations follow
a similar pattern, where the new field value is equal to the old field value plus the fields
surrounding it.

ED

∣∣∣n+1

(i+ 1
2
,k)

= ED

∣∣∣n
(i+ 1

2
,k)

+
∆t

ε

−1.

Hφ

∣∣∣n+ 1
2

(i+ 1
2
,k+ 1

2
)
−Hφ

∣∣∣n+ 1
2

(i+ 1
2
,k− 1

2
)

∆z

 (6.7)

2D FDTD Method 66

Ez

∣∣∣n+1

(i,k+ 1
2
)
= Ez

∣∣∣n
(i,k+ 1

2
)
+

∆t

ε

D(i+ 1

2
).Hφ

∣∣∣n+ 1
2

(i+ 1
2
,k+ 1

2
)
−D(i− 1

2
).Hφ

∣∣∣n+ 1
2

(i− 1
2
,k+ 1

2
)

D(i).∆D

− ∆t

ε
Jiz

(6.8)

Hφ

∣∣∣n+ 1
2

(i+ 1
2
,k+ 1

2
)
=Hφ

∣∣∣n− 1
2

(i+ 1
2
,k+ 1

2
)

+
∆t

µ

Ez

∣∣∣n
(i+1,k+ 1

2
)
− Ez

∣∣∣n
(i,k+ 1

2
)

∆D
−

ED

∣∣∣n
(i+ 1

2
,k+1)

− ED

∣∣∣n
(i+ 1

2
,k)

∆z

 (6.9)

The notation used in these equations are explained in Equation 6.10. The φ̂ component
has been completely removed from the update equations. The µ and ε terms are spatially
located at the same position as the fields on the LHS of the update equations, however
in a homogeneous isotropic medium these terms remain constant throughout the plane.

F
∣∣∣n
(i,k)

= F (i, k, n) → F (i.∆D, k.∆z, n.∆t) = F (D, z, t) (6.10)

The only unique change in these update equations is the inclusion of the D(i) terms in
Equation 6.8. The D (radial distance) term is part of the differential form, and therefore
needs to be discretized onto the discrete spatial grid of the FDTD plane where:

D(i) = i.∆D (6.11)

The update equations can be evaluated throughout the plane with exception to the
lightning channel boundary (where i = 0). As seen in Equation 6.8, when i = 0
there is a division by 0, and the Hφ fields cannot be defined on the 2D plane (as seen
in Figure 6.5). Therefore a separate update equation is needed for the Ez fields on the
lightning channel.

Ez

Hφ

Hφ

Hφ

Hφ

(0, j, k)

(0, j, k + 1)

(∆D, j, k)∆D

Figure 6.4: Ez field on Lightning Channel

2D FDTD Method 67

Figure 6.4 shows a single 2D Yee Cell (from Figure 6.5) with a Ez field located on
the lightning channel. Due to the axial symmetry the Hφ field, located at ∆D

2 radial
distance, is assumed to be constant along the contour of the of the grey surface. A further
assumption is that the Ez field is constant across the surface of the grey area. Equations
6.12 show how these assumptions are applied to Ampere’s Law (Equation 3.17) without
the current density component. ∮

c

~H · dl =
∫
s

∂ ~D

∂t
· ds (6.12a)∮

c
Hφ

∣∣∣n+ 1
2

(1
2
,k+ 1

2
)
· dl =

∫
s
ε
∂Ez

∂t

∣∣∣n+ 1
2

(0,k+ 1
2
)
· ds (6.12b)

Hφ

∣∣∣n+ 1
2

(1
2
,k+ 1

2
)
·
∮
c
1dl = ε

∂Ez

∂t

∣∣∣n+ 1
2

(0,k+ 1
2
)
·
∫
s
1ds (6.12c)

Hφ

∣∣∣n+ 1
2

(1
2
,k+ 1

2
)
· 2π(∆D

2
) = ε

∂Ez

∂t

∣∣∣n+ 1
2

(0,k+ 1
2
)
· π(∆D

2
)2 (6.12d)

After discretizing the time differential in Equation 6.12d, and rearranging terms, the
update equation for the lightning channel is defined in Equation 6.13. This equation still
needs the addition of the lightning current density term “ ∆t

ε J”, which can be removed
from Equation 6.8 for the remaining simulation space.

Ez

∣∣∣n+1

(0,k+ 1
2
)
= Ez

∣∣∣n
(0,k+ 1

2
)
+

4∆t

ε∆D
Hφ

∣∣∣n+ 1
2

(1
2
,k+ 1

2
)

(6.13)

6.2.2 Stability and Dispersion

The CFL stability criteria for the three dimensional Cylindrical Yee cell is seen in
Equation 6.14.

∆t ≤ 1

vc
√

1
∆D2 + 1

(D.∆φ)2
+ 1

∆z2

(6.14)

For the two dimensional cylindrical Yee cells shown in Figure 6.5, the CFL stability
criteria is achieved by removing the ∆φ term, as seen in Equation 6.15.

∆t ≤ 1

vc

√
1

∆D2 + 1
∆z2

(6.15)

The optimal time step (∆topt) is achieved by setting ∆t equal to the right hand side
of Equation 6.15, as was done in Chapter 5. However from testing it was found that
∆topt caused instability in the plane, and therefore the time step was set to 90% of
∆topt. The reason for this difference is unclear, however it is not the purpose of this
work to investigate the numerical effects of the FDTD method, but rather to present
its implementation with respect to lightning simulations.

In selecting a smaller ∆t the system remained stable (property of the FDTD algorithm),
however may suffer from higher dispersion effects. This is unfortunately a necessary
trade off, and as seen in the Simulations section the effects are negligible.

2D FDTD Method 68

6.2.3 Boundary Conditions

Figure 6.5 shows an example 2D FDTD simulation space with the lightning channel
located on the LHS of the plane, and a PEC ground plane on the bottom of the plane.
As with the 3D Cartesian FDTD implementation, the Yee Cells were chosen such that
the Electric fields are located in the Lightning channel and the ground plane. In doing
so it is simple to add the lightning RS current density to the FDTD update equations,
as well as force a zero electric field on the ground plane (PEC properties).

This implementation simplifies the four boundary conditions of the plane. For the
lightning channel edge, the Ez field is updated using Equation 6.13. Assuming the
ground plane is a PEC, then it is a requirement that ED field remains zero. Therefore
ED does not require an update equation.

The remaining boundary walls are the RHS and top edges of the space. It is possible
to implement unique boundary conditions (update equations) for the Ez and ED fields,
as was done in Chapter 5. In this example the Hφ fields are extended by an additional
cell dimension such that the Hφ field forms the boundary wall. This was done so that
the top and right boundaries would share a common format, as well as to simplify the
corner conditions.

Ground Plane

B
o
u
n
d
a
ry

Boundary
Corner

Boundary
Corner

Boundary

C
o
rn

e
r

B
o
u
n
d
a
ry

L
ig
h
tn

in
g

C
h
a
n
n
e
l

D̂

ẑ

(0, 0) (ND − 1, 0)

(0, Nz − 1) (ND − 1, Nz − 1)

∆z

∆D

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

Ez

ED ED ED ED

ED ED ED ED

ED ED ED ED

ED ED ED ED

ED ED ED ED

ED ED ED ED

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Figure 6.5: EM Fields assigned to 2D FDTD Simulation Space

2D FDTD Method 69

(imax, k)
(imax + 1

2
, k + 3

2
)

(imax + 1
2
, k + 1

2
)

(imax + 1
2
, k − 1

2
)

(imax − 1
2
, k + 3

2
)

(imax − 1
2
, k + 1

2
)

(imax − 1
2
, k − 1

2
)

Ez

Hφ

Hφ

Hφ

Hφ

Hφ

Hφ

Figure 6.6: Cell Requirements for Hφ at D̂ Upper Boundary (2nd Order Mur)

Equations 6.16 and 6.17 show the 2nd order Mur update equations for the length of the
right and upper Hφ boundary conditions. Figure 6.6 shows an arbitrary Hφ field (in
bold) located on the right hand boundary with the surrounding Hφ fields required for the
update Equation 6.16. The fields along the top boundary have similar cell requirements
for the upper boundary condition.

Hφ

∣∣∣n+1

(imax+
1
2
,k+ 1

2
)
=

−Hφ

∣∣∣n−1
(imax− 1

2
,k+ 1

2
)
−
(
∆D − vp∆t

∆D + vp∆t

)(
Hφ

∣∣∣n+1

(imax− 1
2
,k+ 1

2
)
+Hφ

∣∣∣n−1
(imax+

1
2
,k+ 1

2
)

)
+

(
2∆D

∆D + vp∆t

)(
Hφ

∣∣∣n
(imax+

1
2
,k+ 1

2
)
+Hφ

∣∣∣n
(imax− 1

2
,k+ 1

2
)

)
+

(
∆D(vp∆t)2

2(∆z)2(∆D + vp∆t)

)(
Hφ

∣∣∣n
(imax+

1
2
,k+ 3

2
)
− 2Hφ

∣∣∣n
(imax+

1
2
,k+ 1

2
)
+Hφ

∣∣∣n
(imax+

1
2
,k− 1

2
)

+Hφ

∣∣∣n
(imax− 1

2
,k+ 3

2
)
− 2Hφ

∣∣∣n
(imax− 1

2
,k+ 1

2
)
+Hφ

∣∣∣n
(imax− 1

2
,k− 1

2
)

)
(6.16)

Hφ

∣∣∣n+1

(i+ 1
2
,kmax+

1
2
)
=

−Hφ

∣∣∣n−1
(i+ 1

2
,kmax− 1

2
)
−
(
∆z − vp∆t

∆z + vp∆t

)(
Hφ

∣∣∣n+1

(i+ 1
2
,kmax− 1

2
)
+Hφ

∣∣∣n−1
(i+ 1

2
,kmax+

1
2
)

)
+

(
2∆z

∆z + vp∆t

)(
Hφ

∣∣∣n
(i+ 1

2
,kmax+

1
2
)
+Hφ

∣∣∣n
(i+ 1

2
,kmax− 1

2
)

)
+

(
∆z(vp∆t)2

2(∆D)2(∆z + vp∆t)

)(
Hφ

∣∣∣n
(i+ 3

2
,kmax+

1
2
)
− 2Hφ

∣∣∣n
(i+ 1

2
,kmax+

1
2
)
+Hφ

∣∣∣n
(i− 1

2
,kmax+

1
2
)

+Hφ

∣∣∣n
(i+ 3

2
,kmax− 1

2
)
− 2Hφ

∣∣∣n
(i+ 1

2
,kmax− 1

2
)
+Hφ

∣∣∣n
(i− 1

2
,kmax− 1

2
)

)
(6.17)

Figure 6.6 also shows that the update equation for an arbitary Hφ field requires knowl-
edge of the fields above and below the field. The same is true for the upper boundary,
and therefore Equations 6.16 and 6.17 cannot be used for the corners of the boundaries.

2D FDTD Method 70

Ground Plane

B
o
u
n
d
a
ry

Boundary

L
ig
h
tn

in
g

C
h
a
n
n
e
l

D̂

ẑ

(0, 0) (ND − 1, 0)

(0, Nz − 1)

Hn
φ

Hn+1
φ

Hn
φ

Hn
φ

Hn+1
φ

Hn+1
φ

Figure 6.7: Cell Requirements for Hφ at Corner Boundary Cells (2nd Order Mur)

Hφ

∣∣∣n+1

(1
2
,kmax+

1
2
)
= Hφ

∣∣∣n
(1
2
,kmax− 1

2
)

(6.18a)

Hφ

∣∣∣n+1

(imax+
1
2
,kmax+

1
2
)
= Hφ

∣∣∣n
(imax− 1

2
,kmax− 1

2
)

(6.18b)

Hφ

∣∣∣n+1

(imax+
1
2
, 1
2
)
= Hφ

∣∣∣n
(imax− 1

2
, 1
2
)

(6.18c)

Equations 6.18 show the 1st order Mur update equations for the corner boundary con-
ditions. Figure 6.7 illustrates how these equations operate in the plane. These update
equations are not ideal, and would benefit from a higher order Mur implementation,
however is sufficient for this work. The 1st order implementation is best suited for fields
that impact a boundary directly (perpendicular to the plane), which is why the top left
and bottom right cells are aligned with the lightning RS base.

6.2.4 Simulation space objects

The discussion so far has assumed a simple simulation space consisting of a PEC ground
plane, and free of objects. This assumption allows the Yee Cell permeability (µ), permit-
tivity (ε) and conductivity (σe) to be constant throughout the simulation space, which
ultimately simplifies the update equations and implementation of the model.

However as was done in the 3D FDTD implementation it is possible to define the
properties of each individual Yee Cell in the 2D FDTD plane. In doing so the effects of
objects on the EM field propagation can be simulated. The most important object to
include is a conductive ground plane [56], but other objects are more difficult to add due
to the axial symmetry, as seen in Figures 6.8a and 6.8b. These figures show a ground
plane, with three different objects and dimensions. Due to the cylindrical co-ordinate

2D FDTD Method 71

Ground Plane

L
ig
h
tn

in
g

C
h
a
n
n
e
l

x̂

ẑ

(a) Side View

x̂

ŷ

ẑ

(b) Top View

Figure 6.8: 2D Cylindrical Simulation Space Objects

system, when an object is added to the 2D plane it is modelling a 3D object that
surrounds the lightning channel. Adding objects that model real world environments
may be difficult due to the circular requirement of the co-ordinate system. It is however
simple to add conductive flat ground planes that model real ground planes.

Another important object to add to the simulation space is the lightning current source.
This is done by adding the lightning current density component to the channel update
Equation 6.13. Equation 6.19 defines the current density in terms of the lightning return
stroke current, and the cell area it is passing through. As seen in Figure 6.4, the cell
area is now defined by a circle with a ∆D

2 radius.

Jiz(z, t) =
IRS(z, t)

π(∆D
2)2

(6.19)

6.2.5 Computational Considerations

Figure 6.5 shows an example simulation space made up of a 4*5 Yee Cell matrix. This
simulation space is also defined by the 5*6 cell nodes in the D̂ and Ẑ directions, where
ND and Nz are the number of nodes. As mentioned before the programming language
used in this work is C++, and therefore the array index used begins with “0” and not
“1”.

Figure 6.5 shows that in the Ẑ direction there are Nz×ED fields, but only (Nz−1)×Ez

fields. The same is true for the D̂ direction with ND×Ez fields, but only (ND−1)×ED

fields. This follows the same concepts discussed in the 3D FDTD section, however due to
the expansion of the magnetic fields to form the boundary, there are ND ×Nz magnetic
field components in the D̂ and Ẑ directions respectively.

2D FDTD Method 72

These field matrix dimensions are directly linked to the amount of computer memory
required for an FDTD simulation. Equation 6.20 shows the exact and approximate
number of memory elements required for all fields in the simulation space.

Nmem = (NumEz) + (NumED) + (NumHφ)

Nmem = ND.(Nz − 1) + (ND − 1).Nz +ND.Nz

Nmem ' 3.Nx.Ny.Nz (6.20a)

Section 5.2.5 discussed a simple example simulation space that is 8000m high, with a
200m radial distance away from the lightning channel. The Yee Cell dimensions (in
Cartesian co-ordinates) were each set to 1m, and assuming that a “double” variable
type (8 bytes) is used to store each field component, then the simulation would need
57GB to store the field memory. This memory requirement could possibly double if
the 3D simulation space consisted of complex variable objects in the simulated space.
However in the 2D FDTD method, a simulation space with the same dimensions and
spatial resolution would only need 37MB. This is 0.06% of the memory required for
the equivalent 3D FDTD method, which demonstrates the primary advantage of the 2D
FDTD method.

The lower memory requirement allows for a finer spatial resolution in the plane, or a
larger simulation space, both of which have important applications for lightning EM
simulations. For example consider a problem requiring knowledge of EM fields located
at 100 km, with a 8000m high lightning channel and a 1m spatial resolution. The
approximate memory requirement would be 18GB, which is achievable with modern
computers, however the equivalent model in the 3D FDTD method would be unrealistic.

Example code for this 2D FDTD method has been included in Appendix E, and it
follows the same implementation process presented in Figure 5.10.

6.3 Model Simulations

This section will produce some example field waveforms using the method presented
above. The example case is the same as those presented in the Finite Antenna method
and 3D FDTD method, so that comparisons can be made.

Figure 6.9 shows the 2D FDTD model environment for a basic lightning simulation space
[57]. The simulation space is Zdis ∗ Ddis m2 in size. The lightning channel is placed
along the left hand boundary, which represents the center of the cylindrical co-ordinate
space, and runs the full height of Zdis. The lightning channel current distribution is
described by the transmission line (TL) return stroke model (Equation 3.12) with the
current impulse described by Equation 3.7 (Terespolsky version of the popular current
impulse), and a return stroke speed of 0.5 c. The field observation point is defined at
point P , and is placed on the lower left hand node of a Yee Cell in the simulation space.

There is a similarity between the 2D FDTD model environment in Figure 6.9, with the
3D FDTD environment in Figure 5.14. In the 3D example case the observation point
is placed on the X-Z plane where yObs = 0. This placement simplified the variables in
the 3D example, and equated its field vectors with those in the 2D FDTD example.

2D FDTD Method 73

D̂

ẑ

ZObs

DObs

P

1
2
∆z

1
2
∆D

+Zdis

+Ddis

(0, 0)

(ND − 1, Nz − 1)

ED

ED

Ez Ez

Hφ

(i, k) (i + 1, k)

(i, k + 1) (i + 1, k + 1)

PEC Ground Plane

Lightning Channel

Figure 6.9: Basic 2D Model Space - With Discrete Location Yee Cell Nodes and Fields

Therefore this section will demonstrate that the x̂ and ẑ fields in the 3D example case
are equivalent to the D̂ and ẑ fields in the 2D example case.

The ground plane is assumed to be a perfect electrical conductor (PEC). It is possible
to add a number of cell layers with σ = 1, but the same can be achieved by ignoring the
boundary conditions along the lower edge (Z = 0). This simplifies the process of adding
a ground plane object, as well as adding additional matrices to the FDTD algorithm.

The area surrounding the lightning channel is free space where µr = µ0, εr = ε0, σe = 0
and the propagation velocity Vp = c throughout the simulation space. The above
assumptions have defined all the simulation variables except the simulation space size,
Yee Cell dimensions, and simulation run time. The simulation time is simply the time
taken for the lightning EM field to reach the observation point, plus the time period
needed to review the field waveform at the observation point.

One method to define the simulation space dimensions is to consider the effects of
the boundary plane reflections, which exist even when ABC’s are used. With these
considerations in mind the simulation space dimensions are defined by the minimum D̂
distance (+Dmin), and minimum ẑ distance (+Zmin) such that reflections from these
boundaries only reach the observation point at the end of the simulation time. This
is illustrated in Figure 5.12. Equations 5.28a and 5.28c define the +Dmin and +Zmin

dimensions where the x̂ unit vectors are replaced with the equivalent D̂ unit vectors.

2D FDTD Method 74

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

Time (µs)

E
D

fi
el
d
(k
V
/m

)

FinAnt
∆Cell =1.0 m
∆Cell =1.5 m
∆Cell =2.5 m
∆Cell =5.0 m
∆Cell =10.0 m

0 0.5 1 1.5 2 2.5 3

−20

−15

−10

−5

0

Time (µs)

E
z
fi
el
d
(k
V
/
m
)

FinAnt
∆Cell =1.0 m
∆Cell =1.5 m
∆Cell =2.5 m
∆Cell =5.0 m
∆Cell =10.0 m

Figure 6.10: 2D FDTD Fields - DObs = 50m, zObs = 10m - Variable Grid Size

Example Case

The observation point is set to 50m from the lightning channel, and 10m off the ground.
This is the same observation point that was used in the Finite Antenna and 3D FDTD
examples, and aims to evaluate the worst case position of a distribution line with respect
to a lightning return stroke channel. The field review time is chosen to be 3 µs, and
therefore the simulation time is 3170 ns. Using this observation point and simulation
time the Dmin and Zmin are set to 501m and 479m respectively.

The Yee Cells are chosen to have a uniform dimension where ∆D = ∆z = ∆cell. Figure
6.10 shows the electric fields at the observation point produced by the 2D FDTD method
using different Yee Cell dimensions, as well as the electric fields produced by the Finite
Antenna method (for comparison). A comparison between the 2D FDTD fields in Figure
6.10 and the 3D FDTD fields in Figure 5.13 shows that the methods are equivalent for
this basic simulation.

The fields produced in these figures are discussed in great detain in Section 5.3, however
there are two primary concepts that need to be highlighted. The first is that as the
Yee Cells are made smaller, there is a finer spatial resolution as well as time step due
to the CFL condition (stability). The time step and spatial resolution resulting from
the ∆cell = 10m are too large, and the source startup transient causes numerical noise
in the field waveform. The second observation is that the observation point P as well
as the fields can only be placed at discrete locations in the simulation space. This is
defined by DObs = i.∆D and zObs = k.∆z where i and k are integers. In addition to
this it is clear from Figure 6.9 that none of the fields are defined at the same location.
This is why the fields converge towards the Finite Antenna fields (located at point P)
when the Yee Cell is made smaller. The locations of the fields and observation points
in Figure 6.10 are defined in Table 5.1. This explains why the fields from ∆cell = 1.5m
appear to be worse than fields from larger cells.

Both these observations show the importance of keeping the cell dimensions as small as
possible. In the 3D FDTD method the simulation time, location of observation point,
simulation space dimensions and Yee Cell dimensions are all limited by the amount

2D FDTD Method 75

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

Time (µs)

E
D

fi
el
d
(k
V
/m

)

FinAnt
∆Cell =0.05 m

0 0.5 1 1.5 2 2.5 3

−20

−15

−10

−5

0

Time (µs)

E
z
fi
el
d
(k
V
/
m
)

FinAnt
∆Cell =0.05 m

Figure 6.11: 2D FDTD Fields - DObs = 50m, zObs = 10m - Fine Scale Yee Cells

of computer memory available for the simulation. The 2D FDTD method requires
significantly less computer memory, and therefore allows for longer simulation times,
further observation points, larger simulation spaces and smaller Yee Cells.

Table 6.1 shows the memory requirements (using a “double” variable type) for the 2D
FDTD and 3D FDTD methods with different Yee Cell sizes (∆cell). This assumes that
the observation point, simulation time and simulation space remain unchanged from
the example above. This table shows that a simulation with a 5 cm spatial resolution is
simple to implement, where as it would be unrealistic in the 3D FDTD method.

Figure 6.11 shows the electric fields at the observation point using the 2D FDTD method
and fine scale Yee Cell dimensions, as well as the fields from the Finite Antenna method.
This figure shows that although the ED, Ez and Finite Antenna fields each have separate
locations, the difference between the fields at these locations has become negligible.
This demonstrates one advantage of the 2D FDTD method over the 3D FDTD method.

Another advantage is that the simulation time can be extended, as seen in Figure
6.12. This figure shows the electric fields for the example case with a simulation time
of 10.17 µs, and ∆Cell = 0.5m. This figure also shows the effect of decreasing the
simulation space boundary. The percentage value indicates the percentage of Dmin

and Zmin used for the simulation space, and the Finite Antenna field at the shifted

Table 6.1: Example Case: Cell Computer Memory Requirements 2D VS 3D

∆cell (m) Effective (DObs, zObs) 2D FDTD Mem 3D FDTD Mem
0.015 (49.995,9.99) 23.8GB 6.03× 106GB
0.05 (50,10) 2.15GB 163× 103GB
0.1 (50,10) 550MB 20.34× 103GB
0.5 (50,10) 22MB 163GB
1 (50,10) 5.5MB 20.43GB

1.5 (49.5,9) 2.44MB 6.03GB
5 (50,10) 0.22MB 167MB

2D FDTD Method 76

0 2 4 6 8 10
0

1

2

3

4

5

Time (µs)

E
D

fi
el
d
(k
V
/m

)

FinAnt (50.25,10)

70% Min Sim Space

60% Min Sim Space

50% Min Sim Space

0 2 4 6 8 10

−20

−15

−10

−5

0

Time (µs)

E
z
fi
el
d
(k
V
/
m
)

FinAnt (50,10.25)

70% Min Sim Space

60% Min Sim Space

50% Min Sim Space

Figure 6.12: 2D FDTD Fields - DObs = 50m, zObs = 10m - Variable Simulation Space

location shows what the waveform should be. As expected when the simulation space
is made smaller the effects of the boundary reflections increase. From Figure 6.12 it
is recommended that the simulation space only be reduced to 70% in each dimension.
This has the effect of reducing the computer memory requirements by 50% (0.7 ∗ 0.7),
which allows for improved spatial resolution, as well as a reduced computation time.

This method is also well suited for simulations with observation points far (greater than
1000m) from the lightning channel, however the approach taken in implementing these
simulations is significantly different to the method discussed in this chapter. At far
observation points the use of boundary conditions becomes less significant as the space
surrounding the observation point (defined by Equations 5.28a to 5.28c) is negligible in
respect to the size of the simulation space (consider a point 100 km from the lightning
channel). This can also be thought of as the ratio of field observation time (Tobs) VS
time taken to reach the observation point (Ttravel). When TObs > Ttravel then the
methodology of this chapter is applicable.

Another consequence of a far observation point is a long simulation time. Small nu-
merical artefacts that may be negligible in short simulations, tend to grow during long
simulations. These problems can be rectified, however as outlined in the introduction,
this work is primarily concerned with fields near (50m to 500m) the lightning channel.
As such the methodology for far observation points will not be discussed in detail.

6.4 Chapter Summary

This chapter has presented a comprehensive approach to applying the 2D FDTD method
to lightning EM simulations. This is done by discussing the theory and assumptions
required in changing 3D Cylindrical co-ordinates into 2D Cylindrical co-ordinates by
taking advantage of axial symmetry around the lightning channel. This axial symmetry
around a perpendicular lightning channel is also the limiting factor for the 2D FDTD
method, but under simple simulation environments it does not cause problems.

2D FDTD Method 77

The full mathematical development of the method is presented to aid in creating unique
variations of the 2D FDTD method. In addition to this, example code has been included
in the appendix to assist readers in understanding how the FDTD update equations,
and boundary conditions are implemented in code. This chapter also discusses the
importance of simulation space objects, and computational restrictions with regards to
lightning based simulations.

An example case has been used to demonstrate how the method is implemented, as well
as the effects of various numerical artefacts such as the Yee Cell Size and boundary
conditions. The fields produced in these examples show that the 2D FDTD method
produces the same results as the 3D FDTD method when a simple simulation space
is used. The primary advantages of this method is its ease of implementation, and
significantly lower computational requirements. This allows for a finer resolution in
the simulation space and longer simulation times. This method is also well suited to
simulations with observation points located far from the lightning channel, however the
approach taken in such simulations is unique, and not discussed here.

The next chapter will present the Single Cell FDTD method, which is the last of the
methods presented in this work. This method is a combination of the Finite Antenna
method, and the FDTD method, and uses many of the same assumptions presented in
this chapter.

Chapter 7

Single Cell FDTD Method

This chapter presents the Single Cell FDTD method, also known as the hybrid method.
This method combines the theory of the Finite Antenna method, and the FDTD method
to simulate lightning EM fields, and has the advantage of being more computationally
efficient than the other methods presented in this work. The method is however limited
to simple simulation environments. This chapter presents the theory of the method
using Spherical co-ordinates, and the 2D assumptions used in the 2D FDTD chapter.

7.1 Overview

The standard FDTD method presented in the previous chapters has shown that it
is possible to simulate EM fields in space by discretizing the simulation space into
smaller spatial cells, as well as evaluating the space in small time increments. In doing
so this method allows for highly complex simulation environments to be simulated,
such as curved lightning channel paths, multilayer conductive ground planes, ground
contours, shielding effects of objects and electrical effects on distribution lines. The
primary disadvantage of the 3D FDTD method is that it has a high computer memory
requirement, even for simple simulations. If the simulation environment is kept simple
then it is possible to use the 2D FDTD method, which has the advantage of simulating
straight lightning channels over flat conducting ground planes. The 2D method requires
significantly less memory than the 3D method, but still has a significant simulation run
time due to the large amounts of computations required by the FDTD method.

As seen in Figure 5.10, both FDTD methods presented have the same evaluation process.
This process involves calculating the electric and magnetic fields at every cell throughout
the evaluation space for every time step of the simulation. This process can take a
long time to run through a simulation, especially if the Yee Cells are made smaller.
Although the FDTD process is advantageous due to its ability to provide EM field
information at every Yee Cell throughout the space (with only a single simulation), it
is often unnecessary to know all the field information. Often a problem will focus on
simulating the EM field at a single point in space, such as a lightning detection node. In
such cases using the FDTD method is excessive, and the Finite Antenna method may
provide a better suited alternative.

78

Single Cell FDTD Method 79

x

y

z

Hφ

φ

θ

Er

Er Er

Hθ

Hθ

Hr

(i, j, k)

(i, j + 1, k)

(i, j + 1, k + 1)

(i + 1, j, k)

(i + 1, j, k + 1)

Eθ

Eθ

Eθ

Eφ

Eφ

Eφ

Figure 7.1: 3D Yee Cell - Spherical Co-ordinates - H Field centred

Another alternative is the Single Cell FDTD method, which operates in a similar manner
to the Finite Antenna Method, but uses the evaluation process (update equations)
of the FDTD method. The update equations in the 3D and 2D FDTD methods show
that electric (or magnetic) fields are calculated by their previous time step value, plus
the magnetic (or electric) fields that surround the cell of interest. Because this method
relies on the fields surrounding the cell of interest, the FDTD process needs every cell in
the space to be evaluated for every time step. However if either the electric or magnetic
fields are known at the points surrounding the cell of interest, then it is possible to
evaluate the opposite field.

This novel solution for LEMP calculations was first suggested by Sartori et al [58], and
then improved upon by other authors [41, 53, 59, 60]. The fundamental principle of the
Single Cell FDTD method uses the magnetic fields calculated by the Finite Antenna
method to evaluate the electric fields in the FDTD method. This “hybrid” method [59]
is referred to as the “Single Cell FDTD” method, as only one Yee cell is evaluated rather
than the entire FDTD plane.

What follows is the mathematical explanation of the method using Spherical co-ordinates.
It is important to note that this method will work equally well in other co-ordinate
systems, however the magnetic field equations from the Finite Antenna method are
already in Spherical co-ordinates, and therefore are convenient to use directly. In ad-
dition to this the FDTD mathematics presented here will show the steps involved in
creating the update equations in the last of the co-ordinate systems discussed in this
work. Figure 7.1 shows a 3D Yee Cell in Spherical co-ordinates.

Single Cell FDTD Method 80

7.2 Model Development

Faraday’s Law (Equation 3.15) and Ampere’s Law (Equation 3.17), in combination with
Equation 3.25c are used to define the required Maxwell’s equations in Spherical co-
ordinates. Equations 7.1 and 7.2 show the expanded differential form of these equations.

∇× ~E =

 r̂ θ̂ φ̂
∂
∂r

1
r

∂
∂θ

1
r. sin θ

∂
∂φ

Er Eθ Eφ

 =
1

r

1

r. sin θ

 r̂ rθ̂ r. sin θφ̂
∂
∂r

∂
∂θ

∂
∂φ

Er r.Eθ r. sin θEφ

 = −∂ ~B

∂t

= r̂
1

r. sin θ

(
∂(sin θEφ)

∂θ
− ∂(Eθ)

∂φ

)
− θ̂

1

r

(
∂(r.Eφ)

∂r
− 1

sin θ

∂Er

∂φ

)
+ φ̂

1

r

(
∂(r.Eθ)

∂r
− ∂Er

∂θ

)
(7.1)

∇× ~B =

 r̂ θ̂ φ̂
∂
∂r

1
r

∂
∂θ

1
r. sin θ

∂
∂φ

Br Bθ Bφ

 =
1

r

1

r. sin θ

 r̂ rθ̂ r. sin θφ̂
∂
∂r

∂
∂θ

∂
∂φ

Br r.Bθ r. sin θBφ

 = µε
∂ ~E

∂t
+ µσe ~E + µ~Ji

= r̂
1

r. sin θ

(
∂(sin θBφ)

∂θ
− ∂(Bθ)

∂φ

)
− θ̂

1

r

(
∂(r.Bφ)

∂r
− 1

sin θ

∂Br

∂φ

)
+ φ̂

1

r

(
∂(r.Bθ)

∂r
− ∂Br

∂θ

)
(7.2)

Grouping the common vector components of Equations 7.1 and 7.2 produce the 6 iden-
tities shown in Equations 7.3.

µε
∂Er

∂t
=

1

r. sin θ

(
∂(sin θBφ)

∂θ
− ∂(Bθ)

∂φ

)
− µσe

rEr − µJir (7.3a)

µε
∂Eθ

∂t
=

1

r

(
1

sin θ

∂Br

∂φ
−

∂(r.Bφ)

∂r

)
− µσe

θEθ − µJiθ (7.3b)

µε
∂Eφ

∂t
=

1

r

(
∂(r.Bθ)

∂r
− ∂Br

∂θ

)
− µσe

φEφ − µJiφ (7.3c)

−∂Br

∂t
=

1

r. sin θ

(
∂(sin θEφ)

∂θ
− ∂(Eθ)

∂φ

)
(7.3d)

−∂Bθ

∂t
=

1

r

(
1

sin θ

∂Er

∂φ
−

∂(r.Eφ)

∂r

)
(7.3e)

−
∂Bφ

∂t
=

1

r

(
∂(r.Eθ)

∂r
− ∂Er

∂θ

)
(7.3f)

These 6 identities can be simplified further by assuming that the simulation space con-
sists of free space with a PEC ground plane. Therefore all σ terms are zero. Further
simplifications are made by removing unnecessary source terms. The lightning channel
in these models will be perpendicular to the ground plane, directed along the ẑ axis of
Figure 7.1. Therefore current terms (J) can only exist along the r̂ unit vector direction
(when θ = 0). Therefore Jiθ and Jiφ terms are set to zero.

Single Cell FDTD Method 81

Assuming that the lightning channel is perpendicular to the ground plane, and that the
ground plane is symmetrical surrounding the channel, it is possible to use the same
2D simplifications used in Chapter 6. The most important requirement is that the
simulation space is axially symmetric around the lightning channel, and therefore EM
fields are φ independent (d

dφ = 0). After applying these simplifications the 6 identities
of Equations 7.3 are grouped into two mutually independent sets of equations shown in
Equations 7.4 and 7.5.

∂Er

∂t
=

1

µ.ε.r. sin θ

(
∂(sin θBφ)

∂θ

)
− 1

ε
Jir (7.4a)

∂Eθ

∂t
= − 1

µ.ε.r

(
∂(r.Bφ)

∂r

)
(7.4b)

∂Bφ

∂t
= −1

r

(
∂(r.Eθ)

∂r
− ∂Er

∂θ

)
(7.4c)

∂Br

∂t
= − 1

r. sin θ

(
∂(sin θEφ)

∂θ

)
(7.5a)

∂Bθ

∂t
=

1

r

(
∂(r.Eφ)

∂r

)
(7.5b)

∂Eφ

∂t
=

1

µ.ε.r

(
∂(r.Bθ)

∂r
− ∂Br

∂θ

)
(7.5c)

Equations 7.4 and 7.5 are defined as the Transverse Electric (TE) mode and Transverse
Magnetic (TM) mode equations respectively. These equations are similar to those in
Chapter 6 (Equations 6.5 and 6.6), however in this context the mode refers to the electric
or magnetic fields propagating in the 2D “ r̂ − θ̂” plane. From the assumptions made it
is clear that Equations 7.5 have no source terms, and will therefore remain zero. From
this only the TE mode equations need to be evaluated.

Er

∣∣∣n+1

(i+ 1
2
,j)

= Er

∣∣∣n
(i+ 1

2
,j)

+
∆t

µ.ε.ri+ 1
2
. sin θj .∆θ

·[
Bφ

∣∣∣n+ 1
2

(i+ 1
2
,j+ 1

2
)
. sin θj+ 1

2
−Bφ

∣∣∣n+ 1
2

(i+ 1
2
,j− 1

2
)
. sin θj− 1

2

]
(7.6)

Eθ

∣∣∣n+1

(i,j+ 1
2
)
= Eθ

∣∣∣n
(i,j+ 1

2
)
− ∆t

µ.ε.ri.∆r
·
[
Bφ

∣∣∣n+ 1
2

(i+ 1
2
,j+ 1

2
)
.ri+ 1

2
−Bφ

∣∣∣n+ 1
2

(i− 1
2
,j+ 1

2
)
.ri− 1

2

]
(7.7)

Equations 7.6 and 7.7 show the discrete (spatial and temporal) versions of the TE
mode difference Equations 7.4a and 7.4b. The process of converting from differential
to difference equations is the same as seen in Equations 5.7 of Section 5.2.1. These
equations also assume that µ and ε are spatially independent through the simulation
space, and that the cell under review is located off the lightning channel (Jir = 0).
Equations 7.6 and 7.7, in combination with the difference form of Equation 7.4c, could
be used to implement a full 2D (Spherical) FDTD simulation, however that is not
necessary for this method. These difference equations, as well as the Single Cell FDTD

Single Cell FDTD Method 82

r̂

ẑ

PEC Ground Plane

P

Lightning Channel

r̂

r̂

θObs

R
O
bs

Er

ErEθ

Eθ

Bφ

Bφ

Bφ

1

2

3

(i, j)

(i, j + 1)

(i + 1, j)

(i + 1, j + 1)

Figure 7.2: 2D Yee Cell - Spherical Co-ordinates - r̂ − θ̂ plane

method are best understood by reviewing Figure 7.2.

The notation used in Equations 7.6 and 7.7, as well as the figure, are explained in
Equation 7.8. These equations also have spatially variant r and θ terms which are
explained in Equations 7.9 and 7.10.

F
∣∣∣n
(i,j)

= F (i, j, n) →F (i.∆r, j.∆θ, n.∆t) = F (r, θ, t) (7.8)

ri = i.∆r (7.9)
sin θj = sin (j.∆θ) (7.10)

Figure 7.2 shows a single Yee Cell in the 2D Spherical plane. The observation point
(P) is located on the lower left hand corner of the cell. As with the other FDTD cell
orientations, it is clear that each field component is located at its own unique spatial
location (no fields overlap). In order to calculate Er and Eθ (closest to observation
point P), it is clear that the Bφ field only needs to be calculated at three locations
(numbered in the figure). These three Bφ locations are defined by Equations 7.6 and
7.7 which share a common Bφ term. The equation for calculating the Bφ terms is taken
from the Finite Antenna Method in Chapter 4, and is rewritten in Equation 7.11.

This is the fundamental principle of the Single Cell FDTD method. By evaluating the Bφ

fields at three unique locations it is possible to evaluate the electric fields surrounding the
observation point of interest. This method is simple to implement, and does not suffer
from the same disadvantages of full FDTD implementations [53]. Only the fields in the
cell of interest are evaluated, rather than the full FDTD simulation space. There are no
boundary plane limitations, no stability or dispersion issues, and no complex creation

Single Cell FDTD Method 83

of simulation space objects (such as sources). This is, however, only an advantage for
simple simulation environments.

~B(r, θ, t) φ̂ = ~Bφ(r, θ, t) =

+
1

4πε0c2

∫ L′(t)

0

sinα(z)

R2(z)

{
iRS(0, t−

R(z)

c
− z

vc
)

}
dz φ̂ (7.11a)

+
1

4πε0c2

∫ L′′(t)

0

sinα(−z)

R2(−z)

{
iRS(0, t−

R(−z)

c
− z

vc
)

}
dz φ̂ (7.11b)

+
1

4πε0c2

∫ L′(t)

0

sinα(z)

cR(z)

{
∂iRS(0, t− R(z)

c − z
vc
)

∂t

}
dz φ̂ (7.11c)

+
1

4πε0c2

∫ L′′(t)

0

sinα(−z)

cR(−z)

{
∂iRS(0, t− R(−z)

c − z
vc
)

∂t

}
dz φ̂ (7.11d)

Initially this method may appear redundant given the similarities to the Finite Antenna
Method, however it has one significant advantage. As mentioned in Chapter 4, the
Finite Antenna electric field equations contain a term with the integral of the return
stroke current (Electrostatic field component). This method relies solely on the magnetic
field equation, which does not contain this term and therefore removes unnecessary
complexity from the evaluation process [53]. This also allows additional flexibility in
the current impulse model used for the RS model [59].

The functionality of this method is extended further by using alternative methods of
evaluating the magnetic field. It is possible to use the Wavetilt approximation, and the
Rubenstein approximation (discussed in [59]) to evaluate the magnetic fields above a
conducting ground plane. If these magnetic fields are used in the Single Cell FDTD
update equations, then the resulting electric fields will also be affected by the conducting
ground plane [41]. This method has not been investigated or implemented in this work.

7.3 Model Simulations

The simulations used in this chapter follow the same model assumptions as the previous
chapters. The lightning channel is assumed straight and perpendicular to a flat perfectly
conducting ground plane. The area surrounding the lightning channel is free space (with
no obstacles) where µr = µ0, εr = ε0, σe = 0 and the propagation velocity Vp = c. The
simulation space is illustrated in Figure 7.2.

The lightning channel current distribution is described by the transmission line (TL)
return stroke model (Equation 3.12) with the current impulse described by Equation 3.7
(Terespolsky version of the popular current impulse), and a return stroke speed of 0.5 c.
However for the Single Cell FDTD method and Equation 7.11 it is easier to implement
Equation 3.6 (Heidler version of the popular current impulse), but for consistency with
the other methods the current impulse model has been kept the same.

Single Cell FDTD Method 84

0 0.5 1 1.5 2

0

5

10

15

20

25

Time (µs)

E
r
fi
el
d
(k
V
/m

)

SinCell - θ = 10°
FinAnt - θ = 10°
SinCell - θ = 30°
FinAnt - θ = 30°
SinCell - θ = 60°
FinAnt - θ = 60°
SinCell - θ = 90°
FinAnt - θ = 90°

Figure 7.3: Single Cell Er Field - RObs = 100m, ∆r =0.5m, ∆θ = 0.5° - Different θObs.

A full FDTD implementation in this co-ordinate system would have limitations on the
location of the observation point, however the Single Cell FDTD does not. P can be
placed anywhere in the r̂ − θ̂ plane, and is not limited by ∆r, ∆θ or ∆t.

This method is also not affected by the stability criteria of a normal FDTD implemen-
tation, and has freedom in the selection of cell size (∆r and ∆θ) as well as the time
step (∆t). For consistency in methodology this section will use the optimal CFL time
step, which is described by Equation 7.12 for the Yee Cell in Figure 7.2.

∆t ≤ 1

c
√

1
(∆r)2

+ 1
(r.∆θ)2

(7.12)

Figure 7.3 shows the Er fields calculated at a radial distance of 100m, and a range of
vertical offset angles. The Yee Cell used ∆r = 0.5m and ∆θ = 0.5°. This figure shows
that the fields from the Single Cell FDTD method compare well to fields produced by
the Finite Antenna Method. These fields can also be compared to the work in [50].

Figure 7.3 shows a difference between the methods, which is clearer in Figure 7.4. This
figure shows the Er field of the Yee Cell with the observation point set at RObs = 100m
and vertical offset angle θObs = 10°. With the fixed observation point the Yee Cell
dimensions are then varied. As the Yee Cell is increased the difference between the
Finite Antenna field at the observation point increases. This effect is caused by the
difference in Yee Cell field locations (Figure 7.2), and the location of the observation
point. If the Finite Antenna field locations are shifted to those on the Yee Cell, then
the fields are the same. However from experience it is best to keep the angular step

Single Cell FDTD Method 85

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

Time (µs)

E
r
fi
el
d
(k
V
/m

)

FinAnt - No Offset
SinCell - ∆r = 1m, ∆θ = 1°
SinCell - ∆r = 5m, ∆θ = 5°
SinCell - ∆r = 10m, ∆θ = 10°
SinCell - ∆r = 15m, ∆θ = 15°

Figure 7.4: Single Cell Er Field - RObs = 100m, θObs = 10° - Different Cell Size.

(∆θ) as small as possible. As seen in Figure 7.2 the Yee Cell is not uniform throughout
the plane, and will increase in size as the radial distance increases. Therefore at large
observation distances even small ∆θ values can have large Yee Cells.

Figure 7.5 shows the Er field at the same location (RObs = 100m and θObs = 10°), with
a fixed Yee Cell (∆r = 1m, ∆θ = 1°), however the time step ∆t is varied. The optimal
time step for a full FDTD simulation would require a value of 2.9 µs or less, otherwise
the simulation would become unstable. However as seen in this figure, even time steps
far greater than the optimal CFL value still produce a stable simulated field.

7.4 Chapter Summary

The Single Cell FDTD method has been presented using the Spherical co-ordinate
system in the 2D r̂ − θ̂ plane. The mathematical derivation of the method has enough
detail to allow a full FDTD implementation in the spherical co-ordinate system (which
is rarely documented). Example fields have been provided to demonstrate the usage of
the method. The code used to produce these fields has been included in Appendix F,
and can be adapted to suit other needs. In addition to this a conference paper on this
method has also been included in Appendix B.

This alternative approach to modelling lightning EM fields draws on the benefits from
both the FDTD and Finite Antenna methods. The FDTD component of the method
offers a simple approach to solving the electric fields, without all the numerical conse-
quences of a full FDTD implementation. A full FDTD implementation often requires

Single Cell FDTD Method 86

large amounts of computer memory to store the fields in the simulation space, however
this method only requires memory for the single cell being evaluated. This also reduces
computational time due to the fact that the field is only solved for the location of in-
terest, rather than every cell in the simulation space. In addition to this the Single Cell
FDTD method does not suffer from stability issues, and does not require boundary con-
ditions.

The benefit of its simplicity is also a limitation on its range of application. This method
is bound by the same simulation restrictions as the Finite Antenna method due to the
use of the magnetic field equation. However alternative magnetic field equations, such
as those that consider the effects of a conducting ground plane, can be used to increase
the range of application for this method. For complex simulation environments it is best
to implement a full FDTD simulation. In comparison to the Finite Antenna method,
the numerical approach to solving the electric fields are simpler due to the fact that the
magnetic field equation does not contain the Electrostatic field component. Additionally
this allows for more freedom in choosing a current impulse model to suit the simulation.

The next chapter will discuss the outcomes of the presented methods, as well as the
potential for future work.

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

Time (µs)

E
r
fi
el
d
(k
V
/m

)

FinAnt - No Offset

SinCell - ∆t = 2.9 ns (OPT)
SinCell - ∆t = 10ns
SinCell - ∆t = 20ns

Figure 7.5: Single Cell Er Field - RObs = 100m, θObs = 10° - Different Time Step.

Chapter 8

Discussion and Future Work

Four methods of simulating lightning return stroke EM fields have been presented using
time domain techniques. It has been established that the EM fields that radiate from
a lightning return stroke current have the potential to couple onto electrical networks
and are responsible for LIOVs that damage the electrical components on the network.
Using the methods presented in this work it becomes possible to simulate the expected
lightning EM fields, and expand the potential of future research into lightning EM
protection.

The methods used in modelling the lightning EM fields have been limited to time do-
main techniques, due to the transient nature of the lightning current impulse waveform.
This is in contrast to standard EM modelling techniques which use frequency domain
methods, and are best suited to periodic sources. After identifying the time domain as
the best approach for the lightning field analysis, the problem of how the lightning EM
fields are modelled was simplified into two primary components. The first is how the
lightning EM source is modelled, and the second is how the EM fields are evaluated in
the area surrounding the lightning channel.

The first component relies on the physical properties of the lightning return stroke
current. The models used to describe the source of the EM field are directly linked to
the time variation of the current distribution within the lightning channel. These models
are developed by making a number of assumptions that may not represent the real world
event accurately, but can be generalised to most lightning events. One such assumption
is that the lightning channel is straight and perpendicular to the ground plane. These
models also require a current impulse model to describe the current waveshape, and
a return stroke model to mathematically describe the current distribution along the
channel. This work presented commonly used current impulse models, such as the
double exponential and Heidler functions, and also presented the Terespolsky function.
This function is a recent Heidler function approximation that has the advantage of
having an analytical integral solution, and is advantageous to the Finite Antenna EM
model.

The second component uses the lightning EM source, as well as a model environment
to simulate the EM fields that surround the lightning channel. Four models using
three techniques have been presented for this purpose. As seen in Table 8.1, each of

87

Discussion and Future Work 88

Table 8.1: EM Field Propagation Models - Property Summary

Finite 3D 2D Single
Antenna FDTD FDTD Cell

Maximum Range Any Near Fields Moderate Any
Complex 3D Environment × D × ×
Non-Ideal ground × D D ×
Computer Memory Requirements Low High Moderate Low
Computational Efficiency D × D D

Implementation Difficulty Moderate High Moderate Low
Single Point EM Fields D × × D

Multiple Points along a line × D × ×

these methods have specific applications and advantages in the field of lightning EM
research. The Finite Antenna method is the classic approach to this research field, and
is developed through the use of the Lorentz condition, where the lightning channel is
modelled as the combination of finitely small dipole antennas. The method itself is
reasonably simple to understand and implement, however is highly restricted to basic
simulation environments (perfect ground plane, straight lightning channel, no obstacles
in the simulation space). The method has the advantage of having the same compu-
tational requirement for evaluating fields at any distance from the lightning channel.
A LIOV based simulation would require knowledge of the EM fields surrounding the
length of the line throughout the time period of interest. If using the Finite Antenna
method multiple simulations would need to be run to gain this information, however
the 3D FDTD method does not have these limitations.

The Finite-Difference Time-Domain method deconstructs the simulation space of inter-
est (2D or 3D) into smaller spatial cells. The EM fields in each of these cells are then
evaluated in discrete time steps. The FDTD method requires the properties of each of
these cells to be included in the model. Although this functionality was not demon-
strated in great detail, the ability to define each of the cells properties allows for highly
complex simulation environments to be constructed. These environments can include
infinite variations in lightning source (current and path), as well as multilayer ground
planes, ground plane contours, and objects (such as buildings and electrical networks)
to be included in the simulation. The most important property of both FDTD imple-
mentations is the inclusion of non-ideal ground planes, which significantly affect the EM
fields near the channel.

Although the 3D FDTD method is conceptually simple to understand, it has the disad-
vantage of coding complexity, as well as the high computer memory required to create
even simple simulation environments. Due to this, 3D FDTD simulation environments
have a limited size, and are best suited for simulating fields in complex environments
near the lightning channel. A significant advantage of this method is that the fields at
every (discrete) location in the simulation space are known for every time step of the
simulation. This method also allows the inclusion of electrical components in the simu-
lation space (such as the RLC elements of a distribution line). For LIOV based research
this allows for a single run of a FDTD simulation to provide not only the EM fields

Discussion and Future Work 89

throughout the space, but also the overvoltage values across the modelled distribution
line. An example of this nature was not included in this work, but does demonstrate
the potential of future work with the methods discussed.

The 2D FDTD method is only appropriate for simulation environments that are axially
symmetric surrounding the lightning channel. This is not advantageous for modelling
complex environments with electrical networks, but it does allow for simple integration
of a conducting ground plane into the environment. It also has the advantage of re-
quiring significantly less (0.06%) computer memory than the equivalent 3D FDTD im-
plementation, and therefore allows for modelling of fields at larger distances from the
lightning channel, and with finer spatial/temporal resolution. Large distance simula-
tion techniques have not been discussed, but can be derived. A problem with both the
2D and 3D FDTD methods is that they have a number of numerical limitations and are
prone to stability and dispersion issues. Additionally FDTD requires boundary condi-
tions to manage the fields at the edges of the simulation space.

The Single Cell FDTD method is a recent addition to the field of lightning EM field
research. This method is a hybrid, and uses the magnetic field equations from the
Finite Antenna method, and the theory of the FDTD method, to evaluate the fields
surrounding a single Yee Cell in a 2D domain. The disadvantage of this method is
that it is limited by the same restrictions as the Finite Antenna method, however its
mathematical evaluation is simpler and allows for greater choice in the EM source models
used. Additionally it does not suffer from the same numerical issues as a full FDTD
implementation. Using alternative methods of solving the magnetic field equations has
the potential to include the effects of a conducting ground plane to the method, however
this is left for future research.

Future work for the 3D FDTD method include constructing complex environments that
model complete distribution lines in the presence of a lightning stroke. An additional
application could be to model the tortuous paths of observed lightning strokes, and
compare the simulated fields to models using a straight perpendicular channel. This will
aid in deciding which environmental factors and assumptions are the most significant.

The primary role of the 2D FDTD method in future applications would be to evaluate
the effects of a conducting ground plane on lightning EM fields. This should first be
tested by comparing recorded lightning EM fields, against the simulated EM fields in
an equivalent simulation environment. Another application would be to investigate the
lightning EM fields that exist inside the conducting ground. This may help further our
understanding of the important role EM fields have on soil ionisation and earthing.

Chapter 9

Conclusion

Lightning return stroke electromagnetic (EM) fields have been modelled using four dif-
ferent time domain techniques. This process consists of two steps. The first describes
the lightning channel as an EM source through the use of an engineering return stroke
model, a current impulse model, and a number of other environmental assumptions.
The second is choosing a method which best describes the EM field surrounding the
lightning channel. This work has explained and critically evaluated the four methods.

The Finite Antenna method is best suited for simulating EM fields located a far dis-
tances from the lightning channel, or for simplistic simulation environments which as-
sume ground to be a perfect electrical conductor. The 3D FDTD method is the most
comprehensive method and allows for highly complex environments to be modelled and
simulated. This method does however suffer from high computer memory requirements,
as well as increased implementation complexity. This method is best suited for simu-
lating fields near the lightning channel.

The 2D FDTD method does not allow for the same level of environment complexity
as the 3D FDTD method, but it does allow for modelling conductive ground planes.
Therefore this method offers a significant advantage over the Finite Antenna Method.
In addition to this, the method requires far less computer memory than the 3D FDTD
method, which makes it suitable for modelling EM fields at greater distances with
improved spatial resolutions.

The Single Cell FDTD method is a novel technique which uses a combination of the
previous two techniques to evaluate the EM field at a single point in space. This is the
most computationally efficient model to implement, however it is limited by the same
simple simulation environments as the Finite Antenna method. Alternative magnetic
field models may offer this method greater scope in future research.

From this it is clear that the 3D FDTD method should be used when simulating the
effects of lightning EM fields in complex environments, with or without, electrical net-
works such as distribution lines. The 2D FDTD method should be used for simulations
that require knowledge of the lightning EM field at a single location in an environment
with a conducting ground plane.

90

References

[1] C. A. Nucci and F. Rachidi, The Lightning Flash, ser. Power Series 34. Institute
of Electrical Engineers, 2003, ch. 8 - Interaction of electromagnetic fields generated
by lightning with overhead electrical networks, pp. 425–478.

[2] C. A. Nucci and F. Rachidi, The Lightning Flash 2nd Edition, ser. Power and
Energy Series 69. Institution of Engineering and Technology (IET), 2014, ch. 12 -
Interaction of electromagnetic fields generated by lightning with overhead electrical
networks, pp. 559–609.

[3] C. A. Nucci and F. Rachidi, Lightning Protection, ser. Power and Energy Series 58.
Institution of Engineering and Technology (IET), 2010, ch. 13, pp. 635–680.

[4] E. Perez, J. Herrera, and H. Torres, “Sensitivity analysis of induced voltages on
distribution lines,” in IEEE Power Tech Conference, Bologna, Italy., June 23rd-26th
2003.

[5] G. Diendorfer, “Induced voltage on an overhead line due to nearby lightning,”
IEEE Transactions on Electromagntic Compatibility, vol. 32, no. 4, pp. 292–299,
November 1990.

[6] A. Piantini and J. M. Janiszewski, Lightning Electromagnetics, ser. Power and
Energy Series 62. Institute of Engineering and Technology, 2012, ch. 19 - Scale
models and their application to the study of lightning transients in power systems,
pp. 719–764.

[7] M. Paolone, F. Rachidi, A. Borghetti, C. A. Nucci, M. Rubinstein, V. A. Rakov,
and M. A. Uman, “Lightning electromagnetic field coupling to overhead lines: The-
ory, numerical simulations, and experimental validation,” IEEE Transactions on
Electromagentic Compatibility, vol. 51, no. 3, pp. 532–547, August 2009.

[8] M. Gijben, “The lightning climatology of South Africa,” South African Journal of
Science, vol. 108, p. #740, March 2012.

[9] V. A. Rakov and F. Rachidi, “Overview of recent progress in lightning research
and lightning protection,” IEEE Transactions on Electromagentic Compatibility,
vol. 51, no. 3, pp. 428–442, August 2009.

[10] C. A. Nucci, S. Guerrieri, M. T. Correia de Barros, and F. Rachidi, “Influence of
corona on the voltages induced by nearby lightning on overhead distribution lines,”
IEEE Transactions on Power Delivery, vol. 15, no. 4, pp. 1265–1273, October 2000.

91

References 92

[11] A. K. Agrawal, H. J. Price, and S. H. Gurbaxani, “Transient response of multi-
conductor transmission lines excited by a nonuniform electromagnetic field,” IEEE
Transactions on Electromagnetic Compatibility, vol. EMC-22, no. 2, pp. 119–129,
May 1980.

[12] C. A. Nucci and F. Rachidi, “Lightning-induced overvoltages,” in IEEE Transmis-
sion and Distribution Conference, Pannel Session "Distribution Lightning Protec-
tion", New Orleans, April 1999.

[13] F. Napolitano, A. Borghetti, C. A. Nucci, F. Rachidi, and M. Paolone, “Use of the
full-wave finite element method for the numerical electromagnetic analysis of LEMP
and its coupling to overhead lines,” in 7th Asia-Pacific International Conference
on Lightning (APL), Chengdu., November 2011, pp. 308–313, also published in
ELSEVIER: Electric Power Systems Research, 2012.

[14] P. D. Kannu and J. Thomas, “Influence of ground conductivty on the over voltages
induced on overhead power distribution lines due to an indirect lightning stroke,”
IEEE Transactions on Electromagentic Compatibility, vol. 2, pp. 949–954, 2000.

[15] Y. Baba and V. A. Rakov, Lightning Electromagnetics, ser. Power and Energy
Series 62. Institute of Engineering and Technology, 2012, ch. 8 - Electromagnetic
models of lightning return strokes, pp. 263–313.

[16] C. F. Barbosa and J. O. S. Paulino, “An approximate time-domain formula for the
calculation of the horizontal electric field from lightning,” IEEE Transactions on
Electromagentic Compatibility, vol. 49, no. 3, pp. 593–601, August 2007.

[17] K. Tanabe, “Novel method for analyzing the transient behavior of grounding sys-
tems based on the finite-difference time-domain method,” in Power Engineering
Society Winter Meeting, Columbus, OH, vol. 3, 2001, pp. 1128–1132.

[18] V. Cooray, The Lightning Flash 2nd Edition, ser. Power and Energy Series 69.
Institution of Engineering and Technology (IET), 2014, ch. 9 - Return stroke models
with special attention to engineering applications, pp. 405–475.

[19] M. A. Uman and D. K. Mclain, “Magnetic field of lightning return stroke,” Journal
of Geophysical Research, vol. 74, no. 28, pp. 6899–6910, December 1969.

[20] V. A. Rakov and M. A. Uman, Lightning Physics and Effects. Cambridge Univer-
sity Press, 2004.

[21] V. Cooray, The Lightning Flash, ser. Power Series 34, V. Cooray, Ed. Institution
of Engineering and Technology (IET), 2003.

[22] V. Cooray, Lightning Electromagnetics, ser. Power and Energy Series 62. Insti-
tute of Engineering and Technology, 2012, ch. 3 - Basic discharge process in the
atmosphere, pp. 67–85.

[23] V. Cooray, The Lightning Flash 2nd Edition, ser. Power and Energy Series 69,
V. Cooray, Ed. Institution of Engineering and Technology (IET), 2014.

[24] C. A. Nucci, C. Mazetti, F. Rachidi, and M. Ianoz, “On lightning return stroke
models for LEMP calculations,” International Conference on Lightning Protection,
no. 4.7, pp. 463–470, 1988.

References 93

[25] Protection Against Lightning - Part 1: General Principles, IEC Std. 62 305-1, 2006.

[26] Q. Zhang, L. Zhang, W. Hou, and J. Su, “Validation of the approximate time-
domain method for the lightning-horizontal electric field at the surface of two-
layer earth by using FDTD,” IEEE Transactions on Electromagentic Compatibility,
vol. 56, no. 5, pp. 1121–1128, October 2014.

[27] C. W. I. McAfee and K. J. Nixon, “Lightning return stroke modeling with reference
to lightning electromagnetic fields,” South African Universities Power and Energy
Conference (SAUPEC), Johannesburg, January 2015.

[28] F. Heidler and J. M. Cvetic, “A class of analytical function to study the light-
ning effects assosiated with the current front,” ETEP, vol. 12, no. 2, pp. 141–150,
March/April 2002.

[29] D. Lovrić, S. Vujević, and T. Modrić, “On the estimation of heidler function param-
eters for reproduction of various standardized and recorded lightning current wave-
shapes,” International Transactions on Electrical Energy Systems, vol. 23, no. 2,
pp. 290–300, 2011.

[30] B. R. Terespolsky and K. J. Nixon, “Developing an approximation to the Heidler
Function - with an analytical transformation into the frequency domain.” Interna-
tional Conference on Lightning Protection, pp. 1134–1138, 2014.

[31] B. R. Terespolsky, “An approximation to the heidler function with an analytical in-
tegral for engineering applications using lightning currents,” Master’s thesis, School
of Electrical and Information Engineering, University of the Witwatersrand, South
Africa, 2015.

[32] W. Jia and Z. Xiaoqing, “Double-Exponential expression of lightning current wave-
forms,” CEEM, no. 3A1-09, pp. 320–323, 2006.

[33] C. A. Nucci, G. Diendorfer, M. A. Uman, F. Rachidi, M. Ianoz, and C. Mazetti,
“Lightning return stroke current models with specified channel-base current: A
review and comparison,” Journal of Geophysical Research, vol. 95, no. D12, pp.
20 395–20 408, November 1990.

[34] Y. Baba and V. A. Rakov, “Electromagnetic models of the lightning return stroke,”
Journal of Geophysical Research, vol. 112, no. D04102, p. 17 pages, 2007.

[35] Y. Baba, S. Miyazaki, and M. Ishii, “Reproduction of lightning electromagnetic
field waveforms by engineering model of return stroke,” IEEE Transactions on
Electromagentic Compatibility, vol. 46, no. 1, pp. 130–133, February 2004.

[36] Y. Baba and V. A. Rakov, “Applications of the FDTD method to lightning electro-
magnetic pulse and surge simulations,” in International Conference on Lightning
Protection. Shanghai, China, 2014, pp. 2084–2098.

[37] Y. Baba and V. A. Rakov, “Applications of the FDTD method to lightning elec-
tromagnetic pulse and surge simulations,” IEEE Transactions on Electromagentic
Compatibility, vol. 56, no. 6, pp. 1506–1521, December 2014.

References 94

[38] M. A. Uman, D. K. Mclain, and E. P. Krider, “The electromagnetic radiation from
a finite antenna,” American Journal of Physics, vol. 43, pp. 33–38, January 1975.

[39] M. Ishii, K. Michishita, Y. Hongo, and S. Oguma, “Lightning-induced voltage on
an overhead wire dependent on ground conductivity,” IEEE Transactions on Power
Delivery, vol. 9, no. 1, pp. 109–118, January 1994.

[40] Z.-D. Jiang, B.-H. Zhou, Y.-W. Liu, and B. Yang, “A multiresolution time-domain
method for LEMP calculation and comparison with FDTD,” IEEE Transactions
on Electromagentic Compatibility, vol. 56, no. 2, pp. 419–426, April 2014.

[41] Z. E. Azzouz, A. Mimouni, B. Ghemri, and A. Cherifi, “Analysis of radiated-
lightning electromagnetic fields anbove imperfect ground using a Quasi-FDTD hy-
brid method,” Acta Electrotechnica et Informatica, vol. 8, no. 4, pp. 16–23, 2008.

[42] M. Popov, S. He, and R. Thottappillil, “Reconstruction of lightning currents and
return stroke model parameters using remote electromagnetic fields,” Journal of
Geophysical Research, vol. 105, no. D19, pp. 24 469–24 481, October 2000.

[43] D. Djalel, H. Ali, and C. Fayçal, “The return-stroke of lightning current, source of
electromagnetic fields (study, analyis and modelling),” American Journal of Applied
Sciences, pp. 42–48, 2007.

[44] S. Rusck, “Induced lightning over-voltages on power-transmission lines with special
reference to the over-voltage protection of low-voltage networks,” Master’s thesis,
Transactions of the Royal Institute of Technology, 1958.

[45] Y. Bo, Z. Bi-hua, C. Yong-guang, and M. Xin, “Influence of mesh size and light-
ning channel length on lightning electromagnetic field calculation using FDTD
algorithm,” in Environmental Electromagnetics, 5th Asia-Pacific Conference on
Lightning, 2009.

[46] V. A. Rakov and A. A. Dulzon, “A modified transmission line model for lightning
return stroke field calculations,” International Symposium on EMC, no. 44H1, pp.
229–234, 1991.

[47] J. D. Kraus and R. J. Marhefka, Antennas for all applications, 3rd ed. McGraw
and Hill, 2003.

[48] U. S. Inan and R. A. Marshall, Numerical Electromagnetics: The FDTD Method.
Cambridge University Press, 2011.

[49] A. Z. Elsherbeni and V. Demir, The Finite-Difference Time-Domain Method for
Electromagnetics with MATLAB® Simulations, 2nd ed. SciTech Publishing, 2015.

[50] R. Thottappillil, The Lightning Flash 2nd Edition, ser. Power and Energy Series
69. Institution of Engineering and Technology (IET), 2014, ch. 8 - Computation
of electromagnetic fields from lightning discharge, pp. 351–403.

[51] M. A. Uman, “Lightning return stroke electric and magnetic fields,” Journal of
Geophysical Research - Atmospheres, vol. 90, no. D4, pp. 6121–6130, June 1985.

References 95

[52] R. Thottappillil and V. A. Rakov, “On different approaches to calculating light-
ning electric fields,” Journal of Geophysical Research, vol. 106, no. D13, pp.
14 191–14 205, July 2001.

[53] M. Izadi, M. Z. A. Ab Kadir, C. Gomes, and W. F. Wan Ahmad, “An analytical
second-FDTD method for evaluation of electric and magnetic fields at intermediate
distances from lightning channel,” Progress In Electromagnetics Research, vol. 110,
pp. 329–352, 2010.

[54] K. S. Yee, “Numerical solution of initial boundry value problems involving
Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and
Propagation, vol. AP-14, no. 3, pp. 302–307, May 1966.

[55] J. B. Schneider, “Understanding the Finite-Difference Time-Domain method,”
2015. [Online]. Available: www.eecs.wsu.edu/~schneidj/ufdtd

[56] E. Soto, C. Younes, and E. Pérez, “Influence of non flat terrain on lightning induced
voltages in distribution lines,” in International Conference on Lightning Protection
(ICLP), Vienna, Austria, 2012.

[57] H.-M. Ren, B.-H. Zhou, V. A. Rakov, L.-H. Shi, C. Gao, and J.-H. Yang, “Analysis
of lightning-induced voltages on overhead lines using a 2-D FDTD method and
agrawal coupling model.” IEEE Transactions on Electromagentic Compatibility,
vol. 50, no. 3, pp. 651–659, August 2008.

[58] C. A. F. Sartori and J. R. Cardoso, “An Analytical-FDTD method for near LEMP
calculation,” IEEE Transactions on Magnetics, vol. 36, no. 4, pp. 1631–1634, July
2000.

[59] N. M’ziou, L. Mokhnache, and A. Boubakeur, “Experimental validation of the hy-
brid method for near lightning electromagnetic field calculation taking into account
the conductivity of the soil,” in International Symposium on High Voltage Engi-
neering (ISH), ser. G-30, 2009.

[60] C. W. I. McAfee, K. M. Ortlepp, and K. J. Nixon, “Finite Antenna and Single Cell
FDTD methods applied to near LEMP calculations.” Balneario Camboriu, Brazil:
International Symposium on Lightning Protection (SIPDA XIII), September 2015,
pp. 41–46.

www.eecs.wsu.edu/~schneidj/ufdtd

Bibliography

Aodsup, K. and Kulworawanichpong, T. (2014). FDTD method for lightning surge
propogation of power transmission lines. The Standard International Journals (The
SIJ), Transactions on Computer Networks and Communications Engineering (CNCE),
2(3):31–35.

Berger, K., Anderson, R., and Kroninger, H. (1975). Parameters of lightning flashes.
Electra, (41):23–37.

CIGRÉ WG 33-01, . (1991). Guide to procedures for estimating the lightning perfor-
mance of transmission lines. CIGRÉ Monograph, 63.

Cooray, V. (1994). Calculating lightning-induced overvoltages in power lines: A com-
parison of two coupling models. IEEE Transactions on Electromagnetic Compatability,
36(3):179–182.

Cooray, V. (2010). Lightning Protection. Power and Energy Series 58. Institution of
Engineering and Technology (IET).

Cooray, V. (2012). Lightning Electromagnetics. Power and Energy Series 62. Institution
of Engineering and Technology (IET).

Cooray, V. and Cooray, G. (2012). Lightning Electromagnetics, chapter 24 - Excitation of
visual sensory experiences by electromagnetic fields of lightning, pages 855–872. Power
and Energy Series 62. Institute of Engineering and Technology.

Djalel, D., Lazhar, R., and Hocine, L. (2012). A new model of electromagnetic fields
radiated by lightning. International Journal of Engineering and Innovative Technology
(IJEIT), 2(4):182–190.

Dragan, G. (2001). Technica tensiunilor inalte. Editura Academiei Romane, 2.

Dragan, G., Florea, G., Nucci, C. A., and Paolone, M. (2010). On the influence of corona
on lightning-induced overvoltages. In International Conference on Lightning Protection.

Georgiadis, N., Rubinstein, M., Uman, M. A., Medelius, P., and Thomson, E. (1992).
Lightning-induced voltages at both ends of a 488-m power distribution line. IEEE
Transactions on Electromagentic Compatibility, 34(4).

Gómez, P. and Escamilla, J. C. (2013). Frequency domain modeling of nonuniform
multiconductor lines excited by indirect lightning. ELSEVIER Int. Journal of Electrical
Power & Energy Systems, 45(1):420–426.

96

Bibliography 97

Grando, J., Issac, F., Lemistre, M., and Alliot, J. (1993). Stability analysis including
wires of arbitary radius in FD-TD code. In Antennas and Propagation Society Interna-
tional Symposium.

Heidler, F., Cvetic, J. M., and Stanic, B. V. (1999). Calculation of lightning current
parameters. IEEE Transactions on Power Delivery, pages 399–404.

Høidalen, H. K. (1999). Calculation of lightning-induced overvoltages using MODELS.
In Proceedings of the International Conference on Power System Transients, Budapest,
Hungary., pages 359–364.

Hu, W. and Cummer, S. A. (2006). An FDTD model for low and high altitude lightning-
generated em fields. IEEE Transactions on Antennas and Propogation, 54(5):1513–1522.

Izadi, M., Kadir, M. Z. A. A., Ahmad, W. F. W., Nawi, Z. M., and Askari, M. T. (2009).
On comparison between cooray-rubinstein and FDTD mmethod for ground conductivity
effect on horizontal electric field evaluation in time domain. In IEEE Student Conference
on Research and Development (SCOReD), UPM Serdang, Malaysia.

Maruvada, P. S. (2011). Corona in Transmission Systems. Theory, Design and Perfor-
mance. Crown Publications.

Maruvada, P. S., Menemenlis, H., and Malewski, R. (1977). Corona charachteristics
of conductor bundles under impulse voltages. IEEE Transactions on Power Apparatus
and Systems, PAS-96(1):102–115.

Master, M., Uman, M. A., Beasley, W., and Darveniza, M. (1984). Lightning induced
voltages on power lines: Experiment. IEEE Transactions on Power Apparatus and
Systems, PAS-103(9):2519–2529.

Master, M. J. and Uman, M. A. (1983). Transient electric and magnetic fields as-
sociated with establishing a finite electrostatic dipole. American Journal of Physics,
51(2):118–126.

Omick, S. R. and Castillo, S. P. (1993). A new finite-difference time-domain algorithm
for the accurate modeling of wide-band electromagnetic phenomena. IEEE Transactions
on Electromagnetic Compatability, 35:215–222.

Rachidi, F., Nucci, C. A., Guerrieri, S., and Correia de Barros, M. T. (2001). On the
amplitude enhancement of voltages induced by external EM field on transmission lines
due to ground losses and corona phenomenon. IEEE Transactions on Electromagnetic
Compatibility, 1:600–604.

Rubinstein, M. and Uman, M. A. (1991). Transient electric and magnetic fields as-
sosiated with establishing a finite electrostatic dipole, revsited. IEEE Transactions on
Electromagentic Compatibility, 33(4):312–320.

Sewkumar, P. (2001). Modeling the effect of adjacent lightning strikes to bare overhead
medium voltage lines in South Africa. Master’s thesis, Faculty of Engineering and the
Built Environment, School of Electrical and Electronic Engineering, University of the
Witwatersrand, South Africa.

Bibliography 98

Shoory, A., Rachidi, F., Rubinstein, M., and Thottappillil, R. (2001). On the measure-
ment and calculation of horizontal electric fields from lightning. IEEE Transactions on
Electromagentic Compatibility, 53(3):792–801.

Tang, T., Sun, X.-b., Liu, K., Guo, Z.-h., and Chen, D. (2011). Electromagnetic analyss
for lightning propagation in lossy soil by using FDTD. In Asia-Pacific International
COnference on Lightning, pages 65–68.

Taobin, J., Jing, L., and Jie, J. (2013). Calculation of the lightning electromagnetic
field for vertically stratified ground using the novel scheme FDTD. In International
Symposium on Instrumentation and Measurement, Sensor Network and Automation
(IMSNA), pages 599–603.

Thang, T. H., Baba, Y., Nagaoka, N., Ametani, A., Itamoto, N., and Rakov, V. A.
(2014). FDTD simulations of corona effect on lightning-induced voltages. IEEE Trans-
actions on Electromagnetic Compatibility, 56(1):168–176.

Thang, T. H., Baba, Y., Nagaoka, N., Ametani, A., Takami, J., Okabe, S., and
Rakov, V. A. (2012a). FDTD simulation of lightning surge on overhead wires in the
presence of corona discharge. IEEE Transactions on Electromagentic Compatibility,
54(6):1234–1243.

Thang, T. H., Baba, Y., Nagaoka, N., Ametani, A., Takami, J., Okabe, S., and Rakov,
V. A. (2012b). A simplified model of corona discharge on overhead wire for FDTD
computations. IEEE Transactions on Electromagentic Compatibility, 54(3):585–593.

Visacro, S. (2004). A representation curve for lightning current waveshape of first
negative stroke. Geophysical Research Letters, 31(L07112).

Vu, L. A. P., Vu, P. T., and Ho, V. T. (2012). Calculation of lightning-induced voltages
on overhead power lines using the RBF-FDTD method. In International Power and
Energy Conference, pages 573–577.

Wei, H., Ba-lin, X., and You-gang, G. (2004). Analysis of the lightning waveshape. In
Radio Science Conference.

Yang, C. and Zhou, B. (2004). Calculation method of electromagnetic fields very close
to lightning. IEEE Transactions on Electromagnetic Compatability, 46(1):133–141.

Yang, D., Zhao, Z., Cui, X., and Chen, J. (2009). Analysis of the effects of ground
resistivity on the lightning radiation fields based on FDTD method. In Asia-Pacific
Power and Energy Engineering Conference (APPEEC).

Yao, C., Wu, H., Mi, Y., Ma, Y., Shen, Y., and Wang, L. (2013). Finite difference time
domain simulations of lightning transient electromagnetic fields on transmission lines.
IEEE Transactions on Dielectrics and Electrical Insulation, 20(4):1239–1246.

Yokoyama, S., Miyake, K., Mitani, H., and Yakanishi, A. (1983). Simultaneous measure-
ment of lightning induced voltages with assosiated stroke ccurrent. IEEE Transactions
on Power Apparatus and Systems, PAS-102(8):2420–2429.

LIGHTNING RETURN STROKE MODELLING WITH REFERENCE
TO LIGHTNING ELECTROMAGNETIC FIELDS

C.W.I. McAfee and K.J. Nixon∗

∗ School of Electrical and Information Engineering, Faculty of Engineering and the Built Environment,
University of the Witwatersrand, South Africa

Abstract: The theory regarding lightning strokes, and return stroke models is presented along with the
functions needed to model the return stroke. Three engineering models are presented: TLM, MTLE,
MTLL. Three current impulse functions (required by the return stroke model) are also presented in
detail: Double Exponential, Heidler and Terespolsky. The emphasis of the theory and models is
focused towards future use in evaluating radiated lightning electromagnetic (EM) fields. Although
no EM models or simulations are presented here, the use of the return stroke models is discussed with
reference to a simplified electric field model. A comparison found that the Terespolsky function is better
suited for modelling the return stroke for future use in EM models.

Key words: Return Stroke, Channel Base Current, Current Impulse Model, Induced Electromagnetic
Fields

1. INTRODUCTION

In lightning protection the primary focus is often on direct
lightning strikes attaching to ground objects. This is the
most intuitive form of damage caused from lightning, and
often results in serious property damage or loss of life [1].
However indirect (nearby) lightning is also responsible
for property damage and needs to be designed for in
lightning protection. There are a number of deleterious
effects caused by indirect lightning, however the effect of
lightning electromagnetic (EM) radiation is the primary
focus presented here. During a lightning strike a large
current flows in the leader channel. This moving current
results in moving EM waves that propagate from the
channel. When these EM waves move past electrical
networks such as distribution lines, or telecommunications
lines (or any conducting object) a current is induced
in the network. Often these induced currents are large
enough to result in damage to the network, or the electrical
equipment attached to the network nodes [2].

A particular interest is the effect of a Lightning
Electromagnetic Pulse (LEMP) inducing an overvoltage
on a power distribution network. These overvoltages result
in network damage, as well as interrupted energy delivery.
In comparison. indirect strikes occur more frequently than
direct strikes and are therefore more important [1] when
considering the lightning protection of distribution lines
(not transmission lines). In order to evaluate the induced
overvoltages it is necessary to first evaluate the EM field
that interacts with the line. In order to do this it is first
necessary to develop a model that describes the current
that flows in the lightning channel. This is referred to as
the lightning Return Stroke model, and is attributed to
causing the most damage to distribution networks [1–4].
Once a return stroke model has been developed it is then
possible to use the model in conjunction with Maxwell’s
equations to evaluate the EM field in space and time [5].

Theory regarding return strokes is presented, and
then the different modelling techniques are discussed.
One of the aims is to simplify this topic for engineering
applications. The different channel base current (current
impulse) models are discussed, and simulated. The
electromagnetic radiation theory of a lightning strike
is briefly presented (without calculations) to show how
the return stroke models will need to be evaluated in
calculating electromagnetic fields. The results of these
models, and decisions made are then discussed.

2. RETURN STROKE THEORY

There are four types of lightning as defined by Rakov [6],
however only downward negative lightning will be
discussed as it accounts for 90% of cloud to ground
lightning globally. A lightning strike or lightning flash is
composed of multiple lightning strokes. A lightning stroke
is composed of a downward leader, followed by an upward
return stroke [6]. For downward negative lightning, a
stepped downward leader begins to travel downwards from
the cloud to ground (due to a charge difference between
the two locations). When the stepped leader gets close to
ground (within a couple hundred meters) the electric field
strength increases enough to cause upward leaders to form.
When the upward leader connects with the downward
stepped leader, the ground point that initiated the upward
leader is ”struck” by lightning.

As a stepped leader moves towards earth it leaves a
conducting channel, as well as depositing negative charge.
When the stepped leader connects to ground, the ground
charge sees a conducting path to the cloud. Ground charge
then moves into the channel to neutralise the negative
charge. This flow of charge is called the return stroke, and
it flows from ground to cloud. Under this situation both
the leader and return stroke effectively transport negative
charge to ground [6]. First strokes are often followed by
subsequent strokes in negative downward lightning. A

Appendix A

SAUPEC Conference Paper

Appendix A - SAUPEC Paper 99

subsequent stroke begins with the progression of a ”dart”
leader from cloud to ground (not necessarily along the
initial stepped leader channel), and then followed by a
return stroke from ground to cloud. It is also important to
note that a return stroke may contain a low ”continuing
current” that follows a return stroke [6], however this
will not be dealt with in the models. Subsequent return
strokes will typically have less peak current than the first
return stroke, therefore only the first return stroke will be
modelled.

3. RETURN STROKE MODELS

Section 2. has discussed the theory of a return stroke from
a physics viewpoint. Essentially a return stroke is a current
that travels from the ground to a cloud. There are a number
of factors that need to be considered when constructing a
return stroke model:

• Path travelled by the return stroke.

• Channel height.

• Current impulse along channel.

• Current attenuation along the channel.

• Velocity of impulse moving upward in the channel.

Some of these model components are simple to define,
however others can only be assumed. It is important
to understand that a model is a mathematical construct
which can be used to describe observed phenomena.
These models are then used to understand variations of a
phenomena under study [1]. This may seem obvious, but
is important in understanding the meaning of the return
stroke models being presented.

Measurements of return strokes have primarily been
done through:

Optical/Photographic Measurements: Light intensity
of a stroke indicating current density.

Channel Base Current Measurements: Current is mea-
sured at the base of a lightning channel which is
initiated either by a tall conducting structure/tower,
or rocket triggered lightning [1].

EM Field Measurements: The EM fields of a lightning
stroke are measured, in addition to the stroke location
[7].

It is important to note that none of these measurements
can accurately describe the current throughout the
leader channel, throughout time. Therefore all of these
measurements are used to create models that are able to
validate the measurements made, and infer the current
distribution in the channel.

There are three main groups of return stroke models:
Electrothermodynamic models, RLC Transmission
line models and Semi-Physical and Engineering
models [1]. However for the purpose of this paper only the
Semi-Physical and Engineering models will be discussed.
Both the Semi-Physical and Engineering approaches
have adapted concepts from the RLC transmission
line models. This group of models is better described
in two different subcategories: Current propagation
models (predominantly engineering models) and Current
generation models (predominantly semi-physical models).
As stated in Section 1., the main focus of this report is on
engineering applications, and therefore only the Current
Propagation models will be discussed in detail, however
more information on the alternative models can be found
in [1, 6].

3.1 Current Propagation (CP) models

In this approach the return stroke is modelled as a
transmission line driven by a current source connected
to the ground plane. In engineering models the current
on the channel is described in space and time, and
this is used to calculate remote EM fields. Figure 1
shows a visual representation of the model with a return
stroke current impulse moving upwards from ground to
cloud. The current impulse I(h, t) is able to describe the
current at any position (height,h) on the channel, at any
time (t). This figure also shows that the stepped leader
channel is modelled as a perpendicular uniform path on
top of a perfectly conducting ground plane. These model
components are not real representations of a lightning
stroke. A stepped leader path down to earth is actually
defined by multiple short paths that branch randomly
in different directions (as seen in any typical lightning
picture). The conducting path may vary due to the
charge distribution, and the ground plane is never a perfect
conductor due to ground loss and terrain layout.

Figure 1: CP Return stroke model

Figure 1 also shows that the return stroke impulse travels
up the channel at constant speed v = 0.5∗ c where c is the
speed of light. In reality the velocity of the return stroke
speed decreases with height, however for the purpose of
simplifying the model the speed is considered constant
between 0.8−2.8∗108m/s [1, 6].

Appendix A - SAUPEC Paper 100

Equations 1 to 3 show the three main mathematical
equations used to model the current distribution along
the return stroke channel. The left hand side of these
equations shows that the current distribution is height and
time dependant, however the rights hand side shows the
channel base current (h = 0). As the name would suggest,
the channel base current is typically specified as the current
measured at the base as a function of time (I(t)). In order
to compensate for the displacement of the return stroke
current pulse along the return channel the time variable is
shifted: to = tn− h

v where to is the original time component,
and tn is the new time component simply referred to as
t in the model. It is also important to note that channel
base current only exists for t ≥ h

v , which is mathematically
included in the equations by using a unit step function
U(to).

TLM: I(h, t) = I(0, t − h
v
) · (U(t − h

v
)) (1)

MTLE: I(h, t) = exp(− h
λc

) ·(I(0, t− h
v
)) ·(U(t− h

v
)) (2)

MTLL: I(h, t) = (1− h
H
) · (I(0, t− h

v
)) · (U(t− h

v
)) (3)

Equation 1 is the Transmission Line Model from Uman
and McLain [1]. This model has an accuracy of about
20%, however it fails to account for the attenuation of the
current along the channel. It has been observed that the
current amplitude decreases as the return stroke current
approaches the cloud (due to the charge in the corona
sheath that forms around the leader channel [8]). In other
words the problem with the TLM is that it does not account
for charge neutralisation along the channel. To account
for this the TLM was modified by decreasing the current
amplitude while still maintaining the waveshape. Equation
2 is the Modified Transmission Line Exponential model
proposed by Nucci et al [8]. As the name would suggest,
the amplitude of the current decreases exponentially
with height, where λc = 2000m. An alternative is to use
Equation 3, which is the Modified Transmission Line
Linear model, as proposed by Rakov et al [9]. With this
model the current decreases linearly with height.

Both the modified models show an improvement with
measured results as compared to the TLM. The main
difference between the modified models is that the MTLL
model is more accurate with measurements made near
(50m) to lightning strikes.

4. CHANNEL BASE CURRENT MODELS

There are a number of different models used to represent
the current of a lightning return stroke base current
(Current Impulse Model). These models have been derived
from measurements made at ground level, and attempt
to account for the current wave shape, front rise time
and peak current values (the characteristics of the wave).
For this study the current impulse will be a 10/350 us

waveshape with a peak current of 200 kA. These values
were chosen from the IEC Std 62305-1 [10]. The choice of
a 200 kA peak current was made for the worst case scenario
(high level protection), however it is important to note that
50% of first return strokes have a value of 30 kA [6]. The
choice of the waveshape was made due to the long duration
of the 10/350 us impulse, however there is no reason why
another wave shape couldn’t be chosen. This paper will
discuss three current impulse models: Double Exponential,
Heidler and Terespolsky.

4.1 Double Exponential Function

Equation 4 shows the mathematical equation for the double
exponential function [11]. The parameters for the function
were taken from [12] in order to achieve the required
waveshape.

I(t) = IpA · (e−αt − e−βt) (4)

Where
A = Scaling Factor = 1.025
Ip = Peak Current = 200 kA
α = Time Constant = 2.05∗103 s−1

β = Time Constant = 5.64∗105 s−1

This function has been used in a number of lightning
related research projects, however it does not accurately
represent a physically realisable return stroke current
waveform. As seen in Figure 2, the rise time of this
function is instantaneous, which is not physically possible
[6]. As the stepped leader approaches the ground during
a lightning stroke, ground leaders start to form (causing a
slow increase in current), and once the leader connects to
upward leader, the current increases rapidly. In addition
to this, due to the incorrect shape of the waveform there
are incorrect representations of the radiated frequency
components of the stroke. Even though the model does not
accurately represent a lightning stroke, the mathematical
properties of this function make it useful in preliminary
modelling.

4.2 Heidler Function

The Heidler function (Equation 5) is another popular
function used to model the return stroke current waveform.
The parameters for the function were taken from [10] in
order to achieve the required waveshape.

I(t) =
Ip

k
·

(t
τ1
)n

1+(t
τ1
)n · e−

t
τ2 (5)

Appendix A - SAUPEC Paper 101

Where
k = Scaling Factor = 0.93
Ip = Peak Current = 200 kA
n = Steepness Factor = 10
τ1 = Time Constant = 19∗10−6 s
τ2 = Time Constant = 485∗10−6 s

This function is a closer approximation to the physical
processes of a lightning stroke. As seen in Figure 2, shape
of the waveshape as it rises is a better fit for the lightning
stroke, and therefore overcomes the problems of the double
exponential function. The problems associated with this
function will be described in Section 5..

4.3 Terespolsky Function

Equation 6 shows the Terespolsky function. This function
is an approximation to the Heidler function, and has less
than 1.5% error [13] when adjusted to the IEC Std 62305-1
[10].

I(t) =
Ip

k
·

(
1− e−ω0t

(
n

∑
i=0

ωi
0t i

i!

))
· e−

t
τ2 (6)

Where
k = Scaling Factor = 0.93
Ip = Peak Current = 200 kA
n = Steepness Factor = 33

ω0 = Rise Time Constant = 1768211
τ2 = Time Constant = 485∗10−6 s

The advantage in using the Terespolsky function is that it is
simpler to manipulate mathematically [13], and therefore
simplifies lightning protection models. As seen in Figure
2 and 3 the Terespolsky function closely resembles the
Heidler function, and although not yet accredited as
an IEC standard, the Terespolsky function is a good
approximation. This means that model results from this
function should be comparable to those required by IEC
Std 62305-1.

5. LIGHTNING ELECTROMAGNETIC PULSE
EQUATION

Equation 7 shows a special case of the vertical electric field
measured at a point on the ground plane a distance r from
the return stroke channel (Figure 2.). The full electric and
magnetic field equations can be found in [5, 7].

Ez(r, t) =
1

2πε0

[∫ H

0

2h2 − r2

R5

(∫ t

0
I(τ− R

c
− h

v
)dτ

)
dh

+
∫ H

0

2h2 − r2

cR4

(
I(t − R

c
− h

v
)

)
dh

−
∫ H

0

r2

c2R3

(
∂I(t − R

c −
h
v)

∂t

)
dh
]
~z

(7)

0 5 10 15 20 25 30
0

50

100

150

200

Time (µs)

C
ur

re
nt

(k
A

)

Terespolsky Function
Heidler Function

Double Exponential

Figure 2: Rise Time - Channel Base Current Models

0 50 100 150 200
0

50

100

150

200

Time (µs)

C
ur

re
nt

(k
A

)

Terespolsky Function
Heidler Function

Double Exponential

Figure 3: Channel Base Current Models

Where
H = Channel Height
R = sqrt(r2 +h2)
h = Height of a point along the channel
r = Distance from channel base to point

ε0 = Permittivity of free space 4π∗107

The purpose of including this equation here is not to
simulate the electric field, but rather to emphasise the
choice between the channel base current model chosen
when modelling the EM fields. As seen in Equation 7, the
return stroke current, I(t), will need to be integrated twice,
as well as differentiated. This is easily done when the
double exponential function is chosen, however it is not
an accurate model. It is however useful in understanding
how a pulse propagates.

Appendix A - SAUPEC Paper 102

The next choice is to use the Heidler function, however
after inspecting Equation 5 it should become clear that
integrating this function is not a simple task. Different
numerical techniques need to be used in order to achieve
a result. This is where the Terespolsky function is most
useful. Integrating and differentiating this function
is far simpler, and easy to implement in a computer
simulation [13].

6. CONCLUSION

The theory regarding lightning strikes and lightning
return strokes has been presented, and the concepts
necessary for understanding physical processes have been
discussed. The different methodologies for modelling
the return stroke current along the leader channel have
been presented for engineering applications, and three
mathematical models have been provided for future
simulations. The return stroke channel base currents have
also been described. The Double Exponential, Heidler and
Terespolsky lightning impulse functions were presented
along with practical constants that were used to model
a 10/350 us waveshape with a peak current of 200 kA
(worst case lightning stroke). An equation used to model
the radiated lightning electric field was presented, and the
benefits of using each of the respective current impulse
models (in conjunction with the return stroke models) were
presented. In this respect it was found that using the
Terespolsky function to model the return stroke current
would be the best option. This is because the Terespolsky
function is simpler to manipulate mathematically than the
Heidler function. In order to evaluate the EM fields
radiated from a lightning stroke it is necessary to integrate
the lightning current model. The theory presented in
this paper should act as a guide in progressing to models
involving EM radiation.

ACKNOWLEDGEMENTS

The authors would like to thank CBI-electric for
funding the Chair of Lightning at the University of the
Witwatersrand and for direct support of the Research
Group. They would also like to thank Eskom for the
support of the Lightning/EMC Research Group through
the TESP programme. Thanks are extended to the
department of Trade and Industry (DTI) for THRIP
funding as well as to the National Research Foundation
(NRF) for direct funding of the Research Group.

Special thanks to Brett Terespolsky for the help in
implementing his new function, and to Darryn Cornish for
graphical help.

REFERENCES

[1] C. A. Nucci and F. Rachidi, The Lightning Flash,
ser. Power Series 34, V. Cooray, Ed. Institute of
Electrical Engineers, 2003.

[2] M. Paolone, F. Rachidi, A. Borghetti, C. A.
Nucci, M. Rubinstein, V. A. Rakov, and M. A.
Uman, “Lightning electromagnetic field coupling
to overhead lines: Theory, numerical simulations,
and experimental validation,” IEEE Transactions on
Electromagentic Compatibility, vol. 51, no. 3, pp.
532–547, August 2009.

[3] P. Sewkumar, “Modeling the effect of adjacent
lightning strikes to bare overhead medium voltage
lines in south africa,” Master’s thesis, Faculty of
Engineering and the Built Environment, School of
Electrical and Electronic Engineering, University of
the Witwatersrand, South Africa, 2001.

[4] C. A. Nucci and F. Rachidi, Lightning Protection, ser.
58, V. Cooray, Ed. The Institute of Engineering and
Technology, 2010, chapter 13.

[5] M. A. Uman, D. K. Mclain, and E. P. Krider, “The
electromagnetic radiation from a finite antenna,”
American Journal of Physics, vol. 43, pp. 33–38,
January 1975.

[6] V. A. Rakov and M. A. Uman, Lightning Physics and
Effects. Cambridge University Press, 2004.

[7] M. A. Uman, “Lightning return stroke electric and
magnetic fields,” Journal of Geophysical Research -
Atmospheres, vol. 90, no. D4, pp. 6121–6130, June
1985.

[8] C. A. Nucci, C. Mazetti, F. Rachidi, and M. Ianoz,
“On lightning return stroke models for lemp
calculations,” International Conference on Lightning
Protection, no. 4.7, pp. 463–470, 1988.

[9] V. A. Rakov and A. A. Dulzon, “A modified
transmission line model for lightning return stroke
field calculations,” International Symposium on
EMC, no. 44H1, pp. 229–234, 1991.

[10] Protection Against Lightning - Part 1: General
Principles, IEC Std., 2006.

[11] K. Berger, R. Anderson, and H. Kroninger,
“Parameters of lightning flashes,” Electra, no. 41, pp.
23–37, 1975.

[12] W. Jia and Z. Xiaoqing, “Double-exponential
expression of lightning current waveforms,” CEEM,
no. 3A1-09, pp. 320–323, 2006.

[13] B. R. Terespolsky and K. J. Nixon, “Developing
an approximation to the heidler function - with an
analytical transformation into the frequency domain.”
International Conference on Lightning Protection,
pp. 1134–1138, 2014.

Appendix A - SAUPEC Paper 103

2015 International Symposium on Lightning Protection (XIII SIPDA), Balneário Camboriú, Brazil, 28th Sept. – 2nd Oct. 2015.

Finite Antenna and Single Cell FDTD methods
applied to near LEMP calculations

Carson W. I. McAfee, Kerren M. Ortlepp, Ken J. Nixon
School of Electrical and Information Engineering

University of the Witwatersrand
Johannesburg, South Africa

Email: ken.nixon@wits.ac.za

Abstract—Two methods for modeling the electromagnetic fields
near a lightning channel are considered. These methods can
be used in evaluating the effect of a lightning electromagnetic
pulse (LEMP) on a distribution line. The first method for
evaluating LEMP fields in the time domain uses a Heidler
function approximation for the channel base current in the classic
Finite Antenna method. This approximation has an analytical
integral solution which simplifies the field calculations. The
second method is a combination of standard FDTD theory and
the mathematics of the Finite Antenna method. The proposed
Single Cell or Hybrid FDTD method is derived for spherical
co-ordinates and tested against the Finite Antenna method. The
results show that under simple modeling criteria both methods
are valid for LEMP calculations near a lightning channel. The
Single Cell FDTD method only evaluates a single FDTD cell,
rather than an entire plane of cells described by the standard
FDTD method. This greatly reduces the computational intensity,
and makes the Single Cell FDTD method a valuable tool.

Index Terms—Lightning, LEMP, Nearby Fields, Hybrid FDTD,
Finite Antenna, Heidler Approximation, Time-Domain.

I. INTRODUCTION

The field of lightning electromagnetics is important when
considering lightning induced overvoltages (LIOV) on elec-
trical networks. A specific area of interest is modeling the
LIOV on a distribution line, which is more prone to nearby
lightning failures than direct lightning failures [1]. The ex-
pected electromagnetic (EM) fields at any point surrounding
the lightning channel need to be calculated before the effects
of a lightning electromagnetic pulse (LEMP) are evaluated
on an electrical network. Standard EM computation methods
such as the method of moments technique often rely on
calculations done in the frequency domain, which is best suited
when working with continuous and periodic fields. Frequency
domain methods can be used in the calculation of a LEMP
[2], however, lightning is transient in nature and there is an
advantage evaluating its effects in the time domain.

One method for evaluating a LEMP in the time domain is to
consider a lightning channel as a sum of finite dipole antennas
[3], however the mathematical evaluation of this method is
difficult when using a Heidler function in the current impulse
model (especially for locations near the channel), as discussed
in Section II. A possible solution is to use an alternative current
impulse model, which can be analytically integrated.

Another method available for LEMP calculation is the
Finite-Difference Time-Domain (FDTD) method, which is

well suited for time domain analysis. The standard FDTD
method typically involves the discretization of the entire evalu-
ation area, which can be computationally intensive. This paper
investigates the application of a Single Cell FDTD method
which combines standard FDTD theory with the mathematics
of the Finite Antenna method.

Section II discusses the background theory to the models,
and Section III outlines the assumptions made. The alternative
current impulse (channel base current) model is presented in
Section IV, and then applied to the Finite Antenna method
in Section V. The Single Cell FDTD mathematics for this
particular application (in spherical co-ordinates) are derived
and discussed in Section VI. The results from the Finite An-
tenna method (under simplified modeling criteria) are verified
against pre-established values, which are then used to verify
the results from the Single Cell FDTD method in Section VII.
Section VIII discusses the simulation results, and the accuracy
requirements of the Single Cell FDTD method, from which
conclusions are drawn.

II. BACKGROUND

The first work done on time domain lightning EM calcula-
tion was by Uman et al [3] which has been used and improved
in a number of different research papers [4], [5], [6], [7]. This
method involves modeling a lightning channel as a sum of
finite dipole antennas over the length of the lightning channel.
The resulting EM fields are then related to the integral of a
return stroke based term over the lightning channel height at
a point in time. The Heidler function is a popular choice for
a channel base current model, as it best models the physical
properties of lightning current [8]. As discussed in Section V,
the EM equations have a term that depends directly on the
time integral of the channel base current. This term cannot
be analytically resolved when using a Heidler function, which
adds additional complexity to calculating the EM fields. When
looking at a point far from the lightning channel, this term can
often be neglected, however this is not the case for a nearby
location (50 m to 500 m [9]) as it would have a significant
effect on a distribution line LIOV [10], [11]. One possible
solution is to use a channel base current model that has an
analytical integral solution, which is presented in Section IV.

A relatively new method to lightning EM calculation is
the Finite-Difference Time-Domain (FDTD) technique, which

Appendix B

SIPDA Conference Paper

Appendix B - SIPDA Paper 104

is well suited for transient field calculation in the time do-
main [12], [13]. The method changes Maxwell’s differential
equations into difference equations. These difference equations
(finite changes in space and time) decompose the evaluation
space into cells/cubes (2D/3D). The size of the evaluation
space is defined by the channel height and the distance to
the observation point. The EM fields in each of these cells
(known as a Yee cell) [12], [13] is evaluated by previous
values, and surrounding cell values. This process has a number
of important benefits, such as including complex simulation
environments and materials such as the ground plane. It has
the disadvantage of being computationally intensive as well as
having a number of numerical errors particularly around the
boundary conditions.

An novel solution for LEMP calculations has been sug-
gested by Sartori et al [14], where a combination of the Finite
Antenna method and the standard FDTD method is used. This
“hybrid” method will be referred to as the “Single Cell FDTD”
method, as only one Yee cell is evaluated.

III. ASSUMPTIONS

The geometry of the problem is depicted in Figure 1.
This shows that the lightning channel is modeled as being
perfectly straight, and perpendicular to a flat ground plane. In
these simulations the ground plane is considered as a perfect
conductor. This assumption is unrealistic given that ground
has a finite conductivity, however, for simplicity the effect is
be ignored.

Figure 1 also shows that there are no obstacles in the simu-
lation space. The assumption being that the surrounding area
is “ideal free space” where the permeability and permittivity
are µ0 and ε0. This results in a propagation velocity of c
(the speed of light). The effects of ground plane reflections
are considered by an image channel below the ground plane.
This figure also shows that Spherical co-ordinates are used in
defining the vector directions.

z′

−z′

dz′

dz′

L(t) L′(t)

L′′(t)

θ

α(z′)
β(z′)

r̂

θ̂

φ̂

ẑ

PR(z′)

R′(z′)

r

Current Channel

Image Current

Fig. 1. Geometry of EM field calculations.

IV. CHANNEL BASE CURRENT MODEL

The current impulse (describing the channel base current)
used in this paper is described by Equation 1 and 2. This
current impulse has been used in a number of other EM
calculations [7], [15], [16], and its parameter values have
been chosen to represent a typical subsequent return stroke.
Although first return strokes have a higher peak current,
subsequent return strokes have a faster rise time which has
a significant effect on the LEMP.

i(t) =
I1
η
·

(
(t
τ1

)2

(t
τ1

)2 + 1

)
· e−

t
τ2 + I2(e

−t
τ3 − e

−t
τ4) (1)

i(t) =
I3
η
·

1− e−ω0t

 na∑
j=0

ωj0t
j

j!

 ·e− t
τ2 +I2(e

−t
τ3 −e

−t
τ4)

(2)
Where
z′ = Channel height
v = Velocity of wavefront = 150 m/(µs)
I1 = Peak Current = 9.9 kA
I2 = Peak Current = 7.5 kA
I3 = Peak Current = 9.55 kA
η = Scaling Factor = 0.845
na = Steepness Factor = 3
ω0 = Rise Time Constant = 41.66 /(µs)
τ1 = Time Constant = 0.072 µs
τ2 = Time Constant = 5 µs
τ3 = Time Constant = 100 µs
τ4 = Time Constant = 6 µs

Equation 1 is a combination of a Heidler function with
a double exponential function [15]. Equation 2 replaces the
Heidler function component with the Terespolsky function
(Heidler function approximation) [17], [18], [19]. The Tere-
spolsky function allows for the integral solution to be found
analytically. The differential and integral forms of Equation 2
are shown in Equation 3 and 4 respectively.

i′(t) =

I1
η
·

e−ω0tωna+1
0 tna

na!
− 1

τ2
+
e−ω0t

τ2

 na∑
j=0

ωj0t
j

j!

 · e− t
τ2

+I2(− 1

τ3
e
−t
τ3 +

1

τ4
e
−t
τ4) (3)

∫
i(t) dt =

I1τ2e
−t(1

τ2
+ω0)

η
·−e−ω0t +

na∑
i=0

i∑
j=0

ωi0τ
j
2 t
i−j

(i− j)!(τ2ω0 + 1)j+1

 · e− t
τ2

+I2(−τ3e
−t
τ3 + τ4e

−t
τ4) + C (4)

The current impulse in Equation 1 (Heidler version) and
the approximation in Equation 2 (Terespolsky version) have
minor differences. Figure 2 shows the differential plot of these
equations, and although there is a small time shift, the peak

Appendix B - SIPDA Paper 105

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Time (µs)

C
ur

re
nt

D
iff

er
en

tia
l

(k
A
/
µ
s)

Terespolsky Version
Heidler Version

Fig. 2. Current impulse differential plot comparison.

differential values (most significant in LEMP calculations)
have approximately the same value.

The return stroke model used in this paper has been simpli-
fied to a lossless transmission line with a propagation velocity
less than c. The current at any point on the channel is described
by the channel base current at an earlier time, as seen in
Equation 5. The unit step (U) ensures that the current is zero
above the propagating wave front.

i(z′, t) = i(t− z′

v
) · U(t− z′

v
) (5)

There are a number of return stroke models that are better
suited for lightning simulations [20], such as the MTLE model
[21], which can easily be included in Equation 5 for improved
results.

V. FINITE ANTENNA METHOD

The full mathematical derivation and equations to describe
Er, Eθ, and Bφ at a point above the ground plane (as seen in
Figure 1) will not be derived in this paper, but are discussed
in detail in [6] and [7]. A simplified case of the EM fields at
a point on the ground plane is described by Equations 6 and
7, where θ = π/2, ẑ = −θ̂, and Er = 0 as described in [3],
[4], [5].

E(r, θ, t)(2πε0) =

+

∫ L′(t)

0

3z2 −R2(z′)

R5(z′)

{∫ t

tb

i(0, τ − R(z′)

c
− z′

v
)dτ

}
dz′ẑ

+

∫ L′(t)

0

3z2 −R2(z′)

cR4(z′)
· i(0, t− R(z′)

c
− z′

v
)dz′ẑ

−
∫ L′(t)

0

r2

c2R3(z′)

∂i(0, t− R(z′)
c − z′

v)

∂t
dz′ẑ (6)

0 1 2 3 4 5

0

10

20

Time (µs)

E
le

ct
ri

c
Fi

el
d

(k
V
/m

)

Eθ Total
Static

Induction
Radiation

Fig. 3. Ez field components on the ground plane.

B(r, θ, t) =

+
1

2πε0c2

∫ L′(t)

0

r

R3(z′)
i(0, t− R(z′)

c
− z′

v
)dz′φ̂

+
1

2πε0c2

∫ L′(t)

0

r

cR2(z′)

∂i(0, t− R(z′)
c − z′

v)

∂t
dz′φ̂ (7)

Equation 6 has three field components described as the
electrostatic field (current integral term), induction field (cur-
rent term) and the radiation field (current differential term).
Equation 7 has an induction field component (current term),
and a radiation field component (current differential term).
The equations describing Er, Eθ, and Bφ at a point above
the ground plane have a similar format to these equations.
Calculating the electrostatic components of both Er and Eθ
requires solving the integral of the channel base current used
in the return stroke model. Equation 1 contains a Heidler func-
tion, which cannot be resolved analytically. Which therefore
adds additional complexity to solving the electrostatic field
components of Er and Eθ. A suggested solution to this is to
use Equation 2, which can be analytically solved, and therefore
simplifies one aspect of the calculation. Figure 3 shows the
Ez field, and its components, calculated using Equation 2, at
a distance of r = 50 m with θ = π/2. Figure 3 is comparable
to the figures in [6], [7]. This demonstrates the validity in
using Equation 2 as an approximation to Equation 1.

VI. SINGLE CELL FDTD METHOD

The Finite-Difference Time-Domain (FDTD) method is
a computational electromagnetic technique to evaluate EM
fields in the time domain. A common method of modeling
lightning electromagnetic waves in the FDTD is to describe the
area around the lightning channel in cylindrical co-ordinates.
This allows the entire evaluation space to be described in
the two-dimensional r − z plane [22]. This process can be
computationally intensive, given that every cell in the plane
needs to be evaluated at each time step of the simulation.

Appendix B - SIPDA Paper 106

Additionally there is a stability criterion for the FDTD that
often requires small time steps and cell sizes.

This section describes the Single Cell FDTD method, which
is a combination of standard FDTD theory with the math-
ematics of the Finite Antenna method. When evaluating a
single Yee cell, it is possible to calculate the electric field
components from only the magnetic field components around
the cell. The benefits of this method will become clear in the
results. What follows is a derivation of the FDTD equations
for a spherical co-ordinate system, which is different from
the normal Cartesian or cylindrical co-ordinate systems. This
system was chosen to match the mathematics from the Finite
Antenna method which uses the same co-ordinate system. This
co-ordinate system may have limited application to full FDTD
applications due to the difficulty of adding the excitation
sources along a lightning channel.

∇× E = −∂B
∂t

∇×B = (µ0ε0)
∂E

∂t
(8)

Where
E = ârEr + âθEθ + âφEφ
B = ârBr + âθBθ + âφBφ

Consider Equation 8 which shows Faraday’s Law, and
Ampere’s Law respectively (Maxwell’s differential equations
with no exciting current J). Given the nature of the geometry
shown in Figure 1, it is clear that the model is symmetrical
around the ẑ axis, and therefore at any angle of φ. Therefore
it is sufficient to review the problem in the r−θ plane, and set
∂
∂φ = 0. Using the spherical co-ordnate system [13], Equation
8 is expanded into a Transverse Electric (TE) and Transverse
Magnetic (TM) form. The TE equations are shown in Equation
9. The TE fields describe Er, Eθ and Bφ, which are the same
as Section V.

∂Er
∂t

=
1

µ0ε0.r.Sin(θ)

∂

∂θ
(Bφ.Sin(θ)) (8a)

∂Eθ
∂t

=
−1

µ0ε0r

∂

∂r
(Bφ.r) (8b)

∂Bφ
∂t

= −1

r

[
∂

∂r
(Eθ.r)−

∂

∂θ
Er

]
(8c)

Figure 4 shows the Yee cell describing a cell in the TE
spherical grid [13]. From this Yee cell, Equation 9 is written
in the discrete second order FDTD form shown in Equations
9 and 10 (without the Bφ term).

Er

∣∣∣n+1

(i+ 1
2 ,j)

= Er

∣∣∣n
(i+ 1

2 ,j)
+

c2.∆t

ri+ 1
2
.Sin(θj).∆θ

·[
Bφ

∣∣∣n+ 1
2

(i+ 1
2 ,j+

1
2)
.Sin(θj+ 1

2
)−Bφ

∣∣∣n+ 1
2

(i+ 1
2 ,j−

1
2)
.Sin(θj− 1

2
)

]
(9)

Eθ

∣∣∣n+1

(i,j+ 1
2)

= Eθ

∣∣∣n
(i,j+ 1

2)
− c2.∆t

ri.∆r
·[

Bφ

∣∣∣n+ 1
2

(i+ 1
2 ,j+

1
2)
.ri+ 1

2
−Bφ

∣∣∣n+ 1
2

(i− 1
2 ,j+

1
2)
.ri− 1

2

]
(10)

The notation used is from [13], and is explained in Equation
11. As seen in Equations 6 and 7, the equation for the magnetic
field is less computationally intensive to evaluate than the
equations for the electric field. Equations 9 and 10 show that
Er and Eθ can be calculated by only the Bφ fields surrounding
the cell, and previous E fields.

Eθ

∣∣∣n+1

(i,j+ 1
2)

= Eθ(rc, θc, tc)

= Eθ(i∆r, j∆θ +
∆θ

2
, n∆t+ ∆t) (11)

Where
Radius at the observation point = robs = (i).∆r
Angle at the observation point = θobs = (j).∆θ
Time at the observation point = tobs = (n).∆t
In a standard FDTD approach the observation point would

change to every cell in the plane, however, in this example
it stays fixed at the observation point “P” in Figure 1. From
Equations 9 and 10 it is clear that Bφ needs to be calculated at
three distinct locations (shown in Figure 4). Equation 12 (the
expansion of Equation 7) is used to calculate the magnetic
field at these three locations, which is then used in Equations
9 and 10 to calculate the electric fields.

B(r, t)(4πε0c
2) =

+

∫ L′(t)

0

r.Sinθ

R3(z′)
i(0, t− R(z′)

c
− z′

v
)dz′φ̂

+

∫ L′(t)

0

r.Sinθ

cR2(z′)

∂i(0, t− R(z′)
c − z′

v)

∂t
dz′φ̂

+

∫ L′′(t)

0

r.Sinθ

R3(−z′)
i(0, t− R(−z′)

c
− z′

v
)dz′φ̂

+

∫ L′′(t)

0

r.Sinθ

cR2(−z′)
∂i(0, t− R(−z′)

c − z′

v)

∂t
dz′φ̂ (12)

(ri,θj+1)

(ri,θj)

(ri+1,θj)

(ri+1,θj+1)

Bφ

Bφ

Bφ

Eθ
Er

Eθ
Er

âr

âθ

âr

0◦

90◦

Fig. 4. Yee cell in spherical co-ordinates.

Appendix B - SIPDA Paper 107

0 0.5 1 1.5 2
0

5

10

15

20

25

Time (µs)

E
le

ct
ri

c
Fi

el
d

(k
V
/
m

)

FDTD - θ = 10◦

Fin Ant - θ = 10◦

FDTD - θ = 30◦

Fin Ant - θ = 30◦

FDTD - θ = 60◦

Fin Ant - θ = 60◦

Fig. 5. Radial E Field - R = 100 m, ∆r =0.5 m, ∆θ = 0.5◦.

The choice of ∆r, ∆θ, and ∆t has a significant effect
on the accuracy of the Single Cell FDTD results, as well
as the stability of the results. The stability criteria of the
Yee cell in Figure 4 is described by Equation 13, which
relates the distance traveled by a wave front and the speed
of propagation (c) [12]. As seen in Figure 4, the Yee cell is
not linear throughout the plane [13], and changes depending
on the radius of the observation point. This is accounted for
by considering the arc distance r(∆θ).

∆t ≤ 1

c
√

1
∆i2

+ 1
∆j2

(13)

Where: ∆i = ∆r ∆j = r(∆θ)

VII. SIMULATION TESTING

A number of simulations were run (at different distances and
angles) to test the Single Cell FDTD method, and the Finite
Antenna method was used to verify the results. The current
impulse used in the simulations is described by Equation
2 (Terespolsky function), which was chosen for its ease of
implementation in the Finite Antenna method. However for
the Single Cell FDTD method and Equation 12 it is easier to
implement Equation 1.

Figure 5 shows the Er fields calculated at a radial distance
of 100 m, and a range of vertical offset angles. The Yee cell
used ∆r =0.5 m and ∆θ = 0.5◦. The figure shows the fields
calculated by the Finite Antenna method, as well as the Single
Cell FDTD method, and the results are identical (also see [7]).
The same tests were run at distances of 50 m to 100 km, at
angles of 0◦ to 90◦ and the results were consistently the same
with negligible errors.

In all these tests the Er and Eθ values in both methods
are calculated with the appropriate spacial offsets described in
Equations 9 and 10, where ∆r =0.5 m and ∆θ = 0.5◦. Figure
6 shows the Er fields calculated at a radial distance of 100 m

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Time (µs)

E
le

ct
ri

c
Fi

el
d

(k
V
/
m

)

Fin Ant - No Offset
FDTD - ∆r =1 m, ∆θ =1◦

FDTD - ∆r =5 m, ∆θ =5◦

FDTD- ∆r =10 m, ∆θ =10◦

FDTD - ∆r =15 m, ∆θ =15◦

Fig. 6. Radial E Field - R = 100 m, θ = 10◦.

0 0.5 1 1.5 2

−10

0

10

Time (µs)

N
or

m
al

iz
ed

%
E

rr
or

∆r =1 m, ∆θ =1◦

∆r =5 m, ∆θ =5◦

∆r =10 m, ∆θ =10◦

∆r =15 m, ∆θ =15◦

Fig. 7. Normalized Radial E Field Error - R = 100 m, θ = 10◦.

at a angle of 10◦ for different Yee cell sizes. As expected,
the resulting fields from the Single Cell FDTD method are
different to the field predicted by the Finite Antenna method
due to the location offset of ∆r and ∆θ. However, when
compared to the Finite Antenna field calculated at those
specific offset values, it was found that there is error in the
Single Cell FDTD results. Figure 7 shows the normalized error
in time between the Finite Antenna and the Single Cell FDTD
results. These errors are primarily caused by a time offset
created by the Yee cell. Ideally the the Yee cell should be
kept as small as possible, however as seen in Table I, there
is a trade-off in computation time. As the Yee cell is made
bigger, there are fewer time steps where Equation 12 needs
to be evaluated. However as seen in Figure 7 there are higher
errors at larger Yee cells.

Appendix B - SIPDA Paper 108

TABLE I
STABILITY CRITERIA - YEE CELL AT R=100 m.

∆r (m) ∆θ (◦) ∆t (ns) Time Steps in 10 µs

0.01 0.01 0.0029 345514
0.1 0.1 0.0289 34551
0.5 0.5 0.1447 6910
1 1 0.289 3455
5 5 1.447 691
10 10 2.894 345
15 15 4.341 230

VIII. DISCUSSION

As seen in Section VII the Finite Antenna method and
Single Cell FDTD method compare well when a small Yee
cell is used. In the standard FDTD method application, it
is recommended that ∆i and ∆j are chosen as a tenth of
a wavelength, or in the case of lightning, at least a tenth
of the distance propagated by the impulse range of interest.
This distance is typically in the order of 100 m to 300 m
(maximum), which is not acceptable for the Single Cell FDTD
method at close distances. Another method for choosing ∆i
and ∆j could be to choose the ∆t small enough to accurately
represent the field in the time range of interest. At locations
close to the lightning channel, a minimum of 345 steps per µs
is necessary. Note also that ∆r and ∆θ do not have to be the
same value.

The tests run on the different Yee cells in Section VII
focused primarily at locations close to the lightning channel.
At distances far from the channel the size of the Yee cell will
grow due to ∆j = robs(∆θ), and therefore the choice of ∆t
will be limited by the choice of ∆θ. Another consideration
at these distances is that the electrostatic component in the E
field calculations may become negligible. Under this situation
the computational requirements of the two methods become
equivalent. To evaluate the fields at a point, the Finite Antenna
method would calculate the Er, Eθ and Bφ fields at one
unique location, as compared to the Single Cell FDTD method
that would need to calculate the Bφ fields at three unique
locations.

In comparison to standard FDTD methods, the Single Cell
FDTD approach has a number of advantages, as it does not
suffer from boundary conditions (and the inherent numerical
errors) [13]. It also does not rely on evaluating every Yee cell
in the area of interest. To evaluate a LIOV on a distribution
line, the Single Cell FDTD approach could be used to evaluate
the EM fields at the Yee cells directly around the line, rather
than all the cells between the lightning channel and the line
(standard FDTD).

A disadvantage to both methods is the difficulty of including
complex simulation environments, such as real ground planes,
variable lightning channels, scattering and obstacles. In con-
trast, the standard FDTD approach is well suited to handle
these complex modeling criteria, and allows the inclusion of
real world characteristics.

IX. CONCLUSION

Two methods for modeling the lightning EM fields near a
lightning channel have been presented and verified. The first
method used a Heidler function approximation (Terespolsky
function) with the classic Finite Antenna method. By using
this current impulse function it was shown that resolving the
electrostatic field component of the electric fields was simpli-
fied due to the analytical integral solution available from the
Terespolsky function. The second method used a combination
of standard FDTD theory, with the magnetic field equations
from the Finite Antenna method, and evaluated the electric
fields in a single Yee cell. The results from this Single Cell
FDTD method compare well to the Finite Antenna method
when an appropriately sized Yee cell is chosen. The benefit
of the Single Cell FDTD method is that it is not affected by
the boundary condition requirements that standard FDTD is
bound by, and it has lower computational requirements.

ACKNOWLEDGMENT

The authors thank Eskom for the support of the Light-
ning/EMC Research Group through the TESP programme.
Thanks are extended to the department of Trade and Industry
(DTI) for THRIP funding as well as to the National Research
Foundation (NRF) for direct funding of the Research Group.

REFERENCES

[1] C. A. Nucci and F. Rachidi, The Lightning Flash 2nd Edition, ser. Power
and Energy Series 69. Institution of Engineering and Technology
(IET), 2014, ch. 12 - Interaction of electromagnetic fields generated
by lightning with overhead electrical networks, pp. 559–609.

[2] Y. Baba and V. A. Rakov, Lightning Electromagnetics, ser. Power and
Energy Series 62. Institute of Engineering and Technology, 2012, ch.
8 - Electromagnetic models of lightning return strokes, pp. 263–313.

[3] M. A. Uman, D. K. Mclain, and E. P. Krider, “The electromagnetic
radiation from a finite antenna,” American Journal of Physics, vol. 43,
pp. 33–38, January 1975.

[4] M. J. Master and M. A. Uman, “Transient electric and magnetic fields
associated with establishing a finite electrostatic dipole,” American
Journal of Physics, vol. 51, no. 2, pp. 118–126, February 1983.

[5] M. A. Uman, “Lightning return stroke electric and magnetic fields,”
Journal of Geophysical Research - Atmospheres, vol. 90, no. D4, pp.
6121–6130, June 1985.

[6] R. Thottappillil and V. A. Rakov, “On different approaches to calculating
lightning electric fields,” Journal of Geophysical Research, vol. 106, no.
D13, pp. 14 191–14 205, July 2001.

[7] R. Thottappillil, The Lightning Flash 2nd Edition, ser. Power and Energy
Series 69. Institution of Engineering and Technology (IET), 2014, ch.
8 - Computation of electromagnetic fields from lightning discharge, pp.
351–403.

[8] Protection Against Lightning - Part 1: General Principles, IEC Std.,
2006.

[9] G. Diendorfer, “Induced voltage on an overhead line due to nearby
lightning,” IEEE Transactions on Electromagntic Compatibility, vol. 32,
no. 4, pp. 292–299, November 1990.

[10] S. Rusck, “Induced lightning over-voltages on power-transmission lines
with special reference to the over-voltage protection of low-voltage
networks,” Master’s thesis, Transactions of the Royal Institute of Tech-
nology, 1958.

[11] P. Sewkumar, “Modeling the effect of adjacent lightning strikes to bare
overhead medium voltage lines in South Africa,” Master’s thesis, Faculty
of Engineering and the Built Environment, School of Electrical and
Electronic Engineering, University of the Witwatersrand, South Africa,
2001.

Appendix B - SIPDA Paper 109

[12] K. S. Yee, “Numerical solution of initial boundry value problems
involving Maxwell’s equations in isotropic media,” IEEE Transactions
on Antennas and Propagation, vol. AP-14, no. 3, pp. 302–307, May
1966.

[13] U. S. Inan and R. A. Marshall, Numerical Electromagnetics: The FDTD
Method. Cambridge University Press, 2011.

[14] C. A. F. Sartori and J. R. Cardoso, “An Analytical-FDTD method for
near LEMP calculation,” IEEE Transactions on Magnetics, vol. 36, no. 4,
pp. 1631–1634, July 2000.

[15] C. A. Nucci, G. Diendorfer, M. A. Uman, F. Rachidi, M. Ianoz, and
C. Mazetti, “Lightning return stroke current models with specified
channel-base current: A review and comparison,” Journal of Geophysical
Research, vol. 95, no. D12, pp. 20 395–20 408, November 1990.

[16] V. Cooray, The Lightning Flash, ser. Power Series 34, V. Cooray, Ed.
Institution of Engineering and Technology (IET), 2003.

[17] B. R. Terespolsky, “An approximation to the heidler function with an
analytical integral for engineering applications using lightning currents,”
Master’s thesis, School of Electrical and Information Engineering,
University of the Witwatersrand, South Africa, 2015.

[18] B. R. Terespolsky and K. J. Nixon, “Developing an approximation to the
Heidler Function - with an analytical transformation into the frequency
domain.” International Conference on Lightning Protection, pp. 1134–
1138, 2014.

[19] C. W. I. McAfee and K. J. Nixon, “Lightning return stroke model-
ing with reference to lightning electromagnetic fields,” South African
Universities Power and Energy Conference (SAUPEC), Johannesburg,
January 2015.

[20] V. Cooray, The Lightning Flash 2nd Edition, ser. Power and Energy
Series 69. Institution of Engineering and Technology (IET), 2014, ch. 9
- Return stroke models with special attention to engineering applications,
pp. 405–475.

[21] C. A. Nucci, C. Mazetti, F. Rachidi, and M. Ianoz, “On lightning return
stroke models for LEMP calculations,” International Conference on
Lightning Protection, no. 4.7, pp. 463–470, 1988.

[22] Y. Baba and V. A. Rakov, “Applications of the FDTD method to
lightning electromagnetic pulse and surge simulations,” in International
Conference on Lightning Protection. Shanghai, China, 2014, pp. 2084–
2098.

Appendix B - SIPDA Paper 110

Appendix C

2D Spherical Finite Antenna Code

Listing C.1: main.cpp
1 #include <iostream>
2 #include <cmath>
3 #include <iomanip>
4 #include <fstream>
5 #include <cstdlib>
6 #include <string>
7 using namespace std;
8

9 #include "FINANTCyl2D.h"
10

11 int main(int argc, char const *argv[]){
12

13 FINANTCyl2D lightningStroke("2D_FINANT_Settings.csv",argc,argv);
14 lightningStroke.PrintMinimalSimParameters();
15 lightningStroke.evaluateFINANTintegral();
16 return 0;
17 }

Listing C.2: FINANTCyl2D.h
1 #include <cmath>
2 #include <math.h>
3 #include <iostream>
4 #include <fstream>
5 #include <future>
6 #include <thread>
7 using namespace std;
8

9 #include "BfieldP.h"
10 #include "EfieldR.h"
11 #include "EfieldT.h"
12

13 class FINANTCyl2D{
14

15 public:
16 FINANTCyl2D(string settingsFile, int argc, char const *argv[]);
17 void setSimulationParameters(string settingsFile);
18 void PrintMinimalSimParameters();
19 void evaluateFINANTintegral();
20

21 private:

111

Appendix C - Finite Antenna C++ Code 112

22 double vp; // RS Constants:
23 double vchan;
24 double lamdac;
25 int currentDecay;
26

27 double I1, I2, I3; // Terespolsky function constants:
28 double eta;
29 double tau1, tau2, tau3, tau4;
30 int Na;
31 double omega0;
32

33 double rObs; // User Set Simulation Parameters:
34 double observationAngleDeg;
35 double theta;
36 int integrationSteps;
37 double deltaT;
38 double simRunTime;
39

40 double timeToReachObservationPoint; // Time variables:
41 int nSteps;
42

43 double BpFieldHolder; // Field value holders:
44 double ErFieldHolder;
45 double EtFieldHolder;
46

47 const double pi = 4.0 * atan(1.0); // Fixed Constants:
48 const double c = 299792458;
49 const double mu = 4 * pi * pow(10.0, -7.0);
50 const double epsilon = 8.8541878176 * pow(10.0, -12.0);
51

52 char partATestID[128]; // Data file field names:
53 char partBTestID[128];
54 char BpFieldcurvename[128];
55 char ErFieldcurvename[128];
56 char EtFieldcurvename[128];
57 char ExFieldcurvename[128];
58 char EzFieldcurvename[128];
59 };

Listing C.3: FINANTCyl2D.cpp
1 #include <algorithm>
2 #include "FINANTCyl2D.h"
3

4 // Constructor takes inputs being the Settings file followed by the command line arguments.
5 FINANTCyl2D::FINANTCyl2D(string settingsFile, int argc, char const *argv[]){
6

7 // Read in settings from settings file.
8 setSimulationParameters(settingsFile);
9

10 // Character strings for file naming.
11 sprintf(partATestID,"FinAnt_R%05gA%04g",rObs*100,observationAngleDeg*100);
12 sprintf(partBTestID,"kstep%02g_dt%03g",integrationSteps/1000.0,deltaT*pow(10,9)*10);
13

14 // Creating Output File names for the different fields. These files are opened, written
15 // to and closed in the main evaluateFINANTintegral function. Also Note that this is
16 // hard coded to save files to the folder: "Simulations" .
17 sprintf(BpFieldcurvename,"./Simulations/%sBpField%s.curve",partATestID,partBTestID);
18 sprintf(ErFieldcurvename,"./Simulations/%sErField%s.curve",partATestID,partBTestID);
19 sprintf(EtFieldcurvename,"./Simulations/%sEtField%s.curve",partATestID,partBTestID);
20 sprintf(ExFieldcurvename,"./Simulations/%sExField%s.curve",partATestID,partBTestID);
21 sprintf(EzFieldcurvename,"./Simulations/%sEzField%s.curve",partATestID,partBTestID);
22

23 theta = (observationAngleDeg/180)*pi;
24 omega0 = (double)Na / tau1;
25 timeToReachObservationPoint = rObs/c;

Appendix C - Finite Antenna C++ Code 113

26 nSteps = int(simRunTime/deltaT);
27 }
28

29 // This function is passed a file name string and extracts the required simulation variables
30 // from the file and assigns them to the relevant variables of the class. Care must be
31 // taken to ensure that the settings file is formatted correctly.
32 void FINANTCyl2D::setSimulationParameters(string settingsFile){
33

34 ifstream inputFromFile(settingsFile, ios::in);
35

36 if(!inputFromFile){
37 cerr << "File could not be opened!" << endl;
38 exit(1);
39 }
40

41 string UnitName, Value, string Units;
42

43 while(getline(inputFromFile, UnitName, ',')){
44

45 // This next line of code removes the newline character from my settings file when
46 // it is read into the variables. This was only really an issue with the UnitName
47 // variable. This code required the "#include <algorithm>" library.
48 UnitName.erase(std::remove(UnitName.begin(), UnitName.end(), '\n'), UnitName.end());
49 getline(inputFromFile, Value, ',');
50 getline(inputFromFile, Units, ',');// This variable does not get used.
51

52 if(UnitName == "vp"){vp = std::stof(Value);}
53 else if(UnitName == "vchan"){vchan = std::stof(Value);}
54 else if(UnitName == "deltaT"){deltaT = std::stof(Value) * pow(10,-9);}
55 else if(UnitName == "simRunTime"){simRunTime = std::stof(Value) * pow(10,-9);}
56 else if(UnitName == "tau1"){tau1 = std::stof(Value) * pow(10,-6);}
57 else if(UnitName == "tau2"){tau2 = std::stof(Value) * pow(10,-6);}
58 else if(UnitName == "tau3"){tau3 = std::stof(Value) * pow(10,-6);}
59 else if(UnitName == "tau4"){tau4 = std::stof(Value) * pow(10,-6);}
60 else if(UnitName == "lamdac"){lamdac = std::stof(Value);}
61 else if(UnitName == "currentDecay"){currentDecay = std::stof(Value);}
62 else if(UnitName == "I1"){I1 = std::stof(Value);}
63 else if(UnitName == "I2"){I2 = std::stof(Value);}
64 else if(UnitName == "I3"){I3 = std::stof(Value);}
65 else if(UnitName == "eta"){eta = std::stof(Value);}
66 else if(UnitName == "Na"){Na = std::stof(Value);}
67 else if(UnitName == "rObs"){rObs = std::stof(Value);}
68 else if(UnitName == "observationAngleDeg"){observationAngleDeg = std::stof(Value);}
69 else if(UnitName == "integrationSteps"){integrationSteps = std::stof(Value);}
70 else{cout << "Variable "<< UnitName << " : " << Value <<" was not assigned." << endl;}
71 }
72 }
73

74 // This function outputs minimal Sim variables for batch simulation scripts tests.
75 void FINANTCyl2D::PrintMinimalSimParameters(){
76

77 cout << "**" << endl;
78 cout << "requested rObs: " << rObs << ". Observation point angle: " << ←↩

observationAngleDeg << endl;
79 cout << "intSteps -deltaT -simTime" << endl;
80 cout << integrationSteps << " " << deltaT << " " << simRunTime << endl;
81 }
82

83 // This is the main workhorse of the class. Using the parameters given by the settings file,
84 // or the command line arguments, this function creates a field object for the Magnetic PHI
85 // field, Electric radial, and electric theta fields. These are all WRT a cylindrical
86 // co-ordinate system. Each of these fields are then evaluated over a time period and the
87 // resulting field waveforms are written to a .curve file for viewing in VisIt. I also have
88 // code to convert curve to CSV. What is really cool about this function is that each of
89 // the fields is calculated in its own thread, which effectively means that the fields are
90 // evaluated simultaneously. This has a significant improvement in program runtime. This
91 // function also produces the Ex and Ey field components for Cartesian co-ordinates.
92 void FINANTCyl2D::evaluateFINANTintegral(){

Appendix C - Finite Antenna C++ Code 114

93

94 // Create field objects:
95 BfieldP simBfieldP(vchan, c, lamdac, I3, I2, eta, tau2, tau3, tau4, omega0, Na, ←↩

currentDecay);
96 EfieldR simEfieldR(vchan, c, lamdac, I3, I2, eta, tau2, tau3, tau4, omega0, Na, ←↩

currentDecay);
97 EfieldT simEfieldT(vchan, c, lamdac, I3, I2, eta, tau2, tau3, tau4, omega0, Na, ←↩

currentDecay);
98

99 // Open the output data field files:
100 ofstream observationPointBpDataFile(BpFieldcurvename);
101 ofstream observationPointErDataFile(ErFieldcurvename);
102 ofstream observationPointEtDataFile(EtFieldcurvename);
103 ofstream observationPointExDataFile(ExFieldcurvename);
104 ofstream observationPointEzDataFile(EzFieldcurvename);
105 // Write the output file headers:
106 observationPointBpDataFile << "#FinAnt_BfieldP" << endl;
107 observationPointErDataFile << "#FinAnt_EfieldR" << endl;
108 observationPointEtDataFile << "#FinAnt_EfieldT" << endl;
109 observationPointExDataFile << "#FinAnt_EfieldX" << endl;
110 observationPointEzDataFile << "#FinAnt_EfieldZ" << endl;
111

112 cout << "**" << endl;
113 cout << "Starting Simulation Time Steps: " << endl;
114

115 // This is where I iterate over all the time steps:
116 for(int n=0; n != nSteps; n++){
117

118 // Progress indicator:
119 cout << "Progress " << ((n*deltaT)/simRunTime)*100.00 << "\% \r" ;
120 std::cout.flush();
121

122 // Create a thread for each field. These threads return the field at a point in time.
123 future< double > BpFieldThread = async(std::launch::async, &BfieldP::integrateZ, &←↩

simBfieldP, n*deltaT , theta, rObs, integrationSteps);
124 future< double > ErFieldThread = async(std::launch::async, &EfieldR::integrateZ, &←↩

simEfieldR, n*deltaT , theta, rObs, integrationSteps);
125 future< double > EtFieldThread = async(std::launch::async, &EfieldT::integrateZ, &←↩

simEfieldT, n*deltaT , theta, rObs, integrationSteps);
126

127 // Wait for threads to complete:
128 BpFieldHolder = BpFieldThread.get();
129 ErFieldHolder = ErFieldThread.get();
130 EtFieldHolder = EtFieldThread.get();
131

132

133 // Write field data to output files.
134 // The "if" check ensures that data is only written from the point when the EM
135 // field first reaches the observation point. This step also does the co-ordinate
136 // conversion for Spherical to Cartesian field components. Note that all these
137 // fields are measured on the Y=0/PHI=0 axis. I chose this because it simplifies
138 // co-ordinate conversion for the third direction in spherical. In this case,Ey=Ephi
139 if(n*deltaT >= timeToReachObservationPoint){
140 observationPointBpDataFile << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) ←↩

<< " " << BpFieldHolder << endl;
141 observationPointErDataFile << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) ←↩

<< " " << ErFieldHolder << endl;
142 observationPointEtDataFile << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) ←↩

<< " " << EtFieldHolder << endl;
143

144 observationPointExDataFile << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) ←↩
<< " " << (cos(theta)*EtFieldHolder + sin(theta)*ErFieldHolder) << endl;

145 observationPointEzDataFile << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) ←↩
<< " " << (-1*sin(theta)*EtFieldHolder + cos(theta)*ErFieldHolder) << endl;

146 }
147

148 }
149

Appendix C - Finite Antenna C++ Code 115

150 cout << endl;
151 cout << "Simulation Complete." << endl;
152 cout << "**" << endl;
153 cout << endl;
154

155 // Close Data file:
156 observationPointBpDataFile.close();
157 observationPointEtDataFile.close();
158 observationPointErDataFile.close();
159 observationPointExDataFile.close();
160 observationPointEzDataFile.close();
161 }

Listing C.4: EfieldT.h
1 #include <iostream>
2 #include <cmath>
3 #include <iomanip>
4 #include <fstream>
5 #include <cstdlib>
6 #include <string>
7 using namespace std;
8

9 class EfieldT{
10 public:
11

12 EfieldT(double Tvc, double Tvp, double Tlamdac, double TI3, double TI2, double Teta, ←↩
double Ttau2, double Ttau3, double Ttau4, double Tomega0, int TNa, int TcurrentDecay =←↩
0);

13

14 double EtDifferential(double z, double t, double theta, double rObs);
15

16 double integrateZUpper(double t, double theta, double rObs, int N);
17 double integrateZLower(double t, double theta, double rObs, int N);
18 double integrateZ(double t, double theta, double rObs, int N);
19

20

21 private:
22 double vchan;
23 double vp;
24 double lamdac;
25 double I3;
26 double I2;
27 double eta;
28 double tau2;
29 double tau3;
30 double tau4;
31 double omega0;
32 int Na;
33 int factorial[13];
34 int currentDecay;
35

36 const double pi = 4.0 * atan(1.0); // Fixed Constants:
37 const double c = 299792458;
38 const double mu = 4 * pi * pow(10.0, -7.0);
39 const double epsilon = 8.8541878176 * pow(10.0, -12.0);
40 };

Appendix C - Finite Antenna C++ Code 116

Listing C.5: EfieldT.cpp
1 #include "EfieldT.h"
2

3 // Note that there is an emphasis on memory management in this code. It may seem bulky, but
4 // every instance of the object is self contained in order to facilitate threading.
5

6 // This is the constructor class for the EfieldT object. The Electric (E) field in the
7 // Theta co-ordinate. WRT Cylindrical co-ordinates. This constructor takes in all the
8 // variables needed to later calculate the E field at instants in Time.
9 EfieldT::EfieldT(double Tvchan, double Tvp, double Tlamdac, double TI3, double TI2, double ←↩

Teta, double Ttau2, double Ttau3, double Ttau4, double Tomega0, int TNa, int ←↩
TcurrentDecay){

10

11 factorial[0] = 1; // Fixed Constants:
12 factorial[1] = 1;
13 factorial[2] = 2;
14 factorial[3] = 6;
15 factorial[4] = 24;
16 factorial[5] = 120;
17 factorial[6] = 720;
18 factorial[7] = 5040;
19 factorial[8] = 40320;
20 factorial[9] = 362880;
21 factorial[10] = 3628800;
22 factorial[11] = 39916800;
23 factorial[12] = 479001600;
24

25 I3 = TI3; // Terespolsky Function Constants:
26 I2 = TI2;
27 eta = Teta;
28 tau2 = Ttau2;
29 tau3 = Ttau3;
30 tau4 = Ttau4;
31 omega0 = Tomega0;
32 Na = TNa;
33

34 vchan = Tvchan; // RS constants:
35 vp = Tvp;
36 lamdac = Tlamdac;
37 currentDecay = TcurrentDecay;
38 }
39

40 // This is the main function of the class. It calculates what I like to call the "Field
41 // Strength". This is not the correct terminology but it works for me. What this actually
42 // is, is the electric field differential, at a point in space and time, due to an element at
43 // height Z on the lightning channel. In simple terms it is the function that returns the
44 // value of the term inside the integral component of the equation. Later functions will use
45 // this to calculate integral value. refer to the chapter on Finite Antenna Method for the
46 // mathematics and equations. The parameters it takes are the observation point Time (t),
47 // observation point angle (theta) and observation point radial distance (rObs). It also
48 // takes the height component value of the channel (z). The returned value is used in the
49 // integration equation/function.
50 double EfieldT::EtDifferential(double z,double t,double theta,double rObs){
51

52 double singleSumTerm = 0;
53 double doubleSumTermUpperIntegral = 0;
54 double doubleSumTermLowerIntegral = 0;
55

56 // The static term has an integral between two time points. The integral is performed
57 // between tb -> t. "t" is the time point being evaluated, and "tb" is the effective zero
58 // starting point. "tb" is defined so that the time shift term is zero. This ultimately
59 // ties back to the unit step function in the current impulse/RS model and is necessary
60 // so that no negative time points are used in the models. It is also the lower point
61 // because before this time there would not have been any current components So the upper
62 // limit in the static term integral is already catered for in the equations as
63 // "timeShiftTerm". Therefore the lower limit is just zero after the time shift.
64 double timeShiftTerm = t - abs(z) / vchan - sqrt(pow(rObs, 2.0) + pow(z, 2.0) - ←↩

2.0 * rObs * z * cos(theta)) / c;

Appendix C - Finite Antenna C++ Code 117

65 double lowerIntegralTime = 0;
66 double Rterm = sqrt(pow(rObs, 2.0) + pow(z, 2.0) - 2.0 * rObs * z * cos(theta));
67

68 if(timeShiftTerm < 0){ return 0; }
69 else{
70

71 for(int j=0; j <= Na; j++){
72 singleSumTerm += pow(omega0 * (timeShiftTerm), j) / factorial[j];
73 }
74

75 for(int i=0; i <= Na; i++){
76 for(int j=0; j <= i; j++){
77 doubleSumTermUpperIntegral += (pow(omega0,i)*pow(tau2,j)*pow(timeShiftTerm,i-j))/(←↩

factorial[i-j]*pow((tau2*omega0+1),j+1));
78

79 doubleSumTermLowerIntegral += (pow(omega0,i)*pow(tau2,j)*pow(lowerIntegralTime,i-j))←↩
/(factorial[i-j]*pow((tau2*omega0+1),j+1));

80 }
81 }
82

83 // E field Static theta element.
84 double EStElement = (exp((-1.0*abs(z)*currentDecay)/lamdac)/(4.0*pi*epsilon))*(((sin(←↩

theta))/(pow(Rterm,3))) + (((-3.0*z*sin(theta))*(z-rObs*cos(theta)))/(pow(Rterm,5)←↩
)));

85

86 double EtStatic = EStElement * (((I3/eta * tau2 * exp(-1.0*timeShiftTerm/tau2 ←↩
-1.0*timeShiftTerm*omega0)) * (-1.0*exp(+1.0*omega0*timeShiftTerm) + ←↩
doubleSumTermUpperIntegral) + I2 * (-1.0*tau3*exp(-1.0*timeShiftTerm/tau3) + tau4*←↩
exp(-1.0*timeShiftTerm/tau4))) - ((I3/eta * tau2 * exp(-1.0*←↩
lowerIntegralTime/tau2 -1.0*lowerIntegralTime*omega0)) * (-1.0*exp(+1.0*omega0*←↩
lowerIntegralTime) + doubleSumTermLowerIntegral) + I2 * (-1.0*tau3*exp(-1.0*←↩
lowerIntegralTime/tau3) + tau4*exp(-1.0*lowerIntegralTime/tau4))));

87

88 double EtInduction = (exp((-1.0*abs(z)*currentDecay)/lamdac)/(4.0*pi*epsilon*pow(c←↩
,1.0)))*(sin(theta)/(pow(Rterm,2)) - 3*(z - rObs*cos(theta))*z*sin(theta)/(pow(←↩
Rterm,4)))*((I3/eta * exp(-1.0*timeShiftTerm/tau2)) * (1.0 - exp(-1.0*omega0*←↩
timeShiftTerm) * singleSumTerm) + I2*(exp(-1.0*timeShiftTerm/tau3) - exp(-1.0*←↩
timeShiftTerm/tau4)));

89

90 double EtRadiation = (exp((-1.0*abs(z)*currentDecay)/lamdac)/(4.0*pi*epsilon*pow(c←↩
,2.0)))*(sin(theta)/(pow(Rterm,1)) - 1*(z - rObs*cos(theta))*z*sin(theta)/(pow(←↩
Rterm,3)))*((I3/eta * exp(-1.0*timeShiftTerm/tau2)) * (exp(-1.0*omega0*←↩
timeShiftTerm)*pow(omega0,Na + 1)*pow(timeShiftTerm, Na) / factorial[Na] - 1.0/←↩
tau2 * (1.0 -1.0*exp(-1.0*omega0*timeShiftTerm)*singleSumTerm)) + I2*(-1.0/←↩
tau3 * exp(-1.0*timeShiftTerm/tau3) + 1.0/tau4 * exp(-1.0*timeShiftTerm/tau4)));

91

92 double EfieldT = EtStatic + EtRadiation + EtInduction;
93

94 return EfieldT;
95 }
96 }
97

98 // This function integrates the ErField strength of the positive lightning channel.
99 double EfieldT::integrateZUpper(double t, double theta, double rObs, int N){

100

101 double upperZ = (rObs / (1.0 - pow(vchan / c, 2.0)))*(-1.0 * pow(vchan / c, 2.0) * ←↩
cos(theta) + (vchan * t) / rObs - vchan / c * sqrt(1.0 - pow(vchan / c , 2.0) +←↩
pow(vchan * t / rObs, 2.0) + pow(vchan * cos(theta) / c , 2.0) - 2.0 * vchan * ←↩
t * cos(theta) / rObs));

102

103 // Trapezoidal Integration
104 double result = EtDifferential(0.0, t, theta, rObs) + EtDifferential(upperZ, t, theta, ←↩

rObs);
105 double dz = (upperZ) / ((double) N);
106

107 for (double z = dz; z < upperZ; z+=dz){
108 result += 2 * EtDifferential(z, t, theta, rObs);
109 }

Appendix C - Finite Antenna C++ Code 118

110 result *= upperZ / (2.0 * (double) N);
111

112 return result;
113 }
114

115 // This integrates the ErField strength of the lightning channel image (below ground).
116 double EfieldT::integrateZLower(double t, double theta, double rObs, int N){
117

118 double lowerZ = (rObs / (1.0 - pow(vchan / c, 2.0)))*(-1.0 * pow(vchan / c, 2.0) * ←↩
cos(pi - theta) + (vchan * t) / rObs - vchan / c * sqrt(1.0 - pow(vchan / c , ←↩
2.0) + pow(vchan * t / rObs, 2.0) + pow(vchan * cos(pi - theta) / c , 2.0) - ←↩
2.0 * vchan * t * cos(pi - theta) / rObs));

119

120 // Trapezoidal Integration
121 double result = EtDifferential(0.0, t, theta, rObs) + EtDifferential(-1.0*lowerZ, t, ←↩

theta, rObs);
122 double dz = (lowerZ) / ((double) N);
123

124 for (double z = dz; z < lowerZ; z+=dz){
125 result += 2 * EtDifferential(-1.0*z, t, theta, rObs);
126 }
127 result *= lowerZ / (2.0 * (double) N);
128

129 return result;
130 }
131

132 // This function performs an integral over the positive and negative lightning
133 // channels. It performs this integral at a specific time instant over the
134 // entire applicable lightning channel. The applicable lightning channel length
135 // is dependant on the time taken for current to travel in the channel.
136 // The returned result is the field value at the time instant.
137 // The input parameters are the time instant of interest (t), observation point
138 // angle (theta), observation point radial distance (rObs), and N is the
139 // amount of integration steps in each integral stage, regardless of channel
140 // length.
141 double EfieldT::integrateZ(double t, double theta, double rObs, int N){
142 return integrateZUpper(t,theta,rObs,N) + integrateZLower(t,theta,rObs,N);
143 }

Listing C.6: 2D_FINANT_Settings.csv
1 tau1,0.072,us,
2 tau2,5,us,
3 tau3,100,us,
4 tau4,6,us,
5 lamdac,2000,nucciconst,
6 currentDecay,0,trueorfalse,
7 I1,9900,A,
8 I2,7500,A,
9 I3,9550,A,

10 eta,0.845,number,
11 Na,3,teresnumber,
12 vp,299792458,m/s,
13 vchan,150000000,m/s,
14 rObs,50,m,
15 observationAngleDeg,90,deg,
16 integrationSteps,1000,int,
17 deltaT,5,ns,
18 simRunTime,5167,ns,

Appendix D

3D Cartesian FDTD Code

Listing D.1: main.cpp
1 #include <iostream>
2 #include <cmath>
3 #include <iomanip>
4 #include <fstream>
5 #include <cstdlib>
6 #include <string>
7 using namespace std;
8

9 #include "FDTDCart3D.h"
10

11 int main(int argc, char const *argv[]){
12 FDTDCart3D lightningStroke("3D_Settings_File.csv", argc, argv);
13 lightningStroke.PrintMinimalSimParameters();
14 // lightningStroke.fourierSource();
15 lightningStroke.EvaluateFDTDPlane();
16 }

Listing D.2: FDTDCart3D.h
1 #include <iostream>
2 #include <cmath>
3 #include <iomanip>
4 #include <fstream>
5 #include <cstdlib>
6 #include <string>
7 using namespace std;
8

9 class FDTDCart3D{
10 public:
11 FDTDCart3D(string settingsFile, int argc, char const *argv[]);
12 void EvaluateFDTDPlane();
13 void setSimulationParameters(string settingsFile);
14 void PrintMinimalSimParameters();
15 double NucciTeresCurrent(double z, double t);
16

17 // **
18 // ********************* Boundary Related ***************************
19 void Mur2nRBC();
20 void Xplanebound_Mur2nRBC();
21 void Yplanebound_Mur2nRBC();
22 void Zplanebound_Mur2nRBC();
23

119

Appendix D - 3D FDTD C++ Code 120

24 void Xupright_edges();
25 void Yupright_edges();
26 void Zupright_edges();
27

28 private:
29 // These are variables provided in the Settings file.
30 float vp;
31 float vchan;
32 float f0;
33 float gridSizeX, gridSizeY, gridSizeZ;
34 float deltaX, deltaY, deltaZ;
35 float deltaT;
36 int useDTfromfile;
37 float simRunTime;
38 double tau1, tau2, tau3, tau4;
39 double lamdac;
40 int currentDecay;
41 double I1, I2, I3;
42 int Na;
43 double eta, omega0;
44 float rObs,hObs;
45

46 // These are the normal class variables. They need to be assigned in the constructor.
47 int currentTime;
48 int timeMinus1;
49 int timeMinus2;
50 int tempAddress;
51

52 float idealGridSize;
53 float optimalDeltaT;
54

55 float ExFSC, EyFSC, EzFSC;
56 float HxFSC, HyFSC, HzFSC;
57

58 // The "steps" define the number of steps in the respective directions. The origin is in
59 // the middle of the plane with gridsize variable length in every direction of the origin.
60 int isteps, jsteps, ksteps;
61 int nSteps;
62 int iorigin, jorigin, korigin;
63 int XOBS, ZOBS;
64

65 double*** EfieldX;
66 double*** EfieldY;
67 double*** EfieldZ;
68 double*** HfieldX;
69 double*** HfieldY;
70 double*** HfieldZ;
71

72 // These are the upper and lower boundries of the evaluation plane. This is the right and
73 // left hand walls respectively. In the lower boundry the outer column is 0, and the inner
74 // is 1. In the Upper boundry the outer column is 1, and the inner is 0.
75

76 // X- Bound
77 double*** EzXLowerBndrTmin1;
78 double*** EzXLowerBndrTmin2;
79 double*** EzXUpperBndrTmin1;
80 double*** EzXUpperBndrTmin2;
81

82 double*** EyXLowerBndrTmin1;
83 double*** EyXLowerBndrTmin2;
84 double*** EyXUpperBndrTmin1;
85 double*** EyXUpperBndrTmin2;
86

87 // Y- Bound
88 double*** EzYLowerBndrTmin1;
89 double*** EzYLowerBndrTmin2;
90 double*** EzYUpperBndrTmin1;
91 double*** EzYUpperBndrTmin2;

Appendix D - 3D FDTD C++ Code 121

92

93 double*** ExYLowerBndrTmin1;
94 double*** ExYLowerBndrTmin2;
95 double*** ExYUpperBndrTmin1;
96 double*** ExYUpperBndrTmin2;
97

98 // Z- Bound
99 double*** EyZLowerBndrTmin1;

100 double*** EyZLowerBndrTmin2;
101 double*** EyZUpperBndrTmin1;
102 double*** EyZUpperBndrTmin2;
103

104 double*** ExZLowerBndrTmin1;
105 double*** ExZLowerBndrTmin2;
106 double*** ExZUpperBndrTmin1;
107 double*** ExZUpperBndrTmin2;
108

109 // These are the precalculated variables used to save computational time.
110 const double pi = (4.0 * atan(1.0));
111 const double c = 299792458;
112 const double mu = 4 * pi * pow(10.0, -7.0);
113 const double epsilon = 8.8541878176 * pow(10.0, -12.0);
114 float theta;
115 float timeToReachObservationPoint;
116 int percentProgress;
117 int factorial[13];
118

119 char partATestID[128];
120 char partBTestID[128];
121 char ExFieldcurvename[128];
122 char EyFieldcurvename[128];
123 char EzFieldcurvename[128];
124 char ErFieldcurvename[128];
125 char EtFieldcurvename[128];
126

127 };

Listing D.3: FDTDCart3D.cpp
1 #include <iostream>
2 #include <cmath>
3 #include <iomanip>
4 #include <fstream>
5 #include <cstdlib>
6 #include <string>
7 #include <algorithm>
8

9 #include "FDTDCart3D.h"
10

11 using namespace std;
12

13 // This is a macro for the 3D array instantiation. This is a way to create a contiguous array
14 // of memory. Standard methods don't work due to array sizes, and heap memory size. The last
15 // index is K. IE, this is the index that should be used the most. From my understanding when
16 // memory is called for use the compiler will load a batch of the surrounding memory points.
17 // Therefore you will see in later code that the K index is always in the inner most loop
18 // (called most often). This macro also zero's the array.
19 #define create3Darray(fieldname, isteps, jsteps, ksteps) \
20 double*** fieldname = (double***) new double**[isteps]; \
21 for(int i = 0; i < isteps; i++) { \
22 fieldname[i]=(double**)new double*[jsteps]; \
23 for (int j=0; j<jsteps; j++) { \
24 fieldname[i][j]=(double*)new double[ksteps]; \
25 } \
26 } \
27 for(int i=0; i != isteps ; i++){ \

Appendix D - 3D FDTD C++ Code 122

28 for(int j=0; j != jsteps ; j++){ \
29 for(int k=0; k != ksteps ; k++) \
30 fieldname[i][j][k] =0; \
31 } \
32 }
33

34 // This is a macro for the 1D array instantiation.
35 #define create1Darray(fieldname, steps) \
36 double* fieldname = (double*) new double[steps]; \
37 for(int i=0; i != steps ; i++){ \
38 fieldname[i] = 0; \
39 }
40

41 // Constructor. It needs a settings file and command line arguments to be passed to it.
42 FDTDCart3D::FDTDCart3D(string settingsFile, int argc, char const *argv[]){
43

44 setSimulationParameters(settingsFile);
45

46 // Character strings for file naming.
47 sprintf(partATestID,"D%05gH%04g", rObs*100, hObs*100);
48 sprintf(partBTestID,"Size%04g_%04g_%04g_D%03g_%03g_%03g", gridSizeX, gridSizeY, gridSizeZ←↩

, deltaX*10, deltaY*10, deltaZ*10);
49

50 // Creating Output File names for the different fields. These files are
51 // opened, written to and closed in the main evaluateFDTD function. Also
52 // Note that this is hard coded to save files to the folder: "Simulations".
53 sprintf(ExFieldcurvename, "./Simulations/%sExField%s.curve", partATestID, partBTestID);
54 sprintf(EyFieldcurvename, "./Simulations/%sEyField%s.curve", partATestID, partBTestID);
55 sprintf(EzFieldcurvename, "./Simulations/%sEzField%s.curve", partATestID, partBTestID);
56 sprintf(ErFieldcurvename, "./Simulations/%sErField%s.curve", partATestID, partBTestID);
57 sprintf(EtFieldcurvename, "./Simulations/%sEtField%s.curve", partATestID, partBTestID);
58

59 // These are the factorial numbers for Nucci-Teres current Function.
60 factorial[0] = 1;
61 factorial[1] = 1;
62 factorial[2] = 2;
63 factorial[3] = 6;
64 factorial[4] = 24;
65 factorial[5] = 120;
66 factorial[6] = 720;
67 factorial[7] = 5040;
68 factorial[8] = 40320;
69 factorial[9] = 362880;
70 factorial[10] = 3628800;
71 factorial[11] = 39916800;
72 factorial[12] = 479001600;
73

74 // Calculation of DeltaT. This assumes a CFL condition of 1.
75 optimalDeltaT = 1/(vp*sqrt(pow(deltaX,-2) + pow(deltaY,-2) + pow(deltaZ,-2)));
76

77 // This is the "Thumbsuck Rule" for Terespolski Function.
78 omega0 = (double)Na / tau1;
79

80 // To use the DT from the file, set the variable to 1, else the DT will be optimal.
81 if(useDTfromfile != 1){
82 deltaT = optimalDeltaT;
83 }
84

85 // These are the free space constants (FSC) used in my simplified example.
86 // Under complex environments with different objects, these constants would
87 // consist of 3D matrices that describe the different materials in space.
88 ExFSC = deltaT / epsilon;
89 EyFSC = deltaT / epsilon;
90 EzFSC = deltaT / epsilon;
91 HxFSC = deltaT / mu;
92 HyFSC = deltaT / mu;
93 HzFSC = deltaT / mu;
94

Appendix D - 3D FDTD C++ Code 123

95 // These are the node steps in the 3 co-ordinate system.
96 isteps = int((gridSizeX*2)/deltaX);
97 jsteps = int((gridSizeY*2)/deltaY);
98 ksteps = int((gridSizeZ)/deltaZ); // I dont want the negative plane.
99 // Center point of simulation space.

100 iorigin = int(isteps/2);
101 jorigin = int(jsteps/2);
102 korigin = int(ksteps/2);
103

104 // Observation point distance to node conversion.
105 XOBS = rObs/deltaX;
106 ZOBS = hObs/deltaZ;
107

108 // Tim Steps
109 nSteps = int(simRunTime/deltaT);
110

111 // Time to source:
112 timeToReachObservationPoint = (sqrt(pow(rObs,2) + pow(hObs,2)))/vp;
113

114 // Co-ordinate conversions.
115 // This is the angle between the Z axis and observation point.
116 theta = atan(rObs/hObs);
117

118 // EM Fields
119 // Create the 3D array pointers here.
120 create3Darray(tempEfieldX, isteps-1, jsteps, ksteps);
121 create3Darray(tempEfieldY, isteps, jsteps-1, ksteps);
122 create3Darray(tempEfieldZ, isteps, jsteps, ksteps-1);
123 create3Darray(tempHfieldX, isteps, jsteps-1, ksteps-1);
124 create3Darray(tempHfieldY, isteps-1, jsteps, ksteps-1);
125 create3Darray(tempHfieldZ, isteps-1, jsteps-1, ksteps);
126 // Assign the 3D array pointers here.
127 EfieldX = tempEfieldX;
128 EfieldY = tempEfieldY;
129 EfieldZ = tempEfieldZ;
130 HfieldX = tempHfieldX;
131 HfieldY = tempHfieldY;
132 HfieldZ = tempHfieldZ;
133

134 // X- Bound
135 // Create boundary matrix pointers.
136 create3Darray(XtempBoundry1, 2, jsteps, ksteps-1);
137 create3Darray(XtempBoundry2, 2, jsteps, ksteps-1);
138 create3Darray(XtempBoundry3, 2, jsteps, ksteps-1);
139 create3Darray(XtempBoundry4, 2, jsteps, ksteps-1);
140 create3Darray(XtempBoundry5, 2, jsteps-1, ksteps);
141 create3Darray(XtempBoundry6, 2, jsteps-1, ksteps);
142 create3Darray(XtempBoundry7, 2, jsteps-1, ksteps);
143 create3Darray(XtempBoundry8, 2, jsteps-1, ksteps);
144 // Assign the boundary pointers here.
145 EzXLowerBndrTmin1 = XtempBoundry1;
146 EzXLowerBndrTmin2 = XtempBoundry2;
147 EzXUpperBndrTmin1 = XtempBoundry3;
148 EzXUpperBndrTmin2 = XtempBoundry4;
149

150 EyXLowerBndrTmin1 = XtempBoundry5;
151 EyXLowerBndrTmin2 = XtempBoundry6;
152 EyXUpperBndrTmin1 = XtempBoundry7;
153 EyXUpperBndrTmin2 = XtempBoundry8;
154

155 // Y- Bound
156 // Create boundary matrix pointers.
157 create3Darray(YtempBoundry1, isteps, 2, ksteps-1);
158 create3Darray(YtempBoundry2, isteps, 2, ksteps-1);
159 create3Darray(YtempBoundry3, isteps, 2, ksteps-1);
160 create3Darray(YtempBoundry4, isteps, 2, ksteps-1);
161 create3Darray(YtempBoundry5, isteps-1, 2, ksteps);
162 create3Darray(YtempBoundry6, isteps-1, 2, ksteps);

Appendix D - 3D FDTD C++ Code 124

163 create3Darray(YtempBoundry7, isteps-1, 2, ksteps);
164 create3Darray(YtempBoundry8, isteps-1, 2, ksteps);
165 // Assign the boundary pointers here.
166 EzYLowerBndrTmin1 = YtempBoundry1;
167 EzYLowerBndrTmin2 = YtempBoundry2;
168 EzYUpperBndrTmin1 = YtempBoundry3;
169 EzYUpperBndrTmin2 = YtempBoundry4;
170

171 ExYLowerBndrTmin1 = YtempBoundry5;
172 ExYLowerBndrTmin2 = YtempBoundry6;
173 ExYUpperBndrTmin1 = YtempBoundry7;
174 ExYUpperBndrTmin2 = YtempBoundry8;
175

176 // Z- Bound
177 // Create boundary matrix pointers.
178 create3Darray(ZtempBoundry1, isteps, jsteps-1, 2);
179 create3Darray(ZtempBoundry2, isteps, jsteps-1, 2);
180 create3Darray(ZtempBoundry3, isteps, jsteps-1, 2);
181 create3Darray(ZtempBoundry4, isteps, jsteps-1, 2);
182 create3Darray(ZtempBoundry5, isteps-1, jsteps, 2);
183 create3Darray(ZtempBoundry6, isteps-1, jsteps, 2);
184 create3Darray(ZtempBoundry7, isteps-1, jsteps, 2);
185 create3Darray(ZtempBoundry8, isteps-1, jsteps, 2);
186 // Assign the boundary pointers here.
187 EyZLowerBndrTmin1 = ZtempBoundry1;
188 EyZLowerBndrTmin2 = ZtempBoundry2;
189 EyZUpperBndrTmin1 = ZtempBoundry3;
190 EyZUpperBndrTmin2 = ZtempBoundry4;
191

192 ExZLowerBndrTmin1 = ZtempBoundry5;
193 ExZLowerBndrTmin2 = ZtempBoundry6;
194 ExZUpperBndrTmin1 = ZtempBoundry7;
195 ExZUpperBndrTmin2 = ZtempBoundry8;
196 }
197

198 // This function is passed a file name string and extracts the required simulation variables
199 // from the file and assigns them to the relevant variables of the class. Care must be taken
200 // to ensure that the settings file is formatted correctly. Remember that some of the
201 // variables may be changed from file values if command line arguments are given.
202 void FDTDCart3D::setSimulationParameters(string settingsFile){
203

204 ifstream inputFromFile(settingsFile, ios::in);
205

206 if(!inputFromFile){
207 cerr << "File could not be opened!" << endl;
208 exit(1);
209 }
210

211 string UnitName, Value, Units;
212

213 while(getline(inputFromFile, UnitName, ',')){
214

215 // This next line of code removes the newline character from my settings file when it
216 // is read into the variables. This was only an issue with the UnitName variable.
217 UnitName.erase(std::remove(UnitName.begin(), UnitName.end(), '\n'), UnitName.end());
218 getline(inputFromFile, Value, ',');
219 getline(inputFromFile, Units, ',');// This variable does not get used.
220

221 if(UnitName == "vp"){vp = std::stof(Value);}
222 else if(UnitName == "vchan"){vchan = std::stof(Value);}
223 else if(UnitName == "f0"){f0 = std::stof(Value);}
224 else if(UnitName == "gridSizeX"){gridSizeX = std::stof(Value);}
225 else if(UnitName == "gridSizeY"){gridSizeY = std::stof(Value);}
226 else if(UnitName == "gridSizeZ"){gridSizeZ = std::stof(Value);}
227 else if(UnitName == "deltaX"){deltaX = std::stof(Value);}
228 else if(UnitName == "deltaY"){deltaY = std::stof(Value);}
229 else if(UnitName == "deltaZ"){deltaZ = std::stof(Value);}
230 else if(UnitName == "deltaT"){deltaT = std::stof(Value) * pow(10,-9);}

Appendix D - 3D FDTD C++ Code 125

231 else if(UnitName == "useDTfromfile"){useDTfromfile = std::stoi(Value);}
232 else if(UnitName == "simRunTime"){simRunTime = std::stof(Value) * pow(10,-9);}
233 else if(UnitName == "tau1"){tau1 = std::stof(Value) * pow(10,-6);}
234 else if(UnitName == "tau2"){tau2 = std::stof(Value) * pow(10,-6);}
235 else if(UnitName == "tau3"){tau3 = std::stof(Value) * pow(10,-6);}
236 else if(UnitName == "tau4"){tau4 = std::stof(Value) * pow(10,-6);}
237 else if(UnitName == "lamdac"){lamdac = std::stof(Value);}
238 else if(UnitName == "currentDecay"){currentDecay = std::stof(Value);}
239 else if(UnitName == "I1"){I1 = std::stof(Value);}
240 else if(UnitName == "I2"){I2 = std::stof(Value);}
241 else if(UnitName == "I3"){I3 = std::stof(Value);}
242 else if(UnitName == "eta"){eta = std::stof(Value);}
243 else if(UnitName == "Na"){Na = std::stof(Value);}
244 else if(UnitName == "rObs"){rObs = std::stof(Value);}
245 else if(UnitName == "hObs"){hObs = std::stof(Value);}
246 else{ cout << "Variable "<< UnitName << " : " << Value <<" was not assigned." << endl;}
247 }
248 }
249

250 // This function prints the minimal Sim variables for batch script simulations.
251 void FDTDCart3D::PrintMinimalSimParameters(){
252 cout << "**" << endl;
253 cout <<"Simulation Variables:" <<endl;
254 cout <<"Requested rObs: " <<rObs <<". Actual rObs: " <<XOBS*deltaX << endl;
255 cout <<"Requested hObs: " <<hObs <<". Actual hObs: " <<ZOBS*deltaZ << endl;
256 cout <<"SizeX -SizeY -SizeZ -dX -dY -dZ -simTime" <<endl;
257 cout <<gridSizeX << " " << gridSizeY << " " << gridSizeZ << " " << deltaX << "←↩

" << deltaY << " " << deltaZ << " " << simRunTime << endl;
258 }
259

260 // This is the main workhorse of the Class. It will itterate through the matrix variables of
261 // the FDTD plane and calculate the EM fields at every cell at every time. I will eventually
262 // add smaller functions to handle the different aspects but for now this will be the main
263 // workhorse of the program. Has no inputs, but uses the private variables in the header.
264 void FDTDCart3D::EvaluateFDTDPlane(){
265

266 // Open the output data field files:
267 ofstream observationPointExField(ExFieldcurvename);
268 ofstream observationPointEyField(EyFieldcurvename);
269 ofstream observationPointEzField(EzFieldcurvename);
270 ofstream observationPointErField(ErFieldcurvename);
271 ofstream observationPointEtField(EtFieldcurvename);
272 // Write the output file headers:
273 observationPointExField << "#EfieldX" << endl;
274 observationPointEyField << "#EfieldY" << endl;
275 observationPointEzField << "#EfieldZ" << endl;
276 observationPointErField << "#EfieldR" << endl;
277 observationPointEtField << "#EfieldTheta" << endl;
278

279 cout << "**" << endl;
280 cout << "Starting Simulation Time Steps: " << endl;
281

282 // This is where the time stepping starts.
283 for(int n=0; n!=nSteps; n++){
284

285 cout <<"Progress " << ((n*deltaT)/simRunTime)*100.00 << "\% \r" ;
286 std::cout.flush();
287

288 // Magnetic Field Update Equation
289 for(int i=0; i != isteps; i++){
290 for(int j=0; j != jsteps-1; j++){
291 for(int k=0; k != ksteps-1; k++){
292 HfieldX[i][j][k] = HfieldX[i][j][k] + HxFSC * ((EfieldY[i][j][k+1] - EfieldY[i←↩

][j][k])/deltaZ - (EfieldZ[i][j+1][k] - EfieldZ[i][j][k])/deltaY);
293 }
294 }
295 }
296 for(int i=0; i != isteps-1; i++){

Appendix D - 3D FDTD C++ Code 126

297 for(int j=0; j != jsteps; j++){
298 for(int k=0; k != ksteps-1; k++){
299 HfieldY[i][j][k] = HfieldY[i][j][k] + HyFSC * ((EfieldZ[i+1][j][k] - EfieldZ[i←↩

][j][k])/deltaX - (EfieldX[i][j][k+1] - EfieldX[i][j][k])/deltaZ);
300 }
301 }
302 }
303 for(int i=0; i != isteps-1; i++){
304 for(int j=0; j != jsteps-1; j++){
305 for(int k=0; k != ksteps; k++){
306 HfieldZ[i][j][k] = HfieldZ[i][j][k] + HzFSC * ((EfieldX[i][j+1][k] - EfieldX[i←↩

][j][k])/deltaY - (EfieldY[i+1][j][k] - EfieldY[i][j][k])/deltaX);
307 }
308 }
309 }
310

311 // Electric Field Update Equation
312 for(int i=0; i != isteps-1; i++){
313 for(int j=1; j != jsteps-1; j++){
314 for(int k=1; k != ksteps-1; k++){
315 EfieldX[i][j][k] = EfieldX[i][j][k] + ExFSC * ((HfieldZ[i][j][k] - HfieldZ[i][j←↩

-1][k])/deltaY - (HfieldY[i][j][k] - HfieldY[i][j][k-1])/deltaZ);
316 }
317 }
318 }
319 for(int i=1; i != isteps-1; i++){
320 for(int j=0; j != jsteps-1; j++){
321 for(int k=1; k != ksteps-1; k++){
322 EfieldY[i][j][k] = EfieldY[i][j][k] + EyFSC * ((HfieldX[i][j][k] - HfieldX[i][j←↩

][k-1])/deltaZ - (HfieldZ[i][j][k] - HfieldZ[i-1][j][k])/deltaX);
323 }
324 }
325 }
326 for(int i=1; i != isteps-1; i++){
327 for(int j=1; j != jsteps-1; j++){
328 for(int k=0; k != ksteps-1; k++){
329 EfieldZ[i][j][k] = EfieldZ[i][j][k] + EzFSC * ((HfieldY[i][j][k] - HfieldY[i←↩

-1][j][k])/deltaX - (HfieldX[i][j][k] - HfieldX[i][j-1][k])/deltaY);
330 }
331 }
332 }
333

334 // Source
335 // Add the phased current elements along the lightning channel.
336 // x=0, y=0, z=0->Zmax
337 for(int k=0; k!=ksteps; k++){
338 // Note the negative sign below. This is to account for negative current.
339 EfieldZ[iorigin][jorigin][k] = EfieldZ[iorigin][jorigin][k] - (deltaT/(epsilon*←↩

deltaX*deltaY))*NucciTeresCurrent((k+0.5)*deltaZ, n*deltaT);
340 }
341 // EfieldZ[iorigin][jorigin][korigin] = 1000*sin(SINEwaveConstant*n);
342

343 // Boundary Condition
344 Mur2nRBC();
345

346 // Write field data to output files.
347 // The "if" check ensures that data is only written from the point when the EM field
348 // first reaches the observation point. This step also does the co-ordinate
349 // conversion for Cartesian to Spherical field components. Note that all these fields
350 // are measured on the Y=0 axis. This is hard coded for my work, but can be changed
351 // here for convenience. I chose this because it simplifies co-ordinate conversion
352 // for the third direction in spherical. In this case,Ey=Ephi
353 if(n*deltaT >= timeToReachObservationPoint){
354 observationPointExField<<(n*deltaT-timeToReachObservationPoint)*pow(10,+9)<<" "<<←↩

EfieldX[iorigin+XOBS][jorigin][ZOBS]<<endl;
355 observationPointEyField<<(n*deltaT-timeToReachObservationPoint)*pow(10,+9)<<" "<<←↩

EfieldY[iorigin+XOBS][jorigin][ZOBS] << endl;

Appendix D - 3D FDTD C++ Code 127

356 observationPointEzField<<(n*deltaT-timeToReachObservationPoint)*pow(10,+9)<<" "<<←↩
EfieldZ[iorigin+XOBS][jorigin][ZOBS] << endl;

357 observationPointErField<<(n*deltaT-timeToReachObservationPoint)*pow(10,+9)<<" "<< ←↩
+1*(cos(theta)*EfieldZ[iorigin+XOBS][jorigin][ZOBS] + sin(theta)*EfieldX[←↩
iorigin+XOBS][jorigin][ZOBS]) << endl;

358 observationPointEtField<<(n*deltaT-timeToReachObservationPoint)*pow(10,+9)<<" "<< ←↩
+1*(-1*sin(theta)*EfieldZ[iorigin+XOBS][jorigin][ZOBS] + cos(theta)*EfieldX[←↩
iorigin+XOBS][jorigin][ZOBS]) << endl;

359 }
360 }
361

362 cout << endl;
363 cout << "Simulation Complete." << endl;
364 cout << "**" << endl;
365 cout << endl;
366

367 // Close the data files.
368 observationPointExField.close();
369 observationPointEyField.close();
370 observationPointEzField.close();
371 observationPointErField.close();
372 observationPointEtField.close();
373 }
374

375 // This is a function that returns the current along a lightning channel.
376 // It takes in the time of interest and location on the channel.
377 double FDTDCart3D::NucciTeresCurrent(double z, double t){
378 // Max Current Is: 10975.6 at 280 ns
379 // 10% of Max Current Is: 1097.56 at 192182 ns
380 if(t - abs(z) / vchan < 0){ return 0; }
381 else{
382 double sum = 0;
383 for (int i = 0; i <= Na; i++){
384 sum += pow(omega0 * (t - abs(z) / vchan), i) / factorial[i];
385 }
386

387 double current = (exp((-1.0*abs(z)*currentDecay)/lamdac)) * ((I3 / eta * exp(-1.0 * ←↩
(t - abs(z) / vchan) / tau2)) * (1.0 - exp(-1.0 * omega0 * (t - abs(z)←↩
/ vchan)) * sum) + I2 * (exp(-1.0 * (t - abs(z) / vchan) / tau3) - ←↩
exp(-1.0 * (t - abs(z) / vchan) / tau4)));

388

389 return current;
390 }
391 }
392

393 // This function does the 2nd Order Mur bondary condition for the 3D space. It does not take
394 // inputs and accesses the relevant fields directly. This may be a bad design, but it seems
395 // pointless to input all 6 fields into this function.
396 void FDTDCart3D::Mur2nRBC(){
397

398 Xplanebound_Mur2nRBC();
399 Yplanebound_Mur2nRBC();
400 Zplanebound_Mur2nRBC();
401

402 Xupright_edges();
403 Yupright_edges();
404 Zupright_edges();
405

406 // corners:
407 EfieldX[0][0][0] = EfieldX[0+1][0+1][0+1];
408 EfieldX[isteps-2][0][0] = EfieldX[isteps-3][0+1][0+1];
409 EfieldX[isteps-2][jsteps-1][0] = EfieldX[isteps-3][jsteps-2][0+1];
410 EfieldX[0][jsteps-1][0] = EfieldX[0+1][jsteps-2][0+1];
411 EfieldX[0][0][ksteps-1] = EfieldX[0+1][0+1][ksteps-2];
412 EfieldX[isteps-2][0][ksteps-1] = EfieldX[isteps-3][0+1][ksteps-2];
413 EfieldX[isteps-2][jsteps-1][ksteps-1] = EfieldX[isteps-3][jsteps-2][ksteps-2];
414 EfieldX[0][jsteps-1][ksteps-1] = EfieldX[0+1][jsteps-2][ksteps-2];
415

Appendix D - 3D FDTD C++ Code 128

416 EfieldY[0][0][0] = EfieldY[0+1][0+1][0+1];
417 EfieldY[isteps-1][0][0] = EfieldY[isteps-2][0+1][0+1];
418 EfieldY[isteps-1][jsteps-2][0] = EfieldY[isteps-2][jsteps-3][0+1];
419 EfieldY[0][jsteps-2][0] = EfieldY[0+1][jsteps-3][0+1];
420 EfieldY[0][0][ksteps-1] = EfieldY[0+1][0+1][ksteps-2];
421 EfieldY[isteps-1][0][ksteps-1] = EfieldY[isteps-2][0+1][ksteps-2];
422 EfieldY[isteps-1][jsteps-2][ksteps-1] = EfieldY[isteps-2][jsteps-3][ksteps-2];
423 EfieldY[0][jsteps-2][ksteps-1] = EfieldY[0+1][jsteps-3][ksteps-2];
424

425 EfieldZ[0][0][0] = EfieldZ[0+1][0+1][0+1];
426 EfieldZ[isteps-1][0][0] = EfieldZ[isteps-2][0+1][0+1];
427 EfieldZ[isteps-1][jsteps-1][0] = EfieldZ[isteps-2][jsteps-2][0+1];
428 EfieldZ[0][jsteps-1][0] = EfieldZ[0+1][jsteps-2][0+1];
429 EfieldZ[0][0][ksteps-2] = EfieldZ[0+1][0+1][ksteps-3];
430 EfieldZ[isteps-1][0][ksteps-2] = EfieldZ[isteps-2][0+1][ksteps-3];
431 EfieldZ[isteps-1][jsteps-1][ksteps-2] = EfieldZ[isteps-2][jsteps-2][ksteps-3];
432 EfieldZ[0][jsteps-1][ksteps-2] = EfieldZ[0+1][jsteps-2][ksteps-3];
433 }
434

435 // This function takes in the Ez and Ey field and applies the Mur 2nd Order Radiating
436 // Boundary Conditions. This function is built for a field on the X boundary. Ie having an
437 // update equation that relies on deltaX. Currently the function is built for the Efield, but
438 // may be applicable to the Hfields. This is all related to the co-ordinate system reference
439 // used. My reference is on PG 73 of Umran FDTD TB. All Matrixes/Arrays are passed by
440 // pointed, so the function operates on the original memory.
441 void FDTDCart3D::Xplanebound_Mur2nRBC(){
442

443 //Boundary Conditions for Ez the x=0 and x=max walls. Entire Y-Z plane.
444 for(int j=1; j != jsteps-1; j++){
445 for(int k=1; k != ksteps-2; k++){// Note the size difference for this field range.
446 EfieldZ[0][j][k] = -EzXLowerBndrTmin2[1][j][k] - ((deltaX - vp*deltaT)/(deltaX + vp*←↩

deltaT))*(EfieldZ[1][j][k] + EzXLowerBndrTmin2[0][j][k]) + ((2*deltaX)/(deltaX +←↩
vp*deltaT))*(EzXLowerBndrTmin1[0][j][k] + EzXLowerBndrTmin1[1][j][k]) + ((←↩
deltaX*vp*deltaT*vp*deltaT)/(2*deltaY*deltaY*(deltaX+vp*deltaT)))*(←↩
EzXLowerBndrTmin1[0][j+1][k] -2*EzXLowerBndrTmin1[0][j][k] + EzXLowerBndrTmin1←↩
[0][j-1][k] + EzXLowerBndrTmin1[1][j+1][k] -2*EzXLowerBndrTmin1[1][j][k] + ←↩
EzXLowerBndrTmin1[1][j-1][k]) + ((deltaX*vp*deltaT*vp*deltaT)/(2*deltaZ*deltaZ←↩
*(deltaX+vp*deltaT)))*(EzXLowerBndrTmin1[0][j][k+1] -2*EzXLowerBndrTmin1[0][j][k←↩
] + EzXLowerBndrTmin1[0][j][k-1] + EzXLowerBndrTmin1[1][j][k+1] -2*←↩
EzXLowerBndrTmin1[1][j][k] + EzXLowerBndrTmin1[1][j][k-1]) ;

447

448 EfieldZ[isteps-1][j][k] = -EzXUpperBndrTmin2[0][j][k] - ((deltaX - vp*deltaT)/(deltaX←↩
+ vp*deltaT))*(EfieldZ[isteps-2][j][k] + EzXUpperBndrTmin2[1][j][k]) + ((2*←↩
deltaX)/(deltaX + vp*deltaT))*(EzXUpperBndrTmin1[1][j][k] + EzXUpperBndrTmin1←↩
[0][j][k]) + ((deltaX*vp*deltaT*vp*deltaT)/(2*deltaY*deltaY*(deltaX+vp*deltaT)))←↩
*(EzXUpperBndrTmin1[1][j+1][k] -2*EzXUpperBndrTmin1[1][j][k] + EzXUpperBndrTmin1←↩
[1][j-1][k] + EzXUpperBndrTmin1[0][j+1][k] -2*EzXUpperBndrTmin1[0][j][k] + ←↩
EzXUpperBndrTmin1[0][j-1][k]) + ((deltaX*vp*deltaT*vp*deltaT)/(2*deltaZ*deltaZ←↩
*(deltaX+vp*deltaT)))*(EzXUpperBndrTmin1[1][j][k+1] -2*EzXUpperBndrTmin1[1][j][k←↩
] + EzXUpperBndrTmin1[1][j][k-1] + EzXUpperBndrTmin1[0][j][k+1] -2*←↩
EzXUpperBndrTmin1[0][j][k] + EzXUpperBndrTmin1[0][j][k-1]);

449 }
450 }
451

452 //Updating the min 2 timestep values for the next time step run.
453 for(int j=0; j != jsteps; j++){
454 for(int k=0; k != ksteps-1; k++){
455 EzXLowerBndrTmin2[0][j][k] = EzXLowerBndrTmin1[0][j][k];
456 EzXLowerBndrTmin2[1][j][k] = EzXLowerBndrTmin1[1][j][k];
457 EzXLowerBndrTmin1[0][j][k] = EfieldZ[0][j][k];
458 EzXLowerBndrTmin1[1][j][k] = EfieldZ[1][j][k];
459

460 EzXUpperBndrTmin2[0][j][k] = EzXUpperBndrTmin1[0][j][k];
461 EzXUpperBndrTmin2[1][j][k] = EzXUpperBndrTmin1[1][j][k];
462 EzXUpperBndrTmin1[0][j][k] = EfieldZ[isteps-2][j][k]; //inner 0
463 EzXUpperBndrTmin1[1][j][k] = EfieldZ[isteps-1][j][k]; //outer 1
464 }
465 }

Appendix D - 3D FDTD C++ Code 129

466

467 //Boundary Conditions Ey field at the x=0 and x=max walls. Entire Y-Z plane.
468 for(int j=1; j != jsteps-2; j++){ // Note the size difference for this field range.
469 for(int k=1; k != ksteps-1; k++){
470 EfieldY[0][j][k] = -EyXLowerBndrTmin2[1][j][k] - ((deltaX - vp*deltaT)/(deltaX + vp*←↩

deltaT))*(EfieldY[1][j][k] + EyXLowerBndrTmin2[0][j][k]) + ((2*deltaX)/(deltaX +←↩
vp*deltaT))*(EyXLowerBndrTmin1[0][j][k] + EyXLowerBndrTmin1[1][j][k]) + ((←↩
deltaX*vp*deltaT*vp*deltaT)/(2*deltaY*deltaY*(deltaX+vp*deltaT)))*(←↩
EyXLowerBndrTmin1[0][j+1][k] -2*EyXLowerBndrTmin1[0][j][k] + EyXLowerBndrTmin1←↩
[0][j-1][k] + EyXLowerBndrTmin1[1][j+1][k] -2*EyXLowerBndrTmin1[1][j][k] + ←↩
EyXLowerBndrTmin1[1][j-1][k]) + ((deltaX*vp*deltaT*vp*deltaT)/(2*deltaZ*deltaZ←↩
*(deltaX+vp*deltaT)))*(EyXLowerBndrTmin1[0][j][k+1] -2*EyXLowerBndrTmin1[0][j][k←↩
] + EyXLowerBndrTmin1[0][j][k-1] + EyXLowerBndrTmin1[1][j][k+1] -2*←↩
EyXLowerBndrTmin1[1][j][k] + EyXLowerBndrTmin1[1][j][k-1]) ;

471

472 EfieldY[isteps-1][j][k] = -EyXUpperBndrTmin2[0][j][k] - ((deltaX - vp*deltaT)/(deltaX←↩
+ vp*deltaT))*(EfieldY[isteps-2][j][k] + EyXUpperBndrTmin2[1][j][k]) + ((2*←↩
deltaX)/(deltaX + vp*deltaT))*(EyXUpperBndrTmin1[1][j][k] + EyXUpperBndrTmin1←↩
[0][j][k]) + ((deltaX*vp*deltaT*vp*deltaT)/(2*deltaY*deltaY*(deltaX+vp*deltaT)))←↩
*(EyXUpperBndrTmin1[1][j+1][k] -2*EyXUpperBndrTmin1[1][j][k] + EyXUpperBndrTmin1←↩
[1][j-1][k] + EyXUpperBndrTmin1[0][j+1][k] -2*EyXUpperBndrTmin1[0][j][k] + ←↩
EyXUpperBndrTmin1[0][j-1][k]) + ((deltaX*vp*deltaT*vp*deltaT)/(2*deltaZ*deltaZ←↩
*(deltaX+vp*deltaT)))*(EyXUpperBndrTmin1[1][j][k+1] -2*EyXUpperBndrTmin1[1][j][k←↩
] + EyXUpperBndrTmin1[1][j][k-1] + EyXUpperBndrTmin1[0][j][k+1] -2*←↩
EyXUpperBndrTmin1[0][j][k] + EyXUpperBndrTmin1[0][j][k-1]);

473 }
474 }
475

476 //Updating the min 2 timestep values for the next time step run.
477 for(int j=0; j != jsteps-1; j++){
478 for(int k=0; k != ksteps; k++){
479 EyXLowerBndrTmin2[0][j][k] = EyXLowerBndrTmin1[0][j][k];
480 EyXLowerBndrTmin2[1][j][k] = EyXLowerBndrTmin1[1][j][k];
481 EyXLowerBndrTmin1[0][j][k] = EfieldY[0][j][k];
482 EyXLowerBndrTmin1[1][j][k] = EfieldY[1][j][k];
483

484 EyXUpperBndrTmin2[0][j][k] = EyXUpperBndrTmin1[0][j][k];
485 EyXUpperBndrTmin2[1][j][k] = EyXUpperBndrTmin1[1][j][k];
486 EyXUpperBndrTmin1[0][j][k] = EfieldY[isteps-2][j][k]; //inner 0
487 EyXUpperBndrTmin1[1][j][k] = EfieldY[isteps-1][j][k]; //outer 1
488 }
489 }
490 }
491

492 // This function takes in the Ez and Ex field and applies the Mur 2nd Order Radiating
493 // Boundary Conditions. This function is built for a field on the Y boundary. Ie having an
494 // update equation that relies on deltaY. Currently the function is built for the Efield, but
495 // may be applicable to the Hfields. This is all related to the co-ordinate system reference
496 // used. My reference is on PG 73 of Umran FDTD TB. All Matrixes/Arrays are passed by
497 // pointed, so the function operates on the original memory.
498 void FDTDCart3D::Yplanebound_Mur2nRBC(){
499

500 //Boundary Conditions for Ez field at the y=0 and y=max walls. Entire X-Z plane.
501 for(int i=1; i != isteps-1; i++){
502 for(int k=1; k != ksteps-2; k++){
503 EfieldZ[i][0][k] = -EzYLowerBndrTmin2[i][1][k] - ((deltaY - vp*deltaT)/(deltaY + vp*←↩

deltaT))*(EfieldZ[i][1][k] + EzYLowerBndrTmin2[i][0][k]) + ((2*deltaY)/(deltaY +←↩
vp*deltaT))*(EzYLowerBndrTmin1[i][0][k] + EzYLowerBndrTmin1[i][1][k]) + ((←↩
deltaY*vp*deltaT*vp*deltaT)/(2*deltaX*deltaX*(deltaY+vp*deltaT)))*(←↩
EzYLowerBndrTmin1[i+1][0][k] -2*EzYLowerBndrTmin1[i][0][k] + EzYLowerBndrTmin1[i←↩
-1][0][k] + EzYLowerBndrTmin1[i+1][1][k] -2*EzYLowerBndrTmin1[i][1][k] + ←↩
EzYLowerBndrTmin1[i-1][1][k]) + ((deltaY*vp*deltaT*vp*deltaT)/(2*deltaZ*deltaZ←↩
*(deltaY+vp*deltaT)))*(EzYLowerBndrTmin1[i][0][k+1] -2*EzYLowerBndrTmin1[i][0][k←↩
] + EzYLowerBndrTmin1[i][0][k-1] + EzYLowerBndrTmin1[i][1][k+1] -2*←↩
EzYLowerBndrTmin1[i][1][k] + EzYLowerBndrTmin1[i][1][k-1]) ;

504

Appendix D - 3D FDTD C++ Code 130

505 EfieldZ[i][jsteps-1][k] = -EzYUpperBndrTmin2[i][0][k] - ((deltaY - vp*deltaT)/(deltaY←↩
+ vp*deltaT))*(EfieldZ[i][jsteps-2][k] + EzYUpperBndrTmin2[i][1][k]) + ((2*←↩
deltaY)/(deltaY + vp*deltaT))*(EzYUpperBndrTmin1[i][1][k] + EzYUpperBndrTmin1[i←↩
][0][k]) + ((deltaY*vp*deltaT*vp*deltaT)/(2*deltaX*deltaX*(deltaY+vp*deltaT)))*(←↩
EzYUpperBndrTmin1[i+1][1][k] -2*EzYUpperBndrTmin1[i][1][k] + EzYUpperBndrTmin1[i←↩
-1][1][k] + EzYUpperBndrTmin1[i+1][0][k] -2*EzYUpperBndrTmin1[i][0][k] + ←↩
EzYUpperBndrTmin1[i-1][0][k]) + ((deltaY*vp*deltaT*vp*deltaT)/(2*deltaZ*deltaZ←↩
*(deltaY+vp*deltaT)))*(EzYUpperBndrTmin1[i][1][k+1] -2*EzYUpperBndrTmin1[i][1][k←↩
] + EzYUpperBndrTmin1[i][1][k-1] + EzYUpperBndrTmin1[i][0][k+1] -2*←↩
EzYUpperBndrTmin1[i][0][k] + EzYUpperBndrTmin1[i][0][k-1]);

506 }
507 }
508

509 //Updating the min 2 timestep values for the next time step run.
510 for(int i=0; i != isteps; i++){
511 for(int k=0; k != ksteps-1; k++){
512 EzYLowerBndrTmin2[i][0][k] = EzYLowerBndrTmin1[i][0][k];
513 EzYLowerBndrTmin2[i][1][k] = EzYLowerBndrTmin1[i][1][k];
514 EzYLowerBndrTmin1[i][0][k] = EfieldZ[i][0][k];
515 EzYLowerBndrTmin1[i][1][k] = EfieldZ[i][1][k];
516

517 EzYUpperBndrTmin2[i][0][k] = EzYUpperBndrTmin1[i][0][k];
518 EzYUpperBndrTmin2[i][1][k] = EzYUpperBndrTmin1[i][1][k];
519 EzYUpperBndrTmin1[i][0][k] = EfieldZ[i][jsteps-2][k]; //inner 0
520 EzYUpperBndrTmin1[i][1][k] = EfieldZ[i][jsteps-1][k]; //outer 1
521 }
522 }
523

524 //Boundary Conditions for Ex field at the y=0 and y=max walls. Entire X-Z plane.
525 for(int i=1; i != isteps-2; i++){
526 for(int k=1; k != ksteps-1; k++){
527 EfieldX[i][0][k] = -ExYLowerBndrTmin2[i][1][k] - ((deltaY - vp*deltaT)/(deltaY + vp*←↩

deltaT))*(EfieldX[i][1][k] + ExYLowerBndrTmin2[i][0][k]) + ((2*deltaY)/(deltaY +←↩
vp*deltaT))*(ExYLowerBndrTmin1[i][0][k] + ExYLowerBndrTmin1[i][1][k]) + ((←↩
deltaY*vp*deltaT*vp*deltaT)/(2*deltaX*deltaX*(deltaY+vp*deltaT)))*(←↩
ExYLowerBndrTmin1[i+1][0][k] -2*ExYLowerBndrTmin1[i][0][k] + ExYLowerBndrTmin1[i←↩
-1][0][k] + ExYLowerBndrTmin1[i+1][1][k] -2*ExYLowerBndrTmin1[i][1][k] + ←↩
ExYLowerBndrTmin1[i-1][1][k]) + ((deltaY*vp*deltaT*vp*deltaT)/(2*deltaZ*deltaZ←↩
*(deltaY+vp*deltaT)))*(ExYLowerBndrTmin1[i][0][k+1] -2*ExYLowerBndrTmin1[i][0][k←↩
] + ExYLowerBndrTmin1[i][0][k-1] + ExYLowerBndrTmin1[i][1][k+1] -2*←↩
ExYLowerBndrTmin1[i][1][k] + ExYLowerBndrTmin1[i][1][k-1]) ;

528

529 EfieldX[i][jsteps-1][k] = -ExYUpperBndrTmin2[i][0][k] - ((deltaY - vp*deltaT)/(deltaY←↩
+ vp*deltaT))*(EfieldX[i][jsteps-2][k] + ExYUpperBndrTmin2[i][1][k]) + ((2*←↩
deltaY)/(deltaY + vp*deltaT))*(ExYUpperBndrTmin1[i][1][k] + ExYUpperBndrTmin1[i←↩
][0][k]) + ((deltaY*vp*deltaT*vp*deltaT)/(2*deltaX*deltaX*(deltaY+vp*deltaT)))*(←↩
ExYUpperBndrTmin1[i+1][1][k] -2*ExYUpperBndrTmin1[i][1][k] + ExYUpperBndrTmin1[i←↩
-1][1][k] + ExYUpperBndrTmin1[i+1][0][k] -2*ExYUpperBndrTmin1[i][0][k] + ←↩
ExYUpperBndrTmin1[i-1][0][k]) + ((deltaY*vp*deltaT*vp*deltaT)/(2*deltaZ*deltaZ←↩
*(deltaY+vp*deltaT)))*(ExYUpperBndrTmin1[i][1][k+1] -2*ExYUpperBndrTmin1[i][1][k←↩
] + ExYUpperBndrTmin1[i][1][k-1] + ExYUpperBndrTmin1[i][0][k+1] -2*←↩
ExYUpperBndrTmin1[i][0][k] + ExYUpperBndrTmin1[i][0][k-1]);

530 }
531 }
532

533 //Updating the min 2 timestep values for the next time step run.
534 for(int i=0; i != isteps-1; i++){
535 for(int k=0; k != ksteps; k++){
536 ExYLowerBndrTmin2[i][0][k] = ExYLowerBndrTmin1[i][0][k];
537 ExYLowerBndrTmin2[i][1][k] = ExYLowerBndrTmin1[i][1][k];
538 ExYLowerBndrTmin1[i][0][k] = EfieldX[i][0][k];
539 ExYLowerBndrTmin1[i][1][k] = EfieldX[i][1][k];
540

541 ExYUpperBndrTmin2[i][0][k] = ExYUpperBndrTmin1[i][0][k];
542 ExYUpperBndrTmin2[i][1][k] = ExYUpperBndrTmin1[i][1][k];
543 ExYUpperBndrTmin1[i][0][k] = EfieldX[i][jsteps-2][k]; //inner 0
544 ExYUpperBndrTmin1[i][1][k] = EfieldX[i][jsteps-1][k]; //outer 1
545 }

Appendix D - 3D FDTD C++ Code 131

546 }
547 }
548

549 // This function takes in the Ey and Ex field and applies the Mur 2nd Order Radiating
550 // Boundary Conditions. This function is built for a field on the Z boundary. Ie having an
551 // update equation that relies on deltaZ. Currently the function is built for the Efield, but
552 // may be applicable to the Hfields. This is all related to the co-ordinate system reference
553 // used. My reference is on PG 73 of Umran FDTD TB. All Matrixes/Arrays are passed by
554 // pointed, so the function operates on the original memory.
555 void FDTDCart3D::Zplanebound_Mur2nRBC(){
556

557 //Boundary Conditions for Ey field at the z=0 and z=max walls. Entire X-Y plane.
558 for(int i=1; i != isteps-1; i++){
559 for(int j=1; j != jsteps-2; j++){
560 // !!!!! Commented out for the Ground plane !!!!!
561 // EfieldY[i][j][0] = -EyZLowerBndrTmin2[i][j][1] - ((deltaZ - vp*deltaT)/(deltaZ + ←↩

vp*deltaT))*(EfieldY[i][j][1] + EyZLowerBndrTmin2[i][j][0]) + ((2*deltaZ)/(←↩
deltaZ + vp*deltaT))*(EyZLowerBndrTmin1[i][j][0] + EyZLowerBndrTmin1[i][j][1]) +←↩
((deltaZ*vp*deltaT*vp*deltaT)/(2*deltaX*deltaX*(deltaZ+vp*deltaT)))*(←↩
EyZLowerBndrTmin1[i+1][j][0] -2*EyZLowerBndrTmin1[i][j][0] + EyZLowerBndrTmin1[i←↩
-1][j][0] + EyZLowerBndrTmin1[i+1][j][1] -2*EyZLowerBndrTmin1[i][j][1] + ←↩
EyZLowerBndrTmin1[i-1][j][1]) + ((deltaZ*vp*deltaT*vp*deltaT)/(2*deltaY*deltaY←↩
*(deltaZ+vp*deltaT)))*(EyZLowerBndrTmin1[i][j+1][0] -2*EyZLowerBndrTmin1[i][j←↩
][0] + EyZLowerBndrTmin1[i][j-1][0] + EyZLowerBndrTmin1[i][j+1][1] -2*←↩
EyZLowerBndrTmin1[i][j][1] + EyZLowerBndrTmin1[i][j-1][1]) ;

562

563 EfieldY[i][j][ksteps-1] = -EyZUpperBndrTmin2[i][j][0] - ((deltaZ - vp*deltaT)/(deltaZ←↩
+ vp*deltaT))*(EfieldY[i][j][ksteps-2] + EyZUpperBndrTmin2[i][j][1]) + ((2*←↩
deltaZ)/(deltaZ + vp*deltaT))*(EyZUpperBndrTmin1[i][j][1] + EyZUpperBndrTmin1[i←↩
][j][0]) + ((deltaZ*vp*deltaT*vp*deltaT)/(2*deltaX*deltaX*(deltaZ+vp*deltaT)))*(←↩
EyZUpperBndrTmin1[i+1][j][1] -2*EyZUpperBndrTmin1[i][j][1] + EyZUpperBndrTmin1[i←↩
-1][j][1] + EyZUpperBndrTmin1[i+1][j][0] -2*EyZUpperBndrTmin1[i][j][0] + ←↩
EyZUpperBndrTmin1[i-1][j][0]) + ((deltaZ*vp*deltaT*vp*deltaT)/(2*deltaY*deltaY←↩
*(deltaZ+vp*deltaT)))*(EyZUpperBndrTmin1[i][j+1][1] -2*EyZUpperBndrTmin1[i][j←↩
][1] + EyZUpperBndrTmin1[i][j-1][1] + EyZUpperBndrTmin1[i][j+1][0] -2*←↩
EyZUpperBndrTmin1[i][j][0] + EyZUpperBndrTmin1[i][j-1][0]);

564 }
565 }
566

567 //Updating the min 2 timestep values for the next time step run.
568 for(int i=0; i != isteps; i++){
569 for(int j=0; j != jsteps-1; j++){
570 // !!!!! Commented out for the Ground plane !!!!!
571 // EyZLowerBndrTmin2[i][j][0] = EyZLowerBndrTmin1[i][j][0];
572 // EyZLowerBndrTmin2[i][j][1] = EyZLowerBndrTmin1[i][j][1];
573 // EyZLowerBndrTmin1[i][j][0] = EfieldY[i][j][0];
574 // EyZLowerBndrTmin1[i][j][1] = EfieldY[i][j][1];
575

576 EyZUpperBndrTmin2[i][j][0] = EyZUpperBndrTmin1[i][j][0];
577 EyZUpperBndrTmin2[i][j][1] = EyZUpperBndrTmin1[i][j][1];
578 EyZUpperBndrTmin1[i][j][0] = EfieldY[i][j][ksteps-2]; //inner 0
579 EyZUpperBndrTmin1[i][j][1] = EfieldY[i][j][ksteps-1]; //outer 1
580 }
581 }
582

583 //Boundary Conditions for Ex field at the z=0 and z=max walls. Entire X-Y plane.
584 for(int i=1; i != isteps-2; i++){
585 for(int j=1; j != jsteps-1; j++){
586 // !!!!! Commented out for the Ground plane !!!!!

Appendix D - 3D FDTD C++ Code 132

587 // EfieldX[i][j][0] = -ExZLowerBndrTmin2[i][j][1] - ((deltaZ - vp*deltaT)/(deltaZ + ←↩
vp*deltaT))*(EfieldX[i][j][1] + ExZLowerBndrTmin2[i][j][0]) + ((2*deltaZ)/(←↩
deltaZ + vp*deltaT))*(ExZLowerBndrTmin1[i][j][0] + ExZLowerBndrTmin1[i][j][1]) +←↩
((deltaZ*vp*deltaT*vp*deltaT)/(2*deltaX*deltaX*(deltaZ+vp*deltaT)))*(←↩
ExZLowerBndrTmin1[i+1][j][0] -2*ExZLowerBndrTmin1[i][j][0] + ExZLowerBndrTmin1[i←↩
-1][j][0] + ExZLowerBndrTmin1[i+1][j][1] -2*ExZLowerBndrTmin1[i][j][1] + ←↩
ExZLowerBndrTmin1[i-1][j][1]) + ((deltaZ*vp*deltaT*vp*deltaT)/(2*deltaY*deltaY←↩
*(deltaZ+vp*deltaT)))*(ExZLowerBndrTmin1[i][j+1][0] -2*ExZLowerBndrTmin1[i][j←↩
][0] + ExZLowerBndrTmin1[i][j-1][0] + ExZLowerBndrTmin1[i][j+1][1] -2*←↩
ExZLowerBndrTmin1[i][j][1] + ExZLowerBndrTmin1[i][j-1][1]) ;

588

589 EfieldX[i][j][ksteps-1] = -ExZUpperBndrTmin2[i][j][0] - ((deltaZ - vp*deltaT)/(deltaZ←↩
+ vp*deltaT))*(EfieldX[i][j][ksteps-2] + ExZUpperBndrTmin2[i][j][1]) + ((2*←↩
deltaZ)/(deltaZ + vp*deltaT))*(ExZUpperBndrTmin1[i][j][1] + ExZUpperBndrTmin1[i←↩
][j][0]) + ((deltaZ*vp*deltaT*vp*deltaT)/(2*deltaX*deltaX*(deltaZ+vp*deltaT)))*(←↩
ExZUpperBndrTmin1[i+1][j][1] -2*ExZUpperBndrTmin1[i][j][1] + ExZUpperBndrTmin1[i←↩
-1][j][1] + ExZUpperBndrTmin1[i+1][j][0] -2*ExZUpperBndrTmin1[i][j][0] + ←↩
ExZUpperBndrTmin1[i-1][j][0]) + ((deltaZ*vp*deltaT*vp*deltaT)/(2*deltaY*deltaY←↩
*(deltaZ+vp*deltaT)))*(ExZUpperBndrTmin1[i][j+1][1] -2*ExZUpperBndrTmin1[i][j←↩
][1] + ExZUpperBndrTmin1[i][j-1][1] + ExZUpperBndrTmin1[i][j+1][0] -2*←↩
ExZUpperBndrTmin1[i][j][0] + ExZUpperBndrTmin1[i][j-1][0]);

590 }
591 }
592

593 //Updating the min 2 timestep values for the next time step run.
594 for(int i=0; i != isteps-1; i++){
595 for(int j=0; j != jsteps; j++){
596 // !!!!! Commented out for the Ground plane !!!!!
597 // ExZLowerBndrTmin2[i][j][0] = ExZLowerBndrTmin1[i][j][0];
598 // ExZLowerBndrTmin2[i][j][1] = ExZLowerBndrTmin1[i][j][1];
599 // ExZLowerBndrTmin1[i][j][0] = EfieldX[i][j][0];
600 // ExZLowerBndrTmin1[i][j][1] = EfieldX[i][j][1];
601

602 ExZUpperBndrTmin2[i][j][0] = ExZUpperBndrTmin1[i][j][0];
603 ExZUpperBndrTmin2[i][j][1] = ExZUpperBndrTmin1[i][j][1];
604 ExZUpperBndrTmin1[i][j][0] = EfieldX[i][j][ksteps-2]; //inner 0
605 ExZUpperBndrTmin1[i][j][1] = EfieldX[i][j][ksteps-1]; //outer 1
606 }
607 }
608 }
609

610 // This function does 1st order Mur boundary condition for the edges of the simulation space.
611 void FDTDCart3D::Xupright_edges(){
612 for(int i=1; i!=isteps-1; i++){
613 EfieldX[i][0][0] = EfieldX[i][0+1][0+1];
614 EfieldX[i][jsteps-1][0] = EfieldX[i][jsteps-1-1][0+1];
615 EfieldX[i][0][ksteps-1] = EfieldX[i][0+1][ksteps-1-1];
616 EfieldX[i][jsteps-1][ksteps-1] = EfieldX[i][jsteps-1-1][ksteps-1-1];
617 }
618

619 for(int i=1; i!=isteps; i++){
620 EfieldY[i][0][0] = EfieldY[i][0+1][0+1];
621 EfieldY[i][jsteps-2][0] = EfieldY[i][jsteps-3][0+1];
622 EfieldY[i][0][ksteps-1] = EfieldY[i][0+1][ksteps-1-1];
623 EfieldY[i][jsteps-2][ksteps-1] = EfieldY[i][jsteps-3][ksteps-1-1];
624 }
625

626 for(int i=1; i!=isteps; i++){
627 EfieldZ[i][0][0] = EfieldZ[i][0+1][0+1];
628 EfieldZ[i][jsteps-1][0] = EfieldZ[i][jsteps-1-1][0+1];
629 EfieldZ[i][0][ksteps-2] = EfieldZ[i][0+1][ksteps-3];
630 EfieldZ[i][jsteps-1][ksteps-2] = EfieldZ[i][jsteps-1-1][ksteps-3];
631 }
632 }
633

634 // This function does 1st order Mur boundary condition for the edges of the simulation space.
635 void FDTDCart3D::Yupright_edges(){
636 for(int j=1; j!=jsteps; j++){

Appendix D - 3D FDTD C++ Code 133

637 EfieldX[0][j][0] = EfieldX[0+1][j][0+1];
638 EfieldX[isteps-2][j][0] = EfieldX[isteps-3][j][0+1];
639 EfieldX[0][j][ksteps-1] = EfieldX[0+1][j][ksteps-1-1];
640 EfieldX[isteps-2][j][ksteps-1] = EfieldX[isteps-3][j][ksteps-1-1];
641 }
642

643 for(int j=1; j!=jsteps-1; j++){
644 EfieldY[0][j][0] = EfieldY[0+1][j][0+1];
645 EfieldY[isteps-1][j][0] = EfieldY[isteps-1-1][j][0+1];
646 EfieldY[0][j][ksteps-1] = EfieldY[0+1][j][ksteps-1-1];
647 EfieldY[isteps-1][j][ksteps-1] = EfieldY[isteps-1-1][j][ksteps-1-1];
648 }
649

650 for(int j=1; j!=jsteps; j++){
651 EfieldZ[0][j][0] = EfieldZ[0+1][j][0+1];
652 EfieldZ[isteps-1][j][0] = EfieldZ[isteps-1-1][j][0+1];
653 EfieldZ[0][j][ksteps-2] = EfieldZ[0+1][j][ksteps-3];
654 EfieldZ[isteps-1][j][ksteps-2] = EfieldZ[isteps-1-1][j][ksteps-3];
655 }
656 }
657

658 // This function does 1st order Mur boundary condition for the edges of the simulation space.
659 void FDTDCart3D::Zupright_edges(){
660 for(int k=1; k!=ksteps; k++){
661 EfieldX[0][0][k] = EfieldX[0+1][0+1][k];
662 EfieldX[isteps-2][0][k] = EfieldX[isteps-3][0+1][k];
663 EfieldX[0][jsteps-1][k] = EfieldX[0+1][jsteps-1-1][k];
664 EfieldX[isteps-2][jsteps-1][k] = EfieldX[isteps-3][jsteps-1-1][k];
665 }
666

667 for(int k=1; k!=ksteps; k++){
668 EfieldY[0][0][k] = EfieldY[0+1][0+1][k];
669 EfieldY[isteps-1][0][k] = EfieldY[isteps-1-1][0+1][k];
670 EfieldY[0][jsteps-2][k] = EfieldY[0+1][jsteps-3][k];
671 EfieldY[isteps-1][jsteps-2][k] = EfieldY[isteps-1-1][jsteps-3][k];
672 }
673

674 for(int k=1; k!=ksteps-1; k++){
675 EfieldZ[0][0][k] = EfieldZ[0+1][0+1][k];
676 EfieldZ[isteps-1][0][k] = EfieldZ[isteps-1-1][0+1][k];
677 EfieldZ[0][jsteps-1][k] = EfieldZ[0+1][jsteps-1-1][k];
678 EfieldZ[isteps-1][jsteps-1][k] = EfieldZ[isteps-1-1][jsteps-1-1][k];
679 }
680 }

Listing D.4: Makefile
1 CC=g++
2 CFLAGS=-c -g -Wall -std=c++11 -fpermissive
3 LFLAGS=
4 all:
5 rm -rf build
6 mkdir -p build
7 $(CC) $(CFLAGS) main.cpp -o ./build/main.o $(LFLAGS)
8 $(CC) $(CFLAGS) FDTDCart3D.cpp -o ./build/FDTDCart3D.o $(LFLAGS)
9 $(CC) ./build/FDTDCart3D.o ./build/main.o -o Lightning_FDTD $(LFLAGS)

10

11 optimized:
12 rm -rf build
13 mkdir -p build
14 $(CC) -O3 $(CFLAGS) main.cpp -o ./build/main.o $(LFLAGS)
15 $(CC) -O3 $(CFLAGS) FDTDCart3D.cpp -o ./build/FDTDCart3D.o $(LFLAGS)
16 $(CC) ./build/FDTDCart3D.o ./build/main.o -o Lightning_FDTD_OPT $(LFLAGS)

Appendix D - 3D FDTD C++ Code 134

Listing D.5: 3D_Settings_File.csv
1 tau1,0.072,us,
2 tau2,5,us,
3 tau3,100,us,
4 tau4,6,us,
5 lamdac,2000,nucciconst,
6 currentDecay,0,trueorfalse,
7 I1,9900,A,
8 I2,7500,A,
9 I3,9550,A,

10 eta,0.845,number,
11 Na,3,teresnumber,
12 rObs,17.36,m,
13 hObs,98.48,m,
14 vp,299792458,m/s,
15 vchan,150000000,m/s,
16 f0,2000000,hz,
17 gridSizeX,400,m ,
18 gridSizeY,400,m ,
19 gridSizeZ,1500,m ,
20 deltaX,1.736,m ,
21 deltaY,3.472,m ,
22 deltaZ,9.848,m ,
23 deltaT,1,ns,
24 useDTfromfile,0,trueorfalse,
25 simRunTime,2334,ns,

Appendix E

2D Cylindrical FDTD Code

Listing E.1: main_Cylin2D.cpp
1 #include <iostream>
2 #include <cmath>
3 #include <iomanip>
4 #include <fstream>
5 #include <cstdlib>
6 #include <string>
7 using namespace std;
8

9 // My Header Files
10 #include "FDTDCylin2D.h"
11

12 int main(int argc, char const *argv[]){
13 FDTDCylin2D lightningStroke2D("2D_Cylin_Settings_File.csv", argc, argv);
14 lightningStroke2D.PrintMinimalSimParameters();
15 lightningStroke2D.EvaluateFDTDPlane();
16 }

Listing E.2: FDTDCylin2D.h
1 #include <iostream>
2 #include <cmath>
3 #include <iomanip>
4 #include <fstream>
5 #include <cstdlib>
6 #include <string>
7 using namespace std;
8

9 class FDTDCylin2D{
10 public:
11 FDTDCylin2D(string settingsFile, int argc, char const *argv[]);
12 void EvaluateFDTDPlane();
13 void setSimulationParameters(string settingsFile);
14 void setCMDLineParameters(float TrObs, float ThObs, float TgridSizeRadial, float TgridSizeZ←↩

, float TdeltaD, float TdeltaZ, float TsimRunTime);
15 void PrintMinimalSimParameters();
16 double NucciTeresCurrent(double z, double t);
17

18 // **
19 // ********************* Boundary Related ***************************
20 void HphiField_Mur2nRBC(double** field);
21

135

Appendix E - 2D Cylindrical FDTD C++ Code 136

22 private:
23 // These are variables provided in the Settings file. If more variables are added to the
24 // settings file then add them here as well as the "setSimulationParameters" function.
25 float vp, vchan; // Propagation and Channel Velocity
26 float gridSizeRadial, gridSizeZ;
27 float deltaD, deltaZ, deltaT;
28 int useDTfromfile;
29 float simRunTime;
30 double tau1, tau2, tau3, tau4;
31 double lamdac;
32 int currentDecay;
33 double I1, I2, I3;
34 int Na;
35 double eta, omega0;
36 double rObs,hObs;
37

38 // These are the normal class variables. They need to be assigned in the constructor.
39 float idealGridSize;
40 float optimalDeltaT;
41 float EdFSC;
42 float EzFSC;
43 float HpFSC;
44 float AxisFSC;
45

46 // The "steps" define the number of steps in the respective directions. The origin is in
47 // the middle of the plane with gridsize variable length in every direction of the origin.
48 int isteps;
49 int ksteps;
50 int nSteps;
51 int iorigin;
52 int korigin;
53 int XOBS, ZOBS;
54

55 double** HfieldPHI;
56 double** EfieldD;
57 double** EfieldZ;
58 // These are the upper and lower boundaries of the evaluation plane. This is the right and
59 // left hand walls respectively. In the lower boundary the outer column is 0, and the inner
60 // is 1. In the Upper boundary the outer column is 1, and the inner is 0.
61 double** HphiXLowerBndrTmin1;
62 double** HphiXUpperBndrTmin1;
63 double** HphiXLowerBndrTmin2;
64 double** HphiXUpperBndrTmin2;
65 double** HphiZLowerBndrTmin1;
66 double** HphiZUpperBndrTmin1;
67 double** HphiZLowerBndrTmin2;
68 double** HphiZUpperBndrTmin2;
69

70 // These are the pre-calculated variables used to save computational time.
71 const double pi = (4.0 * atan(1.0));
72 const double c = 299792458;
73 const double mu = 4 * pi * pow(10.0, -7.0);
74 const double epsilon = 8.8541878176 * pow(10.0, -12.0);
75 float SINEwaveConstant;
76 float theta;
77 float timeToReachObservationPoint;
78 int percentProgress;
79 int factorial[13];
80

81 char partATestID[128];
82 char partBTestID[128];
83 char EdFieldcurvename[128];
84 char EzFieldcurvename[128];
85 char HpFieldcurvename[128];
86 char ErFieldcurvename[128];
87 char EtFieldcurvename[128];
88 };

Appendix E - 2D Cylindrical FDTD C++ Code 137

Listing E.3: FDTDCylin2D.cpp
1 #include <iostream>
2 #include <cmath>
3 #include <iomanip>
4 #include <fstream>
5 #include <cstdlib>
6 #include <string>
7 #include <algorithm>
8

9 #include "FDTDCylin2D.h"
10

11 using namespace std;
12

13 // This is a macro for the 2D array instantiation. This is a way to create a contiguous array
14 // of memory. Standard methods don't work due to array sizes, and heap memory size. The last
15 // index is K. IE, this is the index that should be used the most. From my understanding
16 // when memory is called for use the compiler will load a batch of the surrounding memory
17 // points. Therefore you will see in later code that the K index is always in the inner
18 // most loop (called most often). This macro also zero's the array.
19 #define create2Darray(fieldname, isteps, ksteps) \
20 double** fieldname = (double**) new double*[isteps]; \
21 for(int i = 0; i < isteps; i++) { \
22 fieldname[i]=(double*)new double[ksteps]; \
23 } \
24 for(int i=0; i != isteps ; i++){ \
25 for(int j=0; j != ksteps ; j++){ \
26 fieldname[i][j] =0; \
27 } \
28 }
29

30 // This is the constructor. It needs a settings file to be passed to it.
31 FDTDCylin2D::FDTDCylin2D(string settingsFile, int argc, char const *argv[]){
32

33 // ***
34 // This section of code checks for the command line arguments
35 if(argc < 2){ //Then you must run the normal script
36 cout << "***" << endl;
37 cout << "Running Settings File: 2D_Cylin_Settings_File.csv." << endl;
38 setSimulationParameters(settingsFile);
39 }
40 else if(argc == 8){
41 cout << "***" << endl;
42 cout << "Running with cmd line options, and Settings file." << endl;
43 setSimulationParameters(settingsFile);
44 setCMDLineParameters(atof(argv[1]), atof(argv[2]), atof(argv[3]), atof(argv[4]), atof(←↩

argv[5]), atof(argv[6]), atof(argv[7]));
45 }
46 else{
47 cout << "***" << endl;
48 cout << "You did not enter sufficient arguments." << endl;
49 cout << "The format is as follows:" << endl;
50 cout << "./2DCylinFDTD rObs hObs gridSizeRadial gridSizeZ deltaD deltaZ simRunTime" << ←↩

endl;
51 cout << "Running Settings File: 2D_Cylin_Settings_File.csv." << endl;
52 setSimulationParameters(settingsFile);
53 }
54 // ***
55

56 // Character strings for file naming.
57 sprintf(partATestID,"D%05gH%04g", rObs*100, hObs*100);
58 sprintf(partBTestID,"Size%04g_%04g_D%05g_%05g", gridSizeRadial , gridSizeZ , deltaD*1000,←↩

deltaZ*1000);
59

60 // Creating Output File names for the different fields. These files are opened, written
61 // to and closed in the main evaluateFDTD function. Also Note that this is hard coded to
62 // save files to the folder: "Simulations" located in the runtime folder.
63 sprintf(EdFieldcurvename, "./Simulations/%sEdField%s.curve", partATestID, partBTestID);
64 sprintf(EzFieldcurvename, "./Simulations/%sEzField%s.curve", partATestID, partBTestID);

Appendix E - 2D Cylindrical FDTD C++ Code 138

65 sprintf(HpFieldcurvename, "./Simulations/%sHpField%s.curve", partATestID, partBTestID);
66 sprintf(ErFieldcurvename, "./Simulations/%sErField%s.curve", partATestID, partBTestID);
67 sprintf(EtFieldcurvename, "./Simulations/%sEtField%s.curve", partATestID, partBTestID);
68

69 // These are the factorial numbers for current FN.
70 factorial[0] = 1;
71 factorial[1] = 1;
72 factorial[2] = 2;
73 factorial[3] = 6;
74 factorial[4] = 24;
75 factorial[5] = 120;
76 factorial[6] = 720;
77 factorial[7] = 5040;
78 factorial[8] = 40320;
79 factorial[9] = 362880;
80 factorial[10] = 3628800;
81 factorial[11] = 39916800;
82 factorial[12] = 479001600;
83

84 // Calculation of DeltaT. This assumes a CFL condition of 1.
85 optimalDeltaT = 1/(vp*(sqrt(pow(deltaD,-2) + pow(deltaZ,-2))));
86

87 // This is the "Thumbsuck Rule" for Terespolsky Function.
88 omega0 = (double)Na / tau1;
89

90 // For some reason the sim space goes unstable when using full CFL value. This does not
91 // currently make sense, but making dT smaller does not significantly affect the results.
92 if(useDTfromfile != 1){
93 deltaT = 0.9*optimalDeltaT; // Uses 90% of CFL Value.
94 }
95

96 // These are the free space constants (FSC) used in my simplified example. Under complex
97 // environments with different objects, these constants would consist of 3D matrices
98 // that describe the different materials on the space.
99 EdFSC = deltaT / epsilon;

100 EzFSC = deltaT / epsilon;
101 HpFSC = deltaT / mu;
102 AxisFSC = (4*deltaT)/(epsilon);
103

104 // These are the node steps in the 3 co-ordinate system.
105 isteps = int((gridSizeRadial)/deltaD);
106 ksteps = int((gridSizeZ)/deltaZ);
107

108 // Observation point distance to node conversion. Index Based distance.
109 XOBS = rObs/deltaD;
110 ZOBS = hObs/deltaZ;
111

112 // Time Steps
113 nSteps = int(simRunTime/deltaT);
114

115 // Time to source:
116 timeToReachObservationPoint = (sqrt(pow(rObs,2) + pow(hObs,2)))/vp;
117

118 // Co-ordinate conversions. This is the angle between the Z axis and observation point.
119 theta = atan(rObs/hObs);
120

121 // EM Fields
122 // Create the 2D array pointers here.
123 create2Darray(tempHfieldPHI, isteps+1, ksteps+1);
124 create2Darray(tempEfieldD, isteps, ksteps+1);
125 create2Darray(tempEfieldZ, isteps+1, ksteps);
126 // Assign 2D pointers here.
127 HfieldPHI = tempHfieldPHI;
128 EfieldD = tempEfieldD;
129 EfieldZ = tempEfieldZ;
130

131 // Create boundary matrix pointers.
132 create2Darray(tempBoundry1, 2, ksteps+1);

Appendix E - 2D Cylindrical FDTD C++ Code 139

133 create2Darray(tempBoundry2, 2, ksteps+1);
134 create2Darray(tempBoundry3, 2, ksteps+1);
135 create2Darray(tempBoundry4, 2, ksteps+1);
136 create2Darray(tempBoundry5, isteps+1, 2);
137 create2Darray(tempBoundry6, isteps+1, 2);
138 create2Darray(tempBoundry7, isteps+1, 2);
139 create2Darray(tempBoundry8, isteps+1, 2);
140 // Assign boundary pointers here.
141 HphiXLowerBndrTmin1 = tempBoundry1;
142 HphiXUpperBndrTmin1 = tempBoundry2;
143 HphiXLowerBndrTmin2 = tempBoundry3;
144 HphiXUpperBndrTmin2 = tempBoundry4;
145 HphiZLowerBndrTmin1 = tempBoundry5;
146 HphiZUpperBndrTmin1 = tempBoundry6;
147 HphiZLowerBndrTmin2 = tempBoundry7;
148 HphiZUpperBndrTmin2 = tempBoundry8;
149 }
150

151 // This function is passed a file name string and extracts the required simulation
152 // variables from the file and assigns then to the relevant variables of the class.
153 void FDTDCylin2D::setSimulationParameters(string settingsFile){
154

155 ifstream inputFromFile(settingsFile, ios::in);
156

157 if(!inputFromFile){
158 cerr << "File could not be opened!" << endl;
159 exit(1);
160 }
161

162 string UnitName, Value, Units;
163

164 while(getline(inputFromFile, UnitName, ',')){
165

166 // This next line of code removes the newline character from my settings
167 // file when it is read into the variables. This was only an issue with
168 // the UnitName variable. Required the "#include <algorithm>" library.
169 UnitName.erase(std::remove(UnitName.begin(), UnitName.end(), '\n'), UnitName.end());
170 getline(inputFromFile, Value, ',');
171 getline(inputFromFile, Units, ','); // Variable does not get used.
172

173 if(UnitName == "vp"){vp = std::stof(Value);}
174 else if(UnitName == "vchan"){vchan = std::stof(Value);}
175 else if(UnitName == "gridSizeRadial"){gridSizeRadial=std::stof(Value);}
176 else if(UnitName == "gridSizeZ"){gridSizeZ = std::stof(Value);}
177 else if(UnitName == "deltaD"){deltaD = std::stof(Value);}
178 else if(UnitName == "deltaZ"){deltaZ = std::stof(Value);}
179 else if(UnitName == "deltaT"){deltaT = std::stof(Value) * pow(10,-9);}
180 else if(UnitName == "useDTfromfile"){useDTfromfile = std::stoi(Value);}
181 else if(UnitName =="simRunTime"){simRunTime=std::stof(Value)*pow(10,-9);}
182 else if(UnitName == "tau1"){tau1 = std::stof(Value) * pow(10,-6);}
183 else if(UnitName == "tau2"){tau2 = std::stof(Value) * pow(10,-6);}
184 else if(UnitName == "tau3"){tau3 = std::stof(Value) * pow(10,-6);}
185 else if(UnitName == "tau4"){tau4 = std::stof(Value) * pow(10,-6);}
186 else if(UnitName == "lamdac"){lamdac = std::stof(Value);}
187 else if(UnitName == "currentDecay"){currentDecay = std::stof(Value);}
188 else if(UnitName == "I1"){I1 = std::stof(Value);}
189 else if(UnitName == "I2"){I2 = std::stof(Value);}
190 else if(UnitName == "I3"){I3 = std::stof(Value);}
191 else if(UnitName == "eta"){eta = std::stof(Value);}
192 else if(UnitName == "Na"){Na = std::stof(Value);}
193 else if(UnitName == "rObs"){rObs = std::stof(Value);}
194 else if(UnitName == "hObs"){hObs = std::stof(Value);}
195 else{cout << "Variable "<< UnitName << " : " << Value <<" was not assigned." << endl;}
196 }
197 }
198

199 // This function accepts the command line arguments instead of the settings file.

Appendix E - 2D Cylindrical FDTD C++ Code 140

200 void FDTDCylin2D::setCMDLineParameters(float TrObs, float ThObs, float TgridSizeRadial, float←↩
TgridSizeZ, float TdeltaD, float TdeltaZ, float TsimRunTime){

201

202 rObs = TrObs;
203 hObs = ThObs;
204 gridSizeRadial = TgridSizeRadial;
205 gridSizeZ = TgridSizeZ;
206 deltaD = TdeltaD;
207 deltaZ = TdeltaZ;
208 simRunTime = TsimRunTime*pow(10,-9);
209 }
210

211 // This function prints the minimal Sim variables for batch script simulations.
212 void FDTDCylin2D::PrintMinimalSimParameters(){
213 cout <<"***" << endl;
214 cout <<"Simulation Variables:" << endl;
215 cout <<"Requested rObs: "<< rObs <<". Actual rObs: "<< XOBS*deltaD << endl;
216 cout <<"Requested hObs: "<< hObs <<". Actual hObs: "<< ZOBS*deltaZ << endl;
217 cout <<"SizeX -SizeZ -dD -dZ -simTime" << endl;
218 cout <<gridSizeRadial << " " << gridSizeZ << " " << deltaD << " " << deltaZ << "←↩

" << simRunTime*pow(10,9) << endl;
219 }
220

221 // This is the main workhorse of the Class. It will iterate through the matrix variables of
222 // the FDTD plane and calculate the EM fields at every cell at every time.
223 void FDTDCylin2D::EvaluateFDTDPlane(){
224

225 // Open the output data field files:
226 ofstream observationPointEdField(EdFieldcurvename);
227 ofstream observationPointEzField(EzFieldcurvename);
228 ofstream observationPointHpField(HpFieldcurvename);
229 ofstream observationPointErField(ErFieldcurvename);
230 ofstream observationPointEtField(EtFieldcurvename);
231 // Write the output file headers:
232 observationPointEdField << "#EfieldD" << endl;
233 observationPointEzField << "#EfieldZ" << endl;
234 observationPointHpField << "#HfieldP" << endl;
235 observationPointErField << "#EfieldR" << endl;
236 observationPointEtField << "#EfieldTheta" << endl;
237

238 cout << "***" << endl;
239 cout << "Starting Simulation Time Steps: " << endl;
240

241 // This is where the time stepping starts.
242 for(int n=0; n!=nSteps; n++){
243

244 cout <<"Progress " << ((n*deltaT)/simRunTime)*100.00 << "\% \r" ;
245 std::cout.flush();
246

247 // Magnetic Field Update Equations.
248 for(int i=0; i != isteps; i++){
249 for(int k=0; k != ksteps; k++){
250 HfieldPHI[i][k] = HfieldPHI[i][k] + HpFSC*(+1*((EfieldZ[i+1][k] - EfieldZ[i][k])←↩

/deltaD) -1*((EfieldD[i][k+1] - EfieldD[i][k])/deltaZ));
251 }
252 }
253

254 // Boundary Condition
255 HphiField_Mur2nRBC(HfieldPHI);
256

257 // Electric Field Update Equations.
258 // Special Case for i=0 boundary, which is the channel.
259 for(int k=0; k != ksteps; k++){
260 EfieldZ[0][k] = EfieldZ[0][k] + ((4*deltaT)/(epsilon*deltaD))*(HfieldPHI[0][k]);
261 }
262 // Ez Evaluation space
263 for(int i=1; i != isteps+1; i++){
264 for(int k=0; k != ksteps; k++){

Appendix E - 2D Cylindrical FDTD C++ Code 141

265 EfieldZ[i][k] = EfieldZ[i][k] + EzFSC*((((i+0.5)*deltaD)*HfieldPHI[i][k] - ((i←↩
-0.5)*deltaD)*HfieldPHI[i-1][k]) / (i*deltaD*deltaD));

266 }
267 }
268 // Ed Evaluation space
269 for(int i=0; i != isteps; i++){
270 for(int k=1; k != ksteps+1; k++){
271 EfieldD[i][k] = EfieldD[i][k] - EdFSC*((HfieldPHI[i][k] - HfieldPHI[i][k-1])/←↩

deltaZ);
272 }
273 }
274

275 // Source
276 for(int k=0; k!= ksteps-1; k++){
277 EfieldZ[0][k] = EfieldZ[0][k] - (deltaT/(epsilon*pi*0.25*deltaD*deltaD))*←↩

NucciTeresCurrent((k+0.5)*deltaZ, n*deltaT);
278 }
279

280 // Write field data to output files.
281 // The "if" check ensures that data is only written from the point when the EM field
282 // first reaches the observation point. This step also does the co-ordinate
283 // conversion for Cartesian to Spherical field components.
284 if(n*deltaT >= timeToReachObservationPoint){
285 observationPointEdField << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) <<←↩

" " << EfieldD[XOBS][ZOBS] << endl;
286 observationPointEzField << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) <<←↩

" " << EfieldZ[XOBS][ZOBS] << endl;
287 observationPointHpField << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) <<←↩

" " << HfieldPHI[XOBS][ZOBS] << endl;
288 observationPointErField << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) <<←↩

" " << +1*(cos(theta)*EfieldZ[XOBS][ZOBS] + sin(theta)*EfieldD[XOBS][ZOBS])←↩
<< endl;

289 observationPointEtField << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) <<←↩
" " << +1*(-1*sin(theta)*EfieldZ[XOBS][ZOBS] + cos(theta)*EfieldD[XOBS][←↩
ZOBS]) << endl;

290 }
291 }
292

293 cout << endl;
294 cout << "Simulation Complete." << endl;
295 cout << "***" << endl;
296 cout << endl;
297

298 // Close the data files.
299 observationPointEdField.close();
300 observationPointEzField.close();
301 observationPointHpField.close();
302 observationPointErField.close();
303 observationPointEtField.close();
304 }
305

306 // This function takes in the Hp field and applies the Mur 2nd Order RBC. Matrix passed by
307 // reference so that it operates on the original memory. matrix, and not a copy.
308 void FDTDCylin2D::HphiField_Mur2nRBC(double** field){
309

310 //Boundary Conditions for the x=max wall. All the way up the Y cells.
311 for(int k=1; k != ksteps; k++){
312 field[isteps][k] = -HphiXUpperBndrTmin2[0][k] - ((deltaD - vp*deltaT)/(deltaD + vp*←↩

deltaT))*(field[isteps-1][k] + HphiXUpperBndrTmin2[1][k]) + ((2*deltaD)/(deltaD + ←↩
vp*deltaT))*(HphiXUpperBndrTmin1[1][k] + HphiXUpperBndrTmin1[0][k]) + ((deltaD*vp*←↩
deltaT*vp*deltaT)/(2*deltaZ*deltaZ*(deltaD+vp*deltaT)))*(HphiXUpperBndrTmin1[1][k←↩
+1] -2*HphiXUpperBndrTmin1[1][k] + HphiXUpperBndrTmin1[1][k-1] + ←↩
HphiXUpperBndrTmin1[0][k+1] -2*HphiXUpperBndrTmin1[0][k] + HphiXUpperBndrTmin1[0][←↩
k-1]);

313 }
314 //Updating the min 2 timestep values for the next time step run.
315 for(int k=0; k != ksteps+1; k++){
316 HphiXLowerBndrTmin2[0][k] = HphiXLowerBndrTmin1[0][k];

Appendix E - 2D Cylindrical FDTD C++ Code 142

317 HphiXLowerBndrTmin2[1][k] = HphiXLowerBndrTmin1[1][k];
318 HphiXLowerBndrTmin1[0][k] = field[0][k];
319 HphiXLowerBndrTmin1[1][k] = field[1][k];
320

321 HphiXUpperBndrTmin2[0][k] = HphiXUpperBndrTmin1[0][k];
322 HphiXUpperBndrTmin2[1][k] = HphiXUpperBndrTmin1[1][k];
323 HphiXUpperBndrTmin1[0][k] = field[isteps-1][k]; //inner 0
324 HphiXUpperBndrTmin1[1][k] = field[isteps][k]; //outer 1
325 }
326

327 for(int i=1; i != isteps; i++){
328 field[i][ksteps] = -HphiZUpperBndrTmin2[i][0] - ((deltaZ - vp*deltaT)/(deltaZ + vp*←↩

deltaT))*(field[i][ksteps-1] + HphiZUpperBndrTmin2[i][1]) + ((2*deltaZ)/(deltaZ + ←↩
vp*deltaT))*(HphiZUpperBndrTmin1[i][1] + HphiZUpperBndrTmin1[i][0]) + ((deltaZ*vp*←↩
deltaT*vp*deltaT)/(2*deltaD*deltaD*(deltaZ+vp*deltaT)))*(HphiZUpperBndrTmin1[i←↩
+1][1] -2*HphiZUpperBndrTmin1[i][1] + HphiZUpperBndrTmin1[i-1][1] + ←↩
HphiZUpperBndrTmin1[i+1][0] -2*HphiZUpperBndrTmin1[i][0] + HphiZUpperBndrTmin1[i←↩
-1][0]);

329 }
330 //Updating the min 2 timestep values for the next time step run.
331 for(int i=0; i != isteps+1; i++){
332 HphiZUpperBndrTmin2[i][0] = HphiZUpperBndrTmin1[i][0];
333 HphiZUpperBndrTmin2[i][1] = HphiZUpperBndrTmin1[i][1];
334 HphiZUpperBndrTmin1[i][0] = field[i][ksteps-1]; //inner 0
335 HphiZUpperBndrTmin1[i][1] = field[i][ksteps]; //outer 1
336 }
337

338 // This is effectively a 1st order boundary for the corners.
339 field[isteps][0] = field[isteps-1][0];
340 field[0][ksteps] = field[0][ksteps-1];
341 field[isteps][ksteps] = field[isteps-1][ksteps-1];
342 }
343

344 // This is a function that returns the current along a lightning channel.
345 // It takes in the time of interest and location on the channel.
346 double FDTDCylin2D::NucciTeresCurrent(double z, double t){
347

348 // Max Current Is: 10975.6 at 280 ns
349 // 10% of Max Current Is: 1097.56 at 192182 ns
350

351 if(t - abs(z) / vchan < 0){return 0;}
352 else{
353 double sum = 0;
354 for (int i = 0; i <= Na; i++){
355 sum += pow(omega0 * (t - abs(z) / vchan), i) / factorial[i];
356 }
357

358 double current = (exp((-1.0*abs(z)*currentDecay)/lamdac)) * ((I3 / eta * exp(-1.0 * ←↩
(t - abs(z) / vchan) / tau2)) * (1.0 - exp(-1.0 * omega0 * (t - abs(z)←↩
/ vchan)) * sum) + I2 * (exp(-1.0 * (t - abs(z) / vchan) / tau3) - ←↩
exp(-1.0 * (t - abs(z) / vchan) / tau4)));

359

360 return current;
361 }
362 }

Appendix E - 2D Cylindrical FDTD C++ Code 143

Listing E.4: Makefile
1 CC=g++
2 CFLAGS=-c -g -Wall -std=c++11 -fpermissive
3 LFLAGS=
4 all:
5 rm -rf build
6 mkdir -p build
7 $(CC) -O3 $(CFLAGS) main_Cylin2D.cpp -o ./build/main_Cylin2D.o $(LFLAGS)
8 $(CC) -O3 $(CFLAGS) FDTDCylin2D.cpp -o ./build/FDTDCylin2D.o $(LFLAGS)
9 $(CC) ./build/FDTDCylin2D.o ./build/main_Cylin2D.o -o 2DCylinFDTD_OPT $(LFLAGS)

10

11 clean:
12 rm -rf ./build/*.o ./ViSiT/*.bov ./ViSiT/*.dat ./ViSiT/*.curve

Listing E.5: 2D_Cylin_Settings_File.csv
1 tau1,0.072,us,
2 tau2,5,us,
3 tau3,100,us,
4 tau4,6,us,
5 lamdac,2000,nucciconst,
6 currentDecay,0,trueorfalse,
7 I1,9900,A,
8 I2,7500,A,
9 I3,9550,A,

10 eta,0.845,number,
11 Na,3,teresnumber,
12 rObs,50,m,
13 hObs,10,m,
14 vp,299792458,m/s,
15 vchan,150000000,m/s,
16 gridSizeRadial,200,m ,
17 gridSizeZ,340,m ,
18 deltaD,2,m ,
19 deltaZ,1,m ,
20 deltaT,1,ns,
21 useDTfromfile,0,trueorfalse,
22 simRunTime,3170,ns,

Appendix F

2D Spherical Single Cell FDTD
Code

Listing F.1: main_Sph2D.cpp
1 #include <iostream>
2 #include <cmath>
3 #include <iomanip>
4 #include <fstream>
5 #include <cstdlib>
6 #include <string>
7 using namespace std;
8

9 #include "SINCELSph2D.h"
10

11 int main(int argc, char const *argv[]){
12

13 SINCELSph2D lightningStroke2D("2D_SINCELL_Settings.csv", argc, argv);
14 lightningStroke2D.PrintMinimalSimParameters();
15 lightningStroke2D.EvaluateSingleCells();
16 }

Listing F.2: SINCELSph2D.h
1 #include <cmath>
2 #include <math.h>
3 #include <iostream>
4 #include <fstream>
5 #include <future>
6 #include <thread>
7 using namespace std;
8

9 #include "BfieldP.h"
10

11 class SINCELSph2D{
12 public:
13 SINCELSph2D(string settingsFile, int argc, char const *argv[]);
14 void setSimulationParameters(string settingsFile);
15 void PrintMinimalSimParameters();
16 void EvaluateSingleCells();
17

18 private:
19

20 // RS Constants:

144

Appendix F - 2D Spherical Single Cell FDTD C++ Code 145

21 double vp;
22 double vchan;
23 double lamdac;
24 int currentDecay;
25

26 // Terespolsky function constants:
27 double I1, I2, I3;
28 double eta;
29 double tau1, tau2, tau3, tau4;
30 int Na;
31 double omega0;
32

33 // User Set Simulation Parameters:
34 double rObs;
35 double observationAngleDeg, theta;
36 int integrationSteps;
37 double useDTfromfile, optimalDeltaT, deltaT;
38 double simRunTime;
39 double deltaR;
40 double deltaThetaDeg, deltaTheta;
41

42 // Time variables:
43 double timeToReachObservationPoint;
44 int nSteps;
45

46 // Field value holders:
47 double BpFieldHolder1;
48 double BpFieldHolder2;
49 double BpFieldHolder3;
50 double ErFieldHolder;
51 double prevErFieldHolder;
52 double EtFieldHolder;
53 double prevEtFieldHolder;
54

55 // FSC:
56 double ErConstant;
57 double EthetaConstant;
58 double sinPlusConstant;
59 double sinMinusConstant;
60 double rPlusConstant;
61 double rMinusConstant;
62

63 // Fixed Constants:
64 const double pi = 4.0 * atan(1.0);
65 const double c = 299792458;
66 const double mu = 4 * pi * pow(10.0, -7.0);
67 const double epsilon = 8.8541878176 * pow(10.0, -12.0);
68

69 // Data file field names:
70 char partATestID[128];
71 char partBTestID[128];
72 char BpFieldcurvename[128];
73 char ErFieldcurvename[128];
74 char EtFieldcurvename[128];
75 char ExFieldcurvename[128];
76 char EzFieldcurvename[128];
77 };

Appendix F - 2D Spherical Single Cell FDTD C++ Code 146

Listing F.3: SINCELSph2D.cpp
1 #include <algorithm>
2 #include "SINCELSph2D.h"
3 // The Purpose of this class is to manage the calculation of magnetic fields in threads, and
4 // then use these fields and FDTD to calculate the electric fields.
5

6 // This is the constructor. It takes a Settings file as an input.
7 SINCELSph2D::SINCELSph2D(string settingsFile, int argc, char const *argv[]){
8

9 setSimulationParameters(settingsFile);
10

11 // Character strings for file naming.
12 sprintf(partATestID,"SINCELL_R%05gA%04g", rObs*100, observationAngleDeg*100);
13 sprintf(partBTestID,"dR%03gdA%02gkstep%02g_dt%03g" , deltaR, deltaThetaDeg, ←↩

integrationSteps/1000.0, deltaT*pow(10,9)*10);
14

15 // Creating Output File names for the different fields. These files are opened, written
16 // to and closed in the main evaluate function. Also Note that this is hard coded to
17 // save files to the folder: "Simulations" located in the runtime folder.
18 sprintf(BpFieldcurvename, "./Simulations/%sBpField%s.curve", partATestID, partBTestID);
19 sprintf(ErFieldcurvename, "./Simulations/%sErField%s.curve", partATestID, partBTestID);
20 sprintf(EtFieldcurvename, "./Simulations/%sEtField%s.curve", partATestID, partBTestID);
21 sprintf(ExFieldcurvename, "./Simulations/%sExField%s.curve", partATestID, partBTestID);
22 sprintf(EzFieldcurvename, "./Simulations/%sEzField%s.curve", partATestID, partBTestID);
23

24 // Degree to Radian Conversion
25 theta = (observationAngleDeg/180)*pi;
26 deltaTheta = (deltaThetaDeg/180)*pi;
27

28 // Calculation of DeltaT. This assumes a CFL condition of 1.
29 optimalDeltaT = 1/(vp*(sqrt(pow(deltaR,-2) + pow(deltaTheta*rObs,-2))));
30

31 // To use the DT from the file, set the variable to 1, else the DT will be optimal.
32 if(useDTfromfile != 1){ deltaT = optimalDeltaT; }
33

34 // This is the "Thumbsuck Rule" for Terespolski Function.
35 omega0 = (double)Na / tau1;
36

37 // FDTD Free Space Equation Constants:
38 ErConstant = deltaT/(deltaTheta*mu*epsilon*(rObs + deltaR/2.0)*sin(theta));
39 EthetaConstant = (-1.0 * deltaT)/(mu*epsilon*rObs*deltaR);
40 sinPlusConstant = sin(theta + deltaTheta/2.0);
41 sinMinusConstant = sin(theta - deltaTheta/2.0);
42 rPlusConstant = rObs + deltaR/2.0;
43 rMinusConstant = rObs - deltaR/2.0;
44

45 // Time Steps
46 nSteps = int(simRunTime/deltaT);
47

48 // Time to source:
49 timeToReachObservationPoint = rObs/vp;
50

51 // Null the E field holder variables:
52 prevErFieldHolder = 0; prevEtFieldHolder = 0;
53 }
54

55 // This function is passed a file name string and extracts the required simulation variables
56 // from the file and assigns them to the relevant variables of the class.
57 void SINCELSph2D::setSimulationParameters(string settingsFile){
58

59 ifstream inputFromFile(settingsFile, ios::in);
60

61 if(!inputFromFile){
62 cerr << "File could not be opened!" << endl;
63 exit(1);
64 }
65

66 string UnitName, Value, Units;

Appendix F - 2D Spherical Single Cell FDTD C++ Code 147

67

68 while(getline(inputFromFile, UnitName, ',')){
69

70 // This next line of code removes the newline character from my settings file when it
71 // is read into the variables. This was only an issue with the UnitName variable.
72 UnitName.erase(std::remove(UnitName.begin(), UnitName.end(), '\n'), UnitName.end());
73 getline(inputFromFile, Value, ',');
74 getline(inputFromFile, Units, ','); // This variable is not used.
75

76 if(UnitName == "vp"){ vp = std::stof(Value); }
77 else if(UnitName == "vchan"){ vchan = std::stof(Value); }
78 else if(UnitName == "deltaR"){ deltaR = std::stof(Value); }
79 else if(UnitName == "deltaThetaDeg"){deltaThetaDeg = std::stof(Value);}
80 else if(UnitName == "deltaT"){deltaT = std::stof(Value) * pow(10,-9);}
81 else if(UnitName == "useDTfromfile"){useDTfromfile = std::stoi(Value);}
82 else if(UnitName == "simRunTime"){ simRunTime = std::stof(Value) * pow(10,-9); }
83 else if(UnitName == "tau1"){ tau1 = std::stof(Value) * pow(10,-6); }
84 else if(UnitName == "tau2"){ tau2 = std::stof(Value) * pow(10,-6); }
85 else if(UnitName == "tau3"){ tau3 = std::stof(Value) * pow(10,-6); }
86 else if(UnitName == "tau4"){ tau4 = std::stof(Value) * pow(10,-6); }
87 else if(UnitName == "lamdac"){ lamdac = std::stof(Value); }
88 else if(UnitName == "currentDecay"){ currentDecay = std::stof(Value); }
89 else if(UnitName == "I1"){ I1 = std::stof(Value); }
90 else if(UnitName == "I2"){ I2 = std::stof(Value); }
91 else if(UnitName == "I3"){ I3 = std::stof(Value); }
92 else if(UnitName == "eta"){ eta = std::stof(Value); }
93 else if(UnitName == "Na"){ Na = std::stof(Value); }
94 else if(UnitName == "rObs"){ rObs = std::stof(Value); }
95 else if(UnitName=="integrationSteps"){integrationSteps=std::stoi(Value);}
96 else if(UnitName == "observationAngleDeg"){ observationAngleDeg = std::stof(Value); }
97 else{ cout << "Variable "<< UnitName << " : " << Value <<" was not assigned." << endl;}
98 }
99 }

100

101 // This function prints the minimal Sim variables for batch script simulations.
102 void SINCELSph2D::PrintMinimalSimParameters(){
103

104 cout << "***" << endl;
105 cout << "Simulation Variables:" << endl;
106 cout << "requested rObs: " << rObs << ". Observation point angle: " << ←↩

observationAngleDeg << endl;
107 cout << "deltaR deltaTheta intSteps -deltaT -simTime" << endl;
108 cout << deltaR << " " << deltaThetaDeg << " " << integrationSteps << " " << ←↩

deltaT << " " << simRunTime << endl;
109 }
110

111 // This is the main workhorse of the class. Using the parameters given by the settings file
112 // this function creates a field object for the Magnetic PHI fields surrounding the electric
113 // fields of interest. Each of these fields are then evaluated over a time period and the
114 // resulting field waveforms are written to a .curve. What is really cool about this
115 // function is that each of the fields is calculated in its own thread, which effectively
116 // means that the fields are evaluated simultaneously.
117 void SINCELSph2D::EvaluateSingleCells(){
118

119 // Create field objects:
120 BfieldP simBfieldP1(vchan, c, lamdac, I3, I2, eta, tau2, tau3, tau4, omega0, Na, ←↩

currentDecay);
121 BfieldP simBfieldP2(vchan, c, lamdac, I3, I2, eta, tau2, tau3, tau4, omega0, Na, ←↩

currentDecay);
122 BfieldP simBfieldP3(vchan, c, lamdac, I3, I2, eta, tau2, tau3, tau4, omega0, Na, ←↩

currentDecay);
123

124 // Open the output data field files:
125 ofstream observationPointBpDataFile(BpFieldcurvename);
126 ofstream observationPointErDataFile(ErFieldcurvename);
127 ofstream observationPointEtDataFile(EtFieldcurvename);
128 ofstream observationPointExDataFile(ExFieldcurvename);
129 ofstream observationPointEzDataFile(EzFieldcurvename);

Appendix F - 2D Spherical Single Cell FDTD C++ Code 148

130 // Write the output file headers:
131 observationPointBpDataFile << "#SinCell_BfieldP" << endl;
132 observationPointErDataFile << "#SinCell_EfieldR" << endl;
133 observationPointEtDataFile << "#SinCell_EfieldT" << endl;
134 observationPointExDataFile << "#SinCell_EfieldX" << endl;
135 observationPointEzDataFile << "#SinCell_EfieldZ" << endl;
136

137 cout << "***" << endl;
138 cout << "Starting Simulation Time Steps: " << endl;
139

140 // This is where I iterate over all the time steps:
141 for(int n=(timeToReachObservationPoint/deltaT)-10; n != nSteps; n++){
142

143 // Progress indicator:
144 cout << "Progress " << ((n*deltaT)/simRunTime)*100.00 << "\% \r" ;
145 std::cout.flush();
146

147 // Create a thread for each magnetic field.
148 future< double > BpFieldThread1 = async(std::launch::async, &BfieldP::integrateZ, &←↩

simBfieldP1, n*deltaT + deltaT/2.0 , theta - deltaTheta/2.0, rObs + deltaR/2.0, ←↩
integrationSteps);

149 future< double > BpFieldThread2 = async(std::launch::async, &BfieldP::integrateZ, &←↩
simBfieldP2, n*deltaT + deltaT/2.0 , theta + deltaTheta/2.0, rObs + deltaR/2.0, ←↩
integrationSteps);

150 future< double > BpFieldThread3 = async(std::launch::async, &BfieldP::integrateZ, &←↩
simBfieldP3, n*deltaT + deltaT/2.0 , theta + deltaTheta/2.0, rObs - deltaR/2.0, ←↩
integrationSteps);

151

152 // Wait for threads to complete:
153 BpFieldHolder1 = BpFieldThread1.get();
154 BpFieldHolder2 = BpFieldThread2.get();
155 BpFieldHolder3 = BpFieldThread3.get();
156

157 // Electric Field Update Equations:
158 ErFieldHolder = prevErFieldHolder + ErConstant*(BpFieldHolder2*sinPlusConstant - ←↩

BpFieldHolder1*sinMinusConstant);
159 EtFieldHolder = prevEtFieldHolder + EthetaConstant*(BpFieldHolder2*rPlusConstant - ←↩

BpFieldHolder3*rMinusConstant);
160

161 // Values for next time Step:
162 prevErFieldHolder = ErFieldHolder;
163 prevEtFieldHolder = EtFieldHolder;
164

165 // Write field data to output files.
166 if(n*deltaT >= timeToReachObservationPoint){
167 observationPointBpDataFile << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) << ←↩

" " << BpFieldHolder2 << endl;
168 observationPointErDataFile << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) << ←↩

" " << ErFieldHolder << endl;
169 observationPointEtDataFile << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) << ←↩

" " << EtFieldHolder << endl;
170 observationPointExDataFile << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) << ←↩

" " << (cos(theta)*EtFieldHolder + sin(theta)*ErFieldHolder) << endl;
171 observationPointEzDataFile << (n*deltaT - timeToReachObservationPoint)*pow(10,+9) << ←↩

" " << (-1*sin(theta)*EtFieldHolder + cos(theta)*ErFieldHolder) << endl;
172 }
173 }
174

175 cout << endl;
176 cout << "Simulation Complete." << endl;
177 cout << "***" << endl;
178 cout << endl;
179

180 // Close Data file:
181 observationPointBpDataFile.close();
182 observationPointEtDataFile.close(); observationPointErDataFile.close();
183 observationPointExDataFile.close(); observationPointEzDataFile.close();
184 }

Appendix F - 2D Spherical Single Cell FDTD C++ Code 149

Listing F.4: BfieldP.h
1 #include <iostream>
2 #include <cmath>
3 #include <iomanip>
4 #include <fstream>
5 #include <cstdlib>
6 #include <string>
7 using namespace std;
8

9 class BfieldP{
10 public:
11 BfieldP(double Tvchan, double Tvp, double Tlamdac, double TI3, double TI2, double Teta, ←↩

double Ttau2, double Ttau3, double Ttau4, double Tomega0, int TNa, int TcurrentDecay =←↩
0);

12 double BpDifferential(double z, double t, double theta, double rObs);
13 double integrateZUpper(double t, double theta, double rObs, int N);
14 double integrateZLower(double t, double theta, double rObs, int N);
15 double integrateZ(double t, double theta, double rObs, int N);
16

17 private:
18 double vchan;
19 double vp;
20 double lamdac;
21 double I3;
22 double I2;
23 double eta;
24 double tau2;
25 double tau3;
26 double tau4;
27 double omega0;
28 int Na;
29 int factorial[13];
30 int currentDecay;
31

32 // Fixed Constants:
33 const double pi = 4.0 * atan(1.0);
34 const double c = 299792458;
35 const double mu = 4 * pi * pow(10.0, -7.0);
36 const double epsilon = 8.8541878176 * pow(10.0, -12.0);
37 };

Listing F.5: BfieldP.cpp
1 #include "BfieldP.h"
2 // Note that this is the same class used in the FInite Antenna Method.
3

4 // This is the constructor class for the BfieldP object. The Magnetic (B) field in the Phi
5 // co-ordinate. WRT Cylindrical co-ordinates. This constructor takes in all the variables
6 // needed to later calculate the B field at instants in Time.
7 BfieldP::BfieldP(double Tvchan, double Tvp, double Tlamdac, double TI3, double TI2, double ←↩

Teta, double Ttau2, double Ttau3, double Ttau4, double Tomega0, int TNa, int ←↩
TcurrentDecay){

8

9 // Fixed Constants:
10 factorial[0] = 1;
11 factorial[1] = 1;
12 factorial[2] = 2;
13 factorial[3] = 6;
14 factorial[4] = 24;
15 factorial[5] = 120;
16 factorial[6] = 720;
17 factorial[7] = 5040;
18 factorial[8] = 40320;
19 factorial[9] = 362880;
20 factorial[10] = 3628800;
21 factorial[11] = 39916800;

Appendix F - 2D Spherical Single Cell FDTD C++ Code 150

22 factorial[12] = 479001600;
23

24 // Terespolsky Function Constants:
25 I3 = TI3;
26 I2 = TI2;
27 eta = Teta;
28 tau2 = Ttau2;
29 tau3 = Ttau3;
30 tau4 = Ttau4;
31 omega0 = Tomega0;
32 Na = TNa;
33

34 // RS constants:
35 vchan = Tvchan;
36 vp = Tvp;
37 lamdac = Tlamdac;
38 currentDecay = TcurrentDecay;
39 }
40

41 // This is the main function of the class. It calculates what I like to call the "Field
42 // Strength". This is not the correct terminology but it works for me. What this actually is,
43 // is the magnetic field differential, at a point in space and time, due to an element at
44 // height Z on the lightning channel. In simple terms it is the function that returns the
45 // value of the term inside the integral component of the equation. Later functions will use
46 // this to calculate integral value. refer to the chapter on Finite Antenna Method for the
47 // mathematics and equations. The parameters it takes are the observation point Time (t),
48 // observation point angle (theta) and observation point radial distance (rObs). It also
49 // takes the height component value of the channel (z). The returned value is used in the
50 // integration equation/function.
51 double BfieldP::BpDifferential(double z, double t, double theta, double rObs){
52

53 double singleSumTerm = 0;
54

55 double timeShiftTerm = t -abs(z)/vchan -sqrt(pow(rObs,2.0) + pow(z,2.0) -2.0*rObs*z*cos(←↩
theta))/c;

56

57 double Rterm = sqrt(pow(rObs, 2.0) +pow(z,2.0) -2.0*rObs*z*cos(theta));
58

59 if(timeShiftTerm < 0){
60 return 0;
61 }
62 else{
63 for (int j = 0; j <= Na; j++){
64 singleSumTerm += pow(omega0 * (timeShiftTerm), j) / factorial[j];
65 }
66

67 // Note that these terms have been hard coded with the Terespolsky version of the
68 // Nucci Current impulse, as discussed in the main literature.
69 double BpInduction = (exp((-1.0* abs(z) * currentDecay) / lamdac) / (4.0 * pi * ←↩

epsilon * pow(c, 2.0))) * (rObs * sin(theta) / (pow(Rterm,3.0))) * ((←↩
I3 / eta * exp(-1.0 * (timeShiftTerm) / tau2)) * (1.0 - exp(-1.0 * omega0 *←↩
(timeShiftTerm)) * singleSumTerm) + I2 * (exp(-1.0 * (timeShiftTerm) / tau3←↩
) - exp(-1.0 * (timeShiftTerm) / tau4)));

70

71 double BpRadiation = (exp((-1.0* abs(z) * currentDecay) / lamdac) / (4.0 * pi * ←↩
epsilon * pow(c, 3.0))) * (rObs * sin(theta) / (pow(rObs, 2.0) + pow(z, ←↩
2.0) - 2.0 * rObs * z * cos(theta))) * ((I3 / eta * exp(-1.0 * (←↩
timeShiftTerm) / tau2)) * (exp(-1.0 * omega0 * (timeShiftTerm)) * pow(←↩
omega0, Na + 1.0) * pow(timeShiftTerm, Na) / factorial[Na] - 1.0 / tau2 * (←↩
1.0 - exp(-1.0 * omega0 * (timeShiftTerm)) * singleSumTerm)) + I2 * (-1.0 / ←↩
tau3 * exp(-1.0 * (timeShiftTerm) / tau3) + 1.0 / tau4 * exp(-1.0 * (←↩
timeShiftTerm) / tau4)));

72

73 double BfieldP = BpRadiation + BpInduction;
74 return BfieldP;
75 }
76 }
77

Appendix F - 2D Spherical Single Cell FDTD C++ Code 151

78 // This is the function that integrates the Bfield strength of the +ve Channel.
79 double BfieldP::integrateZUpper(double t, double theta, double rObs, int N){
80

81 double upperZ = (rObs / (1.0 - pow(vchan / c, 2.0)))*(-1.0 * pow(vchan / c, 2.0) * ←↩
cos(theta) + (vchan * t) / rObs - vchan / c * sqrt(1.0 - pow(vchan / c , 2.0) +←↩
pow(vchan * t / rObs, 2.0) + pow(vchan * cos(theta) / c , 2.0) - 2.0 * vchan * ←↩
t * cos(theta) / rObs));

82

83 // Trapezoidal Integration
84 double result = BpDifferential(0.0, t, theta, rObs) + BpDifferential(upperZ, t, theta, ←↩

rObs);
85 double dz = (upperZ) / ((double) N);
86

87 for (double z = dz; z < upperZ; z+=dz){
88 result += 2 * BpDifferential(z, t, theta, rObs);
89 }
90

91 result *= upperZ / (2.0 * (double) N);
92 return result;
93 }
94

95 // This integrates the Bfield strength of the lightning channel image (below ground).
96 double BfieldP::integrateZLower(double t, double theta, double rObs, int N){
97

98 double lowerZ = (rObs / (1.0 - pow(vchan / c, 2.0)))*(-1.0 * pow(vchan / c, 2.0) * ←↩
cos(pi - theta) + (vchan * t) / rObs - vchan / c * sqrt(1.0 - pow(vchan / c , ←↩
2.0) + pow(vchan * t / rObs, 2.0) + pow(vchan * cos(pi - theta) / c , 2.0) - ←↩
2.0 * vchan * t * cos(pi - theta) / rObs));

99

100 // Trapezoidal Integration
101 double result = BpDifferential(0.0, t, theta, rObs) + BpDifferential(-1.0*lowerZ, t, ←↩

theta, rObs);
102 double dz = (lowerZ) / ((double) N);
103

104 for (double z = dz; z < lowerZ; z+=dz){
105 result += 2 * BpDifferential(-1.0*z, t, theta, rObs);
106 }
107

108 result *= lowerZ / (2.0 * (double) N);
109 return result;
110 }
111

112 // This function performs an integral over the +ve and -ve lightning channels. It performs
113 // this integral at a specific time points over the entire applicable lightning channel. The
114 // applicable lightning channel length is dependant on the time taken for current to travel
115 // in the channel. The returned result is the field value at the time instant. The input
116 // parameters are the time instant of interest (t), observation point angle (theta),
117 // observation point radial distance (rObs), and N is the amount of integration steps in
118 // each integral stage, regardless of channel length.
119 double BfieldP::integrateZ(double t, double theta, double rObs, int N){
120 return integrateZUpper(t,theta,rObs,N) + integrateZLower(t,theta,rObs,N);
121 }

Appendix F - 2D Spherical Single Cell FDTD C++ Code 152

Listing F.6: Makefile
1 CC=g++
2 CFLAGS=-c -Wall -std=c++11 -fpermissive -pthread
3

4 all:
5 $(CC) $(CFLAGS) SINCELSph2D.cpp -o ./build/SINCELSph2D.o
6 $(CC) $(CFLAGS) BfieldP.cpp -o ./build/BfieldP.o
7 $(CC) $(CFLAGS) main_Sph2D.cpp -o ./build/main_Sph2D.o
8 $(CC) -pthread -std=c++11 ./build/SINCELSph2D.o ./build/BfieldP.o ./build/main_Sph2D.o -o ←↩

SingleCellFDTD
9

10 clean:
11 rm ./build/*.o SingleCellFDTD

Listing F.7: 2D_SINCELL_Settings.csv
1 tau1,0.072,us,
2 tau2,5,us,
3 tau3,100,us,
4 tau4,6,us,
5 lamdac,2000,nucciconst,
6 currentDecay,0,trueorfalse,
7 I1,9900,A,
8 I2,7500,A,
9 I3,9550,A,

10 eta,0.845,number,
11 Na,3,teresnumber,
12 vp,299792458,m/s,
13 vchan,150000000,m/s,
14 rObs,50,m,
15 observationAngleDeg,90,deg,
16 integrationSteps,1000,int,
17 deltaR,10,m,
18 deltaThetaDeg,10,deg,
19 integrationSteps,2000,count,
20 useDTfromfile,0,trueorfalse,
21 deltaT,0.05,ns,
22 simRunTime,5167,ns,

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Symbols
	Nomenclature
	Introduction
	Approach Taken
	Problem Description
	Solution Planning
	Model Concepts
	Chapter Summary

	Background
	Lightning Flash
	Current Impulse Models
	Return Stroke Models
	Electromagnetic Theory
	Curvilinear Co-ordinate Systems
	Chapter Summary

	Finite Antenna Method
	Overview
	Model Development
	Model Simulations
	Chapter Summary

	3D FDTD Method
	Overview
	Model Development
	3D FDTD Equations
	Stability and Dispersion
	Boundary Conditions
	Simulation space objects
	Computational Considerations

	Model Simulations
	Chapter Summary

	2D FDTD Method
	Overview
	Model Development
	2D FDTD Equations
	Stability and Dispersion
	Boundary Conditions
	Simulation space objects
	Computational Considerations

	Model Simulations
	Chapter Summary

	Single Cell FDTD Method
	Overview
	Model Development
	Model Simulations
	Chapter Summary

	Discussion and Future Work
	Conclusion
	References
	Bibliography
	Appendix SAUPEC Conference Paper
	Appendix SIPDA Conference Paper
	Appendix 2D Spherical Finite Antenna Code
	Appendix 3D Cartesian FDTD Code
	Appendix 2D Cylindrical FDTD Code
	Appendix 2D Spherical Single Cell FDTD Code

