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Abstract

An explosive event in an industrial gas transmission pipe stresses the pipe and can result in

pipe rupture and separation at weak points. A shock wave results propagating from the

high pressure section of the pipe, through the gap and to the low pressure section. The

present study simulates numerically and experimentally the resulting flow field at the

position of pipe separation and propagation conditions in both pipe sections. The effects of

gap width, gap geometry and shock Mach number variation are investigated. Shock Mach

numbers of 1.34, 1.45,1.60 and 2.2, gap widths of 40mm to 310mm were used. All variations

of boundary conditions were found to have an effect on the propagation conditions as well

as the development of the flow features within the gap. The variation of the gap geometry

was done for a pipe gap and a flanged gap experimentally. Extended geometries were

simulated numerically. For the pipe gap, the incident shock wave accelerated the gas in the

upstream pipe to high subsonic speeds and continued in the downstream pipe at a much

reduced strength. A strong expansion propagated into the flow in the upstream pipe

causing a significant pressure drop from the initial post-shock pressure. Expansion waves at

the outflow resulted in supersonic speeds as the flow entered the gap for Mach 1.45 and 1.6.

A notable feature was the formation of a standing shock at the inlet to the downstream

pipe. In addition to the standing shock, shock cells of alternating shocks and expansions

developed within the gap essentially controlling the propagation conditions in the

downstream pipe. For the lower Mach number of 1.3, no sharp discontinuities were noticed.

The effect of the gap width was found on the nature of the shock cells within the gap. The

propagation conditions in the downstream pipe showed that the pressure is initially

unsteady but becomes more uniform, controlled by the developed wave system in the gap.

For the flanged gap case, the flow within the gap is confined for much longer and hence

produced much more intense and complex flow feature interactions and an earlier transition

of the flow to turbulence. Numerical investigations for a burst pipe gap, for a gap with a

different diameter downstream pipe and a gap with a 90-degree bend downstream pipe

produced peculiar flow features.
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1 Introduction

1.1 Background

Shock tubes have been used extensively as valuable gas dynamic instruments in studies of

flow field features and shock wave dynamics in compressible duct flows. They have been a

basic tool in the understanding of compressible flows in ducts. One of these compressible flow

studies relates to the propagation of pressure waves and the ensuing flow features through a

gap in a pipeline with the use of a shock tube facility.

An explosive event in a high pressure industrial gas pipe is a practical example were com-

pressible flow through a pipeline gap can occur. The initial explosive event will result in

stress loading of the structural material of the pipe. A stress wave results propagating down

the piping material at high speeds and could result in pipe rupture, or bolt failure at flanges,

causing them to separate. This is then followed by a relatively slower shock wave propagat-

ing through the gas from the high pressure pipe section, through the gap and down the low

pressure section.

Studies on the nature and behaviour of blast waves have mainly focused on their mitigation

following an explosion. This has been done on mitigating blast wave loading effects on

architectural structures and on human skull models. Another avenue has been the study of

the dynamics of blast waves in the suppression of booms from shock tubes in the laboratory,

optimal designs of mufflers for automobile engines and reduction of sonic booms in the high-

speed train/tunnel problem.

Despite the dangers associated with effects of blast loading on a high pressure gas pipeline,

not many studies have focused on this phenomena. The only study that simulated a flow

field through a pipe gap following an explosive event in a gas pipeline was an experimental

and numerical study by Skews et al.[12]. The boundary conditions in the study by Skews

were limited to an incident shock Mach number of 1.5 for a circular pipe. The gap sizes

which were used were 10mm, 20mm and 30mm for both the flanged and pipe gap. Complex

features observed could not be fully explained over the limited range.
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During the study it was noticed that the flow field within the gap had an influence on the

development of the flow field in both the upstream and downstream pipe. The exact nature

of the influence could not be ascertained from the study as the experimental investigation

was primarily at the position of pipe separation and not in the upstream and downstream

pipes.

1.2 Problem Statement

From the background study above, an investigation of the flow features and their interactions

within the pipe gap have been done over a limited range of boundary conditions. The effects

of gap geometry, gap width and shock Mach number were not done over extended ranges. The

studies have been limited to the gap flow field and not explored the propagation conditions

in the upstream and downstream pipe and their relationship with the gap flow.

1.3 Scope of Work

In chapter 2 a literature review will be presented on the work by Skews et al.[12]. Studies

exhibiting similar flow features will also be reviewed. In chapter 4, details will be provided

of the experimental set-up used. This will include details on the shock tube facility, the flow

visualisation system and instrumentation. In chapter 5 the research methodology is presented.

This will include details for the procedures for numerical simulations and experimental work.

Data processing of the primary results will also be covered in chapter 6. In chapter 7, results

will be presented for the numerical simulations and the experimental work. In chapter 8,

the results are explained and discussed. The study will be concluded in chapter 9 and

recommendations for future work are given in chapter 10.
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2 Literature Survey

2.1 Introduction

Shock-induced flow through a gap in a pipeline is quite a novel research field. Although

explosions in industrial gas pipelines and the resulting flow field can cause serious damage,

researchers have mostly focused on shock-induced flow at an open pipe end. This has been

brought about mainly by the study of blast waves and its mitigation from gun muzzles, high

speed train tunnels and engine exhausts.

Previous literature on explosive-related phenomena and its mitigation in industrial gas trans-

mission pipes have taken slightly different approaches. The past studies have not simulated

the initial blast loading on the piping material and the eventual failure and separation of

pipes at structurally weak points. The planar shock waves have been simulated to propagate

in continuous uniform cross-section pipes with only an open end.

The shock wave on exiting the open end pipe, the flow features in the previous studies

resemble some that result in the pipe gap of the present study. Therefore this chapter will

review some of the previous work. Some fundamental concepts relating to shock tube flow

are reviewed first however.

2.2 Shock tube flow

The shock tube is an instrument used to study compressible flow related phenomena. Shock

tubes have been used extensively as a valuable gas dynamic instrument in studies of flow

field properties and shock wave dynamics in duct flows. They have been a basic tool in the

understanding of compressible flow in ducts. More recently, shock tubes have been used in

biomedical research to study how biological specimens are affected by blast waves. In this

case they replicate and direct blast waves at a sensor or a model in order to simulate actual

explosions and their effects, usually on a smaller scale.
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The conventional shock tube consists essentially of a uniform tube divided initially by a

diaphragm into two compartments containing gases at different pressures. A shock tube

might be open or closed at its end depending on its application. When the diaphragm is

ruptured by means of a needle or an electric spark, a normal shock wave moves into the low

pressure part of the tube and an expansion wave moves into the high pressure part. The

expansion is propagated in the form of a rarefaction wave of finite extent. The head of the

rarefaction wave travels with the speed of sound in the high pressure compartment, whilst

the tail moves with the speed of sound relative to the fluid. Between these two disturbances,

there may be regions in which the gas moves with uniform subsonic, sonic or supersonic speed

depending on the initial pressure ratio across the diaphragm. The strength of the shock and

the Mach numbers in the low pressure part depend on the initial pressure ratio across the

diaphragm. The Mach number of the flow behind the shock wave reaches a limiting value for

an infinite shock strength. For γ = 1.40, this limiting Mach number is 1.89. The duration of

steady flow in the low and high pressure regions is limited to times of the order of milliseconds

in tubes of reasonable length by reflections of the shock and expansion waves from the ends

of the tube.

2.2.1 Wave propagation in a Shock tube

The motion of the shock waves and expansion waves in an open end shock tube is conveniently

described with reference to Figure 2.1. These are typical wave diagrams occurring in the

vicinity of the open end of a tube. The time, t, that has elapsed since the diaphragm was

ruptured is plotted against the pressure, p, at different measuring points. It is assumed in

this wave diagram that the same gas was originally contained in the high and low pressure

compartments, and that the temperatures in these compartments were initially equal. When

the diaphragm is ruptured, a normal shock propagates from left to right and results in the

pressure variations at the measuring points 1 and 2. The static pressure suddenly rises when

the normal shock passes over the measuring points and remain constant, corresponding to

the static pressure just behind a normal shock. Decrease in the static pressures at the two

measuring points is due to the reflected expansion wave from an open end of the tube. The

line that connects the same pressure pH values in the two wave diagrams indicates a head

of the expansion fan reflected from the open end of the tube, while the line that connects

the same pressure pT values presents a tail of the expansion fan. These lines are extended to

meet each other at the location of e away from the tube exit. The distance e is known as the

open end correction e. The open end correction was shown to be necessary by Kim et al.[7]

at the open end of the shock tube.

4



Figure 2.1: Wave diagram at the open end of a shock tube.[7]

2.3 Shock wave diffraction

Another phenomena that occurs when a shock wave exits a pipe is shock wave diffraction.

Figure 2.2 illustrates diffraction of a shock wave discharged from a pipe end. IT is the normal

shock wave, TR is the expansion wave and TC is the diffracted shock wave, where the flow

behind the incident shock is subsonic. In the early stages when the shock discharges from the

pipe, the shock is almost normal. As time elapses, the shock is diffracted by interfering with

the expansion wave generated at the lip of the pipe. This expansion, as it spreads towards

the tube axis, interferes with the shock wave. In this process the shock wave is diffracted

more and finally becomes spherical in shape. This is similar to what was pointed out by Abe

and Takayama[1], whereby a shock wave exiting a pipe end diffracts into a spherical shape

once the curved expansion fan behind the shock coalesces at the axis of symmetry.
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Figure 2.2: Schematic diagram of a shock wave diffracting at an open pipe end.

2.4 Shock wave reflection

An incident shock wave on a solid wall results in the occurrence of a regular or a Mach

reflection. In practical flow fields both types of shock reflection can be observed. A change in

the angle between the shock wave and the rigid wall will result in a transition in the reflection

type. A typical transition from a regular to a Mach reflection is shown schematically in

Figure 2.3.

Figure 2.3: Schematic of a regular to Mach reflection transition.
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2.5 Jet structure from an open pipe end

As a shock propagates in a shock tube, a mass motion of fast moving gas is induced behind

the shock. Upon exiting the shock tube, the shock diffracts and behind it the gas expands

and develops into a pulse jet. In the initial stages of flow development of shock-induced flow

through a pipe gap, similar flow features are common to those in a pulse jet. Therefore a good

understanding of the jet structure from a normal open pipe end is fundamental. This will

help explain the initial flow features and their subsequent interactions as the flow develops

within the gap.

Depending on the shock Mach number, the gas can exit supersonically or expand to supersonic

speeds locally within the pipe gap. The structure of the resulting supersonic jet in both cases

is mainly governed by the conditions to which the gas expands to. In the case of the flow from

the pipe end, this will be the ambient pressure the gas expands to. If the ambient pressure is

more than the exit plane pressure of the jet, an underexpanded jet develops. If the ambient

pressure is less than the exit plane pressure of the jet, an overexpanded jet develops.

2.5.1 Underexpanded Jet

The structure of an underexpanded jet exiting from a pipe end is shown in Figure 2.4. It

shows the essential flow features of an underexpanded jet near the exit of the pipe.

An underexpanded jet exhausting supersonically into still air has been known to exhibit a

periodic or chain-like structure at least as early as the observations of Rayleigh[13] in 1879.

A similar periodic jet structure is approached in the pipe gap flow as the gaps get relatively

larger. Rayleigh and many others have offered explanations for and elaborated upon the

manner in which the expansion and compression waves within a free jet form the periodic

patterns at low jet pressure ratios and the not so periodic patterns at high jet pressure ratios.

This axisymmetric periodic structure has several complex features. In the periodic pattern

jet, the jet boundary oscillates as the underexpanded jet gas periodically overexpands and

re-converges in its attempt to match the ambient pressure. The gas continually overshoots

the equilibrium position because the effects of the boundary arc communicated to the interior

of the jet by sound waves, which, by definition, travel more slowly than the bulk supersonic

flow. The characteristic paths of the sound waves converge to form the network of criss-

crossed shock waves, or shock diamonds. These standing shocks alternate with rarefaction

fans. The gas in the jet interior expands and cools as it flows through the rarefaction fans

and is compressed and heats as it passes through the shock diamonds. Figure 2.5 shows the
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Figure 2.4: Underexpanded jet from a pipe end.

periodic nature of an underexpanded jet. The figure clearly illustrates that the jet interior is

always out of step with the jet boundary.

Figure 2.5: Underexpanded jet with the periodic nature.

2.5.1.1 Intercepting shock

As a supersonic jet is emitted from a nozzle with an exit plane pressure which is higher than

the ambient pressure, the underexpanded jet expands to match the ambient pressure. At

the rim of the opening there occurs an expansion fan tending to lower the pressure of the

gas to that of the ambient surroundings, but somewhere along the outer periphery of these

waves a shock front develops which cuts across them and intercepts them. The extent of the

spreading of the jet boundary is a function of the pressure of the jet at the pipe exit. The

larger the pressure of the jet at the pipe exit, the larger the jet expansion into the ambient
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surroundings once it leaves the pipe. If the exit plane pressure is reduced then the shock front

remains at the pipe lip. Hence there is a continuous transition from intercepting shock fronts

to shock fronts formed when the jet is overexpanded in nature. A schematic of the shock

pattern commonly found in an underexpanded supersonic gas jet is shown in Figure 2.6.

Figure 2.6: Shock pattern in an underexpanded jet.

Courant and Friedrichs[3] suggested the possible reasons for the formation of intercepting

shocks which is also known as a Barrel shock. The flow continues uninfluenced by the ambient

state until it meets the first Mach line issuing from the pipe exit, i.e. the leading edge of the

expansion wave. Owing to the divergence of the jet the pressure decreases along the axis.

Across the expansion wave the pressure decreases until it drops below the ambient pressure.

Hence there is a pressure gradient existing from the jet boundary where the pressure is equal

to the ambient pressure. This will cause an inward curvature of the jet. All the Mach lines

issuing from the the jet boundary have the same angle with the jet boundary, since at the

boundary the pressure, hence the sound speed and velocity remain constant. Hence these

Mach lines would tend to converge with the converging jet and would have an envelope

unless they were to be cut off by an intercepting shock as shown by Figure 2.7 below. Thus

an intercepting shock would have to exist to prevent the formation of the above mentioned

envelope.

Figure 2.7: Formation of an Intercepting shock in an underexpanded jet.
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2.5.1.2 Prandtl-Meyer Fan

When a supersonic flow is turned away from itself a Prandtl-Meyer expansion fan forms

as a series of characteristics. A similar flow feature forms at a shock tube end when a

supersonically accelerated gas in the gap is turned away from itself. This happens when the

jet issuing from the upstream pipe is underexpanded. To expand the gas to the ambient

pressure a Prandtl-Meyer expansion fan forms at the lip of the upstream pipe.

2.5.1.3 Jet shear layer

The shear layer originates at the corner of the pipe. The shear layer is due to the separation

of the gas and is brought about by the inability of the boundary layer of the upstream flow

to negotiate the corner. The shear layer is a narrow region in which the high velocity gas

issuing from the pipe interacts with the almost stationery gas at the pipe end. The shear

layer is essentially straight and radial as it issues from the pipe corner. One end of the shear

layer originates at the pipe corner and the other end embedded in the vortex. The angle at

which the shear layer occurs depends on the ratio of the exit plane pressure to the pressure

the gas expands to.

2.5.1.4 Vortex Ring

When a shock wave exits a pipe, the impulsively started flow results in an unsteady boundary

layer separation at the pipe exit. Further on, the boundary layer rolls up and forms a

separated vortex ring. The name ’ring’ is as a result of the characteristic shape for a three-

dimensional axisymmetric flow. For shock-induced flow, they are referred as ’compressible

vortex rings’ since they move at considerably higher velocities. Upon generation, the vortex

ring evolution is influenced by factors such as cross-sectional shape of the pipe end and initial

conditions of the driver. Figure 2.8 shows schematically the formation and propagation of a

vortex ring at an open pipe end.

2.5.1.5 Second shock

The so called second shock, is the shock with one end attached to the vortex ring and is in the

plane of the vortex ring. As the jet exits the pipe it expands and goes supersonic in the gap.

The supersonic flow sees a reduced cross-sectional area through the vortex ring and adverse

pressure gradient and the second shock forms in the jet. This implies the second shock forms

even if the flow exits the pipe subsonically. The second shock is swept downstream with the
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Figure 2.8: Propagation of a vortex ring from a shock tube open end.

vortex. Endo and Iwamoto[4] detailed the mechanism of the formation of the second shock.

Sun and Takayama[14] outlined the flow conditions necessary for the formation of a second

shock behind a diffracting shock.

2.5.1.6 Shock oscillations in an underexpanded jet - Work by J Panda

Shock-associated noise has been associated with the oscillation of the shocks in a supersonic

jet. Passing of sound waves (from shock-shear layer interactions) cause periodic pressure per-

turbations and cause oscillation of the shocks in the jet. Panda[10] investigated the periodic

oscillation of the shock waves in screeching underexpanded supersonic gas jets issuing from

a choked axisymmetric nozzle at fully expanded Mach numbers of 1.19 and 1.42. The inves-

tigation was performed experimentally and through analytical means. The experimentation

was performed using standard schlieren photography and a new shock detection technique
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that depends on the scattering of laser light by shock waves. The scattered light is sensed by

a photomultiplier tube (PMT). The time averaged and phase averaged statics of the PMT

data revealed significant insight into the motion of the shock wave within the jet core. It was

observed that the shocks oscillated more in the jet core and the least in the jet shear layer.

2.5.1.7 Circular pulse jets - Work by Ishii et al.

Unsteady circular jets were investigated experimentally and numerically for a wide range of

jet strength by Ishii et al.[5]. In their studies, they described three types of exit conditions

for a pulsed jet. They showed their dependence on the initial pressure ratio in the shock tube

p4/p1, where p4 is the initial driver pressure and p1 is the initial driven pressure. In their

analysis, they concluded that the exit conditions fall into three categories.

1. Subsonic matched jets for 1 < p4/p1 < 4.1

2. Sonic underexpanded jets for 4.1 < p4/p1 < 41.2

3. Supersonic underexpanded jets for p4/p1 > 41.2.

After a sudden gas outflow, it was observed that there are several stages in the subsequent

time evolution of a sonic or supersonic underexpanded jet. The first stage is the diffraction

of the first shock round the end corner. The second stage is the formation of an unsteady

Mach disk or a normal shock. Even in a jet which does not have a quasi-steady Mach disk,

an unsteady Mach disk can be formed, at least temporarily. The third stage is the formation

of the first shock-cell structure. This stage is strongly affected by the presence of the first

vortex and the Mach disk. After the connection between the second shock and the reflected

shock is broken, the shock-cell length becomes maximum and thereafter it tends to shrink

to a certain asymptotic size. The jet with a strong Mach disk is very unstable and rapidly

breaks up. The jet tip is folded back on itself and is entrained into the first vortex ring and

the jet soon evolves to a fully developed turbulent flow. At least up to 500µs, circular jets

with 2 cm diameter experience a substantially axially symmetric time evolution.

2.5.2 Supersonic jet impinging on a plate

Supersonic jets impinging on a solid structure were studied by Konstantin Vladimirovich

Klinkov[8]. In the impingement zone just upstream of the solid structure, an unsteady stand-

ing shock developed. The unsteady behaviour of the standing shock was studied by a newly

developed method of multi-exposure photography. The motion of the standing shock wave
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ahead of the solid structure was detected by combining several light pulses with different time

parameters. In order to observe the relatively slow motion of the shock wave, sequences of 5

pulses (duration: 100 ns) with time intervals betweens the pulses ranging from 2 to 10 s were

applied . A typical shadowgraph image of the unsteady standing shock that was obtained

with five light pulses, is shown in Figure 2.9 below.

Figure 2.9: Five-exposure shadowgraph of an unsteady standing shock.[8]
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Oscillation in the position of the standing shock was observed. A synchronized pressure

measurement on the surface of the solid structure linked the pressure variation with the

oscillating position of the standing shock.

2.6 Flow feature interactions

The basic flow features described in section 2.5 do interact in practical flow fields. In shock

induced flow from a pipe these interactions mainly influence the evolution of the flow to

steady state. These will be briefly outlined below.

2.6.1 Shock-vortex interaction

The study of shock-vortex interactions has been a fertile field of investigation for several

decades. The interaction of a vortex and a shock wave is a major flow interaction in pipe

gap flow. The interaction is a result of the vortex from the upstream pipe interacting with

the reflected shock wave from the downstream pipe. In some cases the interaction is a major

source of noise. The effect of the interaction on the shock profile and vortex distortion

depends strongly on the relative strengths of the shock and the vortex. If the vortex is weak

relative to the shock, there is no significant distortion of the shock front. A strong vortex

however, distorts both a weak and a strong shock in such a way that the structure of the

transmitted shock is much more complex. A typical interaction of a strong shock and a strong

vortex interaction was investigated by Zhang et al.[16] and is shown in Figure 2.10. It shows

the interaction of a strong shock wave and a strong vortex. An incident shock distorts into

an S shape. At a later time, the incident shock splits into its two components S1 and S2.

Reflected shocks R1 and R2 emanate from the shock-vortex interaction.

Figure 2.10: Typical shock-vortex interaction of a strong shock and a strong vortex.[16]
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2.6.2 Vortex ring leap frogging

In shock induced flow through a pipe gap, diffraction of the incident shock at the downstream

pipe can produce a second vortex ring. This can lead to a phenomenon known as vortex ring

leap frogging between the two vortex rings. This is whereby vortex rings roll over one another.

In general, vortex leap frogging occurs when two vortices in close proximity share the same

axis. In terms of the properties of the vortices, the velocity, diameter and evolution of each

vortex plays a role in influencing the nature of leapfrogging. The size ratio of the vortices

dictates how long the leap frogging carries on for. The critical ratio was determined to be

3 +2 /
√

2 (equal to 5.83) by Love[9]. This ratio is the ratio of the breadths of each vortex

at the instant that they pass through one another. For this exact ratio, the leap frogging

occurs once and two vortices of the same breadth remain. For values less than this, periodic

motion of the leap frog phenomenon occurs. However, when the ratio is greater than this

value, the smaller vortex ring moves through the larger one and widens while the larger one

contracts and falls behind. In Figure 2.11 the phenomena is shown between a primary vortex

ring and a second vortex ring in shock-induced flow from a pipe end. The primary vortex

ring is pushed through the second vortex ring and in the process the second vortex ring leap

frogs over the primary vortex ring.

2.6.3 Shock-shear layer interaction

It was observed by Jiang et al.[6] that when a shock wave interacts with a shear layer this

part of the shear layer is separated from that grows longer again from the sharp corner of the

shock tube. The reason is that after the shock wave sweeps over the shear layer, the radial

particle velocity behind the shock wave is increased. Therefore, this part of the shear layer is

moved into the jet flow that carries it faster downstream. This results in shear layer splitting

and has nothing to do with viscosity.

2.6.4 Shock wave focusing

Shock waves can focus on a plane in a two-dimensional case or on the axis of symmetry for an

axisymmetric case. For the axisymmetric case, the focusing will induce accumulation of more

energy and lead to generation of a stronger jet [6]. The shock focusing in an axisymmetric

case is shown schematically in Figure 2.12. The high pressure generated at the focal point

can induce flow features which can otherwise be absent in shock wave focusing in a two-

dimensional planar flow.
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Figure 2.11: Vortex ring leap frogging[11].

2.7 Compressible flow through a ruptured pipe - Work by

Skews et al.

The only study on shock-induced flow through a pipe gap the author is aware of was the one

done by Skews et al.[12]. A preliminary study, over a limited range, was done numerically and
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Figure 2.12: Schematic of shock wave focusing for a two-dimensional axisymmetric flow.

experimentally for a shock wave propagating past a gap in a pipeline. The study discussed

the resulting gas dynamic phenomena primarily those at the position of pipe separation, with

the passage of the shock wave. They were two noticeable effects from the study and these

will be briefly described.

2.7.1 Stationary normal shock

Although the flow behind the incident shock was subsonic, the outflow in the pipe gap

produced a supersonic jet. This resulted in a stationary standing shock forming at the inlet to

the downstream pipe. As steady state was approached, there was oscillation in the position of

the standing shock as well as flow emerging from the upstream pipe. The developed standing

normal shock is shown for a pipe gap of 20 and 30mm respectively in Figure 2.13.

Figure 2.13: Developed standing shock at downstream pipe inlet for a 20mm and 30mm pipe

gap.[12]

17



2.7.2 Flow in the upstream and downstream pipe

Numerical simulations showed that the stationery standing shock essentially controlled prop-

agating conditions of the incident shock wave in the downstream pipe, although as it propa-

gated its strength was significantly diminished from its original value. The flow in the down-

stream pipe is initially unsteady but then becomes more uniform, controlled by the developed

standing shock. The simulations also showed that a strong expansion wave propagates back

in the upstream pipe causing a significant drop in pressure in the initial post-shock flow. The

upstream flow also tends to steady state with time. Figure 2.14 shows CFD pressure plots of

the development of the upstream and downstream pipe to steady state.

Figure 2.14: Pressure contours for the flow development to steady state in the upstream and

downstream pipe.[12]

2.7.3 Vortex ring leap frogging

As the incident shock wave diffracted around the upstream pipe a vortex ring followed.The

flow path of the vortex ring was influenced by the velocity field produced after the shock

wave propagated through the gap. The vortex ring moves outward into the external flow

18



field which has been generated by the outward propagating toroidal shock wave resulting

from the initial high pressure behind the incident shock. Upon diffraction of the shock wave

at the downstream pipe, a second vortex ring was generated. This second vortex interacts

with the first one, eventually leapfrogging over it.

2.8 Shock-boundary layer interaction under the influence of

a normal suction slot - Work by Weiss and Olivier

In their work, A.Weiss and H.Olivier[15] derived a flow model which explains the transition

of a shock train into a single shock under the influence of boundary layer suction slot for

a supersonic intake. The geometry of the suction system was a circumferential suction slot

similar to a gap in a pipeline. The suction slot was found to be sufficient to stabilize the

primary shock of a shock train in as much as the back pressure of the shock train was increased

until the shock train gradually changes into a single normal shock.

Their work originated from the study of a flow phenomenon called a ’shock train’. If a

supersonic flow passes through a duct of certain length and a back pressure is applied, a

shock wave forms. Under certain conditions successive shocks appear downstream of the first

shock. This series of shocks is called a shock train.

In their study on the influence of the suction slot onto the position and length of the shock

train, wall pressure measurements were done upstream and downstream of the suction slot.

With an increasing back pressure, the measurements showed the gradual change of a shock

train to a single normal shock. The normal shock was found to stabilise at the slot position

and there is a static pressure jump at the slot position.

2.9 Propagation and distortion of pressure waves in a pipeline

When a shock wave propagates and discharges at the pipe end or a pipe gap of a shock tube,

wave interactions result in the pipes as was noted in section 1.1. This replicates wave motions

in compressible flows in practical industrial pipe systems like the present study. A review is

given below for previous studies which focused on wave propagation and distortion in pipes.
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2.9.1 Effect of a flange gap on Shock tube performance - Work by A R

Butcher

The experimental investigation by A.R Butcher[2] focused on the effects of different sized

flange gaps on shock tube performance. Pressure profiles upstream and downstream of the

gap were used for the wave propagation in the shock tube. An expansion wave propagated

in the upstream pipe reducing the upstream pressure more than the downstream pressure.

In the downstream pipe, the shock wave propagated with a reduced strength as compared

to the case without a flange gap. Without flow visualisation and numerical simulations,

Butcher could not explain the observed pressure profiles. Therefore the observed pressure

profiles could not explain the wave propagation and interaction in the two pipes. An exact

correlation of gap configuration and shock tube performance was not achieved.

2.9.2 Propagation conditions and wave distortion - Work by Kim et al.

Kim et al.[7] experimentally and numerically addressed the distortion of the compression wave

reflected from an open end of a shock tube. The generation and development mechanisms of

the compression wave, which was reflected from the open end of the shock tube, were obtained

in detail. The effect of the configuration of the pipe end was found negligible. It was found

out that the distance necessary for the reflected compression wave to transit to a shock wave

does not depend on the magnitude of the incident expansion as well as its wavelength.

2.10 Conclusion

To conclude, as the literature review shows previous work has focused on flow fields at an

open-ended shock tube. Shock-induced through a pipe gap has not been fully investigated.
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3 Objectives

The objectives of the current study are;

1. A numerical and experimental investigation of the resulting flow features and their

interactions within the gap in a pipeline after a simulated explosive event. Variation

of boundary conditions to include gap geometry, gap width and shock Mach number.

From this, the influence of the individual boundary conditions on the flow development

is to be ascertained.

2. Determination of the propagation conditions in the upstream and downstream pipe

after passage of the shock wave through the gap. An influence, if any of the gap flow

features on the propagation conditions in both the upstream and downstream pipe.
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4 Apparatus

4.1 Introduction

The experimental apparatus that has been used in the work described in this report consists

of the following components

1. Shock tube (including piping, compressed air supply ports, pressure measurement ports

and pipe supports.)

2. Compressed air supply (consisting of the supply lines and its regulation).

3. Instrumentation and Shadowgraphy system.

4.2 Shock tube

A fabricated shock tube was used for the experimental investigation. Honed piping was used

with a 50mm internal diameter and 62mm outer diameter. The wall thickness of 6mm was

determined to be adequate to withstand the high pressures involved in the typical high shock

Mach numbers used. The honed pipe was cut at specified lengths for easier machining of the

pressure measurement ports as well as for structural strength. The different pipe sections

were joined together by bolted flanged joints. Flanges were laser cut to be welded onto the

ends of the tubing. These flanges were designed according to the South African National

Standard (SANS 1123). At these cuts, the flanges were welded on using the Tungsten Inert

Gas (TIG) welding technique. The flanged joint separating the driver and driven section had

a rubber gasket for effective sealing during pressurisation.

For the testing of the two different gap geometries, different piping arrangements were used

for the flanged and pipe gap geometry. The two arrangements are shown below schematically

in Figure 4.1 and Figure 4.2. The relative positions of the pressure measurement points are
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numbered. The points for pressurisation and pressure monitoring in the driver are shown

by P and M respectively. Table B.1 shows the positions of the pressure measurement points

relative to the gap.

Figure 4.1: Schematic for the piping arrangement for the pipe gap geometry.

Figure 4.2: Schematic for the piping arrangement for the flanged gap geometry.

Table 4.1: Relative positions for the pressure transducers

Gap geometry Station number Relative position

Pipe gap 1 675mm upstream

2 150mm upstream

3 50mm downstream

4 150mm downstream

5 400mm downstream

Flange gap 1 50mm upstream

2 50mm downstream

3 440mm downstream

4 510mm downstream

In isometric view, the pipe gap and the flange gap arrangements are shown in Figure 4.3 and

Figure 4.4.
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Figure 4.3: Isometric view for the pipe arrangement for the pipe gap.

Figure 4.4: Isometric view for the pipe arrangement for the flange gap.

The length of the tube from the diaphragm to the open end for the upstream pipes was

chosen to be at least 30 times the tube diameter. This was done to ensure a fully formed

planar shock wave was readily obtained at the open end. The driver section was made to

be 1000mm in length. This would ensure the reflected expansion waves from the driver wall

would not affect the development of the gap flow. From an initial Computational Fluid

Dynamics (CFD) simulation, the length of downstream piping section for the flanged and

pipe gap geometry were determined to be 1064mm and 1100mm respectively. These lengths

ensured no wave reflections from the end of the downstream pipes affected the development

of the gap features within the testing time.
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The driver and pressure measurement ports were made using 19mm round bar and then

machined precisely by the Mechanical Engineering Laboratory at the University of the Wit-

watersrand. The pressure transducers were installed in such a way there were flush with the

inner wall. An initial CFD simulation was done to determine the relevant positions along the

shock tube for pressure measurement ports. A drawing of the pressure port is shown below

in Appendix F.

For flow visualisation of the test section, the shock tube assembly had to be lifted to a height

suitable for the optics. For this the shock tube was supported by piping supports. The piping

supports would also allow the adjustment of the gap width for the various testing conditions.

The pipe support is now shown in isometric view in Figure 4.5.

Figure 4.5: Shock tube supports.

4.3 Compressed Air Supply

To be able to produce the range of Mach numbers necessary for experimental investigation,

a compressed air cylinder was used to deliver the compressed air. For regulation of the

driver pressure, a pressure regulating valve was fitted at the outlet of the cylinder. The

regulating valve had a range of 0 to 16 bar. Once regulated to the required driver pressure,

the compressed air is filled to the shock tube driver through the control board. The control

board consists of valves and gauges that control the filling rate and monitoring of driver

pressure. The compressed air cylinder and the control board are now shown in Figure 4.6

and Figure 4.7.

25



Figure 4.6: Air cylinder with pressure regula-

tor valve

Figure 4.7: Controlboard for pressure regula-

tion

Quarter inch British Standard Pipe (BSP) adapters were used to attach 6mm internal diam-

eter pressure hose to the driver section. The maximum pressure that could be experienced

by the hose is 1500 kPa while the hose was rated at 2000 kPa.

4.4 Instrumentation

For the experimental data acquisition, various instruments were used for the measurement,monitoring

and control of different variables. These instruments are best shown in Figure 4.8 by a

schematic diagram. The schematic shows how the instruments were connected and inter-

acted with each other.

The compressed air supply pressure to the driver was controlled through the regulating valve

and the control board. The control board also had a pressure gauge for monitoring driver

pressure. Flush-mounted PCB pressure transducers measured the shock tube pressure tran-

sients at specified locations after diaphragm rupture. The voltage signal from the pressure

transducers was conditioned and amplified by the signal conditioners and were input to the

Hantek oscilloscope. The pressure readings are displayed on a laptop as voltage through the

oscilloscope software. The oscilloscope software also enabled the pressure data to be saved

in different formats for later post-processing.
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Figure 4.8: Instrumentation components.

For flow visualisation the signal from the oscilloscope is fed to the programmable electro-delay

trigger box. After the set delay time the trigger delay box sends a triggering signal to the

high speed camera to start capturing. For the present study, capturing started at the time

the incident shock wave exited the upstream pipe. The images and videos are viewed and

processed by the Photron software on a laptop.

Specifications for the pressure transducers, oscilloscope and the high speed camera are given

in Appendix B.

4.5 Shadowgraphy optical system

For experimental flow visualisation of the flow discontinuities, a conventional Z-format shad-

owgraphy system was used with high-speed imaging using a Photron camera. The schematic

of the optical set-up is shown in Figure 4.9. The only difference for the shadowgraphy was

the ommission of the cut-off at the camera side. Each rail is directed towards a parabolic

front-silvered mirror with f-number of f/4.5 and 16 inch diameter. All the vertical and hor-

izontal cut-offs are made from stainless-steel Lion razer blades. All optical rails, lenses and
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parabolic mirrors were accurately leveled and aligned using a digital inclinometer and a rail-

mounted cross-hair laser. The full specifications for the Megaray high density light source,

Photron high speed camera are shown in Appendix B. Full instructions on how the rails and

lenses were correctly set-up, the file Guide to Setup-Schliren Optical System.pdf located in

Appendix A describes the set-up procedure.

Two different light sources were used for the Photron high-speed camera. A Megaray high

density light source and a Canon Speedlite flash were used. The Canon Speedlite flash had a

pulse duration of about 20ms whilst the Megaray high density light source was a continuous

light source.

Figure 4.9: Monochrome schlieren optical system setup

4.6 Diaphragms

The material used for the diaphragms was polyester sheet. There were four different thick-

nesses available namely, 25, 50, 100 and 190 microns. The diaphragms were cut into squares

of approximately 120mm sides by use of a cardboard template. The square shape used en-

sured effective clamping area of the diaphragms between the flanged coupling. An effective

clamping area ensured the diaphragms were secured adequately and there was effective seal-

ing for the driver during pressurisation. In order for the burst of a diaphragm to be an even

burst, the diaphragm should be mechanically burst within about 2% of the natural burst

pressure.
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5 Methodology

5.1 Introduction

For the present study, the research tools which were used were experimental testing and

numerical simulations. Both gas dynamic simulation sciences have their advantages and

disadvantages, but both used together can be effective. Numerical simulations in the form

of CFD will complement experimental testing. This will entail testing experimentally at

the critical and important boundary conditions, and use validated CFD to cover extended

boundary conditions. This will mean ’smart’ experimental testing where repetitive testing is

avoided.

5.2 Numerical simulations

As has been outlined in the section 5.1, CFD will complement experimental testing in covering

extended boundary conditions. In the current study, simulations for high Mach number

flows and complex pipe geometries which are difficult to do experimentally will be covered

with CFD. In addition, CFD will enhance the ability to highlight physics in fluid flows

that are too complicated to be clearly visualised experimentally. The initial design stages

of the experimental facility were also done by CFD. This included the position of pressure

measurement points along the shock tube and piping lengths for the different sections of the

shock tube.

5.2.1 Governing equations

In order to interpret experimental shadowgraphs and produce a flow field without effects of

three dimensionality, the axisymmetric Euler equations were solved by using a commercially

available code Fluent 15 ©. The coupled solver in Fluent 15 solves the governing equations of
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continuity, momentum and energy simultaneously as a set, or vector, of equations. Governing

equations for additional scalars will be solved sequentially (i.e., segregated from one another

and from the coupled set). The system of governing Euler equations for conservation laws for

a perfect gas in integral, Cartesian form for an arbitrary control volume V with differential

surface area dA are given in equation (5.1).

∂

∂t

∫
V

WdV +

∮
FdA =

∫
V

HdV (5.1)

where the vectors W and F are defined as

W =


ρ

ρu

ρv

ρE

 F =


ρv

ρvu+ p̂i

ρvv + pĵ

ρvE + pv



and the vector H contains source terms such as body forces and energy sources. Here ρ,

v, E, and p are the density, velocity, total energy per unit mass, and pressure of the fluid,

respectively.

The equation of state for the perfect gas is given by equation (5.2)

E =
p

γ − 1
+

1

2
ρ(u2 + v2) (5.2)

where γ, the specific heat ratio in air, is taken as 1.4.

For the numerical implementation of inlet boundary conditions within Fluent, one dimen-

sional shock equations for a moving shock were made use of. The inlet boundary is modelled

as a pressure inlet boundary. For the pressure inlet boundary condition, Fluent requires the

stagnation conditions and static pressure behind the moving shock wave.

For the analysis and solution of the moving shock equations, the relations used for a stationery

normal shock can also be used for a moving shock. The reference frame for the moving shock

wave was converted from a moving reference frame to a stationery reference frame. The two

frames of reference are illustrated below in Figure 5.1.

The stationery reference frame entails superimposing a reference velocity on the observer so

that the moving shock appears stationery to the observer. The static properties of pressure,

temperature and density refer to the thermodynamic state of the gas and are independent
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Figure 5.1: Moving and stationery reference frames for unsteady shock wave motion.

of the reference frame from which they are measured. However the stagnation properties

depend on the velocity of the reference frame.

Therefore to calculate the static pressure Pa and the static temperature Ta behind the moving

shock, the stationery normal shock equations are used with the moving reference frame. From

the stationery normal shock relations, the downstream Mach number can be determined from

the upstream Mach number. The equation relating the upstream Mach number M1 and

downstream Mach number Ma is given by equation(5.3).

M2
a =

2
γ−1 +M2

1

M2
1

2γ
γ−1 − 1

(5.3)

With the downstream Mach number Ma, the quantities Pa and Ta can now be calculated

from equation (5.4) and equation (5.5)
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Pa = P1
(1 + γM2

1 )

(1 + γM2
2 )

(5.4)

Ta = T1
(1 +M2

1
γ−1
2 )

(1 +M2
2
γ−1
2 )

(5.5)

The value of Pa is the input to the supersonic initial gauge pressure in Fluent for the pressure

inlet boundary.

To calculate the stagnation conditions behind the moving shock, the stationery reference

frame is used to solve the normal shock equations. First, the velocity behind the shock, Vb,

is calculated by subtracting Va from V1 in the moving reference frame, as this is the velocity

an observer moving with the shock sees behind the moving shock. This value is then used

to calculate the Mach number behind the shock, Mb. The static conditions Pb and Tb are

the same as Pa and Ta as they do not depend on the reference frame. Since the air in front

of the shock is stagnant, P1 is the same as P01 and T1 is the same as T01. The stagnation

temperature behind the shock wave, T0b, and stagnation pressure, P0b, are calculated using

equation (5.6) and equation (5.7) respectively.

Tob = Tb(1 +M2
b

γ − 1

2
) (5.6)

Pob = Pb(1 +M2
b

γ − 1

2
)

γ
γ−1 (5.7)

These two values are the total temperature and total gauge pressure inputs for the pressure

inlet boundary condition in Fluent respectively.

5.2.2 Computational domain

The geometry was modelled as a native CAD geometry and imported as a STEP file to An-

sys©. The geometry was modelled as axisymmetric with a hemisphere to account for the

external flow field. The length of the downstream section of the computational domain of

1064mm, was chosen after performing an initial simulation. It was found that the expansion

at the end of the tube propagated back down the tube, thus affecting the flow development

within the gap. Therefore, a long enough tube length after the pipe gap was required to

ensure that the expansion from the end did not affect the results. Pre-processing of the ge-

ometry for numerical simulations preparation was done in Ansys Geometry©. Pre-processing
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also included naming of the boundaries of the computational domain for later implementa-

tion in the flow solver. Figure 5.2 shows the computational domain for the pipe gap. The

corresponding boundary conditions for a pipe at Mach 1.6 and their respective locations are

shown in Table 5.1. The geometric locations are in reference to Figure 5.2.

Figure 5.2: Computational domain.

Table 5.1: Boundary conditions for Mach 1.60

Boundary type Location Pressure Temperature

Static(Pa) Total(Pa) Static(K) Total(K)

Pressure inlet Right boundary 285 736.5 392 725.7 300 456

Axis Lower boundary N/A N/A N/A N/A

Pressure outlet Left boundary 101 325 N/A 300 N/A

Wall Boundaries of tube N/A N/A N/A N/A

Pressure far-field Hemisphere edge 101 325 N/A 300 N/A

The operating condition was specified as zero Pascals so that the system was working in

absolute pressure.

5.2.3 Meshing

After preprocessing of the geometry, meshing could now be done on the computational do-

main. Initial meshing was done with Ansys meshing ©. An unstructured mesh was applied

composed of quad-dominant cells for two-dimensional simulations. For the three-dimensional

mesh an unstructured mesh was used with tetrahedral cells with a triangle surface mesher.

Different local meshing techniques were used for the initial meshes. Refinement of the region

near the wall was done by the inflation method. Refinement of the wall was done to capture

the reflection of the incident shock at the exterior and interior walls of the downstream pipe.

A sphere of influence was also used to refine the flow features within the gap. A typical initial

mesh with a sphere of influence is shown in Figure 5.3 for the burst pipe simulation. The

specifications for the initial mesh and local meshing technique are shown in Table 5.2. The
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initial mesh was deemed fine enough from a grid dependence study to capture the necessary

flow features.

Figure 5.3: Initial mesh for a burst pipe simulation showing the sphere of influence.

Table 5.2: Specifications for initial mesh

Specification Value

Physics preference CFD

Solver preference Fluent

Advanced sizing function Off

Relevance centre Fine

Element size 1.0mm

Sphere of influence element size 0.5mm

Sphere of influence radius 50mm

Number of nodes 134000

Number of elements 138967
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5.2.4 Flow Solver Specifications

The density-based solver was used with a transient formulation to simulate the moving shock

waves. An absolute velocity formulation was chosen for a two-dimensional axisymmetric

model.

5.2.4.1 Models and Materials

Simulations were done with the inviscid Euler model as well as the energy equation. The

inviscid model was deemed to be sufficient for the concerned flow physics as well as the time

scales under consideration. The fluid was modelled as air as an ideal gas.

5.2.4.2 Initial conditions

In addition to the boundary conditions specified in Table 5.1 the simulations were initialised

using standard initialisation. An absolute formulation was chosen. The fluid interior was

initialised with a pressure of 101 325K and a temperature of 300K.

5.2.4.3 Solution Methods

An implicit solver was used for solving. Spacial discretisation was done using the third

order MUSCL scheme. The use of the third-order MUSCL scheme ensured a conservative

and dissipative scheme. The flow discontinuities like shock waves could be resolved without

any numerical oscillations. The third-order scheme also ensured the strength of the vortical

structures was conserved even at later time steps once shed at the edges of the pipe gap.

Temporal discretisation was done with the second order implicit method.

5.2.4.4 Solution Controls

Linear stability theory determined a range of permissible values for the Courant number(i.e.,

the range of values for which a given numerical scheme will remain stable). A Courant number

of 1 was specified as a permissible value for the coupled implicit solver used for the present

simulations.

During the solution process convergence was monitored dynamically by checking residuals of

solution variables. Table 5.3 gives the convergence criteria for the different solution variables
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residuals. The print reports for the residuals of the solution variables were displayed during

the simulations. Elapsed time was also monitored during the simulation.

Table 5.3: Convergence criteria for different solution variables residuals

Solution variable residual Convergence criteria

Continuity 0.0001

x-velocity 0.0001

y-velocity 0.001

Energy 0.00001

5.2.4.5 Adaptive mesh refinement

For optimum resolution of the flow discontinuities with the present third-order MUSCL

scheme, adaptive local mesh refinement within Fluent was essential in the region of the flow

discontinuities. The refinement has the capability of tracking and resolving travelling shock

waves. The refinement aims to capture and refine shock fronts and its reflected components,

shear layers and vortices. By using this method, the computational overhead is kept to a

minimum. This was done via a set of user defined commands in the calculation activities

tab. The parameter which was used to mark cells for refinement and coarsening of the mesh

was the gradient for velocity and density. The two cell registers are then combined. The

parameters for adaptive mesh refinement are summarised in Table 5.4. Figure 5.4 show the

refined meshes at different time steps for a burst pipe simulation and shows how the shock

fronts are tracked and refined. The adaptive mesh refinement method is shown to accurately

track the shock fronts and its associated reflections during the simulation.

Table 5.4: Adaptive mesh refinement parameters

Adaptation parameter Value

Gradient adaptation options Refine/Coarsen

Adaptation method Curvature

Curvatures of Density and Velocity

Normalisation Scale

Thresholds Refine = 0.2

Coarsen = 0.4

Maximum level of refinement 5
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Figure 5.4: Tracking of refinement of the shock front and its reflection at different time steps.

Images at 0.20ms apart.

5.2.4.6 Time step size

A time step size of 0.0000017s was chosen. This was small enough for the time scales for

the present flow field. The time step was also comparable to duration of a single frame in

the experimental high-speed imaging. This would allow the comparison of numerical and

experimental results at similar flow times. The time frame for the full development of the

gap flow was determined to be about 3ms, therefore the number of time steps was set to

1800.

5.3 Experiments

Experimental investigation was done for different geometries, gap widths and shock Mach

numbers which could be modelled experimentally. Experimental testing was carried for the

pipe and flanged gap geometries. The boundary conditions for the experimental tests are

summarised in Table 5.5.

The experiments carried out can be broadly categorised into three sections

• Diaphragm calibration.

• Pipe gap geometry flow visualisation.

• Flanged gap geometry flow visualisation.

The experimental procedures for each test is now described below. For each of the tests, the

procedures consist of pre-test actions, performing the test and post-test actions.
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Table 5.5: Boundary conditions for experiments

Gap geometry Boundary conditions

Gap width Shock Mach number

Pipe gap 40mm 1.60

40mm 1.56

50mm 1.60

50mm 1.56

60mm 1.60

60mm 1.56

60mm 1.45

60mm 1.30

70mm 1.60

70mm 1.56

70mm 1.45

80mm 1.60

80mm 1.45

80mm 1.30

100mm 1.60

100mm 1.56

115mm 1.60

115mm 1.45

Flanged 40mm 1.45

40mm 1.30

50mm 1.45

50mm 1.30

60mm 1.45

70mm 1.45

70mm 1.30

80mm 1.45

115mm 1.45

5.3.1 Diaphragm Calibration

Diaphragm calibration was the first set of experiments carried out. This enabled the determi-

nation of the natural burst pressure for different diaphragm thicknesses. The Mach number of

the shock resulting from the natural burst is also determined from the diaphragm calibration

tests.
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5.3.1.1 Pre-test actions

1. Set up the experimental rig for the pipe gap piping arrangement. Secure the diaphragm

of 25nm thickness as specified by Table D.1 in Appendix D. Ensure all the shock tube

piping connections are secure.

2. Connect the hose for pressure supply to the control board from the regulating valve

of compressed air cylinder. Ensure the cylinder pressure is above the test pressure.

Connect the hoses for driver pressurisation and driver pressure monitoring to the ap-

propriate ports at the control board. Connect the two hoses to the corresponding ports

on the driver. Ensure all hose connections are secure.

3. Install pressure transducers at station 1 and station 2 for unflanged piping arrangement

as designated in chapter 4. Connect the pressure transducer wires to the appropriate

ports of the signal conditioner. Turn on the signal conditioner and ensure they are

reading the signal from the two pressure transducers(the needle stays in the green

region).

4. Connect the connection wires from ports scope 1 and scope 2 on the signal conditioner

to channel 1 and channel 2 respectively of the oscilloscope. Connect the usb cable from

the oscilloscope to the laptop.

5. Turn on the oscilloscope and launch the oscilloscope software on the laptop.

6. Turn the tab for channel 1 and channel 2 to ON. Set the vertical axis setting to

100mV/div for both channels. Set the horizontal axis setting to 1ms/div for both

channels. Set the trigger mode to single and trigger level to 188mV. Set the trigger

source to channel 1. Click the tab RUN and the software will display the WAITING

message to acknowledge its waiting for a trigger.

5.3.1.2 Performing the test

1. Trigger the warning alarm in the laboratory to alert the test is about to commence.

2. Open the main valve on the compressed air cylinder about one full turn.

• Precaution: Ensure the regulating valve on the cylinder is at the fully closed

position.

3. Turn the knob on the regulating valve until the gauge on the valve reads the required

outlet pressure.

• Precaution: The outlet pressure is set in such a way that the value is slightly above

the test pressure.
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4. Open the main supply valve at the control board. Blow the warning whistle to alert

the laboratory the pressurisation of the driver is about to commence.

• Precaution: Ensure all the other valves at the control board are in the closed

position.

• Precaution: Ensure ear protection is worn.

5. Vent the driver by opening the vent valve until the driver pressure is at zero bars. Close

the vent valve.

6. Open the driver pressurisation valve and start monitoring the driver pressure from the

driver pressure gauge.

• Precaution: Slightly open the driver pressurisation valve to ensure controlled pres-

surisation of the driver. This will ensure a smooth driver pressure increase and

effective pressure monitoring.

• Precaution: Blow the whistle at each one bar increase in driver pressure.

7. Continue the driver pressurisation until the diaphragm bursts and note the burst pres-

sure. Close the driver supply valve and main supply valve on the cylinder.

8. Vent the supply line by opening the vent valve on the control board whilst the control

board main supply is open.

5.3.1.3 Post-test actions

9. Using the measure function on oscilloscope software, determine the time taken by the

shock wave to reach the pressure transducer at station 2 after leaving the pressure

transducer at station 1. This will be the time between the two peaks for the respective

channels. Note this time and the value of the temperature on the thermometer in the

laboratory.

10. Repeat steps 1-9 for two more identical tests.

11. Repeat steps 1-10 for the other diaphragm thicknesses as specified in Table D.1 in

Appendix D.

5.3.2 Flanged and Pipe Gap Experiments

Having calibrated the different diaphragm thicknesses for the natural burst pressure and the

shock Mach number produced, flow visualisation is carried out for different gap width, gap

geometry and Mach number.
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5.3.2.1 Pre-test actions

1. Set up the experimental rig for the pipe gap piping arrangement with the specific

gap width. Secure the appropriate diaphragm thickness depending on the required

shock Mach number from Table D.1 in Appendix D. Ensure all the shock tube piping

connections are secure.

• Precaution: Ensure the upstream and downstream pipe are perfectly level and lie

in the same plane. To perfectly level the pipes, use a stub pipe of 50mm internal

diameter placed inside both pipes at the gap. With the stub pipe inside, bring the

two pipes are brought close together. Once level, the downstream pipe is pulled

back and the temporary stub pipe is removed.

2. Set up the Z-format shadowgraph apparatus with the high speed camera in place using

the set-up procedure in the file Guide to Setup-Schliren Optical System.pdf located in

Appendix A. Test the sensitivity of the system using a gas heater at the test section.

The density gradients should be visible in the test section through the high speed camera

as a heated gas has density gradients.

• Precaution: Once the optics have been set up, disturbance to the alignment of the

optical instruments should be avoided.

3. Connect the hose for pressure supply to the control board from the regulating valve

of compressed air cylinder. Ensure the cylinder pressure is above the test pressure.

Connect the hoses for driver pressurisation and driver pressure monitoring to the ap-

propriate ports at the control board. Connect the two hoses to the corresponding ports

on the driver. Ensure all hose connections are secure.

4. Install pressure transducers at station 2,3,4 and 5 for pipe gap piping arrangement as

designated in Figure 4.1. Connect the pressure transducer to the appropriate ports of

the signal conditioner. Turn on the signal conditioner and ensure they are reading the

signal from the four pressure transducers (the needle stays in the green region).

5. Connect the ports scope 1,2,3 and 4 on the signal conditioner to channels 1,2,3 and

4 respectively of the oscilloscope. Connect the oscilloscope to the laptop through the

USB cable.

6. Turn on the oscilloscope and launch the oscilloscope software on the laptop.

7. Turn the tab for channel 1,2,3 and 4 to ON. Set the vertical axis setting to 100mV/div

for all the channels. Set the horizontal axis setting to 1ms/div for all the channels.

Set the trigger mode to single and trigger level to 188mV. Set the trigger source to

channel 1. Click the tab RUN and the software will display the WAITING message to

acknowledge its waiting for a trigger.
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8. Connect the oscilloscpe ’trigger out’ port to the input of the trigger delay box designated

’trigger in’. Turn on the trigger delay box and set the delay to 296µs. Connect the

’trigger out’ port of the trigger delay box to the ’trig ttl in’ port of the high speed

camera.

9. Connect the high speed camera to the laptop through the ethernet cable. Turn on the

camera and the light source.

10. Launch the camera software on the laptop. Set the frame rate to 75 000 frames per

second and the shutter speed to 1/1000000 seconds.

11. Perform the camera shading calibration by blocking light entering the camera and

clicking the shading and calibrate tab.

12. Click record.

13. Arm the trigger delay box

5.3.2.2 Performing Test

14. Trigger the warning alarm in the laboratory to alert the test is about to commence.

15. Open the main valve on the compressed air cylinder about one full turn.

• Precaution: Ensure the regulating valve on the cylinder is at the fully closed

position before opening the main compressed air cylinder valve.

16. Turn the knob on the regulating valve until the gauge on the valve reads the required

outlet pressure.

• Precaution: The outlet pressure is set in such a way that the value is slightly above

the test pressure.

17. Open the main supply valve at the control board. Blow the warning whistle to alert

the laboratory the pressurisation of the driver is about to commence.

• Precaution: Ensure all the other valves at the control board are in the closed

position.

• Precaution: Ensure ear protection is worn.

18. Vent the driver by opening the vent valve until the driver pressure is at zero bars. Close

the vent valve.

19. Open the driver pressurisation valve and start monitoring the driver pressure from the

driver pressure gauge as the driver pressurises.
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• Precaution: Slightly open the driver pressurisation valve to ensure controlled pres-

surisation of the driver. This will ensure a smooth driver pressure increase and

effective pressure monitoring.

• Precaution: Blow the whistle at each one bar increase in driver pressure.

20. Continue the driver pressurisation until the diaphragm bursts. Close the driver supply

valve and main supply valve on the cylinder.

21. Vent the supply line by opening the vent valve on the control board whilst the control

board main is open.

5.3.2.3 Post-test actions

1. Save the recorded flow visualisation data in the desired formats. Turn off the camera

to avoid it overheating.

2. Save the pressure time profiles from the four channels through the save tab on the

oscilloscope software.

3. Repeat steps 1-21 in subsubsection 5.3.2.2 and steps 1-2 in subsubsection 5.3.2.3 for a

different set of boundary conditions in terms of gap width and Mach number.

4. Set up the alternate piping arrangement for the flanged gap geometry. For the flanged

gap geometry the pressure transducer is placed at station 1 as designated in Figure 4.2.

Set trigger delay to 88µs.

5. Repeat steps 1-21 in subsubsection 5.3.2.2 and steps 1-3 with with only one channel of

pressure measurement active.
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6 Data Processing

6.1 Introduction

General observations and subsequent data processing will be covered in this chapter.

6.2 General Observations

General observations will present the primary, unprocessed data from the experimental in-

vestigations.

6.2.1 Diaphragm Calibration

Before the actual experimental data could be collected, diaphragm calibration had to be

carried out. The calibration determined the natural burst pressure and shock strength for

different diaphragm thicknesses. The thicknesses used were 25, 50, 75 and 100 micrometers.

For the 50, 75 and 100 micrometer thickness, multiple layers of diaphragms were used. A

testing log was kept as the diaphragms were burst naturally. The natural burst pressure was

logged for each test done. Three tests were performed for each diaphragm thickness.

To summarise the observations, consistency of the natural burst for each diaphragm thickness

was checked over the three tests. Figure 6.1 shows the observed natural burst pressures for

the various diaphragm thicknesses.

The effect of the number of layers of diaphragms for a given thickness was analysed as well.

From Figure 6.1 it was observed that for a given thickness, the more the number of diaphragms

the higher the natural burst pressure. This is the best shown for the 50 micrometres thickness.

In one test two diaphragms of 25 micrometres each had a burst pressure of 5 on average. In

the other test, one diaphragm of 50 micrometers had a burst pressure of 4.2 on average.
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Figure 6.1: Diaphragm calibration.

6.2.2 Shock tube design validation

The length of the downstream section of the shock tube was critical for the present study.

It was essential to prevent wave reflections from the end of the downstream pipe affecting

the gap flow development. To ensure pressure transients in the downstream were solely due

to the gap flow features, it was imperative as well to prevent the reflections. An optimum

length was chosen from an initial CFD simulation. The results of the CFD simulation are

now shown in Figure 6.2 as pressure plots. Frames are shown of the flow field at 6ms, 6.5ms

and 7ms. The flow time is measured from the instant the incident shock exits the upstream

pipe. A black solid line in all the frames indicates the furthest pressure measurement point in

the downstream pipe as measured from the gap. This corresponds to the station numbered

5 in Figure 4.1 in chapter 4. The three frames show that at these later flow times, the

reflected expansion wave from the pipe end does not affect the pressure field at all pressure

measurement points. This is indicated by a uniform pressure caused by passage of the initial

incident shock in the greater portion of the downstream pipe. The reflected expansion wave
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still has not reached the pressure measurement points. This indicates the downstream pipe

is long enough to investigate the propagation conditions for about 8ms without the effects of

wave reflections.

Figure 6.2: CFD pressure contours for a 30mm pipe gap at Mach 1.45. From the top, flow

time at 6ms, 6.5ms and 7ms respectively.
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6.2.3 Wave propagation in both pipes

The observations for the wave propagations were based on the primary output of the os-

cilloscope. The oscilloscope output were traces of voltage, in millivolts against time, in

milliseconds. An example of such a trace is shown in Figure 6.3 for a pipe gap width of

310mm at a Mach number of 1.45.
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Figure 6.3: Voltage-time trace for a pipe gap of 310mm at Mach 1.45.

The voltage time trace shows an initial voltage spike in the upstream pipe which corresponds

to the initial incident shock. Constant voltage follows the initial spike after the passage of

the shock. The constant phase is then followed by a sudden reduction in voltage. This is due

to an expansion wave travelling back in the upstream pipe from the gap.

For the downstream pipe, all the measurement points showed that the incident shock arrives

at a much reduced strength from its original value. The incident shock voltage spike is then

followed by a steady state phase of about 1ms. A voltage spike comparable in magnitude

to the intial incident shock follows the steady state phase. This occurs as a standing shock

develops at the inlet to the downstream pipe. As shown in Figure 6.3, this is observed at all

the measurement points in the downstream pipe.
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6.3 Data Processing

The raw data from the experiments and the numerical simulations will be processed for

detailed analysis in later chapters.

6.3.1 Experimental Data Processing

6.3.1.1 Diaphragm Calibration

For the direct comparison of experimental and numerical results, it is desirable for the shock

Mach numbers to be the same. The experimental shock Mach numbers will also be used to

analyse the degree of repeatability for shock Mach numbers. Therefore it is important to

calculate the experimental shock Mach numbers from the diaphragm calibration tests. The

calculation will be outlined for the second test in the second diaphragm calibration test in

Appendix D. The Mach number, Ma is given by equation(6.1).

Ma =
Vs
a

(6.1)

Therefore the velocity of the shock and the sonic velocity in air have to be determined.

Assuming air to be an ideal gas, the sonic velocity a, can be determined from equation(6.2).

a =
√
γRT (6.2)

For the test the absolute temperature was found to be 294.56K. Assuming a calorically

perfect gas, the ratio of specific heats γ is 1.4 and the gas constant R = 287.1 J.kg−1.K−1.

Substituting in equation(6.2), the sonic velocity is

a =
√

(1.4× 287.1× 294.56) = 344.09m/s.

The shock velocity can be determined from the distance between two known measuring points

and the time it takes for the shock to traverse the distance. Two pressure transducers in the

upstream pipe placed at a distance, x of 587mm apart were used. The measure function from

the oscilloscope software was used to determine the time it took the shock to traverse the

distance. For the second test, the time t was determined to be 1.3ms. From this the shock

velocity Vs is found to be,
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Vs =
x

t
=

890

1.3
= 451.54m/s.

From equations (6.1) and (6.2), the shock Mach number Ma can be determined.

Ma =
Vs
a

=
451.54

344.09
= 1.31± 0.0151.

The uncertainity in the measurement of the shock Mach numbers using this method is outlined

in Appendix E. The small uncertainities were contributed to the determination of the time

by use of the measure function as well as measurement of transducer separation distance.

6.3.1.2 Wave propagation in both pipes

Since the primary measurements for pressure from the oscilloscope was in Volts, the data

had to be processed to obtain the absolute pressures in bars. In addition to this a scaling

factor had to be applied to the experimental results. This was necessary since the numerical

simulations were done at an atmospheric pressure of 1 bar and the experiments were done

at an atmospheric pressure of 0.83 bar. In this way validation and comparison of numerical

results with experimental results was then possible.

Firstly the calibration constants from the pressure transducers were used to convert the Volts

into bars. Four pressure transducers were used, the calibration constants for all of them was

2.417 bar/Volt. To ensure independence of atmospheric pressure between numerical and

experimental results, a scaling factor of 1.205 (inverse of 0.83) was applied to experimental

results. In addition to the conversion and scaling, the experimental pressures had to be

converted to absolute pressures. This was because the CFD data through the use of Fluent’s

operating conditions were absolute pressures. Since an atmospheric pressure of 1 bar was

used, 1 bar was added to the experimental gauge pressures. Equation(6.3) summarises the

calculation of experimental absolute pressures,Pabs.

Pabs = V kS + Patm (6.3)

Where V is the measured voltage, k is the calibration constant, S is the scaling factor and

Patm is the atmospheric pressure.
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The peak voltage in the upstream pipe for 310mm gap at Mach 1.45 will now be used as

an example to calculate experimental absolute pressures. For this case the observed peak

voltage was 300mV. Applying equation(6.3), the absolute pressure for this case is,

Pabs = 0.300× 2.417× 1.205 + 1 = 1.87bar.

Using equation(6.3) the raw voltage-time plots in csv format were processed in Matlab to

give the pressure-time plots. The pressure-time profiles will be used in later sections of the

report to analyse the transient flow in both the upstream and downstream pipe.

For signal noise elimination, the pressure-time plots were also filtered in Matlab. A second

order Butterworth filter was used.

6.3.1.3 Experimental flow visualisation

A Canon camera flash was used as the light source in the shadowgraphy visualisation system

for the first experimental runs performed. Although the flash is a microsecond duration the

disadvantage of this was that the light intensity varied from earlier frames to the later frames.

The contrast and brightness of the later images was affected. To maintain higher resolution

to visualise the flow features, the image contrast and brightness for the later frames was

adjusted by a free online software called Lunapic.

6.3.2 CFD Data

The Fluent solver used for the numerical simulations produced case and data files. The

post-processing was done in the commercial packages Tecplot© and Ansys Results©. In

Tecplot contours of density, velocity ,Mach number were extracted from the case and data

files. Streamlines were plotted to show the velocity vectors at various positions within the

computational domain. As an adaptive mesh was used with Fluent, Tecplot was also used

to track the mesh topology evolution as the simulation progressed. For later comparison

and validation of CFD results with experimental results, numerical shadowgraphs were also

extracted using Tecplot. The calculation of variables feature in Tecplot was used to display

the numerical shadowgraphs. Tecplot uses the divergence of the density to calculate the

numerical shadowgraphy variable. In Ansys Results, pressure time profiles were extracted at

specified positions.
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Three dimensional numerical results were also post-processed with Tecplot. From the data,

isosurfaces of vorticity were plotted. It did a good job of showing the vortex rings and

subsequent leapfrogging and the three-dimensional effects.
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7 Results

7.1 Introduction

Processed results are now presented in this chapter. The flow times indicated in the images

unless otherwise stated, are measured from the instant the incident shock exits the upstream

pipe.

7.2 CFD Validation

Before explaining any physics with numerical results, computational solutions must be vali-

dated. It is necessary because not only modelling of physical phenomena often induces some

simplifications both in governing equations and boundary conditions but also good agreement

between numerical and experimental results is helpful for confirmation of the observed phys-

ical phenomena. Since the shock-wave phenomena in the present study are highly transient

and their topological structures are over the whole flow field, it is usually not sufficient to

compare numerical simulations with a limited set of point measurements from experiments.

Only a comparison with a whole flow field measurement by some non-intrusive techniques

can give confidence in numerical results. Since the experimental results were shadowgraphs,

the strategy of creating numerical shadowgraphs for direct comparison with experiments

was chosen. From the position of flow features like shock waves, the accuracy of numerical

simulations can be estimated.

An initial shock wave propagating with a Mach number of 1.6 past a pipe gap width of

40mm was simulated as the first case to compare with experimental results. Numerical shad-

owgraphs constructed from the numerical solutions are shown together with the experimental

shadowgraphs in Figure 7.1. Figure 7.2 compares the experimental shadowgraphs with den-

sity contours. The experimental shadowgraphs are shown in the upper symmetrical half of

each frame whilst the numerical shadowgraphs and contours in the lower symmetrical half.
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Figure 7.1and Figure 7.2 shows the shock wave flow development after the precursor planar

shock wave is discharged from the pipe end into the pipe gap.

Figure 7.1: Comparison of experimental shadowgraphs(upper half) and numerical shadow-

graphs(lower half) for 40mm gap Mach 1.6.

Figure 7.2: Comparison of experimental shadowgraphy(upper half) and numerical density

contours(lower half) results for 40mm gap Mach 1.6.

By looking at both sets of comparison, it is shown that agreement between CFD and exper-

iment is good. This is so because the position of the shocks and other flow features is well

overlapped and in the same positions with minor exceptions. The minor exceptions in the

positions of the flow features in the two symmetrical halves are around about half a millime-

tre. Considering difficulty in timing numerical results to match exactly with experiments,

this level of verification is perfectly acceptable to validate that the numerical simulations

representing the pipe gap flow.

For further verification, the experimental and numerical shadowgraphs of a pipe gap for

80mm at Mach 1.6 are shown in Figure 7.3.

Again agreement between CFD and experiment is shown to be generally good.
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Figure 7.3: Comparison of experimental shadowgraphs(upper half) and numerical shadow-

graphs(lower half) for 80mm gap Mach 1.6.

7.3 Diaphragm calibration

The shock Mach numbers produced for the different natural diaphragms burst were analysed.

Figure 7.4 shows the variation of the diaphragm thickness with the shock Mach number

produced. The scatter plot shows that for the same diaphragm thickness and combination,

the variation in the Mach number was minimal over the three tests.

The degree of variation in the Mach number is further shown in Table 7.1. For each diaphragm

thickness and combination, the standard deviation for the three shock Mach numbers was

calculated. From this, the coefficient of variation was derived to measure the dispersion.

For all the diaphragm thicknesses, the percentage variation over the three tests was less

the 2%. Standard practise entails the shock Mach numbers produced over three tests to be

within 2% of each other. This shows the present natural diaphragm bursts is capable of good

repeatability of the test conditions.
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Figure 7.4: Diaphragm calibration.

Table 7.1: Variation of Mach number for different diaphragm bursts

Thickness Diaphragm combination Standard deviation Variation(%)

25micron 1× 25microns 0.0153 1.15

50micron 2× 25microns 0.0115 0.79

1× 50microns 0.0115 0.81

75micron 3× 25microns 0.0231 1.49

100micron 2× 50microns 0.0058 0.36

7.4 Transient flow in the upstream and downstream pipe

The transient flow in the upstream and downstream pipe is best shown by the experimental

pressure-time profiles. The profiles show the wave propagation and subsequent wave interac-

tions in both pipes with the passage of the shock wave past the gap. Supplementary results

for the experimental pressure time profiles are shown in Appendix C

7.4.1 Upstream pipe flow

Such a pressure-time profile is shown in Figure 7.5 for the transient flow for a pipe gap of 60mm

at Mach 1.45. The test time is approximately 8ms measured from the time the incident shock

passes the 150mm upstream pressure transducer. The distances of the individual pressure

transducers is measured from the pipe gap.
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Figure 7.5: Pressure time profiles for a pipe gap of 60mm Mach 1.45.

The 150mm upstream transducer placed in the upstream pipe shows the initial pressure spike

due to the arrival of the incident shock. The flow briefly attains steady-state for about 1ms.

This is then followed by an expansion shown by the significant drop in pressure in the initial

incident shock post-shock flow. The drop in pressure is caused by the propagation of a strong

expansion wave into the flow in the upstream pipe. This expansion wave results from the

outflow of the gas from the upstream pipe. As the shock-accelerated gas exits the upstream

pipe, an initially curved expansion wave is generated at the lip of the pipe and propagates

back in the high-subsonic upstream flow.

With the passage of the expansion wave past the upstream pipe transducer the flow tends

to become steady state. The steady-state phase lasts for about 2ms and is then followed by

another expansion which further reduces the pressure to below atmospheric pressure. As this

further pressure reduction occurs at much later times, its likely to be caused by the arrival

of the expansion waves reflected from the end wall of the driver section.

7.4.2 Downstream pipe flow

The transient flow in the downstream pipe was monitored by three pressure transducers placed

at 50mm, 150mm and 400mm from the gap respectively. For all the three transducers, two

distinct pressure spikes are noticeable. As shown for the annotated 50mm transducer, the

initial pressure spike is due to the arrival of the incident shock. The initial spike shows that
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the incident shock propagates in the downstream pipe at a much reduced strength compared

to its initial strength in the upstream pipe. Thus the pipe gap has the effect of attenuating

the strength of the incident shock wave. The magnitude of the initial pressure spike is shown

to gradually decrease from the 50mm to the 150mm transducer. This shows that as the

incident shock propagates in the downstream pipe, it continues to gradually lose its strength.

A phase which is very short in time follows the initial pressure spike. The pressure is fairly

constant for the short phase. The development of the boundary layer was suggested as the

possible cause for the existence of the short constant pressure phase. The short constant

pressure phase is followed by a second pressure spike. The second pressure spike which is

comparable in magnitude to the incident shock pressure rise in the upstream pipe is due to

the development of a standing shock wave at the downstream pipe entrance. The occurrence

of the second pressure spike with the formation of the standing shock is explained by CFD

pressure contours in Figure 7.6 for the same test conditions.

Figure 7.6: CFD pressure plots for 60mm pipe gap at Mach 1.45.

To compare with the experimental pressure profile for the 50mm pressure transducer, a black

solid line is drawn in the CFD pressure contour at the 50mm point from the gap. It shows

that after the passage of the incident shock wave, there is an initial pressure rise as shown

in the first two frames of Figure 7.6. After a short duration of constant pressure, a standing

shock wave develops at the inlet to the downstream pipe as shown in the third frame. This

results in the second pressure spike.

Following the development of the standing shock, both the experimental pressure time profiles

and CFD plots shows that the downstream pipe flow tends to become more uniform. This

shows the downstream pipe flow development is mainly controlled by the blockage caused by

the standing shock wave at the downstream pipe inlet.
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At much later times, the experimental pressure profiles show a gradual pressure decrease

for all the transducers following the uniform phase. This is explained by reflections of the

incident shock off the pipe end. The reflections propagate back in the downstream pipe as

expansion waves.

7.4.3 Effect of gap width and shock Mach number

The observations from the oscilloscope data was fairly similar for the higher Mach number

of 1.6. The notable observation being that the post-incident shock pressure reduction in the

upstream pipe was very gradual. This is due to the expansion wave barely propagating back

in the relatively stronger flow. This is shown in Figure 7.7 for the pressure time trace for a

60mm pipe gap at Mach 1.6.
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Figure 7.7: Pressure time profiles for 60mm pipe gap at Mach 1.6.

The effect of a lower Mach number is shown for 60mm Mach 1.3 in Figure 7.8. Two effects

are noticeable for the relatively low Mach number. Firstly, the pressure reduction in the

upstream pipe due to the expansion wave was more steep as compared to the reduction for

Mach 1.45. This shows the expansion wave for Mach 1.3 readily propagates back in the

relatively slow subsonic flow issuing from the upstream pipe. Secondly, the initial pressure

spike due to the incident shock in the downstream pipe was significantly less as compared to

that for Mach 1.45. This is explained by the relatively weak incident shock of Mach 1.3.
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Figure 7.8: 60mm pipe gap at Mach 1.3 pressure-time profiles.

The effect of gap width is shown in Figure 7.9 for a relatively large gap of 180mm. The

strength of the incident shock in the downstream pipe is significantly reduced for this gap

width. At all the downstream measurement points, after the arrival of the incident shock,

there is relatively a longer constant pressure phase before the second pressure spike. This

indicates the standing shock takes a relatively longer time to form in comparison with the

smaller gap width.

Incident shock overpressures in the downstream pipe were used to ascertain the influence

the shock Mach number and gap width have on the propagation conditions downstream.

The overpressures were measured at the 50mm downstream transducer for gaps of 40mm to

310mm and Mach numbers of 1.45 and 1.34. The results are shown in Figure 7.10 as a scatter

plot. For a given Mach number, the magnitude of the overpressure monotonically decreases

with an increase in gapwidth. This is to be expected as the incident shock and hence the

overpressure gets much weaker with an increase in gap width. For the larger gap widths, the

overpressures tend to become fairly constant as the gap width increases.
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Figure 7.9: Pressure time profiles for 180mm pipe gap at Mach 1.45.
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Figure 7.10: Effect of shock Mach number and gap width on downstream pipe flow.
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7.5 Experimental flow visualisation

7.5.1 Pipe gap

Early stages of flow development for a pipe gap of 40mm and Mach 1.45 are shown in Fig-

ure 7.11. In the first frame, the incident shock diffracts around the exit of the upstream

pipe and a toroidal vortex is shed. At 0.16ms in the second frame, the incident shock strikes

the entry to the second pipe and reflects off it and the incident shock continues down the

downstream pipe. The structure of the reflected shock suggests a portion reflects off the

thickness of the pipe and the other off the pipe interior. For the portion that reflects off the

pipe interior, its two curved portions approach the axis and will evidently focus at the axis

at later times. In the third frame the second shock forms within the plane of the primary

vortex ring as a result of the outflow in the pipe gap attaining supersonic speeds. A barrel

shock issues from the lip of the upstream pipe below the shear layer. The barrel shock reflects

from the axis, and the reflected component’s one end interacts with the primary vortex ring.

At the same time, the flow at the downstream pipe results in a second vortex ring due to

flow separation. The frames at 0.42ms and 0.48ms show the early stages of the interaction

of the primary and secondary vortex ring. At 0.42ms, the primary and secondary vortex

ring are joined by a shock embedded between their centres. A separation line attaches the

secondary vortex ring to the downstream pipe. At 0.48ms, vortex leapfrogging starts. The

second vortex ring starts to move to the left and over the primary vortex ring. At the same

time the vortex leapfrogging produces a shock that moves upstream.

The later stages of flow development are shown in Figure 7.12. In the first frame, a stationary

standing shock develops at the entrance of the downstream pipe as the outward flow develops.

In the second frame, the flow becomes increasingly turbulent and, unlike the earlier stages,

rather than moving to the right moves to the left due to the velocity field induced by the

presence of adjacent surfaces. In the last frame, the stationary standing shock oscillates in

its position and an unsteady shock structure appears at the inlet to the downstream pipe.

7.5.2 Flange Gap

Flow development for a 50mm flanged gap at a Mach number of 1.45 is shown in Figure 7.13.

In the first frame of Figure 7.13 the incident shock emerges from the upstream pipe it diffracts

along the surface of the upstream face of the flange as the flow is confined for longer in between

the flanges. In the second frame, a portion of the incident shock reflects off the surface of the

downstream face of the flange and the other portion off interior of the pipe. The reflected

shock then interacts with the vortex ring in a typical axisymmetric shock-vortex interaction
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Figure 7.11: Early stages of propagation of a shock wave through a 40mm pipe gap at Mach

1.45

in the third frame at 0.24ms. The portion reflected from the flange surface is accelerated

and moves upstream whilst the portion reflected off the pipe interior decelerates and moves

downstream with the primary vortex ring. At the same time the incident shock diffracts

around the bolt holes at the downstream flange. At 0.38ms, the reflected shock wave re-

reflects off the upstream face of the flange, catches up with the primary vortex ring and

interacts with it in a second shock-vortex interaction. The re-reflected shock appears to

be bent as it emerges from the interaction. The diffracted shocks from the bolt holes also
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Figure 7.12: Later stages of propagation of a shock wave through a pipe gap of 40mm at

Mach1.45

produce small vortex rings issuing out from the bolt holes. The flow separation at the outer

radius of the flanges also produce two small vortex rings at the same time.

Figure 7.13: Early stages of propagation of a shock wave through a 50mm flanged gap at

Mach 1.45

Figure 7.14 show later stages of flow development. The first three frames show flow devel-

opment at the downstream flange surface. In the first frame, the primary vortex impinges

on the downstream face flange. In the second frame, the primary vortex ring grows in its

diameter and moves radially outwards along the downstream flange surface. At the same
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time, a second vortex ring appears at the downstream flange surface due to the flow sepa-

rating along the flange surface. In the third frame, the primary vortex ring starts moving to

the left and interacts with the second vortex ring. The exact interaction of the primary and

second vortex ring cannot be assessed. At 0.68ms the vortex rings breakdown and the flow

in the gap becomes more turbulent. The turbulent plume exits from the gap with acoustic

waves continually being emitted from the gap. The last two frames show the development of

a complex standing shock system at the inlet to the downstream pipe as the jet within the

flange gap goes to supersonic velocity. The standing shock oscillates in its position as the

flow emerging from the upstream pipe is perturbed and continually oscillates as well.

7.6 CFD Results

7.6.1 Pipe gap

The CFD simulation results are shown in Figure 7.15 as pressure contours for a pipe gap

of 80mm at Mach 1.6. At 0.085ms, the shock exits the pipe and diffracts around it. The

flow expands into the gap and a vortex ring is shed as separation occurs at the pipe exit.

At 0.221ms, an expansion wave propagates back into the upstream pipe. A strong Prandtl-

Meyer expansion fan develops near the pipe exit as the gas upon exiting the upstream pipe

goes to supersonic velocity. The supersonic outflow velocity results in a barrel shock with its

one end attached to the pipe lip. The barrel shock has its other end attached to the shock

formed in the plane of the vortex ring. The interaction evidently results in the distortion of

the shape of the vortex plane shock. In the downstream pipe, the incident shock reflects off

the interior of the pipe. The frame at this instance suggests a Mach reflection pattern.

At later times as shown at 0.425ms, the expansion wave moves further in the upstream

pipe decreasing the post-shock pressure. Multiple vortices in the shear layer from the up-

stream pipe suggests the initiation of shear-layer instabilities. A second vortex ring at the

downstream pipe starts to interact with the primary vortex ring. The incident shock in the

downstream is shown to propagate with a reduced strength as compared to the post-shock

pressure in the upstream pipe. The frame at 0.578ms shows the development of the standing

shock. As the standing shock develops, its presence at the downstream pipe inlet clearly

controls the pressure in the downstream pipe. The pressure increases to a value comparable

to the post-shock pressure of the upstream pipe. As the standing shock develops, an unsteady

flow in the downstream pipe near the inlet is evident. A small vortex forms as shown by the

small low pressure region.
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Figure 7.14: Later stages of propagation of a shock wave through a 50mm flanged gap at

Mach1.45

7.6.2 Flange gap

The CFD development for a flange gap is shown in Figure 7.16. The streamtraces which are

coloured by velocity show the formation of the vortices and their subsequent interaction with

the flange surfaces. In addition to the main vortex ring, the radial outflow between the flanges

causes two vortex rings to be shed at the outer radius. The second and third frame show the
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Figure 7.15: CFD pressure plots for a 80mm pipe gap at Mach 1.60

interaction of the main vortex ring with the downstream flange surface. High velocities are

attained along the flange surface and becomes locally supersonic in some regions. The last

frame shows the interaction of the main vortex ring and one of the outer radius vortex rings.

The outer vortex rings is shown to leapfrog over the main vortex ring.
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Figure 7.16: CFD velocity plots for a flanged gap of 80mm at Mach 1.45. Images at 0.15ms

apart.
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8 Discussion

8.1 Pipe gap

8.1.1 Effect of Mach number

The results for a 40mm pipe gap at Mach 1.45 will now be compared with results at the same

gap width but at different Mach numbers of 2.2, 1.6 and 1.3.

As the high Mach number of Mach 2.2 could not be tested experimentally, CFD was used to

simulate the flow. The flow evolution is shown in Figure 8.1 for a pipe gap of 40mm. As the

incident shock enters the gap, the first frame shows that no expansion wave propagates back

in the upstream pipe. In addition, there is no reflection off the downstream pipe face of the

incident shock wave. Both noticeable behaviours are peculiar to the Mach 2.2 case. For Mach

2.2 the flow exits the upstream pipe at a supersonic speed and hence no waves propagate

back in the much stronger flow. The second and third frame show the third peculiar feature

for Mach 2.2. The shock system at the downstream pipe, instead of having a normal shock at

the inlet to the pipe, the standing shock forms inside the pipe. The standing shock reflects off

the axis in the form of a Mach reflection. The fourth frame shows the successive reflections

of the standing shock off the downstream pipe wall and the axis.

In addition, Figure 8.2 shows that the jet boundary labelled by SL exits the upstream pipe

at a relatively larger angle compared with the Mach 1.45 flow. This implies a much larger

diameter for the jet. This is as a result of a relatively larger pressure for the supersonic flow

at the exit plane of the upstream pipe. One other notable feature from Figure 8.2 is that one

end of the developing standing shock is sucked by the primary vortex ring at the at the early

stages of flow development.

At Mach 1.6, Figure 8.3 shows the stages of flow development. In the first frame at any early

stage of flow evolution, the primary difference from that at Mach 1.45 is that a much stronger

jet exits the upstream pipe. As such, the angle of the jet boundary measured clockwise is

68



Figure 8.1: Flow development for a pipe gap of 40mm at Mach 2.2

less. The much stronger shock-induced flow at Mach 1.6 results in a jet of larger diameter

as the flow expands into the gap, hence the relatively smaller jet angle. The first frame also

shows slightly different characteristics of the shocks formed as the jet flow develops. Both

the barrel shock and the shock in the plane of the vortex are slightly of greater strength and

develop at earlier flow times than for Mach 1.45. This suggests a difference in the nature

of the expansion of the high subsonic flow from the upstream pipe. For Mach 1.6, the flow

expands to supersonic speeds earlier and much near to the upstream pipe than for Mach 1.45.

The barrel shock wave angle is less for Mach 1.6, which again suggests a difference in the

nature of the flow expansion in the gap. The angle of the barrel shock is of importance in

the development of the jet flow as it determines the nature of reflection of the barrel shock

at the axis of the jet. As such the shock system in the jet at steady-state will differ for the

two Mach numbers.

The last two frames of Figure 8.3 shows how the flow develops at a much later stage. Precisely

they show the development of the standing shock at the inlet to the inlet to the downstream

pipe. As the flow approaches steady-state at 0.71ms, a single standing shock forms and

controls the downstream pipe flow. In contrast, at Mach 1.45 as the flow approaches steady-

state there are multiple shocks at the entrance to the downstream pipe. This can be explained

by the fact that, for Mach 1.6 the shocks in the jet upstream of the developing standing shock

are much closer to the inlet of the downstream pipe. The shocks within the gap being nearer
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Figure 8.2: 40mm pipe gap at Mach 2.2 flow at early stages. SL-Jet boundary, PV -Primary

vortex ring, SV -Second vortex ring.

the downstream pipe will interact with the developing standing shock and form a single

standing shock. At Mach 1.45 however, the shocks within the upstream jet are relatively far

from the downstream pipe. Therefore as the standing shock develops, there is no interaction

between the two sets of shocks into a single shock.

Figure 8.3: Flow development for a pipe gap of 40mm at Mach 1.60

At Mach 1.3 there is marked difference in the development of the flow. Figure 8.4 and

Figure 8.5 show noticeable effects for the lower Mach number. The first frame of of Figure 8.4

shows the shock-vortex interaction. Unlike for Mach 1.45 and 1.6, upon interaction with the

vortex ring, both portions of the reflected shock are not swept downstream by the vortex ring.
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Rather they continue moving upstream. This suggests a relatively weaker shock-induced flow

from the upstream pipe. The second frame of Figure 8.4 shows how the flow develops at

later times. Instead of a standing shock forming at the inlet to the downstream pipe, weak

shocks move upstream into the relatively slowly moving gas to warn it for the presence of

the downstream pipe and the adverse pressure gradient. In the flow in the gap, there are no

steep density gradients visible. This shows the jet for Mach 1.30 upon exiting the upstream

pipe does not attain a supersonic speed.

The behaviour and interaction of the two vortex rings was slightly different for Mach 1.3.

For Mach 1.3, the vortex rings are more defined than for higher Mach numbers due to the

relatively low particle velocity in the vortex cores. Figure 8.5 shows that the two vortices

move adjacently for some time before they leap frogg. Therefore as shown the diameter of

the primary vortex ring grows more than for Mach 1.45 before leapfrogging is initiated.

Figure 8.4: Flow development of a 40mm pipe gap at Mach 1.30.
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Figure 8.5: Vortex ring interaction for a 40mm pipe gap at Mach 1.3.

8.1.2 Effect of gap width

The effect of increasing the gap width from 40mm to 60mm at Mach 1.6 is shown in Figure 8.6.

At small gap widths of 40mm and 50mm in the first and second frame respectively, the

standing shock at the inlet to the downstream pipe oscillates in its position. The shock cell

and the standing shock merge into a single standing shock. At 60mm, the flow at steady

state is slightly different. The distance between the shock cell and the standing shock is

relatively large. Though the standing shock oscillate in its position, they do not merge into

a single standing shock. The third frame of Figure 8.6 shows this. The effect of gap width at

relatively large gap widths of 80mm and 115mm is shown in Figure 8.7. The development of

the flow at 80mm is shown for the first two frames whilst for 115mm is shown for the last two

frames. The reflected barrel shock off the axis interacts with the developing standing shock

at the downstream pipe both for 80mm and 115mm. The flow for 80mm on approaching

steady state is similar to the one for 60mm although there is a relatively large gap between

the shock cell and the standing shock. At 115mm, the barrel shock reflection off the axis

extends outside the gap. Its one end interacts with the core of the primary vortex ring. At a

later time step, the distance between the first shock cell and the standing shock for 115mm

is much larger than for the smaller gap widths.
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Figure 8.6: Effect of gap width at Mach 1.6. From left to right 40mm, 50mm and 60mm.

Figure 8.7: Effect of gap width at Mach 1.6. 80mm for the first two frames and 115mm for

the last two frames.

8.2 Flange gap

8.2.1 Effect of Mach number

The Mach number effect on the development of flow for a flanged gap is shown in Figure 8.8

and Figure 8.9 for a gap of 50mm. Figure 8.8 shows the development of the flow at the

downstream flange surface. The first two frames show the flow at Mach 1.45 and the last

two at Mach 1.3. For both Mach 1.3 and Mach 1.45 a primary vortex ring forms due to

flow separation at the upstream pipe and a second vortex ring due to flow separation at

the downstream flange surface. The behaviour and interaction of the two vortex rings was

slightly different for Mach 1.3. The two vortices move adjacently for some time along the

flange surface before they leap frog. Therefore as shown the diameter of the primary vortex

ring grows more than for Mach 1.45 before the interaction of the vortices is initiated. For

Mach 1.45 the interaction of the vortices at the downstream flange surface produces a shock

which moves moves upstream. For Mach 1.3 this shock is absent.

Also notable from Figure 8.8 is the absence of a developing standing shock at the inlet to the

downstream pipe for Mach 1.3 which is evident for Mach 1.45.

8.2.2 Effect of gap width

The effect of the gap width on the flanged gap flow development is shown in Figure 8.10

for a gap of 50mm and 80mm. The three frames in the first row are for a gap of 50mm

and the three in second row are for 80mm. For 50mm there appears to be only two vortex
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Figure 8.8: Effect of Mach number for a 50mm flanged gap. Mach 1.45 for two images on

the left and Mach 1.3 for the latter two.

Figure 8.9: Effect of Mach number on shock-vortex interaction for a 50mm flanged gap. Mach

1.45 for the first two images on the left and Mach 1.3 for the last two.

rings that interact along the downstream flange surface. For the 80mm flange gap width,

there appears to be three vortex rings that interact along the downstream flange surface.

At 80mm, at the downstream flange, in addition to the vortex ring due to flow separation

along the flange surface, there is a third additional vortex ring that forms just ahead of the

developing standing shock. The forming third vortex ring is best shown for the 0.70ms flow

time.

There appears to be more back and forth reflections within the gap for 50mm than for 80mm.

As a consequence of the multiple back and forth reflections, Figure 8.11 shows that the flow

transitions to turbulence earlier for 50mm than for 80mm.
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Figure 8.10: Effect of flange gap width. 50mm for images in the first row and 80mm for the

images in the second row.

8.3 Comparison of flange gap and pipe gap flow

The general flow for a pipe gap and a flanged gap having been described, the effect of gap

geometry is now summarised in this section. The primary difference between the pipe gap

flow and the flange gap flow is that the flow is confined for much longer in the latter case.
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Figure 8.11: Effect of flange gap width on transition to turbulence. 50mm for the image on

the left and 80mm for the image on the right. Both cases at Mach 1.45.

Thus, the the flow within the flange gap had a marked difference in flow feature behaviour

from the pipe gap case.

8.3.1 Effect on the vortex ring behaviour

Due to the confinement of the flange gap flow, the development of the vortices is mainly

influenced by its interaction with the flange surface. The interaction of the vortices takes

place along the flange wall and the vortices breakdown as the outward flow propagates along

the flange surface. On the contrary the vortex ring development and interaction for a pipe

gap occur in the external flow field. The nature of the interaction of the vortices is mainly

influenced by the velocity field in the external flow emerging from the gap. One consequence

of the difference in the vortex ring behaviour is that the flow transitions to turbulence earlier

in the flanged gap case than for the pipe gap case.

76



The nature of the shock-vortex interaction is also slightly different for the flanged gap. The re-

reflected shock from the upstream flange face catches up and interacts with the primary vortex

ring. In this case both the shock and the primary vortex ring are propagating downstream.

Unlike for the shock-vortex interaction dominant for the pipe gap, this type of flange gap

shock-vortex interaction is unique. The two forms are shown in Figure 8.12 for a 80mm

flanged gap and 80mm pipe gap respectively. For the flange gap case, a certain portion of

the shock is curved with its one end sucked in the vortex core after the interaction.

Figure 8.12: Effect of gap geometry on shock-vortex interaction. 80mm pipe-gap on the left

and 80mm flanged gap on the right. Both cases at Mach 1.45.

8.3.2 Effect on the jet structure

The jet structure in the vicinity of the downstream flange approaches that of a supersonic

jet impinging on a flat plat. The jet interacts with the walls of the downstream flange. The

flow field in the vicinity of the downstream flange is highly unsteady. The standing shock

system is complex. Although oscillations in the standing shock were noticed for the pipe gap
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case, it appears that for the flange gap the oscillations are greater. Figure 8.13 compares

the standing shock system for the flange gap and pipe gap. The strong oscillations in the

standing shock for the flanged case indicate a very strong acoustic field.

Figure 8.13: Effect of gap geometry on standing shock structure. 40mm pipe-gap on the left

and 40mm flanged gap on the right. Both cases at Mach 1.45.

For the flange gap, multiple vortex rings are present in the jet emerging from the upstream

pipe. This indicates a highly perturbed shear layer from the upstream pipe. The multiple

reflections and re-reflections is a possible source of perturbations in the jet as it emerges from

the upstream pipe.

Comparing with the pipe gap case, the jet boundary in the flanged gap was highly irregular.

This indicates the multiple reflections and re-reflections lead to stronger and sustained shock-

shear layer interaction. This leads to the jet shear layer instability and the eventual break-up.
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8.4 Gap Flow Features

The general behaviour of the shock induced flow in the pipe gap having been established,

detailed analysis of behaviour of the flow features will now be given. These are the features

present in the pertubed region behind the incident shock entering the gap.

8.4.1 Standing Shock

Once developed, the standing shock was observed to oscillate in its position for Mach 1.45.

For the lower Mach of 1.3, multiple shocks moved upstream to warn the flow of the presence of

the downstream pipe. From section 7.4 it was noted that after the development of the stand-

ing shock, there were pressure oscillations in the downstream pipe. It was suggested that the

behaviour of the standing shock and the multiple shocks was related to the downstream pres-

sure oscillations. In essence the pressure oscillations were a response to the shock oscillations

within the gap. To validate the suggestion, downstream experimental pressure profiles for

Mach 1.45 and Mach 1.3 are shown on the left frame of Figure 8.14 and their corresponding

shadowgraphs are shown in on the right frame of Figure 8.14. The shadowgraphy for Mach

1.45 shows the positions of the oscillating standing shock at different times by the dashed

red lines. For Mach 1.45, the shadowgraphy shows that the shock oscillations are slight and

the shock fairly stays in one position and hence a fairly constant downstream pressure in the

corresponding pressure time profile. For Mach 1.3 however, shocks are continually formed

and these move upstream perturbing the flow entering the downstream pipe, and hence the

more pronounced pressure oscillations in the corresponding pressure time profile.

This shows that the downstream pipe flow is hugely influenced by the existence and behaviour

of the shock wave system within the gap.

8.4.2 Second Shock

As the incident shock diffracted around the upstream pipe, a shock was observed to form in

the plane of the ensuing primary vortex ring. This will be termed the second shock. The

threshold incident shock wave Mach number at which the second shock formed was found

to be 1.45. For the lower Mach number of 1.3, the perturbation created by the diffracting

incident shock is so weak that a vortex pair without an embedded second shock is seen

at the exit. Takayama and Sun[14] explained the existence of the second shock due to the

existence of a locally supersonic flow behind the diffracting shock wave. Behind the diffracting

incident shock, simple expansion waves travelling upstream accelerated the high subsonic flow
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Figure 8.14: Downstream pressure profiles on the left. Shadowgraphs on the right for 40mm

pipe gap at Mach1.45 and Mach 1.30 respectively.

which eventually became locally supersonic. If the second shock wave pattern is induced by

the primary vortex ring, it was found more reasonable to analyse the second shock as a

recompression shock in the primary vortex ring frame of reference. Due to the presence of

the vortex ring the supersonic flow faces an adverse pressure gradient forming the second

shock. Figure 8.15 shows a CFD velocity plot and shadowgraphy for a 40mm gap width at

Mach 1.6. It shows the locally developed supersonic flow in the gap and the second shock

formed in the plane of the primary vortex ring.

Figure 8.15: Formation of a second shock for 40mm Mach 1.6. CFD velocity plot on the left

and shadowgraph on the right. PV-primary vortex ring, SS-second shock.

8.4.3 Barrel Shock

The possible reasons for the formation of barrel shocks were outlined in subsubsection 2.5.1.1.

A barrel shock had to form downstream of the Mach lines of the expansion fan issuing out
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from the lip of the upstream pipe. The intercepting shock was formed for Mach 1.45 and

Mach 1.6. The existence of the Mach lines of the expansion fan and the barrel shock are best

shown by the CFD density plot in Figure 8.16 for 80mm gap at Mach 1.6.

Figure 8.16: CFD density plot showing formation of a barrel shock for 80mm Mach 1.6.

BS -Barrel shock, EF -Expansion fan.

One end of the barrel shock interacts with the second shock. The second shock is clearly

bent from this interaction.

The effect of the Mach number on the nature of the barrel shock was investigated. The angle

the barrel shock makes with the flow axis was investigated with change in the Mach number.

As shown in Figure 8.17, on decreasing the Mach number from 1.6 to 1.45 the angle at which

the barrel shock makes increases. The different angles of the incident barrel shock will result

in different angles of its reflected component off the flow axis.
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Figure 8.17: Variation of Barrel shock angle with Mach number. Image for 60mm Mach 1.6

on top and 60mm Mach 1.45 on the bottom.

8.5 Flow feature Interactions

8.5.1 Shock-vortex interactions

The returning reflected shock from the downstream pipe strikes and interacts with the vortex

ring. The reflected shock front is distorted by the interaction. This was noticed to be

influenced by the flow shock Mach number. At Mach 1.6, the upper and lower portions of

the returning reflected shock distort differently. The upper part of the shock front diffracts

around the vortex and accelerates in the upstream direction. The lower part of the shock

is swept downstream due to the strong flow in the downstream direction through the inner

portion of the ring. In addition the lower portion interacts with the second shock and the

two merge into a single shock wave and propagate downstream.
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At lower Mach number of 1.3, both the upper and lower portions of the reflected shock

continue in the upstream direction after the interaction with the vortex. The upper portion

still diffracts and is bent as it passes the vortex. The propagation back upstream is due to

relatively slow speed of the jet behind the initial incident shock wave.

8.5.2 Vortex ring leapfrogging

It has already been outlined that for all gap widths and shock Mach numbers, the primary

and second vortex rings interact by leapfrogging over each other. The vortex leapfrog is

shown in Figure 8.18 by CFD velocity plots with streamlines for a 80mm pipe gap at Mach

1.6. The streamlines are coloured by velocity magnitude. The second weaker vortex ring

is shown to roll over the relatively stronger primary vortex ring. Flow discontinuities that

develop as the primary and second vortex ring interact are shown in Figure 8.19. Firstly,

the CFD velocity plots show that there exists an embedded shock between the vortex centres

as they propagate adjacently. There is evidence of the flow in between the vortex centres

reaching supersonic speeds. The second discontinuity is the separation line attached to the

second vortex ring. As shown in the plot, the separation line attaches the second vortex ring

to the point where the flow separates from the downstream pipe.

Figure 8.18: CFD velocity plots for 80mm pipe gap Mach 1.6 showing vortex ring leapfrogging

process.

The another noticeable feature in the interaction of the vortices is shown by the shadowgraphs

in Figure 8.20. As the vortex leapfrogging is initiated in the first frame, a toroidal shock is
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Figure 8.19: CFD velocity plots for 40mm pipe gap Mach 1.6. SL-Separation line, ES -

Embedded shock. Images at 0.07ms apart

produced. The toroidal shock origin was suggested to be the high pressure region produced

from the leapfrog. The second frame shows the toroidal shock propagating in the upstream

direction. In doing so it then produces another flow-feature interaction. The toroidal shock

then interacts with the shear layer of the jet issuing from the upstream pipe. The disturbance

induced by the toroidal shock causes instability of the shear layer. Although the exact

interaction is not clear, the shear layer is clearly distorted.

A corresponding three-dimensional simulation was done to investigate how exactly the vortex

rings evolve as the flow develops. To visualise the vortex ring evolution, six sequential three-

dimensional displays of iso-vorticity surfaces for both rings are shown in Figure 8.21. As

both the primary and second vortex rings develop, the diameter of the iso-vorticity surfaces

increases. The diameter increases axisymmetrically which suggests uniform flow expansion

from the circular pipe. At later stages, the phenomena of vortex leapfrogging is clearly shown

in these three-dimensional vorticity iso-surfaces.

8.6 Extended geometry simulation

As has been outlined before, pipe separation following an explosive event can occur at any

weak point in the piping structure. In addition to failure at gap geometries discussed in

this chapter, separation can occur at bolted, welded and screwed joints. In practice, a pipe

separation at a pipe gap can also take the form of a curved geometry simulating a ’pipe

burst’. This chapter will therefore extend the study to these additional gap geometries that

can result from pipe separation at different points in the pipeline.
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Figure 8.20: Shadowgraphs for 40mm pipe gap at Mach 1.45. VS -Toroidal shock.

As the flow through these geometries were difficult to simulate experimentally, the validated

CFD methodology was used.

8.6.1 Burst Pipe Simulation

8.6.1.1 Development of the flow

The development of the flow for a burst pipe is shown in Figure 8.22 for a 30mm gap at

Mach 1.6. In the first frame, the incident shock diffracts around the upstream burst pipe.

On striking the downstream pipe, the incident shock reflects off the curved portion of the

burst downstream pipe in the second frame. At the same time, an expansion fan forms at

the lip of the non-curved portion of the upstream pipe. Downstream of the expansion fan,

the flow expands and accelerates into the curved portion of the upstream pipe. Early stages

of development of a shock in the plane passing through the middle of the gap is shown in the
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Figure 8.21: Iso-vorticity surfaces for primary and secondary vortex ring. Images taken at

0.20ms apart.

fourth frame. In the downstream pipe, the reflection of the incident shock transitions from

a regular to a Mach reflection. The two portions of the reflected shocks from the upper and

lower wall approach the flow axis. In the fifth frame, the expanded flow separates at the walls

of the upstream pipe. Shock focusing of the reflected components occurs at the flow axis.

In the last frame, vortices emanate from the separation points at the wall. Shocks reflected

from downstream pipe and shocks from shock-focusing all interact with the flow emerging

from the upstream pipe.

The developed shocks in the burst pipe gap are now shown in Figure 8.23. A lamba configu-

ration is noted. One branch of the shock is oblique and originates at the point of separation

in the upstream pipe. The other branch is the shock in the core of the jet and lies in the

plane that passes through the middle of the gap.

8.6.1.2 Shock structure

The occurence of the lambda configuration of the shock system will now be briefly outlined.

Figure 8.24 shows the velocity plot at the lip of the upstream pipe. The two branches of the

lambda configuration already outlined in subsubsection 8.6.1.1 are shown by L1 and L2. The

L1 branch originates at a certain point along the curved portion of the upstream pipe. The

overexpanded supersonic jet remains attached to the wall up to this point and then separates.
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Figure 8.22: CFD density plot showing flow development for a 30mm gap burst pipe at Mach

1.6

The streamlines show the separation and the recirculation region(PV ) after the separation

point. A slipstream separates the separated flow and the almost stagnant gas above the

slipstream.

The point of separation appears to the oncoming supersonic flow as a concave corner and

hence the shock L1 forms. The supersonic overexpanded jet passing through the core faces

an adverse pressure gradient due to the presence of the downstream pipe, and therefore the

L2 branch forms roughly in the middle of the gap.

In addition to the two branches there appears to be another shock labelled L3. The additional

shock merges with the L1 and L2 shocks to form a triple point. A slip line originates from

the triple point.

The structure of the shock for the burst pipe gap shows noticeable differences with the

ordinary pipe gap. As the flow emerges from the burst pipe, it expands into an overexpanded
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Figure 8.23: Developed shock system at later times for a 30mm burst pipe gap at Mach 1.6.

Figure 8.24: CFD velocity plot showing the shock structure in the 30mm burst pipe gap at

Mach 1.6
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jet at the exit plane as opposed to the ordinary pipe gap in which the flow at the exit plane

of the pipe is an underexpanded jet. As a consequence the flow within the different gaps

develops differently. The lambda configuration shock for the burst pipe develops relatively

further upstream in the gap in comparison to the standing normal shock for the ordinary

pipe gap.

8.6.2 Different pipe diameter simulation

Shock-induced flow through different pipe diameters can occurr when the pipe separation

occurrs at a pipe expander or contractor. This can result in the shock wave propagating from

a smaller to a larger diameter pipe.

8.6.2.1 Development of the flow

CFD density plots for are shown in Figure 8.25 for the propagation of the incident shock of

Mach 1.6 from a 50mm diameter pipe into a larger 150mm diameter pipe. As the incident

shock wave discharges into the 150mm pipe, it diffracts into a spherical shape as the curved

expansion fan behind the shock wave approaches the axis of symmetry. A toroidal primary

vortex ring is shed due to flow separation at the upstream pipe. In the second frame, the

incident shock strikes the inner wall of the larger pipe and reflects back. At the same time,

following the coalescing of the curved expansion fan at the axis, an expansion fan has devel-

oped at the lip of the upstream pipe. In the next frame the reflected shock wave interacts with

the primary vortex ring. Upon interaction, the shock wave is split into two components. One

of the components, which will be referred as shock 1, is a ring-shaped shock wave around the

primary vortex ring. The second component, referred as the shock 2, has its one end sucked

into the core of the primary vortex ring and the other end connected with the incident shock

wave. The third frame also shows the formation of a shock wave that forms in the plane of

the primary vortex ring. In the fourth frame, shock 1 converges on the axis of symmetry so

that shock wave focusing on the centreline of the larger diameter pipe is generated. The fifth

frame shows the second shock wave focusing due to shock 2, propagating and converging at

the axis of the pipe. From the second frame to the fourth frame, it is observed that the shock

wave reflection of the incident shock resulting from the shock wave focusing transited from

a regular to a Mach reflection. The last frame shows the flow field at a later stage when the

shear layer is broken up into a series of small vortices that move towards the primary vortex

ring.
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Figure 8.25: CFD density plot for Mach 1.6 shock expanding from a 50mm diameter pipe

into a 150mm diameter pipe. Images at 0.2ms apart

8.6.2.2 Shock-vortex interaction

The shock-vortex interaction for the flow emerging from a smaller pipe to a larger pipe is

slightly unique. The reflecting surface being at an elevated height relative to the lip of the

upstream pipe, the shock-vortex interaction takes a slightly different form from the pipe gap

geometry. The reflected shock is more curved and upon interaction with the vortex, the

reflected shock appears to easily develop into a split two-shock wave pattern because the two

ends of the curved shock wave move in different directions. For the pipe gap at a similar flow

Mach number of 1.6, the reflected shock was noticed to only bend but not being split as it

appeared from the shock-vortex interaction.

8.6.2.3 Shock focusing

Two instances of shock wave focusing occur for the present case. The two components of

the reflected shock focus at the axis at different instances. The toroidal shock wave focusing

will induce accumulation of more energy and lead to generation of a stronger jet. The jet

will largely influence the flow development behind and ahead of the focal point. The reason

is that the high pressure generated at the focal point will drive a spherical shock wave that

affects the development of the jet.
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8.6.3 Shock propagation into a 90 degree bend

Industrial gas pipe elbows and bends are usually joined together by welds. A weld is a weak

point following structural loading from an explosive event. Therefore pipe separation at bends

and the resulting shock-induced flow will be explored in this section.

8.6.3.1 Development of the flow

The development of a Mach 1.6 shock-induced flow past a 30mm gap and into a 90-degree

bend is shown in Figure 8.26. In the first two frames, the incident shock reflects from both

the inner and outer radii of the 90-degree bend. A primary vortex ring and a second vortex

ring are shed at the upstream pipe and downstream pipe lip respectively. In the third frame

the two vortex rings interact as they propagate radially outwards. The reflected shocks from

the inner walls of the bend coalesce at the axis at the inlet to the bend. At the same time

the flow in the bend develops. At the outer radius of the bend, the Mach reflection persists.

Compression waves propagate upstream and towards the axis to warn the incoming flow of

the convex nature of the outer radius of the bend. At the inner radius the flow develops

differently. The Mach reflection of the incident shock does not persist. Instead expansion

waves are reflected back into the upstream flow and towards the axis. In the fourth and

fifth frame, a standing shock develops at the inlet to the bend. The compression waves and

expansion waves interact in the region towards the axis of the bend. The last frame shows

the shock-induced flow emerging from the bend into the vertical portion of the downstream

pipe. A vortex sheds at the lip of the bend at the inner radius. The incident shock continues

in the pipe with a Mach reflection persisting on the right wall of the vertical pipe.
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Figure 8.26: CFD density plot for shock-induced flow past a 30mm gap into a pipe bend.

Images at 0.2ms apart
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9 Conclusions

In addressing the objectives of the study stated in chapter 3 the following conclusions have

been drawn from the analysis of experimental and numerical results.

• The passage of a shock wave through a pipe gap induced a characteristic supersonic

jet from the upstream pipe for Mach 1.45 and Mach 1.6. The supersonic jet developed

into shock cells of alternating shocks and expansion waves. In addition to the shock

cells within the supersonic jet, one notable feature was the development of a standing

normal shock at the inlet to the downstream pipe.

• For the higher Mach number of 2.2, the flow at the exit plane of the upstream pipe was

supersonic. The standing shock was pushed further back into the downstream pipe.

• For the lower Mach number of 1.3, the flow did not attain a supersonic speed, as

such upstream moving shocks were observed and no standing shock developed at the

downstream pipe.

• For all the boundary conditions tested, they were complex interactions between the

shocks waves, vortex rings and shear layers within the gap. The interactions influenced

the flow evolution and the eventual transition to turbulence.

• The gap width had an effect on the nature and structure of the shock cells within the

gap.

• Both the gap width and the Mach number had an effect on the propagation conditions

in both pipes. Except for higher Mach number of Mach 2.2, an expansion wave reduced

the post-shock pressure in the upstream pipe and the flow tends to steady state at later

times. The incident shock propagated into the downstream pipe at a much reduced

strength. The behaviour of the standing shock and shocks within the gap essentially

controlled propagation conditions in the downstream pipe.

• The gap with flanges had the effect of confining the flow for longer and intense inter-

actions of the different flow features leading to an earlier transition to turbulence. A
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highly unsteady shock system develops in the gap. More back and forth reflections of

the shock results in multiple shock-vortex interactions.

• The Numerical results also showed a different evolution of the flow for a burst pipe gap.

Flow separation in the upstream pipe characterised the burst pipe simulation and the

standing shock moved closer to the upstream pipe.

• For a gap with a larger diameter pipe in the downstream section it was shown that the

complex morphological transformations of shock wave interaction are mainly influenced

by shockwave/vortex interaction. The occurence of two reflected shocks components

after the shock-vortex interaction influenced the flow in the downstream pipe. A jet

generated by focusing of reflected toroidal shock waves on the axis of symmetry is found

to be much stronger than that in two-dimensional cases and influences flow patterns in

the central area of the expansion tube.

• Propagation of the shock into the downstream 90-degree bend pipe produced a standing

shock to the inlet to the downstream pipe. On the inner concave radius expansion waves

were generated whilst on the outer convex corner compression waves emanated. There

was evidence of them coalescing at the centreline.
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10 Recommendations

The following areas have been identified by the author to be pursued for further explorations.

1. For the numerical simulations, the use of a fluid-structure coupled solver. This can

enable the simulation of the initial failure from stress waves after the explosion. The

point of pipe failure and its nature are predicted by the finite element portion of the

code and the subsequent shock-induced flow by the CFD solver portion. After the

explosion, the behaviour of the piping material from the shock wave loading can also

be predicted from the fluid-structure coupled solver.

2. For the numerical simulations, higher-order discretisation methods should be used to

further refine the rich flow feature interactions within the gap flow.

3. To exactly match the pressure responses in the downstream pipe with the position of

the standing shock within the gap, a synchronised measurement of the shock position

and the response pressure. Multi-exposure shadowgraphy to be used to measure the

shock position.

4. For the design of the shock tube, a diaphragmless shock tube should replace the di-

aphragm rupturing system. This will ensure operation of the shock tube with a high

degree of repeatability.

5. Experimental three dimensional results should be obtained by use of a laser sheet. This

will enable the visualisation of three-dimensional effects.
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Appendix A Digital Appendix

The following lists shows the folders and subfolders contained on the attached CD:

• Experimental Results

– Diaphragm calibration

– Flow Visualisation

– Pressure Time profiles

• CFD Simulation files

• Guide to Setup-Schliren Optical System
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Appendix B Technical specifications

Table B.1: Specifications for Pressure transducers

Manufacture Model Serial No. Sensitivity [mV/psi] Operating range[psi]

PCB Piezotronics 113A21 7345 28.53 0-100

113A21 8287 28.53 0-100

113A21 8288 28.53 0-100

113A21 7345 28.53 0-100

Table B.2: Specifications for Oscilloscope

Specification Value

Manufacture Hantek Electronics

Model DSO 3064

Serial Number 5777

Software DSO-xxxxUSB

Maximum sampling rate 200MSa/s

Trigger level 188mV

Trigger mode Edge

Trigger sweep Single

Trigger slope Positive

Table B.3: Specifications for transducer signal conditioners

Manufacturer Model Serial number

PCB Piezotronics F482A 4756

F482 790
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Table B.4: Specifications for the high-speed camera

Specification Value

Manufacturer Photron Fas Cam

Model number SA5 775K-C1

Serial number 362429074

Maximum frame rate[fps] 750000

Maximum shutter speed[s] 1/1000000

Maximum resolution[pixels] 320× 264

Table B.5: Specifications for the light sources

Light source Model Pulse duration Intensity[Lumens]

Megaray high density source Megaray Continuous 4375

Canon camera flash Speedlite 430EX II 1.2ms 130

Table B.6: Specifications for the optical mirrors

Specification Value

Type Meade Paraboloid

Diameter[inch] 16

F-ratio 4.5

Focal length[inch] 72.3

OC 3.7/5 PM

Table B.7: Specifications for the electro-delay box

Specification Value

Manufacture Electro DI

Time delay range[µs] 50-99 998

Trigger Level range[V] 0-1

Resolution[µs] 2

Input signal Falling Edge

Output signal Rising Edge
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Appendix C Supplementary experimental

pressure-time profiles
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Appendix D Diaphragm calibration

Table D.1: Diaphragm calibration

Room Number Diaphragm Natural Sound Time Shock Shock

Temp of thickness burst speed between speed Mach

[◦C] diaphragms [microns] pressure[bar] [m/s] spikes[s] [m/s] No

22.8 1 50 5 344.9 1.18 497.45 1.44

22.8 1 50 4.8 344.9 1.20 498.17 1.42

22.8 1 50 4.8 344.9 1.18 497.45 1.44

21.8 2 25 4.8 344.32 1.16 506.03 1.47

20.2 2 25 5.0 343.38 1.18 497.46 1.45

20.4 2 25 5.2 343.50 1.16 506.03 1.47

21.2 1 25 2.8 343.97 1.27 462.2 1.34

21.4 1 25 2.6 344.08 1.30 451.54 1.31

21.6 1 25 2.8 344.20 1.28 458.59 1.33

22.2 2 50 8.8 344.55 1.07 548.60 1.59

22.2 2 50 9.4 344.55 1.05 559.05 1.62

22.6 2 50 9.0 344.79 1.06 553.77 1.61

22.6 2 50 8.8 344.79 1.06 553.77 1.61

21.6 3 25 7.2 344.20 1.09 538.53 1.56

21.8 3 25 7.6 344.32 1.09 538.53 1.56

21.8 3 25 7.0 344.32 1.12 524.11 1.52
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Appendix E Mach number uncertainity

Equation(E.1) expresses the Mach number, Ms in terms of the transducer separation dis-

tance, x, the time,t between the pressure spikes as the shock passes the respective pressure

transducers and T is the absolute temperature.

Ms =
x

t
√
γRT

(E.1)

The uncertainties for the relevant quantities measured are shown in Table E.1

Table E.1: Individual uncertainties for Mach number calculation

Measurement Symbol Uncertainity

Temperature[K] 4T ± 0.1

Transducer separation[mm] 4x ± 0.5

Time between spikes[ms] 4t ± 0.01

The uncertainty calculation for Ms is derived from the method of Holman and is shown by

equation(E.2) .

4Ms

Ms
=

√
(
4x
x

)2 + (
−14t
t

)2) + (
−0.54T

T
)2 (E.2)

Using the values obtained from the first calibration test as shown in Table D.1 and substi-

tuting in equation (E.2) :

4Ms

Ms
= 0.0116 (E.3)

Therefore, 4Ms = ±0.0151.
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Appendix F Engineering drawings

Engineering drawings are presented on the pressure transducer positions, details for the trans-

ducer installation ports and the shock tube supports. All the manufacturing was conducted

by the staff within the Mechanical Engineering Laboratory at the University of the Witwa-

tersrand. The drawings are presented in the following order:

1. Pressure transducers positions- page 106

2. Pressure transducer installation port(the flush mounting)- page 107

3. Shock tube supports- page 108

• Flange bracket- page 109

• Resting rod- page 110

• Slotted bottom plate- page 111

• Leg support for the shock tube support- page 112
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