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ABSTRACT 
 

Accurate estimates and mapping of grass quality is important for effective rangeland 

management. The purpose of this research was to map different grass species as well as 

nutrient Phosphorus (P) and Sodium (Na) concentration across grass communities using 

Sentinel-2 imagery in Telperion game reserve. 

The main objectives of the study were to: map the most common grass communities at the 

Telperion game reserve using Sentinel-2 imagery using artificial neural network (ANN) 

classifier and to evaluate the use of Sentinel-2 (MSI) in quantifying grass phosphorus and 

sodium concentration across different grass communities. Grass phosphorus and sodium 

concentrations were estimated using Random Forest (RF) regression algorithm, normalized 

difference vegetation index (NDVI) and the simple ratios (SR) which were calculated from 

all two possible band combination of Sentinel-2 data.  

Results obtained demonstrated woody vegetation as the dominant vegetation and Aristida 

congesta as the most common grass species. The overall classification accuracy = 81%; 

kappa =0.78 and error rate=0.18 was achieved using the ANN classifier. Regression model 

for leaf phosphorus concentration prediction both NDVI and SR data sets yielded similar 

results (R2 =0.363; RMSE=0.017%) and (R2 =0.36 2; RMSE=0.0174%). Regression model 

for leaf sodium using NDVI and SR data sets yielded dissimilar results (R2 =0.23; 

RMSE=16.74 mg/kg) and (R2 =0.15; RMSE =34.08 mg/kg). The overall outcomes of this 

study demonstrate the capability of Sentinel 2 imagery in mapping vegetation quality 

(phosphorus and sodium) and quantity.  

The study recommends the mapping of grass communities and both phosphorus and sodium 

concentrations across different seasons to fully understand the distribution of different 

species across the game reserve as well as variations in foliar concentration of the elements. 

Such information will guide the reserve managers on resource use and conservation strategies 

to implement within the reserve. Furthermore, the information will enable conservation 

managers to understand wildlife distribution and feeding patterns. This will allow integration 

of effective conservation strategies into decisions on stocking capacity.  
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Chapter 1: Introduction  

1.1Background  
 

The feeding patterns of wildlife has been proved to be linked to the quality and quantity of 

the grass (Mutanga et al. 2004). Grass quality refers to characteristics that influence grass 

intake by wildlife such as crude protein (a measure of the total protein present in grass and is 

directly related to digestibility of grasses) and digestibility (a measure of the proportion of 

grass that can be used by animal). Grass quality is directly linked to the energy content of 

grass as well as energy needed for body functions (Mutanga et al. 2004). Grasses with higher 

digestibility are rapidly processed by wildlife resulting in increased production levels (Duru 

2000).  

Grass growth stages significantly influence digestibility, leafy, greener and actively growing 

grasses are associated with higher digestibility than aging grasses (Duru 2000). Wildlife 

require either micro or macro nutrients for physiological well-being (Zhu et al. 2011). 

Phosphorus (P) and sodium (Na) are important limiting nutrients for grazers, however these 

nutrients have been reported to be varied between seasons (Knox et al. 2011; Skidmore et al. 

2010; McNaughton 1988) and different stages of plant growth (Duru 2000). Sodium (Na) has 

been found to be an important macro nutrient to mammals as it regulates chemical processes 

and physiological mechanisms (Mutanga & Skidmore 2004). However, few terrestrial plants 

require sodium and due to this as a result, herbivores can experience shortage in sodium 

concentrations.  

Current techniques which are used to monitor rangeland management do not adequately take 

into consideration information on grass quality and are therefore limited in explaining 

wildlife and livestock distribution and feeding patterns (Mutanga et al. 2016; Adjorlolo et al. 

2015). The development of techniques to map the grass diversity and quality such as foliar 

phosphorus and sodium concentrations helps to describe wildlife distribution and feeding 

behaviour (Mutanga & Skidmore 2004). Therefore, information on grass quality is essential 

to gain knowledge on the wildlife distribution and feeding behaviour (Ramoelo et al. 2013a). 

Spatial patterns of grass quality and quantity are influenced by various interacting factors ( 

biotic and abiotic) which also vary with spatial scale (Mutanga et al. 2005). To date, 

rangeland monitoring methods rarely show the nutrient quality of grasses, due to the fact that 
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many of these methods are limited in explain foraging patterns and behaviours (Mutanga et 

al. 2005). However, remote sensing application has a significant potential in predicting 

biochemical foliar concentration (Ramoelo et al. 2013a). 

There are two approaches that have been widely used for vegetation estimation, namely: 

field-based traditional methods and remotely sensed methods (Dube et al. 2014). In order to 

distinguish the in situ reflectance vegetation measurement, field spectroscopy has been used 

over the years (Mutanga et al. 2015). This approach has helped researchers to understand the 

electromagnetic wavelength regions that are important for identifying the vegetation spectral 

features before the development of imaging spectroscopy (Mutanga et al. 2015). Imaging 

spectroscopy are field based vegetation mapping techniques which are time-consuming, 

costly, and sometimes difficult to execute if an area is inaccessible or if land coverage is 

extensive (Ramoelo 2013; Adam 2010). In addition, imaging spectrometers take 

measurements in visible and near –infrared regions (400-1000 nm) (Adam 2010). On the 

other hand, the freely available remotely sensed data presents an opportunity for researchers 

to effectively and economically generate timely and accurate data for vegetation mapping  

(Dube & Mutanga 2015; Adam 2010). 

In the past, many researchers relied on the use of very high spectral resolution spectrometers 

to map vegetation species and foliar nutrients such as nitrogen, phosphorus and sodium ( 

Mutanga & Skidmore 2004), biomass estimation (Dube et al. 2014) using remote sensing. 

Mapping vegetation species occurs because vegetation such as grass species with different 

nutrient levels reflects differently at specific wavelengths (Mutanga et al. 2003). Effective 

monitoring and mapping techniques for grass species are significant for a better 

understanding of distribution of grass communities within a conservation area (Mutanga & 

Kumar 2007). However, in SA, the limitations associated with remote sensing applications 

are that most multispectral images are not freely available, they are expensive to acquire as 

well as to analyse them (Mutanga et al. 2016). Various vegetation monitoring studies have 

been limited by compartment levels due to their high acquisition and high spatial and spectral 

resolution (Dube & Mutanga 2015; Dube & Mutanga 2015). However, cheap and low 

resolution images are known to greatly compromise accuracies (Knox et al. 2012). 

Traditional field techniques for mapping plant species are time consuming, require extensive 

field work as well as laboratory analysis to predict biochemical and biophysical properties of 

vegetation (Adam et al. 2012; Mutanga et al. 2003). Therefore, developments in new remote 
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sensing data sets that can satisfy the scope of work of botanist, ecologists and conservation 

managers for vegetation monitoring (Mutanga et al. 2016). This is extremely dependent on: 

development of sensors having decent spatial and spectral resolutions (Mutanga et al. 2016; 

Adjorlolo et al. 2015). However, the newly launched Sentinel-2 MSI satellite is likely to 

succeed in various applications. Sentinel-2 MSI has bands that are strategically positioned 

and is freely available (Mutanga et al. 2016). The spectral band of Sentinel-2 and its 290 km 

wide swath provides a detailed view of area under investigation which enables the assessment 

of foliar biochemicals over large protected and communal lands, as well as mapping of the 

distribution of vegetation. 

1.2 Problem Statement  
 

Modelling of vegetation quality is important to improve understanding of wildlife distribution 

and foraging patterns (Mutanga 2004). Both phosphorus and sodium are limiting nutrients for 

herbivores in Savana rangeland. Ruminants are known to be selective foragers which prefer 

plants with high sodium concentrations (Skidmore et al. 2005). The remote sensing of foliar 

phosphorus and sodium is important for describing wildlife distribution and foraging 

behaviour but has been poorly investigated as compared to nitrogen (Mutanga & Kumar 

2010). Effective game reserve management needs up to date spatial data on the distribution of 

vegetation communities as well as vegetation quality and quantity (Adam et al. 2010).  

In Telperion game reserve, traditional field techniques are solely relied on to gather 

information about grass quality and quantity. However, these methods are labour intensive; 

require long hours in field work and laboratory analysis and do not allow for generation of 

detailed vegetation maps (Mutanga & Skidmore 2004). 

Remote sensing technique offer detailed and most recent information on vegetation quality 

and quantity. Hyperspectral and multispectral remotely sensed data has been successful in 

discriminating vegetation to species level due to the high spectral resolution (Schmidt & 

Skidmore 2003). The narrow bands in hyperspectral data allow for detailed discrimination of 

vegetation species which can be masked if multispectral data is used (Mutanga et al. 2003). 

The much complicated procedures of processing and analysis of hyperspectral data can result 

in poor classification or performance of the classifiers (Adam et al. 2012). 

Recent vegetation studies in the field of Remote Sensing have used multispectral images such 

as Worldview-2 and RapidEye (Cho et al. 2015; Adelabu et al. 2014; Ramoelo et al. 2012; 
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Zengeya et al. 2012). These sensors offer good spectral resolutions but, the high cost 

associated with these commercial data has limited the accessibility specially in the 

developing countries such as South Africa (Cho et al. 2015). 

Sentinel-2 Multispectral Imager (MSI) has great potential in effective protected area  

management due to its unique spatial and spectral resolutions as well as higher signal to noise 

ratio (Sibanda et al. 2015). The use of Sentinel-2 MSI is driven by the fact that it is freely 

available and has high temporal resolution with wide swath width making it more appropriate 

for regional applications (Mutanga et al. 2016; Sibanda et al. 2015). Freely available remote 

sensing data offer private game reserves such as Telperion to utilise remote sensing 

technology to map grass quality and quantity with no added costs to the reserve financial 

budget.  

Based on the best available data, no study has tested the use of Sentinel-2 data in mapping 

grass communities and predicting vegetation quality such as P and Na. The results of the 

study will enable interpretation of the fundamental interactions of grass status with energy of 

the electromagnetic waves detected by the multispectral sensors. The resulting map of the 

study together with ground survey data will provide significant information upon which 

wildlife management decisions in Telperion game reserve can be based on. 

 

1.3 Aims and objectives  
 

The main aims of this study are to explore the utility of Sentinel 2 MSI data in mapping grass 

community quality and quantity at Telperion game reserve. 

The specific objectives are: 

 To map the most common grass communities at the game reserve using Sentinel-2 

MSI and Artificial Neural Network classifier. 

 Test the use of Sentinel-2 MSI in estimating foliar phosphorus and sodium 

concentration across different grass communities.   
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CHAPTER 2  

2 LITERATURE REVIEW  

2.1Mapping grass communities quality and quantity  

 

Grassland ecosystems are estimated to cover up to 40.5% of the total land area on earth 

(White et al. 2000). However, biodiversity in grasslands is impacted upon by various factors 

such as type of land use practices, landscape structure and topography (Hubbell 2001). The 

existence of grass species that are significant for grazing in rangelands have been affected by 

overgrazing and unsustainable agricultural activities (Skidmore et al. 2010). For sustainable 

and effective national resource management, spatial data on grass species and communities 

distribution is essential to understand land productivity and the ecosystem functions and 

services ( Ramoelo et al. 2015; Svoray et al. 2013; Cho et al. 2012; Adjorlolo et al. 2012) and 

livestock feeding patterns (Knox et al. 2012).  

The estimation of vegetation traits (biophysical and biochemical) of vegetation is important 

in many ecological application (Asner 1998). In grasslands, accurate estimates of quality and 

quantity are significant as there is variation in space and time. Detailed maps of grass 

biophysical variables are helpful in managing and conserving conservation areas and 

endangered habitats.  

In natural ecosystem, understanding of plant growth processes is guided by characterization 

of plant nutrients such as sodium and phosphorus (Ramoelo et al. 2013). Mineral nutrients 

such as phosphorus, sodium, calcium and potassium have been found to be limiting minerals 

for herbivores in savanna rangelands (McNaughton 1983). 

Various studies have demonstrated that wildlife feeding behaviour and distribution is largely 

determined by the pasture quality and quantity (Mutanga & Kumar 2007; Adjorlolo et al. 

2015). Estimation of grass P and Na are important in understanding wildlife feeding and 

migration patterns (Wang et al. 2015). Information on grass quality and quantity is essential 

for rangeland management (Kaszta et al. 2016) and can be used to inform conservation and 
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resource use within conservation areas (Mutanga & Skidmore 2007), monitoring of grazing 

patterns (Skidmore et al. 2005) and productivity of rangeland ecosystems (Mutanga 2004). 

East and Southern African studies have revealed nitrogen as the most restricting nutrient for 

herbivores and it was also found that migration patterns of wildebeest in the Tarangire 

ecosystem is determined by phosphorus (Mutanga & Kumar 2007; Mutanga 2004). Mapping 

of grass communities has been dependant on traditional techniques such as literature review, 

use of aerial photographs, field surveys and image spectroscopy (Adam et al. 2012; 

Youngentob et al. 2012). For example , Ramoelo et al (2013) determined the foliar nitrogen: 

phosphorus ratio using field spectroscopy, while Mutanga et al (2004) discriminated sodium 

concentration in mixed grass species using field spectroscopy. However, these techniques 

require intensive labour, complicated analysis and often data captured does not fully 

represent the landscape (Adam et al. 2014). 

Remote sensing provides multiple advantages over traditional field mapping methods such as 

time efficient maps, accessibility to complex terrains and repeat mapping of same area over 

different periods (Mutanga et al. 2016). 

2.2Mapping grass quality and quantity using multispectral data 

Over the years, different vegetation types and ecosystems have been successfully mapped 

using multispectral data. Using integrated LIDAR data in combination with multispectral 

images to classify vegetation in Canada, Bork and Su (2007) reported an overall accuracy of 

91%. 

In Finland, Toivonen and Luoto (2003) used Landsat imagery in mapping grasslands and 

achieved high accuracy results of 89% ; South American grasslands were differentiated by 

Baldi et al (2006) with accuracies between 90% and 95%; (Masocha & Skidmore 2011) 

achieved an overall accuracy of 80% in their study when they discriminated warm and cold 

season grasslands in the USA. In Mangolia, Yokota et al (2005) assessed vegetation indices 

of MODIS with those of AVHRR while monitoring the forage quality and quantity. 

The assessment of grassland use and monitoring of changes over time has been done in 

certain studies. In Peru, object based classification of Landsat image between 1987 and 2007 

was used to investigate changes in grassland ecosystem, an annual decrease in the spatial 

extent of the grassland ecosystem was observed and an overall accuracy of 80.3% was 

achieved. Price et al (2002) investigated in USA the potential of Landsat and ERS-2 

Synthetic Aperture Radar (SAR) imagery together with the dataset to discriminate among 
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three commonly used grass in areas with high cool and warm season grasses. An accuracy 

value of 91% was achieved using Landsat data and 73.2% using the SAR data. Masocha and 

Skidmore (2011) implemented a hybrid classification method in southern Zimbabwe to map 

invasive species.  

2.3 Mapping grass quality and quantity using hyperspectral data 
 

Vegetation quality and quantity has been successfully mapped through the use of 

hyperspectral data.   

Cushnahan et al (2011) in New Zealand successfully identified grass species with a high 

accuracy using hyperspectral data. Boschetti et al (2007) used Landsat 7 to assess pasture 

production in the Italian Alps and produced a biomass mapping. Adam et al (2014) also 

followed the same methodology to estimate biomass using hyperspectral data. They 

successfully mapped and identified wetland vegetation species using hyperspectral data. They 

achieved high individual species class accuracies which ranged from 93.73% to 100% and 

kappa value of 0.87.  

Mutanga and Kumar (2007) found a correlation between phosphorus and nitrogen in their 

study to estimate phosphorus and nitrogen in South African Savannas using hyperspectral 

data. However, limited studies to predict foliar phosphorus and sodium have been done in 

rangelands. Since there is a correlation between phosphorus and nitrogen, an assumption that  

through the prediction and mapping of foliar nitrogen, phosphorus has been indirectly 

predicted and mapped. Ramoelo et al (2013) determined a high phosphorus and nitrogen ratio 

in their study using hyperspectral data. Zhang et al (2011) also confirmed that there is a 

synergistic relationship between foliar nitrogen and phosphorus in grassland species in a 

study done in China. 

Mutanga (2004) found variations of foliar sodium in different species ranging from 0.02 % to 

0.2 %. However, Axelsson et al (2012) were unsuccessful in using hyperspectral data to map 

foliar phosphorus and sodium in mangrove species, as they only mapped and predicted 

nitrogen. Ferwerda and Skidmore (2007) successfully studied the foliar concentrations of 

phosphorus, sodium, calcium and magnesium in three tree species and one shrub. They 

obtained R2 = 0.51 for phosphorus and sodium was best predicted using continuum-removed 

spectra (R2 =0.02). 
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Different remote sensing techniques offer significant and reliable information about the 

distribution of forage quality which can be integrated in decision making in the management 

and conservation of rangelands (Svoray et al. 2013). There are challenges associated with the 

use of hyperspectral data such as high dimensionality caused by narrow bands, therefore, in 

order to discriminate vegetation species accurately, large training points must be created (C 

Adjorlolo et al. 2012). 

Additional detailed investigations using hyperspectral remotely sensed data to assess 

grassland quality are needed. Such investigations will exploit the many bands of the 

vegetation indices at different wavelengths making it possible for researches to extract more 

vegetation parameters.  

2.4 Mapping grass quality and quantity using new generation multispectral  

The launch of the new generation sensors which have high spectral and spatial resolutions is 

seen as advancement to the hyperspectral and multispectral sensors. These new sensor offer 

un- matched spectral and spatial spectral resolution which offers researchers opportunity for 

much detailed monitoring and assessment of vegetation.  

The ability of multispectral data to estimate and map grass biochemical content such as 

nitrogen in Africa has been investigated by Adjorlolo and Botha (2015). Furthermore, 

successful mapping of estuarine vegetation in St Lucia was achieved by Luck –Vogel et al 

(2016). However, there is a shortage of studies to map foliar phosphorus and sodium using 

new generation multispectral data.  

Odindi et al (2014) was successful in evaluating the utility of the new generation WorldView-

2 and SPOT -5 images in mapping the bracken fern in South Africa. The overall accuracy of 

84.72% and 72.22% were achieved for the WorldView -2 and SPOT-5 images. A similar 

study in Australia by Rasel et al (2016) compared capability of WorldView-2 and Landsat 8 

in saltmarsh mapping and accuracy assessment,WorldView-2 data produced a higher 

accuracy of 92.12% and Landsat data yielded overall accuracy of 82.04%. The high 

performance of the new generation sensors was illustrated in these studies. 

In SA, Mansour and Mutanga (2012) successfully used Worldview data in mapping grass 

species in order to assess the grassland degradation. They successfully discriminated 

decreaser and increaser grass species and reported an overall accuracy of 90% and kappa of 
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0.87. However, they reported that the cost of image acquisition is too high and this can limit 

research in resource constrained countries. 

Various remote sensing methods have been used to obtain information on grasslands 

biophysical parameters which include biomass, quality, and land degradation, grazing and 

stock. 

Mapping of vegetation species using remote sensing data requires image classification 

techniques. However, in addition to the choice of the suitable remotely sensed data in terms 

of the cost and the resolutions (spectral and spatial), the choice of appropriate classification 

techniques is significant in order to produce reliable accurate vegetation mapping (Adam et 

al. 2014). 

2.5 Classification of vegetation   

Image classification is considered as one of the significant steps in remote sensing studies as 

it because it retrieves and converts vegetation information from satellites image into thematic 

layers that can be easily interpreted (Cingolani et al. 2004; Schmidt & Skidmore 2003). There 

are different classification algorithms that have been successfully applied to gather vegetation 

information from multispectral and hyperspectral remotely sensed data (Omer et al. 2015; 

Dube & Mutanga 2015a; Adelabu et al. 2014; Mutanga & Rugege 2006). However, much 

recognition has been given to the advanced methods of image classification such as support 

vector machines (SVM), Random Forest (RF) and artificial neural networks (ANN) due to 

their greater effectiveness in image processing. However, each of these methods has its own 

advantages and limitations and they are briefly described below. 

2.5.1 Support Vector Machine  

The SVM has been defined as a supervised classifier trained to find the most effective 

classification hyperlane through reducing the upper bound of the classification error (Cortes 

and Vapkin 1995; Dlamini et al. 2016). In SVM, the hyperlane leaves the maximum margin 

between two classes, where the margin has been defined as the sum of the distances of the 

hyperlane from the nearest point of the two classes, if there is inseparability between the 

classes the SVM searches for the hyperlane that maximizes the margin while minimizing a 

quantity proportional to the number of misclassification errors (Vapkin 1995; Dlamini et al. 

2016). 
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According to Seetha et al (2017) the benefits of SVM are that: overfitting problem is unlikely 

to occur; it models nonlinear class boundaries; reduces computational complexity, easy to 

control complexity of decision rule and frequency of error.  

Seetha et al (2017) further explained that the limitations associated with the use of SVM are: 

slow training; difficulty in determining optimal parameters when training data is not linearly 

separable and the structure of the algorithm is complex and users find it difficult to 

understand. However, SVM is believed to be competitive in the classification of high 

dimensionality data sets.  

2.5.2 Random Forest  

RF classifier is a combination of tree classifiers produced through the use of a random vector 

sampled independently from the input vector, each tree votes for the most popular class to 

classify an input vector (Breiman 1999). The major advantage of RF classifier is that it 

requires that two parameters be set; can handle categorical data, and can detect outliers 

through the use of proximity analysis. 

2.5.3 Artificial Neural Network  

In this study ANN was chosen because the textural features used in ANN assist in solving 

misclassification associated Seetha et al (2017). Furthermore, ANN has the ability to tolerate 

noisy inputs. 

In their study, Seetha et al (2017) concluded that neural network approach of classification 

improves the accuracy and finer information from the individual class is obtained through the 

use of texture.  

ANN performance has been reported to be higher that other traditional classifiers such as 

maximum likelihood, minimum distance to mean and decision trees (Atkinson & Tatnall 

1997). Such classification methods are restricted due to the use of large datasets and use of 

limited training samples to generate a map (Omer et al. 2015).  

2.5 Conclusion 

Traditional methods for mapping vegetation quality and quantity have been successful used. 

However, these techniques only allow for assessments at a local scale. The advancement of 

remote sensing provided researchers with an opportunity to map vegetation quality at national 

and regional scale. However, this opportunity is costly as most of the remote sensing data are 
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commercialised and not freely available. The newly launched Sentinel-2 has red edge bands 

which allows for grass mapping and estimation of foliar parameters at a regional scale. The 

potential of Sentinel-2 mapping grass species has never been done but its application in 

forestry yielded satisfactory results on grass quality and biomass estimation. 

Great outstanding progress in the field of remote sensing from the use of aerial photographs 

to the use of multispectral scanners (Mutanga et al. 2016) has been made. The importance of 

aerial photographs cannot be ignored but much attention has been focussed towards the use of 

multispectral scanners due to higher spatial and spectral resolution and low costs (Mutanga et 

al. 2016). Multispectral sensor technology has advanced from new generation multispectral 

scanner, second generation Landsat Thematic Mapper (TM) and Satellite Pour I’Observation 

de la Terre (SPOT) with higher accuracy (Mutanga et al. 2016). 

Strategic bands within multispectral sensors allow for detection of foliar biochemicals and 

discrimination of vegetation at species level. The use of multispectral sensors such as 

Worldview-2 and RapidEye have produced similar results to those achieved using 

hyperspectral data (Mutanga et al. 2016; Adjorlolo et al. 2015). 
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Chapter 3  

3 Mapping grass communities using Sentinel -2 image 

3.1Introduction  

Grassland biome is classified as being the second largest biome after Savanna biome in South 

Africa (Carbutt & Martindale 2014). The main threats within the Grassland Biome are 

agriculture, coal mining and alien invasive species (Carbutt et al. 2011).  

The existence of grass species that are significant for grazing in rangelands have been 

affected by overgrazing and unsustainable agricultural activities (Skidmore et al. 2010). For 

sustainable and effective national resource management, spatial data about the distribution of 

the grass species and communities is essential to gain knowledge on land productivity and the 

ecosystem functions and services (Ramoelo et al. 2015; Svoray et al. 2013; Cho et al. 2012; 

Mansour et al. 2012; Adjorlolo et al. 2012) and livestock feeding patterns (Knox et al. 2012).  

Traditional survey methods such as field observation, indigenous knowledge and photographs 

can yield better results of mapping grass communities at local scale (Adjorlolo et al. 2012). 

However, such traditional techniques involve intensive field work which is time consuming 

and costly (Adam et al. 2012).  

Over the last three decades, remote sensing has increasingly been used in mapping vegetation 

species (Skidmore et al. 2010b; Adelabu et al. 2014; Thenkabail et al. 2016; Vaglio Laurin et 

al. 2016a; Curran 1989). Remote sensing has been reported to be timely, cost effective 

techniques in providing accurate spatial information on grass species quality and quality  

(Ramoelo et al. 2015).  

Both multispectral and hyperspectral remote sensing data have been successfully used in 

mapping grass species and communities. Vegetation mapping studies have successfully been 

done using multispectral data (Odindi et al. 2014; Adam, et al. 2014; Mansour et al. 2012; 

Ingram et al. 2005). 

Multispectral data are affordable and easy to acquire and to process (Mansour et al. 2016). 

There are limitations that have been identified to be associated with multispectral images 

such as Landsat and SPOT when mapping vegetation and plant species. 
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The effectiveness of multispectral data when mapping vegetation species is limited by their 

spectral and spatial resolutions, which are sometimes not useful for vegetation mapping and 

identification (Adam et al. 2017).  

Spatial and temporal resolution limitations associated with Landsat imagery makes it difficult 

to map and distinguish species at species level in heterogeneous environments. Furthermore, 

Landsat image quality decreases when the interest of period is within a rainy season.  

Hyperspectral remotely sensed data has been most commonly and successfully used in 

vegetation mapping as they possess advantageous narrow bands (Thenkabail et al. 2011; 

Zhang et al. 2011; Skidmore et al. 2005; Marshall & Thenkabail 2015). The high spectral 

resolution allows for identification of spectral features that are vital for discriminating 

different grass species and classifying them at species level which is otherwise be masked by 

multispectral data (Mansour et al. 2016; Cho et al. 2012; Vaglio Laurin et al. 2016b). 

However, whereas high spectral resolution of the hyperspectral data allows accurate detection 

and identification of vegetation species, many challenges such as data cost, poor accessibility 

to the data, image processing and analysis have limited the use of hyperspectral data 

particularly in developing countries (Ramoelo et al. 2013). 

Over the last 10 years, there has been development of new-generation satellites such as 

RapidEye, SumbandilaSAT and WorldView2 (Adam et al. 2014) which are considered to be 

much more improved than first generation  multispectral sensors (Ramoelo et al. 2015). 

These new sensors allow for more detailed classification of complex vegetation communities 

(Stratoulias et al. 2015). This is due to the fine spatial resolution coupled with a sensible 

number of spectral bands arranged in different regions of the electromagnetic spectrum (red 

edge) (Ramoelo et al. 2015). 

Researchers have successfully investigated the use of these new multispectral data in 

different vegetation studies such as vegetation species mapping (Vaglio Laurin et al. 2016; 

Mansour et al. 2016; Odindi et al. 2014; Dalponte et al. 2012). However, since these are 

commercial sensors, they come with their own limitations in terms of cost and availability 

(Adam et al. 2014). 

On the 23rd of June 2015, the European Space Agency (ESA) launched Sentinel-2A satellite 

which is one of the very first two of the Sentinel-2 mission (Navarro et al. 2017). Sentinel-2 

has a high resolution multispectral Instrument (MSI) with a wide swath (Sibanda et al. 2015). 

The MSI has 13 spectral bands which stretch from visible infrared spectrum (VIS) and near 
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infrared region (NIR) to short wave infrared (SWIR) at different spatial resolution allows for 

measurement of earth’s reflected radiance (Navarro et al. 2017). The integration of the four 

narrow bands in red edge region of Sentinel allows for enriched vegetation assessment 

(Stratoulias et al. 2015). The wide swath and frequent revisit time of Sentinel is advantageous 

in that it allows the sensor to provide continuous monitoring of vegetation (Sibanda et al. 

2015). Sentinel was designed to outperform the Landsat mission (Stratoulias et al. 2015). 

Classification methods are important for mapping of vegetation species using remotely 

sensed. Hence, in addition to the choice of the suitable remotely sensed data in terms of the 

cost and the resolutions, the selection of appropriate classification method is vital for reliable 

accurate vegetation mapping (Adam et al. 2014). 

Numerous advanced classification algorithms such as classification trees, random forest (RF), 

artificial neural networks (ANN), support vector machines (SVM), partial least squares 

regression have been applied to derive vegetation data from multispectral and hyperspectral  

images (Omer et al. 2015; Dube & Mutanga 2015a; Adelabu et al. 2014; Mutanga & Rugege 

2006). However, much attention has been given to RF, SVM and ANN due to their greater 

image processing effeciveness. The application of ANN algorithm has been widely used in 

classifying forest species using multispectral imagery (Atkinson & Tatnall 1997). ANN is a 

machine learning system which encompasses interrelated linkages of indeterminate 

processing elements (Atkinson & Tatnall 1997; Liu et al. 2013; Omer et al. 2015).  These 

linkages are categorized by a robust pattern recognition ability allowing representation of 

complex multivariate data forms (Atkinson & Tatnall 1997). Advantages of ANN have been 

attributed to its statistical methods which include generalization for technique with multiple 

images (Wang et al. 2009), easy adaptation to different types of data and input and its ability 

to use limited training data to categorize data as compared with other traditional classifiers 

(Omer et al. 2015).  

The ANN performance has been demonstrated in previous studies to be higher than that of 

traditional classifiers such as maximum likelihood, minimum distance to mean and decision 

trees (Atkinson & Tatnall 1997). These traditional classification methods are dependent on 

the assumptions which restrict their potential to use large datasets and map areas with 

restricted training samples (Omer et al. 2015)  

On the basis of the best available knowledge, Sentinel-2 data has never been used in mapping 

of grass species. Therefore, the objective of this study was to examine the utility of the 
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Sentinel-2 satellite data for mapping grass species in Telperion nature reserve using ANN 

classification algorithm.  

3.2 Methodology  

3.2.1Study Area 

 

The study area is Telperion Nature Reserve which forms part of the eZemvelo nature reserve. 

The reserve is approximately 13000 hectares in size and situated at the border between 

Gauteng and Mpumalanga Provinces, Telperion falls within the far north of the Grassland 

Biome located in Mpumalanga Province of South Africa (25° 41′ S, 28° 56′ E) (Fig 1). 

Mucina and Rutherford (2006) classified the vegetation type as the Mixed Bushveld and 

Bankenveld Grassland vegetation type.  

These vegetation types is considered to be endangered and small patches are protected in 

statutory conservation reserves and private reserves (Mucina and Rutherford, 2005) and the 

domininat grass species identified by (Coetzee 2012) are: Themeda  trianda, Eragrostis 

curvula, Sporobolus africanas ; Setaria sphacelata ,Hyparrhenia hirta and Cynodon 

dactylon.  

The study area is characterised by a mean annual temperature of and receives summer 

rainfall. The Wilge River which is a tributary of the Oliphant’s River, flows northwards 

through the reserve, the river is fed by various wetlands and smaller streams. 
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Figure 1: Study area map showing Loskop Mountain Bushveld and Rand Highveld vegetation 

 

3.2.2Image acquisition and pre-processing  

 

An image from Sentinel 2 sensor was used in this study. Sentinel-2 image was downloaded 

from the Sentinel’s Scientific Data Hub (https:scihub.copernicus.eu/) on the 20th of May 

2016. The data was radiometrically and geometrically corrected using the Top-Of 

Atmosphere (TOA) products. Additional corrections which were done include 

orthorectification as well as spatial registration on a global reference system. Sentinel 2 

Toolbox was used to process the image to Level 2 data.  

The image was atmospherically corrected using Sen2Cor plugin which is a prototype 

processor of Sentinel-2. Sen2Cor processor has been designed to execute functions such as 

atmospheric, terrain and cirrus correction as well as a scene classification. The image  was re-

sampled based on the sampling distance (10m,20m,60m ) as per the spectral bands resolution 

as shown in Table 1 below. 

Re-sampling of the image was done using a constant Ground Sampling Distance (GSD) of 

10m, 20m and 60m based on the resolution of different spectral bands as shown in Table 1 

below. 
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Table 1Sentinel 2 MSI spatial and spectral resolutions 

Acronym Band Central Wave-

length (nm ) 

Spatial 

resolution 

Band 1 Violet 443 60 

Band 2 Blue 490 10 

Band 3 Green 560 10 

Band 4 Red 665 10 

Band 5 Red-edge 1 705 20 

Band 6 Red-edge 2 740 20 

Band 7 Red-edge 3 783 20 

Band 8 NIR 842 10 

Band 8a NIR narrow 865 20 

Band 9 NIR 945 60 

Band 10 NIR 1380 60 

Band 11 SWIR1 1610 20 

Band 12 SWIR2 2190 20 

( ESA, 2016) 

3.2.3 Ground reference data collection 

 

Sampling was done between the 21st and the 25th of May 2016 soon after remotely sensed 

data acquisition. This period is usually characterised by moderate to high rainfall and high 

biomass productivity, but in the year 2016, the country was experiencing severe drought 

which was declared as a natural disaster. As a result, the grass was drier than expected during 

the time of sampling.  

In each identified sample point, vegetation plot (20m  by 20m ) was constructed comprising 

of a homogenous area of the grass communities. The ground reference data was then 

randomly partitioned for classification into training sites (70%) and test sites (30%) as shown 

in Table 2 below. 
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Using field sample points a point map was created. The map was then overlaid on the 

Sentinel-2 image to Region of Interests (ROIs) for training and test which were then used to 

gather image spectra from grass species.  

Table 2.Training and test data set for grass species  

 

Species  Training samples 

(70%) 

Test samples  

(30%) 

Total samples  

Serephium 

plumosum  

48 20 68 

Hyparrhenia hirta 41 17 58 

Mixed grassland 38 15 53 

Cynadon dactylon  35 14 49 

Eragrostis 

chloromelas 

52 22 74 

Woody vegetation  94 40 134 

Wetland grass 42 18 60 

Aristida congesta  42 17 59 

Eragrostis 

gummiflua 

45 19 64 

 

3.3 Image classification  

 

Artificial Neural Network algorithm was used to classify the Sentinel-2 image. A resultant 

map showed the spatial distribution of different vegetation communities in Telperion game 

reserve.  

3.3.1 Artificial Neural Network (ANN) Classifier 
 

Neural Networks are described as knowledge based artificial intelligence technique (Atkinson 

& Tatnall 1997). ANN is non-parametric mathematical model independent of assumptions of 

data normality (Omer et al. 2016). ANN attempts to imitate mimic neural linkages (Omer et 

al. 2015) based on biological and functional aspects by using a group of artificial neurons 
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which are connected in order to process the information (Omer et al. 2016; Atkinson & 

Tatnall 1997; Omer et al. 2015). ANN is better compared to other classification methods 

(Omer et al. 2015). The advantage is attributed to its nonparametric nature, as such; no 

previous information on the distribution of the input data is required (Omer et al. 2015). ANN 

has gain popularity and is used much more often than other statistical classifier (Omer et al. 

2015). This is due to advantages such as high accuracy as compared other statistical 

classifiers (Omer et al. 2015)  as well as and once they are trained; integrate unique data types 

including different sensor information into analysis, thus enabling collaboration in different 

field of studies (Atkinson & Tatnall 1997). ANN has various models that have been used in 

remote sensing (Omer et al. 2015), these have been identified as back propagation (BP), RBF 

and Multilayer perceptron (MLP) (Omer et al. 2015). The ANN commonly uses the MPL 

structure which is comprised of input layer and nonlinear activating nodes (Omer et al. 2015). 

When data has been processed, perceptron learning is achieved through modifications in 

linkages. An MPL has been described as a ANN model that maps input data based on suitable 

output (Omer et al. 2016). Various land cover classification studies have used ANN to 

classify different land cover as well as vegetation spectral discrimination. The most popular 

ANN structure of algorithm is MPL model that uses the BP algorithm. In this study, ANN 

classification algorithm was used for mapping different grass communities using Sentinel 2 

data. 

3.3.2 Accuracy assessment  
 

In classification, accuracy assessments are important. In this study, a 70% subset of the 

reference data was used for training the model. The model validation was done using the 30% 

of the remaining data.  In order to make a comparison of the true class and the predicted 

class, a confusion matrix was created (Omer et al. 2016). From the confusion matrix the 

overall accuracy (OA) which is the overall probability that test data has been accurately 

classified (Congalton & Green) and  producer’s accuracy (PA) defined as the possibility of a 

certain class being accurately classified and user’s accuracy which is the reliability of the 

classes that are in the classified image (Congalton & Green 2008) were calculated. The kappa 

coefficient lies between 0 and 1 values and it represents the variation between the actual and 

expected agreement (Adam et al. 2014). When kappa coefficient is 1, it shows the best 

agreement between classification and ground pixels, non-agreement is represented by a value 

of 0 (Dorn et al. 2015). 
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3.4. Results  

3.4.1 Classification 
 

The below map shows distinct species that were classified using ANN classifier and their 

distribution across the study area. Woody vegetation was classified as the most dominant 

vegetation type within the study area. 

 

Figure 2: Classified vegetation of the study area using ANN classifier 

 

3.4.2 Accuracy Assessment  
 

The classification results showed the performance of ANN algorithm in distinguishing 

different species as shown in Table 3 below. The classification model achieved overall 

accuracy of 81% and Kappa Coefficient of 0.78% as shown in Table 4 below. Variations of 

User and producer accuracies of single species are depicted in Table 4. 
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Table 2 Confusion matrix showing the overall classification and Kappa distinguishing among 
vegetation species. 

 

  AC CD EC EG HH MG SP WG WV Row 

Total  

AC 11 2 0 0 0 0 0 0 1 14 

CD 0 12 0 2 0 1 0 0 0 15 

EC 0 0 19 1 0 1 1 0 1 23 

EG 0 0 0 16 0 0 1 0 0 17 

HH 1 0 0 1 16 1 0 0 0 19 

MG 1 0 2 0 0 11 1 1 0 16 

SP 2 0 1 1 0 1 13 0 3 21 

WG 0 2 0 0 0 0 1 15 0 18 

WV 0 0 0 1 1 0 2 0 35 39 

Column 

Total 

15 16 22 22 17 15 19 16 40 182 

 

The above confusion matrix shows the performance of the ANN model in classification. 

Different vegetation species were classified; Serephium plumosum (SP);Hyparrhania hirta 

(HH); Mixed grassland (MG) ;Cynadon dactylon (CD); Eragrostis chloromelas 

(EC);Eragrostis gummiflua (EG)Wetland grass (WG) , Woody vegetation (WV) and Aristida 

Congesta (AC)  The error was determined based on the OOB method and test dataset 

(Mansour & Mutanga, 2012). 
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Table 3 Producer's accuracy (%) and user's accuracy (%) of nine classes (SP, HH, MG, CD, 
EC, EG, WG and AC) using all Sentinel-2 bands 

 AC C

D 

EC EG HH MG SP WG WV 

Produc

er 

accura

cy 

73.333

33 

75 86.363

64 

72.727

27 

94.117

65 

73.333

33 

68.421

05 

93.75 87.5 

User 

accura

cy 

78.571

43 

80 82.608

7 

94.117

65 

84.210

53 

68.75 61.904

76 

83.333

33 

89.743

59 

 

The accuracy achieved for all species (MG, HH, CD, EC, EG, WG, WV, AC, MG) was 

high. HH class had the highest 94% (HH) and the lowest accuracy was achieved was 64 (SP). 

The SP class was underestimated in the classified image.  

The reliability of pixels that were correctly classified was higher in MG, HH, CD, EC, EG, 

WG, WV and AC. However, MG only achieved the lowest user’s accuracy of 62% meaning 

that there were some pixels that were misclassified.  

The achieved Kappa was 0.78 and the error rate of 0.18 was achieved in this study as shown 

in Table 5 below. The low error rate achieved by the classifier demonstrates the high 

performance of the classifier in correctly classifying the different grass species.   

Table 4 Kappa, overall accuracy and Error rate 

Kappa 0.786503 

Overall accuracy  0.813187 

Error rate  0.186813 
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3.5 Discussion and conclusion  
 

The ability to accurately locate and map different grass species within rangeland provides 

valuable information (Ramoelo et al. 2013) which can help to guide effective management of 

natural resources in rangeland and give understanding on wildlife and livestock grazing and 

distribution patterns.  

In this study the performance of ANN algorithm and the ability of the Sentinel-2 data to map 

the different grass species and their distributions in Telperion Nature Reserve was assessed. 

Woody vegetation was found to be the most widely distributed vegetation within the study 

area as shown in Fig. 1 with dominant grass species mapped as Aristida congesta.  

Multispectral satellites with medium spatial resolution (30-100m) have produced grass 

species maps with lower accuracy for operational application. Imagery from sensors with 

very high spatial resolution (<5m) have been reported to have limitations such as cost, 

availability, high dimensionality and processing (Adam et al. 2014). Application of remotely 

sensed data combined with field data is restricted by the limitations that are associated with 

the fine and medium scale remote sensing data.  

The high overall accuracy 81% (Table 4) achieved demonstrates the ability to map different 

vegetation types and species through the use of multispectral data. Such information provides 

more details on grass species distribution within conservation area. A kappa coefficient of 0.7 

was achieved which shows that there was a perfect agreement between the classification and 

ground pixels (Table 5). A study by Omer et al (2015) yielded relatively lower accuracy 

(65%) when ANN algorithm was used.  

The overall accuracy produced in this study is higher compared to overall accuracy achieved 

by Mansour et al (2015) (75%) using multispectral SPOT 5 imagery. Using WorldView-2 

data, Mansour and Mutanga (2012) successfully mapped grass species and obtain overall 

accuracy of 90%. 

Higher vegetation classification accuracies have been reported in studies using hyperspectral 

data (Vaglio Laurin et al. 2016a). However, the limitations associated with the use of 

hyperspectral data is the high cost, small spatial coverage, and the difficulties of image 
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processing (Thenkabail et al. 2016). Hyperspectral data can only be used for small scale 

surveys but can produce maps of exceptional thematic detail (Mutanga & Kumar 2007).  

To increase accuracy, similar study using Sentinel-2 can be replicated but across different 

seasons. This study was done during a period of severe drought in South Africa. As a result, 

the grass was dry and at low productivity stage when image was acquired. As grasses 

senesce, they exhibit red/brown colour which create spectral confusion with the bare soil. 

Additionally, a much more advanced classification algorithm may be used to achieve higher 

accuracy results. 

Classification information obtained from this study is useful for effective resource 

management and will help rangeland managers to identify the distribution most dominant 

grass species. Such information will give guidance to rangeland managers as to which species 

to introduce and as well as grazing/ feeding patterns of wildlife and livestock.  

 

 

 

 

 

 

 

 

 

 
 

 



25 

Chapter 4 

4 Mapping grass phosphorus and sodium concentration using Sentinel-2 

imagery 

4.1Introduction  

South African grassland biome is considered to be the most agriculturally productive land 

and has numerous mineral deposits most of which are extracted for economic gains (SANBI 

2012). One of the most challenges experienced in grassland ecosystem is the high levels of 

transformations as a result of overgrazing and overstocking (Ali et al. 2016).  Understanding 

the grassland ecosystem quality and quantity is crucial for explaining the functions and 

dynamics of grassland. 

Grass quality refers to the characteristics that influence grass intake by wildlife such as crude 

and digestibility which is a measure of the proportion of grass that can be used by animal 

(Mutanga 2004). The quantity and quality of vegetation determines the amount of material 

that can be digested by herbivores (Knox et al. 2011). 

Grass nutrients such as phosphorus, sodium, magnesium and calcium have been identified as 

essential nutrients which determine foraging preference in herbivores (Knox et al. 2011; Prins 

1996). Spatial information about grass nutrients is essential to advice rangeland managers to 

manage their grazing lands effectively. Studies done in savanna rangelands revealed that 

phosphorus is one of the limiting minerals in herbivores (MacNaughton & Banyikiwa, 1995) 

whereas sodium was found to influence the distribution of wildlife as herbivores prefer 

sodium enriched forage (Mutanga & Skidmore 2004). 

Mapping of grass (phosphorus) (P) and sodium (Na) provides useful data for sustainable 

resource use, planning and management of wildlife and livestock by nature reserve managers, 

conservation planners and livestock farmers (Ramoelo et al. 2012b). Leaf phosphorus 

concentration determines the migration behaviour of wildebeest in the East African savanna 

(Voeten 1999).   

Studies to estimate vegetation quality have mainly been focussed on mapping foliar 

concentration of nitrogen (Kaszta et al. 2016; Vaglio Laurin et al. 2016; Zhang et al. 2011; 

Marshall et al. 2016; Skidmore et al. 2005; Ling et al. 2014) and useful results have been 

achieved using different remote sensing data and techniques. However, only a handful of 



26 

studies have been done to map foliar phosphorus concentration even though it is considered 

to be of equivalent importance as nitrogen in establishing herbivore feeding patterns 

(Mutanga & Kumar 2007; Mahajan et al. 2014; Ramoelo et al. 2013). 

Wildlife prefer specific feeding sites and plant species to maximise essential nutrient uptake 

and avoid the risk of malnutrition (Mutanga et al. 2004). The advancement of various pasture 

quality predicting techniques is important for explaining wildlife feeding and distribution 

patterns (Mutanga et al. 2004). 

Traditional methods for detecting and mapping pasture quality are associated with high 

laboratory analysis costs and require comprehensive sampling. These methods have been 

found to be limited to small and local scale mapping (Adam et al. 2014). 

The advancement of spatial, spectral and temporal resolution in remote sensors has awarded 

researchers with an opportunity to evaluate and monitor vegetation quality and quantity 

conditions (Curran et al. 2001). Satellite remote sensing offers cost effective methods for 

surmounting the challenge of field-based survey (Mutanga et al. 2003; Mutanga et al. 2005; 

Skidmore et al. 2010; Mutanga & Skidmore 2007; Mutanga & Skidmore 2004) Multispectral 

and hyperspectral remote sensing methods have been developed steadily (Adam & Mutanga, 

2009) and successfully over time to predict vegetation quality and quantity (Liu et al. 2015; 

Atzberger et al. 2015; Zlinszky et al. 2015 Knox et al. 2011; Ausseil et al. 2011; Ferwerda et 

al. 2007). 

The lack of the spectral resolution has been considered to be one of the limitations with the 

use of the vegetation indices calculated from broad multispectral bands (Blackburn 1998; 

Thenkabail  2000). However, Multispectral data has been found to be cost effective and easy 

to process (Mansour et al. 2016). 

Various studies have successfully assessed vegetation quality through the use of 

hyperspectral remote sensing data (Thenkabail et al. 2016; Kaszta et al. 2016b; Zhang et al. 

2011; Skidmore et al. 2005; Knox et al. 2011b; Wang et al. 2015;  Mutanga & Skidmore 

2004). The contiguous of hyperspectral narrow bands make it possible to understand and 

estimate the fluctuations in biochemical and biophysical features of plants as which has been 

difficult with the use of multispectral remote sensing (Zhang et al. 2011). 

In the use of hyperspectral, studies have found that the shape and position of the “red edge” 

(the transition from visible to near-infrared portions of the spectrum - 690 to 800 nm) was 
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most sensitive to vegetation quality variations). The term ” red edge”  refers to the region of 

sudden change in leaf reflectance between 690 and 800 nm (Mutanga & Skidmore 2007) 

because of high chlorophyll absorption in red wavelengths and high reflectance in the NIR 

wavelengths due to internal leaf scattering (Horler et al. 1983). Multispectral sensors such as 

Landsat, SPOT, ASTER, and MODIS have coarse spatial resolution and do not possess the 

red edge region (Sahoo et al. 2015)  

In the last 10 years, a number of space borne sensors such as RapidEye, SumbandilaSAT and 

WorldView2 have been developed for a wide range of applications including vegetation 

mapping (Adam et al. 2014). These remote sensing sensor are considered to significant  

improvement on multispectral satellites technology (Abel Ramoelo et al. 2015). The new 

generation multispectral  sensors such as WorldView-2 and RapidEye  offer more wavebands 

(up to 13 bands) and higher spatial resolution (1.5 m) than the traditional broadband satellite 

images such as SPOT and Landsat TM while reducing unnecessary loss of essential 

information as in hyperspectral image such as Hyperion (Stratoulias et al. 2015). The new 

generation sensors have been widely used over the last decade to estimate vegetation quality 

and quantity these include: nitrogen (Ramoelo et al. 2012b; Dube & Mutanga 2015a) biomass 

(Adam et al. 2014; Greaves et al. 2016; Jin et al. 2014; Lu 2005), leaf area index (Delegido et 

al. 2013; Haboudane 2004) and good results have been obtained.  

In June 2015, Sentinel-2A satellite which is one of the very first two of the Sentinel-2 

mission, was launched by the European Space Agency (ESA) (Navarro et al. 2017). Sentinel-

2 has a wide swath and comprises of 13 spectral bands stretching  from the VIS and NIR to 

SWIR at unique spatial resolutions allowing measurements of earth’s reflected radiance 

(Navarro et al. 2017). One of the advantages of Sentinel-2 is that it offers a good temporal 

resolution with frequent revisit time of 5 days which allows continuous monitoring of 

vegetation condition (Sibanda et al. 2015).  

Random forest (Breiman, 2001) has been increasingly used to improve accuracy in prediction 

accuracy in remote sensing applications (Grimm et al. 2008). Many researchers have used 

random forest as a classification algorithm (Mureriwa et al. 2016; Vincenzi et al. 2011; van 

Deventer et al. 2015; Mureriwa et al. 2016; Rodriguez-Galiano et al. 2015). However, less 

studies have used  RF as a regression algorithm (Mureriwa et al. 2016; Vincenzi et al. 2011; 

Adam  et al. 2014; Mutanga et al. 2012). Random forest has been found to be able in 
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handling complicated relationships between predictors caused by noise and large data volume 

(Vincenzi et al. 2011; Ismail et al. 2010). 

The objective of this study was to evaluate the performance of Sentinel 2 imagery and 

random forest model to predict and map foliar P concentration in Telperion game reserve. 

4.2 Materials and Methods  

4.2.1 Study area 
 

The study area is Telperion game reserve which forms part of the eZemvelo game reserve. 

The reserve is approximately 13000 hectares in size and situated at the border between 

Gauteng and Mpumalanga Provinces, Telperion falls within the far north of the Grassland 

Biome located in Mpumalanga Province of South Africa (25° 41′ S, 28° 56′ E) (Fig 4). Mucina 

and Rutherford (2006) classified the vegetation type as the Mixed Bushveld and Bankenveld 

Grassland vegetation type.  

These vegetation types is considered to be endangered and small patches are protected in 

statutory conservation reserves and private reserves (Mucina and Rutherford, 2005) and the 

domininat grass species identified by (Coetzee 2012) are: Themeda  trianda, Eragrostis 

curvula, Sporobolus africanas ; Setaria sphacelata ,Hyparrhenia hirta and Cynodon 

dactylon.  

The study area experiences mean annual temperature 22 ˚ C and receives summer rainfall. 

The Wilge River which is a tributary of the Oliphant’s River, flows northwards through the 

reserve, the river is fed by various wetlands and smaller streams. 
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Figure 3: Study area map Study area map showing Loskop Mountain Bushveld and Rand 
Highveld vegetation 

 

4.2.2 Remote sensing data acquisition and processing  
 

Sentinel-2 innovative feature of having three red edge bands having the ability to distinguish 

differences in chlorophyll pigments (Vaglio Laurin et al. 2016). Higher chlorophyll content 

shows higher nitrogen and phosphorus content in plant tissue (Curran, 1989).  Eventhough, 

sentinel has promising potential, there is insufficient use in monitoring vegetation mostly in 

grasslands. 

Sentinel-2 image was downloaded from the Sentinel’s Scientific Data Hub 

(https:scihub.copernicus.eu/) on the 20th of May 2016. The data was radiometrically and 

geometrically corrected using the Top-Of Atmosphere (TOA) products. Additional 

corrections were done included orthorectification as well as spatial registration on a global 

reference system. Sentinel 2 Toolbox was used to process the image to Level 2 data. 

The image was atmospherically corrected using Sen2Cor plugin which is a prototype 

processor of Sentinel 2. Sen2Cor processor has been designed to execute functions such as 

atmospheric, terrain and cirrus correction as well as a scene classification (Anon 2017.). The 
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image was re-sampled with a constant Ground Sampling Distance (GSD) of 10m, 20m and 

60m according to the resolution of different spectral bands (Table 1). 

Field data and GPS information were used to produce a point map. The point map was 

overlain on Sentinel-2 image in order to produce region -of- interest (ROI) map using the 

GPS points (n=82). An 8 by 8 pixels window was then used to gather vegetation image 

spectra from each band (n=10) using ArcGIS 10.2 software. The reason for using 8 X 8 pixel 

windows was to eliminate pixels located outside the 20 m by 20m plot (Cho et al., 2007).  

The spectral data set was inclusive of only pixels which were entirely within the ROIs. Pixels 

which were partially inside the ROI were not considered. For each vegetation plot, spectra 

were collected and averaged.  

The data set was partitioned randomly into 70% and 30% for training data and a test 

independent data respectively.  

Table 5 show Sentinel-2 MSI spatial and spectral resolutions 

Acronym  Band Central Wave-

length (nm ) 

Spectral Width  Spatial 

resolution  

B1 Violet 443 20 60 

B2 Blue 490 65 10 

B3 Green 560 35 10 

B4 Red 665 30 10 

B5 Red-edge 1 705 15 20 

B6 Red-edge 2 740 15 20 

B7 Red-edge 3 783 20 20 

B8 NIR 842 115 10 

B8a NIR narrow 865 20 20 

B9 NIR 945 20 60 

B10 NIR 1380 30 60 

B11 SWIR1 1610 90 20 

B12 SWIR2 2190 180 20 

Source: ESA 2016 
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4.2.3 Field data collection  
 

Sampling was done between the 21st and 23rd of May. This period is usually characterised by 

moderate to high rainfall and high biomass productivity, but in the year 2016, the country 

was experiencing severe drought which was nationally declared as a natural disaster. As a 

result, the grass was drier than expected and was already starting to senesce. Foliar nutrient 

quality is significant for herbivores throughout the year (Prins & Beekman 1989) .  However, 

during the wet season, the grass is much greener and more nutritious whereas nutrient levels 

decreases in the dry season (Owen-smith & Novellie 1982). Mutanga (2004) emphasized that 

the nutrient levels become more significant in determining distribution of wildlife during the 

dry season.  

Sampling technique used was random in this study, this was done  across different grass 

communities. A total of 82 random samples were obtained. At each sample point, a 20 m X 

20 m vegetation plot was generated. Grass representative samples from each plot (20 m X 20 

m) were then randomly clipped. A Global Positioning System (GPS) was used to record the 

coordinates of the centre vegetation plot. The grass samples were kept and labelled in a paper 

for the chemical lab analysis.  

4.2.4 The calibration and validation dataset 
 

The data was randomly partitioned into 70% and 30% for training dataset (n = 57) and 

independent test dataset (n = 25) respectively.  The random forest regression model was 

trained using the training data while the performance of the regression model was evaluated 

using the test data. 

4.2.5 Chemical analysis  
 

Chemical analysis of the field collected samples was done at the KwaZulu Natal Department 

of Agriculture and Rural Development. Dry combustion was done based on the Dumas 

(1831) method for phosphorus and sodium analysis. To extract the elements the Hunter’s dry 

method was adopted (Hunter 1984). The samples were dried in oven at 70˚C for 48 hours. 

During chemical analysis, reagent blanks were used  
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4.2.6 Data Analysis  
 

To estimate the grass P and Na concentration, Simple Ratio (SR) vegetation index and 

Normalised Vegetation Index (NDVI) were used. To explore the ability of all Sentinel-2 

bands in estimating P and Na concentration, NDVI and SR were calculated from all the 

possible bands combination of Sentinel-2 bands. NDVI and SR were selected due to the fact 

that they have been used intensively in predicting vegetation biophysical and biochemical 

characteristics. The calculation of  NDVI and SR were based on the below equations (1 and 

2).  

𝑁𝐷𝑉𝐼 =  
𝑅(𝑖,𝑛)−𝑅(𝑗,𝑛)

𝑅(𝑖,𝑛)+𝑅(𝑗,𝑛)
      (1) 

 

𝑆𝑅 =  
𝑅(𝑖,𝑛)

𝑅(𝑗,𝑛)
       (2) 

 

Where R (i, n) and R (j,n) are the reflectance at any two bands from the bands of the image 

spectra (n=10) (Mutanga et al. 2015). 

The discrete 10 bands allowed a calculation of 100 NDVIs and 100 SRs. To simplify the 

analysis process, minimum number of NDVIs and SRs that yielded high prediction were 

identified based on their relationship with P and Na concentration as represented by the 

correlation coefficient (r). The NDVIs and RSs were ranked based on correlation coefficient 

and the top 20 indices for NDVI and SR were selected as input variables for further analysis 

using random forest regression to estimate vegetation features  

4.2.7 Random forest regression  
 

Random Forest was developed by Breiman (2001) to enhance the classification and 

regression tress (CART) method through the combination of large sets of decision trees. In 

this study Random Forest (RF) algorithm (Breiman 2000) which is a multivariate and non-

parametric regression applied in the “randomForest” found in R software. It was used to 

estimate the amount of variations in grass phosphorus and sodium concentrations that can be 

derived from the NDVIs and SRs calculated. The R2 values calculated from the NDVIs and 

SRs were noted and RF produced R2 and least RMSE values. In RF, multiple regression trees 
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(ntree) are produced through the generation of multiple bootstrap samples (Adam et al. 2014) 

from the original training data set with replacements (Adam et al. 2014). Regression trees are 

permitted to grow up to the maximum size without being pruned (Adam et al. 2014). In order 

to decide the top split at each node of tree, each tree is grown with random subset of 

predictors (mtry) (Grimm et al. 2008). The overall prediction accuracy is achieved by 

averaging the results from each aggregation. (Grimm et al. 2008). The larger the number of 

trees, the lower the biasness and variance is achieved by the RF model (Grimm et al. 2008).  

 

Exclusion of about 33% of data from the sample is done during bootstrap sampling in RF 

model , while the rest of the data is replicated to achieve the full data size which is referred to 

as the ‘in bag’ data (Adam et al. 2014) while the data excluded is termed ‘out-of-bag’ (OOB) 

data (Adam et al. 2014; Breiman 1996). The OOB error which is the prediction variations 

derived from the OOB data and the ‘in bag ‘data is calculated for each tree in the RF 

ensemble (Pamer et al. 2007). The OOB estimate of error reflects reliable prediction accuracy 

as OOB data is not used in building or pruning any of the regression trees. OOB estimate of 

error has been regarded as a type of cross validation since reliable estimates of error are 

achieved by it. (Ismail & Mutanga 2010; Breiman 2001,). However, other researchers have 

argued on the insignificance of having independent validation data (Lawrence et al. 2006). 

OBB data makes it possible to evaluate the significance of each variable for prediction by 

calculating increase in error of prediction if OBB data of that variable were calculated 

(Prasad et al. 2006). 

 

In RF, there is a need to optimise two parameters (i) ntree (default value 500) these are the 

number of trees grown from the bootstrap sample of observations and (ii) mtry, the number of 

different predictor variables (VIs) tested on each node (Adam et al. 2014). The ntree values 

were tested at 1000 intervals between 500 and 9500 (Prasad et al 2006), mtry was tested at a 

single interval from 1 to 25. Throughout the analysis, the node size was kept as the default 

size (Vincenzi et al. 2011). All analysis were performed using the randomForest library 

developed for the R statistical package. 

 

Validation of the performance of the RF algorithm was done through data partitioning 

(training (70%) and test (30%)). The test samples respectively. Training was used to develop 

prediction model for phosphorus and sodium concentration respectively and to validate the 

predictive performances of both models, the test data was used (Ismail & Mutanga 2010; 
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Lawrence et al. 2006). A relationship between the measured and predicted phosphorus and 

sodium concentration values were fitted respectively and calculation of the R2 and RMSEC 

was done (Adam et al. 2014).  

4.2.8 Selecting the important band indices  

The modelling process was simplified by identifying the number of NDVIs and SRs that were 

the highest predictors for both phosphorus and sodium concentration. NDVIs and SRs were 

firstly ranked in accordance to their relation to phosphorus and sodium concentrations as 

shown by the (r) (Mutanga & Skidmore 2004). After ranking, the top 20 indices for 

phosphorus and 25 for sodium for both NDVI and SRs data sets that produced the highest r 

values were chosen for further processing in the RF using the variable selection process.  

The top 20 variables of importance phosphorus and 25 sodium concentrations were ranked by 

the RF algorithm from the NDVIs and SRs data, the mean decrease in accuracy determined 

from the OOB sample was used. This ranking was used to identify the way to eliminate the 

least important NDVIs and SRs data sets using the backward variable selection method 

(Ismail & Mutanga 2010). The backward variable selection model uses the whole data set 

first and then discards the least important variables based on RF ranking. To optimise the 

model at each iteration (n=20 phosphorus and n=25 sodium. In order to model phosphorus 

and sodium concentrations, the smallest set of vegetation indices with low RMSE were 

chosen for. The backward variable selection method was assessed through the use of a 10 

fold cross validation (Mutanga et al., 2012; Kohavi and John 1997).  

Using EnMAP- Box software, the best precise RF regression model was implemented to map 

the study area distribution of both phosphorus and sodium. EnMAP-Box is a freely available 

licence-free processing environment. RF regression and classification can be applied in 

ENMAP to analyse remote sensing imagery (Waske et al. 2012).  

 

 

4.3 Results 

4.3.1 Descriptive statistics  

To determine the connection between the vegetation indices, phosphorus and sodium 

concentrations, data statistics were calculated as shown in Table 7 below. The variation of 
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phosphorus concentration was between 0.01 and 0.2 while sodium concentration varied 

between 20.2 and 774. 

Table 6 Descriptive statistics of the measures phosphorus and sodium concentrations 

 

4.3.2 Relationship between the vegetation indices and the phosphorus and 

sodium concentrations  
 

The correlation coefficient (r) between the NDVI and SR datasets demonstrated high 

dissimilarity in the relationship between the vegetation indices and concentration levels of 

phosphorus and sodium. The r values ranged between (0.0) and (0.20) for the NDVI 

phosphorus; (0.0) and (0.20) SR phosphorus; (0.0) and (0.20) NDVI sodium and (0.0) and 

(0.20) SR sodium datasets respectively. For the NDVI phosphorus dataset, the indices 

calculated using the Red, Red–edge 1 and Red edge 2 range produced the strongest 

correlations (0.15) and (0.20)  (Fig 5 ) , SR phosphorus data set, the indices calculated using 

the Red, Red –edge 1 and Red edge 2 range produced the strongest correlations (0.13) and 

(0.2) for the sodium NDVI dataset , the indices calculated using the NIR, NIR narrow and 

SWIR2 range produced the strongest correlations (0.12) and (0.20) and in SR dataset indices 

calculated using the NIR, NIR narrow and SWIR2 also gave strong correlation values (0.11 

and 0.25). 

Biochemical  Minimum Median Mean Maximum Standard 

deviation 

Coefficient 

of 

variation 

Phosphorus  0.01 0.05 0.053 0.19 0.0276 51% 

Sodium  20.20 62.80 87.07 774.10 120.839 138% 
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Figure 4: Contour plots representing the correlation (r) relationship between 

phosphorus NDVI (a) and SR (b) as well as the relationship between sodium 

NDVI (c) and SR (d) obtained from all two possible band combinations 
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4.3.3 Selecting important predictor variable  

 

The RF model demonstrated the ability to measure and rank the importance of each top 20 

NDVIs and 25 SRs in estimating P and Na concentration. 

Fig 6 (a-b) shows the variable importance in estimating phosphorus and Fig (c-d) shows 

variable of importance measured based on the OOB error increase which demonstrates the 

weakness of prediction model when each variable is calculated. Less NDVI predictors 

contributed notably towards predicting phosphorus and sodium e.g. the red edge band 

combination  
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Figure 5: Measurement of variable of importance (a)-(b) NDVIs and SRs phosphorus (c)-(d) 
NDVIs and SRs sodium. Highest decrease accuracy represents the most important variables 

 

Few NDVI and SR contributed noticeably towards predicting phosphorus and sodium. Using 

NDVIs,  Red- edge 1&2; red edge 1&3,; Red -edge 2 &SWIR2 were the best predictors of 

phosphorus while using SRs the red &green ; Red- edge 2 & Red-edge 1; NIR narrow and  

Red -edge 2 were the best predictors for phosphorus.  19 important variables for  the 

prediction of sodium using NDVIs were calculated by the model, the best predictors were 

found in Red edge 2 & Blue; SWIR2 & Red- edge 3; NIR &Red –edge 1 ; SWIR2&NIR ; 

NIR narrow &Red-edge 2. The model calculated 17 important variables for the prediction of 

sodium using SRs were calculated in NIR&Red-edge 1; Red-edge 2 &Blue; NIR&Red –edge 

2 

(d) 
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(a) 

(d)

  

Figure 6: The number of variables selected for prediction using phosphorus (a)(b) 
NDVIs and SRs (4 and 6) and Sodium NDVIs and SRs (c)(d) (6 and 7) 

(a) 
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4.3.4 Spatial distribution of foliar P and Na  

 

RF model based on NDVIs and SR indices was selected as the best RF model as it produced 

the highest R2 values for phosphorus and as compared to the other models. This model was 

contained of (n=7) SR and (n=5) bands (6, 7, 8, 8A and 12) and all these variables were used 

to map foliar P and Na concentration across different grass communities at Telperion game 

reserve. The nitrogen mapping was done using EnMAP-Box software version 2.2.1 which is 

an IDL Virtual Machine Application and shows the spatial distribution of grass nitrogen 

content at Telperion Nature Reserve is depicted by (Fig 8). 

Figure 7: The actual and predicted phosphorus and sodium concentration showing one-
one relationship developed using NDVIs and SRs best bands for prediction 
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4.4 Discussion and conclusion  

4.4.1 Prediction of P and Na  

The research was done to determine the accuracy in prediction of foliar P and Na 

concentration when using Random Forest and to map foliar P and Na across the study area. 

The descriptive statistics of field data showed that the mean, min and max values of the grass 

phosphorus was 0.01, 0.05, 0.19 and sodium 87.07, 20.20 and 777 (Table 7). The coefficients 

of variance for phosphorus and sodium concentrations indicated that there is relatively high 

dispersion (50% and 137%) respectively as shown in Table 7. Mutanga and Kumar (2007) 

explained that variation in phosphorus and sodium can be caused by gradients of soil nutrient 

concentrations covering the rock formations. Different species yielded different foliar 

concentrations. Variations in sodium among different species can be due to differences in 

sodium root uptake and translocation to the shoots as well as soil sodium content (Mutanga et 

al. 2004). 

Mutanga (2004) found high sodium foliar concentration variations (0% and 0.78%) in sites 

having high nutrient materials as a result of erosion and weathering of underlying dolerite and 

basalt intrusions. In order to estimate foliar biochemical, the red edge bands have been 

broadly used since it is a strong relationship to chlorophyll (Cho et al. 2012). In this study, 

(a)                                                   (b) 
 

Figure 8 Spatial distribution maps of sodium (a) and phosphorus (b) Figure 9: Spatial distribution maps of sodium (a) and phosphorus (b) 



46 

the RF model produced R2 = 0.36 and RMSE = 0.017% for phosphorus using NDVI data set 

and R2 = 0.362, RMSE = 0.0174% using SR data set (Fig 8). The SR and NDVI yielded 

similar results for phosphorus. Similar R2 value (0.37) was achieved by Van Deventer et al. 

(2015) in their study to test the potential of models to predict foliar P between foliar P and 

leaf spectra within the red-edge region (680-760 nm). The achieved R2 values demonstrated 

that there is a connection between carotenoids, chlorophyll and P concentrations during peak 

productive season. Furthermore, predictive models for leaf P showed low accuracy as 

compared to leaf N.  

Cho et al (2012) investigated estimation of foliar P concentrations and significant sensitive 

bands were found to be located within the SWIR (Cho et al. 2012), a high grass P estimation 

accuracy R2 = 0.80 and RMSE = 0.03 compared to using remote sensing variables only. This 

was higher than the achieved R2 and RMSE values obtained in this study.  

In their study using imaging spectroscopy and neural networks to map phosphorus in grass 

savanna, Mutanga and Kumar (2007) found that the best predictor of phosphorus distribution 

had a R2 of 0.63 and a root mean square error (RMSE) of 0.07 ( 28%) of the mean observed 

phosphorus concentration based on the test data. 

Although, there are very few studies that have been done to estimate leaf P, the estimation of 

leaf nitrogen has been widely done. However, Ramoelo et al. (2013) found R2 =0.80 and 

RMSE of 0.03 for phosphorus in their study using hyperspectral data to estimate grass 

nitrogen and phosphorus using non–linear partial least squares regression. The higher 

prediction accuracy achieved by Ramoelo et al. (2013) using hyperspectral remote 

demonstrates the higher ability and performance of the many bands found in hyperspectral 

data in predicting foliar biochemical. 

The RF model produced R2 values = 0.23, RMSE = 16.74 mg/kg and R2 = 0.15 and RMSE = 

34.08 mg/kg for sodium using NDVI and SR data respectively. The model performed better 

using NDVI data as compared to SR data. 

Mutanga (2004) found that sodium was best absorbed at the 589 nm. However, there is a lack 

of studies done estimating sodium leaf concentration using remote sensing. The obtained 

results could not be compared to other studies to assess the accuracy of the models used in 

this study in predicting sodium. 
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The lower prediction accuracy produced by the RF model for both phosphorus and sodium 

could be attributed to the dryness of the grass. The country experienced severe drought in the 

year that this study was commissioned, as a result, during the time of sampling the grass 

species were already dry. Kolkaky and Clark (1999) reported that the biochemical nutrient 

content and vegetation structure changes during dry season and these lead to spectral changes 

in vegetation. Spectral reflectance changes that occur as vegetation dries up include: change 

of red edge as well as increased significance of SWIR features associated with lignin and 

cellulose (Knox et al. 2011). The low results obtained are due to vegetation dryness. Further 

similar study to predict and map foliar P and Na can be done across different seasons to 

compare the differences in estimates obtained. 

4.4.2 Relationship between vegetation indices (NDVIs & SRs) and 

prediction of P and Na concentrations  
 

In this study, the calculation of NDVIs and SRs as well as the correlation of the indices to (P 

and Na) was done to improve the knowledge on the linkages between electromagnetic 

spectrum and biochemical prediction of both P and Na at the 10 Sentinel 2 bands as well as 

provided an opportunity to investigate data within the multispectral data. RF models were 

developed to model grass quality information in the NDVI and SR. The r values (0.0 and 

0.20) demonstrate how different band combinations detect the grass variation in P and Na 

differently.  

Using NDVI data, the RF model the most important variables for phosphorus were found to 

be located in the following regions: Red-edge2 & Red-edge 1; SWIR2 & Red-edge 3; Red-

edge 3 & Red-edge 1; SWIR2 and Red-edge 2; Red-edge 2 & Blue and NIR narrow & Red 

edge 3. Using SR data, the most important variables for phosphorus were found to be located 

in the following regions: Red & Green; Red-edge 2 & Red-edge 1; NIR narrow & Red-edge 

2; Green & Blue; SWIR2 &Red edge 2 and SWIR2 & Green.  

In this study, using the NDVI data, the RF model the most important variables for sodium 

were found to be located in the following regions: Red-edge & Blue; SWIR2 & Red-edge 3; 

NIR & Red-edge 1; SWIR2 & NIR , NIR narrow &Red-edge 2; SWIR1 & Green; Red-edge 

3 & Red-edge 2; NIR narrow &Blue and NIR &Blue. Using the SR data, the most important 

variables for sodium were found to be located in the following regions: NIR & Red-edge1; 

Red-edge 2 &Blue; NIR & Red edge 2; SWIR2 &NIR; SWIR2 & Red-edge 1. Mutanga et al. 

(2004) reported that significant variations between sodium classes (low and high). 
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The red edge position spectral features are linked to the chlorophyll content (Fiella & 

Penuelas 1994). There is a relationship between chlorophyll content and foliar nutrients. 

Based on this, one can expect foliar biochemical detection at the red edge position (Ali 2014; 

Skidmore et al. 2010). 

Although, Sentinel-2 imagery, a new generation multispectral sensor, prediction of the foliar 

chemicals was low, the use of hyperspectral imagery can possibly give better estimates for 

grass P and Na due to the many narrow bands associated with hyperspectral. 

4.4.3 Mapping of P and Na  
 

The study showed a potential to estimate grass quality using new high spatial resolution 

remote sensing data (Sentinel-2) with red edge band. The spatial distribution maps of foliar P 

and Na demonstrated variation of both biochemicals across the grass communities within the 

study area as indicated in Fig (8). High concentrations of both P and Na is found to be along 

the drainage area and the wetland grass species may be linked with other environmental data 

such as soils and geology of the area which were not measured in this study. Ramoelo et al 

(2014). In their studies, Ramoelo et al (2013) reported that the underlying geology geological 

of an area contributes to the variations of grass nutrients. Drier grasses were reported to have 

lower photosynthetic activity as compare to fresh grasses due low water composition 

resulting in lower grass quality.  

An integrated modelling approach that combines environmental variables and vegetation 

indices could potentially enhance the prediction of the foliar biochemical in the grasslands. 

This was successfully demonstrated in a study by Ramoelo et al (2012) where space borne 

multispectral remote sensing image was used to regionally map foliar and canopy nitrogen at 

high grass productivity period. In future studies, different regression models such as Stepwise 

Multiple Linear regression and SVM can be used to predict the foliar P and Na across the 

nature reserve. The results can be compared with the results achieved in this study to fully 

assess the usefulness of Sentinel-2 data in mapping vegetation quality. 
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CHAPTER 5 

5 CONCLUSION 
 

The objectives of the study were successfully reached. The different grass communities 

occurring across the study area were successfully classified and mapped. The classification 

results showed species diversity within the game reserve and variation in distribution. 

This study showed the capability of Sentinel 2 in mapping leaf P and Na. Random Forest 

regression has demonstrated the effect of the red edge on predicting grass P and Na and 

mapping the variations of both biochemicals across the study area.  

The individual classification accuracy depicted in Table 4 are considerably higher. The ANN 

produced individual class accuracy ranging from 64% to 94%. Classification accuracy 

obtained in this study for each grass species may be influenced by various environmental 

factors that may be linked to the spectral reflectance (Omer et al. 2015).  

The RF regression model using NDVI and SR data for phosphorus prediction performed 

better compared to the sodium prediction. The regression algorithm identified the optimal 

number of vegetation indices which offered best predictive accuracy. However, the prediction 

for both P and Na were lower as compared to previous studies (Ramoelo et al. 2013; Mutanga 

& Skidmore 2004) . The lower predictions are because the study was done in the year 2016 

where in the country experience severe drought. During the period of sampling the grasses 

were already dried up and senescing. The biochemical/ nutrient content of vegetation changes 

during dry seasons and this result in spectral variations (Kokaly &Clark 1999). The spectral 

changes that occur as vegetation dries up include change of red edge shoulder and increase of 

short wave infrared (SWIR) features associated with the cellulose and lignin of vegetation 

(Knox et al. 2011). 

Future studies can explore the use of red edge bands in Sentinel-2 to predict grass phosphorus 

and sodium across all seasons. This can provide the assessment of the foliar biochemical as 

rangeland quality indicators  

The study demonstrated the potential of Sentinel-2 data in predicting grass P and Na using. 

Furthermore, RF algorithm allowed for the identification and understanding of the Sentinel 
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red edge bands that are most sensitive to P and Na estimation using both NDVI and SR data 

sets. The study further showed that RF algorithm can be used as a regression method for 

multispectral remote sensing applications such as prediction of grass macro nutrients. 
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