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We study the worldsheet S-matrix of a string attached to a D-brane in AdS5 × S5. The D-brane is either 
a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to 
the su(2|3) sector of the theory. Magnon excitations of open strings can exhibit both elastic (when 
magnons in the bulk of the string scatter) and inelastic (when magnons at the endpoint of an open string 
participate) scattering. Both of these S-matrices are determined (up to an overall phase) by the su(2|2)2

global symmetry of the theory. In this note we study the S-matrix for inelastic scattering. We show that 
it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is 
derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the 
appropriate limit. Finally, scattering in the su(2) sector is computed to two loops. This two loop result, 
which determines the overall phase to two loops, will be useful when a unique solution to the crossing 
equation is to be selected.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

’t Hoofts original proposal that the large N expansions of Yang–
Mills theories are equivalent to a string theory [1] is realized beau-
tifully in the AdS/CFT correspondence [2]. Many concrete details of 
the duality can be confirmed with precision checks, thanks to inte-
grability of planar N = 4 super Yang–Mills theory [3,4]: the planar 
diagrams give rise to a two dimensional effective theory which 
can be matched, in exquisite detail, to the worldsheet theory of 
a string. This detailed matching is possible because integrability 
allows the exact λ = g2

Y M N dependence of certain quantities to be 
computed.

There are many interesting string theory questions whose an-
swers require the study of certain large N but non-planar limits 
of Yang–Mills theory. One such example is the study of the open 
string excitations of giant graviton branes. The physics of this prob-
lem requires summing many non-planar diagrams in the Yang–
Mills theory, and so, corresponds to non-perturbative string effects 
[5]. Further, since the system is not in general integrable [6], a de-
tailed comparison akin to what was achieved in the planar limit 
seems impossible. However, if one restricts to the su(2|3) sector of 
the theory it turns out that the exact S matrix describing the scat-
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tering of worldsheet excitations can still be determined up to an 
overall phase, by making use of the global su(2|2)2 symmetry en-
joyed by this sector [7,8]. The scattering of magnon excitations of 
open strings is inelastic [6], which is a strong hint that the system 
is not integrable.

The fact that some quantities can be computed exactly, even 
without integrability, is extremely interesting and deserves to be 
explored in detail. The first goal of this study is to explore the 
structure of the S-matrix for inelastic magnon scattering and ver-
ify that it has the structure we expect. Specifically, the analyticity 
and unitarity of the S-matrix imply a correspondence between sin-
gularities of the S-matrix and on-shell intermediate states. This is 
the subject of section 2. We find a pole corresponding to binding 
a bulk and a boundary magnon. The structure of boundstates that 
we uncover smoothly interpolates between the bound state struc-
ture of bulk magnons [9,10] (for small giant gravitons when r ≈ 1) 
and the bound state structure obtained for maximal giants [11]
(when r ≈ 0). The boundstate is a BPS state in the double box rep-
resentation of su(2|2)2. The second goal of this work is to study 
the overall phase of the S-matrix. This phase is constrained by a 
crossing symmetry equation [12,13]. Using insights following from 
similar studies of the same question in the planar limit [8,11], we 
write down an equation obeyed by this phase, by considering the 
scattering of a magnon with a singlet state. Although we have not 
managed to solve this equation, we have checked that it reduces 
the crossing equation [11] obtained for maximal giant gravitons 
in an appropriate limit. Finally, we study scattering in the su(2)
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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sector, perturbatively to two loops, in the super Yang–Mills theory. 
These results can be used to single out a unique solution to the 
crossing equation.

2. Bound state spectrum

The scattering problem is most conveniently described using 
complex spectral parameters x± . In terms of these parameters, the 
charge, energy and momentum of a magnon can be written as fol-
lows [6]

n = g

i

(
x+ + 1

x+ − rx− − r

x−

)
(2.1)

E = g

i

(
x+ − 1

x+ − rx− + r

x−

)
eip = x+

x− (2.2)

where r = 1 for a bulk magnon, 0 ≤ r < 1 for a boundary magnon 
attached to a giant graviton and r > 1 for a boundary magnon at-
tached to a dual giant graviton. Using the above relations we can 
determine the energy of a magnon in terms of its charge and mo-
mentum as

E =
√

n2 + 4g2(1 + r2) − 8g2r cos(p) (2.3)

The condition that x+ − rx− and 1
x+ − r

x− are pure imaginary will 
ensure real charges, energies, and momenta. To look for bound-
states we will analytically continue the spectral parameters by 
relaxing this condition, allowing the energy and momenta to be 
complex. We will however maintain (2.1): this is the condition 
to have a short (atypical) representation of su(2|2)2. It is only 
for these representations that the tensor product of two repre-
sentations is irreducible and hence that the su(2|2)2 symmetry is 
sufficient to fix the S-matrix up to an overall phase. The inverse 
relation is

x± = ie±i p
2 (E + n)

2g(ei p
2 − re−i p

2 )
(2.4)

The scattering of a bulk and a boundary magnon is inelastic, as 
we now explain. We use a subscript 1 to denote the bulk magnon 
before scattering and a subscript 2 to denote a boundary magnon 
before scattering. We used primed subscripts for the magnons after 
scattering. The momenta, energies and charges after scattering are 
determined by solving

E1 + E2 = E ′
1 + E ′

2 p1 + p2 = p′
1 + p′

2 n1 + n2 = n′
1 + n′

2

(2.5)

These equations can be reduced to the solution of a cubic equation 
that has a single real root, but the details are not very illuminating. 
Close to r = 0 and r = 1 we can do better though: at r = 1 − ε we 
have

x′±
1 = x±

2 + δx′±
1 x′±

2 = x±
1 + δx′±

2 (2.6)

while at r = ε we have

x′±
1 = −x∓

1 + δx′±
1 x′+

2 = x+
2 + δx′+

2

x′−
2 =

(
x−

1

x+
1

)2

x−
2 + δx′−

2 (2.7)

Working to order ε we find a set of linear equations whose explicit 
solution shows that δx′±

1 ∼ O (ε), δx′±
2 ∼ O (ε) for both cases. The 

linear equations we use arise by assuming we scatter elementary 
magnons (so that n1 = n2 = n′ = n′ = 1), as well as energy and 
1 2
momentum conservation. The fact that δx′±
1 , δx′±

2 are non-zero is a 
clear indication that the scattering is not elastic.

We now focus attention on the scattering of magnons that be-
long to the su(2) sector of the theory. This is still perfectly general 
since the global symmetry of the theory then determines scatter-
ing in any other sector [7]. In this case, up to an undetermined 
overall phase, the S-matrix is given by1

R|φ1
1φ1

2〉 = AR
12|φ1

1′φ1
2′ 〉 (2.8)

where

AR
12 = R0

12

[
η1η2x′+

1 x+
1 (x−

1 − x+
2 )

(
(x+

2 − rx−
2 )(rx′+

2 − x′−
2 )x+

2

+ (x−
2 − rx+

2 )(x′+
2 − rx′−

2 )x′+
2

)] [
η′

1η
′
2x′+

2 x+
2 (x−

1 − x+
1 )

× (x+
1 − x′+

1 )(x+
1 (rx+

2 − x−
2 ) + x−

2 (rx−
2 − x+

2 ))
]−1

(2.9)

This reduces to the correct bulk [7] and reflection [11] matrices 
when we set r = 1 and r = 0 respectively.2 The statement that the 
S-matrix is unitary is the statement

AR
12 AR

1′2′ = 1 (2.10)

which we have verified holds for any r, as it should.
We will now look for singularities in the S-matrix. The pres-

ence of simple poles indicates on shell intermediate states. Investi-
gation of the singularities of the elastic magnon S-matrix has un-
covered a wealth of BPS boundstates [9,10,15]. We will argue be-
low that we find an equally rich spectrum of BPS boundstates that 
naturally interpolates between the boundstates of bulk magnons 
[9] and the boundstates of a bulk magnon and a boundary magnon 
associated to a maximal giant graviton [11]. Inspection of (2.9)
suggests possible poles when x′+

2 = 0 or when x+
2 = 0. Since 

the charges nk are positive integers and since we want to keep 
Re(Ek) > 0, its clear from (2.4) that these poles can’t be realized. 
The factor in the denominator (x−

1 − x+
1 )(x+

1 − x′+
1 ) can also give 

rise to a pole. Analyzing this factor near r = 1 we find a pole at

x+
1 = x+

2 + 2(1 − r)x+
2

x+
2 x−

2 − 1

(x+
2 − 1

x+
2
)(x+

2 − x−
2 )

+ O
(
(1 − r)2

)

(2.11)

This is precisely canceled, by a zero coming from the factor 
(x+

2 − rx−
2 )(rx′+

2 − x′−
2 )x+

2 + (x−
2 − rx+

2 )(x′+
2 − rx′−

2 )x′+
2 in the numer-

ator. Near r = 0 the factor (x−
1 − x+

1 )(x+
1 − x′+

1 ) in the denominator 
leads to a pole at

x−
1 = −x+

1 + r
x+

1

x−
2

(x+
1 − 1

x+
1
)(x−

2 − x+
2 )(x−

2 + x+
2 )

x−
2 (x+

2 − 1
x+

2
)

+ O
(

r2
)

(2.12)

This is again canceled, by a zero coming from the factor (x+
2 −

rx−
2 )(rx′+

2 − x′−
2 )x+

2 + (x−
2 − rx+

2 )(x′+
2 − rx′−

2 )x′+
2 in the numera-

tor. Thus, in the end we find that a single pole arises when 
x+

1 (rx+
2 − x−

2 ) + x−
2 (rx−

2 − x+
2 ) = 0, which implies that

x+
1 = x−

2

x+
2 − rx−

2

rx+
2 − x−

2

(2.13)

To interpret this pole recall that singularities of the S-matrix corre-
spond to spacetime diagrams where each particle is on-shell [16]. 

1 Here, following [6], we use the notation R to denote the S-matrix for the scat-
tering of a bulk and a boundary magnon. We reserve S for the S-matrix of bulk 
magnon scattering, which is an elastic process.

2 To make this comparison we found [14] very useful.
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Particle worldlines meet at vertices which conserve charge, energy 
and momentum. We want to consider a cubic vertex correspond-
ing to the creation of a boundstate from a boundary and a bulk 
magnon. Using b′ to denote the boundstate of a boundary and a 
bulk magnon, the conservation of charge, energy and momentum 
implies that

E(x±
1 ) + E(x±

2 ) = E(x±
b′)

p(x±
1 ) + p(x±

2 ) = p(x±
b′)

n(x±
1 ) + n(x±

2 ) = n(x±
b′) (2.14)

Since this is three equations we can completely determine the 
spectral parameters of the boundstate using two of the above 
equations. The third equation then implies a relation between the 
magnon and boundary magnon spectral relations that is obeyed by 
(2.13). It is straightforward to apply the rules described in [15] and 
verify that this pole signals are a normalizable wave function, for a 
boundstate with charge n = 2 and energy given by (2.3) evaluated 
at this n. Further, when r = 1 (2.13) is the pole identified in [9] as 
a signal of a bound state of bulk magnons and when r = 0 (2.13) is 
the pole identified in [11] as the signal of a bound state of a bulk 
and a boundary magnon, for the case of open string attached to a 
maximal giant graviton.

We can now continue and consider the scattering of a bulk 
magnon with this boundate, producing a new boundstate with 
charge n = 3. Indeed, following the rules of [15], we find a fam-
ily of boundstate with one boundary magnon bound to n − 1 bulk 
magnons. This boundstate has a charge of n and energy given by 
(2.3). By varying r smoothly from r = 0 to r = 1, this structure 
of boundstates nicely interpolates from the known structure of 
boundstates when bulk magnons bind to the boundary magnon 
of a maximal giant graviton [11] and the known structure for bulk 
magnons boundstates [9].

3. Crossing equation

To derive the crossing equation, we will follow the derivation 
given in [8]. The same method has been applied to determine the 
crossing equation for maximal giant gravitons in [11]. The idea is 
to consider the scattering from the singlet state

|I p̄,p〉 = f p

(
|φ1

p̄φ2
p〉 − |φ2

p̄φ1
p〉

)
+ |ψ1

p̄ψ2
p〉 − |ψ2

p̄ψ1
p〉 (3.1)

The phase factor f p is determined by requiring that the singlet 
state is annihilated by all of the su(2|2) elements, as explained 
in [8]. To obtain the crossing equation, we consider the scattering 
of this impurity from the right boundary magnon. The only differ-
ence we find as compared to [11], is that the scattering is inelastic. 
Since the scattering is inelastic, we find

R(p̄,q′)S(p̄, p′)R(p,q)|I p̄,p,q〉 = φr |I p′,p̄′ ,q〉 (3.2)

where r is a phase. If we now scatter the singlet from the left 
boundary magnon, explicit computations show that we pick up the 
same phase, so that we return to the original state apart from the 
phase φ2

r . The crossing equation is now obtained by requiring that 
φ2

r is one, i.e. that φr = ±1. To choose the correct sign, we compare 
to the r = 0 limit (studied in [11]) and conclude that we should 
impose φr = 1. Since this crossing equation involves both the scat-
tering of bulk with bulk magnons and the scattering of boundary 
with bulk magnons, it relates the overall phase factor of S (which 
has been determined) to the overall phase factor of R (what we 
want to determine). After a tedious computation we find the fol-
lowing result
[(
f pC R(p,q)G S(p̄, p′)−2LR(p,q)K S(p̄, p′)

)(
H R(p̄,q′)K R(p̄,q′)

− G R(p,q′)LR(p̄,q′)
)][

2LR(p̄,q′)
]−1 = 1 (3.3)

where the matrix elements of R (denoted with superscript R) are 
derived in [6] and the matrix elements of S (denoted with su-
perscript S) are derived in [8]. We will refer to the function on 
the LHS of (3.3) as the crossing function. Scattering with different 
boundary magnon states determines crossing functions that have a 
different expression in terms of the matrix elements of R and S , 
but lead to the same crossing equation. We have not written this 
crossing equation in terms of the spectral parameters of the initial 
and final magnons as these expressions are rather long. The phase 
we have discussed above arises from an su(2|2) factor. The theory 
actually enjoys su(2|2)2 symmetry, so the full reflection factor is 
the square of the phase factor we discussed above.

As a first check of these results, we note that when r = 0 they 
reproduce the crossing equation quoted in equation (41) of [17]. 
In addition to this, a numerical study of the crossing equation 
reveals an appealing symmetry. Recall that we denote the bound-
ary magnon momentum by q and the bulk magnon momentum 
by p. The crossing equation obtained from scattering off the right 
boundary with momenta p + q → p′ + q′ is identical to cross-
ing equation obtained the left scattering with the same momenta 
q + p → q′ + p′ . If one considers right scattering with momenta 
p′ +q′ → p +q or left scattering with momenta q′ + p′ → q + p the 
crossing equations are again identical: for all four situations we ob-
tain the same crossing equation. The appearance of this symmetry 
is important for the consistency of our derivation of the cross-
ing equation since it ensures that scattering the singlet from both 
boundaries as described above, does indeed return us to our initial 
state. It is satisfying that this derivation of the crossing equation 
works even though we have inelastic scattering.

4. su(2) scattering to two loops

We will now consider the scattering of a bulk and a boundary 
magnon, at two loops, in the super Yang–Mills theory. This will al-
low us to determine the overall phase of R to two loops, which 
will be useful data when a unique solution to the crossing equa-
tion is to be singled out. The operators in the Yang–Mills theory 
dual to giant gravitons are given by Schur polynomials [18–20]. 
Giant gravitons with open string excitations are dual to the re-
stricted Schur polynomials, constructed in [21,22]. The action of 
the dilatation operator on the restricted Schur polynomials has 
been constructed in [23,24,6]. In what follows below we use this 
action at two loops to define the Hamiltonian for a Schrödinger 
equation based description of the magnon scattering. The Bethe 
ansatz for the wave function is given by [25]

ψ(l1, l2) = eip1l1+ip2l2 + Aeip′
1l1+ip′

2l2 + g2φ(l1)δ|l1−l2|,1 (4.1)

where if |l1 − l2| > 2 the wave function must obey the Schrödinger 
equation

E�(l1, l2)

= g2(3 + r2)�(l1, l2) − g2r (�(l1 − 1, l2) + �(l1 + 1, l2))

− g2 (�(l1, l2 − 1) + �(l1, l2 + 1))

− g4
((

1 + r2
)2 + 4

)
�(l1, l2)

+ 2g4
(

1 + r2
)

r (�(l1 − 1, l2) + �(l1 + 1, l2))

+ 4g4 (�(l1, l2 − 1) + �(l1, l2 + 1))
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− g4r2 (�(l1 − 2, l2) + 2�(l1, l2) + �(l1 + 2, l2))

− g4 (�(l1, l2 − 2) + 2�(l1, l2) + �(l1, l2 + 2)) , (4.2)

l1 is the position of the boundary magnon, with momentum p1. 
l2 is the position of the bulk magnon, with momentum p2. If l2 =
l1 + 2, the Schrödinger equation becomes

E�(l1, l1 + 2)

= g2(3 + r2)�(l1, l1 + 2) − g2r (�(l1 − 1, l1 + 2)

+ �(l1 + 1, l1 + 2)) − g2 (�(l1, l1 + 1) + �(l1, l1 + 3))

− g4
((

1 + r2
)2 + 4

)
�(l1, l1 + 2)

+ 2g4
(

1 + r2
)

r (�(l1 − 1, l1 + 2) + �(l1 + 1, l1 + 2))

+ 4g4 (�(l1, l1 + 1) + �(l1, l1 + 3))

− g4 (4�(l1, l1 + 2) + �(l1, l1 + 4))

− g4r2 (�(l1 − 2, l1 + 2) + 2�(l1, l1 + 2)) , (4.3)

and if l2 = l1 + 1, the Schrödinger equation becomes

E�(l1, l1 + 1)

= g2(1 + r2)�(l1, l1 + 1) − g2r�(l1 − 1, l1 + 1)

− g2�(l1, l1 + 2) − g4
(

r4 + 1
)

�(l1, l1 + 1)

+ 2g4
(

1 + r2
)

r�(l1 − 1, l1 + 1) + 4g4�(l1, l1 + 2)

− g4r2 (�(l1 − 2, l1 + 1) + �(l1, l1 + 1))

− g4 (�(l1, l1 + 1) + �(l1, l1 + 3))

− g4r (�(l1 − 1, l1) + �(l1 + 1, l1 + 2)) , (4.4)

From (4.2) we learn that

E = g2(3 + r2) − g2r(e−ip1 + eip1) − g2(e−ip2 + eip2)

− g4(1 + r2)2 − 4g4 + 2g4(1 + r2)r(e−ip1 + eip1)

+ 4g4(e−ip2 + eip2) − g4(e−2ip2 + 2 + e2ip2)

− g4r2(e−2ip1 + 2 + e2ip1) (4.5)

From (4.3) we find

rφ(l1 + 1) + φ(l1) = r2ψ(l1 + 2, l1 + 2) + ψ(l1, l1)

− 2ψ(l1, l1 + 2) (4.6)

Finally, from (4.4) we find

g4(2 − r(e−ip1 + eip1) − eip2 − e−ip2)φ(l1)

= −g2(g2rψ(l1 − 1, l1) − g2ψ(l1, l1 − 1) − ψ(l1, l1)

+ 4g2ψ(l1, l1) + 2ψ(l1, l1 + 1) − 5g2ψ(l1, l1 + 1)

− 3g2r2ψ(l1, l1 + 1) − rψ(l1 + 1, l1 + 1)

+ 2g2rψ(l1 + 1, l1 + 1) + 2g2r3ψ(l1 + 1, l1 + 1)

+ g2rψ(l1 + 1, l1 + 2) − g2r2ψ(l1 + 2, l1 + 1)) (4.7)

Starting from (4.7) we are able to solve for φ(l1). We find that 
φ(l1) is independent of l1 which is intuitively appealing. Inserting 
the solution for φ(l1) into (4.6), we are able to solve for A. The 
result is
A = −1 − 2eip2 + ei(p1+p2)r

1 − 2eip′
2 + ei(p′

1+p′
2)r

− g2(eip1 − eip′
1)

(1 + rei(p1+p2))(1 − 2eip′
2 + rei(p′

1+p′
2))2

×
[

2
(

rei(p1+p2) − 2eip2 + 1
)

×
(

rei(2p1+p2) − 2ei(p1+p2) + ei(p1+2p2) + eip1 + eip2 r
)

× ei
(−p′

1−p1+p′
2

)
+ ei

(−p′
1−p1

) (
−eip2

(
eip1

(
r2 − 9

)
+ 4e2ip1 r + 2r

)
− e2ip2

(
4e3ip1 r2 + e2ip1

(
r2 − 7

)
r + 6eip1 − 2r

)
+ ei(p1+3p2)

(
2 + r

(
−4e3ip1 r2 + e2ip1

(
r2 + 7

)
r

− 2eip1
(

r2 + 2
)

+ 2r
))

+ re2i(p1+2p2)
(

2 + eip1 r
(
−2 + eip1 r

))
− 4eip1 + r

)
+

(
1 + rei(p1+p2)

)(
rei(p1+p2) − 2eip2 + 1

)
×

(
r2ei(p1+p2) + ei(−p1−p2)

)]
(4.8)

Recall that total R-matrix has a contribution from each of the 
su(2|2) factors, so that

RR(x1, x2, x′
1, x′

2) = Rsu(2|2)(x1, x2, x′
1, x′

2)⊗ Rsu(2|2)(x1, x2, x′
1, x′

2)

(4.9)

Consequently, setting A in (4.8) to be equal to (AR
12)

2 with AR
12

given in (2.9), we determine the overall phase to two loops.
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