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Abstract

In this thesis, various partition functions with respect to `-regular overpartitions, a

special partition inequality and partition configurations are studied.

We explore new combinatorial properties of overpartitions which are natural gen-

eralizations of integer partitions. Building on recent work, we state general combi-

natorial identities between standard partition, overpartition and `-regular partition

functions. We provide both generating function and bijective proofs.

We then establish an infinite set of Ramanujan-type congruences for the `-regular

overpartitions. This significantly extends the recent work of Shen which focused

solely on 3–regular overpartitions and 4–regular overpartitions. We also prove some

of the congruences for `-regular overpartition functions combinatorially.

We then provide a combinatorial proof of the inequality p(a)p(b) > p(a+b), where

p(n) is the partition function and a, b are positive integers satisfying a+b > 9, a > 1

and b > 1. This problem was posed by Bessenrodt and Ono who used the inequality

to study a maximal multiplicative property of an extended partition function.

Finally, we consider partition configurations introduced recently by Andrews and

Deutsch in connection with the Stanley-Elder theorems. Using a variation of Stan-

ley’s original technique, we give a combinatorial proof of the equality of the number

of times an integer k appears in all partitions and the number of partition con-

figurations of length k. Then we establish new generalizations of the Elder and

configuration theorems. We also consider a related result asserting the equality

of the number of 2k’s in partitions and the number of unrepeated multiples of k,

providing a new proof and a generalization.
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Chapter 1

Introduction

A partition of a positive integer n is a representation of n as a sum of positive

integers. A reordering of summands is not counted as a new partition; thus 2 +

1 + 1, 1 + 2 + 1, and 1 + 1 + 2 are considered the same partition of 4. The positive

integers in the partition are called parts. The number of partitions of n is denoted

by p(n). For example, p(5) = 7 since the partitions of 5 are: 5, 4+1, 3+2, 3+1+1,

2 + 2 + 1, 2 + 1 + 1 + 1 and 1 + 1 + 1 + 1 + 1. Conventionally, we set p(0) = 1 and

p(n) = 0 for all negative integers n.

One of the most difficult challenges was to determine an explicit formula for

p(n). Hardy, Ramanujan and Rademacher answered this question quite completely

[6]. Leonard Euler studied partitions intensively. He noted that the coefficient of

qnzm in the expression (1+qz)(1+q2z)(1+q3z) · · · represented the number of ways n

can be written as a sum of m distinct parts. Euler proved one of the most important

identities in the theory of integer partitions, which is: For any positive integer n,

the number of partitions of n using only odd parts equals the number of partitions

of n into distinct parts. This is called Euler’s identity. For instance, the partitions

of 5 into odd parts are: 5, 3 + 1 + 1 and 1 + 1 + 1 + 1 + 1 whereas, the partitions

of 5 into distinct parts are: 5, 4 + 1 and 3 + 2. Euler’s identity was generalized by

Glaisher (as per [9]). Glaisher proved that: The number of partitions of an integer

n into parts not divisible by d + 1 equals the number of partitions of an integer n

such that each part appears not more than d times. In the special case, when d = 1,

we obtain Euler’s identity.

Generating functions were introduced in the theory of partitions by Euler in
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1784 [6]. He used generating functions as a tool to discover a number of interesting

properties about partitions. He was the first to state that the generating function

for p(n) is:

∞∑
n=0

p(n)qn = (1 + q + q2 + · · · )(1 + q2 + q4 + · · · )(1 + q3 + q6 + · · · ) . . .(1.1)

=

(
1

1− q

)(
1

1− q2

)(
1

1− q3

)
· · · =

∞∏
n=1

1

1− qn
.

To explain how it works, we rewrite (1.1) as:

(1 + q1 + q1·2 + q1·3 + q1·4 + · · · ) (1.2)

(1 + q2 + q2·2 + q2·3 + q2·4 + · · · )
(1 + q3 + q3·2 + q3·3 + q3·4 + · · · )
(1 + q4 + q4·2 + q4·3 + q4·4 + · · · ) · · · .

If we multiply this out and choose one appropriate term from each bracket, we find

that the term q3 is obtained from the following:

1 · 1 · q3 · 1 · · · , q2+1 · 1 · 1 · · · , (1.3)

q1·3 · 1 · 1 · 1 · · · .

Each of the exponents in (1.3) corresponds to a partition of 3. Consequently, the

coefficient of qn in (1.2) is p(n). Generating functions of restricted partition functions

may be derived from (1.2). Let p(n|condition) be the number of partitions of n whose

parts satisfy the stated condition. For example:

∞∑
n=0

p(n | distinct parts)qn =
∞∏
n=1

(1 + qn) (1.4)

=
∞∑
n=0

p(n | odd parts)qn =
∞∏
n=1

1

1− q2n+1
,

∞∑
n=0

p(n | parts not exceeding m)qn =
m∏
n=1

1

1− qn
.

Ramanujan studied a table of p(n) for 1 ≤ n ≤ 200 which was computed by P.

A. MacMahon [9] and observed that

p(5n+ 4) ≡ 0 (mod 5). (1.5)
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He then conjectured the following:

p(7n+ 5) ≡ 0 (mod 7) (1.6)

and

p(11n+ 6) ≡ 0 (mod 11) for all n ≥ 1. (1.7)

Ramanujan also proved the congruences (1.5), (1.6) and (1.7), see [34] and [35].

Generally, he made comparable conjectures for any modulus of the form 5a 7b 11c

for all a, b, c > 0. Subsequently, many mathematicians worked on this conjecture

before G. N. Watson [39] and A. O. L. Atkin [10] settled the problem. In particular,

Ahlgren and Boylan proved that the congruences (1.5), (1.6) and (1.7) are the only

ones of the form

p(ρn+ β) ≡ 0 (mod ρ) (1.8)

for all n ∈ Z, ρ prime, and some fixed β ∈ Z (see [1]).

We now define the types of restricted partitions which are the most relevant for

this project. Let ` be a positive integer. A partition is called `-regular if no part is

divisible by `. Hence, Glaisher’s generalization of Euler’s identity may be rephrased

as: the number of `-regular partitions of n equals the number of partitions of n such

that each part appears not more than `− 1 times.

An overpartition of a positive integer n is a partition of n, where the first oc-

currence of each part-size may be overlined. Overpartitions generalize ordinary

partitions. We denote the number of overpartitions of n by p(n), with p(0) = 1. For

example, p(3) = 8 enumerates the following overpartitions:

(3), (3), (2, 1), (2, 1), (2, 1), (2, 1), (1, 1, 1), (1, 1, 1).

The three overpartitions with no overlined parts are the ordinary partitions of 3.

The standard generating function for overpartitions is:

∞∑
n=0

p(n) =
∏
n≥1

1 + qn

1− qn
.

Corteel and Lovejoy [16] introduced overpartitions as a way to understand and

interpret various q-series identities. In addition, overpartitions have been used as a

tool in bijective proofs of Ramanujan’s 1ψ1 summation and the q-Gauss summation

in [17] and [15]. The overpartition function has also been studied by several other

mathematicians, see [16], [22] , [24], [31] and [32].
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In a recent paper [13] Bessenrodt and Ono defined a multiplicative function θ(λ)

on p[n] as the product of the parts of λ, where p[n] is the set of all partitions of n.

Then they proved that the maximal value of this function is both unique and attain-

able at a unique partition of n. Their proofs rely on an “inequality for the partition

function which seems not to have been noticed before”. Later, Beckwith-Bessenrodt

[11] proved a similar inequality dealing with `-regular partitions for certain values

of `.

The last concept with which we will be concerned is the partition analogue of

classical permutation patterns which were introduced by Andrews-Deutsch [8]. A

partition λ is said to contain a partition configuration A = (a1, . . . , ak) if there is

a distinct subsequence of parts of λ of the form a1 + j, a2 + j, . . . , ak + j for some

integer j > 0. For example, the partition (1 + 2 + 2 + 4 + 4 + 5 + 8 + 9 + 9) contains

an instance of A = (0, 3, 6, 7) because the parts 2, 5, 8, 9 exceed by 2 the successive

entries of A.

In 1972, Stanley [38] proved the following identity:

Stanley’s Theorem. The number of occurrences of 1’s among all partitions of n

equals the number of different parts in all partitions of n.

This was generalized later as:

Elder’s Theorem. The number of occurrence of k’s among all partitions of n

equals the number of different parts repeated k or more times in all partitions of n.

This generalization is attributed to Paul Elder as was reported by Honsberger

[26]. He named the theorem after Stanley for the case k = 1 and called the general

case Elder’s theorem.

The three major themes of this thesis are overpartitions, partition inequalities

and partition configurations.

In Chapter Two, we provide a review of all the background results and tools that

will be required in subsequent chapters.

In Chapter Three, we prove a general theorem which connects a restricted overpar-

tition function with five other restricted ordinary partition functions. We also give

an identity for colored partitions which extends the results of the main theorem.

In Chapter Four, our primary goal is to prove families of congruences satisfied by the

functions defined in chapter three. The proof techniques used are classical, involving

elementary generating function manipulation techniques as well as Ramanujan’s
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theta functions. Then we give new combinatorial proofs of some of the congruence

properties.

In Chapter Five, we give a combinatorial proof of the Bessenrodt-Ono [13] inequality.

Then we indicate how to tackle the `-regular partition version of the theorem which

was formulated by Beckwith and Bessenrodt [11].

In Chapter Six, we give combinatorial proofs of the known major results related

to partition configurations and establish new generalizations. The bijective proofs

rely mostly on variations of Stanley’s proof of Elder’s theorem [38]. An extension of

one of the results is proved using generating functions. Then we derive additional

properties of the function which enumerates the parts appearing in all partitions of

n.

In Chapter Seven, we will highlight the major results and state some open problems

for further study related to our work.
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Chapter 2

Preliminaries

In this chapter, we provide some background required to understand the concepts

of generating function manipulation in proving partition identities. In addition, the

concept of a bijective proof of partition identities will be introduced. We give a

brief idea of proving partition congruences by using elementary generating function

manipulation. Lastly, we describe a combinatorial proof of Stanley’s theorem.

2.1 Generating function

Recall the generating function for the number of integer partitions

∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
.

The number of `-regular partitions of n is denoted by R`(n). To derive the

generating function we will use a similar technique to Euler’s.

∞∑
n=0

R`(n)qn =
(1 + q + q2 + · · · )(1 + q2 + q4 + · · · ) . . .

(1 + q` + q2` + · · · )(1 + q2` + q4` + · · · ) . . .

=

(
1− q`

1− q

)(
1− q2`

1− q2

)
· · · =

∞∏
n=1

1− q`n

1− qn
. (2.1)

Now we derive the generating function for partitions into distinct parts:

∞∑
n=0

p(n | distinct parts)qn = (1 + q)(1 + q2)(1 + q3) · · · =
∞∏
n=1

(1 + qn).

Recall Euler’s identity:
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Theorem 2.1. For any positive integer n, the number of partitions of n using only

odd parts equals the number of partitions of n into distinct parts.

Proof. Since partitions into odd parts are the same as 2-regular partitions we have

∞∑
n=0

R2(n)qn =
∞∏
n=1

1− q2n

1− qn

=
∞∏
n=1

(1 + qn)(1− qn)

1− qn
=
∞∏
n=1

(1 + qn)

=
∞∑
n=0

p(n | distinct parts)qn.

The proof of Glaisher’s generalization of Euler’s identity is similar.

From the definition of an overpartition we see that it is a combination of an

ordinary partition and a partition into distinct parts (as the overlined parts are

distinct). Hence the generating function for the number of overpartitions is

∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
×
∞∏
n=1

(1 + qn) =
∞∏
n=1

1 + qn

1− qn
. (2.2)

The number of `-regular overpartitions of n is denoted by R`(n). The generating

function for R`(n) is

∞∑
n=0

R`(n)qn =
∞∏
n=1

(1 + qn)(1− q`n)

(1 + q`n)(1− qn)
. (2.3)

2.2 Bijections for partition identities

Recall Euler’s identity

p(n | distinct parts) = p(n | odd parts).

To prove this identity combinatorially, we need to find a bijection

p[n | distinct parts] 7→ p[n | odd parts].
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In this thesis square brackets are used to indicate corresponding enumerated sets,

and exponents indicate multiplicities of the parts.

We will start with partitions into odd parts. We merge every two parts with the

same size. We repeat this procedure until all parts are distinct. For example

7 + 7 + 3 + 3 + 1 + 1 + 1 + 1 7→ (7 + 7) + (3 + 3) + (1 + 1) + (1 + 1)

7→ 14 + 6 + (2 + 2)

7→ 14 + 6 + 4.

To invert the map, we start with partitions into distinct parts. We split every

even part into two equal parts. This procedure shall be repeated until all parts are

odd. For example

14 + 6 + 4 7→ 7 + 7 + 3 + 3 + 2 + 2

7→ 7 + 7 + 3 + 3 + 2 + 2

7→ 7 + 7 + 3 + 3 + 1 + 1 + 1 + 1.

It is noticeable that the above combinatorial proof of this identity is generic. As

we mentioned in Chapter 1 Euler proved this identity analytically. The underlying

combinatorial proofs in general are often not difficult, however finding such proofs

may require a great deal of ingenuity.

We conclude this section with an insightful bijection which was found by Stanley.

Recall Elder’s identity: the total number of k’s appearing in all partitions of n equals

the number of different parts repeated k or more times in all partitions of n.

For each partition λ of n and each part j of λ occurring at least k times, we will

map

j, . . . , j︸ ︷︷ ︸
k copies

7−→ k, . . . , k︸ ︷︷ ︸
j copies

.

Hence, the number of times a given µ occurs (as an image of the map) is equal to

the multiplicity (number of occurrence) of k in µ. See the example in Table 2.1
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λ parts repeated 3 times µ

(1,1,1,1,1,1,1,1) (1,1,1) (3,1,1,1,1,1)

(2,1,1,1,1,1,1) (1,1,1) (3,2,1,1,1)

(2,2,1,1,1,1) (1,1,1) (3,2,2,1)

(2,2,2,1,1) (2,2,2) (3,3,1,1)

(2,2,2,2) (2,2,2) (3,3,2)

(3,1,1,1,1,1) (1,1,1) (3,3,1,1)

(3,2,1,1,1) (1,1,1) (3,3,2)

(4,1,1,1,1) (1,1,1) (4,3,1)

(5,1,1,1) (1,1,1) (5,3)

Table 2.1: The bijection λ→ µ for k = 3, n = 8.

Conversely, consider each partition µ of n and each part k of µ occurring r times.

Then for each i ∈ {1, 2, . . . , r}

k, . . . , k︸ ︷︷ ︸
i copies

7−→ i, . . . , i︸ ︷︷ ︸
k copies

.

This bijection was found by Richard Stanley [38]. Stanley Submitted this bi-

jection to the Problems and Solutions section of American Mathematical Monthly.

However, it was rejected for being “a bit on the easy side, and using only a standard

argument” [38].

2.3 Ramanujan theta-functions

Ramanujan’s general theta function, is denoted by f(a, b) and defined by

f(a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1. (2.4)

The three most important special cases of (2.4) are given by

ϕ(q) := f(q, q) =
∞∑

n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞, (2.5)

ψ(q) := f(q, q3) =
∞∑

n=−∞

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

, (2.6)
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f(q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞, (2.7)

where

(a; q)∞ :=
∞∏
k=0

(1− aqk).

The three product representations in (2.5)-(2.7) are special cases of the Jacobi

triple product identity

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

The Jacobi triple product identity is said to be the most useful and celebrated

theorem in the theory of theta-functions, which was first studied by Gauss (see [12]).

The identity obtained for f(−q) is called Euler’s pentagonal number theorem.

The theory of Ramanujan theta-functions plays an important role in proving con-

gruence properties of partition functions. We conclude this section by introducing

the following lemma which is derived from the binomial theorem.

Lemma 2.1. For any prime p,

(q; q)p∞ ≡ (qp; qp)∞ (mod p). (2.8)

Proof. From the binomial theorem,

(1− qn)p =

p∑
j=0

(
p

j

)
(−qn)j

=

(
p

0

)
−
(
p

1

)
qn +

(
p

2

)
q2n −

(
p

3

)
q3n + · · ·+ (−1)p

(
p

p

)
qpn

≡ 1 + qpn ≡ 1− qpn (mod p).

Hence,

(q; q)p∞ ≡ (qp; qp)∞ (mod p).

From this lemma, we may prove the the following corollary:

Corollary 2.1. The number of overpartitions of n > 0 is always even.

13



Proof.

∞∑
n=0

p(n)qn =
(−q; q)∞
(q; q)∞

(2.9)

=
(−q; q)∞(q; q)∞
(q; q)∞(q; q)∞

=
(q2; q2)∞
(q; q)2∞

≡ (q; q)2∞
(q; q)2∞

≡ 1 (mod 2).
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Chapter 3

Combinatorial identities for

`-regular overpartitions

3.1 Introduction

In 2004 Cortell and Lovejoy [16] studied overpartitions and found an identity be-

tween R`(n) and a class of overpartitions. George Andrews [7] considered the enu-

meration of singular overpartitions which correspond to `-regular overpartitions in

which the parts satisfy prescribed congruences. Subsequently, Chen, Hirschhorn

and Sellers [14] developed the arithmetic properties of these singular overpartition

functions.

In a recent work Munagi and Sellers [33] proved new identities between sets of

restricted partitions and certain overpartitions in which the overlined parts belong

to specified residue classes.

In section 3.2, we prove a general theorem (Main Theorem) which connects R`(n)

with five other restricted partition functions. In section 3.3, we give an identity for

colored partitions which extends the results of the main theorem.

The content of this chapter is largely taken from Alanazi-Munagi article [2]. I

am appreciative to Prof. Munagi for his permission to include our joint work in this

thesis.
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3.2 A general partition theorem

This section is devoted to the statement and proof of a sequence of related parti-

tion identities connecting R`(n) with different classes of restricted partitions and

overpartitions.

We first establish a simple identity between overpartitions and ordinary parti-

tions.

Proposition 3.1. The number of overpartitions of n equals the number of partitions

of 2n in which odd parts occur with even multiplicity.

Proof. For a generating function proof let E(n) denote the number of partitions of

n in which odd parts occur with even multiplicity. Then

∞∑
n=0

E(2n)q2n =
∞∏
n=1

(1 + q2n + q4n + · · · )(1 + q2(2n−1) + q4(2n−1) + · · · )

=
∞∏
n=1

1

(1− q2n)(1− q2(2n−1))
.

On replacing q2 by q the equation becomes

∞∏
n=1

1

(1− qn)(1− q2n−1)
=
∞∏
n=1

(1 + qn)

(1− qn)
=
∞∑
n=0

p(n)qn.

The bijective proof is more insightful.

Let λ = (cu11 , c
u2
2 , . . . ) ∈ E[2n], c1 > c2 > · · · , uj ≥ 1∀ j, and define the map

f : E[2n]→ p[n] by λ 7→ f(λ) = ∪c∈λfc(ck) (multiset union), where

fc : ck 7→


c

k
2 if k ≡ 0 (mod 4),

c
2
, c

k−1
2 if k ≡ 1 (mod 4),

c, c
k−2
2 if k ≡ 2 (mod 4)

such that if k ≡ 3 mod 4 then fc(c
k) = fc(c), fc(c

k−1) = c
2
, c, c

k−2
2 . (Note that the

cases k = 1, 3 refer to even parts only since odd parts occur with even multiplicities).

The inverse map f−1 : p[n]→ E[2n] is analogously given by:

f−1c (c) = c2;
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f−1c (ck) =

2c, c2(k−1) if k ≡ 1 (mod 2),

c2k if k ≡ 0 (mod 2).

To prove that the map f is bijective, we need to show that f−1c fc(c
k) = fcf

−1
c (ck) =

ck for all ck. First case, let λ ∈ E[2n], we choose ck from λ for k ≡ 0 (mod 4), k ≡ 1

(mod 4) or k ≡ 2 (mod 4):

(i) if k ≡ 0 (mod 4) then

f−1c fc(c
k) = f−1c (c

k
2 ) = ck

(ii) if k ≡ 1 (mod 4) then

f−1c fc(c
k) = f−1c (

c

2
, c

k−1
2 ) = f−1c (

c

2
), f−1c (c

k−1
2 ) = c, ck−1 = ck

(iii) if k ≡ 2 (mod 4) then

f−1c fc(c
k) = f−1c (c, c

k−2
2 ) = f−1c (c), f−1c (c

k−2
2 ) = c2, ck−2 = ck

Second case, let β ∈ p[n], we choose c from β. There are three possible choices

for c which are overlined c, c occurs with even multiplicities or c occurs with odd

multiplicities:

(i) if c is overlined, then

fcf
−1
c (c) = fc(c

2) = c

(ii) if the multiplicity of c is even, then

fcf
−1
c (ck) = fc(c

2k) = ck

(iii) if the multiplicity of c is odd, then

fcf
−1
c (ck) = fc(2c, c

2(k−1)) = fc(2c), fc(c
2(k−1)) = c, ck−1 = ck

These bijections are illustrated in Table 3.1 when n = 3; the lists under respective

enumerators correspond one-to-one under the bijection.
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E[6]
f→ p[3]

(6) → (3)

(4,2) → (2,1)

(4,1,1) → (2,1)

(3,3) → (3)

(2,2,2) → (2,1)

(2,2,1,1) → (2,1)

(2,1,1,1,1) → (1,1,1)

(1,1,1,1,1,1) → (1,1,1)

Table 3.1: The bijections of Proposition 3.1 for n = 3.

Remark 1. The action of the map f on a part of a partition λ is to halve the part

(if it is even) or halve its multiplicity (up to possible overlining). The inverse of f

reverses these operations. Thus f preserves `-regularity provided that ` is odd, that

is, if λ is `-regular, then so is f(λ), and conversely.

We now state our main result.

Theorem 3.1. Main Theorem:

Let ` and n be positive integers with `, n > 1.

Let B`(n) denote the number of partitions of n in which odd parts occur with multi-

plicity 2, 4, ..., or 2(`− 1) and even parts appear at most `− 1 times.

Let Q`(n) denote the number of `2-regular partitions of n in which parts not divisible

by ` appear 0 or ` times. Then

B`(2n) = Q`(`n) = R`(n); (3.1)

Let ` ≡ 1 (mod 2) and let G`(n) denote the number of `-regular partitions of n in

which odd parts occur with even multiplicities. Then

G`(2n) = R`(n); (3.2)

Let ` ≡ 0 (mod 2) and let H`(n) denote the number of 2`-regular partitions of n in

which odd parts occur with even multiplicities and each part ≡ ` (mod 2`) appears

at most once. Then

H`(2n) = R`(n). (3.3)

We present both a generating function proof and a bijective proof of the main

theorem.
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3.2.1 A generating function proof of Theorem 3.1

The generating functions for B`(2n) is given by
∞∑
n=0

B`(2n)q2n =
∞∏
n=1

(1 + q1·2n + · · ·+ q(`−1)·2n)(1 + q2(2n−1) + · · ·+ q2(`−1)(2n−1))

=
∞∏
n=1

(1− q2`n)

(1− q2n)

(1− q2`(2n−1))
(1− q2(2n−1))

. (3.4)

The generating function for Q`(`n) could be derived by using the same method that

we used in (2.1)

∞∑
n=0

Q`(`n)q`n =
∞∏
n=1

(1 + q`n + q2`n + · · · )(1 + q`n)

(1 + q`2n + q2`2n + · · · )(1 + q`2n)

=
∞∏
n=1

(1− q`2n)(1 + q`n)

(1− q`n)(1 + q`2n)
× (1− q`n)(1− q`2n)

(1− q`n)(1− q`2n)

=
∞∏
n=1

(1− q2`n)(1− q`2n)2

(1− q`n)2(1− q2`2n)
. (3.5)

On the other hand, recall from (2.3)

∞∑
n=0

R`(n)qn =
∞∏
n=1

(1− q`n)(1 + qn)

(1− qn)(1 + q`n)

=
∞∏
n=1

(1− q`n)(1 + qn)

(1− qn)(1 + q`n)
× (1− qn)(1− q`n)

(1− qn)(1− q`n)

=
∞∏
n=1

(1− q2n)(1− q`n)2

(1− qn)2(1− q2`n)
. (3.6)

Replacing q by q` yields (cf. (3.5))

∞∏
n=1

(1− q2`n)(1− q`2n)2

(1− q`n)2(1− q2`2n)
=
∞∑
n=0

Q`(`n)q`n.

To complete the proof of (3.1) we note that

∞∏
n=1

(1− q2n)

(1− qn)
=
∞∏
n=1

1

(1− q2n−1)
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and
∞∏
n=1

(1− q`n)

(1− q2`n)
=
∞∏
n=1

(1− q`(2n−1)),

then (3.6) implies

∞∑
n=0

R`(n)qn =
∞∏
n=1

(1− q`(2n−1))(1− q`n)

(1− qn)(1− q2n−1)
.

Replacing q by q2 gives (cf. (3.4))

∞∏
n=1

(1− q2`(2n−1))(1− q2`n)

(1− q2n)(1− q2(2n−1))
=
∞∑
n=0

B`(2n)q2n.

In order to prove (3.2) we assume that ` is odd and consider the generating function

∞∑
n=0

G`(2n)q2n =
∞∏
n=1

(1 + q2n + q4n + · · · )(1 + q2(2n−1) + q4(2n−1) + · · · )
(1 + q`(2n) + q2`(2n) + · · · )(1 + q`·2(2n−1) + q2`·2(2n−1) + · · · )

=
∞∏
n=1

(1− q2`n)(1− q2`(2n−1))
(1− q2n)(1− q2(2n−1))

=
∞∑
n=0

B`(2n)q2n.

Thus (3.2) is established.

Lastly for (3.3) we assume that ` is even and consider the generating function

∞∑
n=0

H`(2n)q2n =
∞∏
n=1

1− q`n

1− q2n
× 1 + q`n

1 + q2`n
× 1

1− q2(2n−1)
.

Indeed a partition enumerated by H`(2n) is 2`-regular and contains at most one

distinct copy of each part ≡ ` (mod 2`). This is enumerated by the function

(1− q`)(1− q2`) · · ·
(1− q2)(1− q4) · · ·

(1 + q`)(1 + q`+2`)(1 + q`+4`) · · · =
∞∏
n=1

1− q`n

1− q2n
× 1 + q`n

1 + q2`n
.

Since odd parts occur with even multiplicities, we have the contribution

∞∏
n=1

(1 + q2(2n−1) + q4(2n−1) + q6(2n−1) + · · · ) =
∞∏
n=1

1

1− q2(2n−1)
.
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Hence

∞∑
n=0

H`(2n)q2n =
∞∏
n=1

1− q2`n

(1− q2n)(1 + q2`n)(1− q2(2n−1))
× 1− q2`n

1− q2`n

=
∞∏
n=1

1− q2`n

(1− q2n)(1− q2(2n−1))
× 1− q2`n

1− q4`n

=
∞∏
n=1

1− q2`n

(1− q2n)(1− q2(2n−1))
× (1− q2`(2n−1))

=
∞∏
n=1

(1− q2`n)(1− q2`(2n−1))
(1− q2n)(1− q2(2n−1))

=
∞∑
n=1

B`(2n)q2n.

This completes the generating function proof of Theorem 3.1.

3.2.2 A combinatorial proof of Theorem 3.1

We provide combinatorial proofs of the three parts of the theorem in the following

order.

First we establish the the bijection Q`[`n] ⇐⇒ R`[n]. Then we prove the

remaining parts according to the schemes

B`[2n] ⇐⇒ G`[2n] ⇐⇒ R`[n] and B`[2n] ⇐⇒ H`[2n] ⇐⇒ R`[n],

corresponding to odd and even ` respectively.

Let λ = (cu11 , c
u2
2 , · · · ) ∈ Q`[`n]. Define the map w : Q`[`n] → R`[n] by λ 7→

∪c∈λwc(c), where

wc : cuj 7→


(
c
`

)uj if `|c,

c if ` - c.

In other words, each multiple of ` is divided by ` and each non-multiple (which

occurs exactly ` times) is replaced by one overlined copy. The inverse map is

w−1c : x 7→

c` if x = c,

c` if x = c.

This proves the bijection Q`[`n] ⇐⇒ R`[n].
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Next we define a new bijection θ to compose with f which was defined in the

proof of Proposition 3.1:

B`[2n]
θ−→ G`[2n]

f−→ R`[n].

If λ = (c1 ≥ c2 ≥ · · · ) ∈ B`[2n], then each ci = c can be expressed uniquely in the

form c = `rm with r ≥ 0 such that ` - m. Define θ : B`[2n] → G`[2n] by setting

θ(λ) = ∪c∈λθc(c), with

θc(c) = θc(`
rm) = m`r .

It may be verified that θ is invertible. Note that θ is similar to the classical bijection

of Glaisher between odd and strict ordinary partitions, see [6, 9]. To insure that the

image is not divisible by `, each part c is mapped to x copies of c/x, where x is the

highest power of ` dividing c.

The fact that f is the required bijection between G`[2n] and R`[n] follows from

the proof of Proposition 3.1 and Remark 1.

The second part of the proof, B`[2n] ⇐⇒ H`[2n] ⇐⇒ R`[n], also relies on the

composition of two bijections φ and f :

B`[2n]
φ−→ H`[2n]

f−→ R`[n].

We define φ : B`[2n]→ H`[2n] by φ(λ) = ∪c∈λφc(c), where φc is explained below.

Let λ = (cu11 , c
u2
2 , · · · ) ∈ B`[2n] and consider cuj ∈ λ. Then one can write c = `rm

where 0 ≤ r ≤ 1 and ` - m. If m is odd and uj is odd, then there are two cases:

φc : cuj 7→

c if uj = 1,

c,m`r(uj−1) if uj > 1.

Note that when uj > 1, φc fixes one copy of c but assigns the other copies to m`r

apiece.

For all other cases apply the following transformation to each ck ∈ λ:

φc : ck 7→ m`rk.

To complete the proof, we give the inverse of φ. Let λ = (cu11 , c
u2
2 , · · · ) ∈ H`[2n].

In order to assign each cu ∈ λ, we first obtain the `-adic expansion of u: u =

m0 + m1` + · · · + mr`
r, mi ∈ {0, . . . , ` − 1}. Thus each cu ∈ λ is equivalent to

cu = cm1`, cm2`2 , . . . , cmr`r . Then if λi = cmi`
i
, we have φ−1(λ) = ∪λi∈λφ−1λi (λi) with

22



φ−1λi : λi = cmi`
i 7→

c`
i
, (`ic)mi−1 if c ≡ 1 (mod 2) and mi ≡ 1 (mod 2) and 0 ≤ i ≤ 1;

(`ic)mi otherwise.

Illustrations of the bijections B`[2n] ⇐⇒ G`[2n] ⇐⇒ R`[n], B`[2n] ⇐⇒
H`[2n] ⇐⇒ R`[n] and Q`[2n] ⇐⇒ R`[n] are given for some of the partitions when

` = 3, 4 and 5 and n = 25 in Tables 3.2, 3.3 and 3.4 respectively.

B3[50]
θ→ G3[50]

f→ R3[2])

(48, 2) → (163, 2) → (16, 8, 1)

(32, 12, 4, 2) → (32, 44, 2) → (16, 42, 1)

(242, 2) → (86, 2) → (82, 8, 1)

(24, 16, 8, 12) → (16, 84, 12) → (83, 1)

(162, 82, 2) → (162, 82, 2) → (16, 8, 1)

(162, 12, 4, 2) → (162, 44, 2) → (16, 42, 1)

(16, 122, 8, 12) → (16, 8, 46, 12) → (8, 43, 4, 1)

(122, 8, 62, 2, 14) → (8, 46, 27, 14) → (43, 4, 22, 2, 13)

(82, 72, 62, 42) → (82, 72, 42, 26) → (8, 7, 4, 22, 2)

(8, 72, 42, 34, 22, 14) → (8, 72, 42, 22, 116) → (7, 4, 4, 2, 18)

Table 3.2: An illustration of the bijections of Theorem 3.1 for n = 25, ` = 3.

B4[50]
φ→ H4[50]

f→ R4[25]

(48, 2) → (316, 2) → (38, 1)

(32, 12, 4, 2) → (12, 4, 217) → (6, 29, 1)

(242, 2) → (68, 2) → (64, 1)

(24, 16, 8, 12) → (64, 24, 118) → (62, 22, 18, 1)

(163, 2) → (2, 148) → (125)

(162, 12, 4, 2) → (12, 4, 2, 132) → (6, 2, 117)

(16, 122, 8, 12) → (12, 34, 24, 118) → (6, 32, 22, 18, 1)

(123, 8, 6) → (12, 6, 38, 24) → (6, 35, 22)

(83, 72, 43) → (72, 4, 212, 18) → (7, 27, 14)

(8, 43, 36, 23, 16) → (4, 36, 27, 114) → (32, 3, 23, 2, 17, 1)

Table 3.3: An illustration of the bijections of Theorem 3.1 for n = 25, ` = 4.
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Q5[125]
w→ R4[25]

(245, 5) → (24, 1)

(245, 15) → (24, 1)

(195, 10, 45) → (19, 4, 2)

(158, 15) → (38, 1)

(157, 102) → (37, 22)

(156, 103, 5) → (36, 23, 1)

(155, 104, 5, 15) → (35, 24, 1, 1)

(1012, 15) → (112, 1)

(1010, 55) → (210, 15)

(102, 513, 45, 35, 15) → (4, 3, 22, 113, 1)

Table 3.4: An illustration of the bijections of Theorem 3.1 for n = 25, ` = 5.

3.3 A partial identity for colored partitions

We state a partition identity involving 2-color partitions.

Theorem 3.2. Let T4(n) denote the number of partitions of n in which even parts

are of two kinds and distinct, and odd parts occur with multiplicity 4. Then

R4(n) = T4(2n). (3.7)

We remark that one part-size with two different colors are treated as distinct

parts in Theorem 3.2. It is a special case (` = 4) of the following generalization to

every even integer ` > 0.

Theorem 3.3. Let ` be an even positive integer and let T`(2n) denote the number

of partitions of 2n in which odd parts occur with multiplicity ` and even parts are of

two different kinds such that even parts of one kind are distinct and each even part

of the other kind appears at most `−2
2

times. Then

R`(n) = T`(2n). (3.8)

Remark 2. If we combine Theorem 3.3 with the compatible functions defined in

the main theorem (Theorem 3.1) we obtain the following five-way identity for every

even integer ` > 0:

B`(2n) = Q`(`n) = H`(2n) = T`(2n) = R`(n).
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Proof of Theorem 3.3

Since R`(n) = B`(2n) from Theorem 3.1 it will suffice to prove B`(2n) = T`(2n).

The generating function for T`(2n) is

∞∑
n=0

T`(2n)q2n =
∞∏
n=1

(1 + q2n)(1 + q2n + · · ·+ q(
`−2
2

)2n)(1 + q`(2n−1))

=
∞∏
n=1

(1− q4n)

(1− q2n)

(1− q`n)

(1− q2n)

(1− q2`(2n−1))
(1− q`(2n−1))

.

From Equation (3.4) we have:
∞∑
n=0

B`(2n)q2n =
∞∏
n=1

(1− q2`n)

(1− q2n)

(1− q2`(2n−1))
(1− q2(2n−1))

× (1− q2(2n))
(1− q2(2n))

=
∞∏
n=1

(1− q`n)(1 + q`n)

(1− q2n)

(1− q2`(2n−1))(1− q4n)

(1− q2n)

=
∞∏
n=1

(1− q`n)(1− q4n)(1− q2`n)(1− q2`(2n−1))
(1− q2n)2(1− q`n)

=
∞∏
n=1

(1− q`n)(1− q4n)(1− q2`(2n−1))
(1− q2n)2(1− q`(2n−1))

=
∞∑
n=0

T`(2n)q2n.

We now give a bijection g : B`[2n]→ T`[2n] as usual, according to parities. Let the

two kinds or colors in the theorem be distinguished by subscripting with “a” and

“b”. Thus each even part-size 2r has either the form (2r)a or (2r)b with (2r)a 6= (2r)b

such that (2r)a is distinct while (2r)b may also occur in the same partition at most

(`− 2)/2 times. Since an odd part in λ ∈ B`[2n] has multiplicity 2, 4, . . . , 2(`− 1),

we have

If c ≡ 1 (mod 2), then gc : ck 7→


(2c)

k
2
b if 2 ≤ k < `;

c` if k = `;

(2c)
k−`
2

b , c` if k > `.

If c ≡ 0 (mod 2), then gc : ck 7→


ca if k = 1.

(2c)
k−1
2

b , ca if k > 1 is odd.

(2c)
k
2
b if k is even.
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The inverse map is immediately seen to be g−1 : T`[2n]→ B`[2n] with

g−1c :


c` 7→ c` if c ≡ 1 (mod 2);

ca 7→ c if c ≡ 0 (mod 2);

cb 7→ (c/2)2 if c ≡ 0 (mod 2).

An illustration of the bijection B`[2n] ⇐⇒ T`[2n] is given for some partitions

of ` = 6 and n = 6 in Table 3.5.

B6[2n]
g→ T6[2n]

(12) → (12a)

(6,6) → (12b)

(4,4,4) → (8b,4a)

(8,4) → (8a,4a)

(8,2,2) → (8a,4b)

(4,4,2,2) → (8b,4b)

(8,2,1,1) → (8a,2a,2b)

(2,2,2,2,2,1,1) → (4b,4b,2a,2b)

(2,2,2,2,1,1,1,1) → (4b,4b,2b,2b)

(2,2,2,1,1,1,1,1,1) → (4b,2a,1,1,1,1,1,1)

Table 3.5: The bijections of Theorem 3.3 for n = 6, ` = 6.
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Chapter 4

Congruence Properties of

`-regular overpartitions

4.1 Introduction

Andrews [7] noted that one of his functions is the same as R3(n), and he proved

that, for all n ≥ 0,

R3(9n+ 3) ≡ R3(9n+ 6) ≡ 0 (mod 3) (4.1)

using elementary generating function manipulations. Motivated by this congruence

result, Chen, Hirschhorn and Sellers [14] extensively studied the arithmetic proper-

ties of these singular overpartition functions.

In recent days, Shen [36] returned to the functions of Lovejoy and proved a finite

set of congruences satisfied by R3 and R4. In particular, Shen proved the following

eight congruence results:

Theorem 4.1. For all n ≥ 0,

R3(4n+ 1) ≡ 0 (mod 2),

R3(4n+ 3) ≡ 0 (mod 6),

R3(9n+ 3) ≡ 0 (mod 6), and

R3(9n+ 6) ≡ 0 (mod 24).
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Theorem 4.2. For all n ≥ 0,

R4(12n+ 4) ≡ 0 (mod 3),

R4(12n+ 8) ≡ 0 (mod 3),

R4(12n+ 7) ≡ 0 (mod 24), and

R4(12n+ 11) ≡ 0 (mod 24).

Our primary goal in this chapter is to prove families of congruences satisfied

by the functions R` for infinitely many values of `. The proof techniques used are

classical, involving elementary generating function manipulation techniques as well

as Ramanujan’s theta functions. In addition, we will give combinatorial proofs for

some of the congruences.

Throughout this work, we will utilize the generating functions (2.3), which is

∞∑
n=0

R`(n) =
∞∏
n=1

(1− q`n)(1 + qn)

(1− qn)(1 + q`n)
.

We will also make use of Ramanujan’s theta function (2.5), which is

ϕ(q) =
∞∑

n=−∞

qn
2

=
∞∏
n=1

(1 + q2n−1)2(1− q2n).

(See Berndt’s book [12] for a detailed discussion of the function ϕ(q) and its rela-

tives.)

The content of this chapter is largely taken from the articles [2] and [5]. I am

appreciative to Prof. Munagi and Prof. Sellers for their permissions to include our

joint work in this thesis.

4.2 New Congruence Results

Motivated by Andrews’ congruences (4.1), Chen, Hirschhorn, and Sellers [14] have

already provided an infinite family of congruences satisfied by R3(n) modulo 3 and

small powers of 2. Our first goal in this chapter is to show that R` satisfies at least

one congruence modulo 3 for an infinite set of values `.
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Theorem 4.3. For all n ≥ 0 and all j ≥ 3, R3j(27n+ 18) ≡ 0 (mod 3).

Proof. As per recent work of Munagi and Sellers [33], we define the function A`(n)

to be the number of overpartitions of n in which only parts not divisible by ` may

be overlined. We find from [33] that, for all n ≥ 0 and all j ≥ 3, A3j(27n+ 18) ≡ 0

(mod 3) where ∑
n≥0

A3j(n)qn =
∏
n≥1

(1− q3jn)

(1− q2·3jn)

∏
n≥1

(1− q2n)

(1− qn)2
. (4.2)

Next, note that from (3.6)∑
n≥0

R3j(n)qn =
∏
n≥1

(1− q2n)(1− q3jn)2

(1− qn)2(1− q2·3jn)

=
∏
n≥1

(1− q3jn)2

(1− q3jn)(1 + q3jn)

∏
n≥1

(1− q2n)

(1− qn)2

=
∏
n≥1

(1− q3jn)

(1 + q3jn)

∏
n≥1

(1− q2n)

(1− qn)2
. (4.3)

Via elementary manipulations, it is then clear from (4.2) and (4.3) that∑
n≥0

R3j(n)qn =

(∏
n≥1

(1− q3jn)

)∑
n≥0

A3j(n)qn.

Moreover, ∏
n≥1

(1− q3jn)

is a function of q27, which means that R3j(27n+ 18) is simply a linear combination

of values of A3j(27m + 18) (no other terms can enter this sum). Therefore, thanks

to the corresponding congruence result for A3j from [33], the theorem follows.

Interestingly enough, it is also the case that R9(n) satisfies congruences modulo

3. However, they appear to be of a different nature than those satisfied by R3 (as

stated in [14]) and R3j for j ≥ 3 (as given in Theorem 4.3). Thus we need to discuss

R9(n) separately.

In order to consider R9(n) modulo 3, we will utilize a number of results of

Hirschhorn and Sellers [23]. In particular, we will consider the two functions

D(q) =
∞∑

n=−∞

(−1)nqn
2

=
(q; q)2∞

(q2; q2)∞
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and

Y (q) =
∞∑

n=−∞

(−1)nq3n
2−2n =

(q; q)∞(q6; q6)2∞
(q2; q2)∞(q3; q3)∞

,

where (q; q)∞ = (q)∞.

It is worth noting that D(q) = ϕ(−q) where ϕ(q) is defined in (2.5).

In [23, Lemma 3.1] the following three identities are proved (where ω = e2πi/3):

D(q) = D(q9)− 2qY (q3),

D(q)D(ωq)D(ω2q) =
D(q3)4

D(q9)
, and

D(q3)3 − 8qY (q)3 =
D(q)4

D(q3)
.

Now note the following from (3.6):

∑
n≥0

R9(n)qn =
(1− q2n)(1− q9n)2

(1− qn)2(1− q2·9n)

=
(q2; q2)∞(q9; q9)2∞
(q; q)2∞(q2·9; q2·9)∞

=
D(q9)

D(q)

=
D(q9)

D(q)

D(ωq)

D(ωq)

D(ω2q)

D(ω2q)

=
D(q9)D(ωq)D(ω2q)

D(q3)4

D(q9)

=
D(q9)

D(q3)4
(D(q81)− 2q9Y (q27))(D(q9)− 2ωqY (q3))(D(q9)− 2ω2qY (q3))

=
D(q9)

D(q3)4
(D(q81)− 2q9Y (q27))(D(q9)2 + 2qD(q9)Y (q3) + 4q2Y (q3)2).

Thus, we can 3–dissect the generating function for R9 to obtain

∑
n≥0

R9(3n+ 2)qn =
D(q3)

D(q)4
(D(q27)− 2q3Y (q9))(4Y (q)2).

Next, we simplify this generating function modulo 3, utilizing the three identities

mentioned above:
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∑
n≥0

R9(3n+ 2)qn =
D(q3)

D(q)4
(D(q27)− 2q3Y (q9))(4Y (q)2)

≡ D(q3)

D(q)4
(D(q9)3 − 2q3Y (q3)3)(4Y (q)2) (mod 3)

≡ D(q3)

D(q)4
(4D(q9)3Y (q)2 − 8q3Y (q3)3Y (q)2) (mod 3)

≡ D(q3)

D(q)4
(4D(q9)3Y (q)2 − (D(q9)3 − D(q3)4

D(q9)
)Y (q)2) (mod 3)

≡ D(q3)

D(q)4
(3D(q9)3Y (q)2 +

D(q3)4

D(q3)3
Y (q)2) (mod 3)

≡ D(q3)

D(q)4
(D(q)3)(Y (q)2) (mod 3)

=
D(q3)

D(q)
Y (q)2

=
(q3; q3)2∞
(q6; q6)∞

(q2; q2)∞
(q; q)2∞

(q; q)2∞(q6; q6)4∞
(q2; q2)2∞(q3; q3)2∞

=
(q6; q6)3∞
(q2; q2)∞

.

Therefore, we know that∑
n≥0

R9(3n+ 2)qn ≡
∑
n≥0

a3(n)q2n (mod 3)

where a3(n) is the number of 3–cores of n. Note that a t-core partition of n is a

partition whose Ferrers graph has no hook numbers divisible by t (see [27] for more

details). This leads to two congruence results for R9.

Theorem 4.4. For all n ≥ 0, R9(6n+ 5) ≡ 0 (mod 3).

Proof. This result follows immediately from the fact that∑
n≥0

R9(3n+ 2)qn ≡
∑
n≥0

a3(n)q2n (mod 3)

and the fact that the series on the right–hand side is an even function of q. Therefore,

for all n ≥ 0,

R9(3(2n+ 1) + 2) = R9(6n+ 5) ≡ 0 (mod 3).
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In a similar vein, the generating function work above also proves that, for all

n ≥ 0,

R9(6n+ 2) ≡ a3(n) (mod 3). (4.4)

This is truly significant as it provides infinitely many Ramanujan–like congruences

modulo 3 satisfied by R9. One way to see this is to note that a3(n) is infinitely

often identical to zero (see the work of Hirschhorn and Sellers [25] for elementary

proofs of some of the arithmetic properties of a3(n)). Indeed, we can easily prove

the following result.

Theorem 4.5. Let p ≡ 2 (mod 3) be prime. For each 1 ≤ k ≤ p − 1, let r be the

least nonnegative integer such that

r ≡ p2 − 1

3
+ kp (mod p2).

Then, for all n ≥ 0,

R9(6(p2n+ r) + 2) ≡ 0 (mod 3).

Proof. The proof relies on a result found in Hirschhorn and Sellers [25]. Namely,

under the hypothesis of this theorem, it is the case that a3(p
2n+ r) = 0. Thanks to

this fact and (4.4), the proof is complete.

We now turn our attention to congruences satisfied by R` modulo small powers

of 2. As with numerous other overpartition functions, it is clear that, for each `,

R`(n) satisfies many congruences modulo small powers of 2. (See, for example,

[22, 24, 23, 28, 32] where this phenomenon is also noted.)

With the goal of proving such congruences modulo small powers of 2, we develop

an extremely beneficial way to rewrite the generating function for R`(n) in terms of

Ramanujan’s theta function ϕ(q).

We state the following lemmas, the proofs of which may be found in [33]:

Lemma 4.1.

ϕ(−q2)2 = ϕ(q)ϕ(−q)

Lemma 4.2.
1

ϕ(−q)
= ϕ(q)ϕ(q2)2ϕ(q4)4 . . .
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Combining (2.3) with Lemma 4.2, we have∑
n≥0

R`(n)qn =
ϕ(q)ϕ(q2)2ϕ(q4)4 . . .

ϕ(q`)ϕ(q2`)2ϕ(q4`)4 . . .
. (4.5)

Corollary 4.1. For all n ≥ 1, R`(n) ≡ 0 (mod 2).

Proof. Since ϕ(q) = 1 + 2
∑

n≥1 q
n2
, we know that

ϕ(q) ≡ 1 (mod 2).

So (4.5) gives ∑
n≥0

R`(n)qn ≡ 1 · 1 · 1 . . .
1 · 1 · 1 . . .

≡ 1 (mod 2).

Corollary 4.2. For all n ≥ 1 and an integer k > 0,

• if ` is a square , then

R`(n) ≡

2 (mod 4) if n = k2, where ` does not divide n;

0 (mod 4) otherwise,

• if ` is not a square, then

R`(n) ≡

2 (mod 4) if n = k2 or n = `k2;

0 (mod 4) otherwise,

Proof. Thanks to (4.5), we know∑
n≥0

R`(n)qn ≡ ϕ(q)

ϕ(q`)
(mod 4)

since ϕ(qi)j ≡ 1 (mod 4) for any even j ≥ 2. Next, we know, in view of Lemma 4.1,

that

ϕ(q) =
ϕ(−q2)2

ϕ(−q)
.

Thus, ∑
n≥0

R`(n)qn ≡ ϕ(q)

ϕ(q`)
(mod 4)
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≡ ϕ(q)ϕ(−q`)
ϕ(−q2`)2

(mod 4)

≡ ϕ(q)ϕ(−q`) (mod 4)

since ϕ(−q2`)2 ≡ 1 (mod 4).

Therefore,∑
n≥0

R`(n)qn ≡ ϕ(q)ϕ(−q`) (mod 4)

= (1 + 2
∑
n≥1

qn
2

)(1 + 2
∑
n≥1

(−q`)n2

)

≡ 1 + 2
∑
n≥1

qn
2

+ 2
∑
n≥1

(−q`)n2

(mod 4)

≡ 1 + 2
∑
n≥1

qn
2

+ 2
∑
n≥1

q`n
2

(mod 4).

The result follows.

It is clear that Corollary 4.2 provides a framework from which we can write

down infinitely many congruences modulo 4 satisfied by R` for certain values of `.

We provide such an infinite family of results here.

Corollary 4.3. Let ` be a square, p be a prime, and let r be a quadratic nonresidue

modulo p. Then, for all n ≥ 0, R`(pn+ r) ≡ 0 (mod 4).

Proof. Assume ` is a square. Thanks to Corollary 4.2, we know thatR`(n) is divisible

by 4 unless n is a square. Thus, in order for this result to be false, we must have

pn+r = k2 for some k. But this implies that r ≡ k2 (mod p), and this cannot occur

because r is assumed to be a quadratic nonresidue modulo p. The result follows.

Clearly, Corollary 4.3 provides p−1
2

congruences modulo 4 for each prime p and

for each square value of `. Thus, we have demonstrated infinitely many congruences

modulo 4 which are satisfied by R` (for a specific set of values of `).

It is worth noting that the proof technique used in Corollary 4.2 could be extend-

ed to write down similar results for moduli which are higher powers of 2. However,

the results will undoubtedly be less elegant than those above, so we refrain from

doing so here.
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4.3 Combinatorial proofs of Corollary 4.1 and Corol-

lary 4.2

For Corollary 4.1, the proof goes as follows:

Proof. The number of overpartitions of n > 0 is always even. This is because

an overpartition is obtained from an ordinary partition λ = (cu11 , c
u2
2 , · · · , curr ) by

overlining the first occurrence of each part-size or not. Thus λ alone gives rise to 2r

overpartitions.

To prove Corollary 4.2, we need the following lemma:

Lemma 4.3. For all n ≥ 1,

p(n) ≡

2 (mod 4) if n = k2 for some integer k

0 (mod 4) otherwise.

Proof. Combining the generating functions of p(n) and D(q) with Lemma 4.2, we

have ∑
n≥0

p(n)qn =
1

D(q)
=

1

ϕ(−q)
= ϕ(q)ϕ(q2)2ϕ(q4)4 . . . .

Since ϕ(qi)j ≡ 1 (mod 4) for any even j ≥ 2 and applying the Lemma 4.1, we have

∑
n≥0

p(n)qn ≡ ϕ(q) (mod 4)

= (1 + 2
∑
n≥1

qn
2

).

The result follows.

Alternatively, Lemma 4.3 can be proved combinatorially as follows:

We decompose overpartitions of n into two sets: those containing a unique part-size

and those containing two or more different part-sizes. Then we see that the latter

set of overpartitions has cardinality 2r, r > 1, that is, a cardinality divisible by 4.

On the other hand, partitions with a single part-size arise from divisors of n. Each

divisor d of n gives the partition (dn/d) which in turn generates 2 overpartitions.

Since a square has an odd number of divisors, τ(k2) ≡ 1 (mod 2), we deduce that

p(k2) ≡ 2 (mod 4).
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We can now give a combinatorial proof of Corollary 4.2:

Proof. Let m(`|n) be the number of multiples ` dividing n. By the proof of Lemma

4.3, it will suffice to find the parity of τ(n)−m(`|n): a divisor d of n generates a single

part-size `-regular overpartition provided that ` does not divide d. In each case we

exclude the divisors enumerated by m(`|n) and compare the parity of τ(n)−m(`|n)

with the the parity of τ(n), and conclude that R`(n) ≡ 2 (mod 4) if τ(n)−m(`|n)

is odd and R`(n) ≡ 0 (mod 4) if τ(n)−m(`|n) is even.

Consider the first case of the second bullet point n = k2 or n = `k2 given that `

is not a square.

If n = k2 and ` does not divide n, then m(`|n) = 0. So τ(n) − m(`|n) is odd. If

n = k2 and ` divides n, then m(`|n) = τ(n/`) which is even. So τ(n) −m(`|n) is

still odd. But if n = `k2, then τ(n) is even and m(`|n) = τ(k2) which is odd. So

τ(n)−m(`|n) is odd.

The second case of the second bullet point has two parts namely (i) n = k2 with

` a square factor of n, (ii) n 6= k2 and n 6= `k2 and (iii) n = k2 with ` is a square

which is not a factor of n. In (i) we find that both τ(n) and m(`|n) are odd; so

τ(n)−m(`|n) is even. In (ii) it is clear that both τ(n) and m(`|n) are even. In (iii)

we find that τ(n) is odd and m(`|n) is even; so τ(n)−m(`|n) is odd.
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Chapter 5

Combinatorial proof of a partition

inequality of Bessenrodt-Ono

5.1 Introduction

We consider a combinatorial question related to a multiplicative property of the par-

tition function p(n), the number of partitions of a positive integer n. In this chapter,

integer partitions will be written in weakly decreasing order. Thus a partition λ of n

intom parts will be expressed as λ = (λ1, λ2, . . . , λm), where λ1 ≥ λ2 ≥ · · · ≥ λm > 0

and
∑

i≥1 λi = n.

Theorem 5.1. If a, b are integers with a, b > 1 and a+ b > 9, then

p(a)p(b) > p(a+ b).

Bessenrodt and Ono [13] proved Theorem 5.1 using a classical analytic result of

D. H. Lehmer [30], and subsequently asked for a combinatorial argument for proving

the theorem. The purpose of this chapter is to provide such a proof of Theorem 5.1.

The Cartesian product of two sets of partitions, P and Q, will be denoted by

P ⊕Q, that is,

P ⊕Q = {(λ; π) | λ ∈ P, π ∈ Q}.

When p = |P | and q = |Q|, we will associate the number pq with the cardinality of

the set P ⊕Q.
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We will give a combinatorial proof of Theorem 5.1 by cutting partitions and then

showing inductively that it is sufficient to establish an injective map

f0 : p[c+ d | no 1’s and no 2’s] −→ p[c | no 1’s]⊕ p[d | no 2’s]

for integers c, d > 1 with c+ d > 4. Finding such a decent map is possible since one

can work with partitions of c that contain 2’s and partitions of d that contain 1’s.

This method is expected to carry over to other classes of partitions. For example,

it is indicated in Section 5.3 how this combinatorial technique may be applied to

2-regular partitions.

The content of this chapter is largely taken from the article [4]. I am appreciative

to Prof. Munagi and Dr. Gagola III for their permissions to include our joint work

in this thesis.

5.2 Combinatorial Proof of Theorem 5.1

In order to prove the theorem we first establish a few lemmas.

Lemma 5.1. If c, d are integers with c ≥ 2, d ≥ 2 and c+ d ≥ 5, then

p(c | no 1’s)p(d | no 2’s) ≥ p(c+ d | no 1’s and no 2’s).

Note that when c + d = 4, we have (1)(1) ≥ 1 since p(2 | no 1’s)p(2 | no 2’s) ≥
p(4 | no 1’s and no 2’s).

Proof. For λ = (λ1, ..., λt) ∈ p[c+ d] let

i = i(λ) = max{j ∈ N | 1 ≤ j ≤ t, λj + · · ·+ λt ≥ d}.

Furthermore, let λi = x+ y (x = x(λ), y = y(λ)) such that

x+ λi+1 + · · ·+ λt = d and y + λ1 + · · ·+ λi−1 = c.

Note that 0 < x ≤ λi. Now define a map

f0 : p[c+ d | no 1’s and no 2’s]→ p[c | no 1’s]⊕ p[d | no 2’s]
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as follows. For λ = (λ1, . . . , λt) ∈ p[c+ d | no 1’s and no 2’s],

f0(λ) =


(λ1, ..., λi−1; λi, ..., λt) if y = 0;

(λ1, ..., λi−1, y; λi+1, ..., λt, 1
x) if y ≥ 2;(

λ1, ..., λi−2,
⌈
λi−1+1

2

⌉
,
⌊
λi−1+1

2

⌋
; λi+1, ..., λt, 1

x
)

if y = 1.

Here, f is clearly well-defined. Note that if y = 1, then x ≥ 2 and λi−1 − y ≥
2 whereas

⌈
λi−1+1

2

⌉
−
⌊
λi−1+1

2

⌋
∈ {0, 1}. Hence, f0 is one-to-one and the result

follows.

An illustration of the injections f0 is given in Table 5.1.

p[6 + 8 | no 1’s and no 2’s]
f0→ p[6 | no 1’s]⊕ p[8 | no 2’s]

(14) → (6; 8)

(11,3) → (6; 3,15)

(10,4) → (6; 4,14)

(9,5) → (6; 5,13)

(8,6) → (6; 6,12)

(8,3,3) → (6; 3,3,12)

(7,7) → (6; 7,1)

(7,4,3) → (6; 4,3,1)

(6,5,3) → (6; 5,3)

(6,4,4) → (6; 4,4)

(5,5,4) → (3,3; 4,14)

(5,3,3,3) → (3,3; 3,3,12)

(4,4,3,3) → (4,2; 3,3,12)

Table 5.1: The injections of Lemma 5.1 for c = 6 and d = 8.

Lemma 5.2. If a is an integer with a > 2, then

p(a | no 2’s)p(2) ≥ p(a+ 2 | no 2’s).

Moreover, if a > 5, then

p(a | no 2’s)p(2) > p(a+ 2 | no 2’s).
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Proof. Denote a partition λ of a + 2 by λ = (λ1, λ2, . . . , λt, 1
s), where λ1 ≥ λ2 ≥

· · · ≥ λt > 1. Define a map

f1 : p[a+ 2 | no 2’s]→ p[a | no 2’s]⊕ p[2]

by

f1(λ) =



(λ1, . . . , λt−1 − 1, λt − 1, 1s; 1, 1) if t ≥ 2 and λt > 3;

(λ1, . . . , λt−1, λt − 2, 1s; 2) if t ≥ 2 and λt = 3;

(λ1, . . . , λt, 1
s−2; 1, 1) if t < 2 and s ≥ 2;

(1λ1−1; 2) if t = 1 and s = 1;

(λ1 − 2; 2) if t = 1 and s = 0.

Since a > 2, f1 is well-defined. Therefore, since f1 is one-to-one,

p(a+ 2 | no 2’s) ≤ p(a | no 2’s)p(2).

Furthermore, if a > 5, then (a− 3, 3; 2) is not contained in the image of f1. Hence,

for a > 5,

p(a+ 2 | no 2’s) < p(a | no 2’s)p(2).

The injections f1 are illustrated in Table 5.2 when a = 6.

p[6 + 2 | no 2’s]
f1→ p[6 | no 2’s]⊕ p[2]

(8) → (6; 2)

(7,1) → (16; 2)

(6,1,1) → (6; 1,1)

(5,3) → (5,1; 2)

(5,1,1,1) → (5,1; 1,1)

(4,4) → (3,3; 1,1)

(4,3,1) → (4,12; 2)

(4,1,1,1,1) → (4,12; 1,1)

(3,3,1,1) → (3,13; 2)

(3,1,1,1,1,1) → (3,13; 1,1)

(1,1,1,1,1,1,1,1) → (16; 2)

Table 5.2: The injections of Lemma 5.2 for a = 6.
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Lemma 5.3. If a, b are integers with a ≥ b ≥ 3 and a+ b > 7, then

p(a | no 2’s)p(b) > p(a+ b | no 2’s).

Proof. Let n = a+ b. We will apply induction on n.

Base case: It can easily be checked that the inequality holds for n = 8.

Inductive step: Suppose that n > 8 and that the inequality holds for n − 1. Thus,

if b ≥ 4, then p(a |no 2’s)p(b− 1) > p(a+ b− 1 |no 2’s) by the inductive hypothesis.

Likewise, if b = 3, then p(a | no 2’s)p(b − 1) > p(a + b − 1 | no 2’s) by Lemma 5.2.

Hence, by Lemma 5.1,

p(a+ b | no 2’s) =

= p(a+ b | no 2’s and at least one 1) + p(a+ b | no 2’s and no 1’s)

= p(a+ b− 1 | no 2’s) + p(a+ b | no 2’s and no 1’s)

< p(a | no 2’s)p(b− 1) + p(a+ b | no 2’s and no 1’s)

= p(a | no 2’s)p(b | at least one 1) + p(a+ b | no 2’s and no 1’s)

= p(a | no 2’s) [p(b)− p(b | no 1’s)] + p(a+ b | no 2’s and no 1’s)

≤ p(a | no 2’s) [p(b)− p(b | no 1’s)] + p(a | no 2’s)p(b | no 1’s)

= p(a | no 2’s)p(b).

Therefore, by the principle of mathematical induction, the inequality holds for n ≥
8.

Proof of Theorem 5.1

Let n = a+ b. We apply induction on n.

Base case: It can easily be checked and shown that the inequality holds for n ∈
{10, 11}.
Inductive step: Suppose that n ≥ 12 and that the inequality holds for n − 1.

Without loss of generality, assume that a ≥ b. Thus, by the inductive hypothesis,

p(a+b−2) < p(a−2)p(b). By Lemmas 5.2 and 5.3, p(a+b|no 2’s) < p(a|no 2’s)p(b).

Hence,

p(a+ b) = p(a+ b | at least one 2) + p(a+ b | no 2’s)

= p(a+ b− 2) + p(a+ b | no 2’s)
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< p(a+ b− 2) + p(a | no 2’s)p(b)

< p(a− 2)p(b) + p(a | no 2’s)p(b)

= p(a− 2)p(b) + [p(a)− p(a | at least one 2)] p(b)

= p(a− 2)p(b) + [p(a)− p(a− 2)] p(b)

= p(a)p(b).

Therefore, by the principle of mathematical induction, the inequality holds for n ≥
10.

5.3 An Inequality for `-Regular Partitions

The number of `-regular partitions (that is, partitions with no part divisible by `) is

commonly denoted by p`(n). An analogous theorem dealing with `-regular partitions

is stated by Beckwith-Bessenrodt in [11].

Theorem 5.2. For an integer ` with 2 ≤ ` ≤ 6 define n`,m` by the following table

` 2 3 4 5 6

n` 3 2 2 2 2

m` 22 17 9 9 9

Then for any positive integers a, b with a, b ≥ n` and a+ b ≥ m` we have

p`(a)p`(b) > p`(a+ b).

The proof of Theorem 5.2 uses a result by Hagis which is an analogue of a classical

analytic result of D. H. Lehmer [30]. A combinatorial proof may be approached like

the proof of Theorem 5.1. We present a combinatorial proof for ` = 2 below. The

proof method for 3 ≤ ` ≤ 6 is similar to that of ` = 2, but the number of cases

increases rapidly for larger ` so we omit those for 3 ≤ ` ≤ 6.

Notations for the number and set of such partitions that fulfill prescribed con-

ditions are analogous to those for p(n).
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5.3.1 Proof of Theorem 5.2 for ` = 2

Theorem 5.3. If a, b are integers with a ≥ b ≥ 3 and a+ b > 21, then

p2(a)p2(b) > p2(a+ b).

We give a best-possible adaptation of the results and proofs in Section 5.2.

Lemma 5.4. If c, d are integers with c ≥ 5 and d ≥ 2, then

p2(c | no 1’s)p2(d | no 3’s) ≥ p2(c+ d | no 1’s and no 3’s).

Proof. We adopt the notations introduced in the proof of Lemma 5.1 only wary of

the fact that all parts in all partitions are now odd. Define a map

f2 : p2[c+ d | no 1’s and no 3’s]→ p2[c | no 1’s]⊕ p2[d | no 3’s]

as follows. For λ = (λ1, . . . , λt) ∈ p2[c+ d | no 1’s and no 3’s],

f2(λ) =



(λ1, ..., λi−1; λi, ..., λt) if y = 0;

(λ1, ..., λi−1, y; λi+1, ..., λt, 1
x) if y ≡ 1 (mod 2), y ≥ 3;(

λ1, ..., λi−2, 2
⌈
λi−1−1

4

⌉
+ 1,

2
⌊
λi−1−1

4

⌋
+ 1; λi+1, ..., λt, 1

x
)

if y = 1;

(λ1, ..., λi−1 − 2, y − 1, 3; λi+1, ..., λt, 1
x) if y ≡ 0 (mod 2), y ≥ 4, i 6= 1;

(y − 3, 3; λi+1, ..., λt, 1
x) if y ≡ 0 (mod 2), i = 1;

(λ1 + 2, λ2, ..., λi−1; λi+1, ..., λt, 1
x) if y = 2.

Note that if y = 1, then x ≥ 4 and λi−1− y ≥ 4. Hence, since f2 is well-defined and

one-to-one, the result follows.

Lemma 5.5. If a is an integer with a > 8, then

p2(a | no 3’s)p2(3) > p2(a+ 3 | no 3’s).

Proof. Denote a partition λ of n = a + 3 by λ = (λ1, λ2, . . . , λt), where λ1 ≥ λ2 ≥
· · · ≥ λt. Define a map

f2 : p2[a+ 3 | no 3’s]→ p2[a | no 3’s]⊕ p2[3]

by
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f2 : λ 7→



(λ1, . . . , λt−3; 3) if λt−2 = λt−1 = λt = 1;

(λ1, . . . , λt−2 − 2, 1; 13) if λt−1 = λt = 1 and λt−2 ≥ 7;

(λ2, . . . , λt−2, 1
λ1−1; 13) if λt−1 = λt = 1 and λt−2 = 5;

(λ1, . . . , λt−1 − 2; 13) if λt = 1 and λt−1 ≥ 7;

(λ1, . . . , λt−2, 1
3; 13) if λt = 1 and λt−1 = 5;

(λ1, . . . , λt−1, 1
λt−3; 13) if λt ≥ 5.

Since a > 4, f2 is well-defined. Note that, in order for the partitions λ =

(λ1, λ2, . . . , λt−3, 5, 1, 1) and λ′ = (λ′1, λ
′
2, . . . , λ

′
s), with λ′s ≥ 5, to have the same

image under f2, λ
′
s−1 = λt−2 = 5. In this case, λ′s = 5 and λ1 ≥ λt−2 = 5. But

then λ1 − 1 ≥ 4 > 2 = λ′s − 3 implying that f2(λ) 6= f2(λ
′). Thus, f2 is one-to-one

and p2(a+ 3 | no 3’s) ≤ p2(a | no 3’s)p2(3). Furthermore, since a > 8, (1a; 13) is not

contained in the image of f2 when a is odd and (5, 1a−5; 13) is not contained in the

image of f2 when a is even. Hence, for a > 8, p2(a+3|no 3’s) < p2(a|no 3’s)p2(3).

Lemma 5.6. If a is an integer with a > 13, then

p2(a | no 3’s)p2(4) > p2(a+ 4 | no 3’s).

Proof. The inequality can easily be checked for 14 ≤ a ≤ 23. Suppose now that

a > 23. Denote a partition λ of n = a + 4 by λ = (λ1, λ2, . . . , λt, 1
s), where

λ1 ≥ λ2 ≥ · · · ≥ λt > 1. Define a map

f2 : p2[a+ 4 | no 3’s]→ p2[a | no 3’s]⊕ p2[4]

by

f2 : λ 7→


(λ1, . . . , λt−1 − 2, λt − 2, 1s; 14) if t ≥ 2 and λt > 5;

(λ1, . . . , λt−1, λt − 4, 1s; 3, 1) if t ≥ 2 and λt = 5; ;

(λ1, . . . , λt, 1
s−4; 14) if t < 2 and s ≥ 4;

(λ1 − 20, 5, 5, 5, 1s+1; 14) if t = 1 and s < 4.

Since a > 23, n > 27, f2 is well-defined. Furthermore, f2 is one-to-one and

p2(a+ 4 | no 3’s) ≤ p2(a | no 3’s)p2(4). Since a > 23, (a; 3, 1) is not contained in the

image of f2 when a is odd and (a− 5, 5; 3, 1) is not contained in the image of f2

when a is even. Hence, p2(a+ 4 | no 3’s) < p2(a | no 3’s)p2(4).
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Lemma 5.7. If a, b are integers with a ≥ b ≥ 5 and a+ b > 17, then

p2(a | no 3’s)p2(b) > p2(a+ b | no 3’s).

Proof. Let n = a+ b. We will apply induction on n.

Base case: It can easily be checked that the inequality holds for n = 18.

Inductive step: Suppose that n > 18 and that the inequality holds for n−1. Thus, if

b ≥ 6, then p2(a |no 3’s)p2(b−1) > p2(a+ b−1 |no 3’s) by the inductive hypothesis.

Likewise, if b = 5, then p2(a | no 3’s)p2(b− 1) > p2(a+ b− 1 | no 3’s) by Lemma 5.6.

Hence, by Lemma 5.4,

p2(a+ b | no 3’s) =

= p2(a+ b | no 3’s and at least one 1) + p2(a+ b | no 3’s and no 1)

= p2(a+ b− 1 | no 3’s) + p2(a+ b | no 3’s and no 1’s)

< p2(a | no 3’s)p2(b− 1) + p2(a+ b | no 3’s and no 1’s)

= p2(a | no 3’s)p2(b | at least one 1) + p2(a+ b | no 3’s and no 1’s)

= p2(a | no 3’s) [p2(b)− p2(b | no 1’s)] + p2(a+ b | no 3’s and no 1’s)

≤ p2(a | no 3’s) [p2(b)− p2(b | no 1’s)] + p2(a | no 3’s)p2(b | no 1’s)

= p2(a | no 3’s)p2(b).

Therefore, by the principle of mathematical induction, the inequality holds for n ≥
18.

Proof of Theorem 5.3

Let n = a+ b. We apply induction on n.

Base case: It can easily be checked and shown that the inequality holds for n ∈
{22, 23, 24}.
Inductive step: Suppose that n ≥ 25 and that the inequality holds for n − 1 and

n − 2. Without loss, assume that a ≥ b and therefore a − 3 ≥ 10. Thus, by the

inductive hypothesis, p2(a + b − 3) < p2(a − 3)p2(b). By Lemmas 5.5, 5.6 and 5.7,

p2(a+ b | no 3’s) < p2(a | no 3’s)p2(b). Hence,

p2(a+ b) = p2(a+ b | at least one 3) + p2(a+ b | no 3’s)

= p2(a+ b− 3) + p2(a+ b | no 3’s)
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< p2(a+ b− 3) + p2(a | no 3’s)p2(b)

< p2(a− 3)p2(b) + p2(a | no 3’s)p2(b)

= p2(a− 3)p2(b) + [p2(a)− p2(a | at least one 3)] p2(b)

= p2(a− 3)p2(b) + [p2(a)− p2(a− 3)] p2(b)

= p2(a)p2(b).

Therefore, by the principle of mathematical induction, the inequality holds for n ≥
22.

We have the following conjecture in relation to overpartitions.

Conjecture 5.1. If a, b are integer with a, b ≥ 1, then

p(a)p(b) ≥ p(a+ b).
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Chapter 6

Partition Configurations

Andrews and Deutsch [8] recently devised a proof technique for the Stanley-Elder

identities using “partition configurations” (defined below), and stated a parallel

result based on the divisibility of parts. Gilbert [21] explored the origins of the

Stanley-Elder theorems and indicated that the theorems were originally discovered

by N. J. Fine [20, 19]. Dastidar and Gupta [18] considered certain generalizations

of the theorems and developed Ramanujan-type congruence properties for gk(n).

Further relevant work on this problem may be found in Knopfmacher and Munagi

[29].

In this chapter, we give combinatorial proofs of the main results in [8] and estab-

lish new generalizations. Our bijective proofs rely mostly on variations of Stanley’s

proof of Elder’s theorem (see Section 2.2).

Definition 6.1. A partition configuration, A, is a finite nondecreasing sequence of

non-negative integers containing 0. The weight of a partition configuration A =

(a1, . . . , ak), of length k, is given by w(A) = a1 + a2 + · · ·+ ak.

Definition 6.2. A partition λ is said to contain a partition configuration (a1, . . . , ak)

if there is a distinct subsequence of parts of λ of the form a1 + j, a2 + j, . . . , ak + j

for some integer j > 0.

For example, the partition (1 + 2 + 2 + 4 + 4 + 5 + 8 + 9 + 9) contains an instance

of A = (0, 3, 6, 7) because the parts 2, 5, 8, 9 exceed by 2 the successive entries of A.

The number of parts function gk(n) is defined as the total number of occurrences

of k in all partitions of n. The first main result in [8] is the configuration theorem:
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Theorem 6.1. (Andrews-Deutsch)

Let A be a partition configuration of length k. The total number of configurations A

in all partitions of n is equal to gk(n− w(A)).

The second main result concerns divisibility of parts:

Theorem 6.2. (Andrews-Deutsch)

Given k ≥ 1, in each partition of n we count the number of times a part divisible

by k appears uniquely (i.e. is not a repeated part); then sum these numbers over all

the partitions of n. The result is equal to g2k(n+ k).

In Section 6.1 we state a reformulation of Theorem 6.1 and discuss the conse-

quences and proofs. In Section 6.2 we present generalizations of Elder’s theorem

and Theorem 6.1. Section 6.3 is devoted to a combinatorial proof of Theorem 6.2.

An extension of the theorem is proved using generating functions. Lastly, Section

6.4 contains additional properties of the function gk(n).

The content of this chapter is largely taken from the article [3]. I am appreciative

to Prof. Munagi for his permission to include our joint work in this thesis.

6.1 Combinatorial proof of the configuration the-

orem

Theorem 6.1 depends on the weight w(A) and length of a partition configuration A

but not on specification of the parts. Since 0 ∈ A, we can recover A from any of its

occurrences in a partition λ. Thus if (b1, . . . , bk) ⊆ λ represents an occurrence of A,

then A = (0, b2 − b1, . . . , bk − b1) is an expression containing k − ` initial zeros and

a partition of w(A) into ` parts, 0 ≤ ` < k. So Theorem 6.1 does not rely on the

length k as a stringent defining property of A but rather as a preferred measure for

traversing partition subsequences. Thus a configuration may be identified with the

partition determined by its nonzero parts. The foregoing observations lead to the

following definition.

Definition 6.3. Given a positive integer k and a partition β = (β1, . . . , β`), 0 ≤
` < k, a translate of β, of length k, is any k-part partition of the form

A(β, k)j = (j, . . . , j, β1 + j . . . , β` + j),

where j is a positive integer and appears with multiplicity k − ` > 0 as a part.
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We see that a partition λ contains a configuration

A = A(β, k) = (0, . . . , 0, β1, . . . , β`)

if and only if the sequence of parts of λ contains a distinct translate of the underlying

(possibly empty) partition (β1, . . . , β`).

Theorem 6.1 then implies the following more inclusive statement.

Theorem 6.3. Let n,m, k be positive integers with k ≤ n, 0 ≤ m < n, and let β

be a partition of m into less than k parts. The number of distinct translates of β,

of length k, in all partitions of n is equal to the number of k’s in all partitions of

n−m.

Note that Theorem 6.1 may be obtained from Theorem 6.3 by specifying β with

k. For example if m = 5 and k = 4, the translates of each

β ∈ {(5), (1, 4), (2, 3), (1, 1, 3), (1, 2, 2)}

give the same number of 4’s in partitions of n > 5, where β = (5) =⇒ A =

(0, 0, 0, 5), β = (1, 4) =⇒ A = (0, 0, 1, 4), and so forth.

We remark that the generating function proof of Theorem 6.1 given in [8] is

sufficient to prove Theorem 6.3 since m is equal to the weight w(A) of any partition

configuration A with the given length. For completeness we reproduce the proof

here. Let T (n,A(β, k)) denote the number of distinct translates of β, of length k,

in all partitions of n. Therefore

∞∑
n=0

T (n,A(β, k))qn =
∞∑
j=1

q(j+β1)+(j+β2)+···+(j+βk)∏∞
n=1(1− qn)

=
qm
∑∞

j=1 q
kj∏∞

n=1(1− qn)
, where m =

∑k
i=1 βi

=
qm+k

(1− qk)2
∏∞

n=1
n 6=k

(1− qn)

=
qm+k(1 + qk + q2k + · · · )2∏∞

n=1
n 6=k

(1− qn)

=
qm(qk + q2k + q3k + · · · )(1 + qk + q2k + · · · )∏∞

n=1
n 6=k

(1− qn)
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= qm(qk + 2q2k + 3q3k + · · · )
∞∏
n=1
n 6=k

(1 + qn + q2n + q3n + · · · )

= qm
∞∑
n=0

gk(n)qn.

In the next subsection, we present our bijective proof.

We first note some proof applications of Theorem 6.3. The set of translates of

β = (β1, · · · , β`) will be denoted by A[β, k]:

A[β, k] = {(1, . . . , 1, β1 + 1 . . . , β` + 1), (2, . . . , 2, β1 + 2 . . . , β` + 2), . . . }.

Stanley’s Theorem: Take β = ∅ and k = 1; thus m = 0 and

A[∅, 1] = {(1), (2), . . . }.

Elder’s Theorem: Take β = ∅ and k ≥ 1; thus m = 0 and

A[∅, k] = {(1, . . . , 1), (2, . . . , 2), . . . }.

The following result was discovered independently by Knopfmacher and Munagi [29]

and Andrews and Deutsch [8]:

The number of sequences of elements of a multiset of k consecutive

integers in all partitions of n is equal to gk(n−
(
k
2

)
).

To prove the statement take β = (1, 2, . . . , k − 1) and k ≥ 1; thus m =
(
k
2

)
and

Ak[β, k] = {(1, 2, . . . , k), (2, 3, . . . , k + 1), . . . }.

6.1.1 Proof of Theorem 6.3

Let T [n,A[β, k]] denote the multiset of translates of β of length k in partitions of n,

and let gk[n] be the multiset of k’s in partitions of n, that is |gk[n]| = gk(n).

We describe a bijection θ : T [n,A[β, k]]→ gk[n−m] as follows.

If β = (β1, . . . , β`) ` m, where the notation β ` m means that β is a partition

of m, then (j, . . . , j, β1 + j, . . . , β` + j) ∈ T (n,A(β, k)), and

θ : (j, . . . , j, β1 + j, . . . , β` + j) 7−→ k, . . . , k︸ ︷︷ ︸
j copies

. (6.1)
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In practical terms, we write down all partitions λ of n containing a length k

translate of β, writing down each partition λ of n as many times as there are

length k translates of β within it. For each of these partitions take an instance

of (j, . . . , j, β1 + j, . . . , β` + j) within it, and remove these parts and replace them

by j parts equal to k. This produces a list of partitions of n − m in which each

partition containing r parts equal to k occurs exactly r times.

Conversely, if a partition γ ` n − m contains r copies of k, then for each j ∈
{1, . . . , r}, we use (6.1) to map γ to a partition of n containing j translates of a

fixed partition of m. So γ produces r partition pre-images.

This gives the asserted bijection.

The bijection is illustrated in Table 6.1 for n = 11, β = (3) and k = 3. Using

a larger value of n, say n = 15, then, for instance, (4, 4, 7) with translate (4, 4, 7)

maps to (3, 3, 3, 3) while (1, 1, 2, 2, 4, 5) with translates (1, 1, 4), (2, 2, 5) maps to

(2, 2, 3, 5) and (1, 1, 3, 3, 4) respectively. Conversely (3, 3, 3, 3) has the following

pre-images corresponding respectively to 1, 2, 3 and 4 copies of 3: (1, 1, 3, 3, 3, 4),

(2, 2, 3, 3, 5), (3, 3, 3, 6), (4, 4, 7), and so forth.

T [11, A[(3), 3]] translates g3[8]

(1, 1, 4, 5) (1, 1, 4) (3, 5)

(2, 2, 2, 5) (2, 2, 5) (2, 3, 3)

(1, 1, 1, 4, 4) (1, 1, 4) (1, 3, 4)

(1, 1, 2, 2, 5) (2, 2, 5) (1, 1, 3, 3)

(1, 1, 2, 3, 4) (1, 1, 4) (2, 3, 3)

(1, 1, 1, 1, 3, 4) (1, 1, 4) (1, 1, 3, 3)

(1, 1, 1, 2, 2, 4) (1, 1, 4) (1, 2, 2, 3)

(1, 1, 1, 1, 1, 2, 4) (1, 1, 4) (1, 1, 1, 2, 3)

(1, 1, 1, 1, 1, 1, 1, 4) (1, 1, 4) (1, 1, 1, 1, 1, 3)

Table 6.1: The bijection T [11, A[β], 3]→ g3[8]where β = (3)

Note the following property of Table 6.1 which is analogously shared by all such

tables:

“Each partition in the first column appears as many times as the number of β-

translates it contains and each partition in the third column appears as many times

51



as the number of k’s it contains”.

Remark 3. The map θ can be factored into a composition of two bijections as

follows:

A de-configuration or leveling map: ρ : T [n,A[β, k]]→ T [n−m,A[∅, k]], where

ρ : (a1, . . . , ak) 7−→ (a1, . . . , ak)− A(β, k)0 = (a1, a1, . . . , a1).

The Elder map: ε : T [n,A[∅, k]]→ gk[n], where

ε : (a, . . . , a) 7−→ k, . . . , k︸ ︷︷ ︸
a copies

.

The bijection ε (strictly ε = θ|(j,...,j)) was popularized by Richard Stanley [38] who

used it to prove Elder’s theorem.

Then we see that θ = ερ.

6.2 Generalization of the Elder and Configuration

Theorems

In this section we give natural extensions of Elder’s theorem and Theorem 6.3.

Let vk(n, t) denote the number of multiples of k appearing at least t times in all

partitions of n. Thus Elder’s theorem takes the compact form

gk(n) = v1(n, k). (6.2)

Theorem 6.4. The number of multiples of k appearing at least t times in all par-

titions of n equals the number of tk’s in all partitions of n:

vk(n, t) = gtk(n), t = 1, 2, . . . .

Note that Theorem 6.4 becomes Elder’s theorem when k = 1.

Proof. Let vk[n, t] be the set of objects enumerated by vk(n, t). Define the map

εk,t : vk[n, t] → gtk[n] as follows. If λ ` n contains r ≥ t copies of mk, replace t

copies of mk by m copies of tk:

εk,t : mk, . . . ,mk︸ ︷︷ ︸
t copies

7−→ tk, . . . , tk︸ ︷︷ ︸
m copies

.
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Conversely, if λ ` n contains r copies of tk, then for each j ∈ {1, 2, . . . , r} replace

j copies of tk with t copies of jk:

ε−1k,t : tk, . . . , tk︸ ︷︷ ︸
j copies

7−→ jk, . . . , jk︸ ︷︷ ︸
t copies

.

Thus εk,t is a bijection. Hence the result.

The bijection is illustrated in Table 6.2 for n = 12, k = 3, t = 2.

v3[12, 2] multiples of 3 g6[12]

(6, 6) (6, 6) (6, 6)

(3, 3, 6) (3, 3) (6, 6)

(1, 3, 3, 5) (3, 3) (1, 5, 6)

(2, 3, 3, 4) (3, 3) (2, 4, 6)

(1, 1, 3, 3, 4) (3, 3) (1, 1, 4, 6)

(3, 3, 3, 3) (3, 3) (3, 3, 6)

(1, 2, 3, 3, 3) (3, 3) (1, 2, 3, 6)

(1, 1, 1, 3, 3, 3) (3, 3) (1, 1, 1, 3, 6)

(2, 2, 2, 3, 3) (3, 3) (2, 2, 2, 6)

(1, 1, 2, 2, 3, 3) (3, 3) (1, 1, 2, 2, 6)

(1, 1, 1, 1, 2, 3, 3) (3, 3) (1, 1, 1, 1, 2, 6)

(1, 1, 1, 1, 1, 1, 3, 3) (3, 3) (1, 1, 1, 1, 1, 1, 6)

Table 6.2: The bijection vk[12, t]→ gtk[12] for k = 3, t = 2.

Remark 4. Theorem 6.4 implies the symmetry property: vk(n, t) = vt(n, k).

Definition 6.4. Given positive integers k, t and a partition β = (β1, . . . , β`), 0 ≤
` < t, a k-translate of β, of length t, is any t-part partition of the form

Ak(β, t)jk = (jk, . . . , jk, β1 + jk . . . , β` + jk),

where j is a positive integer and jk appears with multiplicity t− ` > 0 as a part.

Thus A1(β, t)j = A(β, t)j. We now state a generalization of Theorem 6.3.

Theorem 6.5. Let n,m, k, t be positive integers with t ≤ n, 0 ≤ m < n, and let β

be a partition of m into less than t parts. The number of distinct k-translates of β,

of length t, in all partitions of n is equal to the number of tk’s in all partitions of

n−m.
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Note that Theorem 6.5 reduces to Theorem 6.3 when k = 1.

Proof. We define a bijection θk,t : T [n,Ak[β, t]] → gtk[n − m]. Since ε = ε1,t and

θ = θ1,t, it is clear that Remark 3 and the proof of Theorem 6.4 imply the definition

θk,t = εk,tρ.

This shows that θk,t may be realized as a composition of two bijections.

As an illustration suppose that k = 2, t = 5 and β = (1, 1, 4), then

A2[β, 5] = {(2, 2, 3, 3, 6), (4, 4, 5, 5, 8), (6, 6, 7, 7, 10), . . . }.
So if (2, 2, 3, 3, 6) ⊆ λ ` n for T [n,A2[β, 5]], then

(2, 2, 3, 3, 6)
ρ−→ (2, 2, 2, 2, 2)

ε2,5−→ (10),

where (10) ⊆ λ ` n− 6 for g10[n− 6]. Similarly,

(4, 4, 5, 5, 8)
ρ−→ (4, 4, 4, 4, 4)

ε2,5−→ (10, 10);

and so forth.

An alternative proof of Theorem 6.4 may be deduced from Theorem 6.5 as fol-

lows: take β = ∅, k ≥ 1 and t ≥ 1 so that Ak[β, t] = {(k, . . . , k), (2k, . . . , 2k), . . . }.

6.3 Divisibility of parts

This section is devoted to the proof of Theorem 6.2. First we establish a related

result.

Theorem 6.6. We have

gk(n) = g2k(n) + g2k(n+ k).

Proof. The theorem is a special case (t = 2) of Theorem 6.8 below. But we give a

full bijection here: g2k[n] ∪ g2k[n+ k] −→ gk[n].

If 2k ∈ λ, then

2k 7→

k, k if 2k ∈ g2k[n],

k if 2k ∈ g2k[n+ k].
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The rule for r > 1 copies of 2k, denoted by (2k)r, is as follows:

(I) If (2k)r ∈ g2k[n], then for each j ∈ {1, . . . , r} replace j copies of 2k with 2j copies

of k.

(II) If (2k)r ∈ g[n+k], then for each j ∈ {1, . . . , r} replace j copies of 2k with 2j−1

copies of k.

Note that if (2k)r ∈ λ, then λ begets r image partitions for gk[n] in either case.

The inverse map is obtained by:

Let λ have r ≥ 1 parts equal to k. Then we map λ to b r
2
c partitions of n by replacing

2j parts k by j parts 2k (1 ≤ j ≤ r
2
), and also to d r

2
e partitions of n+k by replacing

2j + 1 parts k by j + 1 parts 2k for 0 ≤ j < r
2
.

Hence the bijection.

The bijection is illustrated in Table 6.3. Note that if a partition λ contains r

copies of k then λ appears b r
2
c times as an image of a member of g2k[n], and b r+1

2
c

times as an image of a member of g2k[n+ k].

g4[7] ∪ g4[9] → g2[7]

(3,4) → (2,2,3)

(1,2,4) → (1,2,2,2)

(1,1,1,4) → (1,1,1,2,2)

(4, 5) → (2,5)

(1, 4, 4) → (1,2,4)

(1, 4, 4) → (1,2,2,2)

(2,3,4) → (2,2,3)

(1,1,3,4) → (1,1,2,3)

(1,2,2,4) → (1,2,2,2)

(1,1,1,2,4) → (1,1,1,2,2)

(1,1,1,1,1,4) → (1,1,1,1,1,2)

Table 6.3: The bijection g2k[n] ∪ g2k[n+ k]→ gk[n] for n = 7, k = 2.

6.3.1 Proof and extension of Theorem 6.2

Define fk(n) as the number of times a multiple of k appears uniquely in all partitions

of n. Then Theorem 6.2 takes the form

fk(n) = g2k(n+ k). (6.3)
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The proof is deduced from Theorems 6.6 and 6.4:

g2k(n+ k) = gk(n)− g2k(n) = vk(n, 1)− vk(n, 2) = fk(n).

Now consider the function

fk(n, s) := number of multiples of k appearing exactly s times in all partitions

of n.

Thus fk(n, 1) = fk(n). By definition we have

fk(n, s) = vk(n, s)− vk(n, s+ 1).

Hence from Theorem 6.4 we obtain:

Theorem 6.7. We have

fk(n, s) = gsk(n)− g(s+1)k(n).

Note that Theorem 6.7 is a generalization of Theorem 6.2 since Equation (6.3)

may be stated as

fk(n, 1) = gk(n)− g2k(n).

Proof. The generating function for gsk(n) is given by

∞∑
n=0

gsk(n)qn = (qsk + 2q2sk + 3q3sk + · · · )
∞∏
n=1
n 6=sk

(1 + qn + q2n + q3n + · · · )

=
qsk

(1− qsk)2
∞∏
n=1
n 6=sk

1

1− qn
=

qsk

1− qsk
∞∏
n=1

1

1− qn
.

Therefore,

∞∑
n=0

(gsk(n)− g(s+1)k(n))qn =

(
qsk

1− qsk
− q(s+1)k

1− q(s+1)k

) ∞∏
n=1

1

1− qn

=
∞∏
n=1

1

1− qn
∞∑
j=1

qskj(1− qkj)

=
∞∑
j=1

qskj∏∞
n=1
n 6=kj

(1− qn)
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=
∞∑
n=0

fk(n, s)q
n.

Equating the coefficients of qn on both sides gives the theorem.

Remark 5. The function f1(n, s) has been tabulated in Sloane [37, A197126] under

the description “number of cliques of size s in all partitions of n ≥ 1” (where a

“clique” refers to all parts in a partition with the same value). If we designate this

as the sequence of 1-cliques, then fk(n, s) assumes the definition: “number of k-

cliques of size s in all partitions of n ≥ 1” (where a “k-clique” refers to all copies

of a fixed multiple of k in a partition). Some of the sequences fk(n, s) are shown in

Table 6.4.

f1(n, s)
HH

HHHHn

s
1 2 3 4 5

1 1 0 0 0 0

2 1 1 0 0 0

3 3 0 1 0 0

4 4 2 0 1 0

5 8 2 1 0 1

6 11 4 2 1 0

7 19 5 3 1 1

8 26 10 3 3 1

9 41 11 7 3 2

10 56 20 8 5 3

f2(n, s)
HH

HHHHn

s
1 2 3 4 5

1 0 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

4 2 1 0 0 0

5 3 1 0 0 0

6 6 1 1 0 0

7 8 2 1 0 0

8 13 4 1 1 0

9 18 5 2 1 0

10 28 8 3 1 1

f3(n, s)
H
HHH

HHn

s
1 2 3

2 0 0 0

3 1 0 0

4 1 0 0

5 2 0 0

6 3 1 0

7 5 1 0

8 7 2 0

9 12 2 1

10 16 4 1

11 24 5 2

f4(n, s)
H
HHH

HHn

s
1 2 3

3 0 0 0

4 1 0 0

5 1 0 0

6 2 0 0

7 3 0 0

8 5 1 0

9 7 1 0

10 11 2 0

11 15 3 0

12 23 4 1

f5(n, s)
H
HHH

HHn

s
1 2 3

4 0 0 0

5 1 0 0

6 1 0 0

7 2 0 0

8 3 0 0

9 5 0 0

10 7 1 0

11 11 1 0

12 15 2 0

13 22 3 0

Table 6.4: Small values of fk(n, s) for k = 1, 2, 3, 4 and 5
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6.4 Further properties of gk(n)

The summation of Theorem 6.7 over s results in the following identity.

Corollary 6.1. The number of k-cliques in all partitions of n equals the number of

k’s in all partitions of n: ∑
s≥1

fk(n, s) = gk(n).

A bijective proof of Corollary 6.1 is given by (mk)s ←→ (k)sm. This bijection is

equivalent to εσk, where σk : mk 7→ (m)k.

If an integer k occurs as a part of λ ` n, we can delete k from λ to obtain

an arbitrary partition of n − k. So the number of partitions of n containing at

least j copies of k is p(n − jk); the number containing exactly j copies of k is

p(n− jk)− p(n− (j + 1)k). Therefore

gk(n) =
∑
j≥1

j(p(n− jk)− p(n− (j + 1)k)) =
∑
j≥1

p(n− jk). (6.4)

An immediate consequence is

p(n) = gk(n+ k)− gk(n), (6.5)

since the right-hand side of (6.5) is equal to
∑
j≥0

p(n− jk)−
∑
j≥1

p(n− jk) = p(n).

We will need the following extension of Equation (6.5) (replace k by tk, then n

by n− ik):

p(n− ik) = gtk(n+ (t− i)k)− gtk(n− ik), (6.6)

where i, t are integers. Thus (6.5) may be obtained by setting i = 0 in (6.6).

From (6.4) and (6.6) we have

gk(n) =
∑
j≥1

gtk(n+ (t− j)k)−
∑
j≥1

gtk(n− jk).

Group the summations into pairs of t summands, then isolate the first pair:

gk(n) =
∑
i≥0

 (i+1)t∑
j=it+1

gtk(n+ (t− j)k)−
(i+1)t∑
j=it+1

gtk(n− jk)


=

t∑
j=1

gtk(n+ (t− j)k)−
t∑

j=1

gtk(n− jk)
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+
∑
i≥0

(i+2)t∑
j=(i+1)t+1

gtk(n+ (t− j)k)−
∑
i≥1

(i+1)t∑
j=it+1

gtk(n− jk)

=
t∑

j=1

gtk(n+ (t− j)k) +

(
−

t∑
j=1

gtk(n− jk) +
2t∑

j=t+1

gtk(n+ (t− j)k)

)

+
∑
i≥1

 (i+2)t∑
j=(i+1)t+1

gtk(n+ (t− j)k)−
(i+1)t∑
j=it+1

gtk(n− jk)

 (6.7)

The two summations inside either pair of parentheses are identical with opposite

signs. So only the first summation survives. Reversing the order of summation in

the latter we obtain the next result (also stated in [18]).

Theorem 6.8. The following identity holds for all integers n, k, t > 0:

gk(n) =
t−1∑
j=0

gtk(n+ jk).

We remark that Theorem 6.8 may be proved bijectively for any t > 1 by ex-

tending the proof of Theorem 6.6. The relevant bijection
⋃
j gtk[n + jk] −→ gk[n]

is obtained as follows. If (tk)v ∈ gtk[n + jk], then for each i ∈ {1, . . . , v} replace

i copies of tk with it − j copies of k. The reverse transformation may be deduced

analogously.
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Chapter 7

Conclusion

In this thesis, special emphasis was placed on `-regular overpartitions, a special

partition inequality and partition configurations. We have utilized the Ramanujan

theta-functions and bijections to prove certain of their arithmetic and combinatorial

properties.

In Chapter Three, we proved the main theorem, Theorem 3.1, and Theorem

3.3 which connect `-regular overpartition function with certain restricted ordinary

and color partition functions by utilizing both generating functions and bijective

proofs. Theorem 3.1 as well as Theorem 3.3 contain seemingly incomplete partition

identities because some of these are given only for selective parities of `. It will be

of interest to obtain extensions of the identities to all integers ` > 0.

In Chapter Four, an infinite set of Ramanujan-type congruences for the `-regular

overpartitions was found and the congruences were proved by using elementary gen-

erating function manipulation. However, the congruences for `-regular overpartition

functions modulo 2 and 4 were proved combinatorially. Nevertheless, it will be in-

teresting to extend the congruences for `-regular overpartition functions to modulo

higher power of 2.

In Chapter Five, we gave a combinatorial proof of Bessenrodt and Ono inequality,

p(a)p(b) > p(a + b) where a, b are positive integers satisfying a + b > 9, a > 1 and

b > 1. We then utilized the same proof method to prove the same inequality for

2-regular partitions. Furthermore, despite strong experimental verification evidence

of the conjectures 5.1 which has been done by using Maple, the proof has not been

found, and it remains an open problem.

In Chapter Six, a new generalization of Elder’s theorem was given. We proved

60



combinatorially the equality of the number of times an integer k appears in all parti-

tions and the number of partition configurations of length k by utilizing a variation

of Stanley’s original bijection. We also provided a new proof and a generalization

for the equality of the number of 2k’s in partitions and the number of unrepeated

multiples of k.
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