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Abstract

This study presents survival modelling and evaluation of risk factors of graft survival in

the context of kidney transplant data generated in South Africa. Beyond the Kaplan-Meier

estimator, the Cox proportional hazard (PH) model is the standard method used in identifying

risk factors of graft survival after kidney transplant. The Cox PH model depends on the

proportional hazard assumption, which is rarely met. Assessing and accounting for this

assumption is necessary before using this model. When the PH assumption is not valid,

modification of the Cox PH model could offer more insight into parameter estimates and the

effect of time-varying predictors at different time points. This study aims to identify the survival

model that will effectively describe the study data by employing the Cox PH and parametric

accelerated failure time (AFT) models.

To identify the risk factors that mediate graft survival after kidney transplant, secondary data

involving 751 adults that received a single kidney transplant in Charlotte Maxeke Johannesburg

Academic Hospital between 1984 and 2004 was analysed. The graft survival of these patients

was analysed in three phases (overall, short-term and long-term) based on the follow-up times.

The Cox PH and AFT models were employed to determine the significant risk factors. The

purposeful method of variable selection based on the Cox PH model was used for model building.

The performance of each model was assessed using the Cox-Snell residuals and the Akaike

Information Criterion. The fit of the appropriate model was evaluated using deviance residuals

and the delta-beta statistics. In order to further assess how appropriately the best model fit

the study data for each time period, we simulated a right-censored survival data based on the

model parameter-estimates.

Overall, the PH assumption was violated in this study. By extending the standard Cox

PH model, the resulting models out-performed the standard Cox PH model. The evaluation

methods suggest that the Weibull model is the most appropriate in describing the overall graft

survival, while the log-normal model is more reasonable in describing short-and long-term graft

survival. Generally, the AFT models out-performed the standard Cox regression model in all the

analyses. The simulation study resulted in parameter estimates comparable with the estimates

from the real data. Factors that significantly influenced graft survival are recipient age, donor

type, diabetes, delayed graft function, ethnicity, no surgical complications, and interaction

between recipient age and diabetes. Statistical inferences made from the appropriate survival

model could impact on clinical practices with regards to kidney transplant in South Africa.

Finally, limitations of the study are discussed in the context of further studies.
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Chapter 1

Introduction

1.1 Brief background on kidney transplant

Chronic kidney disease (CKD) is among the leading public health challenges worldwide

(Schieppati and Remuzzi, 2005). South Africa is one of the countries with the highest incidence

of CKD. CKD is clinically established with respect to the glomerulus filtration rate (GFR).

The progression of CKD is characterised by stages depending on the GFR and the severest

stage is known as end stage kidney disease (ESKD). It is at this stage that a patient with CKD

is diagnosed with kidney failure and requires renal replacement therapy (RRT), which includes

maintenance dialysis and kidney transplantation (Levey et al., 2003). A kidney transplant

is considered to be the best treatment choice for patient with ESKD when compared to

maintenance dialysis. A successful kidney transplant increases the life expectancy and the

quality of life of a patient, and has been shown to be more cost effective than maintenance

dialysis (Laupacis et al., 1996). Maintenance dialysis can only serve a limited number of

patients due to limited health care facilities. Nonetheless, dialysis is the first line of treatment

for a patient with ESKD until a suitable donor kidney is available.

In kidney transplantation, numerous prognostic factors are known to influence both short and

long-term survival of either the patient and/or the graft. These factors are either associated

with the recipient, the donor or the transplantation. Some of these factors can influence the

impact of other factors in predicting graft survival outcomes. For instance, acute graft rejection

post-transplant could be as result of human leukocyte antigen (HLA) mismatch that could lead
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to delayed graft function (DGF) and consequently lead to early graft failure (Żukowski et al.,

2014).

Many kidney transplant studies focus on factors that influence short-term (graft survival up

to one year) and long-term graft survival (graft survival beyond one year). Considerable

progress made towards improving immunosuppression therapy, preservation techniques and

other well-developed supportive therapies, studies have shown significant improvement in

short-term (ST) graft survival (Hariharan et al., 2000; Irish et al., 2010); however, long-term

(LT) graft survival has not been significantly improved (Paul, 1999). This is because

some factors still compromise the efficacy of renal transplant outcomes. Measurement and

identification of the impact of each factor on graft survival is crucial. In addition, modifying

and managing these factors such as delayed graft function and diabetes may help to optimise

success in LT kidney transplant outcome. This is important, especially in developing countries

where there is limited resources for kidney re-transplant.

1.2 Overview on survival analysis

One of the primary goals in kidney transplant studies is to model time to graft failure. The time

could be in weeks, months or years, from the date of transplantation to the time of graft failure,

which is known as survival time. In kidney transplant studies, patients are followed-up to a

certain period after transplant, either the period is pre-specified before the start of the follow-up

or the investigator decides to terminate the study due to the number of targeted events having

occurred, financial reasons or ethical reasons. Observation of any patient is terminated once

the graft fails or the patient dies, except a study that involves re-transplants. However, some

of the patients may not have experienced graft failure or are still alive by the end of the study.

Sometimes, the patient may withdraw from the study before the graft fails. The observation of

such a patient is incomplete and the status of the case is considered censored. In this situation,

the data point is said to be right censored. Right censoring is a common type of censoring

in kidney transplant studies. Censoring is one of the key features of survival data. Generally,

survival data are not normally distributed (mostly positive skewed), Thus, standard statistical

methods such as linear regression cannot be used to analyse survival data due to the difficulty in

accommodating censored observations and time-varying predictors in such a model (Hosmer Jr

and Lemeshow, 1999; Vittinghoff et al., 2011).

2
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Statistical techniques known as survival analysis have been developed to model the time to graft

failure and factors that impact on the time to graft failure. Survival analysis is a collection

of several statistical techniques employed to analyse censored data. Most of these techniques

are valid when censoring in the data is non-informative, that is, the probability of censoring a

subject in a given follow-up time is independent of the subsequent failure times. This is known

as independent censoring assumption. Unfortunately, there is no statistical method for testing

this type of assumption (Bradburn et al., 2003; Prentice and Kalbfleisch, 2015). Unlike standard

regression methods, survival analysis techniques properly incorporate information from both

censored and uncensored observations in estimating the model parameters. Generally, survival

analysis is classified as non-parametric, semi-parametric or parametric methods.

Beyond non-parametric techniques such as the Kaplan-Meier (KM) estimator, Cox proportional

hazard (PH) model (a semi-parametric model also known as the Cox regression model) is the

most popular regression model in survival analysis. Researchers frequently employ this model

in kidney transplant studies due to its flexibility and ease of interpretation of its hazard ratio.

However, the flexibility of the Cox regression model does not make it assumption-free. The

fundamental assumption of the Cox regression model assumes that factors under study have

a constant effect on the hazard over time. In most cases, the Cox PH assumption is not met.

Previous studies including one by Lagakos and Schoenfeld (1984) have shown that violating

the assumption of the Cox PH model could lead to poor model fit and over-estimation of the

covariate hazard ratio. This assumption may not be tenable in some applications because some

of the study factors may have a non-constant effect over time. Assessing the PH assumption

should be vital in the use of the Cox PH model because violation of this assumption could lead

to misleading parameter interpretation. However, if the assumption of PH is violated for any

covariate, modifying the Cox regression model should be considered. One modification of the

Cox model is to stratify the covariate that does not satisfy the proportional hazard assumption.

In this scenario, all other covariates except the stratified covariate are incorporated in the model

and their parameters are estimated. The second method is to add the interaction with time

for the covariate that violates the assumption. This method enables the verification of PH

assumption and provides a solution to non-proportional hazard.

Parametric models including the exponential and Weibull models (Hosmer Jr and Lemeshow,

1999; Collett, 2003) are alternatives to the Cox PH model in the analysis of time-to-event

data. Parametric models assume that the underlying survival times have a defined probability

distribution, and thus are not as flexible and widely applied as the Cox PH model. If the

assumption of the parametric form for a survival time data is valid, the model could lead to a
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more meaningful and precise inference. This results in smaller standard errors in the estimate

of the median survival times and the relative hazard. Thus, caution should be applied when

using parametric models because the baseline hazard function needs to be correctly specified.

However, these models are susceptible to misspecification because identifying the distributional

requirement may be difficult (Hosmer Jr and Lemeshow, 1999). Nonetheless, parametric models

provide insight into the shape of the baseline hazard if correctly specified .

Simulation-based methods for model-fit assessment play a vital role in contemporary research

methods in statistics. In a situation in which mathematical and analytical derivations could

not be realistic, data simulation may enable examination of statistical model-fit performance

(Burton et al., 2006). Of paramount importance in any statistical data simulation is the

presence of a suitable process for data-generation, and the simulated data is usually based on

an underlying statistical model. Thus, parameters estimated by the reliant statistical model

are used as the template to simulate a population of a dataset. The model estimates from

the simulated dataset is used to evaluate how compatible the real dataset is to the simulated

dataset. There are several algorithms designed and developed for simulation of survival data,

and each algorithm presents different complexities and challenges. ‘Survsim’, an R package for

simulation of censored survival data was used in this study (Moriña and Navarro, 2014).

1.3 Rationale and motivation for the study

The application of survival analysis models to transplantation data, especially kidney transplant

data, is not novel in South Africa. Some of these studies used non-parametric survival

techniques such as KM and log rank test to model graft or patient survival outcome (Myburgh

et al., 1983; O’Donnell et al., 1986; Rafique Moosa, 2004; Pitcher et al., 2006). However,

these techniques are suited for only categorical variables, and they cannot be used to model

the impact of one predictor adjusting for other predictors. Moosa (2003) showed the impact

of demographic factors on patient and graft survival post kidney transplantation using Cox

PH model. More recently, Fabian et al. (2016) used the Cox PH model to provide insight into

between-group graft and patient survival. Moosa (2003) and Fabian et al. (2016) did not report

in their studies whether the Cox PH assumptions were met. Many existing kidney transplant

studies that employed the Cox PH model focuses primarily on the impact of risk factors on graft

and patient survival. The statistical tests of the assumptions, checks on the model adequacy

and the use of this model to incorporate interaction (when there is evidence of interaction
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between variables) are rarely reported. Failure to check all these aforementioned requirements

for the Cox PH model before proceeding to interpretation, especially when the assumptions of

the model are not met, may lead to invalid estimates and conclusions. Although the Cox PH

has gained popularity in the kidney transplant studies, it is essential to consider other survival

models such as parametric models. The choice should not be driven by the model that results

in significant predictors, rather the model that summarises the fit of the data (George et al.,

2014).

1.4 Aims and objectives

Even though the Cox PH has gained popularity in kidney transplant studies, it is essential to

consider other survival models such as parametric models. In addition to what has been done

in kidney graft survival studies and more specifically in South Africa, this study will provide

a more comprehensive analysis of graft survival after kidney transplantation. The aim of this

study is to compare the Cox PH model and accelerated failure time (AFT) models in order to

identify the best model for analysing graft survival after kidney transplant. In order to achieve

the study aim, the following objectives were accomplished:

• The purposeful variable selection method based on the Cox PH model was used to select

candidate predictors for inclusion in the study.

• The need to consider extension of the Cox PH model for predictors with time-varying

effects and by stratification, when the PH assumption is not tenable was demonstrated.

• Performance of parametric AFT and Cox PH models were compared using Akaike

information criterion and Cox-Snell residuals.

• Survival data was simulated as a means of assessing the goodness-of-fit of the appropriate

survival model choice.

1.5 Data source

To accomplish the aim and objectives of this study, we reviewed secondary data of 751

adult kidney transplants performed in Charlotte Maxeke Johannesburg Academic Hospital
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(CMJAH) between 1984 and 2000, known as the cyclosporine (CYA) era . The first kidney

transplant in South Africa was performed in this centre and kidney transplants continue in

this centre to date. Also, CMJAH is among the three organ transplantation referral hospitals

in Johannesburg. Graft survival time, patient survival time and a pool of pre-transplant,

transplant and post-transplant variables were measured. However, this study focused on graft

survival because maximising the graft function is crucial for the patient and for the provider of

RRT (Rafique Moosa, 2004).

1.6 Scope of the study

The geographical scope of this study is restricted to patients 18 years and above that received

a single kidney transplant in CMJAH between 1984 and 2000. The scope of statistical analysis

will be limited to survival analysis techniques, which includes the non-parametric Kaplan-Meier

method, semi-parametric regression models (Cox regression model and extension of the Cox

model) and parametric survival models.

1.7 Structure of the dissertation

The remainder of the dissertation is structured as follows: Chapter 2 reviews literature on CKD,

ESKD, kidney transplant and applications of survival analysis methods in kidney transplant

studies. Chapter 3 reviews the theoretical basis of survival analysis. Chapter 4 presents

description of the dataset and the methodology used in the study. Results of the study are

presented in Chapter 5. Chapter 6 focuses on the discussion of the research findings followed

by summary, conclusion, recommendations and suggestion of areas for future research.
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Chapter 2

Review on kidney disease and

transplantation

In this Chapter, a summary of CKD, ESKD, kidney transplantation and factors shown to

influence graft survival after kidney transplant is discussed.

2.1 Background of chronic kidney disease

The global challenge of CKD remains on the increase, with high incidence in developing

countries compared to developed countries. Sub-Saharan Africa and Asia have the highest

rates of CKD worldwide. The prevalence of CKD is associated with poor socio-economic factors,

environmental factors and racial group. CKD is among the leading causes of death worldwide

with over 10% of the worlds population affected by this disease (Jha et al., 2012). CKD was

ranked the 27th major leading cause of death in 1990 by the world health organisation, by 2010,

it had risen to become the 18th leading cause of death (De Nicola and Zoccali, 2016). Low income

third world countries where access and affordability of quality health care is non-existent are

the epicentre of this global crisis (Ojo, 2014).

As previously mentioned (in Section 1.1), CKD is clinically established with respect to

glomerulus filtration rate (GFR) or level of urinary protein excretion. The progression of

CKD is characterised by five stages depending on the GFR as shown in Table 2.1 (Levey et al.,

2003), with Stage 1 being the mildest and Stage 5 being the most severe stage of CKD. At all
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stages of CKD, patients are inclined to (1) increased use of health care facilities, (2) increased

risk of cardiovascular disease and (3) premature death. Patients at Stage 5 CKD require RRT

either by kidney transplantation or continuous maintenance dialysis.

Table 2.1: Stages of chronic kidney disease defined by glomerular filtration rate.

Stage Description GFR (mL/min/1.73m2)
1 Kidney damage with normal or

increased GFR
≥ 90

2 Kidney damage with mild or decreased
GFR

60− 89

3 Moderately decreased GFR 30− 59
4 Severely decreased GFR 15− 29
5 Kidney failure < 15 (or dialysis)

On a global level, it is estimated that the number of people with ESKD is greater than 1

billion. However, there is limited access to maintenance dialysis or kidney transplantation.

Thus, leading to more than 1 million people dying yearly because of ESKD (Ojo, 2014).

In the next few decades, the prevalence of ESKD is projected to rise sharply due to ageing

population and increase in the prevalence of hypertension and diabetes (White et al., 2008).

Developing countries are expected to experience a greater rise in the prevalence of ESKD

compared to developed nations (Alebiosu and Ayodele, 2005). This rise in the incidence of

ESKD will challenge the economies of many developing countries because of the provision

of treatments to an increasing number of patients with ESKD. There is no global equity in

access to transplantation, especially in developing countries where there is poor infrastructure,

low affordability of immunosuppressive drugs and inadequate nutrition post-transplant (White

et al., 2008).

2.2 Overview of end stage kidney disease in Africa

There are inconsistent updates and/or inaccessibility of registries in most African countries,

thus leading to unreliable estimates of ESKD. However, there is a general belief that like the

major public health problems such as HIV/AIDS and tuberculosis, renal disease is 3-4 times

more severe in Africa compared to the western world (Naicker, 2009). Kidney disease imposes

a disastrous economic burden and human suffering in Africa. The onset of ESKD in Africa is at

around 20 years of age compared to 45 to 63 years of age in developed countries. The number

of cases of ESKD in Africa increase annually at 6-8% per year (Ojo, 2014). ESKD is considered
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a “death sentence” in Africa because less than 2% of patients receive RRT (Ojo, 2014). Moosa

and Kidd (2006) considered ESKD a major public health challenge in South Africa because

only a minority of patients enjoy access to RRT. Due to limited access to RRT in South Africa,

the Department of Health has set up formal guidelines to select potential patients for RRT

such as patients’age and health status. The annual cost of dialysis is estimated at USD 2500

to 20,000 per patient in sub-Saharan Africa. Current projections have shown that none of the

sub-Saharan African countries can afford the cost of treatment for patients with ESKD (Ojo,

2014). Thus urgent intervention in the sub-Saharan regions of Africa is paramount.

The principal cause of CKD in sub-Saharan Africa includes hypertension and diabetes. Veriava

et al. (1990) had reported hypertension to be the cause of ESKD in 34.6% of black, 4.3% of

white, 13.8% of Indian and 20.9% of mixed race groups based on statistics from the South

African Dialysis and Transplant Registry (SADTR). However, estimates from the registry

reflects only the total number of patients selected for RRT because the prevalence of ESKD in

South Africa is still not accurately known.

2.3 Kidney transplantation

Improved survival, quality of life and substantial cost-savings are associated with kidney

transplantation compared to dialysis. Studies supporting this view, which are based on the

outcomes of kidney transplant studies, conclude that transplantation is the best treatment

choice for patients with ESKD (Pitcher et al., 2006). However, this procedure is daunting

in developing countries because it involves complex and multidisciplinary interventions. The

agenda in many developed countries is to move all patients requiring RRT from dialysis to

kidney transplantation (White et al., 2008). The obstruction to this goal is the low rate

of kidney donation and thus the resulting shortage of donor kidneys. The need for donor

kidneys has necessitated expanding the potential donor pool. These include the increased use

of cadaveric or deceased kidneys, elderly donor kidneys, living relatives and unrelated donor

kidneys.

In addition to a shortage of donor organs, costs associated with transplantation are another

hindrance to kidney transplantation, because transplantation is unaffordable to most patients.

The transplant rate in sub-Saharan Africa has been estimated to be four patients per million

population (pmp) and the South Africa transplant rate is 9.2 patients pmp, which constitute
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mainly non-black patients due to factors including socio-economic status. Disparity in access

to renal transplants have been recognised globally with regards to ethnicity, socio-economic

factors, gender and region (Schold et al., 2005). For instance, in United State of America

(USA), white patients awaiting kidney transplant are two times more likely to receive a kidney

transplant compared to their black counterparts (Locke et al., 2008).

After a successful kidney transplant, the graft requires a lifetime of constant maintenance in

order to prevent rejection of the transplanted kidney. This is achievable through lifestyle

modifications and immunosuppressive chemotherapy. Additionally, innovation in surgical

techniques and improvement in immunosuppressive regimens have improve the success of kidney

transplantation. The conventional maintenance immunosuppression regimen used after kidney

transplant included azathioprine and cortisone until 1983, the use of cyclosporine in combination

with other therapy began after 1983. From 2001, other immunosuppressive drugs including

sirolimus and everolimus were added as part of the organ transplantation immunosuppressive

regimen (Pitcher et al., 2006).

2.4 A brief overview of factors that influence graft

survival

Kidney transplant studies focus mainly on ST graft survival time period and studies have shown

significant improvement in ST graft survival outcomes (Hariharan et al., 2000; Irish et al., 2010).

As a result of this, most kidney transplant studies have shifted focus to longer follow-up periods

as well as factors that could impact on LT graft survival outcomes. The five year graft survival

rate has been reported to be in the region of 82-87% (Wafa et al., 2011; Ghoneim et al., 2013;

Fabian et al., 2016). The 10 year graft survival rate has been reported to be in the range of

50% (Opelz, 2000). However, recent studies done by Ghoneim et al. (2013) and Fabian et al.

(2016), have shown that overall the 10 year graft survival rate after kidney transplantation is

in the region of 65.5% and 66.8% respectively. Wafa et al. (2011) has shown the 15 year graft

survival rate to be in the range of 40%.

Several prognostic factors influence graft survival rate after kidney transplantation.

Identification of these factors is important to public health because it will enable a more effective

transplant surgery, recovery and maintenance of the graft after transplant. Prognostic factors

captured in the study database are listed in Table 2.2. Discussion of these factors in this
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study is limited to statistical perspectives and not medical etiology perspectives. In context

with this study, the factors may be grouped into four, but overlapping, categories. Citations

under the ‘influence’ column reference are those studies that showed the corresponding factor

influences graft survival, based on survival model-based techniques. While citations under the

“no influence” column showed that the factors have no influence on graft survival.

Table 2.2: Study variables based on reviewed literature

Category Factor Influence No influence
Age Morris et al. (1999) McGee et al. (2010)

Moosa (2003) Jalalzadeh et al. (2015)
Diabetes Hariharan et al. (2002) Kim and Cheigh (2001)

Recipient Morales et al. (2012)
ESKD Courtney et al. (2008) Hariharan et al. (2002)

Wafa et al. (2011)
Ethnicity Malek et al. (2011) Butkus et al. (1992)

Fabian et al. (2016) Moosa (2003)
Age Morris et al. (1999) Emiroğlu et al. (2005)

González-Molina et al. (2014) Jalalzadeh et al. (2015)
Donor Ethnicity Locke et al. (2008)

Callender et al. (2009)
Type Nemati et al. (2014) McGee et al. (2010)

Fabian et al. (2016)
Blood group Takahashi et al. (2004) El-Husseini et al. (2005)

Donor-recipient Montgomery et al. (2012) Wafa et al. (2011)
Gender McGee et al. (2010)

Tan et al. (2012)
Surgical complication Ghoneim et al. (2013)

Transplantation Acute rejection Żukowski et al. (2014)
Koo et al. (2015)

Delayed graft function Hariharan et al. (2002) Boom et al. (2000)
González-Molina et al. (2014)

Factors associated with the recipient, include age, diabetes at transplant, ethnicity and

the cause of ESKD. In this study, causes of ESKD include renal disease, nephrectomy

and hypertension. Donor factors are those factors that are directly associated with the

characteristics of the kidney donor. The type of the kidney donated can be either a living

or a cadaveric kidney. The donor-recipient category describe factors that require the donor

and the recipient characteristics to be matched for transplantation. Donor-recipient blood

group match and gender match have been previously studied as possible prognostic factors

that influence the survivability of a graft after transplant. Lastly, prognostic factors associated

with transplantation include complications as a result of surgery, acute rejection of the graft and

delay in the function of the grafted kidney. Some examples of surgical complication (within the

context of this study) are nephrectomy, wound sepsis and ureteric. An acute rejection episode

11



2.4. A BRIEF OVERVIEW OF FACTORS THAT INFLUENCE GRAFT SURVIVAL

post-transplant could be clinical or histological.

Conventionally, survival analysis techniques are used to assess or predict risk factors of kidney

graft survival after transplantation. Factors listed in this literature review are the variables used

in this study. Based on the literature reviewed in Section 2.4, the impact of these factors on

graft survival remains controversial. For example, studies done by González-Molina et al. (2014)

and Jalalzadeh et al. (2015) resulted in contradictory findings with respect to the influence of

donor age on graft survival. The common survival analysis techniques used in all the reviewed

literature are the KM and Cox PH model. The assessment of linearity and PH assumptions

were not reported in most of these studies. Evaluation of interaction between risk factors was

also not reported in these studies. Alternative survival models such as parametric survival

models were also not considered in all these studies. In all the literatures reviewed in this

chapter, few of the authors considered a subset of their study variables in the adjusted Cox

PH model through variable selection, while most of them included all the study variables in

the multivariable Cox PH model. The various controversies surrounding the findings may be

associated to differences in data analysis techniques or the duration of the follow-up. Hence;

it is not unexpected that there are conflicting reports on the impact these factors have on

graft survival. Therefore, the need to robustly assess the impact of these factors by employing

variable selection methods, assessing the linearity and PH assumption and modelling the risk

factors using parametric survival models may be vital in describing the impact of these factors

on graft survival.
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Chapter 3

Theoretical review of survival analysis

This chapter presents the theoretical background of survival analysis techniques used in this

study. Basic quantities of interest and non-parametric methods are first presented in Section

3.1 before going into details of survival methods. The Cox regression model, which is the most

commonly used method in analysing risk factors of graft survival as presented in Section 3.2.

Extension of the Cox regression model (when the PH assumption is not tenable) is presented

in Section 3.3. Acceleration failure time models, which assume a specific distribution for the

survival time, are discussed in Section 3.4. The maximum likelihood method for parameter

estimation in survival models is presented in Section 3.5. Sections 3.6 through 3.8 include the

methods used for model development, assessment of model adequacy and comparison.

3.1 Basic concept and notation

3.1.1 Censoring

The key feature of time-to-event data is censoring of the survival times, i.e. incomplete

observation of the survival times. There are different scenarios that could result in censored

data, which includes Type I, Type II and Random censoring. In Type I censoring, the study

duration is fixed but the number of failures is random. In this instance, subjects are followed

simultaneously and failure is observed only if it occurs before the study ends, otherwise the

subject is censored. For Type II censoring, the study duration is random but the number
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of failures is fixed. For example, a sample of n subjects is followed simultaneously until a

predetermined number of failures r among the subjects has occurred (r < n). In random

censoring, subjects enter the study at random times, both the failure and censoring times are

random.

On the basis of the previously discussed scenarios that could lead to censoring in a time-to-event

data, censoring of observation could be right, left or interval. Right censoring occur when a

patient’s information is not complete at the right tail of the follow-up time axis. This could

be because the patient withdraws from the study before an event occurs, the patient died as

a result of other unrelated causes or the event did not occur by the end of the study. Left

censoring occurs when a patient has experienced the event of interest before being enrolled in

a study, i.e. the event is known to have occurred before the patient’s enrolment but the exact

event time is unknown. When the event time is known to have occurred within an interval but

the exact time is not known, interval censoring is said to occur. In this study, the patients

were not enrolled at the same time and observations were right censored. Right censoring is

illustrated in Figure 3.1. Some of the patients did not experience graft failure at the end of the

study (patients 3 and 8). Patients 2 and 9 were lost to follow up or withdrawn from the study.

Different times of entry in the study is also shown in this figure.

Figure 3.1: Illustration of right censoring features in a study to determine for example graft
survival post-transplant. (•) indicates that the graft of the patient did not fail and (×) is
indicative of graft failure.
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3.1.2 Survival time functions

Let T be a non-negative random variable associated with graft survival time (in context of this

study, it is time from transplant until graft failure), assuming time is a continuous variable.

Let the failure indicator (δj) be a random variable (0, 1) , which is indicative of censorship or

failure. δ = 0 if a graft did not fail up until the study ends or a patient died as a result of

other causes or the patient was removed from the study, and δ = 1 if the graft failed during the

follow up period. The distribution of T is usually characterised by some functions, namely, the

survival function, hazard function, probability density function and mean residual life at time t

(Collett, 2003; Klein and Moeschberger, 2005). In modelling survival data, one or more of these

functions are used to illustrate the survival distribution pattern. The distribution function of

T is given by

F (t) = P (T ≤ t),

which denotes the probability that the graft survival time is less than or equal to some specified

value of time, t.

Survival function

One of the basic quantities used to describe survival data is the survival function (S(t)); the

probability of graft surviving beyond time t.

S(t) = 1− F (t) = Pr (T > t) =

∫ ∞
t

f(u)du, (3.1)

where f(.) is a density function. Thus,

f(t) = −dS(t)

dt
, (3.2)

Different types of survival curves can be estimated from survival data but they all have common

properties. S(t) is monotonic, non-increasing function with

S(t) =

1 for t→ 0

0 for t→∞,
(3.3)
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The probability of graft surviving is equal to one at time zero and equal to zero at infinite time.

A survival function graph is referred to as a survival curve, the rate at which the curve declines

depends on the risks associated with the event of interest. An example of a survival curve is

shown in Figure 3.3, which was used to estimate the median survival time, although, other

quantities such as the percentiles can be estimated as well. Assuming there was no censoring

in this study, the survival function would be estimated as proportion of graft survival beyond

time t

Ŝ(t) =
number of grafts surviving beyond time t

total number of grafts at risk
. (3.4)

The survival function was estimated with a KM product limit estimator because there are

censored observations in this study. The KM estimator is similar to a non-parametric likelihood

estimator and is based on the product of a series of estimated probabilities. Suppose t1, t2, t3 . . .

denote the observed graft failure times, such that t1 < t2 < t3. Let d1, d2, d3 . . . denote the

number of graft failures that occurred in the study and let n1, n2, n3 . . . be the number of

patients’ grafts still at risk in the study. Assuming there are r graft failure times among the

patients (where r ≤ n), we denote the jth ordered graft survival time (in ascending order) as

tj, for j = 1, 2, . . . , r. We also denote nj (j = 1, 2, . . . , r) as the number of graft still at risk at

time tj and dj (j = 1, 2, . . . , r) as the number of graft failures at time tj. The constructed time

intervals is illustrated in Figure 3.2.

Figure 3.2: Illustrating different graft failure and censoring times.

t0 denotes the time origin, which ends just before t1. The first constructed interval begins

at time t1 (time of the first graft failure) and ends just before t2. The figure also shows the

second interval (t2 − t3) and the censored time c. The KM estimator of the survival function

at any time t, in the kth constructed time interval (t(k) to t(k+1)) is the estimated probability

of surviving through the interval and all the preceding intervals. This leads to KM estimates
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of survival function, which is given by

Ŝ(t) =
k∏

tj=1

(
nj − dj
nj

)
,

for t(k) ≤ t < t(k+1), k = 1, 2, ..., r, with Ŝ(t) = 1 for t < t(1) and where t(r+1) is taken to ∞.

Graphically, the KM curve is obtained by plotting the survival proportion against time. The

KM survival curves for two or more groups are used to gain insight in the survival differences

between the groups. The log-rank test (Mantel, 1967) is mainly used to test the null hypothesis

of no difference i.e. H0 : S1(t) = S2(t) in the estimated survival functions while the alternative

hypothesis states the opposite i.e. Ha : S1(t) 6= S2(t).

Figure 3.3: A typical survival function, showing the probability of graft failing at any time t.
The graft median survival time is denoted by t0.5.

Hazard function

The hazard function or the instantaneous rate of failure is the chance of graft failure occurring

in the next instant of time, given that the graft has survived up to time t. Hazard function

(h(t)) is given as

h(t) = lim
∆t→0

{
Pr (t ≤ T < t+ ∆t|T ≥ t)

∆t

}
. (3.5)
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The relationship between equation (3.1),(3.2) and (3.5) can be expressed in the form

h(t) =
f(t)

S(t)
=

f(t)

1− F (t)
=
−d logS(t)

dt
,

where

S(t) = exp(−H(t)) = exp

[
−
∫ t

0

h(u)du

]
.

The quantity

H(t) =

∫ t

0

h(u)du = − logS(t), (3.6)

is the cumulative hazard function, which ranges from zero to infinity. Note when t = 0, H(t) = 0

and S(t) = 1 and when t = ∞, H(t) = ∞ and S(t) = 0. The slope of the H(t) was used to

understand the shape of the hazard function and identify the most appropriate survival model

in this study. The KM estimator was used to estimate H(t) in this study and the relationship

is shown in equation (3.6). The hazard function can take several shapes (Figure 3.4). For

example, one may assume that the hazard function for graft failure after kidney transplant is

constant (black dot line), decreasing (black line), increasing (green line), bathtub-shape (red

line) or hump-shape (blue line).

Figure 3.4: Illustrating several shapes of hazard function.
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Mean and median lifetime

Let µ denote the mean or the expected value of graft survival time T , by definition µ is the

integral of survival function, that is

µ = E(T ) =

∫ ∞
0

S(t)dt.

The median survival time is the time when 50% of the patients under study are expected to

survive. In order words, the chance of surviving beyond this time is 50% (Figure 3.3). This is

given by the value t0.5, so that

S(t0.5) = 0.5

In practice, the median survival time may not fall at exactly 0.5. In such a situation, the

estimated median survival time (t̂(50)) is the smallest time for which the estimated survival

function value is less than t0.5. So that

t̂(50) = min
{
t | Ŝ(t) < 0.5

}
,

where t is the observed survival time. The median survival time is preferred to the mean

because the mean survival time is usually affected by censoring in the data.

3.2 The Cox proportional hazard model

Modelling survival data enables the study of the effects of different covariates on the hazard

function, as well as the extent to which other confounding factors affect the underlying hazard

function. The semi-parametric Cox proportional (PH) or regression model introduced by D.R.

Cox (David, 1972) is widely used in modelling survival data and is expressed as

h(t,X) = h0(t) exp (β1X1 + β2X2 + ...+ βpXp) = h0(t) exp(β
′
X), (3.7)

where h0(t) is the baseline hazard function and β is a vector of regression coefficients expressing

quantitatively the effect of each of the explanatory variables in X. The hazard function at a

specific time depends on the values of p explanatory variables (X1, X2, · · ·, Xp), whose effect

is measured by the respective values of the estimated coefficients (β1, β2, · · ·, βp). The baseline
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hazard represents the hazard value when all the explanatory variables are equal to zero. Cox

proposed a multiple linear regression model, in which the explanatory variables are connected

to the hazard through a log transformation with the term h0(t) being the model intercept that

changes over time. The non-parametric part of the model assumes no particular form for h0(t)

but makes assumptions regarding the effect of the explanatory variables on the hazard, which

is the parametric part of the model.

Other quantities such as the survival function can be obtained from the Cox PH model. The

survival function is informative but underused in the Cox regression model. It is used in the Cox

PH model survival probability predictions and in full parametric survival models (Bradburn

et al., 2003). The survival function under the Cox PH model is

S(t,X) = {S0(t)}exp(β
′
X) ,

where S0(t) is the baseline survival function. Survival probability prediction for patients with

covariates (X1, X2, · · ·, Xp) are estimated easily once the baseline survival value at any given

point in time is obtained.

The Cox regression model is similar to the logistic regression model in the sense that the

effect of the explanatory variables acts multiplicatively on the baseline hazard function at any

specific period (Vittinghoff et al., 2011). This leads to the Cox PH model key assumption,

which is that the hazards of any two individuals are in constant proportion. The assumptions

of proportionality between two subjects can be expressed in the form:

HR =
h(t,X i)

h(t,Xj)
=
h0(t) exp(β

′
X i)

h0(t) exp(β
′
Xj)

=
exp(β

′
X i)

exp(β
′
Xj)

= exp[β
′
(X i −Xj)],

where X i and Xj denote the covariates vectors for the two subjects. This implies that the

hazard ratio (HR) for two subjects with sets of predictors is independent of the survival time,

but dependent on the predictor values. The proportionality in this assumption is the hazard

ratio exp(β).
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3.3 Extension of the Cox proportional hazard model

In the Cox PH model defined in equation (3.7), we assume that all the covariates under study

have a constant effect over time. The rationale for considering an extension of the Cox PH

(Cox regression) model is when graphical statistical tests indicate that the PH assumption is

violated for any or some of the study covariates, whose influence on the outcome variable is

significant (Kleinbaum and Klein, 2006). The methods used in this extension are the stratified

Cox regression model and Cox regression model with time by covariate interaction.

3.3.1 The stratified Cox regression model

In the stratified Cox regression model, the estimate of the covariate effect on the outcome

variable is considered not to be the primary interest. That is the covariate is stratified-on and

the Cox regression model is employed within stratum using other covariates that satisfied the

PH assumption. It should be noted that controlling a variable that does not satisfy the PH

assumption by stratification automatically excludes the variable from a set of predictors. This

means that its effect on the outcome cannot be directly estimated in the stratified model.

However, its effect is incorporated within stratum-specific baseline hazard functions. The

hazard function for the stratified Cox regression model with no-interaction is given by:

hg(t,X) = h0g(t) exp(β′X),

where g=1, 2, ..., G strata defined from the variable used for stratification. The baseline hazard

function h0g(t) differs across the strata, indicating that the survival curve for each stratum will

be different. The β is a vector of regression coefficients. Under the stratified Cox regression

model, the proportional hazard assumption still holds for patients in the same gth stratum

because they have the same baseline hazard function. On the other hand, the hazards between

patients from different strata may not be proportional because their baseline hazard may not be

the same. The estimated coefficients of the predictors are assumed to have common values for

each stratum g (no-interaction between the predictors and the stratified variable). To illustrate

this, assuming a predictor ‘gender’ violates the PH assumption and another predictor ‘age’

satisfies the PH assumption. The coefficient β for age is expected to be the same for each of
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the gender strata (male and female) if the assumption of no-interaction is feasible. To verify

this assumption, the interaction model

hg(t,X) = h0g(t) exp{β1gX1 + β2gX2 + ...+ βpgXp}

needs to be fitted. The subscript g in each of the regression coefficients indicates that the

regression coefficients vary across the strata. The likelihood ratio (LR) test is used to confirm

the no-interaction assumption by comparing the log-likelihood (LL) statistics for the interaction

and no-interaction models.

LR = −2LLno interaction − (−2LLinteraction).

Although the stratification model is more straight forward in controlling for non-proportionality,

this model is associated with some drawbacks i.e. loss of power due to its construction and the

effect of the stratified covariate on the outcome is not estimated.

3.3.2 Cox regression model with time-varying covariate effect

A covariate is said to have a time-varying effect if the HR varies over time, i.e. the effect of

being a male may strongly affect graft survival immediately after kidney transplantation but

decreases afterwards. This is different from time-varying covariates (covariate with non-fixed

value), i.e. a patient’s blood pressure level post-kidney transplant could fluctuate below or

above 140 mmHg. However, a study variable may exhibit both time varying and non-constant

effect over time. More details on time-varying effect or time-dependent covariate is described

in Hosmer Jr and Lemeshow (1999). In this extension of the Cox regression model, we focused

on time-independent covariates with non-proportional hazard or time-varying covariate effects

because of all the explanatory variable values in this study are fixed over time. Assuming two

covariates X1 and X2, with X2 being the covariate with time-varying effect, equation 3.7 can

be expressed in the form:

h(t,X(t)) = h0(t) exp{β1X1 + β2X2 + β3X2g(t)},

where the product term involving the covariate with a time-varying effect and some function
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of time is defined by x2g(t), and g(t) is some function of time for the time-varying covariate

effect. In this modification, the function of time g(t) for the covariate that does not satisfy the

PH assumption takes on the value t. This indicates that for the time-independent covariate

that violates the PH assumption, its main effect and interaction with t are included in the

model. Further, the Heaviside function can be introduced in the Cox model e.g. g(t) = 1, if

graft survival time is at or greater than a specified survival time, otherwise g(t) = 0. Inclusion

of the product term of the non-proportional hazard covariate with time is used to check the

PH assumption, assess the effect of the non-proportional covariate and aids in understanding

how the HR changes over time.

3.4 Parametric survival models

Sections 3.2 and 3.3 focused on the discussion of the semi-parametric survival model. The

rationale for employing this model was to avoid compete specification of the hazard function.

Sometimes, the survival time distribution through previous research or exploratory data analysis

is known to follow a particular parametric distribution, which imposes a specific parametric

form on the baseline hazard (h0(t)). In such a scenario, addressing the objective of the analysis

using a full parametric form may provide estimates that are more clinically meaningful. In this

section, the use of parametric models in survival analysis is presented. A parametric survival

model assumes a specific distribution for the survival time and the regression coefficients are

estimated with the method of full maximum likelihood. Once the f(t) for the survival time

is specified, the hazard function and the corresponding survival function can be obtained.

Parametric models such exponential, Weibull, log-normal, log-logistic and generalised gamma

distribution are discussed in this section. These models are presented in the accelerated failure

time metric (AFT). AFT model is an alternative to the Cox regression model, especially when

the PH assumption is not tenable.

In the semi-parametric model, the effect of the covariates is proportional and act multiplicatively

on the hazards and the covariates increase or decrease the hazards. In contrast, the effect of

covariates in an AFT model is constant and act multiplicatively on the survival times, and the

covariates accelerate or decelerate the occurrence of events of interest (Klein and Moeschberger,

2005). Suppose X1, X2, ..., Xp denote the p explanatory variables for each patient in the study,

the AFT model assumes that
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S(t,X) = S0 {t/ exp(η)} , (3.8)

where S0(t) represents the baseline survival function and η is the linear component of the AFT

model, which is given as η = α1X1 + α2X2 + ... + αpXp. The factor exp(η) indicates the

time scale can only change from the baseline time scale if there is change in the values of the

explanatory variables. It is known as the measure of association, as it helps to evaluate the

relationship between the explanatory variables and the survival times. In terms of the random

variables associated with two individuals survival times, the AFT assumption can be written

as T1 = ηT2. The hazard function under this model is given by:

h(t,X) = e−ηh0(t/eη). (3.9)

The AFT model assumes the relationship between the explanatory variable and the log of

survival time is linear. A plausible way to represent this relationship is through the equation

Y = log T = µ+ α1X1 + α2X2 + ...+ αpXp + σε = µ+α
′
X + σε, (3.10)

where µ is the model intercept, α is a vector of regression coefficients quantitatively expressing

the impact of each explanatory variable on the survival time. A negative value of α indicates

that survival time increases with decreasing value of the explanatory variable, and vice versa.

The exp (α
′
X) is usually referred to as the acceleration factor. σ is the scale parameter and ε

is the error term, which is assumed to have a specific distribution such as a logistics, extreme

value or normal distribution. The deviation of log T from linearity is modelled by the error

term. The distribution T is based on probability distribution of ε, and the survival function of

T can be obtained from the survival function of the distribution of ε.

S(t) = P (T > t) = P (log T > log t),
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from equation (3.10)

S(t) = P (µ+α
′
X + σε > log t),

= P

(
ε >

log t− µ−α′
X

σ

)
,

= Sε

(
log t− µ−α′

X

σ

)
. (3.11)

The cumulative hazard function of T based on the distribution of ε is given by:

H(t) = − logSε

(
log t− µ−α′

X

σ

)
,

= Hε

(
log t− µ−α′

X

σ

)
,

where Hε(ε)= − logSε(ε) is the cumulative hazard function of ε. The pth percentile and the

hazard function of the distribution of ε can also be obtained. The estimation of AFT model

parameters is discussed in Section 3.5. For easy interpretation of the estimated coefficient from

the AFT model, the estimated coefficient is exponentiated (exp(α)), which is known as the

time ratio (TR). This time ratio is the effect size under AFT model and it is reported in a

similar manner as the estimated hazard ratio (HR) under the PH model. For example, TR > 1

indicates the the covariate prolongs or slows down the time to graft failure and TR < 1 for a

covariate, shows that an earlier occurrence of graft failure is more likely.

3.4.1 The exponential distribution

The exponential distribution is a one-parameter distribution and assumes that the hazard is

constant with respect to time. In the context of this study, a constant hazard means that the

hazard of graft failure at any time post-kidney transplant remains the same. Under the AFT

model, the probability distribution function is

f(t) = λ exp(−λt),
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for λ > 0, t > 0. The survival function is given by

S(t) =

∫ ∞
0

f(u)du = exp(−λt), t > 0,

and the hazard function is

h(t) =
f(t)

S(t)
= λ,

where λ is a positive constant, which is estimated when the exponential model is fitted to

an observed data. A constant hazard function relative to increasing survival time indicates

a model based on the exponential distribution (Figure 3.4). Although Gore and Gore (1983)

has noted that a constant hazard is improbable in graft failure post-kidney transplant, the

exponential distribution is considered in this study because it is frequently employed as a

parametric alternative to the Cox PH model in analysing survival data. This model is the

simplest amongst parametric survival models. If the random variable T has an exponential

distribution then the random variable ε has an extreme value distribution.

3.4.2 The Weibull distribution

The Weibull distribution is a widely used distribution in survival analysis because of its relative

simplicity and flexibility (Klein and Moeschberger, 2005). Although the Weibull model is

reported in studies done by Montaseri et al. (2016) and Nikpour et al. (2016) as the best model

in survival analysis of hamodialysis and gastric cancer patients, we considered the Weibull

model in this study because of its flexibility in summarising survival data. Suppose T in this

study has a Weibull distribution with scale and shape parameters λ and γ, then the survival,

hazard and the density functions of a W (λ, γ) distribution is given by:

S(t) = exp(−λtγ), h(t) = λγtγ−1, f(t) = λγtγ−1 exp(−λtγ),

for γ, λ > 0, t > 0. The Weibull model is suitable enough to accommodate constant hazard

(γ = 1), increasing hazard (γ > 1) and decreasing hazard function (γ < 1) as shown in

Figure 3.4. Thus, the shape and the flexibility of the distribution depends solely on the values
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of the shape parameter. The exponential distribution assumes a constant hazard, which is

rarely tenable in practice. The hazard function of the Weibull distribution (which depends on

two parameters) is more general than that of the exponential distribution. The exponential

distribution is a special case of the Weibull distribution with γ = 1. Therefore, when γ = 1,

the hazard function and the survival times of Weibull distribution have a constant value and an

exponential distribution, respectively. The effect of the explanatory variables can be modelled

either on the survival times or the hazard with the Weibull distribution. Assume X1, X2, ..., Xp

are the recorded explanatory variables for each of the n patients; under the Cox PH model, the

hazard of graft failure at time t for the patients is

h(t) = exp(β1X1 + β2X2 + ...+ βpXp)h0(t). (3.12)

If the values of the explanatory variable are equal to zero, then h(t) = h0(t), and the baseline

hazard function for these patients is h0 = λγtγ−1. Substituting the baseline hazard in equation

(3.12), the hazard function under the Weibull PH model is

h(t) = exp(β
′
X)λγtγ−1, (3.13)

where β
′
X represents β1X1 + β2X2 + ...+ βpXp. Equation (3.13) shows that the graft survival

time of these patients has a Weibull distribution with scale and shape parameters λ exp(β
′
X)

and γ, respectively. The covariate effects in the model only alter the scale parameter of the

Weibull distribution rather than the shape parameter. This shows the proportional property

of the Weibull distribution and the survival function under PH model is given by

S(t) = exp
{
− exp(β

′
X)λtγ

}
. (3.14)

Comparing equations (3.7) and (3.13), h0(t) is unspecified in equation (3.7) and the regression

coefficients are the only parameters to estimate. In equation (3.13), apart from the regression

coefficients, the scale and the shape parameters are estimated in the model, which fully specify
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the hazard parametrically. Statistical software such as R, SAS and Stata fit the Weibull AFT

model. But this model can be reparametrised to a PH model as shown below. If the baseline

hazard h0(t) = λγtγ−1, then the hazard function of the Weibull distribution under AFT model

(equation 3.9) is

h(t) = e−ηλγ(e−ηt)γ−1 = (e−η)γλγtγ−1, (3.15)

where η = α1X1 + α2X2 + ... + αpXp. If h0 = h(t), Then it follows that the graft survival

times has a W (λe−γη, γ) or W (λexp(−γα′
X), γ) distribution. This shows the AFT property

of this distribution. Recall the survival times under the Weibull PH model is specified to

have W (λ exp(β
′
X), γ) distribution (equation 3.13). This indicates that when the estimated

coefficient for the Weibull AFT model is multiplied by −γ, the corresponding β-coefficients

under the Weibull PH model is obtained. If the survival time of a random variable T has a

Weibull distribution, then the random variable ε has an extreme value distribution (also known

as Gumbel distribution). The survival function of the extreme value distribution is given by

Sε(ε) = exp(−eε),−∞ < ε <∞.

From equation (3.11), the survival function of the random variable T under Weibull AFT model

is given by

S(t) = exp

{
− exp

(
log t− µ−α′

X

σ

)}
,

= exp
(
−λt1/σ

)
. (3.16)

where λ = exp
{
−(µ+α

′
X)/σ

}
. Other functions such as the hazard function and the

cumulative hazard function can be obtained from the survival function. Comparing the survival

functions under the Weibull PH (equation 3.14) and AFT model (equation 3.16), it is shown

that
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λ = exp(−µ/σ), γ = σ−1,β = −α/σ.

3.4.3 The log-normal distribution

A random variable T associated with graft survival time is said to be log-normally distributed if

log(T ) is normally distributed. The Log-normal distribution is characterised by two parameters,

the mean (µ) and standard deviation (σ). The log-normal distribution is popular in the

analysis of time-to-event data because of its connection to the normal distribution (Klein and

Moeschberger, 2005). The log-normal distribution among other parametric models was shown

to be more efficient in describing kidney transplant data (Hashemian et al., 2013). In the

log-normal distribution, the random variable takes only positive values and the shape of the

distribution is skewed. The probability density function is

f(t) =
exp

{
−1

2

(
log t−µ
σ

)2
}

t(2π)1/2σ
= φ

(
log t− µ

σ

)/
t,

for σ > 0, t > 0, φ(.) is the density function of a standard normal variable. The survival

function is

S(t) = 1− Φ

(
log t− µ

σ

)
, (3.17)

where Φ(.) is the cumulative distribution function of a standard normal distribution. The

hazard function is

h(t) =
φ
(

log t
σ

)
σt
{

1− Φ
(

log t
σ

)} .
In the log-normal model, hazard is 0 at t = 0. It increases to a peak and then decreases

towards 0 as t becomes large (Figure 3.4). Assuming T has a log-normal distribution, the
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baseline survival function is S0(t) = 1−Φ
(

log t−µ
σ

)
. The survival function under AFT model is

given by

S(t) = S0(e−ηt)

= 1− Φ

(
log t− η − µ

σ

)
.

Therefore, the graft survival times of these patients have log-normal distribution with

parameters µ + η and σ. This shows the AFT property of the log-normal distribution but

without a PH property. If T is log-normally distributed, ε in equation (3.10) has a standard

normal distribution. Thus the survival function of ε is given by Sε(ε) = 1−Φ(ε). The cumulative

hazard and other functions can be obtain from the survival functions.

3.4.4 The log-logistic distribution

The log-logistic distribution is an alternative model when the Weibull distribution does not

give a satisfactory model fit for survival times. The hazard function for the log-logistic model

is hump-shaped (Figure 3.4), which (in context of this study) shows that the hazard of graft

failure for the patients in this study increases immediately after transplant, up to certain time

and then decreases with time as the their body get used to the new organ (uni-modal hazard).

The distribution is similar to the log-normal distribution, but the hazard function and the

survival function of the log-logistic distribution have a closed form. Adelian et al. (2015) noted

(although not a kidney transplant study) that log-logistic is a better model in identifying risk

factors associated with survival post-liver transplantation. When a the random variable T has

a log-logistic distribution with scale (θ) and shape (k) parameters, the f(t) is given by

f(t) =
eθktk−1

(1 + eθtk)2
,

for 0 ≤ t <∞, k > 0. The survival function
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S(t) =
{

1 + eθtk
}−1

, (3.18)

and the hazard function corresponding to the survival function is given by

h(t) =
eθktk−1

1 + eθtk
.

If k ≤ 1, the hazard function of a log-logistic model decreases monotonically. Conversely, if

k > 1, the hazard function at 0 time is equal to 0, then increases to a peak and decrease as

time approaches infinity. If the baseline hazard follow a log-logistic distribution, the hazard

function in equation (3.9) is

h(t) = e−ηh0(e−ηt)

=
e−ηeθk(e−ηt)k−1

1 + eθ(e−ηt)k

=
eθ−kηktk−1

1 + eθ−kηtk
,

where the linear combination of the p explanatory variables is denoted by η. This shows that

the survival times has a log-logistic distribution with θ−kη and k parameters. If ε has a logistic

distribution, the survival function of ε is Sε(ε)=
1

1+eε
. The survival function of T can be written

using equation (3.11)

S(t) =

{
1 + exp

(
log t− µ−α′

X

σ

)}−1

. (3.19)

Using equation (3.18) when T has a log-logistic distribution, its survival function with θ − kη
and k parameters is

S(t) =
1

1 + eθ−kηtk
. (3.20)
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The parameters µ and σ in equation (3.19) can be expressed in terms of the parameters θ and

k in equation (3.20). Specifically, θ = −µ/σ, k = σ−1. µ and σ are usually the estimates

produced in most statistical software. Other functions such as the hazard function and the

cumulative hazard function can be obtained if T has a log-logistic distribution (Collett, 2003).

There are only three equivalent ways to model the effect of the explanatory variables on survival

with the log-logistic distribution. The first model is the linear model specified in equation (3.10).

The second representation of a log-logistic model is to assume the effect of the explanatory

variables act to increase or decrease the odds of survival by a proportional amount Another

way is to represent the regression model as an AFT model (equation 3.8) with a log-logistic

baseline survival function. The three representations show that log-logistic model can only be

represented either as an AFT model or proportional odds model.

3.4.5 The gamma distribution

The gamma distribution considered in this study is the generalised gamma distribution. The

pdf of the generalised gamma distribution with three parameters is given by

f(t) =
αλαγtαγ−1 exp[−(λt)α]

Γ(γ)
,

for t > 0,γ > 0,λ > 0 and α > 0. The survival and the hazard functions of this distribution do

not have a closed form. The generalised gamma distribution is not commonly used in modelling

lifetime data because of its complexity. However, this distribution can be appropriate in

modelling lifetime data such as kidney transplant data because the Weibull and the log-normal

distribution are special cases of gamma distribution. The exponential distribution is also a

special case of this distribution (when α = γ = 1). The generalised gamma distribution

reduces to a Weibull distribution when γ = 1 and log-normal when γ → ∞. Generally, this

model is rarely used as the final model. However, it is used to select an appropriate model for

the data. Assuming generalised gamma distribution is an appropriate model in this study, it

can be used to discriminate between the exponential, Weibull and log-normal models because

they are nested in the generalised gamma model.
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3.5 Fitting the semi-parametric and parametric survival

models

3.5.1 Estimation for the Cox regression model

In order to fit the Cox PH model specified (equation 3.7), we need to estimate the baseline

hazard function h0(t) and β-coeffients. The β′s are estimated first and are used to derive the

estimates of h0(t). Suppose that t1, t2, ..., tn is the observed graft survival times for n patients.

We assume no ties between the observed graft survival times. Let t(1) < t(2) < ... < t(r) be the

ordered graft failure times and Xj denotes the pth covariate associated with a patient whose

graft failure time is tj. The risk set R(tj) at time tj is defined as the set of patients whose

grafts are still functioning and are not censored at a time just prior to tj. Cox presented

a method known as partial likelihood in estimating the unknown parameters of the Cox PH

models (David, 1972; Cox, 1975). This method is based on the conditional likelihood of time

to event of interest, which is independent of parameters that are not of interest and also works

efficiently when the covariates in the model are time-dependent. Details of the computation of

the partial likelihood are discussed in details in Collett (2003).

The partial likelihood can be written as

L(β) =
r∏
j=1

{
h0(t(j)) exp(β

′
Xj)∑nj

l∈R(tj)
h0(t(j)) exp(β

′
Xj)

}
=

r∏
j=1

{
exp(β

′
Xj)∑nj

l∈R(tj)
exp(β

′
X l)

}
. (3.21)

In the context of this study, the numerator of the likelihood function depends on patient

information whose graft fails at time tj and the denominator comprises of all patients with

functioning grafts who are still at risk of graft failure at time tj. The LL function for equation

(3.21) is given by

logL(β) =
r∑
j=1

βXj −
r∑
j=1

ln

 nj∑
l∈R(tj)

exp(βX l)

 .

Maximising equation (3.21) gives the maximum likelihood estimates in the Cox PH models.
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Kalbfleisch and Prentice (2011) suggested a number of approaches for modifying the partial

likelihood function method to take tied observations into account. The regression coefficient

β in the extended Cox models are also obtained using the partial likelihood function. This is

identical to the partial likelihood defined in equation (3.21) i.e. for the stratified model the

partial likelihood L = L1×L2×, ...,×LG, the product of each stratum partial likelihood. That

is L(β) =
∏G

g=1 Lg(β).

3.5.2 Estimation for the parametric models

Under non-informative censoring, all parametric distribution models can be fitted using the

appropriate maximum likelihood method of estimation (Klein and Moeschberger, 2005). For

example, the contribution of patient i with graft failure at time tj to the likelihood function is

the product of hazard and survival function

Lj = f(tj) = S(tj)h(tj),

where f(tj) is the density function from the start of the observation to the graft failure time.

For a patient with a functioning graft up until the end of the study (censored patient), its

contribution to the likelihood function is

Lj = S(tj),

which is the probability of the event P (T > t). The two expressions for both patients with

graft failure and censored graft can be written in a single expression

L =
n∏
j=1

{f(tj)}δj {S(tj)}1−δj =
n∏
j=1

{h(tj)}δj S(tj), (3.22)

where δj denotes an indicator variable, which takes the value zero if the graft survival is censored

or unity if the graft survival time is not censored. The LL is given by

l =
n∑
j=1

{δj log h(tj)−H(tj)} , (3.23)

where H(t) is the cumulative hazard. The unknown parameters are estimated by maximising

equation (3.23). The likelihood function in fitting the AFT model is best derived from the
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log-linear AFT model. From equation (3.11), let zj = (log tj − µ−α
′
X), then S(tj) = Sεj(zj).

After differentiating with respect to t, the likelihood function in equation (3.22) can be written

under the AFT model as

L(α, µ, σ) =
n∏
j=1

(σtj)
−δj
{
fεj(zj)

}δj {Sεj(zj)}1−δj .

The LL function is

l(α, µ, σ) =
n∑
j=1

{
−δj log(σtj) + δj log fεj(zj) + (1− δj) logSεj(zj)

}
.

Methods such as the Newton-Raphson procedure is used to maximise the LL function in order

to obtain the maximum likelihood estimates of the unknown parameters µ, σ and α.

3.5.3 Hypothesis testing and confidence interval

Wald test, likelihood ratio test and score test are usually employed to test the hypothesis of no

effect for any predictor variable in the model, holding other terms fixed. For example, the null

and alternative hypotheses for the Cox PH model are

H0 : β = 0, H1 : β 6= 0

A Wald test statistic is given as

z2 =

(
β̂

se(β̂)

)2

, (3.24)

where z2 ∼ χ2
1, if H0 is true. The parameter of interest in the Cox PH model is the HR = exp(β̂)

and the standard error of the estimated parameter as specified in equation (3.24) is used to

construct a 95% confidence interval (CI) for the true estimated HR.

[L,U ] =
(

exp
{
β̂ − 1.96se(β̂)

}
, exp

{
β̂ + 1.96se(β̂)

})
.

Similar to the Cox PH model, the value of the Wald test statistic is also used to test the null

hypothesis that α = 0 in parametric models. The standard error of the estimated parameters
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(α̂) in parametric models is also used to obtain 95% CI for the unknown α-parameters in

parametric models.

3.6 Model development

A model building procedure reduces the number of covariates until the most parsimonious

model is achieved. This procedure summarises the data and results, with respect to statistical

significance, confounding factors and important factors (Bursac et al., 2008). Among the

statistical procedures of model building, variable selection is a key procedure that serves to

efficiently select the best subset of pre-specified covariates that describe the study data or

graft survival in the simplest way. This procedure tends to identify covariates on which the

hazard function depends, remove redundant covariates (which could add noise to the estimated

quantities of interest), reduce cost of modelling unnecessary predictors and check for collinearity

among the covariates.

Several approaches have been proposed to select predictors for inclusion in a model. Most of

these procedures are mechanical (e.g. forward and stepwise method of variable selection) and

have few limitations. Studies including Mundry and Nunn (2009) demonstrated the weakness

of using a stepwise procedure in model building. From the result of a simple simulation study,

the authors concluded that the null hypothesis testing method based on a stepwise procedure

inflates the rate of Type I error (the probability of rejecting null hypothesis, when it is true).

Mazerolle (2006) reported on the superiority of using Akaike’s information criterion (AIC) in

model selection (variable selection) over stepwise procedure. Collett (2003) described the use

of automatic procedures, such as the stepwise procedure, is usually driven by large number of

predictors.

Most modern penalisation procedures such as Lasso and ridge regression have been extended

from linear regression to survival analysis (Tibshirani et al., 1997; Gui and Li, 2005). These

procedures add a penalty term to the log-likelihood function to control for over-fitting.

Hosmer Jr and Lemeshow (1999) considered the purposeful variable selection method (why

studying survival data), within which the data analyst have complete control at each step

of the model building. The purposeful method is comparable with the penalised procedures

(such as Lasso) because they provide prediction accuracy and the most parsimonious model

that describes the study data. However, the Lasso procedure automatically selects significant
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covariates and shrinks the coefficients of non-significant covariates to exactly zero. Lasso

method also performs better when covariates number p is greater than the patient size n. Unlike

the Lasso procedure, the purposeful method gives the analyst the opportunity to carefully

scrutinise the resulting model (at each stage of model building procedure) prior to reporting the

final best model. In addition, the purposeful method starts with univariable analysis and retains

important confounding covariates in the final model. However, the model building procedure

becomes more complex with the purposeful method when there are too many predictors. The

purposeful method has been applied in several survival studies (Dicken et al., 2006; Thabut

et al., 2008; Assassi et al., 2009), and Bursac et al. (2008) comparatively showed that this

procedure leads to significant variables, confounding factors and a richer model.

Generally, several strategies for model building are reported in literature with the rationale

being to select as less number of covariates as possible. However, studies have debated that

model building procedure involves a combination of “science, statistical methods, experience

and common sense”. These studies also showed that no method of variable selection is better

than any other; hence, their results are comparable. (Murtaugh, 2009; Hosmer Jr et al., 2013;

Zhang, 2016)

3.7 Semi-parametric and parametric survival model

adequacy assessments

To draw a valid inference from any fitted model, the adequacy of the model can be evaluated

using both graphical and residual-based methods. These methods are used to identify possible

problems with the model fit. A number of residual-based procedures for verifying model

adequacy are discussed in Hosmer Jr and Lemeshow (1999) and Collett (2003).

3.7.1 The cumulative hazard plot

Checking the assumptions of PH is important prior to the use of a Cox PH model and

its parameter interpretations. Once the PH assumptions are met, the statistical estimates

are consistently comparable (Wilson, 2014). Studies describing the assessment of the PH

assumptions have provided guidance on how to use methods such as the cumulative hazard

plot also known as the log[− log(survival)] or the log-log plot (Bradburn et al., 2003). The
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log[− log(survival)] plots is preferred to other hazard plots, because the plot gives a definitive

pattern that enables a logical conclusion on the proportionality assumption (Bradburn et al.,

2003). Recall the Cox PH model (equation 3.7), the assumption of proportionality under this

model also implies that

H(t) = H0(t) exp(β
′
X), (3.25)

where the quantity H(t) and H0(t) denote the cumulative hazard and the cumulative baseline

hazard functions, respectively. The assumption also holds when the logarithm of equation

(3.25) is taken.

logH(t) = logH0(t) + β
′
X. (3.26)

Using equation (3.6), equation (3.26) can be expressed as log [− logS(t)] = log [− logS0(t)] +

β
′
X. If the Cox PH model is the appropriate model, the plot of log Ĥ(t) or equivalently

log[− log Ŝ(t)] against log(t) should be roughly parallel. The proportionality confirmed with

the cumulative hazard plot may not be valid when adjusting for other predictors because the

cumulative hazard plot is a univariate method. Hence, other statistical methods could be used.

3.7.2 The scaled Schoenfeld residuals

Grambsch and Therneau (1994) proposed a scaled version of Schoenfeld residuals, which is

symmetrical around zero, detects departure from the fitted model, is more effective and straight

forward with respect to computation. For the ith patient, the vector of Schoenfeld residuals is

rPi = (rP1i, rP2i, ..., rPpi)
′ and the component of this vector is the scaled Schoenfeld residuals

denoted by

r∗Pi = rvar(β̂)rPi

where (in context of this study) r could be defined as the number of graft failures among the

n patients, the quantity var(β̂) is the estimated variance for the model parameter. The null

hypothesis of this test is that the scaled Schoenfeld residuals are uncorrelated (independent of

time) and the p-value is based on a chi-squared test. All covariates in the model are evaluated

and the proportional assumption is rejected if, for any covariate, p < 0.05. A graph of the

residuals for each covariate can be plotted for additional verification.
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3.7.3 The Cox-Snell residuals

The Cox-Snell residual is widely used in survival data analysis to evaluate the overall fit of a

model (Klein and Moeschberger, 2005). For the ith patient with observed survival time ti, the

Cox-Snell residual for the Cox regression model is defined by

rCi = exp(β
′
X i)Ĥ0(ti) = Ĥi(ti) = − log Ŝi(ti), (3.27)

where the quantity Ĥ0 denotes the estimated baseline cumulative hazard function for the fitted

Cox PH model, Ĥi is the estimated cumulative hazard and Ŝi(t) is the estimated survival

function for ith patient at time ti.

The Cox-Snell residuals defined in equation 3.27 is virtually similar to the Cox-Snell residuals

used in assessment of parametric model fit. The only difference is that the survival function and

the hazard function depend on a particular parametric distribution. The Cox-Snell residuals

can be used to check the overall fit of a parametric model, for a parametric model, the Cox-Snell

residual for ith patient in the study is given by

rCi = Ĥi(t) = − log Ŝi(t).

Where Ĥi(t) is the estimated cumulative hazard function, which is the Cox-Snell residuals.

According to Klein and Moeschberger (2005), the Cox-Snell residuals for the four parametric

models considered in this study are defined as

Exponential rCi = exp(β̂
′

X i)λ̂t,

Weibull rCi = exp(β̂
′

X i)λ̂t
γ̂,

Log-normal rCi = log

[
1− Φ

(
log T − µ̂− α̂′

X i

σ̂

)]
,

Log-logistic rCi = log

[
1

1 + exp(β̂
′

X i)λ̂tγ̂

]
.

The Cox-Snell residuals was used in this study to assess the overall fit of the parametric

and the semi-parametric models. The Cox-Snells residuals correlate with survival time, are
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asymmetrically distributed, have exponential distribution with the mean and the variance is

equal to unity. The cumulative or the log cumulative hazard plot of Cox-Snell residuals should

result in an approximately straight line through the origin with unit slope, if the model fit the

data.

3.7.4 The martingale and deviance residuals

Under right censoring and time independent covariates, the martingale residual is given by

rMi = δi − rCi,

where δi is defined in equation (3.1) and rCi is the Cox-Snell residual in equations (3.27). The

residual compares the observed graft failure for patient i between the time interval (0, ti) and

the expected graft failure based on the model estimation. The residual values ranges from −∞
to 1, they are approximately uncorrelated with one another in large samples and have a mean

of zero (Therneau et al., 1990). The deviance residual is defined by

rDi = sign(rMi) [−2 {rMi + δi log(δi − rMi)}]1/2 ,

where the quantity rMi is the martingale residual, the sign function defined by sign(.) takes

the value −1 or +1 if its argument is negative or positive, respectively. The deviance residuals

are normalised transformations of the martingale residuals and have a mean of zero. If the

model is valid, the rDi are more symmetrically distributed around zero compared to rMi. The

martingale and the deviance residuals used to assess the fit of the Cox regression model can

also be used to check the adequacy of the parametric models.

3.7.5 The delta-beta statistic

The delta-beta statistic denoted by ∆iβ̂ (∆iβ̂ ≈ β̂j − β̂j(i)), is an approximation to the real

change in the estimated parameter, when any influential observation is deleted from the fit. The

value of this statistic is used to determine observations that strongly influence the parameter

estimates. Any observation with a delta-beta statistic value greater than 1 (in absolute value)

is seen as an overly influential observation (Cohen et al., 2003; Van der Meer et al., 2010; Sarkar

et al., 2011).
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3.8 Model comparison

The problems of selecting the best possible model from a group of competing models is a usual

challenge faced in statistical modelling. Various procedures for choosing an appropriate model

have been proposed, but the AIC is a popular model selection tool in statistical modelling. It

is an extension of the principle of the conventional maximum likelihood. The AIC is defined

by the expression.

AIC = −2l + 2k, (3.28)

where l is the LL of the model and k is the total number of parameters in the model. The

quantity −2l is known as the goodness of fit and the quantity 2k is the bias correction, which

is referred to as penalty term. Any model that conforms to the observe data should adequately

lead to a smaller AIC. According to Shibata (1980), AIC is asymptotically efficient and yet

inconsistent; in other words, high dimensional models are favoured during the model selection

(this means that the true model is overestimated). The LR defined in Section 3.3 is used to

compare nested models. The LR statistic follows χ2 distribution with degree of freedom equal

to number of predictor variables excluded from the model. The null hypothesis is that the true

model is the reduced model (model without the excluded predictor) while the alternative is

that the full model is the true model. If the p-value of the test is significant (p <0.05), the H0

is rejected, otherwise we fail to reject the null hypothesis and conclude that the reduced model

is more reasonable than the full model.
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Chapter 4

Data and Methods

4.1 Introduction

In this chapter, the details of the retrospective study of adult kidney transplants in CMJAH and

the application of the statistical methods reviewed in Chapter 3 are presented. This chapter

begins with the dataset description and the exploratory data analysis techniques, model building

based on Cox PH model, the extension of Cox PH model, parametric models and ends with

simulation study. Figure 4.1 illustrates the overview of the study design.

4.2 Description of the dataset

The kidney transplant study for the Johannesburg region comprised of 2404 living and

cadaveric donor kidney transplants carried out between 1966 and 2013. Within this period

of time, there have been several innovations in medical practices, especially in the use of

immunosuppressive drugs to prevent transplant rejection. Between 1966 and 1983, known

as the pre-cyclosporine era (pre-CYA), patients received an immunosuppressive regimen that

included mainly azathioprine and prednisone after kidney transplantation. Between 1984

and 2000, cyclosporine (CYA) became the major immunosuppressant used in combination

with azathioprine and prednisone to prevent transplant rejection. Therefore, this period is

known as the CYA era. From 2001 to 2014 (when the study ended), a new generation of

immunosuppressive regimens was introduced to treat patients after kidney transplantation.
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Some drugs in use in this era (new generation era) are sirolimus, mycophenolate and tacrolimus

in combination with aforementioned drugs used in the previous two eras. Therefore, the

study was subdivided into three different eras based on the immunosuppressive regimen used

post-transplant, namely: Pre-CYA, CYA and New generation.1

Figure 4.1: Graphical illustration of the study design approach.

1Ethical clearance required to carry out this study (under the title ‘Kidney transplant outcomes study for
the Johannesburg region’) was approved for Dr June Fabian by the Wits Human Research Ethics Committee
(medical clearance certificate number: M121186)
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Most patients had only one kidney transplant, performed in Charlotte Maxeke Johannesburg

Academic Hospital (CMJAH). Each patient’s file was archived after the transplant and a series

of measurements detailing the patient characteristics, donor characteristics, transplant and

post-transplant follow-up information were recorded. The observed information pertaining to

a patient was continuously updated in the files until the patient’s death or loss to follow-up.

A database was created (Harris et al., 2009) for capturing the data. Other available sources

containing data for the patients were retrieved and compared during data capturing. These

included ward admission registers, transplant registers, patient records, work-up files and

laboratory reports.

Simple descriptive statistics and graphical techniques were used to detect and correct inaccurate

or problematic observations (illustrated in Figure 4.2), this was done with the knowledge of the

study co-investigator. This retrospective study involves three eras. We analysed a subset of

this study by restricting the study to include only adult kidney transplant in CMJAH during

the CYA era (because the CYA era contains fewer missing cases compared to other eras). We

further limited the study to focus on transplants done in CMJAH; hence, patients that did

not receive kidney transplant in CMJAH were excluded. Patients below the age of 18 years

and patients that had more than one transplant were also excluded from the data. Cases

with missing date of transplant, which is the variable used for estimation of survival time were

removed from the study. Patients with missing age at transplant were subsequently excluded,

because these cases cannot be classified as adults or pediatric patients. Figure 4.2 describes

how the study population was obtained, which includes the 751 patients used in the study .

The period between diagnosis of ESKD and date of transplant (waiting period) was not captured

in this data. Graft failure time (graft survival time) is the outcome of interest in this study,

which is defined as the period between a kidney transplant and a graft failure. Death with a

functioning graft was not considered in this study. In other words, a patient who died with

a functioning graft was not captured in the data. Figure 4.3 shows that none of the patients’

deaths occurred before graft failures. 43% of the patients experienced graft failure, while 57%

of the patients were censored either due to lost to follow up or graft failure not occurring by

the end of the study. The censoring in this study is assumed to be non-informative because

there is no information in the study data that indicates why patients were censored. Moreover,

death with a functioning graft is not part of this study.

44



4.2. DESCRIPTION OF THE DATASET

Figure 4.2: Flowchart of data extraction and cleaning steps for kidney transplant data used
in this study. Panels on the right-hand side represent cases that were excluded from the study.
Little’s MCAR test was used to assess the mechanism of missingness in the 915 CYA cases (see
Table C.3 on page 132).
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Figure 4.3: Scatter plot of graft survival time versus patient survival time for the 915 CYA
era cases.

The choice of variables for this study is based on the known risk factors affecting graft survival

after kidney transplant as discussed in Section 2.4. All variables were recoded and labelled to

prepare the data for analysis and to have more descriptive variable names/values. Recipient and

donor gender variables were combined into one variable (which describes donor-recipient gender

match) with four categories named ‘new gender’. For instance, a case with a male donor and

a female recipient was recoded to ‘male-female’. Recipient and donor blood group variables

were combined to one variable (called new bloodgroup) with two categories. Also, recipient

ethnicity variable was collapsed into two categories (white and non-white) due to reasons to be

discussed. All the covariates included in this study are not time-dependent because they were

only measured at the start of the study. The demographic and clinical information of the 751

patients included in this study is summarised in Table 4.1.
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Table 4.1: Summary of the data and characteristics of the patients that received first
kidney transplant in CMJAH between 1984 and 2000 (N=751). Variables with * are surgical
complication variables

Variables Description Information

recip age Recipient age 18-68 yrs (mean=38.1 years, SD=10.9)

dnr age Donor age 1-65 yrs (mean=28.4 years, SD=13.9)

new gender Donor-recipient gender ff 87(11.6%), fm 198 (26.4%), mf 158 (21.0%)

and mm 308 (41.0%)

new bloodgroup Donor-recipient blood group matched 674 (89.7%), mismatched 77 (10.3%)

ethnicity Recipient ethnicity white 436 (58.1%) and non-white 315 (41.9%)

dnr type Donor type cadaveric 643(85.6%) and living 105 (14.4%)

delayed gf Delayed graft function no 474 (63.1%) and yes 277 (36.9%)

diabetes Diabetes at transplant no 703 (93.6%) and yes 48 (6.4%)

renal disease Renal disease ESKD no 423 (56.3%) and yes 328 (43.7%)

hypertension Hypertension ESKD no 512 (68.2%) and yes 239 (31.8%)

urological Urological ESKD no 695 (92.5%) and yes 56 (7.5%)

inherited Inherited ESKD no 682 (90.8%) and yes 69 (90.2%)

nephrectomy Nephrectomy* no 699 (93.1%) and yes 52 (6.9%)

wound sepsis Wound sepsis* no 664 (88.4%) and yes 87 (11.6%)

wound haematoma Wound haematoma* no 699 (93.1%) and yes 52 (6.9%)

ureteric Ureteric* no 710 (94.5%) and yes 41 (5.5%)

no complication No complication* no 260 (34.6%) and yes 491 (65.4%)

AR clinical Clinical acute rejection no 283 (37.7%) and yes 468 (62.3%)

AR histological Histological acute rejection no 626 (83.4%) and yes 125 (16.6%)

The variable “nephrectomy” describes surgical complication as a result of removal of a native (failed) kidney
(i.e. “surgical complication due to nephrectomy”) before transplantation.
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4.3 Exploratory data analysis

Graphical illustrations based on the histogram, survival function, hazard function and

cumulative hazard function were used to gain insight into the survival and hazard function

distributions. It is understood that the pattern of the estimated hazard function with the KM

method may not be regular. The kernel smoothed estimate was used to smooth the estimated

hazard function in order to have a clear pattern of its distribution. The shape of the hazard

function plot will give an idea as to the suitability of the parametric assumptions prior to fitting

the parametric models. For example, a constant hazard over time indicates that an exponential

distribution model may provide a good fit, and a uni-modal hazard could suggest a model based

on the log-logistic distribution.

4.4 Model building based on the Cox PH model

To assess the performance of the Cox PH and AFT models in modelling graft survival

post-transplant, our first approach was to use the purposeful method of variable selection in

the model building procedure to identify the covariates in which the hazard function depends

on (Hosmer Jr and Lemeshow, 1999). The purposeful method proceeds as follow:

Step 1: Univariate association between each of the categorical variables and graft survival

were evaluated using the KM estimator and survival differences were assessed with the log-rank

test. Also, the univariate relationship between the continuous variables and graft survival were

assessed using the Cox regression model or Cox PH model. All the variables significant at

the 25% level at this stage of variable selection were selected as candidates to fit the initial

multivariable Cox PH model.

Step 2: The multivariable Cox PH model was fitted. The possibility of multicollinearity among

the variables were assessed using the variance inflation factor (VIF). According to Craney and

Surles (2002), VIF ≥5 or ≥10 are usually used to indicate strong collinearity. At this stage,

variables that are not significant at the 10% level or confounders were dropped from the model

(one at a time). For example, the variable with the largest non-significant p-value was deleted

from the model and the likelihood ratio test was conducted. The model without the omitted

covariate is considered more appropriate if the p-value of this test is insignificant at the 5%

level. Further, if omitting the variable results in a 15% change (or more) in the estimated
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parameter of any of the remaining covariates in the reduced model as compared to the full

model, the variable is considered as an important confounder. The interactive procedure of

dropping, refitting and assessing significant and confounding factors continued up until the

model contains only the important covariates.

Step 3: Some variables may not be significantly associated with graft survival individually, but

may have influence on graft survival when adjusted for other covariates. Hence, variables that

were not significant in the univariable analysis were added in the Cox PH multivariable analysis

one at a time. Their significant impact on graft survival (at the 10% level of significance) and

their impact on the estimated parameters of other variables in the model were assessed. If

they are not significant based on these two criteria, these variables are deleted from further

analysis. Finally, variables that are not significant at 5% level of significance were subsequently

dropped from the model (one at a time). Their importance to the model were evaluated using

the likelihood ratio test and percent change in the parameters of the remaining variables. If the

test is insignificant and the change in the parameters (of the remaining variable) are not 15%

or greater, these variables are excluded from the analysis. Multicollinearity was re-assessed for

all the selected variables, to check whether any significant variable added at this stage could

correlate with the variables in the model.

Step 4: Under the Cox PH model, a continuous covariate is assumed to have a log-linear

relationship with the log-hazard. Sometimes the effect of a continuous covariate may not be

linear in the log-hazard. Consequently, assuming a linear effect when the non-linear effect is

applicable results in mis-specification. This could have an impact in the estimated parameter

and standard error. The functional form of the continuous covariate was diagnosed using (i)

martingale residuals plot from a null model, (ii) cumulative sums of martingale residuals plot

and (iii) smoothing spline fit based on the Cox PH model. There is strong evidence to avoid

fitting a linear term of any covariate in the Cox PH model if (i) the martingale residuals plot

shows a non-linear trend, (ii) the observed process is not typical with simulated realisation

in the cumulative martingale residuals plot or (iii) the non-linear term of the variable in the

smoothing spline fit model is significant at the 5% level.

Step 5: If there is an interaction among the predictor variables (i.e. interaction between

two covariates in equation 3.7), the expression of the hazard function will be h(t,X) =

h0(t) exp(β1X1 + β2X2 + β3X1X2). Inclusion of an interaction term in a regression model,

especially based on clinical perspectives, can lead to better or conclusive inferences needed to

develop public health policies and improve clinical practices. Two-way interaction between
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the covariates were assessed and inclusion in the model was based on statistical and clinical

significance. The significance of any interaction included in the model was confirmed with the

p-value of the partial likelihood ratio test.

Step 6: The proportional hazard assumption was assessed at this stage of model building.

p-values based on scaled Schoenfeld residuals, cumulative martingale residuals and inclusion of

covariates by time interactions in the Cox PH model were used to verify the validity of the PH

assumption. If the p-values of these tests are significant at the 5% level for any covariate, then

the assumption of proportionality is violated for that covariate and such a covariate may affect

the fit of the Cox PH model. At this stage we have obtained both the main and the interaction

effects, which complete the main procedure of our model building based on the Cox PH model.

4.4.1 Extension of Cox proportional hazard model

It is well-understood that the estimated hazard and the effect of some covariates may not

be constant over a long period of time. To address the issue of the non-proportional hazard

of some covariates in this study, we divided the follow-up period into short-term (ST) and

long-term (LT). Exploratory data analysis (EDA) and the procedure of model building described

in Sections 4.3 and 4.4 were applied to the ST and LT analyses. Delayed graft function (DGF)

and ethnicity variables violated the PH assumption in ST and LT analyses, respectively. The

first option was to incorporate a stratified model in both analyses. It was assumed that there

was no interaction between the stratified covariate and other covariates in the models. To

verify this assumption, the interaction models were fitted in both analyses and the LR test

was used to confirm the no-interaction assumption. The PH assumption was also tested for

all the covariates in the model. The stratified models were used to plot the adjusted survival

curves and the cumulative hazard function. Further, the Cox regression model was extended to

include a product term of the non-proportional hazard covariate with time. The Heaviside (HV)

function was introduced in the extended Cox regression model to identify where the effect of the

covariate that violated the PH assumption is not proportional. Based on the adjusted survival

curve and the cumulative hazard function plots from the stratified models, we let the function

of time to take HV1 if survival time is less than 6.6 months (HV1<6.6 months), otherwise HV2

(if survival time is greater than 6.6 months) for ST analysis. The same condition was repeated

in LT analysis where HV1<10 years survival time and HV2≥10 years. The fits of the extended

Cox regression model were compared with the standard Cox PH model both in ST and LT

analyses.
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4.5 Parametric models

Variables fitted in the Cox PH model (for the ST, LT and overall data analyses) were used

to fit parametric models. The shape of the baseline hazard function from the EDA helped to

identify the suitable AFT models to use in this study. We let the baseline take a parametric

AFT form such as log-normal, log-logistic or Weibull distribution. However, we included the

exponential distribution because it is a special case of the Weibull distribution and a common

distribution used in many studies. Also, the generalised gamma distribution was included

because exponential, Weibull and log-normal distributions are its special cases. The Cox-Snell

residuals and AIC were used to compare the fit of the AFT models to the Cox PH models.

We further assessed outlying and influential observations using the deviance residuals and the

delta-beta statistic in the best model.

4.6 Simulation of simple survival data

To evaluate the estimation of the appropriate models in the analyses, we mimicked a realistic

population. This was done by designing a simulation study based on the distribution observed

in the kidney transplant cohort, the covariate profiles and the effect of these covariates on

graft survival. The event and the censoring time distributions were modelled in the analyses.

The R-package ‘survsim’ (Moriña and Navarro, 2014) used for simulation of cohort survival

data such as simple and complex survival analysis was used for the simulation study. The

function ‘simple.surv.sim’ in this package is of interest to this study data. This function

simulates survival cohort data for standard survival analysis. The details of the ‘simple.surv.sim’

function is found in the R-cran repository. The size of the cohort (depending on the number of

observations in each analyses) to be simulated, the maximum follow-up period (depending on

the analysis in question), the event and the censoring time distribution with their parameters,

the relationship between each covariates and graft survival, and each covariate profile were

all imputed in this function in order to simulate a survival cohort comparable to the kidney

transplant study. The simulated survival data was used to re-estimate the parameter values

based on the distribution the simulated data was built-on and the goodness-of-fit of the

reasonable models in this study were assessed with the simulated data.
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4.7 Software

Data cleaning was performed using SAS Version 9.4. All data analyses were done using

statistical software R (version 3.2.3) and SAS (version 9.4). A significance level of p<0.05

was considered as significant level unless otherwise specified.
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Chapter 5

Results

5.1 Introduction

This chapter presents the results of this study. The analysis is divided into three sections.

The results from the overall graft survival analysis are presented in Section 5.2. The results

of the ST graft survival analysis are presented in Section 5.3. The LT graft survival analysis

results are reported in Section 5.4. Some of the results described in Sections 5.3 and 5.4 are in

Appendixes A and B. The reference category used for each categorical predictor is the category

with higher number of graft failures except, in the ST graft survival analysis where diabetic

patients’ category was used as the reference category.

5.2 Overall graft survival analysis

5.2.1 Exploratory data analysis for overall graft survival

The graphical illustration of graft survival experienced post-kidney transplant in the overall

data analysis is presented in Figure 5.1 (page 54). This is used to understand some important

features of the data or to gain insight into the underlying distribution of the graft survival

time. As expected, the shape of the histogram (Figure 5.1A) is positively skewed, indicating

that most of the graft survival times observed are clustered at the left-side of this plot.
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Figure 5.1: Exploratory data analysis of the overall transplant data showing (A) histogram
of the underlying frequency distribution of the graft survival time variable, (B) KM estimate
of the survival function, (+) indicates censoring and the numbers in red show grafts at risk
at each 5 year interval. (C) KM estimate of a kernel-smoothed hazard function and (D) KM
estimate of the cumulative hazard function for the overall data analysis (N=751).

The histogram shows that the graft survival times spread from about zero to about 29.25 years

and the peak of graft failure occurred within the first year post-transplant. In other words, the

risk of graft failure is high within the first year of kidney transplant. The histogram correlates

with the profile of the survival function (Figure 5.1B). The graft survival curve shows a steep

drop at the beginning of the study (highest hazard of graft failure is experienced within this

period), gradually decreases as the follow-up time increases and flattens towards the end of

the follow-up. This indicates that the longest observed survival time (29.25 years) is censored

because the curve did not go down to zero. Figure 5.1B shows that as the follow up time

increases, the number of grafts at risk decreases. The median graft survival time after kidney

transplant is approximately 10 years. The estimated graft survival rate is 82%, 67%, 51%, 37%,
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29% and 25% for 1, 5, 10, 15, 20 and 25 years, respectively. Figure 5.1B indicates that there are

several censored observations. The estimated hazard of graft failure shows a solid step function

(Figure 5.1C). It is clear that the true shape of the hazard experienced by the grafts is not

visible. With the help of the kernel smoother, the hazard function plot also shows that the

hazard of graft failure is high at the beginning of the study, which subsequently declines until it

levels off at about 6 years and stays roughly constant to about 12 years then decreases gradually

as the follow-up time increases. The accumulation of the hazard experienced by the patients’

grafts is shown in Figure 5.1D. The cumulative plot shows a sharp rise at the beginning of

the follow-up, indicating a high hazard of graft failure during that period. It is apparent that

the hazard of graft failure experienced in this study is not constant because the gradient of

the cumulative hazard (Ĥ(t)) plot is not equal. The curvature seen in the Ĥ(t) plot is in the

reverse direction to that shown in the survival function estimates (Figure 5.1B). Thus, a sharp

rise in Ĥ(t) is associated with a sharp fall in Ŝ(t).

5.2.2 Model development for overall graft survival

All explanatory variables significant in the univariable analyses (Table 5.1, page 56) at the 25%

level of significance were incorporated in the multivariable Cox proportional hazard model.

The result of the analysis is shown in Table 5.2 (page 57). The maximum p-value is observed

for ‘wound sepsis’ (p=0.864), therefore this predictor was deleted from Model 1. Omitting

‘wound sepsis’ and refitting the multivariable model (Model 2) resulted in a LR of 0.029, which

is not statistically significant (p=0.864). This indicates no improvement over the full model

by excluding this variable. Furthermore, the change in coefficients (∆β̂) for each covariate

remaining in Model 2 was compared with Model 1. The result shows that ‘wound sepsis’ is

neither a significant predictor of graft survival nor a confounder. Omitting ‘hypertension’ (which

has the highest p-value in Model 2) in Model 3, made no difference in the model (p=0.469),

rather it changed the parameter estimates for ‘renal disease’ by more than 15%. However,

‘renal disease’ is also not a significant predictor of graft failure at the 10% level of significance

as shown in Model 3. Therefore, it is reasonable not to retain the two variables (hypertension

and renal disease) in the model as ‘hypertension’ is not an important confounder. The change

in −2LL(β̂) on deleting ‘urological’ and ‘no complication’ from Models 4 and 5 are 0.329 and

0.189, respectively. The deletion of these variables did not confound the relationship of any of

the remaining predictor variables and graft survival. Hence, these variables were excluded from

Model 6 (which contains variables associated with graft survival at the 10% level of significance).
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Table 5.1: Univariable analysis of the relationship between the study variables and overall graft
survival. p-values for the categorical variables and the continuous variables∗ were estimated
based on log-rank test and the Cox PH model results, respectively.

Variable p-value
dnr type <0.001
renal disease 0.063
hypertension <0.001
urological 0.095
inherited 0.069
nephrectomy 0.290
wound sepsis 0.131
wound haematoma 0.621
ureteric 0.356
no complication 0.059
delayed gf 0.003
diabetes 0.371
AR clinical 0.809
AR histological 0.323
new gender 0.990
new bloodgroup 0.304
ethnicity <0.001
dnr age∗ 0.260
recip age∗ <0.001

At this stage, variables that were initially set aside because they were insignificant at the

25% level in the univariable analyses were reconsidered one at a time in the multivariable

model (Table 5.3, page 58). None of these variables caused a significant change in the

value of −2LL(β̂) of Model 6 (except ‘diabetes’) when added and none confounded the

relationship of any of the predictors with graft survival when deleted. Therefore, these

variables (except ‘diabetes’) did not make it back in the multivariable model and were

excluded from the study. The inclusion of ‘diabetes’ in Model 6 changed the p-value of

‘inherited’ to more than the 10% level of significance (p=0.108); hence, ‘inherited’ was removed

and its exclusion from Model 6 (model with ‘diabetes’) did not cause a significant change

in the value of −2LL(β̂). Also the deletion of ‘inherited’ only caused an 8.2% change in

the estimated coefficients of the remaining variables in the model. ‘Recipient age’, ‘donor

type’, ‘recipient ethnicity’, DGF and ‘diabetes’ are the only selected variables at this stage

of model building and there is no multi-collinearity among these variables (Table C.4, page 132).

The functional form of ‘recipient age’ using martingale residuals, cumulative martingale

residuals and smoothing spline fit was assessed. Figure 5.2 (page 59) shows a plot of the

martingale residuals from a null model and the cumulative martingale residuals. The plot of
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Table 5.2: Multivariable Cox regression model of the overall transplant data containing
significant covariates at the 25% level in the univariable analysis (Model 1). Partial likelihood
ratio test (with p-value*) indicating the effect of deleting non-significant covariates from the
multivariable analyses (Models 2-6) and their impact in the coefficient change for the covariates
in the resulting (reduced) model. The variable in bold font was deleted in the succeeding model.

Model Variable p-value %∆ -2LL -2LL∆ p-value*
1 recip age <0.001 3648.825

dnr type 0.027
ethnicity 0.010
hypertension 0.469
delayed gf 0.028
no complication 0.288
renal disease 0.287
inherited 0.044
urological 0.198
wound sepsis 0.864

2 recip age <0.001 0.3 3648.796 0.029 0.864
dnr type 0.027 0.5
ethnicity 0.009 0.7
hypertension 0.468 0.3
delayed gf 0.029 0.4
no complication 0.175 8.4
renal disease 0.289 0.3
inherited 0.044 0.1
urological 0.199 0.2

3 recip age <0.001 0.8 3649.349 0.524 0.469
dnr type 0.028 0.3
ethnicity 0.012 9.5
delayed gf 0.026 1.7
no complication 0.198 5.7
renal disease 0.430 36.4
inherited 0.061 13.8
urological 0.251 12.7

4 recip age <0.001 3649.972
dnr type 0.025
ethnicity 0.001
delayed gf 0.028
no complication 0.200
inherited 0.089
urological 0.345

5 recip age <0.001 0.6 3650.926 0.953 0.329
dnr type 0.025 0.4
ethnicity <0.001 4.7
delayed gf 0.028 0.2
no complication 0.186 3.3
inherited 0.108 6.0

6 recip age <0.001 0.5 3652.648 1.722 0.189
dnr type 0.024 0.7
ethnicity <0.001 0.4
delayed gf 0.024 2.8
inherited 0.090 5.3
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Table 5.3: Results of adding covariates that were not significant in the univariable analysis
of overall graft survival (Table 5.1) to the multivariable Model 6. The p-value with * is for
the partial likelihood ratio test, %∆ is the highest change in the estimated coefficients of other
variables in the model.

Model p-value -2LL -2LL∆ p-value* %∆
Model 6 0.189 3652.648 0.000
Model 6 + dnr age 0.919 3652.638 0.010 0.919 1.0
Model 6 + nephrectomy 0.489 3652.141 0.507 0.477 0.5
Model 6 + wound haematoma 0.866 3652.620 0.028 0.866 0.2
Model 6 + ureteric 0.411 3651.928 0.720 0.396 4.5
Model 6 + diabetes 0.044 3648.980 3.668 0.055 6.2
Model 6 + diabetes + AR clinical 0.795 3648.912 0.068 0.794 0.6
Model 6 + diabetes + AR histological 0.370 3648.203 0.777 0.378 7.1
Model 6 + diabetes + new bloodgroup 0.970 3648.979 0.001 0.970 0.2
Model 6 + diabetes + new gender 3645.845 3.135 0.077 12.9

ff 0.875
mf 0.827

mm 0.205
(Model 6 + diabetes) - inherited 0.108 3651.776 2.796 0.095 8.2

ff (female to female), mf (male to female) and mm(male to male).

the martingale residuals from a null model is expected to be a straight line, if a linear term is

needed for this variable. The Lowess smoothed line in Figure 5.2A is approximately straight,

suggesting a linear term of ‘recipient age’ is appropriate in the model. Also the observed

process for ‘recipient age’ is expected to be within the simulated realisation in the cumulative

martingale residuals plot if a linear term is needed for ‘recipient age’. It is obvious that the

observed process for ‘recipient age’ is more typical with the simulated realisations from the null

distribution (Figure 5.2B); except for slight departures from the linear fit at both the right- and

left-hand tail of the cumulative martingale residuals plot, which is not a significant departure

(p=0.097). To objectively conclude on the functional form of ‘recipient age’, the smoothing

spline fit based on the Cox regression model was fitted (Table 5.4, page 59). The non-linear term

of this variable is expected to be significant at the 5% level if a non-linear term is appropriate in

the model. The non-linear term of ‘recipient age’ in the spline fit is not significant (p=0.167),

as shown in Table 5.4. Hence, the linear term of ‘recipient age’ is reasonable in the model.

Possible interaction terms were assessed in the Cox regression model. The Wald test p-value

shows no significant interaction between the predictors at the 5% level.
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Figure 5.2: Linearity assumption assessment for overall graft survival analysis. Plot of (A)
smoothed martingale residuals from a null Cox regression model versus ‘recipient age’ and (B)
cumulative martingale residual versus ‘recipient age’ (p=0.097), the bold line represents the
observed process and the dotted lines represent the simulated processes.

Table 5.4: Smoothing spline fit result (based on the Cox regression model) for assessing the
linearity assumption of the continuous variable (recipient age) in overall graft survival analysis.

Variable Coefficient SE p-value
recip age-linear 0.032 0.0 <0.001
recip age-nonlinear 0.167
dnr type -0.445 0.2 0.032
ethnicity 0.515 0.1 <0.001
delayed gf 0.313 0.1 0.010
diabetes 0.475 0.2 0.019

The KM and log cumulative hazard plots were used to assess the PH assumption for the

categorical variables (Figure 5.3 and Figure 5.4, page 60 and 61). The rule is that the KM plot

should drift apart steadily and the log cumulative hazard plot should not exhibit a non-constant

group difference. The survival curves for ‘donor type’ show no crossing lines and these curves

drifted apart steadily, which is an indication of proportionality. However, there is a large

separation between the categories, which could be as a result of few number of recipients

of live donor kidney (with graft failure) surviving more than ten years. KM survival curves

for ‘recipient ethnicity’, DGF and ‘diabetes’ indicate violation of the PH assumption, more

especially the obvious crossing-lines seen in the survival curve for ‘diabetes’. Looking at the

log-log plots of all the variables, the PH assumption seems to be violated for all the variables

because of non-constant group differences.

59



5.2. OVERALL GRAFT SURVIVAL ANALYSIS

Figure 5.3: Graphs of KM estimates of survival function for the selected predictors (A) donor
type, (B) ethnicity, (C) delayed graft function and (D) diabetes.

However, for ‘donor type’, the non-parallel lines could also be a result of small sample size of

graft failures observed in recipients of live donor kidney compared to recipients of cadaveric

donor. In practice, the log-log plot may not be perfectly parallel and there is no statistical

test to assess the significance of log-log plot lines. Hence, a formal test based on the scaled

Schoenfeld and the cumulative martingale residuals with statistical significance was employed

to assess departure from proportionality.
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Figure 5.4: Plots of log cumulative hazards for the selected predictors (A) donor type, (B)
ethnicity, (C) delayed graft function and (D) diabetes.

Table 5.5 (page 62) shows the p-values of tests based on the scaled Schoenfeld and cumulative

residuals for non-proportional hazard assessment. The results of the two tests suggest evidence

of deviation from the proportionality assumption for all the variables except ‘donor type’. The

results of the two tests are graphically illustrated for each of the predictors in the Cox regression

model (Figure 5.5, page 63). Under common definition, the Lowess line in the scaled Schoenfeld

residual plot is expected to have a zero slope, otherwise the PH assumption is not valid for that

predictor. Also, the observed test processes is expected to be within the simulated processes,

if PH assumption is valid. This figure also suggest a non-constant effect over time for ‘donor

type’ alone.
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The final Cox regression model (Table 5.6, page 62) concluded that all these predictors are

significantly associated with graft survival at the 5% level of significance but only ‘donor type’

satisfied the PH assumption in this model. Thus, there is evidence of lack of model-fit for the

Cox PH model.

Table 5.5: Non-proportionality test in the Cox regression model, p-values for scaled Schoenfeld
residuals and cumulative residuals (*) tests.

Variable rho chisq p-value p-value*
recip age 0.113 4.630 0.032 0.035
dnr type -0.074 1.750 0.186 0.168
ethnicity -0.104 3.410 0.050 0.003
delayed gf -0.143 6.470 0.011 0.001
diabetes 0.180 10.000 0.002 <0.001
GLOBAL 32.670 <0.001

Table 5.6: Analysis of risk factors associated with overall graft survival on fitting the
multivariable Cox regression model (N=751).

Variable Coefficient HR (95% CI) SE p-value
recip age 0.032 1.03 (1.02-1.04) 0.006 <0.001
dnr type -0.459 0.63 (0.42-0.95) 0.207 0.027
ethnicity 0.478 1.61 (1.29-2.02) 0.115 <0.001
delayed gf 0.315 1.37 (1.08-1.74) 0.120 0.009
diabetes 0.421 1.52 (1.03-2.25) 0.200 0.035

Reference category: dnr type (cadaveric), ethnicity (white), delayed gf (no) and diabetes (no).
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Figure 5.5: Assessing the PH assumption. Left-panel: graphs of the scaled Schoenfeld
residuals versus transformed time for each predictor in the Cox regression model. The solid
and the broken lines represent the smoothing spline fit and the ±2 standard error for the fit.
Right-panel: graphs of observed test processes with 50 simulated processes for each predictor in
the Cox regression model. The solid black profile signifies the observed pattern. (A) recipient
age, (B) donor type, (C) ethnicity (D) delayed graft function and (E) diabetes.

63



5.2. OVERALL GRAFT SURVIVAL ANALYSIS

5.2.3 Accelerated failure time models for overall data graft survival

Variables in Table 5.6 (page 62) were used to fit parametric AFT models. These models (with

the exception of log-normal and log-logistic) suggest that all the predictors are significantly

associated with overall graft survival at the 5% level (Table 5.7, page 65). Nonetheless, the

p-values for ‘diabetes’ in the exponential and Weibull models are marginally significant based

on the 5% level of significance. The lowest AIC is observed for the gamma model followed by

the Weibull model, and the criterion indicates that parametric models out-performed the Cox

PH model in modelling the overall kidney transplant data (Table 5.8, page 66).

The Cox-Snell residuals plot was used as a diagnostic tool to graphically assess the

goodness-of-fit for these models. The closer the plotted points are to the 45◦ line (referent

line), the better the fit of the model to the observed data. Figure 5.6 (page 67) represents

the plot of the estimated cumulative hazard function against the Cox-Snell residuals for the

five models. This figure indicates that the estimated cumulative hazards approximately follow

the referent line for the Cox PH and gamma models (excluding few deviations observed at

large values of the models’ cumulative hazard). Most of the plotted points in the log-normal

and log-logistics fits are not close to the referent line, indicating a bad fit. Based on the rule

of the Cox-Snell residuals plot, it would appear that the Cox regression model fit is more

reasonable compared to the other models. This is not a reflection of the information criterion

assessment (Table 5.8, page 66). Therefore, we based our conclusion on the AIC values because

the Cox-Snell residuals could result in a straight line even when the model is not appropriate.

Since the gamma model provides a reasonable fit according to AIC and exponential, Weibull

and log-normal models are nested within the gamma model, the LR test was conducted to

test against the gamma distribution. The LR test indicates that the Weibull model is equally

appropriate (Table 5.9, page 67). We conclude that the Weibull fit is also reasonable because it

is a special case of the generalised gamma. The Weibull model (with the significant predictors)

is given by

LogT = 5.317− 0.051recip age+ 0.789dnr type− 0.797ethnicity − 0.526delayed gf

− 0.662diabetes+ 1.662.
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Table 5.7: Analysis of risk factors associated with the overall graft survival on fitting
multivariable parametric accelerated failure time models (N=751).

Model Factor Coeffient TR (95%CI) SE p-value
Exponential Intercept 4.307

recip age -0.035 0.97 (0.95-0.98) 0.006 <0.001
dnr type 0.460 1.58 (1.06-2.37) 0.207 0.026
ethnicity -0.523 0.59 (0.47-0.74) 0.115 <0.001
delayed gf -0.379 0.68 (0.54-0.87) 0.120 0.002
diabetes -0.409 0.66 (0.45-0.98) 0.200 0.040
Scale 1.000
Shape 1.000

Weibull Intercept 5.317
recip age -0.051 0.95 (0.93-0.97) 0.009 <0.001
dnr type 0.789 2.20 (1.12-4.34) 0.346 0.023
ethnicity -0.797 0.45 (0.31-0.66) 0.193 <0.001
delayed gf -0.526 0.59 (0.40-0.87) 0.200 0.009
diabetes -0.662 0.52 (0.27-0.99) 0.333 0.047
Scale 1.662
Shape 0.602

Log-normal Intercept 4.721
recip age -0.045 0.96 (0.94-0.98) 0.011 <0.001
dnr type 0.680 1.97 (0.95-4.11) 0.375 0.069
ethnicity -1.006 0.37 (0.23-0.59) 0.243 <0.001
delayed gf -1.015 0.36 (0.22-0.59) 0.253 <0.001
diabetes -0.278 0.76 (0.31-1.87) 0.463 0.548
Scale 2.658

Log-logistic Intercept 4.781
recip age -0.048 0.95 (0.93-0.97) 0.011 <0.001
dnr type 0.696 2.01 (0.99-4.08) 0.362 0.054
ethnicity -1.003 0.37 (0.24-0.57) 0.224 <0.001
delayed gf -0.799 0.45 (0.28-0.72) 0.239 <0.001
diabetes -0.470 0.63 (0.29-1.34) 0.387 0.225
Scale 1.421

Gamma Intercept 5.293
recip age -0.046 0.96 (0.94-0.97) 0.008 <0.001
dnr type 0.820 2.27 (1.17-4.41) 0.339 0.016
ethnicity -0.539 0.58 (0.41-0.82) 0.174 0.002
delayed gf -0.336 0.71 (0.52-0.98) 0.159 0.035
diabetes -0.608 0.54 (0.33-0.90) 0.255 0.017
Scale 1.019
Shape 1.991

Reference category: dnr type (cadaveric), ethnicity (white), delayed gf (no) and diabetes (no).
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The acceleration factors (TR) in Table 5.7 were calculated by exponentiating the coefficients i.e.

e−0.051 = 0.95 for recipient age variable. The confidence interval calculated for this predictor

was also obtained by exp{−0.051± 1.96(0.009)}=(0.93− 0.97).

The index plot of the deviance residuals for the Weibull model shows no observed peculiar

pattern (Figure 5.7, page 68). The deviance residual distribution of this plot is mostly within

the range of ±3 and observations 6, 114 and 665 are slightly outside this bound. However,

these points were not considered outlying observations because they are not totally withdrawn

from the other points in the plot. Also Figure 5.8 (page 68) shows that there was no patient

observation with undue influence on the model regression estimates, which could affect the

inference made from Weibull fit. The highest change in the estimated coefficients for the

predictors in the model is 0.12, which is less than one for influential observation in a small

dataset.

Table 5.8: AIC values signifying the performance of the respective models in fitting the overall
graft survival models.

Model Cox Exponential Weibull Log-normal Log-logistic Gamma
AIC 3661.961 2250.257 2104.688 2155.208 2133.513 2093.357
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Figure 5.6: Assessment of goodness-of-fit using the Cox-Snell residuals. The dashed lines
represent the reference with a unit slope and zero intercept.

Table 5.9: Likelihood ratio test for comparing nested models

Distribution Number of parameters -2LL -2LL∆
Gamma 3 2077.382
Exponential 1 2238.251 160.872
Weibull 2 2090.800 13.418
Log-normal 2 2141.200 63.818
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Figure 5.7: Assessment of goodness-of-fit using an index plot of the deviance residual for the
Weibull model in overall graft survival analysis. The numbers 6, 114 and 665 are observations
slightly outside the boundary.

Figure 5.8: Graphs of the dfbeta residuals for the overall graft survival analysis illustrating
the diagnostics on the estimated regression coefficients for all the predictors in the Weibull
model.
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5.2.4 Assessing goodness-of-fit of the Weibull model through

simulation

To further assess the goodness-of-fit of the Weibull model, the parameters estimated from the

Weibull model using the real data (Table 5.7) were used for simulating a comparable cohort.

The predictors with their respective effect size, distribution and proportion for the non-reference

categories (or mean and variance for the continuous variable) are detailed in Table 5.10. The

event and censorship times are based on the Weibull distribution. The scale of the time to

event (1.66), scale of the time to censorship (1.63), as well as their intercepts (5.3167 and

1.7210) were imputed for the simulation process. Using a sample size of 751 with a follow-up

time of 29.25 years, we performed a simulation, setting the random number seed at 180 (for

reproducible results). The simulated data was used to refit a Weibull model. The result of the

Weibull model based on the simulated data seems to approximate the result from the real data

(Table 5.11, page 70), suggesting that the Weibull model is reasonable to use in this analysis.

In addition, the Cox-Snell residuals plot of the Weibull model based on the simulated data is

more typical with the referent line than what is observed in the real data for the Weibull model

(Figure 5.9, page 70).

Table 5.10: Details of the predictors used for the simulation of a 751 cohort based on the
Weibull model.

Factor Coefficient Distribution probability or mean (var)
recip age -0.051 Normal 38.13582(119.1682)
dnr type(living) 0.789 Bernoulli 0.14380825570
ethnicity(white) -0.797 Bernoulli 0.41944074570
delayed gf(yes) -0.526 Bernoulli 0.36884154460
diabetes(yes) -0.662 Bernoulli 0.06391478029
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Table 5.11: Goodness-of-fit assessment for the overall transplant data using simulation-based
method. The table shows the comparison between the Weibull models for the real (Real) and
simulated (Sim) data in context of the parameter estimates, time ratios, 95% confidence interval
and p-values.

Variable Coefficient TR (95% CI) p-value
Real Sim Real Sim Real Sim Real Sim

Intercept 5.317 5.486
recip age -0.051 -0.052 0.95 0.95 (0.93-0.97) (0.95-0.95) <0.001 <0.001
dnr type 0.789 0.785 2.20 2.19 (1.12-4.34) (1.76-2.73) 0.023 <0.001
ethnicity -0.797 -0.793 0.45 0.45 (0.31-0.66) (0.40-0.52) <0.001 <0.001
delayed gf -0.526 -0.562 0.59 0.57 (0.40-0.87) (0.50-0.65) 0.009 <0.001
diabetes -0.662 -0.572 0.52 0.56 (0.27-0.99) (0.42-0.75) 0.047 <0.001

Reference category: dnr type (cadaveric), ethnicity (white), delayed gf (no) and diabetes (no).

Figure 5.9: Cox-Snell residuals obtained from fitting the Weibull survival model to the
simulated data in the overall graft survival analysis. The dashed line represents the reference
with a unit slope and zero intercept.

5.3 Short-term graft survival analysis

5.3.1 Exploratory data analysis for short-term graft survival

A graphical representation of graft survival time distribution within the first year

post-transplant is shown in Figure 5.10 (page 71). The histogram indicates that the risk of

graft failure is highest within one month of transplant and tappers off with time (Figure 5.10A).
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The survival rate within this first year of transplant (Figure 5.10B) is about 90%. The survival

plot also shows that at the 12th month of follow-up, about 65% of grafts are still at risk. The

hazard of graft failure (Figure 5.10C) is highest at the beginning of the study and gradually

decreases as the follow-up time increases. This figure shows that the hazard of graft failure at

the beginning of the study is about seven times higher than the hazard at the 12th month of

the study. There is a sharp rise in the cumulative hazard plot (Figure 5.10D) and the slope

shown in the plot is not unity, indicating that the hazard rates are higher at the beginning and

not constant within the first year of kidney transplant.

Figure 5.10: Exploratory data analysis for ST graft survival. (A) histogram of the underlying
frequency distribution of the graft survival time variable, (B) KM estimate of the survival
function, the + signs indicates censoring and the numbers in red show grafts at risk at each 2
month interval. (C) KM estimate of a kernel-smoothed hazard function and (D) KM estimate
of the cumulative hazard function for the overall data analysis (N=751).
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5.3.2 Model development for short-term graft survival

Similar to the model building procedure used in the overall data analysis, the multivariable

Cox PH model containing all significant covariates in Table A.1 (page 116) was fitted (Table

A.2, page 117). In order to simplify the model, p-values of the variables (based on the Wald

test) were examined. The one degree of freedom of the LR test with a p-value of 0.909 shows

that the model without ‘wound haematoma’ (Model 2) is not statistically different from the

model with ‘wound haematoma’ (Model 1). The exclusion of this variable has no influence on

other variables parameters. Also, deletion of ‘hypertension’ from Model 2 made no difference in

the model, rather it influenced the parameter estimate of ‘renal disease’. Since ‘renal disease’

is not significant, both variables (‘hypertension’ and ‘renal disease’) were excluded from the

model. Further sequential exclusion of ‘donor type’ and ‘inherited’ from Models 5 and 6 had

no effect on the models and the estimated parameters. Variables previously set aside in Model

1 because they were not significant at the 25% level in Table A.1 (page 116) were reconsidered

in Model 6 (Table A.3, page 118), only ‘ureteric’ (among the variables) made it back into the

multivariable model at the 10% level. ‘Recipient age’ and ‘AR-histological’ were over the 5%

level of significance; Hence, the model was further optimised by excluding these variables one

at a time. Deletion of ‘recipient age’ and ‘AR-histological’ made no significant impact in the

model and the estimated parameters (Table A.3). The best subset of the predictors selected

are ‘nephrectomy’, ‘no complication’, DGF, ‘diabetes’, ‘ethnicity’ and ‘ureteric’.

There was no need to test the assumption of linearity in the ST data analysis because all the

selected predictors are categorical. All possible two-way interaction between the covariates

were analysed and none of the interactions is significant at the 5% level. The assessment of

the PH assumption for the sub-variables selected in the ST analysis is shown in Figure A.1

(page 119). There is no line-crossing observed in the survival profiles of these variables. The

survival curves shown in Figure A.1A, B, D, E and F drifted apart gradually. The fewer

number of graft failures observed in patients with nephrectomy complications, diabetes and

ureteric complications possibly caused the flattening of the curves, especially for the survival

plots of ‘nephrectomy’ and ‘diabetes’ (Figure A.1A, D and F). The PH assumption seems to

be violated with respect to DGF (Figure A.1C), because the curves show larger differences at

the beginning than later. The log-log plots of these variables are comparable with the KM

profiles. The log-log profiles of ‘no complication’ and ‘ethnicity’ appear approximately parallel

(Figure A.2B and E, page 120). There is an indication that the PH assumption is violated in

Figure A.2C. Again, the log-log plot profile for ‘nephrectomy’ and ‘diabetes’ (which has fewer
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number of graft failures in one of the categories) are not properly defined because the time

post-transplant is in log-scale.

The global test of the scaled Schoenfeld residuals (Table 5.12, page 73) suggests evidence of

non-proportionality (p=0.026). DGF contributes to this non-proportionality observed in the

global test. The cumulative residuals test also supports the violation of assumption only for

DGF (p=0.002). The graphical output of these tests is shown in Figure A.3 (page 121). The

departure from the zero line observed in the scaled Schoenfeld residuals plots (Figure A.3,

left-panel) is only significant for DGF (Table 5.12, page 73). Figure A.3 (left-panel) also shows

that the observed test process for DGF is not within the simulated process (Figure A.3C,

right-panel). Hence, DGF violated the PH assumption in the ST analysis.

The final Cox regression model suggests all these predictors are significantly associated with

graft survival at the 5% level of significance and only DGF violated the PH assumption in this

model. The standard error and coefficient for ‘diabetes’ are large, which definitely affects the

width of the confidence interval. This could be as a result of the reference category used and

fewer number of graft failure observed in diabetic patients.

Table 5.12: Non-proportionality test in the Cox regression model for ST graft survival,
p-values for scaled Schoenfeld residuals and cumulative residuals (*) tests.

Variable rho chisq p-value p-value*
nephrectomy -0.098 1.150 0.284 0.471
no complication 0.103 1.260 0.261 0.443
delayed gf -0.307 11.400 0.001 0.002
diabetes -0.019 0.041 0.840 0.330
ethnicity 0.123 1.870 0.171 0.362
ureteric 0.000 0.000 0.997 0.659
GLOBAL NA 14.300 0.026

5.3.3 Extension of the Cox PH model for short-term graft survival

The stratified Cox model was fitted to control for DGF by stratification because the PH

assumption was not met for this predictor. Table 5.14 (page 75) shows the result of the

stratified Cox model, which indicates that all the variables (except the one being stratified-on)

were included in the model and they all satisfied the PH assumption (Table A.4, page 122).

Only ‘ureteric’ is not significantly associated to ST graft survival at the 5% level of significance.
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Table 5.13: Analysis of risk factors associated to ST graft survival on fitting multivariable
Cox regression model (N=751).

Variable coefficient HR (95% CI) SE p-value
nephrectomy -1.614 0.20 (0.05-0.82) 0.722 0.025
no complication 0.668 1.95 (1.33-2.86) 0.196 0.001
delayed gf 0.619 1.86 (1.29-2.68) 0.188 0.001
diabetes 2.043 7.72 (1.07-55.44) 1.006 0.042
ethnicity 0.553 1.74 (1.20-2.52) 0.189 0.003
ureteric -0.930 0.40 (0.16-1.00) 0.473 0.049

Reference category: nephrectomy (no), no complication (yes), delayed gf (no), diabetes (yes), ethnicity
(white) and ureteric (no).

This model assumes no interaction between DGF and any of the predictors in the model. To

confirm this, an interaction model that includes interaction of DGF and each of the predictors

was fitted. There was no significant interaction observed between DGF and any of the

predictors. The result of the LR test of the no-interaction model (−2LLno-interaction = 1310.10)

and the interaction model (−2LLinteraction = 1301.82) shows no statistical significance between

the two models (p=0.089). Hence, the no-interaction model is more appropriate than the

interaction model. There is no large difference between the HR of the predictors in the stratified

Cox regression model and in the standard Cox regression model. For example, the hazard

of graft failure for patients with complication is 95% (standard Cox regression model) and

93% (stratified Cox regression model) higher than patients without complication immediately

after transplantation. This shows the difference in performance between these two models.

Interpretation of each of the effects for these predictors in the stratified model will account for

adjusting for the other predictors in the model and DGF as the stratified variable.

Figure 5.11 (page 75) shows the adjusted survival function and cumulative hazard function

for DGF. The survival plot indicates that patients who experienced instant functioning of

the grafted kidneys consistently experience higher graft survival than those patients who

experienced DGF. In addition, the cumulative hazard plot also affirms that patients that did

not experience delayed graft function post-transplant had a lower risk of graft failure compared

to patients that experienced delayed graft function at all time points.
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Table 5.14: Result of the stratified Cox regression with no-interaction model for the ST graft
survival analysis.

Variable Coefficient HR (95% CI) SE p-value
nephrectomy -1.642 0.19 (0.05-0.80) 0.722 0.023
no complication 0.660 1.93 (1.31-2.82) 0.196 0.001
diabetes 2.048 7.75 (1.08-55.71) 1.006 0.042
ethnicity 0.567 1.76 (1.22-2.55) 0.189 0.003
ureteric -0.878 0.42 (0.16-1.05) 0.473 0.064

Reference category: nephrectomy (no), no complication (yes), diabetes (yes), ethnicity (white) and ureteric
(no).

Figure 5.11: Graphs of KM estimates of adjusted (A) survival function and (B) cumulative
hazard function from the stratified Cox regression model with no interaction for the ST graft
survival analysis.

An extended Cox model that includes a product term for DGF with time, the main effect of

DGF and the other predictors that satisfied the PH assumption were considered. Table 5.15

(page 76) shows that the p-value of the estimated coefficient for the product term is significant

(p=0.008), suggesting that the PH assumption is not satisfied for DGF. This model indicates

that the HR for DGF depends on the values of the estimated coefficient for the main and

interaction effects for DGF. The effect of DGF on graft survival is expected to increase with

survival time (Figure 5.12, page 77) because the coefficient value of the product term is positive.

For example, the HR for DGF at 6 months post-transplant is 10.5[e(1.191+0.193(6))], indicating a

patient who experienced DGF is approximately 11 times more likely to experience graft failure

compared to a patient that did not experience DGF at the 6th month. Generally, Figure 5.12

supports that patients that did not experience DGF had better graft survival compared to

patients that experienced DGF in this study.
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To test the significance of the stratified model in comparison to the proportional hazard model

(Table 5.13, page 74), the likelihood ratio test was conducted. Under the null hypothesis that

the coefficient of the product term (DGF × time) is zero, the chi-square statistic with one

degree of freedom yielded a p-value of 0.004. This provides evidence that the effect of DGF on

graft survival is time-dependent. Therefore, it is necessary that the time variable values should

be incorporated when interpreting the effect of DGF on graft survival. Hence, a model with

the product term of DGF and time is preferred to one without the product term.

The model fitted in Table 5.15 (page 76) demonstrates how the effect of DGF on ST graft

survival changes over time. Two Heaviside (HV) functions could be used to describe the effect

of DGF on graft survival and assess the PH assumption of DGF. Based on Figure 5.11 (page

75), it can be said that after 6.6 months, the divergence in the survival curve minimised (this

threshold results in minimum AIC value). Hence, the HV function describing the effect of DGF

before and after the 6.6th month (post-transplant) was included in the Cox regression model.

The results show that the estimated HR for patients that experienced DGF versus patients

that did not experience DGF is 2.02 (p=<0.001) before the 6.6th month, while the HR after

the 6.6th month is 1.06 (p=0.906). This is indicative of assumption violation for DGF because

the p-value of the hazard ratio after 6.6 months post-transplant is significant. In other words,

the hazard for DGF differs at these two time periods.

Table 5.15: Result of the extended Cox regression model with main effect of delayed graft
function and its interaction with time for ST graft survival analysis.

Variable Coefficient HR (95% CI) SE p-value
nephrectomy -1.630 0.20 (0.05-0.81) 0.722 0.024
no complication 0.659 1.93 (1.32-2.83) 0.196 0.001
diabetes 2.047 7.74 (1.08-55.65) 1.006 0.042
ethnicity 0.563 1.76 (1.21-2.54) 0.189 0.003
ureteric -0.889 0.41 (0.16-1.04) 0.473 0.060
delayed gf 1.191 3.30 (1.90-5.70) 0.280 <0.001
delayed gf×time 0.193 1.21 (1.05-1.40) 0.072 0.008

Reference category: nephrectomy (no), no complication (yes), delayed gf (no), diabetes (yes), ethnicity
(white) and ureteric (no).
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Figure 5.12: The plot of hazard ratio for delayed graft function versus time, illustrating
the non-proportional effect of the covariate (delayed graft function) in the ST graft survival
analysis.

Table 5.16: Result of the extended Cox regression model with Heaviside functions (HV1
and HV2) for assessing the PH assumption for delayed graft function in the ST graft survival
analysis.

Variable Coefficient HR (95% CI) SE p-value
nephrectomy -1.615 0.20 (0.05-0.83) 0.722 0.026
no complication 0.659 1.95 (1.33-2.85) 0.196 <0.001
diabetes 2.044 7.72 (1.07-55.89) 1.006 0.043
ethnicity 0.555 1.74 (1.20-2.54) 0.189 0.004
ureteric -0.921 0.40 (0.15-1.03) 0.473 0.058
HV1 0.704 2.02 (1.35-3.02) 0.202 <0.001
HV2 0.062 1.06 (0.38-3.02) 0.534 0.906

Reference category: nephrectomy (no), no complication (yes), delayed gf (no), diabetes (yes), ethnicity
(white) and ureteric (no).

5.3.4 Accelerated failure time models for short-term graft survival

Parametric AFT models were fitted using variables in Table 5.13 (page 74). These models

(with exception of the exponential and log-logistic models) indicate that ‘ureteric’ is not a

significant predictor of ST graft survival at the 5% level of significance (Table 5.17, page 79).

The standard errors for ‘nephrectomy’, ‘diabetes’ and ‘ureteric’ are larger in all the models,
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which could be as a result of fewer graft failures observed in patients with nephrectomy, ureteric

or diabetes in ST analysis. These large standard errors could have resulted in broader widths

of the confidence intervals observed for ‘nephrectomy’ and ‘ureteric’ in all the AFT models.

Hence, this may suggest lack of accuracy in parameter estimates for these predictors. The

log-normal model has the lowest value of AIC, indicating a more reasonable model compared

to the other models (Table 5.18, page 80). The parametric models out-performed the Cox

regression model according to the AIC. Based on the Cox-Snell residual plots (Figure 5.13,

page 80), the assumption of a constant hazard appears not to be tenable, because the majority

of the plotted points did not fall on (or closer to) the referent line for exponential model fit. The

fit of the log-normal, log-logistic and gamma models are comparable, which corresponds to what

is observed in Table 5.18. The index plot used to assess the adequacy of the most reasonable

model (log-normal) in the analysis shows no peculiar pattern and outlying observation, as

shown in Figure 5.14 (page 81). Also the dfbeta plots (Figure 5.15, page 81) show that none of

the observations had undue influence on the parameter estimates, which could affect inferences

made from the log-normal model. This figure shows that the highest change in the estimated

coefficients is 0.87 (in absolute value), which is less than 1 for overly influential observations in

a small dataset.
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Table 5.17: Analysis of risk factors associated with the ST graft survival data on fitting
multivariable parametric accelerated failure time models (N=751).

Model Factor Coeffient TR (95%CI) SE p-value
Exponential Intercept 4.225

nephrectomy 1.546 4.69 (1.14-19.30) 0.722 0.032
no complication -0.714 0.49 (0.33-0.72) 0.195 <0.001
delayed gf -0.715 0.49 (0.34-0.71) 0.187 <0.001
diabetes -2.078 0.13 (0.02-0.90) 1.006 0.039
ethnicity -0.561 0.57 (0.39-0.83) 0.189 0.003
ureteric 1.028 2.80 (1.11-7.07) 0.474 0.030
Scale 1.000
Shape 1.000

Weibull Intercept 7.623
nephrectomy 2.901 18.18 (1.35-244.94) 1.327 0.029
no complication -1.210 0.30 (0.15-0.61) 0.363 <0.001
delayed gf -1.120 0.33 (0.17-0.64) 0.343 <0.001
diabetes -3.696 0.03 (0.00-0.91) 1.839 0.044
ethnicity -1.006 0.37 (0.18-0.73) 0.351 0.004
ureteric 1.688 5.41 (1.00-29.18) 0.860 0.050
Scale 1.803
Shape 0.555

Log-normal Intercept 7.256
nephrectomy 2.758 15.76 (1.72-144.71) 1.131 0.015
no complication -1.210 0.30 (0.13-0.67) 0.414 0.004
delayed gf -1.447 0.24 (0.11-0.49) 0.375 <0.001
diabetes -3.165 0.04 (0.00-0.60) 1.356 0.020
ethnicity -1.075 0.34 (0.16-0.71) 0.373 0.004
ureteric 1.633 5.12 (0.91-28.68) 0.879 0.063
Scale 3.272

Log-logistic Intercept 7.148
nephrectomy 2.872 17.67 (1.46-214.39) 1.273 0.024
no complication -1.217 0.30 (0.14-0.63) 0.383 0.002
delayed gf -1.268 0.28 (0.14-0.57) 0.357 <0.001
diabetes -3.577 0.03 (0.00-0.83) 1.730 0.039
ethnicity -1.041 0.35 (0.18-0.71) 0.358 0.004
ureteric 1.723 5.60 (1.02-30.89) 0.871 0.048
Scale 1.670

Gamma Intercept 7.171
nephrectomy 2.740 15.48 (1.74-137.54) 1.115 0.014
no complication -1.200 0.30 (0.13-0.69) 0.422 0.004
delayed gf -1.476 0.23 (0.11-0.49) 0.390 <0.001
diabetes -3.110 0.05 (0.00-0.60) 1.322 0.019
ethnicity -1.077 0.34 (0.16-0.71) 0.376 0.004
ureteric 1.603 4.97 (0.87-28.33) 0.888 0.071
Scale 3.461
Shape -0.131

Reference category: nephrectomy (no), no complication (yes), delayed gf (no), diabetes (yes), ethnicity
(white) and ureteric (no).
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Table 5.18: AIC values signifying the performance of the respective models in fitting ST graft
survival analysis.

Model Cox Exponential Weibull Log-normal Log-logistic Gamma
AIC 1469.557 552.658 493.803 487.339 491.430 489.253

Figure 5.13: Cox-Snell residuals obtained from fitting the corresponding survival model to
the ST graft survival analysis. The dashed lines represent the reference with a unit slope and
zero intercept.
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Figure 5.14: Assessment of goodness-of-fit using an index plot of the deviance residuals for
the log-normal model in ST graft survival analysis.

Figure 5.15: Graphs of the dfbeta statistic illustrating the diagnostics on the estimated
regression coefficients for all the predictors in the log-normal model for ST graft survival
analysis.
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5.3.5 Assessing goodness-of-fit of the log-normal model through

simulation

The parameters estimated from the log-normal model using the real data (Table 5.17), were

used for simulating a comparable cohort. The predictors with their respective effect size,

distribution and proportion for the non-reference categories are detailed in Table 5.19. The

event and censorship times are based on the log-normal distribution. The scale of the time

to event, scale of the time to censorship, as well as their intercepts are indicated in the table

footnote. Using a sample size of 751, we set a random seed of 1000 and ran a simulation.

Finally, the goodness-of-fit assessment based on simulation is shown in Table 5.20 (page 83).

The log-normal model parameter estimates based on the simulated data is comparable with the

log-normal parameter estimates based on the real data. The fit of the log-normal model seems

to be better with the simulated data than the real data according to the Cox-Snell residual

plot (Figure 5.16, page 83).

Table 5.19: Details of the predictors and input parameters used for the simulation of a 751
cohort based on the log-normal model for the ST analyses.

Factors Coefficient Distribution Probability
nephrectomy (yes) 2.758 Bernoulli 0.06924101198
no complication (no) -1.210 Bernoulli 0.34620505990
delayed gf (yes) -1.447 Bernoulli 0.36884154460
diabetes (no) -3.167 Bernoulli 0.93608521970
ethnicity (non-white) -1.075 Bernoulli 0.41944074570
ureteric (yes) 1.633 Bernoulli 0.05459387483

seed=1000, n=751, foltime=1.05, anc.ev=3.27, beta0.ev=7.26, anc.cens= 1.2, beta0.cens=0.0463
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Table 5.20: Goodness of fit assessment for ST graft survival analysis using the
simulation-based method. The table shows the comparison between the estimated coefficients,
the time ratios with a 95% confidence interval and p-values for the real (Real) and the
log-normal-based simulated (Sim) data.

Variable Coefficient TR (95% CI) p-value
Real Sim Real Sim Real Sim Real Sim

Intercept 7.256 7.065
nephrectomy 2.758 2.076 15.76 7.97 (1.72-144.71) (1.57-40.50) 0.015 0.012
no complication -1.210 -1.374 0.30 0.25 (0.13-0.67) (0.13-0.49) 0.004 <0.001
delayed gf -1.447 -0.977 0.24 0.38 (0.11-0.49) (0.19-0.73) <0.001 0.004
diabetes -3.165 -3.187 0.04 0.04 (0.00-0.60) (0.00-0.52) 0.020 0.014
ethnicity -1.075 -1.281 0.34 0.28 (0.16-0.71) (0.14-0.54) 0.004 <0.001
ureteric 1.633 1.956 5.12 7.07 (0.91-28.68) (0.83-60.09) 0.063 0.073

Reference category: nephrectomy (no), no complication (yes), delayed gf (no), diabetes (yes), ethnicity
(white) and ureteric (no).

Figure 5.16: Cox-Snell residuals obtained from fitting a log-normal survival model to the
simulated data in ST graft survival analysis. The dashed line represents the reference with a
unit slope and zero intercept.

5.4 Long-term graft survival analysis

5.4.1 Exploratory data analysis for long-term graft survival

In the exploratory data analysis of the LT graft survival distribution (Figure 5.17, page 85),

the histogram (Figure 5.17A) shows that most of graft failures occurred between 1 and 15
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years post-transplant. The survival rate of grafts in the LT study is shown in Figure 5.17B. At

about 12 years of follow-up, 50% of the grafts had failed. None of the grafts survived up to 30

years and about 60% of the grafts were censored. The baseline hazard (Figure 5.17C) shows

a profile which increased and subsequently decreased with time post-transplant. The hazard

increases to a peak at about 7 years of follow-up study and stay approximately constant and

then decreases gradually towards zero from 12 years as time increases. There is a gradual rise

in the cumulative hazard, indicating a lower hazard of graft failure at the beginning of LT graft

survival. The noise observed towards the end of the cumulative hazard plot is also shown in

Figure 5.1C. This could be as a result of the number of grafts at risk towards the end of the

study.

5.4.2 Model development for long-term graft survival

The model building procedure detailed in the overall analysis was also employed in the LT

analysis. Among the 19 variables evaluated for a relationship with graft survival in the

univariable analysis, only 8 were significantly related with graft survival at the 25% level (Table

B.1, page 123). The multivariable Cox regression model containing all significant variables in

the univariable analysis was fitted (Table B.2, page 124). Omitting ‘wound sepsis’, ‘urological’

and ‘hypertension’ from Models 1, 2 and 3 respectively, made no significant impact in the model

and the estimated coefficients. The final variables selected at this stage is shown in Model 4

(Table B.2).

In the next step, variables that were not significant in the univariable analysis were added one

at time in Model 4 (Table B.3, page 125). These variables also did not show a significant

relationship with graft survival and are also not confounders. Hence, they were excluded

from the study. Lastly, the model was further optimised by dropping ‘inherited’ (p=0.064).

Excluding this variable and refitting the model resulted in a LR with p=0.051, which is slightly

above the threshold of 5% level of significance. Furthermore, the change in coefficients (∆β̂)

for each variable remaining in the model was compared with the original model. The highest

change in coefficients is approximately 11% (Table B.3, page 125). Therefore, ‘inherited’ was

subsequently dropped from the study.
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Figure 5.17: Exploratory data analysis for LT graft survival. (A) histogram of the underlying
frequency distribution of the graft survival time variable, (B) KM estimate of the survival
function, (+) indicates censoring and the numbers in red show grafts at risk at each 5 year
interval. (C) KM estimate of a kernel-smoothed hazard function and (D) KM estimate of the
cumulative hazard function for the overall data analysis (N=490).

The next step was to assess the scale of ‘recipient age’ as the only continuous variable selected.

The Lowess smoothed line in Figure 5.18A (page 86) is approximately straight, suggesting a

linear term for recipient age is appropriate in the model. The cumulative martingale residuals

plot (Figure 5.18B, page 86) shows that the observed process of this variable is typical with

the simulated process. The spline fit supports that ‘recipient age’ is related with graft survival

in the log-hazard because the non-linear term in Table 5.21 (page 87) is not significant.
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Figure 5.18: Linearity assumption assessment for LT graft survival analysis. Plot of (A)
smoothed martingale residuals from a null Cox regression model versus recipient age and (B)
cumulative martingale residual versus recipient age (p=0.148), the bold line represents the
observed process and the dotted lines represent the simulated processes.

Finally, possible interactions between the predictors were assessed. The result shows a

significant interaction between ‘recipient age’ and ‘diabetes’ (Table 5.23, page 89). This is

statistically and clinical reasonable, indicating the effect of age differs between the two categories

of ‘diabetes’. Comparing the model with and without ‘age-diabetes’ interaction, the LR test

(11.138, with 1 degree of freedom) is significant at the 5% level of significance (p<0.001). The

p-values based on the Wald statistics show that all the terms in the model are significant.

86



5.4. LONG-TERM GRAFT SURVIVAL ANALYSIS

Table 5.21: Smoothing spline fit result (based on the Cox regression model) for assessing the
linearity assumption of the continuous variable (recipient age) in LT graft survival analysis.

Variable Coefficient SE p-value
dnr type -0.629 0.274 0.022
diabetes 0.870 0.215 <0.001
ethnicity 0.458 0.149 0.002
recip age-linear 0.042 0.007 <0.001
recip age-nonlinear 0.231

Reference category: dnr type (cadaveric), diabetes (no) and ethnicity (white).

Figure B.1 (page 126) shows the assessment of the PH assumption for the categorical predictors

using the KM and log-log plots. Only ‘ethnicity’ displays evidence of non-proportionality,

though there is line-touching in the survival profile for ‘diabetes’ at the beginning, before

the lines drifted apart. On the basis of the rule of parallel lines in PH assumption, there is

suggestion that the proportionality assumption is not valid for all these variables. However, the

line-touching observed in ‘donor type’ and ‘diabetes’ could be a result of a fewer graft failures

observed in patients with diabetes or patients that received live donor kidney transplants.

Table 5.22 (page 88) shows the p-values of tests based on scaled Schoenfeld and cumulative

residuals for non-proportional hazard assessment. The result of the two tests suggests evidence

of deviation from the proportionality for ‘ethnicity’. The result of the two tests are graphically

illustrated for each of the predictors in the Cox regression model (Figure B.2, page 127). The

Lowess lines in Figure B.2 (left panel) approximately have a zero slope, except for ‘ethnicity’

(Figure B.2 C). The observed process in the cumulative martingale residual plot for ‘ethnicity’

is not distributed well-within the simulated process. This figure suggests a non-constant effect

over time for ethnicity. The non-constant effect of ‘ethnicity’ indicates a lack of fit in the Cox

regression model, which could lead to misleading parameter interpretation.

5.4.3 Extension of the Cox PH model for long-term survival

An extended Cox regression model (a more adequate model) was employed because the PH

assumption was violated for ‘ethnicity’. Table 5.24 (page 89) shows the result of the stratified

model with no-interaction. An interaction model that includes ethnicity with the predictors

was fitted. To conclude which model is more suitable, the LR test was conducted and the result

(−2LLno-interaction − (−2LLinteraction) = 2.615) is not significant at the 5% level of significance.

Thus, we conclude that the stratified model with no-interaction is more appropriate in this

analysis. The estimated parameters in Table 5.23 (page 89) for the standard Cox regression
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model is comparable with the parameter estimates for the stratified Cox regression model.

Interpretation of the effect of each predictor in the stratified model will account for adjusting

for other predictors in the model and ‘ethnicity’ as the stratified predictor. Figure 5.19 (page

89) shows the adjusted survival function and cumulative hazard function by ‘ethnicity’. The

survival plot indicates that graft survival experienced by white patients is consistently higher

than graft survival experienced by non-white patients. In addition, the cumulative hazard plot

also supports this finding.

Table 5.25 (page 90) shows the results of an extended Cox model with the product term of

‘ethnicity’ with time, the main effect of ‘ethnicity’ and the other predictors that satisfied the

PH assumption. There is evidence to conclude on interaction of ‘ethnicity’ with time in the

LT analysis, since the p-value of the estimated coefficient for the product term is significant

(p=0.011). Based on Table 5.25, the estimated HR for ‘ethnicity’ at 5 years post-transplant is

3.51[e(0.876+0.076(5))]. This suggests that a non-white patient is approximately four times more

likely to experience graft failure compared to a white patient (Figure 5.20). The LR used to

test the significance of this model, compared to model without the interaction of ‘ethnicity’

with time (Table 5.23), is equal to 6.926 with p=0.008. This confirms that a model with the

product term of ‘ethnicity’ and time is preferred to a model without the product term. The

threshold used to create the two HV functions were based on Figure 5.19 (page 89). With this

function, the effect of ‘ethnicity’ on graft survival before and after the 10th year was assessed

(we assumed the divergence in the survival curve minimised after this period). The result shown

in Table 5.26 (page 90) indicates that the estimated HR for non-whites as compared to whites

is 1.99 (p<0.001) before the 10th year, while the HR after the 10th year is 1.35 (p=0.286). This

model with the HV function confirms a non-proportional effect of ‘ethnicity’ over time because

the p-value of HV1 is significant.

Table 5.22: Non-proportionality test in the Cox regression model for LT graft survival,
p-values for scaled Schoenfeld residuals and cumulative residuals (*) tests.

Variable rho chisq p-value p-value*
dnr type -0.056 0.622 0.430 0.461
diabetes 0.080 1.323 0.250 0.072
recip age 0.021 0.099 0.753 0.434
ethnicity 0.167 5.499 0.019 0.013
diabetes×recip age 0.005 0.006 0.936 0.686
GLOBAL NA 9.230 0.100
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Table 5.23: Analysis of risk factors associated with LT graft survival based on the
multivariable Cox regression model (N=490).

Variable Coefficient HR 95% CI SE p-value
dnr type -0.698 0.50 (0.29-0.85) 0.273 0.011
diabetes 0.806 2.24 (1.44-3.48) 0.224 <0.001
recip age 0.135 1.14 (1.08-1.21) 0.029 <0.001
ethnicity 0.435 1.54 (1.16-2.06) 0.147 0.003
diabetes×recip age -0.086 0.92 (0.87-0.97) 0.027 0.001

Reference category: dnr type (cadaveric), diabetes (no) and ethnicity (white).

Table 5.24: Results of the stratified Cox regression with no interaction model for LT graft
survival analysis.

Variable Coefficient HR (95% CI) SE p-value
dnr type -0.655 0.52 (0.30-0.89) 0.275 0.017
diabetes 0.773 2.17 (1.40-3.36) 0.224 0.001
recip age 0.136 1.15 (1.08-1.22) 0.029 <0.001
diabetes×recip age -0.087 0.92 (0.87-0.97) 0.027 0.001

Reference category: dnr type (cadaveric) and diabetes (no).

Figure 5.19: Graphs of KM estimates of adjusted (A) survival function and (B) cumulative
hazard function from the stratified Cox regression model with no interaction for the LT graft
survival analysis
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Table 5.25: Results of the Cox regression model with main effect of ethnicity predictor and
its interaction with time for LT graft survival analysis.

Variable Coefficient HR (95% CI) SE p-value
dnr type -0.651 0.52 (0.30-0.89) 0.274 0.018
diabetes 0.775 2.17 (1.40-3.37) 0.224 0.001
ethnicity 0.876 2.69 (1.88-3.07) 0.125 <0.001
recip age 0.138 1.15 (1.08-1.21) 0.030 <0.001
diabetes×recip age -0.088 0.92 (0.87-0.97) 0.027 0.001
ethnicity×time 0.076 1.08 (1.01-1.14) 0.030 0.011

Reference category: dnr type (cadaveric), diabetes (no) and ethnicity (white).

Table 5.26: Result of the extended Cox regression model with Heaviside functions (HV1 and
HV2) for assessing PH assumption for recipient ethnicity in the LT graft survival analysis.

Variable Coefficient HR 95% CI SE p-value
dnr type -0.650 0.52 (0.31-0.89) 0.273 0.017
diabetes 0.772 2.16 (1.40-3.32) 0.220 <0.001
recip age 0.139 1.15 (1.08-1.22) 0.031 <0.001
diabetes×recip age -0.089 0.91 (0.86-0.96) 0.027 0.001
HV1 0.686 1.99 (1.42-2.76) 0.170 <0.001
HV2 0.300 1.35 (0.97-1.88) 0.281 0.286

Reference category: dnr type (cadaveric), diabetes (no) and ethnicity (white).

Figure 5.20: The plot of hazard ratio for recipient ethnicity versus time, illustrating the
non-proportional effect of the covariate (ethnicity) in LT graft survival analysis
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5.4.4 Accelerated failure time models for long-term graft survival

The selected predictors used to fit the final Cox regression model (Table 5.23, page 89) were also

used to fit parametric models (Table 5.27, page 92). All the models identified these predictors

as significant risk factors of LT graft survival. Table 5.28 presents the statistical criterion

used to compare the fit of the fitted models. The lower the value of this criterion, the better

the model fit. This table shows that the Cox PH model has the highest AIC value. The

exponential model performed poorly compared to the other parametric models, reflecting what

was observed in the previous analyses. The Log-normal, log-logistic and gamma models are

comparable according to the AIC. In the Cox-Snells residual plots, it appears that the Weibull

model provides a better fit compared to the other models (Figure 5.21, page 93). However, we

conclude on model performance based on AIC values because of the limitation of the Cox-Snell

residuals plot. Thus, the log-normal model fit (with the predictors) in the LT analysis is given

by:

LogT = 2.820 + 0.338dnr type− 0.526diabetes− 0.100recip age− 0.427ethnicity

− 0.065diabetes× recip age+ 1.035.

The interaction effect of ‘diabetes’ with ‘recipient age’ (centered on the mean) is also significant

in the log-normal model. According to this model, α2 = −0.526, α3 = −0.100 and α5 = 0.065.

α2 indicates the difference in graft survival between a diabetic patient and a non-diabetic

patient. The time ratio for ‘recipient age’ is 0.90 (e−0.100), this indicates shorter survival

time is more likely for elderly recipients. This average effect is referred to the category of

non-diabetic patients (reference category). The average effect of age on diabetic patients is

0.97 (e(−0.100+0.065)). The average effect of age on LT graft survival has a larger impact on

non-diabetic recipients compared to diabetic recipients.

The index plot of the deviance residuals (used to assess the adequacy of the log-normal model)

shows no peculiar pattern and outlying observations (Figure 5.22, page 94). While assessing

the model adequacy, the dfbeta plot was further used to determine whether any observation

had undue influence on the model regression estimates that could affect inferences made from

the fitted models. Figure 5.23 (page 94) presents the dfbeta residual for each predictors in the

log-normal model. This figure shows that the highest change in estimated coefficients is 0.08

(in absolute value), which is less than 1 for overly influential observations in a small dataset.
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Table 5.27: Analysis of risk factors associated with the LT graft survival data based on the
multivariable parametric accelerated failure time models (N=490).

Model Factor Coeffient TR (95%CI) SE p-value
Exponential Intercept 3.314

dnr type 0.702 2.02 (1.18-3.45) 0.273 0.010
diabetes -0.793 0.45 (0.29-0.70) 0.223 <0.001
recip age -0.128 0.89 (0.83-0.93) 0.029 <0.001
ethnicity -0.410 0.66 (0.50-0.88) 0.146 0.005
diabetes×recip age 0.081 1.08 (1.03-1.14) 0.026 0.002
Scale 1.000
Shape 1.000

Weibull Intercept 3.112
dnr type 0.531 1.70 (1.14-2.55) 0.206 0.010
diabetes -0.622 0.54 (0.38-0.75) 0.170 <0.001
recip age -0.106 0.90 (0.86-0.94) 0.022 <0.001
ethnicity -0.317 0.73 (0.59-0.91) 0.111 0.004
diabetes×recip age 0.068 1.07 (1.03-1.11) 0.020 <0.001
Scale 0.748
Shape 1.337

Log-normal Intercept 2.820
dnr type 0.338 1.40 (0.97-2.02) 0.186 0.070
diabetes -0.526 0.59 (0.40-0.87) 0.199 0.008
recip age -0.100 0.90 (0.86-0.95) 0.024 <0.001
ethnicity -0.427 0.65 (0.52-0.83) 0.120 <0.001
diabetes×recip age 0.065 1.07 (1.02-1.12) 0.023 0.005
Scale 1.035

Log-logistic Intercept 2.812
dnr type 0.456 1.58 (1.06-2.34) 0.202 0.024
diabetes -0.566 0.57 (0.40-0.82) 0.185 0.002
recip age -0.101 0.90 (0.86-0.95) 0.024 <0.001
ethnicity -0.425 0.65 (0.52-0.83) 0.119 <0.001
diabetes×recip age 0.063 1.07 (1.02-1.11) 0.021 0.003
Scale 0.586

Gamma Intercept 2.931
dnr type 0.424 1.53 (1.03-2.26) 0.200 0.034
diabetes -0.566 0.57 (0.40-0.82) 0.185 0.002
recip age -0.103 0.90 (0.86-0.95) 0.024 <0.001
ethnicity -0.394 0.67 (0.53-0.85) 0.120 0.001
diabetes×recip age 0.066 1.07 (1.02-1.12) 0.022 0.003
Scale 0.939
Shape 0.356

Reference category: dnr type (cadaveric), diabetes (no) and ethnicity (white).
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This indicates that no single patient observation influenced the parameter estimates for these

covariates in the model.

Table 5.28: AIC values signifying the performance of the respective models in fitting LT graft
survival analysis.

Model Cox Exponential Weibull Log-normal Log-logistic Gamma
AIC 2147.735 1591.870 1569.856 1563.227 1564.411 1563.955

Figure 5.21: Cox-Snell residuals obtained from fitting the corresponding survival models to
the LT graft survival data. The dashed lines represent the reference with a unit slope and zero
intercept.
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Figure 5.22: Assessment of goodness-of-fit using an index plot of the deviance residual for
the log-normal model in the LT graft survival analysis.

Figure 5.23: Graphs of the dfbeta statistic illustrating the diagnostics of the estimated
regression coefficients for all the terms in the log-normal model for LT graft survival analysis.
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5.4.5 Assessing goodness-of-fit of the log-normal model through

simulation

The parameters estimated from the log-normal model using the real data (Table 5.27) were

used for simulating a comparable cohort for LT analysis. The predictors with their respective

effect size, distribution and proportion for the non-reference categories are detailed in Table

5.29. The event and censorship times are based on the log-normal distribution. The scale of

the time to event, scale of the time to censorship, as well as their intercepts are indicated in

the table footnote. Using a sample size of 490, we set a random seed of 250 and performed a

simulation. The result of the log-normal model (based on the simulated data) suggests that

all the predictors are significant risk factors of LT graft survival (Table 5.30, page 96). The

log-normal fits from both the simulated and real data estimated comparable TR for diabetes,

recipient age and diabetes-age interaction. The simulated fit suggests that LT graft survival for

recipients of living kidneys is twice that of cadaveric kidney recipients, while the fit from the real

data suggest the difference in graft survival between these groups is 40%. Also, the estimates

from the real and simulated data show that non-white recipients had 35% and 41% shorter graft

survival times compared to white patients, respectively. Hence, it can be concluded that the

simulation-based data approximates the real data, indicating the log-normal model is reasonable

for LT graft survival. Nevertheless, the Cox-Snell residual plot of the log-normal model based

on the simulated data appears to provide a slightly better fit compared to log-normal model fit

with the real data (Figure 5.24, page 96).

Table 5.29: Details of the predictors used for the simulation of a 490 cohort based on the
log-normal model for the LT analyses.

Factors Coefficient Distribution Probability or mean(var)
dnr type (living) 0.338 Bernoulli 0.179591837
diabetes (no) -0.526 Bernoulli 0.079591837
recipient age -0.100 Normal 0(119.932)
ethnicity (non-white) -0.427 Bernoulli 0.377551020
diabetes × recipient age 0.065 Normal -0.1820075(135.6675)

seed=250, n=490, foltime=29, anc.ev=1.04, beta0.ev=2.8196, anc.cens= 0.853, beta0.cens=2.33159
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Table 5.30: Goodness-of-fit assessment for LT graft survival analysis using the
simulation-based method. The table shows comparisons between the estimated coefficients,
time ratios with 95% confidence interval and p-values for the real (Real) and the
log-normal-based simulated (Sim) data.

Variable Coefficient TR (95% CI) p-value
Real Sim Real Sim Real Sim Real Sim

Intercept 2.820 3.461
dnr type 0.338 0.694 1.40 2.00 (1.38-1.43) (1.97-2.03) 0.070 <0.001
diabetes -0.526 -0.530 0.59 0.59 (0.58-0.60) (0.57-0.60) 0.008 0.043
recip age -0.100 -0.102 0.90 0.90 (0.86-0.95) (0.86-0.95) <0.001 <0.001
ethnicity -0.427 -0.523 0.65 0.59 (0.65-0.66) (0.59-0.60) <0.001 <0.001
diabetes×recip age 0.065 0.065 1.07 1.07 (1.06-1.07) (1.07-1.07) 0.005 <0.001

Reference category: dnr type (cadaveric), diabetes (no) and ethnicity (white).

Figure 5.24: Cox-Snell residuals obtained from fitting a log-normal survival model to the
simulated data in LT graft survival analysis. The dashed lines represent the reference with a
unit slope and zero intercept.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

Kidney transplant remains the treatment of choice for a patient with ESKD because, a successful

kidney transplant increases the patient’s quality of life and life span. Several prognostic factors

including recipient and donor related factors influence ST and LT graft survival (Paul, 1999;

Irish et al., 2010). Proper modelling and identification of these factors is crucial to organ donors,

recipients of new kidneys, organ transplant units and public health sectors, especially in most

developing countries where resources for kidney re-transplants are limited. The Cox regression

model is commonly used in analysing risk factors of both graft and patient survival post-kidney

transplant because of its familiarity and convenience. However, parametric models provide a

better description of kidney transplant data compared to the popular Cox regression model

(Hashemian et al., 2013). To the best of our knowledge, this is the first study to analyse graft

survival using a combination of semi-parametric and parametric models with data generated in

South Africa.

We studied a subset of patients that received either living or cadaveric donor kidney in CMJAH

during the cyclosporine immunosuppressive treatment era because of the following reasons: (1)

innovation in surgical practices will not be captured if the entire cohort was analysed, (2)

inconsistencies and changes in data capturing methods for some variables, which resulted in

missing data and (3) many censored grafts due to the long follow-up of patients. The estimated

graft survival rates for 1, 5, 10 and 15 years (82%, 67%, 51% and 37%, respectively) in this

study favourably compare with local and international published studies (Wafa et al., 2011;
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Ghoneim et al., 2013; Fabian et al., 2016). The hazard and the cumulative hazard plots enable

visualisation of changes in the risk of graft failure throughout the follow-up period. Overall,

this study reveals that the hazard of graft failure is most probable within the first year of a

kidney transplant.

Fitting a large number of variables from a study could add noise to the estimated quantities,

resulting in collinearity among the variables and increase the cost of modelling unnecessary

predictors. With the help of variable selection in a model building procedure, a sub-group

of these variables that describe the study data is selected. The purposeful selection method

based on the Cox regression model was used in model building. This procedure for selecting,

deleting, fitting and re-fitting a model helps to examine retention of each covariate in the model.

Although this method seems complex especially when there are many predictors in the data, it

results in a richer model (with significant factors and important confounders) compared to other

selection methods when prediction and identification of risk factors is of interest (Hosmer Jr and

Lemeshow, 1999; Bursac et al., 2008). Previous studies showed that factors selected in this study

using the purposeful variable selection strategy influence survival of graft post-kidney transplant

(McGee et al., 2010; Fabian et al., 2016). Out of 19 predictors included in the analyses, ‘recipient

age’, ‘donor type’, ‘ethnicity’, ‘diabetes’, DGF, ‘no complication’, ‘nephrectomy’ and ‘ureteric’

are the significant predictors of graft survival.

‘Ethnicity’ and ‘diabetes’ are the common variables selected in the three analyses (overall,

ST and LT). ‘No complication’, ‘nephrectomy’ and ‘ureteric’ were only selected in the ST

analysis. All the variables selected in the LT data analysis are subset of variables selected

in the overall data analysis. DGF was not selected in the LT analysis but rather in ST and

overall data analyses. This is expected because earlier studies observed that DGF influences ST

survival of the graft (McLaren et al., 1999; Quiroga et al., 2006). Factors including ‘donor age’,

‘donor-recipient gender’, ‘acute rejection’ and ‘hypertension’, previously shown to be important

risk factors of graft survival (Tan et al., 2012; González-Molina et al., 2014; Koo et al., 2015),

are neither significant nor confounders in this study. The difference between the findings of the

present study and these studies (Tan et al., 2012; González-Molina et al., 2014; Koo et al., 2015)

could be due to differences in sample size (number of graft failures observed), year of transplant,

duration of follow-up and method of data analysis. It is noteworthy that our findings agree

with studies that have shown that the aforementioned variables do not significantly affect graft

survival (McGee et al., 2010; Shahbazi et al., 2015).

The final predictors selected in the overall data analysis are ‘recipient age’, ‘donor type’,
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‘recipient ethnicity’, DGF and ‘diabetes’. The linearity assumption is satisfied for ‘recipient age’

and none of the two-way interaction between these predictors was significant at the 5% level.

Moreover, the PH assumption was not tenable for all these predictors, except donor type. As

expected, the effects of study variables are prone to non-proportionality when the study period

is long. Therefore, a follow-up period can be shortened if non-proportionality is established in

a study (Moreau et al., 1985; Bellera et al., 2010). Furthermore, the focus of several kidney

transplant studies is on factors that impact on ST and LT graft survival. The exploratory data

analysis for the overall graft survival (Figure 5.1) supports the need to sub-divide the analysis

into ST and LT analyses. Hence, the motivation to study the effect of these factors associated

with survival of the grafted kidney regarding ST and LT follow-up periods with the overall

follow-up period.

The three variables common to both the overall and ST graft analyses (DGF, ‘diabetes’ and

‘ethnicity’) violated the PH assumption in the overall graft survival analysis. However, only

DGF violated the PH assumption in the ST graft survival. These variables exhibited varying

behaviours across the two analyses (overall and ST graft survival); therefore, highlighting the

need to partition the follow-up time when there is evidence of non-proportionality. In the PH

assumption assessment for the LT graft survival analysis, ‘diabetes’ and ‘recipient age’ (which

violated the PH assumption in the overall analysis) satisfied the PH assumption. Perhaps, this

shows the influence of these predictors on graft survival (except ‘donor type’) differs across

ST and LT analyses. Violating the PH assumption by a variable signifies a non-constant

effect of that variable on the outcome of interest. That is to say that the resulting parameter

estimates could be biased or inaccurate because the true estimate of the HR can be under or

over-estimated when non-proportionality is present (Bellera et al., 2010). This observation (in

this study) supports the relevance of PH assumption test, because the true HR of each study

variable violating the PH assumption needs to be estimated at various time points throughout

the follow-up period.

Having established the non-proportional effect of DGF and ‘ethnicity’ in the ST and LT

analyses, stratified models were fitted to control the non-proportional effect of these variables.

Also, a product term of ‘DGF’ or ‘ethnicity’ with some function of time was incorporated in

the Cox PH model to account for time-dependency effect of these predictors on graft survival.

Accounting for non-proportionality in this study, using the extension of the Cox PH model

resulted in a more complete interpretation of the study findings. The extended Cox PH model

was not considered in the overall analysis because the idea is to reduce the non-proportionality

effect of the predictors on graft survival. Moreover, stratification method could lead to loss
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of analytical power, which could be severe when multiple predictors are stratified. Stratifying

the variable or including its interaction with time in a Cox regression model provides a more

appropriate interpretation of its parameter estimates. This is supported by previous studies

(Borucka, 2014; Abdelaal and Zakria, 2015), which reported that a stratification model and

time-by-covariate interaction model outperformed the standard Cox regression model.

The estimation based on AFT models can be questionable if the underlying observed survival

time distribution fails to follow the assumed distribution. Selecting parametric survival models

based on prior knowledge of the outcome variable may not be sufficient in determining

the underlying distribution of graft failure, post-kidney transplant. The hazard function

profiles in the exploratory analyses provided invaluable information, which assisted in selecting

appropriate AFT models for this study. Selecting the appropriate AFT model on the basis

of the hazard shape function has been reported (Khanal et al., 2014). The hazard function

plot in the overall analysis does not show well-defined characteristics; however, it displays a

monotone decreasing function that suggests the Weibull model may provide a better fit. In

the ST analysis, a decreasing hazard is observed, which is closer to a log-logistic distribution

(when k ≤ 1), log-normal (when σ > 1) and Weibull distributions (when γ < 1). The

LT analysis illustrates that the baseline hazard functions are much closer to the shape of a

log-normal and log-logistic distribution (uni-modal shape). Hence, we considered the Weibull,

log-normal, log-logistics AFT models. The exponential model was also included because it is

one of the standard parametric distributions used in survival analysis and is a special case of

the Weibull model. The generalised gamma model was considered in this study because the

exponential, Weibull and log-normal models are its special cases. Thus, the generalised gamma

distribution was used to discriminate between the exponential, Weibull and log-normal models

if the generalised gamma distribution provided a better fit.

One major impediment in survival analysis is the amount of censoring in a data. Nardi and

Schemper (2003) suggested the percentage of censoring in a study should not be over 40-50%

to discriminate among parametric models or to attain a proper fit of parametric models.

Although, the percentage of right-censoring in this study is 57%, the parametric models show an

appropriate fit. Other studies (Hashemian et al., 2013; Pourhoseingholi et al., 2011) with higher

percentage (80% and 60%) of censoring reported appropriate fits of their parametric models.

To compare the fitted models (goodness-of-fit), graphical and numerical procedures based on

the Cox-Snell residuals, AIC and simulation-based study were used. Assessing and comparing

model goodness-of-fit is a good practice prior to interpretation of the estimated parameters.

The Cox-Snell residuals was applied in previous studies (Zare et al., 2013; Vahedi et al., 2016) to
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evaluate model fits. The plot of Cox-Snell residuals used in this study enabled the visualisation

of each model’s performance. Therefore, the Cox regression model performed better than some

parametric models in the analyses on the basis of the performance of the Cox-Snell residuals

plot. The Cox-Snell residuals plot could result in a straight line even when the model fit is not

appropriate. Hence, the Cox-Snell residuals plot may not be effective in detecting deviation from

expected model-fit, except if the model fit is overtly inadequate (Collett, 2003). Collett (2003)

suggested the use of other residuals methods such as the deviance and martingale residuals

methods. Perhaps, this could be the reason the Cox PH model performance (on the basis of

the Cox-Snell residuals and AIC) differs in certain conditions. Thus, it was important to use

additional criteria to judge model performance.

This study further shows the need to assess the goodness-of-fit of a fitted model through

a simulation-based method. Previous studies have shown the need for model evaluation

through simulation methods (Allcroft and Glasbey, 2003; Burton et al., 2006). The simulation

studies were based on the Weibull and log-normal distributions because these models provide

appropriate fits in this study. To generate a simulated data comparable to the real data, we

optimised the seed value. The seed chosen for each simulation study resulted in the most

comparable data (to the real data). Parameter values were re-estimated and the Cox-Snell

residuals were plotted based on the simulated data to observe if the simulated data is comparable

the real data. Simulation-based approach used in this study shows that the fit of the models in

the analyses are reasonable. Bar charts constructed for each of the categorical variables from the

simulated data show that the simulated group proportion are comparable to the real data group

proportions (Figure C.2, page 131). Distribution of ‘recipient age’ is approximately normal from

the real data; however, this variable was simulated based upon a normal distribution. Therefore,

this resulted in large variance in the simulated ‘recipient age’. The estimated parameters for this

variable using the real data are comparable with the parameters estimated using the simulated

data. This validates the performance of the ‘survsim’ package in simulating a comparable

survival population.

The present study reveals that the Weibull model is more appropriate in describing the graft

survival distribution for the overall graft survival, which agrees with the hazard function curve

(Figure 5.1C). In addition, the log-normal AFT model is more appropriate in describing the

ST and LT graft survival distributions. This is also observed in the hazard function curve.

It is convenient to expect that graft survival post-kidney transplant should follow a certain

distribution; however, the findings of this study further affirms the need to examine the

graft survival of a long follow-up study at different time points. Unfortunately, we could not
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exhaustively compare the appropriate models in this study with earlier studies, because not

much work has been done on kidney transplants using parametric models. However, Hashemian

et al. (2013) analysed data collected over 5-years following kidney transplant and showed

that the log-normal model provided the most appropriate fit for predicting the graft survival

post-kidney transplant, while the exponential model was the worst model. In a review by

Gore and Gore (1983), the authors reported that satisfying the assumption for an exponential

distribution is rare in modelling graft survival. Similarly, the shapes of the baseline hazard in

this study do not show that hazard of graft survival are constant following kidney transplant.

This study also agrees with Hashemian et al. (2013), which showed poor model fit in modelling

graft survival with the Cox regression model.

Most kidney transplant studies using the Cox regression model presented their findings in HR.

It would have been convenient to relate the findings of this study with previous works using HR.

However, we based the discussion and comparison on the parametric models reasonable in the

three analyses (ST, LT and overall) because the Cox regression model did not provide the most

appropriate fit of our data (in comparison with the AFT models). This study suggests ‘recipient

ethnicity’ and ‘diabetes’ are important predictors of graft survival post-kidney transplant. The

progression of graft failure accelerates depending on the ethnicity of the recipient, and the graft

survival difference between white and non-white patients diminishes as time progresses. Based

on the suitable models in ST and LT analyses, non-white patients had about 66% shorter graft

survival times as compared to white recipients in the ST analysis, while in the LT analysis the

survival difference reduced to 35%. Several studies reported that recipient ethnicity (or race)

influenced graft survival (Schulman et al., 1992; Malek et al., 2011; Fabian et al., 2016). These

studies (except Fabian et al. (2016)) also reported that non-white recipients have lower graft

survival post-kidney transplant compared to white recipients.

The ethnicity variable in this study was originally captured in four categories ‘white’, ‘black’,

‘Asian’ and ‘mixed’. However, there are insufficient frequencies for the ‘Asian’ and ‘mixed’

categories because these racial groups are the minorities in South Africa. These racial groups

were not eliminated from the study; rather they were pooled with the ‘black’ category to form a

single category (‘non-white’) to have fewer categories and sufficient frequencies for the ethnicity

variable. The grouping of the ethnicity variable into ‘white’ and ‘non-white’ in this study is

because about 9% of South African population is white; however, almost 60% of the patients

in this study is white. This is related to what was reported by Moosa and Kidd (2006) and

White et al. (2008) regarding the easy accessibility of kidney transplant by whites compared to

other racial groups both in South Africa and the USA. Statistically, the KM estimates for the
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ethnicity variable was plotted (Figure C.1), and the significance of this plot was assessed using

the Cox PH model (Table C.1). ‘Black’ category was used as the reference category because it

has neither the smallest nor the largest sample size. We observed that there is no graft survival

difference between black patients and other racial groups except white. In addition, we observed

that the assumption of PH was violated for this variable (Figure C.1B, Table C.2). Hence, we

assessed and compared the graft survival of whites and non-whites in this study. However, we

suggest further study could analyse the individual racial graft survival rate to shed more light

on their distinct impact on graft survival, because collapsing of categories could result in loss

of information. In Johannesburg region, Fabian et al. (2016) analysed a single centre kidney

transplant data, but the mixed ethnicity patients were not included in the study because of

fewer frequency and lower graft survival. The findings by Fabian et al. (2016) show Asian

recipients, compared to white and black recipients, had higher graft survival. Although in the

same region, the present study shows that Asian, compared to white recipients, experienced

lower graft survival. The reason for the disparity between this study and that of Fabian et al.

(2016), may be because Fabian et al. (2016), analysed kidney transplant data collected in new

generation era (2004-2013), which may have a different demographic character compared to the

CYA data used in this study.

The effect of diabetes on ST graft survival may not be correctly interpreted, because the

estimates result in large standard errors with broader confidence intervals for all the models in

ST analysis. This could not be due to multicollinearity amongst the predictors, because VIF was

used to assess multicollinearity in the analyses. The highest VIF calculated is 1.196 in all the

analyses, which shows that the predictors are either moderately correlated or not correlated.

Hence, we suspect this could be a result of fewer incidences of diabetic patients with graft

failure in ST analysis. Therefore, our interpretation of the effect of diabetes on graft survival is

based on the LT and overall analyses because ‘diabetes’ is a common prognostic factor selected

across the three analyses. The current study suggests that non-diabetic recipients experienced

a better graft survival compared to diabetics. There is correlation between the findings of

this study and that of previous work regarding the influence of diabetes at transplant on graft

survival (Hariharan et al., 2002; Morales et al., 2012). Yet, Kim and Cheigh (2001) found no

significant difference between non-diabetic and diabetic recipients regarding graft survival. Kim

and Cheigh (2001) analysed 10 years data following kidney transplant and the statistical method

used was KM with log-rank test, which does not adjust for other variables that could impact on

graft survival. This present study also used univariable analysis and found ‘diabetes’ to influence

graft survival in ST and LT analyses. Nonetheless, we found non-significant association between
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diabetes and graft survival in the overall data analysis, which becomes significant when adjusted

for other covariates. Maybe Kim and Cheigh (2001) would have found a significant relationship

in their study if they had considered a multivariable model.

Previous studies by Morris et al. (1999) and Moosa (2003), highlighted the influence of recipient

age in grafted kidney survival. This study supports the findings of these previous studies that

the age of a kidney recipient at the time of transplant influences LT graft survival. We observed

that the older the kidney recipient, the higher the chances of graft failure. Besides providing

insights into the influence of recipient age and diabetes as individual predictors of graft survival,

the outcome of the LT analysis identifies the interaction between recipient age and diabetes as

a risk factor associated with graft failure rate. Perhaps, the reason ‘age-diabetes interaction’

was not significant (p=0.064, at the 5% level) in the overall analysis is because ‘recipient age’

have no significant impact on ST graft survival. Recipient age as a continuous variable was

centered on the mean for ease of interpretation of the interaction effect. Centring this variable

only causes a minor change in the estimated coefficient, but does not change the prediction.

The interaction effect presented in this study reveals that the average influence of patients’ age

on survival of the graft is larger for non-diabetic patients compared to diabetic patients. Using

a multivariable model, Morales et al. (2012) showed that diabetes interact with recipients’age

(<40 years) in predicting graft survival.

In agreement with both local and international studies (Nemati et al., 2014; Fabian et al.,

2016), this study affirms that ‘donor type’ significantly influence LT graft survival. We observed

that graft survival is prolonged (doubled) among recipients of live kidneys in comparison with

recipients of cadaveric kidneys. ‘Donor-type’ and ‘recipient age’ are not predictors of ST graft

survival in this study. This shows that survival of the graft within the first year of kidney

transplant is independent of the patient’s age or whether the patient received a live or cadaveric

kidney. In agreement with this finding, McGee et al. (2010) showed that ‘recipient age’ and

‘donor type’ do not significantly predict graft survival. Interestingly, the follow-up time analysed

in the study (McGee et al., 2010) is too short to observe the non-effect of ‘donor type’ and

‘recipient age’ on graft survival.

The ST and overall survival analyses showed that DGF is associated with graft survival

post-kidney transplant. Specifically, this study shows that DGF does not significantly influence

LT graft survival, but rather influences graft survival within the first year of transplant. From

a clinical perspective, this observation is reasonable and was reported in a study by McLaren

et al. (1999). Another factor found to be associated with graft survival within the first 12
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months of transplant is ‘no surgical complication’. Based on the log-normal model, we found

that patients that had surgical complications immediately after transplant experienced 70%

shorter graft survival compared with patients that had no surgical complications. These two

predictors (‘DGF’ and ‘surgical complication’) measured immediately after transplant seems to

be correlated to detect the effectiveness of a kidney transplant. Perhaps, that is why they are

both risk factors for ST graft survival.

6.2 Conclusion

Assessing and accounting for assumptions of the Cox model prior to its parameter interpretation

should be an essential practice in analysing survival data on the basis of the Cox PH model. This

study further emphasises the need to evaluate the interaction between covariates in predicting

the outcome of interest because it assists with the appropriate interpretation of a covariate

effect when a significant interaction is detected in a Cox PH model. This work has shown

that the modified Cox regression model can provide a more detailed result interpretation

when a time-varying covariate effect is detected in a Cox PH model. Although comparing the

stratified with the non-stratified model is not straight forward due to different procedures in

their constructions. However, each of these models has its unique advantages and disadvantages.

Even though estimating HR using the Cox regression model is a frequent practice in medical

research such as kidney transplant studies, interpretation of this quantity is more challenging

especially to clinicians (Patel et al., 2006). The effects of predictors are modelled directly on

survival time in AFT models. Therefore, clinicians can acquaint themselves with a predictor

effect acting to either accelerate or decelerate graft survival time post-kidney transplant. Our

study suggests that AFT models provide an appropriate summary of this study data when

compared to the standard Cox PH model. Therefore, AFT models should be used as alternatives

to the standard Cox PH model in modelling graft survival, after kidney transplant.

Overall, this study has shown the significance of simultaneously studying both ST and LT

graft survival following kidney transplant because some of prognostic factors critical for ST

and LT survival differ. The findings of this study affirm that surviving the first 12 months

(ST) post-kidney transplant could be essential for LT survival. Therefore, controlling for DGF

and ‘surgical complications’ is vital for the patient’s graft to progress into the longer phase of

survival. Although the type (living or cadaveric) of kidney donated may not be controlled for,

receiving kidney from a living donor should be encouraged. Patients with diabetes and older
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patients should not top the list of patients awaiting donor kidney.

We have used a rational approach in analysing this secondary data by using and comparing

semi-parametric and parametric survival models. Inaccurate and inconsistent data recording are

limitations in any secondary dataset because the analyst had no control over the data collection.

However, these problems were checked in this study during the process of data cleaning. In

addition, incomplete observation of some predictors is frequently encountered in a secondary

data. The quality of statistical inferences made from a study is directly associated with the

amount of missingness in the data. However, there is no conventional cut-off (from literature)

for acceptable proportion of missingness in a data to enable validity in statistical inferences

(Dong and Peng, 2013). Imputing the 17.7% cases dropped from the dataset would have added

more information in this study. Even though these cases are missing completely at random

(Table C.3, page 132), no attempt was made to imput these missing observations because

imputation is beyond the scope of this study. Nonetheless, we believe the outcomes of this

study is without bias because the deleted cases are missing completely at random. Moreover,

Tabachnick and Fidell (2012) postulated that the mechanisms and patterns of missingness in

a data have much larger influence on the results of a research than does the percentage of

missingness in the data.

As previously mentioned, specifying the underlying survival time distribution is a drawback

in using an AFT model. Future study using this data could apply the non-parametric AFT

models to aid comparison with the standard AFT models. In addition, survival models such

as the Aalen Additive model may provide an insight into the time-varying effect of DGF and

‘ethnicity’ on graft survival time.

Even though the follow-up period in this study was advantageously long, this study is limited

to findings from a single centre with a small cohort of transplant patients (N=751). Therefore,

this single centre data may not be representative of the entire South Africa. Similar graft

survival studies from other parts of the country are needed to substantiate the findings of

this study. Hence, knowledge of graft survival after kidney transplant in South Africa will be

extended. This study also focused on one transplant era (the CYA era). Perhaps, analysing

graft survival of patients that received kidney transplant during pre-CYA and new-generation

eras may provide a better insight into prognostic factors of graft survival post-kidney transplant

across these transplant eras. In addition, another notable limitation in this study is the absence

of some covariates in the data. Potential covariates such as the period between EKSD diagnosis

and transplant (waiting time), cold ischemic time and serum creatinine are significant covariates
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that could have added value to this study. Studies have shown that lengthier waiting periods

negatively impact on graft survival after kidney transplant (Meier-Kriesche et al., 2000; Gill

et al., 2005). Also cold ischemic time (Kayler et al., 2011) and serum creatinine measured

periodically after transplant have been studied as potential prognostic factor that influence

graft survival (Hariharan et al., 2002).
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Appendix A

Short-term graft survival analysis

Table A.1: Univariable analysis of the relationship between the study variables and ST graft
survival. p-values for the categorical variables and the continuous variables were calculated
based on log-rank test and the Cox regression model results, respectively.

Variable p-value
dnr type 0.076
renal disease 0.018
hypertension <0.001
urological 0.356
inherited 0.175
nephrectomy 0.048
wound sepsis 0.510
wound haematoma 0.204
ureteric 0.412
no complication 0.014
delayed gf <0.001
diabetes 0.007
AR clinical 0.863
AR histological 0.017
new gender 0.604
new bloodgroup 0.613
ethnicity <0.001
dnr age 0.431
recip age 0.102
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Table A.2: Multivariable Cox regression model containing significant covariates at 25% level
in the univariable analysis (Table A.1) for ST survival. The variable in bold font is deleted in
the succeeding model.

Model Variable p-value % change 2LL 2LL diff p-value
1 dnr type 0.669 1455.056

renal disease 0.578
hypertension 0.874
inherited 0.503
nephrectomy 0.035
wound haematoma 0.909
no complication 0.014
delayed gf 0.009
diabetes 0.058
AR histological 0.046
ethnicity 0.038
recip age 0.139

2 dnr type 0.667 0.8 1455.069 0.013 0.909
renal disease 0.581 0.7
hypertension 0.867 5.4

inherited 0.505 0.3
nephrectomy 0.033 0.5
no complication 0.007 1.7
delayed gf 0.009 0.1
diabetes 0.058 0.2
AR histological 0.047 0.1
ethnicity 0.039 0.2
recip age 0.140 0.3

3 dnr type 0.664 0.8 1455.098 0.028 0.866
renal disease 0.457 15.5
inherited 0.453 7.4
nephrectomy 0.032 0.6
no complication 0.007 0.7
delayed gf 0.009 0.3
diabetes 0.058 0.1
AR histological 0.047 0.0
ethnicity 0.016 3.7
recip age 0.132 1.3

4 dnr type 0.625 1455.657
inherited 0.575
nephrectomy 0.032
no complication 0.006
delayed gf 0.010
diabetes 0.049
AR histological 0.049
ethnicity 0.003
recip age 0.110

5 inherited 0.565 2.7 1455.904 0.248 0.619
nephrectomy 0.033 0.6
no complication 0.006 0.2
delayed gf 0.008 2.6
diabetes 0.049 0.2
AR histological 0.047 0.8
ethnicity 0.002 2.3
recip age 0.078 7.4

6 nephrectomy 0.031 0.9 1456.256 0.352 0.553
no complication 0.006 0.5
delayed gf 0.007 1.6
diabetes 0.051 0.8
AR histological 0.046 0.7
ethnicity 0.001 4.7
recip age 0.085 2.8
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Table A.3: Result of adding covariates not significant at the univariable ST graft survival
analysis (Table A.1) to the multivariable Model 6. The p-value with * is for the likelihood ratio
test, %∆ if the highest change in estimated the coefficients of other variables in the model.

Model p-value -2LL -2LL∆ p-value* %∆
Model 6 1456.256
Model 6 + urological 0.700 1456.100 0.156 0.984 1.9
Model 6 + wound sepsis 0.298 1455.135 1.121 0.772 13.2
Model 6 + ureteric 0.056 1451.650 4.606 0.203 12.2
Model 6 + uretric + AR clinical 0.693 1451.494 0.155 0.984 0.8
Model 6 + uretric + new gender 1449.916 1.734 0.629 3.8

ff 0.280
mf 0.545

mm 0.220
Model 6 + uretric + new bloodgroup 0.811 1451.594 0.056 0.997 0.7
Model 6 + uretric + dnr age 0.394 1450.916 0.733 0.865 2.6
(Model 6 + ureteric) - recip age 0.128 1453.972 2.323 0.508 7.8
((Model 6 + ureteric) - recip age) - AR hist 0.054 1457.388 3.416 0.332 13.3

ff (female to female), mf (male to female) and mm(male to male).
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Figure A.1: Graphs of KM estimates of survival function for (A) nephrectomy, (B)
no complication, (C) delayed gf, (D) diabetes, (E) ethnicity and (F) ureteric for ST graft
survival analysis (N=751).
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Figure A.2: Graphs of log cumulative hazards for (A) nephrectomy, (B) no complication, (C)
delayed gf, (D) diabetes, (E) ethnicity and (F) ureteric for ST graft survival analysis (N=751).
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Figure A.3: Assessment of PH assumption for ST graft survival analysis. Left-panel: graphs of
the scaled Schoenfeld residuals versus transformed time for each covariate in the Cox regression
model. The solid and the broken lines represent the smoothing spline fit and the ±2 standard
error for the fit. Right-panel: graphs of observed test process with 50 simulated process for
each covariate in the Cox PH model. The solid black profile signifies the observed pattern. (A)
nephrectomy, (B) no complication, (C) delayed gf, (D) diabetes (E) ethnicity and (F) ureteric.
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Table A.4: Non-proportionality test in the stratified Cox regression with no-interaction model
for ST graft survival. p-value* is for the cumulative residuals tests.

Variable rho chisq p-value p-value*
no complication 0.094 1.055 0.304 0.740
diabetes 0.021 0.050 0.822 0.240
ethnicity 0.127 2.014 0.156 0.760
ureteric -0.004 0.002 0.961 0.600
GLOBAL NA 3.241 0.518

Table A.5: Result of variance inflation factor for assessment of multi-collinearity among the
predictors based on the Cox PH model used for model building and the log-normal model as
the most appropriate model in the ST analysis.

nephrectomy no complication delayed gf diabetes ethnicity ureteric
VIF (Cox) 1.024 1.093 1.023 1.004 1.019 1.071
VIF (log-normal) 1.092 1.196 1.028 1.032 1.048 1.114
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Appendix B

Long-term graft survival analysis

Table B.1: Univariable analysis of the relationship between the study variables and LT graft
survival. p-values for the categorical variables and the continuous variables were calculated
based on log-rank test and the Cox regression model results, respectively.

Variable p-value
dnr type <0.001
renal disease 0.589
hypertension 0.230
urological 0.164
inherited 0.202
nephrectomy 0.858
wound sepsis 0.158
wound haematoma 0.757
ureteric 0.589
no complication 0.641
delayed gf 0.576
diabetes 0.002
AR clinical 0.667
AR histological 0.455
new gender 0.762
new bloodgroup 0.365
ethnicity 0.064
dnr age 0.416
recip age <0.001
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Table B.2: Multivariable Cox regression model containing significant covariates at 25% level
in the univariable analysis (Table B.1) for LT survival. The variable in bold font is deleted in
the succeeding model

Model Variable p-value % change -2LL -2LL ∆ p-value
1 dnr type 0.014 0.0 2143.734

hypertension 0.404 0.0
urological 0.512 0.0
inherited 0.045 0.0
wound sepsis 0.667 0.0
diabetes <0.001 0.0
ethnicity 0.015 0.0
recip age <0.001 0.0

2 dnr type 0.015 1.4 2143.916 0.182 0.670
hypertension 0.414 2.3
urological 0.516 0.9
inherited 0.042 1.4
diabetes <0.001 1.5
ethnicity 0.014 1.1
recip age <0.001 0.7

3 dnr type 0.015 0.6 2144.360 0.444 0.505
hypertension 0.423 2.1
inherited 0.049 3.5
diabetes <0.001 2.7
ethnicity 0.010 3.7
recip age <0.001 0.3

4 dnr type 0.016 1.2 2145.004 0.644 0.422
inherited 0.064 7.8
diabetes <0.001 2.3
ethnicity 0.012 11.0
recip age <0.001 1.8
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Table B.3: Result of adding covariates (except for a) not significant at the univariable LT
graft survival analysis (Table B.1) to the multivariable Model 4. p-value* is for the likelihood
ratio test, %∆ if the highest change in estimated the coefficients of other variables in the model.

Variable p-value -2LL -2LL ∆ p-value* %∆
Model 4 2145.004
Model 4 + nephrectomy 0.791 2144.935 0.069 0.793 0.6
Model 4 + wound haematoma 0.560 2144.647 0.357 0.550 1.2
Model 4 + ureteric 0.821 2144.954 0.050 0.823 0.6
Model 4 + no complication 0.985 2145.004 0.000 0.985 0.1
Model 4 + delayed gf 0.752 2144.905 0.099 0.753 2.2
Model 4 + AR clinical 0.687 2144.841 0.163 0.686 1.5
Model 4 + AR histological 0.619 2144.748 0.255 0.613 1.8
Model 4 + new gender 2142.216 2.788 0.095 5.8

ff 0.425
mf 0.900

mm 0.688
Model 4 + new bloodgroup 0.923 2144.995 0.009 0.923 0.5
Model 4 + dnr age 0.952 2145.000 0.004 0.952 0.6
Model 4 + renal disease 0.860 2144.973 0.031 0.860 0.3
Model 4 - inheriteda 0.064 2148.821 3.818 0.051 10.7

ff (female to female), mf (male to female) and mm(male to male).

Table B.4: Non-proportionality test in the stratified Cox regression with no-interaction model
for LT graft survival. p-value* is for the cumulative residuals tests.

Variable rho chisq p-value p-value*
dnr type -0.048 0.456 0.499 0.615
diabetes 0.075 1.155 0.283 0.076
recip age 0.027 0.161 0.688 0.385
diabetes:recip age 0.005 0.005 0.943 0.576
GLOBAL NA 1.711 0.789
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Figure B.1: Graphs of KM estimates of survival function (left panels) and log cumulative
hazards (right panels) for (A) dnr type, (B) diabetes and (C) ethnicity for LT graft survival
analysis (N=490).
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Figure B.2: Assessing of PH assumption for LT graft survival analysis. Left-panel: graphs of
the scaled Schoenfeld residuals versus transformed time for each covariate in the Cox regression
model. The solid and the broken lines represent the smoothing spline fit and the ±2 standard
error for the fit. Right-panel: graphs of observed test process with 50 simulated process for
each covariate in the Cox PH model. The solid black profile signifies the observed pattern. (A)
dnr type, (B) diabetes, (C) ethnicity, (D) recip age and (E) diabetes:recip age.
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Table B.5: Result of variance inflation factor for assessment of multi-collinearity among the
predictors based on the Cox PH model used for model building and the log-normal model as
the most appropriate model in the LT analysis.

dnr type diabetes recip age ethnicity diabetes × recip age
VIF (Cox) 1.037 1.208 1.224 1.078 1.226
VIF (log-normal) 1.074 1.138 1.201 1.068 1.156
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Appendix C

Overall graft survival analysis

Table C.1: Univariable analysis of the relationship between ethnicity and overall graft survival.

Variable Coefficient HR 95% CI SE p-value
ethnicity(white) -0.456 0.634 (0.50-0.81) 0.124 <0.000
ethnicity(mixed) -0.342 0.710 (0.46-1.09) 0.219 0.119
ethnicity(asian) 0.369 1.447 (0.91-2.29) 0.234 0.115

Table C.2: Non-proportionality test for ethnicity variable.

Variable rho chisq p-value
ethnicity(white) 0.200 12.750 <0.000
ethnicity(mixed) 0.103 3.340 0.068
ethnicity(asian) 0.104 3.550 0.059
GLOBAL 13.730 0.003
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Figure C.1: Graphs of KM estimates of survival function (A) and log cumulative hazards (B)
for ethnicity variable.
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Figure C.2: Representative bar charts and histograms illustrating how comparable the
covariates in the real and the simulated data are with respect to their proportions or distribution
(for recipient age) for the overall analyses. The bar colours in the real and the simulated data
corresponds with each other.
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Table C.3: Summary of Little‘s missing completely at random test for all the study variables.

Variable p-value
dnr age 0.938
ethnicity 0.147
recip age NM
donor type 0.934
renal disease NM
hypertension NM
urological NM
inherited NM
surgical complications 0.069
delayed gf 0.153
diabetes 0.086
AR clinincal NM
AR-histological NM
new gender 0.885
new bloodgroup 0.490

NM (no missing observation); variables under surgical complications are nephrectomy, wound sepsis,
wound haematoma, ureteric and no complication

Table C.4: Result of variance inflation factor for assessment of multi-collinearity among the
predictors based on the Cox PH model used for model building and the Weibull model as the
most appropriate model in the overall analysis.

recip age dnr type ethnicity delayed gf diabetes
VIF (Cox) 1.071 1.059 1.065 1.035 1.050
VIF (Weibull) 1.111 1.074 1.090 1.039 1.058
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Appendix D

Supplementary analysis

Table D.1: Variable selection using AIC, BIC and the LASSO methods for imputed data
(N=915 ) and complete case data (N=751 ). 3for selected and 7for not selected.

Variable AIC BIC LASSO
N=915 N=751 N=915 N=751 N=915 N=751

AR histological 7 7 7 7 3 3

delayed gf 3 3 3 3 3 3

diabetes 3 3 7 7 3 3

donor type 3 3 7 7 3 3

ethnicity 3 3 3 3 3 3

gender 7 7 7 7 3 3

inherited 7 3 7 7 3 3

nephrectomy 7 7 7 7 7 3

no complication 3 7 7 7 3 3

Recip Age 3 3 3 3 3 3

ureteric 7 7 7 7 3 3

urological 7 7 7 7 3 3
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Table D.2: Add caption

Data Variables AIC BIC LASSO
Coef SE p-value Coef SE p-value Coef SE p-value

delayed gf 0.352 0.110 0.001 0.392 0.108 <0.001 0.343 0.113 0.002
diabetes 0.457 0.180 0.011 0.403 0.185 0.030
donor type -0.415 0.185 0.025 -0.443 0.188 0.019

N=915 ethnicity 0.404 0.105 <0.001 0.377 0.103 <0.001 0.371 0.108 0.001
no complication -0.240 0.115 0.038
Recip Age 0.030 0.005 <0.001 0.032 0.005 <0.001 0.031 0.005 <0.001

delayed gf 0.291 0.121 0.016 0.340 0.119 0.004 0.285 0.124 0.022
diabetes tx 0.403 0.200 0.044

N=751 donor type -0.460 0.207 0.026 -0.477 0.210 0.023
ethnicity 0.445 0.117 <0.001 0.463 0.113 <0.001 0.423 0.119 <0.001
Recip Age 0.033 0.006 <0.001 0.034 0.005 <0.001 0.033 0.006 <0.001
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Appendix E

Extract of the study data
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Appendix F

Representative SAS and R codes

#SAS-code for data cleaning#

data redcap.CMJAH; * Create a new dataset;

set redcap.cmjahclean; * Read in original data;

where hosp=1; * select only cases where hospital=1;

rec_age_no_dob2=rec_age_no_dob*1; * converting age recodes variable

from text to numeric*;

Agecal=int((date_tx-rec_dob)/365.25);* Calculating age from date transplant and

date of birth*;

if Agecal=. then Agecal = rec_age_no_dob2;

if Agecal <18 and Agecal~=. then delete; * delete cases that are paediatrics*;

IF redcap_event_name=’transplant_1_arm_1’ THEN EVENT = ’First transplant’;

*recoding redcap event*;

IF redcap_event_name~=’transplant_1_arm_1’ THEN EVENT = ’Retransplants’;

if Event=’First transplant’ then Event2=0;

if Event=’Retransplants’ then Event2=1;

Patstatus=.; ***Create event status varibles ***;

Graftstatus=.;

if date_death~=. then Patstatus=’1’;

if date_death=. and last_seen~=. then Patstatus =’0’;

if graft_loss~=. or date_death~=. then Graftstatus="1";

if graft_loss=. and date_death=. and last_seen~=. then Graftstatus="0";

Survdod=yrdif(date_tx,date_death,’Actual’);* create survival time variable*;
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Survdls=yrdif(date_tx,last_seen,’Actual’);

SurvGrft=yrdif(date_tx,graft_loss,’Actual’);

if Agecal=. then delete;

Patsurvtime=.;

Grftsurvtime=.;

if Survdod~=. then Patsurvtime=Survdod;

if Survdod=. and Survdls~=. then Patsurvtime=Survdls;

if Survdod=. and Survdls=. then Patsurvtime=.;

if SurvGrft~=. then Grftsurvtime=SurvGrft;

if SurvGrft=. and Survdls=. and Survdod~=. then Grftsurvtime=Patsurvtime;

if SurvGrft=. and Survdod=. and Survdls~=. then Grftsurvtime=Survdls;

if SurvGrft=. and Survdls=. and Survdod=. then Grftsurvtime=.;

if Survdod~=. and SurvGrft=. and Survdls~=. then Grftsurvtime=Patsurvtime;

if date_tx =. then delete;

Followup=yrdif(date_tx,’31Dec2014’d,’Actual’); *calculate follow up time

to know cases less than one year follow-up times*;

Patstatus2=Patstatus;

Patstatus3=Patstatus;

Graftstatus2=Graftstatus;

Graftstatus3=Graftstatus;

Patsurvtime2=Patsurvtime;

Patsurvtime3=Patsurvtime;

Grftsurvtime2=Grftsurvtime;

Grftsurvtime3=Grftsurvtime;

if Patsurvtime >1 then do; Patsurvtime2= ’1’; Patstatus2=’0’; end;

if Patsurvtime<=1 then do; Patsurvtime3=’1’;Patstatus3="0"; end;

if Grftsurvtime>1 then do Grftsurvtime2=’1’; Graftstatus2="0"; end;

if Grftsurvtime<=1 then do; Grftsurvtime3=’1’;Graftstatus3="0"; end;

* recoding variables from continous to categorical*

*the proc format statement can be used)*;

Recip_Age_cont=Agecal;

if Agecal>=18 and Agecal<=29 then Recipient_age=’18-29’;

if Agecal>=30 and Agecal<=39 then Recipient_age=’30-39’;

if Agecal>=40 and Agecal<=49 then Recipient_age=’40-49’;

if Agecal>=50 then Recipient_age=’50+’;

138



if dnr_age>=41 and dnr_age<=50 then Donor_Age=’41-50’;

if dnr_age>=1 and dnr_age<=10 then Donor_Age=’1-10’;

if dnr_age>=11 and dnr_age<=20 then Donor_Age=’11-20’;

if dnr_age>=21 and dnr_age<=30 then Donor_Age=’21-30’;

if dnr_age>=31 and dnr_age<=40 then Donor_Age=’31-40’;

if dnr_age>50 then Donor_Age=’>50’;

biopsydate1= date_acbx1-date_tx;* calculating year difference between

*transplant date and acute rejection date*;

biopsydate2=date_acbx2-date_tx;

biopsydate3=date_acbx3-date_tx;

biopsydate4=date_acbx4-date_tx;

acuterej_clin=0; acuterej_hist=0;

if biopsydate1 >= 0 and biopsydate1 <=60 then do;

if acrej_dx1___1=1 then acuterej_clin=1;

if acrej_dx1___2=1 then acuterej_hist=1;

end;

if biopsydate2 >= 0 and biopsydate2 <=60 then do;

if acrej_dx2___1=1 then acuterej_clin=1;

if acrej_dx2___2=1 then acuterej_hist=1;

end;

if biopsydate3 >= 0 and biopsydate3 <=60 then do;

if acrej_dx3___1=1 then acuterej_clin=1;

if acrej_dx3___2=1 then acuterej_hist=1;

end;

if biopsydate4 >= 0 and biopsydate4 <=60 then do;

if acrej_dx4___1=1 then acuterej_clin=1;

if acrej_dx4___2=1 then acuterej_hist=1;

end;

Transp_era=.;

if date_tx<=’31Dec1983’d then Transp_era=’0’;

if date_tx>’31Dec1983’d and date_tx<=’31Dec2000’d then Transp_era=’1’;

if date_tx>’31Dec2000’d the Transp_era=’2’;

run;
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proc print data=redcap.cmjah;

where Event="Retransplants";

var Event;

run;

*PRINT SECTION*;

proc print data=redcap.CMJAH; *print where age at transp is missing*;

where age_at_tx=.;

var job_id rec_last_name rec_first_name rec_hosp_no age_at_tx rec_dob

date_tx redcap_event_name;

TITLE ’MISSING AGE AT TRANSPLANT’;

run;

proc print data=redcap.CMJAH; *print where calculated age is missing*;

where Agecal=.;

var job_id rec_last_name rec_first_name rec_hosp_no age_at_tx rec_dob

Agecal redcap_event_name;

TITLE ’MISSING calculated AGE’;

run;

proc print data=redcap.CMJAH; *print where age records are not equal*

*to age calculated *;

where (age_at_tx ~= Agecal and Agecal~=. and age_at_tx~=.)

OR (rec_age_no_dob2 ~= Agecal and Agecal~=. and rec_age_no_dob2~=.)

or (rec_age_no_dob2 ~= age_at_tx and age_at_tx~=.

and rec_age_no_dob2~=.) ;

var job_id rec_last_name rec_first_name rec_hosp_no age_at_tx rec_dob

date_tx rec_age_no_dob Agecal ;

TITLE ’UNEQUAL INPUT OF AGE’;

run;

proc print data=redcap.CMJAH;

*print where follow up is less than one year *;

where Followup <1 and Followup~=.;

title Less than one year followup;

run;

proc print data=redcap.CMJAH;

* print where date of death and last seen are missing*;

where date_death=. and last_seen=.;
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title ’MISSING DATE OF DEATH AND LAST SEEN’;

var job_id rec_last_name rec_first_name rec_hosp_no date_death

last_seen graft_loss

Patsurvtime date_tx redcap_event_name ;

run;

proc print data=redcap.CMJAH;

* print where date of death is less than last seen*;

where date_death < last_seen and date_death~=.;

title ’DEATH BEFORE LAST SEEN’;

var job_id rec_last_name rec_first_name rec_hosp_no date_death

last_seen Patsurvtime

date_tx redcap_event_name ;

run;

proc print data=redcap.CMJAH;

*print where date of death is less than transp date*;

where date_death < date_tx and date_death~=.;

title ’DEATH BEFORE TRANSPLANT’;

var job_id rec_last_name rec_first_name rec_hosp_no date_death

date_tx last_seen

Patsurvtime redcap_event_name;

run;

proc print data=redcap.CMJAH;

*print where date of last seen is less than transp date*

*DID NOT INCLUDE IN THE PROC PRINT FOR CORRECTION*;

where last_seen < date_tx and last_seen~=.;

title ’LAST SEEN BEFORE TRANSPLANT’;

var job_id rec_last_name rec_first_name rec_hosp_no date_death

date_tx last_seen Grftsurvtime Patsurvtime redcap_event_name;

run;

proc print data=redcap.CMJAH;

* print where date of graft loss and last seen are missing*;

where (last_seen=. and graft_loss =.) or (last_seen=. and date_death =.) or

(last_seen=. and graft_loss =. and date_death=.);

title ’MISSING DATE OF GRAFT LOSS AND LAST SEEN’;

var job_id rec_last_name rec_first_name rec_hosp_no date_death
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date_tx last_seen

graft_loss Grftsurvtime Patsurvtime redcap_event_name;

run;

proc print data=redcap.CMJAH;

*print where date of graft loss is less than last seen*;

where last_seen < graft_loss and last_seen~=.;

title ’LAST SEEN BEFORE GRAFT LOSS’;

var job_id rec_last_name rec_first_name rec_hosp_no date_death

last_seen graft_loss

Grftsurvtime date_tx redcap_event_name;

run;

proc print data=redcap.CMJAH;

*print where date of graft loss is less than transp date*;

where graft_loss < date_tx and graft_loss~=.;

title ’GRAFT LOSS BEFORE TRANSPLANT’;

var job_id rec_last_name rec_first_name rec_hosp_no

date_death last_seen

date_tx graft_loss Grftsurvtime redcap_event_name;

run;

proc print data=redcap.CMJAH;

*print where date of graft loss is less than transp date*;

where date_death < graft_loss and date_death~=.;

title ’DEATH BEFORE GRAFT LOSS’;

var job_id rec_last_name rec_first_name rec_hosp_no date_death

last_seen date_tx graft_loss Grftsurvtime redcap_event_name;

run;

proc print data=redcap.cmjah;

var job_id rec_last_name rec_first_name rec_hosp_no date_death

date_tx graft_loss last_seen Patsurvtime Grftsurvtime redcap_event_name;

run;

proc print data=redcap.cmjah;

where Grftsurvtime<0;

var Grftsurvtime;

run;
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#DATA RECODING#

#importing main data from a csv file format#

MSc_redcap <- read.csv("C:/Users/Ike/Desktop/MSc_Data/MSc_data3.csv")

is.na(MSc_redcap) <-MSc_redcap== "." ## setting empty cells to missing

names(MSc_redcap)

#Data subsetting#

pre_CYA <- subset (MSc_redcap, Transplant_era=="pre_CYA")

CYA <- subset (MSc_redcap, Transplant_era=="CYA")

New_gen <- subset (MSc_redcap, Transplant_era=="New_gen")

sum(is.na(pre_CYA))/prod(dim(pre_CYA))

mean(is.na(pre_CYA))

sum(is.na(CYA))/prod(dim(CYA))

mean(is.na(CYA))

sum(is.na(New_gen))/prod(dim(New_gen))

mean(is.na(New_gen))

summary(CYA[!complete.cases(CYA),])

newdata <- na.omit(CYA)

complete.cases(pre_CYA)

#pre-CYA data analysis#

# varaiable selection #

names(CY1)

CY=CYA [complete.cases(CYA$AR_clinical,CYA$AR_histological,

CYA$delayed_gf,CYA$diabetes_tx,

CYA$dnr_age,CYA$dnr_bld_grp,CYA$dnr_gender,CYA$donor_type,

CYA$hypertension,CYA$inherited,CYA$nephrectomy,CYA$no_complication,

CYA$ rec_bld_grp,CYA$rec_ethnicity,CYA$rec_sex,CYA$Recip_Age_cont,

CYA$renal_disease,CYA$ureteric,CYA$urological,CYA$wound_haematoma,

CYA$wound_sepsis),]

pre=pre_CYA [complete.cases(pre_CYA$AR_clinical,pre_CYA$AR_histological,

pre_CYA$delayed_gf,

pre_CYA$diabetes_tx,pre_CYA$dnr_age,pre_CYA$dnr_bld_grp,

pre_CYA$dnr_gender,pre_CYA$donor_type,pre_CYA$hypertension,

pre_CYA$inherited,pre_CYA$nephrectomy,pre_CYA$no_complication,

pre_CYA$ rec_bld_grp,pre_CYA$rec_ethnicity,pre_CYA$rec_sex,

pre_CYA$Recip_Age_cont,pre_CYA$renal_disease,pre_CYA$ureteric,
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pre_CYA$urological,pre_CYA$wound_haematoma,pre_CYA$wound_sepsis),]

new=New_gen [complete.cases(New_gen$AR_clinical,New_gen$AR_histological,

New_gen$delayed_gf,New_gen$diabetes_tx,New_gen$dnr_age,

New_gen$dnr_bld_grp,New_gen$dnr_gender,New_gen$donor_type,

New_gen$hypertension,New_gen$inherited,New_gen$nephrectomy,

New_gen$no_complication,New_gen$ rec_bld_grp,New_gen$rec_ethnicity,

New_gen$rec_sex,New_gen$Recip_Age_cont,New_gen$renal_disease,

New_gen$ureteric,New_gen$urological,New_gen$wound_haematoma,

New_gen$wound_sepsis),]

#importing main data from a csv file format#

CYA <- read.csv("C:/Users/Ike/Desktop/MSc_data/CYA.csv", header =TRUE)

names(CYA)

MSc_CYA<-CYA

names(MSc_CYA)

#merging recipient gender and donor gender#

MSc_CYA$new_gender = ifelse(MSc_CYA$rec_sex=="male" & MSc_CYA$dnr_gender=="male",

"male-male",

ifelse(MSc_CYA$rec_sex=="female" & MSc_CYA$dnr_gender=="female", "female-female",

ifelse(MSc_CYA$rec_sex=="female" & MSc_CYA$dnr_gender=="male", "female-male",

"male-female")))

MSc_CYA[,c("rec_sex","dnr_gender","new_gender")]

#printing the new gender variable along with originalvariable#

#blood group#

MSc_CYA$new_bloodgroup = ifelse(MSc_CYA$rec_bld_grp=="O" &

MSc_CYA$dnr_bld_grp=="O", "1",

ifelse(MSc_CYA$rec_bld_grp=="A" & MSc_CYA$dnr_bld_grp=="A", "1",

ifelse(MSc_CYA$rec_bld_grp=="B" & MSc_CYA$dnr_bld_grp=="B", "1",

ifelse(MSc_CYA$rec_bld_grp=="AB" & MSc_CYA$dnr_bld_grp=="AB", "1",

ifelse(MSc_CYA$rec_bld_grp=="O" & MSc_CYA$dnr_bld_grp=="A", "0","0")

))))

MSc_CYA[,c("rec_bld_grp","dnr_bld_grp","new_bloodgroup")]

#printing the new blood group variable along with originalvariable#

MSc_CYA <- MSc_CYA[c(-2,-4,-6,-7)]#remove the variables after recording#

names(MSc_CYA)

#ethnicity#
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MSc_CYA$ethnicity<-ifelse(MSc_CYA$rec_ethnicity=="white","white",

ifelse(MSc_CYA$rec_ethnicity=="black","non-white",

ifelse(MSc_CYA$rec_ethnicity=="asian","non-white",

ifelse(MSc_CYA$rec_ethnicity=="mixed","non-white",F))))

table(MSc_CYA$ethnicity)

MSc_CYA$ethnicity<-factor(MSc_CYA$ethnicity)

MSc_CYA$ethnicity <- relevel(MSc_CYA$ethnicity, ref="white")

#changing reference group to black, still two categotries are not signif#

names(MSc_CYA)

MSc_CYA <- MSc_CYA[c(-3)]#Remove rec_ethnicity after recording#

names()

#Number of complete cases#

MSc_comp=MSc_CYA [complete.cases

(MSc_CYA$ job_id, MSc_CYA$ dnr_age, MSc_CYA$ donor_type,

MSc_CYA$ renal_disease, MSc_CYA$ hypertension, MSc_CYA$ urological,

MSc_CYA$ inherited, MSc_CYA$ nephrectomy, MSc_CYA$ wound_sepsis,

MSc_CYA$ wound_haematoma, MSc_CYA$ ureteric, MSc_CYA$ no_complication,

MSc_CYA$ delayed_gf, MSc_CYA$ diabetes_tx, MSc_CYA$ AR_clinical,

MSc_CYA$ AR_histological, MSc_CYA$ Grftsurvtime, MSc_CYA$ Graftstatus,

MSc_CYA$ new_gender, MSc_CYA$ new_bloodgroup, MSc_CYA$ ethnicity),]

#exporting data from r to csv#

write.csv(MSc_comp, file=’MSc_comp.csv’)

#importing main data from a csv file format#

MSc_comp <- read.csv("C:/Users/Ike/Desktop/MSc_data/MSc_comp.csv", header =TRUE)

names(MSc_comp)

#Exploratory data analysis#

#Similar format of codes was used for Short_term and long term analysis#

#hazard and km plotc

trans_haz <- pehaz(MSc_comp$Grftsurvtime, MSc_comp$Graftstatus,width=2,

max.time=29.3)

haz_smooth <-muhaz(MSc_comp$Grftsurvtime, MSc_comp$Graftstatus, bw.smooth = 30,

b.cor = "left", max.time =29.25)

trans_km <-survfit(Surv(MSc_comp$Grftsurvtime, MSc_comp$Graftstatus)~1)

par(mfrow=c(2,2))

hist<-hist(MSc_comp$Grftsurvtime, xlab = "Years after transplant",
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main = NULL, col=blues9, ylim=c(0,350),cex.axis =1.5,cex.lab=1.5)

lines(density(hist), col="blue", lwd=2)

plot(trans_km,xlab="Years after transplant", ylab= "Survival prbability",

mark.time = T, col="blue", conf.int = F,cex.axis =1.5,cex.lab=1.5)

plot(trans_haz, ylim=c(0,0.1),col="blue", lwd=2,

ylab = "Estimated hazard function",

xlab="Years after transplant",cex.axis =1.5,cex.lab=1.5)

lines(haz_smooth, lwd=2, col="red")

plot(trans_km, fun="cumhaz",ylab="Estimated cumulative hazard",

xlab="Years after transplant", conf.int = F, col="blue",lwd=2,cex.axis=1.5,

cex.lab=1.5)

summary(MSc_comp$Grftsurvtime)

#Model Building based on the Cox PH model#

#response variable#

MSc_compsurv<-with(MSc_comp, Surv(Grftsurvtime,Graftstatus))

#purposeful variable selection#

#Stage 1#

purv1A<-coxph(MSc_compsurv~dnr_age, data=MSc_comp)# for continuous variables#

summary(purv1A)

#for categorical variables#

survdiff(Surv(Grftsurvtime,Graftstatus) ~ dnr_type,data=MSc_comp)

#Stage 2#

purv2<-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+hypertension+delayed_gf+

no_complication+renal_disease+inherited+urological+wound_sepsis,data=MSc_comp)

summary(purv2)

#drop wound sepsis#

purv3<-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+hypertension+delayed_gf+

no_complication+renal_disease+inherited+urological,data=MSc_comp)

summary(purv3)

VIF(purv3)

#likelihood ratio test#

X.lr3=-2*purv3$loglik[2]-(-2*purv2$loglik[2]) # test statistics

X.lr3

1-pchisq(X.lr3,1) # p-value

delta.coff<-abs((coef(purv3)-coef(purv2)[-10])/coef(purv2)[-10])
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round(delta.coff,5)

#hypertension and renal_d were drop because hypertension influenced renal_d#

purv4<-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+delayed_gf+

no_complication+renal_disease+inherited+urological,data=MSc_comp)

summary(purv4)

# likelihood ratio test#

X.lr4=-2*purv4$loglik[2]-(-2*purv3$loglik[2]) # test statistics

X.lr4

1-pchisq(X.lr4,1) # p-value

delta.coff<-abs((coef(purv4)-coef(purv3)[-4])/coef(purv3)[-4])

round(delta.coff,5)

purv5<-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+delayed_gf

+no_complication+inherited+urological,data=MSc_comp)

summary(purv5)

#drop urological#

purv6<-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+delayed_gf

+no_complication+inherited,data=MSc_comp)

summary(purv6)

# likelihood ratio test#

X.lr5=-2*purv6$loglik[2]-(-2*purv5$loglik[2]) # test statistics

X.lr5

1-pchisq(X.lr5,1) # p-value

delta.coff<-abs((coef(purv6)-coef(purv5)[-7])/coef(purv5)[-7])

round(delta.coff,5)

#no complication#

purv7<-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+delayed_gf

+inherited,data=MSc_comp)

summary(purv7)

#likelihood ratio test#

X.lr6=-2*purv7$loglik[2]-(-2*purv6$loglik[2]) # test statistics

X.lr6

1-pchisq(X.lr6,1) # p-value

delta.coff<-abs((coef(purv7)-coef(purv6)[-5])/coef(purv6)[-5])

round(delta.coff,5)

#Stage 3#
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#add var not significant at univariate analysis#

#AR_clinical, AR_histological,new_gender, new_bloodgroup#

purv8<-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+delayed_gf

+inherited+diabetes,data=MSc_comp)

summary(purv8)

#likelihood ratio test#

X.lr6=-2*purv7$loglik[2]-(-2*purv8$loglik[2]) # test statistics

X.lr6

1-pchisq(X.lr6,1) # p-value

delta.coff<-abs((coef(purv7)-coef(purv8)[-7])/coef(purv8)[-7])

round(delta.coff,5)

purv9<-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+delayed_gf

+inherited+diabetes+new_gender,data=MSc_comp)

summary(purv9)

#likelihood ratio test#

X.lr6=-2*purv8$loglik[2]-(-2*purv9$loglik[2]) # test statistics

X.lr6

1-pchisq(X.lr6,1) # p-value

delta.coff<-abs((coef(purv8)-coef(purv9)[-7])/coef(purv9)[-7])

round(delta.coff,5)

purv10<-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+delayed_gf

+inherited+diabetes,data=MSc_comp)

summary(purv10)

purv11<-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+delayed_gf

+diabetes,data=MSc_comp)

summary(purv11)

#likelihood ratio test#

X.lr7=-2*purv11$loglik[2]-(-2*purv10$loglik[2]) # test statistics

X.lr7

1-pchisq(X.lr7,1) # p-value

delta.coff<-abs((coef(purv11)-coef(purv10)[-5])/coef(purv10)[-5])

round(delta.coff,5)

#assessment of the functional form#

MSc_comp$ethnicity <- relevel(MSc_comp$ethnicity, ref="white")

#changing reference group to black, two categotries are not signif#
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fn_form <-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+delayed_gf

+diabetes,data=MSc_comp)

smooth_SEcurve<-function(yy,xx){

list_x<-min(xx) + ((0:100)/100)*(max(xx)-min(xx))

yy_xx<-predict(loess(yy~xx),se=T,newdata=data.frame(xx=list_x))

lines(yy_xx$fit ~list_x, lwd=2,col="blue")

lines(yy_xx$fit - qt(0.975,yy_xx$df)*yy_xx$se.fit~list_x, lty=2)

lines(yy_xx$fit + qt(0.975,yy_xx$df)*yy_xx$se.fit~list_x, lty=2)

}

#martingale residual from a null model#assessment of linearity#

mart <-coxph(Surv(MSc_comp$Grftsurvtime, MSc_comp$Graftstatus)~1)

martR <-residuals(mart, type="martingale")

par(mfrow=c(2,2))

plot(martR~MSc_comp$recip_age,xlab="recip_age",

ylab = "Martingale residual",

col="red",cex.axis =1.5,cex.lab=1.5)

smooth_SEcurve(martR,MSc_comp$recip_age)

#pspline#

ps_cox <-coxph(MSc_compsurv~pspline(recip_age,df=4)+dnr_type

+ethnicity+delayed_gf+diabetes, data=MSc_comp)

ps_cox

termplot(ps_cox,se=T, terms = 1,ylabs = "Log hazard",

col.term = "blue",col.se = "blue",cex.axis =1.5,cex.lab=1.5,

lwd.term = 2,lwd.se = 2)

**Cummulative martingale **; done with SAS

ODS RTF FILE=’C:\Users\Ike\Desktop\fun.rtf’style=statistical;

ODS LISTING CLOSE;

ODS GRAPHICS on;

PROC PHREG DATA=mydata4;

class donortype ethnicity dgf diab;

MODEL Grftsurvtime*Graftstatus(0) = recip_age donortype ethnicity

dgf diab;

ASSESS VAR=(recip_age) / RESAMPLE;

axis1 value=(h=5 font=arial);
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axis2 value=(h=3 font=arial);

RUN;

ODS GRAPHICS oFF;ODS RTF CLOSE;ODS LISTING;QUIT;

#interaction among predictors#

intrc <-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+delayed_gf

+diabetes+recip_age:diabetes,data=MSc_comp)

summary(intrc)

#interaction among predictors#

no_intrc <-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity

+delayed_gf+diabetes,data=MSc_comp)

summary(intrc)

X.lr12=-2*no_intrc$loglik[2]-(-2*intrc$loglik[2]) #test statistics#

X.lr12

1-pchisq(X.lr12,1) #p-value#

#PH assumption#

KM1= survfit(Surv(Grftsurvtime, Graftstatus)~ dnr_type,

subset = {dnr_type=="cadaveric"},data=MSc_comp)

KM1b= survfit(Surv(Grftsurvtime, Graftstatus)~ dnr_type,

subset = {dnr_type=="living"},data=MSc_comp)

survtimec<-KM1$time

survsurvc<-KM1$surv

logtimec<-log(survtimec)

clogclogc<-log(-log(survsurvc))

survtimel<-KM1b$time

survsurvl<-KM1b$surv

logtimel<-log(survtimel)

clogclogl<-log(-log(survsurvl))

plot(clogclogc~logtimec,type="s",col="red",

xlab="Log (years after transplant)",

ylab="log-log survival",lwd=2.0,cex.axis =1.5,cex.lab=1.5)
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lines(clogclogl~logtimel,type="s",col="black",

xlab="Log (years after transplant)",

ylab="log-log survival",lwd=2.0,cex.axis =1.5,cex.lab=1.5)

legend("topleft",c("cadaveric","living"),

col=c("red","black"),lty=1,bty=’n’)

KM2= survfit(Surv(Grftsurvtime, Graftstatus)~ ethnicity,

subset={ethnicity=="white"},data=MSc_comp)

KM2b= survfit(Surv(Grftsurvtime, Graftstatus)~ ethnicity,

subset={ethnicity=="non-white"},data=MSc_comp)

survtimew<-KM2$time

survsurvw<-KM2$surv

logtimew<-log(survtimew)

clogclogw<-log(-log(survsurvw))

survtimen<-KM2b$time

survsurvn<-KM2b$surv

logtimen<-log(survtimen)

clogclogn<-log(-log(survsurvn))

plot(clogclogw~logtimew,type="s",col="red",

xlab="Log (years after transplant)",

ylab="log-log survival",lwd=2.0,cex.axis =1.5,cex.lab=1.5)

lines(clogclogn~logtimen,type="s",col="black",

xlab="Log (years after transplant)",

ylab="log-log survival",lwd=2.0,cex.axis =1.5,cex.lab=1.5)

legend("topleft",c("white", "non-white"),col=c("red","black"),

lty=1,bty=’n’ )

KM3= survfit(Surv(Grftsurvtime, Graftstatus)~ delayed_gf,

subset = {delayed_gf =="no"},data=MSc_comp)

KM3b= survfit(Surv(Grftsurvtime, Graftstatus)~ delayed_gf,

subset = { delayed_gf =="yes"},data=MSc_comp)

survtimen<-KM3$time

survsurvn<-KM3$surv

logtimen<-log(survtimen)

clogclogn<-log(-log(survsurvn))

survtimey<-KM3b$time

survsurvy<-KM3b$surv
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logtimey<-log(survtimey)

clogclogy<-log(-log(survsurvy))

plot(clogclogn~logtimen,type="s",col="red",

xlab="Log (years after transplant)",

ylab="log-log survival",lwd=2.0,cex.axis =1.5,cex.lab=1.5)

lines(clogclogy~logtimey,type="s",col="black",

xlab="Log (years after transplant)",

ylab="log-log survival",lwd=2.0,cex.axis =1.5,cex.lab=1.5)

legend("topleft",c("no", "yes"),col=c("red","black"),

lty=1,bty=’n’ )

KM4= survfit(Surv(Grftsurvtime, Graftstatus)~ diabetes,

subset={diabetes=="no"},data=MSc_comp)

KM4b= survfit(Surv(Grftsurvtime, Graftstatus)~ diabetes,

subset={diabetes=="yes"},data=MSc_comp)

survtimen<-KM4$time

survsurvn<-KM4$surv

logtimen<-log(survtimen)

clogclogn<-log(-log(survsurvn))

survtimey<-KM4b$time

survsurvy<-KM4b$surv

logtimey<-log(survtimey)

clogclogy<-log(-log(survsurvy))

plot(clogclogn~logtimen,type="s",col="red",

xlab="Log (years after transplant)",

ylab="log-log survival",lwd=2.0,cex.axis =1.5,cex.lab=1.5)

lines(clogclogy~logtimey,type="s",col="black",

xlab="Log (years after transplant)",

ylab="log-log survival",lwd=2.0,cex.axis =1.5,cex.lab=1.5)

legend("topleft",c("no", "yes"),col=c("red","black"),lty=1,bty=’n’)

#Survival plots#

KM1= survfit(Surv(Grftsurvtime, Graftstatus)~ dnr_type, data=MSc_comp)

plot(KM1,lwd =2, xlab="Years after transplant",ylab= "Survival probability",

col=1:2, conf.int = F,cex.axis =1.5,cex.lab=1.5)

legend("bottomleft",c("cadaveric","living"),col=1:2,lty=1,bty=’n’)

KM2 = survfit(MSc_compsurv~ ethnicity, data=MSc_comp)
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plot(KM2,lwd =2, xlab="Years after transplant",ylab= "Survival probability",

col=1:4, conf.int = F,cex.axis=1.5,cex.lab=1.5)

legend("bottomleft",c("white", "non-white"),col=1:2,lty=1,bty=’n’ )

KM3 = survfit(MSc_compsurv~ delayed_gf, data=MSc_comp)

plot(KM3,lwd =2, xlab="Years after transplant",ylab= "Survival probability",

col=1:2, conf.int = F,cex.axis=1.5,cex.lab=1.5)

legend("bottomleft",c("no","yes"),col=1:2,lty=1,bty=’n’)

KM4= survfit(MSc_compsurv~ diabetes, data=MSc_comp)

plot(KM4,lwd =2, xlab="Years after transplant",ylab= "Survival probability",

col=1:2, conf.int = F,cex.axis=1.5,cex.lab=1.5)

legend("bottomleft",c("no","yes"),col=1:2,lty=1,bty=’n’)

#Proportional hazards tests by P. Grambsch and T. Therneau (1994)#

ph_assump <-coxph(MSc_compsurv~recip_age+dnr_type+ethnicity+delayed_gf

+diabetes,data=MSc_comp)

cox.zph(ph_assump)

#recipient ethnicity does not satisfy PH assumption; thus removed#

ph_assump2 <-coxph(Surv(Grftsurvtime, Graftstatus) ~ dnr_type , data=MSc_comp)

cox.zph(ph_assump2)

AIC(ph_assump)

vif(ph_assump)#multicollinearity test#

summary(ph_assump)

names(ph_assump$coefficients)

#plots of the selected variables (schoenfeld residual)#

par(mfrow=c(2,2))

plot( cox.zph(ph_assump),ann=T, var=1, col="blue",lwd=2)

abline(h=0, lty=2,, col="red")

plot( cox.zph(ph_assump), ann=T, var=2, col="blue",lwd=2 )

abline(h=0, lty=2, col="red")

plot( cox.zph(ph_assump), ann=T, var=3 , col="blue",lwd=2)

abline(h=0, lty=2, col="red")

plot( cox.zph(ph_assump), ann=T, var=4, col="blue",lwd=2)

abline(h=0, lty=2, col="red")

plot( cox.zph(ph_assump), ann=T, var=5, col="blue",lwd=2)

abline(h=0, lty=2, col="red")

plot( cox.zph(ph_assump), ann=T, var=6,col="blue", lwd=2)
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abline(h=0, lty=2, col="red")

*****parametric analysis-SAS********

****Similar code format was used for long_term and short_term analysis*******

proc import datafile="C:\Users\Ike\Desktop\MSc_comp.CSV"

out=mydata1 dbms=CSV replace;

getnames=yes;

run;

data mydata3;

set mydata1;

if dnr_type ="cadaveric" then donortype="2";

if dnr_type ="living" then donortype="1";

if diabetes ="no" then diab="2";

if diabetes ="yes" then diab="1";

if delayed_gf ="no" then dgf="2";

if delayed_gf ="yes" then dgf="1";

run;

data mydata4;

set mydata3;

keep Grftsurvtime Graftstatus donortype diab dgf recip_age ethnicity ;

run;

/*-----EXPONENTIAL--------*/

proc lifereg data=mydata4;

class donortype ethnicity dgf diab;

model Grftsurvtime*Graftstatus(0)=recip_age donortype ethnicity dgf diab

/distribution=exponential;

output out=exp cdf=f;

run;

data exp1;

set exp;

cox = -log( 1-f );

run;

proc lifetest data=exp1 outsurv=surv_exp noprint;

time cox *Graftstatus(0);
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run;

data surv_exp1;

set surv_exp;

ls = -log(survival);

run;

goptions reset=all;

title h=3 "Exponential";

axis1 order=(0 to 4.0 by 1) minor=none label=(h=3 ’Cox-Snell residual’)

value=(h=3 font=arial);

axis2 order=(0 to 4.0 by 1) minor=none label=(h=3 a=90

’Estimated cumulative hazard function’) value=(h=3 font=arial);

symbol1 i=l1p c= blue v=dot h=1.0;

symbol2 i = join c = red l = 5;

proc gplot data=surv_exp1;

plot (ls cox)*cox / overlay haxis=axis1 vaxis= axis2;

run;

quit;

ods pdf close;

/*choose the appropraite distribution for other parametric models*/

/*-------Cox PH-------*/

proc phreg data=mydata4 ;

class donortype ethnicity dgf diab;

model Grftsurvtime*Graftstatus(0) = recip_age donortype ethnicity dgf diab;

output out = cox LOGSURV = h /method = ch;/

*-logsurv is the cox-snell residual*/

run;

data cox1;

set cox;

h = -h;

cons=1;

run;

proc phreg data = cox1 ;

model h*Graftstatus(0) = cons;

output out = cox2 logsurv = ls /method = ch;
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run;

data cox3;

set cox2;

haz = - ls;

run;

proc sort data = cox3;

by h;

run;

goptions reset=all;

title h=3 "Cox PH" ;

axis1 order=(0 to 4 by 1) minor=none label=(h=3 ’Cox-Snell residual’)

value=(h=3 font=arial);

axis2 order=(0 to 4 by 1) minor=none label=(h=3 a=90

’Estimated cumulative hazard function’) value=(h=3 font=arial);

symbol1 i=l1p c= blue v=dot h=1;

symbol2 i = join c = red l = 5;

proc gplot data = cox3;

plot haz*h =1 h*h =2 /overlay haxis=axis1 vaxis= axis2;

label haz = "Estimated Cumulative Hazard Rates";

label h = "Residual";

run;

quit;

ods html;ods graphics on;

#R-code example for weibull parametric analysis#

Weibull_full1 <- flexsurvreg(MSc_compsurv~recip_age+dnr_type+ethnicity

+delayed_gf+diabetes,data=MSc_comp, dist="weibull")

Weibull_full1

Weibull_full2 <- survreg(MSc_compsurv~recip_age+dnr_type+ethnicity

+delayed_gf+diabetes,data=MSc_comp, dist="weibull")

summary(Weibull_full2)

AIC(Weibull_full2)

VIF{weibull_full2}

#DEVIANCE#
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par(mfrow=c(2,2))

dev_wei<-residuals(Weibull_full2,type="deviance")

plot(dev_wei,col="red",ylab="Deviance residual",cex.lab=1.5,

cex.axis =1.5,lty=1)

abline( h=0,lty=2)

abline( h=-3,lty=2)

identify(dev_wei)

#DFBETA#

wei_dfbeta <- residuals(Weibull_full2, type="dfbeta")

n.obs<-length(MSc_comp$Grftsurvtime)

index.obs<- 1:n.obs

par(mfrow=c(2,2))

plot(wei_dfbeta[,2]~index.obs,type="p", ylab=expression

(paste("",Delta,"coef.for recip_age")),

xlab="Observations",cex.lab=1.2, cex.axis =1.2)

abline(h=0, lty=2,lwd=2, col="red")

#identify(wei_dfbeta[,2]~index.obs, col="red")

plot(wei_dfbeta[,3]~index.obs,type="p", ylab=expression

(paste("",Delta,"coef.for dnr_type")),

xlab="Observations",cex.lab=1.2, cex.axis =1.2)

abline(h=0, lty=2,lwd=2, col="red")

#identify(wei_dfbeta[,3]~index.obs, col="red")

plot(wei_dfbeta[,4]~index.obs,type="p", ylab=expression

(paste("",Delta,"coef.for ethnicity")),

xlab="Observations",cex.lab=1.2, cex.axis =1.2)

abline(h=0, lty=2,lwd=2, col="red")

#identify(wei_dfbeta[,4]~index.obs, col="red")

plot(wei_dfbeta[,5]~index.obs,type="p", ylab=expression

(paste("",Delta,"coef.for delayed_gf")),

xlab="Observations",cex.lab=1.2, cex.axis =1.2)

abline(h=0, lty=2, lwd=2,col="red")

#identify(wei_dfbeta[,5]~index.obs, col="red")

plot(wei_dfbeta[,6]~index.obs,type="p", ylab=expression

(paste("",Delta,"coef.for diabetes")),

xlab="Observations",cex.lab=1.2, cex.axis =1.2)
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abline(h=0, lty=2,lwd=2, col="red")

#identify(logn_dfbeta[,5]~index.obs, col="red")

# Survsim simulation using Weibull distribution#

#similar code format was used for log-normal distribution...#

in short and long term data simulation#

Weibull_full2 <- flexsurvreg(MSc_compsurv~recip_age+dnr_type+ethnicity

+delayed_gf+diabetes,data=MSc_comp, dist="weibull")

Weibull_full2

Weibull_full <- survreg(Surv(Grftsurvtime,1-Graftstatus)~recip_age

+dnr_type+ethnicity+delayed_gf+diabetes,data=MSc_comp, dist="weibull")

#Intercept)=5.3167#

#recip_age=-0.0508#

#dnr_typeliving=0.7891#

#ethnicitynon=-0.7965#

#delayed_gfyes=-0.525784#

#diabetesyes=-0.6617#

#foltime=29.25#

#estimating probabilities#

mean(MSc_comp$recip_age)

var(MSc_comp$recip_age)

table(MSc_comp$dnr_type)

table(MSc_comp$ethnicity)

table(MSc_comp$delayed_gf)

table(MSc_comp$diabetes)

set.seed(180)

overall_sim <- simple.surv.sim(n=751, foltime=29.250000,

dist.ev=c(’weibull’),anc.ev=c(1.66),beta0.ev=c(5.3167),

dist.cens="weibull",anc.cens= 1.63,beta0.cens=1.7210,

z=NULL, beta=list(c(-0.0508), c(0.7891), c(-0.7965),

c(-0.525784),c(-0.6617)), x=list(c("normal", 38.13582,119.1682),

c("bern", 0.1438082557),c("bern", 0.4194407457),

c("bern", 0.3688415446),c("bern", 0.06391478029)))

lnormsim

overall_sim <- rename(overall_sim, replace = c("x" = "recip_age",
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"x.1" = "dnr_type","x.2" = "ethnicity", "x.3" = "delayed_gf",

"x.4" = "diabetes","status"="Graftstatus", "stop"="Grftsurvtime"))

modelsim2 <-flexsurvreg(Surv(Grftsurvtime, Graftstatus) ~recip_age

+dnr_type+ethnicity+delayed_gf+diabetes, data=overall_sim,dist="weibull")

modelsim2

cbind(coef(Weibull_full2),coef(modelsim2))

write.csv(overall_sim, file = ’overall_sim.csv’)

#Extension of Cox model for short term analysis#

#stratified modelfor short term #

strts<-coxph(Surv(Grftsurvtime, Graftstatus)~nephrectomy+no_complication+diabetes

+ethnicity+ureteric+strata(delayed_gf),data=short_term)

summary(strts)

cmrst <- cumres(strt,R=50)

cox.zph(strt)

AIC(strt)

BIC(strt)

strtkm=Surv(short_term$Grftsurvtime,short_term$Graftstatus==1)

kmfit=survfit(strtkm~1)

kmfit

kmfit2=survfit(strtkm~short_term$delayed_gf)

plot(kmfit2,col = c("black","red"))

legend("bottomright",c("no","yes"),lty=c("solid","solid"),

col=c("black","red"))

plot(kmfit2, fun = "cloglog",col = c("black","red"))

legend("bottomright",c("no","yes"),lty=c("solid","solid"),

col=c("black","red"))

summary(kmfit2, times=c(1,5,10,15,20,25,30))

# plotting adjusted survival#

CrossTable(short_term$delayed_gf,short_term$Graftstatus)

table(short_term$delayed_gf)

stratnews <- data.frame(nephrectomy=c("yes","no"),

no_complication=c("yes","no"),

ethnicity=c("white","non-white"),

delayed_gf=c("yes","no"),diabetes=c("no","yes"),
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ureteric=c("no","yes"))

par(mfrow=c(2,2))

plot(survfit(strts,newdata=stratnews),conf.int =F,

lty=c("solid","solid"),

col = c("red","black"),xlab="Years after transplant",

ylab= "Survival prbability",lwd=2,cex.lab=1.5, cex.axis =1.5)

legend("bottomright",c("no","yes"),lty=c("solid","solid"),

col=c("black","red"))

plot(survfit(strts,newdata = stratnews),col = c("red","black"),

fun="cumhaz",lwd=2,cex.lab=1.5, cex.axis =1.5,

xlab="Years after transplant", ylab="log(-log(Survival))")

legend("bottomright",c("no","yes"),lty=c("solid","solid"),

col=c("black","red"))

/**SAS code for covariates by interactions with time**/

PROC PHREG DATA=short1;

class nephrec nocomp diab ethnic ure dgf;

MODEL Grftsurvtime*Graftstatus(0)= nephrec nocomp diab

ethnic ure dgf nephrect nocompt diabt

ethnict uret dgft;

nephrect=nephrec*Grftsurvtime;

nocompt =nocomp*Grftsurvtime;diabt=diab*Grftsurvtime;

ethnict=ethnic*Grftsurvtime;

uret=ure*Grftsurvtime; dgft=dgf*Grftsurvtime;

test_proportionality: test nocompt, diabt, ethnict, uret, dgft;

RUN;

/*** interactions model****/

PROC PHREG DATA=short1;

class nocomp diab ethnic ure dgf;

MODEL Grftsurvtime*Graftstatus(0) =nephrec nocomp diab ethnic

ure dgf dgft ;

dgft=dgf*Grftsurvtime;

test_proportionality: test dgft;

output out = cox LOGSURV = h /method = ch;RUN;
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/***Stratified cox***saving estimates of survival

and cumulative hazard functions in BASE dataset***/;

proc phreg data = short1;

baseline out = base survival = surv cumhaz = cumhaz;

strata dgf;

class nephrec nocomp diab ethnic ure;

MODEL Grftsurvtime*Graftstatus(0) = nephrec nocomp diab

ethnic ure;

output out = cox LOGSURV = h /method = ch;

/*-logsurv is the cox-snell residual*/

run;

/******Heaviside function*******/

GOPTION RESET=ALL;

PROC PHREG DATA=short1;

dgfn=dgf*1;

class nephrec nocomp diab ethnic ure dgf;

MODEL Grftsurvtime*Graftstatus(0) = nephrec nocomp diab

ethnic dgf ure hv2;

if Grftsurvtime >= 6.6 then hv2 = dgfn; else hv2 = 0;

if Grftsurvtime < 6.6 then hv1 = dgfn; else hv1 = 0;

RUN;
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