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Abstract

Heat transfer in a wall with temperature dependent thermal conductivity and internal

heat generation is considered. We first focus on the steady state models followed by the

transient heat transfer models. It turns out that the models considered are non-linear.

We deliberately omit the group-classification of the arbitrary functions appearing in

the models, but rather select forms of physical importance. In one case, thermal

conductivity and internal heat generation are both given by the exponential function

and in the other case they are given by the power law. We employ the classical Lie

point symmetry analysis to determine the exact solutions, while also determining the

optimal system for each case. The exact solutions for the transient models are difficult

to construct. However, we first use the obtained exact solution for the steady state case

as a benchmark for the 1D Differential Transform Method (DTM). Since confidence

in DTM is established, we construct steady state approximate series solutions. We

apply the 2D DTM to the transient problem. Lastly we determine the conservation

laws using the direct method and the associated Lie point symmetries for the transient

problem.
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Chapter 1

Introduction

In this dissertation, a focus is on the study of heat transfer in a hot body and in par-

ticular across a plane wall. Here, the restriction is the analysis of steady and transient

heat transfer in a planar region. The similar analysis may be applied to cylindrical

and spherical geometries. The study of heat transfer in hot bodies enjoys applications

in heat transfer in slabs, solids or plane walls [1], heat transfer with application in bi-

ology such as heat transfer through the human head [2] and regulation of temperature

through elephant ears [3] or through animal and human skin [4], and thermal energy

storage [5]. The study of heat transfer in human body is also important in terms of

development of new medical treatments [6].

Most models describing heat transfer in slabs assume constant thermal conductiv-

ity and internal heat generation is neglected or assumed to be constant (see e.g. [4]).

Few exact solutions exist particularly when the thermal conductivity and internal heat

generation are temperature dependent. This is because the resulting models are non-

linear and harder to solve exactly. In fact, only general solutions that do not satisfy

the boundary conditions may be obtained.
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1.1 Literature Review

The problem being considered is an investigation to determine the group invariant so-

lutions for heat transfer in a hot body with internal heat generation, and to discover

and explore possible physical events where these solutions will be useful.

We intend employing Lie point symmetry methods to construct exact solutions. Heat

transfer problems have been considered by many symmetry analysts (for example

[5,7,8]). In [8], group classification was performed to determine the form of a source

or sink term, for which the non-linear heat equation admitted extra symmetries. Here,

we aim to construct solutions which satisfy the boundary conditions; that is, we focus

on boundary value problems. Asymmetric and symmetric cases are considered.

Exact solutions can be easily obtained for cases when the thermal conductivity and

internal heat generation are both constant. Here, the cases where thermal conductiv-

ity and internal heat generation are temperature dependent will be investigated. This

results in the equation becoming non-linear and difficult to solve exactly. However,

numerical methods will be implemented to obtain approximate solutions, which will

be compared to our exact solutions obtained for special cases.

The aim of [9] was to transform the equation governing the one-dimensional heat

conduction with non-linear internal heat generation from a boundary value problem

to an initial value problem by means of previously established methods. Here, we will

attempt to reduce the partial differential equation to an ordinary differential equation,

and hopefully solve the reduced ordinary differential equation analytically. Either the

method of differential invariants or canonical coordinates will be employed to analyse
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the ordinary differential equations.

A number of techniques have been employed to solve non-linear problems associated

with heat transfer. In [10], the 1D Differential Transform Method (DTM) was used

to construct solutions of the non-linear ordinary differential equations (ODEs) arising

in extended surface heat transfer. While the 2D DTM was applied to solve non-linear

Gas Dynamic and Klein-Gordon equations, [11].

1.2 Aim and Objective

The aim of this dissertation is to obtain solutions for heat transfer in a hot body, in

particular heat transfer through a plane wall, and to analyse these solutions so as to

make a contribution to the understanding of heat transfer problems. First we consider

the steady state problem, where thermal conductivity and internal heat generation

are dependent on temperature, the problem is one-dimensional and non-linear. Then

we obtain the Lie algebra of the governing equation by implementing the classical Lie

symmetry approach. Thereafter, we classify the family of group invariant solutions by

means of finding the one-dimensional optimal system of subalgebras for the obtained

Lie algebra. It turned out that exact group invariant solution satisfied the bound-

ary conditions only for special cases. In the case where exact solutions could not be

obtained, we then apply the Differential Transform Method (DTM) to our problem.

Firstly, the 1D DTM will be applied to the non-linear steady state problems, where its

performance is compared to the known exact group invariant solutions for these cases.

This is followed by applying the 2D DTM to the non-linear transient state problems.

We then construct conservation laws using the direct method and derive the Lie point

symmetries associated with the conserved vectors.
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1.3 Outline

An outline of the dissertation is as follows

• Chapter 2 introduces the basic concepts and definitions of the mathematical tools

used in this dissertation. We discuss the Lie point symmetry techniques, explain

the procedure for the DTM, and we present the direct method used to construct

conservation laws.

• In Chapter 3, we present mathematical models, describing steady and transient

heat transfer in plane walls. We consider symmetric and asymmetric boundary

conditions.

• The Lie point symmetries for all considered cases are obtained in Chapter 4.

• In Chapter 5 the construction of the one-dimensional optimal system of subalge-

bra for the algebras obtained in Chapter 4, is provided.

• In Chapter 6, we establish confidence in the Differential Transform Method by

comparing its solutions to already known exact solutions for the steady state

problem.

• The 2D DTM provides analytical solutions when applied to the transient state

problem in Chapter 7. We only consider Power Law for thermal conductivity and

internal heat generation since this was the only case in which group invariant so-

lutions could not be obtained.

4



• In Chapter 8, conservation laws are constructed, using the Direct Method, as

well as the associated Lie point symmetries.

• Chapter 9 presents some concluding remarks.

5



Chapter 2

Methods of solution

2.1 Introduction

In this chapter we introduce a brief theory of the Lie group analysis and the differ-

ential transformation method which will be used to solve the models presented in the

next chapter. We also present a brief theory on one of the methods of constructing

conservation laws.

2.2 Lie point symmetry techniques

We introduce in brief the theory of symmetry analysis of differential equations. The

reader is referred to books such as [12, 13, 14, 15, 16] for a detailed account on this the-

ory. This section deals with the implementation of the classical Lie symmetry theory

to the governing partial differential equation (3.9). The objective of the classical Lie

symmetry approach is to obtain a transformation which leaves the governing equation

invariant. These transformations are then used to obtain their corresponding group

6



invariant solutions. We restrict our discussion to second order partial differential equa-

tions. For the steady state, which are given by ordinary differential equations, one may

drop one variable.

Given a second order partial differential equation (PDE)

F (t, x, θ, θt, θtt, θx, θxx) = 0, (2.1)

we seek transformations of the dependant variable θ and the dependant variables t and

x that have the form

t̄ = t̄(t, x, θ, ε),

x̄ = x̄(t, x, θ, ε),

θ̄ = θ̄(t, x, θ, ε). (2.2)

This set of transformations characterize a one-parameter group with group parameter

ε, chosen such that the governing equation (2.1) remains invariant. The infinitesimal

transformations can be found by considering the Taylor series expansions of the Lie

group of transformations (2.2) and can be written as

t̄ ' t+ εξ1(t, x, θ),

x̄ ' x+ εξ2(t, x, θ),

θ̄ ' θ + εη(t, x, θ), (2.3)

with the operator

X = ξ1(t, x, θ)
∂

∂t
+ ξ2(t, x, θ)

∂

∂x
+ η(t, x, θ)

∂

∂θ
. (2.4)
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This operator is a Lie point symmetry generator of the governing equation (2.1) if and

only if the infinitesimal criterion for invariance holds:

X [2](equation (2.1)) |equation (2.1)= 0. (2.5)

We act on a PDE (2.1) with the second prolongation X [2] of the operator X since the

equation under examination is of the second order. This given by

X [2] =ξ1(t, x, θ)
∂

∂t
+ ξ2(t, x, θ)

∂

∂x
+ η(t, x, θ)

∂

∂θ
+ ζx

∂

∂θx
+ ζt

∂

∂θt

+ ζxx
∂

∂θxx
+ ζtt

∂

∂θtt
+ ζxt

∂

∂θxt
, (2.6)

where the coefficient functions of the extended infinitesimals ζ are explicitly given by

ζx(t, x, θ) = Dx[η(t, x, θ)]− θtDx[ξ
1(t, x, θ)]− θxDx[ξ

2(t, x, θ)],

ζt(t, x, θ) = Dt[η(t, x, θ)]− θtDt[ξ
1(t, x, θ)]− θxDt[ξ

2(t, x, θ)],

ζxx(t, x, θ) = Dx[ζx(t, x, θ)]− θxtDx[ξ
1(t, x, θ)]− θxxDx[ξ

2(t, x, θ)],

ζxt(t, x, θ) = Dt[ζx(t, x, θ)]− θxtDt[ξ
1(t, x, θ)]− θxxDt[ξ

2(t, x, θ)],

ζtt(t, x, θ) = Dt[ζt(t, x, θ)]− θttDt[ξ
1(t, x, θ)]− θxtDt[ξ

2(t, x, θ)]. (2.7)

The total derivative operators are defined as:

Dt =
∂

∂t
+ θt

∂

∂θ
+ θtt

∂

∂θt
+ θxt

∂

∂θx
+ . . . ,

Dx =
∂

∂x
+ θx

∂

∂θ
+ θxx

∂

∂θx
+ θxt

∂

∂θt
+ θxxx

∂

∂θxx
+ . . . (2.8)

Equation (2.5) results in an overdetermined system of determining equations, from

which ξ1, ξ2 and η can be solved. By substituting these solutions for ξ1, ξ2 and η into

(2.4), the symmetries admitted by the PDE can be found. These symmetries are called

Lie point symmetries, which are local.
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2.3 Differential Transform Method

2.3.1 One-Dimensional Differential Transform Method (1D-

DTM)

Let φ(t) be an analytic function in a domain D. The Taylor series expansion function

of φ(t) with the center located at t = tj is given by [17]

φ(t) =
∞∑
κ=0

(t− tj)κ

κ!

[
dκφ(t)

dtκ

]
t=tj

, ∀t ∈ D. (2.9)

The particular case of Equation (2.9) when tj = 0 is referred to as the Maclaurin series

expansion of φ(t) and is expressed as,

φ(t) =
∞∑
κ=0

tκ

κ!

[
dκφ(t)

dtκ

]
t=0

, ∀t ∈ D. (2.10)

The differential transform of φ(t) is defined as follows;

Φ(t) =
∞∑
κ=0

Hκ

κ!

[
dκφ(t)

dtκ

]
t=0

, (2.11)

where φ(t) is the original analytic function and Φ(t) is the transformed function. The

differential spectrum of Φ(t) is confined within the interval t ∈ [0,H], where H is a

constant. From equations (2.10) and (2.11), the differential inverse transform of Φ(t)

is defined as follows,

φ(t) =
∞∑
κ=0

(
t

H

)κ
Φ(t), (2.12)

and if φ(t) is expressed by a finite series, then

φ(t) =
r∑

κ=0

(
t

H

)κ
Φ(t). (2.13)
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It is clear that the concept of differential transformation is based upon the Taylor series

expansion. The values of the function Φ(κ) are referred to as discrete, i.e., available,

it is possible to restore the unknown function more precisely. The function φ(t) con-

sists of the T -function Φ(κ), and its value is given by the sum of the T -function with

(t/H)κ as its coefficient. In real applications, at the right choice of the constant H,

the discrete values of the spectrum reduce rapidly with larger values of argument κ [18].

Below are some of the theorems used when applying the one-dimensional differential

transform method.

Theorem 2.1 If φ(t) = x(t)± z(t), then Φ(κ) = X(κ)± Z(κ).

Theorem 2.2 If φ(t) = αx(t), then Φ(κ) = αX(κ).

Theorem 2.3 If φ(t) =
dx(t)

dt
, then Φ(κ) = (κ+ 1)Φ(κ+ 1).

Theorem 2.4 If φ(t) =
d2x(t)

dt2
, then Φ(κ) = (κ+ 1)(κ+ 2)Φ(κ+ 2).

Theorem 2.5 If φ(t) =
dsx(t)

dts
, then Φ(κ) = (κ+ 1)(κ+ 2) . . . (κ+ s)Φ(κ+ s).

Theorem 2.6 If φ(t) = x(t)z(t), then Φ(κ) =
κ∑
i=0

X(i)Z(κ− i).

Theorem 2.7 If φ(t) = x(t)y(t)z(t), then Φ(κ) =
κ∑
i=0

κ−i∑
l=0

X(l)Y (i)Z(κ− i− l).

Theorem 2.8 If φ(t) = ts, then Φ(κ) = δ(κ− s).

Theorem 2.9 If φ(t) = exp(λt), then Φ(κ) =
λκ

κ!
.

Theorem 2.10 If φ(t) = (1 + t)s, then Φ(κ) =
s(s− 1)(s− 2) . . . (s− κ− 1)

κ!
.

Theorem 2.11 If φ(t) = sin(ωt+ α), then Φ(κ) =
ωκ

κ!
sin
(πκ

2!
+ α

)
.

Theorem 2.12 If φ(t) = cos(ωt+ α), then Φ(κ) =
ωκ

κ!
cos
(πκ

2!
+ α

)
.
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The Kronecker delta function δ(κ− s) is given by

δ(κ− s) =

 1 if, κ = s,

0 if, κ 6= s.

2.3.2 Two-Dimensional Differential Transform Method (2D-

DTM)

Based on the one-dimensional differential transform method, the basic definitions of

the two-dimensional transform are defined as follows

Φ(κ, s) =
∞∑
κ=0

∞∑
s=0

1

κ! s!

[
∂κ+sφ(t, x)

∂tκ∂xs

]
(0,0)

, (2.14)

where φ(t, x) is the original function and Φ(t, x) is the transformed function.

The differential inverse transform of Φ(t, x) is defined as

φ(t, x) =
∞∑
κ=0

∞∑
s=0

Φ(κ, s)tκxs. (2.15)

From equations (2.14) and (2.15) it can be concluded that

φ(t, x) =
∞∑
κ=0

∞∑
s=0

1

κ! s!

[
∂κ+sφ(t, x)

∂tκ∂xs

]
(0,0)

tκxs. (2.16)

In real applications, the function φ(t, x) is approximated by a finite series, and equation

(2.15) can be written as

φ(t, x) =
m∑
κ=0

n∑
s=0

Φ(κ, s)tκxs. (2.17)
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Equation (2.17) implies that

φ(t, x) =
∞∑

κ=m+1

∞∑
s=n+1

Φ(κ, s)tκxs, (2.18)

is negligibly small.

Below are some of the theorems used when applying the two-dimensional differential

transform method.

Theorem 2.12 If φ(t, x) = x(t, x)± z(t, x), then Φ(κ, s) = X(κ, s)± Z(κ, s).

Theorem 2.13 If φ(t, x) = αx(t, x), then Φ(κ, s) = αX(κ, s).

Theorem 2.14 If φ(t, x) =
∂x(t, x)

∂t
, then Φ(κ, s) = (κ+ 1)Φ(κ+ 1, s).

Theorem 2.15 If φ(t, x) =
∂x(t, x)

∂x
, then Φ(κ, s) = (s+ 1)Φ(κ, s+ 1).

Theorem 2.16 If φ(t, x) =
∂r+qx(t, x)

∂tr∂xq
, then

Φ(κ, s) = (κ+ 1)(κ+ 2) . . . (κ+ r)(s+ 1)(s+ 2) . . . (s+ q)Φ(κ+ r, s+ q).

Theorem 2.17 If φ(t, x) = x(t, x)z(t, x), then

Φ(κ, s) =
κ∑
i=0

s∑
j=0

X(i, s− j)Z(κ− i, j).

Theorem 2.18 If φ(t, x) = tmxn, then Φ(κ, s) = δ(κ−m)δ(s− n).

Theorem 2.19 If φ(t, x) =
∂x(t, x)

∂x

∂z(t, x)

∂x
, then

Φ(κ, s) =
κ∑
i=0

s∑
j=0

(s− j + 1)(j + 1)X(i, s− j + 1)Z(κ− i, j + 1).

Theorem 2.20 If φ(t, x) =
∂x(t, x)

∂t

∂z(t, x)

∂x
, then

Φ(κ, s) =
κ∑
i=0

s∑
j=0

(κ− i+ 1)(s− j + 1)X(κ− i+ 1, j)Z(i, s− j + 1).
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Theorem 2.21 If φ(t, x) = x(t, x) z(t, x) w(t, x), then

Φ(κ, s) =
κ∑
i=0

κ−i∑
p=0

s∑
j=0

s−j∑
q=0

X(i, s− j − q) Z(p, j) W (k − i− p, q).

Theorem 2.22 If φ(t, x) = x(t, x)
∂z(t, x)

∂x

∂w(t, x)

∂x
, then

Φ(κ, s) =
κ∑
i=0

κ−i∑
p=0

s∑
j=0

s−j∑
q=0

(j + 1)(q + 1)X(i, s− j − q) Z(p, j + 1) W (k − i− p, q + 1).

Theorem 2.23 If φ(t, x) = x(t, x) z(t, x)
∂2w(t, x)

∂x2
, then

Φ(κ, s) =
κ∑
i=0

κ−i∑
p=0

s∑
j=0

s−j∑
q=0

(q + 1)(q + 2)X(i, s− j − q) Z(p, j) W (k − i− p, q + 2).

Theorem 2.24 If φ(t, x) = x(t, x) z(t, x) w(t, x) v(t, x), then

Φ(κ, s) =
κ∑
i=0

κ−i∑
p=0

κ−i−p∑
z=0

s∑
j=0

s−j∑
q=0

s−j−q∑
l=0

X(i, s− j − q − l) Z(p, j) W (z, q) V (k − i− p− z, l).

Theorem 2.25 If φ(t, x) = xm exp(λt), then Φ(κ, s) =
λs

s!
δ(κ−m).

Theorem 2.26 If φ(t, x) = xm sin(ωt+ α), then

Φ(κ, s) =
ωs

s!
δ(κ−m) sin

(sπ
2!

+ α
)
.

Theorem 2.27 If φ(t, x) = xm cos(ωt+ α), then

Φ(κ, s) =
ωs

s!
δ(κ−m) cos

(sπ
2!

+ α
)
.

The Kronecker delta function δ(κ−m) is given by

δ(κ−m) =

 1 if, κ = m and s = n,

0 otherwise.
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2.4 Conservation Laws

Consider a kth order differential equation,

F (x, θ, θ(1), θ(2), . . . , θ(k)) = 0, (2.19)

where x denotes n independent variables, u denotes the dependent variable and θ(i) de-

notes all the partial derivatives of order i. For an arbitrary partial differential equation

we write

Di(T
i) = 0, (2.20)

where T i are differential functions of finite order. We define equation (2.20) as a

conservation law for equation (2.19) if it satisfies the following equation

Di

[
T i(x, θ, θ(1), θ(2), . . . , θ(l))

]
= 0. (2.21)

This can also be written as

DiT
i |F=0= 0. (2.22)

The vector T = (T 1, T 2, . . . , T n) is called a conserved vector.

A Lie Point symmetry generator

X = ξi(x, θ)
∂

∂xi
+ η(x, θ)

∂

∂u
, (2.23)

is said to be associated with the conserved vector T i = (T 1, . . . , T n) for equation (2.19)

if [19]

X(T i) + T iDl(ξ
l)− T lDl(ξ

i) = 0, i = 1, . . . , n. (2.24)

In equation (2.24), X is prolonged appropriately. Using equation (2.24) we can deter-

mine the conserved vectors, [20].
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We determine conservation laws using the Direct Method, which gives all local conser-

vation laws. Equation (2.20) is a conservation law. The Direct Method uses equation

(2.20) subject to equation (2.19) being satisfied as the determining equation for the

conserved vectors. The components T 1, . . . , T n are obtained by separating the resulting

equation according to powers and products of the derivatives of θ.

2.5 Concluding remarks

In this chapter, we have provided brief accounts of the methods used in this dissertation.

The reader is referred to text and citation as provided.
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Chapter 3

Description of mathematical models

In this dissertation we consider heat transfer across a wall. Here thermal conductivity

and internal heat generation of the wall are temperature dependent. We consider two

scenarios, first the temperature being different at either end of the wall, for example in

a heated house, temperature being higher inside the house than outside. And secondly,

we consider the case where the temperature gradient at the center of the cross-sectional

center of the wall is zero. More details will be provided on these scenarios in this

chapter.

Variable Description Unit

k Thermal conductivity W/(m·K)
α Thermal diffusivity m2/s
ρ Density kg/m3

cp Specific heat capacity J/K
Q Internal heat generation W/m3

T Temperature K
x Length m
t Time s

Table 3.1: Nomenclature
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We begin with the one-dimensional heat equation with constant internal heat genera-

tion and thermal conductivity given by

∂2T

∂x2
− 1

α

∂T

∂t
+
Q

k
= 0, (3.1)

where

α =
k

ρcp
. (3.2)

Equation (3.1) may be rewritten as

∂

∂x

(
k
∂T

∂x

)
− ρcp

∂T

∂t
+Q = 0. (3.3)

Notice that k and Q are constant in (3.3). Now, we assume that thermal conductivity

and the internal heat generation to be functions depending on T , which gives the

non-linear partial differential equation

∂

∂x

(
k(T )

∂T

∂x

)
− ρcp

∂T

∂t
+Q(T ) = 0. (3.4)

The imposed boundary conditions are given by

∂T

∂x
(t, 0) = 0, T (t,−L) = Ts = T (t, L) , (3.5)

in one case and by

T (t,−L) = T1, T (t, L) = T2, (3.6)

in the other case. Here T1 6= T2, and the initial condition is given by

T (0, x) = f(x),

where f(x) is some initial heat profile.

The boundary condition (3.5) is symmetric whilst (3.6) is the asymmetric condition.
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In (3.5), studies may be carried out for x ∈ [0, L]. It can be seen in (3.6) that heat

may flow from higher to lower temperatures as expected.

3.1 Dimensional Analysis

Introducing the non-dimensional variables and parameters

x̄ =
x

l
, θ =

T

Ta
,

q =
Q

qa
, k̄ =

k

ka
,

t̄ =
t ka
ρcpl2

, (3.7)

where l is the characteristic length in the x-direction, Ta is the characteristic temper-

ature, qa is the characteristic internal heat generation, ka is the characteristic thermal

conductivity and ρcpl2

ka
is the characteristic time, we obtain the dimensionless equation

∂

∂x̄

(
k̄(θ)

∂θ

∂x̄

)
− ∂θ

∂t̄
+ Ng q(θ) = 0. (3.8)

Here Ng =
qal

2

kaTa
, the coefficient of the internal heat generation term. It is assumed

that Ng > 0. Notice that if Ng < 0, then equation (3.9) represents heat transfer in a

straight fin, whereby q(θ) is now interpreted as the heat transfer coefficient. We neglect

the bars in further work for notational convenience, so the governing equation is given

by
∂

∂x

(
k(θ)

∂θ

∂x

)
− ∂θ

∂t
+ Ng q(θ) = 0. (3.9)

Subject to the boundary conditions

∂θ

∂x
(t, 0) = 0, θ(t, 1) = 1, (3.10)
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for a wall with identical temperatures at the boundaries, and

θ(t,−1) = 0.1, θ(t, 1) = 1, (3.11)

for a wall with varying temperatures at the boundaries.

Along with initial condition:

θ(0, x) = f(x). (3.12)

Figures 3.1 and 3.2 show heat transfer in a wall with internal heat generation.

Figure 3.1: This figure shows heat transfer in a wall with internal heat generation.
Here, the maximum temperature occurs at the center of the wall due to the symmetrical
nature of the wall and uniformity of the initial heat generated. Ts is denoted to be the
temperature at both boundaries of the wall, [21].
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Figure 3.2: This figure shows heat transfer in a wall with different temperatures at
each of the boundaries, [21].

3.2 Concluding remarks

In this chapter, we have presented the models for heat transfer across a wall. Thermal

conductivity and internal heat generation are given as functions of temperature in this

dissertation.

20



Chapter 4

Lie Point Symmetry Analysis

Using symmetry analysis it is possible to classify equation (3.9); that is, to determine

all cases of the arbitrary functions for which this equation admits extra symmetries

either by direct methods [12, 22] or preliminary group classification [23] or enhance

group classification [24]. In this section we firstly consider obtaining ξ1, ξ2 and η for

general k(θ) and q(θ). Later, we focus on the exponential and power law cases of

k(θ) and q(θ). We do not claim group classification. However, in many engineering

applications thermal conductivity is given by these cases. We thus concentrate on

linearizable models (see e.g. [25]). The exact solutions obtained in this section will be

used to benchmark the 1D DTM. We consider the cases listed below

k(θ) q(θ)

(a) emθ enθ

(b) θm θn+1
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4.1 Case: General k(θ) and q(θ)

Assuming the general form, namely

k = k(θ), and q = q(θ),

the employment of the second prolongation X [2] onto equation (3.9) yields the deter-

mining equation

(
ζt − 2θxζxk

′(θ)− k(θ)ζxx

+ η
(
−θ2xk′′(θ)− θxxk′(θ)− Ng q′(θ)

))
|equation(3.9)= 0. (4.1)

The application of the operators in equation (2.8) onto the extended infinitesimals ζij’s

defined in equation (2.7) leads to

ζt =ηt + θt
(
ηθ − ξ1t

)
− ξ2t θx − ξ1θ (θt)

2 − ξ2θθxθt, (4.2)

ζx =ηx + θx
(
ηθ − ξ2x

)
− ξ1xθt − ξ2θ (θx)

2 − ξ1θθxθt, (4.3)

ζxx =ηxx − ξ1xxθt +
(
2ηxθ − ξ2xx

)
θx +

(
ηθθ − ξ2xθ

)
(θx)

2 − 2ξ1xθθtθx

− ξ2θθ (θx)
3 − ξ1θθθt (θx)

2 +
(
ηθ − 2ξ2x

)
θxx − 2ξ1xθtx − ξ1θθtθxx

− 3ξ2θθxθxx − 2ξ1θθxθtx. (4.4)

We then substitute the expansions for the coefficient functions obtained in equations

(4.2) - (4.4) into the determining equation (4.1). The unknown functions ξ1, ξ2 and

η are independent of the derivatives of θ as well as powers and products of their
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derivatives. Hence, we can separate the resulting determining equations with respect

to the powers and products of the derivatives of θ. Applying this process and making

further simplifications leads to an overdetermined system of linear homogeneous partial

differential equations given by

θxx(θx)
2 : k(θ)2ξ1θθ + k(θ)ξ1θk

′(θ) = 0, (4.5)

θxxθx : 2k(θ)ξ1xk
′(θ) + 2k(θ)ξ2θ + 2k(θ)2ξ1xθ = 0, (4.6)

θxx : −ηk′(θ)− Ng k(θ)ξ1θq(θ)

− k(θ)ξ1t + 2k(θ)ξ2x + k(θ)2ξ1xx = 0, (4.7)

θtxθx : 2k(θ)ξ1θ = 0, (4.8)

θtx : 2k(θ)ξ1x = 0, (4.9)

(θx)
4 : k(θ)ξ1θθk

′(θ) + ξ1θk
′(θ)2 = 0, (4.10)

(θx)
3 : k(θ)ξ2θθ + ξ2θk

′(θ) + 2ξ1xk
′(θ)2 + 2k(θ)ξ1xθk

′(θ) = 0, (4.11)

(θx)
2 : −k(θ)ηθθ + Ng k(θ)q(θ)ξ1θθ − ηk′′(θ)− ηθk′(θ)− ξ1tk′(θ)

+ 2ξ2xk
′(θ) + k(θ)ξ1xxk

′(θ) + 2k(θ)ξ2xθ = 0, (4.12)

θx : 2Ng q(θ)ξ1xk
′(θ)− 2ηxk

′(θ) + 2Ng k(θ)q(θ)ξ1xθ − 2k(θ)ηxθ

+ k(θ)ξ2xx − Ng ξ2θq(θ)− ξ2t = 0, (4.13)

1 : Ng k(θ)q(θ)ξ1xx − k(θ)ηxx − (Ng)2 ξ1θq(θ)
2 − ηNg q′(θ)

+ Ng ηθq(θ)− Ng q(θ)ξ1t + ηt = 0. (4.14)

with the remainder of the equations being satisfied.

Equations (4.8) and (4.9) give the result

ξ1 = ξ1(t). (4.15)

23



Using the result of equation (4.15) with equation (4.6) gives

ξ2 = ξ2(t, x). (4.16)

Equations (4.15) and (4.16) satisfy equations (4.5), (4.10) and (4.11), and simplify

equations (4.7), (4.12), (4.13) and (4.14) to the following:

− ηk′(θ)− k(θ)ξ1t + 2k(θ)ξ2x = 0, (4.17)

− k(θ)ηθθ − ηk′′(θ)− ηθk′(θ)− ξ1tk′(θ) + 2ξ2xk
′(θ) = 0, (4.18)

− 2ηxk
′(θ)− 2k(θ)ηxθ + k(θ)ξ2xx − ξ2t = 0, (4.19)

− k(θ)ηxx − ηNg q′(θ) + Ng ηθq(θ)− Ng q(θ)ξ1t + ηt = 0. (4.20)

We can solve for η using equation (4.17),

η =
2k(θ)ξ2x
k′(θ)

− k(θ)ξ1t
k′(θ)

. (4.21)

Substituting this result in equation (4.21) we have equations (4.18), (4.19) and (4.20)

becoming:

P (k)(2ξ2x − ξ1t ) = 0, (4.22)

Q(k)ξ2xx − ξ2t = 0, (4.23)

Ng

[
k

k′
q′ +

k k′′

(k′)2
q − 2q

]
ξ1t − 2Ng

[
k

k′
q′ +

k k′′

(k′)2
q − q

]
ξ2x

− k

k′
ξ1tt + 2

k

k′
ξ2tx − 2

k2

(k′)2
ξ2xxx = 0, (4.24)
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where

P (k) =
k2k′′′

(k′)2
− 2

k2(k′′)2

(k′)3
+
k k′′

k′
,

Q(k) = 4
k2k′′

(k′)2
− 7k.

It can be shown that

P (k) =
1

4

[
dQ

dθ
− k′

k
Q

]
. (4.25)

Thus when Q(k) = 0 then P (k) = 0 and (4.22) is identically satisfied. Equation (4.22)

places no condition on 2ξ2x − ξ1t .

Also from equation (4.25), P (k) = 0 if

dQ

dθ
=
k′

k
Q,

that is, if

dQ

dk
=
Q

k
,

that is, if

Q(k) = αk,

where α is a constant. Now for ANY m 6= 0 (k not constant),

if k(θ) = θm then Q(k) = −(4 + 3m)

m
k,

if k(θ) = emθ then Q(k) = −3k.
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Hence if k(θ) = θm or k(θ) = emθ then for any m 6= 0, P (k) = 0 and (4.22) is identically

satisfied. Equation (4.22) places no condition on 2ξ2x − ξ1t .

It can be checked by direct substitution that if

k(θ) = θm or k(θ) = emθ,

then for any m 6= 0, P (k) = 0.

If ξ2xx 6= 0 then (4.23) can be written as

4k2k′′

(k′)2
− 7k =

ξ2t
ξ2xx

,

and differentiating both sides by θ gives

4k2k′′

(k′)2
− 7k = c,

where c is a constant. Thus

ξ2t = c ξ2xx.

There are two cases.

Case (i) ξ2xx 6= 0:

Q(k) =
4k2k′′

(k′)2
− 7k = c,

ξ2t = c ξ2xx.

In this dissertation only the special case c = 0 is considered and

Q(k) = 0, ξ2t = 0. (4.26)
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It follows that

Q(k) =
a

(θ + b)
4
3

, P (k) = 0. (4.27)

Case (ii) ξ2xx = 0:

ξ2t = 0. (from (4.23)) (4.28)

Then Q(k) and P (k) are not determined without further assumptions.

Equations (4.26), (4.27) and (4.28) simplify (4.24) to

Ng

[
q′ +

k′′

k′
q − 2

k′

k
q

]
ξ1t − 2Ng

[
q′ +

k′′

k′
q − k′

k
q

]
ξ2x − ξ1tt − 2kξ2xxx = 0. (4.29)

So from here, we will use equation (4.29) to solve for ξ1 and ξ2, and then use equation

(4.21) to solve for η. Equation (4.22) needs to be considered for general k(θ). Thus,

finding the symmetries of equation (3.9) for any given k(θ) and q(θ).

Note, these equations can only be used to find symmetries for cases where k′(θ) 6= 0.

A complete group classification is not performed here. We may as an open question

consider enhanced group classification (see for example [22, 24]).

4.2 Case: k(θ) = emθ and q(θ) = enθ

We assume the exponential form of k(θ) and q(θ). Notice that k(θ) is not of the form

in equation (4.27), so we consider case (ii), that is

ξ2xx = 0, (4.30)
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which gives

ξ2 = c1x+ c2. (4.31)

Now we substitute our choices for k(θ) and q(θ) into equation (4.29). This simplifies

to

enθ Ng
(
nξ1t − 2nc1 −mξ1t

)
− ξ1tt = 0 (4.32)

Since the term ξ1tt is independent of θ we can split (4.32) as follows

ξ1tt = 0,

that is, ξ1 = c3t+ c4, (4.33)

and nc3 − 2nc1 −mc3 = 0. (4.34)

We can solve for c1 in terms of c3 using equation (4.34),

c1 =
c3(n−m)

2n
. (4.35)

As a result, the infinitesimals become

ξ1 = c3t+ c4, (4.36)

ξ2 =
c3(n−m)

2n
x+ c2, (4.37)

η = −c3
n
. (4.38)

As such the Lie point symmetry generator admitted by equation (3.9) with exponential

case is

X = (c3t+ c4)
∂

∂t
+

[(
n−m

2n

)
c3x+ c2

]
∂

∂x
+
(
−c3
n

) ∂

∂θ
. (4.39)

By setting each constant ci = 1 with cj = 0 (i, j = 1, 2, 3) in the infinitesimal generator

in equation (4.39), we obtain a three-dimensional Lie algebra which is generated by
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the operators

X1 =
∂

∂x
,

X2 =
∂

∂t
,

X3 = 2t
∂

∂t
+

(
n−m
n

)
x
∂

∂x
− 2

n

∂

∂θ
. (4.40)

Note that when m = n, we obtain the following operators

X1 =
∂

∂x
,

X2 =
∂

∂t
,

X3 = t
∂

∂t
− 1

m

∂

∂θ
. (4.41)

4.3 Case: k(θ) = θm and q(θ) = θn+1

In this section we will consider four sub-cases. Once again we will use equations (4.21)

and (4.29) to determine the symmetries for each of the following sub-cases.

4.3.1 Case (i): Ng 6= 0, m = −4

3
and n = 0

Here, k(θ) is of the form in equation (4.27), so we cannot assume ξ2xx = 0.

We get the following equation after substituting k(θ) and q(θ) into (4.29)

−ξ1tt − 2θ−4/3ξ2xxx +
4

3
Ng ξ1t = 0. (4.42)
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We can now split equation (4.42) as follows

ξ2xxx = 0, and (4.43)

− ξ1tt +
4

3
Ng ξ1t = 0. (4.44)

From equations (4.43) and (4.44) we get

ξ1 =
3e

4
3
Ngtc1

4Ng
+ c2, (4.45)

ξ2 = x2c5 + xc4 + c3, (4.46)

η = −3θ

4

(
4xc5 + 2c4 − e

4
3
Ngtc1

)
. (4.47)

The coefficients of the infinitesimals ξ1, ξ2 and η above are substituted into the Lie

point symmetry generator defined in equation (2.4) to obtain

X =

(
3e

4
3
Ngtc1

4Ng
+ c2

)
∂

∂t
+
(
x2c5 + xc4 + c3

) ∂

∂x
− 3θ

4

(
4xc5 + 2c4 − e

4
3
Ngtc1

) ∂

∂θ
.

(4.48)

By setting each constant ci = 1 with cj = 0 (i, j = 1, 2, 3) in the infinitesimal generator

in equation (4.48), we obtain a five-dimensional Lie algebra which is generated by the

operators

X1 =
∂

∂x
,

X2 =
∂

∂t
,

X3 = 2x
∂

∂x
− 3θ

∂

∂θ
,

X4 = x2
∂

∂x
− 3θx

∂

∂θ
,

X5 =
e

4Ngt
3

Ng

∂

∂t
+ θe

4Ngt
3

∂

∂θ
(4.49)
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4.3.2 Case (ii): Ng 6= 0, m = −4

3
, n 6= −4

3
and n 6= 0

Again, in this case k(θ) is of the form in equation (4.27), so we cannot assume ξ2xx = 0.

We get the following simplified equation after substituting k(θ) and q(θ) into (4.29)

Ng θn
(
nξ1t − 2nξ2x +

4

3
ξ1t

)
− ξ1tt − 2θ−

4
3 ξ2xxx = 0. (4.50)

We can now split equation (4.50) as follows

ξ1tt = 0, (4.51)

nξ1t − 2nξ2x +
4

3
ξ1t = 0, (4.52)

ξ2xxx = 0. (4.53)

Equations (4.51) and (4.53) give

ξ1 = c1t+ c2, (4.54)

ξ2 = c5x
2 + c4x+ c3, (4.55)

respectively, and substituting this result into equation (4.52) gives

(
3n+ 4

3

)
c1 − 4nc5x− 2nc4 = 0. (4.56)

We can split equation (4.56) with respect to x, since all the constants are independent

of x, it follows that

c5 = 0, and (4.57)(
3n+ 4

3

)
c1 − 2nc4 = 0. (4.58)
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We can solve for c4 in terms of c1 to get c4 =
3n+ 4

6n
c1.

So in summary, we get the following:

ξ1 = c1t+ c2, (4.59)

ξ2 =
3n+ 4

6n
c1 x+ c3, (4.60)

η = −θc1
n
. (4.61)

The coefficients of the infinitesimals ξ1, ξ2 and η above are substituted into the Lie

point symmetry generator defined in equation (2.4) to obtain

X = (c1t+ c2)
∂

∂t
+

(
3n+ 4

6n
c1 x+ c3

)
∂

∂x
− θc1

n

∂

∂θ
. (4.62)

By setting each constant ci = 1 with cj = 0 (i, j = 1, 2, 3) in the infinitesimal generator

in equation (4.62), we obtain a three-dimensional Lie algebra which is generated by

the operators

X1 =
∂

∂x
,

X2 =
∂

∂t
,

X3 = t
∂

∂t
+

3n+ 4

6n
x
∂

∂x
− θ

n

∂

∂θ
. (4.63)

4.3.3 Case (iii): Ng 6= 0, m 6= −4

3
, m 6= 0 and n = 0

We notice that k(θ) is not of the form in equation (4.27), so we consider case (ii),

ξ2xx = 0. (4.64)
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Equation (4.64) gives

ξ2 = c1x+ c2. (4.65)

Now we substitute our choices for k(θ) and q(θ) into equation (4.29). This simplifies

to

−Ngξ1tm− ξ1tt = 0. (4.66)

From equation (4.66) we get

ξ1 = −e
−mNgtc3
mNg

+ c4. (4.67)

Using equations (4.21), (4.65) and (4.67) we get

η =
2θc1
m
− e−mNgtθc3

m
. (4.68)

The coefficients of the infinitesimals ξ1, ξ2 and η above are substituted into the Lie

point symmetry generator defined in equation (2.4) to obtain

X =

(
−e
−mNgtc3
mNg

+ c4

)
∂

∂t
+ (c1x+ c2)

∂

∂x
+

(
2θc1
m
− e−mNgtθc3

m

)
∂

∂θ
. (4.69)

By setting each constant ci = 1 with cj = 0 (i, j = 1, 2, 3) in the infinitesimal generator

in equation (4.69), we obtain a four-dimensional Lie algebra which is generated by the

operators

X1 =
∂

∂x
,

X2 =
∂

∂t
,

X3 = x
∂

∂x
+

2θ

m

∂

∂θ
,

X4 =
e−mNgt

Ng

∂

∂t
+ θe−mNgt ∂

∂θ
(4.70)
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4.3.4 Case (iv): Ng 6= 0, m 6= −4

3
, m 6= 0 and n 6= 0

Again, we notice that k(θ) is not of the form in equation (4.27), so we consider case

(ii),

ξ2xx = 0. (4.71)

Equation (4.71) gives

ξ2 = c1x+ c2. (4.72)

Now we substitute our choices for k(θ) and q(θ) into equation (4.29). This simplifies

to

Ngθn
(
ξ1t n− 2c1n− ξ1tm

)
− ξ1tt = 0. (4.73)

Since the term ξ1tt is independent of θ we can split (4.73) as follows

ξ1tt = 0,

that is, ξ1 = c3t+ c4., (4.74)

and c3n− 2c1n− c3m = 0. (4.75)

We can also solve for c1 in terms of c3 using equation (4.75),

c1 =
c3(n−m)

2n
. (4.76)

So we have our infinitesimals reduce to

ξ1 = c3t+ c4, (4.77)

ξ2 =
c3(n−m)

2n
x+ c2, (4.78)

η = −θc3
n
. (4.79)
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The coefficients of the infinitesimals ξ1, ξ2 and η above are substituted into the Lie

point symmetry generator defined in equation (2.4) to obtain

X = (c3t+ c4)
∂

∂t
+

(
c3(n−m)

2n
x+ c2

)
∂

∂x
−
(
θc3
n

)
∂

∂θ
. (4.80)

By setting each constant ci = 1 with cj = 0 (i, j = 1, 2, 3) in the infinitesimal generator

in equation (4.80), we obtain a three-dimensional Lie algebra which is generated by

the operators

X1 =
∂

∂x
,

X2 =
∂

∂t
,

X3 = t
∂

∂t
+

(
n−m

2n

)
x
∂

∂x
− θ

n

∂

∂θ
. (4.81)

Note that when m = n, we obtain the following operators

X1 =
∂

∂x
,

X2 =
∂

∂t
,

X3 = t
∂

∂t
− θ

m

∂

∂θ
. (4.82)

4.4 Concluding remarks

In this chapter a number of cases have been observed for which the equation in question

admits Lie point symmetries. Two cases of the thermal conductivity and the internal

heat generation have been chosen, namely the exponential and power law depending
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on temperature by this thermal parameter.
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Chapter 5

Classification of group invariant

solutions

In this chapter we construct the one-dimensional optimal systems of subalgebras of the

algebras admitted in Chapter 4. This technique helps us in classifying group invariant

solutions of differential equations and it was first considered by Ovsiannikov [26]. We

will follow the approach as set out by Olver in [15].

In theory, a family of group invariant solutions that correspond to a subgroup of the

symmetries admitted by a differential equation can be constructed [27]. However, the

thought of listing all the group invariant solutions seems impractical since the possible

number of those subgroups is infinite in most cases. In view of that, we seek to obtain

optimal systems of subalgebras of the Lie algebra which provide a useful and methodical

way of classifying these group invariant solutions.
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5.1 Optimal System

5.1.1 Case: k(θ) = emθ and q(θ) = enθ

We begin by computing the commutators of the three-dimensional Lie algebra spanned

by the base vectors X1, X2 and X3 specified in equation (4.40). These are obtained by

applying the commutation relation

[Xi, Xj] = XiXj −XjXi, i, j = 1, ..., n, (5.1)

where

[Xi, Xj] = −[Xj, Xi], (5.2)

and

[Xi, Xi] = 0. (5.3)

This results in

[X1, X2] = X1X2 −X2X1

=
∂

∂x

(
∂

∂t

)
− ∂

∂t

(
∂

∂x

)
= 0, (5.4)

and

[X2, X3] = X2X3 −X3X2

=
∂

∂t

{
2t
∂

∂t
+

(n−m)x

n

∂

∂x
− 2

n

∂

∂θ

}
−
{

2t
∂

∂t
+

(n−m)x

n

∂

∂x
− 2

n

∂

∂θ

}(
∂

∂t

)
= 2X2, (5.5)
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and

[X1, X3] = X1X3 −X3X1

=
∂

∂x

{
2t
∂

∂t
+

(n−m)x

n

∂

∂x
− 2

n

∂

∂θ

}
−
{

2t
∂

∂t
+

(n−m)x

n

∂

∂x
− 2

n

∂

∂θ

}(
∂

∂x

)
=

(n−m)

n
X1. (5.6)

For convenience, we will display the commutators of the Lie algebra in the form of a

commutator table where the (i, j)th entry is [Xi, Xj]. This is shown in Table 5.1 below:

[Xi, Xj] X1 X2 X3

X1 0 0
(n−m)

n
X1

X2 0 0 2X2

X3
(m− n)

n
X1 −2X2 0

Table 5.1: Commutator table of the three-dimensional Lie algebra (4.40).

Next, we calculate the adjoint representation using the commutator table given in

Table 5.1 as well as the Lie series [15] given by

Ad(eεXi)Xj = Xj − ε[Xi, Xj] +
1

2!
ε2[Xi, [Xi, Xj]]

− 1

3!
ε3[Xi, [Xi, [Xi, Xj]]] + ..., (5.7)

where

i, j = 1, ..., n.

Note that

Ad(eεXi)Xi = Xi. (5.8)
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As examples,

Ad(eεX1)X3 = X3 − ε[X1, X3] +
1

2!
ε2[X1, [X1, X3]]

− 1

3!
ε3[X1, [X1, [X1, X3]]] + ...,

= X3 − ε
(
n−m
n

)
X1, (5.9)

and

Ad(eεX3)X1 = X1 − ε[X3, X1] +
1

2!
ε2[X3, [X3, X1]]

− 1

3!
ε3[X3, [X3, [X3, X1]]] + ...,

=

(
1− ε

(
m− n
n

)
+
ε2

2!

(
m− n
n

)2

−ε
3

3!

(
m− n
n

)3

+ . . .

)
X1,

= exp

(
ε

(
n−m
n

))
X1. (5.10)

The remainder of the adjoint representations are found in a similar fashion. We con-

struct an adjoint table for the symmetry generators (4.40) where the (i, j)th entry

indicates Ad(eεXi)Xj. As a result, we have the adjoint representation given by Table

5.2 below:

Ad X1 X2 X3

X1 X1 X2 X3 − ε
(
n−m
n

)
X1

X2 X1 X2 X3 − 2εX2

X3 exp

(
ε

(
n−m
n

))
X1 e2εX2 X3

Table 5.2: Adjoint table for the symmetry generators (4.40).
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This is followed by considering the non-zero vector

X = a1X1 + a2X2 + a3X3, ai ∈ R. (5.11)

We are tasked with simplifying the coefficients ai as much as we can through a number

of well-judged applications of adjoint maps to X. To start with, we consider the

scenario when a3 6= 0. We can choose a3 = 1 for the purposes of scaling and so X is

now

X = a1X1 + a2X2 +X3. (5.12)

With reference to Table 5.2, we can act on X by Ad(eεX2) which returns

X = a1X1 + (a2 − 2ε)X2 +X3. (5.13)

Further, we can make the coefficient a2 disappear for the distinct value of ε = a2/2.

Accordingly,

X = a1X1 +X3. (5.14)

Now, if we act on X by Ad(eεX1) which returns

X =

(
a1 − ε

(
n−m
n

))
X1 +X3 (5.15)

Again, we can make the coefficient a1 disappear for the distinct value of ε = a1

(
n

n−m

)
.

Thus it results in

X = X3. (5.16)

On the other hand, choosing a3 = 0 in the vector (5.11) gives that

X = a1X1 + a2X2. (5.17)
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We now consider all possible situations for the coefficient a2. We can first set a2 6= 0

and again, by means of scaling a2 = 1, the vector X directly above becomes

X = a1X1 +X2. (5.18)

Using Table 5.2, we can now act on this vector X by Ad(eεX3) to get that

X = a1 exp

(
ε

(
n−m
n

))
X1 + e2εX2,

and with manipulation X can be written as

X = a1 exp

(
ε

(
n−m
n

)
− 2ε

)
X1 +X2. (5.19)

Specifying that a1 6= 0 gives rise to two cases: a1 > 0 or a1 < 0 and as such,

X = X2 ±X1. (5.20)

However, if we had chosen a1 = 0, then the vector X in equation (5.17) would be

X = X2. (5.21)

The last choice is a2 = 0 and this results in

X = X1. (5.22)
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All constants simplified, an optimal system of one-dimensional subalgebras of the Lie

algebra (4.40) is given by

X1,

X2,

X3,

X2 ±X1. (5.23)

The same approach is performed for the rest of the cases. Only the Commutator table,

Adjoint table and Optimal system will be shown for the remaining cases.

5.1.2 Case: k(θ) = θm and q(θ) = θn+1

5.1.2.1 Case (i): Ng 6= 0, m = −4

3
and n = 0

We will not consider the optimal system for this case because this case was found to

have 5 symmetries and the optimal system of one-dimensional subalgebras of the Lie

algebra (4.49) would include too many combinations to consider.

5.1.2.2 Case (ii): Ng 6= 0, m = −4

3
and n 6= 0

We will display the commutators of the Lie algebra in the form of a commutator table

where the (i, j)th entry is [Xi, Xj]. This is shown in Table 5.3 below:

We construct an adjoint table for the symmetry generators (4.63) where the (i, j)th

entry indicates Ad(eεXi)Xj. As a result, we have the adjoint representation given by

Table 5.4 below:
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[Xi, Xj] X1 X2 X3

X1 0 0 4+3n
6n

X1

X2 0 0 X2

X3 −4+3n
6n

X1 −X2 0

Table 5.3: Commutator table of the three-dimensional Lie algebra (4.63).

Ad X1 X2 X3

X1 X1 X2 X3 − ε
(
4+3n
6n

)
X1

X2 X1 X2 X3 − εX2

X3 exp
(
ε
(
4+3n
6n

))
X1 eεX2 X3

Table 5.4: Adjoint table for the symmetry generators (4.63).

With reference to Table 5.4, an optimal system of one-dimensional subalgebras of the

Lie algebra (4.63) is given by those generated by

X1,

X2,

X3,

X2 ±X1. (5.24)

5.1.2.3 Case (iii): Ng 6= 0, m 6= −4

3
, m 6= 0 and n = 0

We will display the commutators of the Lie algebra in the form of a commutator table

where the (i, j)th entry is [Xi, Xj]. This is shown in Table 5.5 below:

We construct an adjoint table for the symmetry generators (4.70) where the (i, j)th

entry indicates Ad(eεXi)Xj. As a result, we have the adjoint representation given by
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[Xi, Xj] X1 X2 X3 X4

X1 0 0 X1 0

X2 0 0 0 −mNgX4

X3 −X1 0 0 0

X4 0 mNgX4 0 0

Table 5.5: Commutator table of the four-dimensional Lie algebra (4.70).

Table 5.6 below:

Ad X1 X2 X3 X4

X1 X1 X2 X3 − εX1 X4

X2 X1 X2 X3 eεmNgX4

X3 eεX1 X2 X3 X4

X4 X1 X2 − εmNgX4 X3 X4

Table 5.6: Adjoint table for the symmetry generators (4.70).

With reference to Table 5.6, an optimal system of one-dimensional subalgebras of the

Lie algebra (4.70) is given by those generated by

X1 + aX4,

X2 + aX1,

X3 + aX2,

X4. (5.25)
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5.1.2.4 Case (iv): Ng 6= 0, m 6= −4

3
, m 6= 0 and n 6= 0

We will display the commutators of the Lie algebra in the form of a commutator table

where the (i, j)th entry is [Xi, Xj]. This is shown in Table 5.7 below:

[Xi, Xj] X1 X2 X3

X1 0 0 n−m
2n

X1

X2 0 0 X2

X3 -n−m
2n

X1 -X2 0

Table 5.7: Commutator table of the three-dimensional Lie algebra (4.81).

We construct an adjoint table for the symmetry generators (4.81) where the (i, j)th

entry indicates Ad(eεXi)Xj. As a result, we have the adjoint representation given by

Table 5.8 below:

Ad X1 X2 X3

X1 X1 X2 X3 − εn−m2n
X1

X2 X1 X2 X3 − εX1

X3 exp
(
ε
(
n−m
2n

))
X1 exp (ε)X2 X3

Table 5.8: Adjoint table for the symmetry generators (4.81).

With reference to Table 5.8, an optimal system of one-dimensional subalgebras of the

Lie algebra (4.81) is given by those generated by

X1 + aX2,

X2,

X3 + aX2. (5.26)
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5.2 Group invariant solutions

In this section we construct the group invariant solutions for the governing equation

(3.9). It turns out that the exact solutions obtained are more general. One may seek

approximate solutions.

5.2.1 Case: k(θ) = emθ and q(θ) = enθ

5.2.1.1 Steady state solution

We begin by considering the group invariant solution under the time-translational

symmetry generator

X2 =
∂

∂t
, (5.27)

of the optimal system (5.23), with n = m.

The Lagrangian system provides the corresponding differential equations of charac-

teristic curves which are given by

dt

1
=
dx

0
=
dθ

0
. (5.28)

We see that both x and θ are invariant and as a result

x = I1 and θ = I2, (5.29)

where I1 and I2 are constants.
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Note: The terms dx
0

and dθ
0

in equation (5.28) do not represent division by 0. In

fact, they are written to note that the variables x and θ are invariant for the charac-

teristic system under consideration.

We write I2 = F (I1), and find that the invariant solution admitted by the genera-

tor X2 is the steady state solution

θ(t, x) = F (x). (5.30)

Substituting the invariant solution in equation (5.30) into the governing equation (3.9)

results in the following second-order non-linear ordinary differential equation in terms

of F (x)

m eF (x)m(F ′(x))2 + eF (x)mF ′′(x) + Ng eF (x)m = 0. (5.31)

Solving this ODE gives following solution

F (x) =
ln
(
cos
(√

m
√

Ng (x− c1)
))

m
+ c2. (5.32)

The resulting invariant boundary conditions are obtained by applying the invariant

solution in equation (5.30) onto the two sets of boundary conditions, namely equations

(3.10) and (3.11).

We obtain F ′(0) = 0 and F (1) = 1 when equation (5.30) is applied to equation

(3.10), which gives the exact solution for the steady case

F (x) =
ln
(
cos
(√

m
√

Ng x
))
− ln

(
cos
(√

m
√

Ng
))

+m

m
. (5.33)

The solution in equation (5.33) is depicted in Figures 5.1, 5.2, 5.3 and 5.4.
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Figure 5.1: Temperature in a wall with exponential thermal conductivity and exponen-
tial internal heat generation and varying values of m, for when m > 0, using boundary
condition (3.10). Here Ng = 0.5 is kept fixed.
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Figure 5.2: Temperature in a wall with exponential thermal conductivity and expo-
nential internal heat generation and varying values of Ng, using boundary condition
(3.10). Here m = 2 is kept fixed.
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Figure 5.3: Temperature in a wall with exponential thermal conductivity and exponen-
tial internal heat generation and varying values of m, for when m < 0, using boundary
condition (3.10). Here Ng = 2 is kept fixed.
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Figure 5.4: Temperature in a wall with exponential thermal conductivity and expo-
nential internal heat generation and varying values of Ng, using boundary condition
(3.10). Here m = −2 is kept fixed.

The exact solution using equation (3.11) could not be found.
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5.2.1.2 Group invariant solution via subgroup generated by X3

Here, we consider the group invariant solution corresponding to the operator X3 of the

optimal system (5.23), with n = m, which is given by

X3 = t
∂

∂t
− 1

m

∂

∂θ
. (5.34)

The characteristic system is given by

dt

t
=
dx

0
= − m dθ

1
. (5.35)

We see that x is invariant and so we write

x = I1, (5.36)

where I1 is a constant.

Now, the first and last terms of the characteristic system (5.35) can be written as

a variable separable ordinary differential equation given by

dt

t
= −m dθ. (5.37)

Integrating both sides gives

ln(t) = −m θ + ln(I2),

ln(t) +m θ = ln(I2),

t em θ = I2. (5.38)
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We write I2 = F (I1), and find that the invariant solution admitted by the generator

X3 is given by

θ(t, x) =
ln
(
F (x)
t

)
m

. (5.39)

Substituting the invariant solution in equation (5.39) into the governing equation (3.9)

results in the following second-order non-linear ordinary differential equation in terms

of F (x)

F ′′(x) +mNgF (x) + 1

mt
= 0, (5.40)

which has general solution

F (x) = c2 sin
(√

m
√

Ngx
)

+ c1 cos
(√

m
√

Ngx
)
− 1

mNg
. (5.41)

So now we have

θ(t, x) =

ln

(
c2 sin(

√
m
√
Ngx)+c1 cos(

√
m
√
Ngx)− 1

mNg
)

t

)
m

. (5.42)

The solution in equation (5.42) using boundary condition (3.10) is depicted in Fig-

ures 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, while the solution in equation (5.42) using boundary

condition (3.11) is depicted in Figures 5.11, 5.12, 5.13, 5.14, 5.15 and 5.16.
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Figure 5.5: Temperature in a wall with exponential thermal conductivity and exponen-
tial internal heat generation and varying values of t, using boundary condition (3.10).
Here Ng = 0.5 and m = 2 are kept fixed.
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Figure 5.6: Temperature in a wall with exponential thermal conductivity and exponen-
tial internal heat generation and varying values of m, for when m > 0, using boundary
condition (3.10). Here Ng = 0.5 and t = 0.5 are kept fixed.
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Figure 5.7: Temperature in a wall with exponential thermal conductivity and expo-
nential internal heat generation and varying values of Ng, using boundary condition
(3.10). Here m = 2 and t = 0.5 are kept fixed.
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Figure 5.8: Temperature in a wall with exponential thermal conductivity and exponen-
tial internal heat generation and varying values of t, using boundary condition (3.10).
Here Ng = 5 and m = −2 are kept fixed.
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Figure 5.9: Temperature in a wall with exponential thermal conductivity and expo-
nential internal heat generation and varying values of m, for m < 0, using boundary
condition (3.10). Here Ng = 5 and t = 1.5 are kept fixed.
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Figure 5.10: Temperature in a wall with exponential thermal conductivity and expo-
nential internal heat generation and varying values of Ng, using boundary condition
(3.10). Here m = −2 and t = 1.5 are kept fixed.
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Figure 5.11: Temperature in a wall with exponential thermal conductivity and ex-
ponential internal heat generation and varying values of t, using boundary condition
(3.11). Here Ng = 0.5 and m = 2 are kept fixed.
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Figure 5.12: Temperature in a wall with exponential thermal conductivity and expo-
nential internal heat generation and varying values of m, when m > 0, using boundary
condition (3.11). Here Ng = 2 and t = 0.5 are kept fixed.
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Figure 5.13: Temperature in a wall with exponential thermal conductivity and expo-
nential internal heat generation and varying values of Ng, using boundary condition
(3.11). Here t = 0.5 and m = 2 are kept fixed.
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Figure 5.14: Temperature in a wall with exponential thermal conductivity and ex-
ponential internal heat generation and varying values of t, using boundary condition
(3.11). Here Ng = 5 and m = −2 are kept fixed.
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Figure 5.15: Temperature in a wall with exponential thermal conductivity and expo-
nential internal heat generation and varying values of m, when m < 0, using boundary
condition (3.11). Here t = 1.5 and Ng = 5 are kept fixed.
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Figure 5.16: Temperature in a wall with exponential thermal conductivity and expo-
nential internal heat generation and varying values of Ng, using boundary condition
(3.11). Here t = 1.5 and m = −2 are kept fixed.
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5.2.2 Case: k(θ) = θm and q(θ) = θn+1

5.2.2.1 Steady state solution

We begin by considering the group invariant solution under the time-translational

symmetry generator

X2 =
∂

∂t
, (5.43)

of the optimal system (5.26), with n = m.

The Lagrangian system provides the corresponding differential equations of charac-

teristic curves which are given by

dt

1
=
dx

0
=
dθ

0
. (5.44)

We see that both x and θ are invariant and as a result

x = I1 and θ = I2, (5.45)

where I1 and I2 are constants.

We write I2 = F (I1), and find that the invariant solution admitted by the genera-

tor X2 is the steady state solution

θ(t, x) = F (x). (5.46)

Substituting the invariant solution in equation (5.46) into the governing equation (3.9)

results in the following second-order non-linear ordinary differential equation in terms
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of F (x)

F (x)m−1
(
F (x) (F ′′(x) + NgF (x)) +mF ′(x)2

)
= 0. (5.47)

Solving this ODE using DSolve in Mathematica gives the following solution

F (x) = c2

(
cos
(√

m+ 1
√

Ng (x− c1)
)) 1

m+1
. (5.48)

The resulting invariant boundary conditions are obtained by applying the invariant

solution in equation (5.46) onto the two sets of boundary conditions, namely equations

(3.10) and (3.11).

We obtain F ′(0) = 0 and F (1) = 1 when equation (5.46) is applied to equation

(3.10), which gives the exact solution for the steady case

F (x) =
(

cos
(√

m+ 1
√

Ng
))− 1

m+1
(

cos
(√

m+ 1
√

Ngx
)) 1

m+1
. (5.49)

The solution in equation (5.49) is depicted in Figures 5.17, 5.18, 5.19 and 5.20.
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Figure 5.17: Temperature in a wall with power law thermal conductivity and power law
internal heat generation and varying values of m, for when m > −1, using boundary
condition (3.10). Here Ng = 0.5 is kept fixed.
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Figure 5.18: Temperature in a wall with power law thermal conductivity and power
law internal heat generation and varying values of Ng, using boundary condition (3.10).
Here m = 2 is kept fixed.
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Figure 5.19: Temperature in a wall with power law thermal conductivity and power
law internal heat generation and varying values of m, for m < −1, using boundary
condition (3.10). Here Ng = 2 is kept fixed.
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Figure 5.20: Temperature in a wall with power law thermal conductivity and power
law internal heat generation and varying values of Ng, using boundary condition (3.10).
Here m = −2 is kept fixed.

The exact solution using equation (3.11) could not be found.
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5.2.2.2 Group invariant solution via subgroup generated by X3

Here, we consider the group invariant solution corresponding to the operator X3 of the

optimal system (5.26), with n = m and a = 0, which is given by

X3 = t
∂

∂t
− θ

m

∂

∂θ
. (5.50)

The characteristic system is given by

dt

t
=
dx

0
= − m dθ

θ
. (5.51)

We see that x is invariant and so we write

x = I1, (5.52)

where I1 is a constant.

Now, the first and last terms of the characteristic system (5.51) can be written as

a variable separable ordinary differential equation given by

dt

t
= −mdθ

θ
. (5.53)

Integrating both sides gives

ln(t) = −m ln(θ) + ln(I2),

ln(t) + ln(θm) = ln(I2),

t θm = I2. (5.54)
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We write I2 = F (I1), and find that the invariant solution admitted by the generator

X3 is given by

θ(t, x) =

(
F (x)

t

) 1
m

. (5.55)

Substituting the invariant solution in equation (5.55) into the governing equation (3.9)

results in the following second-order non-linear ordinary differential equation in terms

of F (x)

(
F (x)
t

) 1
m
−1

(F (x) (mF (x) (F ′′(x) +mNgF (x)) + F ′(x)2) +mF (x)2)

mt2
= 0, (5.56)

which has no exact solution. Since it is hard to construct group invariant (exact)

solutions which satisfy the boundary conditions, we resort to approximate methods for

solution.

5.3 Discussion of results

In Figures 5.1 and 5.2, we see that the temperature increases with increasing values

of m and Ng. However, it seems that for certain values of m and Ng the temperature

in the wall is too high and the solutions do not have meaning. We found there to be

a threshold for Ng in terms of m that prevent excessive temperatures. The threshold

value was found to be

Ng =

(
π
2

)2
m

, (5.57)

for m > 0.

Figures 5.3 and 5.4 show the temperature profile for when we consider m < 0. Here,

no threshold value for Ng was needed as the temperature in the wall does not get
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excessively high in these cases. Again, an increase in m and Ng results in an increase

in temperature.

Figures 5.5, 5.6 and 5.7 show the transient temperature profile for when we consider

m > 0. In Figure 5.5, we see that temperature decreases with time. This transient

temperature profile approaches the steady state solution as time evolves. Figures 5.6

and 5.7 behave identically to Figures 5.1 and 5.2, where the temperature increases with

increasing values of m and Ng. The threshold value for Ng is the same as in equation

(5.57).

Figures 5.8, 5.9 and 5.10 show the transient temperature profile for when we con-

sider m < 0. We see that the behaviour of the graphs change, depending on the values

for t, m and Ng. We found this relation to be

tcritical =
e−m

Ng(−m)
, (5.58)

for m < 0. This implies that for a given choice of Ng and m, any t value which is

less than the tcritical value from equation (5.58) will result in the graph representing

heat transfer in a fin, while any t value which is greater than the tcritical value from

equation (5.58) will result in the graph representing heat transfer with internal heat

generation. We also notice that by considering m < 0, temperature now increases with

increasing time, while an increase in m and Ng also result in an increase in temperature.

Figures 5.11 - 5.16 show the solutions using boundary condition (3.11). As in Fig-

ure 5.5, Figure 5.11 shows that the temperature decreases with time, and that the

transient temperature profile approaches the steady state as time evolves. Figures 5.12

and 5.13 behave similarly to Figures 5.1, 5.2, 5.6 and 5.7, with the threshold value for

Ng being the same as in equation (5.57).
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Figures 5.14, 5.15 and 5.16 show the transient temperature profile for when we consider

m < 0, while also using boundary condition (3.11). These graphs behave similarly to

Figures 5.8, 5.9 and 5.10, however we were unable to find a relation for this case.

Figures 5.17, 5.18, 5.19 and 5.20 look at the case where thermal conductivity and

internal heat generation are represented by the power law. We see that Figures 5.17

and 5.18 behave similarly to Figures 5.1 and 5.2, however the threshold for Ng was

found to be

Ng =

(
π
2

)2
m+ 1

, (5.59)

for m > −1.

Figures 5.19 and 5.20 show the temperature profile for when we consider m < −1.

Here, no threshold value for Ng was needed as the temperature in the wall does not get

excessively high in these cases. Again, an increase in m and Ng results in an increase

in temperature, similar to Figures 5.3 and 5.4.

5.4 Concluding remarks

In this chapter we have constructed the one-dimensional optimal systems for the ex-

ponential and power law cases and sub-cases within. Group invariant solutions were

found for both cases by using the obtained optimal systems. Firstly, the steady state

solution was found followed by the transient solution. Graphs were depicted to show

the solution behaviour as variables changed. It can be seen that we were able to obtain

the steady state solutions for both cases although only using the symmetric boundary

conditions. We also managed to find the transient solution for the exponential case,

using both sets of boundary conditions. We were unable to obtain the transient solu-

tion for the power law case. We resort to another method of solution in the following
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chapters to solve for the transient solution for the power law case.
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Chapter 6

1D DTM solutions for steady heat

transfer given the power law

thermal conductivity and internal

heat generation

6.1 Introduction

In this chapter we consider the steady state model describing the temperature profile

in a hot body such as across a wall with both thermal conductivity and internal heat

generation being functions of temperature given by the power law, that is

∂

∂x

(
θm

∂θ

∂x

)
+ Ng θn+1 = 0, (6.1)
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subject to

dθ

dx
|x=0= 0, (6.2)

θ(1) = 1. (6.3)

Note that exact solutions exist only if m = n. A simple transformation w = θm+1 will

linearize equation (6.1) as such we may construct an exact solution. This solution is

special, since it is possible when m = n only.

6.2 Comparison of DTM and exact solutions

The exact solution of equation (6.1) subject to equations (6.2) and (6.3), when m = n

is given by

θ(x) =

cos
(√

Ng (m+ 1)x
)

cos
(√

Ng (m+ 1)
)


1
m+1

, m 6= −1. (6.4)

Notice that we restrict Ng > 0, otherwise the equation will represent heat transfer in

a straight fin (see for example [25]). Furthermore, for the same reason we consider

m < −1. This restriction implies that we consider heat transfer in a planar region

(across a wall).

We use this exact solution as a benchmark for the DTM. The exact and approxi-

mate analytical solutions will be compared, using results for the cases m = −2 and

m = −3, keeping Ng fixed.
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6.2.1 Case m = −2 and n = −2

Applying the DTM to equation (6.1), given H, we obtain the recurrence relation given

by

k∑
i=0

[−2(i+ 1)Φ(i+ 1)(k − i+ 1)Φ(k − i+ 1)

+(k − i+ 1)(k − i+ 2)Φ(k − i+ 2)Φ(i) + Φ(i)Φ(k − i) Ng] = 0. (6.5)

Applying DTM to the boundary condition (6.2) at a point x = 0 yields

Φ(1) = 0, (6.6)

and the other boundary condition (6.3) is considered as

Φ(0) = c, (6.7)

where c is a constant to be determined. We use the iterative equation (6.5) to construct

the power series solution

Φ(2) = −Ng c

2
(6.8)

Φ(3) = 0 (6.9)

Φ(4) =
5 Ng2 c

24
(6.10)

Φ(5) = 0 (6.11)

Φ(6) = −61 Ng3 c

720
(6.12)

Φ(7) = 0 (6.13)

Φ(8) =
277 Ng4 c

8 064
(6.14)
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Φ(9) = 0 (6.15)

Φ(10) = −50 521 Ng5 c

3 628 800
(6.16)

Φ(11) = 0 (6.17)

Φ(12) =
540 553 Ng6 c

95 800 320
(6.18)

Φ(13) = 0 (6.19)

Φ(14) = −199 360 981 Ng7 c

87 178 291 200
(6.20)

...

These terms may be taken as far as desired. Substituting equations (6.6) to (6.20) into

equation (2.12), we obtain the following series solution

θ(x) = c− Ng c

2
x2 +

5Ng2 c

24
x4 − 61 Ng3 c

720
x6 +

277 Ng4 c

8 064
x8

− 50 521 Ng5 c

3 628 800
x10 +

540 553 Ng6 c

95 800 320
x12 − 199 360 981 Ng7 c

87 178 291 200
x14 + . . . (6.21)

We need to obtain the value of c, so we use the boundary condition (6.3) at the point

x = 1. Thus, we get

θ(1) = c− Ng c

2
+

5Ng2 c

24
− 61 Ng3 c

720
+

277 Ng4 c

8 064

− 50 521 Ng5 c

3 628 800
+

540 553 Ng6 c

95 800 320
− 199 360 981 Ng7 c

87 178 291 200
+ . . . = 1. (6.22)

We then substitute the obtained value of c into equation (6.21) to obtain the expression

for θ(x).

We compare the above obtained solution for θ(x) to the exact solution, given by equa-

tion (6.4) with m = −2

θ(x) =
cosh

(√
Ng
)

cosh
(√

Ng x
) . (6.23)
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We present Table 6.1 which shows a comparison between the exact solution and solution

given by DTM for the case m = −2. We see that the absolute errors between the results

are very slight. Additionally, Figure 6.1 displays the comparison of the exact solution

and the solution given by DTM.

6.2.2 Case m = −3 and n = −3

Applying the DTM to equation (6.1), given H, we obtain the recurrence relation given

by

k∑
i=0

[−3(i+ 1)Φ(i+ 1)(k − i+ 1)Φ(k − i+ 1)

+(k − i+ 1)(k − i+ 2)Φ(k − i+ 2)Φ(i) + Φ(i)Φ(k − i) Ng] = 0. (6.24)

Substituting equations (6.6) and (6.7) into equation (6.24), and solving for the rest of

the terms we get the following series solution

θ(x) = c− Ng c

2
x2 +

7 Ng2 c

24
x4 − 139 Ng3 c

720
x6 +

5 473 Ng4 c

40 320
x8

− 51 103 Ng5 c

518 400
x10 +

34 988 647 Ng6 c

479 001 600
x12 − 4 784 061 619 Ng7 c

87 178 291 200
x14 + . . .

(6.25)

Again, we can solve for c using equation (6.3).

We compare the above obtained solution for θ(x) to the exact solution, given by equa-

tion (6.4) with m = −3

θ(x) =

(
cosh

(√
2 Ng

)
cosh

(√
2 Ng x

)) 1
2

. (6.26)
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We present Table 6.2 which shows a comparison between the exact solution and solu-

tion given by DTM for the case m = −3. We see that the absolute errors between the

results are again very slight. Additionally, Figure 6.2 displays the comparison of the

exact solution and the solution given by DTM.

x DTM Exact Error

0 1.2605908671 1.2605918365 0.0000009694

0.1 1.2574459422 1.2574469092 0.0000009670

0.2 1.2480891602 1.2480901199 0.0000009598

0.3 1.2327498266 1.2327507746 0.0000009480

0.4 1.2117950566 1.2117959884 0.0000009319

0.5 1.1857088919 1.1857098037 0.0000009118

0.6 1.1550661851 1.1550670732 0.0000008881

0.7 1.1205037463 1.1205046066 0.0000008603

0.8 1.0826912454 1.0826920632 0.0000008178

0.9 1.0423040737 1.0423047560 0.0000006823

1 1 1 0

Table 6.1: Results of the DTM and Exact solutions for m = −2 and n = −2, with
Ng = 0.5.
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Figure 6.1: Comparison of the DTM and Exact solutions with m = −2, n = −2 and
Ng = 0.5.

x DTM Exact Error

0 1.1708512740 1.1708539860 0.0000027117

0.1 1.1688064584 1.1688091654 0.0000027070

0.2 1.1627216350 1.1627243279 0.0000026929

0.3 1.1527423065 1.1527449763 0.0000026698

0.4 1.1391001833 1.1391028214 0.0000026382

0.5 1.1220984590 1.1221010578 0.0000025988

0.6 1.1020938127 1.1020963649 0.0000025522

0.7 1.0794771186 1.0794796145 0.0000024959

0.8 1.0546547291 1.0546571265 0.0000023974

0.9 1.0280319148 1.0280339335 0.0000020187

1 1 1 0

Table 6.2: Results of the DTM and Exact solutions for m = −3 and n = −3, with
Ng = 0.35.
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Figure 6.2: Comparison of the DTM and Exact solutions with m = −3, n = −3 and
Ng = 0.35.

6.3 Distinct exponents, m 6= n

6.3.1 Case m = −2 and n = −3

Applying the DTM to equation (6.1), given H, we obtain the recurrence relation given

by

k∑
i=0

[−2(i+ 1)Φ(i+ 1)(k − i+ 1)Φ(k − i+ 1)

+(k − i+ 1)(k − i+ 2)Φ(k − i+ 2)Φ(i)] + Φ(k) Ng = 0. (6.27)
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Substituting equations (6.6) and (6.7) into equation (6.27), and solving for the rest of

the terms we get the following series solution

θ(x) = c− Ng

2
x2 +

Ng2

6c
x4 − Ng3

18c2
x6 +

19 Ng4

1 008c3
x8

− 29 Ng5

4 536c4
x10 +

59 Ng6

27 216c5
x12 − 3 641 Ng7

4 953 312c6
x14 + . . . (6.28)

We can solve for c using equation (6.3). Figure 6.3 shows the 1D DTM solution with

varying values of Ng for when m = −2 and n = −3.
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Figure 6.3: Temperature in a wall with power law thermal conductivity and power law
internal heat generation and varying values of Ng, using boundary condition (3.10).
Here m = −2 and n = −3.

6.3.2 Case m = −3 and n = −4

Applying the DTM to equation (6.1), given H, we obtain the recurrence relation given

by

k∑
i=0

[−3(i+ 1)Φ(i+ 1)(k − i+ 1)Φ(k − i+ 1)

+(k − i+ 1)(k − i+ 2)Φ(k − i+ 2)Φ(i)] + Φ(k) Ng = 0. (6.29)
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Substituting equations (6.6) and (6.7) into equation (6.29), and solving for the rest of

the terms we get the following series solution

θ(x) = c− Ng

2
x2 +

Ng2

4c
x4 − 3 Ng3

20c2
x6 +

27 Ng4

280c3
x8

− 179 Ng5

2 800c4
x10 +

5 323 Ng6

123 200c5
x12 − 6 381 Ng7

215 600c6
x14 + . . . (6.30)

Again, we can solve for c using equation (6.3). Figure 6.4 shows the 1D DTM solution

with varying values of Ng for when m = −3 and n = −4.
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Figure 6.4: Temperature in a wall with power law thermal conductivity and power law
internal heat generation and varying values of Ng, using boundary condition (3.10).
Here m = −3 and n = −4.

6.4 Discussion of results

In this chapter, we have considered heat transfer in a hot body where the thermal

conductivity and internal heat generation are given by the power law. We have seen

from Figures 6.1 and 6.2 that the solutions obtained using the 1D DTM compare very

well with the exact solutions, namely equations (6.23) and (6.26). Furthermore, from

Table 6.1 we notice an absolute error of approximately 9.7e − 007, while in Table 6.2
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we see an absolute error of approximately 2.7e−006. This confirms that the DTM can

provide accurate results with little computational effort.

Figures 6.3 and 6.4 show the 1D DTM solution for distinct exponents. In both figures

we see that temperature increases as we increase Ng. We noticed in Figure 6.3 that

when we considered Ng > 5 the solution did not represent that of heat transfer in a

wall. An identical observation was made in Figure 6.4, but with Ng > 1.5. This might

be due to the order of our Taylor series solution not being high enough, or possibly a

threshold for Ng also exists when we have m 6= n.

6.5 Concluding remarks

In this chapter we employed the 1D DTM to construct the approximate analytical

solution, for the cases where exact solutions could not be obtained. First we established

confidence in DTM by comparing the special exact solution to the DTM solution.

Approximate solutions were constructed for the case m 6= n.
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Chapter 7

2D DTM solution for transient heat

transfer given the power law

thermal conductivity and internal

heat generation

7.1 Introduction

In this chapter we consider the transient model describing the temperature profile in

a hot body such as across a wall with both thermal conductivity and internal heat

generation being functions of temperature given by the power law, that is

∂θ

∂t
=

∂

∂x

(
θm

∂θ

∂x

)
+ Ng θn+1, (7.1)
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subject to symmetric boundary conditions given by

∂θ

∂x
|x=0= 0, (7.2)

θ(t, 1) = 1, (7.3)

with initial condition

θ(0, x) = 0, 0 ≤ x ≤ 1. (7.4)

We have established confidence in the DTM although applied to steady state problem.

A slight modification in the code allows solution for the transient problem.

7.2 Case: m = −2 and n = −2

Applying the 2D DTM on equation (7.1) with m = −2 and n = −2, we obtain the

following recurrence relation

k∑
i=0

k−i∑
p=0

k−i−p∑
z=0

s∑
j=0

s−j∑
q=0

s−j−q∑
l=0

Φ(p, j)Φ(z, q)(k − i− p− z + 1)Φ(i, s− j − q − l)

× Φ(k − i− p− z + 1, l) = −2
k∑
i=0

s∑
j=0

(j + 1)(s− j + 1)Φ(k − i, j + 1)Φ(i, s− j + 1)

+
k∑
i=0

s∑
j=0

(j + 1)(j + 2)Φ(k − i, j + 2)Φ(i, s− j) + Ng
k∑
i=0

s∑
j=0

Φ(k − i, j)Φ(i, s− j),

(7.5)

where Φ(κ, s) is the differential transform of θ(t, x).

Applying the 2D differential transform on the initial condition (7.4) and boundary
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conditions (7.2) and (7.3) we obtain the following transformations respectively

Φ(0, s) = 0, s = 0, 1, 2, . . . (7.6)

Φ(κ, 1) = 0, κ = 0, 1, 2, . . . (7.7)

Φ(κ, 0) = c, c ∈ R, κ = 1, 2, 3, . . . , (7.8)

where c is a constant. We use equations (7.6) - (7.8) and the iterative equation (7.5)

to construct the power series solution

Φ(1, 2) = −Ng c

2
(7.9)

Φ(2, 2) =
c3 − Ng c

2
(7.10)

Φ(3, 2) =
4c3 − Ng c

2
(7.11)

Φ(1, 4) =
5 Ng2 c

24
(7.12)

Φ(2, 4) = −12 Ng c3 − 5 Ng2 c

24
(7.13)

Φ(3, 4) =
8c5 − 48 Ng c3 + 5 Ng2 c

24
(7.14)

...

These terms may be taken as far as desired. Substituting equations (7.6) to (7.14) into

equation (2.17), we obtain the following series solution

θ(t, x) =ct+ ct2 + ct3 + ct4 − Ng c

2
tx2 +

c3 − Ng c

2
t2x2 +

4c3 − Ng c

2
t3x2

+
5 Ng2 c

24
tx4 − 12 Ng c3 − 5 Ng2 c

24
t2x4 +

8c5 − 48 Ng c3 + 5 Ng2 c

24
t3x4 + . . .

(7.15)
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We need to obtain the value of c, so we use the boundary condition (7.3) at the point

x = 1. Thus, we get

θ(t, 1) =ct+ ct2 + ct3 + ct4 − Ng c

2
t+

c3 − Ng c

2
t2 +

4c3 − Ng c

2
t3

+
5 Ng2 c

24
t− 12 Ng c3 − 5 Ng2 c

24
t2 +

8c5 − 48 Ng c3 + 5 Ng2 c

24
t3 + . . . = 1.

(7.16)

We then substitute the obtained value of c into equation (7.15) to obtain the expression

for θ(t, x). Using the first 24 terms of the power series solution we plot the solution for

equation (7.15) for various parameters as shown in Figures 7.1 and 7.2.
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Steady state

Figure 7.1: Temperature in a wall with power law thermal conductivity and power law
internal heat generation and varying values of t, using boundary condition (3.10). Here
Ng = 0.2 is kept fixed.
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Figure 7.2: Temperature in a wall with power law thermal conductivity and power law
internal heat generation and varying values of Ng, using boundary condition (3.10).
Here t = 1.2 is kept fixed.

7.3 Case: m = −3 and n = −3

Applying the 2D DTM on equation (7.1) with m = −3 and n = −3, we obtain the

following recurrence relation

k∑
i=0

k−i∑
p=0

k−i−p∑
z=0

k−i−p−z∑
w=0

s∑
j=0

s−j∑
q=0

s−j−q∑
l=0

s−j−q−l∑
v=0

Φ(p, j)Φ(z, q)Φ(w, l)(k − i− p− z − w + 1)

× Φ(i, s− j − q − l − v)Φ(k − i− p− z − w + 1, v) = −3
k∑
i=0

s∑
j=0

(j + 1)(s− j + 1)

× Φ(k − i, j + 1)Φ(i, s− j + 1) +
k∑
i=0

s∑
j=0

(j + 1)(j + 2)Φ(k − i, j + 2)Φ(i, s− j)

+ Ng
k∑
i=0

s∑
j=0

Φ(k − i, j)Φ(i, s− j), (7.17)

where Φ(κ, s) is the differential transform of θ(t, x).

Applying the 2D DTM on the initial condition (7.4) and boundary conditions (7.2)
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and (7.3) we obtain the following transformations respectively

Φ(0, s) = 0, s = 0, 1, 2, . . . (7.18)

Φ(κ, 1) = 0, κ = 0, 1, 2, . . . (7.19)

Φ(κ, 0) = c, c ∈ R, κ = 1, 2, 3, . . . , (7.20)

where c is a constant. We use equations (7.18) - (7.20) and the iterative equation (7.17)

to construct the power series solution

Φ(1, 2) = −Ng c

2
(7.21)

Φ(2, 2) =
c3 − Ng c

2
(7.22)

Φ(3, 2) =
4c3 − Ng c

2
(7.23)

Φ(1, 4) =
5 Ng2 c

24
(7.24)

Φ(2, 4) = −12 Ng c3 − 5 Ng2 c

24
(7.25)

Φ(3, 4) =
8 c5 − 48 Ng c3 + 5 Ng2 c

24
(7.26)

...

These terms may be taken as far as desired. Substituting equations (7.18) to (7.26)

into equation (2.17), we obtain the following series solution

θ(t, x) =ct+ ct2 + ct3 + ct4 − Ng c

2
tx2 +

c3 − Ng c

2
t2x2 +

4c3 − Ng c

2
t3x2

+
5 Ng2 c

24
tx4 − 12 Ng c3 − 5 Ng2 c

24
t2x4 +

8 c5 − 48 Ng c3 + 5 Ng2 c

24
t3x4 + . . .

(7.27)
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We need to obtain the value of c, so we use the boundary condition (7.3) at the point

x = 1. Thus, we get

θ(t, 1) =ct+ ct2 + ct3 + ct4 − Ng c

2
t+

c3 − Ng c

2
t2 +

4c3 − Ng c

2
t3

+
5 Ng2 c

24
t− 12 Ng c3 − 5 Ng2 c

24
t2 +

8 c5 − 48 Ng c3 + 5 Ng2 c

24
t3 + . . . = 1.

(7.28)

We then substitute the obtained value of c into equation (7.27) to obtain the expression

for θ(t, x). Using the first 24 terms of the power series solution we plot the solution for

equation (7.27) for various parameters as shown in Figures 7.5 and 7.6.
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Figure 7.3: Temperature in a wall with power law thermal conductivity and power law
internal heat generation and varying values of t, using boundary condition (3.10). Here
Ng = 0.2 is kept fixed.
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Figure 7.4: Temperature in a wall with power law thermal conductivity and power law
internal heat generation and varying values of Ng, using boundary condition (3.10).
Here t = 1 is kept fixed.

7.4 Discussion of results

In Figures 7.1 and 7.2, we see that the temperature increases with increasing time and

increasing Ng values, as expected from what we obtained in Chapter 5 when consid-

ering m < 0. We compared this DTM solution to that of the steady state found in

Chapter 5, and noticed that when evaluating the solution using Ng ≈ 0.5 the results

varied slightly, hence we focused on Ng < 0.5 for the DTM solution. We also noticed

that the DTM solution becomes the steady state at around t ≈ 2.

Figures 7.3 and 7.4 behave similarly to Figures 7.1 and 7.2, however, the steady state

was reached quicker in Figure 7.3 than in Figure 7.1. Additionally, the steady state

temperature found in Figures 7.1 and 7.3 are almost identical.

A possible reason for similar temperatures and for reaching the steady state in a very

short time could be the result of choosing a small Ng value. We mentioned above
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that when focusing on the steady state 2D DTM solution and the steady state solution

found in section 5.2.2.1, we noticed a value of Ng > 0.5 gave us some differences. These

differences might be the result of the order of our Taylor series expansion being too

low, and therefore we would need to find more terms in order to investigate solutions

using larger Ng values.

A problem arises when we consider the asymmetric boundary conditions as we need to

solve for two constants. In most cases we found that if the order of our Taylor series

solution exceeded 6 then no real values for the constants were obtained. So we limited

our Taylor series solution to have an order of 5. However, these solutions represented

heat transfer in a longitudinal fin.

7.5 Concluding remarks

In this chapter, we have successfully employed the 2D DTM to transient heat conduc-

tion problems for heat transfer across a wall where thermal conductivity and internal

heat generation are given by the power law. We presented results which approached

the steady state as time evolves.
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Chapter 8

Conservation laws and associated

Lie point symmetries

8.1 Conservation laws

In this chapter we construct conservation laws for the transient heat equation with

internal heat generation. A number of methods to construct conservation laws exist,

namely the direct method, the multiplier method and the characteristic method. A

good comparison of these methods was given in [28]. Since these methods yield the

same results, we shall just use one, the direct method.

8.1.1 Case: General k(θ) and q(θ)

Consider the governing equation (3.9),

∂θ

∂t
=

∂

∂x

(
k(θ)

∂θ

∂x

)
+ Ng q(θ). (8.1)
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A conservation law for equation (8.1) satisfies

DtT
1 +DxT

2 |equation(8.1)= 0, (8.2)

where Dt and Dx are the total derivatives given in (2.8).

For simplicity and convenience we seek conserved vectors of the form

T 1 = T 1(t, x, θ, θx), T 2 = T 2(t, x, θ, θx). (8.3)

Substituting equation (8.3) into equation (8.2) we obtain the following partial differ-

ential equation

∂T 1

∂t
+ θt

∂T 1

∂θ
+ θtx

∂T 1

∂θx
+
∂T 2

∂x
+ θx

∂T 2

∂θ
+ θxx

∂T 2

∂θx
|equation(8.1)= 0. (8.4)

Expanding equation (8.4) we get

∂T 1

∂t
+
[
k′(θ)(θx)

2 + k(θ)θxx + Ng q(θ)
] ∂T 1

∂θ
+ θtx

∂T 1

∂θx

+
∂T 2

∂x
+ θx

∂T 2

∂θ
+ θxx

∂T 2

∂θx
= 0. (8.5)

Since T 1 and T 2 are independent of the second derivatives of θ, we can separate equation

(8.5) by second derivatives of θ as follows

θxx : k(θ)
∂T 1

∂θ
+
∂T 2

∂θx
= 0, (8.6)

θtx :
∂T 1

∂θx
= 0, (8.7)

1 :
∂T 1

∂t
+ k′(θ)(θx)

2∂T
1

∂θ
+ Ng q(θ)

∂T 1

∂θ
+
∂T 2

∂x
+ θx

∂T 2

∂θ
= 0. (8.8)
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From equation (8.7) we get T 1 = T 1(t, x, θ). We now integrate equation (8.6) with

respect to θx to get an explicit expression for T 2

T 2 = −k(θ)
∂T 1

∂θ
θx + A(t, x, θ). (8.9)

Substituting T 2 into equation (8.8) we get

∂T 1

∂t
+ Ng q(θ)

∂T 1

∂θ
− k(θ)

∂2T 1

∂x∂θ
θx +

∂A

∂x
− k(θ)

∂2T 1

∂θ2
(θx)

2 + θx
∂A

∂θ
= 0. (8.10)

We now separate equation (8.10) by θx as follows

(θx)
2 : −k(θ)

∂2T 1

∂θ2
= 0, (8.11)

θx : −k(θ)
∂2T 1

∂x∂θ
+
∂A

∂θ
= 0, (8.12)

1 :
∂T 1

∂t
+ Ng q(θ)

∂T 1

∂θ
+
∂A

∂x
= 0. (8.13)

We get an explicit expression for T 1 by integrating equation (8.11) twice with respect

to θ

T 1 = B(t, x)θ + C(t, x), (8.14)

assuming k(θ) 6= 0.

From this, equation (8.12) becomes

−k(θ)
∂B

∂x
+
∂A

∂θ
= 0. (8.15)

We get an explicit expression for A by integrating equation (8.15) with respect to θ

A(t, x, θ) =
∂B

∂x

∫ θ

1

k(θ∗) dθ∗ +D(t, x), (8.16)

90



where D(t, x) = A(t, x, 1).

Substituting A and T 1 into equation (8.13) we get

0 = θ
∂B

∂t
+
∂C

∂t
+ Ng q(θ)B(t, x) +

∂2B

∂x2

∫ θ

1

k(θ∗) dθ∗ +
∂D

∂x
. (8.17)

We will use equation (8.17) and T 1 and T 2

T 1 = B(t, x)θ + C(t, x), (8.18)

T 2 = −k(θ)B(t, x)θx +
∂B

∂x

∫ θ

1

k(θ∗) dθ∗ +D(t, x), (8.19)

to solve for the conserved vectors for different cases of k(θ) and q(θ). When substituting

our choices for k(θ) and q(θ) into equation (8.17) we will be able to split the equation

with respect to powers of θ, allowing us to find B(t, x), C(t, x) and D(t, x).

8.1.2 Case: k(θ) = emθ and q(θ) = enθ

Consider the partial differential equation

∂θ

∂t
=

∂

∂x

(
emθ

∂θ

∂x

)
+ Ng enθ. (8.20)

Substituting our choices for k(θ) and q(θ) into equation (8.17) we get

0 = θ
∂B

∂t
+
∂C

∂t
+ Ng enθB(t, x) +

∂2B

∂x2

(
emθ

m
− 1

m
em
)

+
∂D

∂x
. (8.21)

We now consider two cases to separate equation (8.21).
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8.1.2.1 Case: m 6= n, m 6= 0

emθ :
∂2B

∂x2
1

m
= 0, (8.22)

enθ : Ng B(t, x) = 0, (8.23)

θ :
∂B

∂t
= 0, (8.24)

1 :
∂C

∂t
+

∂

∂x

(
D − 1

m
em
∂B

∂x

)
= 0. (8.25)

Equation (8.24) implies that B = B(x) and equation (8.22) implies that B = c1x+ c2.

Since equation (8.25) is satisfied independently of the PDE (8.20), it follows that

C(t, x) and D(t, x)− 1

m
em
∂B

∂x
(t, x)

are the components of a trivial conserved vector. We therefore set

C(t, x) = 0, D(t, x)− 1

m
em
∂B

∂x
(t, x) = 0.

Equation (8.23) implies that Ng = 0 or B = 0. If B = 0 then we get trivial conservation

laws. So for non-trivial conservation laws given Ng = 0 we obtain

Dt [(c1x+ c2)θ] +Dx

[
−emθ(c1x+ c2)θx + c1

emθ

m

]
= 0. (8.26)

A conserved vector of equation (8.20) with Ng = 0 is therefore a linear combination of

the two conserved vectors

(i) T 1 = xθ, T 2 = −emθxθx +
emθ

m
, (8.27)

(ii) T 1 = θ, T 2 = −emθθx. (8.28)

92



8.1.2.2 Case: m = n, m 6= 0

emθ :
∂2B

∂x2
1

m
+ Ng B(t, x) = 0, (8.29)

θ :
∂B

∂t
= 0, (8.30)

1 :
∂C

∂t
+

∂

∂x

(
D − 1

m
em
∂B

∂x

)
= 0. (8.31)

Equation (8.30) implies that B = B(x). Since equation (8.31) is satisfied independently

of the PDE (8.20), it follows that

C(t, x) and D(t, x)− 1

m
em
∂B

∂x
(t, x)

are the components of a trivial conserved vector. We therefore set

C(t, x) = 0, D(t, x)− 1

m
em
∂B

∂x
(t, x) = 0.

Consider first m > 0. The general solution of equation (8.29) is

B(x) = c1 cos(
√
mNg x) + c2 sin(

√
mNg x). (8.32)

For non-trivial conservation laws we get

Dt

[(
c1 cos(

√
mNg x) + c2 sin(

√
mNg x)

)
θ
]

+Dx

[
− emθ

(
c1 cos(

√
mNg x) + c2 sin(

√
mNg x)

)
θx

+ emθ
√

Ng

m

(
c2 cos(

√
mNg x)− c1 sin(

√
mNg x)

)]
= 0. (8.33)
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The non-trivial conserved vectors are

(i) T 1 = cos(ωx)θ, T 2 = −emθ cos(ωx)θx

− emθ ω
m

sin(ωx), (8.34)

(ii) T 1 = sin(ωx)θ, T 2 = −emθ sin(ωx)θx

+ emθ
ω

m
cos(ωx), (8.35)

where ω =
√
m Ng.

Consider next m < 0. Then

B(x) = c1e
√
|m|Ng x + c2e

−
√
|m|Ng x, (8.36)

and the corresponding conservation laws have the form

(i) T 1 = eωxθ, T 2 = −emθ+ωxθx

+
ω

m
emθ+ωx, (8.37)

(ii) T 1 = e−ωxθ, T 2 = −emθ−ωxθx

− ω

m
emθ−ωx, (8.38)

where ω =
√
|m| Ng.
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8.1.3 Case: k(θ) = θm and q(θ) = θn+1, where m 6= −1

Consider the partial differential equation

∂θ

∂t
=

∂

∂x

(
θm

∂θ

∂x

)
+ Ng θn+1. (8.39)

Substituting our choices for k(θ) and q(θ) into equation (8.17) we get

0 = θ
∂B

∂t
+
∂C

∂t
+ Ng θn+1B(t, x) +

∂2B

∂x2
θm+1

m+ 1
+

∂

∂x

(
D − 1

m+ 1

∂B

∂x

)
. (8.40)

We now consider two cases to separate equation (8.40) by powers of θ.

8.1.3.1 Case: m 6= n, m 6= −1, m 6= 0 and n 6= 0

θm+1 :
∂2B

∂x2
1

m+ 1
= 0, (8.41)

θn+1 : Ng B(t, x) = 0, (8.42)

θ :
∂B

∂t
= 0, (8.43)

1 :
∂C

∂t
+

∂

∂x

(
D − 1

m+ 1

∂B

∂x

)
= 0. (8.44)

Equation (8.43) implies that B = B(x) and equation (8.41) implies that B = c1x+ c2.

Since equation (8.44) is satisfied independently of the PDE (8.39) it follows that

C(t, x) and D(t, x)− 1

m+ 1

∂B

∂x
(t, x)

are the components of a trivial conserved vector. We therefore set

C(t, x) = 0, D(t, x)− 1

m+ 1

∂B

∂x
(t, x) = 0.
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Equation (8.42) implies that Ng = 0 or B = 0. If B = 0 then we get trivial conservation

laws. So for non-trivial conservation laws given Ng = 0 we obtain

Dt [(c1x+ c2)θ] +Dx

[
−θm(c1x+ c2)θx + c1

θm+1

m+ 1

]
= 0. (8.45)

A conserved vector of equation (8.39) with Ng = 0 is therefore a linear combination of

the two conserved vectors

(i) T 1 = xθ, T 2 = −θmxθx +
θm+1

m+ 1
, (8.46)

(ii) T 1 = θ, T 2 = −θmθx. (8.47)

8.1.3.2 Case: m = n, n 6= −1, m 6= 0 and m 6= −1

θm+1 :
∂2B

∂x2
1

m+ 1
+ Ng B(t, x) = 0, (8.48)

θ :
∂B

∂t
= 0, (8.49)

1 :
∂C

∂t
+

∂

∂x

(
D − 1

m+ 1

∂B

∂x

)
= 0. (8.50)

Equation (8.49) implies that B = B(x). Since equation (8.50) is satisfied independently

of the PDE (8.39) it follows that

C(t, x) and D(t, x)− 1

m+ 1

∂B

∂x
(t, x)

are the components of a trivial conserved vector. We therefore set

C(t, x) = 0, D(t, x)− 1

m+ 1

∂B

∂x
(t, x) = 0.
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Consider first m+ 1 > 0. The general solution of equation (8.48) is

B(x) = c1 cos
(√

(m+ 1)Ng x
)

+ c2 sin
(√

(m+ 1)Ng x
)
. (8.51)

For non-trivial conservation laws we get

Dt

[(
c1 cos

(√
(m+ 1)Ng x

)
+ c2 sin

(√
(m+ 1)Ng x

))
θ
]

+Dx

[
− θm

(
c1 cos

(√
(m+ 1)Ng x

)
+ c2 sin

(√
(m+ 1)Ng x

))
θx

+ θm+1

√
Ng

m+ 1

(
c2 cos

(√
(m+ 1)Ng x

)
− c1 sin

(√
(m+ 1)Ng x

))]
= 0. (8.52)

The non-trivial conserved vectors are

(i) T 1 = cos(wx)θ, T 2 = −θm cos(wx)θx

− θm+1

m+ 1
w sin(wx), (8.53)

(ii) T 1 = sin(wx)θ, T 2 = −θm sin(wx)θx

+
θm+1

m+ 1
w cos(wx), (8.54)

where ω =
√

(m+ 1) Ng.

Consider next m+ 1 < 0. Then

B(x) = c1e
√
|m+1|Ng x + c2e

−
√
|m+1|Ng x, (8.55)
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and the corresponding conservation laws have the form

(i) T 1 = ewxθ, T 2 = −θmewxθx

+
θm+1

m+ 1
wewx, (8.56)

(ii) T 1 = e−wxθ, T 2 = −θme−wxθx

− θm+1

m+ 1
we−wx, (8.57)

where w =
√
|m+ 1|Ng.

8.2 Associated Lie point symmetries

We have derived conserved vectors for both cases of the transient models, using the

direct method. We now focus on finding Lie point symmetries associated with the

conserved vectors from the previous section.

The determining equation for the Lie point symmetries X associated with the con-

served vector T = (T 1, T 2) is given by [20]

X(T i) + T iDl(ξ
l)− T lDl(ξ

i) = 0, i = 1, . . . , n, (8.58)

where

X = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂θ
+ ζx

∂

∂θx
+ . . . . (8.59)
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Equation (8.58) consists of two components

X(T 1) + T 1Dx(ξ
2)− T 2Dx(ξ

1) = 0, (8.60)

X(T 2) + T 2Dt(ξ
1)− T 1Dt(ξ

2) = 0. (8.61)

We consider the exponential and power law cases as in the previous chapters. It turned

out that the governing equation with the exponential case does not admit the asso-

ciated Lie point symmetries. However, the power law case yielded some interesting

results, as observed below.

Consider n = m and m+ 1 < 0.

Substituting the elementary conserved vector (8.56) into equations (8.60) and (8.61)

gives

ωeωxξ2θ + ηeωx + eωxθ
∂ξ2

∂x
+ θeωxθx

∂ξ2

∂θ
− θm+1

m+ 1
ωeωx

∂ξ1

∂x
− θm+1

m+ 1
ωeωxθx

∂ξ1

∂θ

+ θmθxe
ωx∂ξ

1

∂x
+ θm(θx)

2eωx
∂ξ1

∂θ
= 0, (8.62)

and

ξ2
ω2

m+ 1
θm+1eωx − ξ2ωθmeωxθx + ηωeωxθm −mηθm−1eωxθx − θmeωx

∂η

∂x

− θmeωxθx
∂η

∂θ
+ θmeωxθt

∂ξ1

∂x
+ θmeωxθtθx

∂ξ1

∂θ
+ θmeωxθx

∂ξ2

∂x
+ θmeωx(θx)

2∂ξ
2

∂θ

+
θm+1

m+ 1
ωeωx

∂ξ1

∂t
+

θm+1

m+ 1
ωeωxθt

∂ξ1

∂θ
− θmeωxθx

∂ξ1

∂t
− θmeωxθxθt

∂ξ1

∂θ
− eωxθ∂ξ

2

∂t

− θeωxθt
∂ξ2

∂θ
= 0. (8.63)
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Separating equation (8.62) by derivatives of θ we find

(θx)
2 : θmeωx

∂ξ1

∂θ
= 0, (8.64)

θx : eωxθ
∂ξ2

∂θ
− ωeωx θ

m+1

m+ 1

∂ξ1

∂θ
+ eωxθm

∂ξ1

∂x
= 0, (8.65)

1 : ξ2ωeωxθ + ηeωx + θeωx
∂ξ2

∂x
− θm+1

m+ 1
ωeωx

∂ξ1

∂x
= 0. (8.66)

Separating equation (8.63) by derivatives of θ we find

(θx)
2 : θmeωx

∂ξ2

∂θ
= 0, (8.67)

θx : −ωθmeωxξ2 −mηθm−1eωx − θmeωx∂η
∂θ

+ θmeωx
∂ξ2

∂x
− θmeωx∂ξ

1

∂t
= 0, (8.68)

θt : θmeωx
∂ξ1

∂x
+

θm+1

m+ 1
ωeωx

∂ξ1

∂θ
− θeωx∂ξ

2

∂θ
= 0, (8.69)

1 :
ω2

m+ 1
ξ2eωxθm+1 + ηωeωxθm − θmeωx ∂η

∂x
+

θm+1

m+ 1
ωeωx

∂ξ1

∂t
− θeωx∂ξ

2

∂t
= 0.

(8.70)

From equations (8.64), (8.65) and (8.67) we get

ξ1 = ξ1(t), (8.71)

and

ξ2 = ξ2(t, x), (8.72)

with equation (8.69) being satisfied.

By reducing equation (8.66) we get

η = −ξ2ωθ − θ∂ξ
2

∂x
, (8.73)
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and

∂η

∂x
= −∂ξ

2

∂x
ωθ − θ∂

2ξ2

∂x2
. (8.74)

Substituting equations (8.73) and (8.74) into equation (8.70) we get

ω2

m+ 1
ξ2θm+1 +

(
−ξ2ωθ − θ∂ξ

2

∂x

)
ωθm − θm

(
−∂ξ

2

∂x
ωθ − θ∂

2ξ2

∂x2

)
+

θm+1

m+ 1
ω
dξ1

dt
− θ∂ξ

2

∂t
= 0. (8.75)

Separating equation (8.75) by powers of θ gives

θ :
∂ξ2

∂t
= 0, ⇒ ξ2 = ξ2(x), (8.76)

θm+1 :
ω2

m+ 1
ξ2 − ξ2ω2 +

d2ξ2

dx2
+

ω

m+ 1

dξ1

dt
= 0. (8.77)

Differentiating equation (8.77) with respect to t and solving for ξ1 we get

ξ1(t) = c1t+ c2, (8.78)

where c1 and c2 are arbitrary constants. Substituting ξ1 into equation (8.68) and

solving for ξ2 gives

ξ2(x) =


c1
mω

+ c3 exp
(
− mω

2+m
x
)
, m 6= −2

c1
mω
, m = −2

(8.79)

Substitute (8.79) into the remaining determining equation (8.77). Equation (8.77) is

identically satisfied for m = −2 and m = −4/3. It is satisfied for m 6= −2 and

m 6= −4/3 provided c3 = 0.
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Thus we are left with

ξ1 = c1t+ c2, (8.80)

ξ2 =


c1
mω
, m 6= −4

3

c1
mω

+ c3 exp
(
− mω

2+m
x
)
, m = −4

3

(8.81)

η =


− c1
mω
θ, m 6= −4

3

− c1
m
θ − c3 2ω

2+m
θ exp

(
− mω

2+m
x
)
. m = −4

3

(8.82)

The Lie point symmetries associated with the conserved vectors (8.56) are given by

X1 =
∂

∂t
, (8.83)

X2 = t
∂

∂t
+

1

mω

∂

∂x
− θ

m

∂

∂θ
, (8.84)

X3 = exp(2ωx)
∂

∂x
− 3ω exp(2ωx)θ

∂

∂θ
. (8.85)

The associated Lie point symmetry (8.84) applies for n = m 6= −4/3, m+ 1 < 0. The

associated Lie point symmetry (8.85) applies for m = −4/3.

8.3 Concluding remarks

In this chapter we have constructed the conservation laws for equation (8.1) with ex-

ponential and power law cases of thermal conductivity and internal heat generation. It

turned out that conserved vectors may be constructed for the simple case of the nonlin-

ear heat equation given the exponential case. Some interesting new conservation laws

and associated Lie point symmetries are obtained when the internal heat generation

and thermal conductivity are given as power law functions of temperature. There are
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a number of open questions that may be explored from this chapter. Also, one may

use the double reduction method by Sjoberg [29] to construct exact solutions.
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Chapter 9

Conclusions

This dissertation focused on obtaining solutions for heat transfer in a hot body with

various functional forms of thermal conductivity and internal heat generation. We

began by calculating the Lie point symmetries for when thermal conductivity and

internal heat generation were given by exponential functions, firstly, and then given

by the power law. Using these Lie point symmetries, we found the optimal system

for various cases. From the optimal systems, we constructed group invariant solutions

for each case, namely the steady state solution and the transient solution. For the

exponential case, analytical solutions for both the steady state and the transient state

were found. However, for the power law case the steady state solution was found but

we were unable to find the transient solution analytically. So the Differential Transform

Method (DTM) was employed to construct analytical series solutions for cases where

our Lie point symmetries failed to obtain a solution, namely for the power law case.

The 1D DTM was used to solve the steady state ordinary differential equations. We

made a comparison with the DTM solution and the group invariant solution and found

that these solutions agreed with one another, hence confidence was established in the

DTM. The 2D DTM was then used for the transient state problem of the power law

case. Lastly, we constructed conservation laws, using the direct method, and derived

associated Lie point symmetries.
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