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ABSTRACT 

Malaria, a disease resulting from infection by members of the Plasmodium genus, 

accounted for an estimated 627 000 deaths globally in 2012. The majority of these 

mortalities were due to P. falciparum infections and thus the species of focus in this study. 

Due to the rapid emergence of drug-resistant strains, novel avenues for research evaluating 

parasite survival and population regulation within the human host are now needed. 

Programmed cell death (PCD) is a well characterised means of self-regulation in 

metazoans, where a plethora of proteins and signals result in the destruction and/or 

removal of unnecessary, damaged or dangerous cells. A key protein participant is MDM2 

which, via its SWIB/MDM2 domain, binds to the nuclear transcription factor p53 to 

promote p53 degradation and prevent apoptosis. SWIB/MDM2 domains additionally play 

key roles in transcription-dependent stress survival. No proven PCD molecular participants 

for P. falciparum exist but two SWIB/MDM2 homologues (PF3D7_0611400 (PfSWIB) 

and PF3D7_0518200 (PfMDM2)) and a putative p53 homologue (PF3D7_0522400 

(Pfp53)) have been identified by bioinformatics. These were assessed experimentally in 

this study.   

Structural features of the SWIB/MDM2 domains of PfMDM2 and PfSWIB, suggested that 

they are chromatin remodelling factors. The domains were amplified from 3D7 P. 

falciparum genomic DNA, directionally cloned into the pGEX-4T-2 vector, and used for 

recombinant GST-fusion protein expression in E. coli. The soluble, tagged, domains were 

isolated and purified by affinity chromatography (PfMDM2, ~33kDa and PfSWIB, 

~42kDa) and used, in conjunction with P. falciparum phage display library technology, for 

the identification of several novel binding partners. Two of these interactions were verified 

with in vitro binding assays, proving concentration dependent interactions between 

PfMDM2 and a conserved protein of unknown function; and PfSWIB and a putative 
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serine-threonine protein kinase (PfARK3). Transgenic P. falciparum parasites were created 

by transfection with pARL2-GFP vector constructs containing the PfSWIB and PfMDM2 

genes. PfMDM2-GFP localized to the mitochondria under the control of an N-terminal 

signal sequence, under normal and heat stress conditions, the latter triggering PCD in the 

asexual intraerythrocytic parasite. PfSWIB-GFP localized to the cytoplasm under normal 

and heat stress conditions, but in a subpopulation of trophozoites it moved to the nucleus 

after exposure to elevated temperatures. PfMDM2 is hypothesized to play a role within the 

parasite mitochondrion, although its involvement in PCD is uncertain and may be 

unconventional, while PfSWIB is suggested to be involved in a stage-specific heat stress 

response.  

  

Pfp53 was found to have a putative DNA binding and tetramerization domain, based 

primarily on sequence alignments. A recombinant GST-tagged form (~87kDa) of these 

two domains was expressed in E. coli and purified by affinity chromatography. The ability 

of the recombinant protein to tetramerize was inconclusive, while in an electromobility 

shift assay it did not bind to a canonical p53 DNA binding consensus sequence identified 

in the parasite’s genome. The precise cellular function(s) for this protein requires further 

evaluation.  

 

This study represents the first characterisation of these three P. falciparum proteins. 

Several novel activities were identified for each and their role in PCD was evaluated by 

exposing parasites to febrile temperatures, which provided new information regarding heat 

stress regulation in P. falciparum.  
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PfLisH 

Domain of PF3D7_1303400 (a conserved 

Plasmodium protein of unknown function) 

identified by biopanning 

PfMDM2 
PF3D7_0518200, a putative SWIB/MDM2 

domain-containing protein  

PfMDM2-GFP Episomally expressed GFP-tagged PfMDM2 

Pfp53 

PF3D7_0522400, a conserved Plasmodium 

protein and assessed as a potential p53 

homologue in this study 
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1 INTRODUCTION 

1.1 The Apicomplexa phylum and malaria  

The phylum Apicomplexa is constituted by a group of single celled eukaryotic organisms, 

referred to as protists, which are believed to have diverged from the eukaryotic lineage 

either at the time of or before the emergence of multicellularity (Escalante and Ayala, 

1995, Adl et al., 2005). All members of this phylum, classified according to molecular 

phylogeny, are obligatory intracellular parasites in nature and are commonly defined by the 

presence of apically located secretory organelles referred to as micronemes and rhoptries 

(Adl et al., 2005, Morrison, 2009). One genus of great medical and social importance is 

Plasmodium, which lies in the order Haemosporida of the Apicomplexa phylum.  

 

On the 6th of November 1880, a French army surgeon by the name of Charles Louis 

Alfonse Laveran noted the presence of unusual micro-organisms within the blood of 

malaria-infected soldiers while working in Algeria. He believed that the crescent and 

spherically shaped bodies he identified, and later watched transform into flagellated cells, 

were the causative agents of malaria (Bruce-Chwarr, 1988). This hypothesis, which 

received much criticism at the time, was later confirmed. Ronald Ross, in 1897, discovered 

that transmission was facilitated by a mosquito vector (Cox, 2010).  

 

In 2013 97 countries were considered malaria endemic by the World Health Organization, 

with five Plasmodium species currently classified as the causative agents of human 

malaria. These species are Plasmodium falciparum, P. vivax, P. ovale, P. malariae and P. 

knowlesi (Singh et al., 2004, World Health Organization, 2013). P. vivax infections are the 

most widely distributed globally, although infections by P. falciparum are the most 
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dangerous. It is estimated, in 2012, that malaria accounted for about 207 million clinical 

cases and about 627 000 deaths worldwide. About 80% of these cases and 90% of these 

deaths occurred in sub-Saharan Africa, with children under the age of five and pregnant 

women being the most severely affected (World Health Organization, 2013). Due to the 

high morbidity and mortality associated with P. falciparum infections, much scientific and 

medical focus has been placed on this species. 

 

1.2 The origins and evolution of Plasmodium falciparum 

rRNA studies suggest that the Plasmodium lineage may have evolved before the origin of 

vertebrates and radiated about 129 million years ago, paralleling the diversification of their 

vector’s lineage and the divergence of birds from reptiles (Escalante and Ayala, 1995). The 

species constituting this genus fall into two distinct clades, one of which encompasses at 

least six distinct species, including P. falciparum, P. reichenowi and P. gobani, the latter 

two being the closest known relatives of P. falciparum (Escalante and Ayala, 1994, 

Ollomo et al., 2009). The emergence of the P. falciparum species itself is a topic of much 

debate, with several hypotheses circulating in literature. These range from ancestral 

divergence of a common ancestral parasite at the time of the human-chimpanzee split to a 

cross-species transfer from a variety of possible primates to humans (Rich et al., 1998, 

Rich et al., 2009, Krief et al., 2010, Liu et al., 2010, Prugnolle et al., 2011).  

 

Originally, P. falciparum was assumed to be a strictly human pathogen but this notion has 

since proven to be false, with various primates being infected by many different 

Plasmodium species including falciparum (Krief et al., 2010, Liu et al., 2010, Prugnolle et 

al., 2010). This observation that primates can naturally be infected with P. falciparum 
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implies the presence of a possible parasite reservoir, which needs to be considered for 

successful disease eradication (Prugnolle et al., 2011).   

 

1.3 The P. falciparum life cycle 

All Plasmodium parasites require two hosts to complete their complex life cycle – an insect 

host, in the case of human malaria the female Anopheles mosquito, and a vertebrate host 

(Miller et al., 2002, Cox, 2010, Hafalla et al., 2011).  Figure 1.1 presents an overview of 

the P. falciparum life cycle, which will be discussed in detail below.  

 

 
Figure 1.1: Diagram presenting the complete life cycle of P. falciparum. 

Based on data from Miller et al., 2002. 
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1.3.1 The human host 

1.3.1.1 The pre-erythrocytic stage 

About fifteen parasites, resident in the mosquito’s salivary ducts as sporozoites, are 

injected into the skin of the human host during the mosquito feeding process (Rosenberg et 

al., 1990). The sporozoites traverse through the skin into the blood stream and proceed to 

the liver in the first 15 minutes to several hours after introduction into the skin (Hafalla et 

al., 2011). The sporozoites specifically target and invade the liver hepatocytes through the 

use of sporozoite surface thrombospondin-related anonymous protein (TRAP) and 

circumsporozoite (CS) protein (Hafalla et al., 2011). Once inside the host hepatocyte each 

sporozoite takes about 140 hours to undergo complete schizogony and produce between 

30 000 – 50 000 merozoites (Hafalla et al., 2011). The fully developed merozoites are 

packed into a vesicle, a merosome, which buds from the infected hepatocytes and escapes 

into the blood where it disintegrates to allow the merozoites to invade host RBC (red blood 

cells) in as little as 30 seconds (Hafalla et al., 2011). P. falciparum, unlike some of the 

other Plasmodium species, does not have a dormant liver stage (Fujioka and Aikawa, 

1999). This obligatory pre-erythrocytic stage of the parasite’s life cycle is clinically silent 

(Hafalla et al., 2011).  

 

1.3.1.2 The erythrocytic stage  

The merozoite invades the host RBC in a four step process, utilizing an array of merozoite 

derived proteins and RBC membrane surface components. Ultimately this process results 

in a resealed erythrocyte membrane and the parasite located inside the RBC within a 

parasitophorous vacuole (PV) (Cowman et al., 2012). P. falciparum does not solely depend 

on a single invasion pathway, instead using a wide variety of receptors for attachment and 

invasion (Cowman et al., 2012).  
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The majority of invaded merozoites enter into an asexual cycle and develop, through the 

ring stage, into a feeding amoeboid shape trophozoite (Tilley et al., 2011). As the parasite 

develops it ingests RBC cytoplasm and haemoglobin to acquire nutrients. Glucose taken up 

by the parasite is almost entirely converted to lactate for energy production (MacRae et al., 

2013). The haemoglobin is degraded as an amino acid fuel source for the parasite in the 

acidic food vacuole, with the toxic haem group being processed and rendered harmless in 

the form of haemozoin, the dark pigment prominently seen in the trophozoite life stage 

(Tilley et al., 2011, Pishchany and Skaar, 2012).  

 

The P. falciparum trophozoite’s cytoplasm contains a large number of ribonucleoprotein 

particles, pigment granules, a single digestive vacuole, a single membrane bound nucleus, 

and a primitive mitochondrial structure in contact with a generally round apicoplast (Tilley 

et al., 2011). The parasite develops further, undergoing asexual amplification through the 

formation of a multinucleated schizont form, to ultimately produce 16 to 32 new 

merozoites (Hafalla et al., 2011). Upon erythrocyte rupture, the newly formed merozoites 

are released into circulation and can infect new erythrocytes (Hafalla et al., 2011). The P. 

falciparum asexual life cycle within human RBC is about 48-50 hours from invasion to 

egress (Tilley et al., 2011). Escape from the infected RBC involves the initial PV 

membrane destruction and subsequent erythrocyte membrane rupture by a variety of 

parasite proteases (Wickham et al., 2003).  

 

This intraerythrocytic stage of the parasite’s life cycle induces the clinical manifestations 

of the disease. The debris released during egress, both of human and parasite origin, is 

thought to have toxic effects on the human host and is the cause for some of the clinical 

symptoms, including fever (Hafalla et al., 2011). P. falciparum infections are associated 
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with periodic fevers every 48 hours, although in early stages of infection the fever may be 

irregular (Miller et al., 2002). Other clinical symptoms associated with a falciparum 

infection include anaemia, due to RBC loss; circulatory obstruction and its associated 

consequences, discussed below; and cerebral malaria which can lead to unconsciousness, 

coma and convulsions. These symptoms may present in isolation or in combination and 

may ultimately lead to death, particularly in malaria naïve individuals and children (Miller 

et al., 2002). Malaria-infected pregnant women are at high risk of complications, not only 

to themselves but to the foetus. Mothers are at risk of anaemia; while the foetus risks 

abortion, stillbirth, premature delivery and a reduction in birth weight (Desai et al., 2007).  

 

Cytoadherence of parasitized RBC to vascular endothelium is responsible for impaired 

microcirculation, local hypoxia, vascular occlusions, inflammation and additionally, in the 

case of cerebral malaria, damage to the blood brain barrier (Hafalla et al., 2011, White et 

al., 2013). This cytoadherence, facilitated by parasite-induced RBC membrane alterations 

and knob-like protrusions, provides the trophozoite and schizont stage parasitized RBC the 

ability to avoid splenic clearance and thus effective elimination from the human host 

(Hafalla et al., 2011, Tilley et al., 2011).  

 

1.3.1.3 Gametocytogenesis 

A small fraction of merozoites develop into sexually dimorphic gametocytes necessary for 

parasite transfer to the insect host, thus completing the life cycle. In P. falciparum, 

gametocytes reach maturity only eight to twelve days after the first asexual erythrocyte 

infection (Liu et al., 2011). During the early stages of gametocytogenesis the infected RBC 

are sequestered to various tissues by cytoadherence but in the final stage of development 
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they are released into the peripheral circulation, allowing for uptake by the insect host 

during feeding (Hafalla et al., 2011, Liu et al., 2011).  

 

1.3.1.4 Programmed cell death in P. falciparum in the human host 

The parasite intraerythrocytic cycle is associated with a rapid amplification every 48 hours, 

which can quickly result in human host death, before the maturation and the transmission 

of gametocytes (Miller et al., 2002, Hafalla et al., 2011). This implies that the parasite 

maybe able to regulate its parasitaemia and one such mechanism has been hypothesized as 

parasite self-induced programmed cell death (PCD) (Deponte and Becker, 2004).  

 

1.3.2 The mosquito host 

1.3.2.1 Gamete formation  

The female Anopheles mosquito, while feeding on infected human blood, consumes both 

the asexual and the sexual forms of the parasite. The asexual stages will simply perish but 

the gametocytes will survive. Rapid gamete development ensues due to a drop in 

temperature, an increase in pH and calcium concentration, and/or exposure to a relatively 

hydrophilic mosquito-derived molecule, xanthurenic acid (Guttery et al., 2012). The 

macrogametocytes (female gametocytes) become activated and leave their RBC but 

undergo no further nuclear changes. The microgametocytes (male gametocytes) on the 

other hand undergo three rapid rounds of DNA replication to release eight flagellated male 

gametes into the mosquito midgut (Guttery et al., 2012). 

 

1.3.2.2 Ookinete, oocyst and sporozoite formation and development 

The mature haploid female and male gametes fuse to produce zygotes which undergo 

meiosis and ultimately give rise to ookinetes (Hurd et al., 2006, Marois, 2011, Guttery et 

al., 2012). This life stage, 26 – 36 hours post-infection, moves out of the blood bolus, 

traverses through the chitinous peritrophic matrix of the midgut, and localizes to the area 
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between the midgut epithelial cells and the midgut basal lamina (Guttery et al., 2012). This 

invasion stimulates a wide range of immune responses by the mosquito, such as reactive 

oxygen and nitrogen species production and soluble immune proteins, which in part results 

in only a small fraction of the ookinetes emerging at the collagenous basal lamina of the 

midgut (Hurd et al., 2006, Marois, 2011). Oocyst development ensues on the basal lamina 

surface, involving rapid cytoplasmic expansion and nuclear divisions to ultimately give 

rise to thousands of daughter cells called sporozoites (Guttery et al., 2012). The oocyst 

ruptures in a protease dependant manner allowing sporozoites to escape into the 

haemocoel, of which about 25% successfully migrate to and invade the mosquito’s salivary 

glands. Here they become competent for human host infection (Baton and Ranford-

Cartwright, 2005). 

  

1.3.2.3 PCD in P. falciparum in the mosquito host 

Infection of the mosquito vector with Plasmodium is not an asymptomatic event, with the 

associated tissue damage and immune activation occurring in response to parasite invasion 

resulting in a loss of reproductive fitness and mosquito longevity (Hurd et al., 2006). In 

order to keep the vector alive long enough for sporozoite development and transmission 

there needs to be a balance between parasite development and loss. Reduction in zygote, 

ookinete and sporozoite (Marois, 2011, Guttery et al., 2012) levels have been well 

characterized during parasite development in the mosquito host, although the precise 

means of regulation is not. Partial limitation is maintained through the hostile environment 

created by the processing of the food bolus as well as the initiation of various mosquito 

immune responses, which are hypothesized to contribute towards the execution of a self 

controlled PCD-like phenotype within the parasite (Deponte and Becker, 2004, Hurd and 

Carter, 2004, Hurd et al., 2006, Guttery et al., 2012). 



 

Investigating the Molecular Participants of Programmed Cell Death in Plasmodium falciparum |  9 

 

| 
In

tr
o

d
u

ct
io

n
 

 

In both the human and insect hosts there is speculation regarding the means by which P. 

falciparum parasitemia is regulated to prevent host death before successful transmission. 

The association of this regulation with a PCD phenotype is a relatively recent concept in 

literature but has gathered support with time (Deponte and Becker, 2004). In order to 

understand this phenomenon within the parasite one needs first to address the concept of 

PCD itself. 

 

1.4 Programmed cell death in multicellular organisms 

The term PCD was first used in 1964 by Lockshin and Williams to describe controlled and 

autonomous death of cells within a silk moth, during metamorphosis, to bring about the 

breakdown of the abdominal intersegmental muscles. The phenomenon is currently best 

understood in the context of multicellular organisms as an active and genetically regulated 

process facilitating growth, development and homeostasis of an organism (Lockshin and 

Williams, 1964, Fuchs and Steller, 2011). Various forms of cell death, exhibiting 

numerous phenotypes, have been described and can be divided into three types – apoptosis, 

autophagy and necrosis – compared in table 1.1. It must be taken into account that many 

death regulatory genes are common to more than one death form and a single cell can 

present with a mixed phenotype, suggesting that the above mentioned cell death types form 

an interconnected network (Bialik et al., 2010).  
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Table 1.1: A brief comparison of apoptosis, autophagy and necrosis (Kroemer et al., 2009, 

Bialik et al., 2010, Christofferson and Yuan, 2010, Fuchs and Steller, 2011, Fulda, 2012, 

Yonekawa and Thorburn, 2013, Mondal and Dutta, 2014).  

Cell death 

term 
Apoptosis Autophagy Necrosis 

Subtype Intrinsic Extrinsic Macroautophagy Accidental Necroptosis 

Initiator 

Intracellular 

signals such as 

mitochondrial 

damage 

Extracellular 

signals such 

as tumour 

necrosis 

factor α 

Extra- and 

intracellular 

signals such as 

chemotoxic 

agents 

Overt stress 

or injury 

Extra- and 

intracellular 

signals such as 

tumour 

necrosis factor 

α 

Basic 

biochemical 

process 

leading to 

death 

Loss of 

mitochondrial 

membrane 

potential  

Caspase 

activation 

Death ligand-

receptor 

complex 

formed  

Caspase 

activation 

Poorly 

understood 

Digestion of 

intracellular 

components or 

destabilization 

of lysosomes  

 

No specific 

molecular 

pathways 

Poorly 

understood  

Death ligand-

receptor 

complex 

formed 

involving 

receptor 

interacting 

protein 1 and 

3  ? 

 

The term apoptosis, originally coined in 1972 by Kerr et al., describes an active form of 

PCD whereby cells, commonly single cells, eradicate themselves from a population by 

inherited biological mechanisms (Kerr et al., 1972). The Nomenclature Committee on Cell 

Death guidelines stipulate that the term apoptosis should be used to describe the death 

phenotype expressing specific morphological features, while biochemical features should 

be used to support but not define the phenotype – morphological and biochemical features 

are described in table 1.2 (Kroemer et al., 2009). This death form is regulated through 

intrinsic genetic programs, as well as extracellular and intracellular signals contributing to 

the activation of different biochemical pathways and the ultimate morphological phenotype 

(Bialik et al., 2010, Fuchs and Steller, 2011).  

 

Autophagy, more specifically macroautophagy, is an intracellular catabolic process 

commonly employed as a cell survival or recycling strategy in response to a variety of 

stimuli including starvation and growth factor withdrawal (Bialik et al., 2010, Fuchs and 
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Steller, 2011, Yonekawa and Thorburn, 2013). Cytoplasmic long lived proteins or 

organelles as well as protein aggregates and damaged organelles are engulfed by 

autophagosomes, which fuse to lysosomes, and are degraded to resupply the cell with 

cellular building blocks. This cellular phenotype is claimed to additionally be associated 

with cell death under specific stimuli, although often the documentation is controversial as 

it may not reflect a natural death stimulus (Bialik et al., 2010, Fuchs and Steller, 2011, 

Yonekawa and Thorburn, 2013). The exact cellular mechanism associated with this PCD-

linked phenotype is uncertain but has been postulated to involve lysosomal destabilization 

in the autophagy process, resulting in death, or the excessive digestion of cellular 

components (Fulda, 2012). The morphological features of autophagic death are described 

in table 1.2.   

 

Necrosis was originally thought to solely be an accidental or non-programmed form of 

death, occurring in response to overwhelming stress or injury and involving no specific 

molecular participants or pathways; although recent work suggests genetic control may be 

involved in some situations. The latter cases are termed necroptosis and appear, in part, to 

be activated by reactive oxygen species, mitochondrial defects, autophagy and some 

apoptotic induction factors, including tumour necrosis factor α (TNFα)  (Kroemer et al., 

2009, Bialik et al., 2010, Christofferson and Yuan, 2010, Fuchs and Steller, 2011). 

Although the molecular means by which death is executed is unknown, it is known that 

caspases are not involved and both subtypes present the same morphological features, as 

presented in table 1.2 (Christofferson and Yuan, 2010).   
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Table 1.2: Morphological and biochemical markers ascribed to the various PCD phenotypes. 

 indicates presence and  absence of a particular marker (Kroemer et al., 2009, Bialik et al., 

2010, Christofferson and Yuan, 2010, Fuchs and Steller, 2011, Fulda, 2012, Yonekawa and 

Thorburn, 2013, Mondal and Dutta, 2014). 

 Marker PCD Phenotype 

Apoptosis Autophagy Necrosis 

Biochemical 

Caspase-like activity    

Cell disintegration    

Early stage oligonucleosomal 

DNA fragmentation 
   

Loss of mitochondrial membrane 

potential but mitochondria 

remains intact 

   

Organelle  dysfunction    

Phosphatidylserine externalization    

Morphological 

Apoptotic bodies    

Chromatin condensation    

Cytoplasmic condensation    

Cytoplasmic swelling    

Massive cytoplasmic autophagic 

vacuolization 
   

Membrane blebbing    

Organelle swelling    

Phagocytosis of apoptotic bodies    

 

1.4.1 The need for apoptosis  

Much of our understanding of apoptosis, in metazoan organisms, has been gained through 

a variety of studies using the nematode Caenorhabditis elegans, the fruit fly Drosophila 

melanogaster, and the mouse Mus musculus. These three models have highlighted the 

apparent reasons for the existence, the induction signals, as well as the cellular machinery 

involved in this phenotype.  

 

Apoptosis, broadly speaking, is indispensable to a multicellular organism as it allows for 

correct growth, development and homeostasis. Firstly, it allows for utilitarian cell suicide, 

whereby healthy cells will perish for the good of the others, allowing for sufficient 
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resource availability, organogenesis and tissue remodelling (Fuchs and Steller, 2011, 

Mondal and Dutta, 2014). Secondly, it permits a means by which worn-out or aged cells or 

those no longer of functional importance, although still undamaged, can be removed from 

the body (Fuchs and Steller, 2011, Mondal and Dutta, 2014). Lastly, it facilitates a means 

of altruistic cell suicide, whereby abnormal or dangerous cells (such as those infected with 

a pathogen) can be removed from the body before inducing harm (Fuchs and Steller, 2011, 

Mondal and Dutta, 2014).  

 

1.4.2 The pathways involved in apoptosis   

Initiation of an apoptotic phenotype in metazoans has been shown to occur by both 

external (such as environmental stress or nutrient availability) and internal stimuli (such as 

DNA damage or infection with a pathogen) resulting in the activation of extrinsic and 

intrinsic pathways respectively. These two pathways can function independently or in an 

interrelated fashion, as depicted in figure 1.2, both ultimately resulting in the activation of 

the main executors of apoptosis - caspases (Fuchs and Steller, 2011, Mondal and Dutta, 

2014). This family of cysteine-dependent aspartate-specific proteases participate in 

numerous cellular processes including cell death. The initiator caspase subgroup is 

responsible for the proteolytic activation of effector caspases while the effector caspase 

subgroup is responsible for the ordered destruction of the cell. In order to protect the cell 

from unregulated degradation, caspases are synthesized and stored in an inactive form – 

procaspases (Bialik et al., 2010, Fuchs and Steller, 2011).   
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Figure 1.2: A simplified diagram depicting the extrinsic and intrinsic pathways which 

induce an apoptosis phenotype within metazoan cells. 

Based on Lee et al., 2002; Oh et al., 2008; Park et al., 2009; Amaral et al., 2010; Bialik et al., 

2010; Wade et al., 2010; Fuchs and Steller, 2011; Mondal and Dutta, 2014.  

External stimulation induces the formation of a death-inducing signalling complex (DISC 

complex), where recruited pro-caspase 8 is activated by cleavage. Active caspase 8 directly 

activates caspase 3, or brings about caspase dependent cell destruction through a loss in 

mitochondrial membrane potential. This latter, in-direct process requires the truncation and 

activation of BID (BH3 interacting-domain death agonist), which affects the mitochondrial 

membrane potential. Internal stimuli frequently bring about apoptosis through changes in gene 

expression and an ultimate loss in mitochondrial membrane potential. The loss of this 

membrane potential is facilitated through mitochondrial pore opening, due to the B-cell 

lymphoma 2 (Bcl-2)-associated X protein (BAX) and Bcl-2 homologous antagonist killer 

(BAK) oligomerization. This releases mitochondrial resident inhibitor of apoptosis (IAP) 

inhibitors and cytochrome c into the cytoplasm. The latter factor is responsible for cytoplasmic 

apoptosome formation, bringing about caspase 3 and 7 activation.  

Green lines represent inhibition under normal conditions; red arrows and lines represent 

activation or inhibition respectively under apoptotic conditions; and black arrows represent 

processes or activities leading to another. The presence of both red arrows and green lines 

implies the possibility of two different situations, each depending on the stimuli received by the 

cell. Abbreviations: MDM2 – murine double minute 2, p53 – protein 53, SWI/SNF – 

SWItch/Sucrose NonFermentable, HTRA2/OMI – high temperature requirement protein 

A2/Omi stress-regulated endoprotease, SMAC/DIABLO – second mitochondria-derived 

activator of caspase/direct IAP protein with a low pI.      
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Intrinsic pathways often involve the mitochondria, whereby various stimuli ultimately 

facilitate the loss in mitochondrial transmembrane potential through the opening of the 

mitochondrial permeability transition pores, which is controlled by the B cell lymphoma 2 

(Bcl-2) protein family (Fuchs and Steller, 2011, Mondal and Dutta, 2014). Bcl-2-

associated X protein (BAX) and Bcl-2 homologous antagonist killer (BAK), in response to 

apoptotic stimuli, overcome the inhibitory effects of the anti-apoptotic members of the Bcl-

2 family and oligomerize to create pores within the outer mitochondrial membrane (figure 

1.2). These facilitate a loss in mitochondrial transmembrane potential resulting in the 

release of death inducing factors, resident in the mitochondrial inter-membrane space, 

including cytochrome c, second mitochondria-derived activator of caspase/ direct IAP 

binding protein with a low pI (SMAC/DIABLO), high-temperature requirement factor 

A2/OMI stress-regulated endoprotease (HTRA2/OMI), apoptosis inducting factor (AIF) 

and endonuclease G (Bialik et al., 2010, Fuchs and Steller, 2011). Cytochrome c binds to 

and activates apoptosis protease activating factor -1 (APAF-1) and the initiator caspase 

CASPASE-9, originally in its inactive form in the cytoplasm, to form the apoptosome. This 

complex activates the effector caspases CASPASE-3 and -7 which proceed to act upon a 

multitude of substrates to demolish the integrity of the cell skeleton, the nuclear lamin 

structure and DNA, as well as inhibiting the cell’s natural repair mechanisms (Bialik et al., 

2010, Fuchs and Steller, 2011, Mondal and Dutta, 2014). DNA fragmentation is a 

prominent feature of apoptosis, brought about by the activities of AIF, endonuclease G and 

Caspase activated DNase (CAD). The latter requires caspase degradation of its inhibitor, 

iCAD, while the other two function in a caspase independent manner (Mondal and Dutta, 

2014).  
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Caspase-dependent delamination of the intact plasma membrane from the cortical 

cytoskeleton as well as actomyosin-mediated contraction in conjunction with increased 

hydrostatic pressure results in the repeated formation and retraction of membrane blebs for 

sustained periods of time on the surface of the dying cell (Wickman et al., 2012). These 

blebs may become packed with cellular organelles and condensed chromatin to form the 

basis of the apoptotic bodies which are ultimately released and dissociate from the dying 

mass (Wickman et al., 2012). Phosphatidylserine (PS) under normal conditions is present 

on the inner leaflet of the cells plasma membrane. Caspase activation, in response to an 

apoptosis signal, brings about the accumulation of PS on the intact plasma membrane outer 

leaflet (Wickman et al., 2012, Bendall and Green, 2014). This facilitates an ‘‘eat me’’ 

signal resulting in the removal of the dying cell by phagocytosis (Wickman et al., 2012, 

Bendall and Green, 2014).  

 

The extrinsic death pathway is initiated by the oligomerization of a death receptor, such as 

TNFα receptor type 1, in response to the binding of its death ligand, such as TNFα, and its 

subsequent recruitment of cytoplasmic adaptor proteins through its death domain, in order 

to form the death-inducing signalling complex (DISC) (Mondal and Dutta, 2014) (figure 

1.2). The initiator caspase, CASPASE-8, is recruited to the DISC in its inactive procaspase 

form and subsequently activated (Mondal and Dutta, 2014). The activated CASPASE-8 

can then participate in two pathways. Firstly, the cysteine protease can cleave and activate 

the effector caspase CASPASE-3, responsible for the breakdown of the cell and the 

activation of the effector caspase CASPASE-7 (Mondal and Dutta, 2014). Secondly, 

CASPASE-8 can cleave the BH3 interacting-domain death agonist (BID) protein into 

truncated BID (tBID) which induces oligomerization of BAX and BAK to induce a loss in 
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the mitochondrial outer membrane potential – linking the extrinsic pathways to the 

intrinsic pathway (Bialik et al., 2010, Mondal and Dutta, 2014). 

 

Regulation of caspases is vital for non-apoptotic cells and their inhibition is facilitated, in 

part, through the inhibitor of apoptosis proteins (IAP) , which are characterized by the 

presence of a variable number of N-terminal Baculoviral IAP repeat motifs that bind 

directly to and inhibit caspases. The released SMAC/DIABLO and HTRA2/OMI proteins, 

encoding IAP-binding motifs, are responsible for inhibiting the activity of IAP to allow for 

complete caspase activation (Bialik et al., 2010, Fuchs and Steller, 2011).   

 

1.4.3 Transcriptional control of apoptosis  

Within a normal, healthy eukaryotic cell the default transcriptional state is considered 

repressed due to the natural packed state of its chromatin. According to the needs of the 

cell, often in response to specific stimuli, the chromatin structure is altered for the process 

of gene transcription. This change employs a variety of cellular factors and proteins (Li 

and Reinberg, 2011). Once transcription has been completed the DNA must then be 

returned to its repressed state (Li and Reinberg, 2011). During apoptosis the chromatin 

must be accessible to specific transcription factors necessary for the execution of specific 

death pathways. These factors include p53 and the SWI/SNF complex.  

 

1.4.3.1 p53 

The p53 protein, a 53kDa phosphoprotein with several functional domains as indicated in 

table 1.3, was originally discovered in a mutant form (DeLeo et al., 1979). It has since 

been identified in its original form within mammalian cells, maintained in an inactive state 

at low concentrations in the cytoplasm under normal, healthy conditions, while under 

specific stress conditions its half life is dramatically increased, it is activated and it can be 
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relocalized to the nucleus to associate with the chromatin (Rotter et al., 1983, Amaral et 

al., 2010). Its activation and inactivation is dependent on a vast array of post-translational 

modifications, including phosphorylation and acetylation, directed against specific amino 

acid residues along its length (Amaral et al., 2010). 

 

Table 1.3: Important functional domains of human p53.  

Name of region  Position (residues) Function  Reference 

Trans-activation 

domain 

1-42 Interaction with various 

transcription factors 

(Unger et 

al., 1992) 

Proline-rich region 61-94 Required for apoptosis induction (Sakamuro 

et al., 

1997) 

DNA-binding domain 

(DBD) 

102-292 Required for the recognition of a 

specific DNA consensus 

sequence, in the presence of Zn2+. 

This sequence is constituted by 

two copies of the 10-bp motif 5’-

PuPuPuCWWGPyPyPy-3’, 

separated by any 0-13 bps  

(Kern et 

al., 1991, 

El-Deiry et 

al., 1992, 

Pavletich et 

al., 1993) 

Tetramerization 

domain  

324-355 Facilitates tetramerization, which 

is enhanced in the presence of 

DNA 

(Stenger et 

al., 1992, 

Pavletich et 

al., 1993, 

Wang et 

al., 1995) 

C-terminal regulatory 

domain 

363-393 Aids in promoter binding and 

transactivation, apparently 

binding to DNA in a non-specific 

manner  

(Pavletich 

et al., 1993, 

McKinney 

et al., 

2004) 

N-terminal nuclear 

export sequence (NES) 

11-27 Allows for the export of p53 from 

the nucleus in an MDM2 

independent manner, with 

phosphorylation of Ser residues in 

this region inhibiting nuclear 

export 

(Zhang and 

Xiong, 

2001) 

C-terminal NES 340-351 Allows for the export of p53 from 

the nucleus in an MDM2 

independent manner, with 

tetramerization of the protein 

masking this signal sequence in 

turn facilitating nuclear retention  

(Stommel 

et al., 

1999) 

C-terminal nuclear 

localization sequences 

(NLS) 

NLSI: 316 - 325, 

NLSII: 369 – 375, 

NLSIII: 379 - 384  

Allows for the import of the p53 

protein into the nucleus 

(Shaulsky 

et al., 

1990) 
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This transcription factor is thought to have evolved from an ancient stress response factor 

in metazoans that specialized, over evolutionary time, to play a key role in the regulation 

of apoptosis, autophagy, glycolysis, cell repair, cell survival and cell differentiation 

(Amaral et al., 2010). The protein, as a tetramer, binds to DNA sequences in response to a 

variety of stimuli such as DNA damage. Although there exists a standard p53 DNA-

binding consensus sequence, as presented in table 1.3, non-canonical binding sites have 

also been documented; both sequence types have been identified within the coding and 

non-coding regions of their target genes but are commonly situated in the promoter regions 

(Beckerman and Prives, 2010). Once bound, p53 recruits a variety of transcription factors 

including, amongst others, transcription machinery components and chromatin remodelling 

factors to regulate the expression of its target genes – RNA polymerase II transcribed 

genes being the most well studied (Beckerman and Prives, 2010).  

 

The p53 protein is involved in the transcriptional activation of Bcl-2-family member genes, 

including pro-apoptotic BAX and p53 upregulated modulator of apoptosis (PUMA), and of 

factors that halt the cell-cycle, such as p21. Transcriptional repression by p53, although 

poorly understood, occurs for several anti-apoptotic factors including Bcl-2, Bcl-X, cyclin 

B1, survivin, and IAP (Amaral et al., 2010, Beckerman and Prives, 2010). Although the 

primary involvement of p53 in apoptosis is dependent on its transcriptional role, the 

protein also plays transcription-independent apoptosis-related roles, as seen in cells 

undergoing apoptosis in the absence of nuclei (Speidel, 2010). The cytoplasmic pool of 

p53, conjugated to a single ubiquitin residue, is held in an inactive state through Bcl-XL 

binding. This association is disrupted by PUMA, in response to stress, and leads to p53 

mitochondrial translocation, Bcl-2 anti-apoptotic factor inhibition, BAX oligomerization 

and BAK activation. The importance of the latter’s activation in apoptosis in vivo is 
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currently controversial (Speidel, 2010). The proline rich domain and DNA binding domain 

DBD of p53 are involved in these binding events (Speidel, 2010).   

 

1.4.3.2 SWIB/MDM2: the SWI/SNF complex and MDM2 

Although the function of many SWIB/MDM2 domains is unknown, all have been shown to 

have a high degree of structural similarity and the conservation of several residues 

(Bennett-Lovsey et al., 2002). In light of this, it has been postulated that the domains of the 

MDM2 protein and the SWI/SNF complex may share a common evolutionary history and 

in turn a similar functional mechanism – specifically protein-protein interactions (Bennett-

Lovsey et al., 2002). 

 

The SWI/SNF complex 

The SWI/SNF complex, a 2MDa multi-subunit nuclear assembly, was discovered in yeast 

and is an example of an ATP-dependent chromatin remodelling complex and 

transcriptional activator which binds to DNA and hydrolyses ATP in order to alter 

chromatin structure through nucleosome sliding and histone octamer insertion and/or 

ejection  (Wilson and Roberts, 2011). It has been shown to directly activate a limited 

number of specific genes, including heat shock genes such as heat shock protein 70 

(HSP70) (Sullivan et al., 2001, Corey et al., 2003, Wilson and Roberts, 2011). The ten 

polypeptide subunits of this complex are all interdependent in their function, with the 

SWI2/SNF2 protein being responsible for the observed DNA-dependent ATPase activity 

(Laurent et al., 1991, Cairns et al., 1994, Cote et al., 1994, Wilson and Roberts, 2011). 

Within yeast, as well as other eukaryotic organisms, SWI/SNF and SWI/SNF-related 

complexes have been identified experimentally and by bioinformatics. The complexes are 

composed of constant units, believed to be core functional units, as well as other 

apparently variable units, proposed to aid in facilitating a degree of specificity and/or 
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functionality (Elfring et al., 1994, Dingwall et al., 1995, Wang et al., 1996, Papoulas et al., 

1998, Wilson and Roberts, 2011). Although the SWI/SNF complex is often described as a 

transcriptional activator it has been shown in the yeast genome to transcriptionally repress 

a larger number of genes (Holstege et al., 1998). This dual activation and repression ability 

has also been documented in the human genome for this ATP-dependent nucleosomal 

remodeller (Schnitzler et al., 1998). In light of this the SWI/SNF complex should be seen 

as a transcriptional regulator facilitating a dynamic equilibrium between an activated and 

repressed state according to the cells needs (Schnitzler et al., 1998, Wilson and Roberts, 

2011).   

 

The complex has documented involvement in various stress response pathways. It is 

required for the activation and repression of specific genes, such as hsp70 genes, in 

response to a plethora of stimuli including exposure to elevated temperatures, heavy metals 

and metabolic inhibitors (de la Serna et al., 2000, Shivaswamy and Iyer, 2008). One core 

member of the yeast SWI/SNF complex is the SWI/SNF associated protein 73 

(SWP73p)/SNF12, which encodes a SWIB/MDM2 domain, and whose absence can inhibit 

transcriptional activation in a promoter- and activator-dependent manner (Cairns et al., 

1996). Deletion of Swp73p/SNF12 has been documented to produce temperature sensitive 

mutants, highlighting a strong involvement of this protein in the transcriptional regulation 

of heat stress response genes (Cairns et al., 1996). Homologues of this protein have been 

identified within the SWI/SNF related complexes of Drosophila and humans, Brahma-

associated protein 60 (BAP60) and Brahma-related gene-1 (BRG1) - associated factor 60 

(BAF60) respectively (Treich et al., 1998, Phelan et al., 1999, Wu et al., 2009, Wilson and 

Roberts, 2011).   
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Additionally, the human SWI/SNF complex has been shown to associate with and regulate 

the activities of p53. Direct p53 binding, facilitated at least in part, by the N-terminus of 

BAF60a, and not the originally predicted SWIB/MDM2 domain of the protein (Lee et al., 

2002, Oh et al., 2008). This interaction appears to elicit cell cycle halting, DNA repair and 

apoptosis induction and/or repression responses (Lee et al., 2002, Oh et al., 2008, Park et 

al., 2009).   

 

MDM2 

The mammalian MDM2 protein, originally identified in transformed mice fibroblasts, has 

several functional domains, as expressed in table 1.4, including a SWIB/MDM2 domain 

(Momand et al., 1992, Kussie et al., 1996). This protein shuttles between the nucleus and 

cytoplasm, moving into the nucleus under normal conditions in order to bind, commonly as 

an oligomer with itself or MDMX, directly to p53. This inhibits the transcriptional activity, 

enhances the nuclear export and accelerates the proteasomal degradation of p53 (figure 

1.3) (Chen et al., 1995, Roth et al., 1998, Wade et al., 2010). The MDM2 protein has 

intrinsic E3 ubiquitin-ligase activity which mediates ubiquitination and proteasome-

dependent degradation of p53, this process is dependent on the RING and acidic domains 

of the protein.  MDM2 oligomerization has been suggested to aid in the recruitment of E2 

factors for poly-ubiquitination (Honda et al., 1997, Kawai et al., 2003, Chan et al., 2006, 

Cheng et al., 2009, Wade et al., 2010). MDMX, also known as MDM4, is structurally 

related to MDM2, encoding a p53 binding domain and RING domain. It is believed that 

the two proteins arose due to  duplication from a single ancestral gene (Wade et al., 2010). 
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Table 1.4: Important functional domains of human MDM2.  

Name of region  Position 

(residues) 

Function  Reference 

N-terminal p53 binding 

domain 

18–101  SWIB/MDM2 domain, which 

binds to and inhibits p53 

(Chen et al., 1995, 

Kussie et al., 1996) 

Acidic domain 

 

237–288 Interacts with a variety of 

regulatory factors. Required for 

effective p53 ubiquitination and  

degradation 

(Argentini et al., 

2001, Kawai et al., 

2003, Wade et al., 

2010) 

C-terminal RING finger 

domain 

289-331 Provides E3 ubiquitin ligase 

activity and binds to specific 

RNA. Binds to MDMX to form a 

heterodimer, which stabilises 

MDM2.  

(Honda et al., 1997, 

Tanimura et al., 

1999) 

Nuclear export 

sequence 

197-205 Allows for export of MDM2, 

alone or bound to p53, from the 

nucleus.   

(Roth et al., 1998) 

Nuclear localization 

sequence 

181-185 Allows for import of MDM2 into 

the nucleus  

(Chen et al., 1995) 

C-terminal nucleolar 

localization sequence 

466-473 Allows for the import of the 

MDM2 protein into the nucleolus 

(Lohrum et al., 

2000) 

 

Under genotoxic conditions numerous processes occur to stabilize p53, one being the 

inhibition of its MDM2 association and subsequent degradation (figure 1.3) (Beckerman 

and Prives, 2010, Wade et al., 2010). Ataxia telangiectasia mutated (ATM), a 370kDa 

protein, is a Mn
2+

 dependent kinase belonging to the phosphatidylinositide 3-kinase protein 

family that is held in an inactive dimeric or oligomeric state under normal conditions but in 

response to appropriate stimuli, such as DNA damage, it undergoes activation by 

autophosphorylation of Ser
1981

 leading to dimer dissociation (Canman et al., 1998, 

Bakkenist and Kastan, 2003). ATM facilitates phosphorylation of various proteins 

involved in cell cycle regulation and apoptosis in response to ionizing radiation, such as 

p53 on Ser
15

 and MDM2 on Ser
386

 and Ser
429

 (Canman et al., 1998, Bakkenist and Kastan, 

2003, Cheng et al., 2009, Waning et al., 2010). Phosphorylation of p53 on Ser
15

 stabilizes 

it by reducing its contact with MDM2, while phosphorylation of MDM2 results in its 

inability to poly-ubiquitinate p53 and oligomerize (Cheng et al., 2009, Waning et al., 

2010). An additional level of regulation also occurs in response to DNA damage where 
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MDM2 is phosphorylated on Tyr
276

, by c-ABL, which activates its association with the 

alternative reading frame tumour suppressor (p14
ARF

) and in turn p14
ARF

-dependent 

nucleolar re-localization, further inhibiting a MDM2-p53 association (Lohrum et al., 2000, 

Dias et al., 2006). 

 

 

Figure 1.3: Diagrammatic representation of the interaction between MDM2 and p53 under 

normal conditions and during apoptosis. 

Based on Chen et al., 1995; Canman et al., 1998; Roth et al., 1998; Lohrun et al., 2000; Bakkenist 

and Kastan, 2003; Chan et al., 2006; Dias et al., 2006; Cheng et al., 2009; Beckerman and Prives, 

2010; Wade et al., 2010; Waning et al., 2010.  

Under normal conditions MDM2 binds and facilitates the nuclear export, ubiquitination and 

proteasome-dependent degradation of p53 (orange arrow). In response to an apoptosis stimulus, 

MDM2 is phosphorylated by ataxia telangiectasia mutated (ATM) (red arrow), on Ser386 and Ser429, 

and c-ABL (blue arrows), on Tyr276, resulting in its inactivation and nucleolus import respectively. 

Nucleolar import requires alternative reading frame tumour suppressor (p14ARF) binding (brown 

arrow). ATM phosphorylates p53 (red arrow), on Ser15, allowing for its stabilization and 

subsequent regulation of transcription.  
 

Movement of MDM2 between the nucleus and cytoplasm has been suggested to regulate 

translation as well, where mRNA sequence export from the nucleus could be regulated 

through interactions with the MDM2 RING finger domain. This is believed to regulate 
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translation of cellular growth proteins and in turn the cell’s growth and cycling (Roth et al., 

1998).  

 

1.5 Programmed cell death in unicellular organisms  

The concept of PCD amongst unicellular organism has been a controversial subject 

although both apoptotic- and autophagic-like features have been ascribed to numerous 

unicellular eukaryotes as well as prokaryotes (Ramsdale, 2012, Proto et al., 2013, Bayles, 

2014). Cornillon and colleagues have suggested that the PCD phenomenon may have 

arisen before the emergence of multicellularity (Cornillon et al., 1994). This concept has 

received support by means of bioinformatic analysis and the identification of PCD markers 

in unicellular life forms, although it brings into question the original reason for the 

emergence of PCD (Cornillon et al., 1994, Zangger et al., 2002, Nedelcu, 2009).  

 

A good example of the early origin of PCD tools is p53. The identification a p53-like 

protein family member within unicellular eukaryotes, such as Entamoeba histolytica and 

Monosiga brevicollis, indicates that this protein family may be present in all extant 

eukaryotic organisms, in some form, if not lost during the evolution of a particular lineage, 

phylum or species (Mendoza et al., 2003, King et al., 2008, Lu et al., 2009, Belyi et al., 

2010). Duplication of the ancestral stress response factor is believed to have resulted in the 

three distinct family members – p53, p63 and p73 documented in higher vertebrates 

(Amaral et al., 2010, Belyi et al., 2010). The most well conserved domain amongst all the 

family members is the DBD, while significant diversification has been documented among 

the trans-activation and tetramerization domains, as well as the emergence of an additional 

domain, the sterile alpha-motif domain, within the p63 and p73 proteins (Lu et al., 2009). 

Furthermore, amongst vertebrates and invertebrates the functional role of the DBD is 
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broadly conserved, highlighting a conserved role in death regulation (Lu et al., 2009). 

Thus, current evidence suggests that the original role of the p53-ancestor was that of stress 

response and/or apoptotic death regulation. Meanwhile, its involvement in cell cycle 

regulation only appeared later in evolutionary history with the emergence of the vertebrate 

lineage. This highlights the fact that not all PCD machinery components are necessarily 

functionally conserved within all eukaryotes (Derry et al., 2001, Lu et al., 2009, Amaral et 

al., 2010). 

 

It has been suggested that the PCD machinery of multicellular organisms was originally 

recruited from proteins involved in other cellular functions, such as differentiation, which 

proceeded to specialize according to the organism’s requirements. This theory has gained 

support due to the identification of many PCD homologues, in an array of species, 

involved in non-PCD activities (Dick and Megeney, 2013). Additionally, the apparent 

linkage between genes for cell cycle regulation and cell death in various unicellular and 

multicellular organisms supports the idea that the two systems are interlinked and, in part, 

worked together to facilitate appropriate cellular damage responses (Ameisen, 1996, 

Welburn et al., 1997, Dick and Megeney, 2013). The precise driving forces behind the 

evolution and maintenance of PCD itself, as a cellular strategy, are poorly understood. It 

has been suggested that altruism, amongst clonal cells, may be a key factor or that PCD 

provided a mechanism for the development of multi-cellularity (Ramsdale, 2012, Dick and 

Megeney, 2013).  

 

The study and comparison of PCD between unicellular and multicellular life forms should 

be conducted with the following in mind:  
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1) A degree of deviation from the metazoan machinery is anticipated amongst 

unicellular organisms, as genes would be lost, altered or gained during evolution to 

facilitate adaptation in biology, lifestyle and ecology (Nedelcu, 2009). For example, 

bioinformatic analysis has identified two families of caspase-like genes, 

paracapases and metacaspases, within the genomes of numerous eukaryotes, 

ranging from animals to protozoa (Uren et al., 2000). Although both gene sets 

encode a conserved cysteine and histidine dyad required for cysteine protease 

functionality; they carry a diverse range of domains not typically associated with 

classical caspases. It was suggested that caspases, paracaspases and metacaspases 

all originated from a common ancestor, playing a role in stress response pathways, 

subsequently diverging and specializing during evolution (Uren et al., 2000). The 

metacaspase family has been proven to play a PCD-related execution role in yeast 

and plants, although this feature has not been proven in other unicellular eukaryotes 

that lack classical caspases, such as protozoan parasites (Dick and Megeney, 2013, 

Proto et al., 2013).  

2) Organisms may employ unique machinery to facilitate death. Bacteria, for example, 

utilize a unique toxin–antitoxin system which results in their demise in response to 

appropriate triggers which is not seen in metazoans (Sat et al., 2001, Bayles, 2014).  

3) Differences in cellular organisation and structure between various organisms may 

influence phenotypic expression. Dinoflagellates, for example, show a DNA 

fragmentation PCD response linked to limited carbon dioxide exposure and 

oxidative stress, although this pattern is distinct from the classical DNA laddering 

pattern. This difference is due to these organisms lacking the typical nucleosomal 

arrangement of their chromosomal material (Vardi et al., 1999).  
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1.5.1 PCD and Plasmodium 

Ameisen and colleagues were the first to hypothesise that the protozoan parasites may 

undergo PCD, after documenting apoptotic features in Trypanosoma cruzi (Ameisen et al., 

1995). In 1997 apoptosis-like phenotypes were linked to P. falciparum and P. yoelli, with 

Picot et al. (1997) postulating that the previously, well documented ‘crisis form’ may 

simply be a PCD phenotype (Picot et al., 1997, Srivastava et al., 1997). The term ‘crisis 

form’ has existed in literature for decades, commonly used to define a retardation in 

growth and development, loss of synchronicity and the ultimate death of asexual blood 

stage parasites, in response to a variety of conditions (Jensen et al., 1982, Nkuo and Deas, 

1988). Morphologically the phenomenon presents with vacuolization, abnormal stunted 

size, poorly stained cytoplasm and irregular nuclear divisions (Taliaferro and Taliaferro, 

1944) – all of which are typical PCD-associated features. This phenotype has been 

documented under non-limiting nutrient and RBC conditions within cultured P. falciparum 

parasites, suggesting that it is a natural phenomena of the asexual life cycle (Mutai and 

Waitumbi, 2010).  

 

Regulation of P. falciparum parasitaemia levels in both the human and mosquito host, to 

prevent premature host death and  ensure effective transmission, has been hypothesised as 

parasite self-induced PCD (Deponte and Becker, 2004, Hurd and Carter, 2004). This idea 

would be supported evolutionarily as a form of altruism, whereby the death of some of the 

clonal individuals may facilitate resource availability and host survival to bring about 

propagation and transmission of its kin (Dick and Megeney, 2013, Proto et al., 2013). 

There is some question as to whether this selection pressure would be valid in a high 

transmission area, as infections would commonly be mixed and thus benefit to all strains 

may not necessarily be ensured (Baton et al., 2008). A non-altruistic mechanism was 



 

Investigating the Molecular Participants of Programmed Cell Death in Plasmodium falciparum |  29 

 

| 
In

tr
o

d
u

ct
io

n
 

suggested by Dick and Megeney (2013) in the Trypanosoma and Leishmania. They 

proposed that parasitaemia is regulated by individual cells utilizing paracrine signals to 

activate a PCD-like pathway in circulating neighbour cells, as a form of competition (Dick 

and Megeney, 2013). This form of population density regulation could be employed by P. 

falciparum as well, but would require an as of yet undefined means of quorum sensing (Al-

Olayan et al., 2002, Deponte and Becker, 2004, Mutai and Waitumbi, 2010).  

 

Features of PCD have been documented in various Plasmodium species, at different stages 

of the parasite life cycle, in response to a plethora of stimuli, as described in tables 1.5 and 

1.6 (Deponte and Becker, 2004, Engelbrecht et al., 2012). As documented in table 1.5 the 

intraerythrocytic life stages of P. falciparum have shown facets of apoptotic, autophagic 

and necrotic death either individually or simultaneously suggesting that this stage of the 

parasite’s life cycle may be associated with a mixed PCD-phenotype (Kwiatkowski, 1989, 

Porter et al., 2008, Totino et al., 2008, Engelbrecht et al., 2012, Engelbrecht and Coetzer, 

2013). Evaluation of P. falciparum and P. berghei ookinetes, as documented in table 1.6, 

has also demonstrated several apoptosis markers. 

 

It is important to note that much controversy exists in relation to these markers, which may 

be due to the lack of uniformity in strain, life stage, species, stimuli type, stimuli duration 

and/or stimuli level used during analysis, and may explain the absence of one or all of 

these features during evaluation (Nyakeriga et al., 2006, Le Chat et al., 2007, Ali et al., 

2010, Engelbrecht et al., 2012).  
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Table 1.5: Markers of PCD in various intraerythrocytic P. falciparum life stages.  

PCD Marker PCD-like 

phenotype 

Reference 

Caspase-like activity Apoptosis (Meslin et al., 2007, Ch'ng et al., 2010) 

Chromatin condensation Apoptosis (Kwiatkowski, 1989, Porter et al., 2008, Arambage 

et al., 2009) 

Cytoplasmic condensation Apoptosis (Porter et al., 2008) 

DNA fragmentation Apoptosis (Picot et al., 1997, Meslin et al., 2007, Oakley et 

al., 2007, Totino et al., 2008, Ch'ng et al., 2010, 

Mutai and Waitumbi, 2010, Engelbrecht and 

Coetzer, 2013) 

Erythrocyte membrane 

blebbing 

Apoptosis (Deponte and Becker, 2004) 

Erythrocyte 

phosphatidylserine 

externalization 

Apoptosis (Engelbrecht and Coetzer, 2013) 

Loss of mitochondrial 

membrane potential 

Apoptosis (Srivastava et al., 1997, Meslin et al., 2007, Porter 

et al., 2008, Totino et al., 2008, Ch'ng et al., 2010, 

Mutai and Waitumbi, 2010, Engelbrecht and 

Coetzer, 2013) 

Cytoplasmic vacuolization Autophagy (Porter et al., 2008, Totino et al., 2008, 

Engelbrecht and Coetzer, 2013) 

Organelle lysis Necrosis (Porter et al., 2008) 

Organelle swelling Necrosis (Porter et al., 2008) 

 

Table 1.6: Markers of apoptosis in the P. berghei and P. falciparum ookinete life stage.  

Apoptotic Marker 
Plasmodium 

species 
Reference 

DNA fragmentation 
P. berghei and  

P. falciparum 
(Al-Olayan et al., 2002, Arambage et al., 2009) 

Chromatin condensation P. berghei (Al-Olayan et al., 2002, Ali et al., 2010) 

Ookinete 

phosphatidylserine 

externalization 

P. berghei 
(Al-Olayan et al., 2002, Arambage et al., 2009, Ali 

et al., 2010) 

Caspase-like activity P. berghei (Arambage et al., 2009, Ali et al., 2010) 

Loss of mitochondrial 

membrane potential 
P. berghei (Arambage et al., 2009) 

Apoptotic bodies P. berghei (Al-Olayan et al., 2002) 
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1.5.1.1 Induction of a PCD-like phenotype 

Although a degree of inconsistency exists in terms of the detection of a PCD-like 

phenotype, numerous stimuli have been documented as induction agents, as presented in 

table 1.7. Of these stimuli only three represent natural agents to which the parasite would 

normally be exposed to during its life cycle - febrile temperature mimics, reactive oxygen 

species and reactive nitrogen species. The use of these may provide more information 

about the naturally occurring phenotype(s) exhibited by the parasite at different life stages. 

Additionally, within the intraerythrocytic life stages of P. falciparum, PCD-markers have 

been documented in the absence of any discrete stimuli suggesting the possibility of death 

induction by means of quorum sensing (Al-Olayan et al., 2002, Deponte and Becker, 2004, 

Mutai and Waitumbi, 2010). 

 

Table 1.7: Factors documented to induce a PCD-like phenotype within various Plasmodium 

species. 

Possible Inducers of PCD-like 

features 

Plasmodium 

species 
Life stage Reference 

Anti-malarial drugs such as 

chloroquine, staurosporine & 

atovaquone 

P. falciparum Intraerythrocytic 

(Srivastava et al., 

1997, Meslin et al., 

2007, Totino et al., 

2008, Ch'ng et al., 

2010) 

Apoptosis inducers such as etoposide P. falciparum Intraerythrocytic 
(Meslin et al., 

2007) 

Febrile temperature/heat shock P. falciparum Intraerythrocytic 

(Oakley et al., 

2007, Engelbrecht 

and Coetzer, 2013) 

Reactive nitrogen species such as 

nitric oxide 

P. falciparum 
Intraerythrocytic 

 

(Totino et al., 

2008) 

P. berghei Ookinete (Ali et al., 2010) 

Reactive oxygen species such as 

hydrogen peroxide and superoxide 

anion 

P. falciparum 
Intraerythrocytic 

 

(Deponte and 

Becker, 2004) 

P. berghei Ookinete (Ali et al., 2010) 

 

Several studies have considered the effects of elevated temperatures, 38.5C and above, 

which mimic fever in malaria patients, on the growth and development of cultured 

parasites. Although some discrepancies exist in literature, for reasons discussed above, 
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elevated temperatures appeared to significantly inhibit the development and growth of all 

asexual intraerythrocytic parasite stages, as well as exhibiting several features of necrosis 

and/or PCD, with the effects apparently more severe in late trophozoites and schizonts 

(Kwiatkowski, 1989, Long et al., 2001, Oakley et al., 2007, Porter et al., 2008, 

Engelbrecht and Coetzer, 2013). These late life stages have also been found to show a 

drastic reduction in metabolic activity under these conditions (Porter et al., 2008). These 

phenomena are hypothesized to reduce the host’s parasitic burden and synchronize the 

parasite population (Kwiatkowski, 1989, Long et al., 2001, Porter et al., 2008, Engelbrecht 

and Coetzer, 2013).  

 

Reactive oxygen and nitrogen species are readily produced in the mosquito midgut lumen 

and epithelia by blood bolus digestion and nitric oxide synthetase induction, in response to 

the presence of blood and parasites (Hurd et al., 2006). Research on these two reactive 

species has focused solely on P. berghei ookinetes, which have demonstrated apoptosis 

markers in response to exposure (Ali et al., 2010). No work has determined the effects in 

the corresponding P. falciparum life stages but it is likely that a similar response would be 

noted.  

   

1.5.1.2 PCD participants 

Although numerous biochemical and morphological markers of PCD have been identified 

within the malaria parasite, as discussed earlier, no dedicated proteolytic and nuclease 

machinery or pathways have been proven experimentally. Thus far only a few homologues 

of metazoan PCD genes have been identified by bioinformatics within the Plasmodium 

genome (Nedelcu, 2009, Proto et al., 2013).  

 

Metacapsases and calpain 
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Work by various groups using caspase inhibitors, as highlighted in tables 1.5 and 1.6, 

supports the involvement of caspase-like proteins in the PCD phenotypes of P. falciparum 

and P. berghei (Al-Olayan et al., 2002, Ch'ng et al., 2010). The P. falciparum genome 

encodes three metacaspase and metacapase-like proteins, PF3D7_1354800 (metacaspase 

1), PF3D7_1416200 (metacaspase-like protein 2) and PF3D7_1438400 (metacaspase-like 

protein 3); with P. berghei similarly encoding three metacaspase and metacapase-like 

proteins (Aurrecoechea et al., 2009).  

The P. falciparum metacaspase 1 candidate has been documented to have ubiquitous 

protein and mRNA expression in the sexual life stages but a parasite density-dependent 

variation in asexual stages (Mutai and Waitumbi, 2010). This fluctuation could be a 

contributing factor towards the absence or presence of caspase-like detection between 

studies and the efficiency of caspase inhibitors (Al-Olayan et al., 2002, Nyakeriga et al., 

2006, Meslin et al., 2007, Ch'ng et al., 2010). This metacaspase homologue has further 

been shown to be a calcium-dependent, arginine-specific protease. It is able to induce 

death when expressed in yeast cells under oxidative stress conditions, but its role within P. 

falciparum was not assessed (Meslin et al., 2011).  

Knocking out the P. berghei metacaspase MCA1 gene failed to show any effect on 

ookinete PCD (Le Chat et al., 2007). It is possible that other metacaspase-like genes 

(MCA2 and MCA3) may play a redundant role, masking the involvement of MCA1 (Le 

Chat et al., 2007). 

 

Although proteases have been implicated in parasite PCD, as explained above, the 

utilization of broad spectrum protease inhibitors does not target caspase-like homologues 

alone but rather any cysteine proteases (Al-Olayan et al., 2002, Meslin et al., 2007, Ch'ng 

et al., 2010). The involvement of clan CA proteases, such as cathepsin and calpain-like 
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proteases has been suggested in P. falciparum intraerythrocytic PCD triggered by 

chloroquine (Ch'ng et al., 2010), since the Leishmannia homologues have been 

documented to play a death role (Proto et al., 2013). Calpains are calcium-dependent thiol 

proteases which participate in various cellular activities, including cell death in higher 

eukaryotes (Smith and Schnellmann, 2012). In the P. falciparum genome a single calpain 

homologue exists, PF3D7_1362400. This nucleolar protein has been shown to play a role 

in cell cycle regulation but its role in PCD remains elusive (Deponte and Becker, 2004, 

Aurrecoechea et al., 2009, Russo et al., 2009a, Russo et al., 2009b). 

 

Endonuclease 

The absence of an endonuclease G homologue within Plasmodium, but its presence in 

several other Apicomplexa species, suggests its deletion from the parasite during evolution. 

The Zinnia endonuclease 1 protein, for which P. falciparum has a single homologue, is 

suggested to perform the role of endonuclease G during PCD. This protein has not been 

studied within the parasite (Kaczanowski et al., 2011).  

 

The mitochondrion  

The cytoplasm of the P. falciparum parasite contains only a single mitochondrion (Van 

Dooren et al., 2005, Torrentino-Madamet et al., 2010). During the P. falciparum 

erythrocytic development from a trophozoite into a schizont, the small mitochondrion, 

lacking cristae, elongates and branches but only undergoes fission to produce several 

independent mitochondria very late in schizogony, during cytokinesis. This process allows 

each new merozoite to contain a single mitochondrion (Van Dooren et al., 2005, 

Torrentino-Madamet et al., 2010). During gametocytogenesis, the single mitochondrion 

branches and elongates, forming dense clusters around the small apicoplast (Okamoto et 
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al., 2009). This stage of the parasite’s life cycle is also associated with the formation of 

cristate structures in the inner mitochondrial membrane; suggesting enhanced metabolic 

activity possibly as a preparation for entrance into the oxygen rich midgut of the mosquito 

(Torrentino-Madamet et al., 2010).  

 

All the proteins required for a functional respiratory chain have been identified. They are  

distributed across the various genomes of the parasite, but mainly located in the nuclear 

genome, and maybe responsible for the maintenance of an electropotential gradient across 

the mitochondrial inner membrane, and canonical oxidative TCA cycle, the latter’s 

importance dependent on the life stage (Torrentino-Madamet et al., 2010, MacRae et al., 

2013). Additionally the mitochondrion has been linked with various other metabolic 

pathways, such as de novo pyrimidine synthesis, iron-sulphur cluster biosynthesis, de novo 

ubiquinone (CoQ) synthesis, and PCD (Vaidya and Mather, 2009). Several studies, as 

presented in tables 1.5 and 1.6, have shown a loss in mitochondrial potential, a common 

PCD marker, in the Plasmodium genus. The downstream participants required for 

mitochondrial-related PCD have not been documented within the genus and thus the 

specific contribution of the mitochondrion to parasite death is uncertain.  

 

1.5.1.3 Targeted identification of P.falciparum PCD homologues  

In Professor Coetzer’s unit, Dr Durand conducted a targeted PCD homologue search 

within the P. falciparum genome. Using novel bioinformatics procedures, homologues of 

the metazoan ATM, p53, SWIB/MDM2, CR6, IAP and caspase genes were identified 

(Coetzer et al., 2010). Of importance to this study was the identification of a metazoan p53 

(PFE1120w, currently known as PF3D7_0522400) and SWIB/MDM2 domain (PFE0910w, 

currently known as PF3D7_0518200) homologues, the latter being subsequently annotated 
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within PlasmoBD as a SWIB/MDM2 domain containing protein. Another SWIB/MDM2 

homologue (PF3D7_0611400) has also been annotated on PlasmoDB (Aurrecoechea et al., 

2009). Laboratory evidence is now required to determine if these homologues act in a 

manner similar to their metazoan counterparts. Currently there are no true functional links 

established between any parasite PCD proteins and their metazoan homologues. Thus, 

laboratory evidence is now required to determine if these homologues act in a manner 

similar to their metazoan counterparts. They may participate in a PCD process that is 

unique to the parasite or Apicomplexa members or may play a role unrelated to cell death.    

 

1.6 Aim and objectives  

This study aims to investigate and characterize P. falciparum proteins that may be involved 

in PCD.  

The objectives of this study are as follows: 

1) SWIB/MDM2 domains 

 Clone the SWIB/MDM2 domains of PF3D7_0518200 (designated as PfMDM2) 

and PF3D7_0611400 (designated as PfSWIB). 

 Express recombinant PfMDM2 and PfSWIB proteins. 

 Identify protein binding partners via biopanning against P. falciparum phage 

display libraries.  

 Confirm the protein-protein interactions identified by biopanning.  

 Create transgenic parasites expressing GFP-tagged forms of PfMDM2 and 

PfSWIB.  

 Determine the cellular localization of these fluorescent proteins under normal 

and PCD conditions. 
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2) p53 

 Clone the DNA binding domain (DBD) and tetramerisation domain of 

PF3D7_0522400 (designated as Pfp53)  

 Express the domains as recombinant proteins 

 Assess the function of the recombinant domains  
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2 MATERIALS AND METHODS 

2.1 Bioinformatic analysis  

2.1.1 Gene and protein sequence acquisition, multiple sequence alignments and 

p53-consensus sequence identification 

The nucleotide sequences of the P. falciparum genes and the corresponding protein amino 

acid sequences were acquired from PlasmoDB: The Plasmodium genome resource 

database (www.plasmodb.org) (Aurrecoechea et al., 2009). Amino acid sequences of 

proteins containing SWIB/MDM2 domains, as well as p53 or p53-like proteins were 

collected from a variety of prokaryotic and eukaryotic species, using the NCBI protein 

database (http://www.ncbi.nlm.nih.gov/). All data were saved in fasta format and various 

multiple sequence alignments were performed using on-line algorithms from the European 

Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI) 

(http://www.ebi.ac.uk/Tools/sequence.html) (European Bioinformatics Institute, 2012) and 

the Computational Biology Research Centre (CBCR) 

(http://MAFFT.cbrc.jp/alignment/server/) (Computational Biology Research Centre, 2012): 

 EMBL-EBI MAFFT v6.850b – using the strategy L-INS-i, a blosum62 matrix, gap-

opening penalty of 1.53 and gap-extension penalty of 0.123 

 EMBL-EBI MUSCLE 3.8   

 EMBL-EBI CLUSTALw2 2.1 – a Gonnet matrix, gap-opening penalty of 10 and gap-

extension penalty of 0.20 

 EMBL-EBI CLUSTAL OMEGA  

 CBCR MAFFT – using the strategy L-INS-i, a blosum62 matrix, gap-opening penalty 

of 1.53 and gap-extension penalty of 0  

Multiple sequence alignments were expressed graphically using BioEdit Sequence 

Alignment Editor (Hall, 1999). Percentage identity and similarity was calculated using 

EMBOSS Needle (http://www.ebi.ac.uk/Tools/psa/emboss_needle/).   

http://www.plasmodb.org/
http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/Tools/sequence.html
http://mafft.cbrc.jp/alignment/server/
http://www.ebi.ac.uk/Tools/psa/emboss_needle/
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The metazoan p53 consensus sequence was defined as PuPuPuCWWGPyPyPyN 

PuPuPuCWWGPyPyPy where  N represents a region of 0 to 13bp of random nucleotides 

(El-Deiry et al., 1992). A p53-like sequence was identified in Entamoeba histolytica 

(AGAAATTCATGGGCTAGTGG), although it did deviate from the general form 

(Mendoza et al., 2003). The P. falciparum genome was searched, using the DNA motif 

search function on PlasmoDB, for p53-consensus sequences, as well as variations thereof 

and for the putative p53-consensus sequence identified in the E. histolytica genome. 

 

2.1.2 Protein structural analysis and modelling  

2.1.2.1 Secondary structure predictions 

The secondary structures of the P. falciparum proteins were assessed by means of the 

online Swiss Model Workspace Secondary Structure Prediction and Domain Assignment 

program (Guex and Peitsch, 1997, Jones, 1999, Arnold et al., 2006); the Protein 

Homology/analogy Recognition Engine V 2.0 (Phyre2) online server (Kelley and 

Sternberg, 2009); the PSIPRED v3.0 online server (Jones, 1999, Buchan et al., 2010) and 

the SSpro v 4.5 online server (Cheng et al., 2005). The likelihood of the presence of a 

particular secondary structure (alpha helix, beta-sheet or coil) within the proteins was 

determined by comparing the various secondary structure predictions within the BioEdit 

Sequence Alignment Editor. Areas were deemed to probably fold into a specific secondary 

structure if three or more of the servers predicted the same structure for the region. Regions 

presenting discordance between the different algorithms were classified as a coiled 

structure, often used by modelling programmes to depict uncertain topologies.  

 

2.1.2.2 Tertiary structure predictions 

Structural modelling of the proteins was conducted with the aid of the following online 

servers – Swiss Model Workspace Automatic Modelling Mode (Schwede et al., 2003, 
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Arnold et al., 2006), Phyre2 (Kelley and Sternberg, 2009) and ESyPred3D Web Server 1.0 

(Lambert et al., 2002). For structural modelling against a crystal structure template, the 

putative p53 DNA binding was modelled upon the Homo sapiens p53 and Caenorhabditis 

elegans Cep-1 DNA binding domain crystal structures (PDB id: 2FEJ and 1T4W 

respectively) (Huyen et al., 2004, Pérez-Cañadillas et al., 2006); the putative p53 

tetramerisation motif was modelled upon the H. sapiens p53 tetramerisation motif crystal 

structure (PDB id: 1AIE chain A) (Mittl et al., 1998); and the putative SWIB/MDM2 

proteins were modelled upon the Xenopus laevis MDM2 SWIB/MDM2 domain (PDB id: 

1YCQ chain A) (Kussie et al., 1996) and the Mus musculus SWI/SNF-related matrix-

associated actin-dependent regulator of chromatin subfamily D member 1 SWIB/MDM2 

domain (PDB id:1UHR). Graphical display, orientation and colouring of various PDB files 

were conducted using the Eduction-Use-Only PyMOL Molecular Graphics System 

(Schrodinger, 2010).  The generated three dimensional models were assessed by means of 

the QMEAN Server (http://swissmodel.expasy.org/qmean/cgi/index.cgi) for estimation of 

the quality of the models (Benkert et al., 2008, Benkert et al., 2009).  

 

2.1.2.3  pI, molecular mass determination and solubility predictions  

The pI and molecular mass of the various P. falciparum proteins and domains were 

calculated with aid of ExPASy compute pI/MW program (Bjellqvist et al., 1993, Bjellqvist 

et al., 1994, Gasteiger et al., 2005) (http://web.expasy.org/compute_pi/). The solubility of 

the malaria proteins, expressed as recombinant proteins in E. coli, was calculated with the 

Recombinant Protein Solubility Prediction program provided online by the University of 

Oklahoma (http://www.biotech.ou.edu/) (Wilkinson and Harrison, 1991). 

 

http://www.biotech.ou.edu/
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2.1.3 Assessment of cellular localization 

Various online prediction algorithms were employed to determine the likely cellular 

structure to which the proteins would localize. These included cNLS Mapper (http://nls-

mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) (Kosugi et al., 2009a, Kosugi et al., 

2009b); MitoProt II - v1.101 (http://ihg.gsf.de/ihg/mitoprot.html) (Claros and Vincens, 

1996); NucPred (http://www.sbc.su.se/~maccallr/nucpred/) (Brameier et al., 2007); PredSL 

(http://hannibal.biol.uoa.gr/PredSL/); PSORT Prediction (http://psort.hgc.jp/form.html); 

PREDOTAR V1.03 (http://urgi.versailles.inra.fr/predotar/predotar.html); PlasmoDB - 

PlasmoAP Results (http://v4-4.plasmodb.org/restricted/PlasmoAPcgi.shtml) (Foth et al., 

2003); PATS Version 1.2.1 (http://gecco.org.chemie.uni-frankfurt.de/pats/pats-index.php) 

(Waller et al., 1998, Waller et al., 2000, Zuegge et al., 2001); PlasMit 

(http://gecco.org.chemie.uni-frankfurt.de/plasmit/) (Bender et al., 2003) and iPSORT 

Prediction (http://ipsort.hgc.jp/).  

 

2.2 Culturing of 3D7 Plasmodium falciparum parasites 

2.2.1 Red blood cell preparation   

The blood employed for culturing was freshly collected from human volunteers in 6ml acid 

citrate dextrose tubes. After centrifugation in a 5702R Eppendorf centrifuge at 2500rpm 

for 15 minutes at 4°C, the plasma and buffy coat were removed by aspiration using a 

vacuum pump, in a sterile hood. The remaining packed red blood cell (RBC) layer was 

washed in sterile PBS (10mM Na2HPO4, 1.5mM KH2PO4, 137mM NaCl, 2.7mM KCl, pH 

7.4), centrifuged as described before and any residual plasma and buffy coat was 

subsequently removed by aspiration. This washing procedure was repeated twice and the 

washed erythrocytes were stored at 4°C, under sterile conditions for up to 14 days, in a 1:1 

ratio in incomplete medium (79.45g RPMI in 5l with 250mg Gentamycin and 250mg 

Hypoxanthine, sterilized by filtration through a VacuCap® 90PF 0.8/0.2μm Filter Unit).  

http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
http://ihg.gsf.de/ihg/mitoprot.html
http://www.sbc.su.se/~maccallr/nucpred/
http://gecco.org.chemie.uni-frankfurt.de/plasmit/
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 Laboratory chemicals and equipment and their suppliers can be found in Appendix E. 

 

2.2.2 The culturing technique  

Live cultures of the 3D7 P. falciparum parasite strain were donated towards the project by 

various members of the Plasmodium Molecular Research Unit (PMRU). Culturing of the 

3D7 strain was conducted according to a modified version of the continuous culturing 

method (Trager and Jensen, 1976). In a sterile flow hood, parasitized red blood cells 

(pRBC) were dispensed into sterile culture flasks and maintained in fresh RBC, at a 5% 

haematocrit, and complete medium (0.5% Albumax and 0.2% NaHCO3 in incomplete 

medium) at 37°C. The cultures, under sterile conditions, were gassed with a mixture of 5% 

carbon dioxide, 2% oxygen and 93% nitrogen and then sealed. On a daily basis, for each 

flask, the medium was removed by aspiration and replaced, along with the gaseous 

atmosphere. The specific volumes and gassing period for 25cm
3 

(small), 80cm
3
 (medium) 

and 175cm
3
 (large) flasks are presented in table 2.1 below. The parasitaemia of the cultures 

was maintained at a level of 10% or less and when necessary cultures were divided or 

moved to a larger culture flask.  

 

Table 2.1: Culture flask volumes. 

 Small Medium Large 

Flask size (cm
3
) 25 80 175 

Total culture volume (ml) 5 20 35 

Volume of complete medium (ml) 4.50 18 32.5 

1:1 RBC (to give a haematocrit of 5%) (ml) 0.50 2.0 3.5 

Gassing period (minutes) 1 2 3-5 

 

The parasites were assessed by means of a pRBC smear, stained using the Giemsa-based 

staining system – Rapi-Diff Staining Kit, according to the manufacturer’s specifications. 

Slides were viewed under an oil immersion Zeiss: Axiostar plus - Transmitted Light 

Microscope at 1000x magnification. On the blood smear slides five fields, each with more 
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than 100 erythrocytes, were examined and quantified in terms of their infected and 

uninfected erythrocytes and used to calculate the overall average percentage parasitaemia 

within the culture.   

 

% parasitaemia =   
Number of infected erythrocytes

 Number of infected and uninfected erythrocytes
 x 100 

 

2.2.3 Sorbitol treatment for culture synchronisation 

Synchronisation of P. falciparum was facilitated by sorbitol treatment (Lambros and 

Vanderberg, 1979). The increased permeability of late stage infected RBC makes them 

more susceptible to sorbitol induced lysis, compared to early stage infections (Lambros 

and Vanderberg, 1979).  

 

A 5ml culture of at least 3% ring stage parasites was transferred into a 15ml Nunc tube and 

centrifuged in a 5702R Eppendorf centrifuge at 2500rpm for 5 minutes at room 

temperature. The supernatant was aspirated and ten volumes of 5% D-sorbitol were added 

to the pelleted RBC. After incubation at room temperature for 20 minutes the tube was 

inverted slowly and then centrifuged as before. The supernatant was removed and replaced 

with complete medium and washed RBC to create a fresh 5ml culture. The culture was 

then transferred into a 25cm
3
 culture flask, gassed, sealed and incubated at 37°C as 

described in section 2.2.2.  

 

2.2.4 Freezing of the cultures  

Parasite cultures were frozen according to a slightly modified form of a previously 

described protocol (Normark, 2008). Two 5ml cultures, having a ring stage parasitaemia of 

more than 3% were combined and frozen as a glycerol stock. The cultures were 

centrifuged in a 5702R Eppendorf centrifuge at 2500rpm for 5 minutes at room 
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temperature and the supernatant was removed. The packed RBC and pRBC were 

resuspended in a 2ml cryotube in a 1:1 ratio of 60% sterile freezing solution (60% glycerol 

in freezing PBS (123mM NaCl, 83mM Na2HPO4, 32mM KH2PO4, pH 7.4)), allowed to 

stand for 5 minutes and then stored in liquid nitrogen. 

 

2.2.5 Thawing of frozen cultures  

Frozen parasite cultures were thawed according to a slightly modified form of a previously 

described protocol (Blomqvist, 2008). A frozen culture was warmed at 37C in its 

cryotube. Once thawed, 100l of 12% NaCl was added and the suspension was transferred 

to a 15ml Nunc tube containing 9ml of 1.6% NaCl. After gentle mixing, the solution was 

centrifuged in a 5702R Eppendorf centrifuge at 1500rpm for 5 minutes at room 

temperature and the supernatant was removed. The pellet was resuspended in 9ml of a 

0.9% NaCl and 0.2% glucose solution and centrifuged as before. After removal of the 

supernatant the pellet was transferred into a sterile 25cm
3
 flask with complete medium, 

with an extra 500μl of 5% Albumax added, and 500μl prepared RBC, gassed, sealed and 

incubated at 37°C as described in section 2.2.2. The addition of extra Albumax was 

maintained until the culture exceeded a 1% parasitaemia.   

 

2.3 Genomic DNA isolation 

2.3.1 Extraction of genomic DNA from P. falciparum 

Genomic DNA isolation was performed on 3D7 P. falciparum cultures with roughly 4% 

late trophozoite and/or schizont parasitaemia based on the hypotonic lysis method 

(Cowman et al., 2008). These stages were used to maximize DNA yield due to the large 

amount of genomic material associated with these stages (Tilley et al., 2011).   

 



 

Investigating the Molecular Participants of Programmed Cell Death in Plasmodium falciparum |  45 

 

| 
M

a
te

ri
a

ls
 a

n
d

 M
et

h
o
d

s 

A 5ml culture was transferred into sterile 15ml Nunc tubes and centrifuged in a 5702R 

Eppendorf centrifuge at 2500rpm for 5 minutes at 4°C to pellet the pRBC and RBC. The 

supernatant was aspirated and the pellet was washed with 14ml PBS and centrifuged as 

before. The supernatant was aspirated and inversion was used to loosen the pellet.  

Four pellet volumes of hypotonic solution (5mM KH2PO4, pH 7.4 with K2HPO4) were 

added to facilitate RBC lysis. The pellet was resuspended and one volume of 18% sodium 

dodecyl sulphate (SDS) was added to denature the released proteins (Birnboim and Doly, 

1979). The solution was allowed to stand for 3 minutes at room temperature after which 8 

volumes of 1:1 phenol:chloroform mixture was added, which facilitated the removal of any 

soluble proteins still present (Moore and Dowhan, 1987). The tube was inverted several 

times, centrifuged in the 5702R Eppendorf centrifuge at 4400rpm for 10 minutes at 4°C 

and the top aqueous layer, containing the chromosomal DNA, was carefully collected and 

transferred equally as 400μl aliquots into 1.5ml Eppendorf tubes, on ice. To each tube one 

tenth of a volume of 3M sodium acetate (CH3COONa) (pH 5) and 2.5 volumes of ice cold 

100% ethanol were added to induce chromosomal DNA aggregation (Moore and Dowhan, 

1987). 

The tubes were incubated for at least 15 minutes at -70C, centrifuged in a 5415R 

Eppendorf centrifuge at 13200rpm for 30 minutes at 4°C and the supernatant decanted. 

One millilitre of 70% ethanol was added to the tube which was centrifuged in a 5415R 

Eppendorf centrifuge at 13200rpm for 5 minutes at 4°C to remove salt from the sample, 

which may hinder downstream applications (Moore and Dowhan, 1987). The supernatant 

was decanted and the pellets were allowed to air dry for about 15 minutes and then 

resuspended and pooled into a final volume of 600l Tris EDTA (TE) buffer (10mM Tris-

HCl, 1mM EDTA, pH 8). 
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A volume of 6μl of RNase A was added to remove contaminating single stranded RNA, 

mixed by swirling, and incubated for 30 minutes at 37C in a water bath. One volume of 

1:1 phenol:chloroform mixture was added and the tube was inverted several times and 

subsequently centrifuged as before for 5 minutes at 4°C. The top aqueous layer was 

carefully collected and transferred into a 1.5ml Eppendorf tube to which one volume 

(600l) of chloroform was added; the tube was inverted and centrifuged as before. The top 

aqueous layer was collected and transferred into a 2ml Eppendorf tube, in which the DNA 

was precipitated as previously described after which the DNA pellet was allowed to air dry 

and subsequently resuspended in 20 - 50l TE buffer. The DNA was stored at 4C; long 

term storage was at -20C.  

 

2.3.2 Concentration and purity determination of isolated genomic DNA  

2.3.2.1 NanoDrop 

The NanoDrop® 1000 is able to determine the concentration of DNA within a solution. 

This is facilitated by DNA being able to absorb electromagnetic radiation strongly at a 

wavelength of about 260nm due, almost solely, to its constituent purine and pyrimidine 

bases (Blackburn et al., 2006, NanoDrop Technologies, 2007).  

 

2.3.2.2 Agarose gel electrophoresis  

The integrity of the DNA was assessed by agarose gel electrophoresis. One percent agarose 

was dissolved in 50ml 1x TAE buffer (40mM Tris, 2mM acetic acid, 1mM EDTA, pH 8) 

by heating. The solution was cooled, to which 2.5μl of 10μg/μl ethidium bromide was 

added, and poured and set in a 10 x 8cm gel casting chamber. The samples and a mixed 

range base pair standard (80 – 10000bp) were added to the gel and electrophoresed, in 

400ml 1x TAE buffer supplemented with 2.5μl of 10μg/μl ethidium bromide at the anode 

of the chamber, for one hour and forty minutes at 100V. The gel was then visualized under 



 

Investigating the Molecular Participants of Programmed Cell Death in Plasmodium falciparum |  47 

 

| 
M

a
te

ri
a

ls
 a

n
d

 M
et

h
o
d

s 

ultra violet (UV) light using the GeneSnap GeneGenius Geldoc scanning system and 

version 6.05 image acquisition software (Syngene, UK).  

 

2.4 Plasmid DNA isolation and preparation   

2.4.1 Alkaline extraction procedure for plasmid DNA 

The alkaline extraction procedure was conducted for the isolation of each of the following 

plasmid types – pARL2-GFP (donated by Dr Jude Przyborski, Marburg, Germany), pGEX-

4T-2 (Amersham Biosciences, UK) and pET-15b (Millipore, USA) (vector maps presented 

in Appendix D) – from E. coli cells (Engebrecht et al., 1987).  

A scraping of a 60% glycerol stock of E. coli cells, carrying the appropriate plasmid, was 

added to 5ml of Luria Broth (LB) (1% (w/v) Tryptone, 1% (w/v) NaCl, 0.5% (w/v) yeast 

extract, 10mM Tris-HCl, pH 8) containing 0.1mg/ml ampicillin antibiotic in a 50ml 

Erlenmeyer flask. After incubation for ~15 hours on a Labotec orbital shaker at 37C at 

250rpm, the optical density (OD) of the culture was determined at 600nm (OD600nm), with 

the aid of a Thermo Biomate 5 Spectrophotometer (Thermo Fisher Scientific Inc, USA). If 

the OD was greater than 3 for this culture, 500μl of this culture was transferred to 10ml 

LB, containing 0.1mg/ml of ampicillin, in a 100ml flask and allowed to incubate for ~15 

hours with shaking. Only after the 10ml bacterial culture had a minimum OD600nm of above 

3, was it transferred into a 15ml Nunc tube and centrifuged in a 5702R Eppendorf 

centrifuge at 4400rpm for 10 minutes at 4°C. The supernatant was discarded and 500μl ice 

cold re-suspension solution (50mM glucose, 10mM EDTA, 25mM Tris, pH 8) was added 

and the pellet was completely resuspended and incubated at room temperature for 5 

minutes. One millilitre of freshly prepared lysis solution (0.2M NaOH, 1% SDS) was 

added, mixed by inversion and allowed to stand at room temperature for 5 minutes. The 

SDS aids in denaturing the bacterial proteins while the high pH of the sodium hydroxide 
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denatures the linear chromosomal bacterial DNA but not the covalent, circular plasmid 

DNA (Birnboim and Doly, 1979, Engebrecht et al., 1987).  A freshly prepared 750μl 

aliquot of ice cold neutralization solution (1.6M potassium acetate and 3.2M acetic acid, 

pH 4.8) was added, mixed gently by inversion and allowed to incubate for 5 minutes on 

ice. During the neutralization step the chromosomal DNA will aggregate to form an 

insoluble network and precipitate, along with the SDS-protein complexes and high 

molecular weight RNA molecules due to the high concentration of sodium acetate present 

(Birnboim and Doly, 1979). Any covalently closed plasmid DNA which had denatured 

during lysis will renature correctly into a soluble form during the neutralization step 

(Engebrecht et al., 1987).  

The sample was centrifuged in a 5702R Eppendorf centrifuge at 4400rpm for 20 minutes at 

4°C and the supernatant, containing the plasmid DNA, collected and transferred as roughly 

1ml aliquots into 2ml Eppendorf tubes. One volume of 1:1 phenol:chloroform was added 

to each tube, mixed and centrifuged in a 5415R Eppendorf centrifuge at 13200rpm for 5 

minutes at 4°C, to remove any soluble proteins still present (Moore and Dowhan, 1987). 

The aqueous phase was transferred as roughly 450μl aliquots into 2ml Eppendorf tubes. A 

volume of 1.2ml of ice cold 100% ethanol was added to each tube and incubated for 5 

minutes at room temperature to precipitate the plasmid DNA and then centrifuged in a 

5415R Eppendorf centrifuge at 13200rpm for 10 minutes at 4°C. The supernatant was 

decanted and the pellets were allowed to air dry and resuspended in 100μl of TE buffer.  

Samples were pooled to produce a single Eppendorf tube holding 400μl solution, to which 

4μl of RNase A was added and allowed to incubate at 37C for 30 minutes, as the alkaline 

extraction procedure does not remove residual low molecular weight RNA (Birnboim and 

Doly, 1979). Subsequently 40μl of freshly prepared ice cold neutralization solution was 

added to each tube, after which 500μl of 1:1 phenol:chloroform was added. The solution 
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was mixed and then centrifuged in a 5415R Eppendorf centrifuge at 13200rpm for 5 

minutes at 4°C, the aqueous phase collected and transferred into new 2ml tubes, each 

holding about 400μl supernatant. To each tube 500μl chloroform was added, mixed and 

centrifuged in a 5415R Eppendorf centrifuge at 13200rpm for 5 minutes at 4°C. The 

aqueous phase was transferred into a new tube, to which one tenth of a volume of 3M 

sodium acetate and two and a half volumes of 100% ice cold ethanol were added.  

The tubes were kept at -70C for 15 minutes, centrifuged in a 5415R Eppendorf centrifuge 

at 13200rpm for 30 minutes at 4°C and the pellet washed with 1ml of ice cold 70% ethanol 

to remove any salt from the sample which may hinder downstream applications (Moore 

and Dowhan, 1987). After re-centrifugation the pellet was allowed to air dry and 

resuspended in 20-50μl TE buffer.      

 

2.4.2 Restriction enzyme digestion and alkaline phosphatase treatment of plasmids 

The extracted plasmids were cut with specific FastDigest® restriction endonucleases and 

dephosphorylated using FastAP™ Thermosensitive Alkaline Phosphatase according to the 

manufacturer’s specifications.  

pGEX-4T-2 was digested with FastDigest® BamHI and FastDigest® XhoI 

pARL2-GFP was digested with FastDigest® AvrII and FastDigest® XhoI  

pET-15b was digested with FastDigest® NdeI and FastDigest® BamHI  

The digested and dephosphorylated plasmids were purified using the QIAgen QIAquick 

PCR Purification kit® or the Macherey-Nagel NucleoSpin® Gel and PCR Clean-up Kit, 

according to the manufacturers’ instructions, and eluted into 50μl nuclease free water. 
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2.5 Polymerase chain reaction (PCR) 

2.5.1 Primer design 

Based on the gene sequences derived from the Plasmodium genome database, PlasmoDB 

version 7.2 (www.plasmodb.org (Aurrecoechea et al., 2009, The EuPathDB Project Team, 

2012)), primers were designed with the aid of Integrated DNA Technologies SciTools 

Oligo Analyzer 3.1 (www.idtdna.com (Integrated DNA Technologies, 2012)) for the 

amplification of various P. falciparum genes or domains. The primers were assessed to 

ensure that the formation of any hairpins or primer dimers during the PCR process would 

be non-consequential. Specific restriction endonuclease cleavage sites were included at the 

5’ end to facilitate directional cloning of the PCR products into plasmid vectors – pARL2-

GFP, pGEX-4T-2 and pET-15b. The reverse primers for the pGEX-4T-2 and pET-15-b 

vectors were created to include a stop codon while the forward primers for the pARL2-

GFP vector were created with a start codon. Primer sequences are given in appendix B.  

  

The primers were synthesised by Inqaba Biotec
TM

, South Africa, and supplied in 

lyophilised form. Reconstitution of the primers was conducted in nuclease free water as a 

concentrated 100μM stock, used to make working stocks of 10μM for the PCR reactions.  

 

2.5.2 Insert amplification for cloning  

High fidelity PCR was carried out for the amplification of the various inserts required for 

cloning using either the High Fidelity PCR Enzyme kit® or the Phusion® Flash High-

Fidelity PCR Master Mix. Both mixes contained a thermostable Taq DNA Polymerase 

with proofreading ability, thus enhancing accuracy during replication (Thermo Fisher 

Scientific, 2011). High fidelity PCRs were conducted in an Eppendorf Mastercycler 

Gradient Thermocycler according to the manufacturer’s specifications, using the forward 

and reverse primers at a concentration of 0.5μM. Table 2.2 presents the annealing 

http://www.plasmodb.org/
http://www.idtdna.com/
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temperatures (Ta) and elongation times used during the various hot start PCRs – four 

cycles of the PCR were carried out using the P. falciparum specific Ta followed by twenty 

nine cycles using the Ta of the full length primers.  

 

Table 2.2: PCR parameters for the amplification of P. falciparum genes/domains. 

Enzyme 
Gene being 

amplified 

Vector to be 

used with the 

insert 

P. falciparum 

specific Ta 

(°C) 

Full length 

primer Ta 

(°C) 

Elongation 

time 

(seconds) 

High Fidelity  

Putative DNA 

binding domain and 

tetramerization 

domain of Pfp53 

pGEX-4T-2 45 55 120 

High Fidelity  

MDM2/SWIB 

domain of 

PfMDM2 

pARL2-GFP 40 53 30 

High Fidelity  

MDM2/SWIB 

domain of 

PfMDM2 

pGEX-4T-2 40 51 30 

Phusion® Flash  Entire PfMDM2 pARL2-GFP 43 55 15 

Phusion® Flash  

Putative 

MDM2/SWIB 

domain of PfSWIB 

pGEX-4T-2 43 55 15 

Phusion® Flash  Entire PfSWIB pARL2-GFP 44 51 45 

Phusion® Flash  

Biopanning 

identified domain 

of PfLisH 

pET15-b 43 55 15 

Phusion® Flash  

Biopanning 

identified domain 

of PfALV5 

pET15-b 45 55 15 

Phusion® Flash  

Biopanning 

identified domain 

of PfRS6 

pET15-b 37 55 15 

Phusion® Flash  

Biopanning 

identified domain 

of PfARK3 

pET15-b 47 55 15 

 

2.5.3 Restriction endonuclease digestion of the PCR products 

The PCR products were purified using the QIAgen QIAquick PCR Purification kit® or the 

Macherey-Nagel NucleoSpin® Gel and PCR Clean-up Kit, according to the 

manufacturers’ instructions, and eluted in 50μl nuclease free water . The purified product 

was digested with the appropriate restriction endonucleases, according to the Fermentas 

guidelines (Thermo Fisher Scientific Inc, 2011).  
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The digested PCR products were again purified using the QIAgen QIAquick PCR 

Purification kit® or Macherey-Nagel NucleoSpin® gel and PCR Clean-up and eluted in 

50μl nuclease free water to remove salts and other contaminants which may influence the 

subsequent cloning steps.   

 

2.6 Ligation reaction 

The In-Fusion® Molar Ratio Calculator 

(http://bioinfo.clontech.com/infusion/molarRatio.do (ClonTech, 2012)) was used to 

calculate the amounts of vector and PCR product required for ligation. The molar ratio 

employed was one vector unit to three PCR insert units and the total amount of DNA 

present in the reaction was not allowed to exceed 200ng, as specified in the ligation kit 

(Roche Applied Science, 2011).    

The digested and purified PCR inserts and plasmids were quantified on a 1% agarose gel 

against a mixed range of base pair standards, using the GeneSnap GeneGenius Geldoc 

scanning system. The necessary volumes were used accordingly to set up ligation reactions 

using the Roche Rapid DNA Ligation Kit, according to the manufacturer’s specifications, 

with a 16C incubation for 30 minutes (Roche Applied Science, 2011). Control ligation 

reactions were set up using nuclease free water instead of PCR product.  

 

2.7 Transformation of XL10 and DH5α cells 

Once ligation had been completed, E. coli cells were transformed with 10μl of the ligation 

reaction. Two different cell strains were used. The XL10 cells are more suitable for 

effective transformation with larger vector constructs and as a result were used for the 

pARL2-GFP plasmid (Stratagene, 2004). Commercial XL10 cells were obtained from 

Stratagene and used according to the manufacturer’s specifications (Stratagene, 2004). A 

http://bioinfo.clontech.com/infusion/molarRatio.do
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100μl aliquot of the chemically competent cells were thawed on ice and then incubated 

with 4μl β-mercaptoethanol for 10 minutes. While gently swirling, 10μl of ligation reaction 

was added and the cells were incubated on ice for 30 minutes. Heat shock was conducted 

at 42°C for 90 seconds, after which the cells were incubated on ice for 2 minutes and then 

seeded into 450μl LB and incubated for 1 hour at 37°C. These cells were plated at 50μl and 

500μl, on 1.5% agar plates in LB containing 100μg/ml ampicillin and incubated for at least 

18 hours at 37°C. 

 

The smaller vector constructs, those involving the pGEX-4T-2 and pET-15b plasmids, 

were used to transform DH5 cells. In-house chemically competent DH5 cells were 

donated by Dr Sonja Lauterbach, from the PMRU, and used according to an in-house 

transformation protocol, which differed slightly from that of the Stratagene method - the 

chemically competent cells were not exposed to β-mercaptoethanol after thawing and they 

were not incubated in LB for 1 hour before plating.  

 

Single colonies were picked off the experimental plates using a pipette and suspended in 

10l nuclease free water. A 5l aliquot of the suspension was added to 14ml BD Falcon™ 

round bottom tubes with 2ml LB containing 100g/ml ampicillin and incubated at 37°C on 

a Labotec orbital shaker overnight at 250rpm. Glycerol stock solutions were made from 

these overnight cultures by adding 500μl of the transformed cells to 500μl 60% sterile 

glycerol and stored at -70°C. The remaining overnight bacterial culture was utilized for 

plasmid extraction with the GenElute Plasmid Miniprep Kit or the Macherey-Nagel 

NucleoSpin® plasmid extraction kit, according to the manufacturers’ specifications, and 

eluted into 50μl nuclease free water. 
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2.7.1 Verification of transformation  

2.7.1.1  Colony PCR verification  

A volume of 2μl of the colony suspension, described above, was used for a colony PCR to 

detect the presence of inserts in the constructs. The aliquots were heated to 94C for 5 

minutes in the Eppendorf Mastercycler Gradient Thermocycler, in order to lyse the 

bacterial cells, and then used to set up 20μl GoTaq® Green Master Mix PCR reactions, as 

specified by the manufacturer’s instructions. Vector or insert specific primers were used 

for the PCR (primers presented in appendix B).  

 

2.7.1.2 Restriction digestion verification of extracted plasmid constructs  

The extracted vector constructs were digested with FastDigest® restriction endonucleases, 

according to the manufacturer’s specifications, in order to detect the presence of the 

correctly sized insert and vector backbone (Thermo Fisher Scientific Inc, 2011). Digestion 

of the pET15-b and pGEX-4T-2 constructs was conducted as described in section 2.4.2. 

For the pARL2-GFP vector the FastDigest® EcoRV and FastDigest® XhoI enzymes were 

used. Control digests were conducted simultaneously on the original vector constructs. The 

digested vectors were assessed by agarose gel electrophoresis, against a mixed range base 

pair standard for 1 hour, as described in section 2.3.2.2.  

Constructs with the correctly sized insert were sent to Inqaba Biotec
TM

, South Africa, for 

sequencing.    

 

2.8 Transformation of Rosetta™ 2 (DE3) cells 

Rosetta™ 2 (DE3) cells were designed for enhanced expression of eukaryotic proteins 

requiring codons which are rarely utilized by E. coli – specifically the AUA, AGG, AGA, 

CUA, CCC, GGA and CGG codons, and thus prevents the need for codon optimization 

(Novagen, 2004). These cells were transformed with the pGEX-4T-2 and pET-15b 
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constructs containing the verified sequences according to the manufacturer’s protocol 

(Novagen, 2004). After 18 hours or more of incubation at 37°C, transformed colonies 

found on each of the experimental 100μg/ml ampicillin and 50μg/ml chloramphenicol 

plates were picked off and each resuspended in ten microliters of nuclease free water. Five 

microliters of the suspension was added to BD Falcon™ round bottom tubes holding two 

millilitres of LB with 100μg/ml ampicillin and 50μg/ml chloramphenicol and incubated at 

37°C on a Labotec orbital shaker overnight at 250rpm. Glycerol stock solutions were made 

as described in section 2.7 and the remaining overnight culture was used for plasmid 

extraction and digestion, as described in sections 2.7 and 2.7.1.2 to confirm transformation 

with the correct construct.  

 

2.9 Protein expression, extraction, purification and visualization  

2.9.1 Protein expression 

The following procedure was optimized for recombinant protein expression:  

A scraping of a glycerol stock of transformed Subcloning Efficiency
TM

 Rosetta
TM

 2 (DE3) 

cells, containing the appropriate vector construct, was added to 5ml LB containing 

100μg/ml ampicillin and 50μg/ml chloramphenicol. The culture was incubated overnight 

on a Labotec orbital shaker at 37C at 250 rpm. A volume of 500μl of this overnight 

culture was used to seed 20ml of Overnight Express
TM

 Instant TB Medium (60g Overnight 

Express
TM

 instant TB Medium Powder, 10ml glycerol, made up to 1l and autoclaved) 

containing 100μg/ml ampicillin and 50μg/ml chloramphenicol and incubated for 22 hours 

while vigorously shaking at 250rpm on a Hoefer PR250 orbital bench top shaker, at room 

temperature (~ 20C). Overnight Express
TM

 Instant TB Mediums promotes high density 

cell growth, several fold higher than that of conventional protocols such as isopropyl-β-D-

1-thiogalactopyranoside inducible bacterial systems, due to its specific carbon source blend 
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and magnesium; while its unique blend of nitrogen sources sustains high protein 

expression, induced through lactose using the Lac promoter (Grabski et al., 2005). 

For a comparative un-induced control of the E. coli protein expression system, 500μl of the 

5ml LB grow was seeded into a 2% glucose LB mixture. In this growth medium a glucose 

effect will be induced, which will reduce Lac transcription and so prevent the expression of 

the recombinant proteins (Novy and Morris, 2001).  

 

The cultures were analysed with a Thermo Biomate 5 Spectrophotometer. They were used 

for protein purification if the OD600nm was 3 or above.  

 

2.9.2 Protein extraction and purification of GST-tagged recombinant proteins 

The following procedure was optimized for GST-tagged recombinant protein extraction 

(Promega, 2009a): 

The Overnight Express
TM

 Instant TB Medium cultures were pelleted and frozen at -70C 

for at least 15 minutes. The pellet was thawed at 37C for 5 minutes, resuspended in 1.5ml 

GST Binding/Wash buffer (4.2mM Na2HPO4, 2mM K2HPO4, 500mM NaCl, 10mM KCl, 

pH 7.2) (Promega, 2009a) with 1.5μl Calibiochem® Protease Inhibitor cocktail Set III 

(100mM 4-(2-Aminoethyl) benzenesulphonyl fluoride hydrochloride, 80μM Aprotinin, 

5mM Bestatin; 1.5mM E-64; 2mM Leupeptin, 1mM Pepstatin A) and 1.5μl DNaseI, frozen 

at -70C for 15 minutes and then thawed at 37C for five minutes again. 

The thawed suspension was transferred into 15ml Nunc tube and sonicated for 4 cycles, 

while immersed in ice water, at an 80% amplitude; each cycle lasting for 30 seconds, 

having an on pulse of one second and an off pulse for half a second and a 30 second break 

between each cycle. A 75μl aliquot was collected after the final round of sonication, 

representing the total protein aliquot. The remaining solution was centrifuged in a 5415R 
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Eppendorf centrifuge at 16000rpm for 20 minutes at 4C and the supernatant collected - 

75μl was taken as the soluble protein aliquot. The pellet was resuspended in 1.5ml of GST 

Binding/Wash buffer, 75μl taken as the insoluble protein aliquot. The total, soluble and 

insoluble aliquots were diluted in 75μl GST Binding/Wash buffer and processed further, as 

described in section 2.9.4. 

   

Purification of the GST-tagged proteins was performed using a magnetic particle separator 

and the MagneGST
TM

 Kit according to the manufacturer’s specifications, with slight 

modifications:  

A 10μl aliquot of the MagneGST™ particle slurry was washed 3 times with the GST 

Binding/Wash buffer and then resuspended in 100μl of GST Binding/Wash buffer and 

added to the extracted soluble protein solution, containing the GST-tagged protein of 

interest. The mixture was incubated at 4C while rotating at 25rpm on an Intelli-mixer for 

one hour after which the supernatant was removed and the beads were washed five times in 

1ml GST Binding/Wash buffer for five minutes while rocking vigorously at a 90° angle at 

90rpm on the Intelli-mixer. The unbound supernatant was re-applied to the washed beads 

and incubated and washed again, as described above. From each wash step a 50μl aliquot 

was kept (wash aliquots) and a 75μl aliquot of the unbound supernatant was suspended in 

75μl of GST Binding/Wash buffer (unbound aliquot).   

 

Depending on the downstream application of the purified protein the GST fusion proteins 

could either be eluted from the beads or retained on the beads. For elution of the protein, 

150l of GST-Elution buffer (500mM L-Glutathione, 500mM NaCl, 50mM Tris-HCl, pH 

8.1) was added to the beads and incubated while rocking at 90 at 99rpm on an Intelli-
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mixer for 15 minutes. The elution was collected and the beads were then suspended in 50l 

GST Binding/Wash buffer (bead aliquot).   

 

2.9.3 Protein extraction and purification of His-tagged recombinant proteins 

The procedure optimized for His-tagged recombinant protein extraction and purification 

was similar to that of the GST-tagged recombinant proteins, as described in section 2.9.2, 

with the following differences (Promega, 2009b): 

 The thawed pellet was resuspended in 1.5ml His-Binding buffer (50mM 

Na2HPO4/NaH2PO4
 
buffer, 150mM NaCl, pH 8) with 1.5μl Protease Inhibitor cocktail 

Set III and 1.5μl DNaseI.  

 Purification of the His-tagged proteins was performed using the magnetic particle 

separator and MagneHis
TM

 Kit, where 30l of MagneHis™ particle slurry was washed 

three times with His-Binding buffer, resuspended in 100l of His-Binding buffer and 

added to the extracted soluble protein solution, along with imidazole at a final 

concentration of 10mM.  

 The beads were washed in 1ml His-Wash buffer (20mM imidazole in His-Binding 

buffer). For elution 1 100l of His-Elution buffer 1 (50mM Na2HPO4/NaH2PO4
 
buffer, 

150mM NaCl, pH 7.5, 0.5M imidazole) was added to the beads, while for elution 2 

100l His-Elution buffer 2 (50mM Na2HPO4/NaH2PO4
 
buffer, 150mM NaCl, pH 7.5, 

1M imidazole) was added to the beads.  

  

2.9.4 SDS-PAGE and Coomassie blue staining 

Three volumes of various protein aliquots, described in sections 2.9.2 and 2.9.3, were 

mixed with 1 volume of boiling solution (composed of 40μl 5x suspension solution (50mM 

Tris-HCl, 5mM EDTA, 5% SDS, 25% sucrose, pH 8.0), 5μl dye mix (2.5% sucrose, 0.5% 

bromophenol blue) and 5μl β-mercaptoethanol), vortexed thoroughly, boiled for 7 minutes 



 

Investigating the Molecular Participants of Programmed Cell Death in Plasmodium falciparum |  59 

 

| 
M

a
te

ri
a

ls
 a

n
d

 M
et

h
o
d

s 

and resolved on the Laemmli sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) system (Laemmli, 1970). A 6cm 12% polyacrylamide SDS resolving gel was 

poured, allowed to polymerize for 20 minutes at room temperature, and then overlaid with 

a 2cm 4% stacking gel within a Mighty Small II SE250 gel cassette, as described in table 

2.3. A 10- or 15-well comb was inserted into the stacking gel and then it was allowed to 

polymerize for 20 minutes at room temperature.  

 

Table 2.3: Laemmli SDS-Polyacrylamide resolving and stacking gels. 

Reagent 12% Resolving gel 4% Stacking gel 

MilliQ water 2.3ml 1.63ml 

10% (w/v) SDS 
53μl  

(Final concentration 0.05%) 

6.7μl  

(Final concentration 0.02%) 

4X resolving buffer  

(1.5M Tris, pH 8.8) 

2.5ml  

(Final concentration 375mM) 
n/a 

4X stacking buffer  

(0.5M Tris, pH 6.8) 
n/a 

833μl  

(Final concentration 125mM) 

1% (w/v) Bis-acrylamide 
1.1ml  

(Final concentration 0.11%) 

333μl 

(Final concentration 0.11%) 

30% (w/v) Acrylamide 
4ml  

(Final concentration 12%) 

433μl  

(Final concentration 4%) 

10% (w/v) fresh ammonium 

persulfate 

67μl  

(Final concentration 0.07%) 

67μl  

(Final concentration 0.2%) 

TEMED 5μl 2.5μl 

Final volume 10.0ml 3.3ml 

 

A protein molecular mass marker was loaded concurrently with the samples, which was 

either prepared from human red blood cells by Dr K. Naidoo, of the PMRU, or acquired 

commercially – Spectra
TM

 Protein Ladder or the QIAgen 6xHis Protein Ladder.  The gel 

was electrophoresed at a constant 20mA and a maximum voltage of 250V in Laemmli 

running buffer (25mM Tris, 192mM Glycine, 0.1% SDS), maintained at 4°C with the aid 

of a Labcon CPE 50 circulator.  

 

The resultant SDS-PAGE gel was stained with Coomassie blue (0.05% Coomassie 

Brilliant Blue R-250 (w/v), 25% Isopropanol (v/v), 10% acetic  acid (v/v)) overnight and  
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destained in 10% acetic acid and 10% methanol for two hours and then 10% acetic acid 

overnight. The gel was photographed using the GeneSnap GeneGenius Geldoc scanning 

system.   

 

The amount of recombinant protein eluted was determined relative to a bovine serum 

albumin (BSA) standard. The processed sample was loaded onto a gel with a series of 

solubilized BSA standards of 100ng, 200ng, 300ng, 400ng and 500ng. The Coomassie 

Brilliant Blue stained gel was scanned and the area of the BSA standard bands quantified 

using the GeneSnap GeneGenius Geldoc scanning system. From these data a linear BSA 

standard curve was constructed of peak area versus amount. The peak area of the 

recombinant protein band was then used to determine its relative amount.  

 

2.9.5 Western blotting 

The resolved proteins were transferred from the polyacrylamide gel onto a Hybond
TM

-C 

extra nitrocellulose membrane using the liquid transfer method at 35V overnight at 4°C in 

transblot buffer (25mM Tris, 192mM Glycine, 0.1% (w/v) SDS, 20% (v/v) methanol) 

(Towbin et al., 1979).  The gel, from which the proteins had been transferred, was stained 

as in section 2.9.4 to detect if any proteins were retained during transfer. The membrane 

was washed in Tris-buffered saline (TBS) (50mM Tris-HCl, 150mM NaCl, pH 7.5) for 

five minutes and then stained with Ponceau S (1% Ponceau S, 7% glacial acetic acid), a 

non-permanent protein stain, to ensure transfer had occurred. The membrane was rinsed in 

water twice for 5 minutes to remove the Ponceau S stain and then washed in TBS for 10 

minutes.  

The membrane was placed in either a 3% BSA in TBS blocking solution or QIAgen Anti-

His HRP conjugate blocking solution, for the detection of GST-tagged and His-tagged 
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proteins respectively, for one hour on a shaking platform to cover the membrane to prevent 

the antibody binding to the nitrocellulose. The membrane was then placed in either a 1:100 

000 dilution of anti-GST horse radish peroxidise (HRP)-conjugated primary antibody in 

1% BSA in TBS or a 1: 2 000 dilution of anti-His HRP conjugate primary antibody, for 

GST-tagged and His-tagged proteins respectively, while gently shaking for one hour at 

room temperature.  

The membrane was washed three times in 0.25% Tween-TBS and once in TBS, each for 

ten minutes on a shaking platform. A volume of 2ml of SuperSignal® West Pico 

Chemiluminescent Substrate was applied to cover the membrane for 5 minutes before 

visualization of the chemiluminescent signal using the GeneSnap GeneGenius Geldoc 

scanning system. After visualization the membrane was stained in amido black (10% acetic 

acid, 25% isopropanol, 0.1% amido black) for five minutes and then destained for 30 

minutes in 10% acetic acid 10% methanol, 30 minutes in 10% acetic acid and then 

photographed using the GeneSnap GeneGenius Geldoc scanning system.  

 

2.10 Biopanning against P. falciparum Phage Display Libraries 

Biopanning and the related procedures were conducted according to the Novagen’s 

T7Select® System Manual (Novagen, 2011), with slight modificationsin order to identify 

binding partners of the putative MDM2/SWIB domains. 

 

2.10.1 BLT5403 cell growth 

A 5ml overnight culture of BLT5403 E. coli cells in M9LB medium (18.7mM NH4Cl, 

22mM KH2PO4, 22mM Na2HPO4, 0.4% (w/v) glucose, 1mM MgSO4, in LB) with 50μg/ml 

ampicillin was set up and used either directly for titering, described in section 2.10.2, or 

alternatively for phage amplification. In the case of phage amplification, 200μl of the 
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overnight culture was transferred into 50ml M9LB medium with 50μg/ml ampicillin and 

incubated at 37°C on a Labotec orbital shaker at 250rpm until log phase (OD600 of 0.5 – 

0.6) was reached. 

 

2.10.2 Titering  

Titering was conducted by the plating assay. A volume of 250μl of BLT5403 E. coli cells, 

grown in M9TB medium and at an OD600 of 1, was combined with 100μl of a series of 

phage lysate dilutions in TBS ranging from 10
-5

 – 10
-10

. This mixture was combined with 

3ml of melted top agarose (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 85.6mM NaCl, 

0.6% (w/v) agarose) and plated onto pre-warmed 50μg/ml ampicillin agar plates. Plates 

were allowed to stand for 10 minutes, for the top agarose to set, and then inverted and 

incubated for 3-4 hours at 37°C or overnight at room temperature. Resultant plaques were 

quantified and the titre, multiplicity of infection (MOI) and library size calculated.  

 

  a e titre  
 f 

ml
   number of plaques on plate  x dilution x 10 

Where 10 takes into account the 0.1ml of the dilution plated 

 

li rar  si e   f     phage tit   x total sample volume 

 

2.10.3 Biopanning  

Several P. falciparum cDNA phage display libraries were used, created by Dr Sonja 

Lauterbach, Dr Roberto Lanzillotti and Mr Dale Liebenberg in the PMRU. The following 

screening protocol was employed:    

The original phage display library was titered, as described in section 2.10.2, and used at 

~1x10
7
 pfu/ml, in a total volume of 500μl TBS. This solution was mixed with MagneGST 
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beads bound with at least 8μg of GST for one hour at room temperature on the Intelli-

mixer using the F3 function at 25rpm. This pre-screening step facilitated the removal of 

any phage which bound to the GST protein, the MagneGST beads or any E. coli proteins 

attached to the beads. These background binding beads were removed magnetically and the 

phage were then mixed with MagneGST beads bound to at least 8μg of recombinant 

PfMDM2- or PfSWIB-GST proteins and incubated as described above.  

The beads were removed magnetically and washed 5 times with 2ml of 0.05% Tween-TBS 

for 10 minutes with continuous inversion on the Intelli-mixer to remove any non-

specifically bound phage. The washed beads were added to 50ml of log phase BLT5403 

cells, as described in section 2.10.1, and incubated at 37°C overnight until lysis was noted.  

Sodium chloride was added to the phage-infected culture, to a final concentration of 0.5M, 

to further aid in E. coli lysis, which was then centrifuged in a Beckman Coulter Avanti ® 

J-E centrifuge at 10000rpm for 10 minutes. The supernatant was used as the starting library 

for the next round of biopanning, with 2ml being used for the creation of glycerol stocks, 

section 2.10.3, and for bateriophage titering, section 2.10.2.  

 

In total, four sequential rounds of biopanning were conducted to enrich for phage binding 

specifically to the PfMDM2 and PfSWIB proteins. After the final round of titering the 

resultant plaques were used for PCR analysis.  

 

2.10.4 Bacteriophage glycerol stock and plug extraction 

Long term storage of the bacteriophage was facilitated by adding 0.1 volume 80% sterile 

glycerol to the phage lysate and storing at -70°C. For bacteriophage derived from a plate, 

plugs were sterilely removed and placed in 1ml extraction buffer (20mM Tris-HCl, 
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100mM NaCl, 12mM MgSO4, pH 8), incubated at 4C overnight and then combined with 

0.1 volume of 80% sterile glycerol and stored at -70°C.  

 

2.10.5 PCR and sequencing of phage 

2.10.5.1 PCR amplification of T7 phage  

From a top agarose plate containing individual, well isolated plaques, plugs were sterilely 

removed and placed in 100μl of 10 mM EDTA, pH 8.0; vortexed briefly and then boiled 

for 10 minutes. The solution was centrifuged in a 5415R Eppendorf centrifuge at 

14000rpm for 3 minutes at 4C and used for a GoTaq screening PCR.  

Phage T7Select10-3b amplification, using T7 promoter and terminator primers (see 

appendix B for primers):   

1. Initial denaturation: 94°C for 2 minutes  

2. Denaturation: 94°C for 50 seconds 

3. Primer annealing: 50°C for 60 seconds 

4. Elongation: 72°C for 60 seconds 

5. Repeat steps 2 to 4 thirty five times  

6. Final extension: 72°C for 6 minutes  

 

The resultant products were separated by agarose gel electrophoresis for 1 hour against a 

mixed range base pair ladder, as described in section 2.3.2.2. The empty cassette PCR 

product was 216bp and plaque PCR products  300bp were sent for sequencing at Inqaba 

Biotec
TM

, South Africa. 

 

2.11 In vitro binding assays  

In vitro binding assays were conducted in order to confirm the interactions identified using 

biopanning, described in section 2.10. The eluted His- and GST-tagged proteins were 
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dialysed against three changes of their respective binding buffers or TBS, depending on 

whether they were to be reattached to the magnetic beads or remain in solution, using a 

Slide-A-Lyzer MINI dialysis unit (molecular weight cut off of 10kDa), at 4C for 30 

minutes. An amount of 1μg of dialysed recombinant His-fusion PfLisH and PfARK 

proteins, reattached to 5μl MagneHis beads, were exposed to increasing concentrations of 

their respective GST-tagged binding partners for 1 hour at room temperature on a rotating 

Intelli-mixer platform at 45rpm in a total volume of 150l TBS. The beads were collected 

with a magnetic particle separator and rinsed twice in 1ml TBS for 5 minutes with 

vigorous rocking on an Intelli-mixer platform (90, 90rpm). The protein complexes on the 

beads were solubilised, electrophoresed and stained as described in section 2.9.4. Control 

reactions were conducted as described above using equivalent amounts of recombinant 

GST protein as well heat denatured (70C for 15 minutes) SWIB/MDM2 proteins, to 

account for non-specific binding. 

The reactions were also conducted in a reciprocal fashion, whereby dialysed recombinant 

GST-fusion PfSWIB and PfMDM2 proteins were reattached to MagneGST beads and 

exposed to increasing concentrations of their respective His-tagged binding partners. This 

interaction was assessed by western blotting as described in section 2.9.5. 

 

2.12 Creation of transgenic Plasmodium falciparum lines  

2.12.1 Preparation of constructs 

A scraping of a glycerol stock of transformed XL10 cells, containing the appropriate vector 

construct as described in section 2.7, was added to 5ml of LB containing 100μg/ml 

ampicillin. The culture was incubated for 8 hours on a Labotec orbital shaker at 37C at 

250rpm. A 1ml volume of this starter culture was transferred to two flasks of 250ml LB 

containing 100μg/ml ampicillin and incubated overnight as described before. The cultures 
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were used for the plasmid DNA preparation protocol if the OD600nm was 3. The 

NucleoBond® Xtra Maxi Plus plasmid DNA preparation kit was used according to the 

manufacturer’s specifications and the plasmid construct was eluted into 1ml of the 

provided Tris buffer. A 1 in 10 dilution of the eluted construct was digested with 

FastDigest® EcoRV, as specified by the manufacturer’s instructions, and quantified by 

agarose gel electrophoresis for 1 hour against a mixed range base pair standard, as 

described in section 2.3.2.2.  

A minimum of 100μg plasmid DNA was used for each transfection. To 1ml elution 1ml 

1:1 phenol:chloroform was added, mixed and then centrifuged in a 5415R Eppendorf 

centrifuge at 16 000rpm for 5 minutes at 4°C. The aqueous phase was collected and 

transferred into a new tube to which 1ml of chloroform was added, mixed and then 

centrifuged in a 5415R Eppendorf centrifuge at 16 000rpm for 5 minutes at 4°C. The 

aqueous phase was collected and divided into ~450μl aliquots, in two new 2ml Eppendorf 

tubes. To each tube 45μl 3M sodium acetate, and 1125μl 100 % ethanol was added. The 

plasmid DNA was precipitated at -70 C overnight and was then centrifuged in a 5415R 

Eppendorf centrifuge at 16 000rpm at 4C for 30 minutes. The supernatant was decanted 

and the pellet was washed in 70% ethanol and centrifuged in a 5415R Eppendorf 

centrifuge at 16 000rpm at 4 C for 5 minutes. The pellet was allowed to air-dry in a sterile 

flow hood and resuspended in 30µl sterile TE buffer, to be used for the transfection.  

 

2.12.2 Transfection of P. falciparum  

The following method was conducted under sterile conditions. The 30μl plasmid DNA was 

added to 370µl pre-warmed cytomix (120mM KCl, 0.15mM CaCl2, 8.7mM K2HPO4, 

1.3mM KH2PO4, 25mM Hepes, 2mM EGTA, 5mM MgCl2, pH 7.6) and 200µl packed, 

unwashed RBC in a 1ml Eppendorf tube. The solution was transferred to a 2 mm BioRad 
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Gene Pulser® Cuvette and electroporated using the Bio-Rad GenePulse Xcell
TM

 

electrophorator, at 310 V, with a resistance of 950 μF and a time of less than 15 

milliseconds. The RBC were then added to a 25cm
3
 culturing flask with 5ml of complete 

medium and a 1% parasitaemia of synchronized ring stage parasites. The flask was gassed, 

sealed and incubated as described in section 2.2.2.  

From the next day (day one) the medium was changed daily, as described in section 2.2.2, 

with stock 10μM WR99210 drug, suspended in DMSO, being added to the culture, at a 

final concentration of 2nM, from day two. The parasites which had taken up the pARL2-

GFP construct would carry the human dihydrofolate reductase (hDHFR) gene, providing 

resistance to WR99210, and thus survive the drug treatment (Fidock and Wellems, 1997). 

The parasites were cultured daily, in the presence of the drug, until no parasites were 

detected; after which the culturing protocol was implemented only every second day. Once 

parasites, containing the vector construct, were visible, daily culturing resumed, still in the 

presence of the drug. Glycerol stocks were subsequently prepared for the transgenic 

parasites, as described in section 2.2.4. A control transgenic line was donated by Dr 

Belinda Bezuidenhout towards this study, which expressed GFP alone. 

 

2.12.3 Verification of transgenic lines  

2.12.3.1 Verification by detection of GFP fluorescence in living transgenic 

parasites 

A volume of 300μl of a mixed culture, with a parasitaemia of about 3%, was suspended in 

700μl incomplete medium to which 5mg/ml stock DAPI suspended in water, at a final 

concentration of 0.2μg/ml, or 1mg/ml stock Hoechst 33258 pentahydrate suspended in 

water, at a final concentration of 6μg/ml, was added and incubated for 5 minutes at room 

temperature or 2 hours at 37°C respectively, to identify the parasite nucleus. The sample 

was centrifuged in a 5415R Eppendorf centrifuge at 3300rpm for 3 minutes at 4°C and the 
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supernatant was removed. The pRBC were washed by gentle resuspension in incomplete 

medium and then centrifugation in a 5415R Eppendorf centrifuge at 2500rpm for 3 

minutes at 4°C. This step was repeated, after which the pRBC were resuspended in 200μl 

incomplete medium.  

A volume of 5μl of the stained cell suspension was placed on a clean microscope slide, 

mounted with a cover slip and viewed at 1000x magnification, using the BX41 Olympus 

Microscope system. The system included the following features – an U-MWU2 filter 

(excitation between 330-385nm and emission above 410nm, for DAPI visualization), an U-

MWB2 filter (excitation between 460-490nm and an emission above 510nm, for GFP 

visualization), a U-25ND25 Olympus neutral density filter, an Olympus DP72 camera; and 

CellSense Dimensions 1.7 Software. 

 

2.12.3.2 PCR verification of plasmid  

Once parasites were observed and the parasitaemia had increased to 4% trophozoites 

parasite DNA was extracted (Tirasophon et al., 1991, Vu et al., 1995). A volume of 1ml of 

resuspended culture was centrifuged in a 5702R Eppendorf centrifuge at 1400rpm for 5 

minutes at room temperature. The supernatant was removed and the pellet resuspended in 

100μl quick lysis buffer (34mM NaCl, 1% Triton-X-100, 1.2mM EDTA), vortexed 

vigorously and centrifuged in a 5702R Eppendorf centrifuge at 16000rpm for 10 minutes at 

room temperature. The following step was repeated twice, whereby the supernatant was 

removed and the pellet resuspended in 100μl quick boiling buffer (10mM Tris-HCl, 50mM 

KCl, pH 8.3), vortexed vigorously and centrifuged in a 5702R Eppendorf centrifuge at 

16000rpm for 10 minutes at room temperature. The supernatant was removed and the 

pellet was resuspended in 100μl quick PCR buffer (10mM Tris-HCl, 50mM KCl, 3mM 

MgCl2, pH 8.8) and boiled for 10 minutes. A volume of 200μl of 1:1 phenol:chloroform 
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was added, mixed and then centrifuged at 13200rpm for 5 minutes at 4°C. The aqueous 

phase was collected and transferred into a new tube to which 100μl of chloroform was 

added, mixed and then centrifuged at 16000rpm for 5 minutes at 4°C. The aqueous phase 

was collected and stored at 4°C in a new 1.5ml Eppendorf tube.  

PCR was conducted using the pARL2-GFP vector specific primers (see appendix B), as the 

endogenous genes would be amplified by the gene specific primers.   

 

2.13 Localization of fluorescently tagged P. falciparum proteins  

2.13.1 Localization studies using fixed transgenic parasite and anti-EBA175 

antibodies 

A volume of 2.5ml of a mixed culture, with a parasitaemia of at least 3% late stage 

parasites, was prepared for analysis (Tonkin et al., 2004). The aliquot of culture was 

centrifuged in a 5415R Eppendorf centrifuge at 2500rpm for 3 minutes at 4°C, the 

supernatant removed and the pRBC pellet was washed by gentle resuspension in PBS 

followed by centrifugation as before. The supernatant was removed and the pRBC pellet 

fixed in 2ml of fixing solution (4% electron microscopy grade formaldehyde and 0.0075% 

electron microscopy grade glutaraldehyde in PBS) for 30 min. The pRBC were washed as 

described above and the pRBC pellet was resuspended in permeabilization solution (0.1% 

TritonX-100 in PBS) for 10 minutes. The cells were washed again although from this point 

on wash steps involved centrifugation in a 5415R Eppendorf centrifuge at 16000rpm for 3 

minutes at 4C.  The pRBC pellet was treated with 2ml of 0.1 mg/ml  sodium borohydride 

(NaBH4) in PBS for 10 minutes to remove any free aldehyde groups. The cells were 

washed, as described above, resuspended in 3% BSA in PBS blocking solution for one 

hour. The cells were washed and then exposed to 1ml of 3% BSA in PBS with 1:500 anti-

GFP rabbit antibody Alexa Fluor® 488 Conjugate and 1:1000 erythrocyte binding antigen 

– 175 (EBA-175) mouse primary antibody for one hour, and then washed three times, 
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whereby the cells were resuspended and incubated in 1ml PBS for 10 minute on a rotating 

Intelli-Mixer platform at 12rpm and then centrifuged for 10 minutes in a 5415R Eppendorf 

centrifuge at 16000rpm at 4C and the supernatant removed. The pRBC pellet was 

resuspended in 250μl of 3% BSA in PBS with 5μg/ml Alexa Fluor® 594 Goat Anti-Mouse 

antibody and a final concentration of 0.2μg/ml DAPI, and then washed three times, as 

described before with 10 minute incubation and centrifugation steps. The resultant cell 

pellet was resuspended in 20μl PBS, of which 5μl was viewed with a BX41 Olympus 

Microscope and an Olympus DP72 camera as described in section 2.13.1, with the 

additional use of the 49306 filter (excitation between 567 – 596nm and emission between 

609 – 640nm) to visualize the Alexa Fluor® 594 antibody. 

 

2.13.2 Mitochondrial localization studies using live transgenic parasites  

MitoTracker, a fluorescent mitochondrial stain that accumulates in the active mitochondria 

of a cell (Molecular Probes, 2008), has previously been used in P. falciparum (Tonkin et 

al., 2004). However, MitoTracker Green FM has an identical excitation and emission 

spectrum as GFP and therefore MitoSOX
TM

 Red mitochondrial superoxide indicator had to 

be used. This stain is selectively targeted to the mitochondria of living cells and then 

oxidized by mitochondrial superoxides into a fluorescent form (Molecular Probes, 2005). 

No previous work regarding the use of MitoSOX
TM

 in P. falciparum has been published to 

date although the mitochondrion of P. falciparum has been shown to have superoxides 

(Torrentino-Madamet et al., 2010). Therefore the localization of MitoSOX
TM 

was 

compared to that of MitoTracker Green FM in control parasites to confirm the specificity 

of MitoSOX
TM

. 

Lyophilized MitoTracker Green FM and MitoSOX
TM

 were dissolved in dimethylsulfoxide 

to prepare 1mM and 5mM stock solutions respectively. Aliquots of the MitoTracker Green 

FM and MitoSOX
TM
, at a final concentration of 20nM and 0.5μM respectively, were added 
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to 300μl of wild type 3D7 P. falciparum parasites, with a parasitaemia of about 3%, 

suspended in 700μl incomplete medium and incubated for 15 minutes at 37°C. Cells were 

washed twice by resuspension in 1ml incomplete medium and centrifugation in a 5415R 

Eppendorf centrifuge at 2500rpm for 3 minutes at room temperature, with the supernatant 

removed by aspiration. Nuclear staining was then conducted and the parasites visualized as 

described in section 2.13.1, with the additional use of the U-MWG2 filter (excitation 

between 510 – 550nm and emission maximum at 590nm, for MitoSOX
TM

 visualization) 

and the MWB2 filter (excitation between 460-490nm and an emission above 510nm, for 

MitoTracker Green FM visualization). The MitoSOX
TM

 stain can only be used for live cell 

imaging and could not be used in conjunction with the fixation protocol (Molecular Probes, 

2005).  

 

2.14 PCD induction by elevated temperatures   

Previous work has indicated that exposing P. falciparum parasites to 41°C, a temperature 

equivalent to malaria-induced febrile illness, induces a time-dependent apoptosis-like death 

mechanism (Oakley et al., 2007, Engelbrecht and Coetzer, 2013). One percent 

synchronized ring and trophozoite stage transgenic parasites were exposed to 41°C for 2 

hours and then returned to 37C. The parasites were viewed immediately and then at set 

time points (2, 4 and 24 hours later) by fluorescence microscopy as described in sections 

2.13.1 and 2.13.2. 

 

2.15 Tetramerization assay 

The ability of the Pfp53 protein to form oligomers was assessed using previously 

documented protocols (Payne, 1973, Stenger et al., 1992, Wang et al., 1994), whereby low 

concentrations of glutaraldehyde were employed as a protein cross-linking agent (Payne, 
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1973). Initial verification was conducted with BSA in 0.1M sodium phosphate buffer 

(0.1M Na2HPO4/NaH2PO4 pH 7.5) and GST-elution buffer. Subsequently the assay was 

employed on the GST-Pfp53 protein, both in the GST-elution buffer and the 

electrophoretic mobility shift assay (EMSA) binding buffer (20mM HEPES, 1mM EDTA, 

10mM (NH4)2SO4, 1mM DTT, 30mM KCl, 0.2% Tween 20). Glutaraldehyde, at a final 

concentration of 0.02%, was added to the samples while vortexing for 1 minute. The 

samples were incubated at room temperature for 2 hours and then solubilized and assessed 

by SDS-PAGE and western blotting as described in section 2.9.4 and 2.9.5 respectively, as 

well as on an exponential gradient Fairbanks gel with silver staining as described in section 

2.15.1 and 2.15.2 respectively. Control assays were conducted on purified GST protein to 

determine the influence of GST on oligomerization.  

 

2.15.1 3.5-17.5% exponential gradient Fairbanks gel 

A 10 well, 16cm x 18cm 3.5-17.5% exponential gradient Fairbanks SDS polyacrylamide 

gel was poured, as described in table 2.4, and allowed to polymerize at room temperature 

(Fairbanks et al., 1971). The tetramerization samples were loaded and gel was 

electrophoresed in the Hoefer SE 400 Sturdier™ Air-Cooled Vertical Electrophoresis 

System at a constant voltage of 45V in Fairbanks running buffer (40mM Tris, 20mM 

C2H3NaO2, 2mM EDTA, 0.1% (w/v) SDS, pH7.5) for 17 hours. 
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Table 2.4: Fairbanks SDS polyacrylamide gel. 

Reagent 3.5% 17.5%  

40% Acrylamide and 1.5% 

Bis-acrylamid solution  

3ml 

(Final acrylamide 

concentration 3.5%; bis-

acrylamide 0.13%) 

3.4ml 

(Final acrylamide 

concentration 17.5%; bis-

acrylamide 0.6%) 

10X TAE buffer  

(400mM Tris, 200mM 

C2H3NaO2, 20mM EDTA, pH 

7.4) 

3.4ml  

(Final concentrations 40mM 

Tris, 20mM C2H3NaO2, 2mM 

EDTA) 

0.8ml 

(Final concentrations 40mM 

Tris, 20mM C2H3NaO2, 2mM 

EDTA) 

10% (w/v) SDS 
0.68ml  

(Final concentration 0.2%) 

0.16ml  

(Final concentration 0.2%) 

MilliQ water 26.9ml 1.62ml 

25% Glycerol - 
2ml 

(Final concentration 6%) 

10% (w/v) fresh ammonium 

persulphate 

0.4ml  

(Final concentration 0.1%) 

0.02ml  

(Final concentration 0.02%) 

TEMED 11μl - 

0.5% TEMED - 0.5ml 

Final volume 34.4ml 8.5ml 

 

2.15.2 Silver staining 

Silver staining of polyacrylamide gels was conducted according to a previously described 

protocol (Porro et al., 1982). The gel was fixed in 50% ethanol, 12% acetic acid, 0.02% 

formaldehyde, washed 3x for 20 minutes with 50% ethanol and then treated for 1 minute 

with 0.01% (w/v) sodium thiosulfate (Na2S2O3). Three sets of 20 second washes in water 

were conducted, after which the gel was stained for 30 minutes in 0.1% (w/v) silver nitrate 

(AgNO3) and washed again with water as before. The bands of interest were developed in 

3% (w/v) Na2CO3, 0.0002% Na2S2O3 and the reaction was stopped with 25mM EDTA, pH 

8.     

 

2.16 Electrophoretic mobility shift assay  

The EMSA is based on the principle that during electrophoresis an oligonucleotide would 

migrate at a faster rate when alone relative to it being bound by a protein, which would 

retard its movement (Hellman and Fried, 2007). Commonly radioisotope-labelled 
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oligonucleotides are used in this assay due to the high sensitivity they confer during 

detection (Hellman and Fried, 2007). In this study the DNA binding ability of Pfp53 was 

determined using an EMSA and the Digoxigenin (DIG) Gel Shift Kit, 2
nd

 generation, as 

specified by the manufacturer.   

 

2.16.1 Oligonucleotide annealing and labelling 

Complementary p53 consensus sequence oligonucleotides (P. falciparum specific 

sequence: 5’-AAACATGCTTTTAAAAACAAGCTT-3’) (El-Deiry et al., 1992) were 

mixed in equal concentrations and annealed by heating for 10 minutes at 95C and 

subsequent slow cooling to room temperature. One hundred ng of the double stranded 

oligonucleotides were labelled with DIG in a 25μl kit labelling reaction at 37C for 1 hour. 

Labelling efficiency was conducted using the DIG visualization protocol, as described in 

section 2.16.2, against a DIG-labelled control.        

 

2.16.2 Electrophoretic mobility shift assay   

The electrophoretic mobility shift assay (EMSA) was conducted according to the kit 

specifications in the EMSA binding buffer, described in section 2.15, in the presence of 

0.1μg poly-L-lysine, a basic protein which enhances the DNA binding of some proteins. 

The kit control reaction and a GST control reaction were included in each experiment, to 

ensure the assay was working correctly and to ensure the absence of non-specific GST 

DNA binding, respectively.  

The 20μl assay was incubated for 20 minutes at room temperature in the presence of 

various amounts of labelled p53 oligonucleotides – 4, 2 and 0.8ng per reaction, and 

dialysed GST-Pfp53 protein – ~50ng, ~100ng, ~150ng, ~200ng and ~300ng per reaction. 

The specificity of DNA binding was evaluated in the presence of 10- and 100-fold excess 
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of unlabelled competitor p53 oligonucleotide as well as 100-fold excess of a random, 

unlabelled oligonucleotide sequence (5’-ATATTTGAGAACTGGATGAACAGA-3’).  

 

The reactions were then separated on 9cm 6% native polyacrylamide gels as well as 9cm 

3.5 – 5% native polyacrylamide linear gradient gels in a Mighty Small II SE250 gel 

system, constituted as described in table 2.5.   

 

Table 2.5: Constituents of a 6% polyacrylamide native gel. 

Reagent Volume 

MilliQ water 2.655ml 

1X TBE buffer 

(89mM Tris, 89mM Boric acid, 

2mM EDTA pH 8) 

2.75ml  

(Final concentration 

0.25xTBE) 

1% (w/v) Bis-acrylamide 
3.3ml  

(Final concentration 0.3%) 

30% (w/v) Acrylamide 
2.2ml  

(Final concentration 6%) 

10% (w/v) fresh ammonium 

persulphate 

75μl  

(Final concentration 0.07%) 

TEMED 20μl 

Final volume 11.0ml 

 

The wells were washed thoroughly and the 6% and 3.5-5% linear gradient gels were pre- 

electrophoresed at 160V and 50V respectively to remove any residual ammonium 

persulphate. Samples were then electrophoresed at 100V and 70V respectively in 0.25x 

TBE buffer, maintained at 4°C with the aid of a Labcon CPE 50 circulator, until the dye 

front reached the bottom of the gel. Electro-blotting was performed in 0.5x TBE buffer at 

400mA for 45mins using Hybond
TM

-N nylon membrane. The membrane was placed in 

SSC buffer (0.3M NaCl, 30mM sodium citrate, pH 7) and exposed to UV radiation for 5 

minutes to crosslink the oligonucleotides to the membrane.    

 

The membrane was rinsed for 5 minutes in DIG washing buffer (0.1M Maleic acid, 0.15M 

NaCl, 0.3% Tween 20, pH 7.5), incubated for 30 minutes in 100ml of 1x DIG blocking 
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buffer (1g DIG blocking buffer into 100ml Maleic acid buffer (0.1M Maleic acid, 0.15M 

NaCl, pH 7.5)) and then exposed to 20ml of 1:10 000 Anti-DIG-alkaline phosphatase 

antibody in 1x DIG blocking buffer for 30 minutes. The membrane was then rinsed twice 

for 15 minutes in DIG washing buffer, equilibrated in DIG detection buffer (0.1M Tris-

HCl, 0.1M NaCl, pH9.5) for 5 minutes before being overlayed with 2ml of the 25mM 

chemiluminescent substrate CDP-star for 5 minutes. Excess substrate was removed and the 

signal visualized using the GeneSnap GeneGenius Geldoc scanning system.         
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3 RESULTS  

3.1 Analysis of P. falciparum SWIB/MDM2 homologues  

3.1.1 Identification of SWIB/MDM2 genes  

The PfMDM2 gene (PF3D7_0518200) is annotated as coding for a protein of unknown 

function, containing a putative SWIB/MDM2 domain (Arambage et al., 2009), previously 

identified by Dr Pierre Durand (Coetzer et al., 2010). The gene is located on the negative 

strand (Crick orientation) of chromosome 5 from base 758,503 to 758,898 and lacks 

introns (Aurrecoechea et al., 2009). The C-terminal SWIB/MDM2 domain comprises 

almost all of the 131 amino acid protein, with no other functional domains ascribed to the 

protein, as depicted in figure 3.1 (Aurrecoechea et al., 2009).  

The genome also encodes the PfSWIB gene (PF3D7_0611400), annotated as a SWI/SNF-

related matrix-associated actin-dependent regulator of chromatin, with a SWIB/MDM2 

domain towards the N terminus of the corresponding protein (Figure 3.1). The single exon 

gene is located on the negative strand (Crick orientation) of chromosome 6 from base 

471,658 to 474,150 (Aurrecoechea et al., 2009).  

 

3.1.1.1 Primary sequence alignments for PfMDM2 and PfSWIB 

Two broad groups of SWIB/MDM2 domains have been identified. The first group is 

involved in p53 binding and identified in MDM2 proteins, thus this group will be 

designated as group M within this study. The second group is identified in a variety of 

eukaryotic proteins and participates in chromatin remodelling, transcriptional regulation 

and unknown functions. This group will be designated as group C. Primary sequence 

analysis was conducted to determine the group to which each parasite SWIB/MDM2 

homologue would belong. Clustal Omega alignments, presented in figure 3.2, revealed a 

highly conserved sequence for a wide range of vertebrate (fish to mammal) group M 
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homologues. This feature was only partially extended to the SWIB/MDM2 domains of the 

two P. falciparum proteins.  

 

 
Figure 3.1: Diagrammatic representation of the two P. falciparum SWIB/MDM2 homologues 

(derived from Aurrecoechea et al., 2009). 

The numbers represent nucleotide positions situated along the respective chromosomes while the 

arrows indicate transcriptional direction for the genes.  
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B 

 
C 

 
Figure 3.2: Clustal Omega primary amino acid sequence alignments for PfMDM2 and 

PfSWIB against each other and group M SWIB/MDM2 domains.  

A) Alignment of PfMDM2 to PfSWIB. In relation to each other the two domains have 28.2% 

identity and 57.7% similarity.  

B) Alignment of PfMDM2 to group M SWIB/MDM2 domains.  

C) Alignment of PfSWIB to group M SWIB/MDM2 domains.  

The high degree of conservation between Group M SWIB/MDM2 domains was only partly 

extended to the two parasite domains. The red blocks indicate critical amino acid residues for p53 

binding (Kussie et al., 1996; Freedman et al., 1997), which show limited conservation in the two 

parasite domains. The green block indicates a conserved Gly residue identified in all group M 

domains. Purple blocks indicate identical amino acids; blue blocks indicate similar amino acids; 

threshold set at 80%. 

 

Binding of MDM2 to p53 is mainly the result of van der Waals forces, facilitated by a high 

proportion of aromatic and hydrophobic residues within the SWIB/MDM2 domain (Kussie 

et al., 1996, Freedman et al., 1997) – 46.8% in humans for example. The P. falciparum 

SWIB/MDM2 domains have a slightly lower hydrophobic and aromatic amino acid residue 

composition (39.4% for PfMDM2 and 40.6% for PfSWIB). Of the 16 residues marked as 

critical for p53 binding in figure 3.2, only one is identical in each P. falciparum protein – 

Ile
83

 in PfMDM2 and Asp
297

 in PfSWIB. There are five residues (Leu
76

, Asn
90

, Ile
114

, 

Leu
121

 and Phe
122

) and seven residues (Leu
279

, Ile
283

, Ile
286

, Leu
291

, Ile
300

, Tyr
316

 and 

Leu
324

) for PfMDM2 and PfSWIB respectively that show semi-conservation to the critical 

p53 binding residues of the human MDM2 protein. The P. falciparum homologues could 



 

Investigating the Molecular Participants of Programmed Cell Death in Plasmodium falciparum |  80 

 

| 
R

es
u

lt
s 

deviate in essential amino acids due to potential sequence and structural differences in their 

binding partner(s), relative to the human p53 protein. Several residues within group M 

domains, not involved in direct p53 binding, are also identical in both parasite 

SWIB/MDM2 domains (Tyr
78

, Leu
88

, Asp
101

, Leu
103

 and Glu
116

 for PfMDM2, and Thr
278

, 

Glu
281

, Tyr
289

, Leu
295

, Leu
307

, Val
313

 and Glu
320

 for PfSWIB). Roughly half of these 

identical residues are hydrophobic and/or aromatic and possibly participate in creating a 

suitable environment for protein-protein interactions.  

 

The SWIB/MDM2 domains of PfMDM2 and PfSWIB were also compared to group C 

SWIB/MDM2 domains, identified within a wide range of unicellular and multicellular 

eukaryotic proteins ranging from Toxoplasma to humans (figure 3.3). The residues which 

are critical for function are unknown, although there is a high proportion of hydrophobic 

and aromatic amino acid residues. Eight residues were identical in PfMDM2 (Leu
61

, Arg
72

, 

Trp
80

, Tyr
82

, Ile
83

, Lys
84

, Leu
88

, Gln
89

 and Asp
100

) and one was semi-conserved (Ile
57

). In 

the case of PfSWIB, six of residues were identical (Leu
265

, Leu
269

, Tyr
290

, Leu
296

, Asp
298

, 

and Asp
305

) and one was semi-conserved (Tyr
288

) relative to other group C SWIB/MDM2 

domains. 

Although the function is unknown, all group C SWIB/MDM2 domains contain a conserved 

Trp residue. This was identical for PfMDM2 (Trp
80

 marked in green in figure 3.3) relative 

other group C SWIB/MDM2 domains. In group M SWIB/MDM2 domains, this residue has 

been converted to a Gly (marked in green in figure 3.2) and plays a critical role in p53 

binding (Bennett-Lovsey et al., 2002). The PfSWIB domain did not have the Trp or Gly 

residue but instead a different aromatic residue – Tyr
288

.  
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A 

 
B 

 
Figure 3.3: Clustal Omega primary amino acid sequence alignments for PfMDM2 and 

PfSWIB against group C SWIB/MDM2 domains.  

A) Alignment of PfMDM2 to group C SWIB/MDM2 domains.  

B) Alignment of PfSWIB to group C SWIB/MDM2 domains.  

A similar degree of conservation was documented between group C SWIB/MDM2 domains 

and the two P. falciparum domains. The green block highlights a previously described group 

C conserved Trp residue (Bennett-Lovsey et al., 2002). Purple blocks indicate identical amino 

acids; blue blocks indicate similar amino acids; threshold set at 80%. 

 

Primary sequence identity and similarity were calculated using EMBOSS Needle analysis, 

relative to PfMDM2 and PfSWIB, for representative members of group M (the 

SWIB/MDM2 domain of the H. sapiens MDM2 protein and the X. laevis E3 ubiquitin-

protein ligase MDM2 protein) and group C (the A. thaliana SWI/SNF complex component 

SNF12 homolog, the D. melanogaster Brahma associated protein 60kD and the H. sapiens 

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D) 

homologues. As documented in tables 3.1 and 3.2, both P. falciparum SWIB/MDM2 

domains demonstrated a greater sequence identity and similarity to group C SWIB/MDM2 

homologues, in particular to the H. sapiens group C member.   
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Table 3.1: EMBOSS needle analysis for PfMDM2 relative to representative SWIB/MDM2 

domains.   

Organism of 

comparison 

SWIB/MDM2 

homologue 

Group 

Percentage 

identity (%) 

Percentage 

similarity (%) 

H. sapiens M    16.7 25.6 

X. laevis M 17.5 35.0 

A. thaliana C 18.1 36.1 

D. melanogaster C 22.1 42.9 

H. sapiens C 23.4 48.1 

 

Table 3.2: EMBOSS needle analysis for PfSWIB relative to representative SWIB/MDM2 

domains.   

Organism of 

comparison 

SWIB/MDM2 

homologue 

Group 

Percentage 

identity (%) 

Percentage 

similarity (%) 

H. sapiens M 9.7 26.4 

X. laevis M 19.2 38.5 

A. thaliana C 24.0 40.0 

D. melanogaster C 22.1 41.6 

H. sapiens C 24.7 42.9 

 

Sequence similarity was greater than identity in all these alignments. Logically, greater 

sequence similarity, relative to identity, correlates to a greater likelihood of homology as 

certain residue exchanges may have little or no effect on tertiary structure and/or protein 

function (Rost, 1999). Protein structure, as opposed to sequence, often shows greater 

conservation during evolution and was therefore characterized for both P. falciparum 

SWIB/MDM2 homologues (Rost, 1999, Geourjon et al., 2001).   

 

3.1.1.2 Secondary structure predictions for PfMDM2 and PfSWIB are rich in 

helices 

Secondary structure predictions and tertiary structure analyses (section 3.1.1.3), were 

conducted with the aid of group C and M domains for which crystallized structures were 

available (figure 3.3). These included the following group M homologues: 

 The SWIB/MDM2 domain of the H. sapiens MDM2 protein (PBD id: 2VG2) 

(Sakurai et al., 2006)  
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 The SWIB/MDM2 domain of the X. laevis E3 ubiquitin-protein ligase MDM2 

protein (PDB id: 1YCQ) (Kussie et al., 1996) 

The following C homologues were used: 

 The SWIB/MDM2 domain of the A. thaliana SWI/SNF complex component 

SNF12-like protein At5g14170 (PBD id: 1V31) (Yoneyama et al., 2004b) 

 The SWIB/MDM2 domain of the M. musculus SWI/SNF-related matrix-associated 

actin-dependent regulator of chromatin subfamily D member 1 protein (PBD id: 

1UHR) (Yamada et al., 2004) 

Predicted secondary structure analyses and comparisons were of importance as they, in 

contrast to crystal structures, may show greater similarities between distantly related 

domains (Geourjon et al., 2001). Overall, a specific secondary structure was deemed 

probable in areas where three or more algorithms predicted the same topology. It was 

assumed that one or two residues predicted as alpha helices would not contribute towards 

the overall tertiary structure of the domain but beta-strands conmposed of two residues 

would participate in the formation of beta-sheets, based on crystallized structures (example 

1V31 – see section 3.1.1.3). For additional information the group C SWIB/MDM2 domain 

of the S. cerevisiae SNF12 protein was used, which is a unicellular homologue implicated 

in chromatin remodelling but has no crystal structure.  

 

The secondary structures of the crystallized group M SWIB/MDM2 domains were 

predicted to fold into two long alpha helical stretches and two to three short beta-sheets 

with several interspersing random coil regions (figure 3.3A-B). Crystallized group C 

SWIB/MDM2 domains were very similar, although they had more helical stretches and 

only a single, short beta-sheet preceding the third helical run (figure 3.3C-D). The regions 

of random coils are believed to act as hinges or folding areas facilitating the interactions 
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between the alpha helices and beta-strands and in turn aiding in overall tertiary structure 

formation (Bennett-Lovsey et al., 2002).  

A 
H. sapiens: group M domain 

 
B 
X. laevis: group M domain 

 
C 
A. thaliana: group C domain 

 
D 
M. musculus: group C domain 

 
E 
S. cerevisiae: group C domain 

 
F 
SWIB/MDM2 domain of PfMDM2 

 
G 
SWIB/MDM2 domain of PfSWIB  

 
Figure 3.3: Secondary structure predictions for various SWIB/MDM2 domains.   

A and B: The two group M SWIB/MDM2 domains analysed were predicted to fold into two long 

alpha helical stretches and at least two short beta-strands.  

C and D: The two group C domains were predicted to fold into at least three long stretches of alpha 

helices, with the third helical run preceded by a short beta-strand.  

The PfMDM2 (F) and S. cerevisiae (E) domains conformed to a group C predicted secondary 

structure, while PfSWIB (G) was rich in alpha helices.  

Blocked areas indicate identical predictions by three or more algorithms. C represents random 

coils; E represents beta-strands; H represents alpha helices. Any unblocked areas represent areas 

where no secondary structure could be determined.  

 

The overall predicated secondary structure of the PfMDM2 domain was similar to that of 

the group C domains – rich in helices, with a short beta-strand preceding the third helical 
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run – but deviated with the presence of an additional, short beta-strand at the N-terminus of 

the domain (figure 3.3F). The yeast domain was also similar to other group C domains and 

to the PfMDM2 domain, rich in helices and having only a single beta-strand. This latter 

structure had an altered spatial location, preceding the fourth helical stretch (figure 3.3 E). 

As the random coiled region (C3 in figure 3.3E) which separates helical stretch two and 

three (H2 and H3 in figure 3.3E) is so small, these two helical stretches may actually 

represent a single unit, explaining the discrepancy in the position of the beta-strand relative 

to other group C domains.   

 

The PfSWIB domain was mainly helical in nature suggestive of a group C domain, 

although there was some difficulty in deciding the probable secondary structures in many 

regions of this protein.  

 

3.1.1.3 Tertiary structure predictions for PfMDM2 and PfSWIB conform to a 

partial twisted cleft topology 

All crystallized SWIB/MDM2 domains, irrespective of their functional roles, show a 

similar topology, referred to as a twisted cleft, constituted by four alpha helices creating a 

twisted barrel- or basket-like structure, capped on one or both sides by beta-sheets (figure 

3.4 A-E) (Kussie et al., 1996, Bennett-Lovsey et al., 2002, Yamada et al., 2004, Yoneyama 

et al., 2004b, Yoneyama et al., 2004a, Sakurai et al., 2006). The only exception to this is 

the SWIB/MDM2 domain of the H. sapiens MDM2 protein. Here the complete topology 

requires an adjacent, neighbouring helix (figure 3.4A) (Sakurai et al., 2006).   
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Figure 3.4: Crystallised SWIB/MDM2 domains and various predicted tertiary structures of 

the SWIB/MDM2 domains of PfMDM2, PfSWIB and the S. cerevisiae SNF12 protein.  

For descriptions of the crystallized domains refer to section 3.1.1.2 and 3.1.1.3.  The purple regions 

represent the amino acid residues constituting the SWIB/MDM2 domains, as classified by the 

NCBI database; the red regions denote the beta-sheets in the SWIB/MDM2 domains; and the green 

regions represent flanking domains in the structures. The white arrows in (B) indicate the three 

critical folds within the X. laevis SWIB/MDM2 domain required for p53 binding – the left beta-

sheet, the bottom alpha helix and a rear, almost hidden, alpha helix (Kussie et al., 1996). The 

modelled structure of the yeast SWIB/MDM2 domain corresponds to that seen for most of the 

parasite domains, a helical barrel with no beta-sheets (S).      
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Discrepancy existed between crystallized and predicted secondary structures when 

comparing figures 3.3 and 3.4 in terms of group M domains – an inappropriate number of 

helices and beta-sheets were predicted. A correlation was documented for helices in group 

C domains, but a greater number of beta-strands were evident in the crystal structures. This 

finding highlights the suggestion of Geourjon et al., (2001) that the predicted secondary 

structure of a protein or domain does not always correlate to that which is crystallized. 

 

The two parasite proteins have not previously been crystallized and so they were assessed 

in terms of their putative tertiary structures, with the aid of three template-based modelling 

algorithms. All three predicted an incomplete twisted cleft topology for both parasite 

domains, using a variety of SWIB/MDM2 crystal templates (figure 3.4 F-S). The four most 

prominent crystal templates used were 1UHR, 1YCQA, 1V31 and 1V32 (The 

SWIB/MDM2 domain of the A. thaliana SWI/SNF complex component SNF12-like 

protein At5g08430 (Yoneyama et al., 2004a)), although the percentage identity was always 

less than 30% regardless of the template employed. The SWIB/MDM2 domain of the 

2GV2 template was part of a complex (other participating proteins removed in figure 3.4A 

for simplicity), and therefore not used during the modelling process.  

 

All the predicted tertiary structures of PfMDM2 had an appropriate helical composition but 

no beta-strands when compared to the classical twisted cleft topology. This absence of 

beta-strands deviated from the domains secondary structure predictions. All but one of the 

models showed fair to high quality and reliability when assessed using QMEAN analysis 

(figure 3.4F-L, QMEAN >0.5) (Benkert et al., 2009). The most reliable prediction was that 

created by the EsyPred algorithm using the 1YCQ template (QMEAN score of 0.835; 

figure 3.4J).  
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Unlike the unclear secondary structure predictions for PfSWIB, all the tertiary models 

showed four distinct helical regions, with fair to high quality and reliability based on 

QMEAN analysis (figure 3.4M-S). All but two of these lacked beta-strands, in line with 

secondary structure predictions. Two of the lower scoring models had correctly positioned 

beta-sheets and thus conformed to the full classical topology (figure 3.4R-S) but the lower 

quality, relative to the some of the other incomplete models, suggests that the domain may 

indeed lack beta-strands. The most reliable prediction was created by the PHYRE2 server 

(QMEAN score of 0.745, figure 3.4P). The apparent absence of beta-sheets in the 

modelled PfMDM2 and PfSWIB domains respectively suggests their inability to bind to a 

p53-homologue in a conventional manner. 

 

Further analysis was conducted using the yeast SNF12 protein, which has not been 

crystallized. When modelled, using the PHYRE2 algorithm (figure 3.4T), the same 

incomplete twisted cleft topology was predicted as for the two parasite domains, although 

the quality and reliability of this model was poor (QMEAN = 0.359). This helical rich 

structure, like PfMDM2, failed to correlate to its predicated secondary structure in terms of 

beta-strands. Whether this modelled absence of beta-sheets is of functional importance is 

unknown but appears to be a conserved feature of unicellular eukaryotic SWIB/MDM2 

domains. Based on secondary structure predictions and tertiary modelling both parasite 

SWIB/MDM2 domains are likely group C homologues. Both, but more so for PfMDM2, 

show strong relation to the yeast SNF12 SWIB/MDM2 domain.  

 

3.1.2 Binding partner identification for P. falciparum SWIB/MDM2 homologues 

Although the precise molecular mechanism by which the SWIB/MDM2 family induces 

transcriptional regulation is often unknown, protein-protein interactions appear to be 
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essential (Bennett-Lovsey et al., 2002). Thus, this study aimed to identify novel or known 

homologous binding partners for the two recombinant P. falciparum SWIB/MDM2 

domains with the aid of phage display library technology.  

 

3.1.2.1 Isolation of pure genomic DNA  

Genomic DNA was isolated from wild type 3D7 P. falciparum parasites and the purity and 

concentration thereof was determined spectrophotometrically. The DNA was free of 

protein and organic contaminants based on the A260/A280 and A260/A230 values (table 

3.3) (Sambrooke and Russell, 2001, Rapley, 2005, NanoDrop Technologies, 2007). The 

high A260/A280 ratio indicated the possibility of RNA contamination (Rapley, 2005, 

Hoffmann-Rohrer and Kruchen, 2011) but agarose gel electrophoresis failed to reveal any 

RNA (figure 3.5). The sample migrated as a single, intact band of high molecular mass and 

was used successfully for PCR.  

  

Table 3.3: Spectrophotometric assessment of isolated P. falciparum genomic DNA 

DNA 

concentration 

(ng/l) 

A260/A280 

value 

A260/A230 

value 

28.4 3.19 2.01 

 

 
Figure 3.5: Isolated P. falciparum genomic DNA.  

Assessment of genomic DNA was performed by 1% agarose gel electrophoresis, with size 

validation relative to a base pair standard.  

Lane 1 – MassRulerTM high range DNA ladder; Lane 2 – isolated P. falciparum genomic DNA.  
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3.1.2.2 Preparation of the P. falciparum SWIB/MDM2 domain constructs   

The SWIB/MDM2 domains of PfMDM2 and PfSWIB were amplified and prepared for 

directional insertion into the pGEX-4T-2 vector, as presented in figures 3.6A and 3.6B. 

The prepared amplicons migrated as single bands, at their theoretically expected sizes 

(273bp for PfMDM2 and 480bp for PfSWIB) during electrophoresis. The pGEX-4T-2 

plasmid was employed for this section of the study, to produce GST-tagged recombinant 

proteins (Appendix D). The quantified pGEX-4T-2 plasmid DNA and PCR amplicons 

were ligated and the resultant constructs were used for the transformation of DH5α E. coli 

cells.   

A 

 

 

B 

 
Figure 3.6: The pGEX-4T-2 plasmid and the P. falciparum SWIB/MDM2 domain amplicons.  

Assessment conducted by 1% agarose gel electrophoresis, with size validation relative to a base 

pair standard.  

A) Lane 1 – MassRulerTM mixed range DNA ladder; Lane 2 – PfMDM2 SWIB/MDM2 domain 

amplicon; Lane 3 – linearized pGEX-4T-2 plasmid.  

B) Lane 1 – MassRulerTM mixed range DNA ladder; Lane 2 – linearized pGEX-4T-2 plasmid; Lane 

3 – PfSWIB SWIB/MDM2 domain amplicon. 
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3.1.2.3 Verification of the pGEX-4T-2 constructs   

A minimum of five transformed colonies, of each construct, were assessed to determine the 

success of cloning. Extracted plasmids underwent restriction endonuclease digestion, as 

shown in figures 3.7 – 3.8, to determine if the appropriately sized insert was ligated into 

the plasmid backbone. Correctly sized constructs were validated by sequencing, to ensure 

the absence of mutations and that in-frame ligation had occurred, and used for the 

transformation of Rosetta™ 2 (DE3) cells and used for recombinant protein expression. 

 

 

Construct: PfMDM2-pGEX-4T-2 

 

Control vector: pGEX-4T-2 

 
Figure 3.7: Validation of the PfMDM2-pGEX-4T-2 construct by restriction endonuclease 

digestion.   

BamHI and XhoI were used to excise the PfMDM2 amplicon (marked by the red arrow) from 

the PfMDM2-pGEX-4T-2 construct. A control digestion reaction was conducted on the pGEX-

4T-2 vector. The vector maps on the right indicate the band sizes expected after construct and 

control plasmid digestion.  
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Construct: PfSWIB-pGEX-4T-2 

 
Control vector: pGEX-4T-2 

 
Figure 3.8: Validation of the PfSWIB-pGEX-4T-2 construct by restriction endonuclease 

digestion.   

EcoRV and XhoI were used to excise the PfSWIB amplicon and a portion of the vector backbone 

(marked by the red arrow) from the PfSWIB-pGEX-4T-2 construct. A control digestion reaction 

was conducted on the pGEX-4T-2 vector. The vector maps on the right indicate the band sizes 

expected after construct and control plasmid digestion.  

 

3.1.2.4 Recombinant expression of GST-tagged proteins  

From this point on the term GST-PfMDM2 will represent the GST-tagged recombinant 

PfMDM2 SWIB/MDM2 domain while GST-PfSWIB will represent the GST-tagged 

recombinant PfSWIB SWIB/MDM2 domain. Through the optimization of the expression, 

extraction and purification protocol, successful isolation was achieved for both parasite 

SWIB/MDM2 domains (figures 3.9 – 3.10). For both proteins, a large proportion remained 

in the unbound fraction after one round of affinity purification. The use of more magnetic 

beads did not proportionally increase the yield but did decrease the elution purity, due to 

elevated non-specific protein binding. Yield was increased by washing the beads after the 

first round of protein binding to remove non-specifically bound proteins, and then 
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reapplying the beads to the unbound fraction. This allowed for additional recombinant 

fusion protein to bind to the beads. As seen in figures 3.9A and 3.10A recombinant protein 

was lost during the wash steps, although the amount lost was reduced with each successive 

round of washing, which was conducted to enhance elution purity. 

 

GST-PfSWIB was expressed with a lower than theoretically expected solubility (˂50% 

based on immunoblot densitometry vs. 74.9% calculated – figure 3.9B and table 3.4). This 

was unexpected as the acidic pI (pI of 5) of GST-PfSWIB should have promoted protein 

solubility (Mehlin et al., 2006). An average yield of 24g was attained per 20ml bacterial 

culture and, as seen in figure 3.9A, was essentially pure. Purity was based on densitometry 

of gels stained with Coomassie blue, implying that contaminating proteins of less than 

100ng would not be detected.  

 

Immunoblotting of eluted GST-PfSWIB revealed a single band, whereas two additional 

bands were detected in the unpurified fractions. The lowest band, with a relative molecular 

mass of about 21kDa, was probably endogenous E. coli GST protein (theoretical mass of 

22.9kDa). Its absence from the GST-PfSWIB elution may have been due to the relatively 

small proportion of total elution assessed. The identity of the higher band, with a relative 

molecular mass of about 39kDa, is unknown, but it was not present in the soluble fraction. 

The curving of some of the protein bands at the edge of the gels in figure 3.9 and 3.10, 

attributed to uneven heat distribution across the gel during electrophoresis (Takahashi et 

al., 1991). 
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A 

 

B 

 

Figure 3.9: Expression and immunoblot analysis of GST-PfSWIB.  

A) A Coomassie blue stained SDS-polyacrylamide gel. Aliquots assessed: 5μl of the red cell 

membrane ladder; 1.5μl of 1.5ml total, soluble, insoluble and unbound fractions; 20μl of 1ml 

washes; 20μl of 150μl elution 1; and 10μl of 150μl GST elution (control). The PfSWIB fusion 

protein migrated at 42kDa, roughly its correct theoretically expected molecular mass of 44.1kDa.    

B) An immunoblot using an anti-GST antibody verified the 42kDa protein band as GST-PfSWIB. 

The same volumes of aliquots were assessed as stated above expect for the use of 10μl of 150μl 

elution 1 and 5μl of 150μl GST elution (control).  

* indicates GST-PfSWIB  
 

Table 3.4: The properties of GST-PfMDM2 and GST-PfSWIB.  

Protein 

name 

N-

terminal 

tag 

Molecular mass (kDa) 
Predicted 

sol  ilit ‡ 

(%) 

 

 I† 
Purity 

(%) 

Average 

concentration 

of elution 

(n /μl)  

standard 

deviation 

(n=3) 

Yield 

per 

20ml 

E. coli 

culture 

(μ )** 
Calculated

† 

Based on 

SDS-

PAGE* 

PfSWIB GST 44.1 42 74.9 5.0 99 162 ± 21.4 ~24 

PfMDM2 GST 36.4 33 35.4 8.4 72 59 ± 18.1 ~9 

†Entire fusion protein, tag included, assessed using ExPASy (Gasteiger et al., 2005);* A standard 

red cell membrane marker was used for relative molecular mass determination; ‡ Calculated using 

the Recombinant Protein Solubility Prediction program (Wilkinson and Harrison, 1991) for the 

entire fusion protein, tag included; ** Average from three elutions.  
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GST-PfMDM2 was expressed with a low, but theoretically expected, solubility (~40% vs. 

35.4% respectively – figure 3.10B and table 3.4). The protein’s relatively high pI of 8.4 

was a possible contributing factor, as previous studies have correlated high pI values to 

reduced recombinant P. falciparum protein expression within bacterial systems (Mehlin et 

al., 2006). The average yield for GST-PfMDM2 was 9g per 20ml bacterial culture, 

significantly lower than that of GST-PfSWIB. A basic pI not only contributes to poor 

solubility but affects protein expression, with a pI below 6 or above 8 commonly being 

associated with low expression (Mehlin et al., 2006). The low level of GST-PfMDM2 

expression was expected in light of its high pI. 

A 

 

B 

 

 

 

 

 

 

 

 

Figure 3.10: Expression and immunoblot analysis of GST-PfMDM2.  

A) A Coomassie blue stained SDS-polyacrylamide gel. Aliquots assessed: 5μl of the red cell 

membrane ladder; 1.5μl of 1.5ml total, soluble, insoluble and unbound fractions; 20μl of 1ml 

washes; 10μl of 150μl elution 1; and 10μl of 150μl GST elution (control). The PfMDM2 fusion 

protein migrated at 33kDa, roughly its correct theoretically expected molecular mass of 36.4kDa. A 

truncated form of GST-PfMDM2 was documented at a molecular mass of roughly 27kDa.       

B) An immunoblot using an anti-GST antibody verified the 33kDa protein band as GST-PfMDM2. 

The same volumes of aliquots were assessed as stated above expect for the use of 20μl of 150μl 

elution 1 and 5μl of 150μl GST elution (control).  

* indicates GST-PfMDM2 
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As seen in figure 3.10 the GST-PfMDM2 protein expressed in two forms; the full length 

form with a relative molecular mass of 33kDa and a truncated form with a relative 

molecular mass of 27kDa. The latter form was only slightly larger than the GST tag alone 

(figure 3.10) suggesting early truncation, just after the N-terminus tag. Recombinant 

expression of P. falciparum proteins as truncated forms is not an uncommon event (Flick 

et al., 2004, Mehlin et al., 2006). One general contributing factor is the use of rare codons, 

not recognized by E. coli. Nucleotide analysis of PfMDM2-pGEX-4T-2 construct revealed 

a rare Arg codon (AGA) present near the 5’end of the parasite specific domain and 

truncation at this point would correlate to a 27kDa protein. The Rosetta™ 2 (DE3) cell line 

was employed in this study, which encodes six tRNAs for rare codons, one being AGA 

(Novagen, 2004). This modified E. coli cell ensured that not all the protein products were 

truncated but could not prevent it entirely.   

 

The truncated GST-PfMDM2 could not be separated from its corresponding full length 

form due to their small size difference and identical N-terminal tags. It is unlikely that this 

truncation was due to protein degradation as a protease inhibitor cocktail was employed 

during the extraction process and the band was consistent, constant in size and proportion 

for every protein preparation. The truncated GST-PfMDM2 was not considered 

problematic as it would simply represent the GST-tag, with very little of the SWIB/MDM2 

domain actually expressed.  
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3.1.2.5 Four putative binding partners identified for the P. falciparum 

SWIB/MDM2 homologues   

The GST-PfMDM2 and GST-PfSWIB proteins were biopanned against P. falciparum 

phage display libraries (Lauterbach et al., 2003) and after the fourth round of biopanning 

the resultant plaques, presenting as clearly defined, non-overlapping clear areas on the 

lawn of E. coli on the titering plates (as depicted in figure 3.11) were utilized for PCR 

assessment to determine the size of the P. falciparum cDNA inserts in the phage. Plaques 

were screened for each recombinant GST-SWIB/MDM2 protein and a diverse range of 

insert sizes were found, although the majority were no more than 100bp larger than the 

control empty cassette PCR product, indicating resultant peptides of approximately 30 

amino acids (figure 3.12). Multiple, similarly sized bands suggested specific phage 

enrichment and amplification. The large quantity of small sized inserts was expected as 

previous studies involving the same libraries presented similar results (Lauterbach et al., 

2003). PCR products 300bp were sequenced and analysed as well as selected small P. 

falciparum cDNA inserts, 40bp relative to the empty cassette. 

 

 
Figure 3.11: A titering plate after four rounds of biopanning.  

A 106 dilution of a phage library plated after the fourth round of biopanning against GST-PfSWIB. 

The high number of plaques indicated successful phage amplification.   
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Figure 3.12: A representation of the cDNA inserts present in the phage isolated after four 

rounds of biopanning.  

A range of PCR products (up to ~150bp), relative to the empty cassette (214bp), were identified. 

 

The sequenced inserts were converted to amino acids, four of which correlated to in-frame 

P. falciparum peptides, representing three PfSWIB and one PfMDM2 binding partners 

(tables 3.5 and 3.6 and the sequencing results in appendix C). The first PfSWIB partner 

was a C-terminal region of the protein encoded by the PF3D7_1342000 gene, 41 amino 

acids after the annotated ribosomal protein S6e domain. The protein has been annotated as 

a putative 40S ribosomal protein S6 and the domain identified by biopanning will be 

referred to as PfRS6 (Aurrecoechea et al., 2009). The second was an N-terminal region of 

the PF3D7_1356800 protein annotated as a putative serine/threonine protein kinase 

(Aurora related kinase 3 (ARK3)), which localises to the nucleus (table 3.6) (Aurrecoechea 

et al., 2009).  The domain is situated 434 amino acids upstream of the kinase domain and 

will be designated as PfARK3. Thirdly, an N-terminal region of the protein translated from 

the PF3D7_1003600 gene was identified and  correlated to part of the inner membrane 
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complex domain of this membrane skeletal protein (Alveolin 5 (ALV5)) (Aurrecoechea et 

al., 2009, Hu et al., 2010, Kono et al., 2012). This domain will be designated as PfALV5. 

 

Table 3.5: GST-PfMDM2 and GST-PfSWIB binding partners  

Reference Protein GST-PfMDM2 GST-PfSWIB GST-PfSWIB GST-PfSWIB 

B
in

d
in

g
 p

a
rt

n
er

 c
h

a
ra

ct
er

is
ti

cs
 

Identity 

PF3D7_1303400 

(conserved 

Plasmodium 

protein, unknown 

function) 

PF3D7_1003600 

(membrane 

skeletal protein 

IMC1-related 

(ALV5)) 

PF3D7_1356800 

(serine/threonine 

protein kinase, 

putative (ARK3)) 

PF3D7_1342000 

(40S ribosomal 

protein S6, 

putative) 

Total 

number of 

amino 

acids 

1022 281 4044 306 

Previously 

annotated 

domains 

(location)† 

LisH domain 

(8-34) 

Inner membrane 

complex protein 

domain 

(58-153) 

Ser/Thr protein 

kinase domain, 

putative  

(1282-1528) 

Ribosomal protein 

S6e domain 

(1-219) 

Location of 

putative 

SWIB/ 

MDM2 

binding 

domain 

(amino 

acids) 

505-538 58-107 788-847 260-298 

Animo acid 

sequence of 

putative 

binding 

domain 

KKKKKKEQTN

EGKKSVKGINK

KDKKRNSKVE

SKKK 

PKTIIQEKIIHVP

KNVTHIVEKIV

EVPEVKYIEKIV

EVPHIHYKNKY

VPKKK 

IYEKVNIDNDK

VKKKNLHSIND

KKIKINKTFMN

EKDMKGNNRK

KYNTEKRDNIK

RNENDNEKK 

EKKQNKTNNIK

NDKSEKKEQA

KKKTKTNENPQ

QTKQNKPNKK

K 

E-value* 2E-13 1.9E-24 6.2E-30 1.3E-18 

† According to PlasmoDB (Aurrecoechea et al., 2009); * Probability score for the correlation of the 

identified sequence to the P. falciparum protein sequence.  

  

Only a single high affinity binding partner for PfMDM2 was identified, corresponding to a 

centrally located region of the PF3D7_1303400 protein of unknown function.  It contains 

an N-terminal Lis1 homology (LisH) domain, 466 amino acids upstream from the 

PfMDM2 binding site, which will be designated as PfLisH in this study. The cellular 

location of this protein was predicted to be nuclear (table 3.6). A rRNA sequence 

(malmito_rna_10) was also identified, but due to the high A/T bias of the P. falciparum 
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genome, non-coding RNA molecules can frequently be purified with the mRNA and 

subsequently inserted into the phage arms, resulting in the expression of unnatural proteins 

(Lanzillotti and Coetzer, 2008).  

PCR products with equal size and restriction endonuclease digestion patterns relative to 

PfALV5 and PfLisH were identified several times. This indicates strong enrichment of 

these phage from the original starting library. 

 

Table 3.6: Predicted and/or proven cellular locations of the putative binding partners of 

GST-PfMDM2 and GST-PfSWIB 

Cellular location 
Bioinformatic 

analysis† 
Experimentally Proven 

Id
en

ti
fi

ed
 

b
in

d
in

g
 

p
a

rt
n

er
 PfALV5 Cytoplasm 

Inner membrane complex  

(Hu et al., 2010) 

PfARK3 Nucleus 
Nucleus (Doerig, 2014 

Personal communication) 

PfLisH Nucleus Not determined 

PfRS6 Nucleus Not determined 

† No annotated signal sequences exist for any of these proteins (Aurrecoechea et al., 2009); a 

variety of bioinformatic tools were employed to determine their possible cellular locations – the 

highest scoring location was deemed as most likely (see appendix A for more details). 

  

 

The biopanning system is not error free and can be associated with the detection of non-

specific interactions (Lanzillotti and Coetzer, 2008). Thus, the identified interactions were 

verified through binding partner recombinant protein expression and subsequent in vitro 

binding assays.  

 

3.1.2.6 Preparation of the binding partner constructs  

The four protein domains identified by biopanning were amplified by PCR and prepared 

for directional insertion into the pET-15b plasmid (Appendix D). This plasmid was used to 

express the binding partner domains as recombinant His-tagged fusion proteins – a 

different tag to the SWIB/MDM2 domains. As presented in figure 3.13 the prepared 

amplicons migrated at their expected sizes (735bp PfALV5, 1008bp PfARK3, 558bp 

PfLish and 627bp PfRS6), relative to a standard of base pair markers.  
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A 

 

B 

 
Figure 3.13: The pET15-B plasmid and the binding domain amplicons. 

Assessment conducted by 1% agarose gel electrophoresis, with size validation relative to a base 

pair standard.  

A) Lane 1 – MassRulerTM mixed range DNA ladder; Lane 2 – linearized pET15-B plasmid; Lane 3 

– PfARK3 amplicon; Lane 4 – PfRS6 amplicon; Lane 5 –PfALV5 amplicon. 

B) Lane 1 – MassRulerTM mixed range DNA ladder; Lane 2 – linearized pET-15b plasmid; Lane 3 

– PfLisH amplicon.  

 

3.1.2.7 Verification of the pET15-B constructs   

As described in section 3.1.2.3, positive colonies were assessed (figures 3.14 – 3.15) and 

sequenced and error-free constructs were used for recombinant protein expression in 

Rosetta™ 2 (DE3) cells. 
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Construct: PfLisH-pET15-B 

 

Control vector: pET15-B 

 
Figure 3.14: Validation of the PfLisH-pET15-B construct by restriction endonuclease 

digestion.   

EcoRV was used to excise the PfLisH amplicon and a portion of the vector backbone 

(marked by the red arrow) from the PfLisH-pET15-B construct. A control digestion reaction 

was conducted on the pET15-B vector. The vector maps on the right indicate the band sizes 

expected after construct and control plasmid digestion.  
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pET15-B vector 

 
PfALV5-pET15-B construct 

 
PfARK3-pET15-B construct 

 
PfALV5-pET15-B construct 

 
Figure 3.15: Validation of the GST-PfSWIB binding partner pET15-B constructs by restriction 

endonuclease digestion. 

NdeI and BamHI were used to excise the binding partner amplicons (marked by the red arrows) from 

the pET15-B constructs. A control digestion reaction was conducted on the pET15-B vector. The 

vector maps on the right indicate the band sizes expected after construct and control plasmid 

digestion.  
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3.1.2.8 Recombinant protein expression of His-tagged proteins   

From this point an example of the nomenclature which will be used is His-PfLisH, 

denoting the recombinant His-tagged PfLisH domain. Protein extraction and purification 

were previously described (section 3.1.2.4) but here nickel affinity magnetic beads were 

used.  

 

His-PfLisH was expressed as a soluble protein (90% based on immunoblot densitometry) 

and at a high level with an average yield of 13.4g per 20ml bacterial culture, despite its 

basic pI of 8.9 (Mehlin et al., 2006) and theoretically expected insolubility (figure 3.16 and 

table 3.7). The highly pure protein, based on densitometry of gels stained with Coomassie 

blue, migrated with a relative molecular mass of 41kDa, approximately 1.8 times greater 

than theoretically expected (22.9kDa), even though the sequence of the vector construct 

was correct. Unnatural migration patterns have been documented for proteins characterised 

by a high proportion of low complexity regions and enrichment in amino acids such as 

lysine (Tompa, 2002), features of numerous malaria proteins – His-PfLisH has two low 

complexity regions (Aurrecoechea et al., 2009). This unusual amino acid composition 

leads to a proportionally lower amount of SDS binding to the protein, in turn shifting 

migration and resulting in a perceived molecular mass greater than expected (Tompa, 

2002). 

 



 

Investigating the Molecular Participants of Programmed Cell Death in Plasmodium falciparum |  105 

 

| 
R

es
u

lt
s 

A 

 

B 

 

Figure 3.16: Expression and immunoblot analysis of His-PfLisH.  
A) A Coomassie blue stained SDS-polyacrylamide gel. Aliquots assessed: 3μl of the red cell 

membrane ladder; 1.5μl of 1.5ml total, soluble, insoluble and unbound fractions; 20μl of 1ml final 

wash; and 15μl of 100μl elution 1. His-PfLisH migrated at 41kDa, roughly double its theoretically 

expected molecular mass (22.9kDa).    

B) An immunoblot using an anti-His antibody verified the 41kDa protein band as His-PfLisH. The 

same volumes of aliquots were assessed as stated above expect for the use of 1μl of 100μl elution 1 

and 3μl of the commercial His-ladder (control).  

* indicates His-PfLisH 

 

Table 3.7: The properties of the recombinant binding partners. 

Protein 

Name 

N-

terminal 

tag 

Molecular mass (kDa) 
Predicted 

sol  ilit ‡ 

(%) 

 

 I† 
Purity 

(%) 

Average 

concentration 

of elution 

(n /μl)  

standard 

deviation 

(n=3) 

Yield 

per 

20ml E. 

coli 

culture 

(μ )** 
Calculated

† 

Based on 

SDS-

PAGE* 

PfLisH His 22.9 41.0 0 8.9 99 134 ± 16.9 ~ 13.4 

PfARK3 His 42.0 40.0 5.7 10.5 35 15.0 ± 2.4 ~ 1.5 

PfALV5 His 30.3 29.0 32.1 8.4 - - - 

PfRS6 His 26.0 26.0 97 9.2 - - - 

†Entire fusion protein, tag included, assessed using ExPASy (Gasteiger et al., 2005);* A standard 

red cell membrane marker was used for relative molecular mass determination; ‡ Calculated using 

the Recombinant Protein Solubility Prediction program (Wilkinson and Harrison, 1991) for the 

entire fusion protein, tag included; ** Average from three elutions; - data could not be determined 

due to poor expression or insolubility. 

kDa 
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His-PfARK3 was expressed with a far greater solubility than theoretically expected (~50% 

based on immunoblot densitometry relative to 5.7% calculated – figure 3.17B and table 

3.7) but had low expression and was isolated with a poor yield of 1.5g per 20ml bacterial 

culture. A pI below 6 and above 8 is known to reduce protein expression while a basic pI 

results in insolubility (Mehlin et al., 2006). His-PfARK3 had a pI of 10.5 and thus low 

soluble expression was expected. Literature does show that recombinant proteins with a 

molecular mass of between 30 to 40 kDa, although not that large in size, often express in 

an insoluble manner (Mehlin et al., 2006). His-PfARK3 has a molecular mass of 40kDa 

and may well fall into category. His-PfARK3 purity based on densitometry was poor due 

to numerous truncated forms – the most prominent at a molecular mass of 31.4kDa, which 

implies that truncation occurred in a flanking region just after or at the end of the 

SWIB/MDM2 binding domain. Therefore the truncated protein may participate in in vitro 

binding assays. The PfARK3-pET-15B construct carries several rare tRNA codons. A rare 

AGA codon is positioned such that it could be responsible for the prominent truncation 

documented. A modified bacterial line which expressed all six rare tRNAs, for the codons 

AGA, AGG, AUA, CCC, CUA and GGA (Novagen, 2004) documented in the PfARK3-

pET-15B construct, was used in this study. This, even in conjunction with lower 

expression rates due to reduced incubation temperatures (~20C), was only able to reduce 

but not prevent truncation of the recombinant parasite protein. The use of a protease 

inhibitor cocktail ensured that the truncations were not due to protein degradation.  
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A 

 

B 

 

Figure 3.17: Expression and immunoblot analysis of His-PfARK3   

A) A Coomassie blue stained SDS-polyacrylamide gel. Aliquots assessed: 5μl of the red cell 

membrane ladder; 1.5μl of 1.5ml total, soluble, insoluble and unbound fractions; 20μl of 1ml final 

wash; and 20μl of 150μl elution 1. His-PfARK3 migrated at 40kDa, roughly its correct 

theoretically expected molecular mass of 42kDa. A prominent truncated form was documented at a 

relative molecular mass of roughly 31.4kDa.     

B) An immunoblot using an anti-His antibody verified the 40kDa protein band as His-PfARK3. 

The same volumes of aliquots were assessed as stated above expect for the use of 15μl of 100μl 

elution 1 and 3μl of a commercial His-ladder (control).  

* indicates His-PfARK3. 

 

Extremely low expression was documented for His-PfRS6. This could be due to its very 

basic pI (9.2), although His-PfARK3 expressed at sufficient levels for use with pI of 10.5 

(Mehlin et al., 2006). The small amount of fusion protein which did express was 

apparently all soluble, as predicted bioinformatically (calculated as 97% – figure 3.18 and 

table 3.7). His-PfALV5 was associated with high levels of expression but was insoluble 

(˂5% solubility based on immunoblot densitometry). This latter result was worse than 

theoretically predicted (32.1% solubility – table 3.7). Membrane components are known to 

kDa 
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be difficult to express in a soluble manner (Dearnley et al., 2012). Various unsuccessful 

attempts were conducted to improve the expression and purification of His-PfALV5, 

including increased culture volume and amount of Nickel beads (data not shown). Due to 

the very low yield of soluble recombinant His-PfALV5 and His-PfRS6 proteins they were 

not used further experimentally.  

 

 
Figure 3.18: Immunoblot analysis of His-PfALV5 and His-PfRS6. 

An immunoblot using an anti-His antibody verified that the 29kDa protein band was His-PfALV5 

and the 26kDa protein band was His-PfRS6. Aliquots assessed: 1.5μl of 1.5ml total, soluble and 

insoluble fractions; 20μl of 100μl elution 1; and 3μl of a commercial His-ladder (control).  

 

 

3.1.2.9 In vitro binding assays confirmed interaction between the two P. 

falciparum SWIB/MDM2 domains and their binding partners  

In vitro binding assays were conducted as a means to verify the biopanning data. When a 

constant amount of His-PfLisH or His-PfARK3 was immobilized on magneHis beads and 

exposed to increasing concentrations of their respective GST-tagged SWIB/MDM2 

domain (also referred to as the ligands), a dose-dependent association was documented 

which began to achieve asymptotic saturation (figures 3.19A, 3.19D, 3.20A and 3.20C). 

kDa 
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This pattern represents a classical protein-ligand binding association and validates the 

biopanning data (Nelson and Cox, 2005). Reverse binding experiments were performed 

whereby GST-PfMDM2 and GST-PfSWIB were immobilized on magneGST beads and 

exposed to increasing concentrations of their respective binding partners in solution, which 

also indicated a dose dependent association (figures 3.19B-C and 3.20B). As presented in 

figure 3.20B full length His-PfARK revealed stronger binding affinity than the prominent 

truncated form indicating that the early truncation removed some residues critical for 

effective binding.  

 

Additional controls were included to ensure the specificity of binding. First, heat denatured 

ligand was allowed to interact with immobilized protein and revealed a substantially 

reduced binding association (figure 3.19A and 3.20A). Secondly, recombinant GST protein 

was allowed to interact with the immobilized His-tagged proteins and showed negligible 

association. The observed interactions between the recombinant parasite proteins therefore 

verified the biopanning data. 
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A 

A Coomassie blue stained gel 

 
B  

An immunoblot using an anti-His antibody  

 

D 

 

C  

An immunoblot using an anti-His antibody  

 
Figure 3.19: Dose-dependent interactions between GST-PfMDM2 and His-PfLisH.  

In all gels lane 1 represents a molecular mass marker.  

A) Lane 2 represents the GST-PfMDM2 protein and lane 3 the His-PfLisH protein, which were 

included as controls to verify the position of the proteins on the gel. Lanes 4-7 represent the binding 

assays conducted whereby 1μg immobilized His-PfLisH interacted with increasing concentrations 

(0.5 - 2μg) of GST-PfMDM2 in solution.  

B) Lane 2 represents the control His-PfLisH protein. Lanes 3-5 represent the binding assays where a 

total of 1.3μg immobilized GST-PfMDM2 interacted with increasing concentrations (0.1, 0.5 and 

1μg) of His-PfLisH in solution. 

C) Lane 2 represents the control His-PfLisH protein. Lanes 3-6 represent the binding assays where 

increasing concentrations (0.4-2.6μg) of immobilized GST-PfMDM2 interacted with 1μg in solution 

His-PfLisH. 

D) A graphical interpretation of the dose-dependent association between His-PfLisH and GST-

PfMDM2, starting to reach asymptotic saturation. 
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A 

A Coomassie blue stained gel 

 
B  

An immunoblot using an anti-His antibody  

 

 

C 

 
Figure 3.20: Dose-dependent interactions between GST-PfSWIB and His-PfARK3.  

In all gels lane 1 represents a molecular mass marker.  

A) Lanes 2 and 3 represent the GST-PfSWIB and His-PfARK3 proteins respectively which were 

included as controls to verify the position of the proteins on the gel. Lanes 4 – 7 represent the binding 

assays where 1μg immobilized His-PfARK3 interacted with increasing concentrations (0.5 - 2μg) of 

in solution GST-PfSWIB.  

B) Lane 2 represents the control His-PfARK3 protein. Lanes 3-5 represent the binding assays where 

a total of 1.5μg immobilized GST-PfSWIB interacted with increasing concentrations (0.1, 0.5 and 

1μg) of His-PfARK3 in solution. 

C) A graphical interpretation of the dose-dependent association between His-PfARK3 and GST-

PfSWIB, approaching asymptotic saturation. 
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3.1.3 Cellular localization of two P. falciparum SWIB/MDM2 homologues under 

normal and PCD conditions 

The next step in elucidating the role of the two SWIB/MDM2 domains in the parasite was 

to determine their localization under various growth conditions using an episomal protein 

expression system. A variety of stress stimuli have been proven to affect SWIB/MDM2 

domain localization in other eukaryotic organisms (Mosser et al., 1988, de la Serna et al., 

2000, Wade et al., 2010, Catalano and O’Day, 2012). Previous work failed to elucidate the 

precise cellular location of PfMDM2 and the protein was simply concluded to reside in 

either the cytoplasm, mitochondria or apicoplast (Hu et al., 2010). No previous localization 

work has been conducted on PfSWIB.  

 

3.1.3.1 Predicted localisation of PfMDM2 and PfSWIB  

As the two P. falciparum homologues lacked any annotated localization signals a variety 

of bioinformatic tools were employed to determine their possible sites of cellular residence 

within the parasite (table 3.8 and appendix A). For PfSWIB mitochondrial and apicoplast 

localization was unlikely, based on the algorithms used. Only two out of four algorithms 

predicted nuclear localization, although these latter two algorithms did highlight several 

putative nuclear localization signal sequences (black and blue lines, figure 3.21A). These 

findings suggested that PfSWIB maybe in the cytoplasm.  

On the other hand, PfMDM2 revealed a strong probability of nuclear localization, with 

several putative nuclear localization signal sequences (black and blue lines, figure 3.21B).  

Four algorithms suggested mitochondrial localization for PfMDM2, with the iPSORT 

prediction algorithm identifying a putative N-terminal mitochondrial localization sequence, 

highlighted in figure 3.21B, between amino acids Met
1
 and Lys

30
 (LLRTNIFSA denoted as 

being of specific importance). A Plasmodium specific algorithm (PlasMit) failed to detect 

this signal sequence, suggesting its atypical nature (Bender et al., 2003). A truncated form 
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of PfMDM2 lacking the N-terminus will be designated as ΔmPfMDM2, and was used to 

assess the functional role of the predicted mitochondrial localization sequence (green line 

of figure 3.21B)  

 

Table 3.8: Predicted cellular locations of PfMDM2 and PfSWIB.  

Protein 
Predicted localization* 

Nucleus Mitochondria Apicoplast 

PfSWIB 2 out of 4 1 out of 7 0 out of 5 

PfMDM2 4 out of 4 4 out of 7 1 out of 5 

* In this study multiple prediction algorithms were employed as detailed in section 2.1.3.  

 

 

A 

 

B 

 
 

Key:  

■ - putative SWIB/MDM2 domains, as defined 

on PlasmoDB.  

■ – a putative iPSORT identified mitochondrial 

localization signal sequence.  

■ – truncated form of the protein (ΔmPfMDM2) 

used in this study  

■ – putative mono-partite and bi-partite nuclear 

localization signal sequences identified by cNLS 

Mapper. 

■ – putative mono-partite and bi-partite nuclear 

localization signal sequences identified by 

NucPred.  

Figure 3.21: Predicted signal sequences and functional domains of PfSWIB and PfMDM2.   

(A) The N-terminal region of the PfSWIB protein. (B) The full length PfMDM2 protein.  
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3.1.3.2 Preparation of the pARL2-GFP constructs   

The full length PfMDM2, ΔmPfMDM2 and the full length PfSWIB sequences were 

amplified by PCR and prepared for insertion into the pARL2-GFP vector (Appendix D). 

This vector allows for C-terminal GFP-tagged episomal protein expression within the 

parasite. As presented in figures 3.22 the amplicons migrated as single bands at their 

theoretically expected sizes (288bp for ΔmPfMDM2, 411bp for PfMDM2 and 2508bp for 

PfSWIB) during electrophoresis. The constructs were used to transform the XL10 E. coli 

cell line.  

A 

 

B 

 

C 

 
Figure 3.22: The pARL2-GFP vector and t e ΔmPfMDM2, PfMDM2 and PfSWIB amplicons.  

Assessment preformed by 1% agarose gel electrophoresis, with size validation relative to a base pair 

standard.  

A) Lane 1 – MassRulerTM mixed range DNA ladder; Lane 2 – ΔmPfMDM2 amplicon; Lane 3 – 

linearized pARL2-GFP plasmid. 

B) Lane 1 – MassRulerTM high range DNA ladder; Lane 2 – linearized pARL2-GFP vector; Lane 3 – 

PfMDM2 amplicon.  

C) MassRulerTM mixed range DNA ladder; Lane 2 – linearized pARL2-GFP; Lane 3 – PfSWIB 

amplicon. 
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3.1.3.3 Verification of the pARL2-GFP constructs   

As described in section 3.1.2.3, the pARL2-GFP constructs were assessed with the aid of 

restriction endonuclease digestion (figures 3.23 – 3.24). Correctly sized constructs were 

then validated by sequence analysis and were amplified in XL-10 E. coli, extracted and 

used for transfection of 3D7 ring stage P. falciparum parasites. 

ΔmPfMDM2-pARL2-GFP construct 

 

 

PfMDM2-pARL2-GFP construct 

 

 
Control vector: pARL2-GFP 

 
Figure 3.23: Validation of the PfMDM2-pARL2-GFP and ΔmPfMDM2-pARL2-GFP constructs 

by restriction endonuclease digestion.   

EcoRV and XhoI were used to excise the PfMDM2 and ΔmPfMDM2 amplicons, along with portions 

of the vectors backbone, (marked by the red arrow) from the construct. A control digestion reaction 

was conducted on the pGEX-4T-2 vector. The vector maps indicate the band sizes expected after 

construct and control plasmid digestion.  
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PfSWIB-pARL2-GFP construct 

 

 

Figure 3.24: Validation of the PfSWIB-pARL2-GFP construct by restriction 

endonuclease digestion.   

EcoRV and XhoI were used to excise the PfSWIB amplicon, along with a portion of the 

vector backbone, (marked by the red arrow) from the construct. A control digestion reaction 

was conducted on the pARL2-GFP vector. The vector map indicates the expected band sizes 

after construct digestion. 

 

 

3.1.3.4 Creation and verification of three P. falciparum transgenic parasite lines  

Each of the pARL2-GFP constructs were used for transfection of sorbitol-synchronized 

ring stage 3D7 strain P. falciparum parasites. The transgenic parasites were detected 

between 23 and 43 days after RBC electroporation and used for localization studies under 

normal and stress conditions. The GFP-tag allowed for subcellular location of the tagged 

proteins by fluorescence microscopy (Van Wye and Haldar, 1997).  

From this point on the term PfGFP will be used to denote episomally expressed GFP 

protein in a parasite transgenic line, PfMDM2-GFP will represent the full length PfMDM2 

protein with a GFP tag, ΔmPfMDM2-GFP will represent the truncated PfMDM2 protein 

with a GFP tag, and PfSWIB-GFP will represent the full length PfSWIB protein with a 
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GFP tag. All transgenic lines had a GFP signal while the wild type 3D7 parasites did not 

(data not shown), indicating transfection had occured. PCR analysis verified that each 

transfected Plasmodium line carried the appropriate constructs (Waters et al., 1997), based 

on amplicon size relative to the pARL2-GFP plasmid (165bp, 558bp, 429bp, and 2655bp 

amplicon sizes for PfGFP, PfMDM2-GFP, ΔmPfMDM2-GFP, PfSWIB-GFP respectively) 

(figure 3.25 and 3.26). The poor PCR signal strength could be attributed to the poor and 

unstable transfection efficiency, known to be associated with P. falciparum, or due to 

variations in plasmid copy number within the host, dictated by the construct itself (Waters 

et al., 1997). 

 

 
Figure 3.25: PCR verification of the two different PfMDM2-GFP lines.  

The ladder represents the MassRulerTM mixed range DNA ladder. The PCR amplicons were of the 

correct sizes for each of the constructs, relative to the pARL2-GFP vector.  
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Figure 3.26: PCR verification of the PfSWIB-GFP line.  

The ladder represents the MassRulerTM mixed range DNA ladder. The PCR amplicon was of the 

correct size, relative to the pARL2-GFP vector. 

 

3.1.3.5 Imaging of the PfGFP transgenic line 

Due to the episomal protein expression being driven by the crt promoter, the GFP protein 

was expressed throughout the asexual intraerythrocytic life cycle of the parasite. As 

expected, the GFP-tag alone accumulated within the cytoplasm of the parasite during all 

these stages (figure 3.27) (Van Wye and Haldar, 1997). The signal became punctuate in 

schizont stages reflecting individual merozoites. Although GFP is associated with a high 

quantum yield, implying a strong fluorescent signal, the molecule was still susceptible to 

rapid photo-bleaching (Lichtman and Conchello, 2005, Shaner et al., 2005) which 

complicated live imaging. Various means were employed to improve this – the use of a 

neutral density filter, reduced light exposure of the sample; as well the use of a GFP-
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directed labelled antibody on fixed parasitized RBC. As expected in fixed, late stage 

parasites the episomal GFP was located in the cytoplasm (Van Wye and Haldar, 1997) and 

failed to co-localize with a red microneme marker, EBA-175 (Sim et al., 1992) (figure 

3.28).  

 

Life Stage Bright field DAPI/Hoechst GFP 
Combined 

channels 

Ring 

    

Trophozoite 

    

Schizont 

    

Figure 3.27: Live imaging of the PfGFP transgenic parasite.  

Hoechst dye was utilized for nuclear visualization within the ring parasites, while DAPI 

staining was employed for all the others. The GFP signal was located in the cytoplasm of 

all of the intraerythrocytic life stages. Scale bar in bright field represents 2.5μm 

 

Bright field DAPI GFP 
Microneme 

marker 

Combined 

red & green 

channels 

Combined 

red & blue 

channels 

      
Figure 3.28: Fluorescent imaging of fixed schizont PfGFP parasites. 

Nuclear material was stained with DAPI, the GFP signal was amplified with the aid of an anti-

GFP antibody-conjugate, and microneme detection was facilitated by an EBA-175 primary 

antibody and a secondary antibody, conjugated to a red fluorophore. PfGFP was punctate 

throughout the cytoplasm and showed no distinct correlation to the red microneme pattern. Scale 

bar in bright field represents 5μm. 
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3.1.3.6 The effect heat on GFP localization 

Numerous stress factors induce PCD-like phenotypes within P. falciparum, one of the most 

physiologically important being elevated temperatures of 38.5C and above encountered in 

malaria patients during fever.  In vitro incubation of cultured parasites at these 

temperatures severely effects their growth and development of, especially in the late 

asexual intraerythrocytic life stages (Kwiatkowski, 1989, Long et al., 2001, Oakley et al., 

2007, Porter et al., 2008, Engelbrecht and Coetzer, 2013). Furthermore, heat stress is a 

valuable tool as the yeast SWIB/MDM2 homologue protein, Swp73p/SNF12, is involved 

in the transcriptional regulation of heat stress response genes (Cairns et al., 1996). In this 

study ring stage transgenic parasites were synchronized and 24 hours later, as trophozoites 

and schizonts, exposed to 41C for 2 hours (Oakley et al., 2007, Engelbrecht and Coetzer, 

2013). As represented in figure 3.29, the cellular distribution of the GFP protein was 

unaffected by heat shock at all time points, relative to controls (figure 3.27). Cytoplasmic 

vacuolization was documented in some of the stressed parasite (white arrow in figure 3.29) 

and high mortality was seen in the cultures 24 hours later. A parasite lacking any 

intracellular movement was deemed dead. The development of the survivors lagged, still 

residing in the late life stage twenty-four hours after heat stress termination. This feature 

has previously been documented under the same conditions (Engelbrecht and Coetzer, 

2013). 
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Hours after 

heat stress  

termination 
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Figure 3.29: Heat stress had no effect on GFP distribution in late stage transgenic parasites.  

DAPI staining was utilized for nuclear visualization. The GFP signal presented no alteration in response to 

heat stress within the late life stages. The white arrow denotes a vacuole, indicative of a PCD-like 

phenotype, in response to elevated temperatures. Scale bar in bright field represents 2.5μm. 

 

3.1.3.7 Live imaging of the PfMDM2-GFP transgenic line  

Based on mRNA profile analysis, there  are very few PfMDM2 gene transcripts in the ring 

and early trophozoite stages but a relatively high expression in late trophozoites and 

schizonts (Aurrecoechea et al., 2009). Proteomic data, although incomplete, have only 

documented the protein within schizonts (Aurrecoechea et al., 2009). Therefore, the 

cellular location of the PfMDM2-GFP protein was considered to be of physiological 

relevance only in the late asexual intraerythrocytic life stages.  

 

As the transgenic parasite developed into a trophozoite and then a schizont, there was an 

associated expansion and subsequent division of nuclear material. The punctate PfMDM2-

GFP signal increased with life cycle progression but did not go to the nucleus (figure 3.30). 

ΔmPfMDM2-GFP was found dispersed within the cytoplasm, like GFP (figure 3.30). This 

latter result suggests that the N-terminus of PfMDM2-GFP controls localization. This 

region was predicted to have a mitochondrial localization signal sequence but the punctate 

PfMDM2-GFP signal did not have a typical branched mitochondrial architecture (Tonkin 
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et al., 2004). In order to determine if the protein did move to the mitochondrion, two sets 

of experiments were conducted.  

 

 Life Stage Bright field DAPI GFP 
Combined 

channels 

PfMDM2-

GFP 
Trophozoite 

    

PfMDM2-

GFP 
Schizont 

    

ΔmPfMDM2-

GFP 
Trophozoite 

    

ΔmPfMDM2-

GFP 
Schizont 

    
Figure 3.30: Live imaging of late stage PfMDM2-GFP and ΔPfMDM2-GFP transgenic parasite 

lines. 

DAPI staining was utilized for nuclear visualization. PfMDM2-GFP showed a distinct, non-nuclear 

localization pattern while ΔmPfMDM2-GFP was cytoplasmic in all assessed life stages. Scale bar in 

bright field represents 2.5μm. 

 

First, trophozoite and schizont PfMDM2-GFP parasites were fixed and assessed with a 

green fluorescently labelled anti-GFP antibody. As represented in figure 3.31, the 

enhanced PfMDM2-GFP signal was cord-like in appearance, a pattern documented for a 

branching and dividing parasite mitochondrion (Tonkin et al., 2004). This pattern was 

distinctly different to and failed to co-localize with the dot-like EBA-175 microneme 

signal, confirming previous findings (Hu et al., 2010) that PfMDM2 is not an apical 

invasion protein (figure 3.31). Under fixed conditions ΔmPfMDM2-GFP was still found 

within the cytoplasm and did not co-localize with the micronemes (figure 3.31). 
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green 
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green 

channels 
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Δm 

PfMDM

2-GFP 
      

Figure 3.31: Fluorescent imaging of fixed PfMDM2-GFP and ΔmPfMDM2-GFP transgenic 

parasites in the schizont life stage.  

DAPI was utilized for nucleus visualization. The GFP signals were amplified with the aid of anti-

GFP antibody conjugates. The use of a primary EBA-175 antibody allowed for the detection of the 

micronemes. PfMDM2-GFP presented a distinct non-nuclear, branched, cord-like pattern, whereas 

ΔmPfMDM2-GFP was present in the cytoplasm. Neither showed co-localization with the 

micronemes. Scale bar in bright field represents 2.5μm. 

 

Secondly, mitochondrial co-localization was assessed with a mitochondrial stain 

MitoSOX
TM

. As no previous work had evaluated this fluorophore in P. falciparum, its 

localization was compared to a well characterized P. falciparum mitochondrial stain – 

MitoTracker
TM

 Green FM (Tonkin et al., 2004). The latter stain has almost identical 

emission and excitation spectra properties to GFP and therefore could not be used directly 

in the study (Molecular Probes, 2008). Neither stain could be used on fixed samples and 

were thus only employed for live imaging (Molecular Probes, 2005, Molecular Probes, 

2008). MitoTracker
TM

 and MitoSOX
TM

 showed co-localization in the wild type 3D7 

parasites, as presented in figure 3.32. There existed a small degree of variation between the 

two stains. This may have been due to different localisation mechanisms (a thiol-reactive 

chloromethyl moiety directed MitoTracker
TM

 while a cationic triphenylphosphonium 

substitution directed MitoSOX
TM

); the MitoSOX
TM

 stain required activation once in the 

mitochondrion which the MitoTracker
TM

 stain did not; and lastly MitoSOX
TM

 has a 

variable quantum yield (Molecular Probes, 2005, Molecular Probes, 2008, Zielonka and 
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Kalyanaraman, 2010). Nevertheless, MitoSOX
TM

 distinctly localized to the P. falciparum 

mitochondrion and was used in the transgenic parasite line.  

Bright Field DAPI 
MitoTracker

TM
 

Green FM 
MitoSOX

TM
 Red 

Combined red & 

green channels 

     
Figure 3.32: Co-localization of the MitoTracker

TM
 Green FM and MitoSOX

TM
 Red in wild 

type schizont parasites. 

DAPI was utilized for nuclear visualization. The two fluorescent signals colocalised, proving that 

MitoSOXTM stains P. falciparum mitochondria. Neither showed co-localization with the 

micronemes. Scale bar in bright field represents 5μm. 

 

As expected, GFP alone had no influence on the mitochondrion staining in late asexual 

intraerythrocytic life stages of P. falciparum (figure 3.33 top panel). In these 

physiologically relevant life stages PfMDM2-GFP showed distinct co-localization with 

MitoSOX
TM

 except for one large red dot in the bottom panel of figure 3.33.The red and 

green signal intensities were not always equivalent, as seen in the bottom panel for one of 

the parasites, which influenced the yellow colocalisation signal.   
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Figure 3.33: MitoSOX

TM
 Red stained mitochondria in transgenic schizonts. 

DAPI was utilized for nuclear visualization. The MitoSOXTM Red stain co-localized with PfMDM2-GFP 

and not the GFP-tag alone. Scale bar in bright field represents 2.5μm.  

 

3.1.3.8 The effect heat on PfMDM2-GFP localization  

Late stage PfMDM2-GFP parasites were exposed to 41ºC for 2 hours and as represented in 

figure 3.34, there was no alteration in the mitochondrial localization of PfMDM-GFP 30 

minutes after stress termination. Visualization of living parasites 24 hours later was 

complicated by the high mortality rate (Engelbrecht and Coetzer, 2013), poor MitoSOX 

staining and the rapid movements by the survivors. The latter process could not be 

circumvented with fixation since the MitoSOX
TM

 stain required live parasites with active 

mitochondria. The heat stress conditions employed did not to significantly affect 

mitochondrial membrane polarization, (Engelbrecht and Coetzer, 2013) and is therefore an 

unlikely cause of poor staining. The altered reactive oxygen species content and 

compartmentalisation within the parasite may have affected the visualization pattern of 

MitoSOX
TM

 (Zielonka and Kalyanaraman, 2010).  
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In the cases where MitoSOX
TM

 staining was detected in surviving parasites after 24 hours, 

the pattern was similar to that of PfMDM2-GFP but when overlaid the signals appeared to 

have shifted (figure 3.34). This shift may have been an artefact resulting from the rapid 

cellular movement of the parasite and a delay in image capturing through a non-automated 

system. Alternatively it could indicate that the protein has moved out of the mitochondrion. 

The survivors were, as expected, delayed in their development and were still in the late 

intraerythrocytic life.  
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Combined red 
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channels 
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stress 

     

0.5 

     

24 

     
Figure 3.34: Live imaging of PfMDM2-GFP in late stage parasites, after exposure to 41ºC for 2 

hours. 

DAPI was utilized for nuclear visualization. The MitoSOXTM red signal co-localized with PfMDM2-

GFP before heat stress and 30 minutes after heat stress termination. Twenty-four hours after heat stress 

the two signals appeared to be next to each other as opposed to overlapping. Scale bar in bright field 

represents 2.5μm. 
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3.1.3.9 Live imaging of the PfSWIB-GFP transgenic line  

Transcriptome analysis of PfSWIB indicated continual mRNA production throughout all 

the intraerythrocytic asexual life stages, highest in the ring life stage. Current proteomic 

data has only identified the protein in the trophozoite and schizont stages (Aurrecoechea et 

al., 2009) and therefore focus was placed on the late asexual intraerythrocytic life stages, 

although the protein maybe of physiological importance in the early stages as well. 

Although PfSWIB was predicted to have several mono-partite and bi-partite nuclear 

localization signals, evaluation of PfSWIB-GFP localization demonstrated a cytoplasmic 

distribution, in both living and fixed parasites (figures 3.35 and 3.36). This pattern was 

akin to that documented for GFP, indicating that the protein’s predicted nuclear 

localization signals were not used.  

 

Life Stage Bright field DAPI GFP 
Combined 

channels 

Trophozoite 

    

Schizont 

    
Figure 3.35: Live imaging of the PfSWIB-GFP transgenic parasite line.  

DAPI staining was utilized for nuclear visualization. PfSWIB-GFP was present in the cytoplasm 

for both intraerythrocytic life stages. Scale bar in bright field represents 2.5μm. 

 

 Bright field DAPI GFP 
Combined 

channels 

PfSWIB-

GFP 

    
Figure 3.36: Fluorescent imaging of fixed PfSWIB-GFP transgenic late stage parasites  

Nuclear material was visualized with DAPI staining while the GFP signal was amplified 

with an anti-GFP antibody conjugate. PfSWIB-GFP was located in the cytoplasm of late 

stage intraerythrocytic transgenic parasites. Scale bar in bright field represents 2.5μm. 
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3.1.3.10 The effect heat on PfSWIB-GFP localization  

Late stage PfSWIB-GFP parasites were stressed at 41C for 2 hours and then analysed at 

several time points thereafter. After 30 minutes approximately 90% of the trophozoite 

population revealed a cytoplasmic PfSWIB-GFP distribution pattern, identical to control 

parasites, while the remaining showed a clear nuclear signal, as represented in figure 3.37. 

Interestingly, all the early and some of the late trophozoites showed precise nuclear 

colocalisation, while some of the late trophozoites had some GFP signal either moving into 

or out of the nucleus. It is possible that activation of one or more of the predicted nuclear 

localization signals could drive this nuclear targeting. Schizonts retained a cytoplasmic 

PfSWIB-GFP distribution. Therefore, the heat stress distribution pattern of PfSWIB-GFP 

appeared to be stage specific.  

 

The nuclear signal in the trophozoite subpopulation was not sustained, since two hours 

after the termination of heat stress all the trophozoites only had cytoplasmic PfSWIB-GFP, 

which remained there up to 24 hours later (figure 3.37). Very few parasites survived 24 

hours after heat stress, as expected and their development was delayed.  
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Figure 3.37: Effects of exposure to 41ºC for 2 hours on late stage PfSWIB-GFP parasites.  

DAPI was utilized for nuclear visualization. The cytoplasmic GFP signal was maintained in all schizonts 

and about 90% of the trophozoites, up to 24 hours after heat stress termination. In the remaining 

trophozoite population, a short lived nuclear GFP signal was documented, which was lost 2 hours post 

heat stress termination. The white arrow highlights a heat stress induced cytoplasmic vacuole. ET = early 

trophozoite, LT = late trophozoite and S = schizont. Scale bar in bright field represents 5μm.  
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3.2 Analysis of a putative p53 homologue within P. falciparum  

3.2.1 Identification of a putative P. falciparum p53 gene  

Within the P. falciparum genome no p53-like homologue has been annotated. 

Identification of p53 homologues within organisms outside the vertebrate lineage has often 

been complicated by low similarity and therefore requires the use of additional algorithms 

(Jin et al., 2000, Derry et al., 2001). Previous work conducted by Dr Pierre Durand, using 

a variety of novel computational methods such as the evolutionary rate-based alignment 

algorithm
 
FIRE (Functional Inference using the Rates of Evolution (Durand et al., 2010)), 

highlighted the PF3D7_0522400 gene (Pfp53) as a potential p53 DBD homologue within 

the P. falciparum genome (Coetzer et al., 2010). This gene is currently described as coding 

for a conserved, hypothetical protein with no annotated function. The gene is located on 

the positive strand (Watson orientation) of chromosome 5 from base 907837 to 936315, 

comprising of four exons, as depicted in figure 3.38 (Aurrecoechea et al., 2009). A portion 

of this 9307 amino acid protein was found, as will be described in sections 3.2.1.1-3.2.1.6, 

to carry a putative DNA binding and tetramerization domain.   

 

 
Figure 3.38: Diagrammatic representation of the putative P. falciparum p53 homologue 

(derived from Aurrecoechea et al., 2009). 

The numbers represent nucleotide positions situated along the chromosome while the arrow 
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indicates transcriptional direction for the gene. The putative DNA binding and tetramerisation 

domains were predicted using bioinformatics algorithms. 

 

3.2.1.1 Primary sequence alignments for the putative DBD of Pfp53 

Several standard multiple sequence alignment programs, different to those used by Dr 

Durand (Coetzer et al., 2010, Durand et al., 2010), were employed to define the location of 

the putative DBD within the parasite protein. As there exists a significant degree of 

diversification in the p53 gene during evolution (Belyi et al., 2010), analysis was stream-

lined by assessing the Pfp53 protein relative to distinct multicellular lineages and low 

degrees of similarity and identity were anticipated. Greatest homology between p53 

homologues is often confined solely to the DBD – with several amino acid residues critical 

for DNA interactions showing identical conservation regardless of the lineage (Ollmann et 

al., 2000, Schumacher et al., 2004, Pankow and Bamberger, 2007, King et al., 2008, 

Holbrook et al., 2009). Unlike the work done by Dr Durand, all of the standard algorithms 

revealed poor primary sequence conservation for the P. falciparum protein. Amongst the 

spatially different and often broken primary sequence alignments, two lineage specific 

Clustal omega comparisons highlighted overlapping regions of the parasite protein as a 

putative p53 DBD. The first employed a range of vertebrate (fish to mammal) p53 proteins 

and the second used the C. elegans transcription factor Cep-1 (a p53 homologue), as 

presented in figures 3.39 and 3.40 respectively.  
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Figure 3.39: Clustal Omega primary amino acid sequence alignments for residues 8225 to 

8508 of Pfp53 against vertebrate p53 DBDs.  

The assessed portion of Pfp53 showed poor conservation to the DBDs of vertebrate p53 proteins. 

Green lines represent residues critical for Zinc binding (none conserved); black lines represent 

residues critical for protein dimerization (identical His8311); red lines represent residues critical for 

nucleotide binding (Ser8417 and Asn8419 semi-conserved, Arg8426 identical); purple blocks indicate 

identical amino acids; and blue blocks indicate similar amino acids; threshold set at 80%. 
 

Alignment of the putative Pfp53 DBD to the highly conserved vertebrate p53 proteins 

revealed a low degree of conservation. Two (Ser
8417

 and Asn
8419

) of the eight amino acid 

residues stipulated as critical for vertebrate p53 nucleotide binding were semi-conserved 

while one (Arg
8426

) was identical (red lines in figure 3.39). There was low conservation in 



 

Investigating the Molecular Participants of Programmed Cell Death in Plasmodium falciparum |  133 

 

| 
R

es
u

lt
s 

terms of the residues required for protein dimerization (only His
8311

 was identical, black 

lines in figure 3.39) and none involved in zinc binding (green lines in figure 3.39).  

 

This alignment revealed a common feature documented in many falciparum proteins – size 

expansion relative to their metazoan counterparts (Pizzi and Frontali, 2000, Pizzi and 

Frontali, 2001). This contributed to residues 8225 to 8508 of the Pfp53 protein sharing 

only 6.6% identity and 10.3% similarity to the human p53 DBD (based on EMBOSS 

Needle analysis). Removal of the large intervening regions improved the sequence identity 

and similarity significantly (21.5% and 37.7% respectively) and was comparable to that 

documented for other non-vertebrate p53 homologues relative to the vertebrate p53 DBD. 

 

The same region of Pfp53 could also be aligned to the DBD of Cep-1, with intervening 

gaps, although the alignment only started at residue 8233 and ended at residue 8506. The 

residues 8225 to 8508 of Pfp53 showed 13.1% identity and 25.4% similarity to the Cep-1 

DBD (figure 3.40) but critical residues were poorly conserved. Removal of the large 

intervening regions from Pfp53 did not markedly improve the degree of identity and 

similarity noted (15.4% and 35.6% respectively). Only a single zinc binding residue was 

identical (Cys
8362

, black lines in figure 3.40), while one identical (Tyr
8488

) and two semi-

conserved residues (Arg
8468

 and Val
8486

) were noted for the DNA binding residues (red 

lines figure 3.40). Although Cep-1 is most closely related to the D. melanogaster p53 

homologue (Dmp53), this latter protein’s DBD showed very poor conservation with the 

putative DBD of Pfp53 – 8.2% identity and 17.1% similarity.  
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Figure 3.40: Clustal Omega primary amino acid sequence alignments for residues 8225 to 

8508 of Pfp53 against the C. elegans p53 homologue (Cep-1) DBD.  

A poorly conserved alignment was documented between a portion of Pfp53 and the DBD of Cep-1. 

Green lines represent residues critical for Zinc binding (Cys8362 identical); black lines represent 

residues critical for protein dimerization (none conserved); red lines represent residues critical for 

nucleotide binding (Arg8468 and Val8486 semi-conserved, Tyr8488 identical); purple blocks indicate 

identical amino acids; and blue blocks indicate similar amino acids; threshold set at 80%. 
 

Sequence similarity, rather than identity, would correlate more strongly to homology as 

certain residue exchanges could bestow little, if any, alteration on tertiary structure and/or 

protein function (Rost, 1999). For this reason protein structure often shows greater 

conservation during evolution, as opposed to primary sequence, and was therefore 

investigated for the putative Pfp53 DBD (Rost, 1999, Geourjon et al., 2001).  The portion 

of the parasite protein selected for further analysis stretched from residue 8225 to 8508, 

based on the better than expected similarities with the vertebrate p53 and Cep-1 DBDs.  

 

3.2.1.2 Secondary structure predictions for the putative DBD of Pfp53 

Secondary structure predictions and tertiary structure analyses (section 3.2.1.3), were 

conducted with the aid of crystallized p53 homologue DBD structures. These included: 

 The C. elegans p53 tumour suppressor-like transcription factor (Cep-1) (PBD id: 

1T4W) (Huyen et al., 2004) 

 The in solution structure of human p53 DBD (PBD id: 2FEJ) (Pérez-Cañadillas et 

al., 2006) 
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The D. melanogaster p53 homologue Dmp53 was also used, although it has not been 

crystallized.  

A particular secondary structure was concluded in regions where three or more of the 

algorithms predicted the same topology. Overall helical predictions constituted by only one 

or two residues were not considered to contribute towards the overall tertiary structure of 

the domain. Two residues noted as beta-strands were considered as viable topological 

features as assessment of crystallized structures revealed that two residues can participate 

in beta-strand formation (example 1V31 – see section 3.1.1.3).  

The secondary structures predicted for the DBD of the H. sapiens p53 and the D. 

melanogaster Dmp53 were similar in beta-sheet number and spatial positioning but both 

were poor in terms of alpha helices, having only a single helical fold of 4 residues each 

(figures 3.41A and 3.41B). Cep-1 had 10 beta-strands, although with a different spatial 

location relative to the human p53 and Dmp53 due the greater number of alpha helices 

predicted (figure 3.41C). The portion of the parasite protein evaluated (residue 8225 to 

8508) was devoid of helices but had 14 beta-strands, as presented in figure 3.41D. The 

large size of the domain shifted the location of beta-strands relative to the other assessed 

DBDs.  
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A 
Homo sapiens p53 

 
B 
D. melanogaster Dmp53 

 
C 
C. elegans Cep-1 

 
D 
P. falciparum Pfp53 

 
Figure 3.41: Secondary structure predictions for various p53 homologue DBDs.  

The DBD domain of H. sapiens p53 was similar to that of D. melanogaster Dmp53 in terms of 

beta-strand content. The C. elegans Cep-1 DBD was richer in helices, while the parasite domain 

was predicted to be devoid of helices but folded into 14 beta-strands.  

Blocked areas indicate identical predictions by three or more algorithms. C represents random 

coils; E represents beta-strands; H represents alpha helices.  



 

Investigating the Molecular Participants of Programmed Cell Death in Plasmodium falciparum |  137 

 

| 
R

es
u

lt
s 

3.2.1.3 Tertiary structure predictions for the DBD of Pfp53 

Although the C. elegans Cep-1 and human p53 DBDs share low sequence similarity they 

share similar folds and key structural elements. The structure is constituted by a beta-

sandwich of 2 antiparallel beta-sheets forming a ‘Greek key’ topology (green regions of 

figures 3.42A and 3.42B); a helix-loop-hairpin motif (red regions of figures 3.42A and 

3.42B), packed tightly against the beta-sandwich; and three, so called, loop structures 

(white, purple and cyan regions of figures 3.42A and 3.42B) (Cho et al., 1994, Huyen et 

al., 2004, Pérez-Cañadillas et al., 2006). DNA is bound by the helix-loop-hairpin motif and 

one of the large loops, while the beta-sandwich acts as a large scaffold to correctly position 

these structural elements (Cho et al., 1994, Huyen et al., 2004). The slight deviations in 

terms of DNA-binding consensus sequence affinities between the human p53 and Cep-1 

are the result of slight structural variations between the two domains (Huyen et al., 2004). 

The C. elegans crystallized DBD corresponds closely to its secondary structure, with the 

required number of beta-sheets and helical runs often in the correct spatial location, but 

some predicted topologies were incorrect – for example the sixth predicted alpha helix 

(figure 3.41C) crystallized as a beta-strand (figure 3.42A). The secondary structure 

prediction of the H. sapiens DBD corresponded closely to its crystallized form but there 

too discrepancies existed, such as it lacking a C-terminal helical run. Such discrepancies 

have been documented for proteins, where secondary structure predictions can deviate 

from the crystallized structure (Geourjon et al., 2001).     
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Figure 3.42: Crystallized DBDs of two p53 homologues and the various predicted tertiary 

structures of the putative DBD of Pfp53.  

The green regions represent the beta-sandwich, 2 antiparallel beta-sheets forming a ‘Greek key’ 

topology, in the crystallized domains; the red region represents the helix-loop-hairpin motif and the 

white, purple and cyan regions denote the three large loops (Cho et al., 1994; Huyen et al., 2004). 

The putative parasite domain was modelled with poor reliability and quality, based on QMEAN 

analysis. All have at least one helical stretch and varying numbers of coiled regions. The model 

with greatest similarity to the classical p53 topology was constructed relative to 2FEJ (F).  

 

Pfp53 has not been previously crystallized and was thus assessed with the aid of several 

standard template-based modelling algorithms. QMEAN analysis of the resultant models 

were extremely low (<0.25), implying that they were all highly unreliable and poor 

representations of the domain’s native conformation (figure 3.42C – 3.42F). All the tertiary 

structures were rich in coiled regions, as in the predicted secondary structure, but varied in 

location and number of beta-sheets. All models show the presence of at least a single 

helical stretch, which was not predicted in the secondary structure.   

All three template based algorithms could model the parasite domain against the 1T4W 

template (figure 3.42C – 3.42E). Only EsyPred could be forced to use the human p53 DBD 

crystal template, 2FEJ, to model the parasite domain. This, although unreliable when 



 

Investigating the Molecular Participants of Programmed Cell Death in Plasmodium falciparum |  139 

 

| 
R

es
u

lt
s 

considering the associated QMEAN score of 0.126, was constituted by a beta-sheet 

sandwich of anti-parallel beta-strands (green region in figure 3.42F), one of the classical 

loop structures (white region in figure 3.42F) and a helix-loop-hairpin motif (red region in 

figure 3.42F). The structural deviations compared to 2FEJ and 1T4W, in relation to 

topology, size and orientation, were anticipated, in part, due to the domain’s proposed 

alterations during evolution and low relative similarity (Jin et al., 2000).  

 

Modelling based on bioinformatics, especially when using standard techniques for p53 

homologues, is not always reliable. Therefore, based on primary sequence alignments the 

putative DBD of Pfp53 (residues 8225 to 8508) was expressed as a recombinant protein 

and used for biochemical assessments to determine if it could bind to DNA (section 3.1.3).  

 

3.2.1.4 Primary sequence alignments for the putative tetramerization domain of 

Pfp53 

The p53 tetramerization domain has been hypothesized to have undergone broad 

diversification during evolution and therefore a low degree of homology, if any, would be 

anticipated in Pfp53 (Lu et al., 2009). Several multiple sequence alignment programs were 

employed to determine if a putative tetramerization domain could be identified within a 

portion of the parasite protein. A small degree of similarity was only identified relative to 

the vertebrate domain (figure 3.43), with amino acid residues 8551 to 8587 showing 14.3% 

identity and 18.4% similarity to the human p53 tetramerization domain. This was less than 

that seen amongst other p53 homologues. Hydrophobic interactions are critical for the 

function of the domain (Miller et al., 1996). This region of the parasite protein (8551 to 

8587) is constituted by 49% hydrophobic amino acids residues, while the human domain is 

composed of 33%. Additionally, the vertebrate p53 tetramerization domain is situated in 
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close proximity to the C-terminal end of the DBD, a feature extended to the putative 

parasite domain.   

 

 
Figure 3.43: Clustal Omega primary amino acid sequence alignment of various vertebrate 

p53 tetramerization domains against Pfp53.  

A small degree of conservation was documented between the vertebrate p53 tetramerization 

domain and a portion (residues 8551 to 8587) of Pfp53. Purple blocks indicate identical amino 

acids; blue blocks indicate similar amino acids; threshold set at 80%. 

 

As for the putative DBD, or any other protein homologue for that matter, sequence 

similarity was not used as a sole indicator of homology as some sequence alterations can 

have little or no effect on tertiary structure and/or protein function (Rost, 1999). Hence the 

structure of the putative tetramerization domain was analysed with the aid of various 

bioinformatic algorithms.  

 

3.2.1.5 Secondary structure predictions for the putative tetramerization of Pfp53 

The secondary structures were predicted for the human p53 tetramerization domain and for 

the residues 8551 to 8587 of Pfp53. Three or more of the algorithms predicted that the 

human p53 tetramerization domain folded into a single beta-strand and an alpha helix 

(figure 3.44A). The parasite domain was predicted to fold into three beta-strands and a 

single, shorter helical run (figure 3.44B). 
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A 
H. sapiens 

 
B 
Pfp53 

 
Figure 3.44: Secondary structure predictions for the H. sapiens p53 tetramerization domain 

and residues 8551 to 8587 of Pfp53. 

The two predicted topologies are significantly different from one another, both in frequency and 

location of specific secondary structures. 

Blocked areas indicate identical predictions by three or more algorithms. C represents random coils; 

E represents beta-strands; H represents alpha helices. 

 

3.2.1.6 A tertiary structure prediction for the putative tetramerization domain of 

Pfp53 

The p53 protein is able to form dimers without the tetramerization domain; facilitated by 

interactions between residues of the DBD itself. The tetrameric structure of the 

transcription factor relies on the tetramerization domain, whereby the dimeric structures 

are linked (Miller et al., 1996). The annotated domain is constituted by a single alpha-

helix, according to NCBI database and work by Miller et al.,(1996), which is responsible 

for two orthogonally positioned p53 dimers forming a tetramer (Miller et al., 1996). A 

neighbouring beta-sheet has been stated as constituting part of the functional structure, 

although it does not participate in direct binding (Miller et al., 1996). The crystallized 

human p53 tetramerization domain, a single helical stretch preceded by random coils, was 

different to its corresponding secondary structure prediction (figure 3.45A) since no beta-

sheets were seen (Mittl et al., 1998).  

The only template-based modelling algorithm which could predict the topology of region 

8551 to 8587 of Pfp53 was EsyPred, using the 1AIE template. The model was constituted 
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by a much smaller, single alpha helix relative to the human domain (figure 3.46B), flanked 

by long stretches of random coils on both sides and no beta sheets. The location of the 

helix did not correlate to that predicted in the secondary structure, beginning at the end of 

the helix prediction and running through the beta-strand portion.   

 

 
Figure 3.45: Crystallized human p53 tetramerization domain and a tertiary model of residues 

8551 to 8587 of Pfp53.  

The modelled parasite domain was predicted to fold into a single, short helix, with a similar 

topology to the alpha helix of the human p53 tetramerization domain. Tetra denotes tetramerization 

domain.       

 

Although the evidence was poor, residues 8551 to 8587 of Pfp53 were expressed as a 

recombinant protein and their involvement in protein tetramerization was assessed (section 

3.1.4). 

   

3.2.2 Predicted nuclear localization for Pfp53  

An important consideration for a functional p53 homologue within the parasite would be 

nuclear localization, critical for a transcriptional PCD-regulatory role. The Pfp53 protein 

has not been shown to carry any signal sequence on the Plasmodium database and thus was 

assessed by a variety of bioinformatic tools. Several cellular locations were predicted, the 

nucleus being the most strongly and commonly predicted location (a more detailed report 

is presented in Appendix A). Several regions of the protein were highlighted to contain 

putative nuclear localization sequences, a common feature of p53 homologues. Sequence 
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alignments and EMBOSS Needle assessments indicated that the Pfp53 sequences 

STNSLKEP, IKNKKGK and KKKKMM had 37.5%, 57.1% and 50% identity to the three 

human p53 nuclear localization sequences, respectively. The locations of these three 

signals in the parasite protein are presented in figure 3.46.   

 

Nuclear export sequences were not as strongly conserved in Pfp53 based on sequence 

alignments and EMBOSS Needle assessments. The Pfp53 sequences DTFYRPWVSLV 

and IYLRNMHKF had 23.5% and 16.7% identity to the two human p53 nuclear export 

sequences respectively.  

 

 
Figure 3.46: Diagrammatic representation of the nuclear localization signal sequences 

situated in the putative P. falciparum p53 homologue.  

 

3.2.3 Assessment of the DNA binding ability of Pfp53 

The predicted DBD and nuclear localization signals (sections 3.2.1 and 3.2.2) prompted 

EMSA studies to assess the DNA binding ability of Pfp53.  

 

3.2.3.1 Preparation of a Pfp53 construct   

The putative DNA binding and tetramerization domains of Pfp53 were amplified, as a 

single unit, by PCR and prepared for directional insertion into the pGEX-4T-2 vector. As 

presented in figure 3.47, below the correctly sized amplicon (molecular mass of 1602bp) 
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there were two faint bands. These non-specific products, which can occur during PCR, did 

not hinder the cloning process due to their greatly reduced quantity relative to the correct 

amplicon.  

 

Previous studies have shown that the human p63 DBD, sharing 55.4% identity to the 

human p53 DBD, was unable to bind to the p53 consensus sequence in the absence of a 

GST-tag. The tag allowed for artificial domain dimerization facilitating consensus 

sequencing binding, detected via an EMSA (Klein et al., 2001). Thus, in this study to 

ensure that any possible lack of intrinsic domain-domain dimerization did not prevent 

DNA binding, the GST-tag was fused to the Pfp53 recombinant protein.  

 

 
Figure 3.47: The pGEX-4T-2 plasmid and the Pfp53 domain amplicon.  

Assessment conducted by 1% agarose gel electrophoresis, with size validation relative to a 

base pair standard.  

Lane 1 – MassRuler
TM

 mixed range DNA ladder; Lane 2 – Pfp53 domain amplicon; Lane 

3 – linearized pGEX-4T-2 plasmid. 
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3.2.3.2 Verification of the Pfp53 construct   

A minimum of five bacterial colonies where assessed to verify transformation with the 

Pfp53 construct, with the aid of restriction endonuclease digestion (figure 3.48), as 

previously described in section 3.1.2.3. The construct was subsequently validated by 

sequence analysis and used for the transformation of Rosetta™ 2 (DE3) cells and 

recombinant protein expression. 

 

 

Construct: Pfp53-pGEX-4T-2 

 
Control vector: pGEX-4T-2 

 
Figure 3.48: Validation of the Pfp53-pGEX-4T-2 construct by restriction endonuclease 

digestion.   

BamHI and XhoI were used to excise the Pfp53 amplicon (marked by the red arrow) from the 

Pfp53-pGEX-4T-2 construct. A control digestion reaction was conducted on the pGEX-4T-2 

vector. The vector maps on the right indicate the band sizes expected after construct and control 

plasmid digestion. 

 

3.2.3.3 Recombinant expression of the GST-tagged protein   

From this point on the term GST-Pfp53 will represent the recombinant GST-tagged DBD 

and tetramerization domain of Pfp53. Optimization of recombinant GST-tagged protein 
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expression was discussed in section 3.1.2.4 and applied to GST-Pfp53. The protein was 

purified and isolated, as presented in figure 3.49, at a better than theoretically expected 

solubility (~40% as determined by immunoblot densitometry vs. 7% calculated, figure 

3.49 and table 3.9). The nevertheless low solubility was probably induced, in part, by the 

protein’s basic pI of 9 (Mehlin et al., 2006).  

 

The GST-tagged protein was isolated with ~73% purity, based on densitometry of 

Coomassie blue-stained gels, although the associated yield was relatively low when 

compared to other GST-fusion proteins expressed during this study – ~1.9g per 20ml 

bacterial culture. GST-Pfp53 migrated at a molecular mass of 87kDa, close to its 

theoretically expected mass of 88.4kDa (table 3.9 and figure 3.49). The relatively large 

size of the protein was likely to have played a significant role in reducing its expression 

and thus its yield (Mehlin et al., 2006).  

 

Table 3.9: The properties of GST-Pfp53 

Protein 

name 

N-

terminal 

tag 

Molecular mass (kDa) 
Predicted 

sol  ilit ‡ 

(%) 

 

 I† 
Purity 

(%) 

Average 

concentration 

of elution 

(n /μl)  

standard 

deviation 

(n=3) 

Yield 

per 

20ml E. 

coli 

culture 

(μ )** 
Calculated 

† 

Based on 

SDS-

PAGE* 

Pfp53 GST 88.4 87.0 7,0 9.0 ~73 37 ± 17.7 ~1.9 

†Entire fusion protein, tag included, assessed using ExPASy (Gasteiger et al., 2005);* A standard 

red cell membrane marker was used for relative molecular mass determination; ‡ Calculated using 

the Recombinant Protein Solubility Prediction program (Wilkinson and Harrison, 1991) for the 

entire fusion protein, tag included; ** Average from three elutions.  
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3.2.3.4 p53 DNA binding consensus sequence identification  

Binding assays have proven that a wide range of p53 homologues, regardless of the 

eukaryotic lineage, are able to bind to the standard p53 DNA-binding consensus sequence 

(PuPuPuCWWGPyPyPy duplicated and separated by no more than 13 random bp), 

suggesting that the protein and sequence evolved as a conserved unit (Pankow and 

Bamberger, 2007).  

 

Using the DNA motif search function on the Plasmodium database 3662 genomic 

sequences were identified to encode half of the generic canonical p53 DNA-binding 

A 

 

B

 

Figure 3.49: Expression and immunoblot analysis of GST-Pfp53.  

A) A Coomassie blue-stained SDS polyacrylamide gel. Aliquots assessed: 5μl of the red cell 

membrane ladder; 1.5μl of 1.5ml total, soluble, insoluble and unbound fractions; 20μl of 1ml of 

washes; 10μl of 150μl of elution 1; and 10μl of 150μl of GST elution (control). The Pfp53 fusion 

protein migrated at 87kDa, roughly its correct theoretically expected molecular mass of 88.4kDa.    

B) An immunoblot using an anti-GST antibody verified the 87kDa protein band as GST-Pfp53. 

The volumes of aliquots were assessed as stated above expect for the use of 10μl of 150μl of 

elution 1 and 5μl of 150μl of GST elution (control).  

* indicates GST-Pfp53 

 

kDa 



 

Investigating the Molecular Participants of Programmed Cell Death in Plasmodium falciparum |  148 

 

| 
R

es
u

lt
s 

consensus sequence (PuPuPuCWWGPyPyPy). Of these only two matched the full length 

consensus sequence, where the base pair gap between the two halves was no more than 13. 

There were four additional sequences where the two halves of the canonical consensus 

sequence were separated by a gap of 13 – 25bp. Results are presented in table 3.10. All six 

sequences are present in coding regions which is a described characteristic of p53 DNA-

binding consensus sequences (Beckerman and Prives, 2010). No pattern of association was 

noted between the genes in which these sequences were identified and a cellular function 

and/or role.  

 

Table 3.10: p53 DNA-binding consensus sequences identified within the P. falciparum 

genome.   

Consensus 

sequence* 
Sequence identified† 

Gene identity (gene 

annotation) 

Start and end site 

in chromosome 

PuPuPuCWW

GPyPyPy (23) 

PuPuPuCWW

GPyPyPy 

AAGCAAGTTTTACATAGAG

AAGTGAGTTCAGAAAAACT

AGCTT 

PF3D7_0933100 

(conserved 

Plasmodium protein, 

unknown function) 

1314552 -1317597 

PuPuPuCWW

GPyPyPy (17) 

PuPuPuCWW

GPyPyPy 

AAACATGTTTTCACTTCTTC

ATCATTCAAACATGTTT 

 

PF3D7_1116100 

(serine esterase, 

putative) 

607902 -613394 

PuPuPuCWW

GPyPyPy (14) 

PuPuPuCWW

GPyPyPy 

GGACTTGCTCCCGTACTAC

CTTGTGGACTTGCTC 

PF3D7_0207600 

(serine repeat antigen 

5 (SERA5)) 

303593 -307027 

PuPuPuCWW

GPyPyPy (14) 

PuPuPuCWW

GPyPyPy 

AAACATGCTTTTGAATATT

CTAAAAAGCTTGTTC 

 

PF3D7_0408600 

(sporozoite invasion-

associated) 

413403 -416357 

PuPuPuCWW

GPyPyPy (6) 

PuPuPuCWW

GPyPyPy 

AAACTAGTTTATAAAAAAG

CTAGTTT 

PF3D7_0829800 

(unspecified product) 
1272718-1275456 

PuPuPuCWW

GPyPyPy (4) 

PuPuPuCWW

GPyPyPy 

AAACATGCTTTTAAAAACA

AGCTT 

 

PF3D7_1253000 

(gametocyte 

erythrocyte cytosolic 

protein) 

2168181-2169759 

*number in brackets = number of random nucleotides separating the two halves of the DNA-

binding consensus sequence; † underlined nucleotides   random, intervening nucleotides.  
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The Entamoeba histolytica p53-like DNA-binding consensus sequence failed to have any 

matches in the 3D7 P. falciparum genome (Mendoza et al., 2003). Furthermore, no 

matches were found for derivatives of this sequence (AGAAATTCATGGGCTAGTGG, 

AGAAATTCNNGGGCTAGT and AGANATNCNNGGGCTAGT where N represents any 

nucleotide that did not comply with the canonical vertebrate p53 DNA-binding consensus 

sequence). Non-canonical binding sites for p53 have been documented although these were 

not considered as part of this study.  

Based on the above findings, only a single canonical p53 DNA binding sequence was used 

to assess Pfp53 DBD binding ability. This was one of the sequences identified within the 

falciparum genome – AACATGCTTTTAAAAACAAGCTT.  

 

3.2.3.5 EMSA for Pfp53  

Protein-oligonucleotide interactions can rapidly and sensitively be semi-qualitatively 

assessed with the aid of an EMSA (Hellman and Fried, 2007). In this study a DIG-labelled 

system was employed, stated by the manufacturer to have sensitivity at least equal to that 

of the isotope system (Roche Applied Science, 2004). 

 

GST-Pfp53 was used in an array of experiments with the Pfp53 DNA-binding consensus 

sequence using a DIG Gel Shift Kit. Two types of control reactions were employed. The 

first validated the assay, whereby the Oct2A DNA binding factor, supplied in the kit, was 

allowed to interact with its known consensus sequence, resulting in a mobility shift, as 

represented in figure 3.50A lane 2. The functional binding interaction between the protein 

and the labelled oligonucleotide was almost abolished when 100x excess of unlabelled 

Oct2A consensus sequence was added to the reaction, thus out-competing the labelled 
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oligonucleotide and indicating binding specificity (figure 3.50A lane 3). The second 

control validated that various amounts of GST alone did not unexpectedly facilitate an 

oligonucleotide signal shift (represented in figure 3.50B).  

 

A 

 

B 

 

 

Figure 3.50: Control EMSA reactions.  

A) EMSA kit validation. The Oct2A binding factor caused a distinct shift in the signal of its known 

DNA-binding consensus sequence (marked by the black arrow). This shift was abolished by the 

addition of excess unlabelled competitor consensus sequence. For the Oct2A factor, + or - represent 

factor presence or absence respectively; for the unlabelled consensus sequence ++ represents a 100 

fold excess relative to the labelled consensus sequence (+).   

B) GST control EMSA. GST, at 200ng, failed to induce a signal shift when exposed to the Pfp53 

DNA-binding consensus sequence.  For GST, + or - represent protein presence or absence 

respectively. The black line represents the joining of two gels.  

 

When the assay was carried out for the GST-Pfp53 and labelled p53 consensus sequence, a 

range of DNA:protein molar ratios were used (2 to 78). In all experiments GST-Pfp53 

failed to induce an oligonucleotide signal shift, as presented in figure 3.51. Overheating, 

localized to the central bottom region of some of the gels, was believed to be the cause of 

the unusual curved migration pattern documented in some cases. These results indicated 
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that, under the employed conditions, the putative Pfp53 DBD was unable to associate with 

a canonical p53 DNA-binding consensus sequence.  

 

A 

 
B 

 
 

Figure 3.51: EMSA with GST-Pfp53 failed to induce any signal shift.  

Experiments conducted with increasing amounts of the GST-Pfp53 and a constant (A) 2ng or (B) 

4ng of DIG-labelled Pfp53 DNA-binding consensus sequence. None of the experiments showed a 

shift in labelled oligonucleotide when separated on a 6% native polyacrylamide gel and detected 

with an anti-DIG antibody. + represents a 10 fold excess of unlabelled sequence relative to the 

labelled DNA-binding consensus sequence; ++ represents a 100 fold excess relative to the labelled 

consensus sequence. Black line represents two gels joined together.  

 

3.2.4 Assessment of Pfp53 tetramerization 

A C-terminal region, adjacent to the putative DBD, of the Pfp53 protein was identified as a 

putative tetramerization domain (section 3.2.1) and was assessed by means of a 
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tetramerization assay. The assay was initially validated with BSA, which is able to form 

oligomers naturally (Payne, 1973). The oligomeric state of BSA can be retained, even after 

solubilization, in the absence of a cross-linking agent due to the limited accessibility of its 

disulphide bonds. The addition of a cross-linking agent enhanced the retention of BSA 

oligomers, but had little effect on dimers, trimers and tetramers, as represented in figure 

3.52 (Payne, 1973). Although Tris is known to inhibit glutaraldehyde cross linking, the 

500mM Tris GST-elution buffer showed no reduction in BSA oligomer retention relative 

to other buffering systems without Tris. The final concentration of glutaraldehyde used for 

GST-Pfp53 analysis was within the range used for detecting murine and human p53 

oligomers – 0.02% (Payne, 1973, Stenger et al., 1992, Wang et al., 1994).  

 

 

Figure 3.52: Conservation of BSA oligomers in GST elution buffer.  

Analysis of BSA oligomerization using SDS-PAGE and Coomassie blue gel staining. As 

little as 0.002% glutaraldehyde aided in conserving the higher oligomeric states of BSA.  

 

There was difficulty in clearly detecting any oligomeric state for GST-Pfp53. Based on 

figure 3.53 the monomeric GST-Pfp53 (~87kDa) was significantly reduced and there was 
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no dimer (~174kDa) detected. A large amount of protein was retained in the well of the 

oligomeric GST-Pfp53 sample lane, suggesting the protein formed higher oligomers, too 

large to enter the gel. As presented in figure 3.53, there was a possible tetrameric form 

(~350kDa) for GST-Pfp53 although repeated attempts, with the aid of SDS-PAGE and 

subsequent Coomassie blue staining or immunoblotting, could not clearly define such a 

higher oligomeric GST-Pfp53 population. Attempts to improve protein separation, using a 

4-17% gradient gel, and visualization with the aid of the 100x more sensitive silver 

staining technique relative to Coomassie blue staining (Switzer et al., 1979), were 

unsuccessful.    

 

A 

 

 

B 

Figure 3.53: SDS-PAGE and western blot analysis of GST-Pfp53 oligomers. 

Samples were resolved by SDS-PAGE and visualized by A) Coomassie blue staining and B) 

immunoblotting, using an anti-GST antibody. GST-Pfp53 showed a reduced amount of monomer, 

relative to control GST-Pfp53, and a possible tetrameric form (~350kDa). The brackets highlight 

the various BSA oligomers.  

 

The involvement of the elution impurities in the formation of oligomers was negligible, 

due to their conserved monomeric state relative to the control elution (figure 3.53). 
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Although the majority of GST retained a monomeric state when assessed, faint GST 

dimers were preserved, as theoretically expected (Fabrini et al., 2009), when large 

quantities of GST was exposed to glutaraldehyde. The reduction in the GST monomeric 

state and the formation of dimers was negligible when standardized relative to GST-Pfp53. 

This suggested that there was no effect by GST on GST-Pfp53 oligomerization and the 

putative tetramerization domain of Pfp53 was a stronger driving force for oligmerization 

than GST alone. Due to the low yield of GST-Pfp53 thrombin-directed removal of the 

GST-tag was not possible to validate this statement further. 
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4 DISCUSSION 

Although several metazoan PCD machinery homologues have been identified by 

bioinformatics within the Plasmodium genome none have been directly linked to a PCD-

like phenotype in the parasite (Nedelcu, 2009, Proto et al., 2013). Currently, the only real 

evidence supporting PCD in P. falciparum has been derived from numerous biochemical 

and morphological markers which are attributed to metazoan PCD phenotypes 

(Engelbrecht et al., 2012).  

 

Part of the balance between death prevention and execution, within a metazoan cell, is 

mediated by specific transcription factors, such as p53, and transcriptional regulators, 

including MDM2 and the SWI/SNF complex.  These regulators have direct involvement in 

pro-survival responses and both encompass the same functional SWIB/MDM2 domain 

(Cairns et al., 1996, de la Serna et al., 2000, Lee et al., 2002, Wade et al., 2010). The p53 

protein is a well described pro-apoptotic factor within a wide range of eukaryotic 

organisms (Lu et al., 2009). In P. falciparum, two SWIB/MDM2-containing genes have 

been annotated on PlasmoDB, while a p53 homologue is still outstanding (Aurrecoechea et 

al., 2009). Novel analysis by Dr. P. Durand identified a putative p53 DBD within the P. 

falciparum genome (Coetzer et al., 2010). This study therefore aimed to elucidate the 

cellular activities of these three genes within the parasite and to determine their importance 

in relation to parasite survival and stress response through the implementation of a variety 

of molecular techniques. 
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4.1 The solubility of recombinant P. falciparum protein domains  

Literature readily documents the difficulties associated with recombinant parasite protein 

expression in a bacterial system. Soluble heterologous expression has been negatively 

associated with a basic pI, sequence composition, large size, and lack of homology to the 

proteins of other organisms (Birkholtz et al., 2008). These are not hard and fast rules and 

deviations are readily observed (Mehlin et al., 2006).  

 

According to Mehlin and colleges (2006) and Vedadi and colleges (2007) recombinant 

protein expression is favoured for proteins with a pI between 6 and 8 while proteins with a 

basic pI tend to be insoluble. This was not observed in the current study. Proteins with pI 

values outside the ideal range were strongly expressed and correlations with solubility 

were inconsistent. Bioinformatic solubility predictions were unreliable as well. Of the 

seven P. falciparum domains only two (His-PfRS6 and GST-PfMDM2) were expressed at 

their expected solubility levels. Additionally, neither fusion tag (GST and hexa-histidine) 

correlated distinctly with enhanced solubility.  

 

The factor which appeared to play a prominent role in dictating soluble expression was 

protein size. Large protein size, especially when >~60kDa, correlates to poor heterologous 

expression (Mehlin et al., 2006) and insolubility, although the latter phenomenon is often 

inconsistent (Mehlin et al., 2006, Vedadi et al., 2007). These inverse relationships were 

maintained for five out of seven proteins. The only exceptions were the 26kDa His-PfRS6, 

which expressed poorly, and the 29kDa His-ALV5, which was insoluble. The deviation of 

the latter domain may have been due to the fact that it was derived from a region of the 
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protein’s inner membrane complex domain and such domains are associated with poor 

solubility following heterologous expression.  

 

Five out of the seven recombinant proteins assessed during the current study could be 

isolated and purified with yields sufficient for experimental use. Two of these full length 

recombinant proteins, GST-PfMDM2 and His-PfARK3, were isolated with several 

truncated forms. This is not an uncommon event, although the precise driving force behind 

the phenomenon is often unknown (Flick et al., 2004, Mehlin et al., 2006). Within both of 

the mentioned proteins, the sites of truncation appeared to correlate to rare AGA codons. 

The only other domain to have this codon was GST-PfRS6 and the absence of any 

detectable truncated forms may have been due to its low expression rate. A modified 

bacterial line expressing rare tRNAs, to compensate, was used, although this did not 

prevent truncation. This suggested, as found in other studies, that sequence composition 

itself was not the only deciding factor (Flick et al., 2004, Vedadi et al., 2007). The faster 

the rate at which recombinant P. falciparum erythrocyte membrane protein 1 was 

synthesised in a bacterial host cell, the greater the frequency of truncation (Flick et al., 

2004). It was proposed that rapid protein synthesis could quickly exhaust the tRNA pool in 

the cell, in turn inducing early termination in many proteins, including the recombinant one 

(Flick et al., 2004). The use of lower incubation temperatures (~20C), to slow the rate of 

translation, did not prevent the truncation of GST-PfMDM2 or His-PfARK3. 

 

4.2 Novel binding partner identification with biopanning 

The vast majority of proteins operate within the cellular environment as part of a complex 

(Berggård et al., 2007, Rao et al., 2014). Thus the identification and understanding of 
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protein-protein interactions is essential. As a result numerous high-throughput techniques 

have been developed, although none without limitations (Berggård et al., 2007, Rao et al., 

2014). Some of the most commonly employed techniques include yeast-two-hybrid 

systems, phage display biopanning and affinity chromatography (Berggård et al., 2007, 

Rao et al., 2014). 

Affinity chromatography involves the immobilization of a native or recombinant tagged 

protein of interest onto a surface. Cell lysate is applied, providing the immobilized protein 

the opportunity to interact and retain specific cell-derived native proteins. These can then 

be eluted and their identity determined using processes such as mass spectrometry 

(Berggård et al., 2007, Rao et al., 2014).  

 

A more frequently employed technique is the yeast-two-hybrid approach. Typically a 

protein of interest is expressed fused to a yeast-specific DBD, while a second protein is 

expressed fused to a yeast-specific activation domain, required for transcription induction. 

If the protein of interest and the second protein interact, they will facilitate the formation of 

a complete transcriptional complex which is transported to the yeast nucleus and induces 

the expression of a reporter gene (Berggård et al., 2007). Unfortunately this technique can 

be limited by poor relocation of the interacting complex to the nucleus or transcriptional 

activation hindrance (Berggård et al., 2007). Previous high throughput yeast two-hybrid 

studies failed to identify any binding partners for the PfMDM2 and PfSWIB proteins 

(LaCount et al., 2005).  

 

This study utilized a different technique – phage display technology – in order to determine 

if novel interactions could be identified for the two parasite SWIB/MDM2 domains. This 

technique may be similar, at its core, to yeast-two-hybrid analysis but phage display 
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technology has a far greater throughput. Additionally detection does not depend on 

effective complex transport and functionality (Willats, 2002, Berggård et al., 2007, Pande 

et al., 2010). The P. falciparum phage display libraries used during this study have 

previously identified novel P. falciparum binding interactions (Lauterbach et al., 2003, 

Bezuidenhout, 2013, Liebenberg and Coetzer, 2013).   

 

Only a limited number of binding partners were identified for each SWIB/MDM2 domain.  

One partner was identified for GST-PfMDM2 and three for GST-PfSWIB. Several factors 

may have contributed to this as outlined below.  

Firstly, at the time of mRNA extraction to construct the libraries, only a subset of the 

parasite’s transcriptome would be expressed, limited further by transcript stability 

(Lanzillotti and Coetzer, 2008). The mRNA for the libraries used in this study was 

extracted from cultures enriched with late intraerythrocytic asexual life stages, naturally 

limiting and/or preventing interactions with proteins expressed outside of this time frame 

(Lanzillotti and Coetzer, 2008). Incomplete conversion of the mRNA into cDNA may have 

played a further compounding role (Lanzillotti and Coetzer, 2008). 

 

Secondly, the use of the recombinant, as opposed to native, SWIB/MDM2 domains may 

have limited binding partner detection in various ways. Unfortunately experimentation 

with the native proteins was not feasible due to a lack in available antibodies for their in 

vivo isolation. Specific binding interactions may require one or more post-translational 

modifications (Lanzillotti and Coetzer, 2008, Pande et al., 2010). A plethora of post-

translational modifications are ascribed to the proteome of P. falciparum which cannot be 

implemented in a bacterial recombinant protein expression system. Knowledge related to 

these modifications in the two SWIB/MDM2 domains is limited but there are no 
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documented phosphorylation sites (Solyakov et al., 2011). The recombinant domains may 

also have failed to fold correctly in the bacterial host cell (Baneyx and Mujacic, 2004, 

Pande et al., 2010) and since the natural conformation of these parasite domains is 

unknown, this could not be verified. Incorrect conformation would prevent native protein 

interactions during the assay. The GST-PfMDM2, constituted by almost only the small 

SWIB/MDM2 domain, may have limited the number of interacting partners which could 

be identified. Additional domains within the proteins, not expressed as part of the 

recombinant form, may be responsible for stabilizing or promoting native interactions. 

 

Thirdly, several aspects of the biopanning method may have hindered interactions. The 

immobilization of the recombinant proteins on magnetic beads may have limited domain 

accessibility and impeded binding (Lanzillotti and Coetzer, 2008). The use of high 

stringency wash steps would have eliminated weakly and/or transiently associated binding 

partners (Lanzillotti and Coetzer, 2008, Pande et al., 2010). The successive rounds of 

phage amplification could have preferentially selected for certain phage clones that 

amplified more rapidly and/or out competed other phage (Pande et al., 2010).  

 

Some fourth round identified phage expressed out-of-frame parasite peptides. This was a 

consequence of the method used for the libraries’ creation as there was no control in the 

translation frame produced when the cDNA was inserted into the phage arms (Lauterbach 

et al., 2003, Lanzillotti and Coetzer, 2008). While the in-frame sequences had Lys contents 

of 40% or less, the out-of-frame sequences retained, after the fourth round of biopanning, 

were constituted by more than 60% Lys residues. The A/T bias of the P. falciparum 

genome was responsible for this enhanced out-of-frame Lys enrichment (Lys codons are 
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AAA and AAG), resulting in a high charge content and likely promoting non-specific ionic 

interactions and retention during biopanning (Lanzillotti and Coetzer, 2008).     

In addition to the identification of unnatural proteins as binding partners, the biopanning 

system can present false positives (Willats, 2002, Lanzillotti and Coetzer, 2008, Pande et 

al., 2010). Here natural parasite proteins or domains are identified but do not represent true 

binding partners of the immobilized ligand. This is a limitation of all protein-protein 

interaction systems and verification procedures must be conducted as a result. Surface 

plasma resonance, confocal microscopy and in vitro binding are merely a few examples of 

such (Berggård et al., 2007, Rao et al., 2014). In this study in vitro assays were used as a 

verification tool for the identified interactions (Lanzillotti and Coetzer, 2006). Several 

control experiments need to be carried out during this verification process to ensure that 

association is not a consequence of the system itself.  

In this study two control sets were employed – heat denatured ligand and GST protein. 

Heat denatured ligand showed a substantially reduced interaction with its binding protein 

(figure 3.19A and 3.20A). The limited interaction could either represent non-specific 

binding of the ligand onto the beads or the importance of a specific primary sequence in 

the binding domain of the ligand. Interaction of recombinant GST protein was negligible 

(less than that of the denatured ligand) and constant, no matter the concentration added to 

the system. The GST-fused ligand showed a far greater binding capacity with its 

immobilized binding partner relative to an equal concentration of the GST-tag alone. These 

findings verified that biopanning identified binding partners were valid. Additional 

verification techniques could be employed, such as surface plasma resonance, which could 

also provide information regarding the kinetics of the interaction. Furthermore co-

transfections of the SWIB/MDM2 proteins and their identified binding partners would 
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provide information regarding the physiological location, time and importance of this 

interaction.                

 

4.3 PfMDM2 and PfSWIB showed structural homology to chromatin remodelling 

factors  

SWIB/MDM2 domains can broadly be divided into two distinct groups based on their 

functional activities. All group M SWIB/MDM2 domains are key components of MDM2 

proteins, facilitating p53 binding and subsequent regulation and inhibition of pro-apoptosis 

p53-directed transcription (Wade et al., 2010). Group C homologues are involved in 

activities such as chromatin remodelling and transcriptional regulation (Cairns et al., 1996, 

Wilson and Roberts, 2011) although for a large part their cellular roles are unknown 

(Melonek et al., 2012). Both groups are rich in hydrophobic and aromatic amino acid 

residues; and conform to a classical twisted cleft topology when crystallized (Kussie et al., 

1996, Yamada et al., 2004, Yoneyama et al., 2004b, Yoneyama et al., 2004a).  

 

The SWIB/MDM2 domain of PfMDM2 is a likely group C member, based on 

bioinformatics. The degree of primary sequence identity calculated was within the ‘twilight 

zone’ (Rost, 1999) when compared to other group C and M members (16.7 – 23.4% 

identity) – the greatest identity and similarity were documented relative to group C (eg. 

48.1% similarity to the H. sapiens chromatin remodelling SWIB/MDM2 domain). 

Additionally, a conserved group C Trp with unknown function (Bennett-Lovsey et al., 

2002) was identified in PfMDM2 (Trp
80

). This residue is possibly critical for group C 

domain functioning, explaining its strong retention, and may provide PfMDM2 with 

similar capabilities.    
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The predicted secondary and tertiary structures of the PfMDM2 domain, considered as a 

more reliable means of discerning homology (Geourjon et al., 2001), conformed to that of 

other SWIB/MDM2 domains. The overall predicted secondary structure was closer to that 

of group C domains, rich in helices and having a short beta-strand preceding the third 

helical run (figure 3.3F). Tertiary models were similar to all crystallized SWIB/MDM2 

domains but failed to form a complete twisted cleft topology (figure 3.4 F-L). The absence 

of beta-sheets was unexpected, based on the domain’s predicted secondary structure, but 

deviations between secondary and tertiary states are known phenomena (Geourjon et al., 

2001). The yeast SNF12 SWIB/MDM2 domain, implicated in chromosomal remodelling 

(Cairns et al., 1996), was predicted to share a similar secondary structure (figure 3.3E) and 

‘incomplete’ tertiary topology (figure 3.4T) to PfMDM2. The quality and reliability of the 

latter prediction was very low (QMEAN of 0.359) but nevertheless demonstrates that only 

the helical cleft appears necessary for transcriptional regulation in unicellular organisms. 

Alternatively, the absence of beta-sheets may be compensated for by neighbouring regions, 

as seen in the crystal structure of the human MDM2 protein. Here, one of the helical 

stretches was not part of the annotated SWIB/MDM2 domain but instead supplied by a 

flanking region (Sakurai et al., 2006).  

   

The primary sequence identities calculated for the SWIB/MDM2 domain of PfSWIB were 

also within ‘twilight zone’ (Rost, 1999) but greatest when compared to group C members 

(22.1-24.7% identity). Unlike PfMDM2, the PfSWIB domain did not retain the group C 

specific Trp residue (Bennett-Lovsey et al., 2002) and instead had a semi-conserved 

aromatic Tyr
288

 residue, which may play an analogous role to the conserved Trp.  

The PfSWIB domain was mainly helical in terms of secondary structure (figure 3.3G) and 

therefore more like group C domains, which were richer in helical runs relative to group M 
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members. Five of the seven modelled tertiary structures for this domain were similar to 

those modelled for PfMDM2 and the yeast domain, forming an incomplete twisted cleft 

topology. Two of the models formed a complete twisted cleft topology but were amongst 

some of the lowest QMEAN scoring structures. The generally predicted absence of beta-

sheets was expected, based on their absence in the secondary structure predictions. The 

richer helical content predicted for this domain and frequent topological similarities to a 

unicellular group C domain (SWIB/MDM2 domain of SNF12), implicated in chromosomal 

remodelling (Cairns et al., 1996), suggested that PfSWIB was most like a group C family 

member.    

 

Group M SWIB/MDM2 domains are key components of MDM2 proteins, facilitating p53 

binding and subsequent regulation and inhibition of pro-apoptosis p53-directed 

transcription (Wade et al., 2010). The critical amino acids required for p53 binding were 

not well conserved in the two parasite domains, with less than half being semi-conserved. 

There was retention of non-critical hydrophobic and aromatic amino acids, involved in 

creating a suitable environment for p53 binding (Kussie et al., 1996), but this was not 

specific for group M domains alone. A similar retention was documented amongst group C 

domains, suggesting that prominent hydrophobic and aromatic amino acid composition 

could not be used as a group distinguishing property (Bennett-Lovsey et al., 2002).  

The critical amino acids for p53 binding are located in only one of the beta-strands and 

only two of the alpha helices, highlighting why these topological regions are essential and 

part of the annotated human SWIB/MDM2 domain (Kussie et al., 1996, Sakurai et al., 

2006). The absence of beta-sheets and numerous critical amino acid residues in both P. 

falciparum domains would make an interaction with a potential parasite p53 homologue 
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unlikely in the conventional manner. However, the known variation in p53 homologue 

sequence and structure over evolutionary time could account for such fundamental 

differences in binding interactions (Jin et al., 2000, Derry et al., 2001, Lu et al., 2009), as 

well as the expected variation in the SWIB/MDM2 domain. More importantly, interaction 

between p53 and MDM2 has been postulated as a metazoan-stage evolutionary event as no 

true MDM2 protein homologue has been identified in lower eukaryotes (Lu et al., 2009). 

Hence the binding of p53 may not be essential or relevant for the P. falciparum 

homologues.   

  

4.4 PfMDM2 is a mitochondrial component  

4.4.1 PfMDM2 was located in the mitochondrion  

In this study, based on current transcriptomic and proteomic findings (Aurrecoechea et al., 

2009), the late intraerythrocytic life stages were considered to be of physiological 

relevance to PfMDM2. Previous work failed to determine the precise cellular location of 

this protein (Hu et al., 2010) but it was proven in the current study to have distinct 

mitochondrial localization in the late life stages. The N-terminal iPSORT predicted signal 

sequence directed the protein to the mitochondrion, as removal of this region resulted in 

cytoplasmic retention. The Plasmodium-specific bioinformatic algorithm PlasMit failed to 

detect this sequence suggesting it should not be depended on solely for the identification of 

mitochondrial localization sequences for parasite proteins.  

 

Mitochondrial localization of group C SWIB/MDM2 homologues has been documented in 

plants. Plants express four groups of SWIB/MDM2 domain containing proteins, with the 

so called group I SWIB proteins constituted solely by a SWIB/MDM2 domain. In 

Arabidopsis two group I SWIB proteins have distinct mitochondrial localization – 
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At1g31760, with exclusive mitochondrial localization, and At2g35605, showing dual 

mitochondrial and chloroplast localization (Melonek et al., 2012). The functional role of 

these two proteins is unknown, although participation in genomic regulation has been 

hypothesized (Melonek et al., 2012). EMBOSS Needle alignments with the SWIB/MDM2 

domain of PfMDM2 revealed strong conservation to that of At1g31760 (39% identity and 

51.9% similarity) and At2g35605 (43.3% identity and 55.8% similarity), and hence the 

parasite protein may play a role similar to these two Arabidopsis proteins. Localization of 

group M domains to the mitochondria has not been previously documented.  

 

4.4.2 PfMDM2 associated with the PF3D7_1303400 protein  

Biochemical assessment of PfMDM2 was facilitated with the aid of phage display library 

technology. To date no other binding partners have been identified for this parasite protein 

(LaCount et al., 2005). A single, in vitro-verified binding partner was documented in this 

study – a centrally located region of the PF3D7_1303400 protein – PfLisH.  

 

4.4.2.1 Temporal and spatial considerations for the PfMDM2 and PfLisH 

interaction  

Proteomic data have documented PfLisH in the trophozoite and schizont life stages of the 

asexual intraerythrocytic parasite. Transcriptome analysis indicates expression in the 

asexual intraerythrocytic life cycle, greatest in the early trophozoite and lowest in the 

schizont, and in the gametocytes and ookinetes (Aurrecoechea et al., 2009). This has 

several links temporally with the PfMDM2 expression pattern, providing opportunities for 

possible interactions.  

 

The cellular compartment of PfLisH needs to be considered as biopanning and the 

verification binding assays were in vitro assays. The cellular location of PfLisH is 
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unknown but bioinformatics strongly predicted nuclear occupancy (table 3.6 and appendix 

A). Further work is required to define the location of PfLisH in order to justify or refute the 

physiological validity of its association with PfMDM2. Under normal conditions it is 

unlikely that PfLisH and PfMDM2 interact, since PfMDM2 is in the mitochondrion. 

However, PfMDM2 was predicted by some algorithms to localise to the nucleus and have 

several nuclear signal sequences. Therefore it could, like PfSWIB, move to the nucleus in 

response to other stress stimuli and interact with PfLisH.   

  

4.4.2.2 LisH domains are involved in transcriptional regulation 

If the interaction between PfMDM2 with PfLisH is physiological relevant then it is a novel 

finding in the parasite and it has also not been documented in any other eukaryotic 

organism. The cellular activity of PfLisH is unknown and previous yeast-two hybrid 

studies failed to identify any interacting proteins (LaCount et al., 2005). The only 

annotated domain within the protein is the N-terminal LisH motif (Aurrecoechea et al., 

2009). Previous bioinformatic analysis identified 114 proteins, from a wide range 

eukaryotes, having this domain (Emes and Ponting, 2001). It is commonly situated at the 

N-terminus of a protein and participates in a variety of cellular processes, including protein 

binding (Thomas Meier and Blobel, 1992, Liu et al., 1996, Conner and Liu, 2000, Miele et 

al., 2005, Mateja et al., 2006, Mikolajka et al., 2006). Common to these proteins, but not 

present in the P. falciparum protein, are additional domains aiding in molecular 

interactions (Emes and Ponting, 2001). The LisH motif plays a role in transcriptional 

regulation, as indicated in table 4.1 (Wei et al., 2003), and it is postulated to function 

through the recruitment of transcriptional activators.  
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Table 4.1: Transcriptional regulation involving LisH domains.  

Transcriptional 

regulation proteins 

having LisH domains 

Organism The gene(s) regulated Source 

Flo8p S. cerevisiae 
The flocculation gene 

FLO1 
(Liu et al., 1996) 

Leunig A. thaliana The AGAMOUS gene 
(Conner and Liu, 

2000) 

TBL1 H. sapiens 
The JNK1 related 

genes 
(Zhang et al., 2002) 

Sif2p S. cerevisiae Telomeric silencing (Cockell et al., 1998) 

P220
NAT

 H. sapiens 
The Histone H4 and 

H2B genes 

(Miele et al., 2005) 

(Wei et al., 2003) 

 

The N-terminal LisH domain of TBL1 interacts with the N-terminal region of the nuclear 

receptor co-repressor protein which has two SANT (SWI3/ADA2/N-CoR/TFHIIB) 

domains present in a variety of chromatin-associated complexes, including the SWI/SNF 

complex (Humphrey et al., 2001, Zhang et al., 2002). SWIB/MDM2 homologues lack 

SWI3 domains but are core elements of SWI/SNF complexes (Cairns et al., 1996). This 

latter feature suggests that binding associations with LisH homologues, possibly for 

complex stabilization, is possible as part of a larger transcriptional complex akin to the 

SWI/SNF complex (Cairns et al., 1996).  

  

4.4.3 PfMDM2 is an unlikely heat stress participant   

Thirty minutes after the termination of heat stress PfMDM2-GFP was still retained in the 

mitochondrion. Twenty four hours later the episomal fusion protein maintained a punctate 

green fluorescent signal but no longer aligned completely with the red mitochondrial 

marker (figure 3.34). This could indicate possible movement of the protein out of the 

mitochondria or simply be an artefact of the manual microscopy system used. Clearly no 

nuclear co-localization was detected. Although mitochondrial hyperpolarization has been 

detected after heat stress for 24 hours with 40C in late stage intraerythrocytic parasites, no 

such alterations have been reported under the conditions of this study - 2 hours of 41C 
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heat stress (Engelbrecht and Coetzer, 2013). The mitochondrial membrane was thus 

unlikely to contribute to an observed signal shift.  

 

The At2g35605 protein traffics to both the mitochondria and chloroplast and PfMDM2 

may exhibit similar duality. The non-photosynthetic apicoplast of P. falciparum shares 

close contact with the mitochondrion during all stages of the intraerythrocytic life cycle 

(Van Dooren et al., 2005) and is essential for the parasite’s survival, although an 

association with PCD is unknown (Wilson et al., 1996, Waller et al., 1998, Lim and 

McFadden, 2010). Bioinformatics failed to identify any apicoplast localization sequence 

for PfMDM2, suggesting that such movement is unlikely. The protein could simply be 

moving into the cytoplasm, preventing a mitochondrial role or allowing for a cytoplasmic 

activity to occur. An alternative, and possibly more likely, reason for the shift in location 

would be parasite mobility. The surviving parasites moved rapidly 24 hours after heat 

stress termination and this could easily alter the relative location of the green and red 

fluorescent signals, since images were captured consecutively a few seconds apart and 

subsequently overlaid. As the MitoSOX
TM

 stain could not be used with fixed parasites, 

immobilizing the surviving parasites was not an option. 

 

The P. falciparum parasite is exposed to a wide range of fluctuating temperatures during 

its life cycle (Hafalla et al., 2011). On the one hand the periodic fever associated with 

malaria in the human host has been suggested to reduce the parasite burden on the host by 

inducing parasite PCD (Deponte and Becker, 2004). On the other hand the parasite must 

possess a robust, but currently poorly understood, heat shock response system to survive 

the rapid shifts in environmental temperatures (Kumar et al., 1991, Pallavi et al., 2010, 

Botha et al., 2011, Muralidharan et al., 2012). The SWI/SNF complex has involvement in 
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the human and yeast heat stress pathways (Sullivan et al., 2001, Corey et al., 2003, Zhao et 

al., 2005, Han et al., 2008), in the latter eukaryote, knockout studies have proven the direct 

involvement of the SWIB/MDM2 homologue SNF12 (Cairns et al., 1996). Based on 

bioinformatics PfMDM2 is most similar to group C SWIB/MDM2 homologues and 

therefore should be evaluated as both a PCD and heat stress participant. 

 

The role of PfMDM2 in heat-induced PCD is uncertain. Firstly, vertebrate MDM2 and the 

human SWI/SNF complex require nuclear localization for PCD regulation, a feature not 

documented for the parasite protein. Secondly, its binding partner PfLisH has no PCD ties. 

Thirdly, elevated temperatures, 38.5C and above, appear to enhance the demise of late 

asexual intraerythrocytic life stages, relative to early ones (Kwiatkowski, 1989, Long et al., 

2001, Porter et al., 2008, Engelbrecht and Coetzer, 2013). As the periodic fever of malaria 

is linked to egress (Hafalla et al., 2011) the majority of parasites would be rings, having 

just reinvaded RBC, and only the remaining, lagging late stage parasites would be likely to 

die and reduce the parasite burden (Deponte and Becker, 2004). For a pro-survival role the 

SWIB/MDM2 homologue would be required in the rings, where transcriptional profiling 

indicates PfMDM2 has very low expression levels and current proteomic data indicate it is 

absent (Aurrecoechea et al., 2009). A great reduction in the parasite population was 

documented 24 hours after the termination of heat stress. No surviving parasites showed 

clear PfMDM2-GFP mitochondrial localization, which could indicate that the protein had 

moved out of the organelle as a pro-survival mechanism. Alternatively the absence of 

overlap may have been an artefact of the analysis procedure due to the greater mobility of 

the surviving parasites, relative to control populations, during live imaging. This could 

have resulted in time delays during red and green fluorescent signal acquisition, since the 

system employed was not automated. The clear mitochondrial signal shape, seen when 
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comparing the MitoSox
TM

 and GFP signals in figure 3.34, further supports this conclusion. 

Future studies are required, with the aid of a mitochondrion specific antibody, to clarify 

this matter. From the data acquired from this study it was concluded that retention of the 

protein may therefore be of no consequence to the heat stressed parasites or may represent 

a pro-survival mechanism. Any change in PfMDM2 localization could not be assessed in 

those parasites which had died and a role of the protein in PCD of that sub-population 

could not be evaluated. 

  

The importance of PfMDM2 in a heat stress response pathway is uncertain. The SWI/SNF 

complex, and therefore a SWIB/MDM2 homologue, is involved in the transcriptional 

regulation of HSP genes in the nuclei of human and yeast cells (Cairns et al., 1996, 

Sullivan et al., 2001, Corey et al., 2003, Zhao et al., 2005, Han et al., 2008) but the 

parasite protein cannot play an analogous role as the mitochondrial genome of the parasite 

encodes no HSP genes (Feagin, 1992). The LisH domain of the yeast sif2p protein has 

been shown to be involved in heat-stress survival through transcriptional regulation 

(Cockell et al., 1998) but as the parasite LisH homologue is likely to be nuclear, its 

involvement with the mitochondrial PfMDM2 under heat stress seems negligible.  

 

Other stress stimuli, such as high levels of parasitaemia, were not considered as part of this 

study but have been documented to induce PCD in P. falciparum (Deponte and Becker, 

2004, Meslin et al., 2007, Totino et al., 2008, Ch'ng et al., 2010). These stimuli may 

activate different pathways, which may depend on PfMDM2. Different stress stimuli 

within mammalian cells, such as heat stress, metabolic inhibition and heavy metal 

poisoning, do not all employ the SWI/SNF complex for transcriptional regulation for 

example (de la Serna et al., 2000). Therefore even if PfMDM2 does not appear to have a 
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role in heat-induced PCD it may be involved in other PCD or stress pathways. Commonly 

the SWI/SNF is involved in pro-survival events during such conditions and therefore a 

similar activity could be expected for the parasite protein.  

 

4.4.4 Alternative cellular role of PfMDM2 within the parasite 

Overall, based on structure, location and the binding partner identified in this study, 

PfMDM2 does not appear to be a vertebrate MDM2 homologue. Non-PCD roles could be 

hypothesized for the protein related to DNA synthesis, energy production and the 

mitochondrial electron transport chain. The late asexual and sexual stages of the parasite, 

where the transcriptomic and proteomic data suggest greatest physiological relevance of 

the protein, are associated with preparation for and implementation of rapid DNA 

synthesis. DNA synthesis is strongly dependent on de novo pyrimidine synthesis, as it is 

the only means by which the parasite can acquire pyrimidines (Gutteridge et al., 1979). It 

has been suggested that the mitochondrial electron transport chain acts as an electron sink, 

absorbing the electrons generated by dihydroorotate dehydrogenase during the de novo 

pyrimidine synthesis process (Torrentino-Madamet et al., 2010). DNA synthesis would 

therefore require the expression of the three protein members of the mitochondrial electron 

transport chain carried in the mitochondrial genome (Feagin, 1992). PfMDM2 may be 

involved in this as part of a larger transcriptional complex in the mitochondrion. 

 

During gametocytogenesis, the single mitochondrion branches and elongates and is 

associated with the formation of cristate structures in the inner mitochondrial membrane; 

suggesting enhanced metabolic activity, possibly as a preparation for entrance into the 

midgut of the mosquito and the upcoming energy-expensive sexual development 

(Torrentino-Madamet et al., 2010). The mitochondrial-encoded cytochrome b gene had a 
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three-fold increase in expression in the sexual life stages relative to the asexual stages, 

further supporting the idea of enhanced mitochondrial function in the former and which 

may involve PfMDM2 (Learngaramkul et al., 1999), although current proteomic data has 

not documented the protein’s presence in this life stage. 

  

 

4.5 PfSWIB is a likely heat stress response participant 

4.5.1 The cytoplasmic distribution of PfSWIB was altered briefly in response to 

heat stress  

Focus was placed on the late intraerythrocytic life stages in this study as proteomic data 

have only identified the protein in these stages as well as gametocytes and salivary gland 

sporozoites (Aurrecoechea et al., 2009). Localization algorithms were divided between the 

nucleus and cytoplasm for this protein (table 3.8 and Appendix A). Experimentally 

cytoplasmic distribution was documented under control conditions. In Arabidopsis one 

group I SWIB protein resides in the cytoplasm, At3g48600. Its cellular activities are 

unknown but based on its location genomic association is not possible (Melonek et al., 

2012). EMBOSS Needle alignment of this plant protein with the SWIB/MDM2 domain of 

PfSWIB revealed 22.5% identity and 42.7% similarity, suggesting that these two proteins 

may share similar cytoplasmic activities.  

 

In response to heat stress, PfSWIB-GFP showed a stage specific distribution pattern. In all 

schizonts and the majority of trophozoite parasites the fluorescent protein remained in the 

cytoplasm up to 24 hours after stress termination. In roughly 10% of the trophozoites, 

PfSWIB-GFP was located in the nucleus 30 minutes after stress termination. The green 

signal co-localised distinctly in early trophozoites with the nucleus, but a few late 
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trophozoites showed a partial co-localization pattern, suggesting migration to or from the 

nucleus (figure 3.37). The perceived nuclear response was brief, since cytoplasmic 

distribution was documented for all parasites after 2 hours and was maintained up to 24 

hours later for PfSWIB-GFP. Bioinformatic analysis did highlight several nuclear 

localization signals within the protein (figure 3.21), and the elevated temperature may 

induce the activation of one or more of these signals, possibly through phosphorylation or 

other posttranslational modifications as documented in proteins such as  MDM2 (Meek and 

Knippschild, 2003). The PfSWIB protein is phosphorylated on seven Ser and Thr residues, 

two of which are situated in a predicted bipartite nuclear signal sequence and may play a 

role in regulating cellular location (Aurrecoechea et al., 2009, Solyakov et al., 2011). 

 

Distinct sub-nuclear localization patterns, suggestive of nucleolar and/or chromatin 

association, have been previously documented for SWIB/MDM2 homologues in response 

to stress (Mosser et al., 1988, de la Serna et al., 2000, Catalano and O’Day, 2012). The 

SWI/SNF complex in yeast can rapidly activate heat shock protein 70 (HSP70) gene 

transcription for cell survival in response to metabolic inhibition and heavy metal 

poisoning, although the effects of heat stress appeared negligible (de la Serna et al., 2000). 

The SWIB/MDM2 homologue of Dictyostelium showed nuclear localization under normal 

conditions with enhanced nucleolar localization in response to heat stress (Catalano and 

O’Day, 2012). The metazoan MDM2 protein also showed nucleolar redistribution in 

response to stress, inhibiting its pro-survival abilities (Wade et al., 2010). In this study, the 

precise sub-nuclear localization of the protein, if any, could not be determined.  
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4.5.2 The SWIB/MDM2 domain of PfSWIB associated with three binding partners 

Sequence alignments and tertiary modelling of the SWIB/MDM2 domain of PfSWIB 

supported the idea of its being a group C SWIB/MDM2 domain relative. In order to further 

decipher the domain’s functional role phage display library technology was employed. No 

prior binding partners for this protein have been documented (LaCount et al., 2005). This 

study identified three binding partners for the PfSWIB SWIB/MDM2 domain. One of 

these, verified with in vitro binding assays, was the N-terminal region of the PfARK3 

protein; this binding domain is situated 434 amino acids upstream of a putative kinase 

domain (Aurrecoechea et al., 2009). The other two partners were a C-terminal region 

(PfRS6) of a protein annotated to have a  ribosomal protein S6e domain, and a portion of 

the inner membrane complex domain of the PfALV5 protein (Aurrecoechea et al., 2009). 

No common binding motif could be identified between these three domains.  

 

4.5.2.1 PfSWIB bound in a concentration dependent manner to PfARK3 

Previous bioinformatic work revealed PfARK3 as an aurora-related kinase, although 

appearing to have undergone early divergence from this kinase family during evolution 

(Reininger et al., 2011). Aurora kinases, first identified in Drosophila, have been identified 

in a wide range of eukaryotes, ranging from yeast to humans (Chan and Botstein, 1993, 

Glover et al., 1995). Yeast encodes only a single aurora kinase homologue, IpI1, while 

higher eukaryotes have been shown to have two or three different types (Aurora A, B and 

C), participating in various cellular processes and with a strong association to mitosis 

(Chan and Botstein, 1993, Hsu et al., 2000, Zeitlin et al., 2001, Goto et al., 2002, Kunitoku 

et al., 2003).  

 

Three Aurora related kinases have been identified within the Plasmodium genome which 

have been shown to be indispensable, by knockout experiments, in the asexual 
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intraerythrocytic cycle (Solyakov et al., 2011). PfARK1 (PF3D7_0605300) has been 

implicated as an essential participant in nuclear mitosis and localization studies revealed its 

close contact with the nuclear envelope and nuclear membrane (Reininger et al., 2011). In 

the case of the essential phospho-protein PfARK3 its cellular localization is unpublished, 

although it has been identified as a nuclear protein (Doerig, 2014, personal 

communication) and this correlates with the bioinformatics assessment of this study.    

 

Current proteomic data have revealed PfARK3 translation in the merozoite, trophozoite 

and schizont life stages while transcriptional data suggest expression throughout the 

intraerythrocytic life cycle, greatest in the stage V gametocytes and lowest in rings and 

early trophozoites. There is a massive up-regulation documented for the gene’s 

transcription within the ookinetes as well. In light of these data, the PfSWIB and PfARK3 

would, at a minimum, both be present within the parasite during the trophozoite and 

schizont life stages. The movement of PfSWIB into the nucleus in response to fever would 

provide an opportunity for intracellular interaction with PfARK3.  

 

Previous yeast-two-hybrid studies found that PfARK3 only associated with a pseudogene 

(LaCount et al., 2005). This interaction does not exhibit any direct link to PCD or 

transcriptional regulation but three features of previously characterized aurora kinases are 

of interest in this study.  

Firstly, human Aurora kinase B, and its homologues IpI1 in S. cerevisiae and AIR-2 in C. 

elegans, have been shown to play a key role in histone H3 phosphorylation to facilitate 

correct mitosis (Hsu et al., 2000, Zeitlin et al., 2001, Goto et al., 2002, Kunitoku et al., 

2003). Histone phosphorylation has other important cellular consequences as well. H3 

phosphorylation by other kinases, specifically at Ser10, alters chromatin structure and is a 
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requirement in the transcription activation of specific gene subsets in response to specific 

stimuli, albeit not the only modification (Labrador and Corces, 2003, Yang et al., 2012). 

Post-translational modifications ascribed to the N-terminal tails of histone proteins have 

been linked to the histone code hypothesis, where the combination of different post-

translation modifications determine a specific function, such as transcription (Jenuwein 

and Allis, 2001). Heat shocking Drosophila cells caused a global decrease in H3 

phosphorylation but a local increase in H3 phosphorylation at loci of heat shock 

transcription factors (Prigent and Dimitrov, 2003). The SWI/SNF complex has been 

proven to be involved in transcriptional activation of heat stress genes and in yeast cells the 

removal of the SWIB/MDM2 domain has detrimental effects on heat shock survival 

(Cairns et al., 1996, Sullivan et al., 2001, Corey et al., 2003, Zhao et al., 2005, Han et al., 

2008). Therefore, one could hypothesize that the association of PfSWIB, possibly as part 

of a SWI/SNF-related complex, with the aurora-related kinase could target specific 

histones for phosphorylation and transcriptional regulation.  

 

Secondly, human Aurora kinase A has a specific role in apoptosis, specifically regulating 

both the function and stability of p53 through phosphorylation. The targeting of p53 Ser
315

 

enhances the protein’s ubiquitination by MDM2 and subsequent degradation, while 

targeting Ser
215

 inhibits p53 DNA binding and trans-activation activity (Katayama et al., 

2004, Liu et al., 2004). Thus, the association of an aurora-related kinase with a 

SWIB/MDM2 homologue within the parasite may be part of a PCD-like pathway where 

PfSWIB directs PfARK3 towards a transcriptional regulator, such as a p53 homologue, to 

regulate its function and/or stability. PfSWIB lacks a ligase domain required for the 

classical MDM2-direct ubiquitination and subsequent degradation of a p53 homologue 

(Honda et al., 1997, Wade et al., 2010). Association with PfARK3 could compensate, 
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simply inactivating a p53 homologue through phosphorylation. Bioinformatic evidence 

indicates the presence of a p53 homologue within the parasite although the function of this 

protein is uncertain (section 4.6).  

Thirdly, the PfSWIB-PfARK3 association may simply facilitate the phosphorylation of the 

PfSWIB protein in the nucleus. Seven serines and a single threonine residue have been 

annotated as phosphorylation sites in PfSWIB (Aurrecoechea et al., 2009, Solyakov et al., 

2011); one or more of these may be necessary for its nuclear activities. The role of these 

phosphorylated residues in the nucleus as well as the cytoplasm, where it resides most of 

the time, is unknown.   

 

4.5.2.2 PfSWIB interacted with PfALV5 and PfRS6  

In this study PfALV5 and PfRS6 were also identified as binding partners, by biopanning, 

of PfSWIB. Due to low and insoluble heterologous expression of these two domains 

respectively, their interactions with PfSWIB could not be verified. However, several 

control steps, including pre-screening of the library with GST and high stringency washes, 

were employed to minimize false positive and/or low affinity interactions. Relatively few 

binding partners were identified, which also implied high specificity. In addition, the 

verified PfSWIB – PfARK3 interaction was identified using the same screening protocol. 

 

PfALV5 was identified as an Alveolin group member of the inner membrane complex, 

having been localized to this structure by two separate studies (Hu et al., 2010, Kono et al., 

2012). It is believed to have been acquired through lateral gene transfer from insects (Kono 

et al., 2012). The inner membrane complex is a common morphological feature of all 

alveolate members, constituted by an array of flattened vesicles underneath the plasma 
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membrane and connected to the organism’s cytoskeleton (Gould et al., 2008). To date, no 

role outside its involvement in this cellular structure has been document for PfALV5. 

 

Temporally it has been identified, by proteomics, within all the asexual intraerythrocytic 

life stages of P. falciparum (Aurrecoechea et al., 2009). PfSWIB was distributed 

throughout the cytoplasm and there would therefore be a degree of inner membrane 

complex association. This association may be functionally relevant, representing a means 

of membrane sequestration of the PfSWIB protein. Previous studies have documented that 

HSPs can be retained by cytoskeleton components until stress induces nuclear localization 

(Schlesinger et al., 1982). It is possible that PfALV5 and PfSWIB interact in a similar 

manner, preventing some PfSWIB moving to the nucleus under normal conditions. The 

other mechanisms involved in PfSWIB cytoplasmic retention are unknown. Yeast-two-

hybrid studies have identified four other binding partners for PfALV5 – a single, known 

export protein; two functionally unknown proteins; and a putative translational machinery 

component. Association with the export protein is functionally and spatially expected 

based on the nature of PfALV5. Its involvement with direct export of any known signals to 

activate parasite PCD is unknown. The translation machinery interaction may be of 

importance as under heat stress the late asexual intraerythrocytic life stages have shown a 

drastic reduction in protein synthesis (Porter et al., 2008) and this interaction was therefore 

hypothesised to provide an additional means of regulating translation by recruiting and 

inhibiting specific machinery. It is unlikely though that PfSWIB has any direct 

involvement in this interaction.  

 

The last binding partner identified for PfSWIB was PfRS6, a protein putatively annotated 

to have a ribosomal protein S6e domain (Aurrecoechea et al., 2009). Ribosomes are 
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complex cellular machinery, composed of proteins and RNA, which facilitate translation of 

mRNA into protein (Nelson and Cox, 2005). In eukaryotic cytoplasmic ribosomes the S6 

protein is located in the A site of the 40S subunit, near the mRNA/tRNA binding site and 

the interface between the small and large ribosomal subunits (Nygård and Nilsson, 1990). 

Previous work has proven that S6 phosphorylation, in response to proliferation stimulation, 

is a prerequisite for increased translation-associated protein synthesis (Thomas et al., 1980, 

Fumagalli and Thomas, 2000). Stress stimuli, such as heat or oxygen deprivation, have 

been shown to regulate protein synthesis in eukaryotic cells by the level of S6 

phosphorylation – dephosphorylation decreases overall protein synthesis (Glover, 1982, 

Bailey-Serres and Freeling, 1990, Fumagalli and Thomas, 2000, Williams et al., 2003). 

Late asexual intraerythrocytic life stages of P. falciparum are no strangers to a drastic 

reduction in metabolic state in response to heat stress  (Porter et al., 2008) and PfRS6 may 

be involved in this process. The protein’s role in a PCD pathway or its interaction with 

PfSWIB is uncertain as associations between SWIB/MDM2 domains and ribosomal 

proteins are not characterized in literature.  

 

This putative ribosomal protein has been identified by proteomic studies in all the 

intraerythrocytic asexual life stages as well as various gametocyte stages (Aurrecoechea et 

al., 2009). The cellular location of PfRS6 is unknown but bioinformatic analysis suggests a 

strong likelihood of nuclear localization, which is unexpected for a ribosomal protein but 

would provide it with an opportunity to interact with PfSWIB after heat stress.  

 

Yeast-two-hybrid studies have identified 15 binding partners for this protein (LaCount et 

al., 2005), as presented in figure 4.1. Four were chromatin-related proteins, supporting the 

bioinformatic nuclear localization pattern noted for PfRS6 (LaCount et al., 2005) and 
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suggests that PfSWIB is a group C family member. PfRS6 was also found to associate with 

a ligase. The vertebrate MDM2 protein encompasses an E3 ligase domain, responsible for 

the ubiquitination and subsequent degradation of p53 (Honda et al., 1997, Wade et al., 

2010). It is possible that the ligase which was bound to PfRS6 was directed by the nuclear 

PfSWIB to ubiquitinate a p53 homologue. The remaining binding partners for PfRS6 have 

no link to chromatin remodelling or PCD and it is possible that the PfRS6 protein is 

pleiotropic in nature, explaining the great variation in its detected binding partners 

(LaCount et al., 2005).  
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Figure 4.1: Interaction network constructed around the PfSWIB and PfRS6 interaction.  

PfSWIB was identified as a putative binding partner of PfRS6, which has been previously proven 

to interact with a variety of factors, including other chromosome-related proteins and possible PCD 

participants (LaCount et al., 2005). This interaction network may allow PfSWIB to participate in 

transcriptional and PCD roles. All proteins presented in purple blocks were identified by high 

throughput yeast-two-hybrid studies for PfRS6 (LaCount et al., 2005). 

 

4.5.3 The possible role of PfSWIB in response to heat stress 

The perceived nuclear response of PfSWIB-GFP was brief. It was only noted 30 minutes 

after termination of heat stress, after 2 hours all assessed parasites showed a cytoplasmic 

distribution (figure 3.37). This could imply one of three series of events as outlined below.  
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4.5.3.1 PfSWIB as a pro-survival PCD factor 

The PfSWIB-GFP protein localized to the nucleus briefly (within 30 minutes of heat stress 

termination) and then may have re-localized to the cytoplasm up to 2 hours later. The 

majority of late stage parasites died in vitro in response to elevated temperatures 

(Engelbrecht and Coetzer, 2013) and only approximately 10% of trophozoites had a 

PfSWIB nuclear signal. It could be hypothesized that this nuclear signal represented a pro-

survival response, facilitating survival in late stage parasites (de la Serna et al., 2000, 

Engelbrecht and Coetzer, 2013). Although there was a substantial reduction in 

parasitaemia 24 hours after heat stress, more than 10% of the population survived 

suggesting that this cellular phenomenon was an unlikely pro-survival response in the 

parasite sub-population.  

 

4.5.3.2 PfSWIB as a pro-death factor  

The PfSWIB-GFP protein localized to the nucleus briefly and all these parasites may have 

died and were lost from the population. Commonly SWIB/MDM2 homologues are 

documented as pro-survival molecules within PCD pathways but the SWIB/MDM2 

homologue BAF60a of the mammalian SWI/SNF complex induces p53-directed apoptosis 

(Oh et al., 2008) and the parasite PfSWIB protein may play a similar pro-PCD role. 

Several studies have shown that elevated temperatures, 38.5C and above, significantly 

inhibited the development and growth of intraerythrocytic asexual parasites, which 

presented several phenotypic features of necrosis and/or PCD (Engelbrecht et al., 2012). 

This phenomenon is believed to reduce the host’s parasite burden, in turn preventing 

premature host death before effective parasite transmission (Deponte and Becker, 2004, 

Porter et al., 2008, Engelbrecht and Coetzer, 2013).  Fever is linked to schizont rupture and 

merozoite re-invasion, with the early life stages surviving in vitro heat stress better than 

late stages (Long et al., 2001, Porter et al., 2008, Engelbrecht et al., 2012, Engelbrecht and 
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Coetzer, 2013). Thus, removal of lagging late stage parasites, each capable of giving rise to 

as many as 32 new parasites (Hafalla et al., 2011), could have a significant impact in 

decreasing the number of parasites. As only trophozoites and not schizonts showed 

PfSWIB-GFP redistribution, it appeared that life stage is an important contributing factor. 

Although loss of both late life stages would be advantageous for host survival, schizonts 

may have crossed a survival point, in terms of PfSWIB-induced death, while trophozoites 

may still have the potential to be killed off. As the trophozoites aged the redistribution of 

PfSWIB appeared to weaken, as noted by poor nuclear co-localization of PfSWIB-GFP in 

a late stage trophozoite parasite.  

  

4.5.3.3 PfSWIB is a possible heat stress response participant 

The stress used during this study for PCD induction was elevated temperature, which 

would activate heat stress survival pathways in the parasite. Therefore, PfSWIB may play a 

non-PCD, stage specific heat stress regulation role.  

The P. falciparum parasite is exposed to a wide range of temperatures during its life cycle 

due to the use of a human host and insect vector (Hafalla et al., 2011). The human host 

additionally undergoes large temperature fluctuations during the clinical manifestations of 

the disease, with fever episodes resulting in core body temperature elevations of as much 

as 5C for several hours (Ray and Plorde, 2010). As a result, the parasite must possess a 

robust heat shock response system to survive. This system is poorly understood, although 

numerous HSP members have been identified and are required for heat shock conditions 

and normal cellular functioning (Kumar et al., 1991, Pallavi et al., 2010, Botha et al., 

2011, Muralidharan et al., 2012). Some of these proteins are elevated in their expression in 

response to heat shock (Kumar et al., 1991, Botha et al., 2011). No true heat shock factor 

(HSF) homologues have been identified within the parasite but members of the 
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Apicomplexa Apetala2 (ApiAP2) transcription family may be responsible instead. 

PF3D7_1342900, an ApiAP2 family member, has been shown to bind to the cis-element 

situated upstream of eight Plasmodium HSP genes (Campbell et al., 2010). The parasite 

also encodes a single heat shock factor binding protein (HSBP) homologue, responsible in 

other eukaryotic systems for the attenuation of the heat shock response. This homologue 

(PF3D7_1120900) has shown several key features of a HSBP but its precise molecular 

activity is still elusive (Sayeed et al., 2014).  

 

Nucleosome occupancy, in part, determines the accessibility of regulatory elements and 

thus is an important contributor to gene activation and repression during the life of a cell 

(Li and Reinberg, 2011). Under heat stress conditions within human cells the human HSF1 

directly recruits the SWI/SNF complex, via interactions with the complex’s BRG1 protein, 

in order to facilitate transcriptional initiation and release of the paused RNA polymerase at 

the promoter sites of the HSP70 gene (Sullivan et al., 2001, Corey et al., 2003). This 

activation process is stimulated by ATP-dependent chromatin remodelling at the promoter 

and along the length of the gene (Sullivan et al., 2001, Corey et al., 2003). Another 

remodelling complex, an ISWI-related complex, is also present at the HSP70 promoter in 

the absence of HSP1, under both resting and heat stress conditions, and is believed to keep 

the structure open for initial RNA polymerase binding but is insufficient for complete 

transcription (Corey et al., 2003). In yeast, HSP gene expression also involves recruitment 

of the SWI/SNF complex but this is not essential. It is only required for enhanced initiation 

and elongation of transcription through chromatin remodelling (Zhao et al., 2005, Han et 

al., 2008). In Drosophila the SWI/SNF complex does not seem to be required for HSP70 

transcription but identification of the complex at the promoter was conducted by 

immunofluorescence which may not have been a suitable means of detection (Armstrong et 
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al., 2002, Corey et al., 2003). The transcriptional regulation of heat shock in P. falciparum 

is not well characterized, but involvement of a SWI/SNF-like complex is plausible. A core 

member of such a complex in other eukaryotes is a SWIB/MDM2 protein (Wilson and 

Roberts, 2011), to which PfSWIB shows homology. Furthermore, interactions with 

PfARK3 in the nucleus may promote parasite survival through histone phosphorylation 

and subsequent transcriptional activation of heat shock transcription factors (Hsu et al., 

2000, Goto et al., 2002, Prigent and Dimitrov, 2003). 

 

Interestingly, in this study several cellular features documented for PfSWIB were similar 

to those of eukaryotic heat shock participants, supporting the notion that the protein may 

participate in thermo-tolerance. Firstly, some heat shock participants are sequestered to the 

cytoplasm in an inactive state, often associating with elements of the cell cytoskeleton 

(Akerfelt et al., 2010, Al-Whaibi, 2011). PfSWIB showed cytoplasmic localization under 

normal growth conditions and was found to associate with a member of the inner 

membrane complex (PfALV5), providing the protein an opportunity for sequestration to 

the inner membrane. If all the PfSWIB-GFP was being sequestered by PfALV5 then the 

green fluorescent signal would have been limited to the membrane, but instead a 

cytoplasmic distribution was documented. Secondly, in response to heat stress some heat 

shock participants show rapid accumulation in the nucleus that is resolved after stress 

removal (Akerfelt et al., 2010, Hsu et al., 2010). The A. thaliana HSBP homologue 

revealed cytoplasmic accumulation during unstressed conditions, slight nuclear 

localization during heat stress and strong nuclear localization for up to 2 hours after the 

removal of the stress (Hsu et al., 2010). PfSWIB was found within the parasite nucleus 30 

minutes after the termination of heat stress and not 2 hours later, suggesting a rapid 

response which was resolved, provided these parasites had not been lost within the culture 
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due to death. The different life stages may employ different systems for heat stress 

survival, explaining the absence of PfSWIB-GFP in the schizont nuclei. The trophozoites 

revealing a nuclear signal would be hypothesized to survive, analogous to heat stressed A. 

thaliana cells, while the remainder may have been too severely damaged.  

 

PfSWIB contains no HSF or HSP functional domains but yeast and human studies suggest 

the protein could be involved in a nuclear heat stress response aiding in the activation 

and/or attenuation of HSP gene translation (Akerfelt et al., 2010). A similar localization 

pattern has not been described for any other SWIB/MDM2 homologue, and would 

represent a novel activity within P. falciparum.  

 

4.6 The DNA binding and tetramerization domains of Pfp53 showed weak homology 

to other p53 homologues 

The identification of a p53-like protein within unicellular eukaryotes, such as Entamoeba 

histolytica and Monosiga brevicollis, indicates that this protein family arose before the 

emergence of multi-cellularity and thus may be present in the P. falciparum parasite, if not 

lost during the evolution of the phylum and/or species (Mendoza et al., 2003, King et al., 

2008, Lu et al., 2009, Belyi et al., 2010). Commonly the identification of p53 homologues 

within organisms outside the vertebrate lineage is complicated by low similarity, thus 

requiring the use of additional algorithms (Jin et al., 2000, Derry et al., 2001), and P. 

falciparum was no different. A putative p53-DBD was previously detected through the use 

of a variety of computational methods, such as standard homology methods as well as a 

novel evolutionary rate-based alignment algorithm
 
FIRE (Functional Inference using the 

Rates of Evolution) (Coetzer et al., 2010, Durand et al., 2010). The precise borders of the 
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putative domain within the protein were unclear due to poor sequence similarity, 

irrespective of the alignments conducted. 

 

Previous studies in other non-vertebrate organisms have revealed a wide but poor level of 

similarity to the well characterised vertebrate p53 protein; the greatest homology often 

confined solely to the DBD, with several of the amino acid residues critical for DNA 

binding being identical (Ollmann et al., 2000, Schumacher et al., 2004, Pankow and 

Bamberger, 2007, King et al., 2008, Holbrook et al., 2009). The degree of similarity and 

identity of the parasite protein to the vertebrate p53 was significantly lower, relative to 

other studied non-vertebrate p53-like homologues (Jin et al., 2000, Kelley et al., 2001, 

Mendoza et al., 2003, Pankow and Bamberger, 2007), and with very few of the essential 

amino acid residues conserved for DNA binding. The poor similarity was, in part, the 

result of the increased size of Pfp53, resulting in large gaps separating the regions of 

conservation, a common feature of parasite proteins when compared to their metazoan 

counterparts (Pizzi and Frontali, 2000, Pizzi and Frontali, 2001). The alignment quality 

was significantly improved and was comparable to other studied p53 homologues, when 

the large gap regions were removed. When the gap regions were present the greatest 

degree of similarity and identity was documented relative to the Cep-1 protein. Both 

vertebrate and Cep-1 alignments highlighted the same portion of Pfp53 as a putative DBD.  

 

For the putative Pfp53 DBD the predicted secondary structure was rich in beta-strands, 

although these did not align well with those of the other p53 DBD assessed. The structure 

lacked helices but the human and Drosophila domains were also predicted to be poor in 

helical stretches even though they are required, in part, for DNA binding (Ollmann et al., 

2000, Huyen et al., 2004, Ho et al., 2006, Pérez-Cañadillas et al., 2006). Tertiary structure 
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analysis was weak for this parasite domain, with few template-based modelling algorithms 

being able to reveal a topology akin to that of other p53 homologue DBDs. All were 

incomplete structures, lacking many of the topological features required for correct 

functioning (figure 3.42 C-F). All models were of poor quality when assessed by QMEAN 

analysis, suggesting low feasibility of the structures in nature. Modelling based on 

bioinformatics, especially when using standard techniques for p53 homologues, is not 

always reliable. Therefore, based primarily on amino acid sequence alignments, the 

putative DBD of Pfp53 (residues 8225 to 8508) was expressed and used to assess its DNA 

binding ability. 

 

Of the other functional domains that are encompassed in the vertebrate p53 protein (Belyi 

et al., 2010), only a putative tetramerization domain was detected in the P. falciparum 

protein. The vertebrate p53 protein is able to form dimers through interactions between 

residues of the DBD itself. Tetramerization relies on the linkage of two orthogonally 

positioned p53 dimers, facilitated by the alpha-helix structure of the tetramerization 

domain (Miller et al., 1996). A C-terminal region of Pfp53 had some similarity to the 

vertebrate p53 tetramerization domain, although this was significantly lower than that 

documented for other studied p53-like homologues (Miller et al., 1996, Kelley et al., 2001, 

Mendoza et al., 2003). As the tetramerization domain of the p53 family has undergone 

broad diversification during evolution, a low degree of homology was anticipated (Lu et 

al., 2009). This region in the P. falciparum protein was rich in hydrophobic amino acids 

which are essential for function in the human homologue  (Mittl et al., 1998). The 

predicted secondary structure was constituted by three beta-sheets and a single alpha helix, 

which did not correspond to the prediction of the human homologue. Although the tertiary 

model was composed of a short alpha helix, the functional feature of the human 
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homologue (Miller et al., 1996), the location did not correspond to the secondary structure 

predictions. Overall, bioinformatic analysis of residues 8551 to 8587 of Pfp53 showed only 

a small degree of correlation to the vertebrate p53 tetramerization domain in its rich 

hydrophobic content and short helical topology. 

 

The absence of any conserved region for MDM2 binding within the parasite protein 

correlated with the idea that the vertebrate MDM2-p53 interaction was a late stage 

evolutionary event (Lu et al., 2009). This may be one of the reasons why Pfp53 was not 

detected during biopanning as a binding partner for either PfMDM2 or PfSWIB. Other 

possible reasons have been discussed earlier in section 4.2.     

 

4.7 Assessment of the cellular location and DNA binding ability of Pfp53  

4.7.1 A predicted nuclear localization pattern for Pfp53  

No localization studies have been conducted for Pfp53. The use of the episomal expression 

system would not be ideal for this protein, for two reasons. Firstly, the large size of Pfp53 

may cause difficulties in effective construct creation and the use of truncated forms may 

impede localization, as seen with PfMDM2. Secondly, the system results in continuous 

episomal protein expression. Over-expression of Dmp53 in Drosophila has been associated 

with prominent cell death and thus a parasite homologue could induce the same response 

and prevent effective transgenic parasite production (Jin et al., 2000). Another system, 

such as genome editing where a fluorescent tag is added onto the native protein, maybe a 

better means to evaluate cellular location in this situation.  

 

In this study, based purely on bioinformatics, Pfp53 was suggested to be nuclear, an 

important location for any functional p53 homologue. Additionally, three regions of the 
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parasite protein aligned, with high identity, to the three human p53 nuclear localization 

signals; a feature documented in other non-vertebrate p53 homologues as well (Shaulsky et 

al., 1990, Kelley et al., 2001, Mendoza et al., 2003). Although this does not imply nuclear 

localization in vivo, it does suggest a possible nuclear role and further supports the notion 

of the parasite protein as a p53 homologue.  

 

Expression profiles of p53 homologues within lower eukaryotes indicate a key role in 

embryonic development and germ cell regulation through genomic fidelity (Jin et al., 

2000, Derry et al., 2001, Pankow and Bamberger, 2007). Involvement in somatic cells has 

been hypothesised as a more recent evolutionary event, possibly limited to vertebrate 

lineages (Jin et al., 2000). Proteomic data, although incomplete, has identified the parasite 

protein in many of the life stages (Aurrecoechea et al., 2009), with no clear correlation to 

DNA synthesis or sexual propagation.  

 

4.7.2 The putative DBD of Pfp53 did not bind a parasitespecific p53 DNA-binding 

consensus sequence 

All studied eukaryotic p53 homologues are able to bind to the conventional p53 DNA 

binding consensus sequence (PuPuPuCWWGPyPyPy duplicated but separated by no more 

than 13 random bp), suggesting that the protein and sequence evolved as a conserved unit 

(Pankow and Bamberger, 2007). These canonical sequences allow p53 to transcriptionally 

activate various pro-apoptotic genes, such as Bax and Puma (Toshiyuki and Reed, 1995, 

Nakano and Vousden, 2001), and factors regulating the cell-cycle, such as 14-3-3σ 

(Hermeking et al., 1997). Although poorly understood, p53 also facilitates transcriptional 

repression of anti-apoptotic factors including Bcl-2, Bcl-X, cyclin B1, and survivin, an IAP 

protein (Amaral et al., 2010, Beckerman and Prives, 2010). In terms of autophagy, p53 is 
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involved in the transcriptional activation of several genes involved in the inhibition of 

mammalian target of rapamycin, a negative regulator of autophagy (Maiuri et al., 2010).   

 

The P. falciparum genome was found to encode two full length canonical p53 DNA 

binding consensus sequences, one in the coding region of a gene of unknown function 

(PF3D7_0829800) and one in a gametocyte erythrocyte cytosolic protein gene 

(PF3D7_1253000). This supported the possibility of a p53-homologue within the parasite, 

although its link to PCD or cell cycle regulation was absent. Extending the search, four 

sequences, composed of the two halves of the canonical p53 DNA consensus sequence 

separated by a gap exceeding 13bp, were identified. These too failed to correlate to PCD or 

cell cycle genes. Regulation of the cell cycle appears to be exclusive to vertebrate p53 

homologues and thus an unlikely activity of Pfp53 (Schumacher et al., 2001, Holbrook et 

al., 2009). 

 

The Entamoeba histolytica p53 homologue was found to associate with a canonical human 

p53 DNA binding consensus sequence and a sequence derived from the unicellular 

organism’s own genome. The latter sequence deviated by 25% from the canonical 

sequence (Mendoza et al., 2003) and was not identified in the P. falciparum genome. Non-

canonical p53 DNA binding sequences (Beckerman and Prives, 2010) were not considered 

as part of the current study and thus possible p53 homologue targets in the parasite’s 

genome may have been missed.  

 

The DNA binding ability of GST-Pfp53 was assessed using one of the p53 DNA binding 

consensus sequences identified within the P. falciparum genome. All experiments were 

unable to detect any oligonucleotide binding (figure 3.51). It might be assumed, based on 
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this result and the low sequence homology of the domain, that the putative Pfp53 DBD was 

not capable of binding to DNA but this is not necessarily true. Numerous factors could 

have contributed towards the observed negative result.  

Firstly, the maximum amount of GST-Pfp53 used in the EMSA was limited (a maximum 

of ~300ng). This may have been insufficient for oligonucleotide binding. In conjunction 

with this, the recombinant domain may not have been biologically active due to incorrect 

folding and/or the absence of posttranslational modifications (Baneyx and Mujacic, 2004). 

The Pfp53 protein was proven to have 45 Ser and Thr residues that can be phosphorylated, 

one of which was situated within the putative DBD – Ser
8238

 (Aurrecoechea et al., 2009). 

This residue was not conserved in relation to known p53 proteins and its importance is 

uncertain but should not be ignored. Additionally, due to poor homology the precise 

boundaries of the putative domain were difficult to define and the region used in this study 

was possibly insufficient for DNA binding.  

Secondly, the GST tag would have been able to provide artificial dimerization, in case the 

domain itself could not do so and thus prevent DNA binding (Klein et al., 2001); although 

this may have interfered with protein-DNA interaction. Due to the low yield of the fusion 

protein, thrombin-directed GST-tag cleavage was not a feasible option to verify this 

suggestion.  

Thirdly, the DIG-label added to the 3’-end of the p53 oligonucleotide sequence may have 

interfered with protein binding (Hellman and Fried, 2007). Lastly, during electrophoresis 

the protein may dissociate from its bound oligonucleotide sequence, with even slow 

dissociation reducing shift visibility (Hellman and Fried, 2007). 
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4.8 Pfp53 appeared to form tetramers 

Previous work showed that a GST-tag could promote artificial p63 DBD dimerization, 

required for successful p53 DNA consensus sequence binding (Klein et al., 2001). The 

vertebrate p53 DBD, unlike human p63, can form dimers on its own and bind naturally to 

DNA (Miller et al., 1996).  The use of the GST-tag in this study would facilitate artificial 

domain dimerization to ensure that oligonucleotide binding was not impeded (Klein et al., 

2001).  

 

Evaluation of GST-Pfp53 oligomerization was conducted with the aid of a tetramerization 

assay. This assay showed some dimerization of the GST tag alone under high protein 

concentrations. The monomeric form of GST-Pfp53 was reduced in this assay and no 

dimers were found. A large quantity of the recombinant protein was retained in the wells, 

suggesting large aggregate formation – possibly high molecular mass oligomers (figure 

3.53). A faint band, detected by anti-GST immunobloting, was evident and suggested the 

possibility of Pfp53 tetramerization. The low yield for GST-Pfp53 complicated assessment 

by creating difficulties in clear oligomeric state visualization and prevented the removal of 

the GST tag, by thrombin cleavage, to verify intrinsic Pfp53 oligmerization. Although 

suggested with caution, the influence of the GST tag in GST-Pfp53 was believed to be 

negligible as no prominent dimeric form of the recombinant protein was seen. Further 

research needs to be conducted, at greater concentration, for true validation. 
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5 CONCLUSION 

The 48 hour asexual intraerythrocytic life cycle of P. falciparum facilitates exponential 

population expansion which, if left unregulated, would soon kill the human host before 

successful parasite transmission to the mosquito. One hypothesized means to regulate this 

and prevent premature host death is parasite self-induced PCD. A handful of studies have 

documented the expression of distinct PCD markers in the P. falciparum parasite and 

identified metazoan PCD gene homologues within its genome. Unfortunately no clear link 

has been established between the two. Therefore there is a gap in our understanding of the 

parasite’s biology. To aid in this arena of research this study evaluated the molecular 

functions of three putative P. falciparum PCD homologues and provides the first 

description of their localisation within the parasite; their response to elevated temperatures, 

which mimic fever periods experienced by malaria patients; binding interactions and 

subsequent links to death/stress pathways.  

 

Bioinformatics suggested that the two parasite SWIB/MDM2 homologues, PfMDM2 and 

PfSWIB, were chromatin remodelling family members, possibly deviating from the typical 

twisted cleft topology of this group but structurally similar to the yeast SWIB/MDM2 

homologue. Unexpectedly PfMDM2 showed distinct N-terminal-directed mitochondrial 

localization under both normal and heat-induced PCD conditions, as depicted in figure 5.1. 

Mitochondrial localization has been documented amongst Arabidopsis SWIB proteins, 

although their functional roles are unknown. The in vitro binding partner, PfLisH, was 

predicted to be nuclear in location and therefore its interaction with PfMDM2, under 

elevated temperatures, may not be feasible in vivo. Their interaction may be physiological 

relevant under other conditions. It is hypothesized that PfMDM2 plays a role in 
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mitochondrial maintenance and gene expression, possibly as part of a larger transcriptional 

complex, and it may also participate in PCD in an unconventional manner.  

PfSWIB showed distinct cytoplasmic localization under normal conditions as depicted in 

figure 5.1, a feature documented in a single Arabidopsis SWIB protein of unknown 

function. After heat stress, the protein revealed a short-lived nuclear localization in a 

subpopulation of trophozoites (figure 5.1). Three novel in vitro binding partners were 

identified for PfSWIB, one a proven member of the inner membrane complex and the other 

two likely nuclear components (figure 5.1). These findings suggest that PfSWIB could 

either play a stage-specific, unconventional PCD role or, more feasibly, a stage-specific, 

heat-stress regulation role where movement of the protein to the nucleus allows for the 

survival of trophozoites after exposure to elevated temperatures.  

 

The processes described in figure 5.1 are merely hypothetical, based on the limited work 

conducted. This study was merely the start on a long road towards fully deciphering the 

cellular roles of these proteins. More work, including knock downs and co-transfections, is 

required to verify these postulations, to ascertain if the interactions identified are of 

physiological relevance and to determine if the SWIB/MDM2 proteins are essential for 

cellular functioning under normal and PCD conditions. This is essential as it is possible 

that the roles of these proteins are unique and unrelated to a death pathway. 
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Figure 5.1: The proposed activities of PfMDM2 and PfSWIB in late asexual intraerythrocytic P. 

falciparum life stages.   

(A) Within the late asexual intraerythrocytic life stages, at 37C, experimental evidence and 

bioinformatics suggest that PfMDM2 is involved in mitochondrial functioning and would be unable to 

interact with its identified binding partner, PfLisH, which is in the nucleus. PfSWIB is cytoplasmic 

and associates with PfALV5, a member of the inner membrane complex.  

(B) After exposure to elevated temperatures for 2 hours all of the schizonts and the majority of 

trophozoites retained the normal PfMDM2 and PfSWIB localization pattern, suggesting no stage-

specific, heat-related PCD role. 

(C) In a minority of trophozoites nuclear PfSWIB was documented briefly. This would provide an 

opportunity for interaction with nuclear binding partners, PfARK3 and PfRS6, to bring about stage-

specific heat stress regulation and survival to this subpopulation of trophozoite parasites. The location 

of PfMDM2 was apparently unaffected.    

 

Bioinformatic analysis, based mainly on primary sequence alignments, identified a putative 

DBD and tetramerization domain within Pfp53. Two full length canonical p53 DNA 

binding consensus sequences within the parasite genome were identified and nuclear 

localization was predicted for Pfp53. The ability of the putative tetramerization domain to 

facilitate tetramer formation was inconclusive and requires further analysis. The DNA 

binding function of the parasite protein is currently uncertain, and a metazoan MDM2-p53 

interaction seems unlikely in the parasite. Additional studies, such as cellular localization, 

would help clarify its role in the parasite.      
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APPENDIX A – BIOINFORMATICS   

A Cellular localization predictions  

Table A.1: Detailed localization predictions for P. falciparum proteins and domains 
Protein Prediction Program Algorithm 

Kingdom 

Specification 

Cellular Compartment Probability of 

Localization 

to Specified 

Compartment  

(% or yes/no) 

PfALV5 PlasmoDB - PlasmoAP n/a Apicoplast  0 

PfALV5 PATS Version 1.2.1 n/a Apicoplast  2.3 

PfALV5 PSORT Prediction Plant  Chloroplast stroma 20 

PfALV5 PSORT Prediction Plant  Chloroplast thylakoid membrane 20 

PfALV5 PSORT Prediction Plant Chloroplast thylakoid space 20 

PfALV5 PSORT Prediction Animal Cytoplasm 65 

PfALV5 PSORT Prediction Plant Cytoplasm 65 

PfALV5 WWW PREDOTAR 

V1.03 

Animal ER 1 

PfALV5 PSORT Prediction Animal Lysosome (lumen) 10 

PfALV5 MitoProt II - v1.101 n/a Mitochondria 27 

PfALV5 iPSORT Prediction Plant Mitochondria no 

PfALV5 iPSORT Prediction Non-plant  Mitochondria no 

PfALV5 PlasMit n/a Mitochondria 1 

PfALV5 WWW PREDOTAR 

V1.03 

Plant Mitochondria 1 

PfALV5 PSORT Prediction Animal Mitochondrial matrix space 10 

PfALV5 NucPred n/a Nucleus 20 

PfALV5 cNLS mapper n/a Nucleus (bi-partite) 0 

PfALV5 cNLS mapper n/a Nucleus (monopartite) 0 

PfALV5 WWW PREDOTAR 

V1.03 

Plant Plasmid 1 

PfARK3 PlasmoDB - PlasmoAP n/a Apicoplast 0 

PfARK3 PATS Version 1.2.1 n/a Apicoplast 2 

PfARK3 WWW PREDOTAR 

V1.03 

Animal ER 1 

PfARK3 PSORT Prediction Animal Lysosome 10 

PfARK3 PSORT Prediction Plant Microbody 30 

PfARK3 PSORT Prediction Animal Microbody 10 

PfARK3 MitoProt II - v1.101 n/a Mitochondria 50 

PfARK3 iPSORT Prediction Plant Mitochondria no 

PfARK3 WWW PREDOTAR 

V1.03 

Plant Mitochondria 1 

PfARK3 PSORT Prediction Plant Mitochondrial matrix space 10 

PfARK3 PSORT Prediction Animal Mitochondrial matrix space 10 

PfARK3 iPSORT Prediction Non-plant Mitochondrion no 

PfARK3 PlasMit n/a Mitochondrion 9 

PfARK3 NucPred n/a Nucleus 97 
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PfARK3 PSORT Prediction Plant Nucleus 98 

PfARK3 PSORT Prediction Animal Nucleus 98 

PfARK3 cNLS mapper n/a Nucleus (bi-partite) 100 

PfARK3 cNLS mapper n/a Nucleus (monopartite) 97 

PfLisH PlasmoDB - PlasmoAP n/a Apicoplast 0 

PfLisH PATS Version 1.2.1 n/a Apicoplast 3 

PfLisH PSORT Prediction Plant Chloroplast thylakoid membrane 10 

PfLisH WWW PREDOTAR 

V1.03 

Plant Endoplasmic reticulum 13 

PfLisH WWW PREDOTAR 

V1.03 

Animal Endoplasmic reticulum 13 

PfLisH PSORT Prediction Animal Lysosome (lumen) 10 

PfLisH PSORT Prediction Animal Microbody 30 

PfLisH PSORT Prediction Plant Microbody 30 

PfLisH MitoProt II - v1.101 n/a Mitochondria 6.7 

PfLisH iPSORT Prediction Plant Mitochondria No 

PfLisH iPSORT Prediction Non-plant Mitochondria No 

PfLisH PlasMit n/a Mitochondria  1 

PfLisH PSORT Prediction Animal Mitochondrial matrix space 10 

PfLisH PSORT Prediction Plant Mitochondrial matrix space 10 

PfLisH NucPred n/a Nucleus 94 

PfLisH PSORT Prediction Animal Nucleus 98 

PfLisH PSORT Prediction Plant Nucleus 98 

PfLisH cNLS mapper n/a Nucleus (bipartite) 64 

PfLisH cNLS mapper n/a Nucleus (monopartite) 80 

PfLisH WWW PREDOTAR 

V1.03 

Plant Plastid 1 

PfMDM2 PlasmoDB - PlasmoAP n/a Apicoplast No 

PfMDM2 PATS Version 1.2.1 n/a Apicoplast 10 

PfMDM2 PredSL n/a Chloroplast 0 

PfMDM2 iPSORT Prediction Non-plant Mitochondria No 

PfMDM2 iPSORT Prediction Plant Mitochondria Yes 

PfMDM2 MitoProt II - v1.101 n/a Mitochondria 90 

PfMDM2 PlasMit n/a Mitochondria No 

PfMDM2 PredSL n/a Mitochondria 100 

PfMDM2 WWW PREDOTAR 

V1.03 

Animal Mitochondria 40 

PfMDM2 WWW PREDOTAR 

V1.03 

Plant Mitochondria 40 

PfMDM2 iPSORT Prediction Plant Mitochondria or chloroplast Yes 

PfMDM2 PSORT Prediction Animal Mitochondrial inner membrane 20 

PfMDM2 PSORT Prediction Plant Mitochondrial inner membrane 20 

PfMDM2 PSORT Prediction Animal Mitochondrial inner membrane 

space 

20 

PfMDM2 PSORT Prediction Plant Mitochondrial inner membrane 

space 

20 

PfMDM2 PSORT Prediction Animal Mitochondrial matrix space 50 

PfMDM2 PSORT Prediction Plant Mitochondrial matrix space 50 
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PfMDM2 NucPred n/a Nucleus 60 

PfMDM2 PSORT Prediction Animal Nucleus 100 

PfMDM2 PSORT Prediction Plant Nucleus 100 

PfMDM2 cNLS Mapper n/a Nucleus (monopartite signal) 50 

Pfp53 PATS Version 1.2.1 n/a Apicoplast 0 

Pfp53 PredSL Plant Chloroplast 0 

Pfp53 PSORT Prediction Plant Chloroplast thylakoid membrane 38 

Pfp53 WWW PREDOTAR 

V1.03 

Non-plant Endoplasmic reticulum 0 

Pfp53 WWW PREDOTAR 

V1.03 

Plant Endoplasmic reticulum 0 

Pfp53 PSORT Prediction Animal Endoplasmic reticulum (membrane) 85 

Pfp53 PSORT Prediction Animal Golgi 90 

Pfp53 PSORT Prediction Plant Golgi 90 

Pfp53 PSORT Prediction Animal Microbody (peroxisome) 30 

Pfp53 iPSORT Prediction Non-plant Mitochondria No 

Pfp53 iPSORT Prediction Plant Mitochondria No 

Pfp53 PlasMit n/a Mitochondria 0 

Pfp53 PredSL Non-plant Mitochondria 0 

Pfp53 PredSL Plant Mitochondria 0 

Pfp53 MitoProt II - v1.101 n/a Mitochondria 76 

Pfp53 WWW PREDOTAR 

V1.03 

Non-plant Mitochondria 0 

Pfp53 WWW PREDOTAR 

V1.03 

Plant Mitochondria 0 

Pfp53 NucPred n/a Nucleus 99 

Pfp53 PSORT Prediction Animal Nucleus 91 

Pfp53 PSORT Prediction Plant Nucleus 91 

Pfp53 cNLS mapper n/a Nucleus (bi-partite) 100 

Pfp53 cNLS mapper n/a Nucleus (mono-partite) 100 

Pfp53 PSORT Prediction Animal Plasma membrane 60 

Pfp53 WWW PREDOTAR 

V1.03 

Plant Plastid 0 

PfRS6 PlasmoDB - PlasmoAP n/a Apicoplast 0 

PfRS6 PATS Version 1.2.1 n/a Apicoplast 2.3 

PfRS6 WWW PREDOTAR 

V1.03 

Animal Endoplasmic reticulum 1 

PfRS6 PSORT Prediction Animal Lysosome (lumen) 10 

PfRS6 PSORT Prediction Plant Microbody (peroxisome) 30 

PfRS6 PSORT Prediction Animal Microbody (peroxisome) 30 

PfRS6 MitoProt II - v1.101 n/a Mitochondria 7.98 

PfRS6 iPSORT Prediction Plant Mitochondria No 

PfRS6 iPSORT Prediction Non-plant Mitochondria No 

PfRS6 PlasMit n/a Mitochondria 1 

PfRS6 WWW PREDOTAR 

V1.03 

Plant Mitochondria 1 

PfRS6 PSORT Prediction Plant Mitochondrial matrix space 10 

PfRS6 PSORT Prediction Animal Mitochondrial matrix space 10 

PfRS6 NucPred n/a Nucleus 85 
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PfRS6 PSORT Prediction Plant Nucleus 99 

PfRS6 PSORT Prediction Animal Nucleus 99 

PfRS6 cNLS mapper n/a Nucleus (bi-partite) 63 

PfRS6 cNLS mapper n/a Nucleus (monopartite) 0 

PfSWIB PlasmoDB - PlasmoAP n/a Apicoplast No 

PfSWIB PATS Version 1.2.1 n/a Apicoplast 0 

PfSWIB PredSL n/a Chloroplast 0 

PfSWIB PSORT Prediction Animal Cytoplasm 70 

PfSWIB PSORT Prediction Plant Cytoplasm 70 

PfSWIB PSORT Prediction Animal Lysosome (lumen) 10 

PfSWIB iPSORT Prediction Non-plant Mitochondria No 

PfSWIB iPSORT Prediction Plant Mitochondria No 

PfSWIB MitoProt II - v1.101 n/a Mitochondria 60 

PfSWIB PlasMit n/a Mitochondria No 

PfSWIB PredSL n/a Mitochondria 0 

PfSWIB WWW PREDOTAR 

V1.03 

Animal Mitochondria 0 

PfSWIB WWW PREDOTAR 

V1.03 

Plant Mitochondria 0 

PfSWIB iPSORT Prediction Plant Mitochondria or chloroplast No 

PfSWIB PSORT Prediction Animal Mitochondrial matrix space 10 

PfSWIB PSORT Prediction Plant Mitochondrial matrix space 10 

PfSWIB NucPred n/a Nucleus 90 

PfSWIB cNLS Mapper n/a Nucleus (bipartite signal) 50 

ΔmPfMDM2 PlasmoDB - PlasmoAP n/a Apicoplast No 

ΔmPfMDM2 PATS Version 1.2.1 n/a Apicoplast 0 

ΔmPfMDM2 PredSL n/a Chloroplast 0 

ΔmPfMDM2 PSORT Prediction Animal Lysosome (lumen) 10 

ΔmPfMDM2 PSORT Prediction Plant Lysosome (lumen) 10 

ΔmPfMDM2 iPSORT Prediction Non-plant Mitochondria Yes 

ΔmPfMDM2 iPSORT Prediction Plant Mitochondria No 

ΔmPfMDM2 MitoProt II - v1.101 n/a Mitochondria 0 

ΔmPfMDM2 PlasMit n/a Mitochondria Yes 

ΔmPfMDM2 PredSL n/a Mitochondria 0 

ΔmPfMDM2 WWW PREDOTAR 

V1.03 

Animal Mitochondria 0 

ΔmPfMDM2 WWW PREDOTAR 

V1.03 

Plant Mitochondria 0 

ΔmPfMDM2 iPSORT Prediction Plant Mitochondria or chloroplast No 

ΔmPfMDM2 PSORT Prediction Animal Mitochondrial matrix space 10 

ΔmPfMDM2 PSORT Prediction Plant Mitochondrial matrix space 10 

ΔmPfMDM2 NucPred n/a Nucleus 40 

ΔmPfMDM2 PSORT Prediction Animal Nucleus 90 

ΔmPfMDM2 PSORT Prediction Plant Nucleus 90 

ΔmPfMDM2 cNLS Mapper n/a Nucleus (monopartite signal) 50 
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APPENDIX B – PRIMERS 

Table B.1: PCR primers for the amplification of P. falciparum genes/domains 

Gene Domain Vector 
Primer 

Direction 

Primer seq ence (5’ 

to 3’)† 

GC 

content of 

full length 

primer 

(%) 

Predicted 

P. 

falciparum 

specific Tm 

(°C) 

Predicted 

Full 

length 

primer 

Tm (°C) 

Size of 

PCR 

product 

(bp) 

Pfp53 

putative DNA 

binding and 

tetramerization 

domain 

pGEX-

4T-2 

Forward 

TCA GGA TCC ATG 

GAA AGG AAA 

AAA CTG AAC 

GAA 

39.4 49.4 61.3 

1602 

Reverse 

ACA CTC GAG TCA 

TTG TCT ATG TAT 

CCA TGT AAA GGT 

AA 

36.8 51.8 60.8 

PfMDM2 

putative 

MDM2/SWIB 

domain 

pARL2-

GFP 

Forward 

TCA CTC GAG ATG 

GGA AAA CAT GAT 

AAT ACG AA 

37.5 45.4 59.1 

288 

Reverse 

AGG CCT AGG ATG 

TTT AAA TAA CAA 

TTT TGG AA 

31.3 45.4 57.3 

PfMDM2 

putative 

MDM2/SWIB 

domain 

pGEX-

4T-2 

Forward 

TCA GGA TCC ATG 

AAT ACG AAA 

AAA AAA AGA 

CCA A 

32.4 47.3 58.9 

273 

Reverse 

TCA CTC GAG TCA 

TGA CAT ATG TTT 

AAA TAA CAA 

30.3 42.9 56.6 

PfMDM2 entire gene 
pARL2-

GFP 

Forward 

CCT CTC GAG ATG 

AAA CTT TTG AGA 

ACA AAC A 

38.7 49.0 58.8 

411 

Reverse 

ACT CCT AGG TTC 

CTT TCG AAT AGA 

TGA CAT A 

38.7 48.8 58.2 

PfSWIB 

putative 

MDM2/SWIB 

domain 

pGEX-

4T-2 

Forward 

CCC GGA TCC ATC 

CCT TTT TTT GAA 

CTA TCT 

43.3 47.2 60.2 

480 

Reverse 

ATT CTC GAG TCA 

TTC ATC ATT GGA 

ACT CAT TTC ATT 

33.3 51.2 59.7 

PfSWIB entire gene 
pARL2-

GFP 

Forward 

GGA CTC GAG ATG 

GAA CTA TTT GAT 

AGA GGA AA 

40.6 49.3 58.9 

2508 

Reverse 

GCG CCT AGG AAA 

ATT ATT ATT ATT 

ATT ATT ATT ATT 

ATT ATT GTT 

17.8 46.1 55.2 

† Restriction site in forward primers (underlined): For pARL2-GFP: XhoI cleavage site 

(CTC GAG); and for pGEX-4T-2: BamHI (GGA TCC).  

Restriction site in the reverse primers (underlined): For pARL2-GFP: AvrII cleavage site 

(CCT AGG); and for pGEX-4T-2: XhoI cleavage site (CTC GAG).  

The restriction sites are preceded by several random nucleotides to enhance the efficiency 

of digestion by the restriction endonucleases. The reverse primers, for use with the pGEX-

4T-2 plasmid, were constructed in such a way to place a stop codon (TGA) at the end of 

the malaria sequence.   
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Table B.2: PCR primers for the amplification of biopanning identified binding partners to 

allow for directional cloning into the pET-15b vector.  

Gene 
Primer 

Direction† 
Primer sequence (5’ to 3’) 

† 

GC 

content of 

P. 

falciparum 

specific 

sequence 

(%) 

GC 

content 

of full 

length 

primer 

(%) 

Predicted 

P. 

falciparum 

specific 

Tm (°C) 

Predicted 

Full 

length 

primer 

Tm (°C) 

Size of 

PCR 

product 

(bp) 

PfLisH 

Forward 

TCT GTC CAA GAT CAT 

ATG AGT AAT TGT AGT 

AGT ACA ACC T 

31.8 35.0 48.2 60.3 

558 

Reverse 

GCC GGA TCC TCA TAT 

GGG TGC TTT AAT TTG 

TT 

30 43.8 47.5 62.0 

PfALV5 

Forward 

ACA GAA ACA CAT ATG 

GCA GAT TCA ATC AAA 

AGT TCA 

33.3 33.3 49.3 60.2 

735 

Reverse 

ATC GGA TCC TTA TGC 

TCC ACT GTA TTG ATT 

GTA AA 

30.8 37.1 52.3 60.4 

PfRS6 

Forward 

TTT GTT TTT CAT ATG 

GTG AGA GGT TGT ATT 

GTT GGT 

42.9 33.3 52.5 60.1 

627 

Reverse 

TGC GGA TCC TTA TTT 

GTC TGG TTT GTT TTG 

CTT TGT 

33.3 38.9 52.3 63.2 

PfARK3 

Forward 

ACA GAA ACT CAT ATG 

AAA ACT TTA CAA GAA 

GAG GTA AAT GAA 

25.9 28.6 51.6 59.5 

1008 

Reverse 

AGA GGA TCC TTA TGA 

CTT AGC TGA TGA TGA 

TAA TAA GA 

30.8 34.2 51.6 59.2 

† Restriction site in forward primers (underlined): NdeI cleavage site (CAT ATG).  

Restriction site in the reverse primers (underlined): BamHI cleavage site (GGA TCC).  

The restriction sites are preceded by several random nucleotides to enhance the efficiency 

of digestion by the restriction endonucleases. The reverse primers were constructed in such 

a way to place a stop codon (TAA or TGA) at the end of the malaria sequence.   

 

Table B.3: Vector-specific PCR primers 

Vector 
Primer 

Direction 
Primer sequence (5’ to 3’)  

GC 

content 

(%) 

Predicted 

Tm (°C) 

Ta 

(°C) 

pARL2-

GFP 

Forward 
CCG TTA ATA ATA AAT ACA 

CGC AG 
35 59 

63 

Reverse 
CCA TCT AAT TCA ACA AGA ATT 

GGG ACA AC 
38 63.2 

pET-15b 
Forward TAA TAC GAC TCA CTA TAG GG 40 56.3 

55 
Reverse GCT AGT TAT TGC TCA GCG GT 50 60.4 

T7 phage 

arms 

Forward GCT AAC TTC CAA GCG GAC CA 55 62.5 
50 

Reverse GCT AGT TAT TGC TCA GCG GT 50 60.4 
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APPENDIX D – VECTOR MAPS AND ISOLATED PLASMID DNA 

A B 

 

 

Figure D1: The pARL2-GFP vector 

A) A diagram depicting the circular pARL2-GFP vector, modified from the pARL1a+ vector 

(Przyborski et al., 2005), adapted from the (LabLife, 2011) diagram.  

This low copy number vector encodes the ampicillin resistance gene β-lactamase, facilitating 

positive-selection after bacterial transformation, and the pBR322 origin of replication, for effective 

propagation in E. coli so to allow for the accumulation of large quantities of the plasmid for 

subsequent parasite transfection. The plasmid encodes the hDHFR gene, allowing for positive-

WR99210 drug selection after parasite transfection (Fidock and Wellems, 1997). The restriction 

sites employed for directional insertion were XhoI and AvrII, which precede the open reading and 

the GFP-tag and thus a 5’ initial codon, in frame with the GFP tag, was required in the PCR 

amplicon. The expression of the GFP-fusion protein is under the control of the chloroquine 

resistance membrane transporter (crt) promoter, allowing for ubiquitous expression during the 

entire intraerythrocytic, asexual life cycle of the parasite (Aurrecoechea et al., 2009).  
B) An agarose gel of digested and dephosphorylated pARL2-GFP vector employed for cloning. 

The ladder is the MassRulerTM DNA ladder, mixed range.  
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C 

 

 

Figure D2: The pET-15b vector 

A) A diagram depicting the circular pET-15b vector, adapted from (Novagen, 1998).  

This low copy number vector encodes the ampicillin resistance gene β-lactamase, to facilitate 

positive-selection after bacterial transformation, and the pBR322 origin of replication, for 

propagation within E. coli (Novagen, 2003). In the absence of lactose or an equivalent inducer, 

such as IPTG, the lacI repressor (LacI) inhibits the expression of the T7 RNA polymerase gene, 

situated in the host cells chromosomes, while in the presence of a suitable induction factor the 

lacUV5 promoter is activated leading to the expression of T7 RNA polymerase, in turn using the 

T7 promoter on the vector to facilitate recombinant His-tag protein expression (Novagen, 2003). 

The sites used for directional cloning were BamHI and NdeI, situated in the multiple cloning site 

after the 3’ of the penta-His-tag (Novagen, 2003).  

B) An agarose of digested and dephosphorylated pET-15b vector employed for cloning. Ladder is 

the MassRulerTM DNA ladder, mixed range.  

C) Comparison of uninduced and induced 20ml cultures for the his-tagged PfLisH protein. No 

singal was detected at the expected 41kDa mark, based on the migration patter of His-PfLisH 

indicating, in the uninduced culture at 41kDa, indicating the absence of leaky expression by this 

vector.  

 

kDa 
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Figure D3: The pGEX-4T-2 vector 

A) A diagram depicting the circular pGEX-4T-2 vector, adapted from (Healthcare, 2009).  

This low copy number vector encodes for the ampicillin resistance gene β-lactamase, to facilitate 

positive-selection after bacterial transformation, and the pBR322 origin of replication, for 

propagation within E. coli (Healthcare, 2009). Unlike the pET-15B vector, expression of the 

recombinant fusion protein is control by a hybrid promoter. The tac promoter is a fusion of the E. 

coli trp and lac promoters facilitating enhanced functionality, more so than its parental 

counterparts, in a lactose repression and induction system (de Boer et al., 1983). In the presence of 

lactose, or another suitable inducer, the T7 RNA polymerase is expressed in turn leading to 

recombinant GST-tag protein expression. The sites used for directional cloning were BamHI and 

XhoI, situated downstream of S. japonicum GST-tag (Healthcare, 2009).  

B) Agarose gel of digested and dephosphorylated pGEX-4T-2 vector employed for cloning. Ladder 

is the MassRulerTM DNA ladder, mixed range.  

C) Comparison of uninduced and induced 20ml cultures for the GST-tagged PfMDM2 protein. 

Minimal, to no, leaky expression was documented for this vector as indicated by the absence of the 

GST-PfMDM2 protein within in the uninduced sample at 33.0kDA. 
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APPENDIX E – LABORATORY CHEMICALS AND EQUIPMENT AND THEIR 

SUPPLIERS 

Chemical, Kit or Equipment  Manufacture or Supplier 

0.22µm filters Millipore, USA 

49306 filter Chroma Technologies, USA 

Acid citrate dextrose (ACD) tubes  BD Vacutainer, UK 

Acrylamide (C3H5NO) Promega, USA 

Agarose Sigma-Aldrich Corporation, USA 

Alexa Fluor® 594 goat anti-mouse antibody Life Technologies Corporation, USA 

Albumax II Life Technologies Corporation, USA 

Ammonium chloride (NH4Cl) Saarchem (Pty) Ltd., RSA 

Ammonium persulfate ((NH4)2S2O8) Promega, USA 

Ammonium sulphate ((NH4)2SO4) Saarchem (Pty) Ltd., RSA 

Ampicillin (C16H19N3O4S) Roche, Germany 

Anti-GFP rabbit antibody Alexa Fluor® 488 

Conjugate 

Life Technologies Corporation, USA 

Anti-GST HRP conjugated primary antibody Amersham Biosciences, UK 

Anti-His HRP conjugate blocking solution Qiagen, Germany 

anti-His HRP conjugate primary antibody Qiagen, Germany 

Baceriological agar Merck, Germany 

Badelin Sonopuls HD3100 Ultrasonic Homogenizer 

with microtip MS 73 

Bandelin Electronic, Germany 

BD Falcon™ round bottom tubes  Becton Dickinson, USA 

Beckman Coulter Avanti ® J-E centrifuge Beckman Coulter, USA 

Biorad Gene Pulser® Cuvette Bio-Rad Laboratories, USA 

Bis-acrylamide (C7H10N2O2) Sigma-Aldrich Corporation, USA 

Boric acid (H3BO3) Sigma-Aldrich Corporation, USA 

Bovine serum albumen (BSA) Pierce, USA 

Bromophenol blue Merck, Germany 

BX41 Olympus Microscope  Olympus, Japan 

Calcium chloride (CaCl2) Merck, Germany 

CellSense Dimensions 1.7 Software Olympus, Japan 

Chloramphenicol (C11H12Cl2N2O5) Roche, Germany 

Chloroform (CHCl3) Merck, Germany 

Coomassie Brilliant Blue R-250 BDH, UK 

CDP-star Roche, Germany 

Cryotubes Nunc, Denmark 

Culture flasks Thermo Fisher Scientific Inc., USA 

DAPI (C16H15N5) Sigma-Aldrich Corporation, USA 

DH5α competent cells  Invitrogen, USA 

DIG gel shift kit, 2nd generation Roche, Germany 

Disodium phosphate (Na2HPO4) Saarchem (Pty) Ltd., RSA 

Dithiothreitol (DTT) (C4H10O2S2) Boehringer Mannhein, Germany 

DMSO (C2H6OS) BDH, UK 

DNA MassRulerTM Fermentas International Inc., USA 

DNaseI Fermentas International Inc., USA 

D-Sorbitol (C6H14O6) Sigma, USA 

EDTA (C10H16N2O8) Merck, Germany 

EGTA (C14H24N2O10) BDH, UK 

Eppendorf centrifuge 5415R Eppendorf, Germany 

Eppendorf centrifuge 5702R  Eppendorf, Germany 
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Eppendorf Mastercycler Gradient Thermocycler  Eppendorf, Germany 

Eppendorf tubes Eppendorf, Germany 

Erlenmeyer 50ml flask Duran Group, Germany 

Ethanol (C2H6O) Merck, Germany 

Ethidium bromide Sigma-Aldrich Corporation, USA 

FastAP™ Thermosensitive alkaline phosphatase  Thermo Fisher Scientific Inc., USA 

FastDigest® restriction endonucleases  Thermo Fisher Scientific Inc., USA 

Filter tips QSP, USA 

Gas mixture Afrox, RSA 

GenElute Plasmid Miniprep kit Thermo Fisher Scientific Inc., USA 

GeneSnap GeneGenius Geldoc scanning system and 

version 6.05 image acquisition software 

Syngene, UK 

Gentamycin (C21H43N5O7) Sigma, USA 

Glacial acetic acid (C2H4O2) Merck, Germany 

Glucose (C6H12O6) Merck, Germany 

Glutathione, reduced (C10H17N3O6S) Sigma, USA 

Glycerol (C3H8O3) Merck, Germany 

HEPES (C8H18N2O4S) Merck, Germany 

High Fidelity PCR Enzyme kit®  Thermo Fisher Scientific Inc., USA 

Hoechst 33258 pentahydrate (C25H37Cl3N6O6●5H2O) Invitrogen, USA 

Hoefer Mighty Small Mighty Small II SE250 gel 

cassette 

Hoefer Scientific Instruments, USA 

Hoefer PR250 orbital bench top shaker Hoefer Scientific Instruments, USA 

HybondTM-C extra supported nitrocellulose 

membrane 

Amersham Biosciences, UK 

HybondTM-N nylon membrane Amersham Biosciences, UK 

Hypoxanthine (C5H4N4O) Sigma, USA 

Imidazole (C3H4N2) Sigma, USA 

Incubator Heraeus Instruments, Germany 

Intelli-Mixer  ELMI Ltd., Latvia 

Isopropanol (C3H8O)   Merck, Germany 

Labcon CPE 50 circulator Labcon, RSA 

Labotec orbital shaker   Thermo Fisher Scientific Inc., USA 

Laminar flow hood Labotec, RSA 

Macherey-Nagel NucleoSpin® Gel and PCR Clean-

up kit 

Separations, RSA 

Macherey-Nagel NucleoSpin® plasmid extraction kit Separations, RSA 

MagneGSTTM kit  Promega, USA 

MagneHisTM kit  Promega, USA 

Magnesium chloride (MgCl2) Merck, Germany 

Magnesium sulphate (MgSO4) Merck, Germany 

Maleic acid (C4H4O4) Merck, Germany 

Microscope slide Thermo Fisher Scientific Inc., USA 

MitoSOX™ Red mitochondrial superoxide indicator  Invitrogen, USA 

MitotrackerTM
 Green FM Invitrogen, USA 

Monopotassium phosphate (KH2PO4) Merck, Germany 

Monosodium phosphate (NaH2PO4)
  Merck, Germany 

MWB2 filter Olympus, Tokyo, Japan 

NanoDrop® 1000 Thermo Fisher Scientific Inc., USA 

Nuclease free water Fermentas International Inc., USA 

NucleoBond® Xtra Maxi Plus plasmid DNA 

preparation kit 

Separations, RSA 

Nunc tube Nunc, Germany 

Oil immersion Zeiss: Axiostar plus - Transmitted Zeiss, Germany 

http://www.elmi-tech.com/rm/
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Light Microscope 

Olympus DP72 camera Olympus, Japan 

Overnight ExpressTM Instant TB Medium Novagen, Inc., USA 

Petri Dishes, plastic Costar, USA 

pH meter Beckman Coulter, USA 

Phenol (C6H6O) Merck, Germany 

Phusion® Flash High-Fidelity PCR Master Mix Thermo Fisher Scientific Inc., USA 

Ponceau S (C22H12N4Na4O13S4) Sigma-Aldrich Corporation, St. Louis, 

USA 

Potassium acetate (CH3CO2K) Merck, Germany 

Potassium chloride (KCl) Merck, Germany 

Protease inhibitor cocktail Set III Calbiochem®, USA 

QIAgen 6xHis Protein Ladder Qiagen, Germany 

QIAgen Anti-His HRP conjugate blocking solution Qiagen, Germany 

QIAgen QIAquick PCR Purification kit®  Qiagen, Germany 

Rapi-Diff Staining Kit  Diagnostic Media Products, RSA 

RNase A Thermo Fisher Scientific Inc., USA 

Roche Rapid DNA Ligation Kit Roche Diagnostics, Germany 

RosettaTM 2 (DE3) competent cells Novagen, Inc., USA 

RPMI culture medium  GibcoBRL, USA 

Saponin (C27H42O3) USB, USA 

SDS (NaC12H25SO4) Merck, Germany 

Silver nitrate (AgNO3) Merck, Germany 

Slide-A-Lyzer MINI dialysis unit Pierce, USA 

Sodium acetate (C2H3NaO2) Merck, Germany 

Sodium bicarbonate (NaHCO3)  PAL Chemicals, UK 

Sodium chloride (NaCl) Merck, Germany 

Sodium citrate (C6H7NaO7) Holpro Fine Chemicals, RSA 

Sodium hydroxide (NaOH) Merck, Germany 

Sodium thiosulfate (Na2S2O3) Merck, Germany 

Sorbitol (C6H14O6) Sigma-Aldrich Corporation, USA 

SpectraTM Protein Ladder Pierce, USA 

Sterile culture flasks Nunc, Germany 

Sucrose (C12H22O11) Merck, Germany 

TEMED (C6H16N2) Promega, USA 

The SuperSignal® West Pico Chemiluminescent 

Substrate 

Thermo Fisher Scientific Inc., USA 

Thermo Biomate 5 Spectrophotometer  Thermo Fisher Scientific Inc., USA 

Tris (C4H11NO3) Sigma-Aldrich Corporation, USA 

Triton-X (C14H22O(C2H4O)n (n = 9-10)) BDH, UK 

Tryptone [Pancreatic Digest of Casein] Merck, Germany 

Tween-20 (C58H114O26) Calbiochem®, USA 

U-25ND25 Olympus neutral density filter Olympus, Japan 

U-MWB2 filter Olympus, Japan 

U-MWU2 filter Olympus, Japan 

VacuCap® 90PF 0.8/0.2μm Filter Unit Pall Life Sciences, USA 

Vacuum pump  Millipore, USA 

Water bath Lauda, Germany 

XL10-Gold® Ultracompetent Cells Stratagene, USA 

Yeast Extract  Oxoid, UK 

β-mercaptoethanol (C2H6OS) Merck, Germany 
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