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ABSTRACT 

The purpose of this research was to quantify the impact of the land reform programme on 

land use and land cover changes (LULCC) in Chipinge district situated in Manicaland 

Province of Zimbabwe. The Fast Track Land Reform Programme (FTLRP) of 2000 was 

selected as the major cause of LULCC in the district.  

This research addresses the problem of knowing and understanding if there was LULCC in 

the district before and after the enactment of the FTLRP in the year 2000. The research 

objectives of this study were as follows: to investigate the impact of the FTLRP of 2000 on 

land use and land cover in Chipinge district; to test the use of Landsat earth observation data 

in quantifying the changes on land use and cover from 1992 to 2014 in Chipinge district and 

to predict LULCCs in the year 2028 in Chipinge district. 

The methodology for detecting the impact of LULCC was based on the comparison of 

Landsat MSS, TM, ETM+ and OLI/ TIRS scene p168r74 images covering Chipinge district 

taken on diverse dates in five different years. In order to prepare the Landsat images for 

change detection analysis, a number of image processing operations were applied which 

include radiometric calibration and atmospheric correction. The images were classified using 

the Support Vector Machine (SVM) and evaluation was done through accuracy assessment 

using the confusion matrix. The prediction of LULCC in the year 2028 was modeled by the 

Markov Chain Analysis (MCA) and the Cellular Automata Markov Chain Analysis (CA 

MCA) so as to show land distribution in the future. 

The results show that agricultural farmland, estates and area covered by water bodies 

declined whilst there was an increase in built-up areas, forest land and bare land since the 

enactment of the FTLRP. The prediction results show that in the year 2028, there will be a 

decrease in the amount of land covered by water bodies, forest and agricultural farmland. 

There will be an increase in the amount of built-up in the year 2028 as a result of population 

growth.  

It is the recommended in this study that better remedies be put in place to increase forest 

cover and also the use of high resolution images in further studies. There should be 

exploration of the relationships between LULCC, socio-economic and demographic variables 

would develop more understanding of LULCC. The study also recommends the preparation 

of a proper land use plan to deal with a reduction in the growth of settlement which is vital in 

the planning and management of social and economic development programs. 
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CHAPTER ONE -INTRODUCTION 

1.1. General Introduction 

Land use and land cover change (LULCC) is one of the key processes through which human 

beings have an effect on the functioning of the Earth system (Turner II et al., 2007). LULCC 

results in global change and has turned out to be an important component in managing the 

environment (Turner II et al., 2007). The consequences of LULCC have great effect on 

humankind due to alterations in natural conditions of the environment such as degradation of 

the land (Sánchez-Cuervo et al., 2012). LULCC has impacts on biodiversity through change 

of home places or territory (Sala et al., 2000); local and regional climate change (Lambin et 

al., 2003); global climate warming and degradation of the land (Tolba et al., 1992) and 

decrease in agricultural productivity (Lambin and Geist, 2007). The monitoring of LULCC 

has become an essential component in current strategies for managing natural resources and 

environmental changes. 

LULCC in agrarian landscapes is as a result of various processes. Social, demographic, 

economic, cultural and policy issues are major drivers in LULCC (Lambin and Geist, 2007). 

LULCCs are as a result of drivers such as technological advancement, implementation of 

policies and environmental forces (Silva et al., 2011). The LULCC drivers can cause a 

change in land use and land cover systems where new approaches of land use dominate the 

landscape (Houet et al., 2010). The significance of LULCC makes it important to recognise 

their drivers and assessing the influence of technological advancement and political changes, 

which is challenging as these two usually co-occur and interact (Voss and Chi, 2006).  

The quantification of LULCC, change detection and assessment is essential in land use 

management as it helps in understanding the relations between human and natural phenomena 

and also on how they interact (Lu et al., 2004). The quantification of changes in land use and 

land cover is very important as it assists in understanding LULCC trends which provide 

important information for land use preparations and sustainable management of resources 

(Verburg et al., 1999). Historical and precise figures about LULCC are vital in finding ways 

for sustainable development (Wang et al., 2009). The analysis, mapping of both past and 

present LULCC over time is recognised as key in understanding and providing constructive 

solutions for socio-economic and environmental problems (Abd El-Kawy et al., 2011).  

 



2 
 

Satellite remote sensing is the commonly used data source for detection, quantification and 

mapping of LULCC due to its repetitiveness in acquiring data, digital format appropriate for 

processing using computers, and precise geo-referencing measures (Jensen, 1996; Lu et al., 

2004; Chen et al., 2005; Abd El-Kawy et al., 2011). Remote Sensing (RS) has been greatly 

employed in quantifying LULCC, particularly from arable land to impermeable surfaces 

(Miles et al., 2003). RS monitors spatio-temporal LULCC at different intervals using multi-

temporal Landsat images (Basnet and Vodacek, 2015). In change detection, the Landsat 

program has been commonly used to provide historical and up-to-date information about 

LULCC (Abd El-Kawy et al., 2011). The Landsat satellite images can be processed and 

represent land use and land cover for large areas and over long time spans, which is 

absolutely essential for monitoring, mapping, and management of LULCC (Wulder et al., 

2008).  

 

In Zimbabwe, approximately 41.9 % of the country is agricultural land (World Bank, 2015). 

One of the LULCC drivers in Zimbabwe is the agricultural policies and activities. Chipinge 

district is one of the large agricultural districts in Zimbabwe with great LULCC due to the 

land reform exercise implemented in 2000, known as the Fast Track Land Reform 

Programme (FTLRP) (Zamuchiya, 2011). The mapping and monitoring of LULCC in 

Chipinge district will help land planners and managers to understand the dynamics of the 

LULCC in the area and to provide tools for better agricultural planning and management. 

1.2. Problem Statement 

The land reform policy in Zimbabwe deals with an overall transformation of the existing 

farming system, institutions and structures seeking to achieve agricultural productivity 

(Ministry of Lands and Resettlement, 2015). Before the FTLRP in 2000, over six million 

landless Zimbabweans lived in rural communal lands where soil was infertile and rainfall was 

erratic, they had no control of water rights and were constrained from access to the bulk of 

the nation’s natural resources (Moyo, 2002). The land reform program started in 1980 and it 

changed its nature along the way and resulted in the FTLRP which started on 15 July 2000 

and this was the initial phase (Zamuchiya, 2011). Vast amounts of land was taken under this 

program, mainly from settler farmers and redistributed to the native majority who comprised 

of impoverished war veterans, the poor, landless and commercial farm workers (Zamuchiya, 

2011). The FTLRP resulted in the demise of the agricultural sector which led to nationwide 

famine as the majority of the beneficiaries of the program had little knowledge of farming 
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practices (Richardson, 2005). The little knowledge of farming practices from the 

beneficiaries of the FTLRP has led to deforestation (Matsa and Muringaniza, 2010), 

degradation of land in Zimbabwe along with other environmental problems (Zamuchiya, 

2011). There has been a lot of LULCC in many areas of Zimbabwe such as Chipinge district. 

LULCC in this district has become a concern to the inhabitants. Several critics of recent land 

reform programmes in Zimbabwe have argued that population growth and climate change 

have led to LULCC (Campbell, 2008), whereas others authenticate that there is huge LULCC 

due to the government’s FTLRP of 2000 (Matsa and Muringaniza, 2011). However, the 

degree and impact of LULCC in Chipinge district remains unclear as no attempts have been 

made so far using RS imagery to come up with the rate, magnitude and even predictions of 

future LULCC. It is therefore the purpose of this research to quantify the impact of the 

FTLRP of 2000 on land use and land cover changes in Chipinge district.  

1.3. Research Questions 

i. Can Landsat earth observation data be used to quantify land use and land cover 

changes as a result of the FTLRP policy? 

ii. How much land use and land cover change has occurred between 1992 and 2014? 

iii. What is the impact of the FTLRP of 2000 on land use and land cover in Chipinge 

district? 

iv. What will be the state of the land use and land cover in the year 2028 in Chipinge 

district under the current FTLRP policy? 

1.4. Aim of the Study 

i. To investigate the quantity of land use and land cover change before and after the 

FTLRP of 2000 in Chipinge district using Landsat images. 

1.5. Objectives of the Study 

i. To investigate the impact of the FTLRP of 2000 on land use and land cover in 

Chipinge District. 

ii. To examine the use of Landsat earth observation data in quantifying the changes on 

land use and land cover from 1992 to 2014 in Chipinge District.  

iii. To predict land use and land cover changes in the year 2028 in Chipinge District  
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1.6. Land use and land cover mapping in Zimbabwe 

Even though there has been the application of GIS and remote sensing in Zimbabwe, its 

advancement is still in an infant stage, which is because of lack of finance, skill, and more 

essential, low level of political will. In order to change this state of affairs, GIS and remote 

sensing technology has to be greatly applied in the country such that it convinces politicians, 

land officers and various members of the government, so that they can include it when 

drafting policies. The quantification and prediction of LULCC has a prospective in this 

direction. The demonstration of the usefulness of the use or application of GIS and remote 

sensing must be noted in its cost effective advantages. This iterates the production of LULC 

data sets rapidly, consistently and less costly. Unsupervised and supervised classification 

methods can thus be used as they are known in giving cost effective and more accurate results 

as compared to those obtained by on-screen digitizing.  

Chipinge district was chosen for this study as it considered to be one of the districts in the 

country which were affected by the FTLRP which was enacted in the year 2000 where the 

agrarian structure was changed which resulted in LULCC. Starting from the year 2000, the 

FTLRP has fundamentally transformed Chipinge district’s agrarian structure from one 

dominated by white-owned large-scale farmers to one led by a large group of small holder 

producers which has a negative effect on the environment (Zamuchiya, 2011). The spatial 

scale of Chipinge district is 539, 303 hectares (C.S.O, 2012) and it was chosen as it represents 

all the five broad natural regions in Zimbabwe (Zamuchiya, 2011). The whole district was 

selected as the results of this study will show LULCC in all the five broad regions of the 

country which will help land planners and other stakeholders in coming up with ways to curb 

the changes.  
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CHAPTER TWO - LITERATURE REVIEW 

This research is laid on the basis of past and current theories and concepts. This chapter 

comprises of concise review of the literature which is linked to this research and takes clues 

from those concepts and theories that support the research content and context. Amongst 

these include land ownership in Zimbabwe, FTLRP, role of RS in LULCC detection and the 

challenges of using RS in LULCC. Divergent views on the subject will also be adopted and 

linked with the research objectives as they function as a guide to the study. 

2.1. Land Ownership in Zimbabwe 

The land in Zimbabwe was distributed as outlined in the Land Apportionment Act which was 

signed in the House of Commons situated in London in the year 1930 (Hanlon et al., 2012). 

The Act outlined that approximately half of the land in Southern Rhodesia (now Zimbabwe) 

was to be utilised by whites only (Hanlon et al., 2012). The Act offered 51 percent of 

agricultural land, regarded as the best land which produced high yields to 50,000 Europeans, 

where 11,000 of whom actually resided on their land. Thirty percent of agricultural land was 

allocated to one million Africans and this land was poor, dry and infertile (Jennings, 1935). 

The Land Apportionment Act that was signed rewarded white veterans who fought in World 

War II with land. Blacks still practised agriculture in their ancestral land where the Act 

regarded them as “squatters” (Hanlon et al., 2012). Land was cleared from 1945 to 1955 

where more than 100,000 black Africans were forcibly moved into areas which were infertile 

and tsetse ridden (Palmer, 1977). 

 

The Lancaster House conference was held in 1979 and it stated that the transfer of land from 

white to black farmers could only be done following a principle named willing seller, willing 

buyer (Hanlon et al., 2012). A few blacks could afford to buy agricultural farms from the 

government as it was very expensive as they costed 10 times more than the amount which 

was paid by the government to acquire farms during this period (Karumbidza, 2009). The 

farms were bought by white farmers who were charged lower prices than what would have 

been proposed to the state (Hanlon et al., 2012). 

  

When Zimbabwe got independence in 1980, it inherited land ownership patterns that were 

racially skewed. White large-scale commercial farmers who made up less than 1% of the 

population used up to 45% of agricultural land (Ministry of Lands and Rural Resettlement, 

2015). This batch of land was situated in the country’s agricultural strongholds characterised 
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by high rainfall and high agricultural yields. Approximately 60% of this large-scale 

commercial land was not fully used by the white farmers (Ministry of Lands and Rural 

Resettlement, 2015).  

 

The government of Zimbabwe introduced the National Land Policy also known as the Land 

Acquisition Act in 1992 which had aims of creating a fair, democratic and well-organized 

economy and also engage majority of the people in developing the country (Coldham, 1993). 

The policy was also crafted to make sure that there is social and equal access to the land. One 

of the policy’s aims was to also ensure that land tenure systems are democratic and also to 

safeguard the security of the tenure systems for all land holdings in the country (Ministry of 

Lands and Rural Resettlement, 2015). 

2.2. Fast Track Land Reform Programme (FTLRP) 

When Zimbabwe’s Independence came in 1980, there was a first, limited land reform, as a 

result most land continued to be in white hands (Hanlon et al., 2012). Seventy years after the 

signing of the Land Act and 20 years after independence, 170,000 Zimbabwean families 

occupied most of the remaining white farms, and took back the land (Hanlon et al., 2012). 

The programme known as the FTLRP was launched on 15 July 2000 and designed to be 

undertaken in an accelerated manner with reliance on domestic resources (UNDP, 2002).  

In Zimbabwe the land reform was implemented in three phases in the previous three decades 

(Zamuchiya, 2011). The phase which was implemented first lasted up to 1985 and consisted 

of market sales of land led by state land acquisition, redistribution and it also entailed 

intensive illegal land occupations (Moyo, 2011). The second phase ran from 1986 till 1999, 

during the period of the Economic Structural Adjustment Programme (ESAP), enabled the 

state to acquire some land through expropriation and market mechanisms and the third 

FTLRP phase began in 2000 where it employed intensive land expropriation alongside 

‘illegal land occupations’ which continued until 2010 (Moyo, 2011). By 2009, 6,214 

farmland properties covering above 10 million hectares had been acquired, but not all were 

allocated and 168,671 families gained (Moyo, 2011). By 2009, less than 400 individually 

owned white farms remained and also the large agro-industrial plantations or estates and 

conservancies were also not substantively expropriated, though they lost some land and/or 

were partially ‘illegally’ occupied (Bonarjee, 2013). Across these three land reform phases, a 

wide range of blacks, especially the non-landed who included; the landless, poor land-short 

farmers, agricultural manual workers, poor urban workers and the unemployed, wanted land 
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reform to redress racial and class inequalities, foreign domination and historical loss (Moyo, 

2011). In the country most of the land that was taken under the FTLRP of 2000 is 

underutilised or operating below its full potential and environmental degradation is one of the 

leading effects, evidence of failure to effectively address the land reform programme 

(Maguwu, 2007).  

 

Zimbabwe has not been spared concerning LULCC as it has been greatly altered because of 

human activity (Matsa and Muringaniza, 2011). Pressure has been exerted on the 

environment mainly due to poverty and vulnerability (Zamuchiya, 2011). The FTLRP caused 

major environmental damage resulting from the indiscriminate cutting down of trees for 

firewood, for sale, use in tobacco kilns as well as clearance for cultivation along rivers and 

stream banks resulting in siltation of rivers (UNDP, 2002). Chipinge district was also affected 

and it is the purpose of this research to quantify the impact of FTLRP of 2000 on LULCC and 

this will be done through analysing changes from 1992 to 2014. 

2.3. Concept and Importance of Land Use and Land Cover 

The terms land cover and land use have various definitions. Land cover is defined as the 

observed biophysical cover on the earth's surface, including grassland, agricultural land, 

forest land, recreational area or a built up area (Lambin and Geist, 2006). Land use is 

characterized by the inputs, activities and measures that people take on in a certain land cover 

type to produce, change or maintain it (Briassoulis, 2000). LULCC refers to quantitative 

changes in the aerial extent where there might be an increase or decrease of any given type of 

land use or land cover (Briassoulis, 2000). Furthermore, LULCC can be grouped into two 

broad categories which are conversion and modification (Stolbovoi, 2002). Conversion refers 

to a change from one cover or use type to another, for instance the conversion of forests to 

pasture whilst modification involves the maintenance of the broad cover or use type in the 

face of change in its attributes (Duadze, 2004).   

 

Land use and land cover (LULC) are distinct yet closely linked characteristics of the Earth’s 

surface (Stolbovoi, 2002). Land cover provides additional information on anthropogenic 

activities and also stipulates these actions in terms of factors such as identification, timing 

and many others (Stolbovoi, 2002). On the other hand, land use incorporates quite a number 

of natural, social and economic factors and also their relations (Stolbovoi, 2002). Several 

shifts in land use patterns are driven by a variety of social causes, that result in land-cover 
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changes that affect water, radiation budgets, biological diversity, trace gas emissions and 

other processes that come together to affect climate and biosphere (Riebsame et al., 1994). 

The information on land use and land cover has emerged to be very important in a wide range 

of studies related to the environment. 

 

Information on LULC is vital in many activities which involve planning and management 

concerning the Earth’s surface as it comprises of essential environmental details for 

scientific, resource management, policy purposes and a range of anthropogenic activities 

(Duadze, 2004). This information is vital in a number of aspects that are crucial in the study 

of global environmental change, for instance the alterations in the Earth’s surface have major 

consequences in energy fluxes and global radiation balance, hydrological cycles, ecological 

balances and complexity (Duadze, 2004). The environmental impact at local, regional and 

global scale brought about by anthropogenic activities or biophysical factors can have an 

effect on food security, world’s agricultural sustainability and the supply systems of forests 

(Mas and Ramirez, 1996). Land cover is an important determinant of land use and also a 

significant value to society (Mucher et al., 2000), hence land cover information has become 

very important at local, regional and global levels in the management and planning of 

environmental issues (Cihlar, 2000; Duadze, 2004).  

 

LULC studies are necessitated by the intent to quantitatively find out the nature, extent, rate 

of LULCC and the ideal baseline information on which to put together and evaluate 

environmental policies for the future (Wright and Morrice, 1997). Precise knowledge of 

LULC characteristics signifies the basis for land classification and management; and the 

absence of this precise information is a major problem in coming up with proper decisions in 

relation to the environment and resources of the Earth (Dai and Khorram, 1998). Quite a 

number of Earth systems scientists, natural resources managers, urban planners, business 

people and geographers look for information on the position, allocation, type, extent and 

accuracy of LULCC (Stow, 1999). 

2.4. Role of Remote Sensing on Land Use and Land Cover Changes 

LULCC studies have undergone large advancements and improvements in both planning and 

technical contexts. The introduction of aerial photography and satellite imagery resulted in 

substantial improvements in LULCC studies (Kivel, 1991). Historical and current sources of 

RS are quite important for measuring and monitoring changes in landscape parameters (Sohl 
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and Sleeter, 2012). Developments in Geographical Information Systems (GIS) and RS have 

increased the user-friendly nature of model planning systems and allowed researchers to 

tackle problems previously considered analytically impossible (Lambin and Geist, 2006).  

 

RS is an essential tool of LULCC science because it makes it possible for observations across 

large areas on the Earth’s surface of what can be obtained using ground-based observations 

(Lillesand and Kiefer, 2000). This is done with the use of RADAR and LiDAR sensors 

mounted on air and space-borne platforms, multi-spectral scanners, cameras that yield aerial 

photographs and satellite imagery (Ellis, 2013). The application of RS techniques in resource 

management is mainly due to high reflectance from the resources which will be in different 

regions of the electromagnetic spectrum recorded by different sensors (Trotter, 1998; 

Duadze, 2004). This makes the application of RS in land use and land cover mapping a vital 

process in modern-day satellite sensor technology (Daudze, 2004). The application of 

satellite RS techniques in LULC mapping is vital as it is applicable in inaccessible areas and 

also in areas where aircraft-based mapping methods are difficult to apply or where traditional 

methods might give inherent problems (Tucker and Townsend, 2000). 

 

In recent years the use of RS techniques has become common in LULC mapping of large 

areas (Cihlar, 2000). The use of satellite RS in mapping vegetation in developing countries 

has not been commonly used until recently (Trotter, 1998). There has been a great need to 

apply satellite RS in resource mapping due to the growing need of new information and also 

because of new technological development (Cihlar, 2000). In its development, the mainly 

consistent, precise and in depth local, regional and global LULC classifications have been 

acquired using multi-temporal imagery (Wright and Morrice, 1997). 

 

The imagery from RS plays a vital role in various spatial information systems (Wright and 

Morrice, 1997) and offers a feasible data source where updated land cover information is 

obtained efficiently with regular repeat coverage, scale which is consistent  and at low cost 

for professional change detection (Kressler and Steinnocher, 1996). Satellite image data 

provides the potential to obtain land cover information at more frequent intervals and more 

economical than those obtained by traditional methods (Martin and Howarth, 1989). 

Information on vegetation cover from multi-temporal images is fundamental in supervision of 

biotic resources’ rates and the response of vegetation to drought conditions which is essential 

for rangelands, grazing lands and crops (Duadze, 2004). 
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There are a number of satellite data sources that allow for the analysis of ecological or 

environmental variables (Duadze, 2004). The satellite RS data available differ from high 

resolution (e.g. IKONOS and Quickbird) to regional datasets which are produced at regular 

intervals (e.g. Landsat and SPOT) and those with low resolution (> 250 m) datasets like 

Moderate Resolution Imaging Spectroradiometer (MODIS) (Ellis, 2013). The datasets 

include the Advanced Very High Resolution Radiometer (AVHRR) obtained from National 

Oceanic Atmospheric Administration (NOAA), which is very important in the monitoring of 

global processes (Schmidt and Gitelson, 2000); the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER); Satellite Pour I’Observation de la Terre (SPOT); 

MODIS; IKONOS and the Indian Remote Sensing Satellites (IRSS) (Duadze, 2004).The 

datasets also include the Landsat series which incorporates Landsat 1, 2 and 3 which are 

referred to as the Multi-spectral scanner (MSS); Landsat 4, 5 and 7 referred to as Thematic 

Mapper (TM) and Enhanced Thematic Mapper (ETM) for Landsat 7 (Duadze, 2004). The 

Landsat series now includes Landsat 8 which has the Operational Land Imager (OLI) sensor 

and the Thermal Infrared Sensor (TIRS) which have better noise performance thus enabling 

better classification of the state of LULC and their condition (USGS, 2014). Landsat series 

can be taken as a good example of showing continuous improvement in radiometric and 

spectral property of images enabling better understanding of land resources (Oumer, 2009). 

Change detection has greatly applied RS imagery due to its coverage which is repetitive at 

short intervals with image quality that is consistent (Mas, 1999).  

 

Remote sensing has long been used successfully for LULCC change across different 

landscapes.  Daniel et al. (2002) who compared LULCC detection methods and made use of 

five methods which are: cross correlation analysis, traditional post-classification cross 

tabulation, knowledge-based expert systems, image segmentation and neural networks. The 

study concluded that the five methods have a number of advantages and no single method can 

solve the change detection problem (Rawat and Kumar, 2015). Yuan et al. (2005) developed 

a method to map and monitor land cover change using multi-temporal Landsat TM satellite 

images in the seven-county Twin Cities Metropolitan Area of Minnesota for the years: 1986, 

1991, 1998 and 2002. They observed that between 1986 and 2002, there was an increase in 

urban land and it rose from 23.7 % to 32.8 %, whilst rural cover types of wetland, forest and 

agriculture decreased from 69.6 % to 60.5 %. 
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GIS and remote sensing techniques have also emerged as the most valuable data source in 

measuring and quantifying LULCC in many parts of the world including Africa. Adam et al. 

(2014) quantified land cover change using modern geoinformatics technology in Wadi El 

Kanga, Sudan. Four Landsat images were used in the study which were for the years: 1973, 

1987, 2001 and 2011. The study noted the trend and magnitudes of land cover change, causes 

and LULCC maps in the area. They also investigated the potential use of remote sensing and 

GIS as a powerful tool for assessing, monitoring and mapping land cover changes in the 

semi-arid environment.  The results of the study indicated an increase and decrease of 

vegetation cover as it was 6.14 % in 1973, 7.31 % (1987), 6.1 % (2000) and 7.16 % (2011) of 

the total study area. Other studies from the African continent include that by Adejuwon and 

Jeje (1973) who mapped vegetation or land use associations in the Ife area in Nigeria with the 

use of 1: 40 000 panchromatic aerial photographs. Salami and Akinyende (2006) used GIS 

and remote sensing techniques in conducting LULCC studies in south west Nigeria using 

Landsat satellite imagery of December 1986 and NigeriaSat-1 imagery of December 2004. 

 

Previous studies on LULCC have been done in Zimbabwe with the use of GIS and remote 

sensing techniques. Scholars like Matsa and Muringaniza (2011) used GIS and remote 

sensing skills in assessing land use and land cover changes in Shurugwi district, Zimbabwe. 

They established the status of LULCC for Shurugwi district as well as determining the extent 

of these changes using GIS and remote sensing techniques. The study used three satellite 

images from different years which are 1991, 2000 and 2009. Change detection methods were 

used and that cultivation and bare land dominated the LULC of the district and that there was 

significant LULCC. Other studies which were done in Zimbabwe using GIS and remote 

sensing techniques on LULC include Fakarayi et al. (2015) who assessed LULCC in 

Driefontein Grasslands Important Bird Area (Driefontein IBA), Zimbabwe. Landsat images 

and various GIS techniques were used in the study. There have been no attempts to quantify 

and predict future LULCC in Chipinge district which is one of the affected districts by the 

FTLRP in Zimbabwe. It is against this background that this study investigates the impact of 

the FTLRP of 2000 on LULCC and also examines the use of Landsat earth observation data 

in quantifying LULCC from 1992 to 2014 in Chipinge District. The study also predicts 

LULCC in the year 2028 in Chipinge district. 
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2.5. Challenges of Using Remote Sensing in Land Use and Land Cover Change 

RS has been widely used in LULC detection and it has its own limitations. One of the 

challenges includes the inability of many sensors to obtain data and information on LULC 

due to the presence of cloud cover (Fonji and Taff, 2014). In studying LULCC, distinct 

phenomena can be confused if they look the same to the sensor as their spectral reflectance 

might be in the same range (Fonji and Taff, 2014). The other challenge is that the resolution 

of the satellite imagery might be too coarse for LULC mapping and for distinguishing small 

contrasting areas. There are also challenges of RS when using multispectral data which have 

either high spatial resolution but with a few bands like red, green, blue and near infrared 

(NIR), or offer fairly more bands but with lower spatial resolution (Omer et al., 2015). 

Multispectral sensors with low spatial resolution might not map LULC classes accurately in a 

fragmented and heterogeneous environment (Cho et al., 2012; Omer et al., 2015). Multiple 

objects that are in a pixel in such a case can lead to poor distinction and spectral confusion 

amongst continuous and discreet cover types resulting in LULC classes that are ambiguous 

(Cingolani et al., 2004). Hyperspectral data can be used in studying and analysing LULCC 

though it has its own challenges. The use of hyperspectral data has a challenge in terms of 

availability, high dimensionality, processing and cost (Dalponte et al., 2009; Omer et al., 

2015). 

2.6. Impact of Rainfall and Temperature Variability on Land Use and Land Cover                                                                                                                                                                                                                                                                                                                                                                                                      

Change 

A combination of climate variability, deforestation, overgrazing and other human activities 

results in significant land cover changes (Yan and Zheng-Hui, 2013). Variability in climate 

has an effect on LULCC and this can affect agricultural patterns (CARA, 2006). Alterations 

in water, carbon fluxes and energy are products of climate change (Galloway et al., 2014). 

The variability in climate that has an effect on LULCC due to factors such as rainfall 

patterns, temperatures especially the ones at night and carbon dioxide enrichment (Batlle et 

al., 2014). Rainfall and temperature variability yields environmental disturbances that affect 

LULC directly or indirectly (CARA, 2006). 

A number of controlled experiments have brought to light that huge variability in rainfall 

patterns cause low plant growth as a result of reduced water availability in the soil, mostly the 

upper 30 centimetres (Kochy, 2008). Temperatures which are higher are most likely to make 

growing seasons longer, thereby permitting the possibility of more than one cropping cycle 
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within the same season and the expansion of forest and agricultural land towards higher 

elevations and the poles (Reddy and Hodges, 2000). An increase in night time temperatures 

may have an effect on biological processes like respiration which can result in a decline of 

agricultural yields (Cheesman and Winter, 2013). 

Human beings can respond to the variations in rainfall and temperature in terms of migration 

(Bohra-Mishra et al., 2014). If warmer places are regarded amenities to human beings, there 

might be population density increase in areas with higher temperatures (CARA, 2006). LULC 

is affected by the new population settlements as more development and land fragmentation 

occurs in these areas (Bohra-Mishra et al., 2014). Rainfall and temperature variability can 

have negative or positive results (Omoyo et al., 2015). If climate changes in an area, it may 

result in less agricultural productivity, then more land will have to be converted to other land 

uses. Conversely, if climate change makes agriculture more productive in an area, land that is 

currently a forest or grassland maybe converted to agricultural uses (CARA, 2006). 
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CHAPTER 3 - MATERIALS AND METHODS 

3.1. Study Area 

Chipinge district is located in south eastern Zimbabwe which is in the Manicaland province 

as shown in Figure 1 below. Chipinge district is divided into urban and rural; it covers a total 

area of 539,303 hectares (CSO, 2012). The district is geo-physically divided into five broad 

natural regions depending on annual patterns of rainfall. These regions’ soil type, land 

coverage, annual rainfall and the major farming systems are illustrated in Table 1 below:  

 

Table 1: Zimbabwe’s Natural Regions and the major farming methods (Vincent and Thomas, 

1962) 

Region Soil type Land coverage 

(km2 ) 

Annual 

rainfall (mm) 

Major farming 

system 

I Red clay 7 000 >1 000 Diversified and 

specialised 

II Sandy loams 58 600 750 – 1 000 Intensive  

III Sandy, acid 

(low fertility)  

72 900 650 - 800 Semi-intensive  

IV Sandy, acid 

(low fertility) 

147 800 450 - 650 Semi-intensive 

V Sandy 

(infertile) 

104 400 < 450 Extensive 

 

Chipinge district can be broadly divided into the high veld covering region I (1) and II (2)and 

the low veld covering regions III (3) to V (5) (GoZ, 1986). The district consists of a town 

named Chipinge, commercial farms, rural areas, and communal farms and agriculture varies 

from region to region (Cliffe et al., 2014). In the whole country, Chipinge is the only district 

that covers all the five agricultural regions, so it is representative of the country’s geography 

and it provides an opportunity to capture regional variation and the underlying dynamics 

between households resettled in the high veld and those left out in the low veld regions 

(Zamuchiya, 2011). Chipinge district has various soil types and they differ with regions 

where it has red clay, sandy loams and acid soils as shown in Table 1 above. The district also 

consists of corporate estates, large scale commercial farms, small scale commercial farms, 
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resettlement and communal farms where tea, coffee, macadamia nuts farming is done 

(Zamuchiya, 2011).  
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Figure 1: Map of Chipinge district 



 

17 
 

3.2. Materials 

Data that was used in this study was collected from various sources so as to increase the 

accuracy of its results. Data used in this study included annual rainfall and temperature 

means, Landsat images and ground truth data.  

3.2.1. Remote Sensing Data 

The use of RS data in the assessment of the state of the landscape and its transformation in 

developing countries is not new and it was used in this study, in form of Landsat imagery. 

Present and past information on LULCC in Chipinge district was used in this study.  Satellite 

images from Landsat for the years 1992, 2000, 2006, 2011 and 2014 were used as shown in 

Table 2. The satellite images used in this study differed in their sensor and spectral range as 

illustrated in table 2. The image for 1992 was from Landsat 4 TM; 2000 (Landsat 7 ETM+ 

SLC on); 2006 (Landsat 5 TM); 2011 (Landsat 5 TM) and 2014 (Landsat 8 OLI/TIRS). There 

are a number of ways of detecting and monitoring of LULCC over time. In the past, scientists 

used field data and aerial photographs to map LULCC over small areas. As the study area’s 

size increased, these methods became very costly and also time consuming (Fonji and Taff, 

2014). High spatial resolution imageries such as IKONOS, QuickBird, WorldView and 

RapidEye have been used recently in LULC scale mapping across large areas as they provide 

good landscape characteristics and information about the shape and size of targets (Hu et al., 

2013). Landsat imagery was used in this study as the high spatial imageries have narrow 

spatial coverage and high economic costs and are generally used for LULC mapping in small 

areas (Hu et al., 2013).  The use of Landsat observations was also of their representation of 

valuable and continuous records of the earth’s surface (USGS, 2014). The entire Landsat 

archive is now accessible free-of-charge and provides a wealth of information for the 

identification and monitoring of changes in the physical and manmade environments 

(Chander et al., 2009). 

The satellite images were obtained from the United States Geological Survey (USGS) on 

Earth Science Data Interface (http://www.usgs.gov/). Chipinge district is found within Scene 

path 168 and Row 74. A deliberate effort was made to ensure that the images were acquired 

in the hot-wet season and the cold-dry season which are the agricultural seasons in 

Zimbabwe. Satellite images were collected during the summer seasons except the one for the 

year 1992. The images collected in the summer season were used in order to see the spectral 

differences between vegetated, cropped and degraded areas in the rainy agricultural seasons. 
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The image for the year 1992 is in the winter season as there are no summer images for this 

year on the Earth Science Data Interface. Change differences that occurred in the seasons 

selected in this study were noted for the different years used. The 1992, 2000, 2006, 2011 and 

2014 images were acquired from the months of April, November and December as shown in 

Table 2. The time gap between the five satellite imagery is wide enough to show changes and 

trends in LULCC in Chipinge district. In the study, the time gap was supposed to be four 

years starting from 1995 to 2014 but some of the images are not available on the Earth 

Science Data Interface and that is the reason why the time interval changed. These sources of 

information were used to quantify the impact of LULCC over the years for the study area. 

Table 2 below shows the acquisition dates, years, sensor, paths and rows of Landsat images 

acquired. 

Table 2: Landsat data source, dates and resolution (USGS, 2014) 

Year Acquisition date Sensor and spectral 

range 

Path Row Resolution 

(meters) 

1992 19 April 1992 Landsat 1 – 5 MSS 

Band 1:  0.5 – 0.6 

µm 

Band 2: 0.6 – 0.7 

Band 3: 0.7 – 0.8 

 

168 74 60 

2000 05 December 2000 Landsat 7 ETM+ 

(SLC on) 

168 74 30 

2006 14 December 2006 Landsat 4 - 5 TM 168 74  30 

2011 10 November 2011 Landsat 4 - 5 TM  168 74 30 

2014  4 December 2014 Landsat 8 OLI/TIRS 168 74 15 and 30 

3.2.2. Rainfall and Temperature Data 

There are three seasons that are recognised in Zimbabwe and these are: summer, which is the 

hot wet season (mid-November to March); a hot dry season from the month of August to 

mid-November and winter, a cold dry season (April to July) (Gambiza and Nyama, 2000). 

The historical daily precipitation and temperature data from Chipinge weather station which 

has Weather Meteorological Organization (WMO) ID number: 67983, was obtained and used 

in analysing significant trends. The weather station that was chosen is in Chipinge town with 
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an altitude of 1132 metres, longitude of 32º37´E and also latitude of 20º12´S (Aguilar et al., 

2009). The yearly mean rainfall and temperature values cover years from 1992 to 2014.  They 

were used to analyse if the LULCC was mainly as a result of the FTLRP, climate change or 

the combination of both. The climate data was collected from the Global Summary of the 

Day (GSOD) that is on the website of the United States, National Oceanic and Atmospheric 

Administration (NOAA) National Climate Data Centre (NCDC) 

(http://www7.ncdc.noaa.gov/CDO/cdodata.cmd). 

 

Summary statistics which include the standard deviation, annual rainfall and temperature 

means were produced using Stata 11.1 software. A one sample mean comparison test was 

conducted so as to investigate whether differences are statistically significant in the annual 

mean rainfall and temperature values for the period 1992 to 2014.  A one sample t test is used 

in testing the null hypothesis to see if that sample comes from a population that has a 

particular mean (Norusis, 1997). A one sample t-test used in this study is the one which 

compares the mean score that is found in an observed sample to a value that is hypothetically 

assumed (McDonald, 2008). The hypothetically assumed value is in most cases the 

population mean or a figure that is theoretically derived (McDonald and Dunn, 2013). The 

hypothesized values that were used in this study were theoretically derived where a value of 

1 105 millilitres (mm) and 21 ºC were used for annual mean rainfall and temperature 

respectively. The null and alternative hypotheses were also written out in this study. The null 

hypothesis which is denoted as H0 is referred to as a statement that no difference exists 

between the parameter and the statistic that is being compared to it (McDonald, 2008). The 

hypotheses in this study were tested at a significance level of 5 %. The test produced values 

which included the t statistic, p-value and the 95 % confidence interval which were used to 

note if the variations in mean annual rainfall and temperature had a huge effect on the 

occurrence of LULCC in Chipinge district. The test statistic (ts) was calculated using the 

following formula:  

ts = ( 𝑥̅ = µ0) / (s / √  n̅) 

where  𝑥̅ represents the sample mean; µ is the mean that is expected under the null 

hypothesis; s stands for the sample standard deviation and n represents the sample size 

(McDonald and Dunn, 2013).
       

 

http://www7.ncdc.noaa.gov/CDO/cdodata.cmd
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3.3. Land Use and Land Cover Mapping 

In this study, a number of steps were taken in LULC mapping of Chipinge district. These 

steps include image pre-processing, acquiring of reference data, image classification and 

accuracy assessment. 

3.3.1. Image pre-processing  

Prior to the use of satellite images in analysis, Landsat images were pre-processed. Mapping 

processes for historical and modern-day time requires images that have high-level geometric 

precision, radiometric and atmospheric correctness (Lu et al., 2004). This is done due to 

several factors which include earth-sun distance, angle of the zenith and view, the 

topography, conditions of the atmosphere and also temporal evolution of target characteristics 

that affect satellite images (Chandra, 2012). These irregularities affect the mapping results 

from LULCC mapping if they are not corrected. 

 

The sample set in the study was obtained with the use of the combination: 2, 4, 1 (1992 and 

2006 images); 3, 2, 1 (image for 2000, 2006, 2011) and 4, 3, 2 for 2014 image for visual 

interpretation of the images in their true colour. The sensor bands for MSS (1, 2, 3 and 4) 

encompass spectral ranges which are between 0.45 to 1.10 µm (USGS, 2014). The TM and 

the ETM+ sensor bands (1, 2, 3, 4, 5, 6, 7 and 8) have spectral ranges which are from 0.45 to 

12.50 µm. Landsat 8 OLI and TIRS sensor bands (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) have spectral 

ranges which are from 0.43 to 12.52 µm (USGS, 2014). 

 

Landsat images were converted to top-of-atmosphere (TOA) radiance through the use of 

radiometric calibration coefficients. There are quite a number of techniques that can be used 

to radiometrically correct satellite images. These techniques include dark subtraction, 

FLAASH, emissivity normalization and many more. The radiance calibration was processed 

with the FLAASH module in ENVI SAT 5.2. This was done to atmospherically correct 

surface reflectance where it also removed unwanted materials such as errors of the sensor and 

noise (Lu et al., 2004). The MODTRAN4 radiation transfer code that is embedded in the 

FLAASH module was used as it is considered to be a worthy solution for atmospheric 

corrections (Kaufman et al., 1997; Han et al., 2014).  The processes in the FLAASH module 

were chosen as: Rural for aerosol model (as most parts of the district are far from Chipinge 

town), 2-Band (K-T) for the aerosol retrieval and the initial visibility were chosen at 20-40 

km as this depended on the quality of Landsat images that were acquired.  
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In order to match the spatial resolution of the four Landsat images (TM, ETM+ SLC on and 

OLI/TRS in Table 2), the 1992 MSS image was re-sampled from 60 metres to 30 metres 

using the nearest neighbour resampling method (Han et al., 2014) so as to match that of the 

TM, ETM+ SLC on and OLI/TRS images. Resampling was done using the nearest neighbour 

algorithm in ArcMap 10.2 so as to maintain the pixel’s original brightness values so that they 

remain unchanged on the images. The nearest neighbour algorithm was used as its output 

values comes from the original input values which is vital in the discrimination of class type 

(Khuman, 2013). There was a limitation in that the total area on the 1992 MSS image as it 

was greater than that of the TM, ETM+ SLC on and OLI/TRS images by 18 hectares. This 

was as a result of position error of pixels along the Chipinge district shapefile after the 

application of the nearest neighbour resampling method. This is supported by Baboo and 

Devi (2010) who stated that one of the disadvantages of using the nearest neighbour 

resampling method is that of position errors mostly seen along linear features where it is very 

easy to note the realignment of pixels. 

 

The images were geometrically corrected using the Root Mean Square Error (RMSE) where 

it should have to be less than 0.5. RMSE is a measure of the difference between locations that 

are known and locations that have been interpolated or digitized (Barreto and Howland, 

2006). The 1992, 2000, 2006 and 2011 images were geometrically corrected to the 2014 

image in ENVI 5.2 Classic using the Image to Image Registration function. The term image 

registration is defined as a process of making an image conform to another image and it 

incorporates georeferencing which is done when the reference image has already been 

rectified to a map projection type (Zitova and Flusser, 2003).  This process involves 

overlaying two or more images that are of the same scene and taken at different times from 

different sensors and /or viewpoints that are different (Zitova and Flusser, 2003). The Ground 

Control Points used for base were from the 2014 image whereas the warp GCP’s were for the 

other four images. The 1992, 2000, 2006 and 2011 images were warped to match the 2014 

image. The RMSE was ≤ 0.5 as this is the value regarded as good in terms of image 

rectification (Jensen, 1996). All the Landsat images were rectified to Universal Transverse 

Mercator (UTM) projection, World Geodetic System (WGS) 1984 and Zone 36 South for the 

analysis to be accurate. 
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3.3.2. Reference Data and Image Classification 

Image classification is a process which involves identification of pixels and statistically 

grouping, seeing if they have similar digital numbers and/or spatial orientation of pixels in 

order to come up with geographic features that are meaningful (Mesev, 2010). The 

comparison of pixels that will be done assists and aggregate them into classes which 

represent information of interest to land managers or researchers (Mas, 1999). The land use 

and land cover types were categorised using the acquired Landsat images. Supervised 

classification was used where training and validation samples were obtained in order to 

develop a classifier which is efficient. Representative samples were selected for each LULC 

class from the satellite images. The training samples which were collected are for estates, 

bare land, water bodies, built up areas and forests. The training samples that were collected 

for each and every class were equal or more than 80 so as to make the classification more 

efficient. The land cover and land use classification scheme and attributes are shown in table 

3 below: 
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Table 3: Land use and Land cover classification scheme 

 

Land use and land cover classes Attributes 

1. Water bodies Streams, rivers, ponds, dams and reservoirs 

2. Built up areas Industrial, residential, factories and 

commercial structures. 

3. Bare land Unvegetated land and exposed rocks. This is 

the type of land with less ability of 

supporting life where less than one-third of 

the area has vegetation or other cover. 

4. Estates Large commercial farms and corporate 

estates including tea estates and cotton farms  

5. Forest Reserved and protected forest. This type of 

land has a tree-crown areal density of up to 

10% or more and stocked with trees that 

produce timber and a number of wood 

products.  

6. Agricultural farms Land that is used for the production of fibre 

and food primarily. This type of land also 

includes the ones with commercial and 

horticultural crops. 

Source: Anderson et al. (1976) 

 

The classification of the representative samples for land use and land cover was based on the 

spectral signatures which were defined in the training set. The reference data that was used 

was obtained from air photographs from Chipinge which covers the years: 1992, 2000 and 

2014. Other images that were used were of high-resolution and these covered the years 2006 

and 2011. These images were acquired from Google Earth TM (http://earth.google.com) for 

the ground-truth of LULC classification (Knorn et al., 2009; Han et al., 2014). 

 

The Support Vector Machine (SVM) is a non-parametric method of supervised classification 

which was used in LULC classification (Adam et al., 2014). SVM classifier is a statistical 

approach where a hyperplane is built in order to separate examples of different classes, 

maximizing the distance or margin of those examples that lie closer to it (Saez et al., 2013). 

http://earth.google.com/
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The longer the distances form the pair class examples to the hyperplane are, the better the 

generalization achieved (Saez et al., 2013). The SVM method was used as it proved to have 

better performance compared to other classification methods as it determines higher accuracy 

level, producer accuracy and values of the kappa coefficient (Congalton, 1992). The SVM 

employs a kernel function to map a set of non-linear decision boundaries in the original 

dataset into linear boundaries of a higher-dimensional construct (Han et al., 2007).The SVM 

make a distinction between classes with a decision surface known as the optimal hyper-plane 

and this increases the variations of the classes (Liu et al., 2014). The operation of SVM 

involves the generation of regions of interest as the training data and the kernel type which 

consists of radial basis function, polynomial, linear and sigmoid, gamma in kernel function, 

penalty parameter, pyramid levels and classification probability threshold which are vital in 

the output of classification (Zhu and Blumberg, 2002). The kernel type commonly used is the 

radial basis function as it produces better results (Liu et al., 2014). In this study, the SVM 

classification method with radial basis function as the kernel type, gamma in kernel function 

of 0.143, penalty parameter of 120 and classification probability threshold of 0.05. 

 

The Landsat images that were used in this study are from five different sensors and this had 

an effect on the spectral responses and band configurations. This problem was solved by 

developing image-specific classifiers for each Landsat image that was selected, however it is 

not possible to attain reference data for images that were acquired a long time ago, like MSS 

data (Han et al., 2014). In this study, the OLI-based classifier for every Landsat image and 

sensor-associated differences (like spectral responses and wavelengths) between OLI and 

other sensors were corrected. In the adjustment of the variations between the atmospherically 

corrected surface reflectance of OLI and other sensors, an empirical line method was used. 

The surface reflectance of the OLI image in 2014 was used so as to establish the linear 

relationship between the OLI and other Landsat images (TM and ETM+ SLC on). This was 

done and the relationship for each band was determined. 

3.3.3. Accuracy Assessment 

The inclusion of images collected years ago or historical images in analysing LULCC is often 

affected by unavailability of ground reference data (Witmer, 2008). The images that are 

classified often have classification errors due to spectral confusion, noise and even 

weaknesses of classification algorithms (Liu and Cai, 2012). The quality of each classified 

Landsat image was assessed for post-classification analysis which is meaningful (Lu et al., 



25 
 

2004). The main objective was to determine quantitatively how the pixels were grouped 

effectively into the appropriate feature classes in the area of study. In order to assess the 

accuracy of LULC maps extracted from Landsat data, a number of stratified random pixels 

were generated from all the maps. The assessment of LULC maps was done using air 

photographs for the years: 1992, 2000 and 2014; and Google Earth TM images for 2006 and 

2011. The air photographs went through image enhancement in order to improve their 

appearance for human visual analysis. The confusion matrix using ground truth regions of 

interest (ROIs) was constructed to compute the kappa statistic, overall accuracy, producer and 

user accuracies (Cohen 1960; Congalton and Green 2008; Adam et al., 2014). The overall 

accuracy is a percentage which represents the probability that a randomly selected point is 

correctly classified on the land use and land cover map (Richards, 2012). The overall 

accuracy in this study was determined using the following formula: 

 

 Overall accuracy = 
Σ (𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑙𝑜𝑛𝑔 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)

𝛴(𝑅𝑜𝑤 𝑡𝑜𝑡𝑎𝑙 𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙)
  

 

The producer’s accuracy represents the probability that the labelling of the classifier is 

correct in an image pixel (Richards, 2012). The producer’s accuracy also known as the error 

of omission is determined by dividing the number of correctly classified samples by the 

reference samples total number. The formula for determining the producer’s accuracy is as 

follows: 

 Producer’s accuracy = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛 𝑎 𝑐𝑜𝑙𝑢𝑚𝑛

𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑑 𝑖𝑡𝑒𝑚𝑠 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑐𝑜𝑙𝑢𝑚𝑛
  

 

The user’s accuracy also known as the errors of commission is produced by the division of 

the correctly classified samples number of the respective class by its total number of verified 

samples belonging to the class (Richards, 2012). The formula for determining the user’s 

accuracy is as follows:  

User’s accuracy = 
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑖𝑛 𝑎 𝑟𝑜𝑤

𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑑 𝑖𝑡𝑒𝑚𝑠 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑟𝑜𝑤
 

 

The producer and user accuracies were produced so as to show if the error was or was not 

evenly distributed (Congalton, 1992). 
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Kappa coefficient which lies between a value of 0 and 1 provides a measure of the difference 

between the actual agreement and the agreement that would have been expected by chance 

(Adam et al., 2014). The value of 1 in kappa coefficient shows prefect agreement between 

classification and ground truth pixels whereas a value of 0 shows no agreement (Dorn et al., 

2015). The kappa coefficient is calculated using the equation below: 

 

    

where; i represents the class number, N is the total number of the pixels classified that are 

being compared to ground truth, mi, i represents the pixels that belong to the ground class i, 

that have also been classified with a class i (refers to the values that are found diagonally in a 

confusion matrix), Ci represents the number in total of classified pixels that belong to class i 

and Gi represents the number in total of ground truth pixels that belong to class i (Foody, 

2002). 

 

The overall accuracy, kappa coefficient, user and producer accuracies were used to observe 

the level of accuracy and reliability of the LULC maps produced. The confusion matrix using 

ground truth ROIs was conducted under post classification tools in ENVI 5.2 software. 

3.4. Change Detection  

Change detection is known as a process of identifying the differences in a feature’s state 

observing it at dissimilar moments in time (Chen et al., 2012). Identification and 

understanding the nature of change in the use of land resources is essential in the planning, 

regulation and even the management of their uses (Sunar, 1998). Change detection has a 

number of aspects in monitoring natural resources which are to detect changes that have 

occurred, identify nature of change, extent of change and also the spatial pattern of the 

change (Macleod and Congalton, 1998).  

 

The estimation of change using RS data uses a number of algorithms or techniques (Singh, 

1989). These techniques are based on a variety of statistical and/or mathematical 

relationships, assumptions and principles (Singh, 1989). The algorithms or techniques used 

include image digitizing, image rationing, image overlay, image regression, principal 
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component analysis, background subtraction, change vector analysis, spectral/temporal 

classification, vegetation index differencing, image differencing and post classification 

comparison (Singh, 1989; Sunar, 1998). These techniques have been applied in monitoring 

changes in various applications and yielded good results though there is no consensus as to 

which change detection approach is the best (Singh, 1989). Change detection techniques used 

hugely depends on available data, study area’s geography, computing constraints and also the 

type of application (Lu et al., 2004). 

 

The study used the change detection statistics in ENVI 5.2 software which provides a detailed 

tabulation of LULC changes between two classified images. The change detection statistics 

give a class for class difference in the images where the earlier image is identified by way of 

initial state classification and the later image as the final state classification (Canty, 2009). 

This change detection statistics identified the classes where the pixels changed in the final 

state image. The changes can be reported in form of pixel counts, percentages or areas (in this 

study was put in hectares).  The change detection statistics were produced between images 

from 1992-2000; 2000-2006; 2006-2011 and 2011-2014. All the classified images were 

georeferenced before classification and change detection analysis in order to get results which 

are accurate. The change detection statistics between 1992 and 2000 images gives LULCC 

before the FTLRP and those from 2000 to 2014 show the impact of the FTLRP on LULCC. 

The technique generated four change detection statistics which were assessed. The change 

detection statistics produced a report containing LULC changes in hectares and percentages. 

The report had a reference tab with information about the analysis which includes the input 

images and equivalent class pairings.  

 

The change detection analysis in ENVI 5.2 was utilised for the identification, description and 

quantification of differences between classified images of the same scene at times or 

conditions which are different (Hegazy and Kaloop, 2015). The technique signifies all 

changes found within two respective images. Therefore in the light of this study it enabled the 

researcher to take note of all the changes that had occurred between the 1992 and 2000 

images, 2000 and 2006 images, 2006 and 2011 images and the 2011 and 2014 images. 

3.5. Markov Chain Analysis (MCA) 

The modelling of future LULCC was done in this study with the use of two techniques. In 

predicting LULCC changes in the year 2028, Markov Chain Analysis (MCA) and the 
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Cellular Automata Markov Chain Analysis (CA MCA) were used as shown in figure 2 

below. The two techniques were used as they are complementary to each other. Markov 

Chain Analysis determines the amount of change in the future by using the earlier and later 

LULC images along with their specified dates (Mishra et al., 2014). This procedure 

determines precisely the amount of land that would be expected to change from the later date 

to the predicted date basing it on a projection of the transition potentials into the future where 

it creates a transition probabilities file (Mishra et al., 2014). This transition probabilities file 

is known as a matrix that records the probability that each land cover class will transform to 

every other category (Behera et al., 2012).  

 

For LULCC, one may articulate a principle like the one of classical physics: the possibility 

that the system will be in a specified state at a given time referred to as t2, may be derived 

from the knowledge of its state at any earlier time known as t1, and this is not determined by 

history of the system before time t1 i.e. it is a first-order process (Parzen, 1964).  

 

The Markov chain can be expressed as: 

vt2 = M×vt1 

where vt1 is the input land use and land cover proportion column vector whereas vt2 is known 

as the output land use and land cover proportion column vector and M is an m×m transition 

matrix for the time interval Δt = t2 - t1 (Lambin, 1994). The probability (p
ij
) of transition 

between a pair of states is calculated by dividing the cell (n
ij
) of the change/no change matrix 

by its row marginal frequency (n
i.): 

  p
ij = n

ij/ ni .  

  

where 𝑛𝑖. = ∑ 𝑛𝑖 𝑗

𝑞

𝑗= 1

 

In the MCA, the transition probabilities are influenced by the time interval (t) where if the 

time period at which the process is being looked at is of no relevance, the Markov chain is 

regarded as homogeneous or stationary in the period observed (Karlin and Taylor, 1975). 

The probability or chance of future states for a cell is calculated using the equation: 
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  p (t) = p (t – 1). p  

 

where p is the probability matrix of n states; t is for time (Serra et al., 2008). An increase in 

the time steps of the Markov process, p (t) approaches to limiting distribution which is 

referred to as the constant probability vector (Weng, 2002). 

  p ( ∞ ) = limt→∞ p (0). pt 

 

The transition matrices were constructed from the change/no change matrices that were 

acquired from change detection analysis. The processes for modelling were implemented 

using algorithms supplied with the IDRISI Selva software. The researcher used Markov 

models were used as they are easy to derive from successional data and do not require deep 

understanding of the dynamic change system, but it can contribute in specifying areas where 

such insight would be vital and therefore perform as both a stimulant and guide to further 

research. (Kau, 2014). 

3.5.1. Cellular Automata Markov Model (CA MCA) 

The Markov model emphasises on the quantity in LULCC prediction (Sang et al., 2011). The 

spatial parameters for the Markov model are weak and do not show the various types of land 

use or land cover change in their spatial extents (Wickramasuriya et al., 2009). A stochastic 

model known as CA-Markov was used in this study and it is widely used in the assessment of 

change in a certain area. The CA Markov model was used in this study to correct the spatial 

contiguity of the model and produce the 2028 map. The CA models are spatial models with 

cell as their basis. The cell is affected by its neighbouring cells where it is capable of 

adopting various states. The CA Markov model which is a combination of the Cellular 

Automata, Markov Chain, Multi-Criteria Evaluation (MCE) and Multi-Objective Land 

Allocation (MOLA) prediction method for land cover enhances spatial contiguity and 

knowledge of the probable transition’s spatial distribution to Markov chain analysis 

(Sayemuzzaman and Jha, 2014). The CA Markov model produces better simulation for both 

the temporal and spatial patterns of LULCC in space and quantity (Sang et al., 2011). 

 

The model is a hybrid of the Cellular Automata (CA) and the Markov chain. The CA is a 

model which utilises mathematical processes in modelling physical structures and time where 

space can be distinct in these physical systems (Wolfram, 1998). The CA encompasses the 

physical space which is characterised by cells where the CA mechanism occurs (Barredo et 
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al., 2003). It also consists of a cell where the CA mechanism inhabits the neighbourhood 

surrounding this cell, transition rules that define the CA’s performance and the time-based 

space where the mechanism entirely exists (Li and Yeh, 2000). The mathematical notation for 

CA is as follows: 

  s t + 1  = f (st , N ) 

where s is the set of all possible states of CA; N represents the neighbourhood of all the cells 

and f is the transition function that defines change from t to t + 1 (Zhang et al., 2011). 

3.5.2. Simulation with CA Markov Model 

The CA Markov utilises a contiguity filter, which is demarcated by the user. The contiguity 

filter integrates the suitability image of all the classes and is then input into the model. The 

contiguity rule pixel is used in the Markov model where it applies to a certain LULC class, 

which will in greatest probability remain the same LULC class as earlier. In this study, a 

Gaussian 5 x 5 filter size was used for the modelling purposes as illustrated in Figure 2. The 

filter was then used on the suitability images for each LULC class. The process employed 

outlined the neighbourhood and the 5 x 5 filtering window controls the pixel’s suitability. If 

the number of pixels with the same class in the same neighbourhood is high then the higher  

the suitability value of that particular land cover class in that specific area. The pixel remains 

the same as it was earlier if it is of another class. In the CA MCA, suitability assists in the 

definition of those pixels, which will alter subject to the highest suitability of each and every 

LULC class.  
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Figure 2: A flow diagram of the Markov Chain Analysis and CA Markov Chain Analysis Modeller
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3.5.3. Transitional Probability Mapping 

The transitional probability areas that were obtained from the MCA were used as input to the 

CA Markov module. This was done as the CA Markov module uses cellular automata actions 

work in combination with MCA and MCE or MOLA. The transition areas file from MCA 

which was obtained from the Markov module in IDRISI Selva of two LULC maps (2000 and 

2014) established the quantity of expecting LULCC from each existing category to any other 

in the next 14 years. The classified 2014 LULC image was used as the base image and as a 

starting point for change simulation as shown in figure 2 above. Within each time step, every 

LULC is considered in turn as a host category. All the other LULC classes act as claimant 

classes and compete for land (only within the host class) using the MOLA procedure. The 

area requirements for each and every claimant class within each host were equal to the total 

established by the transition areas file divided by the number of iterations. The MOLA 

operation produced results which were overlaid using a COVER operation to come up with a 

new LULC map at the end of each iteration. The CA Markov module used in this study is the 

one in IDRISI Selva which incorporates the functions of cellular automaton filter as well as 

Markov processes, with the use of conversion tables and conditional probability from the 

conversion map so as to predict the states of LULCC. This makes it better in carrying out 

LULCC simulations. Figure 3 below shows all the data and steps that were taken in this 

research. 
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Figure 3:  Data steps taken in processing Landsat imagery of Chipinge district 
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CHAPTER 4 - RESULTS AND DISCUSSION  

4.1. Land use and Land Cover Mapping 

The LULC map for the year 1992 in figure 4 and the histogram showing LULC classes in 

figure 5 illustrate that about 36 % of Chipinge district was bare land. It is also illustrated in 

figure 5 that 2 % of the land was covered by estates, 17 % by forest, 20 % by built-up, 5 % by 

water bodies and 20 % by agricultural land. The distribution of LULC as shown in the 

classified map (Figure 4) shows that the distribution of agricultural farms was found in the 

north and eastern part of the district. These are high rainfall areas which cover agricultural 

regions I and II where they also have fertile soils. In these areas annual rainfall amount in 

region I is above 1 000 millimetres and in region II, it is in a range of 750 to 1000 millimetres 

(Zamuchiya, 2011).  The western part of the district and mostly in the south western part had 

a lot of bare land. These are low veld areas which covers regions III to V. These are areas 

with little rainfall where they practice livestock farming and the growing of drought resistant 

crops (Mugandani et al., 2012). 
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Figure 4: LULC maps for Chipinge district in 1992, 2000, 2006, 2011 and 2014 
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Figure 5: Histograms of LULC coverage for 1992, 2000, 2006, 2011 and 2014 
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The LULC map of Chipinge district in the year 2000 as shown in figure 4 and the area of 

coverage (in hectares) in figure 5 show that the district had a lot of bare land which amounted 

to 45 %. Land area covered by agricultural farms amounted to 23 %, 6 % by estate, 9 % by 

forest, 15 % by built-up and 2 % by water bodies. During this year there was an increase in 

the total bare land area as it increased from 36 % in the year 1992 to 45 % in 2000. There was 

also an increase in the total area covered by agricultural farmlands as they covered 23 % in 

2000 from 20% in 1992.  

For the year 2006 the LULC map is shown in figure 4 and the area of coverage in percentage 

is shown in the histogram (Figure 5). It is illustrated that agricultural farms covered 19 % 

whilst bare land, estate, forest, built-up and water body covered 54 %, 4 %, 10%, 10 % and 3 

% of the district’s land respectively. The land covered by agricultural farmland decreased in 

this year due to the FTLRP where people given the land did not have farm machinery to 

plough in their farms. There was an increase in the bare land area from 45 % in 1992 to 54 % 

in 2006 as some agricultural land was now turned into bare land. 

The LULC map for the year 2011 as shown in figure 4 and the area of coverage in percentage 

(figure 5). The histogram (figure 5) illustrates that 15 % of the land was covered by 

agricultural farms, 2 % by estates, 15 % by forests, 15 % by built-up, 2 % by water bodies 

and 51 % was bare land. There was a reduction in the percentage of land covered by 

agricultural farms from 19 % in 2006 to 15 % in 2011. This must be due to the lack of 

farming equipment amongst the farmers and also the economy of the country where there was 

high inflation. Most of the agricultural farms were now changing into bare land and built-up. 

The built-up area’s percentage increased from 10 % in 2006 to 15 % in 2011 due to 

population increase in the district. 

 

The LULC map of the year 2014 as shown in figure 4 and also the histogram of the LULC 

coverage in figure 5 illustrates that bare land covered 53 % of Chipinge district in this year. 

The land covered by agricultural farms was 16 %, 3 % by water bodies, 18 % by built-up, 8 

% by forest and 2 % by estate. The distribution of LULC classes as shown in the map (figure 

4), agricultural farms were mostly spread in the north-eastern part of the district. It can also 

be seen that built-up areas were in the north-western part of the district. The north-western 

part of the district with a lot of built-up structures reflects areas nearer to the farms where 

people working in the redistributed farms stay. The increase in the built-up areas must also be 
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as a result of population growth in the district as this class also includes households of where 

people stay. 

4.1.1. Accuracy Assessment 

Accuracy of each and every Landsat image that was classified using SVM was produced with 

the use of a confusion matrix done using ENVI 5.2 software. The confusion matrix produced 

was constructed with the use of ground control points which were not used as training 

samples in classification. A number of 30 ground control points for each class was used in the 

validation of the classified image. The ground control points for the years 1992, 2000 and 

2014 were derived from air photographs of Chipinge district. The ground control points for 

the years 2006 and 2011 were derived from Google Earth. The error matrix technique that 

was used from ground truth data produced a level of accuracy and reliability that meets the 85 

% threshold value that is recommended for accuracy assessment (Anderson et al., 1976), as 

illustrated in table 4. The overall accuracy for all the five classified Landsat images ranged 

from 85.6 % to 93.9 %.  

 

In table 4, when comparing the user and producer accuracies for the different LULC classes, 

it can be noted that water body has higher value than the other classes meaning there was 

greater level of accuracy. The agricultural farms class was 56.9 % in the year 2000 which is 

the lowest producer’s accuracy as shown in table 4. The user’s accuracy for estate class was 

the lowest in the year 2000 with a value of 57.7%. The low figures in the estates and the 

agricultural farms is due to the reason that they looked similar in the images hence spectral 

reflectance of crops in the agricultural farms is at some point similar to that of plants in estate 

farms. This caused mixed pixels resulting in misclassification of some pixels and low 

producer and user accuracies for both the agricultural farms and estate classes. The 

classification accuracy assessment results in table 4 met the recommended 85 % threshold 

value (Anderson et al., 1976). The lowest overall accuracy of the 1992 Landsat imagery as 

compared to the other four years can be due to the resampling of the image from 60 meters to 

30 meters resolution for consistency with the other images. 

 

 

 

 

 



39 
 

Table 4: Confusion matrices for validation of 1992, 2000, 2006, 2010 and 2014 LULC maps  

Year Overall 

accuracy 

(%)  

Kappa 

Coefficient 

Accuracy 

type 

Agricultural 

farms (%) 

Estate 

(%) 

Water 

body 

(%) 

Built-

up 

(%) 

Forest 

(%) 

Bare 

land 

(%) 

1992 85.5 0.78 Producer's 73.7 96.7 73.3 72.7 100  96.7 

 User's        81.0 72.5 100 95.2 93.8  66.0 

2000 85.6 0.79 Producer's 56.9   100 100 76.7 83.3  96.7 

 User's 87.5 57.7 100 95.2 100  80.6 

2006 88.6 0.82 Producer's 86.7 75.0 100 70.0 100  100 

 User's 68.4 81.8 100 100 96.8  77.5 

2011 88.8 0.83 Producer's 86.7 84.1 88.6 75.5 97.7  100 

 User's 72.2 92.5 100 100 91.3  69.6 

2014 93.9 0.92 Producer's 96.7    100 100 66.7 100  100 

 User's        100 100 100 100 100  73.2 

 

4.1.2. Summary of Land Use and Land Cover Classes 

The LULC maps of Chipinge district were generated and they were for the 5 years analysed 

in this study which are: 1992, 2000, 2006, 2011 and 2014. The LULC class and their change 

statistics for all the five years are summarised in table 5 below: 

 

Table 5: Summary of LULC type in Chipinge district for 1992, 2000, 2006, 2011 and 2014. 

                   1992 2000 2006 2011 2014 

LULC 

class 

 

ha  % ha  % ha  % ha  % ha  % 

BL 188318 42.46 189 574 42.75 247 546 55.82 232 720 52.48 248 467 56.03 

ES 12555 2.83 42721 9.63 21 030 4.74 10 610 2.39 9655 2.18 

F 46071 10.39 22 675 5.11 45 432 10.24 59 331 13.38 29 365 6.62 

BU 71129 16.04 31 044 7.00 34 275 7.73 59 009 13.31 84 039 18.95 

WB 13560 3.06 4 253 0.96 615 0.14 291 0.07 600 0.14 

AF 111861 25.22 153 209 34.55 94 578 21.33 81 515 18.38 71 350 16.09 

Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm. Percentage figures rounded off to two decimal places. 
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4.1.3. Change Detection Statistics 

In the assessment of LULCC in Chipinge district, change detection statistics between 1992 

and 2000, 2000 and 2006, 2006 and 2011 and 2011 and 2014 images were produced. Change 

was detected by assessing the differences from the specified date on the Landsat image used 

to another by comparing change in the raster cells. The change was compared on the 1992 - 

2000, 2000 - 2006, 2006 – 2011 and the 2011 – 2014 images. The change detection statistics 

produced a table which shows the initial and the final state. A change matrix was also 

produced which has data from the initial year in the rows and data from the final year in the 

columns. The change matrix that was produced shows changes in the classes which indicates 

total changed areas for each LULC class in the initial stage. The value for class total for the 

column illustrates the total area for initial stage image of each LULC class whereas the row 

total shows the final stage for the LULC classes. The image difference value represents the 

total net change for the two time images. Negative image difference shows a decrease in the 

state of a certain LULC class whereas positive values demonstrate increment. The class 

change indicates the total areas of each land use or land cover class that was transformed in to 

another LULC type.  

The change detection matrix of LULC types in Chipinge district between 1992 and 2000 in 

hectares is shown in table 6. Table 7 shows the change detection matrix between 1992 and 

2000 in percentages. The areas which are in bold are areas that did not change within the 

period of initial and final state. 
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Table 6: Change detection matrix of LULC types in Chipinge district between 1992 and 

2000 in hectares (ha) 

Year                                 1992 (Initial State) 

  
  
  
  
  
  
  
2

0
0

0
 (

F
in

a
l 

S
ta

te
) 

Class name      BL     ES        F    BU   WB     AF Row Total 

BL 143085 1865  1066 30827 2093 10658 189443 

ES 2321 2545 14771   1253 2798 19023   42697 

F 823 139 13355    350 4859 3154   22650 

BU 12800 3065     876   8337    81 5945   31031 

WB 2384 45     285     233   698 611    4247 

AF 26905 4896 15718 30129 3030 72469 153081 

Class Total 188318 12555 46071 71129 13559 111860           

Class Changes 45384 10023 32745 62865 12871 39457           

Image 

Difference 

1256 30167 -23395  -40085  -9307 41348           

Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm.  

Table 7: Change detection matrix of LULC types in Chipinge district between 1992 and 

2000 in percentage (%) 

Year  1992 (Initial State) 

  
  
  
  
  
  
  
  
  
2
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Class name BL ES F BU WB AF 

BL 76.00  14.86    2.31  43.34 15.44   9.53 

ES   1.23  20.27  32.06 1.76 20.64 17.01 

F   0.44    1.11   28.99 0.49 35.83   2.82 

BU   6.80  24.41     1.90  11.72   0.60   5.31 

WB   1.27    0.36     0.62 0.33   5.15   0.55 

AF 14.29  39.00   34.12  42.36 22.34 64.79 

Class Total    100     100      100   100    100    100 

Class Changes 24.10  79.83   71.08   88.38 94.92 35.27 

Image Difference  1256 30167 -23395 -40085 -9307 41348 

Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm.  



42 
 

As shown in table 6, the image difference for bare land, estate and agricultural farm increased 

by 1 256, 30 167 and 41 348 ha respectively. It is also illustrated in the table that forest, built-

up and water body decreased by 23 395, 40 085 and 9307 ha respectively.  

 

As shown in table 6 and 7 above, the agricultural farm class had a total of 111 860 ha (100 

%) by the year 2000 and 72 469 ha (64.79 %) did not change within the period from 1992 to 

2000. It is shown that most agricultural farmland was transformed into estate land with a 

value of 19 023 ha (17.01 %). The second highest transformation was the one into bare land 

with a value of 10 658 ha (9.53 %). The class changes for agricultural farmland to other 

LULC classes amounted to 39 457 ha (35.27 %).  Some of the agricultural farmland was 

transformed to forest land (3 154 ha), built up (5 945 ha) and water body (611 ha). This was 

converted into percentage as shown in table 7 where agricultural farmland transformed into 

forest is 2.82 %, built up (5.32 %)  and water body (0.55 %).   

Of the 188 318 ha that were bare land in 1992, only 143 085 ha did not change by the year 

2000. This is also shown in table 7 that of the 100 % of bare land in 1992, 76 % did not 

change by the year 2000. It is shown that the class changes for bare land to other LULC 

classes amounted to 45 384 ha (24.10 %). Most of the bare land transformed into agricultural 

farmland with a value of 26 905 ha (14.29 %) whilst the least transformation was into forest 

where it had a value of 823 ha (0.44 %). Bare land also transformed into estate, built-up and 

water body with values of 2 321 ha (1.23 %), 12 800 ha (6.80 %) and 2 384 ha (1.27 %) 

respectively.  

As shown in table 6 and table 7, land covered by estates was an area of 12 555 ha (100 %) 

where 2 545 ha (20.27 %) did not change between the period 1992 and 2000. It is illustrated 

that the class changes for estate to other LULC classes was 10 023 ha (79.83 %). Within the 

period of 1992 and 2000, land covered by estate transformed into bare land, forest, built-up, 

water body and agricultural farmland with values of 1 865 ha (14.86 %), 139 ha (1.11 %), 3 

065 ha (24.41 %), 45 ha (0.36 %) and 4 896 ha (39.00 %) respectively. The greatest 

transformation of estate was into agricultural farmland with a value of 4 896 ha (39.00 %) 

and the lowest was into water body with a value of 45 ha (0.36 %) between 1992 and 2000. 

The land that was covered by built-up had a total area of 71 129 ha (100 %) where 8 337 ha 

(11.72 %) did not change between the period 1992 and 2000 as shown in table 6 and table 7. 

It was observed that the class changes for built-up to other LULC classes amounted to 62 865 
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ha (88.38 %). Within the period of 1992 and 2000, land covered by built-up transformed into 

bare land, estate, forest, water body and agricultural farmland with values of 30 827 ha (43.34 

%), 1 253 ha (1.76 %), 350 ha (0.49 %), 233 ha (0.33 %) and 30 129 ha (42.36 %) 

respectively. It can be noted in table 6 and table 7 that the greatest transformation of built-up 

land was into bare land with a value of 30 827 ha (43.34 %) whilst the lowest transformation 

was into water body with a value of 233 ha (0.33 %). 

Water bodies covered an area of 13 559 ha (100%) in 1992 where 698 ha (5.15 %) did not 

change from the year 1992 to 2000. The class changes for water body to other LULC classes 

were 12 871 ha (94.92 %). The land covered by water bodies transformed into bare land, 

estate, forest, built-up and agricultural farmland with values of 2 093 (15.44 %), 2 798 ha 

(20.64 %), 4859 ha (35.83 %), 81 ha (0.60 %) and 3 030 ha (22.34 %) respectively. The 

greatest transformation for water body was into forest with a value of 4 859 ha (35.83 %) and 

the lowest was into built-up with a value of 81 ha (0.60 %) between 1992 and 2000.  

The change detection matrix of LULC types in Chipinge district between 2000 and 2006 in 

hectares is shown in table 8 below. Table 9 as illustrated below shows the change detection 

matrix between 2000 and 2006 in percentages.  

Table 8: Change detection matrix of LULC types in Chipinge district between 2000 and 

2006 in hectares (ha) 

Year   Initial State (2000) 
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0
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Class BL ES F BU WB AF Row Total 

BL 157945   6568   3032 18434    2372   59194 247546 

ES  337   8926   1106 355   68   10239   21030 

F     2498 16202 15475 198 739   10320   45432 

BU   17274  447 60   7254   98     9142   34275 

WB    28     6 14     6 554       8 615 

AF   11492 10572 2988   4797 421   64305   94577 

Total 189574 42721 22675 31044   4252 153209  

Class Changes   31629 33796 7200 23790   3699 88904  

Image 

Difference 

  57972 -21691 22757   3231 -3637  -58632  
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Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm. 

Table 9: Change detection matrix of LULC types in Chipinge district between 2000 and 

2006 in percentage (%) 

Year  Initial State (2000) 

 2
0
0
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 (
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Class BL ES F BU WB AF Row Total 

BL 83.32 15.37 13.37 59.38 55.78 38.64 247546 

ES   0.18 20.89  4.88   1.14   1.61   6.68   21030 

F   1.32 37.93  68.25   0.64 17.37   6.74   45432 

BU   9.11   1.05  0.27 23.37   2.31   5.97   34275 

WB   0.02  0.01  0.06   0.02 13.02   0.01       615 

AF   6.06 24.75  13.18 15.45   9.91 41.97   94577 

Total    100   100  100    100    100    100  

Class 

Changes 

16.68 79.11 31.75 76.63 86.98 58.03  

Image 

Difference 

30.58 -50.77 100.36 10.41 -85.53 -38.27  

Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm. 

 

Table 8 and table 9 show the transformations of LULC types between the year 2000 and 

2006. Table 8 shows the transformation in hectares whereas table 9 shows transformation in 

percentage. Table 8 shows that estate, water body and agricultural farmland decreased by 

21 691, 3 637 and 58 632 ha respectively. This decrease is shown in percentage in table 9 

where for estate is 50.77 %, water body (85.33 %) and agricultural farm (38.27 %). Bare 

land, forest and built up land increased by 57 972 ha (30.58 %), 22 757 ha (100.36 %) and 

3 231 ha (10 .41 %).  

Table 8 and 9 show that most agricultural farmland transformed into bare land with a value of 

59 194 ha (38.64 %) followed by forest which was 10 320 ha (6.74 %). It is shown that the 

class changes for agricultural farmland to other LULC classes amounted to 88 904 ha (58.03 

%).  Agricultural farmland also transformed to estate (10 239 ha), built up (9 142 ha) and 

water body (8 ha). This was converted into percentage as shown in table 9, where the 
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agricultural farmland which transformed into estate was 6.68 %, built up (5.97 %) and water 

body (0.01%).  It is also shown that of the 153 209 ha (100 %) of agricultural farmland in 

2 000, a value of 64 305 ha (41.97 %) did not change between the 2000 and 2006 period. 

It is shown in table 8 and table 9 that of the total value of 189 574 ha (100 %) for bare land in 

the year 2000, 157 945 ha (83.32 %) did not change by the year 2006. It is illustrated that the 

class changes for bare land to other LULC classes amounted to 31 629 ha (16.68 %). The 

amount of bare land that transformed into estate, forest, built-up, water body and agricultural 

farmland was 337 ha (0.18 %), 2 498 ha (1.32 %), 17 274 ha (9.11 %), 28 ha (0.02 %) and 

11 492 ha (6.06 %) respectively. This indicates that a large amount of bare land transformed 

into built-up land with a value of 17 274 ha (9.11 %) whilst the least transformation was from 

bare land to water body with a value of 28 ha (0.02 %) between the period of 2000 and 2006. 

Land covered by estates covered an area of 42 721 ha (100 %) where 8 926 ha (20.89 %) did 

not change between the period 2000 and 2006 as shown in table 8 and table 9. It is illustrated 

that the class changes for estate to other LULC classes amounted to 33 796 ha (79.11 %). 

Within the period of 2000 and 2006, land covered by estate transformed into bare land, forest, 

built-up, water body and agricultural farmland with values of 6 568 ha (15.37 %), 16 202 ha 

(37.93 %), 447 ha (1.05 %), 6 ha (0.01 %) and 10 572 ha (24.75 %) respectively. The greatest 

transformation of estate was into forest with a value of 16 202 ha (37.93 %) and the lowest 

was into water body with a value of 6 ha (0.01 %) between 2000 and 2006. 

As shown in table 8 and table 9, the land that was covered by forest covered an area of 22 

675 ha (100 %) where 15 475 ha (68.25 %) did not change between the period 2000 and 

2006. These show that the class changes from forest to other LULC classes amounted to 7 

200 ha (31.75 %). Within the period of 2000 and 2006, land covered by forest transformed 

into bare land, estate, built-up, water body and agricultural farmland with values of 3 032 ha 

(13.37 %), 1 106 ha (4.88 %), 60 ha (0.27 %), 14 ha (0.06 %) and 2 988 ha (13.18 %) 

respectively. The greatest transformation of forestry was into bare land with a value of 3 032 

ha (13.37 %) and the lowest was into water body with a value of 14 ha (0.06 %). 

Land covered by built-up had an area of 31 044 ha (100 %) where 7 254 ha (23.37 %) did not 

change between the period 2000 and 2006 as shown in table 8 and table 9. It is shown that the 

class changes for built-up to other LULC classes amounted to 23 790 ha (76.67 %). Within 

the period of 2000 and 2006, land covered by built-up transformed into bare land, estate, 
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forest, water body and agricultural farmland with values of 18 434 ha (59.38 %), 355 ha (1.14 

%), 198 ha (0.64 %), 6 ha (0.02 %) and 4 797 ha (15.45 %) respectively. 

It is shown in table 8 and table 9 that land covered with water body was 4 252 ha (100%) 

where 554 ha (13.02 %) did not change from the year 2000 to 2006. The class changes for 

water body to other LULC classes was 3 699 ha (86.98 %). The land covered by water bodies 

transformed into bare land, estate, forest, built-up and agricultural farmland with values of 2 

372 (55.78 %), 68 ha (1.61 %), 739 ha (17.37 %), 98 ha (2.31 %) and 421 ha (9.91 %) 

respectively. The greatest transformation of water bodies was into bare land with a value of 2 

372 ha (55.78 %) and the lowest was into estate with a value of 68 ha (1.61 %) between 2000 

and 2006. 

The change detection matrix of LULC types in Chipinge district between 2006 and 2011 in 

hectares is shown in table 10 below. Table 11 below shows the change detection matrix 

between 2006 and 2011 in percentage. 

Table 10: Change detection matrix of LULC types in Chipinge district between 2006 and 

2011 in hectares (ha) 

Year  Initial state (2006) 
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Class BL ES F BU WB AF Row Total 

BL 190527   1899   6095   8277   95 25825 232718 

ES    3500   3622   1560     558     7   1363   10610 

F    5785   6995 33581     99 184 12686   59330 

BU 28684     299    229 21845   40   7912   59009 

WB      23     0 0      2 265   1       291 

AF 19027   8214   3968 3492   24 46789   81514 

Class Total 247526 21030 45432 34275  615 94577  

Class Changes  57019 17408 11852 12430  350 47787  

Image 

Difference 

-14827 -10421 13898 24734 -324 -13061  

Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm. 
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Table 11: Change detection matrix of LULC types in Chipinge district between 2006 and 

2011 in percentage (%) 

Year  Initial state (2006) 

2
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Class BL ES F BU WB AF 

BL 76.97    9.03 13.42 24.15 15.42  27.31 

ES   1.41  17.22   3.43   1.63   1.08    1.44 

F   2.34  33.26 73.91   0.29 29.96  13.41 

BU 11.59    1.42   0.50 63.74   6.54    8.37 

WB   0.01         0 0   0.01 43.10  0.001 

AF   7.69  39.06   8.73 10.19   3.89  49.47 

Class Total    100     100    100    100    100     100 

Class Changes 23.03  82.78 26.09 36.26 56.90  50.53 

Image 

Difference 

-5.99 -49.55 30.59 72.17 -52.7 -13.81 

Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm. 

 

Table 10 and table 11 above show the transformations of LULC types between the year 2006 

and 2011. Table 10 shows that bare land, estate and water body and agricultural farmland 

decreased by 14 827 ha, 10 421 ha and 324 ha respectively. This decrease is shown in 

percentage in table 11 where the decline for bare land is 5.99 %, estate (49.55 %), water body 

(52.7 %) and agricultural farm (13.81 %). Forest and built up land increased by 13 898 ha 

(30.59 %), and 24 734 ha (72.17 %) respectively. 

It is illustrated in table 10 and 11 that most agricultural farmland transformed to bare land 

with a value of 25 825 ha (27.31 %) followed by forestry which was 12 686 ha (13.41 %). 

Agricultural farmland also transformed to estate (1 363 ha), built up (7 912 ha) and water 

body (1 ha). This was converted into percentage as shown in table 11 where agricultural 

farmland which transformed into estate is 1.08 %, built up (8.37 %) and water body 

(0.001%). The class changes for agricultural farmland to other LULC classes amounted to 47 

787 ha (50.53 %). It is also shown that of the total 94 577 ha (100 %) of agricultural farmland 

in 2006, a value of 46 789 ha (49.47 %) did not change between the 2006 and 2011 period.  
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In table 10 and table 11 above the total value of 247 526 ha (100 %) for bare land in the year 

2006, 190 527 ha (76.97 %) did not change by the year 2011. It is demonstrated that the class 

changes for bare land to other LULC classes amounted to 57 019 ha (23.03 %). The amount 

of bare land that transformed into estate, forest, built-up, water body and agricultural 

farmland was 3 500 ha (1.41 %), 5 785 ha (2.34 %), 28 684 ha (11.59 %), 23 ha (0.0.1 %) 

and 19 027 ha (7.69 %) respectively. This indicates that a large amount of bare land 

transformed into built-up land with a value of 28 684 ha (11.59 %) whilst the least 

transformation was from bare land to water body with a value of 23 ha (0.01 %) between the 

period of 2006 and 2011.  

The land covered by estates in 2006 covered an area of 21 030 ha (100 %) where 3 622 ha 

(17.22 %) did not change between the period 2006 and 2011 as shown in table 10 and table 

11. It is shown that the class changes for estate to other LULC classes amounted to 17 408 ha 

(82.78 %). Land covered by estates transformed into bare land, forest, built-up, water body 

and agricultural farmland with values of 1 899 ha (9.03 %), 6 995 ha (33.26 %), 299 ha (1.42 

%), 0 ha (0 %) and 8 214 ha (39.06 %) respectively. The greatest transformation of land 

covered by estates within the period of 2006 to 2011 was to agricultural farmland with a 

value of 8 214 ha (39.06 %) and the lowest transformation was to water body with 0 ha (0%) 

as shown in table 10 and 11.  

As illustrated in table 10 and table 11, the land that was covered by forest covered an area of 

45 432 ha (100 %) where 33 581 ha (73.91 %) did not change between the period 2006 and 

2011. It is also shown that between 2006 and 2011, the class changes for forest to other 

LULC classes amounted to 11 852 ha (26.09 %). Within the period of 2006 and 2011, land 

covered by forest transformed into bare land, estate, built-up, water body and agricultural 

farmland with values of 6 095 ha (13.42 %), 1 560 ha (3.43 %), 229 ha (0.50 %), 0 ha (0 %) 

and 3 968 ha (8.73 %) respectively. The greatest transformation of forest was into bare land 

with a value of 6 095 ha (13.42 %) and the lowest was into water body with a value of 0 ha (0 

%).  

Table 10 and table 11 show that land covered by built-up was an area of 34 275 ha (100 %) 

where 21 845 ha (63.74 %) did not change between the period 2006 and 2011. It is also 

shown that the class changes for built-up to other LULC classes amounted to 12 430 ha 

(36.26 %). Within this period, land covered by built-up transformed into bare land, estate, 

forest, water body and agricultural farms with values of 8 277 ha (24.15 %), 558 ha (1.63 %), 
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99 ha (0.29 %), 2 ha (0.01 %) and 3 492 ha (10.19 %) respectively. There was greater 

transformation from built-up to bare land with a value of 8 277 ha (24.15 %) whilst the 

lowest was into water body with a value of 2 ha (0.01 %).  

Water bodies covered land of a value of 615 ha (100%) where 265 ha (43.10 %) did not 

change from the year 2006 to 2011as shown in table 10 and 11. The class changes from water 

body to other LULC classes were 350 ha (56.90 %). The land covered by water bodies 

transformed into bare land, estate, forest, built-up and agricultural farmland with values of 95 

ha (15.42 %), 7 ha (1.08 %), 184 ha (29.96 %), 40 ha (6.54 %) and 24 ha (3.89 %) 

respectively. The greatest transformation for water body was into forest with a value of 184 

ha (29.96 %) and the lowest was into estate with a value of 7 ha (1.08 %) between 2006 and 

2011.  

The change detection matrix of LULC types in Chipinge district between 2011 and 2014 in 

hectares is shown in table 12 below. Table 13 as illustrated below shows the change detection 

matrix between 2011 and 2014 in percentage.  

Table 12: Change detection matrix of LULC types in Chipinge district between 2011 and 

2014 in hectares (ha) 

Year  Initial state (2011) 

2
0
1
4
 (

F
in

a
l 

S
ta

te
) 

Class BL ES F BU WB AF Row Total 

BL 168068 1298 19959  18293   17  40832 248467 

ES    2310 4597 706  610     0 1432   9655 

F    1305 1421 25357   26     0 1257 29366 

BU  45201   923  142 35335     3 2434 84038 

WB    41      2  256   15 271    14    599 

AF  15794 2368  12910   4730     0  35547 71349 

Class Total 232719 10610  59331 59009 291  81515  

Class Changes   64651 6013  33974 23674   20  45968  

Image 

Difference 

  15748 -955 -29966 25030 309 -10166  

Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm. 
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Table 13: Change detection matrix of LULC types in Chipinge district between 2011 and 

2014 in percentage (%) 

Year  Initial state (2011) 

2
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 Class BL ES F BU WB AF 

BL 72.22 12.24  33.64 31.00     5.75   50.09 

ES   0.99 43.33    1.19   1.03  0     1.76 

F   0.56 13.39  42.74   0.04  0     1.54 

BU 19.42 8.70    0.24 59.88     1.14     2.99 

WB   0.02 0.02    0.43   0.03   93.11     0.02 

AF   6.79 22.32  21.76   8.02          0   43.61 

Class Total    100  100     100    100      100      100 

Class Changes 27.78 56.67  57.26 40.12     6.90   56.39 

Image 

Difference 

  6.77 -9.00 -50.51 42.42 106.09 -12.47 

Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm. 

 

The transformations of LULC types between the year 2011 and 2014 is shown in table 12 and 

table 13. Table 12 shows that there was a decrease in the amount of land used or covered by 

estate, forest and agricultural farms where they declined by 955 ha, 29 966 ha and 10 166 ha 

respectively. This decrease is shown in percentage in table 13 where for estate is – 9 %, forest 

(- 50.51 %) and agricultural farm (-12.47 %). Bare land, built-up and water body increased by 

15 748 ha (6.77 %), 25 030 ha (42.42 %) and 309 ha (106.09 %) respectively. 

As shown in table 12 and 13, most agricultural farmland transformed into bare land with a 

value of 40 832 ha (50.09 %) followed by built-up which was 2 434 ha (2.99 %). Agricultural 

farmland also transformed to estate (1 432 ha), forest (1 257 ha) and water body (14 ha). This 

was converted into percentage as shown in table 13 where agricultural farmland that 

transformed into estate is 1.76 %, forest (1.54 %) and water body (0.02 %). The class changes 

for agricultural farmland to other LULC classes amounted to 45 968 ha (56.39 %). It is also 

shown that of the total 81 515 ha (100 %) of agricultural farmland in 2011, a value of 35 547 

ha (43.61 %) did not change between the 2011 and 2014 period.  
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As illustrated in table 12 and table 13, the total value for bare land was 232 719 ha (100 %) in 

the year 2011 and 168 068 ha (72.22 %) did not change till the year 2014. The class changes 

for bare land to other LULC classes amounted to 64 651 ha (27.78 %). The amount of bare 

land which transformed into estate, forest, built-up, water body and agricultural farmland was 

2 310 ha (0.99 %), 1 305 ha (0.56 %), 45 201 ha (19.42 %), 41 ha (0.02 %) and 15 794 ha 

(6.79 %) respectively. This indicates that a large amount of bare land transformed into built-

up land with a value of 45 201 ha (19.42 %) whilst the least transformation was into water 

body with a value of 41 ha (0.02 %) between the period of 2011 and 2014. 

The total land covered by estates was an area of 10 610 ha (100 %) where 4 597 ha (43.33 %) 

did not change between the period 2011 and 2014 as shown in table 12 and table 13. It can be 

noted that the class changes for estates to other LULC classes amounted to 6 013 ha (56.67 

%). Land covered by estates also transformed into bare land, forest, built-up, water body and 

agricultural farmland with values of 1 298 ha (12.24 %), 1 421 ha (13.39 %), 923 ha (8.70 

%), 2 ha (0.02 %) and 2 368 ha (22.32 %) respectively. Large amount of land covered by 

estates transformed into agricultural farmland with a value of 2 368 ha (22.32%) whilst the 

lowest transformation was to water body which was 2 ha (0.02 %). 

In table 12 and table 13, it can be seen that forest covered an area of 59 331 ha (100 %) where 

25 357 ha (42.74 %) did not change between 2011 and 2014. It can be noted that during this 

period, the class changes for forest to other LULC classes amounted to 33 974 ha (57.26 %). 

Land covered by forest transformed into bare land, estate, built-up, water body and 

agricultural farmland with values of 19 959 ha (33.64 %), 706 ha (1.19 %), 142 ha (0.24 %), 

256 ha (0.43 %) and 12 910 ha (21.76 %) respectively. The largest value of transformation 

was that of forest into bare land with a value of 19 959 ha (33.64 %) and the lowest was into 

built-up with a value of 142 ha (0.24 %).  

The land covered by built-up in 2011 was 59 009 ha (100 %) where 35 335 ha (59.88 %) did 

not change between the period 2011 and 2014 as shown in table 12 and table 13. It can be 

noted that the class changes for built-up to other LULC classes amounted to a value of 23 674 

ha (40.12 %). During the period of 2011 and 2014, land covered by built-up transformed into 

bare land, estate, forest, water body and agricultural farmland with values of 18 293 ha (31.00 

%), 610 ha (1.03 %), 26 ha (0.04 %), 15 ha (0.03 %) and 4 730 ha (8.02 %) respectively. It is 

clear that the most significant transformation of built-up was to bare land with a value 18 293 

ha (31.00 %) and the lowest was to water body with a value of 15 ha (0.03 %). 
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Water bodies covered land of a value of 291 ha (100 %) where 271 ha (93.11 %) did not 

change from the year 2011 to 2014 as shown in table 12 and table 13. The class change for 

the water body class to other LULC classes was 20 ha (6.90 %). The land covered by water 

bodies transformed into bare land, estate, forest, built-up and agricultural farmland with 

values of 17 ha (5.75 %), 0 ha (0 %), 0 ha (0 %), 3 ha (1.14 %) and 0 ha (0 %) respectively. 

The greatest transformation for water body was into bare land with a value of 17 ha (5.75 %). 

The lowest can be observed in table 12 and table 13 that it was from water body to estate, 

forest and agricultural farmland where all the values were 0 ha (0%).  

4.2. Evaluating Future LULC Changes in Chipinge District using Cellular Automata 

Markov Chain Analysis (CA MCA) Modeller 

The modelling of future LULCC was done using the MCA and the CA MCA. The MCA 

modeler was used to predict the future scenarios of LULC changes based on the state of the 

changes observed in 2014 and the transitional probability areas between 2000 and 2014. Both 

the transitional probability area and the spatial transitional probabilities as shown in figure 2 

were used as input to the CA MCA module where the 2014 LULC image was used as the 

base image.  

The conditional probabilities for estate, built-up, bare land, waterbody, forest and agricultural 

farmland were calculated using the images from when the FTLRP was enacted in 2000 up to 

the year 2014. The conditional change probabilities as shown in table 14 below indicate 

varying probabilities of changing for all land use and land covers. Bare land and forest 

showed high probabilities of remaining unchanged (53 and 43 % respectively). It is also 

shown that the highest probability of agricultural farmland transition was to estate with a 

value of 30 %. Waterbody recorded the lowest probability of transition (0 %) into any other 

LULC with a value of 9 % remaining unchanged. 
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Table 14: Conditional probability of LULC class changing to any other classes 

Conditional probability of being any other class 

 

Given probability of 

transitioning to: 

ES BU BL WB F AF 

ES 0.06 0.03 0.38 0.00 0.23 0.30 

BU 0.05 0.35 0.49 0.00 0.01 0.10 

BL 0.02 0.36 0.53 0.00 0.01 0.07 

WB 0.04 0.05 0.67 0.09 0.08 0.07 

F 0.01 0.01 0.43 0.00 0.43 0.12 

AF 0.01 0.10 0.61 0.00 0.04 0.24 

Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm. 

4.2.1. Spatial Distribution of Probabilities for LULCC 

The spatial distribution of transitional probabilities as illustrated in figure 6 below shows the 

probability of each cell changing to any other LULC classes. The spread of transitional 

probabilities decreased as the distance from the feature class increased. The probability of a 

cell that is currently occupied by forest being waterbody after 14 years will be high in cells 

already occupied by forest than in cells occupied by waterbodies, estate, agricultural 

farmland, built-up and bare land, and the probability will decrease as the distance from the 

forest land increases. Figure 6 below shows the spatial distribution of transitional 

probabilities of all the LULC classes that were used in this study. These LULC classes are: 

estate, built-up, bare land, waterbody, forest and agricultural farmland.   
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Figure 6: Spatial distribution of transitional probabilities of each LULC class.
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High probabilities were observed in bare land transitioning to waterbody and agricultural 

farmland with values of 67 % and 61 % respectively as shown in table 14. The high 

probability of transition of bare land into waterbody will happen as a result of water sources 

such dams and rivers expanding into nearby areas by the year 2028. Bare land has also a high 

transition value into agricultural farmland as farmers will probably increase their farming 

land into areas which were bare. The whole district of Chipinge has high probability of land 

transition into bare land as shown in figure 6. There is less probability of land transition into 

bare land in areas covered by estates and forests. The eastern and southern part of the district 

exhibited more areas with high probabilities of land transitioning to estate land. In the eastern 

part of the district, functioning estates will expand into its neighbouring areas. There is also 

high probability of land transitioning to built-up which was observed in the southern and in 

the western part of the district while there are low probabilities of transitioning to agricultural 

farmland in the same areas of the district. The high probability in transitioning to built-up is 

caused by population increase in the district and the low probability of transitioning into 

agricultural farmland is as a result of shrinking in size of land holdings and a decline in land 

productivity. This is supported by Chifamba and Mashavira (2011) who state that as a 

consequence of high population growth rate in Chipinge district, land holdings shrink in size 

and there is also a decline in land productivity which in the end results in poverty increase 

and out-migration. 

There are low probabilities of transition into forestry mostly in the southern and western parts 

of the district. High probabilities of transition into forests were observed in areas currently 

occupied by forests or in areas with estate farms which are located in the eastern part of the 

district as shown in figure 6. Figure 6 also shows that there was low probability of LULC 

transition to waterbody for the whole district with a bit of higher probabilities of transition in 

the north-eastern part of the district. The higher probabilities of transition into waterbody are 

in eastern part of the district as these are the areas where most waterbodies are currently 

located meaning that there will be expansion of these features. 

4.2.2. Simulated Land Use and Land Cover Changes: 2014 – 2028 

The CA Markov module was ran in IDRISI Selva using the 2000 and 2014 classified images, 

LULC suitability and LULC probability images and this predicted a number of scenarios in 

LULCC from 2014 to 2028. The model predicted that land covered by forests will decrease 

by 7 509 ha (1.69 %) as shown in table 15 and table 16 whilst the amount of land covered by 

built-up will increase by 31 116 ha (7.02 %) from the year 2014 till 2028. Bare land would 
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increase by 0.22 % (1006 ha) by the year 2028 as illustrated in table 15 and table 16. This 

will happen at the expense of agricultural farmland which will decrease by 5.48 % from 71 

350 ha in the year 2014 to 47 061 ha in 2028 as shown in table 15 and 16. The amount of 

land covered by estates will slightly increase by 3 ha from 9 655 ha in 2014 to 9 658 ha by 

the year 2028 as shown in table 15. Waterbodies are expected to decrease by 327 ha (0.08%) 

within the years 2014 and 2028 as illustrated in table 15 and table 16 below. 

Table 15: Projected status of LULC changes by the year 2028 in hectares (ha) 

LULC 2014 (ha) Projected - 2028 (ha) Change in ha (2014 - 2028) 

ES    9 655     9 658       3 

BU  84 039 115 155 31116 

BL 248 467 249 473   1006 

WB      600      273   -327 

F 29 365 21 856  -7509 

AF 71 350 47 061 -24289 

Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm.  

 

Table 16: Projected status of LULC changes by the year 2028 in percentage (%) 

LULC 2014(ha) Projected percentage for 2028 Percentage change (2014 - 2028) 

ES 2.18    2.18 0.00 

BU 18.95 25.97 7.02 

BL 56.03 56.25 0.22 

WB 0.14  0.06 -0.08 

F 6.62  4.93 -1.69 

AF 16.09 10.61 -5.48 

Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm. Percentage figures rounded off to two decimal places. 

4.2.3. Spatial Distribution of Simulated Changes: 2028  

Figure 7 indicates that the major LULC changes are expected to be mostly in the southern 

part of the district where there will be an increase in built-up areas. This increase will be as a 

result of population growth, which has been increasing even after the enactment of the 

FTLRP in 2000. The southern part of Chipinge district has biodiversity loss since the 
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enactment of the FTLRP in 2000 and this is due to the increase in population growth, 

political and socio-economic problems (Chibisa et al., 2010). There will be a slight increase 

in the amount of bare land, which covers the western and southern part of the district as 

shown in figure 7; this will be at the expense of forest and agricultural farmland. The increase 

in bare land will be as a result of deforestation, which will result in a reduction in land, 

covered by forest and also due to low production in agricultural farms in the district. This is 

supported by Zamuchiya (2011) who states that in Chipinge district there has been a high rate 

of deforestation and low productivity in the agricultural farmlands since the enactment of the 

FTLRP in 2000. The estate land will remain stable even though it will increase its cover in 

the eastern part of the district as illustrated in figure 7. An explanation which may result in 

the amount of estate land remaining stable may be due to a reason that the land that was not 

taken during the course of the FTLRP will remain in the farmer’s hands where production 

will not be affected. The results of the model showed that the distribution of waterbodies 

remained the same but their capacity and area will continue to deteriorate as shown in table 

15.  
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Figure 7: CA Markov projected LULC for 2028. 
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4.3. Rainfall and Temperature for Chipinge District 

Annual rainfall and temperature mean values from the year 1992 to 2014 were taken from 

Chipinge weather station with WMO ID number:  67983. The values were derived from the 

GSOD on the NOAA website. The annual mean rainfall and temperature values for Chipinge 

district from the year 1992 to 2014 are shown in table 17 below. 

Table 17: Annual mean rainfall and temperature values for Chipinge district from 1992 to 2014  

Year Annual rainfall mean (mm) Annual temperature mean (ºC) 

1992  325.80 20.61 

1993  925.90 18.72 

1994 1020.60 21.52 

1995  846.40 24.00 

1996 1231.20 18.01 

1997 1480.50 22.23 

1998  699.50 20.44 

1999 1286.80 19.74 

2000 1910.10 17.03 

2001 1180.00 23.09 

2002 1050.58 20.22 

2003 1205.30 21.35 

2004  782.91 22.24 

2005 1128.76 20.55 

2006  529.15 21.32 

2007  850.00 19.22 

2008  804.43 20.31 

2009  863.40 21.74 

2010  745.20 20.36 

2011  900.00 20.35 

2012  932.60 21.26 

2013  803.30 20.79 

2014  822.00 21.08 
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One sample t-tests were carried out for both the annual mean rainfall and temperature from the 

year 1992 to 2014.The one sample t-tests were carried out so as to see how variability in annual 

rainfall and temperature played a part in the causing LULCC in Chipinge district from the year 

1992 to 2014.  

4.3.1. Summary Statistics for Annual Mean Rainfall and Temperature  

The summary statistics of the mean annual rainfall and the mean annual temperature are shown 

in table 18 below.  

Table 18: Summary statistics for annual mean rainfall and temperature for Chipinge district 

Variable Mean Standard deviation Min Max N 

Rainfall  970.63 326.21 325.80 1910.10 23 

Temperature   20.70     1.55   17.03     24.00 23 

 

The values for both annual mean rainfall and temperature were 23 from the year 1992 to 2014 as 

illustrated in table 18 above. The maximum mean annual rainfall amount was 1910.10 mm 

whereas the minimum annual mean rainfall was 325.80 mm. The mean rainfall amount for the 23 

years (1992 to 2014) was 970.63 mm. Table 17 shows that four years before the enactment of the 

FTLRP in 2000 had values above the mean. These years are 1994, 1996, 1997 and 1999. The 

remaining four years before the FTLRP had values that are below the mean. It can also be seen 

that from the year 2000 when the FTLRP was enacted, five years had values above the mean 

value whereas the other ten years had values which are below the mean. This shows that rainfall 

had been varying over the years and LULCC had been occurring. It is evident that LULCC 

occurred in the district whilst receiving high rainfall or with less rainfall, meaning rainfall did not 

have much impact on LULCC.  

As shown in table 18, the maximum mean annual temperature was 24.00 ºC whilst the minimum 

was 17.03 ºC.  The mean temperature amount for the 23 years (1992 to 2014) was 20.70 ºC. It is 

shown in table 17 that a total of three years before the enactment of the FTLRP in 2000 had 

values above the mean temperature of 20.70 ºC. The remaining five years had values which were 

below the mean temperature for all the 23 years. These years are 1992, 1993, 1996, 1998 and 
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1999 as shown in table 17. It can be noted from table 17 that a total of seven years starting from 

when the FTLRP was enacted in the year 2000 had annual mean temperatures that were above 

the mean. These years are 2001, 2003, 2004, 2006, 2009, 2012 and 2014. The remaining eight 

years had values that were below the mean temperature value. This indicates the variation in 

temperature over the years which show that whether the temperatures were high or low, LULCC 

occurred in the district. 

It is shown in table 18 that the standard deviation for rainfall was 326.21. This standard deviation 

is high showing that the annual mean rainfall values are farther away from the mean, on average. 

This indicates that rainfall varied a lot in Chipinge district at the time when LULCC was 

occurring. The standard deviation for temperature was 1.55 as shown in table 18. This standard 

deviation value is low which means the mean annual temperature values from the year 1992 to 

2014 in Chipinge district were closer to the mean of the whole dataset which is 20.70 ºC. This 

means temperature variation did not play a bigger role in the occurrence of LULCC in Chipinge 

district as there were less variations in annual mean temperatures. 

The average annual rainfall for Chipinge district is approximately 1 105 mm (Dube and Guveya, 

2013). It can be noted from table 17 that only three years that are within the period before the 

enactment of the FTLRP had annual mean rainfall that is above the approximate value of average 

annual rainfall which is 1 105 mm. As shown in table 17, the period before the FTLRP had a 

total of five years which had annual rainfall mean which was less than the approximate annual 

rainfall mean of 1 105 mm. This shows that rainfall varied within the period from 1992 to 1999 

in which LULCC was also occurring. The period starting from time when the FTLRP was 

enacted in 2000 till 2014 had a total of four years which had an annual rainfall mean which was 

above the approximate annual rainfall mean of 1 105 mm as noted from table 17. The remaining 

eleven years had annual mean rainfall values which were below the approximate average annual 

rainfall amount of 1 105 mm. This shows that most annual rainfall amounts were below the 

approximate figure of 1 105 mm. This means that rainfall did not play a huge impact in 

promoting the occurrence of LULCC in the district. 

In Chipinge district, the mean annual temperature is 21 ºC and with significant frost occurrences 

occurring in the months of June and July (Masaka and Khumbula, 2007). It is shown in table 17 

that a total of three years before the enactment of the FTLRP had values that were above the 
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mean annual temperature of 21 ºC. These years are 1994, 1995 and 1997.The other five years 

before the enactment of the FTLRP had values that were below 21 ºC. The period starting from 

the year when the FTLRP was enacted in 2000 had seven years that were above the annual mean 

temperature of 21 ºC. The other eight years after the enactment of the FTLRP had values that 

were below the annual mean temperature of 21 ºC. This indicates that values for both before and 

after the enactment of the FTLRP varied. This shows that temperature variability did not have 

much impact on LULCC in the district as it occurred under these conditions. 

4.3.2. One sample t-test for mean annual rainfall  

A single sample t-test was carried for both mean annual rainfall and temperature values from the 

year 1992 to 2014. The t-test was done for the annual mean rainfall and temperature values 

against hypothesized annual means. 

A one sample t-test for mean annual rainfall was conducted in which a value of 1 105 mm was 

put as the hypothesized mean. The results of the t-test are shown in table 19 below. 

Table 19: One sample t-test for mean annual rainfall 

  Test Value = 1 105 

t df Std. Error 

Mean 

Pr (|T| > | t|) 95  % Confidence Interval 

Lower Upper 

Annual 

mean 

rainfall 

-1.98 22 68.02 0.06 829.56 1 111.69 

  

Hypothesis 

H0: µ = 1 105 

Ha: µ ≠ 1 105 

As shown in table 19 above, the t statistic is -1. 98 and it measures the degree of agreement 

which is between a sample of data analysed and the null hypothesis (McDonald and Dunn, 
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2013). The degrees of freedom for the test is 22 which is the total number of valid observations 

minus 1. The standard error mean is 68.02 and this represents the estimated standard deviation of 

the sample mean. The Pr (|T| > |t|) is 0.06 which is greater than the level of significance (0.05), 

therefore we fail to reject the null hypothesis at 95 % confidence level. The 95 % confidence 

interval (829.56; 1 111.69) contains the value of 1 105 (test value) which means the null 

hypothesis cannot be rejected. There is a 95 % chance that the confidence interval calculated 

contains the true population mean of 1 105 mm. This means that the annual rainfall mean is not 

significantly different from the test value of 1 105. This shows that there wasn’t much variation 

in annual rainfall mean which illustrates that rainfall did not play a huge part in LULCC but 

other factors such as the FTLRP.  

4.3.3. One sample t-test for annual mean temperature 

A one sample t-test for annual mean rainfall was conducted in which the mean annual 

temperature of 21 ºC was put as the hypothesized mean. Table 20 below shows the results of the 

one sample t-test carried out for mean annual temperature of Chipinge district from the year 

1992 to 2014. 

Table 20: One sample t-test for annual mean temperature 

 Test Value = 21 

t df Std. Error 

Mean 

Pr (|T| > | t|) 95  % Confidence Interval 

Lower Upper 

Annual mean 

temperature 

-0.92 22 0.32 0.36 20.03 21.37 

 

Hypothesis 

H0: µ = 21 

Ha: µ ≠ 21 

As shown in table 20, that the t statistic is -0. 92 and this is the ratio of the mean of the difference 

to the standard error of the difference. The degrees of freedom for the test is 22 which is the total 
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number of valid observations minus 1. The standard error mean is 0.32 which represents the 

estimated standard deviation of the sample mean. The Pr (|T| > |t|) is 0.36 which is greater than 

the level of significance (0.05), therefore we fail to reject the null hypothesis at 95 % confidence 

level. The 95 % confidence interval (20.03; 21.37) contains the value 21 which means that the 

null hypothesis cannot be rejected. There is a 95 % chance that the confidence interval calculated 

contains the true population mean of 21 ºC. This means that the annual temperature mean is not 

significantly different from the test value of 21. This shows that there wasn’t much variation in 

annual temperature mean which illustrates that temperature did not play a huge part in LULCC 

in Chipinge district. This illustrates that the FTLRP played a major role in LULCC in the district 

from the year 1992 to 2014.  

4.4. Discussion 

This discussion is based on the change detection statistics that were acquired by looking at 

changes in two classified images which are 1992-2000; 2000-2006; 2006-2011 and the 2011-

2014 images. Rainfall and temperature variation did not have much effect on the occurrence of 

LULCC in Chipinge district. The study findings show that there were notable LULCC in the 

district particularly after the enactment of the FTLRP in the year 2000. In the previous sections, 

each of the research questions is evaluated as explained below:  

 

Research Question: 1: How much land use and land cover change has occurred between 1992 

and 2014?  

Change detection analysis done on the five Landsat images shows some notable changes. The 

results indicate that the LULCC was significant in Chipinge district from the year 1992 to 2014.  

Summary of LULCC in the district from 1992 up to 2014 is shown in table 21 below: 
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Table 21: Summary of LULC changes in Chipinge district for the period of 1992-2000,                     

2000-2006, 2006-2011 and 2011-2014  

 1992 - 2000 2000 - 2006 2006 - 2011 2011 - 2014 

LULC class % % % % 

BL 0.29 13.07 -3.34 3.55 

ES 6.80 -4.89 -2.35 -0.21 

F -5.28 5.13 3.14 -6.76 

BU -9.04 0.73 5.58 5.64 

WB -2.10 -0.82 -0.07 0.07 

AF 9.33 -13.22 -2.95 -2.29 

Note: BL = Bare land, ES = Estate, F = Forest, BU = Built-up, WB = Water body, AF = Agricultural 

farm. Percentage figures rounded off to two decimal places. 

 

In table 21 above, the negative and positive sign shows decrease and increase in relation to the 

LULC class for the time period specified. 

 

In table 21, it can be noted that in the period 1992 to 2000, agricultural farm area increased by 

9.33 % whilst forest, built-up and water body decreased by a value of 5.28 %, 9.04 % and 2.10% 

respectively. The increase in agricultural farmland and estate land during this period was as a 

result of the introduction of the 1992 Land Acquisition Act which removed the “willing seller, 

willing buyer” clause. This is supported by Madhuku (2004) who states that the Land 

Acquisition Act demolished “prompt and adequate” compensation measure with the one on fair 

compensation which had less market value than the willing seller, willing buyer principle. This 

led agricultural farm and estate land to increase in the country hence might have led to the 

transformation of some forests and water bodies in Chipinge district. The decrease in built-up 

areas might have been led by the point that some of the people being resettled in the district 

under the Land Apportionment Act were not allowed to build permanent residences in the land 

they were being allocated. This is supported by Human Rights Watch (2002) stating that farmers 

who were allocated land after the Land Apportionment Act of 1992 were told not to build 

permanent shelters.  
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The period between 2000 and 2014 saw an increase in the amount of bare land between the years 

2000 to 2006 (13.07 %) and 2011 to 2014 (3.55 %) as shown in table 21. The amount of bare 

land decreased by 3.34 % within the years 2006 and 2011 and then increased within the 2011 and 

2014 era as shown in table 21. During this period, the amount of land covered by agricultural 

farms decreased by 13.22 % during 2000-2006, 2.95 % (2006-2011) and 2.29 % (2011-2014) as 

shown in table 21. The decrease in the amount of land covered by agricultural farmland 

decreased at the expense of bare land and built-up land. The decrease in agricultural farm and an 

increase in bare land might have been caused by less agricultural activity in the land acquired 

during the FTLRP in 2000 and also the invasion of some of the protected forests during the 

programme. There was a drop in agricultural production in farms acquired during the FTLRP 

which was as a result of farm disturbances (Masiiwa, 2004). As shown in table 21, there was an 

increase in the amount of land covered by forest and built-up area where they rose by 5.13 % and 

0.73 % respectively. The amount of land covered by built-up increased from the year 2000 to 

2014 as shown in table 21. The increase in built-up areas in this period was as a result of a rise in 

population where houses were being built in the district. There has been population increase in 

all the districts in Zimbabwe since the population census done in the year 1992 (C.S.O, 2012).  

 

Results of this assessment contribute to the LULCC literature, as it extends the understanding of 

LULCC trajectories and landscape fragmentation before and after the FTLRP of 2000. This 

study is aligned with the findings of Matsa and Muringaniza (2011) who noted LULCC in 

Shurugwi district between the year 1991 and when the FTLRP was enacted in the year 2000 in 

Zimbabwe. Both studies noted a decrease in water bodies and an increase in agricultural farm 

land and bare land. However, these studies differed in the classes used where Matsa and 

Muringaniza (2011) had vegetation and degraded whilst this study had built-up, forest and estate, 

hence results were not the same. This study also differs with other existing studies as it is the 

first to undertake such detailed LULCC analysis in Chipinge district. 

 

Research Question 2: What are the impacts of the FTLRP of 2000 on LULCC in Chipinge 

district?  

The question was responded to by looking at the change detection statistics starting from the year 

when the FTLRP was enacted that is the year 2000 till 2014. 
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From the year 2000 to 2014, agricultural farmland decreased in size. As shown in table 21 above, 

agricultural farmland decreased by 13.22 % (2000-2006); 2.95 % (2006-2011) and 2.29 % 

(2011-2014). When agricultural farmland decreased in 2000-2006 and 2011-2014, there was an 

increase in bare land during these periods with values of 13.07 % (2000-2006) and 3.55 % 

(2011-2014). Land covered by estates in the district decreased since the start of the FTLRP. This 

land decreased by 4.89 % (2000-2006); 2.35 % (2006-2011) and 0.21 % (2011-2014). This was 

caused by the farm disturbances, lack of farm workers and farm inputs in the newly resettled 

farms. This is supported by Madhuku (2004) who states that after the FTLRP of 2000 there was a 

drop in agricultural production due to several reasons which include farm disturbances, lack of 

capital to purchase farm inputs and massive unemployment as most of the farms stopped 

employing farm workers. This is also supported by Chiremba and Masters (2003) who state that 

newly resettled farmers do not have enough farm equipment, capital to support farming 

activities, agricultural education and experience. 

 

The period after the FTLRP in 2000, land covered by estates also decreased as noted in table 21 

above. The land covered by estates decreased by 4.89 % (2000-2006), 2.35 % (2006-2010) and 

0.21 % (2011-2014). The decrease could also have led to an increase in the amount of bare land 

in the district as shown in table 21 that bare land increased by 13.07 % (2006-2010)  and 3.55 % 

in 2011-2014). The decrease in estate land was due to less farming activities as most foreign 

investors who owned farming estates left the country as they were chased away by the ruling 

Zimbabwe African National Union – Patriotic Front (ZANU-PF) party. Foreign investors were 

also worried about the government’s land reform policy which eroded the rule of law and also 

undermined the security of property rights. This is supported by KPMG (2012) who argue that 

the uncertainty of the domestic political environment in Zimbabwe tends to amplify risks for 

foreign investors to come into the country and pursue agricultural activities. The decrease in land 

covered by agricultural farms was also as a result of low farming activities due to lack of 

knowledge and machinery amongst the newly resettled farmers to produce cash crops which 

covered a huge area before the FTLRP of 2000. The newly resettled had to resort to subsistence 

farming where they grew food crops which covered smaller areas as compared to the cash crops 

grown before the FTLRP. This is supported by Zamuchiya (2011) who states that in Chipinge 

district, there is a new trajectory from growing cash crops to food crops and this is caused by the 
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need for food consumption at household level, less knowledge on cash crop production and also 

the lack of adequate farming production technology.  

 

Since the start of the FTLRP, the area covered by built-up increased as noted in table 21 above. 

Built-up increased by 0.73 % (2000-2006), 5.58 % (2006-2011) and 5.64 % (2011-2014). The 

increase in the land covered by built-up could have led to a reduction in agricultural farmland as 

it decreased during this period. The increase in built-up areas was as a result of population 

growth where more houses were built which also included structures in the newly resettlement 

farms. This supported by Zamuchiya (2011) who states that from the year 2000, there has been 

an increase in black farmers occupying former white commercial farms in the district where they 

build shelter to stay in. 

 

When the FTLRP started, area covered by forest increased up to the year 2011. This is shown in 

table 21 above that area covered by forest increased by 5.13 % (2000-2006) and 3.14 % (2006-

2011). The area covered by forest decreased between the years 2011 and 2014. This was due to 

deforestation where newly resettled farmers cut down trees even in protected forests for various 

uses which include expansion of arable land, need of fuel wood and construction poles, and 

expansion of the urban area. This is supported by Njaya and Mazuru (2014) who state that the 

reason why deforestation has increased after the FTLRP in resettled farms include the need for 

farm expansion, home construction, firewood, cattle pens, sale in towns as fuel, domestic use, 

tobacco drying, hunting and gold panning.  

After the enactment of the FTLRP in 2000, the land covered by water bodies decreased till the 

year 2011 as shown in table 21 above. The land covered by water bodies decreased by 0.82 % 

(2000-2006) and 0.07 % (2006-2011). The decrease in the land covered by water bodies might 

be as a result of the farming methods of the newly resettled farmers which led to the siltation of 

rivers. The siltation of rivers might have been as a result of bad farming methods and lack of 

conservation. This is supported by Zembe et al. (2014) who state that after the FTLRP in 

Zimbabwe, bad farming practices and utilization of natural resources to support their livelihoods 

has negative impacts on the environment which include deforestation and the siltation of rivers. 
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The area covered by water bodies increased by 0.07% within the period of 2011-2014 as shown 

in table 21 above.  

On the question of the impact of the FTLRP of 2000 on LULCC in Chipinge district, the study 

observed that there was a decrease in the amount of land covered by agricultural farms and 

estates. These findings align with a study done by Lidzhegu and Palamuleni, 2012 who noted a 

decrease in agricultural cropland from 78.04 ha in 1994 to 20.43 ha (2007) on their study on land 

use and land cover changes as a consequence of the South African land reform program. The 

results of this study differ with those of Matsa and Muringaniza (2011), in that they noted a rise 

in cultivated land from the year 2000 (25.2 %) to 2009 (26.6 %) in Shurugwi district. These 

results differ with the ones of this study as they noted a decrease in agricultural farm land from 

34.55 % in 2000 to 16.09 % in 2014. 

 

Research Question 3: Can Landsat earth observation data be used to quantify land use and 

land cover changes as a result of the FTLRP policy? 

This study showed that Landsat earth observation data can be used in quantifying LULCC that is 

as a result of the FTLRP. In the study Landsat earth observation data was analysed using change 

detection analysis in ENVI 5.2 software, which identified, described and quantified the 

differences on two images of an identical scene at times which are different (Harris geospatial 

solutions, 2016). Change detection statistics were produced from the year 2000 when the FTLRP 

was enacted. The researcher used tables to show differences between two classified images. The 

images were for the years starting from the period when the FTLRP was enacted in 2000 up to 

2014. These images were for the years: 2000, 2006, 2011 and 2014. The change detection 

statistics also showed class-for-class image difference from the classified Landsat image, which 

focused primarily on classification of the initial state so as to see how the pixels transformed in 

the image of the final state. The change detection statistics indicated how the FTLRP resulted in 

LULCC in Chipinge district by looking at the changes on the classified Landsat images from the 

year 2000 up to 2014. Satellite remote sensing, which includes Landsat earth observation data is 

the commonly used data source in the detection, mapping and quantification of LULC patterns 

with data acquisition which is repetitive and georeferencing procedures which are accurate (Lu et 

al., 2004). The change detection statistics report in this study for all the images including the 
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ones starting from the year when the FTLRP was enacted in 2000 shows LULCC in hectares and 

percentages. 

 

The findings of this research noted that Landsat earth observation data can be used in quantifying 

LULCC as a result of the FTLRP.  These findings align with those for Matavire et al. (2015) 

who assessed the role of the FTLRP of 2000 on LULCC in Quagga Pan Ranch, Zimbabwe using 

Landsat images for the years 1989 and 2000. The results from the study align with this research 

in that they both observed the use and importance of Landsat observations in quantifying 

LULCC as a result of the FTLRP of 2000 in Zimbabwe. The findings of this study differ with the 

ones for Matavire et al. (2015) on the objectives of the study where Matavire et al. (2015) tested 

if there were significant differences in species diversity and also on tree species. The findings are 

different from the ones of this study as it focused on six classes which are estate, waterbody, 

forest, built-up, bare land and agricultural farm land. 

 

Research Question 4: What will be the state of the land use and land cover in the year 2028 in 

Chipinge District under the current FTLRP policy? 

In this study, historical and current Landsat earth observation data was used to measure and 

monitor the changes in landscape parameters. The state of the LULC in the year 2028 shows that 

there will be a decrease in land covered by water bodies, forests and agricultural farms as shown 

in table 15 and table 16. Between 2014 and 2028, the land covered by waterbodies will decrease 

by 0.08 %, forest (1.69 %) and agricultural farmland (5.48 %) as illustrated in table 16. The 

decrease in the amount of land covered by forest and agricultural farmland will be as a result of 

increasing deforestation rates and less farming activities in the farming lands. As shown in table 

16, by the year 2028 there will be an increase in the amount of land covered or used for built-up 

(7.02 %) and bare land (0.22 %). The increase in the built-up area will be as a result of increasing 

population growth in the district. During this period in time the amount of land covered by estate 

will have a slight increase of 3 hectares as shown in table 15.  

By the year 2028, the built-up areas will be mainly in the north-western and southern part of the 

district. Bare land will cover mainly the southern and western part of the district as shown in 

figure 7. The land covered by forest will be mainly in the north eastern part of the district. The 
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land with estate farms by the year 2028 will cover the north eastern part of the district as shown 

in figure 7. By the year 2028, the land covered by agricultural farmland will cover mainly the 

eastern part of the district. Waterbodies will cover mostly the eastern part of the district in the 

year 2028. 

The findings of this research are aligned to the ones by Kamusoko et al. (2009) who simulated 

LULCC (up to 2030) in the Masembura and Musana communal areas of the Bindura district, 

Zimbabwe based on the Markov-cellular automata model which combines MCA and cellular 

automata models. Both studies used satellite images before and after the implementation of the 

FTLRP of 2000 where Kamusoko et al. (2009) used the ones for 1973, 1989, 2000 and 2005. 

The findings from both studies show an increase in the amount of bare land and a decrease in 

agricultural areas. However, the findings of these studies differ in that the study by Kamusoko et 

al. (2009) produced projection for the year 2030 whilst the ones for this study are for the year 

2028.  

4.5. Limitations of the Research 

Despite the favorable findings and timely completion of this research, a number of limitations 

were faced in the process. Some of them are:  

 

i. Absence of consistent multi-temporal Landsat earth observation data from the same 

season in all the targeted years which would have permitted change analysis with 

consistent time intervals.  

ii. The use of Landsat images with different spatial resolution led to the resampling of the 

1992 image from 60 meters to 30 meters so as to match with the ones for the years 2000, 

2006, 2011 and 2014. The limitation is that the total area of the district from the 1992 

MSS image was greater than those of the TM, ETM+ SLC on and OLI/TRS images by 18 

hectares.  

iii. Inadequate access to different aerial photos with full coverage of the district from several 

years to collect training samples from the study area generated a limitation on visual 

interpretation and the classification process.  

iv. Inconsistency in geo-referencing Landsat images and also the local datum. A lot of time 

was consumed in making the data formats of different layer files consistent. 
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v. The absence of socio-economic data, high resolution imageries like WorldView-3 

GeoEye-2 and other ancillary data hindered the production of more accurate results.  
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CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS 

This final chapter consists of the conclusions and recommendations of this study. The analysis of 

Landsat earth observation data gave quantification and projection results which provided an in-

depth understanding of LULCC in Chipinge district. 

5.1. Conclusions 

In this study, five Landsat images were used to quantify the impact of the land reform 

programme on LULCCs in Chipinge district. The use of Landsat earth observation data with GIS 

and remote sensing techniques was found to be useful in quantifying the changes on LULC from 

the year 1992 to 2014 in Chipinge district. The change detection techniques were used to detect 

LULCC and analysis was done so as to see spatiotemporal LULC dynamics. These techniques 

were used so as to see the impact of the FTLRP on LULCC in Chipinge district. The analysis of 

Landsat observations focused on change patterns and transitions over a 22-year period and 

divided into the following two levels: (1) before the FTLRP to the year it began (1992 – 2000), 

(2) after enactment of the FTLRP (2000 – 2014). The Markov chain analysis and the CA Markov 

model were used in predicting LULCC in the year 2028 in Chipinge district. The results were 

obtained and the main objective and sub objectives were achieved. In relation to the objectives, 

the research questions were answered based on the results that were obtained and analysis done. 

The following conclusions are drawn from this study: 

i. The amount of LULC that occurred in Chipinge district between 1992 and 2014 was 

acquired in this study. The LULCC in the district from the year 1992 to 2014 shows that 

the amount of area with bare land increased as shown by the increase percentage of land 

cover from 42.46 % in 1992, 42.75 % in 2000, 55.82 % in 2011 and 56.03 % in 2014. 

The amount of land covered by agricultural farmland rose from 1992 to 2000. There was 

a rise from 25.22 % in 1992 to 34.55 % in 2000. It then declined from the year 2000 up to 

2014. During this period, there was a decline of 13.22 % from the year 2000 to 2006, 

2.95 % (2006-2011) and 2.29% (2011-2014).  

The amount of land covered by estates rose by 6.80 % from the year 1992 to 2000 as it 

was 2.83 % in 1992 to 9.63 % in 2000. The amount of land covered by estates declined 
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from the year 2000 up to 2014. The amount declined from 9.63 % in 2000 to 2.18 % in 

the year 2014.  

Land covered with forests declined from the year 1992 to 2000. This amount declined 

from 10.39 % in 1992 to 5.11 % in 2000. The land covered by forestry however increased 

to 10.24 % in 2006 from 5.11 % in the year 2000. There was a further increase from 

10.24 % in 2006 to 13.38 % in the year 2011. The 2011 amount declined to 6.62 % in 

2014 which represents a reduction of 6.76 %.  

There was a decrease in the amount of land covered by water bodies in Chipinge district 

from the year 1992 up to 2014. This amount declined from 3.06 % in 1992 to 0.14 in the 

year 2014.  

The built up area decreased from 16.04 % in 1992 to 7 % in the year 2000. The amount 

of land covered by built up increased from the year 2000 to 2014. The amount increased 

from 7 % in 2000 to 18.95 % in 2014.  

ii. The impact of the FTLRP of 2000 on LULC in Chipinge district was observed in this 

study. The classified images for the years after the enactment of the FTLRP (2000, 2006, 

2011 and 2014) show that there was LULCC in Chipinge district where there was a 

reduction in the amount of land covered by agricultural farms, water bodies and estates 

from the year 2000 to 2014. The amount of agricultural farmland decreased from 34.55 % 

in the year 2000 to 16.09 % in 2014. The land covered by water bodies in the district also 

decreased after the start of the FTLRP from 0.96 % in the year 2000 to 0.14 % in 2014. 

The land covered by estate also decreased from 9.63 % in 2000 to 2.18 % in 2014. The 

FTLRP also led to an increase in the amount of land covered by built up, forests and bare 

land from the year 2000 to 2014. The amount of land covered by built up increased to 

18.95 % in 2014 from 7.00 % in the year when the FTLRP was commenced in 2000. 

Land covered by forests also increased after the start of the FTLRP from 5.11 % in 2000 

to 6.62 % in the year 2014. The other impact of the FTLRP on LULCC in Chipinge 

district was that there was an increase in the amount of bare land from 42.75 % in the 

year 2000 to 56.03 % in 2014.  
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iii. Landsat earth observation data can be used to quantify LULCC as a result of the FTLRP 

policy as shown in this study. This study shows the LULCC in terms of hectares and even 

in percentage. Landsat earth observation data shows LULCC with the use of change 

detection methods and other GIS and RS techniques to come up with results which are 

more accurate. This study used change detection techniques from ENVI 5.2 software with 

Landsat earth observation data to quantify the impact of the FTLRP on LULCC in 

Chipinge district and produced results which are accurate as reflected by the accuracy 

assessment that was undertaken. 

 

iv. The projection results of the MCA and CA MCA indicate the state of LULC in 2028 both 

spatially and quantitatively in Chipinge district. There will a huge increase in the built-up 

area where it will grow by 7.02 % from the year 2014. This increase will be as a result of 

increasing population growth in the district where people will be building houses to stay 

in. The amount of bare land will also increase with a value of 0.22 % by the year 2028. 

During the period between 2014 and 2028, there will be a slight increase in the amount of 

estate land where it will rise by an amount of 3 hectares. There will be a decline in the 

amount of land covered by water bodies (-0.08 %), forest (-1.69 %) and agricultural 

farmland (-5.48 %). The decrease in the amount of agricultural farmland in the district 

will be due to low agricultural activities in the farms that were acquired during the 

FTLRP. The projected LULC for the year 2028 indicate that estate and bare land will 

cover mostly the western side of the district whereas agricultural farmland and forests 

will mostly cover the eastern part of the district. There will be an increase in the amount 

of built-up area from 2014 to the year 2028 and it will cover mostly the western side of 

the district and this will be due to continuing population growth in the district. 

Waterbodies will cover mainly the eastern part of the district as there will be expansion 

of the current water sources. 

5.2. Recommendations 

i. This study quantified LULCC which has occurred between 1992 and 2014 in Chipinge 

district. The results show that there was a decrease in the amount of land covered by 

forest, water bodies and agricultural farmland. This is coupled with an increase in the 

amount of land covered by built-up areas in the district, which is as a result of an increase 
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in population density. This shows that an increase in population density accelerated 

LULCC dynamics in the district, so as to lessen the pressure of population on LULCC 

and dynamics, resettlement will help. The reduction in the amount of forest cover in the 

district was as a result of deforestation in the district. It would be prudent for better 

remedies to be put in place by the government, companies and Non-Governmental 

Organisations (NGOs) for example prioritise the need to increase the amount of forest 

cover in the district. These remedies include the protection of existing forests in the 

district, planting of trees and the encouragement of individual tree growing etc. 

ii. This study produced results on the impacts of the FTLRP of 2000 on LULCC in Chipinge 

district. In future studies, it would be interesting as an extension of this study to do a 

comparative investigation into LULCC in an environment that was not affected by the 

FTLRP, but with increased population from various causes such as rural-urban migration 

using comparable datasets. This would be vital in identifying whether the FTLRP indeed 

plays a unique role in LULCC, or whether the increase in population is the main driving 

force. Research that explores the relationships between LULCC, socio-economic and 

demographic variables (population, gross agricultural output, per capita GDP) would 

develop understanding of LULCC. These studies will assist in identifying the role of 

socio-economic processes, if any, contribute to LULCC. 

 

iii. This study used Landsat earth observation data to quantify LULCCs as a result of the 

FTLRP policy. In future researches, high resolution images such as World View 3 can be 

used so as to improve the kappa coefficient, overall accuracy, producer and user 

accuracies.   

 

iv. The MCA and CA MCA models were used in the prediction of the state of LULC in the 

year 2028 in Chipinge district under the current FTLRP policy. The LULC prediction for 

the year 2028 in this study indicates that there will be a decrease in agricultural farmland, 

water bodies and forestry. The government and NGOs should put more capital into 

farming, protection of forests and water bodies in the district so as to enhance their 

growth and survival. The prediction also shows that by the year 2028, there will be an 

increase in the built-up area in the district which will be as a result of factors such as 
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population’s continuous growth and development of infrastructure. It is therefore 

recommended that bodies which are concerned such as the government and NGOs like 

health office, population office, agricultural offices, Ministry of Lands and Rural 

Resettlement offices etc. prepare a land use plan which is proper in order to reduce the 

growth of settlement.  The prediction of future LULCC is vital to land use planners in 

terms of planning and implementation of social and economic development programs. I 

also recommend that people in the district be made aware on the importance of utilizing 

lands intensively than using it extensively. Further research should be prepared to achieve 

LULC prediction which is better in the same way by adding information that is 

necessary, data that is applicable and by filling limitations mentioned in the study. 

5.3. Future Research 

This research contributes to the broader understanding of the impact of the land reform 

policies on LULCC. For future comprehensive study of LULCC in Chipinge district, the 

kappa coefficient, overall accuracy, producer and user accuracies can be improved with the 

use of high spatial resolution images such as WorldView and GeoEye. In future researches, 

misclassifications seen in this study can be avoided by using alternative approaches such as 

object-based classification. 

 

In future studies, a research showing a better understanding of LULCC in Chipinge district 

can be done based on a socio-geospatial approach. The research can be done using theories 

such as Malthusian and Boserupian ideas on population and environment. The research can 

also discover the relationships between LULCC, socio-economic and demographic variables. 
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