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ABSTRACT 

Neural networks (NNs) may be characterised by complex error functions with 

attributes such as saddle-points, local minima, even-spots and plateaus. This 

complicates the associated training process in terms of efficiency, convergence and 

accuracy given that it is done by minimising such complex error functions. This 

study empirically investigates the performance of two NNs training algorithms which 

are based on unconstrained and global optimisation theories, i.e. the Resilient 

propagation (Rprop) and the Conjugate Gradient with Polak-Ribière updates (CGP). 

It also shows how the network structure plays a role in the training optimisation of 

NNs. In this regard, various training scenarios are used to classify two protein data, 

i.e. the Escherichia coli and Yeast data. These training scenarios use varying 

numbers of hidden nodes and training iterations. The results show that Rprop 

outperforms CGP. Moreover, it appears that the performance of classifiers varies 

under various training scenarios.  
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CHAPTER 1: STUDY INTRODUCTION 

1.1 Introduction 

This study is about optimising the training of artificial neural networks (ANNs) using 

empirical analysis. Understanding the basic problems faced in neural networks (NNs) 

training is necessary to comprehend the development of this study. Hence, this 

chapter introduces this study by explaining the basics of NNs training optimisation. 

Section 1.2 gives the background and states the problem of the study. The objectives 

of this study are discussed in Section 1.3. Finally, the structure of the report is given 

in Section 1.4. 

 

1.2 Background 

ANNs are techniques that simulate the physiological structure and functioning of 

human brain structures that can model very complex functions (McCulloch and Pitts, 

1943). Based on biological NNs, ANNs are structured as interconnections of nodes 

referred to as artificial neurons, which transmit information between each other. 

Information is transmitted between nodes via synapses (connections between two 

neurons), which store parameters referred to as ―weights‖. These weights quantify 

the strength of the connections and are adjusted in the manipulation of information, 

making ANNs adaptive to inputs and capable of learning (Gershenson, 2001). 

ANNs have been implemented to solve complex classification and prediction 

problems in various areas such as medicine, geology, finance and engineering. 

Basically, the principal task in ANNs is to find an optimal mapping between the 

inputs and outputs of a process by minimising the error between the output and the 

target values of this process. This is achieved by using a training algorithm that
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 minimises the error function of the network (Rosenblatt, 1958; Duda, Hart and 

Stork, 2000).  

Complex networks are likely to have error functions with attributes such as saddle-

points, local minima, even-spots and plateaus that make training of ANNs very 

difficult. The presence of saddle points surrounded by high error plateaus can 

drastically slow down the training process of NNs. The presence of local minima 

creates situations where the training algorithm may be trapped in one local minimum 

instead of converging to the global minimum of the NN error functions; and as a 

result, the predictive and classification accuracies of NNs become very poor 

(Fukumizu and Amari, 1999; Anastasiadis, 2005; Akarachai and Daricha, 2007). 

Thus, the ability of a NN training algorithm to minimise such complex error 

functions is the critical point for the performance of ANNs (Riedmiller and Braun, 

1993; Plagianakos, Magoulas and Vrahatis, 2001b; Magoulas, Vrahatis and 

Androulakis, 1997a; Igel and Husken, 2003). The problem of NNs training is very 

consistent with the problem of unconstrained and global optimisation theory (Livieris 

and Pintelas, 2009). 

In the literature, various learning algorithms have been proposed to enhance the 

ANN’s performance. Batch learning methods such as the back propagation algorithm 

are the most common. In the process of batch learning, the weight parameters are 

updated in the steepest descent direction of the gradient, using different adaptive 

learning rate for each weight (Prasad, Singh and Lal, 2013). However, learning 

algorithms such as the back propagation are characterised by slow training; and they 

do not converge to the global minimum from any starting set of weights. They often 

converge to local minima when training is initialised from a remote point to the 

global minimiser (Magoulas et al., 1997a; Treadgold and Gedeon, 1998; Igel and 

Husken, 2003). Methods based on unconstrained and global optimisation theory, 

which apply the second derivative related information of the error function of NNs to 

speed up the learning process, have been proposed (Battiti, 1992; Moller, 1993; Van 

der Smagt, 1994; Magoulas, Vrahatis and Androulakis, 1997b). However, the extra 

computational cost required by these approaches does not guarantee acceleration of 
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the minimising process for non-convex functions (Nocedal, 1992; Anastasiadis, 

Magoulas and Vrahatis, 2003).  

Other works such as Saurabh (2012), and Sheela and Deepa (2013), have been 

focused on developing methods for designing optimal NNs architecture (i.e., optimal 

number of hidden layers and optimal number of nodes in each hidden layer) to 

accelerate and optimise the training of NNs. While the actual problem being 

addressed by NNs easily gives the number of nodes to be used in the input and 

output layers, determining the optimal number of hidden nodes to be used has proven 

to be a challenging task. If a small number of hidden nodes that is inadequate to deal 

with the complexity of the problem data under study is used, then the NN may not be 

able to effectively fit the underlying pattern or relationship in the data (under-fitting). 

On the other hand, if excessive hidden nodes are used, then the NN may fit the 

underlying pattern and also the noise in the data (over-fitting). Besides, there is no 

consensus on the best approach to apply for determining the appropriate number of 

hidden nodes. It is generally argued that the merit of each approach is problem 

dependent (Lawrence, Giles and Tsoi, 1996; Saurabh, 2012; Sheela and Deepa, 

2013). Hence, empirical analysis using real world data problems may better reveal 

the performance of particular approaches. 

This dissertation investigates empirically how training algorithms and the structure 

(adequate number of hidden nodes) of the network impact the training optimisation 

of NNs. It presents two training algorithms believed to have good convergence 

ability and devised to overcome the drawbacks of the batch back propagation 

algorithm, namely the Resilient propagation (Rprop) algorithm and the Conjugate 

Gradient (CG) algorithm with Polak-Ribière updates (CGP). The Rprop is a Gradient 

Descent (GD) based training algorithm. It is based on the idea of mitigating the 

blurring effect in the adaptation process provoked by the unforeseeable behaviour of 

the size of the partial derivative on the weight update step, in the implementation of 

the back propagation algorithm. If the partial derivative size is too big, the algorithm 

can jump over the minimum of the error function without giving any indication 

(Riedmiller and Braun, 1993). For this reason, the Rprop is designed such that the 

direction of the weight update is only influenced by the sign and not the size of the 
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derivative. The magnitude of weight update is solely controlled by a specific weight 

―update-value‖. The Rprop is one of the best algorithms in terms of accuracy, 

robustness and convergence speed with regard to its learning parameters (Riedmiller, 

1994; Anastasiadis, Magoulas and Vrahatis, 2005; Prasad et al., 2013). The CGP 

algorithm is derived from the CG methods, which are used for large scale nonlinear 

unconstrained optimisation problems. The CGP is devised to converge faster than the 

GD based methods (Sharma and Venugopalan, 2014), and update the weights of the 

NN error function in conjugate directions. The CGP is one of the best performing CG 

algorithms (Jonathan, 1994; Hager and Zhang, 2006; Andrei, 2011; Ioannis and 

Panagiotis, 2012). To determine the adequate number of hidden nodes, this 

dissertation illustrates the use of the ―trial and error‖ method which takes into 

consideration the complexity of the NN application problems. In the ―trial and error‖ 

method, repeated training and checks are done with varying numbers of hidden 

nodes, until the optimal solution is found. 

 

1.3 Objectives 

The main objective of this study is to empirically investigate the capabilities of NNs 

training algorithms which are based on unconstrained and global optimisation theory. 

The aim is to assess their ability to globally minimise and converge, when dealing 

with extremely complex and non-convex error functions which result from NNs with 

many input and output values. Two learning algorithms designed for this purpose are 

considered, namely the Rprop algorithm and the CGP algorithm. Hence, in 

particular, the objectives of this study are as follows:   

1. Implementation and analysis of a GD based training algorithm, specifically 

the Rprop algorithm. 

2.  Implementation and analysis of a CG based training algorithm, specifically 

the CGP algorithm. 



 1.4   Structure of the Dissertation

 

5 

 

3. Performance analysis and comparison of the two proposed training 

algorithms with regard to their efficiency (training speed), robustness 

(minimisation or convergence ability) and accuracy (generalisation ability). 

4. Apply the trial and error method to analyse the performance of NNs training 

for varying number of hidden nodes. 

   

1.4 Structure of the Dissertation 

This dissertation is structured in six chapters. Chapter 1 introduces the study; it 

provides the background and states the problem of the study, and outlines the 

structure of the dissertation. Chapter 2 gives the literature review regarding the 

problem related to NNs training and optimisation. Chapter 3 discusses the NNs 

training and optimisation methods proposed to reach the objectives of this study. 

Also, it gives a detailed discussion of the performance measures. Chapter 4 describes 

the data and the experimental design used. Chapter 5 gives and discusses the results 

of the analysis. Chapter 6 gives the discussion and conclusions of the study. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

In this chapter, an overview of the literature concerning ANNs is given. Section 2.2 

describes the formulation of the training problem. Section 2.3 explains the difficulty 

of ANNs training in an optimisation context. Section 2.4 explains the optimisation 

methods for ANNs training. Section 2.5 focuses on the Gradient Descent (GD) based 

training methods, while Section 2.6 outlines the Conjugate Gradient (CG) based 

training methods. Finally, Section 2.7 gives the summary of this chapter. 

 

2.2 Formulation of the Training Problem 

ANNs have been applied in various problems such as signal processing and pattern 

recognition (Bishop, 1995), classification and approximation (Basheer and Hajmeer, 

2000; Ferrari and Stengel, 2005), and load forecasting (Myint, Khin and Marlar, 

2008; Frimpong and Okyere, 2010). They have been broadly proven to be powerful 

techniques for classification (Anastasiadis, 2005). Learning or training is crucial to 

the performance of NN models. For unsupervised learning, the network is only 

provided with input samples (Haykin, 1994; Sharma and Venugopalan, 2014). 

Basically, learning is a process in which parameters (weights) of the network are 

iteratively updated, in order to minimise the error between the desired outputs (the 

outputs that should be produced by the network based on the problem data inputs 

being analysed and fed to the network) and actual outputs of the network. The goal is 

to create a correct input-output mapping so that, when presented with unseen inputs, 

the network can accurately predict their outputs (Haykin, 1994; Rojas, 1996). When 

the network is fed with input together with desired output samples, the learning 

algorithm is referred to as supervised. Supervised learning algorithms have been the
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 most employed to the training of ANNs (Basheer and Hajmeer, 2000; Anastasiadis, 

2005). Thus, this study will focus on the analysis of well-performing supervised 

learning algorithms to implement on classification problems. Multilayer Feed-

Forward NN (FNN) is one of the broadly applied classes of supervised NNs 

(Anastasiadis, 2005). For this class of networks, information is propagated only in 

the forward direction (i.e., information is transmitted in only one direction, forward; 

from input to hidden nodes, and from hidden to output nodes. The connections 

between nodes do not form a cycle). The input of each layer is the output of the 

preceding layer, and each layer is only connected to the preceding layer (Bishop, 

1995; Rumelhart, Hinton and Williams, 1986). FNNs are powerful nonlinear models 

that can predict and classify more easily and quickly than other models. It has been 

proven that FFNs provide similar results to those of nonlinear statistical models 

(Ripley, 1993). FNNs can also be trained using nonlinear model methods such as CG 

and Levenberg-Marquardt algorithms (Hager and Zhang, 2006; Sharma and 

Venugopalan, 2014). Moreover, FNNs have demonstrated more efficiency at 

learning functions with discontinuities, than a number of other approaches can with 

stronger smoothness assumptions (Bishop, 1995). 

A Feed-Forward Network can be formulated as follows: 

                                                   

                                
  ∑    

         
     

   ,             
        

                                  (2.1)                                                        

where l stands for the number of layers in the network,     
  is the sum of the 

weighted inputs for the j-th node in the l-th layer (        ). The term 

   
     

defines the weights from the i-th node at the (     layer to the j-th node at the 

l-th           layer, and   
  is the output of the j-th node belonging to the l-th 

layer. The activation function of the j-th node is represented by       
  .The weight 

parameters of the NN may be formulated utilising vector notation     , as: 

                      (     
            

              
        

        
              

       )
 
,               (2.2)                
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where T is the transpose symbol,   
  represents the bias of the j-th node at the l-th 

layer, and n represents the total number of weights and biases in the network. Biases 

are weights connected with vectors which lead from a single node whose location is 

outside of the principal network and whose activation is always 1. The utilisation of 

biases in a NN augments the network capacity to solve problems by permitting the 

hyper-planes that discriminate individual classes to be offset for superior positioning 

(Reed and Marks, 1999; Anastasiadis, 2005). 

The squared error over the training set, for a fixed and limited set of input-output 

samples p is: 

             ∑ ∑      
          

   
 
    ∑ ∑    (    

    
 )          

   
 
          (2.3)              

This equation defines the NN error function to be minimised; where      is the target 

response at the j-th output node for the k-th sample           and     
  is the 

output of the j-th node at layer L that depends on the network weights. The parameter 

sigma       , is often set to a nonlinear activation function such as the widely 

used logistic function 
 

       
 or the hyperbolic tangent function         , where x is 

the sum of the weighted inputs to a node.  

The power of FNNs has been well established by the following universal 

approximation property: ―standard multilayer feedforward networks are capable of 

approximating any measurable function from one finite dimensional space to 

another, to any desired degree of accuracy, provided sufficiently many hidden units 

are available‖ (Hornik, Stinchcombe and White, 1989). 

A multilayer feedforward network is said to be standard if it has one hidden layer. 

The above universal approximation property suggests that multilayer feedforward 

networks with as few as one hidden layer, can satisfactorily approximate any 

function faced in NNs applications. Theoretically, there are no limitations for the 

success of adequately configured standard feedforward networks to approximate any 

function. The lack of success can therefore be attributed to insufficient learning, 

inadequate number of hidden nodes or the lack of a deterministic relationship 
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between inputs and targets of the application (Hornik, Stinchcombe and White, 

1989).  

As useful as the above universal approximation property may be, it only gives the 

optimal architecture of a network in terms of number of layers, and does not give any 

indication on how to choose and update the weights and biases in order to obtain the 

desired accuracy. Besides, no indication is given on how to determine the appropriate 

number of nodes in the hidden layer. Hence, learning algorithms and methods for 

defining appropriate number of hidden nodes are required for training NNs to reach 

the optimal solution. 

 

2.3 The Difficulty of Training 

The ultimate goal of all supervised NNs is to reach the optimal solution, which has 

the smallest error between the actual outputs and the desired outputs of the networks. 

In optimisation terms, this solution is called the global minimum of the error 

function, and it is therefore the best possible solution of the NN (Haykin, 1994; 

Livieris and Pintelas, 2009; Livni, Shalev-Shwartz and Shamir, 2014). The NN error 

function is a multidimensional surface whose dimension depends on the number of 

connection weights of the network. The morphology of NN error functions has been 

found to be extremely complex in various studies (Rumelhart et al., 1986; Haykin, 

1994, Dauphin, Pascanu, Gulcehre, Cho, Ganguli and Bengio, 2014), because it is 

composed of many local minima and narrow steep regions next to wide flat ones. 

Therefore, the minimisation process of such error functions is a very difficult task 

(Igel and Husken, 2003; Anastasiadis, 2005; Akarachai and Daricha, 2007). 

Moreover, the success of ANNs training is subject to many other parameters such as, 

the architecture (optimal number of hidden layers and hidden nodes), the number of 

training updates of weights, the activation functions, etc. (Sheela and Deepa, 2013). 

For instance, ―the complexity of NNs training increases when dealing with 

optimisation problems related to arbitrary decision boundary with rational activation 
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functions‖ (Saurabh, 2012). For such problems, networks with two or three hidden 

layers are necessary to obtain an arbitrary degree of accuracy. Estimating the number 

of hidden nodes is of crucial importance. If the number of hidden nodes is inadequate 

to deal with the complexity of the data of the classification problem, then ―under-

fitting‖ may occur. That is, there are too few hidden nodes to effectively detect and 

model the signals in the problem data. If excessive hidden nodes are used, then 

―over-fitting‖ may occur; that is, there are too many hidden nodes which cause the 

NNs to fit the noise instead of the underlying relationship in the data. In other words, 

over-fitting occurs when the network starts to memorise the training data, instead of 

learning to generalise from the underlying trend (Saurabh, 2012). 

Hence, determining the appropriate number of hidden layers and number of nodes in 

each hidden layer with regard to the complexity of the problem data, to prevent 

under-fitting and over-fitting, is of major importance in classification problems. 

Numerous methods have been suggested in the literature for this purpose (Sartori and 

Antsaklis, 1991; Blum, 1992; Arai, 1993; Hagiwara, 1994; Boger and Guterman, 

1997; Berry and Linoff, 1997; Saurabh, 2012; Sheela and Deepa, 2013). For 

instance, Blum (1992) suggests that the number of hidden nodes should be between 

the number of input nodes and the number of output nodes. Boger and Guterman 

(1997) propose that the number of hidden nodes should be 2/3 (or 70% to 90%) of 

the number of the input layer nodes. If this does not produce satisfactory results, then 

the number of output layer nodes should be added to improve the results. Berry and 

Linoff (1997) suggest that the hidden nodes number should be less than twice the 

input nodes number. Recently, Sheela and Deepa (2013) have tested various criteria 

based on statistical errors to determine the hidden nodes number. They propose a 

criterion that estimates the hidden nodes number as a function of inputs nodes  , i.e. 

           8 ⁄ . They argue that this criterion can be appropriate for wind 

speed prediction after experimental study was done using real-time wind data. 

However, none of the above described approaches for calculating the appropriate 

number of hidden layers and nodes provide a standard formula that is widely 

accepted. All these approaches are problem dependent. Most often, the complexity of 

data influences the determination of the number of hidden layer nodes. The broadly 
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used approach by researchers to determine the adequate number of hidden nodes is 

the ―trial and error‖ method (Kazuhiro, 2010; Stuti and Rakesh, 2011; Saurabh, 

2012; Sheela and Deepa, 2013). The ―trial and error‖ method starts by randomly 

choosing a small number of hidden nodes to train the network, utilising the data 

sample of interest. If the network does not converge after a reasonable training time 

or epochs (training iterations), training is restarted a few more times (maybe 5 times) 

in order to make sure that it is not trapped in a local minima. If the network still does 

not converge, then the number of hidden nodes is increased and the network is 

allowed to train again. For a couple of times, the process of increasing the number of 

hidden nodes and checking for convergence (trial and error) is repeated. If there is 

still no improvement, then it may be necessary to start increasing the number of 

hidden layers until the network converges.  

   

2.4 Optimisation Methods 

A number of methods have been applied for supervised learning of NNs. The most 

used are the class of first order gradient based algorithms, which are linear 

approximations and do not require a large amount of computation per iteration 

(Battiti, 1992; Looney, 1997). Among the first order gradient based training 

algorithms, adaptive step size ones are the most used. Adaptive step size based 

algorithms search for the best step size by fine tuning it after each weight update. 

They operate by regulating the amount of changes in the weights space during 

learning, in order to simultaneously maximise the speed of the minimising process, 

and avoid oscillations in the search (Riedmiller and Braun, 1993). 

 Other methods based on unconstrained optimisation theory have been proposed. 

These methods apply second derivative related information of the error function to 

speed up the training process (Battiti, 1992; Moller, 1993; Van der Smagt, 1994). 

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Gill, Murray and Wright, 1981), 

and CG (Moller, 1993) algorithms, are widely proposed in the literature. Another 

alternative to the widely known line search approach is the Levenberg-Marquardt 
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algorithm based on the model-trust region approach (Fletcher, 1981; Hagan and 

Menhaj, 1994). The above described algorithms are broadly applied for training 

FNNs. However, these algorithms are computationally expensive because of the 

second derivative based information they utilise when minimising the error function. 

Also, in many instances, these algorithms do not guarantee acceleration of the 

minimising process for non-convex functions, especially when starting far away from 

a minimum (Nocedal, 1992; Anastasiadis, 2005). 

The problem of high computational cost has been reduced nowadays by the 

improvement of the processing capacity of modern computers. Still, there are some 

drawbacks in the application of these powerful second order algorithms in some 

cases. For instance, too many weights may make the direct use of second order 

algorithms impractical. Furthermore, these algorithms utilise approximations of the 

Hessian matrix. Sometimes this Hessian matrix may be badly scaled or close to 

singular during training. Consequently, the algorithms may yield poor results. 

An intrinsic problem to first order and second order learning algorithms is that they 

converge sometimes to local minima. Although some local minima may produce 

satisfactory results, they frequently cause poor network performance. Global 

optimisation methods can be used to overcome this difficulty (Burton and Mpitsos, 

1992; Plagianakos, Magoulas and Vrahatis, 2001a; Plagianakos et al., 2001b; 

Treadgold and Gedeon, 1998). 

 

2.5 Gradient Descent based Training Algorithms 

Gradient Descent (GD) is the most popular category of algorithms applied for 

supervised NNs training. Batch Back-Propagation (BP) is the most broadly utilised 

algorithm of this category (Rumelhart et al., 1986). This first order method follows 

the steepest descent direction of the gradient by updating the weight parameters with 

the objective of minimising the error function of the networks (Battiti, 1992). The 

weight update can be formulated as follows: 
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                                                    {       }                                    (2.4)               

where        is the weight at iteration      , and      is the weight at iteration 

t. The quantity  {       } is the gradient of the batch error function        , and 

is calculated by using the chain rule on the layers of the FNN. The parameter η is the 

learning rate, whose optimal value depends on the shape of the error function 

(Rumelhart et al., 1986). The learning rate is a very important parameter, and it is 

used in order to prevent the algorithm from converging to a maximum or a saddle 

point. Heuristically, it is suggested to choose a small learning rate as        . 

This is to guarantee convergence and prevent oscillations of the BP algorithm in the 

steepest descent of the error surface. 

The BP algorithm is characterised by some serious limitations; which are, slow 

training and convergence to local minima. The presence of local minima in the error 

surface can cause the algorithm to reach a suboptimal solution instead of the global 

one. This leads to poor performance of NNs. This situation is a consequence of 

inadequate number of hidden nodes, along with inappropriate initial weight 

parameters (Gori and Tesi, 1992). The setting of the learning rate for each weight 

direction is very critical. Often, it happens that the learning rates are different for 

different weight directions of the error surface (Jacobs, 1988). 

Significant improvements have been observed in the learning speed and convergence 

capability of first order adaptive learning rate based algorithms (Magoulas et al., 

1997b; Magoulas, Vrahatis and Androulakis, 1999; Magoulas and Vrahatis, 2000). 

The most remarkable is the performance of the Resilient propagation (Rprop) 

proposed by Riedmiller and Braun (1993). Rprop algorithm is the best in terms of 

accuracy, robustness and convergence speed with regard to its learning parameters 

(Igel and Husken, 2003; Anastasiadis et al., 2003; Anastasiadis et al., 2005; Prasad et 

al., 2013). 

Rprop is based on the idea of removing the bad effect that the size of the partial 

derivative has on the weight step. Therefore, the direction of the weight change is 

only influenced by the sign of the derivative. The magnitude of weight update is 
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solely controlled by a specific weight ―update-value‖. Empirical evaluations have 

demonstrated that Rprop converges fast, but generally necessitates introducing or 

even fine tuning extra heuristics (Igel and Husken, 2003; Anastasiadis et al., 2005). 

Furthermore, literature reveals the non-existence of theoretical results underpinning 

the development of Rprop adjustments. This is expected since heuristics may be 

unable to assure convergence to a local minimum of the error function when the 

computation of weight updates are based on adaptive learning rates for each weight. 

However, no assurance is given for a monotonic decrease of the network error 

function after each iteration, and for the convergence of the weight sequence to a 

minimum of the error function (Riedmiller and Braun, 1993; Igel and Husken, 2003). 

Another method known as Improved Rprop (IRprop) algorithm has provided better 

convergence speed in comparison with prevailing Rprop related schemes, along with 

the BFGS and CG training schemes (Igel and Husken, 2003). It is obtained by 

modifying the Rprop algorithm, for which the choice to undo a step is rather 

subjective. Hence, the basic idea of IRprop consists of making the step reversal 

subject to the behaviour of the error. It proposes reverting weight updates that have 

provoked changes to the signs of the corresponding partial derivatives, only in case 

of an error increase. This technique is a backtracking to Rprop update for some or all 

of the weights, so that the decision about whether or not to revert a step is made for 

each weight individually (Riedmiller, 1994; Anastasiadis, 2005). 

In general, the GD based training algorithm updates the weights by following the 

negative direction of the gradient, which is the direction in which the error function 

(performance function) is most speedily decreasing. However, this does not 

inevitably result in the fastest convergence (Hager and Zhang, 2006; Sharma and 

Venugopalan, 2014). On the other hand, in the CG algorithms discussed in section 

2.6 below, the search is done by using conjugate directions, which mostly results in 

faster convergence than GD directions. Moreover, the CG algorithms necessitate 

only slightly more storage than the other algorithms. Hence, CG algorithms are 

suitable for networks with a huge weights number (Hager and Zhang, 2006; Livieris 

and Pintelas, 2009). 
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2.6 Conjugate Gradient based Training Algorithms 

Conjugate Gradient (CG) methods are essential for minimising smooth functions, 

particularly when the dimension is high (Andrei, 2008; Ioannis and Panagiotis, 

2012). They can be defined as conjugate direction or gradient deflection methods 

which are a mix of the GD based methods and Newton’s methods (Newton’s 

methods are the widely applied numerical methods for solving nonlinear equations of 

several variables, and for finding a root of the gradient in optimisation problems. 

Their detailed description can be found in Battiti (1992) and Murray (2010)). The 

principal advantage of CG methods is that they are not required to store any matrices 

as in Newton’s methods or as in quasi-Newton methods, and they are devised to 

converge faster than the GD based methods. Moreover, they are usually much more 

stable to train and easier to check for convergence. The speed benefits of CG 

methods come from using the conjugate information during optimisation (Li, Tang 

and Wei, 2007). 

The CG method was first developed by Hestenes and Stiefel (1952). In this seminal 

paper, they proposed an algorithm for solving symmetric, positive-definite linear 

algebraic systems. After a period of stagnation, the CG method was revisited and 

became the main active field of research in unconstrained optimisation. This method 

was first applied to nonlinear problems by Fletcher and Reeves (1964), which is 

commonly considered as the first nonlinear CG algorithm. Since then, various CG 

algorithms have been proposed. A survey of 40 nonlinear CG algorithms for 

unconstrained optimisation is provided by Andrei (2008). Although CG methods 

have been devised for more than five decades now, they still remain of great interest 

when it comes to solving large-scale unconstrained optimisation problems. This is 

due to their convergence properties, efficiency and simplicity in their implementation 

using computer codes. 

CG methods are designed to converge in at most   iterations when applied to 

unconstrained quadratic optimisation problems in   , by following exact line 

searches. Nonetheless, they are used as well for non-quadratic problems, since 
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smooth functions display quadratic behaviour in the neighbourhood of the optimum. 

For such cases, the algorithm is restarted after every   iterations in order to enhance 

the convergence rate (Yabe and Takano, 2004). 

CG weights {  } update process can be formulated as follows: 

                                                                                                        (2.5)               

where t represents the current iteration,       is a given initial point,      

represents the learning rate, and    is a descent search direction described as: 

                                     {
                                            
                              

                                 (2.6)             

where     {       } is the gradient of           at        , and    is the 

scalar parameter. Different choices of    have been suggested in the literature, which 

engender different CG methods. The widely known methods comprise the Fletcher-

Reeves (FR) method (Fletcher and Reeves, 1964), the Hestenes-Stiefel (HS) method 

(Hestenes and Stiefel, 1952), and the Polak-Ribì ere (PR) method (Polak and 

Ribì ere, 1969).  

In practical computation, the PR method works similarly to the HS method, and it is 

commonly said to be one of the most effective CG methods (Jonathan, 1994; Ioannis 

and Panagiotis, 2012). Despite the practical benefits of this method, it has the main 

weakness of lacking the global convergence ability for general functions; and 

consequently, it may be trapped in an infinite iterative process, without showing any 

significant progress (Powell, 1984). In order to remedy the convergence inability of 

the PR method, Gilbert and Nocedal (1992), inspired by Powell (1986), suggested 

that the update parameter    is restricted to being nonnegative. This results into a 

globally convergent CG method (PR+). 

Additionally, though the PR method and the PR+ method generally have better 

performance than the other CG methods, they cannot ensure the production of 

descent directions. Therefore, restarts are used in order to ensure convergence 
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(Powell, 1977). However, there is a concern related to restart algorithms. Their 

restarts may be activated excessively, resulting in the degradation of the overall 

effectiveness and robustness of the minimisation process (Nocedal, 1992). 

Significant efforts have been made in the past decade in the development of new CG 

methods that are, besides being globally convergent for general functions, 

computationally better than classical methods and are categorised in two categories:  

1. The first category uses second-order information to speed up CG methods by 

employing new secant equations (Li and Fukushima, 2001; Li, Tang and Wei; 

2007). As an example, we can find the nonlinear methods introduced by Zhou 

and Zhang (2006), and Zhang (2009). Another method is the multistep CG 

method suggested by Ford, Narushima and Yabe (2008), which is based on the 

multistep quasi-Newton methods. 

CG methods based on the modified secant equation, applying both the gradient and 

function’s values with higher orders of accuracy in the approximation of the 

curvature, were introduced by Yabe and Takano (2004), and Li et al. (2007). These 

methods are globally convergent, and occasionally, can numerically perform better 

than classical CG methods, if appropriate conditions are satisfied. But, these methods 

do not guarantee the production of descent directions; hence, in practical analysis the 

descent condition is always assumed. 

2. The second category tries to develop CG methods which produce descent 

directions, with the objective of avoiding inefficient restarts that occur 

frequently. Motivated by this idea, the search direction was modified in order to 

guarantee sufficient descent. That is,   
     ‖  ‖

  (Note that   
  is the 

transpose of   ) , independent of the performed line search (Zhang, Zhou and Li,  

2007; Zhang and Zhou, 2008). Also, modification of the parameter    results in a 

new descent CG method, known as the CG-DESCENT method proposed by 

Hager and Zhang (2006). In fact, they suggested to modify the Hestenes-Stiefel 

formula   
  . Another modification of the PR method was proposed by Yuan 

(2009). He suggested the introduction of a parameter C that basically controls the 
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relative weight between conjugacy and descent. It is argued that this method 

possesses an important property, which is the global convergence for general 

functions. 

In view of the above survey of CG methods, it is worth highlighting that various 

formulations of the parameter   , result in various CG algorithms. Also, it is 

commonly accepted that the CG algorithm with Polak-Ribière (PR) updates is one of 

the most effective CG methods (Andrei, 2008; Ioannis and Panagiotis, 2012). This is 

why this study focuses on the CG with PR, which is described in section 3.3. 

 

2.7 Summary of the chapter 

To summarise, it is broadly established that the problem of NNs training is related to 

the problem of unconstrained optimisation theory. More specifically, it is formulated 

as the minimising process of the error function      of the network, described as the 

sum of squared errors between a set of output and target values of a process. A 

widely used method to solve this problem is the BP algorithm, which is a GD based 

training algorithm that minimises the error function      by updating the weight 

parameters   in the steepest descent direction of the gradient. However, the 

drawbacks of the BP algorithms are slow training and convergence to local minima 

(the prospect of being trapped in a local minimum) of the error function, leading to 

poor performance of NNs. This situation may be the consequence of inadequate 

number of hidden nodes, insufficient number of weights updates (training iterations), 

etc., especially when dealing with complex NNs (Prasad et al., 2013). 

Different approaches have been proposed in the literature to overcome the drawbacks 

of the BP algorithm; such as the Rprop and CG algorithms. The Rprop is one of the 

best algorithms in terms of accuracy, robustness and convergence speed with regard 

to its learning parameters (Riedmiller, 1994; Anastasiadis, 2005; Prasad et al., 2013). 

It is based on the idea of mitigating the harmful effect caused by the size of the 

partial derivative on the weight step. Hence, the direction of the weight change is 
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only influenced by the sign of the derivative. The magnitude of weight update is 

solely controlled by a specific weight ―update-value‖. The CG methods are very 

important for unconstrained minimisation of functions, particularly when the 

dimension is high (Andrei, 2011; Ioannis and Panagiotis, 2012). They can be defined 

as conjugate direction or gradient deflection methods. They are devised to converge 

faster than the GD based methods. It is argued that the CG methods are suited to train 

complex NNs given their ability to solve large-scale unconstrained optimisation 

problems. This is due to their convergence properties, efficiency and simplicity in 

their implementation using computer codes. CGP is one of the best performing CG 

algorithms. 
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CHAPTER 3: METHODS 

3.1 Introduction 

This chapter discusses the two NNs learning algorithms used for the purpose of this 

study, and the methods used to assess the performance of classifiers. Section 3.2 

gives a detailed discussion of the Resilient propagation algorithm, and Section 3.3 

focuses on the Polak-Ribière conjugate gradient algorithm. A detailed discussion of 

the measures of performance and the methods used to estimate them is given in 

Section 3.4. 

 

3.2 Resilient Propagation 

3.2.1 Description 

Resilient propagation (Rprop) is one of the fastest (gradient descent) training 

algorithms in existence. It is a supervised batch learning method based on adaptive 

gradient with individual step sizes. The Rprop is very appropriate for cases where the 

gradient is approximated numerically and the error is noisy (Igel and Husken, 2003). 

It is straightforward to implement using computer program and is not subject to 

numerical problems (Patnaik and Rajan, 2000). The fundamental principle of the 

Rprop algorithm is to remove the bad effect that the size of the partial derivative has 

on the weight step in the basic back propagation algorithm. Therefore, the direction 

of the weight change is only influenced by the sign of the derivative. The magnitude 

of weight update         is solely controlled by a specific weight called ―update-

value‖        ; and Anastasiadis (2005) describes the update as follows: 
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                                 (3.1)               

where          ⁄  is the actual summed gradient information obtained over all 

patterns of the entire training set.  The update values are defined as follows: 
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                    (3.2)                

where          . 

The update-value        is reduced by the parameter    each time the partial 

derivative of the corresponding weight     changes its sign. A change in sign 

indicates that the previous update was too big and the algorithm has skipped over the 

local minimum. If the partial derivative of the corresponding weight     does not 

change the sign, the update value is slightly increased. This is to speed up 

convergence in shallow areas of the error surface. Moreover, in case of change in 

sign, no adaptation should be made in the subsequent learning step. Empirically, this 

can be done by setting          ⁄    in the adaptation rule. This technique helps 

to accelerate the convergence process when the derivative is negative. However, 

when the two derivatives are positive, this approach can be ineffective since in such 

situation the weight updates may direct the trajectory of the weight far-off from the 

minimum or in areas yielding bigger error function values. In order to mitigate these 

problems, Rprop uses a heuristic parameter      that fixes the upper bound of the 

update step size (Anastasiadis, 2005). 
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3.2.2 Algorithm 

The following pseudo-code gives a detailed description of the Rprop algorithm. For 

this algorithm, the min()(or max()) operator gives the minimum (or maximum) of two 

numbers. The sign() operator returns +1, if the argument is positive. It returns −1, if 

the argument is negative. It returns 0 otherwise (Riedmiller and Braun, 1993; 

Riedmiller, 1994). 

Initialise    , 

For all nodes i and j, where the node connections go from j to i (or    )       

                              , 

                     
  

    

       , 

Repeat for            

             Compute the gradient vector  {    }  
  

  
    

             for all weights and biases { 

                 if (
       

    
 

     

    
  * then { 

                               (                )  

                                  (
     

    
*          

                                              

                     
       

    
 

     

    
  

                 } 
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                 else if (
       

    
 

     

    
  * then { 

                              (                ) 

                     
       

    
   

                } 

                 else if (
       

    
 

     

    
  * then { 

                                 
     

    
        

                                            

                    
       

    
 

     

    
 

                 } 

              } 

            Until converged or stopping criterion is satisfied. 

An algorithm is said to have converged during NNs training, when the minimum of 

the error function is reached. The stopping criterion is usually a predefined number 

of training iterations or a pre-specified error target. 

   

3.2.3 Parameters 

The Rprop algorithm uses the following parameters: 1) the initial update values   , 

2) the maximum weight step size     , 3) the minimum weight step size     , 4) 

the increase factor   , and 5) the decrease factor   . In the implementation of the 
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Rprop algorithm, Riedmiller (1994) suggests the following set up of parameters: 

       (the choice of this value was proven to be uncritical, since it is updated as 

learning proceeds),         (this is of great importance since it prevents the 

weights from becoming too large),          ,       , and       . 

  

3.3 Conjugate Gradient with Polak-Ribière Updates 

3.3.1 Description 

Conjugate gradient (CG) methods are powerful methods for solving large-scale 

unconstrained optimisation problems. They require low memory and have strong 

local and global convergence. Moreover, they are easy to implement using computer 

codes (Andrei, 2011). The basic idea of CG methods is to use conjugate information 

in determining the search direction of the minimum of an objective function. This is 

done by the linear combination of the negative gradient vector at the current iteration 

with the previous search direction as described by equation 2.6. 

Various choices of the scalar   , known as the CG parameter, yield different CG 

algorithms. Hence, the formula definition of    is the fundamental element in any 

CG algorithm. For general non-linear objective functions, the Polak-Ribière formula 

of    (Polak and Ribière, 1969), which is a modification of the Fletcher-Reeves 

formula (Fletcher and Reeves, 1964), has demonstrated experimental superiority 

(Jonathan, 1994; Ioannis and Panagiotis, 2012); it is as follows: 

                                                        
   

  
     

‖    ‖  ,                                                  (3.3)                

where   
  is the transpose of    which is as defined in (2.6);              and 

‖ ‖ represents the Euclidean norm. 

CG with Polak-Ribière updates (CGP) has been proven to be more robust and more 

efficient than the CG with Fletcher-Reeves updates (CGF) (Andrei, 2008; Andrei, 
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2011; Ioannis and Panagiotis, 2012). Its convergence is guaranteed by defining    as 

follows: 

                                                    
        {  

    }.                                            (3.4)               

Using   
   , is equivalent to restarting the CG search process if   

    . Restart the 

CG search process afresh in the direction of the steepest descent regardless of past 

search directions. 

   

3.3.2 Algorithm 

The following process gives a detailed description of the CGP algorithm for NNs 

training. 

Step 1: Initialise   ,          ,   ,    , and     ; set    . 

Step 2: Compute        ) and    
  

  
   , and set       . 

Step 3: Test the stopping criteria of training iterations. For instance, if         or 

 ‖  ‖    , then stop; otherwise continue with step 4. 

Step 4: Compute the step length (learning rate)    using the following strong 

Wolfe’s line search conditions: 

                                                             
                                       (3.5)               

                                          |          
   |    |  

   |                                    (3.6)               

Step 5: Update the weights as follows: 

                                                                                                               (3.7)              

Step 6: Determine the modified Polak-Ribière scalar parameter   
   . 
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Step 7: Compute the descent search direction as: 

                                                            
                                                (3.8)                     

Step 8: Check the restart criterion. For instance, if the restart criterion of Powell 

|    
   |     ‖  ‖

  is satisfied, then set      , and go back to step 2. 

 

3.3.3 Parameters 

Any CG algorithm uses the following parameters: 1) the scalar CG parameter   , 2) 

step length (learning rate)   , and 3) the parameters of the strong Wolfe’s line search 

conditions          . The most important of all parameters is   , because its 

modification produces a different type of CG method. The choice of parameters   , 

   is of major importance, because it affects the direction of the line search. A wrong 

choice may prevent the Wolfe’s strong conditions from generating a descent 

direction. Hence,        , and        as proposed by Scales (1985). The value 

of    is dependent on the strong Wolfe’s conditions.  

    

3.4 Evaluating the performance of classifiers 

The main objective of this study is to evaluate and compare the performance of 

Rprop and CGP algorithms in training NN classifiers using the E.coli and Yeast 

protein data sets. Model selection is important in our study since the best model to be 

selected for each method is the one that performs well in terms of classification 

accuracy, convergence and efficiency. The various performance measures are 

described in the following sections. 
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3.4.1 Estimating the Accuracy of Classifiers: Cross-validation 

Approach 

The best classifier is the one that performs well on unseen data and therefore 

generalises well. In this section, an approach is presented that is used in an attempt to 

improve generalisation, and therefore, better estimate the overall classification 

accuracy of a classifier. This approach is the k-fold cross-validation technique 

(Kohavi, 1995). In this approach, a dataset D is randomly split into k mutually 

exclusive subsets (folds)         of approximately equal size. Then, k classifiers 

           are trained. The classifier    is trained on the set         |  , and 

tested on the set         , where          . Figure 3.1 shows an example of 3-

fold cross-validation. In this graph, the unions of the upper parts are utilised for 

training the classifiers, whereas the lower parts are utilised for testing the classifiers. 

The total number of classifiers    is 3. The disjoint union of the test sets gives the 

whole dataset, i.e.     
     .  Each set is therefore used once as a test set. 

  

 

Figure ‎3.1: 3-fold Cross validation 
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The cross validation approximation of accuracy is the total number of correct 

classifications as a proportion of the total number of samples in the dataset. The basic 

assumption in cross-validation is: If   is a classifier trained on the whole data set D, 

and    are the classifiers trained on the sets  |  , then, the probability of correct 

classifications for   (i.e.,             ) is equivalent to the probability of correct 

classifications for    for all          . Therefore, the estimate for the correct 

probability of the classifier   is the average of the estimates for the correct 

probabilities of the classifiers   . In practice, various numbers k of folds are often 

proposed; and in this study,     . The rationale for utilising 10-fold cross-

validation as the accuracy estimation method for this study is based on the work by 

Kohavi (1995); in which various real-world datasets are used to compare the 

performance of cross-validation (including the leave-one-out validation) and 

bootstrap methods, in estimating the accuracy of a classifier. Kohavi (1995)’s 

findings suggest that based on the trade-off between the variance and bias of the 

accuracy estimate, the 10-fold cross-validation produces better accuracies than 

bootstrap and the leave-one-out cross-validation, which requires more computation. 

The 10-fold cross-validation accuracy estimate is almost unbiased and has small 

variance, while bootstrap has small variance but extremely large bias on some 

problems. Also, ―the leave-one-out validation‖ is almost unbiased; but it has high 

variance, leading to unreliable estimates‖ (Efron, 1983). 

To estimate the overall accuracy (OA) of a classifier  , let us define first a confusion 

matrix W as follows: 

                                            (

              

              

                        
                

)                                          (3.9) 

where the diagonal elements     are numbers of correct classifications, i.e.     is the 

number of all    samples that are classified as   , and z is the number of classes. Also, 

the probability of correct classification of the classifier   is defined as follows: 

                                        ∑               |   
 
                           (3.10) 
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where          |    is the probability of correct classification of   , which is 

estimated as follows: 

                                                   |    
   

  
                                                (3.11) 

By substituting (3.11) in (3.10) we obtain the following estimate: 

                                     ̂            ∑      
 
   

   

  
                                        (3.12) 

Note that       is a prior probability which is defined as the proportion of class label 

i in the whole data D of size N, i.e.       
  

 
. Therefore,  ̂            becomes 

                 ̂            ∑      
 
   

   

  
 ∑   

 

 
   

   

  
 

 

 
∑    

 
                    (3.13) 

which is the proportion of correct classified samples. This means that  ̂            

is the OA. 

The OA is derived from the whole dataset D. It is referred to as overall accuracy on 

training set (OAtrain) when derived from the training set       , and overall 

accuracy on test set (OAtest) when derived from the test set       (Breiman, 

Friedman, Olshen and Stone, 1984; Kohavi, 1995; Duda, Hart and Stork, 2000; 

Rudner, 2003). 

 

3.4.2 Estimating the Convergence of Classifiers 

The main target of training algorithms for NNs is to minimise the NN error function 

E. The convergence capability of a training algorithm is understood as the ability of 

this algorithm to converge to a minimum of the error function E. This is, starting 

from almost any initial set of weights, the sequence of the weights generated by the 

learning task will converge to a minimum of the error function. This minimum can 

be either local or global. In this context, the globally convergent algorithms are 
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different from the global optimisation methods (Nocedal, 1992; Treadgold and 

Gedeon, 1998). A strict mathematical understanding of global optimisation is, 

finding the complete set of the globally optimal solutions (global minimisers)    of 

the objective (error) function E, with the corresponding global optimum value    

     ; whereas globally convergent algorithms converge with certainty (always) to 

a minimum, either local or global, from any remote starting point (Nocedal, 1992).  

The common approach used in various NNs studies to empirically evaluate the 

convergence performance of different training algorithms is to conduct many training 

trials for each algorithm and calculate the percentage of trials for which each 

algorithm has converged (reached the minimum of the error function or the pre-

specified error goal based on previous experiments). The best performing algorithm 

is the one with the highest percentage of converging trials (Veitch and Holmes, 1991; 

Anastasiadis, 2005). This approach is referred to as repeated training trials and is 

applied in this study. The repeated training trials approach has the merit of using 

different initial weights for each trial in order to address the issue of global 

convergence when training starts from any remote points (initial weights vectors) 

(Anastasiadis, 2005). In this study, the network error function utilised as measure of 

performance is the mean squared errors (MSE), which is minimised during training 

for the network to converge (Zhang, 2000; Sharma and Venugopalan, 2014). The 

MSE between the network’s outputs            and targets (desired outputs) 

           can simply be formulated as follows: 

                                            
 

 
∑          

                                               (3.14) 

where N is the sample size. 

For classification problems, a NN can be described as a mapping function between a 

set of inputs and outputs fed to the network, which is estimated in order to perform a 

particular classification task. For a particular classification problem, the process 

followed by NNs to calculate the MSE is illustrated using a single sample as follows. 

Consider the task of assigning an input vector X {           } to one of the Z 

classes {           }, where D is the number of attributes of X. Let define the 
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corresponding class of X as   , the network’s actual outputs as {              }, 

and the network’ s targets (desired outputs) for all output nodes as {           }. 

Note that the actual output of the network is a function of the input X, while the 

target of the network is a function of the class    to which X belongs. For a 1 of Z 

classification task,      if     (X belongs to   ) and 0 otherwise. 

For training, the network parameters are selected in order to minimise the following 

objective function known as squared error function: 

                                             {∑           
  

   }                                          (3.15) 

where  { } is the expectation operator. If we define         as the joint probability 

of the input X and the ith class   , and use the definition of expectation as provided 

by Richard and Lippmann (1991) and Zhang (2000), (3.15) can be expressed as 

follows: 

                        ∫∑ {∑           
  

   } (    )   
                                       (3.16) 

Equation (3.16) is the sum of squared, weighted errors, which incorporates Z errors 

for each input-class pair. For a particular pair of input X and class   , each error, 

         is simply the difference of the actual network output       and the 

corresponding desired output   . The Z errors are squared, summed, and weighted by 

the joint probability  (    ) of the particular input-class pair. Expanding (3.16) as 

described by Richard and Lippmann (1991), yields: 

                  {∑         {  | }   
   }   {∑    {  | } 

   }                      (3.17) 

where    {  | } is the conditional variance of   . The second term of the right-hand 

side is independent of the network outputs       and is called the approximation 

error. It reflects the inherent irreducible error due to the randomness of the data. The 

first term is affected by the effectiveness of the NN mapping and is known as the 

estimation error. Minimisation of   is achieved by choosing network parameters to 

minimise the first term, which is simply the MSE between the network outputs       
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and the conditional expectation of the desired outputs. Hence, when network 

parameters are selected to minimise a squared error objective function, ―outputs 

estimate the conditional expectations of the desired outputs so as to minimise the 

mean-squared estimation error. For a 1 of Z problem,    equals one if the input X 

belongs to class    and zero otherwise‖ (Richard and Lippmann, 1991). 

 

3.4.3 Estimating the Efficiency of Classifiers 

Efficiency is another important factor that is worth considering in the development of 

NNs training algorithms. It is defined as the learning speed or convergence speed of 

an algorithm, i.e. how fast an algorithm reaches the minimum of the error function E 

during training. A broadly used approach to estimate the efficiency of NNs training 

algorithms is to measure the CPU time elapsed and the number of training iterations 

until convergence (Livieris and Pintelas, 2009). Hence, in this study, efficiency is 

estimated by the training time spent by an algorithm to achieve particular MSE 

values, and the training time is measured in seconds. 
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CHAPTER 4: DATA AND DESIGN OF EXPERIMENTS 

4.1 Introduction 

This chapter discusses the data and the experimental design applied to reach the 

objectives of this study. Section 4.2 focuses on the datasets; it gives a detailed 

description of the Escherichia coli (E.coli) proteins and the Yeast proteins 

classification problems. Section 4.3 is based on the experimental design, starting 

from the formulation of the classification tasks to the steps involved in the 

implementation of the experimental design. Finally, Section 4.4 gives the details on 

the software and computer used to implement the experiments, while Section 4.5 

gives the summary of this chapter. 

  

4.2 The Datasets 

4.2.1 The Escherichia coli problem 

The E.coli problem involves the classification of protein localisation patterns into 

eight classes. The dataset consists of 336 different proteins labelled according to 8 

localisation sites, and can be found in the UCI Repository of Machine Learning 

database (Murphy and Aha, 1994). 

As a prokaryotic gram-negative bacterium, E.coli is an essential element of the 

biosphere that settles in the lower intestine of animals to survive. Being a facultative 

anaerobe, it spreads to new hosts when released to the natural environment (Lodish, 

Berk, Zipursky, Matsudaira, Baltimore and James, 2003). E.coli is characterised by 

three principal and distinct types of proteins namely, enzymes, transporters and 

regulators. The enzymes constitute 34% (including all the cytoplasm proteins) of the 

E.coli proteins. The genes for transport functions come second followed by the genes 

for regulatory functions with 11.5%. 
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As proposed by Horton and Nakai (1996), the following 7 different attributes 

calculated from the amino acid sequences are used for this classification problem:  

1.  mcg: McGeoch's method for signal sequence recognition;  

2.  gvh: von Heijne's method for signal sequence recognition;  

3.  lip: von Heijne's Signal Peptidase II consensus sequence score (Binary 

attribute);  

4.  chg: Presence of charge on N-terminus of predicted lipoproteins (Binary 

attribute);  

5.  aac: score of discriminant analysis of the amino acid content of outer 

membrane and     periplasmic proteins;  

6.  alm1: score of the ALOM membrane spanning region prediction program; and  

7.  alm2: score of ALOM program after excluding putative cleavable signal 

regions from the sequence. 

The proteins in the E.coli dataset are distributed in 8 classes (localisation sites) as 

shown in Table 4.1. 

Table ‎4.1: The E.coli proteins class distribution 

Classes Patterns 

cytoplasm (cp) 143 

inner membrane without signal sequence (im) 77 

perisplasm (pp) 52 

inner membrane, uncleavable signal sequence 

(imU) 
35 

outer membrane (om) 20 

outer membrane lipoprotein (omL) 5 

inner membrane lipoprotein (imL) 2 

inner membrane, cleavable signal sequence (imS) 2 

Total 336 

. 
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4.2.2 The Yeast problem 

The Yeast problem concerns the classification of protein localisation patterns into ten 

classes. It is based on a drastically imbalanced (the distribution of samples in the 

different classes is very unequal) dataset of 1484 different proteins labelled 

according to 10 localisation sites. This dataset can also be found in the UCI 

Repository of Machine Learning database (Murphy and Aha, 1994). 

Saccharomyces cerevisiae, known as Yeast, is the most elementary Eukaryotic 

organism. It is a more complex life form than E.coli, and has various categories of 

proteins associated to the cytoskeletal cell structure, the nucleus organisation, 

membrane transporters and metabolic associated proteins (i.e., as mitochondrial 

proteins). The Yeast membrane transporter proteins are the most important since they 

are in charge for nutrient uptake, salt tolerance, resisting to drug, cell volume control, 

evacuating undesirable metabolites and identifying extra-cellular nutrients (Lodish et 

al., 2003; Anastasiadis, 2005). 

The following 8 different attributes are used for classification of the Yeast proteins 

into different sites:  

1. mcg: McGeoch's method for signal sequence recognition;  

2. gvh: von Heijne's method for signal sequence recognition;  

3. alm: Score of the ALOM membrane spanning region prediction program;  

4. mit: Score of discriminant analysis of the amino acid content of the N-

terminal region (20 residues long) of mitochondrial and non-mitochondrial 

proteins; 

5. erl: Presence of "HDEL" substring (thought to act as a signal for retention in 

the endoplasmic reticulum lumen). Binary attribute;  

6. pox: Peroxisomal targeting signal in the C-terminus;  

7. vac: Score of discriminant analysis of the amino acid content of vacuolar and 

extracellular proteins; and  

8. nuc: Score of discriminant analysis of nuclear localization signals of nuclear 

and non-nuclear proteins. 
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The proteins in the Yeast dataset are distributed in 10 classes (localisation sites) as 

shown in Table 4.2. 

Table ‎4.2: The Yeast proteins class distribution 

Classes Patterns 

Cytosolic or cytoskeletal (CYT) 463 

Nuclear (NUC) 429 

Mitochondrial (MIT) 244 

Membrane protein, no N-terminal signal (ME3) 163 

Membrane protein, uncleaved signal (ME2) 51 

Membrane protein, cleaved signal (ME1) 44 

Extracellular (EXC) 35 

Vacuolar (VAC) 30 

Peroxisomal (POX) 20 

Endoplasmic reticulum lumen (ERL) 5 

Total 1484 

 

. 

4.3 Design of Experiments 

4.3.1 Formulation of the Binary classifiers 

The E.coli dataset and Yeast dataset under consideration in this study are multiclass 

datasets with number of classes, z greater than 2. Therefore, two different types of 

classifiers namely, multiclass classifiers and binary classifiers can be used to perform 

the classification task on these datasets. For multiclass classifiers, also known as 

―single machine‖ approaches, a multiclass classification problem is solved as a single 

optimisation problem to find z (which is the number of classes) functions 

simultaneously. When binary classifiers are applied to a multiclass classification 

problem, separate optimisation problems are solved; one for each of the binary 
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classification problems resulting from the multiclass classification problem (Erin, 

Robert and Yoran, 2000; Crammer and Singer, 2001; Hsu and Lin, 2002). 

The separate optimisation problems underlying the binary classifiers approach have 

been proven less complicated to solve than single optimisation problems underlying 

the multiclass classifiers approach for solving multiclass classification problems. 

Also, when various binary classifiers are properly tuned and combined, they can be 

at least as accurate as a single multiclass classifier in solving a multiclass 

classification problem. In addition, the approaches for combining several binary 

classifiers for solving multiclass classification problems have a simple conceptual 

justification, and may be implemented to train faster and test as rapidly as the single 

multiclass classifier approach. It is therefore preferable and easier for practical 

purposes, to implement an approach that combines binary classifiers to solve 

multiclass classification problems (Rifkin and Klautau, 2004); which was done for 

the E.coli and Yeast classification problems under consideration in this study.  This 

facilitates an understanding and comparison of the dynamic between different classes 

(Erin et al., 2000), and allows performance comparison of the various binary 

classifiers. 

The two widely applied approaches for combining binary classifiers to solve 

multiclass classification problems are the ―One-Against-All‖ (OAA) and ―One-

Against-One‖ (OAO) approaches (Rifkin and Klautau, 2004). The OAA approach 

works as follows: for a multiclass classification problem with z as the number of 

classes, z different binary classifiers are trained; each one differentiates the samples 

in a single class from the samples in all the rest of classes. When a new sample needs 

to be classified, the z classifiers are run, and the one which produces the largest 

(most positive) value is selected. For the OAO also known as the ―all-pairs‖ 

approach, ( 
 
) different binary classifiers are trained; each one distinguishes a pair of 

classes. The classification of a new sample in the OAO approach is done similarly to 

that of the OAA approach (Erin et al., 2000; Rifkin and Klautau, 2004). 

The OAA approach, like the OAO approach, is conceptually simple, and can be as 

accurate as the single multiclass classifier approach (Rifkin and Klautau, 2004). 



 4.3   Design of Experiments

 

38 

 

However, the OAA approach produces fewer binary classifiers than the OAO 

approach, which simplifies the presentation of results. For this reason, the OAA 

approach was applied for the purpose of this study. It is worth stressing that, ―we are 

not stating that the OAA approach will perform substantially better than the other 

approaches. Instead, we are stating that it will perform just as well as these 

approaches, and therefore it is often to be preferred due to its computational and 

conceptual simplicity‖ (Rifkin and Klautau, 2004). 

 A classifier in our experiments refers to a fully connected feedforward NN that has 

an input layer, a hidden layer and an output layer. This section focuses on 

formulating the OAA approach that was applied in this study, to reduce a multiclass 

classification problem to z binary classification problems, where z is the number of 

classes.  In the OAA approach, each class is compared to all others. For instance, we 

represent a binary classification problem for classes A and B by    . If B is the 

union of classes different from A, then we write      for    , which is interpreted 

as A (class1) versus no A (class2). Hence, a classifier      signifies that we 

consider the classification task of classifying A against all non A. The E.coli dataset 

and the Yeast dataset comprise 8 and 10 classes, respectively. This results in 8 binary 

classifiers and 10 binary classifiers for the E.coli dataset and the Yeast dataset, 

respectively. The E.coli binary classifiers and the Yeast binary classifiers are 

presented in Table 4.3 and Table 4.4, respectively. 
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Table ‎4.3: E.coli binary classifiers 

Binary Classifiers Total samples 

       143/~163 

       77/~259 

       52/~284 

         35/~301 

       20/~316 

         5/~331 

         2/~334 

         2/~334 

 

Table ‎4.4: Yeast binary classifiers 

Binary Classifiers Total samples 

         463/~1021 

         429/~1055 

         244/~1240 

         163/~1321 

         51/~1433 

         44/~1440 

         35/~1447 

         30/~1454 

         20/~1464 

         5/~1479 

 

The target coding differs between multiclass classifiers and binary classifiers. In our 

experiments, the following binary target coding for the output neurons is used; for 
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instance, in        (cp versus no cp), the targets have the following coding (
 
 
) to 

denote class 1, i.e. cp, and (
 
 
) to denote class 2, i.e. no cp. 

 

4.3.2 Designing the architecture of the classifiers 

Finding the most suitable FNN architecture (or appropriate number of hidden nodes) 

in terms of training speed and classification accuracy is one of the critical tasks, and 

often laborious, in ANN design (Blum, 1992; Boger and Guterman, 1997; Basheer 

and Hajmeer, 2000; Sheela and Deepa, 2013). Various rules of thumb for 

determining the appropriate number of hidden nodes are suggested in the literature 

(see section 2.3). When faced with new applications for which the networks may 

require the number of hidden nodes that do not conform to any of the already 

proposed rules of thumb, Basheer and Hajmeer (2000) suggest the use of the trial and 

error approach combined with one of the rules of thumb as a starting point. Another 

approach suggested by Basheer and Hajmeer (2000), is to utilise a small number of 

hidden nodes as the starting point, and build on as required to meet the model 

accuracy. 

In this study, to determine the appropriate number of hidden nodes, we combined the 

above two approaches suggested by Basheer and Hajmeer (2000). The rule of thumb 

used as starting point for the number of hidden nodes is the one proposed by Sheela 

and Deepa (2013), where the number of hidden nodes is a function of the input nodes 

n, i.e.            8 ⁄ . For this rule of thumb, the approximate starting point for 

the number of hidden nodes is 5 for both the E.coli (for which the input nodes 

number is 7) and Yeast (for which the input nodes number is 8) ANN classifiers. 

Applying the trial and error approach, the number of hidden nodes was increased 

from 5 to 40 in order to address the issues of under-fitting and over-fitting by 

monitoring the change in network performance with regard to the change in the 

number of hidden nodes.  For simplicity and clarity in the comparison and 

presentation of performance results of the different binary classifiers, only the 
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following 5 different numbers of hidden nodes in the interval of 5 to 40 was 

considered: 5, 10, 20, 30, and 40 hidden nodes. When there is no standard 

architecture for a particular ANN problem, it is required to conduct a set of 

preliminary experiments to find the most appropriate network architecture in terms of 

accuracy and training speed (Basheer and Hajmeer, 2000; Anastasiadis, 2005); 

suggesting that the choice of the various numbers of hidden nodes utilised to start 

with the preliminary experiments is subjective and left to the researcher or 

practitioner. There is no objective justification for using the above specified set of 

numbers for the hidden nodes as starting numbers for our experiments, since we had 

no prior knowledge as to the most appropriate architecture. One could have used a 

completely different set of numbers as starting points for the experiments. However, 

no matter what starting set of numbers are used, they will have to be continuously 

updated based on the network performance until the optimal ones are found. 

Another important aspect to be considered in NN training is the determination of the 

optimum point (or moment) at which the training process should stop. It is common 

practice in NN studies to stop training when a particular conversion criterion has 

been satisfied (Hart and Stork, 2000; Anastasiadis, 2005). The widely used 

conversion criterion in the development of NN training algorithm is the minimum of 

the error function (Hart and Stork, 2000; Livieris and Pintelas, 2009). In other words, 

convergence occurs and training stops when the training algorithm reaches the 

minimum of the network error function. In this way, the conversion criterion 

influences the duration of the training process and the number of training cycles (or 

iterations) to be completed for training to stop. However, the training of complex 

networks may fail to converge, especially if the network error function is 

characterised by local minima and narrow valleys. Failure for the training algorithm 

to converge may be explained by the excessive oscillations that occur in narrow 

valleys of the error function during training. In this situation, if training is set to stop 

only when the minimum of the error function is reached (i.e. if the only specified 

convergence criterion is the minimum of the error function), then training might 

never stop, because the error may oscillate continuously (Rojas, 1994; Taguchi and 

Sugai, 2013). 
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To avoid the above described situation, and guarantee that training will stop in our 

experiments, we fixed the maximum numbers of iterations as stopping criterion for 

training. Note that fixing the maximum number of iterations will lead to the 

following situations. If a training algorithm is fast and the specified maximum 

number of iterations is too large, the algorithm will converge (the minimum will be 

reached) and training will stop before the maximum number of iterations is reached. 

But if a training algorithm is slow and does not converge to the minimum, then 

training will carry on and stop only when the maximum number of iterations is 

completed. In both cases, the training time and MSE achieved should be recorded. 

The faster converging algorithm will have shorter training time and smaller MSE (0 

if convergence is achieved before the maximum number of iterations is reached). The 

slower converging algorithm will have longer training time and larger MSE.  

Therefore, fixing various numbers of iterations will not affect the results of the faster 

converging algorithm when compared to the slower one. In other words, the 

performance of the faster algorithm will not be underestimated and that of the slower 

algorithm will not be overestimated since the training times will depend on the 

number of iterations completed by both algorithms. 

In this study, we applied various numbers of training iterations to evaluate the 

performance of the different binary classifiers with regard to the change in training 

iterations. Training for excessive number of iterations may result in overtraining (or 

over-fitting) of the network and training for insufficient number of iterations may 

result in under-fitting the network (Basheer and Hajmeer, 2000). Since we had no 

prior knowledge on the appropriate number of iterations to use, we applied the trial 

and error approach in our preliminary experiments to find the appropriate number of 

iterations for each binary classifier. The use of the trial and error approach for 

training iterations is justified by Basheer and Hajmeer (2000) who state that ―the 

number of training cycles required for proper generalisation may be determined by 

trial and error. For a given ANN architecture, the error in both training and test data 

is monitored for each training cycle‖. The various numbers of iterations used for our 

experiments are as follows: 25, 50, 75, 100, 150, and 200 iterations. As for the 
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hidden nodes, one could have used a different set of numbers of iterations as starting 

point, and update them based on performance. 

Based on the various numbers of hidden nodes and training iterations specified 

above, our experiments were conducted using 30 (i.e. combination of the 5 numbers 

of hidden nodes with 6 numbers of iterations) different training scenarios for each 

binary classifier.  The notation 5hn, 10hn, 20hn, 30hn and 40hn corresponding to the 

various numbers of hidden nodes, and 25t, 50t, 75t, 100t, 150t and 200t 

corresponding to the various numbers of training iterations was used. For example, 

the notation 10hn_50t was used, respective of a network with 10 hidden nodes, 

trained for 50 iterations. Hence, for one binary classifier, we have 5 networks trained 

with 6 different numbers of training iterations. The number of input nodes for each 

network is equal to the number of attributes of the dataset used for training. Hence, 

for the E.coli dataset, all the networks have 7 input nodes; and for the Yeast dataset, 

all the networks have 8 input nodes. The number of output nodes for each network is 

2, since we are dealing with binary classifiers. This design results in 30 different 

NNs for one classification task. Furthermore, this design allows studying the effect 

on the performance of a classifier for varying the number of hidden nodes and the 

number of training iterations. Figure 4.1 illustrates a NN classifier with P input 

nodes, 5 hidden nodes and 2 output nodes. P equals 7 for the E.coli classifier, and 8 

for the Yeast classifier. 
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Figure ‎4.1: Neural network with P input, 5 hidden and 2 output nodes 

 

4.3.3 Generalisation of the classifiers 

As stated before, k-fold cross validation is one of the powerful methods used to 

generalise NNs classifiers. For our experiments, 10-fold cross validation (see Section 

3.4.1 for justification of this choice) is applied to estimate how well the classifiers 

obtained will perform on unseen data (Kohavi, 1995). In this context, no specified 

error goal is used as early stopping criterion for our study. The only specified 

stopping criterion is the maximum number of training iterations to be completed. But 

if training is fast and the minimum of the error function is reached (when the MSE is 

0) before the specified training iterations are completed, training will automatically 

stop at the minimum point (i.e. 0). It has been observed that the performance of ANN 

training algorithms is also most often dependent on the initial parameters such as the 

connection weights. Many trials with varying conditions of the initial weights are 

necessary to be able to compare the performance of different ANN training 

algorithms (Canu, 1993). For benchmarking experiments to be reliable, Harney 

(1992) argues that they normally need to be in the range between 25 and 100 
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independent trials; and it is common to report the mean results over the different 

trials (Veitch and Holmes, 1991; Anastasiadis, 2005). For our experiments in this 

study, 50 independent trials are conducted for each ANN binary classifier; and they 

results are averaged to obtain the overall performance. The 50 random initialisations 

of the weights are the same for both training algorithms. One could have used a 

different number of trials as long as this number is at least 25, as suggested by 

Harney (1992).  

 

4.3.4 Initialising the weights 

Practically, repeated random initialisation of weights using small values is sufficient 

to provide good convergence and avoid local minima. In our experiments, the 

Nguyen-Widrow function is used to initialise the first and second layer weights 

(Nguyen and Widrow, 1990). The transfer function used for both layers is the 

hyperbolic tangent sigmoid with the default parameters. The pre-processing of the 

data is done using the mapminmax() function. This function processes the data by 

mapping the minimum and maximum values of the input vectors to -1 and 1, 

respectively. The parameters of the Rprop and the CGP algorithms are set as 

described in Section 3.2.3 and Section 3.3.3, respectively. 

 

4.3.5 Process implementation summary 

This section describes the steps involved in the implementation of the experimental 

design for training the classifiers. The code developed for this purpose takes into 

account the variability of three parameters, i.e. the number of hidden layer nodes, the 

maximum number of training iterations, and the change of training and test sets in 

cross validation application to improve generalisation of the results on unseen data. 

Moreover, in order to regularise the results, many trials, i.e. 50, are used for every 

training task. The result for each classifier is the average performance over 50 trials. 
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Details of the steps involved in the process implementation can be found in appendix 

C. The flowcharts in Figures 4.2, 4.3 and 4.4 give a good visual of the 6 steps 

involved in the process implementation. Special attention is given to the depiction of 

for loops in steps 1 and 2. Figure 4.2 depicts step 1 of the whole process, while figure 

4.3 does so for sub-process S of Figure 4.2. Note that sub-process S, is a sub-routine 

of step 1 that involves the implementation of the second, third and fourth for loops in 

step 1. The rest of the process (step 2 to step 6) is portrayed in Figure 4.4. Note that 

these flowcharts do not include all the variables and computations involved in each 

step. They just portray the main steps.   
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Figure ‎4.2: Step 1 (Process to get the performance measure estimates) 
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Figure ‎4.3: Sub-process S of Step 1 
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Figure ‎4.4: Steps 2 to 6 of process implementation 
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4.4 Software 

The software used for the experiments is the Matlab Version ―8.1.0.604 (R2013a)‖ 

(2013) whose NNs toolbox contains both the Rprop and CGP training algorithms as 

well as all the necessary functions for configuring and training the NN classifiers. All 

the graphs were created using the R ggplot2 package (Wickham, 2011). The 

computer used to perform these experiments is windows 7 (32-bit) operating system 

with an Intel® Celetron® CPU B815 @ 1.60GHz processor and 2 GB RAM. The 

reason for using this specific computer was that, it was the only computer that was 

accessible for 24 hours a day, and could facilitate the implementation of our 

experiments without disruption from any other users. The code created to implement 

all the training tasks can be found in the Appendix. 

 

4.5 Summary of the chapter 

The E.coli and Yeast problems (Murphy and Aha, 1994) are multiclass classification 

problems involving the classification of protein localisation patterns into eight 

classes for the E.coli and ten classes for the Yeast. It has been shown that ―single 

machine‖ approaches that use single multiclass classifiers or approaches that use the 

combination of several binary classifiers can be applied to solve multiclass 

classification problems (Erin, Robert and Yoran, 2000; Crammer and Singer, 2001; 

Hsu and Lin, 2002) such as the E.coli and Yeast problems. Also, it has been argued 

that approaches that combine several binary classifiers to solve multiclass 

classification problems are less complicated to implement, have simple conceptual 

justification; and when well-tuned, they can be at least as accurate as single 

multiclass classifiers approaches. The several binary classifiers combination based 

approaches are therefore more appealing for practical purposes (Rifkin and Klautau, 

2004). 

For our experiments, among the two broadly applied several binary classifiers 

combination based approaches, the OAA approach have been chosen over the OAO 
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approach, because the OAA approach produces less binary classifiers (which are 

equal to the number of classes k of the multiclass classification problem) (Erin et al., 

2000; Rifkin and Klautau, 2004). Based on the OAA approach, the E.coli and Yeast 

classification problems will produce eight and ten binary classifiers, respectively. For 

our experiments, a binary classifier has been defined as a fully connected 

feedforward NN with an input layer, a hidden layer and an output layer. A brief 

summary of the training scenarios implemented and steps involved in the selection of 

the best binary classifier for each training scenario is as follows:  

 For each binary classification task, a network with one hidden layer 

with various combinations of hidden nodes, i.e. 5, 10, 20, 30, 40 

hidden nodes, and various combinations of maximum number of 

weights updates (maximum number of iterations), i.e. 25, 50, 75, 100, 

150, 200 was trained. This was done for both Rprop and CGP 

algorithms. 

 The performance measures, i.e. OAtrain, OAtest, MSE, and time were 

observed and recorded for each combination of variable parameters 

(hidden nodes and number of iterations). This gives 30 records for 

each performance measure. 

 The best OAtrain (the maximum of the 30 accuracies on training set) 

reported, gives the best classifier on OAtrain for this binary 

classification task; the best OAtest (the maximum of the 30 accuracies 

on test set) reported, gives the best classifier on OAtest set; the best 

MSE (the minimum of the 30 MSEs) determines the best classifier on 

MSE; and the best time (the minimum of the 30 times) determines the 

best classifier on time for the same binary classification task. 

In a nutshell, the best classifier for a particular binary classification task (with a 

given experimental design) is the one with the best performance on a particular 

performance measure. 

Note that given the unbalanced nature of the E.coli (see section 4.2.1) and Yeast (see 

section 4.2.2) data analysed in this study, the classes with less than 10 cases were not 
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considered in the experiments. The following binary classifiers were therefore 

removed from our experiments:         ,          and          (see Table 

4.3), and          (see Table 4.4). During training, when splitting the data into 

train/test sets, it is necessary to have at least one case in the training set and one case 

in the test set. Bearing in mind that the 10-fold cross validation approach (Kohavi, 

1995) will be applied to generalise our classifiers, classes with less than 10 cases will 

not be represented in all the 10 different folds (training sets and test sets) and as a 

result, proper training and testing of the classifiers for these classes will be 

impossible. For this reason, 5 instead of 8 binary classifiers were trained for the 

E.coli data, and 9 instead of 10 binary classifiers were trained for the Yeast data.  
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CHAPTER 5: ANALYSIS AND RESULTS 

5.1 Introduction 

The main objective of this study was to investigate the optimisation methods of NNs 

training. The focus was on the capability of two NN training algorithms, i.e. Rprop 

and CGP. This was empirically done by evaluating and comparing their 

performances in classifying the E.coli and Yeast datasets. The performance measures 

being investigated here were the overall accuracy on the training set (OAtrain), the 

overall accuracy on the test set (OAtest), the level of convergence (or MSE) 

achieved, and the efficiency (the time required to reach the level of convergence 

achieved during training). Note that based on our experimental design (see Section 

4.3), the level of convergence achieved during training is not necessarily the 

minimum of the network error function. The level of convergence is the MSE value 

achieved when training stopped. Since maximum numbers of iterations were 

specified (see justification in Section 4.3.2), training could have stopped in the two 

following cases: 1) at the minimum (which is 0) of the MSE function if this is 

achieved before the maximum iteration is completed; 2) after the maximum iteration 

is completed if the minimum of the MSE function is not reached before. Therefore, 

efficiency in our experiments refers to the time recorded when training stopped and 

not necessarily when convergence occurred.  

Based on the performance results between the Rprop and CGP algorithms, the best 

algorithm was selected for further investigation on 1) the trade-off between training 

accuracy and test accuracy, 2) the trade-off between convergence and classification 

accuracy, and 3) the effect of varying the number of hidden nodes and number of 

training iterations on the performance of a classifier. In this chapter, results obtained 

from our experiments are presented and discussed. These results consist of the best 

performance measures for both Rprop and CGP, which gave the best classifier 

corresponding to each performance measure for each binary classification task. 

Precisely, the best classifier was obtained as outlined in Chapter 4.
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5.2 Comparing Rprop and CGP Using the E.coli Proteins 

The E.coli data set consists of 8 different classes. Based on the reasons highlighted in 

Section 4.5, we only analysed 5 instead of 8 binary classification tasks for the E.coli 

data. The 5 binary classification tasks were conducted following the previously 

described procedure. The best performance results for the 5 E.coli binary classifiers 

trained are presented in the following sections. The network configurations that 

produced the best results for each E.coli binary classifier are provided in Table 5.1. 

The notation I-H-O in this table stands for network with input nodes (I), hidden 

nodes (H) and output nodes (O). For the        for instance, the best network 

configuration was 7-5-2. 

Table ‎5.1: The network configurations that produced the best E.coli binary classifiers 

Binary classifiers 
Network 

configurations (I-H-O) 

       7-5-2 

       7-10-2 

       7-40-2 

         7-20-2 

       7-30-2 

 

5.2.1 Accuracy comparison 

Table 5.2 gives the results of the best OAtrain and OAtest for the 5 E.coli binary 

classifiers trained and for both Rprop and CGP. The results for Rprop are shown in 

column 1, and the results for CGP are in column 2 for both OAtrain and OAtest. The 

differences between Rprop and CGP for both OAtrain and OAtest are shown in 

column 3 and labelled as DOAtrain and DOAtest, respectively. The results in Table 

5.2 show that in general, there were differences in the overall accuracies of the 



 5.2   Comparing Rprop and CGP Using the E.coli Proteins

 

55 

 

classifiers for Rprop and CGP. It is evident that Rprop outperformed CGP for all the 

5 binary classifiers and for both overall accuracies. On average, the Rprop achieved 

an OAtrain of 98.72% with a standard deviation (stdv) of 1.06%, while CGP 

produced an OAtrain of 95.62% with a stdv of 1.36%. It is worth noticing that Rprop 

achieved the highest OAtrain of 99.91% for the        binary classifier, while the 

highest OAtrain for CGP was 98.19% for the        binary classifier.  

With respect to the OAtest, Rprop outperformed CGP. Their respective average 

accuracies were 94.84% with stdv of 2.62% and 92.55% with stdv of 2.71. It is also 

important to highlight that, as in the case of OAtrain, the highest OAtest for both 

training algorithms was achieved by       , i.e. 98.4% for Rprop and 96.96% for 

CGP. 

Table ‎5.2: E.coli Best OAtrain and Best OAtest 

Binary classifiers 
OAtrain (%) OAtest (%) 

Rprop CGP DOAtrain Rprop CGP DOAtest 

       99.29 95.43 3.86 96.85 93.28 3.57 

       97.59 94.24 3.35 91.2 88.58 2.62 

       99.51 95.38 4.13 95.01 92.26 2.75 

         97.31 94.86 2.45 92.75 91.67 1.08 

       99.91 98.19 1.72 98.4 96.96 1.44 

Mean 98.72 95.62 3.1 94.84 92.55 2.29 

Stdv 1.06 1.36 0.9 2.62 2.71 0.91 

 

The differences of performance between Rprop and CGP based on OAtrain and 

OAtest are highlighted in Table 5.2 and the results show that the accuracy 

differences between Rprop and CGP were smaller on the test set than they were on 

the training set. On average, the DOtest was of 2.29%, while the DOAtrain was 

3.1%. Moreover, the highest difference between the two algorithms for the training 

set was 4.13%, which was obtained with the        classifier, whereas the highest 
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difference for the test set was 3.57%, which was obtained with the        classifier. 

Table 5.2 also shows that the smallest difference on training set (i.e. 1.72%) between 

the two algorithms was obtained with        , whereas the smallest difference on 

test set (i.e. 1.08%) was obtained with         . 

To conclude in brief, accuracy comparison between Rprop and CGP algorithms has 

revealed that Rprop outperformed CGP for both OAtrain and OAtest. This was true 

for all the 5 E.coli binary classifiers considered in our experiments. Moreover, it 

appears that the accuracy differences between Rprop and CGP varied with regard to 

the various E.coli binary classifiers. For some binary classifiers such as        and 

      , the difference on the training set was at least 3.86% and the difference on 

the test set was at most 3.57%. For others such as          and       , the 

difference on the training set was at least 1.72% and the difference on the test set was 

at most 1.44%. The change in accuracy differences between the various E.coli binary 

classifiers may have been due to the differences in the class structures of the data that 

had to be classified by the various E.coli binary classifiers; the classifiers with 

differences of at least 3.86% may have been more complex to train, because they 

may have been dealing with more complex class structure, compared to the 

classifiers with lower differences. Further analysis of the differences in class 

structures and their effects on the various classifiers is presented in Sections 5.6 and 

5.7. 

 

5.2.2 Convergence comparison 

Convergence performance of a NN training algorithm is the ability of the algorithm 

to reach the minimum of the error function, or else, the target error of the network 

under consideration. For our experiments, no error target was specified. The only 

stopping criterion was the different maximum numbers of weights updates 

(maximum number of training iterations). Therefore, the measure of convergence 

considered in this study was the minimum MSE value reached by each binary 
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classifier when training stopped (Section 5.1 describes the cases where training could 

have stopped). 

Table 5.3 gives the best MSEs reached by the 5 E.coli binary classifiers considered 

in our experiments for both Rprop and CGP. The results in Table 5.3 show that, in 

general, Rprop outperformed CGP for the 5 E.coli binary classifiers. On average, 

Rprop achieved the smallest MSE of 0.0113, with a standard deviation of 0.0088, 

whereas CGP achieved the MSE of 0.0371, with a standard deviation of 0.0118. The 

smallest MSE achieved for Rprop was 0.0007, while the smallest MSE achieved for 

CGP was 0.0146. Both MSEs were achieved when training the        classifier.   

Table ‎5.3: E.coli Best MSE 

Binary classifiers 
MSE 

Rprop CGP 

       0.0071 0.0462 

       0.0217 0.0469 

       0.0052 0.0378 

         0.022 0.0402 

       0.0007 0.0146 

Mean 0.0113 0.0371 

Stdv 0.0088 0.0118 

 

5.2.3 Efficiency comparison 

The efficiency of a NN training algorithm is the measurement of how fast that 

algorithm converges. In other words, the efficiency of a NN training algorithm is an 

estimation of the time required by that algorithm to reach the minimum error or the 

error target during training. Efficiency was measured in our experiments, by the time 

taken during training, to reach the smallest recorded MSE’s values for each binary 

classifier. For a fair comparison between the Rprop and CGP algorithms based on 
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their efficiency, we used the same error targets for both algorithms. Given that CGP 

yielded the biggest (the farthest from the minimum 0) MSEs, we assumed that the 

MSEs of CGP would be the easiest targets to reach for both algorithms. Therefore, 

we measured efficiency for both algorithms, by the time taken to reach the smallest 

MSEs achieved by CGP during training. Table 5.4 provides the time taken to reach 

the MSEs for CGP given in Table 5.3, for the 5 E.coli binary classifiers. The results 

in Table 5.4 show that Rprop took less time than CGP to converge to the specified 

MSE’s values for the E.coli binary classifiers.  On average, Rprop reached the target 

in 244 seconds, whereas CGP did so in 1133 seconds. The longest time for Rprop 

(i.e. 520 seconds) was achieved by         , while that for CGP (i.e. 1847 

seconds) was achieved by       . The shortest time for Rprop (i.e. 18 seconds) 

was achieved by       , while that for CGP (i.e. 136 seconds) was also achieved 

by       .  

Table ‎5.4: E.coli Training time to best MSE 

Binary classifiers 
Time (seconds) 

Rprop CGP 

       76 1009 

       395 1847 

       213 1295 

         520 1378 

       18 136 

Mean 244 1133 

Stdv 189 567 

 

5.2.4 Concluding remarks 

The results for the E.coli data have shown that Rprop algorithm performed better 

than CGP. Comparison of the two algorithms was done based on 4 measures of 

performance, i.e. OAtrain, OAtest, convergence, and efficiency. Based on these 4 
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measures of performance, Rprop outperformed CGP for all the 5 E.coli binary 

classifiers analysed in our experiments. We can therefore conclude based on the the 

performance results for the E.coli binary classifiers that: 1) Rprop yielded more 

accurate results than CGP, 2) Rprop had better convergence capabilities than CGP, 

and 3) Rprop was more efficient and converged faster than CGP. 

It is worth highlighting that the differences in accuracy between Rprop and CGP 

were very small (less than 2.5%) for some classifiers such as          and 

      . In view of that, two questions could arise. Was this difference big enough 

to suggest that Rprop was better than CGP? Would it still be worthwhile to use CGP?  

The answer to these questions would depend on the application problems under 

study. For biological data such as the E.coli, Yeast, diabetes and cancer (Murphy and 

Aha, 1994), even the smallest difference could be of major importance. This 

difference could even be of greater importance if one was dealing with a larger 

dataset; because lesser accuracy would mean more misclassifications. For instance, if 

one had to classify 5000 different sites based on the presence or not of some E.coli 

proteins, 1% lesser accuracy would amount to 50 more misclassifications of sites. 

This would mean that 50 sites could be declared clean, while contaminated by some 

E.coli proteins (bacteria); which could result in many diseases. 

Furthermore, when analysing simultaneously the accuracy and efficiency of both 

training algorithms, we observed that Rprop was on average 4.6 (1133 second/244 

seconds) times more efficient than CGP. This means that Rprop was able to achieve 

very good accuracies in very short training times when compared to CGP. We can 

therefore suggest that Rprop was better than CGP for the E.coli binary classifiers. 

Based on this conclusion, Rprop was selected for further investigations on the 

behaviour and trade-off between the different performance measures, and the effect 

of varying the number of hidden nodes and the maximum number of training 

iterations. Results of these investigations are presented in the following sections. 
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5.3 Effect of hidden nodes and training iterations on E.coli 

classifiers using Rprop 

The Rprop was selected for further investigation as it yielded better results compared 

to the CGP. In this section, we investigated the effect of the number of hidden nodes 

and the maximum number of training iterations on a classifier using the E.coli data 

set. Note that the various E.coli binary classifiers would probably exhibit different 

behaviours from one another, with respect to varying the numbers of hidden nodes 

and iterations. Since the aim of our experiments was to show how varying the 

numbers of hidden nodes and training iterations can play a role in the performance of 

a classifier, regardless of which classifier is used, the use of one single classifier was 

deemed good enough to illustrate this concept (varying the numbers of hidden nodes 

and training iterations). We therefore restricted our experiments to only one E.coli 

binary classifier (i.e.       ), instead of all the 5 E.coli binary classifiers, though 

each binary classifier was assumed to be of different complexity. Note that the 

choice of the        classifier was subjective. A different classifier could have been 

utilised to illustrate the above defined concept; and the results, though different, 

would still have been as informative as the ones presented in this section.   

The evaluation of the effect on the above selected E.coli binary classifier, for varying 

the numbers of hidden nodes and training iterations, was done with respect to all the 

previously described performance measures, i.e. OAtrain, OAtest, convergence (or 

MSE achieved) and efficiency (or training time). The same training scenarios as the 

ones described in Section 4.5 were applied for the experiments in this section (i.e. 

networks with the following numbers of hidden nodes and training iterations: 5, 10, 

20, 30, and 40 hidden nodes, and 25, 50, 75, 100, 150, and 200 training iterations). 

Different training scenarios could have been applied and the idea of varying the 

numbers of hidden nodes and iterations would still have been successfully illustrated, 

as long as the numbers of hidden nodes and iterations were kept below 40 and 200 

respectively. Based on the accuracies obtained in previous experiments (see Table 

5.2), we suspected that training scenarios for varying the numbers of hidden nodes 

and iterations that are greater than 40 hidden nodes and 200 iterations, would not 

have properly exhibited the changes in the performance of the E.coli classifiers. This 
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was because the accuracies obtained for the training scenarios defined in Section 4.5, 

were already very high, with eventually no room for improvement for further 
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5.3.1 Effect on convergence 

The patterns in Figure 5.1 portray the effect of changing the number of hidden nodes 

and the pre-specified number of training iterations on the convergence of the        

binary classifier.  Figure 5.1 shows that the MSEs decreased when the number of 

hidden nodes was increased. For instance, the MSEs at 5 hidden nodes were larger 

than the MSEs at 10 hidden nodes. This was true for the various numbers of hidden 

nodes. The same negative relationship was observed between the MSEs and the 

various numbers of training iterations. 
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Figure ‎5.1: The MSE for varying the number of hidden nodes and training iterations 

for the cp/~cp binary classifier trained with Rprop 

The MSEs decreased with an increase in the training updates (iterations). The lines 

for higher training iterations were situated at the smaller MSEs than the lines for 

smaller training iterations. For instance, the line for 200 training iterations was at the 

bottom and the line for 25 training iterations was at the top of all lines. Since the 

patterns in Figure 5.1 suggest that training convergence (or MSEs) improved with an 

increase in the hidden nodes and training iterations for the        classifier, we can 

therefore suggest that varying the numbers of hidden nodes and iterations may 

impact the convergence of NNs classifiers. The impact would probably vary with 

respect to various classifiers. 

 

5.3.2 Effect on the accuracy on training set 

The patterns in Figure 5.2 show the effect on the accuracy on the training set as the 

numbers of hidden nodes and maximum training iterations were varied for the 
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       classifier. The results in Figure 5.2 show a positive relationship between the 

numbers of hidden nodes and training iterations with the OAtrain. For an increase in 

the hidden nodes, there was an increase in the OAtrain. For instance, the OAtrain 

increased when the number of hidden nodes was increased from 20 to 30. For an 

increase in the number of training iterations, there was an increase in the OAtrain. 

For example, OAtrain for 200 training iterations were the highest, while OAtrain for 

25 training iterations were the lowest. Based on the patterns in Figure 5.2, we can 

therefore say that increasing the numbers of hidden nodes and training iterations may 

have a positive effect on the OAtrain; this effect would probably vary with respect to 

the classifiers under consideration. Although this effect was rarely greater than 2% 

for the OAtrain, it could still be of great importance, depending on the application 

problems as explained in Section 5.2.4. 
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Figure ‎5.2: The OAtrain for varying number of hidden nodes and training iterations 

for the cp/~cp binary classifier trained with Rprop 

 

5.3.3 Effect on the accuracy on test set 

Figure 5.3 depicts the effect on the accuracy on the test set as the numbers of hidden 

nodes and training iterations were varied for the        classifier.  The behaviour of 

the OAtest based on the change in the numbers of hidden nodes and iterations 

portrayed in Figure 5.3, does not exhibit a consistent pattern as the one for the 

OAtrain in Figure 5.2. Figure 5.3 shows that there was no constant trend in the 

change of OAtest as the numbers of hidden nodes and training iterations were varied. 

However, it appears that better solutions were found for networks that were trained 

for smaller numbers of iterations, i.e. 25 and 50. The superiority of the solutions 

found with 25 and 50 training iterations can be observed through the various 

numbers of hidden nodes in Figure 5.3. It is evident that a network with 5 hidden 

nodes trained for 25 iterations yielded the best OAtest. This accuracy decreased with 

an increase in the number of training iterations (interpretation was done vertically 
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from the top to the bottom for 5 hidden nodes). Note that the decrease in accuracy 

may seem not that much, but could have major implications in some application 

fields as explained in Section 5.2.4. Figure 5.3 also suggest that training that was 

done for more than 25 iterations (for 5, 10 and 40 hidden nodes) and 50 iterations 

(for 20 and 30 hidden nodes) over-fitted the training set, because beyond 25 and 50 

iterations, the OAtest decreased as shown in Figure 5.3. Also, for 20 hidden nodes, 

the network trained for 200 iterations outperformed the one trained for 150 iterations. 

For 30 hidden nodes, the network trained for 200 iterations outperformed those 

trained for 100, and 150 iterations. 

 

Figure ‎5.3: The OAtest for varying the number of hidden nodes and training 
iterations for the cp/~cp binary classifier trained with Rprop 

 

Observation of the patterns in Figure 5.3 may also lead to the suggestion that an 

excessive increase of the number of hidden nodes may badly affect the performance 

accuracy of a classifier on unseen dataset (test set). Take for instance the decrease in 
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OAtest, as the number of hidden nodes was increased, for the classifier trained with 

25 iterations (dashed red line). This is because a network with excessive number of 

parameters in the weights space (consequence of excessive number of hidden nodes) 

may start generating arbitrary complex regions in the weights space and end up over-

fitting the data, if the number of iterations is not well monitored. Hence, finding of 

optimal number of hidden nodes should be coupled with the finding of optimal 

number of training iterations. For instance, the results in Figure 5.3 show that, 

networks with 5, 10, and 40 hidden nodes yielded better solutions when trained for 

25 iterations than when they were trained for 50 iterations, whereas networks with 20 

and 30 hidden nodes yielded better solutions when trained for 50 iterations than 

when they were trained for 25 iterations. 

 

5.3.4 Effect on efficiency 

Figure 5.4 shows the effect of varying the numbers of hidden nodes and training 

iterations on the efficiency of the        classifier. The patterns in Figure 5.4 

portray a positive relationship between the time required during training and the 

number of hidden nodes. Networks with larger number of hidden nodes seem to have 

required more training time compared to those that have less. However, the positive 

relationship between the number of hidden nodes and training time was not that 

pronounced. The patterns in Figure 5.4 show that there was an increase in the 

training time as the number of hidden nodes was increased. But the increase in the 

training time was rather small, especially in the range between 5 and 30 hidden 

nodes, for networks trained for 25 to 100 iterations. A more pronounced increase in 

the training time happened when the number of hidden nodes was increased from 30 

to 40. For the effect on efficiency, based on the various numbers of training 

iterations, the patterns in Figure 5.4 suggest that the training time increased as the 

number of iterations was increased. For instance, Figure 5.4 shows that the training 

times of networks trained with 25 iterations were less than 50 seconds, whereas the 

training times of networks trained with 200 iterations were greater than 600 seconds. 
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Figure ‎5.4: Training time (in seconds) for varying number of hidden nodes and 

training iterations for the cp/~cp binary classifier 

 

5.4 Comparing Rprop and CGP using the Yeast Proteins 

For the E.coli data, the results showed that the differences in accuracy between 

Rprop and CGP were rarely greater than 2% for some classifiers, even if the 

superiority of Rprop was evident when both accuracy and efficiency were used 

simultaneously in the comparison of the two training algorithms. In this section, we 

used the Yeast data, which is of different composition from the E.coli data, to see if 

there would be more differences in accuracy between Rprop and CGP, when using 

data with different class structures. The Yeast data consists of 10 different classes. 

However, due to the very small cases (i.e. 5) contained in the ERL class, and given 

that the 10-fold cross validation was utilised to generalise the various NN classifiers, 

which would have made the training of the          classifier practically 

impossible, 9 Yeast binary classifiers, instead of 10 Yeast binary classifiers, were 

considered in our experiments. The same training scenarios as the ones described in 
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Section 4.5 were also applied here. The performance results for the 9 Yeast binary 

classifiers are presented in the following sections. The network configurations that 

produced the best results for each Yeast binary classifier are provided in Table 5.5. 

For the          for instance, the best network configuration was 8-40-2. 

Table ‎5.5: The network configurations that produced the best Yeast binary classifiers 

Binary classifiers 
Network 

configurations (I-H-O) 

         8-40-2 

         8-30-2 

         8-10-2 

         8-10-2 

         8-20-2 

         8-20-2 

         8-20-2 

         8-5-2 

         8-10-2 

 

5.4.1 Accuracy comparison 

Table 5.6 provides the results of the best OAtrain and OAtest for the 9 Yeast binary 

classifiers, and for both Rprop and CGP. Generally, the results in Table 5.6 suggest 

that Rprop outperformed CGP for both accuracies on training and test sets. On 

average, Rprop achieved an OAtrain of 93.54% with a standard deviation of 7.89%, 

while CGP produced an OAtrain of 91.75% with a standard deviation of 9.19%. The 

highest OAtrain (i.e. 99.47%) for Rprop was achieved with the          

classifier, while the highest OAtrain (i.e. 99.26%) for CGP was achieved with the 

         classifier. The smallest OAtrain for both Rprop (i.e. 78.55%) and CGP 

(i.e. 74.22%) was produced by         . For the OAtest, Table 5.6 shows that 
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Rprop outperformed CGP. On average, the OAtest for Rprop was 91.91% with a 

standard deviation of 8.87%, while the OAtest for CGP was 90.8% with a standard 

deviation of 9.65%. The highest OAtest for both Rprop (i.e. 99.04%) and CGP (i.e. 

99.04%) were achieved with the          classifier, while the smallest OAtest 

for both Rprop (i.e. 74.53%) and CGP (i.e. 72.41%) were achieved by the     

     classifier. The differences between Rprop and CGP based on training 

accuracy and test accuracy are respectively shown in the columns labelled DOAtrain 

and DOAtest in Table 5.6. These differences were smaller on test sets (i.e. in the 

range between 0% and 2.52%) than they were on training sets (i.e. in the range 

between 0.14% and 4.33%). On average, the accuracy difference between Rprop and 

CGP was 1.79% on training set and 1.12% on test set. 

Table ‎5.6: Yeast Best OAtrain and Best OAtest 

Binary classifiers 
OAtrain (%) OAtest (%) 

Rprop CGP DOAtrain Rprop CGP DOAtest 

         78.55 74.22 4.33 74.53 72.41 2.12 

         80.32 77.06 3.26 77.95 75.7 2.25 

         91.53 88.6 2.93 89.12 86.93 2.19 

         96.8 93.85 2.95 95.27 92.75 2.52 

         98.34 97.63 0.71 96.86 96.76 0.1 

         99.47 98.63 0.84 98.3 97.74 0.56 

         99.03 98.29 0.74 98.17 97.86 0.31 

         98.42 98.17 0.25 97.98 97.98 0 

         99.4 99.26 0.14 99.04 99.04 0 

Mean 93.54 91.75 1.79 91.91 90.8 1.12 

Stdv 7.89 9.19 1.47 8.87 9.65 1.05 

 

In summary, the comparison of accuracies between the Rprop and CGP algorithms 

using the 9 Yeast binary classifiers considered in our experiments has revealed that 
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Rprop outperformed CGP both on training and test sets. However, for some Yeast 

binary classifiers, the difference between the two training algorithms was very small, 

whereas for some others the difference was relatively high. For instance, the 

differences between the two algorithms were amongst the smallest (i.e. less than 1%) 

for classifiers such as         ,         ,         ,          and 

        , whereas they were amongst the largest (i.e. more than 2.5%) for the 

classifiers such as         ,         ,          and         .   

As was done for the E.coli binary classifiers, the reason of the differences in 

accuracy between the various Yeast binary classifiers may have been due to the fact 

that the various binary classifiers may have been dealing with data having different 

class structures. Some class structures may have been more complex to train than 

some others. In this regard, the classifiers dealing with more complex class structures 

would be less accurate than the classifiers dealing with less complex class structure. 

Besides, when compared to the E.coli binary classifiers in Table 5.2, the Yeast binary 

classifiers appeared to have lower classification accuracies in general. The accuracies 

of the E.coli binary classifiers started from 90%, while those for the Yeast binary 

classifiers started from less than 75%. This implies that the Yeast binary classifiers 

may have been more complex than the E.coli binary classifiers. Further analysis of 

the difference in class structures and effect on the various classifiers is presented in 

Section 5.6 and 5.7. 

 

5.4.2 Convergence comparison 

Table 5.7 gives the best MSEs reached by the 9 Yeast binary classifiers considered in 

our experiments for both Rprop and CGP. The results in Table 5.7 show that Rprop 

outperformed CGP for all the 9 Yeast binary classifiers. The MSEs achieved by 

Rprop were smaller than those achieved by CGP. On average, Rprop achieved a 

MSE of 0.0479 with a standard deviation of 0.0541, whereas CGP achieved a MSE 

of 0.063 with a standard deviation of 0.0659. The best performance (or the smallest 
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MSE) achieved for Rprop was 0.0054, whereas the best performance achieved for 

CGP was 0.0072. For Rprop, the best performance was achieved when training the 

         classifier, while the best performance for CGP was achieved when 

training the          classifier. The poorest convergence performance for Rprop 

was 0.1471, while that for CGP was 0.1845. Both were achieved by the          

classifier.  

Table ‎5.7: Yeast Best MSE 

Binary classifiers 
MSE 

Rprop CGP 

         0.1471 0.1845 

         0.1391 0.1685 

         0.0684 0.0937 

         0.0266 0.0488 

         0.015 0.0214 

         0.0054 0.0107 

         0.0085 0.0148 

         0.0152 0.0172 

         0.0058 0.0072 

Mean 0.0479 0.063 

Stdv 0.0541 0.0659 

 

5.4.3 Efficiency comparison 

As for the E.coli binary classifiers (see Section 5.2.3), we utilised the same error 

targets for both Rprop and CGP, for fair comparison of their efficiency in the training 

of the Yeast binary classifiers. Since CGP produced the largest MSEs (or the farthest 

from the minimum of the network error functions), we assumed that these would be 

the easiest targets to reach for both algorithms. Therefore, we measured efficiency by 

the time taken to reach the MSEs of CGP. Table 5.8 gives the time taken to reach the 
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MSEs of CGP provided in Table 5.7, for the 9 Yeast binary classifiers. The results in 

Table 5.8 suggest that Rprop was more efficient than CGP. Rprop took much shorter 

times than CGP to reach convergence for the 9 Yeast binary classifiers trained in this 

study. On average, Rprop reached the target in 1072 seconds, whereas CGP did so in 

3741 seconds. The longest time for Rprop (i.e. 1981 seconds) was obtained in the 

training of the          classifier, while that for CGP (i.e. 7726 seconds) was 

obtained in the training of the          classifier. The shortest time for Rprop was 

278 seconds, while that for CGP was 729 seconds. Both shortest times were achieved 

with the          classifier 

Table ‎5.8: Yeast Training time to best MSE 

Binary classifiers 
Time (seconds) 

Rprop CGP 

         1414 7726 

         888 2797 

         1219 3605 

         838 2310 

         1117 2606 

         899 4471 

         1014 3382 

         1981 6046 

         278 729 

Mean 1072 3741 

Stdv 437 1977 

 

5.4.4 Concluding remarks 

The results for the Yeast data have revealed that Rprop algorithm performed better 

than CGP. The two algorithms were compared based on four measures of 

performance, i.e. OAtrain, OAtest, convergence (or MSE achieved), and efficiency. 
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Based on these 4 measures of performance, Rprop outperformed CGP for all the 9 

Yeast binary classifiers analysed in our experiments. We can therefore suggest based 

on the Yeast data that: 1) Rprop was more accurate than CGP, 2) Rprop had better 

convergence capabilities than CGP, and 3) Rprop was more efficient and converged 

faster than CGP. 

 We emphasise once more that the difference in accuracies between Rprop and CGP 

may seem not big enough to decide on the best algorithm between the two. But when 

accuracy and efficiency were simultaneously considered in the choice of the best 

training algorithms, Rprop appeared to be the best training algorithm. On average, 

Rprop was 3.5 (3741 seconds/1072 seconds) times more efficient than CGP. This 

means that to achieve comparable accuracies, Rprop required 3.5 times less training 

time than CGP. In this regard, we can suggest that Rprop was much better than CGP. 

Based on these findings, Rprop was hence selected for further investigations on the 

trade-off between the performance measures, and the effect of varying the numbers 

of hidden nodes and training iterations on the performance of the Yeast binary 

classifiers. Results of these investigations are presented in the following sections. 

 

5.5 Effect of hidden nodes and training iterations on Yeast 
classifiers using Rprop 

As for the E.coli data, the Rprop was selected for further investigation since it 

yielded better results compared to CGP for the Yeast data. In this section, we 

investigated the effect of the number of hidden nodes and the maximum number of 

training updates (iterations) on a classifier using the Yeast data set. Since the interest 

was to analyse the behaviour of a classifier based on the change in the number of 

hidden nodes and number of training iterations, the use of one single binary classifier 

was deemed good enough to illustrate this behaviour. We hence restricted our 

experiments to only one Yeast binary classifier, i.e.          instead of all the 9 

Yeast binary classifiers analysed in the previous sections, though each Yeast binary 

classifier seemed to be of different complexity. It is worth emphasising that there 
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was no objective reason for choosing the          classifier rather than another 

Yeast binary classifier, to evaluate the behaviour of a NN classifier based on the 

change in the numbers of hidden nodes and training iterations. A different Yeast 

binary classifier could have been utilised for illustrative purpose of the behaviour of 

a NN classifier based on varying the numbers of hidden nodes and training iterations; 

and the results, though different, would still have been as informative as the ones 

presented in this section. In choosing only the          classifier, we do not 

imply that all the 9 Yeast binary classifiers will exhibit the same behaviour. These 

binary classifiers would probably behave differently given that they are of different 

complexity. However, we assumed that varying the numbers of hidden nodes and 

training iterations would impact the behaviour of these classifiers in one way or 

another. For the experiments in this section, we applied the same training scenarios 

as the ones applied for the E.coli binary classifiers in Section 5.3. The performance 

results are presented in the following sections.  

 

5.5.1 Effect on convergence 

The patterns in Figure 5.5 display the effect of changing the numbers of hidden 

nodes and the pre-specified training iterations on the convergence of the          

binary classifier. Figure 5.5 portrays a negative relationship between the MSEs and 

the number of hidden nodes. The MSEs decreased as the number of hidden nodes 

was increased. For instance, the MSEs decreased as the hidden nodes were increased 

from 5 to 10, 10 to 20, 20 to 30, and 30 to 40. Figure 5.5 also exhibits a negative 

relationship between the MSEs and the various numbers of training iterations. The 

MSEs decreased as the training iterations were increased. This can be observed on 

Figure 5.5 where the lines corresponding to higher training iterations were situated at 

the smaller MSEs than the lines corresponding to smaller training iterations. For 

instance, the line corresponding to the highest (i.e. 200t) training iterations was 

situated at the bottom of all the lines, where the MSE’s values were the smallest, 

while the line corresponding to the smallest (i.e. 25t) training iterations was situated 

at the top of all the lines, where the MSE’s values were the highest. Based on the 
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behaviour of the          classifier portrayed in Figure 5.5, we can suggest that 

the convergence of a NN classifier can be improved with an increase in the hidden 

nodes and training iterations. 

 

 

Figure ‎5.5: The MSE for varying number of hidden nodes and training iterations for 
the CYT/~CYT binary classifier trained with Rprop 

 

5.5.2 Effect on the accuracy on training set 

Figure 5.6 portrays the effect on the accuracy on training (i.e. OAtrain) set as the 

numbers of hidden nodes and training iterations were varied for the          

binary classifier. The patterns in Figure 5.6 suggest a positive relationship between 

the numbers of hidden nodes and training iterations with the OAtrain, which 

increased as the hidden nodes and training iterations were increased. For the hidden 
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nodes for instance, Figure 5.6 shows that the OAtrain constantly increased as the 

hidden nodes were increased from 5 to 10, 10 to 20, 20 to 30, and 30 to 40.  Figure 

5.6 also shows that the lines corresponding to higher training iteration were situated 

at the higher OAtrain than the lines corresponding to the smaller training iterations, 

suggesting that the accuracy on training set increased as the number of training 

iterations was increased. For instance, the OAtrain for 200 training iterations were 

the highest, while the OAtrain for 25 training iterations were the smallest as shown in 

Figure 5.6.  

 

Figure ‎5.6: The OAtrain for varying number of hidden nodes and training iterations 
for the CYT/~CYT binary classifier trained with Rprop 

 

5.5.3 Effect on the accuracy on test set 

Figure 5.7 displays the effect on the accuracy on test set (i.e. OAtest) as the numbers 

of hidden nodes and training iterations were varied for the          binary 

classifier. The patterns in Figure 5.7 do not portray a clear and constant behaviour of 
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the OAtest with respect to the change in the numbers of hidden nodes and training 

iterations. When the hidden nodes were increased from 5 to 10 and 10 to 20 for 

instance, Figure 5.7 shows that the OAtest increased, except for when the number of 

training iterations was 200, where the OAtest decreased as the hidden nodes were 

increased from 10 to 20. When the hidden nodes were increased from 20 to 30 and 

30 to 40, Figure 5.7 shows that the OAtest remained constant for the case where 25 

training iterations was used, while the OAtest increased for the cases of 50 and 200 

iterations. For the cases of 100 and 150 iterations, the OAtest decreased as the hidden 

nodes were increased from 20 to 30, and then increased as the hidden nodes were 

increased from 30 to 40. Figure 5.7 also shows that for the number of hidden nodes 

in the range between 20 and 40, the NN classifiers trained for 150 iterations 

produced the best OAtest, suggesting that beyond 150 iterations, the networks started 

to over-fit the training set; and as a result, the accuracy on the test set started to 

decrease. But for the number of hidden nodes between 5 and 10, the best solution 

was produced by the networks trained for 200 iterations; suggesting that for network 

configurations with numbers of hidden nodes 5 and 10, there might still be room for 

improving the OAtest for training iterations beyond 200. This is because Figure 5.7 

shows that the accuracy on the test set was still increasing for networks with 5 and 10 

hidden nodes, when the maximum number of training iterations (i.e. 200) was 

reached. The observations based on Figure 5.7 are consistent with the conclusion 

reached when analysing the E.coli binary classifiers (see Section 5.3.3): determining 

the optimal number of hidden nodes should be coupled with the finding of the 

optimal number of training iterations; which is the basis of the trial and error 

approach. 
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Figure ‎5.7: The OAtest for varying number of hidden nodes and training iterations 

for the CYT/~CYT binary classifier trained with Rprop  

 

5.5.4 Effect on efficiency 

Figure 5.8 portrays the effect of varying the numbers of hidden nodes and training 

iterations on the efficiency for the          binary classifier. In general, the 

patterns in Figure 5.8 suggest a positive relationship between the training times and 

the number of hidden nodes. The training times increased as the hidden nodes were 

increased. This suggests that the increase in the training times may have been due to 

the fact that the complexity of the networks increased as more hidden nodes were 

added. It is worth highlighting that when the hidden nodes were increased in the 

interval between 5 and 30, Figure 5.8 shows that the increase in the training times 

was very small; especially for networks trained for less than 150 iterations. The 

training times increased significantly when the hidden nodes were increased from 30 

to 40 hidden nodes, especially for networks trained for 100, 150 and 200 iterations. 
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The positive relationship between the number of training iterations and the training 

time is evident in Figure 5.8. The results show that the more the maximum number of 

iterations, the more time was required to finish training. This is shown in Figure 5.8 

by the fact that the lines corresponding to the higher numbers of training iterations 

were situated at the higher values of training times. 

 

Figure ‎5.8: Training time (in seconds) for varying number of hidden nodes and 
training iterations for the CYT/~CYT binary classifier trained with Rprop 

 

5.6 Comparing the E.coli classifiers and the Yeast classifiers 

The results have thus far shown that the E.coli classifiers were more accurate than 

the Yeast classifiers. The assumed reason for this difference was that the Yeast 

classifiers may have been more complex than the E.coli classifiers. In other words, 

the structure of the Yeast data may have been more complex than the structure of 

E.coli data. When we refer complexity in this context, we are referring to the 
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interconnections and overlaps between classes in the data. If there are too many 

overlaps between classes, the decision boundary between different classes would be 

difficult to estimate. The data points that are in the region where classes overlap with 

other classes may be incorrectly classified. If there are a large number of data points 

in this region, the misclassification rate will be higher. This will mean that in these 

situations the accuracies are going to be lower than when there are less overlaps (Ho 

and Basu, 2002; Attoor and Dougherty, 2004). In this regard, we implicitly evaluated 

the complexity of data through the performance of a classifier in classifying that 

data. Poor performance for a particular classifier was an indication that maybe the 

data was intrinsically very complex for the classifier to correctly classify it. 

The results have also shown differences in accuracy between the E.coli classifiers 

and between the Yeast classifiers. The difference of complexity between E.coli 

classifiers and between the Yeast classifiers was assumed to be the reason. 

Therefore, in this section and Section 5.7 following, we analysed the problem of 

complexity of classifiers (note that the complexity of classifiers is related to the 

complexity of class structures of the dataset that they are classifying). This section 

focuses on a general performance and complexity comparison of the E.coli and the 

Yeast classifiers. Section 5.7 delves into performance of particular classifiers. 

Table ‎5.9: Best Test performances for the E.coli classifiers using Rprop 

Binary classifiers 
Total samples in 

class1 and class2 

Times 

(seconds) 

OAtest 

(%) 

Atest1 

(%) 

Atest2 

(%) 

       173/~163 36 96.85 97.52 96.34 

       77/~259 69 91.2 87.41 92.33 

       52/~284 33 95.01 93.16 95.35 

         35/~301 217 92.75 83.3 93.86 

       20/~316 29 98.4 97.05 98.49 

Mean 71/~265 77 94.84 91.69 95.27 

Stdv 54/~54 72 2.62 5.54 2.1 
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We used the results from our experiments to compare the performance of the E.coli 

and the Yeast classifiers. The experiments were conducted using the same 

parameters for Rprop and training scenarios as specified in Section 3.2.3 and Section 

4.5, respectively. The results obtained involve the best OAtest for each classifier, 

with their corresponding test accuracy of class 1 (Atest1), test accuracy of class 2 

(Atest2), and training times to yield the specified accuracies on test set. Moreover, 

we used the distribution of samples in class 1 and class 2 as another indication of the 

complexity of a classifier. In brief, Atest1 and Atest2 can be understood as follows. 

Take for instance the        binary classifier; it contains two classes, i.e. cp (class 

1) and no cp or ~cp (class 2). Atest1 is the test classification accuracy of cp (the 

ability of the classifier        to correctly classify cp on the test set), and Atest2 is 

the test classification accuracy of no cp (the ability of the classifier        to 

correctly classify no cp on the test set). 

Table ‎5.10: Best Test performances for the Yeast classifiers using Rprop 

Binary classifiers 
Total samples in 

class1 and class2 

Times 

(seconds) 

OAtest 

(%) 

Atest1 

(%) 

Atest2 

(%) 

         463/~1021 1537 74.53 53.99 83.85 

         429/~1055 306 77.95 50.55 89.08 

         244/~1240 249 89.12 57.35 95.16 

         163/~1321 245 95.27 82.34 96.86 

         51/~1433 272 96.86 54.96 98.36 

         44/~1440 1554 98.3 91.62 98.51 

         37/~1447 1554 98.17 66.56 98.92 

         30/~1454 45 97.98 22.6 99.54 

         20/~1464 233 99.03 56.31 99.61 

Mean 165/~1319 666 91.91 59.59 95.54 

Stdv 166/~166 628 8.87 18.59 5.18 

 

Table 5.9 gives the best test results for the E.coli classifiers, and Table 5.10 gives the 

best test results for the Yeast classifiers. The results in Tables 5.9 and 5.10 show that, 
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in general, the E.coli classifiers performed better than the Yeast classifiers. On 

average, the OAtest for the E.coli classifier was 94.84% with a standard deviation of 

2.62%, while that for the Yeast classifier was 91.91% with a standard deviation of 

8.87%. The E.coli classifier was hence 4% more accurate than the Yeast classifier, 

on average. The superiority of the E.coli classifiers over the Yeast classifiers was 

also reflected in the ability of both classifiers to accurately classify class 1 and class 

2. On average, the Atest1 and Atest2 for the E.coli classifier were 91.69% and 

95.27% respectively, whereas those for the Yeast classifier were 59.59% and 95.54% 

respectively. The results suggest that the E.coli classifiers were able to classify both 

class 1 and class 2 very well, whereas the Yeast classifiers performed poorly on class 

1 and very well on class 2. As said before, this difference in performance between 

the E.coli and Yeast classifiers may be attributed to some extent, to the difference of 

complexity between the class structures of the E.coli and Yeast data. The class 

structure for the Yeast data may have been more complex than the class structure for 

the E.coli data, which may have led to the E.coli classifiers performing better than 

the Yeast classifiers. 

In an attempt to better evaluate the complexity of the two datasets, we also included 

the distribution of samples in class 1 and class 2 for every classifier, and the time 

required to train every one of them. Table 5.9 and Table 5.10 provide the results for 

the E.coli classifiers and for the Yeast classifiers, respectively. The results in both 

tables show that the training times for the Yeast classifiers were longer than those for 

the E.coli classifiers. On average, a Yeast classifier needed 666 seconds to finish 

training, whereas an E.coli classifier needed 77 seconds to finish training. In other 

words, a Yeast classifier took about 8.6 times longer than an E.coli classifier for 

training. This suggests to some degree that there seemed to be a positive relationship 

between the training time and the number of samples for a classifier. For the E.coli 

classifier, the sample size was 336 with on average, 71 and 265 samples in class 1 

and class 2, respectively (i.e. 71/~265); whereas for the Yeast classifier, the sample 

size was 1484 with on average, 165 and 1319 samples in class 1 and class 2, 

respectively (165/~1319). These distributions of samples seem to have influenced the 
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training times of the classifiers. The larger the samples, the longer the classifiers took 

for training.  

Another aspect we analysed was the imbalanced nature (i.e. the high unequal 

distribution of samples in class 1 and class 2, with in general, class 2 containing far 

more samples than class 1) of the E.coli and Yeast classifiers. Table 5.9 and Table 

5.10 show that, in general, the Yeast classifiers were more imbalanced than the E.coli 

classifiers. It is worth emphasising that, in this context, a classifier is said to be 

imbalanced if it is classifying an imbalanced dataset. The general impression that 

may have arisen from analysing the training times of the different classifiers in 

Tables 5.9 and 5.10 is that the more imbalanced classifiers required lesser training 

times than the less imbalanced ones. This was only true to some extent, because there 

were more imbalanced classifiers that required more training time than the less 

imbalanced ones. For E.coli for instance,        (77/~259) was more imbalanced 

than        (173/~163); but it required more training time (i.e. 69 seconds) than 

       which required 36 seconds for training. For Yeast,          (44/~1440) 

was more imbalanced than          (244/~1240), but required more training time 

(i.e. 1554 seconds) than          which required 249 seconds for training. 

Moreover, while the Yeast classifiers were the more imbalanced, they required more 

training time than the E.coli classifiers. 

To summarise, results in Tables 5.9 and 5.10 suggest that, in general, the Yeast 

classifiers were less accurate and took longer to train than the E.coli classifiers. This 

situation may be explained by the number of samples that needed to be classified by 

each classifier. The Yeast classifiers were dealing with more samples than the E.coli 

classifiers. They thus required more training times than the E.coli classifiers. The 

more samples a classifier had to classify, the more time was required to classify 

them.  But the number of samples did not account for all the differences in accuracies 

and times between the Yeast and E.coli classifiers.  The structure of the data itself 

and the distribution of samples in different classes were very important features 

which could have made the task of distinguishing between classes difficult. It can be 

assumed that, because the Yeast classifiers were less accurate than the E.coli ones, 

the structure of the Yeast data was more complex than that of the E.coli data, which 
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may have led to the better performance of the E.coli classifiers compared to the 

Yeast classifiers. 

 

5.7 Further Experiments - Evaluating the complexity of 
classifiers 

5.7.1 Introduction 

We have observed based on the above experiments that the performances of the 

various classifiers were different. For the same experimental design, some classifiers 

achieved very good performance, whereas others performed poorly. This has been 

observed for both the E.coli and Yeast classifiers. For the E.coli data for instance, the 

       classifier performed better than        classifier. The OAtrain and 

OAtest for        were respectively 99.91% and 98.4%, while those for        

were respectively 97.59% and 91.2% (see results produced by Rprop in Table 5.2). 

For the Yeast data for instance, the          classifier performed better than the 

         classifier. The OAtrain and OAtest for          were respectively 

99.4% and 99.04%, while those for          were respectively 78.55% and 

74.53% (see results produced by Rprop in Table 5.6). Based on these results, we 

argued that the difference in accuracies between these classifiers may have been due 

to the difference of complexity between the class structures of the data that had to be 

classified by these classifiers. The classifiers that dealt with more complex class 

structures produced better accuracies than the classifiers that dealt with less complex 

class structures. Thus, we can suggest for the E.coli data that the        classifier 

dealt with the more complex class structure since it was the less accurate classifier, 

and the        classifier dealt with the less complex class structure since it was 

the more accurate classifier. For the Yeast data, the          classifier dealt with 

the more complex class structure since it was the less accurate classifier, and the 

         dealt with the less complex class structure since it was the more 

accurate classifier. 



 5.7   Further Experiments - Evaluating the complexity of classifiers

 

85 

 

We can also suggest based on the above results that the training scenarios as 

described in Section 4.5, which were (numbers of hidden nodes and iterations) 

utilised for the training of the classifiers that produced the less accuracies, may not 

have been appropriate. The numbers of hidden nodes and training iterations applied 

may have been unnecessarily very high or insufficient for the less performing E.coli 

and Yeast classifiers. If that was the case, there might be room for improvement of 

the less performing E.coli and Yeast classifiers, provided that the appropriate training 

scenarios are found. To test this assumption, it was worthwhile doing further 

experiments and to see if we could eventually improve the performance of the 

classifiers that performed poorly. For further experiments, we chose two binary 

classifiers; one binary classifier with the lowest accuracies among the E.coli binary 

classifiers and another one with the lowest accuracies among the Yeast binary 

classifiers. The E.coli binary classifier chosen was the        classifier, and the 

Yeast binary classifier chosen was the          classifier. This gave us a 

possibility of testing if we could improve their performance under different training 

scenarios from the ones used in the previous experiments as specified in section 4.5. 

Also, utilising these two above specified worst performing classifiers could highlight 

the complexity of the class structures of the data that had to be classified by these 

two E.coli and Yeast classifiers. The performance results for the        classifier 

and          classifier under the further training scenarios applied are presented 

in the following sections. The training was done using Rprop since it was the better 

performing algorithm.  

 

5.7.2 Comparing the performance of the         E.coli 

classifier and          Yeast classifier 

In this section, we used different training scenarios to compare the performance 

results of the        E.coli classifier and          Yeast classifier for the 

reasons provided in section 5.7.1. The experimental designs applied in this section 

are as follows: 1) networks with 1, 2, 3, 4 and 5 hidden nodes trained for 25, 50, 75, 

100, 150 and 200 iterations; 2) networks with 5, 10, 20, 30 and 40 hidden nodes 
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trained for 2, 5, 10, 15, 20 and 24 iterations. Both the first and second experimental 

designs had 30 training scenarios each. The choice of these training scenarios was 

based on the trial and error method for determining the appropriate numbers of 

hidden nodes and training iterations (see Section 4.3.2).  

Also, results presented so far have shown that training scenarios that used networks 

with hidden nodes in the range between 5 and 40, trained for iterations in the range 

between 25 and 200, could produce acceptable results for the E.coli classifiers (see 

Table 5.2) and Yeast classifiers (see Table 5.6). It was therefore deemed appropriate 

for the experiments in this section, to use training scenarios with either reduced 

numbers of hidden nodes (as in experimental design 1) or reduced numbers of 

training iterations (as in experimental design 2), to see whether the performance of 

the above specified classifiers would improve. Furthermore, the results from the 

training scenarios applied in this section would establish whether the values for 

hidden nodes and iterations previously used (see Section 4.5) where not 

unnecessarily large or insufficient. 

 

5.7.2.1 Performance based on scenarios of 1-5 hidden nodes with 

25-200 iterations for        and           

The training scenarios that utilised the network configurations of 1, 2, 3, 4 and 5 

hidden nodes, trained for 25, 50, 75, 100, 150 and 200 iterations, were implemented 

and the performance results for the        and          are presented in this 

section. Figure 5.9 portrays the overall accuracies on test sets (or OAtest) produced 

by all the scenarios, for the        classifier; and Figure 5.10 does so for the 

         classifier. The results in Figure 5.9 suggest that the best OAtest for the 

       classifier (i.e. 90.65%) was produced by the network configuration of 5 

hidden nodes, trained for 50 iterations (or 5hn_50t), while the results in Figure 5.10 

suggest that the best OAtest for the          classifier (i.e. 72.75%) was produced 

by the network configuration of 5 hidden nodes, trained for 200 iterations (or 

5hn_200t). Also, the patterns in Figure 5.9 show that for network configuration of 5 

hidden nodes, the OAtest of the        classifier started to decrease when the 
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number of iterations was beyond 50. This suggests that for network configuration of 

5 hidden nodes, the        classifier was over-trained when the number of 

iterations exceeded 50. The patterns in Figure 5.10 show that for the network 

configuration of 5 hidden nodes, the OAtest for the          classifier was 

apparently still increasing when the number of iterations reached 200. This suggests 

that maybe there was still room for increase of the OAtest of the          

classifier, beyond 200 iterations.  
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Figure ‎5.9: OAtest for 1-5 hidden nodes with 25-200 training iterations for the 
im/~im binary classifier 

 

Figure ‎5.10: OAtest for 1-5 hidden nodes with 25-200 training iterations for the 
CYT/~CYT binary classifier 
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Table 5.11 summarises the performance results based on the best training scenario 

for the        classifier and the best training scenario for the          

classifier. These results were extracted from the 30 training scenarios as described 

previously. The results in the top part of Table 5.11 are related to the training 

scenario (i.e. 5hn_50t which is described as network with 5 hidden nodes (hn) trained 

for 50 iterations (t)) that produced the best accuracy on test set (OAtest), for the 

       classifier. Based on the same training scenario (i.e. 5hn_50t), the results 

produced for the          classifier are also provided in the top part of Table 

5.11. The results in the bottom part of Table 5.11 are related to the training scenario 

(i.e. 5hn_200t) that produced the best OAtest, for the          classifier. Based 

on the same training scenario (i.e. 5hn_200t), the results produced for the        

classifier are also provided in the bottom part of Table 5.11.  In a nutshell, the results 

in Table 5.11 can be interpreted as follows: if the        classifier is trained by 

utilising a network configuration of 5 hidden nodes trained for 50 iterations (i.e. 

5hn_50t), the expected performance results would be 93.21% as OAtrain, 90.65% as 

OAtest, 0.0479 as MSE and 39 seconds as training time. For the same training 

scenario (5hn_50t), the corresponding results for the          classifier would be 

72.15% as OAtrain, 69.9% as OAtest, 0.1986 as MSE and 346 seconds as training 

time. 

The results in Table 5.11 clearly show that the        classifier outperformed the 

         classifier in terms of accuracy, efficiency and convergence for both 

training scenarios 5hn_50t and 5hn_200t. Since these two training scenarios, out of 

the 30 training scenarios implemented, are the ones that produced the best accuracies 

on test set for both classifiers, we can suggest that the        classifier 

outperformed the          for all training scenarios. Based on the results in Table 

5.11, we can also suggest that the          classifier was more complex to train 

than the        classifier, because the          classifier was less accurate and 

less efficient than the        classifier. The complexity of the          

classifier compared to that of the        classifier may be explained by the fact 

that the          classifier had to classify data with more complex class structure 

than the data that had to be classified by the        classifier. Since          is 
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a Yeast classifier and        is an E.coli classifier, we can also suggest based on 

the results in Table 5.11 that the Yeast classifiers were more complex to train than 

the E.coli classifiers.  

Table ‎5.11: Best im/~im and CYT/~CYT based on OAtest for 1-5 hidden nodes with 

25-200 training iterations 

Performance based on the best  

       

Binary classifiers 
OAtrain 

(%)  

OAtest 

(%) 
MSE 

Time 

(seconds) 
Scenario 

       93.21 90.65 0.0479 39 5hn_50t 

         72.15 69.9 0.1986 346 5hn_50t 

Performance based on the best  

         

Binary classifiers 
OAtrain 

(%) 

OAtest 

(%) 
MSE 

Time 

(seconds) 
Scenario 

       95.35 88.62 0.0458 144 5hn_200t 

         74.23 72.75 0.1663 1242 5hn_200t 

 

5.7.2.2 Performance based on scenarios of 5-40 hidden nodes with 
2-24 iterations for        and          

The training scenarios that applied the network configurations of 5, 10, 20, 30 and 40 

hidden nodes, trained for 2, 5, 10, 15, 20 and 24 iterations, were implemented and the 

performance results for the        and          are presented in this section. 

Figure 5.11 depicts the OAtest produced by all the scenarios for the        

classifier and Figure 5.12 does the same for the          classifier. The patterns 

in Figure 5.11 suggest that the best OAtest for the        classifier (i.e. 91.37%) 

was produced by the network configuration of 20 hidden nodes trained for 24 

iterations (or 20hn_24t), while the patterns in Figure 5.12 suggest that the best 

OAtest for the          classifier (i.e. 70.34%) was produced by the network 
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configuration of 40 hidden nodes trained for 24 iterations (or 40hn_24t). Also, Figure 

5.11 and Figure 5.12 show that for all the training scenarios, the OAtests for the 

       classifier were in the range between 72% and 91.5%, while those for the 

         classifier were in the range between 58% and 70.5%. Overall, the 

       classifier produced much better accuracies than the          classifier 

for all the training scenarios, suggesting that the        classifier was less 

complicated to train than the          classifier.    

 

 

Figure ‎5.11: OAtest for 5-40 hidden nodes with 2-24 training iterations for the 
im/~im binary classifier 

 



 5.7   Further Experiments - Evaluating the complexity of classifiers

 

92 

 

 

Figure ‎5.12: OAtest for 5-40 hidden nodes with 2-24 training iterations for the 

CYT/~CYT binary classifier 

   

Table 5.12 provides the performance results based on the best training scenario for 

the        classifier and the best training scenario for the          classifier 

obtained from the 30 training scenarios as described above. The top part of Table 

5.12 provides the results based on the training scenario (i.e. 20hn_24t) that produced 

the best        classifier, while the results in the bottom part are based on the 

training scenario (i.e. 40hn_24t) that produced the best          classifier (see 

Section 5.7.2.1 for interpretation of table). The results in Table 5.12 indicate that the 

       classifier outperformed the          classifier in terms of accuracy, 

efficiency and convergence for both training scenarios 20hn_24t and 40hn_24t. 

Based on scenario 40hn_24t for instance, the OAtest for        was 90.12%, while 

that for           was 70.34%. The results in Table 5.12 also suggest that the 

         classifier was more complex than the        classifier, because the 

         classifier required many hidden nodes (40) to achieve its best 
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performance, while the        classifier required fewer hidden nodes (20) to 

achieve its best performance. 

Table ‎5.12: Best im/~im and CYT/~CYT based on OAtest for 5-40 hidden nodes with 
2-24 training iterations 

Performance based on the best  

       

Binary classifiers 
OAtrain 

(%) 

OAtest 

(%) 
MSE 

Time 

(seconds) 
Scenario 

       93.37 91.37 0.0497 15 20hn_24t 

         70.85 69.21 0.1944 52 20hn_24t 

Performance based on the best  

         

Binary classifiers 
OAtrain 

(%) 

OAtest 

(%) 
MSE 

Time 

(%) 
Scenario 

       92.98 90.12 0.0525 18 40hn_24t 

         71.07 70.34 0.1765 63 40hn_24t 

 

 

5.7.2.3 Concluding remarks 

We suspected that the differences in performance between the E.coli and Yeast 

classifiers may have been due to the difference of complexity between the class 

structures of the data that were to be classified by the different classifiers. Also, 

given that some classifiers achieved very high accuracies while others performed 

poorly, we assumed that, the first proposed experimental design (5-40hn with 25-

200t) for training may not have been appropriate for some of the classifiers. We 

thought that perhaps the numbers of hidden nodes and training iterations were 

unnecessarily very high for some binary classifiers, especially for those with very 

high accuracies, or insufficient (very small), especially for those with lower 

accuracies (i.e. having more misclassifications). 
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To test the above assumptions, we utilised extra training scenarios to evaluate the 

performance of the E.coli and Yeast classifiers. The classifiers chosen for the extra 

training scenarios were the        classifier and the          classifier. These 

two classifiers were chosen because they were the two classifiers with the lowest 

accuracies. The        classifier and the          classifier produced the 

lowest accuracy among the E.coli classifiers and the Yeast classifiers respectively. 

The interest of using these two worst performing classifiers was to highlight the 

complexity of the data structures that these two classifiers were dealing with, and see 

if the extra training scenarios could improve their performance.  

The results from the extra experiments have shown little improvements in accuracy 

(from 91.2% to 91.37%) for the         classifier and no improvement at all for the 

          classifier. Actually, the accuracy for the          classifier 

decreased under the extra experiments described in Sections 5.7.2.1 and 5.7.2.2, 

compared to the accuracy obtained under the original experiments described in 

Section 4.5. The accuracies on test set obtained under the various experimental 

designs are summarised in Table 5.13 for        and           classifiers. We 

also observed based on the results obtained under the extra experiments that the 

          classifier was more complex to train than the        classifier, 

because the           yielded very low accuracies when compared to the 

accuracies yielded by the        classifier under the various experimental designs 

(see Table 5.13). Finally, since           is a Yeast classifier and performed 

poorly than        which is an E.coli classifier, we hence suggested that the Yeast 

classifiers we more complex to train than the E.coli classifiers. This also indicated 

that the decision boundaries between the Yeast class structures were more complex 

to estimate than the decision boundaries between the E.coli class structures.  

 

  

 



 5.7   Further Experiments - Evaluating the complexity of classifiers

 

95 

 

Table ‎5.13: Best im/~im and CYT/~CYT based on OAtest for the various 

experimental designs  

Experimental 

designs 

                

OAtest (%) OAtest (%) 

5-40hn with 25-200t 91.2 74.53 

1-5hn with 25-200t 90.65 72.75 

5-40hn with 2-24t 91.37 70.34 

 

 

5.7.3 Attempts to improve the performance of the           

classifier by increasing the number of iterations 

The performance results presented in Section 5.7.2 have indicated that the     

     classifier was the more complex of all the E.coli and Yeast binary classifiers 

analysed in our experiments, because the          classifier produced the lowest 

accuracies among all the classifiers based on the training scenarios applied so far. 

The largest number of training iterations utilised so far in the various training 

scenarios has been 200. Given that with this number of iterations the classification 

accuracy for the          classifier has shown no improvement, we deemed 

worthwhile increasing the number of iterations well beyond 200, in an attempt to 

increase the accuracy for the          classifier. The following training scenarios 

were therefore used to improve the performance of the          classifier: 1) 

network configurations of 1, 2, 3, 4 and 5 hidden nodes, trained for 500, 1000, 2000, 

3000, 3500 and 4000 iterations; 2) network configurations of 15, 20, 25, 30 and 35 

hidden nodes, trained for 500, 1000, 2000, 3000, 3500 and 4000 iterations. These 

training scenarios were defined based on the trial and error method coupled with the 

motivations of testing the performance of the          classifier under different 

training scenarios from those that have been applied so far. The performance results 

are presented in the following sections. 
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5.7.3.1 Results based on scenarios of 1-10 hidden nodes with 500-

4000 iterations for          

Figure 5.13 portrays the performance results obtained under the training scenarios 

that utilised the network configurations of 1-10 hidden nodes trained for 500-4000 

iterations for the          classifier. The patterns in Figure 5.13 suggest that the 

highest OAtest was produced for the network configuration of 5 hidden nodes trained 

for 2000 iterations (i.e. 5hn_2000t). The accuracy decreased as the number of 

iterations was increased beyond 2000. Table 5.14 present the performance results of 

the best scenario (5hn_2000t) out of the 30 training scenarios used in this section.  

The results in Table 5.14 indicate that the best OAtest was 73.79% and the training 

time was 110590 seconds.  

 

 

Figure ‎5.13: OAtest for 1-10 hidden nodes with 500-4000 training iterations for 

CYT/~CYT binary classifier 
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Table ‎5.14: Best CYT/~CYT based on OAtest for 1-10 hidden nodes with 500-4000 

training iterations 

Binary classifiers 
OAtrain 

(%) 

OAtest 

(%) 
MSE 

Time 

(seconds) 
Architecture 

         76.64 73.79 0.1568 110590 5hn_2000t 

 

 

5.7.3.2 Results based on scenarios of 15-35 hidden nodes with 500-

4000 iterations for           

Figure 5.14 portrays the performance results obtained under the training scenarios 

that utilised the network configurations of 15-35 hidden nodes trained for 500-4000 

iterations for the          classifier. The patterns in Figure 5.14 indicate that the 

highest OAtest was produced for the network configuration of 25 hidden nodes 

trained for 500 iterations (i.e. 25hn_500t). The accuracy decreased as the number of 

iterations was increased beyond 500. Table 5.15 shows the performance results of the 

best scenario (25hn_500t) out of the 30 training scenarios used in this section.  The 

results in Table 5.15 indicate that the best OAtest was 73.72% with the 

corresponding training time of 9248 seconds.  
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Figure ‎5.14: OAtest for 15-35 hidden nodes with 500-4000 training iterations for the 

CYT/~CYT binary classifier 

 

Table ‎5.15: Best CYT/~CYT based on OAtest for 15-35 hidden nodes with 500-4000 
training iterations 

Binary classifiers 
OAtrain 

(%) 

OAtest 

(%) 
MSE 

Time 

(seconds) 
Architecture 

         79.33 73.72 0.1416 9248 25hn_500t 

 

5.7.3.3 Concluding remarks 

We applied training scenarios that used increased numbers of training iterations 

(beyond 200) to improve the performance of the          classifier. The results of 

these training scenarios, as presented in Sections 5.7.3.1 and 5.7.3.2, have shown that 

the best training scenarios were 5hn_2000t with the corresponding accuracy on test 
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set of 73.79%, for the design in Section 5.7.3.1; and 25hn_500t with the 

corresponding accuracy on test set of 73.72%, for the design in Section 5.7.3.2. We 

can therefore suggest based on these results that increasing the training iterations, 

well beyond 200, could not improve the accuracy of the          classifier.  This 

suggestion is based on the fact that the accuracy of the          classifier did not 

improve under the training scenarios used in Sections 5.7.3.1 and 5.7.3.2 when 

compared to the accuracy (74.53%) obtained under the previous training scenarios 

(see Table 5.13). 
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CHAPTER 6: CONCLUSIONS 

6.1  Introduction 

Chapter 5 presented the analysis and results obtained from our experimental designs. 

This chapter provides the discussion and conclusions of the whole research 

investigation. Section 6.2 discusses the findings of this study, while Section 6.3 gives 

recommendations for possible future work based on these findings. 

 

6.2 Discussion and conclusions  

The process of NNs training has been proven to be very challenging. Complex 

networks are more likely to be characterised by features such as saddle-points, local 

minima, flat-spots and plateaus, which result in poor performance of NNs in terms of 

their efficiency, accuracy and convergence ability. To alleviate these issues, methods 

based on unconstrained and global optimisation theory have been proposed in the 

development of NNs training algorithms. 

This study proposed the investigation of the performance of two NNs training 

algorithms derived from unconstrained and global optimisation theory, i.e. the Rprop 

and CGP algorithms. It further presented an empirical optimisation scheme of NNs 

training that involved using simultaneously the proposed training algorithms and the 

trial and error method. This method tried to find the optimal size of parameters, i.e. 

adequate numbers of hidden nodes and training iterations that were more likely to 

improve the performance of NNs based on the classification problems under 

consideration. 

In order to reach the objectives of this study, two biological problems, i.e. the E.coli 

and Yeast problems, were used. These problems involved the classification of protein 

localisation patterns into different known classes, which are particularly useful in the
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post-genomic era. Furthermore, these multiclass classification problems were 

transformed into multiple binary classification problems using the One-Against-All 

approach. Finally, different training scenarios were used to train these binary 

classifiers. Hence, the following conclusions were derived. 

The Rprop algorithm performed better than the CGP algorithm. Using the OAtrain, 

OAtest, training times, and MSE, the Rprop algorithm was proven to be more 

accurate and efficient, and had better convergence ability than the CGP algorithm. 

Moreover, the superiority of Rprop was observed for all the E.coli and Yeast binary 

classifiers. However, the difference between the two training algorithms was more 

pronounced for some classifiers than it was for some others. This was believed to be 

the consequence of the difference of complexity between different classifiers. For 

more complex classifiers, the difference between Rprop and CGP was high, while for 

less complex classifiers the difference between the two algorithms was less. 

We also argued that the small differences in accuracy between Rprop and CGP that 

were observed for some classifiers should not question the superiority of Rprop over 

CGP. The reason being as follows: although the accuracy differences were small in 

some cases, but CGP took much longer to achieve comparable results with Rprop. 

This means that for equal training times, the Rprop accuracy would be much better 

than that of CGP. Therefore, when training efficiency was taken into consideration, 

Rprop outperformed CGP unequivocally. 

Conflicting claims are found in the literature about the performance of CG based 

methods. Some argue that CG based methods are devised to converge faster than GD 

based methods, because they update the weights in the conjugate directions of the 

gradient (Sharma and Venugopalan, 2014). Moreover, it is claimed that ―CG based 

methods are probably the most famous iterative methods for efficiently training NNs 

due to their simplicity, numerical efficiency, and their very low memory 

requirements‖ (Ioannis and Panagiotis, 2012). With regard to efficiency, obviously 

these claims were not verified in our experiments. Instead, Rprop which is a GD 

based method, performed much better than CGP which is a CG based method, 

especially with regard to efficiency. However, others argue that despite their 
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theoretical and practical advantages in solving large scale unconstrained optimisation 

problems such as minimising NNs error functions, CG methods are characterised by 

a major drawback which is the use of restarting techniques in order to guarantee 

convergence. The restart may be activated too often, which could affect the overall 

efficiency of CG methods (Livieris and Pintelas, 2009; Andrei, 2011). The very poor 

efficiency of CGP observed in our experiments seemed to agree with this concern. 

CGP has been shown to be 3 to 4 times less efficient than Rprop.  

Concerning the effect of varying the number of hidden nodes and number of training 

iterations, it appeared that this had an impact on the performance of the classifiers. 

This impact was shown and consistent in the classification accuracy, convergence 

and efficiency of the classifiers. This indicated that the trial and error method could 

assist in the finding of optimal parameters that in returns can help optimise the 

performance of NNs training.  

Also, it was shown that depending on their complexity, some classifiers required 

more hidden nodes and training iterations to perform well, whereas some required 

less hidden nodes and training iterations to do so. In fact, the more complex a 

classifier was, the more hidden nodes and training iterations were needed; and the 

less complex a classifier was, the less hidden nodes and training iterations were 

needed. This proved that the performance of NNs training is dependent on the 

complexity of the application problems. 

One interesting observation was that, increasing the number of hidden nodes could 

improve the training time for some classifiers. This was observed with the        

classifier trained for 25 iterations; the training time decreased as we increased the 

hidden nodes in the range between 5 and 40 hidden nodes. This may seem strange 

because increasing the nodes amounts to increasing the number of weight parameters 

to be updated, which should increase the training time. However, this result (i.e. 

decrease in time as the number of hidden nodes was increased) was consistent with 

findings in some previous studies (Lawrence et al., 1996; Livni et al., 2014); in 

which it is claimed that, ―Sufficiently Over-Specified Networks Are Easy to Train‖ 

(Livni et al., 2014). In other words, it can be easy to train networks that are oversized 
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(i.e. networks that are larger than needed). This is true in the sense that the 

optimisation problem related to the training of sufficiently over-specified networks 

are easy to solve because in such networks, the presence of a global minimum is 

more likely than that of many local (non-global) minima. Hence, maybe it was easier 

to find the global minimum of         as we increased the hidden nodes, which 

resulted in less training time when the 25 iterations were completed. 

Another finding was that the performance of NNs classifiers, especially in terms of 

efficiency, had a positive relationship with the number of samples to be trained. The 

more the number of samples to be trained, the more the training time and iterations 

were needed. The less the number of samples to be trained, the less the training time 

and iterations were needed. This was observed by comparing the performance of the 

E.coli classifiers to the performance of the Yeast classifiers. Since the Yeast data had 

more samples, it also required more time and iterations to be trained. This suggests to 

some extent that, the size of the data added to the complexity of the training process. 

However, it appeared that the structure of the data itself played the biggest role in its 

complexity. This was shown by the fact that the Yeast classifiers differed in their 

performances though they trained the same number of samples. This was also true 

for the E.coli classifiers. 

Finally, it was observed that the best convergence during training did not necessarily 

result into the best generalisation of a classifier. This means that, during training, a 

network can reach the global minimum of the error function, and still does not 

produce the best performance on unseen data. Or, a network can reach a local 

minimum instead of the global minimum during training, and still perform better on 

unseen data. Therefore, achieving global convergence (reaching the global 

minimum) on training set should not be the main focus of NN training. Instead, the 

main focus should be to achieve a convergence (not necessarily the best one in terms 

of minimum) during training that would eventually allow the network to accurately 

perform its task when presented with new data. 
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6.3 Future work 

One major characteristic of the protein data used for training the NNs classifiers in 

this study was their very imbalanced class sizes nature. Moreover, transforming these 

multiclass classification problems into multiple binary classification problems had 

even accentuated their imbalanced class sizes. We believe that this might be the main 

cause of the very small differences in classification accuracy between the Rprop and 

CGP algorithms for some binary classifiers. To test this assumption, one could 

consider for future work, using a more balanced and originally binary classification 

problem such as the cancer, diabetes problems (Murphy and Aha, 1994), and see if 

the difference between the two algorithms would not significantly increase. 

Another future development could be to compare the performance of multiclass 

classifiers to that of binary ones in correctly classifying every class of the E.coli and 

Yeast proteins. Also, instead of the One-Against-All binary classifiers which 

accentuate the imbalance of these data, one could use the One-Against-One binary 

classifiers to assess the performance of the Rprop and CGP algorithms. However, it 

is worth highlighting that in this case, the number of binary classifiers to be trained 

will significantly increase, i.e. 28 (instead of 8) for the E.coli data, and 45 (instead of 

10) for the Yeast data. 

In this study, we implicitly assessed the classifiers complexity through their 

performances. The classifier with good performance was said to be less complex (i.e. 

it was easy to classify the data because there were less overlaps between the classes) 

and the classifier with poor performance was said to be more complex (i.e. it was 

difficult to classify the data because of much overlaps between the classes). We did 

not calculate a direct metric of data complexity as proposed by Ho and Basu (2002) 

and Attoor and Dougherty (2004), because it was not the main objective of our study. 

Moreover, we could not improve the accuracy of          even after trying 

various scenarios with very large numbers of hidden nodes and iterations. For future 

wok, one could focus on a detailed study of the complexity of the          

classifier by following the steps proposed in the two above mentioned studies, and 

find an optimal way of significantly improving its accuracy. 
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APPENDIX A:  Matlab CODE – Transforming the E.coli 

multiclass problem into multiple binary 

problems 

Summary 

The E.coli problem is a multiclass classification problem. For the purpose of this 

study, we proposed the One-Against-All approach to transform it into multiple 

binary classification problems. Hence, this section presents the Matlab code used to 

prepare the E.coli data for the binary classification tasks. As said before, the E.coli 

data is constituted of 8 classes. Therefore, the resulting One-Against-All binary 

classifiers are also 8. The transformation process is as follows. 

%First step: Importing E.coli_data in matlab as a matrix. %Not that 

prior to this step a process has been followed %for putting all the 

patterns of each class next to each %other (Grouping data by class). 

%Removing columns 1 and 9 from E.coli data. This is done %because 

column 1 gives the Sequence Name (Accession %number for the SWISS-

PROT database), and column 9 gives %the name of the proteins for a 

pattern (group of %attribute). So, these two columns are not 

important for %the input data matrix. But the last one is important 

for %creating the target matrix for each E.coli binary %classifier. 

test_1 = ecoli(:,[2,3,4,5,6,7,8]); 

%E_coli inputs matrix. 

E_coli_Inputs = test_1.';  %transpose test_1 

  

%Creating E_coli targets Matrix 

targets_1 = [ones(1,143), zeros(1,193)]; 

targets_2 = [zeros(1,143), ones(1,77), zeros(1,116)]; 

targets_3 = [zeros(1,220), ones(1,52), zeros(1,64)];
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targets_4 = [zeros(1,272), ones(1,35), zeros(1,29)]; 

targets_5 = [zeros(1,307), ones(1,20), zeros(1,9)]; 

targets_6 = [zeros(1,327), ones(1,5), zeros(1,4)]; 

targets_7 = [zeros(1,332), ones(1,2), zeros(1,2)]; 

targets_8 = [zeros(1,334), ones(1,2)]; 

  

%E_coli targets matrix (Concatenate all the targets_i). 

%This target matrix can be used for a multiclass %classifier.  

E_coli_Targets = [targets_1; targets_2; targets_3; targets_4; 

targets_5; targets_6; targets_7; targets_8]; 

  

%Creating inputs and targets matrices for each binary %classifier. 

%E_coli inputs matrix for each binary classifier 

E_coli_Inputs; 

  

% E_coli_Targets_cp (Targets for the cp/~cp binary %classifier) 

targets_1a = [ones(1, 143), zeros(1, 193)]; 

targets_1b = [zeros(1, 143), ones(1, 193)]; 

E_coli_Targets_cp = [targets_1a; targets_1b]; 

  

%E_coli_Targets_im (Targets for the im/~im binary %classifier) 

targets_2a = [zeros(1, 143), ones(1, 77), zeros(1, 116)]; 

targets_2b = [ones(1, 143), zeros(1, 77), ones(1, 116)]; 

E_coli_Targets_im = [targets_2a; targets_2b]; 
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%E_coli_Targets_pp (Targets for the pp/~pp binary %classifier) 

targets_3a = [zeros(1, 220), ones(1, 52), zeros(1, 64)]; 

targets_3b = [ones(1, 220), zeros(1, 52), ones(1, 64)]; 

E_coli_Targets_pp = [targets_3a; targets_3b]; 

  

%E_coli_Targets_imU (Targets for the imU/~imU binary %classifier) 

targets_4a = [zeros(1, 272), ones(1, 35), zeros(1, 29)]; 

targets_4b = [ones(1, 272), zeros(1, 35), ones(1, 29)]; 

E_coli_Targets_imU = [targets_4a; targets_4b]; 

  

%E_coli_Targets_om (Targets for the om/~om binary %classifier) 

targets_5a = [zeros(1, 307), ones(1, 20), zeros(1, 9)]; 

targets_5b = [ones(1, 307), zeros(1, 20), ones(1, 9)]; 

E_coli_Targets_om = [targets_5a; targets_5b]; 

  

%E_coli_Targets_omL (Targets for the omL/~omL binary %classifier) 

targets_6a = [zeros(1, 327), ones(1, 5), zeros(1, 4)]; 

targets_6b = [ones(1, 327), zeros(1, 5), ones(1, 4)]; 

E_coli_Targets_omL = [targets_6a; targets_6b]; 

  

%E_coli_Targets_imL (Targets for the imL/~imL binary %classifier) 

targets_7a = [zeros(1, 332), ones(1, 2), zeros(1, 2)]; 

targets_7b = [ones(1, 332), zeros(1, 2), ones(1, 2)]; 

E_coli_Targets_imL = [targets_7a; targets_7b]; 
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%E_coli_Targets_imS (Targets for the imS/~imS binary %classifier) 

targets_8a = [zeros(1, 334), ones(1, 2)]; 

targets_8b = [ones(1, 334), zeros(1, 2)]; 

E_coli_Targets_imS = [targets_8a; targets_8b];
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APPENDIX B:  Matlab CODE – Transforming the Yeast 

multiclass problem into multiple binary 

problems 

Summary 

As for E.coli, the Yeast problem is also a multiclass classification problem. We 

applied the same approach to create the binary classification problems. This section 

gives the Matlab code used for that. The Yeast data is constituted of 10 classes. 

Therefore, the resulting One-Against-All binary classifiers are also 10. The 

transformation process is as follows. 

%First step: Importing Yeast_data in matlab as a matrix. %As for the 

E.coli, not that prior to this step, a process has been done of 

putting all the patterns of each class %next to each other (Grouping 

data by class).  

%Remove columns 1 and 10 from Yeast data. This is done because 

column 1 gives the Sequence Name (Accession %number for the SWISS-

PROT database), and column 10 gives the name of the proteins for a 

pattern (group of %attribute). So these two columns are not 

important for %the input data matrix. But the last one is important 

%for creating the target matrix for every Yeast binary.  

test_1 = Yeast(:,[2,3,4,5,6,7,8,9]); 

  

%Yeast inputs matrix. 

Yeast_Inputs = test_1.'; %transpose test_1 

  

%Creating Yeast_targets matrix 

targets_1 = [ones(1, 463), zeros(1, 1021)]; 

targets_2 = [zeros(1, 463), ones(1, 429), zeros(1, 592)];
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targets_3 = [zeros(1, 892), ones(1, 244), zeros(1, 348)]; 

targets_4 = [zeros(1, 1136), ones(1, 163), zeros(1, 185)]; 

targets_5 = [zeros(1, 1299), ones(1, 51), zeros(1, 134)]; 

targets_6 = [zeros(1, 1350), ones(1, 44), zeros(1, 90)]; 

targets_7 = [zeros(1, 1394), ones(1, 35), zeros(1, 55)]; 

targets_8 = [zeros(1, 1429), ones(1, 30), zeros(1, 25)]; 

targets_9 = [zeros(1, 1459), ones(1, 20), zeros(1, 5)]; 

targets_10 = [zeros(1, 1479), ones(1, 5)]; 

  

%Yeast targets matrix (Concatenate all the targets_i) 

%This target matrix can be used for a multiclass classifier. 

Yeast_Targets = [targets_1; targets_2; targets_3; targets_4; 

targets_5; targets_6; targets_7; targets_8; targets_9; targets_10]; 

  

%Creating inputs and targets matrices for each binary classifier. 

%Yeast inputs matrix for each binary classifier 

Yeast_Inputs; 

  

%Yeast_Targets_CYT (Targets for the CYT/~CYT binary classifier) 

targets_1a = [ones(1, 463), zeros(1, 1021)]; 

targets_1b = [zeros(1, 463), ones(1, 1021)]; 

Yeast_Targets_CYT = [targets_1a; targets_1b]; 

  

%Yeast_Targets_NUC (Targets for the NUC/~NUC binary classifier) 

targets_2a = [zeros(1, 463), ones(1, 429), zeros(1,592)]; 
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targets_2b = [ones(1, 463), zeros(1, 429), ones(1, 592)]; 

Yeast_Targets_NUC = [targets_2a; targets_2b]; 

  

%Yeast_Targets_MIT (Targets for the MIT/~MIT binary classifier) 

targets_3a = [zeros(1, 892), ones(1, 244), zeros(1,348)]; 

targets_3b = [ones(1, 892), zeros(1, 244), ones(1, 348)]; 

Yeast_Targets_MIT = [targets_3a; targets_3b]; 

  

%Yeast_Targets_ME3 (Targets for the ME3/~ME3 binary classifier) 

targets_4a = [zeros(1, 1136), ones(1, 163), zeros(1,… 185)]; 

targets_4b = [ones(1, 1136), zeros(1, 163), ones(1,185)]; 

Yeast_Targets_ME3 = [targets_4a; targets_4b]; 

  

%Yeast_Targets_ME2 (Targets for the ME2/~ME2 binary classifier) 

targets_5a = [zeros(1, 1299), ones(1, 51), zeros(1,134)]; 

targets_5b = [ones(1, 1299), zeros(1, 51), ones(1, 134)]; 

Yeast_Targets_ME2 = [targets_5a; targets_5b]; 

  

%Yeast_Targets_ME1 (Targets for the ME1/~ME1 binary classifier) 

targets_6a = [zeros(1, 1350), ones(1, 44), zeros(1, 90)]; 

targets_6b = [ones(1, 1350), zeros(1, 44), ones(1, 90)]; 

Yeast_Targets_ME1 = [targets_6a; targets_6b]; 

  

%Yeast_Targets_EXC (Targets for the EXC/~EXC binary classifier) 

targets_7a = [zeros(1, 1394), ones(1, 35), zeros(1, 55)]; 
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targets_7b = [ones(1, 1394), zeros(1, 35), ones(1, 55)]; 

Yeast_Targets_EXC = [targets_7a; targets_7b]; 

  

%Yeast_Targets_VAC (Targets for the VAC/~VAC binary classifier) 

targets_8a = [zeros(1, 1429), ones(1, 30), zeros(1, 25)]; 

targets_8b = [ones(1, 1429), zeros(1, 30), ones(1, 25)]; 

Yeast_Targets_VAC = [targets_8a; targets_8b]; 

  

%Yeast_Targets_POX (Targets for the POX/~POX binary classifier) 

targets_9a = [zeros(1, 1459), ones(1, 20), zeros(1, 5)]; 

targets_9b = [ones(1, 1459), zeros(1, 20), ones(1, 5)]; 

Yeast_Targets_POX = [targets_9a; targets_9b]; 

  

%Yeast_Targets_ERL (Targets for the ERL/~ERL binary classifier) 

targets_10a = [zeros(1, 1479), ones(1, 5)]; 

targets_10b = [ones(1, 1479), zeros(1, 5)]; 

Yeast_Targets_ERL = [targets_10a; targets_10b]; 



 

124 

 

 

APPENDIX C:  Matlab CODE – Training process of 

classifiers 

Summary 

This section presents the Matlab code implemented for the training of the binary 

classifiers. Given that the steps involved in the training of every binary classifier are 

similar, the following code is an example for training one binary classifier only. For 

training all the binary classifiers, this process must be repeated 18 times. 

Furthermore, this process is for only one experimental design. Appropriate changes 

must be made to the various hidden nodes and training iterations to accommodate it 

for every experiment. The CYT/~CYT binary classifier is used for the purpose of 

this presentation. Also, the training design used is as follows: combinations of 15, 20, 

25, 30, and 35 hidden nodes, with 500, 1000, 2000, 3000, 3500, and 4000 training 

iterations. 

 

Notations used 

The following notations are used in the presentation of the code: 

N: The total number of repetitions for every training design 

H: Vector of various numbers of hidden nodes h 

T: Vector of various numbers of training iterations t 

OAtrain: Overall Accuracy on training set 

OAtest: Overall Accuracy on test set 

Time: Overall Total Training time. In brief, this stands for the training time used in 

the presentation of the results in chapter 5. 
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MSE: Mean Squared Error. In brief, this stands for the convergence used in the 

presentation of the results in chapter 5. 

Atrain1: Training Accuracy of class 1 or Accuracy of class 1 on the training set 

Atrain2: Training Accuracy of class 2 or Accuracy of class 1 on training set 

Atest1: Test Accuracy of class 1 or Accuracy of class 1 on the test set 

Atest2: Test Accuracy of class 1 or Accuracy of class 2 on the test set 

N_ht_Performance: Array containing results for the N training repetitions from ht 

training scenario. For instance, N_ht_OAtrain stands for OAtrain for training 

scenario ht, and for N training tasks. The same applies for every performance 

measure. 

The whole process implementation can be summarised in the following steps: 

Step 1: Process to get the performance measure estimates. 

Set 50 as the number of trials for each training task of classifiers; 

Set 10 as the number of folds for applying the 10-fold CV; 

Initialise 4 three dimensional arrays for storing the 4 performance measures (Time, 

MSE, OAtrain, OAtest). The three dimensions of an array are   6    ; where 5, 6 

and 50 are the first, second and third dimensions respectively.    

The first and second dimensions of an array constitute a 5x6 matrix, where 5 is the 

dimension of the various numbers hidden nodes (hn) and 6 is the dimension of the 

various maximum numbers of training iterations. The last (third) dimension is of size 

50, representing the 50 different trials. This means that for instance, the first three 

dimensional array is for storing the 50 different 5x6 matrices of times. The 50 

different 5x6 matrices of the MSE, OAtrain and OAtest are to be stored in the 

second, third and last three dimensional arrays, respectively. 

For        { 

                        ; This is a vector of various numbers of hidden nodes 
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    For     { 

                  7              ; This is a vector of various numbers iterations; 

         Read the input matrix (i.e. data matrix of features to be classified); 

         Read the target matrix (i.e. data matrix of the desired output classes for the 

input matrix features); 

         Specify the neural network topology to be used. For our experiments, the 

topology is the feedforward network. The corresponding notation in matlab is as 

follows: 

                      ; 

Where h is the number of hidden nodes to be used. 

Specify the remaining parameters of the network; 

          For     { 

               Split the data in 10 different folds to apply cross validation. This is done as 

follows: 

               Read      as the total number of folds; 

               Assign an index to each case in the input matrix. The total number of 

indices corresponds to the size of the input matrix. For instance, the number of 

indices is 336 for the E.coli data. 

                Permute these indices; 

                Split the indices in       folds; 

                For       { 

                      Do training and test on the K folds as follows: 

                      Select subsequently each training set (fold); 

                      Select subsequently each test set (fold); 
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                      Specify the training functions and parameters; 

                      Specify the performance measures; 

                      Train and test a classifier by subsequently using the K training and K  

                      test sets (folds); 

                       Extract the confusion matrices from the K training and K test results; 

                       Store the performance results for the K trainings and tests in four 

different vectors of size K each. For a particular performance measure, this can be 

done as follows: 

                                                 ;         

                  } 

             Calculate the average performance over the K folds for each performance 

measure (i.e. arithmetic mean of each of the four vectors obtained above). This will 

give four averages (i.e., arithmetic means), each for one performance measure. 

Notation for a particular average performance can be as follows: 

                                                   ; 

              Store the performance measures for every training scenario in a two 

dimensional array (or matrix) of dimensions    . This step will give four matrices, 

each for one performance measure. For example, storage of a performance in a 

matrix can be done as follows:  

                                           ;    

            } 

       } 

Subset the four matrices of performance to make sure that their rows and columns 

correspond to the specified hidden nodes and training iterations. For instance, for one 

matrix this is done as follows: 
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                                      7               ; 

Notice that if a matrix is not subset as showed above, it will have 40 rows and 200 

columns instead of 5 and 6 respectively. 

Store the subset matrices of performance in the four 3 dimensional arrays initialised 

at the beginning of our process. For example, a matrix can be stored in a three 

dimensional array as follows: 

                    ; 

Array and Matrix should be named after a particular performance measure they 

represent. 

} 

Step 2: Process of aggregating the performance measure estimates stored in the 

four 3 dimensional arrays.  

This is done by computing the matrix average (mean of 50 matrices stored in every 3 

dimensional array) for each performance measure. This process is described as 

follows: 

Initialise four arrays of matrix sums. Four one array this can be done as follows: 

                ; 

Compute the arrays of sums using for loop as follows: 

For     50 { 

The four arrays of sums are calculated here. For instance, the process for one array 

can be represented as follows: 

                                         ;     

} 

Compute the matrix averages from each array of matrix sums produced by the above 

for loop. Four one matrix of averages the notation can be as follows: 
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                                    ;     

Step 3: Process of finding the best binary classifier based on a particular 

performance measure.  

This process involves extracting the best performance measure from each matrix 

average above. Depending on whether we want to find the minimum or the 

maximum for a particular performance measure, this can be done as follows: 

                                                ; 

Or, 

                                               ; 

Step 4: Process of finding the best training scenario (combination of number of 

hidden nodes and number of training iterations) for each performance measure. 

Also, this process involves finding the trade-off between the four performance 

measures.  

The best training scenario is the one that produced the best performance. This 

process is described for the four performance measures as follows: 

 Find row (number of hidden nodes) and column (number of training 

iterations) from                    of Times, corresponding to the best 

Time. The scenario (hn_t) found is the one that produced the shortest training 

time. For this scenario, find the corresponding MSE, OAtrain, and OAtest.  

 Find row and column from                    of MSEs, corresponding 

to the best MSE. For this scenario, find the corresponding Time, OAtrain, and 

OAtest. 

 Find row and column from                    of OAtrains, 

corresponding to the best OAtrain. For this scenario, find the corresponding 

Time, MSE, OAtest. 
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 Find row and column from                    of OAtests, corresponding 

to the best OAtest. For this scenario, find the corresponding Time, MSE, and 

OAtrain. 

Step 5: Write results onto output file 

This step involves sending the results to an external file to save them. It is worth 

emphasising that training of the binary classifiers is done in one run and 

subsequently one of another. So if this step is not implemented, results of the 

previous classifiers will be lost while those of the subsequent ones are being 

generated. 

Step 6: Repeat step 1 to step 5 for all the binary classifiers  

 

%The following codes are given as an example of how to 

traingaclassifier 

%We use CYT/~CYT binary classifier to illustrate the process. For 

other 

%binary classifiers, one will need to change the input and target 

matrices 

%accordingly 

  

%Set: 

N = 50; %Number of trials for the all training process of 

classifiers  

K = 10; %Number of folds for applying the k-fold CV 

  

%Set 4 three dimensional arrays for storing the Time, MSE, OAtrain 

and  

%OAtest as follows: 

N_ht_M_Time_subset(5,6,N) = 0;  

N_ht_M_MSE_subset(5,6,N) = 0;  

N_ht_M_OAtrain_subset(5,6,N) = 0;  

N_ht_M_OAtest_subset(5,6,N) = 0; 

  

%Set 4 three dimensional arrays for storing the Atrain1, Atrain2, 

Atest1 
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%and Atest2 

N_ht_M_Atrain1_subset(5,6,N) = 0;  

N_ht_M_Atrain2_subset(5,6,N) = 0;  

N_ht_M_Atest1_subset(5,6,N) = 0;   

N_ht_M_Atest2_subset(5,6,N) = 0;   

  

%Step 1: Implementation of the four nested for loops with the k-fold 

cross  

%validation as the innermost for loop. 

  

%Starting the outer for loop for the total number of repetitions N 

for n = 1:N 

    %Vector of the 5 various numbers of hidden nodes. 

    %Vector of the 6 various numbers training iterations. 

H = [5,10,20,30,40];  

T = [25,50,75,100,150,200];  

  

%Starting the second for loop for the various hidden nodes h. 

for h = H 

    inputs = Yeast_Inputs; %Assigning the input matrix to the 

process. 

    targets = Yeast_Targets_CYT; %Assign the target matrix to the 

process. 

    net = feedforwardnet(h);  

    net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};  

    net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 

    net.layers{1}.transferFcn = 'tansig'; 

    net.layers{2}.transferFcn = 'tansig'; 

    net.layers{1}.initFcn = 'initnw'; 

    net.layers{2}.initFcn = 'initnw'; 

     

    %Starting the third for loop for the various training iterations 

t. 

    for t = T 

         

        %Creating the indices Q for the training and test sets to 

use in 

        %the Cross Validation process. 

        Q = size(inputs,2); 
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        ind = randperm(Q); %Random permutation Q, which gives 

indices ind. 

        cvFolds = crossvalind('Kfold',ind,K); 

         

        %Starting the most inner for loop for 10-fold Cross 

Validation. 

        for k = 1:K 

            testIdx = (cvFolds == k); 

            trainIdx = ~testIdx; 

            trInd = find(trainIdx); 

            tstInd = find(testIdx); 

             

            net.initFcn = 'initlay'; 

            net.trainFcn = 'trainrp'; 

            net.trainParam.epochs = t; 

            net.trainParam.goal = 0; 

            net.trainParam.max_fail = 5000; %5000 is the stopping 

criteria, 

            %which will never be reached. 

            net.divideFcn = 'divideind'; 

            net.divideParam.trainInd = trInd; 

            net.divideParam.testInd = tstInd; 

             

            net.performFcn = 'mse'; 

             

            %Initializing and Training the Network. 

            net = init(net); 

            [net,tr] = train(net,inputs,targets); 

            outputs = net(inputs); 

            errors = gsubtract(targets,outputs); 

             

            %---------------------Time------------------------------ 

            Time(k).time = tr.time; 

            %Train_time(k) = mean(Time(k).time); 

            MeTime(k) = mean(Time(k).time); %Mean training time 

(training  

            %time for one iteration (epochs) in an entire training 

process. 

            Time(k) = sum(Time(k).time);  %Total training time  
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            %(training time for all iterations (epochs) in an entire  

            %training process). 

             

            %----------------------MSE------------------------------ 

            MSE(k) = tr.best_perf; %Minimun error reached during 

training. 

             

             

            %-------------------------Train------------------------- 

            %Training inputs for each partition of CV. 

            %Training targets for each partition of CV. 

            %Training outputs for each partition of CV. 

            train_inputs = inputs(:,trInd);     

            train_targets = targets(:,trInd);   

            train_outputs = net(train_inputs);  

             

            %Misclassification rate (c_tr) and confusion matrix 

(cm_tr) on 

            %training. 

            [c_tr,cm_tr] = confusion(train_targets,train_outputs); 

             

            %Classification accuracy on training. 

            OAtrain(k) = 100*sum(diag(cm_tr))/sum(sum(cm_tr)); 

             

            %Classification accuracy on training for class1 and 

class2 

            diag_cm_tr = diag(cm_tr);           

            Atrain1(k) = 100*diag_cm_tr([1])/sum(cm_tr(1,:)); 

            Atrain2(k) = 100*diag_cm_tr([2])/sum(cm_tr(2,:)); 

             

            %-----------------------Test---------------------------- 

            %Test inputs for each partition of CV. 

            %Test targets for each partition of CV. 

            %Test outputs for each partition of CV. 

            test_inputs = inputs(:,tstInd);    

            test_targets = targets(:,tstInd);  

            test_outputs = net(test_inputs);   

             



 APPENDIX C:   Matlab CODE – Training process of classifiers

 

134 

 

            %Misclassification rate (c_tst) and confusion matrix 

(cm_tst) 

            %on testing. 

            [c_tst,cm_tst] = confusion(test_targets,test_outputs); 

             

            %Classification accuracy on testing. 

            OAtest(k) = 100*sum(diag(cm_tst))/sum(sum(cm_tst)); 

             

            %Classification accuracy on testing for class1 and 

class2 

            diag_cm_tst = diag(cm_tst);           

            Atest1(k) = 100*diag_cm_tst([1])/sum(cm_tst(1,:)); 

            Atest2(k) = 100*diag_cm_tst([2])/sum(cm_tst(2,:)); 

        end 

         

        %----------------------Training time------------------------ 

        OMeTrain_time_1 = mean(MeTime);  %Overall mean training 

time. 

        Mean_Time = sum(Time);  %Overall total training time  

        %for the 10 subsets of cross validation. 

         

        %Overall total training time for all network 

architectures(Asso- 

        %ciations of number of nodes (h) with number of iterations 

(t). 

        ht_M_Time(h,t) = Mean_Time;  

          

        %--------------------------Training accuracies-------------- 

        %Overall classification accuracy on training. 

        Mean_OAtrain = mean(OAtrain); 

         

        %Overall classification accuracy on training for all 

scenarios. 

        ht_M_OAtrain(h, t) = Mean_OAtrain; 

         

        %Accuracies for class1 and class2 

        Mean_Atrain1 = mean(Atrain1); 

        Mean_Atrain2 = mean(Atrain2); 

        ht_M_Atrain1(h, t) = Mean_Atrain1; 
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        ht_M_Atrain2(h, t) = Mean_Atrain2; 

         

        %---------------------------Test accuracies----------------- 

        %Overall classification accuracy on testing set 

        Mean_OAtest = mean(OAtest); 

         

        %Overall classification accuracy on testing for all 

scenarios 

        ht_M_OAtest(h, t) = Mean_OAtest; 

         

        %Accuracies for class1 and class2 

        Mean_Atest1 = mean(Atest1); 

        Mean_Atest2 = mean(Atest2); 

        ht_M_Atest1(h, t) = Mean_Atest1; 

        ht_M_Atest2(h, t) = Mean_Atest2; 

         

        %------------------------MSE-------------------------------- 

        %Overall minimun error reached during training. 

        Mean_MSE = mean(MSE); 

        %storing OBTrainPerf for all training scenarios. 

        ht_M_MSE(h,t) = Mean_MSE;  

    end 

end 

  

%------------Subsetting the matrices of the performance measures---- 

%This process makes sure that the matrices to be stored are of the 

correct 

%dimensions, i.e. 5 rows (various h) and 6 columns (various t). 

ht_M_Time_subset = ht_M_Time([5,10,20,30,40],... 

    [25,50,75,100,150,200]); 

ht_M_MSE_subset = ht_M_MSE([5,10,20,30,40],... 

    [25,50,75,100,150,200]); 

ht_M_OAtrain_subset = ht_M_OAtrain([5,10,20,30,40],... 

    [25,50,75,100,150,200]); 

ht_M_OAtest_subset = ht_M_OAtest([5,10,20,30,40],... 

    [25,50,75,100,150,200]); 

  

ht_M_Atrain1_subset = ht_M_Atrain1([5,10,20,30,40],... 

    [25,50,75,100,150,200]); 
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ht_M_Atrain2_subset = ht_M_Atrain2([5,10,20,30,40],... 

    [25,50,75,100,150,200]); 

ht_M_Atest1_subset = ht_M_Atest1([5,10,20,30,40],... 

    [25,50,75,100,150,200]); 

ht_M_Atest2_subset = ht_M_Atest2([5,10,20,30,40],... 

    [25,50,75,100,150,200]);         

  

%------------Storing the matrices of performance measures----------- 

%Here, these matrices are stored in the three-dimensional arrays in 

order 

%to keep record of the results for all the N=50 repetitions of the 

training 

%tasks. 

N_ht_M_Time_subset(:,:,n) = ht_M_Time_subset; 

N_ht_M_MSE_subset(:,:,n) = ht_M_MSE_subset; 

N_ht_M_OAtrain_subset(:,:,n) = ht_M_OAtrain_subset; 

N_ht_M_OAtest_subset(:,:,n) = ht_M_OAtest_subset; 

  

N_ht_M_Atrain1_subset(:,:,n) = ht_M_Atrain1_subset; 

N_ht_M_Atrain2_subset(:,:,n) = ht_M_Atrain2_subset; 

N_ht_M_Atest1_subset(:,:,n) = ht_M_Atest1_subset; 

N_ht_M_Atest2_subset(:,:,n) = ht_M_Atest2_subset; 

end 

  

%-------------------Process of aggregating the results-------------- 

%Step 2: implementation of the process of aggregating the 

performances  

%contained in the four 3 dimensional arrays. 

  

%All the N=50 training process are done with all the results stored 

in the 

%different three-dimensiol arrays. Now the process of aggregating 

the 

%results can start, i.e. computing the matrix sum and mean for each 

%performance measure. 

  

%Initialising the sum matrices. 

Sum_N_ht_M_Time_subset = 0; 

Sum_N_ht_M_MSE_subset = 0; 
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Sum_N_ht_M_OAtrain_subset = 0; 

Sum_N_ht_M_OAtest_subset = 0; 

  

Sum_N_ht_M_Atrain1_subset = 0; 

Sum_N_ht_M_Atrain2_subset = 0; 

Sum_N_ht_M_Atest1_subset = 0; 

Sum_N_ht_M_Atest2_subset = 0; 

  

%Applying the for loop to compute the sum and mean matrices for the 

%performance measures. 

  

%Computing the Sum 

for n =1:N; 

Sum_N_ht_M_Time_subset = ... 

    Sum_N_ht_M_Time_subset + N_ht_M_Time_subset(:,:,n); 

Sum_N_ht_M_MSE_subset = ... 

    Sum_N_ht_M_MSE_subset + N_ht_M_MSE_subset(:,:,n); 

Sum_N_ht_M_OAtrain_subset = ... 

    Sum_N_ht_M_OAtrain_subset + N_ht_M_OAtrain_subset(:,:,n); 

Sum_N_ht_M_OAtest_subset = ... 

    Sum_N_ht_M_OAtest_subset + N_ht_M_OAtest_subset(:,:,n); 

  

Sum_N_ht_M_Atrain1_subset = ... 

    Sum_N_ht_M_Atrain1_subset+N_ht_M_Atrain1_subset(:,:,n); 

Sum_N_ht_M_Atrain2_subset = ... 

    Sum_N_ht_M_Atrain2_subset+N_ht_M_Atrain2_subset(:,:,n); 

Sum_N_ht_M_Atest1_subset = ... 

    Sum_N_ht_M_Atest1_subset+N_ht_M_Atest1_subset(:,:,n); 

Sum_N_ht_M_Atest2_subset = ... 

    Sum_N_ht_M_Atest2_subset+N_ht_M_Atest2_subset(:,:,n);       

end 

  

%Computing the Mean 

Mean_N_ht_M_Time_subset = Sum_N_ht_M_Time_subset/N; 

Mean_N_ht_M_MSE_subset = Sum_N_ht_M_MSE_subset/N; 

Mean_N_ht_M_OAtrain_subset = Sum_N_ht_M_OAtrain_subset/N; 

Mean_N_ht_M_OAtest_subset = Sum_N_ht_M_OAtest_subset/N; 

  

Mean_N_ht_M_Atrain1_subset = Sum_N_ht_M_Atrain1_subset/N; 
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Mean_N_ht_M_Atrain2_subset = Sum_N_ht_M_Atrain2_subset/N; 

Mean_N_ht_M_Atest1_subset = Sum_N_ht_M_Atest1_subset/N; 

Mean_N_ht_M_Atest2_subset = Sum_N_ht_M_Atest2_subset/N; 

  

%--------Rounding off the results to specified number of decimals--- 

%The mean matrices have been calculated; they are 8 in tolal, 

corresponding 

%to the 8 performance measures. Now we round them off to the number 

of  

%decimals as follows: 0 for training time, 4 for MSE, 2 for 

%classification accuracies. 

Roundn_Mean_N_ht_M_Time_subset = roundn(Mean_N_ht_M_Time_subset, 0); 

Roundn_Mean_N_ht_M_MSE_subset = roundn(Mean_N_ht_M_MSE_subset, -4); 

Roundn_Mean_N_ht_M_OAtrain_subset = 

roundn(Mean_N_ht_M_OAtrain_subset, -2); 

Roundn_Mean_N_ht_M_OAtest_subset = roundn(Mean_N_ht_M_OAtest_subset, 

-2); 

  

Roundn_Mean_N_ht_M_Atrain1_subset = 

roundn(Mean_N_ht_M_Atrain1_subset, -2); 

Roundn_Mean_N_ht_M_Atrain2_subset = 

roundn(Mean_N_ht_M_Atrain2_subset, -2); 

Roundn_Mean_N_ht_M_Atest1_subset = roundn(Mean_N_ht_M_Atest1_subset, 

-2); 

Roundn_Mean_N_ht_M_Atest2_subset = roundn(Mean_N_ht_M_Atest2_subset, 

-2); 

  

%---Finding the optimal (best) value for each performance measure---  

  

%Step 3: the process of finding the best binary classifier based on 

a  

%particular performance measure. 

  

%Obviously the optimal values are, the minimum for training time and 

MSE, 

%and the maximum for the accuracies. These are found from the round 

off 

%matrices. 

Min_Roundn_Mean_N_ht_M_Time_subset = ... 
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    min(min(Roundn_Mean_N_ht_M_Time_subset)); 

Min_Roundn_Mean_N_ht_M_MSE_subset = ... 

    min(min(Roundn_Mean_N_ht_M_MSE_subset)); 

Max_Roundn_Mean_N_ht_M_OAtrain_subset = ... 

    max(max(Roundn_Mean_N_ht_M_OAtrain_subset)); 

Max_Roundn_Mean_N_ht_M_OAtest_subset = ... 

    max(max(Roundn_Mean_N_ht_M_OAtest_subset)); 

  

Max_Roundn_Mean_N_ht_M_Atrain1_subset = ... 

    max(max(Roundn_Mean_N_ht_M_Atrain1_subset)); 

Max_Roundn_Mean_N_ht_M_Atrain2_subset = ... 

    max(max(Roundn_Mean_N_ht_M_Atrain2_subset)); 

Max_Roundn_Mean_N_ht_M_Atest1_subset = ... 

    max(max(Roundn_Mean_N_ht_M_Atest1_subset)); 

Max_Roundn_Mean_N_ht_M_Atest2_subset = ... 

    max(max(Roundn_Mean_N_ht_M_Atest2_subset)); 

  

%--------Saving the performance Matrices for a binary classifier---- 

%Since the training of the binary classiers is done subsequently one 

after  

%onther, results for each classifier should be directly saved in an  

%external file in other not to lose them. Here we show how to save 

results 

%in Excel file for the CYT/~CYT binary classifier. 

  

%Open Directory 

Directory = 'C:\Users\1SavingCYTrp5to40H25to200T.xls'; %Specify your 

Directory 

%Saving matrices 

xlswrite(Directory, Roundn_Mean_N_ht_M_Time_subset, 'Sheet1', 'A1') 

xlswrite(Directory, Roundn_Mean_N_ht_M_MSE_subset, 'Sheet1', 'A7') 

xlswrite(Directory, Roundn_Mean_N_ht_M_OAtrain_subset, 'Sheet1', 

'A13') 

xlswrite(Directory, Roundn_Mean_N_ht_M_OAtest_subset, 'Sheet1', 

'A19') 

  

xlswrite(Directory, Roundn_Mean_N_ht_M_Atrain1_subset, 'Sheet1', 

'A25') 
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xlswrite(Directory, Roundn_Mean_N_ht_M_Atrain2_subset, 'Sheet1', 

'A31') 

xlswrite(Directory, Roundn_Mean_N_ht_M_Atest1_subset, 'Sheet1', 

'A37') 

xlswrite(Directory, Roundn_Mean_N_ht_M_Atest2_subset, 'Sheet1', 

'A43') 

%Saving best performance from each matrix 

xlswrite(Directory, Min_Roundn_Mean_N_ht_M_Time_subset, 'Sheet1', 

'A45') 

xlswrite(Directory, Min_Roundn_Mean_N_ht_M_MSE_subset, 'Sheet1', 

'A46') 

xlswrite(Directory, Max_Roundn_Mean_N_ht_M_OAtrain_subset, 'Sheet1', 

'A47') 

xlswrite(Directory, Max_Roundn_Mean_N_ht_M_OAtest_subset, 'Sheet1', 

'A48') 

  

xlswrite(Directory, Max_Roundn_Mean_N_ht_M_Atrain1_subset, 'Sheet1', 

'A50') 

xlswrite(Directory, Max_Roundn_Mean_N_ht_M_Atrain2_subset, 'Sheet1', 

'A51') 

xlswrite(Directory, Max_Roundn_Mean_N_ht_M_Atest1_subset, 'Sheet1', 

'A52') 

xlswrite(Directory, Max_Roundn_Mean_N_ht_M_Atest2_subset, 'Sheet1', 

'A53') 

  

  

%-Finding of best classifier based on a particular performance 

%measure  

  

%Step 4: the process of finding the best training scenario 

(combination of  

%number of hidden nodes and number of training iterations) for each  

%performance measure. Also, this process involves find the trade-off  

%between the four performance measures.  

  

%The idea here is to find a classifier with the best performance on 

a 

%particular performance measure, the corresponding training scenario 

and 
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%other measures. For instance, if the best classifier is based on 

OAtest, 

%then its corresponding scenario is found. For this scenario, the 

OAtrain, 

%time, MSE, and so forth are found. 

  

%-------Optimal classifier based on Atrain1 (train_Acc_class1)------ 

%find scenario h_t (row and column) of Max Atrain1 

[row,col] = find(Roundn_Mean_N_ht_M_Atrain1_subset == ... 

    max(max(Roundn_Mean_N_ht_M_Atrain1_subset))); 

index = [row,col];   %save row and column as index 

%create a linear index 

Linear_idx = sub2ind(size(Roundn_Mean_N_ht_M_Atrain1_subset), 

row,col); 

%for that index, find the corresponding Atest1,   

Roundn_Mean_N_ht_M_Atest1_subset(Linear_idx); 

  

%create a cell array of 11 times 9 dimension. This is store results 

for 

%every classifier. This example is for the Yeast binary classifiers. 

The 11 

%correspond to 10 Yeast classifiers + 1 row for heading. The 9 

correspond 

%to the 8 performance measures + 1 column for scenarion. 

  

%Notice that we use smaller arrays to illustrate the process. But 

for 

%results of the 10 Yeast classifiers and all the performance 

measures use 

%arrays as specified above. For the E.coli classifier, specify the 

%dimension of arrays accordingly 

  

%The following is an example of one can implement the process 

Optimal_train_Acc_class1 = cell(4, 4);  

Optimal_train_Acc_class1{1,1} = 'Binary classifiers'; 

Optimal_train_Acc_class1{2,1} = 'CYT'; 

Optimal_train_Acc_class1{3,1} = 'ERL'; 

  

Optimal_train_Acc_class1{1,2} = 'Class1Atrain'; 
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Optimal_train_Acc_class1{1,3} = 'Class1Atest'; 

Optimal_train_Acc_class1{1,4} = 'Architecture'; 

  

Optimal_train_Acc_class1{2,2} = 

Max_Roundn_Mean_N_ht_M_Atrain1_subset; 

Optimal_train_Acc_class1{2,3} = 

Roundn_Mean_N_ht_M_Atest1_subset(Linear_idx); 

Optimal_train_Acc_class1{2,4} = Linear_idx; 

  

%--------------From same process as above is repeted--------------- 

%------------Optimal classifier based on Atest1-------------------- 

%find row h and column t of the maximum of matrix of Atest1 

[row,col] = find(Roundn_Mean_N_ht_M_Atest1_subset ==... 

    max(max(Roundn_Mean_N_ht_M_Atest1_subset)));  

index = [row,col];   %save row and column as index 

Linear_idx = sub2ind(size(Roundn_Mean_N_ht_M_Atest1_subset), 

row,col); 

Roundn_Mean_N_ht_M_Atrain1_subset(Linear_idx); 

  

Optimal_test_Acc_class1 = cell(4, 4);  

Optimal_test_Acc_class1{1,1} = 'Binary classifiers'; 

Optimal_test_Acc_class1{2,1} = 'CYT'; 

Optimal_test_Acc_class1{3,1} = 'ERL'; 

  

Optimal_test_Acc_class1{1,2} = 'Class1Atrain'; 

Optimal_test_Acc_class1{1,3} = 'Class1Atest'; 

Optimal_test_Acc_class1{1,4} = 'Architecture'; 

  

Optimal_test_Acc_class1{2,2} = 

Roundn_Mean_N_ht_M_Atrain1_subset(Linear_idx); 

Optimal_test_Acc_class1{2,3} = Max_Roundn_Mean_N_ht_M_Atest1_subset; 

Optimal_test_Acc_class1{2,4} = Linear_idx; 

  

%-----------------Optimal classifier based on OAtest---------------- 

Optimal_OAtest = cell(4, 6); %create a cell array of 11 times 6 

dimension 

Optimal_OAtest{1,1} = 'Binary classifiers'; 

Optimal_OAtest{2,1} = 'CYT'; 

Optimal_OAtest{3,1} = 'ERL'; 
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Optimal_OAtest{1,2} = 'OAtrain'; 

Optimal_OAtest{1,3} = 'OAtest'; 

Optimal_OAtest{1,4} = 'MSE'; 

Optimal_OAtest{1,5} = 'Time'; 

Optimal_OAtest{1,6} = 'Scenario'; 

  

[row,col] = find(Roundn_Mean_N_ht_M_OAtest_subset == ... 

    max(max(Roundn_Mean_N_ht_M_OAtest_subset)));  

index = [row,col];   %save row and column as index 

Linear_idx = sub2ind(size(Roundn_Mean_N_ht_M_OAtest_subset), 

row,col); 

Roundn_Mean_N_ht_M_OAtrain_subset(Linear_idx); 

Roundn_Mean_N_ht_M_MSE_subset(Linear_idx); 

Roundn_Mean_N_ht_M_Time_subset(Linear_idx); 

  

Optimal_OAtest{2,2} = Roundn_Mean_N_ht_M_OAtrain_subset(Linear_idx); 

Optimal_OAtest{2,3} = Max_Roundn_Mean_N_ht_M_OAtest_subset; 

Optimal_OAtest{2,4} = Roundn_Mean_N_ht_M_MSE_subset(Linear_idx); 

Optimal_OAtest{2,5} = Roundn_Mean_N_ht_M_Time_subset(Linear_idx); 

Optimal_OAtest{2,6} = Linear_idx; 

%-------Optimal classifier based on OAtrain------------------------- 

Optimal_OAtrain = cell(4, 6); %create a cell array of 11 times 6 

dimension 

Optimal_OAtrain{1,1} = 'Binary classifiers'; 

Optimal_OAtrain{2,1} = 'CYT'; 

Optimal_OAtrain{3,1} = 'ERL'; 

  

Optimal_OAtrain{1,2} = 'OAtrain'; 

Optimal_OAtrain{1,3} = 'OAtest'; 

Optimal_OAtrain{1,4} = 'MSE'; 

Optimal_OAtrain{1,5} = 'Time'; 

Optimal_OAtrain{1,6} = 'Scenario'; 

  

[row,col] = find(Roundn_Mean_N_ht_M_OAtrain_subset == ... 

    max(max(Roundn_Mean_N_ht_M_OAtrain_subset)));  

index = [row,col];   %save row and column as index 

Linear_idx = sub2ind(size(Roundn_Mean_N_ht_M_OAtrain_subset), 

row,col); 
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Roundn_Mean_N_ht_M_OAtest_subset(Linear_idx); 

Roundn_Mean_N_ht_M_MSE_subset(Linear_idx); 

Roundn_Mean_N_ht_M_Time_subset(Linear_idx); 

  

Optimal_OAtrain{2,2} = Max_Roundn_Mean_N_ht_M_OAtrain_subset; 

Optimal_OAtrain{2,3} = Roundn_Mean_N_ht_M_OAtest_subset(Linear_idx); 

Optimal_OAtrain{2,4} = Roundn_Mean_N_ht_M_MSE_subset(Linear_idx); 

Optimal_OAtrain{2,5} = Roundn_Mean_N_ht_M_Time_subset(Linear_idx); 

Optimal_OAtrain{2,6} = Linear_idx; 

  

  

%Optimal_for_all 

Optimal_for_all = cell(4, 9); %create a cell array of 11 times 6 

dimension 

Optimal_for_all{1,1} = 'Binary classifiers'; 

Optimal_for_all{2,1} = 'CYT'; 

Optimal_for_all{3,1} = 'ERL'; 

  

Optimal_for_all{1,2} = 'OAtrain'; 

Optimal_for_all{1,3} = 'OAtest'; 

Optimal_for_all{1,4} = 'Class1Atrain'; 

Optimal_for_all{1,5} = 'Class1Atest'; 

Optimal_for_all{1,6} = 'Class2Atrain'; 

Optimal_for_all{1,7} = 'Class2Atest'; 

Optimal_for_all{1,8} = 'MSE'; 

Optimal_for_all{1,9} = 'Time'; 

  

Optimal_for_all{2,2} = Max_Roundn_Mean_N_ht_M_OAtrain_subset; 

Optimal_for_all{2,3} = Max_Roundn_Mean_N_ht_M_OAtest_subset; 

Optimal_for_all{2,4} = Max_Roundn_Mean_N_ht_M_Atrain1_subset; 

Optimal_for_all{2,5} = Max_Roundn_Mean_N_ht_M_Atest1_subset; 

Optimal_for_all{2,6} = Max_Roundn_Mean_N_ht_M_Atrain2_subset; 

Optimal_for_all{2,7} = Max_Roundn_Mean_N_ht_M_Atest2_subset; 

Optimal_for_all{2,8} = Min_Roundn_Mean_N_ht_M_MSE_subset; 

Optimal_for_all{2,9} = Min_Roundn_Mean_N_ht_M_Time_subset; 

  

%---------------Training the remaining binary classifiers----------- 

%The above process has shown how to train one binary classifier. To 

train 
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%all the binary classifiers, the above process must be repeated as 

many 

%times as the number of classifiers to train. Each time, the 

appropriate 

%target matrix must be fed to the network. The input matrix remains 

the 

%same, i.e. one for the E.coli, and one for the Yeast classifiers. 

 


