

EMPIRICAL ANALYSIS OF NEURAL

NETWORKS TRAINING OPTIMISATION

By

Mutamba Tonton Kayembe

Student Number: 678213

Supervisor: Ms. Nothabo Ndebele

A Dissertation submitted to the Faculty of Science, University of the Witwatersrand,

Johannesburg, in fulfilment of the requirements for the degree of Master of Science

in

Mathematical Statistics

School of Statistics and Actuarial Science

October 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/188770344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

DECLARATION

I hereby declare that this Dissertation is my own genuine research work. It is being

submitted for the Degree of Master of Science at the University of the

Witwatersrand, Johannesburg. It has not been submitted for any degree or

examination at any other University.

Mutamba Kayembe

October 2016

iii

ABSTRACT

Neural networks (NNs) may be characterised by complex error functions with

attributes such as saddle-points, local minima, even-spots and plateaus. This

complicates the associated training process in terms of efficiency, convergence and

accuracy given that it is done by minimising such complex error functions. This

study empirically investigates the performance of two NNs training algorithms which

are based on unconstrained and global optimisation theories, i.e. the Resilient

propagation (Rprop) and the Conjugate Gradient with Polak-Ribière updates (CGP).

It also shows how the network structure plays a role in the training optimisation of

NNs. In this regard, various training scenarios are used to classify two protein data,

i.e. the Escherichia coli and Yeast data. These training scenarios use varying

numbers of hidden nodes and training iterations. The results show that Rprop

outperforms CGP. Moreover, it appears that the performance of classifiers varies

under various training scenarios.

iv

ACKNOWLEDGEMENTS

The successful completion of this study is the result of invaluable support and

contribution from many people. Firstly, I would like to declare my wholehearted

gratefulness to my supervisor, Ms. Nothabo Ndebele, for her invaluable guidance

and advice throughout this project. Her support and thoughtfulness are highly

appreciated.

I cannot forget to thank the professors and lecturers at the School of Statistics and

Actuarial Science for their invaluable contribution to my knowledge. I am honoured

to have learned from them. Also, I am grateful to all my colleagues at the School, for

their amity and encouragement. I wish them success for their forthcoming endeavour.

Lastly, I would like to give special recognitions to my family, especially my parents

Dieudonné and Odette Kayembe, for their motivation, inspiration, love and constant

support. I am grateful to have them in my life.

v

CONTENTS

DECLARATION .. ii

ABSTRACT... iii

ACKNOWLEDGEMENTS ... iv

CONTENTS..v

LIST OF TABLES ..x

LIST OF FIGURES .. xii

BASIC NOTATION AND ABBREVIATIONS ... xiv

CHAPTER 1: STUDY INTRODUCTION.. 1

1.1 Introduction .. 1

1.2 Background .. 1

1.3 Objectives... 4

1.4 Structure of the Dissertation .. 5

CHAPTER 2: LITERATURE REVIEW ... 6

2.1 Introduction .. 6

2.2 Formulation of the Training Problem .. 6

2.3 The Difficulty of Training.. 9

2.4 Optimization Methods ... 11

vi

2.5 Gradient Descent based Training Algorithms.. 12

2.6 Conjugate Gradient based Training Algorithms .. 15

2.7 Summary of the chapter ... 18

CHAPTER 3: METHODS ... 20

3.1 Introduction .. 20

3.2 Resilient Propagation ... 20

3.2.1 Description ... 20

3.2.2 Algorithm ... 22

3.2.3 Parameters .. 23

3.3 Conjugate Gradient with Polak-Ribière Updates....................................... 24

3.3.1 Description ... 24

3.3.2 Algorithm ... 25

3.3.3 Parameters .. 26

3.4 Evaluating the performance of classifiers .. 26

3.4.1 Estimating the Accuracy of Classifiers: Cross-validation Approach .. 27

3.4.2 Estimating the Convergence of Classifiers .. 29

3.4.3 Estimating the Efficiency of Classifiers... 32

CHAPTER 4: DATA AND DESIGN OF EXPERIMENTS 33

4.1 Introduction .. 33

vii

4.2 The Datasets ... 33

4.2.1 The Escherichia coli problem .. 33

4.2.2 The Yeast problem ... 35

4.3 Design of Experiments... 36

4.3.1 Formulation of the Binary classifiers... 36

4.3.2 Designing the architecture of the classifiers .. 40

4.3.3 Generalisation of the classifiers ... 44

4.3.4 Initializing the weights... 45

4.3.5 Process implementation summary ... 45

4.4 Software ... 50

4.5 Summary of the chapter ... 50

CHAPTER 5: ANALYSIS AND RESULTS .. 53

5.1 Introduction .. 53

5.2 Comparing Rprop and CGP Using the E.coli Proteins 54

5.2.1 Accuracy comparison... 54

5.2.2 Convergence comparison ... 56

5.2.3 Efficiency comparison ... 57

5.2.4 Concluding remarks ... 58

5.3 Effect of hidden nodes and training iterations on E.coli classifiers using

Rprop 60

viii

5.3.1 Effect on convergence.. 61

5.3.2 Effect on the accuracy on training set .. 62

5.3.3 Effect on the accuracy on test set... 64

5.3.4 Effect on efficiency .. 66

5.4 Comparing Rprop and CGP using the Yeast Proteins 67

5.4.1 Accuracy comparison... 68

5.4.2 Convergence comparison ... 70

5.4.3 Efficiency comparison ... 71

5.4.4 Concluding remarks ... 72

5.5 Effect of hidden nodes and training iterations on Yeast classifiers using

Rprop 73

5.5.1 Effect on convergence.. 74

5.5.2 Effect on the accuracy on training set .. 75

5.5.3 Effect on the accuracy on test set... 76

5.5.4 Effect on efficiency .. 78

5.6 Comparing the E.coli classifiers and the Yeast classifiers 79

5.7 Further Experiments - Evaluating the complexity of classifiers................ 84

5.7.1 Introduction .. 84

5.7.2 Comparing the performance of the E.coli classifier and

 Yeast classifier .. 85

ix

5.7.3 Attempts to improve the performance of the classifier by

increasing the number of iterations .. 95

CHAPTER 6: CONCLUSIONS .. 100

6.1 Introduction .. 100

6.2 Discussion and conclusions ... 100

6.3 Future work .. 104

REFERENCES .. 105

APPENDIX A: Matlab CODE – Transforming the E.coli multiclass problem into

multiple binary problems ... 116

APPENDIX B: Matlab CODE – Transforming the Yeast multiclass problem into

multiple binary problems ... 120

APPENDIX C: Matlab CODE – Training process of classifiers 124

x

LIST OF TABLES

Table 4.1: The E.coli proteins class distribution.. 34

Table 4.2: The Yeast proteins class distribution .. 36

Table 4.3: E.coli binary classifiers... 39

Table 4.4: Yeast binary classifiers ... 39

Table 5.1: The network configurations that produced the best E.coli binary classifiers

.. 54

Table 5.2: E.coli Best OAtrain and Best OAtest ... 55

Table 5.3: E.coli Best MSE.. 57

Table 5.4: E.coli Training time to best MSE ... 58

Table 5.5: The network configurations that produced the best Yeast binary classifiers

.. 68

Table 5.6: Yeast Best OAtrain and Best OAtest .. 69

Table 5.7: Yeast Best MSE .. 71

Table 5.8: Yeast Training time to best MSE.. 72

Table 5.9: Best Test performances for the E.coli classifiers using Rprop 80

Table 5.10: Best Test performances for the Yeast classifiers using Rprop 81

Table 5.11: Best im/~im and CYT/~CYT based on OAtest for 1-5 hidden nodes with

25-200 training iterations ... 90

xi

Table 5.12: Best im/~im and CYT/~CYT based on OAtest for 5-40 hidden nodes with

2-24 training iterations ... 93

Table 5.13: Best im/~im and CYT/~CYT based on OAtest for the various

experimental designs.. 95

Table 5.14: Best CYT/~CYT based on OAtest for 1-10 hidden nodes with 500-4000

training iterations ... 97

Table 5.15: Best CYT/~CYT based on OAtest for 15-35 hidden nodes with 500-4000

training iterations ... 98

xii

LIST OF FIGURES

Figure 3.1: 3-fold Cross validation .. 27

Figure 4.1: Neural network with P input, 5 hidden and 2 output nodes 44

Figure 4.2: Step 1 (Process to get the performance measure estimates).................... 47

Figure 4.3: Sub-process S of Step 1 ... 48

Figure 4.4: Steps 2 to 6 of process implementation ... 49

Figure 5.1: The MSE for varying the number of hidden nodes and training iterations

for the cp/~cp binary classifier trained with Rprop ... 62

Figure 5.2: The OAtrain for varying number of hidden nodes and training iterations

for the cp/~cp binary classifier trained with Rprop ... 64

Figure 5.3: The OAtest for varying the number of hidden nodes and training

iterations for the cp/~cp binary classifier trained with Rprop 65

Figure 5.4: Training time (in seconds) for varying number of hidden nodes and

training iterations for the cp/~cp binary classifier ... 67

Figure 5.5: The MSE for varying number of hidden nodes and training iterations for

the CYT/~CYT binary classifier trained with Rprop... 75

Figure 5.6: The OAtrain for varying number of hidden nodes and training iterations

for the CYT/~CYT binary classifier trained with Rprop ... 76

Figure 5.7: The OAtest for varying number of hidden nodes and training iterations

for the CYT/~CYT binary classifier trained with Rprop ... 78

xiii

Figure 5.8: Training time (in seconds) for varying number of hidden nodes and

training iterations for the CYT/~CYT binary classifier trained with Rprop 79

Figure 5.9: OAtest for 1-5 hidden nodes with 25-200 training iterations for the

im/~im binary classifier.. 88

Figure 5.10: OAtest for 1-5 hidden nodes with 25-200 training iterations for the

CYT/~CYT binary classifier ... 88

Figure 5.11: OAtest for 5-40 hidden nodes with 2-24 training iterations for the

im/~im binary classifier.. 91

Figure 5.12: OAtest for 5-40 hidden nodes with 2-24 training iterations for the

CYT/~CYT binary classifier ... 92

Figure 5.13: OAtest for 1-10 hidden nodes with 500-4000 training iterations for

CYT/~CYT binary classifier ... 96

Figure 5.14: OAtest for 15-35 hidden nodes with 500-4000 training iterations for the

CYT/~CYT binary classifier ... 98

xiv

BASIC NOTATION AND ABBREVIATIONS

ANN: Artificial Neural Network

OA: Overall Accuracy

OAtrain: Overall Accuracy on training set

OAtest: Overall Accuracy on test set

BOAtrain: Best Overall Accuracy on training set

BOAtest: Best Overall Accuracy on test set

CG: Conjugate Gradient

GD: Gradient Descent

CGP: Conjugate Gradient Algorithm with Polak-Ribière update

FNN: Feedforward Neural Network

Rprop: Resilient Propagation Algorithm

MSE: Mean Squared Error

1

CHAPTER 1: STUDY INTRODUCTION

1.1 Introduction

This study is about optimising the training of artificial neural networks (ANNs) using

empirical analysis. Understanding the basic problems faced in neural networks (NNs)

training is necessary to comprehend the development of this study. Hence, this

chapter introduces this study by explaining the basics of NNs training optimisation.

Section 1.2 gives the background and states the problem of the study. The objectives

of this study are discussed in Section 1.3. Finally, the structure of the report is given

in Section 1.4.

1.2 Background

ANNs are techniques that simulate the physiological structure and functioning of

human brain structures that can model very complex functions (McCulloch and Pitts,

1943). Based on biological NNs, ANNs are structured as interconnections of nodes

referred to as artificial neurons, which transmit information between each other.

Information is transmitted between nodes via synapses (connections between two

neurons), which store parameters referred to as ―weights‖. These weights quantify

the strength of the connections and are adjusted in the manipulation of information,

making ANNs adaptive to inputs and capable of learning (Gershenson, 2001).

ANNs have been implemented to solve complex classification and prediction

problems in various areas such as medicine, geology, finance and engineering.

Basically, the principal task in ANNs is to find an optimal mapping between the

inputs and outputs of a process by minimising the error between the output and the

target values of this process. This is achieved by using a training algorithm that

 1.2 Background

2

 minimises the error function of the network (Rosenblatt, 1958; Duda, Hart and

Stork, 2000).

Complex networks are likely to have error functions with attributes such as saddle-

points, local minima, even-spots and plateaus that make training of ANNs very

difficult. The presence of saddle points surrounded by high error plateaus can

drastically slow down the training process of NNs. The presence of local minima

creates situations where the training algorithm may be trapped in one local minimum

instead of converging to the global minimum of the NN error functions; and as a

result, the predictive and classification accuracies of NNs become very poor

(Fukumizu and Amari, 1999; Anastasiadis, 2005; Akarachai and Daricha, 2007).

Thus, the ability of a NN training algorithm to minimise such complex error

functions is the critical point for the performance of ANNs (Riedmiller and Braun,

1993; Plagianakos, Magoulas and Vrahatis, 2001b; Magoulas, Vrahatis and

Androulakis, 1997a; Igel and Husken, 2003). The problem of NNs training is very

consistent with the problem of unconstrained and global optimisation theory (Livieris

and Pintelas, 2009).

In the literature, various learning algorithms have been proposed to enhance the

ANN’s performance. Batch learning methods such as the back propagation algorithm

are the most common. In the process of batch learning, the weight parameters are

updated in the steepest descent direction of the gradient, using different adaptive

learning rate for each weight (Prasad, Singh and Lal, 2013). However, learning

algorithms such as the back propagation are characterised by slow training; and they

do not converge to the global minimum from any starting set of weights. They often

converge to local minima when training is initialised from a remote point to the

global minimiser (Magoulas et al., 1997a; Treadgold and Gedeon, 1998; Igel and

Husken, 2003). Methods based on unconstrained and global optimisation theory,

which apply the second derivative related information of the error function of NNs to

speed up the learning process, have been proposed (Battiti, 1992; Moller, 1993; Van

der Smagt, 1994; Magoulas, Vrahatis and Androulakis, 1997b). However, the extra

computational cost required by these approaches does not guarantee acceleration of

 1.2 Background

3

the minimising process for non-convex functions (Nocedal, 1992; Anastasiadis,

Magoulas and Vrahatis, 2003).

Other works such as Saurabh (2012), and Sheela and Deepa (2013), have been

focused on developing methods for designing optimal NNs architecture (i.e., optimal

number of hidden layers and optimal number of nodes in each hidden layer) to

accelerate and optimise the training of NNs. While the actual problem being

addressed by NNs easily gives the number of nodes to be used in the input and

output layers, determining the optimal number of hidden nodes to be used has proven

to be a challenging task. If a small number of hidden nodes that is inadequate to deal

with the complexity of the problem data under study is used, then the NN may not be

able to effectively fit the underlying pattern or relationship in the data (under-fitting).

On the other hand, if excessive hidden nodes are used, then the NN may fit the

underlying pattern and also the noise in the data (over-fitting). Besides, there is no

consensus on the best approach to apply for determining the appropriate number of

hidden nodes. It is generally argued that the merit of each approach is problem

dependent (Lawrence, Giles and Tsoi, 1996; Saurabh, 2012; Sheela and Deepa,

2013). Hence, empirical analysis using real world data problems may better reveal

the performance of particular approaches.

This dissertation investigates empirically how training algorithms and the structure

(adequate number of hidden nodes) of the network impact the training optimisation

of NNs. It presents two training algorithms believed to have good convergence

ability and devised to overcome the drawbacks of the batch back propagation

algorithm, namely the Resilient propagation (Rprop) algorithm and the Conjugate

Gradient (CG) algorithm with Polak-Ribière updates (CGP). The Rprop is a Gradient

Descent (GD) based training algorithm. It is based on the idea of mitigating the

blurring effect in the adaptation process provoked by the unforeseeable behaviour of

the size of the partial derivative on the weight update step, in the implementation of

the back propagation algorithm. If the partial derivative size is too big, the algorithm

can jump over the minimum of the error function without giving any indication

(Riedmiller and Braun, 1993). For this reason, the Rprop is designed such that the

direction of the weight update is only influenced by the sign and not the size of the

 1.3 Objectives

4

derivative. The magnitude of weight update is solely controlled by a specific weight

―update-value‖. The Rprop is one of the best algorithms in terms of accuracy,

robustness and convergence speed with regard to its learning parameters (Riedmiller,

1994; Anastasiadis, Magoulas and Vrahatis, 2005; Prasad et al., 2013). The CGP

algorithm is derived from the CG methods, which are used for large scale nonlinear

unconstrained optimisation problems. The CGP is devised to converge faster than the

GD based methods (Sharma and Venugopalan, 2014), and update the weights of the

NN error function in conjugate directions. The CGP is one of the best performing CG

algorithms (Jonathan, 1994; Hager and Zhang, 2006; Andrei, 2011; Ioannis and

Panagiotis, 2012). To determine the adequate number of hidden nodes, this

dissertation illustrates the use of the ―trial and error‖ method which takes into

consideration the complexity of the NN application problems. In the ―trial and error‖

method, repeated training and checks are done with varying numbers of hidden

nodes, until the optimal solution is found.

1.3 Objectives

The main objective of this study is to empirically investigate the capabilities of NNs

training algorithms which are based on unconstrained and global optimisation theory.

The aim is to assess their ability to globally minimise and converge, when dealing

with extremely complex and non-convex error functions which result from NNs with

many input and output values. Two learning algorithms designed for this purpose are

considered, namely the Rprop algorithm and the CGP algorithm. Hence, in

particular, the objectives of this study are as follows:

1. Implementation and analysis of a GD based training algorithm, specifically

the Rprop algorithm.

2. Implementation and analysis of a CG based training algorithm, specifically

the CGP algorithm.

 1.4 Structure of the Dissertation

5

3. Performance analysis and comparison of the two proposed training

algorithms with regard to their efficiency (training speed), robustness

(minimisation or convergence ability) and accuracy (generalisation ability).

4. Apply the trial and error method to analyse the performance of NNs training

for varying number of hidden nodes.

1.4 Structure of the Dissertation

This dissertation is structured in six chapters. Chapter 1 introduces the study; it

provides the background and states the problem of the study, and outlines the

structure of the dissertation. Chapter 2 gives the literature review regarding the

problem related to NNs training and optimisation. Chapter 3 discusses the NNs

training and optimisation methods proposed to reach the objectives of this study.

Also, it gives a detailed discussion of the performance measures. Chapter 4 describes

the data and the experimental design used. Chapter 5 gives and discusses the results

of the analysis. Chapter 6 gives the discussion and conclusions of the study.

6

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

In this chapter, an overview of the literature concerning ANNs is given. Section 2.2

describes the formulation of the training problem. Section 2.3 explains the difficulty

of ANNs training in an optimisation context. Section 2.4 explains the optimisation

methods for ANNs training. Section 2.5 focuses on the Gradient Descent (GD) based

training methods, while Section 2.6 outlines the Conjugate Gradient (CG) based

training methods. Finally, Section 2.7 gives the summary of this chapter.

2.2 Formulation of the Training Problem

ANNs have been applied in various problems such as signal processing and pattern

recognition (Bishop, 1995), classification and approximation (Basheer and Hajmeer,

2000; Ferrari and Stengel, 2005), and load forecasting (Myint, Khin and Marlar,

2008; Frimpong and Okyere, 2010). They have been broadly proven to be powerful

techniques for classification (Anastasiadis, 2005). Learning or training is crucial to

the performance of NN models. For unsupervised learning, the network is only

provided with input samples (Haykin, 1994; Sharma and Venugopalan, 2014).

Basically, learning is a process in which parameters (weights) of the network are

iteratively updated, in order to minimise the error between the desired outputs (the

outputs that should be produced by the network based on the problem data inputs

being analysed and fed to the network) and actual outputs of the network. The goal is

to create a correct input-output mapping so that, when presented with unseen inputs,

the network can accurately predict their outputs (Haykin, 1994; Rojas, 1996). When

the network is fed with input together with desired output samples, the learning

algorithm is referred to as supervised. Supervised learning algorithms have been the

 2.2 Formulation of the Training Problem

7

 most employed to the training of ANNs (Basheer and Hajmeer, 2000; Anastasiadis,

2005). Thus, this study will focus on the analysis of well-performing supervised

learning algorithms to implement on classification problems. Multilayer Feed-

Forward NN (FNN) is one of the broadly applied classes of supervised NNs

(Anastasiadis, 2005). For this class of networks, information is propagated only in

the forward direction (i.e., information is transmitted in only one direction, forward;

from input to hidden nodes, and from hidden to output nodes. The connections

between nodes do not form a cycle). The input of each layer is the output of the

preceding layer, and each layer is only connected to the preceding layer (Bishop,

1995; Rumelhart, Hinton and Williams, 1986). FNNs are powerful nonlinear models

that can predict and classify more easily and quickly than other models. It has been

proven that FFNs provide similar results to those of nonlinear statistical models

(Ripley, 1993). FNNs can also be trained using nonlinear model methods such as CG

and Levenberg-Marquardt algorithms (Hager and Zhang, 2006; Sharma and

Venugopalan, 2014). Moreover, FNNs have demonstrated more efficiency at

learning functions with discontinuities, than a number of other approaches can with

stronger smoothness assumptions (Bishop, 1995).

A Feed-Forward Network can be formulated as follows:

 ∑

 ,

 (2.1)

where l stands for the number of layers in the network,
 is the sum of the

weighted inputs for the j-th node in the l-th layer (). The term

defines the weights from the i-th node at the (layer to the j-th node at the

l-th layer, and
 is the output of the j-th node belonging to the l-th

layer. The activation function of the j-th node is represented by
 .The weight

parameters of the NN may be formulated utilising vector notation , as:

 (

)

, (2.2)

 2.2 Formulation of the Training Problem

8

where T is the transpose symbol,
 represents the bias of the j-th node at the l-th

layer, and n represents the total number of weights and biases in the network. Biases

are weights connected with vectors which lead from a single node whose location is

outside of the principal network and whose activation is always 1. The utilisation of

biases in a NN augments the network capacity to solve problems by permitting the

hyper-planes that discriminate individual classes to be offset for superior positioning

(Reed and Marks, 1999; Anastasiadis, 2005).

The squared error over the training set, for a fixed and limited set of input-output

samples p is:

 ∑ ∑

 ∑ ∑ (

)

 (2.3)

This equation defines the NN error function to be minimised; where is the target

response at the j-th output node for the k-th sample and
 is the

output of the j-th node at layer L that depends on the network weights. The parameter

sigma , is often set to a nonlinear activation function such as the widely

used logistic function

 or the hyperbolic tangent function , where x is

the sum of the weighted inputs to a node.

The power of FNNs has been well established by the following universal

approximation property: ―standard multilayer feedforward networks are capable of

approximating any measurable function from one finite dimensional space to

another, to any desired degree of accuracy, provided sufficiently many hidden units

are available‖ (Hornik, Stinchcombe and White, 1989).

A multilayer feedforward network is said to be standard if it has one hidden layer.

The above universal approximation property suggests that multilayer feedforward

networks with as few as one hidden layer, can satisfactorily approximate any

function faced in NNs applications. Theoretically, there are no limitations for the

success of adequately configured standard feedforward networks to approximate any

function. The lack of success can therefore be attributed to insufficient learning,

inadequate number of hidden nodes or the lack of a deterministic relationship

 2.3 The Difficulty of Training

9

between inputs and targets of the application (Hornik, Stinchcombe and White,

1989).

As useful as the above universal approximation property may be, it only gives the

optimal architecture of a network in terms of number of layers, and does not give any

indication on how to choose and update the weights and biases in order to obtain the

desired accuracy. Besides, no indication is given on how to determine the appropriate

number of nodes in the hidden layer. Hence, learning algorithms and methods for

defining appropriate number of hidden nodes are required for training NNs to reach

the optimal solution.

2.3 The Difficulty of Training

The ultimate goal of all supervised NNs is to reach the optimal solution, which has

the smallest error between the actual outputs and the desired outputs of the networks.

In optimisation terms, this solution is called the global minimum of the error

function, and it is therefore the best possible solution of the NN (Haykin, 1994;

Livieris and Pintelas, 2009; Livni, Shalev-Shwartz and Shamir, 2014). The NN error

function is a multidimensional surface whose dimension depends on the number of

connection weights of the network. The morphology of NN error functions has been

found to be extremely complex in various studies (Rumelhart et al., 1986; Haykin,

1994, Dauphin, Pascanu, Gulcehre, Cho, Ganguli and Bengio, 2014), because it is

composed of many local minima and narrow steep regions next to wide flat ones.

Therefore, the minimisation process of such error functions is a very difficult task

(Igel and Husken, 2003; Anastasiadis, 2005; Akarachai and Daricha, 2007).

Moreover, the success of ANNs training is subject to many other parameters such as,

the architecture (optimal number of hidden layers and hidden nodes), the number of

training updates of weights, the activation functions, etc. (Sheela and Deepa, 2013).

For instance, ―the complexity of NNs training increases when dealing with

optimisation problems related to arbitrary decision boundary with rational activation

 2.3 The Difficulty of Training

10

functions‖ (Saurabh, 2012). For such problems, networks with two or three hidden

layers are necessary to obtain an arbitrary degree of accuracy. Estimating the number

of hidden nodes is of crucial importance. If the number of hidden nodes is inadequate

to deal with the complexity of the data of the classification problem, then ―under-

fitting‖ may occur. That is, there are too few hidden nodes to effectively detect and

model the signals in the problem data. If excessive hidden nodes are used, then

―over-fitting‖ may occur; that is, there are too many hidden nodes which cause the

NNs to fit the noise instead of the underlying relationship in the data. In other words,

over-fitting occurs when the network starts to memorise the training data, instead of

learning to generalise from the underlying trend (Saurabh, 2012).

Hence, determining the appropriate number of hidden layers and number of nodes in

each hidden layer with regard to the complexity of the problem data, to prevent

under-fitting and over-fitting, is of major importance in classification problems.

Numerous methods have been suggested in the literature for this purpose (Sartori and

Antsaklis, 1991; Blum, 1992; Arai, 1993; Hagiwara, 1994; Boger and Guterman,

1997; Berry and Linoff, 1997; Saurabh, 2012; Sheela and Deepa, 2013). For

instance, Blum (1992) suggests that the number of hidden nodes should be between

the number of input nodes and the number of output nodes. Boger and Guterman

(1997) propose that the number of hidden nodes should be 2/3 (or 70% to 90%) of

the number of the input layer nodes. If this does not produce satisfactory results, then

the number of output layer nodes should be added to improve the results. Berry and

Linoff (1997) suggest that the hidden nodes number should be less than twice the

input nodes number. Recently, Sheela and Deepa (2013) have tested various criteria

based on statistical errors to determine the hidden nodes number. They propose a

criterion that estimates the hidden nodes number as a function of inputs nodes , i.e.

 8 ⁄ . They argue that this criterion can be appropriate for wind

speed prediction after experimental study was done using real-time wind data.

However, none of the above described approaches for calculating the appropriate

number of hidden layers and nodes provide a standard formula that is widely

accepted. All these approaches are problem dependent. Most often, the complexity of

data influences the determination of the number of hidden layer nodes. The broadly

 2.4 Optimisation Methods

11

used approach by researchers to determine the adequate number of hidden nodes is

the ―trial and error‖ method (Kazuhiro, 2010; Stuti and Rakesh, 2011; Saurabh,

2012; Sheela and Deepa, 2013). The ―trial and error‖ method starts by randomly

choosing a small number of hidden nodes to train the network, utilising the data

sample of interest. If the network does not converge after a reasonable training time

or epochs (training iterations), training is restarted a few more times (maybe 5 times)

in order to make sure that it is not trapped in a local minima. If the network still does

not converge, then the number of hidden nodes is increased and the network is

allowed to train again. For a couple of times, the process of increasing the number of

hidden nodes and checking for convergence (trial and error) is repeated. If there is

still no improvement, then it may be necessary to start increasing the number of

hidden layers until the network converges.

2.4 Optimisation Methods

A number of methods have been applied for supervised learning of NNs. The most

used are the class of first order gradient based algorithms, which are linear

approximations and do not require a large amount of computation per iteration

(Battiti, 1992; Looney, 1997). Among the first order gradient based training

algorithms, adaptive step size ones are the most used. Adaptive step size based

algorithms search for the best step size by fine tuning it after each weight update.

They operate by regulating the amount of changes in the weights space during

learning, in order to simultaneously maximise the speed of the minimising process,

and avoid oscillations in the search (Riedmiller and Braun, 1993).

 Other methods based on unconstrained optimisation theory have been proposed.

These methods apply second derivative related information of the error function to

speed up the training process (Battiti, 1992; Moller, 1993; Van der Smagt, 1994).

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Gill, Murray and Wright, 1981),

and CG (Moller, 1993) algorithms, are widely proposed in the literature. Another

alternative to the widely known line search approach is the Levenberg-Marquardt

 2.5 Gradient Descent based Training Algorithms

12

algorithm based on the model-trust region approach (Fletcher, 1981; Hagan and

Menhaj, 1994). The above described algorithms are broadly applied for training

FNNs. However, these algorithms are computationally expensive because of the

second derivative based information they utilise when minimising the error function.

Also, in many instances, these algorithms do not guarantee acceleration of the

minimising process for non-convex functions, especially when starting far away from

a minimum (Nocedal, 1992; Anastasiadis, 2005).

The problem of high computational cost has been reduced nowadays by the

improvement of the processing capacity of modern computers. Still, there are some

drawbacks in the application of these powerful second order algorithms in some

cases. For instance, too many weights may make the direct use of second order

algorithms impractical. Furthermore, these algorithms utilise approximations of the

Hessian matrix. Sometimes this Hessian matrix may be badly scaled or close to

singular during training. Consequently, the algorithms may yield poor results.

An intrinsic problem to first order and second order learning algorithms is that they

converge sometimes to local minima. Although some local minima may produce

satisfactory results, they frequently cause poor network performance. Global

optimisation methods can be used to overcome this difficulty (Burton and Mpitsos,

1992; Plagianakos, Magoulas and Vrahatis, 2001a; Plagianakos et al., 2001b;

Treadgold and Gedeon, 1998).

2.5 Gradient Descent based Training Algorithms

Gradient Descent (GD) is the most popular category of algorithms applied for

supervised NNs training. Batch Back-Propagation (BP) is the most broadly utilised

algorithm of this category (Rumelhart et al., 1986). This first order method follows

the steepest descent direction of the gradient by updating the weight parameters with

the objective of minimising the error function of the networks (Battiti, 1992). The

weight update can be formulated as follows:

 2.5 Gradient Descent based Training Algorithms

13

 { } (2.4)

where is the weight at iteration , and is the weight at iteration

t. The quantity { } is the gradient of the batch error function , and

is calculated by using the chain rule on the layers of the FNN. The parameter η is the

learning rate, whose optimal value depends on the shape of the error function

(Rumelhart et al., 1986). The learning rate is a very important parameter, and it is

used in order to prevent the algorithm from converging to a maximum or a saddle

point. Heuristically, it is suggested to choose a small learning rate as .

This is to guarantee convergence and prevent oscillations of the BP algorithm in the

steepest descent of the error surface.

The BP algorithm is characterised by some serious limitations; which are, slow

training and convergence to local minima. The presence of local minima in the error

surface can cause the algorithm to reach a suboptimal solution instead of the global

one. This leads to poor performance of NNs. This situation is a consequence of

inadequate number of hidden nodes, along with inappropriate initial weight

parameters (Gori and Tesi, 1992). The setting of the learning rate for each weight

direction is very critical. Often, it happens that the learning rates are different for

different weight directions of the error surface (Jacobs, 1988).

Significant improvements have been observed in the learning speed and convergence

capability of first order adaptive learning rate based algorithms (Magoulas et al.,

1997b; Magoulas, Vrahatis and Androulakis, 1999; Magoulas and Vrahatis, 2000).

The most remarkable is the performance of the Resilient propagation (Rprop)

proposed by Riedmiller and Braun (1993). Rprop algorithm is the best in terms of

accuracy, robustness and convergence speed with regard to its learning parameters

(Igel and Husken, 2003; Anastasiadis et al., 2003; Anastasiadis et al., 2005; Prasad et

al., 2013).

Rprop is based on the idea of removing the bad effect that the size of the partial

derivative has on the weight step. Therefore, the direction of the weight change is

only influenced by the sign of the derivative. The magnitude of weight update is

 2.5 Gradient Descent based Training Algorithms

14

solely controlled by a specific weight ―update-value‖. Empirical evaluations have

demonstrated that Rprop converges fast, but generally necessitates introducing or

even fine tuning extra heuristics (Igel and Husken, 2003; Anastasiadis et al., 2005).

Furthermore, literature reveals the non-existence of theoretical results underpinning

the development of Rprop adjustments. This is expected since heuristics may be

unable to assure convergence to a local minimum of the error function when the

computation of weight updates are based on adaptive learning rates for each weight.

However, no assurance is given for a monotonic decrease of the network error

function after each iteration, and for the convergence of the weight sequence to a

minimum of the error function (Riedmiller and Braun, 1993; Igel and Husken, 2003).

Another method known as Improved Rprop (IRprop) algorithm has provided better

convergence speed in comparison with prevailing Rprop related schemes, along with

the BFGS and CG training schemes (Igel and Husken, 2003). It is obtained by

modifying the Rprop algorithm, for which the choice to undo a step is rather

subjective. Hence, the basic idea of IRprop consists of making the step reversal

subject to the behaviour of the error. It proposes reverting weight updates that have

provoked changes to the signs of the corresponding partial derivatives, only in case

of an error increase. This technique is a backtracking to Rprop update for some or all

of the weights, so that the decision about whether or not to revert a step is made for

each weight individually (Riedmiller, 1994; Anastasiadis, 2005).

In general, the GD based training algorithm updates the weights by following the

negative direction of the gradient, which is the direction in which the error function

(performance function) is most speedily decreasing. However, this does not

inevitably result in the fastest convergence (Hager and Zhang, 2006; Sharma and

Venugopalan, 2014). On the other hand, in the CG algorithms discussed in section

2.6 below, the search is done by using conjugate directions, which mostly results in

faster convergence than GD directions. Moreover, the CG algorithms necessitate

only slightly more storage than the other algorithms. Hence, CG algorithms are

suitable for networks with a huge weights number (Hager and Zhang, 2006; Livieris

and Pintelas, 2009).

 2.6 Conjugate Gradient based Training Algorithms

15

2.6 Conjugate Gradient based Training Algorithms

Conjugate Gradient (CG) methods are essential for minimising smooth functions,

particularly when the dimension is high (Andrei, 2008; Ioannis and Panagiotis,

2012). They can be defined as conjugate direction or gradient deflection methods

which are a mix of the GD based methods and Newton’s methods (Newton’s

methods are the widely applied numerical methods for solving nonlinear equations of

several variables, and for finding a root of the gradient in optimisation problems.

Their detailed description can be found in Battiti (1992) and Murray (2010)). The

principal advantage of CG methods is that they are not required to store any matrices

as in Newton’s methods or as in quasi-Newton methods, and they are devised to

converge faster than the GD based methods. Moreover, they are usually much more

stable to train and easier to check for convergence. The speed benefits of CG

methods come from using the conjugate information during optimisation (Li, Tang

and Wei, 2007).

The CG method was first developed by Hestenes and Stiefel (1952). In this seminal

paper, they proposed an algorithm for solving symmetric, positive-definite linear

algebraic systems. After a period of stagnation, the CG method was revisited and

became the main active field of research in unconstrained optimisation. This method

was first applied to nonlinear problems by Fletcher and Reeves (1964), which is

commonly considered as the first nonlinear CG algorithm. Since then, various CG

algorithms have been proposed. A survey of 40 nonlinear CG algorithms for

unconstrained optimisation is provided by Andrei (2008). Although CG methods

have been devised for more than five decades now, they still remain of great interest

when it comes to solving large-scale unconstrained optimisation problems. This is

due to their convergence properties, efficiency and simplicity in their implementation

using computer codes.

CG methods are designed to converge in at most iterations when applied to

unconstrained quadratic optimisation problems in , by following exact line

searches. Nonetheless, they are used as well for non-quadratic problems, since

 2.6 Conjugate Gradient based Training Algorithms

16

smooth functions display quadratic behaviour in the neighbourhood of the optimum.

For such cases, the algorithm is restarted after every iterations in order to enhance

the convergence rate (Yabe and Takano, 2004).

CG weights { } update process can be formulated as follows:

 (2.5)

where t represents the current iteration, is a given initial point,

represents the learning rate, and is a descent search direction described as:

 {

 (2.6)

where { } is the gradient of at , and is the

scalar parameter. Different choices of have been suggested in the literature, which

engender different CG methods. The widely known methods comprise the Fletcher-

Reeves (FR) method (Fletcher and Reeves, 1964), the Hestenes-Stiefel (HS) method

(Hestenes and Stiefel, 1952), and the Polak-Ribì ere (PR) method (Polak and

Ribì ere, 1969).

In practical computation, the PR method works similarly to the HS method, and it is

commonly said to be one of the most effective CG methods (Jonathan, 1994; Ioannis

and Panagiotis, 2012). Despite the practical benefits of this method, it has the main

weakness of lacking the global convergence ability for general functions; and

consequently, it may be trapped in an infinite iterative process, without showing any

significant progress (Powell, 1984). In order to remedy the convergence inability of

the PR method, Gilbert and Nocedal (1992), inspired by Powell (1986), suggested

that the update parameter is restricted to being nonnegative. This results into a

globally convergent CG method (PR+).

Additionally, though the PR method and the PR+ method generally have better

performance than the other CG methods, they cannot ensure the production of

descent directions. Therefore, restarts are used in order to ensure convergence

 2.6 Conjugate Gradient based Training Algorithms

17

(Powell, 1977). However, there is a concern related to restart algorithms. Their

restarts may be activated excessively, resulting in the degradation of the overall

effectiveness and robustness of the minimisation process (Nocedal, 1992).

Significant efforts have been made in the past decade in the development of new CG

methods that are, besides being globally convergent for general functions,

computationally better than classical methods and are categorised in two categories:

1. The first category uses second-order information to speed up CG methods by

employing new secant equations (Li and Fukushima, 2001; Li, Tang and Wei;

2007). As an example, we can find the nonlinear methods introduced by Zhou

and Zhang (2006), and Zhang (2009). Another method is the multistep CG

method suggested by Ford, Narushima and Yabe (2008), which is based on the

multistep quasi-Newton methods.

CG methods based on the modified secant equation, applying both the gradient and

function’s values with higher orders of accuracy in the approximation of the

curvature, were introduced by Yabe and Takano (2004), and Li et al. (2007). These

methods are globally convergent, and occasionally, can numerically perform better

than classical CG methods, if appropriate conditions are satisfied. But, these methods

do not guarantee the production of descent directions; hence, in practical analysis the

descent condition is always assumed.

2. The second category tries to develop CG methods which produce descent

directions, with the objective of avoiding inefficient restarts that occur

frequently. Motivated by this idea, the search direction was modified in order to

guarantee sufficient descent. That is,
 ‖ ‖

 (Note that
 is the

transpose of) , independent of the performed line search (Zhang, Zhou and Li,

2007; Zhang and Zhou, 2008). Also, modification of the parameter results in a

new descent CG method, known as the CG-DESCENT method proposed by

Hager and Zhang (2006). In fact, they suggested to modify the Hestenes-Stiefel

formula
 . Another modification of the PR method was proposed by Yuan

(2009). He suggested the introduction of a parameter C that basically controls the

 2.7 Summary of the chapter

18

relative weight between conjugacy and descent. It is argued that this method

possesses an important property, which is the global convergence for general

functions.

In view of the above survey of CG methods, it is worth highlighting that various

formulations of the parameter , result in various CG algorithms. Also, it is

commonly accepted that the CG algorithm with Polak-Ribière (PR) updates is one of

the most effective CG methods (Andrei, 2008; Ioannis and Panagiotis, 2012). This is

why this study focuses on the CG with PR, which is described in section 3.3.

2.7 Summary of the chapter

To summarise, it is broadly established that the problem of NNs training is related to

the problem of unconstrained optimisation theory. More specifically, it is formulated

as the minimising process of the error function of the network, described as the

sum of squared errors between a set of output and target values of a process. A

widely used method to solve this problem is the BP algorithm, which is a GD based

training algorithm that minimises the error function by updating the weight

parameters in the steepest descent direction of the gradient. However, the

drawbacks of the BP algorithms are slow training and convergence to local minima

(the prospect of being trapped in a local minimum) of the error function, leading to

poor performance of NNs. This situation may be the consequence of inadequate

number of hidden nodes, insufficient number of weights updates (training iterations),

etc., especially when dealing with complex NNs (Prasad et al., 2013).

Different approaches have been proposed in the literature to overcome the drawbacks

of the BP algorithm; such as the Rprop and CG algorithms. The Rprop is one of the

best algorithms in terms of accuracy, robustness and convergence speed with regard

to its learning parameters (Riedmiller, 1994; Anastasiadis, 2005; Prasad et al., 2013).

It is based on the idea of mitigating the harmful effect caused by the size of the

partial derivative on the weight step. Hence, the direction of the weight change is

 2.7 Summary of the chapter

19

only influenced by the sign of the derivative. The magnitude of weight update is

solely controlled by a specific weight ―update-value‖. The CG methods are very

important for unconstrained minimisation of functions, particularly when the

dimension is high (Andrei, 2011; Ioannis and Panagiotis, 2012). They can be defined

as conjugate direction or gradient deflection methods. They are devised to converge

faster than the GD based methods. It is argued that the CG methods are suited to train

complex NNs given their ability to solve large-scale unconstrained optimisation

problems. This is due to their convergence properties, efficiency and simplicity in

their implementation using computer codes. CGP is one of the best performing CG

algorithms.

20

CHAPTER 3: METHODS

3.1 Introduction

This chapter discusses the two NNs learning algorithms used for the purpose of this

study, and the methods used to assess the performance of classifiers. Section 3.2

gives a detailed discussion of the Resilient propagation algorithm, and Section 3.3

focuses on the Polak-Ribière conjugate gradient algorithm. A detailed discussion of

the measures of performance and the methods used to estimate them is given in

Section 3.4.

3.2 Resilient Propagation

3.2.1 Description

Resilient propagation (Rprop) is one of the fastest (gradient descent) training

algorithms in existence. It is a supervised batch learning method based on adaptive

gradient with individual step sizes. The Rprop is very appropriate for cases where the

gradient is approximated numerically and the error is noisy (Igel and Husken, 2003).

It is straightforward to implement using computer program and is not subject to

numerical problems (Patnaik and Rajan, 2000). The fundamental principle of the

Rprop algorithm is to remove the bad effect that the size of the partial derivative has

on the weight step in the basic back propagation algorithm. Therefore, the direction

of the weight change is only influenced by the sign of the derivative. The magnitude

of weight update is solely controlled by a specific weight called ―update-

value‖ ; and Anastasiadis (2005) describes the update as follows:

 3.2 Resilient Propagation

21

{

 (3.1)

where ⁄ is the actual summed gradient information obtained over all

patterns of the entire training set. The update values are defined as follows:

{

 (3.2)

where .

The update-value is reduced by the parameter each time the partial

derivative of the corresponding weight changes its sign. A change in sign

indicates that the previous update was too big and the algorithm has skipped over the

local minimum. If the partial derivative of the corresponding weight does not

change the sign, the update value is slightly increased. This is to speed up

convergence in shallow areas of the error surface. Moreover, in case of change in

sign, no adaptation should be made in the subsequent learning step. Empirically, this

can be done by setting ⁄ in the adaptation rule. This technique helps

to accelerate the convergence process when the derivative is negative. However,

when the two derivatives are positive, this approach can be ineffective since in such

situation the weight updates may direct the trajectory of the weight far-off from the

minimum or in areas yielding bigger error function values. In order to mitigate these

problems, Rprop uses a heuristic parameter that fixes the upper bound of the

update step size (Anastasiadis, 2005).

 3.2 Resilient Propagation

22

3.2.2 Algorithm

The following pseudo-code gives a detailed description of the Rprop algorithm. For

this algorithm, the min()(or max()) operator gives the minimum (or maximum) of two

numbers. The sign() operator returns +1, if the argument is positive. It returns −1, if

the argument is negative. It returns 0 otherwise (Riedmiller and Braun, 1993;

Riedmiller, 1994).

Initialise ,

For all nodes i and j, where the node connections go from j to i (or)

 ,

 ,

Repeat for

 Compute the gradient vector { }

 for all weights and biases {

 if (

 * then {

 ()

 (

*

 }

 3.2 Resilient Propagation

23

 else if (

 * then {

 ()

 }

 else if (

 * then {

 }

 }

 Until converged or stopping criterion is satisfied.

An algorithm is said to have converged during NNs training, when the minimum of

the error function is reached. The stopping criterion is usually a predefined number

of training iterations or a pre-specified error target.

3.2.3 Parameters

The Rprop algorithm uses the following parameters: 1) the initial update values ,

2) the maximum weight step size , 3) the minimum weight step size , 4)

the increase factor , and 5) the decrease factor . In the implementation of the

 3.3 Conjugate Gradient with Polak-Ribière Updates

24

Rprop algorithm, Riedmiller (1994) suggests the following set up of parameters:

 (the choice of this value was proven to be uncritical, since it is updated as

learning proceeds), (this is of great importance since it prevents the

weights from becoming too large), , , and .

3.3 Conjugate Gradient with Polak-Ribière Updates

3.3.1 Description

Conjugate gradient (CG) methods are powerful methods for solving large-scale

unconstrained optimisation problems. They require low memory and have strong

local and global convergence. Moreover, they are easy to implement using computer

codes (Andrei, 2011). The basic idea of CG methods is to use conjugate information

in determining the search direction of the minimum of an objective function. This is

done by the linear combination of the negative gradient vector at the current iteration

with the previous search direction as described by equation 2.6.

Various choices of the scalar , known as the CG parameter, yield different CG

algorithms. Hence, the formula definition of is the fundamental element in any

CG algorithm. For general non-linear objective functions, the Polak-Ribière formula

of (Polak and Ribière, 1969), which is a modification of the Fletcher-Reeves

formula (Fletcher and Reeves, 1964), has demonstrated experimental superiority

(Jonathan, 1994; Ioannis and Panagiotis, 2012); it is as follows:

‖ ‖ , (3.3)

where
 is the transpose of which is as defined in (2.6); and

‖ ‖ represents the Euclidean norm.

CG with Polak-Ribière updates (CGP) has been proven to be more robust and more

efficient than the CG with Fletcher-Reeves updates (CGF) (Andrei, 2008; Andrei,

 3.3 Conjugate Gradient with Polak-Ribière Updates

25

2011; Ioannis and Panagiotis, 2012). Its convergence is guaranteed by defining as

follows:

 {

 }. (3.4)

Using
 , is equivalent to restarting the CG search process if

 . Restart the

CG search process afresh in the direction of the steepest descent regardless of past

search directions.

3.3.2 Algorithm

The following process gives a detailed description of the CGP algorithm for NNs

training.

Step 1: Initialise , , , , and ; set .

Step 2: Compute) and

 , and set .

Step 3: Test the stopping criteria of training iterations. For instance, if or

 ‖ ‖ , then stop; otherwise continue with step 4.

Step 4: Compute the step length (learning rate) using the following strong

Wolfe’s line search conditions:

 (3.5)

 |
 | |

 | (3.6)

Step 5: Update the weights as follows:

 (3.7)

Step 6: Determine the modified Polak-Ribière scalar parameter
 .

 3.4 Evaluating the performance of classifiers

26

Step 7: Compute the descent search direction as:

 (3.8)

Step 8: Check the restart criterion. For instance, if the restart criterion of Powell

|
 | ‖ ‖

 is satisfied, then set , and go back to step 2.

3.3.3 Parameters

Any CG algorithm uses the following parameters: 1) the scalar CG parameter , 2)

step length (learning rate) , and 3) the parameters of the strong Wolfe’s line search

conditions . The most important of all parameters is , because its

modification produces a different type of CG method. The choice of parameters ,

 is of major importance, because it affects the direction of the line search. A wrong

choice may prevent the Wolfe’s strong conditions from generating a descent

direction. Hence, , and as proposed by Scales (1985). The value

of is dependent on the strong Wolfe’s conditions.

3.4 Evaluating the performance of classifiers

The main objective of this study is to evaluate and compare the performance of

Rprop and CGP algorithms in training NN classifiers using the E.coli and Yeast

protein data sets. Model selection is important in our study since the best model to be

selected for each method is the one that performs well in terms of classification

accuracy, convergence and efficiency. The various performance measures are

described in the following sections.

 3.4 Evaluating the performance of classifiers

27

3.4.1 Estimating the Accuracy of Classifiers: Cross-validation

Approach

The best classifier is the one that performs well on unseen data and therefore

generalises well. In this section, an approach is presented that is used in an attempt to

improve generalisation, and therefore, better estimate the overall classification

accuracy of a classifier. This approach is the k-fold cross-validation technique

(Kohavi, 1995). In this approach, a dataset D is randomly split into k mutually

exclusive subsets (folds) of approximately equal size. Then, k classifiers

 are trained. The classifier is trained on the set | , and

tested on the set , where . Figure 3.1 shows an example of 3-

fold cross-validation. In this graph, the unions of the upper parts are utilised for

training the classifiers, whereas the lower parts are utilised for testing the classifiers.

The total number of classifiers is 3. The disjoint union of the test sets gives the

whole dataset, i.e.
 . Each set is therefore used once as a test set.

Figure ‎3.1: 3-fold Cross validation

 3.4 Evaluating the performance of classifiers

28

The cross validation approximation of accuracy is the total number of correct

classifications as a proportion of the total number of samples in the dataset. The basic

assumption in cross-validation is: If is a classifier trained on the whole data set D,

and are the classifiers trained on the sets | , then, the probability of correct

classifications for (i.e.,) is equivalent to the probability of correct

classifications for for all . Therefore, the estimate for the correct

probability of the classifier is the average of the estimates for the correct

probabilities of the classifiers . In practice, various numbers k of folds are often

proposed; and in this study, . The rationale for utilising 10-fold cross-

validation as the accuracy estimation method for this study is based on the work by

Kohavi (1995); in which various real-world datasets are used to compare the

performance of cross-validation (including the leave-one-out validation) and

bootstrap methods, in estimating the accuracy of a classifier. Kohavi (1995)’s

findings suggest that based on the trade-off between the variance and bias of the

accuracy estimate, the 10-fold cross-validation produces better accuracies than

bootstrap and the leave-one-out cross-validation, which requires more computation.

The 10-fold cross-validation accuracy estimate is almost unbiased and has small

variance, while bootstrap has small variance but extremely large bias on some

problems. Also, ―the leave-one-out validation‖ is almost unbiased; but it has high

variance, leading to unreliable estimates‖ (Efron, 1983).

To estimate the overall accuracy (OA) of a classifier , let us define first a confusion

matrix W as follows:

 (

) (3.9)

where the diagonal elements are numbers of correct classifications, i.e. is the

number of all samples that are classified as , and z is the number of classes. Also,

the probability of correct classification of the classifier is defined as follows:

 ∑ |

 (3.10)

 3.4 Evaluating the performance of classifiers

29

where | is the probability of correct classification of , which is

estimated as follows:

 |

 (3.11)

By substituting (3.11) in (3.10) we obtain the following estimate:

 ̂ ∑

 (3.12)

Note that is a prior probability which is defined as the proportion of class label

i in the whole data D of size N, i.e.

. Therefore, ̂ becomes

 ̂ ∑

 ∑

∑

 (3.13)

which is the proportion of correct classified samples. This means that ̂

is the OA.

The OA is derived from the whole dataset D. It is referred to as overall accuracy on

training set (OAtrain) when derived from the training set , and overall

accuracy on test set (OAtest) when derived from the test set (Breiman,

Friedman, Olshen and Stone, 1984; Kohavi, 1995; Duda, Hart and Stork, 2000;

Rudner, 2003).

3.4.2 Estimating the Convergence of Classifiers

The main target of training algorithms for NNs is to minimise the NN error function

E. The convergence capability of a training algorithm is understood as the ability of

this algorithm to converge to a minimum of the error function E. This is, starting

from almost any initial set of weights, the sequence of the weights generated by the

learning task will converge to a minimum of the error function. This minimum can

be either local or global. In this context, the globally convergent algorithms are

 3.4 Evaluating the performance of classifiers

30

different from the global optimisation methods (Nocedal, 1992; Treadgold and

Gedeon, 1998). A strict mathematical understanding of global optimisation is,

finding the complete set of the globally optimal solutions (global minimisers) of

the objective (error) function E, with the corresponding global optimum value

 ; whereas globally convergent algorithms converge with certainty (always) to

a minimum, either local or global, from any remote starting point (Nocedal, 1992).

The common approach used in various NNs studies to empirically evaluate the

convergence performance of different training algorithms is to conduct many training

trials for each algorithm and calculate the percentage of trials for which each

algorithm has converged (reached the minimum of the error function or the pre-

specified error goal based on previous experiments). The best performing algorithm

is the one with the highest percentage of converging trials (Veitch and Holmes, 1991;

Anastasiadis, 2005). This approach is referred to as repeated training trials and is

applied in this study. The repeated training trials approach has the merit of using

different initial weights for each trial in order to address the issue of global

convergence when training starts from any remote points (initial weights vectors)

(Anastasiadis, 2005). In this study, the network error function utilised as measure of

performance is the mean squared errors (MSE), which is minimised during training

for the network to converge (Zhang, 2000; Sharma and Venugopalan, 2014). The

MSE between the network’s outputs and targets (desired outputs)

 can simply be formulated as follows:

∑

 (3.14)

where N is the sample size.

For classification problems, a NN can be described as a mapping function between a

set of inputs and outputs fed to the network, which is estimated in order to perform a

particular classification task. For a particular classification problem, the process

followed by NNs to calculate the MSE is illustrated using a single sample as follows.

Consider the task of assigning an input vector X { } to one of the Z

classes { }, where D is the number of attributes of X. Let define the

 3.4 Evaluating the performance of classifiers

31

corresponding class of X as , the network’s actual outputs as { },

and the network’ s targets (desired outputs) for all output nodes as { }.

Note that the actual output of the network is a function of the input X, while the

target of the network is a function of the class to which X belongs. For a 1 of Z

classification task, if (X belongs to) and 0 otherwise.

For training, the network parameters are selected in order to minimise the following

objective function known as squared error function:

 {∑

 } (3.15)

where { } is the expectation operator. If we define as the joint probability

of the input X and the ith class , and use the definition of expectation as provided

by Richard and Lippmann (1991) and Zhang (2000), (3.15) can be expressed as

follows:

 ∫∑ {∑

 } ()
 (3.16)

Equation (3.16) is the sum of squared, weighted errors, which incorporates Z errors

for each input-class pair. For a particular pair of input X and class , each error,

 is simply the difference of the actual network output and the

corresponding desired output . The Z errors are squared, summed, and weighted by

the joint probability () of the particular input-class pair. Expanding (3.16) as

described by Richard and Lippmann (1991), yields:

 {∑ { | }
 } {∑ { | }

 } (3.17)

where { | } is the conditional variance of . The second term of the right-hand

side is independent of the network outputs and is called the approximation

error. It reflects the inherent irreducible error due to the randomness of the data. The

first term is affected by the effectiveness of the NN mapping and is known as the

estimation error. Minimisation of is achieved by choosing network parameters to

minimise the first term, which is simply the MSE between the network outputs

 3.4 Evaluating the performance of classifiers

32

and the conditional expectation of the desired outputs. Hence, when network

parameters are selected to minimise a squared error objective function, ―outputs

estimate the conditional expectations of the desired outputs so as to minimise the

mean-squared estimation error. For a 1 of Z problem, equals one if the input X

belongs to class and zero otherwise‖ (Richard and Lippmann, 1991).

3.4.3 Estimating the Efficiency of Classifiers

Efficiency is another important factor that is worth considering in the development of

NNs training algorithms. It is defined as the learning speed or convergence speed of

an algorithm, i.e. how fast an algorithm reaches the minimum of the error function E

during training. A broadly used approach to estimate the efficiency of NNs training

algorithms is to measure the CPU time elapsed and the number of training iterations

until convergence (Livieris and Pintelas, 2009). Hence, in this study, efficiency is

estimated by the training time spent by an algorithm to achieve particular MSE

values, and the training time is measured in seconds.

33

CHAPTER 4: DATA AND DESIGN OF EXPERIMENTS

4.1 Introduction

This chapter discusses the data and the experimental design applied to reach the

objectives of this study. Section 4.2 focuses on the datasets; it gives a detailed

description of the Escherichia coli (E.coli) proteins and the Yeast proteins

classification problems. Section 4.3 is based on the experimental design, starting

from the formulation of the classification tasks to the steps involved in the

implementation of the experimental design. Finally, Section 4.4 gives the details on

the software and computer used to implement the experiments, while Section 4.5

gives the summary of this chapter.

4.2 The Datasets

4.2.1 The Escherichia coli problem

The E.coli problem involves the classification of protein localisation patterns into

eight classes. The dataset consists of 336 different proteins labelled according to 8

localisation sites, and can be found in the UCI Repository of Machine Learning

database (Murphy and Aha, 1994).

As a prokaryotic gram-negative bacterium, E.coli is an essential element of the

biosphere that settles in the lower intestine of animals to survive. Being a facultative

anaerobe, it spreads to new hosts when released to the natural environment (Lodish,

Berk, Zipursky, Matsudaira, Baltimore and James, 2003). E.coli is characterised by

three principal and distinct types of proteins namely, enzymes, transporters and

regulators. The enzymes constitute 34% (including all the cytoplasm proteins) of the

E.coli proteins. The genes for transport functions come second followed by the genes

for regulatory functions with 11.5%.

 4.2 The Datasets

34

As proposed by Horton and Nakai (1996), the following 7 different attributes

calculated from the amino acid sequences are used for this classification problem:

1. mcg: McGeoch's method for signal sequence recognition;

2. gvh: von Heijne's method for signal sequence recognition;

3. lip: von Heijne's Signal Peptidase II consensus sequence score (Binary

attribute);

4. chg: Presence of charge on N-terminus of predicted lipoproteins (Binary

attribute);

5. aac: score of discriminant analysis of the amino acid content of outer

membrane and periplasmic proteins;

6. alm1: score of the ALOM membrane spanning region prediction program; and

7. alm2: score of ALOM program after excluding putative cleavable signal

regions from the sequence.

The proteins in the E.coli dataset are distributed in 8 classes (localisation sites) as

shown in Table 4.1.

Table ‎4.1: The E.coli proteins class distribution

Classes Patterns

cytoplasm (cp) 143

inner membrane without signal sequence (im) 77

perisplasm (pp) 52

inner membrane, uncleavable signal sequence

(imU)
35

outer membrane (om) 20

outer membrane lipoprotein (omL) 5

inner membrane lipoprotein (imL) 2

inner membrane, cleavable signal sequence (imS) 2

Total 336

.

 4.2 The Datasets

35

4.2.2 The Yeast problem

The Yeast problem concerns the classification of protein localisation patterns into ten

classes. It is based on a drastically imbalanced (the distribution of samples in the

different classes is very unequal) dataset of 1484 different proteins labelled

according to 10 localisation sites. This dataset can also be found in the UCI

Repository of Machine Learning database (Murphy and Aha, 1994).

Saccharomyces cerevisiae, known as Yeast, is the most elementary Eukaryotic

organism. It is a more complex life form than E.coli, and has various categories of

proteins associated to the cytoskeletal cell structure, the nucleus organisation,

membrane transporters and metabolic associated proteins (i.e., as mitochondrial

proteins). The Yeast membrane transporter proteins are the most important since they

are in charge for nutrient uptake, salt tolerance, resisting to drug, cell volume control,

evacuating undesirable metabolites and identifying extra-cellular nutrients (Lodish et

al., 2003; Anastasiadis, 2005).

The following 8 different attributes are used for classification of the Yeast proteins

into different sites:

1. mcg: McGeoch's method for signal sequence recognition;

2. gvh: von Heijne's method for signal sequence recognition;

3. alm: Score of the ALOM membrane spanning region prediction program;

4. mit: Score of discriminant analysis of the amino acid content of the N-

terminal region (20 residues long) of mitochondrial and non-mitochondrial

proteins;

5. erl: Presence of "HDEL" substring (thought to act as a signal for retention in

the endoplasmic reticulum lumen). Binary attribute;

6. pox: Peroxisomal targeting signal in the C-terminus;

7. vac: Score of discriminant analysis of the amino acid content of vacuolar and

extracellular proteins; and

8. nuc: Score of discriminant analysis of nuclear localization signals of nuclear

and non-nuclear proteins.

 4.3 Design of Experiments

36

The proteins in the Yeast dataset are distributed in 10 classes (localisation sites) as

shown in Table 4.2.

Table ‎4.2: The Yeast proteins class distribution

Classes Patterns

Cytosolic or cytoskeletal (CYT) 463

Nuclear (NUC) 429

Mitochondrial (MIT) 244

Membrane protein, no N-terminal signal (ME3) 163

Membrane protein, uncleaved signal (ME2) 51

Membrane protein, cleaved signal (ME1) 44

Extracellular (EXC) 35

Vacuolar (VAC) 30

Peroxisomal (POX) 20

Endoplasmic reticulum lumen (ERL) 5

Total 1484

.

4.3 Design of Experiments

4.3.1 Formulation of the Binary classifiers

The E.coli dataset and Yeast dataset under consideration in this study are multiclass

datasets with number of classes, z greater than 2. Therefore, two different types of

classifiers namely, multiclass classifiers and binary classifiers can be used to perform

the classification task on these datasets. For multiclass classifiers, also known as

―single machine‖ approaches, a multiclass classification problem is solved as a single

optimisation problem to find z (which is the number of classes) functions

simultaneously. When binary classifiers are applied to a multiclass classification

problem, separate optimisation problems are solved; one for each of the binary

 4.3 Design of Experiments

37

classification problems resulting from the multiclass classification problem (Erin,

Robert and Yoran, 2000; Crammer and Singer, 2001; Hsu and Lin, 2002).

The separate optimisation problems underlying the binary classifiers approach have

been proven less complicated to solve than single optimisation problems underlying

the multiclass classifiers approach for solving multiclass classification problems.

Also, when various binary classifiers are properly tuned and combined, they can be

at least as accurate as a single multiclass classifier in solving a multiclass

classification problem. In addition, the approaches for combining several binary

classifiers for solving multiclass classification problems have a simple conceptual

justification, and may be implemented to train faster and test as rapidly as the single

multiclass classifier approach. It is therefore preferable and easier for practical

purposes, to implement an approach that combines binary classifiers to solve

multiclass classification problems (Rifkin and Klautau, 2004); which was done for

the E.coli and Yeast classification problems under consideration in this study. This

facilitates an understanding and comparison of the dynamic between different classes

(Erin et al., 2000), and allows performance comparison of the various binary

classifiers.

The two widely applied approaches for combining binary classifiers to solve

multiclass classification problems are the ―One-Against-All‖ (OAA) and ―One-

Against-One‖ (OAO) approaches (Rifkin and Klautau, 2004). The OAA approach

works as follows: for a multiclass classification problem with z as the number of

classes, z different binary classifiers are trained; each one differentiates the samples

in a single class from the samples in all the rest of classes. When a new sample needs

to be classified, the z classifiers are run, and the one which produces the largest

(most positive) value is selected. For the OAO also known as the ―all-pairs‖

approach, (

) different binary classifiers are trained; each one distinguishes a pair of

classes. The classification of a new sample in the OAO approach is done similarly to

that of the OAA approach (Erin et al., 2000; Rifkin and Klautau, 2004).

The OAA approach, like the OAO approach, is conceptually simple, and can be as

accurate as the single multiclass classifier approach (Rifkin and Klautau, 2004).

 4.3 Design of Experiments

38

However, the OAA approach produces fewer binary classifiers than the OAO

approach, which simplifies the presentation of results. For this reason, the OAA

approach was applied for the purpose of this study. It is worth stressing that, ―we are

not stating that the OAA approach will perform substantially better than the other

approaches. Instead, we are stating that it will perform just as well as these

approaches, and therefore it is often to be preferred due to its computational and

conceptual simplicity‖ (Rifkin and Klautau, 2004).

 A classifier in our experiments refers to a fully connected feedforward NN that has

an input layer, a hidden layer and an output layer. This section focuses on

formulating the OAA approach that was applied in this study, to reduce a multiclass

classification problem to z binary classification problems, where z is the number of

classes. In the OAA approach, each class is compared to all others. For instance, we

represent a binary classification problem for classes A and B by . If B is the

union of classes different from A, then we write for , which is interpreted

as A (class1) versus no A (class2). Hence, a classifier signifies that we

consider the classification task of classifying A against all non A. The E.coli dataset

and the Yeast dataset comprise 8 and 10 classes, respectively. This results in 8 binary

classifiers and 10 binary classifiers for the E.coli dataset and the Yeast dataset,

respectively. The E.coli binary classifiers and the Yeast binary classifiers are

presented in Table 4.3 and Table 4.4, respectively.

 4.3 Design of Experiments

39

Table ‎4.3: E.coli binary classifiers

Binary Classifiers Total samples

 143/~163

 77/~259

 52/~284

 35/~301

 20/~316

 5/~331

 2/~334

 2/~334

Table ‎4.4: Yeast binary classifiers

Binary Classifiers Total samples

 463/~1021

 429/~1055

 244/~1240

 163/~1321

 51/~1433

 44/~1440

 35/~1447

 30/~1454

 20/~1464

 5/~1479

The target coding differs between multiclass classifiers and binary classifiers. In our

experiments, the following binary target coding for the output neurons is used; for

 4.3 Design of Experiments

40

instance, in (cp versus no cp), the targets have the following coding (

) to

denote class 1, i.e. cp, and (

) to denote class 2, i.e. no cp.

4.3.2 Designing the architecture of the classifiers

Finding the most suitable FNN architecture (or appropriate number of hidden nodes)

in terms of training speed and classification accuracy is one of the critical tasks, and

often laborious, in ANN design (Blum, 1992; Boger and Guterman, 1997; Basheer

and Hajmeer, 2000; Sheela and Deepa, 2013). Various rules of thumb for

determining the appropriate number of hidden nodes are suggested in the literature

(see section 2.3). When faced with new applications for which the networks may

require the number of hidden nodes that do not conform to any of the already

proposed rules of thumb, Basheer and Hajmeer (2000) suggest the use of the trial and

error approach combined with one of the rules of thumb as a starting point. Another

approach suggested by Basheer and Hajmeer (2000), is to utilise a small number of

hidden nodes as the starting point, and build on as required to meet the model

accuracy.

In this study, to determine the appropriate number of hidden nodes, we combined the

above two approaches suggested by Basheer and Hajmeer (2000). The rule of thumb

used as starting point for the number of hidden nodes is the one proposed by Sheela

and Deepa (2013), where the number of hidden nodes is a function of the input nodes

n, i.e. 8 ⁄ . For this rule of thumb, the approximate starting point for

the number of hidden nodes is 5 for both the E.coli (for which the input nodes

number is 7) and Yeast (for which the input nodes number is 8) ANN classifiers.

Applying the trial and error approach, the number of hidden nodes was increased

from 5 to 40 in order to address the issues of under-fitting and over-fitting by

monitoring the change in network performance with regard to the change in the

number of hidden nodes. For simplicity and clarity in the comparison and

presentation of performance results of the different binary classifiers, only the

 4.3 Design of Experiments

41

following 5 different numbers of hidden nodes in the interval of 5 to 40 was

considered: 5, 10, 20, 30, and 40 hidden nodes. When there is no standard

architecture for a particular ANN problem, it is required to conduct a set of

preliminary experiments to find the most appropriate network architecture in terms of

accuracy and training speed (Basheer and Hajmeer, 2000; Anastasiadis, 2005);

suggesting that the choice of the various numbers of hidden nodes utilised to start

with the preliminary experiments is subjective and left to the researcher or

practitioner. There is no objective justification for using the above specified set of

numbers for the hidden nodes as starting numbers for our experiments, since we had

no prior knowledge as to the most appropriate architecture. One could have used a

completely different set of numbers as starting points for the experiments. However,

no matter what starting set of numbers are used, they will have to be continuously

updated based on the network performance until the optimal ones are found.

Another important aspect to be considered in NN training is the determination of the

optimum point (or moment) at which the training process should stop. It is common

practice in NN studies to stop training when a particular conversion criterion has

been satisfied (Hart and Stork, 2000; Anastasiadis, 2005). The widely used

conversion criterion in the development of NN training algorithm is the minimum of

the error function (Hart and Stork, 2000; Livieris and Pintelas, 2009). In other words,

convergence occurs and training stops when the training algorithm reaches the

minimum of the network error function. In this way, the conversion criterion

influences the duration of the training process and the number of training cycles (or

iterations) to be completed for training to stop. However, the training of complex

networks may fail to converge, especially if the network error function is

characterised by local minima and narrow valleys. Failure for the training algorithm

to converge may be explained by the excessive oscillations that occur in narrow

valleys of the error function during training. In this situation, if training is set to stop

only when the minimum of the error function is reached (i.e. if the only specified

convergence criterion is the minimum of the error function), then training might

never stop, because the error may oscillate continuously (Rojas, 1994; Taguchi and

Sugai, 2013).

 4.3 Design of Experiments

42

To avoid the above described situation, and guarantee that training will stop in our

experiments, we fixed the maximum numbers of iterations as stopping criterion for

training. Note that fixing the maximum number of iterations will lead to the

following situations. If a training algorithm is fast and the specified maximum

number of iterations is too large, the algorithm will converge (the minimum will be

reached) and training will stop before the maximum number of iterations is reached.

But if a training algorithm is slow and does not converge to the minimum, then

training will carry on and stop only when the maximum number of iterations is

completed. In both cases, the training time and MSE achieved should be recorded.

The faster converging algorithm will have shorter training time and smaller MSE (0

if convergence is achieved before the maximum number of iterations is reached). The

slower converging algorithm will have longer training time and larger MSE.

Therefore, fixing various numbers of iterations will not affect the results of the faster

converging algorithm when compared to the slower one. In other words, the

performance of the faster algorithm will not be underestimated and that of the slower

algorithm will not be overestimated since the training times will depend on the

number of iterations completed by both algorithms.

In this study, we applied various numbers of training iterations to evaluate the

performance of the different binary classifiers with regard to the change in training

iterations. Training for excessive number of iterations may result in overtraining (or

over-fitting) of the network and training for insufficient number of iterations may

result in under-fitting the network (Basheer and Hajmeer, 2000). Since we had no

prior knowledge on the appropriate number of iterations to use, we applied the trial

and error approach in our preliminary experiments to find the appropriate number of

iterations for each binary classifier. The use of the trial and error approach for

training iterations is justified by Basheer and Hajmeer (2000) who state that ―the

number of training cycles required for proper generalisation may be determined by

trial and error. For a given ANN architecture, the error in both training and test data

is monitored for each training cycle‖. The various numbers of iterations used for our

experiments are as follows: 25, 50, 75, 100, 150, and 200 iterations. As for the

 4.3 Design of Experiments

43

hidden nodes, one could have used a different set of numbers of iterations as starting

point, and update them based on performance.

Based on the various numbers of hidden nodes and training iterations specified

above, our experiments were conducted using 30 (i.e. combination of the 5 numbers

of hidden nodes with 6 numbers of iterations) different training scenarios for each

binary classifier. The notation 5hn, 10hn, 20hn, 30hn and 40hn corresponding to the

various numbers of hidden nodes, and 25t, 50t, 75t, 100t, 150t and 200t

corresponding to the various numbers of training iterations was used. For example,

the notation 10hn_50t was used, respective of a network with 10 hidden nodes,

trained for 50 iterations. Hence, for one binary classifier, we have 5 networks trained

with 6 different numbers of training iterations. The number of input nodes for each

network is equal to the number of attributes of the dataset used for training. Hence,

for the E.coli dataset, all the networks have 7 input nodes; and for the Yeast dataset,

all the networks have 8 input nodes. The number of output nodes for each network is

2, since we are dealing with binary classifiers. This design results in 30 different

NNs for one classification task. Furthermore, this design allows studying the effect

on the performance of a classifier for varying the number of hidden nodes and the

number of training iterations. Figure 4.1 illustrates a NN classifier with P input

nodes, 5 hidden nodes and 2 output nodes. P equals 7 for the E.coli classifier, and 8

for the Yeast classifier.

 4.3 Design of Experiments

44

Figure ‎4.1: Neural network with P input, 5 hidden and 2 output nodes

4.3.3 Generalisation of the classifiers

As stated before, k-fold cross validation is one of the powerful methods used to

generalise NNs classifiers. For our experiments, 10-fold cross validation (see Section

3.4.1 for justification of this choice) is applied to estimate how well the classifiers

obtained will perform on unseen data (Kohavi, 1995). In this context, no specified

error goal is used as early stopping criterion for our study. The only specified

stopping criterion is the maximum number of training iterations to be completed. But

if training is fast and the minimum of the error function is reached (when the MSE is

0) before the specified training iterations are completed, training will automatically

stop at the minimum point (i.e. 0). It has been observed that the performance of ANN

training algorithms is also most often dependent on the initial parameters such as the

connection weights. Many trials with varying conditions of the initial weights are

necessary to be able to compare the performance of different ANN training

algorithms (Canu, 1993). For benchmarking experiments to be reliable, Harney

(1992) argues that they normally need to be in the range between 25 and 100

1

2

1

2

3

4

5

1

2

P

Input layer

with P nodes
Hidden layer

with 5 nodes

Output layer

with 2 nodes

 4.3 Design of Experiments

45

independent trials; and it is common to report the mean results over the different

trials (Veitch and Holmes, 1991; Anastasiadis, 2005). For our experiments in this

study, 50 independent trials are conducted for each ANN binary classifier; and they

results are averaged to obtain the overall performance. The 50 random initialisations

of the weights are the same for both training algorithms. One could have used a

different number of trials as long as this number is at least 25, as suggested by

Harney (1992).

4.3.4 Initialising the weights

Practically, repeated random initialisation of weights using small values is sufficient

to provide good convergence and avoid local minima. In our experiments, the

Nguyen-Widrow function is used to initialise the first and second layer weights

(Nguyen and Widrow, 1990). The transfer function used for both layers is the

hyperbolic tangent sigmoid with the default parameters. The pre-processing of the

data is done using the mapminmax() function. This function processes the data by

mapping the minimum and maximum values of the input vectors to -1 and 1,

respectively. The parameters of the Rprop and the CGP algorithms are set as

described in Section 3.2.3 and Section 3.3.3, respectively.

4.3.5 Process implementation summary

This section describes the steps involved in the implementation of the experimental

design for training the classifiers. The code developed for this purpose takes into

account the variability of three parameters, i.e. the number of hidden layer nodes, the

maximum number of training iterations, and the change of training and test sets in

cross validation application to improve generalisation of the results on unseen data.

Moreover, in order to regularise the results, many trials, i.e. 50, are used for every

training task. The result for each classifier is the average performance over 50 trials.

 4.3 Design of Experiments

46

Details of the steps involved in the process implementation can be found in appendix

C. The flowcharts in Figures 4.2, 4.3 and 4.4 give a good visual of the 6 steps

involved in the process implementation. Special attention is given to the depiction of

for loops in steps 1 and 2. Figure 4.2 depicts step 1 of the whole process, while figure

4.3 does so for sub-process S of Figure 4.2. Note that sub-process S, is a sub-routine

of step 1 that involves the implementation of the second, third and fourth for loops in

step 1. The rest of the process (step 2 to step 6) is portrayed in Figure 4.4. Note that

these flowcharts do not include all the variables and computations involved in each

step. They just portray the main steps.

 4.3 Design of Experiments

47

Figure ‎4.2: Step 1 (Process to get the performance measure estimates)

Sub-setting the matrices of performances;

Storing these matrices in the three dimensional arrays;

𝑛 𝑛

Print results;

Stop

Start

Initialise arrays to store performance

measures;

n=1

Is 𝑛

𝐻

Sub-process S

FALSE

TRUE

 4.3 Design of Experiments

48

Figure ‎4.3: Sub-process S of Step 1

TRUE

Split data to apply k-fold CV, with k ;

k=1

Is 𝑘

Do training and test on the k folds;

k=k+1

 𝐻 𝑖 𝑖

Calculate and store mean of every performance measure;

𝑡 𝑇 𝑖 𝑖

 𝐻 𝑖

Is 𝐻 𝑖

Set 𝑇 7 ; Specify the

network topology as

𝑛𝑒𝑡 𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑛𝑒𝑡 ;

𝑡 𝑇 𝑖

Is 𝑡 𝑇 𝑖 6

FALSE

FALSE

TRUE

FALSE

TRUE

 4.3 Design of Experiments

49

Figure ‎4.4: Steps 2 to 6 of process implementation

A

Step 3

Step 4

Step 6: Repeat

step 1 to step

4

Step 5: Write

results onto

output file

End

Start

Initialise four arrays for matrices of

sums;

𝑛

Is 𝑛

Calculate the sum matrices for each

array;

𝑛 𝑛

Divide the Sum matrices by 50 to

obtain the average matrices;

Print results

A

FALSE

TRUE

 4.4 Software

50

4.4 Software

The software used for the experiments is the Matlab Version ―8.1.0.604 (R2013a)‖

(2013) whose NNs toolbox contains both the Rprop and CGP training algorithms as

well as all the necessary functions for configuring and training the NN classifiers. All

the graphs were created using the R ggplot2 package (Wickham, 2011). The

computer used to perform these experiments is windows 7 (32-bit) operating system

with an Intel® Celetron® CPU B815 @ 1.60GHz processor and 2 GB RAM. The

reason for using this specific computer was that, it was the only computer that was

accessible for 24 hours a day, and could facilitate the implementation of our

experiments without disruption from any other users. The code created to implement

all the training tasks can be found in the Appendix.

4.5 Summary of the chapter

The E.coli and Yeast problems (Murphy and Aha, 1994) are multiclass classification

problems involving the classification of protein localisation patterns into eight

classes for the E.coli and ten classes for the Yeast. It has been shown that ―single

machine‖ approaches that use single multiclass classifiers or approaches that use the

combination of several binary classifiers can be applied to solve multiclass

classification problems (Erin, Robert and Yoran, 2000; Crammer and Singer, 2001;

Hsu and Lin, 2002) such as the E.coli and Yeast problems. Also, it has been argued

that approaches that combine several binary classifiers to solve multiclass

classification problems are less complicated to implement, have simple conceptual

justification; and when well-tuned, they can be at least as accurate as single

multiclass classifiers approaches. The several binary classifiers combination based

approaches are therefore more appealing for practical purposes (Rifkin and Klautau,

2004).

For our experiments, among the two broadly applied several binary classifiers

combination based approaches, the OAA approach have been chosen over the OAO

 4.5 Summary of the chapter

51

approach, because the OAA approach produces less binary classifiers (which are

equal to the number of classes k of the multiclass classification problem) (Erin et al.,

2000; Rifkin and Klautau, 2004). Based on the OAA approach, the E.coli and Yeast

classification problems will produce eight and ten binary classifiers, respectively. For

our experiments, a binary classifier has been defined as a fully connected

feedforward NN with an input layer, a hidden layer and an output layer. A brief

summary of the training scenarios implemented and steps involved in the selection of

the best binary classifier for each training scenario is as follows:

 For each binary classification task, a network with one hidden layer

with various combinations of hidden nodes, i.e. 5, 10, 20, 30, 40

hidden nodes, and various combinations of maximum number of

weights updates (maximum number of iterations), i.e. 25, 50, 75, 100,

150, 200 was trained. This was done for both Rprop and CGP

algorithms.

 The performance measures, i.e. OAtrain, OAtest, MSE, and time were

observed and recorded for each combination of variable parameters

(hidden nodes and number of iterations). This gives 30 records for

each performance measure.

 The best OAtrain (the maximum of the 30 accuracies on training set)

reported, gives the best classifier on OAtrain for this binary

classification task; the best OAtest (the maximum of the 30 accuracies

on test set) reported, gives the best classifier on OAtest set; the best

MSE (the minimum of the 30 MSEs) determines the best classifier on

MSE; and the best time (the minimum of the 30 times) determines the

best classifier on time for the same binary classification task.

In a nutshell, the best classifier for a particular binary classification task (with a

given experimental design) is the one with the best performance on a particular

performance measure.

Note that given the unbalanced nature of the E.coli (see section 4.2.1) and Yeast (see

section 4.2.2) data analysed in this study, the classes with less than 10 cases were not

 4.5 Summary of the chapter

52

considered in the experiments. The following binary classifiers were therefore

removed from our experiments: , and (see Table

4.3), and (see Table 4.4). During training, when splitting the data into

train/test sets, it is necessary to have at least one case in the training set and one case

in the test set. Bearing in mind that the 10-fold cross validation approach (Kohavi,

1995) will be applied to generalise our classifiers, classes with less than 10 cases will

not be represented in all the 10 different folds (training sets and test sets) and as a

result, proper training and testing of the classifiers for these classes will be

impossible. For this reason, 5 instead of 8 binary classifiers were trained for the

E.coli data, and 9 instead of 10 binary classifiers were trained for the Yeast data.

53

CHAPTER 5: ANALYSIS AND RESULTS

5.1 Introduction

The main objective of this study was to investigate the optimisation methods of NNs

training. The focus was on the capability of two NN training algorithms, i.e. Rprop

and CGP. This was empirically done by evaluating and comparing their

performances in classifying the E.coli and Yeast datasets. The performance measures

being investigated here were the overall accuracy on the training set (OAtrain), the

overall accuracy on the test set (OAtest), the level of convergence (or MSE)

achieved, and the efficiency (the time required to reach the level of convergence

achieved during training). Note that based on our experimental design (see Section

4.3), the level of convergence achieved during training is not necessarily the

minimum of the network error function. The level of convergence is the MSE value

achieved when training stopped. Since maximum numbers of iterations were

specified (see justification in Section 4.3.2), training could have stopped in the two

following cases: 1) at the minimum (which is 0) of the MSE function if this is

achieved before the maximum iteration is completed; 2) after the maximum iteration

is completed if the minimum of the MSE function is not reached before. Therefore,

efficiency in our experiments refers to the time recorded when training stopped and

not necessarily when convergence occurred.

Based on the performance results between the Rprop and CGP algorithms, the best

algorithm was selected for further investigation on 1) the trade-off between training

accuracy and test accuracy, 2) the trade-off between convergence and classification

accuracy, and 3) the effect of varying the number of hidden nodes and number of

training iterations on the performance of a classifier. In this chapter, results obtained

from our experiments are presented and discussed. These results consist of the best

performance measures for both Rprop and CGP, which gave the best classifier

corresponding to each performance measure for each binary classification task.

Precisely, the best classifier was obtained as outlined in Chapter 4.

 5.2 Comparing Rprop and CGP Using the E.coli Proteins

54

5.2 Comparing Rprop and CGP Using the E.coli Proteins

The E.coli data set consists of 8 different classes. Based on the reasons highlighted in

Section 4.5, we only analysed 5 instead of 8 binary classification tasks for the E.coli

data. The 5 binary classification tasks were conducted following the previously

described procedure. The best performance results for the 5 E.coli binary classifiers

trained are presented in the following sections. The network configurations that

produced the best results for each E.coli binary classifier are provided in Table 5.1.

The notation I-H-O in this table stands for network with input nodes (I), hidden

nodes (H) and output nodes (O). For the for instance, the best network

configuration was 7-5-2.

Table ‎5.1: The network configurations that produced the best E.coli binary classifiers

Binary classifiers
Network

configurations (I-H-O)

 7-5-2

 7-10-2

 7-40-2

 7-20-2

 7-30-2

5.2.1 Accuracy comparison

Table 5.2 gives the results of the best OAtrain and OAtest for the 5 E.coli binary

classifiers trained and for both Rprop and CGP. The results for Rprop are shown in

column 1, and the results for CGP are in column 2 for both OAtrain and OAtest. The

differences between Rprop and CGP for both OAtrain and OAtest are shown in

column 3 and labelled as DOAtrain and DOAtest, respectively. The results in Table

5.2 show that in general, there were differences in the overall accuracies of the

 5.2 Comparing Rprop and CGP Using the E.coli Proteins

55

classifiers for Rprop and CGP. It is evident that Rprop outperformed CGP for all the

5 binary classifiers and for both overall accuracies. On average, the Rprop achieved

an OAtrain of 98.72% with a standard deviation (stdv) of 1.06%, while CGP

produced an OAtrain of 95.62% with a stdv of 1.36%. It is worth noticing that Rprop

achieved the highest OAtrain of 99.91% for the binary classifier, while the

highest OAtrain for CGP was 98.19% for the binary classifier.

With respect to the OAtest, Rprop outperformed CGP. Their respective average

accuracies were 94.84% with stdv of 2.62% and 92.55% with stdv of 2.71. It is also

important to highlight that, as in the case of OAtrain, the highest OAtest for both

training algorithms was achieved by , i.e. 98.4% for Rprop and 96.96% for

CGP.

Table ‎5.2: E.coli Best OAtrain and Best OAtest

Binary classifiers
OAtrain (%) OAtest (%)

Rprop CGP DOAtrain Rprop CGP DOAtest

 99.29 95.43 3.86 96.85 93.28 3.57

 97.59 94.24 3.35 91.2 88.58 2.62

 99.51 95.38 4.13 95.01 92.26 2.75

 97.31 94.86 2.45 92.75 91.67 1.08

 99.91 98.19 1.72 98.4 96.96 1.44

Mean 98.72 95.62 3.1 94.84 92.55 2.29

Stdv 1.06 1.36 0.9 2.62 2.71 0.91

The differences of performance between Rprop and CGP based on OAtrain and

OAtest are highlighted in Table 5.2 and the results show that the accuracy

differences between Rprop and CGP were smaller on the test set than they were on

the training set. On average, the DOtest was of 2.29%, while the DOAtrain was

3.1%. Moreover, the highest difference between the two algorithms for the training

set was 4.13%, which was obtained with the classifier, whereas the highest

 5.2 Comparing Rprop and CGP Using the E.coli Proteins

56

difference for the test set was 3.57%, which was obtained with the classifier.

Table 5.2 also shows that the smallest difference on training set (i.e. 1.72%) between

the two algorithms was obtained with , whereas the smallest difference on

test set (i.e. 1.08%) was obtained with .

To conclude in brief, accuracy comparison between Rprop and CGP algorithms has

revealed that Rprop outperformed CGP for both OAtrain and OAtest. This was true

for all the 5 E.coli binary classifiers considered in our experiments. Moreover, it

appears that the accuracy differences between Rprop and CGP varied with regard to

the various E.coli binary classifiers. For some binary classifiers such as and

 , the difference on the training set was at least 3.86% and the difference on

the test set was at most 3.57%. For others such as and , the

difference on the training set was at least 1.72% and the difference on the test set was

at most 1.44%. The change in accuracy differences between the various E.coli binary

classifiers may have been due to the differences in the class structures of the data that

had to be classified by the various E.coli binary classifiers; the classifiers with

differences of at least 3.86% may have been more complex to train, because they

may have been dealing with more complex class structure, compared to the

classifiers with lower differences. Further analysis of the differences in class

structures and their effects on the various classifiers is presented in Sections 5.6 and

5.7.

5.2.2 Convergence comparison

Convergence performance of a NN training algorithm is the ability of the algorithm

to reach the minimum of the error function, or else, the target error of the network

under consideration. For our experiments, no error target was specified. The only

stopping criterion was the different maximum numbers of weights updates

(maximum number of training iterations). Therefore, the measure of convergence

considered in this study was the minimum MSE value reached by each binary

 5.2 Comparing Rprop and CGP Using the E.coli Proteins

57

classifier when training stopped (Section 5.1 describes the cases where training could

have stopped).

Table 5.3 gives the best MSEs reached by the 5 E.coli binary classifiers considered

in our experiments for both Rprop and CGP. The results in Table 5.3 show that, in

general, Rprop outperformed CGP for the 5 E.coli binary classifiers. On average,

Rprop achieved the smallest MSE of 0.0113, with a standard deviation of 0.0088,

whereas CGP achieved the MSE of 0.0371, with a standard deviation of 0.0118. The

smallest MSE achieved for Rprop was 0.0007, while the smallest MSE achieved for

CGP was 0.0146. Both MSEs were achieved when training the classifier.

Table ‎5.3: E.coli Best MSE

Binary classifiers
MSE

Rprop CGP

 0.0071 0.0462

 0.0217 0.0469

 0.0052 0.0378

 0.022 0.0402

 0.0007 0.0146

Mean 0.0113 0.0371

Stdv 0.0088 0.0118

5.2.3 Efficiency comparison

The efficiency of a NN training algorithm is the measurement of how fast that

algorithm converges. In other words, the efficiency of a NN training algorithm is an

estimation of the time required by that algorithm to reach the minimum error or the

error target during training. Efficiency was measured in our experiments, by the time

taken during training, to reach the smallest recorded MSE’s values for each binary

classifier. For a fair comparison between the Rprop and CGP algorithms based on

 5.2 Comparing Rprop and CGP Using the E.coli Proteins

58

their efficiency, we used the same error targets for both algorithms. Given that CGP

yielded the biggest (the farthest from the minimum 0) MSEs, we assumed that the

MSEs of CGP would be the easiest targets to reach for both algorithms. Therefore,

we measured efficiency for both algorithms, by the time taken to reach the smallest

MSEs achieved by CGP during training. Table 5.4 provides the time taken to reach

the MSEs for CGP given in Table 5.3, for the 5 E.coli binary classifiers. The results

in Table 5.4 show that Rprop took less time than CGP to converge to the specified

MSE’s values for the E.coli binary classifiers. On average, Rprop reached the target

in 244 seconds, whereas CGP did so in 1133 seconds. The longest time for Rprop

(i.e. 520 seconds) was achieved by , while that for CGP (i.e. 1847

seconds) was achieved by . The shortest time for Rprop (i.e. 18 seconds)

was achieved by , while that for CGP (i.e. 136 seconds) was also achieved

by .

Table ‎5.4: E.coli Training time to best MSE

Binary classifiers
Time (seconds)

Rprop CGP

 76 1009

 395 1847

 213 1295

 520 1378

 18 136

Mean 244 1133

Stdv 189 567

5.2.4 Concluding remarks

The results for the E.coli data have shown that Rprop algorithm performed better

than CGP. Comparison of the two algorithms was done based on 4 measures of

performance, i.e. OAtrain, OAtest, convergence, and efficiency. Based on these 4

 5.2 Comparing Rprop and CGP Using the E.coli Proteins

59

measures of performance, Rprop outperformed CGP for all the 5 E.coli binary

classifiers analysed in our experiments. We can therefore conclude based on the the

performance results for the E.coli binary classifiers that: 1) Rprop yielded more

accurate results than CGP, 2) Rprop had better convergence capabilities than CGP,

and 3) Rprop was more efficient and converged faster than CGP.

It is worth highlighting that the differences in accuracy between Rprop and CGP

were very small (less than 2.5%) for some classifiers such as and

 . In view of that, two questions could arise. Was this difference big enough

to suggest that Rprop was better than CGP? Would it still be worthwhile to use CGP?

The answer to these questions would depend on the application problems under

study. For biological data such as the E.coli, Yeast, diabetes and cancer (Murphy and

Aha, 1994), even the smallest difference could be of major importance. This

difference could even be of greater importance if one was dealing with a larger

dataset; because lesser accuracy would mean more misclassifications. For instance, if

one had to classify 5000 different sites based on the presence or not of some E.coli

proteins, 1% lesser accuracy would amount to 50 more misclassifications of sites.

This would mean that 50 sites could be declared clean, while contaminated by some

E.coli proteins (bacteria); which could result in many diseases.

Furthermore, when analysing simultaneously the accuracy and efficiency of both

training algorithms, we observed that Rprop was on average 4.6 (1133 second/244

seconds) times more efficient than CGP. This means that Rprop was able to achieve

very good accuracies in very short training times when compared to CGP. We can

therefore suggest that Rprop was better than CGP for the E.coli binary classifiers.

Based on this conclusion, Rprop was selected for further investigations on the

behaviour and trade-off between the different performance measures, and the effect

of varying the number of hidden nodes and the maximum number of training

iterations. Results of these investigations are presented in the following sections.

 5.3 Effect of hidden nodes and training iterations on E.coli classifiers using Rprop

60

5.3 Effect of hidden nodes and training iterations on E.coli

classifiers using Rprop

The Rprop was selected for further investigation as it yielded better results compared

to the CGP. In this section, we investigated the effect of the number of hidden nodes

and the maximum number of training iterations on a classifier using the E.coli data

set. Note that the various E.coli binary classifiers would probably exhibit different

behaviours from one another, with respect to varying the numbers of hidden nodes

and iterations. Since the aim of our experiments was to show how varying the

numbers of hidden nodes and training iterations can play a role in the performance of

a classifier, regardless of which classifier is used, the use of one single classifier was

deemed good enough to illustrate this concept (varying the numbers of hidden nodes

and training iterations). We therefore restricted our experiments to only one E.coli

binary classifier (i.e.), instead of all the 5 E.coli binary classifiers, though

each binary classifier was assumed to be of different complexity. Note that the

choice of the classifier was subjective. A different classifier could have been

utilised to illustrate the above defined concept; and the results, though different,

would still have been as informative as the ones presented in this section.

The evaluation of the effect on the above selected E.coli binary classifier, for varying

the numbers of hidden nodes and training iterations, was done with respect to all the

previously described performance measures, i.e. OAtrain, OAtest, convergence (or

MSE achieved) and efficiency (or training time). The same training scenarios as the

ones described in Section 4.5 were applied for the experiments in this section (i.e.

networks with the following numbers of hidden nodes and training iterations: 5, 10,

20, 30, and 40 hidden nodes, and 25, 50, 75, 100, 150, and 200 training iterations).

Different training scenarios could have been applied and the idea of varying the

numbers of hidden nodes and iterations would still have been successfully illustrated,

as long as the numbers of hidden nodes and iterations were kept below 40 and 200

respectively. Based on the accuracies obtained in previous experiments (see Table

5.2), we suspected that training scenarios for varying the numbers of hidden nodes

and iterations that are greater than 40 hidden nodes and 200 iterations, would not

have properly exhibited the changes in the performance of the E.coli classifiers. This

 5.3 Effect of hidden nodes and training iterations on E.coli classifiers using Rprop

61

was because the accuracies obtained for the training scenarios defined in Section 4.5,

were already very high, with eventually no room for improvement for further

training.

5.3.1 Effect on convergence

The patterns in Figure 5.1 portray the effect of changing the number of hidden nodes

and the pre-specified number of training iterations on the convergence of the

binary classifier. Figure 5.1 shows that the MSEs decreased when the number of

hidden nodes was increased. For instance, the MSEs at 5 hidden nodes were larger

than the MSEs at 10 hidden nodes. This was true for the various numbers of hidden

nodes. The same negative relationship was observed between the MSEs and the

various numbers of training iterations.

 5.3 Effect of hidden nodes and training iterations on E.coli classifiers using Rprop

62

Figure ‎5.1: The MSE for varying the number of hidden nodes and training iterations

for the cp/~cp binary classifier trained with Rprop

The MSEs decreased with an increase in the training updates (iterations). The lines

for higher training iterations were situated at the smaller MSEs than the lines for

smaller training iterations. For instance, the line for 200 training iterations was at the

bottom and the line for 25 training iterations was at the top of all lines. Since the

patterns in Figure 5.1 suggest that training convergence (or MSEs) improved with an

increase in the hidden nodes and training iterations for the classifier, we can

therefore suggest that varying the numbers of hidden nodes and iterations may

impact the convergence of NNs classifiers. The impact would probably vary with

respect to various classifiers.

5.3.2 Effect on the accuracy on training set

The patterns in Figure 5.2 show the effect on the accuracy on the training set as the

numbers of hidden nodes and maximum training iterations were varied for the

 5.3 Effect of hidden nodes and training iterations on E.coli classifiers using Rprop

63

 classifier. The results in Figure 5.2 show a positive relationship between the

numbers of hidden nodes and training iterations with the OAtrain. For an increase in

the hidden nodes, there was an increase in the OAtrain. For instance, the OAtrain

increased when the number of hidden nodes was increased from 20 to 30. For an

increase in the number of training iterations, there was an increase in the OAtrain.

For example, OAtrain for 200 training iterations were the highest, while OAtrain for

25 training iterations were the lowest. Based on the patterns in Figure 5.2, we can

therefore say that increasing the numbers of hidden nodes and training iterations may

have a positive effect on the OAtrain; this effect would probably vary with respect to

the classifiers under consideration. Although this effect was rarely greater than 2%

for the OAtrain, it could still be of great importance, depending on the application

problems as explained in Section 5.2.4.

 5.3 Effect of hidden nodes and training iterations on E.coli classifiers using Rprop

64

Figure ‎5.2: The OAtrain for varying number of hidden nodes and training iterations

for the cp/~cp binary classifier trained with Rprop

5.3.3 Effect on the accuracy on test set

Figure 5.3 depicts the effect on the accuracy on the test set as the numbers of hidden

nodes and training iterations were varied for the classifier. The behaviour of

the OAtest based on the change in the numbers of hidden nodes and iterations

portrayed in Figure 5.3, does not exhibit a consistent pattern as the one for the

OAtrain in Figure 5.2. Figure 5.3 shows that there was no constant trend in the

change of OAtest as the numbers of hidden nodes and training iterations were varied.

However, it appears that better solutions were found for networks that were trained

for smaller numbers of iterations, i.e. 25 and 50. The superiority of the solutions

found with 25 and 50 training iterations can be observed through the various

numbers of hidden nodes in Figure 5.3. It is evident that a network with 5 hidden

nodes trained for 25 iterations yielded the best OAtest. This accuracy decreased with

an increase in the number of training iterations (interpretation was done vertically

 5.3 Effect of hidden nodes and training iterations on E.coli classifiers using Rprop

65

from the top to the bottom for 5 hidden nodes). Note that the decrease in accuracy

may seem not that much, but could have major implications in some application

fields as explained in Section 5.2.4. Figure 5.3 also suggest that training that was

done for more than 25 iterations (for 5, 10 and 40 hidden nodes) and 50 iterations

(for 20 and 30 hidden nodes) over-fitted the training set, because beyond 25 and 50

iterations, the OAtest decreased as shown in Figure 5.3. Also, for 20 hidden nodes,

the network trained for 200 iterations outperformed the one trained for 150 iterations.

For 30 hidden nodes, the network trained for 200 iterations outperformed those

trained for 100, and 150 iterations.

Figure ‎5.3: The OAtest for varying the number of hidden nodes and training
iterations for the cp/~cp binary classifier trained with Rprop

Observation of the patterns in Figure 5.3 may also lead to the suggestion that an

excessive increase of the number of hidden nodes may badly affect the performance

accuracy of a classifier on unseen dataset (test set). Take for instance the decrease in

 5.3 Effect of hidden nodes and training iterations on E.coli classifiers using Rprop

66

OAtest, as the number of hidden nodes was increased, for the classifier trained with

25 iterations (dashed red line). This is because a network with excessive number of

parameters in the weights space (consequence of excessive number of hidden nodes)

may start generating arbitrary complex regions in the weights space and end up over-

fitting the data, if the number of iterations is not well monitored. Hence, finding of

optimal number of hidden nodes should be coupled with the finding of optimal

number of training iterations. For instance, the results in Figure 5.3 show that,

networks with 5, 10, and 40 hidden nodes yielded better solutions when trained for

25 iterations than when they were trained for 50 iterations, whereas networks with 20

and 30 hidden nodes yielded better solutions when trained for 50 iterations than

when they were trained for 25 iterations.

5.3.4 Effect on efficiency

Figure 5.4 shows the effect of varying the numbers of hidden nodes and training

iterations on the efficiency of the classifier. The patterns in Figure 5.4

portray a positive relationship between the time required during training and the

number of hidden nodes. Networks with larger number of hidden nodes seem to have

required more training time compared to those that have less. However, the positive

relationship between the number of hidden nodes and training time was not that

pronounced. The patterns in Figure 5.4 show that there was an increase in the

training time as the number of hidden nodes was increased. But the increase in the

training time was rather small, especially in the range between 5 and 30 hidden

nodes, for networks trained for 25 to 100 iterations. A more pronounced increase in

the training time happened when the number of hidden nodes was increased from 30

to 40. For the effect on efficiency, based on the various numbers of training

iterations, the patterns in Figure 5.4 suggest that the training time increased as the

number of iterations was increased. For instance, Figure 5.4 shows that the training

times of networks trained with 25 iterations were less than 50 seconds, whereas the

training times of networks trained with 200 iterations were greater than 600 seconds.

 5.4 Comparing Rprop and CGP using the Yeast Proteins

67

Figure ‎5.4: Training time (in seconds) for varying number of hidden nodes and

training iterations for the cp/~cp binary classifier

5.4 Comparing Rprop and CGP using the Yeast Proteins

For the E.coli data, the results showed that the differences in accuracy between

Rprop and CGP were rarely greater than 2% for some classifiers, even if the

superiority of Rprop was evident when both accuracy and efficiency were used

simultaneously in the comparison of the two training algorithms. In this section, we

used the Yeast data, which is of different composition from the E.coli data, to see if

there would be more differences in accuracy between Rprop and CGP, when using

data with different class structures. The Yeast data consists of 10 different classes.

However, due to the very small cases (i.e. 5) contained in the ERL class, and given

that the 10-fold cross validation was utilised to generalise the various NN classifiers,

which would have made the training of the classifier practically

impossible, 9 Yeast binary classifiers, instead of 10 Yeast binary classifiers, were

considered in our experiments. The same training scenarios as the ones described in

 5.4 Comparing Rprop and CGP using the Yeast Proteins

68

Section 4.5 were also applied here. The performance results for the 9 Yeast binary

classifiers are presented in the following sections. The network configurations that

produced the best results for each Yeast binary classifier are provided in Table 5.5.

For the for instance, the best network configuration was 8-40-2.

Table ‎5.5: The network configurations that produced the best Yeast binary classifiers

Binary classifiers
Network

configurations (I-H-O)

 8-40-2

 8-30-2

 8-10-2

 8-10-2

 8-20-2

 8-20-2

 8-20-2

 8-5-2

 8-10-2

5.4.1 Accuracy comparison

Table 5.6 provides the results of the best OAtrain and OAtest for the 9 Yeast binary

classifiers, and for both Rprop and CGP. Generally, the results in Table 5.6 suggest

that Rprop outperformed CGP for both accuracies on training and test sets. On

average, Rprop achieved an OAtrain of 93.54% with a standard deviation of 7.89%,

while CGP produced an OAtrain of 91.75% with a standard deviation of 9.19%. The

highest OAtrain (i.e. 99.47%) for Rprop was achieved with the

classifier, while the highest OAtrain (i.e. 99.26%) for CGP was achieved with the

 classifier. The smallest OAtrain for both Rprop (i.e. 78.55%) and CGP

(i.e. 74.22%) was produced by . For the OAtest, Table 5.6 shows that

 5.4 Comparing Rprop and CGP using the Yeast Proteins

69

Rprop outperformed CGP. On average, the OAtest for Rprop was 91.91% with a

standard deviation of 8.87%, while the OAtest for CGP was 90.8% with a standard

deviation of 9.65%. The highest OAtest for both Rprop (i.e. 99.04%) and CGP (i.e.

99.04%) were achieved with the classifier, while the smallest OAtest

for both Rprop (i.e. 74.53%) and CGP (i.e. 72.41%) were achieved by the

 classifier. The differences between Rprop and CGP based on training

accuracy and test accuracy are respectively shown in the columns labelled DOAtrain

and DOAtest in Table 5.6. These differences were smaller on test sets (i.e. in the

range between 0% and 2.52%) than they were on training sets (i.e. in the range

between 0.14% and 4.33%). On average, the accuracy difference between Rprop and

CGP was 1.79% on training set and 1.12% on test set.

Table ‎5.6: Yeast Best OAtrain and Best OAtest

Binary classifiers
OAtrain (%) OAtest (%)

Rprop CGP DOAtrain Rprop CGP DOAtest

 78.55 74.22 4.33 74.53 72.41 2.12

 80.32 77.06 3.26 77.95 75.7 2.25

 91.53 88.6 2.93 89.12 86.93 2.19

 96.8 93.85 2.95 95.27 92.75 2.52

 98.34 97.63 0.71 96.86 96.76 0.1

 99.47 98.63 0.84 98.3 97.74 0.56

 99.03 98.29 0.74 98.17 97.86 0.31

 98.42 98.17 0.25 97.98 97.98 0

 99.4 99.26 0.14 99.04 99.04 0

Mean 93.54 91.75 1.79 91.91 90.8 1.12

Stdv 7.89 9.19 1.47 8.87 9.65 1.05

In summary, the comparison of accuracies between the Rprop and CGP algorithms

using the 9 Yeast binary classifiers considered in our experiments has revealed that

 5.4 Comparing Rprop and CGP using the Yeast Proteins

70

Rprop outperformed CGP both on training and test sets. However, for some Yeast

binary classifiers, the difference between the two training algorithms was very small,

whereas for some others the difference was relatively high. For instance, the

differences between the two algorithms were amongst the smallest (i.e. less than 1%)

for classifiers such as , , , and

 , whereas they were amongst the largest (i.e. more than 2.5%) for the

classifiers such as , , and .

As was done for the E.coli binary classifiers, the reason of the differences in

accuracy between the various Yeast binary classifiers may have been due to the fact

that the various binary classifiers may have been dealing with data having different

class structures. Some class structures may have been more complex to train than

some others. In this regard, the classifiers dealing with more complex class structures

would be less accurate than the classifiers dealing with less complex class structure.

Besides, when compared to the E.coli binary classifiers in Table 5.2, the Yeast binary

classifiers appeared to have lower classification accuracies in general. The accuracies

of the E.coli binary classifiers started from 90%, while those for the Yeast binary

classifiers started from less than 75%. This implies that the Yeast binary classifiers

may have been more complex than the E.coli binary classifiers. Further analysis of

the difference in class structures and effect on the various classifiers is presented in

Section 5.6 and 5.7.

5.4.2 Convergence comparison

Table 5.7 gives the best MSEs reached by the 9 Yeast binary classifiers considered in

our experiments for both Rprop and CGP. The results in Table 5.7 show that Rprop

outperformed CGP for all the 9 Yeast binary classifiers. The MSEs achieved by

Rprop were smaller than those achieved by CGP. On average, Rprop achieved a

MSE of 0.0479 with a standard deviation of 0.0541, whereas CGP achieved a MSE

of 0.063 with a standard deviation of 0.0659. The best performance (or the smallest

 5.4 Comparing Rprop and CGP using the Yeast Proteins

71

MSE) achieved for Rprop was 0.0054, whereas the best performance achieved for

CGP was 0.0072. For Rprop, the best performance was achieved when training the

 classifier, while the best performance for CGP was achieved when

training the classifier. The poorest convergence performance for Rprop

was 0.1471, while that for CGP was 0.1845. Both were achieved by the

classifier.

Table ‎5.7: Yeast Best MSE

Binary classifiers
MSE

Rprop CGP

 0.1471 0.1845

 0.1391 0.1685

 0.0684 0.0937

 0.0266 0.0488

 0.015 0.0214

 0.0054 0.0107

 0.0085 0.0148

 0.0152 0.0172

 0.0058 0.0072

Mean 0.0479 0.063

Stdv 0.0541 0.0659

5.4.3 Efficiency comparison

As for the E.coli binary classifiers (see Section 5.2.3), we utilised the same error

targets for both Rprop and CGP, for fair comparison of their efficiency in the training

of the Yeast binary classifiers. Since CGP produced the largest MSEs (or the farthest

from the minimum of the network error functions), we assumed that these would be

the easiest targets to reach for both algorithms. Therefore, we measured efficiency by

the time taken to reach the MSEs of CGP. Table 5.8 gives the time taken to reach the

 5.4 Comparing Rprop and CGP using the Yeast Proteins

72

MSEs of CGP provided in Table 5.7, for the 9 Yeast binary classifiers. The results in

Table 5.8 suggest that Rprop was more efficient than CGP. Rprop took much shorter

times than CGP to reach convergence for the 9 Yeast binary classifiers trained in this

study. On average, Rprop reached the target in 1072 seconds, whereas CGP did so in

3741 seconds. The longest time for Rprop (i.e. 1981 seconds) was obtained in the

training of the classifier, while that for CGP (i.e. 7726 seconds) was

obtained in the training of the classifier. The shortest time for Rprop was

278 seconds, while that for CGP was 729 seconds. Both shortest times were achieved

with the classifier

Table ‎5.8: Yeast Training time to best MSE

Binary classifiers
Time (seconds)

Rprop CGP

 1414 7726

 888 2797

 1219 3605

 838 2310

 1117 2606

 899 4471

 1014 3382

 1981 6046

 278 729

Mean 1072 3741

Stdv 437 1977

5.4.4 Concluding remarks

The results for the Yeast data have revealed that Rprop algorithm performed better

than CGP. The two algorithms were compared based on four measures of

performance, i.e. OAtrain, OAtest, convergence (or MSE achieved), and efficiency.

 5.5 Effect of hidden nodes and training iterations on Yeast classifiers using Rprop

73

Based on these 4 measures of performance, Rprop outperformed CGP for all the 9

Yeast binary classifiers analysed in our experiments. We can therefore suggest based

on the Yeast data that: 1) Rprop was more accurate than CGP, 2) Rprop had better

convergence capabilities than CGP, and 3) Rprop was more efficient and converged

faster than CGP.

 We emphasise once more that the difference in accuracies between Rprop and CGP

may seem not big enough to decide on the best algorithm between the two. But when

accuracy and efficiency were simultaneously considered in the choice of the best

training algorithms, Rprop appeared to be the best training algorithm. On average,

Rprop was 3.5 (3741 seconds/1072 seconds) times more efficient than CGP. This

means that to achieve comparable accuracies, Rprop required 3.5 times less training

time than CGP. In this regard, we can suggest that Rprop was much better than CGP.

Based on these findings, Rprop was hence selected for further investigations on the

trade-off between the performance measures, and the effect of varying the numbers

of hidden nodes and training iterations on the performance of the Yeast binary

classifiers. Results of these investigations are presented in the following sections.

5.5 Effect of hidden nodes and training iterations on Yeast
classifiers using Rprop

As for the E.coli data, the Rprop was selected for further investigation since it

yielded better results compared to CGP for the Yeast data. In this section, we

investigated the effect of the number of hidden nodes and the maximum number of

training updates (iterations) on a classifier using the Yeast data set. Since the interest

was to analyse the behaviour of a classifier based on the change in the number of

hidden nodes and number of training iterations, the use of one single binary classifier

was deemed good enough to illustrate this behaviour. We hence restricted our

experiments to only one Yeast binary classifier, i.e. instead of all the 9

Yeast binary classifiers analysed in the previous sections, though each Yeast binary

classifier seemed to be of different complexity. It is worth emphasising that there

 5.5 Effect of hidden nodes and training iterations on Yeast classifiers using Rprop

74

was no objective reason for choosing the classifier rather than another

Yeast binary classifier, to evaluate the behaviour of a NN classifier based on the

change in the numbers of hidden nodes and training iterations. A different Yeast

binary classifier could have been utilised for illustrative purpose of the behaviour of

a NN classifier based on varying the numbers of hidden nodes and training iterations;

and the results, though different, would still have been as informative as the ones

presented in this section. In choosing only the classifier, we do not

imply that all the 9 Yeast binary classifiers will exhibit the same behaviour. These

binary classifiers would probably behave differently given that they are of different

complexity. However, we assumed that varying the numbers of hidden nodes and

training iterations would impact the behaviour of these classifiers in one way or

another. For the experiments in this section, we applied the same training scenarios

as the ones applied for the E.coli binary classifiers in Section 5.3. The performance

results are presented in the following sections.

5.5.1 Effect on convergence

The patterns in Figure 5.5 display the effect of changing the numbers of hidden

nodes and the pre-specified training iterations on the convergence of the

binary classifier. Figure 5.5 portrays a negative relationship between the MSEs and

the number of hidden nodes. The MSEs decreased as the number of hidden nodes

was increased. For instance, the MSEs decreased as the hidden nodes were increased

from 5 to 10, 10 to 20, 20 to 30, and 30 to 40. Figure 5.5 also exhibits a negative

relationship between the MSEs and the various numbers of training iterations. The

MSEs decreased as the training iterations were increased. This can be observed on

Figure 5.5 where the lines corresponding to higher training iterations were situated at

the smaller MSEs than the lines corresponding to smaller training iterations. For

instance, the line corresponding to the highest (i.e. 200t) training iterations was

situated at the bottom of all the lines, where the MSE’s values were the smallest,

while the line corresponding to the smallest (i.e. 25t) training iterations was situated

at the top of all the lines, where the MSE’s values were the highest. Based on the

 5.5 Effect of hidden nodes and training iterations on Yeast classifiers using Rprop

75

behaviour of the classifier portrayed in Figure 5.5, we can suggest that

the convergence of a NN classifier can be improved with an increase in the hidden

nodes and training iterations.

Figure ‎5.5: The MSE for varying number of hidden nodes and training iterations for
the CYT/~CYT binary classifier trained with Rprop

5.5.2 Effect on the accuracy on training set

Figure 5.6 portrays the effect on the accuracy on training (i.e. OAtrain) set as the

numbers of hidden nodes and training iterations were varied for the

binary classifier. The patterns in Figure 5.6 suggest a positive relationship between

the numbers of hidden nodes and training iterations with the OAtrain, which

increased as the hidden nodes and training iterations were increased. For the hidden

 5.5 Effect of hidden nodes and training iterations on Yeast classifiers using Rprop

76

nodes for instance, Figure 5.6 shows that the OAtrain constantly increased as the

hidden nodes were increased from 5 to 10, 10 to 20, 20 to 30, and 30 to 40. Figure

5.6 also shows that the lines corresponding to higher training iteration were situated

at the higher OAtrain than the lines corresponding to the smaller training iterations,

suggesting that the accuracy on training set increased as the number of training

iterations was increased. For instance, the OAtrain for 200 training iterations were

the highest, while the OAtrain for 25 training iterations were the smallest as shown in

Figure 5.6.

Figure ‎5.6: The OAtrain for varying number of hidden nodes and training iterations
for the CYT/~CYT binary classifier trained with Rprop

5.5.3 Effect on the accuracy on test set

Figure 5.7 displays the effect on the accuracy on test set (i.e. OAtest) as the numbers

of hidden nodes and training iterations were varied for the binary

classifier. The patterns in Figure 5.7 do not portray a clear and constant behaviour of

 5.5 Effect of hidden nodes and training iterations on Yeast classifiers using Rprop

77

the OAtest with respect to the change in the numbers of hidden nodes and training

iterations. When the hidden nodes were increased from 5 to 10 and 10 to 20 for

instance, Figure 5.7 shows that the OAtest increased, except for when the number of

training iterations was 200, where the OAtest decreased as the hidden nodes were

increased from 10 to 20. When the hidden nodes were increased from 20 to 30 and

30 to 40, Figure 5.7 shows that the OAtest remained constant for the case where 25

training iterations was used, while the OAtest increased for the cases of 50 and 200

iterations. For the cases of 100 and 150 iterations, the OAtest decreased as the hidden

nodes were increased from 20 to 30, and then increased as the hidden nodes were

increased from 30 to 40. Figure 5.7 also shows that for the number of hidden nodes

in the range between 20 and 40, the NN classifiers trained for 150 iterations

produced the best OAtest, suggesting that beyond 150 iterations, the networks started

to over-fit the training set; and as a result, the accuracy on the test set started to

decrease. But for the number of hidden nodes between 5 and 10, the best solution

was produced by the networks trained for 200 iterations; suggesting that for network

configurations with numbers of hidden nodes 5 and 10, there might still be room for

improving the OAtest for training iterations beyond 200. This is because Figure 5.7

shows that the accuracy on the test set was still increasing for networks with 5 and 10

hidden nodes, when the maximum number of training iterations (i.e. 200) was

reached. The observations based on Figure 5.7 are consistent with the conclusion

reached when analysing the E.coli binary classifiers (see Section 5.3.3): determining

the optimal number of hidden nodes should be coupled with the finding of the

optimal number of training iterations; which is the basis of the trial and error

approach.

 5.5 Effect of hidden nodes and training iterations on Yeast classifiers using Rprop

78

Figure ‎5.7: The OAtest for varying number of hidden nodes and training iterations

for the CYT/~CYT binary classifier trained with Rprop

5.5.4 Effect on efficiency

Figure 5.8 portrays the effect of varying the numbers of hidden nodes and training

iterations on the efficiency for the binary classifier. In general, the

patterns in Figure 5.8 suggest a positive relationship between the training times and

the number of hidden nodes. The training times increased as the hidden nodes were

increased. This suggests that the increase in the training times may have been due to

the fact that the complexity of the networks increased as more hidden nodes were

added. It is worth highlighting that when the hidden nodes were increased in the

interval between 5 and 30, Figure 5.8 shows that the increase in the training times

was very small; especially for networks trained for less than 150 iterations. The

training times increased significantly when the hidden nodes were increased from 30

to 40 hidden nodes, especially for networks trained for 100, 150 and 200 iterations.

 5.6 Comparing the E.coli classifiers and the Yeast classifiers

79

The positive relationship between the number of training iterations and the training

time is evident in Figure 5.8. The results show that the more the maximum number of

iterations, the more time was required to finish training. This is shown in Figure 5.8

by the fact that the lines corresponding to the higher numbers of training iterations

were situated at the higher values of training times.

Figure ‎5.8: Training time (in seconds) for varying number of hidden nodes and
training iterations for the CYT/~CYT binary classifier trained with Rprop

5.6 Comparing the E.coli classifiers and the Yeast classifiers

The results have thus far shown that the E.coli classifiers were more accurate than

the Yeast classifiers. The assumed reason for this difference was that the Yeast

classifiers may have been more complex than the E.coli classifiers. In other words,

the structure of the Yeast data may have been more complex than the structure of

E.coli data. When we refer complexity in this context, we are referring to the

 5.6 Comparing the E.coli classifiers and the Yeast classifiers

80

interconnections and overlaps between classes in the data. If there are too many

overlaps between classes, the decision boundary between different classes would be

difficult to estimate. The data points that are in the region where classes overlap with

other classes may be incorrectly classified. If there are a large number of data points

in this region, the misclassification rate will be higher. This will mean that in these

situations the accuracies are going to be lower than when there are less overlaps (Ho

and Basu, 2002; Attoor and Dougherty, 2004). In this regard, we implicitly evaluated

the complexity of data through the performance of a classifier in classifying that

data. Poor performance for a particular classifier was an indication that maybe the

data was intrinsically very complex for the classifier to correctly classify it.

The results have also shown differences in accuracy between the E.coli classifiers

and between the Yeast classifiers. The difference of complexity between E.coli

classifiers and between the Yeast classifiers was assumed to be the reason.

Therefore, in this section and Section 5.7 following, we analysed the problem of

complexity of classifiers (note that the complexity of classifiers is related to the

complexity of class structures of the dataset that they are classifying). This section

focuses on a general performance and complexity comparison of the E.coli and the

Yeast classifiers. Section 5.7 delves into performance of particular classifiers.

Table ‎5.9: Best Test performances for the E.coli classifiers using Rprop

Binary classifiers
Total samples in

class1 and class2

Times

(seconds)

OAtest

(%)

Atest1

(%)

Atest2

(%)

 173/~163 36 96.85 97.52 96.34

 77/~259 69 91.2 87.41 92.33

 52/~284 33 95.01 93.16 95.35

 35/~301 217 92.75 83.3 93.86

 20/~316 29 98.4 97.05 98.49

Mean 71/~265 77 94.84 91.69 95.27

Stdv 54/~54 72 2.62 5.54 2.1

 5.6 Comparing the E.coli classifiers and the Yeast classifiers

81

We used the results from our experiments to compare the performance of the E.coli

and the Yeast classifiers. The experiments were conducted using the same

parameters for Rprop and training scenarios as specified in Section 3.2.3 and Section

4.5, respectively. The results obtained involve the best OAtest for each classifier,

with their corresponding test accuracy of class 1 (Atest1), test accuracy of class 2

(Atest2), and training times to yield the specified accuracies on test set. Moreover,

we used the distribution of samples in class 1 and class 2 as another indication of the

complexity of a classifier. In brief, Atest1 and Atest2 can be understood as follows.

Take for instance the binary classifier; it contains two classes, i.e. cp (class

1) and no cp or ~cp (class 2). Atest1 is the test classification accuracy of cp (the

ability of the classifier to correctly classify cp on the test set), and Atest2 is

the test classification accuracy of no cp (the ability of the classifier to

correctly classify no cp on the test set).

Table ‎5.10: Best Test performances for the Yeast classifiers using Rprop

Binary classifiers
Total samples in

class1 and class2

Times

(seconds)

OAtest

(%)

Atest1

(%)

Atest2

(%)

 463/~1021 1537 74.53 53.99 83.85

 429/~1055 306 77.95 50.55 89.08

 244/~1240 249 89.12 57.35 95.16

 163/~1321 245 95.27 82.34 96.86

 51/~1433 272 96.86 54.96 98.36

 44/~1440 1554 98.3 91.62 98.51

 37/~1447 1554 98.17 66.56 98.92

 30/~1454 45 97.98 22.6 99.54

 20/~1464 233 99.03 56.31 99.61

Mean 165/~1319 666 91.91 59.59 95.54

Stdv 166/~166 628 8.87 18.59 5.18

Table 5.9 gives the best test results for the E.coli classifiers, and Table 5.10 gives the

best test results for the Yeast classifiers. The results in Tables 5.9 and 5.10 show that,

 5.6 Comparing the E.coli classifiers and the Yeast classifiers

82

in general, the E.coli classifiers performed better than the Yeast classifiers. On

average, the OAtest for the E.coli classifier was 94.84% with a standard deviation of

2.62%, while that for the Yeast classifier was 91.91% with a standard deviation of

8.87%. The E.coli classifier was hence 4% more accurate than the Yeast classifier,

on average. The superiority of the E.coli classifiers over the Yeast classifiers was

also reflected in the ability of both classifiers to accurately classify class 1 and class

2. On average, the Atest1 and Atest2 for the E.coli classifier were 91.69% and

95.27% respectively, whereas those for the Yeast classifier were 59.59% and 95.54%

respectively. The results suggest that the E.coli classifiers were able to classify both

class 1 and class 2 very well, whereas the Yeast classifiers performed poorly on class

1 and very well on class 2. As said before, this difference in performance between

the E.coli and Yeast classifiers may be attributed to some extent, to the difference of

complexity between the class structures of the E.coli and Yeast data. The class

structure for the Yeast data may have been more complex than the class structure for

the E.coli data, which may have led to the E.coli classifiers performing better than

the Yeast classifiers.

In an attempt to better evaluate the complexity of the two datasets, we also included

the distribution of samples in class 1 and class 2 for every classifier, and the time

required to train every one of them. Table 5.9 and Table 5.10 provide the results for

the E.coli classifiers and for the Yeast classifiers, respectively. The results in both

tables show that the training times for the Yeast classifiers were longer than those for

the E.coli classifiers. On average, a Yeast classifier needed 666 seconds to finish

training, whereas an E.coli classifier needed 77 seconds to finish training. In other

words, a Yeast classifier took about 8.6 times longer than an E.coli classifier for

training. This suggests to some degree that there seemed to be a positive relationship

between the training time and the number of samples for a classifier. For the E.coli

classifier, the sample size was 336 with on average, 71 and 265 samples in class 1

and class 2, respectively (i.e. 71/~265); whereas for the Yeast classifier, the sample

size was 1484 with on average, 165 and 1319 samples in class 1 and class 2,

respectively (165/~1319). These distributions of samples seem to have influenced the

 5.6 Comparing the E.coli classifiers and the Yeast classifiers

83

training times of the classifiers. The larger the samples, the longer the classifiers took

for training.

Another aspect we analysed was the imbalanced nature (i.e. the high unequal

distribution of samples in class 1 and class 2, with in general, class 2 containing far

more samples than class 1) of the E.coli and Yeast classifiers. Table 5.9 and Table

5.10 show that, in general, the Yeast classifiers were more imbalanced than the E.coli

classifiers. It is worth emphasising that, in this context, a classifier is said to be

imbalanced if it is classifying an imbalanced dataset. The general impression that

may have arisen from analysing the training times of the different classifiers in

Tables 5.9 and 5.10 is that the more imbalanced classifiers required lesser training

times than the less imbalanced ones. This was only true to some extent, because there

were more imbalanced classifiers that required more training time than the less

imbalanced ones. For E.coli for instance, (77/~259) was more imbalanced

than (173/~163); but it required more training time (i.e. 69 seconds) than

 which required 36 seconds for training. For Yeast, (44/~1440)

was more imbalanced than (244/~1240), but required more training time

(i.e. 1554 seconds) than which required 249 seconds for training.

Moreover, while the Yeast classifiers were the more imbalanced, they required more

training time than the E.coli classifiers.

To summarise, results in Tables 5.9 and 5.10 suggest that, in general, the Yeast

classifiers were less accurate and took longer to train than the E.coli classifiers. This

situation may be explained by the number of samples that needed to be classified by

each classifier. The Yeast classifiers were dealing with more samples than the E.coli

classifiers. They thus required more training times than the E.coli classifiers. The

more samples a classifier had to classify, the more time was required to classify

them. But the number of samples did not account for all the differences in accuracies

and times between the Yeast and E.coli classifiers. The structure of the data itself

and the distribution of samples in different classes were very important features

which could have made the task of distinguishing between classes difficult. It can be

assumed that, because the Yeast classifiers were less accurate than the E.coli ones,

the structure of the Yeast data was more complex than that of the E.coli data, which

 5.7 Further Experiments - Evaluating the complexity of classifiers

84

may have led to the better performance of the E.coli classifiers compared to the

Yeast classifiers.

5.7 Further Experiments - Evaluating the complexity of
classifiers

5.7.1 Introduction

We have observed based on the above experiments that the performances of the

various classifiers were different. For the same experimental design, some classifiers

achieved very good performance, whereas others performed poorly. This has been

observed for both the E.coli and Yeast classifiers. For the E.coli data for instance, the

 classifier performed better than classifier. The OAtrain and

OAtest for were respectively 99.91% and 98.4%, while those for

were respectively 97.59% and 91.2% (see results produced by Rprop in Table 5.2).

For the Yeast data for instance, the classifier performed better than the

 classifier. The OAtrain and OAtest for were respectively

99.4% and 99.04%, while those for were respectively 78.55% and

74.53% (see results produced by Rprop in Table 5.6). Based on these results, we

argued that the difference in accuracies between these classifiers may have been due

to the difference of complexity between the class structures of the data that had to be

classified by these classifiers. The classifiers that dealt with more complex class

structures produced better accuracies than the classifiers that dealt with less complex

class structures. Thus, we can suggest for the E.coli data that the classifier

dealt with the more complex class structure since it was the less accurate classifier,

and the classifier dealt with the less complex class structure since it was

the more accurate classifier. For the Yeast data, the classifier dealt with

the more complex class structure since it was the less accurate classifier, and the

 dealt with the less complex class structure since it was the more

accurate classifier.

 5.7 Further Experiments - Evaluating the complexity of classifiers

85

We can also suggest based on the above results that the training scenarios as

described in Section 4.5, which were (numbers of hidden nodes and iterations)

utilised for the training of the classifiers that produced the less accuracies, may not

have been appropriate. The numbers of hidden nodes and training iterations applied

may have been unnecessarily very high or insufficient for the less performing E.coli

and Yeast classifiers. If that was the case, there might be room for improvement of

the less performing E.coli and Yeast classifiers, provided that the appropriate training

scenarios are found. To test this assumption, it was worthwhile doing further

experiments and to see if we could eventually improve the performance of the

classifiers that performed poorly. For further experiments, we chose two binary

classifiers; one binary classifier with the lowest accuracies among the E.coli binary

classifiers and another one with the lowest accuracies among the Yeast binary

classifiers. The E.coli binary classifier chosen was the classifier, and the

Yeast binary classifier chosen was the classifier. This gave us a

possibility of testing if we could improve their performance under different training

scenarios from the ones used in the previous experiments as specified in section 4.5.

Also, utilising these two above specified worst performing classifiers could highlight

the complexity of the class structures of the data that had to be classified by these

two E.coli and Yeast classifiers. The performance results for the classifier

and classifier under the further training scenarios applied are presented

in the following sections. The training was done using Rprop since it was the better

performing algorithm.

5.7.2 Comparing the performance of the E.coli

classifier and Yeast classifier

In this section, we used different training scenarios to compare the performance

results of the E.coli classifier and Yeast classifier for the

reasons provided in section 5.7.1. The experimental designs applied in this section

are as follows: 1) networks with 1, 2, 3, 4 and 5 hidden nodes trained for 25, 50, 75,

100, 150 and 200 iterations; 2) networks with 5, 10, 20, 30 and 40 hidden nodes

 5.7 Further Experiments - Evaluating the complexity of classifiers

86

trained for 2, 5, 10, 15, 20 and 24 iterations. Both the first and second experimental

designs had 30 training scenarios each. The choice of these training scenarios was

based on the trial and error method for determining the appropriate numbers of

hidden nodes and training iterations (see Section 4.3.2).

Also, results presented so far have shown that training scenarios that used networks

with hidden nodes in the range between 5 and 40, trained for iterations in the range

between 25 and 200, could produce acceptable results for the E.coli classifiers (see

Table 5.2) and Yeast classifiers (see Table 5.6). It was therefore deemed appropriate

for the experiments in this section, to use training scenarios with either reduced

numbers of hidden nodes (as in experimental design 1) or reduced numbers of

training iterations (as in experimental design 2), to see whether the performance of

the above specified classifiers would improve. Furthermore, the results from the

training scenarios applied in this section would establish whether the values for

hidden nodes and iterations previously used (see Section 4.5) where not

unnecessarily large or insufficient.

5.7.2.1 Performance based on scenarios of 1-5 hidden nodes with

25-200 iterations for and

The training scenarios that utilised the network configurations of 1, 2, 3, 4 and 5

hidden nodes, trained for 25, 50, 75, 100, 150 and 200 iterations, were implemented

and the performance results for the and are presented in this

section. Figure 5.9 portrays the overall accuracies on test sets (or OAtest) produced

by all the scenarios, for the classifier; and Figure 5.10 does so for the

 classifier. The results in Figure 5.9 suggest that the best OAtest for the

 classifier (i.e. 90.65%) was produced by the network configuration of 5

hidden nodes, trained for 50 iterations (or 5hn_50t), while the results in Figure 5.10

suggest that the best OAtest for the classifier (i.e. 72.75%) was produced

by the network configuration of 5 hidden nodes, trained for 200 iterations (or

5hn_200t). Also, the patterns in Figure 5.9 show that for network configuration of 5

hidden nodes, the OAtest of the classifier started to decrease when the

 5.7 Further Experiments - Evaluating the complexity of classifiers

87

number of iterations was beyond 50. This suggests that for network configuration of

5 hidden nodes, the classifier was over-trained when the number of

iterations exceeded 50. The patterns in Figure 5.10 show that for the network

configuration of 5 hidden nodes, the OAtest for the classifier was

apparently still increasing when the number of iterations reached 200. This suggests

that maybe there was still room for increase of the OAtest of the

classifier, beyond 200 iterations.

 5.7 Further Experiments - Evaluating the complexity of classifiers

88

Figure ‎5.9: OAtest for 1-5 hidden nodes with 25-200 training iterations for the
im/~im binary classifier

Figure ‎5.10: OAtest for 1-5 hidden nodes with 25-200 training iterations for the
CYT/~CYT binary classifier

 5.7 Further Experiments - Evaluating the complexity of classifiers

89

Table 5.11 summarises the performance results based on the best training scenario

for the classifier and the best training scenario for the

classifier. These results were extracted from the 30 training scenarios as described

previously. The results in the top part of Table 5.11 are related to the training

scenario (i.e. 5hn_50t which is described as network with 5 hidden nodes (hn) trained

for 50 iterations (t)) that produced the best accuracy on test set (OAtest), for the

 classifier. Based on the same training scenario (i.e. 5hn_50t), the results

produced for the classifier are also provided in the top part of Table

5.11. The results in the bottom part of Table 5.11 are related to the training scenario

(i.e. 5hn_200t) that produced the best OAtest, for the classifier. Based

on the same training scenario (i.e. 5hn_200t), the results produced for the

classifier are also provided in the bottom part of Table 5.11. In a nutshell, the results

in Table 5.11 can be interpreted as follows: if the classifier is trained by

utilising a network configuration of 5 hidden nodes trained for 50 iterations (i.e.

5hn_50t), the expected performance results would be 93.21% as OAtrain, 90.65% as

OAtest, 0.0479 as MSE and 39 seconds as training time. For the same training

scenario (5hn_50t), the corresponding results for the classifier would be

72.15% as OAtrain, 69.9% as OAtest, 0.1986 as MSE and 346 seconds as training

time.

The results in Table 5.11 clearly show that the classifier outperformed the

 classifier in terms of accuracy, efficiency and convergence for both

training scenarios 5hn_50t and 5hn_200t. Since these two training scenarios, out of

the 30 training scenarios implemented, are the ones that produced the best accuracies

on test set for both classifiers, we can suggest that the classifier

outperformed the for all training scenarios. Based on the results in Table

5.11, we can also suggest that the classifier was more complex to train

than the classifier, because the classifier was less accurate and

less efficient than the classifier. The complexity of the

classifier compared to that of the classifier may be explained by the fact

that the classifier had to classify data with more complex class structure

than the data that had to be classified by the classifier. Since is

 5.7 Further Experiments - Evaluating the complexity of classifiers

90

a Yeast classifier and is an E.coli classifier, we can also suggest based on

the results in Table 5.11 that the Yeast classifiers were more complex to train than

the E.coli classifiers.

Table ‎5.11: Best im/~im and CYT/~CYT based on OAtest for 1-5 hidden nodes with

25-200 training iterations

Performance based on the best

Binary classifiers
OAtrain

(%)

OAtest

(%)
MSE

Time

(seconds)
Scenario

 93.21 90.65 0.0479 39 5hn_50t

 72.15 69.9 0.1986 346 5hn_50t

Performance based on the best

Binary classifiers
OAtrain

(%)

OAtest

(%)
MSE

Time

(seconds)
Scenario

 95.35 88.62 0.0458 144 5hn_200t

 74.23 72.75 0.1663 1242 5hn_200t

5.7.2.2 Performance based on scenarios of 5-40 hidden nodes with
2-24 iterations for and

The training scenarios that applied the network configurations of 5, 10, 20, 30 and 40

hidden nodes, trained for 2, 5, 10, 15, 20 and 24 iterations, were implemented and the

performance results for the and are presented in this section.

Figure 5.11 depicts the OAtest produced by all the scenarios for the

classifier and Figure 5.12 does the same for the classifier. The patterns

in Figure 5.11 suggest that the best OAtest for the classifier (i.e. 91.37%)

was produced by the network configuration of 20 hidden nodes trained for 24

iterations (or 20hn_24t), while the patterns in Figure 5.12 suggest that the best

OAtest for the classifier (i.e. 70.34%) was produced by the network

 5.7 Further Experiments - Evaluating the complexity of classifiers

91

configuration of 40 hidden nodes trained for 24 iterations (or 40hn_24t). Also, Figure

5.11 and Figure 5.12 show that for all the training scenarios, the OAtests for the

 classifier were in the range between 72% and 91.5%, while those for the

 classifier were in the range between 58% and 70.5%. Overall, the

 classifier produced much better accuracies than the classifier

for all the training scenarios, suggesting that the classifier was less

complicated to train than the classifier.

Figure ‎5.11: OAtest for 5-40 hidden nodes with 2-24 training iterations for the
im/~im binary classifier

 5.7 Further Experiments - Evaluating the complexity of classifiers

92

Figure ‎5.12: OAtest for 5-40 hidden nodes with 2-24 training iterations for the

CYT/~CYT binary classifier

Table 5.12 provides the performance results based on the best training scenario for

the classifier and the best training scenario for the classifier

obtained from the 30 training scenarios as described above. The top part of Table

5.12 provides the results based on the training scenario (i.e. 20hn_24t) that produced

the best classifier, while the results in the bottom part are based on the

training scenario (i.e. 40hn_24t) that produced the best classifier (see

Section 5.7.2.1 for interpretation of table). The results in Table 5.12 indicate that the

 classifier outperformed the classifier in terms of accuracy,

efficiency and convergence for both training scenarios 20hn_24t and 40hn_24t.

Based on scenario 40hn_24t for instance, the OAtest for was 90.12%, while

that for was 70.34%. The results in Table 5.12 also suggest that the

 classifier was more complex than the classifier, because the

 classifier required many hidden nodes (40) to achieve its best

 5.7 Further Experiments - Evaluating the complexity of classifiers

93

performance, while the classifier required fewer hidden nodes (20) to

achieve its best performance.

Table ‎5.12: Best im/~im and CYT/~CYT based on OAtest for 5-40 hidden nodes with
2-24 training iterations

Performance based on the best

Binary classifiers
OAtrain

(%)

OAtest

(%)
MSE

Time

(seconds)
Scenario

 93.37 91.37 0.0497 15 20hn_24t

 70.85 69.21 0.1944 52 20hn_24t

Performance based on the best

Binary classifiers
OAtrain

(%)

OAtest

(%)
MSE

Time

(%)
Scenario

 92.98 90.12 0.0525 18 40hn_24t

 71.07 70.34 0.1765 63 40hn_24t

5.7.2.3 Concluding remarks

We suspected that the differences in performance between the E.coli and Yeast

classifiers may have been due to the difference of complexity between the class

structures of the data that were to be classified by the different classifiers. Also,

given that some classifiers achieved very high accuracies while others performed

poorly, we assumed that, the first proposed experimental design (5-40hn with 25-

200t) for training may not have been appropriate for some of the classifiers. We

thought that perhaps the numbers of hidden nodes and training iterations were

unnecessarily very high for some binary classifiers, especially for those with very

high accuracies, or insufficient (very small), especially for those with lower

accuracies (i.e. having more misclassifications).

 5.7 Further Experiments - Evaluating the complexity of classifiers

94

To test the above assumptions, we utilised extra training scenarios to evaluate the

performance of the E.coli and Yeast classifiers. The classifiers chosen for the extra

training scenarios were the classifier and the classifier. These

two classifiers were chosen because they were the two classifiers with the lowest

accuracies. The classifier and the classifier produced the

lowest accuracy among the E.coli classifiers and the Yeast classifiers respectively.

The interest of using these two worst performing classifiers was to highlight the

complexity of the data structures that these two classifiers were dealing with, and see

if the extra training scenarios could improve their performance.

The results from the extra experiments have shown little improvements in accuracy

(from 91.2% to 91.37%) for the classifier and no improvement at all for the

 classifier. Actually, the accuracy for the classifier

decreased under the extra experiments described in Sections 5.7.2.1 and 5.7.2.2,

compared to the accuracy obtained under the original experiments described in

Section 4.5. The accuracies on test set obtained under the various experimental

designs are summarised in Table 5.13 for and classifiers. We

also observed based on the results obtained under the extra experiments that the

 classifier was more complex to train than the classifier,

because the yielded very low accuracies when compared to the

accuracies yielded by the classifier under the various experimental designs

(see Table 5.13). Finally, since is a Yeast classifier and performed

poorly than which is an E.coli classifier, we hence suggested that the Yeast

classifiers we more complex to train than the E.coli classifiers. This also indicated

that the decision boundaries between the Yeast class structures were more complex

to estimate than the decision boundaries between the E.coli class structures.

 5.7 Further Experiments - Evaluating the complexity of classifiers

95

Table ‎5.13: Best im/~im and CYT/~CYT based on OAtest for the various

experimental designs

Experimental

designs

OAtest (%) OAtest (%)

5-40hn with 25-200t 91.2 74.53

1-5hn with 25-200t 90.65 72.75

5-40hn with 2-24t 91.37 70.34

5.7.3 Attempts to improve the performance of the

classifier by increasing the number of iterations

The performance results presented in Section 5.7.2 have indicated that the

 classifier was the more complex of all the E.coli and Yeast binary classifiers

analysed in our experiments, because the classifier produced the lowest

accuracies among all the classifiers based on the training scenarios applied so far.

The largest number of training iterations utilised so far in the various training

scenarios has been 200. Given that with this number of iterations the classification

accuracy for the classifier has shown no improvement, we deemed

worthwhile increasing the number of iterations well beyond 200, in an attempt to

increase the accuracy for the classifier. The following training scenarios

were therefore used to improve the performance of the classifier: 1)

network configurations of 1, 2, 3, 4 and 5 hidden nodes, trained for 500, 1000, 2000,

3000, 3500 and 4000 iterations; 2) network configurations of 15, 20, 25, 30 and 35

hidden nodes, trained for 500, 1000, 2000, 3000, 3500 and 4000 iterations. These

training scenarios were defined based on the trial and error method coupled with the

motivations of testing the performance of the classifier under different

training scenarios from those that have been applied so far. The performance results

are presented in the following sections.

 5.7 Further Experiments - Evaluating the complexity of classifiers

96

5.7.3.1 Results based on scenarios of 1-10 hidden nodes with 500-

4000 iterations for

Figure 5.13 portrays the performance results obtained under the training scenarios

that utilised the network configurations of 1-10 hidden nodes trained for 500-4000

iterations for the classifier. The patterns in Figure 5.13 suggest that the

highest OAtest was produced for the network configuration of 5 hidden nodes trained

for 2000 iterations (i.e. 5hn_2000t). The accuracy decreased as the number of

iterations was increased beyond 2000. Table 5.14 present the performance results of

the best scenario (5hn_2000t) out of the 30 training scenarios used in this section.

The results in Table 5.14 indicate that the best OAtest was 73.79% and the training

time was 110590 seconds.

Figure ‎5.13: OAtest for 1-10 hidden nodes with 500-4000 training iterations for

CYT/~CYT binary classifier

 5.7 Further Experiments - Evaluating the complexity of classifiers

97

Table ‎5.14: Best CYT/~CYT based on OAtest for 1-10 hidden nodes with 500-4000

training iterations

Binary classifiers
OAtrain

(%)

OAtest

(%)
MSE

Time

(seconds)
Architecture

 76.64 73.79 0.1568 110590 5hn_2000t

5.7.3.2 Results based on scenarios of 15-35 hidden nodes with 500-

4000 iterations for

Figure 5.14 portrays the performance results obtained under the training scenarios

that utilised the network configurations of 15-35 hidden nodes trained for 500-4000

iterations for the classifier. The patterns in Figure 5.14 indicate that the

highest OAtest was produced for the network configuration of 25 hidden nodes

trained for 500 iterations (i.e. 25hn_500t). The accuracy decreased as the number of

iterations was increased beyond 500. Table 5.15 shows the performance results of the

best scenario (25hn_500t) out of the 30 training scenarios used in this section. The

results in Table 5.15 indicate that the best OAtest was 73.72% with the

corresponding training time of 9248 seconds.

 5.7 Further Experiments - Evaluating the complexity of classifiers

98

Figure ‎5.14: OAtest for 15-35 hidden nodes with 500-4000 training iterations for the

CYT/~CYT binary classifier

Table ‎5.15: Best CYT/~CYT based on OAtest for 15-35 hidden nodes with 500-4000
training iterations

Binary classifiers
OAtrain

(%)

OAtest

(%)
MSE

Time

(seconds)
Architecture

 79.33 73.72 0.1416 9248 25hn_500t

5.7.3.3 Concluding remarks

We applied training scenarios that used increased numbers of training iterations

(beyond 200) to improve the performance of the classifier. The results of

these training scenarios, as presented in Sections 5.7.3.1 and 5.7.3.2, have shown that

the best training scenarios were 5hn_2000t with the corresponding accuracy on test

 5.7 Further Experiments - Evaluating the complexity of classifiers

99

set of 73.79%, for the design in Section 5.7.3.1; and 25hn_500t with the

corresponding accuracy on test set of 73.72%, for the design in Section 5.7.3.2. We

can therefore suggest based on these results that increasing the training iterations,

well beyond 200, could not improve the accuracy of the classifier. This

suggestion is based on the fact that the accuracy of the classifier did not

improve under the training scenarios used in Sections 5.7.3.1 and 5.7.3.2 when

compared to the accuracy (74.53%) obtained under the previous training scenarios

(see Table 5.13).

100

CHAPTER 6: CONCLUSIONS

6.1 Introduction

Chapter 5 presented the analysis and results obtained from our experimental designs.

This chapter provides the discussion and conclusions of the whole research

investigation. Section 6.2 discusses the findings of this study, while Section 6.3 gives

recommendations for possible future work based on these findings.

6.2 Discussion and conclusions

The process of NNs training has been proven to be very challenging. Complex

networks are more likely to be characterised by features such as saddle-points, local

minima, flat-spots and plateaus, which result in poor performance of NNs in terms of

their efficiency, accuracy and convergence ability. To alleviate these issues, methods

based on unconstrained and global optimisation theory have been proposed in the

development of NNs training algorithms.

This study proposed the investigation of the performance of two NNs training

algorithms derived from unconstrained and global optimisation theory, i.e. the Rprop

and CGP algorithms. It further presented an empirical optimisation scheme of NNs

training that involved using simultaneously the proposed training algorithms and the

trial and error method. This method tried to find the optimal size of parameters, i.e.

adequate numbers of hidden nodes and training iterations that were more likely to

improve the performance of NNs based on the classification problems under

consideration.

In order to reach the objectives of this study, two biological problems, i.e. the E.coli

and Yeast problems, were used. These problems involved the classification of protein

localisation patterns into different known classes, which are particularly useful in the

 6.2 Discussion and conclusions

101

post-genomic era. Furthermore, these multiclass classification problems were

transformed into multiple binary classification problems using the One-Against-All

approach. Finally, different training scenarios were used to train these binary

classifiers. Hence, the following conclusions were derived.

The Rprop algorithm performed better than the CGP algorithm. Using the OAtrain,

OAtest, training times, and MSE, the Rprop algorithm was proven to be more

accurate and efficient, and had better convergence ability than the CGP algorithm.

Moreover, the superiority of Rprop was observed for all the E.coli and Yeast binary

classifiers. However, the difference between the two training algorithms was more

pronounced for some classifiers than it was for some others. This was believed to be

the consequence of the difference of complexity between different classifiers. For

more complex classifiers, the difference between Rprop and CGP was high, while for

less complex classifiers the difference between the two algorithms was less.

We also argued that the small differences in accuracy between Rprop and CGP that

were observed for some classifiers should not question the superiority of Rprop over

CGP. The reason being as follows: although the accuracy differences were small in

some cases, but CGP took much longer to achieve comparable results with Rprop.

This means that for equal training times, the Rprop accuracy would be much better

than that of CGP. Therefore, when training efficiency was taken into consideration,

Rprop outperformed CGP unequivocally.

Conflicting claims are found in the literature about the performance of CG based

methods. Some argue that CG based methods are devised to converge faster than GD

based methods, because they update the weights in the conjugate directions of the

gradient (Sharma and Venugopalan, 2014). Moreover, it is claimed that ―CG based

methods are probably the most famous iterative methods for efficiently training NNs

due to their simplicity, numerical efficiency, and their very low memory

requirements‖ (Ioannis and Panagiotis, 2012). With regard to efficiency, obviously

these claims were not verified in our experiments. Instead, Rprop which is a GD

based method, performed much better than CGP which is a CG based method,

especially with regard to efficiency. However, others argue that despite their

 6.2 Discussion and conclusions

102

theoretical and practical advantages in solving large scale unconstrained optimisation

problems such as minimising NNs error functions, CG methods are characterised by

a major drawback which is the use of restarting techniques in order to guarantee

convergence. The restart may be activated too often, which could affect the overall

efficiency of CG methods (Livieris and Pintelas, 2009; Andrei, 2011). The very poor

efficiency of CGP observed in our experiments seemed to agree with this concern.

CGP has been shown to be 3 to 4 times less efficient than Rprop.

Concerning the effect of varying the number of hidden nodes and number of training

iterations, it appeared that this had an impact on the performance of the classifiers.

This impact was shown and consistent in the classification accuracy, convergence

and efficiency of the classifiers. This indicated that the trial and error method could

assist in the finding of optimal parameters that in returns can help optimise the

performance of NNs training.

Also, it was shown that depending on their complexity, some classifiers required

more hidden nodes and training iterations to perform well, whereas some required

less hidden nodes and training iterations to do so. In fact, the more complex a

classifier was, the more hidden nodes and training iterations were needed; and the

less complex a classifier was, the less hidden nodes and training iterations were

needed. This proved that the performance of NNs training is dependent on the

complexity of the application problems.

One interesting observation was that, increasing the number of hidden nodes could

improve the training time for some classifiers. This was observed with the

classifier trained for 25 iterations; the training time decreased as we increased the

hidden nodes in the range between 5 and 40 hidden nodes. This may seem strange

because increasing the nodes amounts to increasing the number of weight parameters

to be updated, which should increase the training time. However, this result (i.e.

decrease in time as the number of hidden nodes was increased) was consistent with

findings in some previous studies (Lawrence et al., 1996; Livni et al., 2014); in

which it is claimed that, ―Sufficiently Over-Specified Networks Are Easy to Train‖

(Livni et al., 2014). In other words, it can be easy to train networks that are oversized

 6.2 Discussion and conclusions

103

(i.e. networks that are larger than needed). This is true in the sense that the

optimisation problem related to the training of sufficiently over-specified networks

are easy to solve because in such networks, the presence of a global minimum is

more likely than that of many local (non-global) minima. Hence, maybe it was easier

to find the global minimum of as we increased the hidden nodes, which

resulted in less training time when the 25 iterations were completed.

Another finding was that the performance of NNs classifiers, especially in terms of

efficiency, had a positive relationship with the number of samples to be trained. The

more the number of samples to be trained, the more the training time and iterations

were needed. The less the number of samples to be trained, the less the training time

and iterations were needed. This was observed by comparing the performance of the

E.coli classifiers to the performance of the Yeast classifiers. Since the Yeast data had

more samples, it also required more time and iterations to be trained. This suggests to

some extent that, the size of the data added to the complexity of the training process.

However, it appeared that the structure of the data itself played the biggest role in its

complexity. This was shown by the fact that the Yeast classifiers differed in their

performances though they trained the same number of samples. This was also true

for the E.coli classifiers.

Finally, it was observed that the best convergence during training did not necessarily

result into the best generalisation of a classifier. This means that, during training, a

network can reach the global minimum of the error function, and still does not

produce the best performance on unseen data. Or, a network can reach a local

minimum instead of the global minimum during training, and still perform better on

unseen data. Therefore, achieving global convergence (reaching the global

minimum) on training set should not be the main focus of NN training. Instead, the

main focus should be to achieve a convergence (not necessarily the best one in terms

of minimum) during training that would eventually allow the network to accurately

perform its task when presented with new data.

 6.3 Future work

104

6.3 Future work

One major characteristic of the protein data used for training the NNs classifiers in

this study was their very imbalanced class sizes nature. Moreover, transforming these

multiclass classification problems into multiple binary classification problems had

even accentuated their imbalanced class sizes. We believe that this might be the main

cause of the very small differences in classification accuracy between the Rprop and

CGP algorithms for some binary classifiers. To test this assumption, one could

consider for future work, using a more balanced and originally binary classification

problem such as the cancer, diabetes problems (Murphy and Aha, 1994), and see if

the difference between the two algorithms would not significantly increase.

Another future development could be to compare the performance of multiclass

classifiers to that of binary ones in correctly classifying every class of the E.coli and

Yeast proteins. Also, instead of the One-Against-All binary classifiers which

accentuate the imbalance of these data, one could use the One-Against-One binary

classifiers to assess the performance of the Rprop and CGP algorithms. However, it

is worth highlighting that in this case, the number of binary classifiers to be trained

will significantly increase, i.e. 28 (instead of 8) for the E.coli data, and 45 (instead of

10) for the Yeast data.

In this study, we implicitly assessed the classifiers complexity through their

performances. The classifier with good performance was said to be less complex (i.e.

it was easy to classify the data because there were less overlaps between the classes)

and the classifier with poor performance was said to be more complex (i.e. it was

difficult to classify the data because of much overlaps between the classes). We did

not calculate a direct metric of data complexity as proposed by Ho and Basu (2002)

and Attoor and Dougherty (2004), because it was not the main objective of our study.

Moreover, we could not improve the accuracy of even after trying

various scenarios with very large numbers of hidden nodes and iterations. For future

wok, one could focus on a detailed study of the complexity of the

classifier by following the steps proposed in the two above mentioned studies, and

find an optimal way of significantly improving its accuracy.

105

REFERENCES

Akarachai, A. and Daricha, S., ―Avoiding Local Minima in Feedforward Neural

Networks by Simultaneous Learning‖, Advances in Artificial Intelligence, 4830,

100-109, 2007.

Anastasiadis, A.D.,“Neural network training and applications using biological

data‖, Doctoral Thesis, School of Computer Science and Information Systems,

University of London, London, 2005.

Anastasiadis, A.D., Magoulas, G.D., and Vrahatis, M.N., ―An efficient improvement

of the Rprop algorithm‖, In Proceedings of the First International Workshop on

Artificial Neural Networks in Pattern Recognition, Florence, Italy, IAPR2003,

197-201, 2003.

Anastasiadis, A.D., Magoulas, G.D., and Vrahatis, M.N., ―Sign-based Learning

Schemes for Pattern Classification‖, Pattern recognition Letters, 26, 1926-

1936, 2005.

Andrei, N., ―40 Conjugate Gradient Algorithms for Unconstrained Optimization‖,

ICI Technical Report, 2008.

Andrei, N., ―Open Problems in Nonlinear Conjugate Gradient Algorithms for

Unconstrained Optimization‖, ICI Technical, Report, 2011.

Arai, M., ―Bounds on the number of hidden units in binary valued three-layer neural

networks‖, Neural Networks, 6, 855–860, 1993.

Attoor, S.N., and Dougherty, E.R., ―Classifier performance as a function of

distributional complexity‖, Pattern Recognition 37:8, 1641-1651, 2004.

REFERENCES

106

Basheer, I.A., and Hajmeer, M., ―Artificial neural networks: fundamentals,

computing, design, and application‖, Journal of Microbiological Methods, 43,

3-31, 2000.

Battiti, R., ―First- and second-order methods for learning: between steepest descent

and Newton's method‖, Neural Computation, 4, 141-166, 1992.

 Berry, M.J.A., and Linoff, G., Data Mining Techniques, John Wiley and Sons, New

York, 1997.

Bishop, C.M., Neural Networks for Pattern Recognition, Oxford University Press,

1995.

Blum, A., Neural Networks in C++, John Wiley and Sons, New York, 1992.

Boger, Z., and Guterman, H., ―Knowledge extraction from artificial neural network

models‖, IEEE Systems, Man, and Cybernetics Conference, Orlando, FL, USA,

1997.

 Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J., Classification and

Regression Trees, Wadsworth, Belmont, 1984.

Burton, R.M., and Mpitsos, G.J., ―Event dependent control of noise enhances

learning in neural networks‖, Neural Networks, 5, 627-637, 1992.

Canu, S., ―Empirical criteria to compare the performance of neuro algorithms‖,

In Proceedings of the International Conference on Artificial Neural Networks,

Springer, London, 764-767, 1993.

Crammer, K., and Singer, Y., ―On the algorithmic implementation of multiclass

kernel-based vector machines‖, Journal of Machine Learning Research, 2, 265-

292, 2001.

Dauphin, Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y.,

―Identifying and attacking the saddle point problem in high-dimensional non-

REFERENCES

107

convex optimization‖, In Advances in Neural Information Processing Systems,

2933–2941, 2014.

Duda, R.O., Hart, P.E., and Stork, D.E., Pattern Classification, John Wiley and Sons,

Canada, 2000.

Efron, B., ―Estimating the error rate of a prediction rule: improvement on cross-

validation‖, Journal of the American Statistical Association, 78, 316-330, 1983.

Erin, A., Robert, S., and Yoram, S., ―Reducing multiclass to binary: A unifying

approach for margin classifiers‖, Journal of Machine Learning Research, 113–

141, 2000.

Ferrari, S., and Stengel, R.F., ―Smooth Function Approximation Using Neural

Networks‖, In IEEE Transactions on Neural Networks, 16, 24-38, 2005.

Fletcher, R. and Reeves, C. M., ―Function minimization by conjugate gradients‖,

Computer Journal, 7, 149–154, 1964.

Fletcher, R., Practical Methods of Optimization, John Wiley and Sons, New York,

1981.

Ford, J.A., Narushima, Y. and Yabe, H., ―Multi-step nonlinear conjugate gradient

methods for unconstrained minimization‖, Computational Optimization and

Applications, 40, 191–216, 2008.

Frimpong, E.A., and Okyere, P.Y., ―Forecasting the Daily Peak Load of Ghana

Using Radial Basis Function Neural Network and Wavelet Transform‖, Journal

of Electrical Engineering, 10, 15-18, 2010.

Fukumizu, K. and Amari, S., ―Local Minima and Plateaus in Multilayer Neural

Networks‖, In Ninth International Conference on Artificial Neural Networks, 2,

597—602, 1999.

REFERENCES

108

Gershenson, C., ―Artificial Neural Networks for Beginners‖, In Formal

Computational Skills Teaching Package, COGS, University of Sussex, 2001.

Gilbert, J.C. and Nocedal, J., ―Global convergence properties of conjugate gradient

methods for optimization,‖ SIAM Journal of Optimization, 2, 21–42, 1992.

Gill, P. E., Murray, W., and Wright, M. H., Practical Optimization, Academic Press,

New York, 1981.

Gori, M. and Tesi A., ―On the problem of local minima in backpropagation‖, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14, 76-85, 1992.

Hagan, M.T., and Menhaj, M.B., ―Training feedforward networks with the

Marquardt algorithm‖, IEEE Transactions on Neural Networks, 5, 989-993,

1994.

Hager, W. W. and Zhang, H. ―A survey of nonlinear conjugate gradient methods‖,

Pacific Journal of Optimization, 2:35, 35–58, 2006.

Hagiwara, M., ―A simple and effective method for removal of hidden units and

weights‖, Neuro-computing, 6, 207–218, 1994.

Harney, L.G.C., ―Benchmarking feed-forward neural networks: models and

measures‖, In Advances in Neural Information Processing Systems 4, San

Mateo, CA: Morgan Kaufmann, 1167-1174, 1992.

Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College

Publishing Company, New York, 1994.

Hestenes, M. R. and Stiefel, E., ―Methods for conjugate gradients for solving linear

systems‖, Journal of Research of the National Bureau of Standards, 49, 409–

436, 1952.

REFERENCES

109

Ho, T.K., and Basu, M., ―Complexity Measures of Supervised Classification

Problems‖, IEEE Transactions on Pattern Analysis and Machine Intelligence

24, 289-300, 2002.

Horton, P. and Nakai, K., ―Better prediction of protein cellular localization sites with

the k nearest neighbors classifier‖, Intelligent Systems for Molecular Biology, 4,

368–383, 1996.

Hornik, K., Stinchcombe, M. and White, H., ―Multilayer Feedforward Networks Are

Universal Approximators‖, Neural Networks, 2, 359-366, 1989.

Hsu, C., and Lin, C., ―A comparison of methods for multi-class support vector

machines‖, IEEE Transactions on Neural Networks, 13, 415-425, 2002.

Igel, C. and Husken, M., ―Empirical evaluation of the improved Rprop learning

algorithms‖, Neurocomputing, 50, 105-123, 2003.

Ioannis, E.L. and Panagiotis, P., ―An Advanced Conjugate Gradient Training

Algorithm Based on a Modified Secant Equation‖, ISRN, Artificial Intelligence,

2012.

Jacobs, R., ―Increased rates of convergence through learning rate adaptation‖, Neural

Networks, 1 (4), 295-307, 1988.

Jonathan, R.S., ―An introduction to the conjugate gradient method without the

agonizing pain‖, Technical Report CMU-CS-94-125, School of Computer

Science, Carnegie Mellon University, 1994.

Kazuhiro, S., ―A Two Phase Method for Determining the Number of Neurons in the

Hidden Layer of a 3-Layer Neural Network‖, SICE Annual Conference, 2010.

Kohavi, R., ―A study of cross-validation and bootstrap for accuracy estimation and

model selection,‖ In Proceedings of the IEEE International Joint Conference

on Artificial Intelligence, 223–228, 1995.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=990132&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=990132&tag=1

REFERENCES

110

Lawrence, S., Giles, C. L., and Tsoi, A. C., ―What size neural network gives optimal

generalization? Convergence properties of backpropagation‖, Technical Report,

UMIACS-TR-96-22 and CS-TR-3617, Institute for Advanced Computer

Studies, Univ. of Maryland, 1996.

Li, D.H. and Fukushima, M., ―A modified BFGS method and its global convergence

in non-convex minimization‖, Journal of Computational and Applied

Mathematics, 129, 15–35, 2001.

Li, G., Tang, C., and Wei, Z., ―New conjugacy condition and related new conjugate

gradient methods for unconstrained optimization‖, Journal of Computational

and Applied Mathematics, 202, 523–539, 2007.

Livieris, I. E. and Pintelas, P., ―Performance evaluation of descent CG methods for

neural network training‖, In Proceedings of the Ninth Hellenic European

Research on Computer Mathematics & its Applications Conference, 40–46,

2009.

Livni, R., Shalev-Shwartz, S., and Shamir, O., ―On the computational efficiency of

training neural networks‖, In Advances in Neural Information Processing

Systems, 855–863, 2014.

Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D. and Darnell, J.,

Molecular Cell Biology, Freeman, New York, 2003.

Looney, C. G., Pattern Recognition Using Neural Networks: Theory and Algorithms

for Engineers and Scientists, Oxford University Press, New York, 171-172,

1997.

Magoulas, G.D. and Vrahatis M.N., ―A Class of Adaptive Learning Rate Algorithms

Derived by One-Dimensional Subminimization Methods‖, Neural, Parallel and

Scientific Computations, 8, 147-168, 2000.

REFERENCES

111

Magoulas, G.D., Vrahatis, M.N., and Androulakis, G.S., ―On the alleviation of the

problem of local minima in back-propagation‖, Nonlinear Analysis: Theory,

Methods and Applications, 30, 4545-4550, 1997a.

Magoulas, G.D., Vrahatis M.N., and Androulakis G.S., ―Effective back-propagation

with variables stepsize‖, Neural Networks, 10, 69-82, 1997b.

Magoulas, G.D., Vrahatis, M.N., and Androulakis, G.S., ―Improving the

Convergence of the Backpropagation Algorithm Using Learning Rate

Adaptation Methods‖, Neural Computation, 11, 1769-1796, 1999.

MATLAB, R., ―Version 8.1. 0.604 (R2013a)‖, Natrick, Massachusetts: The

MathWorks Inc, 2013.

McCulloch, W.S. and Pitts, W., ―A logical calculus of the ideas immanent in nervous

activity‖, Bulletin of Mathematical Biophysics, 5, 115-133, 1943.

Moller, M.F., ―A scaled conjugate gradient algorithm for fast supervised learning‖,

Neural Networks, 6, 525-533, 1993.

Murray, W., ―Newton-type methods‖, Technical report, Department of Management

Science and Engineering, Stanford University, 2010.

Murphy, P. M. and Aha, D. W., UCI Repository of machine learning databases,

Irvine, CA: University of California, Department of Information and Computer

Science, 1994, http://www.ics.uci.edu/mlearn/MLRepository.html.

Myint, M.Y., Khin, S.L., and Marlar, K., ―Implementation of Neural Network Based

Electricity Load Forecasting‖, In World Academy of Science, Engineering and

Technology, 42, 381-386, 2008.

Nguyen, D. and Widrow, B., ―Improving the learning speed of 2-layer neural

network by choosing initial values of adaptive weights‖, Biological

Cybernetics, 59, 71–113, 1990.

http://www.ics.uci.edu/mlearn/MLRepository.html

REFERENCES

112

Nocedal, J., ―Theory of algorithms for unconstrained optimization‖, Acta Numerica,

1, 199-242, 1992.

Patnaik L.M. and Rajan, K., ―Target detection through image processing and resilient

propagation algorithms‖, Neurocomputing, 35, 123-135, 2000.

Plagianakos, V.P., Magoulas, G.D., and Vrahatis, M.N., ―Learning in multilayer

perceptrons using global optimization strategies‖, Nonlinear Analysis: Theory,

Methods and Applications, 47, 3431-3436, 2001a.

Plagianakos, V.P., Magoulas, G.D., and Vrahatis, M.N., ―Supervised training using

global search methods‖, N. Hadjisavvas and P. Pardalos (eds.), Advances in

Convex Analysis and Global Optimization,, Non-convex Optimization and its

Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 54,

421-432, 2001b.

Polak, E. and Ribì ere, G., ―Note sur la convergence de methods de directions

conjuguees‖, Revue Francais d’Informatique et de Recherche Operationnelle,

16, 35–43, 1969.

Powell, M.J.D., ―Restart procedures for the conjugate gradient method‖,

Mathematical Programming, 12, 241–254, 1977.

Powell, M.J.D., ―Non-convex minimization calculations and the conjugate gradient

method‖, Numerical Analysis, Lecture notes in mathematics, Springer, Berlin,

Germany, 1066, 122-141, 1984.

Powell, M.J.D., ―Convergence properties of algorithms for nonlinear optimization‖,

Siam Review, 28, 487–500, 1986.

Prasad, N., Singh, R., and Lal, S.P., ―Comparison of Back Propagation and Resilient

Propagation Algorithm for Spam Classification‖, In Fifth International

Conference on Computation Intelligence, Modelling and Simulation, 29-34,

2013.

REFERENCES

113

Reed, R.D., and Marks II, R.J., Neural Smithing, MIT Press, Cambridge,

Massachusetts, 1999.

Richard, M.D., and Lippmann, R.P., ―Neural network classifiers estimate Bayesian a

posteriori probabilities‖, Neural computation, 3, 461-483, 1991.

Riedmiller, M., ―Rprop-Description and Implementation Details‖, Technical Report,

University of Karlsruhe, January, 1994.

Riedmiller, M., and Braun, H., ―A direct adaptive method for faster back-propagation

learning: The Rprop algorithm‖, International Conference on Neural Networks,

San Francisco, CA, 586-591, 1993.

Rifkin, R., and Klautau, A., ―In Defense of One-Vs-All Classification‖, Journal of

Machine Learning Research, 5, 101–141, 2004.

Ripley, B. D., ―Statistical aspects of neural networks‖, In Networks and Chaos:

Statistical and Probabilistic Aspects, Chapman and Hall, London, 1993.

Rojas, R., ―Oscillating iteration paths in neural networks learning‖, Computers and

Graphics, 4, 593-597, 1994.

Rojas, R., Neural Networks: A Systematic Introduction, Springer, Germany, 1996.

Rosenblatt, F., ―The perceptron: a probabilistic model of information storage and

organisation in the brain‖, Psychological Review, 65, 386-408, 1958.

Rudner, L.M., ―The Classification Accuracy of Measurement Decision Theory‖,

Paper presented at the annual meeting of the National Council on

Measurement in Education, Chicago, 23–25, 2003.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J., ―Learning internal representations

by error propagation‖, D.E. Rumelhart, J.L. McClelland (eds.), Parallel

Distributed Processing: Explorations in the Microstructure of Cognition 1,

MIT Press, Cambridge, Massachusetts, 318-362, 1986.

REFERENCES

114

Sartori, M. A. and Antsaklis, P., ―A simple method to derive bounds on the size and

to train multilayer neural networks‖, IEEE Transactions on Neural Networks 2,

467–471, 1991.

Saurabh, K., ―Approximating number of hidden layer neurons in multiple hidden

layer BPNN architecture‖, International Journal of Engineering Trends and

Technology, 3, 714–717, 2012.

Scales, L.E., Introduction to non-linear optimization, Springer-Verlag, New York,

34-35, 1985.

Sharma, B. and Venugopalan, K., ―Comparison of Neural Network Training

Functions for Hematoma Classification in Brain CT Images‖, IOSR Journal of

Computer Engineering, 16, 31-35, 2014.

Sheela, K.G., and Deepa S.N., ―Review on methods to fix number of hidden neurons

in neural networks‖, Mathematical Problems in Engineering, 11, 2013.

Stuti, A., and Rakesh, K.B., ―Handwritten Multi-script Pin Code Recognition System

having Multiple hidden layers using Back Propagation Neural Network‖,

International Journal of Electronics Communication and Computer

Engineering, 2, 1, 2011.

Taguchi, I. and Sugai, Y., ―Oscillation Behaviour for the Layerd Neural Networks

Based on the Selection of Training Data by Using Rastrigin Function‖,

International Journal of Emerging Technology and Advanced Engineering,

2013.

Treadgold, N.K. and Gedeon, T.D., ―Simulated Annealing and Weight Decay in

Adaptive Learning: The SARPROP Algorithm‖, IEEE Transactions on Neural

Networks, 9, 4, 662-668, 1998.

Van der Smagt, P.P., ―Minimization Methods for training feed-forward neural

networks‖, Neural Networks, 7, 1-11, 1994.

REFERENCES

115

Veitch, A.C., and Holmes, G., ―Benchmarking and fast learning in neural networks:

Results for back-propagation‖, In Proceedings of the Second Australian

Conference on Neural Networks, 167–171, 1991.

Wickham, H., ggplot2, Wiley Interdisciplinary Reviews: Computational Statistics 3,

2, 180-185, 2011.

Yabe, H. and Takano, M., ―Global convergence properties of nonlinear conjugate

gradient methods with modified secant condition‖, Computational Optimization

and Applications, 28, 203–225, 2004.

Yuan, G. ―Modified nonlinear conjugate gradient methods with sufficient descent

property for large-scale optimization problems,‖ Optimization Letters, 3, 11–21,

2009.

Zhang, G.P., ―Neural networks for classification: a survey‖, IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews), 4, 451-462,

2000.

Zhang, L., ―Two modified Dai-Yuan nonlinear conjugate gradient methods‖,

Numerical Algorithms, 50, 1–16, 2009.

Zhang, L., Zhou, W. and D. Li., ―Some descent three-term conjugate gradient

methods and their global convergence‖, Optimization Methods and Software,

22, 697–711, 2007.

Zhang, L. and Zhou, W., ―Two descent hybrid conjugate gradient methods for

optimization‖, Journal of Computational and Applied Mathematics, 216, 251–

264, 2008.

Zhou, W. and Zhang, L., ―A nonlinear conjugate gradient method based on the

MBFGS secant condition‖, Optimization Methods and Software, 21, 707–714,

2006.

116

APPENDIX A: Matlab CODE – Transforming the E.coli

multiclass problem into multiple binary

problems

Summary

The E.coli problem is a multiclass classification problem. For the purpose of this

study, we proposed the One-Against-All approach to transform it into multiple

binary classification problems. Hence, this section presents the Matlab code used to

prepare the E.coli data for the binary classification tasks. As said before, the E.coli

data is constituted of 8 classes. Therefore, the resulting One-Against-All binary

classifiers are also 8. The transformation process is as follows.

%First step: Importing E.coli_data in matlab as a matrix. %Not that

prior to this step a process has been followed %for putting all the

patterns of each class next to each %other (Grouping data by class).

%Removing columns 1 and 9 from E.coli data. This is done %because

column 1 gives the Sequence Name (Accession %number for the SWISS-

PROT database), and column 9 gives %the name of the proteins for a

pattern (group of %attribute). So, these two columns are not

important for %the input data matrix. But the last one is important

for %creating the target matrix for each E.coli binary %classifier.

test_1 = ecoli(:,[2,3,4,5,6,7,8]);

%E_coli inputs matrix.

E_coli_Inputs = test_1.'; %transpose test_1

%Creating E_coli targets Matrix

targets_1 = [ones(1,143), zeros(1,193)];

targets_2 = [zeros(1,143), ones(1,77), zeros(1,116)];

targets_3 = [zeros(1,220), ones(1,52), zeros(1,64)];

 APPENDIX A: Matlab CODE – Transforming the E.coli multiclass problem into

multiple binary problems

117

targets_4 = [zeros(1,272), ones(1,35), zeros(1,29)];

targets_5 = [zeros(1,307), ones(1,20), zeros(1,9)];

targets_6 = [zeros(1,327), ones(1,5), zeros(1,4)];

targets_7 = [zeros(1,332), ones(1,2), zeros(1,2)];

targets_8 = [zeros(1,334), ones(1,2)];

%E_coli targets matrix (Concatenate all the targets_i).

%This target matrix can be used for a multiclass %classifier.

E_coli_Targets = [targets_1; targets_2; targets_3; targets_4;

targets_5; targets_6; targets_7; targets_8];

%Creating inputs and targets matrices for each binary %classifier.

%E_coli inputs matrix for each binary classifier

E_coli_Inputs;

% E_coli_Targets_cp (Targets for the cp/~cp binary %classifier)

targets_1a = [ones(1, 143), zeros(1, 193)];

targets_1b = [zeros(1, 143), ones(1, 193)];

E_coli_Targets_cp = [targets_1a; targets_1b];

%E_coli_Targets_im (Targets for the im/~im binary %classifier)

targets_2a = [zeros(1, 143), ones(1, 77), zeros(1, 116)];

targets_2b = [ones(1, 143), zeros(1, 77), ones(1, 116)];

E_coli_Targets_im = [targets_2a; targets_2b];

 APPENDIX A: Matlab CODE – Transforming the E.coli multiclass problem into

multiple binary problems

118

%E_coli_Targets_pp (Targets for the pp/~pp binary %classifier)

targets_3a = [zeros(1, 220), ones(1, 52), zeros(1, 64)];

targets_3b = [ones(1, 220), zeros(1, 52), ones(1, 64)];

E_coli_Targets_pp = [targets_3a; targets_3b];

%E_coli_Targets_imU (Targets for the imU/~imU binary %classifier)

targets_4a = [zeros(1, 272), ones(1, 35), zeros(1, 29)];

targets_4b = [ones(1, 272), zeros(1, 35), ones(1, 29)];

E_coli_Targets_imU = [targets_4a; targets_4b];

%E_coli_Targets_om (Targets for the om/~om binary %classifier)

targets_5a = [zeros(1, 307), ones(1, 20), zeros(1, 9)];

targets_5b = [ones(1, 307), zeros(1, 20), ones(1, 9)];

E_coli_Targets_om = [targets_5a; targets_5b];

%E_coli_Targets_omL (Targets for the omL/~omL binary %classifier)

targets_6a = [zeros(1, 327), ones(1, 5), zeros(1, 4)];

targets_6b = [ones(1, 327), zeros(1, 5), ones(1, 4)];

E_coli_Targets_omL = [targets_6a; targets_6b];

%E_coli_Targets_imL (Targets for the imL/~imL binary %classifier)

targets_7a = [zeros(1, 332), ones(1, 2), zeros(1, 2)];

targets_7b = [ones(1, 332), zeros(1, 2), ones(1, 2)];

E_coli_Targets_imL = [targets_7a; targets_7b];

 APPENDIX A: Matlab CODE – Transforming the E.coli multiclass problem into

multiple binary problems

119

%E_coli_Targets_imS (Targets for the imS/~imS binary %classifier)

targets_8a = [zeros(1, 334), ones(1, 2)];

targets_8b = [ones(1, 334), zeros(1, 2)];

E_coli_Targets_imS = [targets_8a; targets_8b];

120

APPENDIX B: Matlab CODE – Transforming the Yeast

multiclass problem into multiple binary

problems

Summary

As for E.coli, the Yeast problem is also a multiclass classification problem. We

applied the same approach to create the binary classification problems. This section

gives the Matlab code used for that. The Yeast data is constituted of 10 classes.

Therefore, the resulting One-Against-All binary classifiers are also 10. The

transformation process is as follows.

%First step: Importing Yeast_data in matlab as a matrix. %As for the

E.coli, not that prior to this step, a process has been done of

putting all the patterns of each class %next to each other (Grouping

data by class).

%Remove columns 1 and 10 from Yeast data. This is done because

column 1 gives the Sequence Name (Accession %number for the SWISS-

PROT database), and column 10 gives the name of the proteins for a

pattern (group of %attribute). So these two columns are not

important for %the input data matrix. But the last one is important

%for creating the target matrix for every Yeast binary.

test_1 = Yeast(:,[2,3,4,5,6,7,8,9]);

%Yeast inputs matrix.

Yeast_Inputs = test_1.'; %transpose test_1

%Creating Yeast_targets matrix

targets_1 = [ones(1, 463), zeros(1, 1021)];

targets_2 = [zeros(1, 463), ones(1, 429), zeros(1, 592)];

 APPENDIX B: Matlab CODE – Transforming the Yeast multiclass problem into

multiple binary problems

121

targets_3 = [zeros(1, 892), ones(1, 244), zeros(1, 348)];

targets_4 = [zeros(1, 1136), ones(1, 163), zeros(1, 185)];

targets_5 = [zeros(1, 1299), ones(1, 51), zeros(1, 134)];

targets_6 = [zeros(1, 1350), ones(1, 44), zeros(1, 90)];

targets_7 = [zeros(1, 1394), ones(1, 35), zeros(1, 55)];

targets_8 = [zeros(1, 1429), ones(1, 30), zeros(1, 25)];

targets_9 = [zeros(1, 1459), ones(1, 20), zeros(1, 5)];

targets_10 = [zeros(1, 1479), ones(1, 5)];

%Yeast targets matrix (Concatenate all the targets_i)

%This target matrix can be used for a multiclass classifier.

Yeast_Targets = [targets_1; targets_2; targets_3; targets_4;

targets_5; targets_6; targets_7; targets_8; targets_9; targets_10];

%Creating inputs and targets matrices for each binary classifier.

%Yeast inputs matrix for each binary classifier

Yeast_Inputs;

%Yeast_Targets_CYT (Targets for the CYT/~CYT binary classifier)

targets_1a = [ones(1, 463), zeros(1, 1021)];

targets_1b = [zeros(1, 463), ones(1, 1021)];

Yeast_Targets_CYT = [targets_1a; targets_1b];

%Yeast_Targets_NUC (Targets for the NUC/~NUC binary classifier)

targets_2a = [zeros(1, 463), ones(1, 429), zeros(1,592)];

 APPENDIX B: Matlab CODE – Transforming the Yeast multiclass problem into

multiple binary problems

122

targets_2b = [ones(1, 463), zeros(1, 429), ones(1, 592)];

Yeast_Targets_NUC = [targets_2a; targets_2b];

%Yeast_Targets_MIT (Targets for the MIT/~MIT binary classifier)

targets_3a = [zeros(1, 892), ones(1, 244), zeros(1,348)];

targets_3b = [ones(1, 892), zeros(1, 244), ones(1, 348)];

Yeast_Targets_MIT = [targets_3a; targets_3b];

%Yeast_Targets_ME3 (Targets for the ME3/~ME3 binary classifier)

targets_4a = [zeros(1, 1136), ones(1, 163), zeros(1,… 185)];

targets_4b = [ones(1, 1136), zeros(1, 163), ones(1,185)];

Yeast_Targets_ME3 = [targets_4a; targets_4b];

%Yeast_Targets_ME2 (Targets for the ME2/~ME2 binary classifier)

targets_5a = [zeros(1, 1299), ones(1, 51), zeros(1,134)];

targets_5b = [ones(1, 1299), zeros(1, 51), ones(1, 134)];

Yeast_Targets_ME2 = [targets_5a; targets_5b];

%Yeast_Targets_ME1 (Targets for the ME1/~ME1 binary classifier)

targets_6a = [zeros(1, 1350), ones(1, 44), zeros(1, 90)];

targets_6b = [ones(1, 1350), zeros(1, 44), ones(1, 90)];

Yeast_Targets_ME1 = [targets_6a; targets_6b];

%Yeast_Targets_EXC (Targets for the EXC/~EXC binary classifier)

targets_7a = [zeros(1, 1394), ones(1, 35), zeros(1, 55)];

 APPENDIX B: Matlab CODE – Transforming the Yeast multiclass problem into

multiple binary problems

123

targets_7b = [ones(1, 1394), zeros(1, 35), ones(1, 55)];

Yeast_Targets_EXC = [targets_7a; targets_7b];

%Yeast_Targets_VAC (Targets for the VAC/~VAC binary classifier)

targets_8a = [zeros(1, 1429), ones(1, 30), zeros(1, 25)];

targets_8b = [ones(1, 1429), zeros(1, 30), ones(1, 25)];

Yeast_Targets_VAC = [targets_8a; targets_8b];

%Yeast_Targets_POX (Targets for the POX/~POX binary classifier)

targets_9a = [zeros(1, 1459), ones(1, 20), zeros(1, 5)];

targets_9b = [ones(1, 1459), zeros(1, 20), ones(1, 5)];

Yeast_Targets_POX = [targets_9a; targets_9b];

%Yeast_Targets_ERL (Targets for the ERL/~ERL binary classifier)

targets_10a = [zeros(1, 1479), ones(1, 5)];

targets_10b = [ones(1, 1479), zeros(1, 5)];

Yeast_Targets_ERL = [targets_10a; targets_10b];

124

APPENDIX C: Matlab CODE – Training process of

classifiers

Summary

This section presents the Matlab code implemented for the training of the binary

classifiers. Given that the steps involved in the training of every binary classifier are

similar, the following code is an example for training one binary classifier only. For

training all the binary classifiers, this process must be repeated 18 times.

Furthermore, this process is for only one experimental design. Appropriate changes

must be made to the various hidden nodes and training iterations to accommodate it

for every experiment. The CYT/~CYT binary classifier is used for the purpose of

this presentation. Also, the training design used is as follows: combinations of 15, 20,

25, 30, and 35 hidden nodes, with 500, 1000, 2000, 3000, 3500, and 4000 training

iterations.

Notations used

The following notations are used in the presentation of the code:

N: The total number of repetitions for every training design

H: Vector of various numbers of hidden nodes h

T: Vector of various numbers of training iterations t

OAtrain: Overall Accuracy on training set

OAtest: Overall Accuracy on test set

Time: Overall Total Training time. In brief, this stands for the training time used in

the presentation of the results in chapter 5.

 APPENDIX C: Matlab CODE – Training process of classifiers

125

MSE: Mean Squared Error. In brief, this stands for the convergence used in the

presentation of the results in chapter 5.

Atrain1: Training Accuracy of class 1 or Accuracy of class 1 on the training set

Atrain2: Training Accuracy of class 2 or Accuracy of class 1 on training set

Atest1: Test Accuracy of class 1 or Accuracy of class 1 on the test set

Atest2: Test Accuracy of class 1 or Accuracy of class 2 on the test set

N_ht_Performance: Array containing results for the N training repetitions from ht

training scenario. For instance, N_ht_OAtrain stands for OAtrain for training

scenario ht, and for N training tasks. The same applies for every performance

measure.

The whole process implementation can be summarised in the following steps:

Step 1: Process to get the performance measure estimates.

Set 50 as the number of trials for each training task of classifiers;

Set 10 as the number of folds for applying the 10-fold CV;

Initialise 4 three dimensional arrays for storing the 4 performance measures (Time,

MSE, OAtrain, OAtest). The three dimensions of an array are 6 ; where 5, 6

and 50 are the first, second and third dimensions respectively.

The first and second dimensions of an array constitute a 5x6 matrix, where 5 is the

dimension of the various numbers hidden nodes (hn) and 6 is the dimension of the

various maximum numbers of training iterations. The last (third) dimension is of size

50, representing the 50 different trials. This means that for instance, the first three

dimensional array is for storing the 50 different 5x6 matrices of times. The 50

different 5x6 matrices of the MSE, OAtrain and OAtest are to be stored in the

second, third and last three dimensional arrays, respectively.

For {

 ; This is a vector of various numbers of hidden nodes

 APPENDIX C: Matlab CODE – Training process of classifiers

126

 For {

 7 ; This is a vector of various numbers iterations;

 Read the input matrix (i.e. data matrix of features to be classified);

 Read the target matrix (i.e. data matrix of the desired output classes for the

input matrix features);

 Specify the neural network topology to be used. For our experiments, the

topology is the feedforward network. The corresponding notation in matlab is as

follows:

 ;

Where h is the number of hidden nodes to be used.

Specify the remaining parameters of the network;

 For {

 Split the data in 10 different folds to apply cross validation. This is done as

follows:

 Read as the total number of folds;

 Assign an index to each case in the input matrix. The total number of

indices corresponds to the size of the input matrix. For instance, the number of

indices is 336 for the E.coli data.

 Permute these indices;

 Split the indices in folds;

 For {

 Do training and test on the K folds as follows:

 Select subsequently each training set (fold);

 Select subsequently each test set (fold);

 APPENDIX C: Matlab CODE – Training process of classifiers

127

 Specify the training functions and parameters;

 Specify the performance measures;

 Train and test a classifier by subsequently using the K training and K

 test sets (folds);

 Extract the confusion matrices from the K training and K test results;

 Store the performance results for the K trainings and tests in four

different vectors of size K each. For a particular performance measure, this can be

done as follows:

 ;

 }

 Calculate the average performance over the K folds for each performance

measure (i.e. arithmetic mean of each of the four vectors obtained above). This will

give four averages (i.e., arithmetic means), each for one performance measure.

Notation for a particular average performance can be as follows:

 ;

 Store the performance measures for every training scenario in a two

dimensional array (or matrix) of dimensions . This step will give four matrices,

each for one performance measure. For example, storage of a performance in a

matrix can be done as follows:

 ;

 }

 }

Subset the four matrices of performance to make sure that their rows and columns

correspond to the specified hidden nodes and training iterations. For instance, for one

matrix this is done as follows:

 APPENDIX C: Matlab CODE – Training process of classifiers

128

 7 ;

Notice that if a matrix is not subset as showed above, it will have 40 rows and 200

columns instead of 5 and 6 respectively.

Store the subset matrices of performance in the four 3 dimensional arrays initialised

at the beginning of our process. For example, a matrix can be stored in a three

dimensional array as follows:

 ;

Array and Matrix should be named after a particular performance measure they

represent.

}

Step 2: Process of aggregating the performance measure estimates stored in the

four 3 dimensional arrays.

This is done by computing the matrix average (mean of 50 matrices stored in every 3

dimensional array) for each performance measure. This process is described as

follows:

Initialise four arrays of matrix sums. Four one array this can be done as follows:

 ;

Compute the arrays of sums using for loop as follows:

For 50 {

The four arrays of sums are calculated here. For instance, the process for one array

can be represented as follows:

 ;

}

Compute the matrix averages from each array of matrix sums produced by the above

for loop. Four one matrix of averages the notation can be as follows:

 APPENDIX C: Matlab CODE – Training process of classifiers

129

 ;

Step 3: Process of finding the best binary classifier based on a particular

performance measure.

This process involves extracting the best performance measure from each matrix

average above. Depending on whether we want to find the minimum or the

maximum for a particular performance measure, this can be done as follows:

 ;

Or,

 ;

Step 4: Process of finding the best training scenario (combination of number of

hidden nodes and number of training iterations) for each performance measure.

Also, this process involves finding the trade-off between the four performance

measures.

The best training scenario is the one that produced the best performance. This

process is described for the four performance measures as follows:

 Find row (number of hidden nodes) and column (number of training

iterations) from of Times, corresponding to the best

Time. The scenario (hn_t) found is the one that produced the shortest training

time. For this scenario, find the corresponding MSE, OAtrain, and OAtest.

 Find row and column from of MSEs, corresponding

to the best MSE. For this scenario, find the corresponding Time, OAtrain, and

OAtest.

 Find row and column from of OAtrains,

corresponding to the best OAtrain. For this scenario, find the corresponding

Time, MSE, OAtest.

 APPENDIX C: Matlab CODE – Training process of classifiers

130

 Find row and column from of OAtests, corresponding

to the best OAtest. For this scenario, find the corresponding Time, MSE, and

OAtrain.

Step 5: Write results onto output file

This step involves sending the results to an external file to save them. It is worth

emphasising that training of the binary classifiers is done in one run and

subsequently one of another. So if this step is not implemented, results of the

previous classifiers will be lost while those of the subsequent ones are being

generated.

Step 6: Repeat step 1 to step 5 for all the binary classifiers

%The following codes are given as an example of how to

traingaclassifier

%We use CYT/~CYT binary classifier to illustrate the process. For

other

%binary classifiers, one will need to change the input and target

matrices

%accordingly

%Set:

N = 50; %Number of trials for the all training process of

classifiers

K = 10; %Number of folds for applying the k-fold CV

%Set 4 three dimensional arrays for storing the Time, MSE, OAtrain

and

%OAtest as follows:

N_ht_M_Time_subset(5,6,N) = 0;

N_ht_M_MSE_subset(5,6,N) = 0;

N_ht_M_OAtrain_subset(5,6,N) = 0;

N_ht_M_OAtest_subset(5,6,N) = 0;

%Set 4 three dimensional arrays for storing the Atrain1, Atrain2,

Atest1

 APPENDIX C: Matlab CODE – Training process of classifiers

131

%and Atest2

N_ht_M_Atrain1_subset(5,6,N) = 0;

N_ht_M_Atrain2_subset(5,6,N) = 0;

N_ht_M_Atest1_subset(5,6,N) = 0;

N_ht_M_Atest2_subset(5,6,N) = 0;

%Step 1: Implementation of the four nested for loops with the k-fold

cross

%validation as the innermost for loop.

%Starting the outer for loop for the total number of repetitions N

for n = 1:N

 %Vector of the 5 various numbers of hidden nodes.

 %Vector of the 6 various numbers training iterations.

H = [5,10,20,30,40];

T = [25,50,75,100,150,200];

%Starting the second for loop for the various hidden nodes h.

for h = H

 inputs = Yeast_Inputs; %Assigning the input matrix to the

process.

 targets = Yeast_Targets_CYT; %Assign the target matrix to the

process.

 net = feedforwardnet(h);

 net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};

 net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};

 net.layers{1}.transferFcn = 'tansig';

 net.layers{2}.transferFcn = 'tansig';

 net.layers{1}.initFcn = 'initnw';

 net.layers{2}.initFcn = 'initnw';

 %Starting the third for loop for the various training iterations

t.

 for t = T

 %Creating the indices Q for the training and test sets to

use in

 %the Cross Validation process.

 Q = size(inputs,2);

 APPENDIX C: Matlab CODE – Training process of classifiers

132

 ind = randperm(Q); %Random permutation Q, which gives

indices ind.

 cvFolds = crossvalind('Kfold',ind,K);

 %Starting the most inner for loop for 10-fold Cross

Validation.

 for k = 1:K

 testIdx = (cvFolds == k);

 trainIdx = ~testIdx;

 trInd = find(trainIdx);

 tstInd = find(testIdx);

 net.initFcn = 'initlay';

 net.trainFcn = 'trainrp';

 net.trainParam.epochs = t;

 net.trainParam.goal = 0;

 net.trainParam.max_fail = 5000; %5000 is the stopping

criteria,

 %which will never be reached.

 net.divideFcn = 'divideind';

 net.divideParam.trainInd = trInd;

 net.divideParam.testInd = tstInd;

 net.performFcn = 'mse';

 %Initializing and Training the Network.

 net = init(net);

 [net,tr] = train(net,inputs,targets);

 outputs = net(inputs);

 errors = gsubtract(targets,outputs);

 %---------------------Time------------------------------

 Time(k).time = tr.time;

 %Train_time(k) = mean(Time(k).time);

 MeTime(k) = mean(Time(k).time); %Mean training time

(training

 %time for one iteration (epochs) in an entire training

process.

 Time(k) = sum(Time(k).time); %Total training time

 APPENDIX C: Matlab CODE – Training process of classifiers

133

 %(training time for all iterations (epochs) in an entire

 %training process).

 %----------------------MSE------------------------------

 MSE(k) = tr.best_perf; %Minimun error reached during

training.

 %-------------------------Train-------------------------

 %Training inputs for each partition of CV.

 %Training targets for each partition of CV.

 %Training outputs for each partition of CV.

 train_inputs = inputs(:,trInd);

 train_targets = targets(:,trInd);

 train_outputs = net(train_inputs);

 %Misclassification rate (c_tr) and confusion matrix

(cm_tr) on

 %training.

 [c_tr,cm_tr] = confusion(train_targets,train_outputs);

 %Classification accuracy on training.

 OAtrain(k) = 100*sum(diag(cm_tr))/sum(sum(cm_tr));

 %Classification accuracy on training for class1 and

class2

 diag_cm_tr = diag(cm_tr);

 Atrain1(k) = 100*diag_cm_tr([1])/sum(cm_tr(1,:));

 Atrain2(k) = 100*diag_cm_tr([2])/sum(cm_tr(2,:));

 %-----------------------Test----------------------------

 %Test inputs for each partition of CV.

 %Test targets for each partition of CV.

 %Test outputs for each partition of CV.

 test_inputs = inputs(:,tstInd);

 test_targets = targets(:,tstInd);

 test_outputs = net(test_inputs);

 APPENDIX C: Matlab CODE – Training process of classifiers

134

 %Misclassification rate (c_tst) and confusion matrix

(cm_tst)

 %on testing.

 [c_tst,cm_tst] = confusion(test_targets,test_outputs);

 %Classification accuracy on testing.

 OAtest(k) = 100*sum(diag(cm_tst))/sum(sum(cm_tst));

 %Classification accuracy on testing for class1 and

class2

 diag_cm_tst = diag(cm_tst);

 Atest1(k) = 100*diag_cm_tst([1])/sum(cm_tst(1,:));

 Atest2(k) = 100*diag_cm_tst([2])/sum(cm_tst(2,:));

 end

 %----------------------Training time------------------------

 OMeTrain_time_1 = mean(MeTime); %Overall mean training

time.

 Mean_Time = sum(Time); %Overall total training time

 %for the 10 subsets of cross validation.

 %Overall total training time for all network

architectures(Asso-

 %ciations of number of nodes (h) with number of iterations

(t).

 ht_M_Time(h,t) = Mean_Time;

 %--------------------------Training accuracies--------------

 %Overall classification accuracy on training.

 Mean_OAtrain = mean(OAtrain);

 %Overall classification accuracy on training for all

scenarios.

 ht_M_OAtrain(h, t) = Mean_OAtrain;

 %Accuracies for class1 and class2

 Mean_Atrain1 = mean(Atrain1);

 Mean_Atrain2 = mean(Atrain2);

 ht_M_Atrain1(h, t) = Mean_Atrain1;

 APPENDIX C: Matlab CODE – Training process of classifiers

135

 ht_M_Atrain2(h, t) = Mean_Atrain2;

 %---------------------------Test accuracies-----------------

 %Overall classification accuracy on testing set

 Mean_OAtest = mean(OAtest);

 %Overall classification accuracy on testing for all

scenarios

 ht_M_OAtest(h, t) = Mean_OAtest;

 %Accuracies for class1 and class2

 Mean_Atest1 = mean(Atest1);

 Mean_Atest2 = mean(Atest2);

 ht_M_Atest1(h, t) = Mean_Atest1;

 ht_M_Atest2(h, t) = Mean_Atest2;

 %------------------------MSE--------------------------------

 %Overall minimun error reached during training.

 Mean_MSE = mean(MSE);

 %storing OBTrainPerf for all training scenarios.

 ht_M_MSE(h,t) = Mean_MSE;

 end

end

%------------Subsetting the matrices of the performance measures----

%This process makes sure that the matrices to be stored are of the

correct

%dimensions, i.e. 5 rows (various h) and 6 columns (various t).

ht_M_Time_subset = ht_M_Time([5,10,20,30,40],...

 [25,50,75,100,150,200]);

ht_M_MSE_subset = ht_M_MSE([5,10,20,30,40],...

 [25,50,75,100,150,200]);

ht_M_OAtrain_subset = ht_M_OAtrain([5,10,20,30,40],...

 [25,50,75,100,150,200]);

ht_M_OAtest_subset = ht_M_OAtest([5,10,20,30,40],...

 [25,50,75,100,150,200]);

ht_M_Atrain1_subset = ht_M_Atrain1([5,10,20,30,40],...

 [25,50,75,100,150,200]);

 APPENDIX C: Matlab CODE – Training process of classifiers

136

ht_M_Atrain2_subset = ht_M_Atrain2([5,10,20,30,40],...

 [25,50,75,100,150,200]);

ht_M_Atest1_subset = ht_M_Atest1([5,10,20,30,40],...

 [25,50,75,100,150,200]);

ht_M_Atest2_subset = ht_M_Atest2([5,10,20,30,40],...

 [25,50,75,100,150,200]);

%------------Storing the matrices of performance measures-----------

%Here, these matrices are stored in the three-dimensional arrays in

order

%to keep record of the results for all the N=50 repetitions of the

training

%tasks.

N_ht_M_Time_subset(:,:,n) = ht_M_Time_subset;

N_ht_M_MSE_subset(:,:,n) = ht_M_MSE_subset;

N_ht_M_OAtrain_subset(:,:,n) = ht_M_OAtrain_subset;

N_ht_M_OAtest_subset(:,:,n) = ht_M_OAtest_subset;

N_ht_M_Atrain1_subset(:,:,n) = ht_M_Atrain1_subset;

N_ht_M_Atrain2_subset(:,:,n) = ht_M_Atrain2_subset;

N_ht_M_Atest1_subset(:,:,n) = ht_M_Atest1_subset;

N_ht_M_Atest2_subset(:,:,n) = ht_M_Atest2_subset;

end

%-------------------Process of aggregating the results--------------

%Step 2: implementation of the process of aggregating the

performances

%contained in the four 3 dimensional arrays.

%All the N=50 training process are done with all the results stored

in the

%different three-dimensiol arrays. Now the process of aggregating

the

%results can start, i.e. computing the matrix sum and mean for each

%performance measure.

%Initialising the sum matrices.

Sum_N_ht_M_Time_subset = 0;

Sum_N_ht_M_MSE_subset = 0;

 APPENDIX C: Matlab CODE – Training process of classifiers

137

Sum_N_ht_M_OAtrain_subset = 0;

Sum_N_ht_M_OAtest_subset = 0;

Sum_N_ht_M_Atrain1_subset = 0;

Sum_N_ht_M_Atrain2_subset = 0;

Sum_N_ht_M_Atest1_subset = 0;

Sum_N_ht_M_Atest2_subset = 0;

%Applying the for loop to compute the sum and mean matrices for the

%performance measures.

%Computing the Sum

for n =1:N;

Sum_N_ht_M_Time_subset = ...

 Sum_N_ht_M_Time_subset + N_ht_M_Time_subset(:,:,n);

Sum_N_ht_M_MSE_subset = ...

 Sum_N_ht_M_MSE_subset + N_ht_M_MSE_subset(:,:,n);

Sum_N_ht_M_OAtrain_subset = ...

 Sum_N_ht_M_OAtrain_subset + N_ht_M_OAtrain_subset(:,:,n);

Sum_N_ht_M_OAtest_subset = ...

 Sum_N_ht_M_OAtest_subset + N_ht_M_OAtest_subset(:,:,n);

Sum_N_ht_M_Atrain1_subset = ...

 Sum_N_ht_M_Atrain1_subset+N_ht_M_Atrain1_subset(:,:,n);

Sum_N_ht_M_Atrain2_subset = ...

 Sum_N_ht_M_Atrain2_subset+N_ht_M_Atrain2_subset(:,:,n);

Sum_N_ht_M_Atest1_subset = ...

 Sum_N_ht_M_Atest1_subset+N_ht_M_Atest1_subset(:,:,n);

Sum_N_ht_M_Atest2_subset = ...

 Sum_N_ht_M_Atest2_subset+N_ht_M_Atest2_subset(:,:,n);

end

%Computing the Mean

Mean_N_ht_M_Time_subset = Sum_N_ht_M_Time_subset/N;

Mean_N_ht_M_MSE_subset = Sum_N_ht_M_MSE_subset/N;

Mean_N_ht_M_OAtrain_subset = Sum_N_ht_M_OAtrain_subset/N;

Mean_N_ht_M_OAtest_subset = Sum_N_ht_M_OAtest_subset/N;

Mean_N_ht_M_Atrain1_subset = Sum_N_ht_M_Atrain1_subset/N;

 APPENDIX C: Matlab CODE – Training process of classifiers

138

Mean_N_ht_M_Atrain2_subset = Sum_N_ht_M_Atrain2_subset/N;

Mean_N_ht_M_Atest1_subset = Sum_N_ht_M_Atest1_subset/N;

Mean_N_ht_M_Atest2_subset = Sum_N_ht_M_Atest2_subset/N;

%--------Rounding off the results to specified number of decimals---

%The mean matrices have been calculated; they are 8 in tolal,

corresponding

%to the 8 performance measures. Now we round them off to the number

of

%decimals as follows: 0 for training time, 4 for MSE, 2 for

%classification accuracies.

Roundn_Mean_N_ht_M_Time_subset = roundn(Mean_N_ht_M_Time_subset, 0);

Roundn_Mean_N_ht_M_MSE_subset = roundn(Mean_N_ht_M_MSE_subset, -4);

Roundn_Mean_N_ht_M_OAtrain_subset =

roundn(Mean_N_ht_M_OAtrain_subset, -2);

Roundn_Mean_N_ht_M_OAtest_subset = roundn(Mean_N_ht_M_OAtest_subset,

-2);

Roundn_Mean_N_ht_M_Atrain1_subset =

roundn(Mean_N_ht_M_Atrain1_subset, -2);

Roundn_Mean_N_ht_M_Atrain2_subset =

roundn(Mean_N_ht_M_Atrain2_subset, -2);

Roundn_Mean_N_ht_M_Atest1_subset = roundn(Mean_N_ht_M_Atest1_subset,

-2);

Roundn_Mean_N_ht_M_Atest2_subset = roundn(Mean_N_ht_M_Atest2_subset,

-2);

%---Finding the optimal (best) value for each performance measure---

%Step 3: the process of finding the best binary classifier based on

a

%particular performance measure.

%Obviously the optimal values are, the minimum for training time and

MSE,

%and the maximum for the accuracies. These are found from the round

off

%matrices.

Min_Roundn_Mean_N_ht_M_Time_subset = ...

 APPENDIX C: Matlab CODE – Training process of classifiers

139

 min(min(Roundn_Mean_N_ht_M_Time_subset));

Min_Roundn_Mean_N_ht_M_MSE_subset = ...

 min(min(Roundn_Mean_N_ht_M_MSE_subset));

Max_Roundn_Mean_N_ht_M_OAtrain_subset = ...

 max(max(Roundn_Mean_N_ht_M_OAtrain_subset));

Max_Roundn_Mean_N_ht_M_OAtest_subset = ...

 max(max(Roundn_Mean_N_ht_M_OAtest_subset));

Max_Roundn_Mean_N_ht_M_Atrain1_subset = ...

 max(max(Roundn_Mean_N_ht_M_Atrain1_subset));

Max_Roundn_Mean_N_ht_M_Atrain2_subset = ...

 max(max(Roundn_Mean_N_ht_M_Atrain2_subset));

Max_Roundn_Mean_N_ht_M_Atest1_subset = ...

 max(max(Roundn_Mean_N_ht_M_Atest1_subset));

Max_Roundn_Mean_N_ht_M_Atest2_subset = ...

 max(max(Roundn_Mean_N_ht_M_Atest2_subset));

%--------Saving the performance Matrices for a binary classifier----

%Since the training of the binary classiers is done subsequently one

after

%onther, results for each classifier should be directly saved in an

%external file in other not to lose them. Here we show how to save

results

%in Excel file for the CYT/~CYT binary classifier.

%Open Directory

Directory = 'C:\Users\1SavingCYTrp5to40H25to200T.xls'; %Specify your

Directory

%Saving matrices

xlswrite(Directory, Roundn_Mean_N_ht_M_Time_subset, 'Sheet1', 'A1')

xlswrite(Directory, Roundn_Mean_N_ht_M_MSE_subset, 'Sheet1', 'A7')

xlswrite(Directory, Roundn_Mean_N_ht_M_OAtrain_subset, 'Sheet1',

'A13')

xlswrite(Directory, Roundn_Mean_N_ht_M_OAtest_subset, 'Sheet1',

'A19')

xlswrite(Directory, Roundn_Mean_N_ht_M_Atrain1_subset, 'Sheet1',

'A25')

 APPENDIX C: Matlab CODE – Training process of classifiers

140

xlswrite(Directory, Roundn_Mean_N_ht_M_Atrain2_subset, 'Sheet1',

'A31')

xlswrite(Directory, Roundn_Mean_N_ht_M_Atest1_subset, 'Sheet1',

'A37')

xlswrite(Directory, Roundn_Mean_N_ht_M_Atest2_subset, 'Sheet1',

'A43')

%Saving best performance from each matrix

xlswrite(Directory, Min_Roundn_Mean_N_ht_M_Time_subset, 'Sheet1',

'A45')

xlswrite(Directory, Min_Roundn_Mean_N_ht_M_MSE_subset, 'Sheet1',

'A46')

xlswrite(Directory, Max_Roundn_Mean_N_ht_M_OAtrain_subset, 'Sheet1',

'A47')

xlswrite(Directory, Max_Roundn_Mean_N_ht_M_OAtest_subset, 'Sheet1',

'A48')

xlswrite(Directory, Max_Roundn_Mean_N_ht_M_Atrain1_subset, 'Sheet1',

'A50')

xlswrite(Directory, Max_Roundn_Mean_N_ht_M_Atrain2_subset, 'Sheet1',

'A51')

xlswrite(Directory, Max_Roundn_Mean_N_ht_M_Atest1_subset, 'Sheet1',

'A52')

xlswrite(Directory, Max_Roundn_Mean_N_ht_M_Atest2_subset, 'Sheet1',

'A53')

%-Finding of best classifier based on a particular performance

%measure

%Step 4: the process of finding the best training scenario

(combination of

%number of hidden nodes and number of training iterations) for each

%performance measure. Also, this process involves find the trade-off

%between the four performance measures.

%The idea here is to find a classifier with the best performance on

a

%particular performance measure, the corresponding training scenario

and

 APPENDIX C: Matlab CODE – Training process of classifiers

141

%other measures. For instance, if the best classifier is based on

OAtest,

%then its corresponding scenario is found. For this scenario, the

OAtrain,

%time, MSE, and so forth are found.

%-------Optimal classifier based on Atrain1 (train_Acc_class1)------

%find scenario h_t (row and column) of Max Atrain1

[row,col] = find(Roundn_Mean_N_ht_M_Atrain1_subset == ...

 max(max(Roundn_Mean_N_ht_M_Atrain1_subset)));

index = [row,col]; %save row and column as index

%create a linear index

Linear_idx = sub2ind(size(Roundn_Mean_N_ht_M_Atrain1_subset),

row,col);

%for that index, find the corresponding Atest1,

Roundn_Mean_N_ht_M_Atest1_subset(Linear_idx);

%create a cell array of 11 times 9 dimension. This is store results

for

%every classifier. This example is for the Yeast binary classifiers.

The 11

%correspond to 10 Yeast classifiers + 1 row for heading. The 9

correspond

%to the 8 performance measures + 1 column for scenarion.

%Notice that we use smaller arrays to illustrate the process. But

for

%results of the 10 Yeast classifiers and all the performance

measures use

%arrays as specified above. For the E.coli classifier, specify the

%dimension of arrays accordingly

%The following is an example of one can implement the process

Optimal_train_Acc_class1 = cell(4, 4);

Optimal_train_Acc_class1{1,1} = 'Binary classifiers';

Optimal_train_Acc_class1{2,1} = 'CYT';

Optimal_train_Acc_class1{3,1} = 'ERL';

Optimal_train_Acc_class1{1,2} = 'Class1Atrain';

 APPENDIX C: Matlab CODE – Training process of classifiers

142

Optimal_train_Acc_class1{1,3} = 'Class1Atest';

Optimal_train_Acc_class1{1,4} = 'Architecture';

Optimal_train_Acc_class1{2,2} =

Max_Roundn_Mean_N_ht_M_Atrain1_subset;

Optimal_train_Acc_class1{2,3} =

Roundn_Mean_N_ht_M_Atest1_subset(Linear_idx);

Optimal_train_Acc_class1{2,4} = Linear_idx;

%--------------From same process as above is repeted---------------

%------------Optimal classifier based on Atest1--------------------

%find row h and column t of the maximum of matrix of Atest1

[row,col] = find(Roundn_Mean_N_ht_M_Atest1_subset ==...

 max(max(Roundn_Mean_N_ht_M_Atest1_subset)));

index = [row,col]; %save row and column as index

Linear_idx = sub2ind(size(Roundn_Mean_N_ht_M_Atest1_subset),

row,col);

Roundn_Mean_N_ht_M_Atrain1_subset(Linear_idx);

Optimal_test_Acc_class1 = cell(4, 4);

Optimal_test_Acc_class1{1,1} = 'Binary classifiers';

Optimal_test_Acc_class1{2,1} = 'CYT';

Optimal_test_Acc_class1{3,1} = 'ERL';

Optimal_test_Acc_class1{1,2} = 'Class1Atrain';

Optimal_test_Acc_class1{1,3} = 'Class1Atest';

Optimal_test_Acc_class1{1,4} = 'Architecture';

Optimal_test_Acc_class1{2,2} =

Roundn_Mean_N_ht_M_Atrain1_subset(Linear_idx);

Optimal_test_Acc_class1{2,3} = Max_Roundn_Mean_N_ht_M_Atest1_subset;

Optimal_test_Acc_class1{2,4} = Linear_idx;

%-----------------Optimal classifier based on OAtest----------------

Optimal_OAtest = cell(4, 6); %create a cell array of 11 times 6

dimension

Optimal_OAtest{1,1} = 'Binary classifiers';

Optimal_OAtest{2,1} = 'CYT';

Optimal_OAtest{3,1} = 'ERL';

 APPENDIX C: Matlab CODE – Training process of classifiers

143

Optimal_OAtest{1,2} = 'OAtrain';

Optimal_OAtest{1,3} = 'OAtest';

Optimal_OAtest{1,4} = 'MSE';

Optimal_OAtest{1,5} = 'Time';

Optimal_OAtest{1,6} = 'Scenario';

[row,col] = find(Roundn_Mean_N_ht_M_OAtest_subset == ...

 max(max(Roundn_Mean_N_ht_M_OAtest_subset)));

index = [row,col]; %save row and column as index

Linear_idx = sub2ind(size(Roundn_Mean_N_ht_M_OAtest_subset),

row,col);

Roundn_Mean_N_ht_M_OAtrain_subset(Linear_idx);

Roundn_Mean_N_ht_M_MSE_subset(Linear_idx);

Roundn_Mean_N_ht_M_Time_subset(Linear_idx);

Optimal_OAtest{2,2} = Roundn_Mean_N_ht_M_OAtrain_subset(Linear_idx);

Optimal_OAtest{2,3} = Max_Roundn_Mean_N_ht_M_OAtest_subset;

Optimal_OAtest{2,4} = Roundn_Mean_N_ht_M_MSE_subset(Linear_idx);

Optimal_OAtest{2,5} = Roundn_Mean_N_ht_M_Time_subset(Linear_idx);

Optimal_OAtest{2,6} = Linear_idx;

%-------Optimal classifier based on OAtrain-------------------------

Optimal_OAtrain = cell(4, 6); %create a cell array of 11 times 6

dimension

Optimal_OAtrain{1,1} = 'Binary classifiers';

Optimal_OAtrain{2,1} = 'CYT';

Optimal_OAtrain{3,1} = 'ERL';

Optimal_OAtrain{1,2} = 'OAtrain';

Optimal_OAtrain{1,3} = 'OAtest';

Optimal_OAtrain{1,4} = 'MSE';

Optimal_OAtrain{1,5} = 'Time';

Optimal_OAtrain{1,6} = 'Scenario';

[row,col] = find(Roundn_Mean_N_ht_M_OAtrain_subset == ...

 max(max(Roundn_Mean_N_ht_M_OAtrain_subset)));

index = [row,col]; %save row and column as index

Linear_idx = sub2ind(size(Roundn_Mean_N_ht_M_OAtrain_subset),

row,col);

 APPENDIX C: Matlab CODE – Training process of classifiers

144

Roundn_Mean_N_ht_M_OAtest_subset(Linear_idx);

Roundn_Mean_N_ht_M_MSE_subset(Linear_idx);

Roundn_Mean_N_ht_M_Time_subset(Linear_idx);

Optimal_OAtrain{2,2} = Max_Roundn_Mean_N_ht_M_OAtrain_subset;

Optimal_OAtrain{2,3} = Roundn_Mean_N_ht_M_OAtest_subset(Linear_idx);

Optimal_OAtrain{2,4} = Roundn_Mean_N_ht_M_MSE_subset(Linear_idx);

Optimal_OAtrain{2,5} = Roundn_Mean_N_ht_M_Time_subset(Linear_idx);

Optimal_OAtrain{2,6} = Linear_idx;

%Optimal_for_all

Optimal_for_all = cell(4, 9); %create a cell array of 11 times 6

dimension

Optimal_for_all{1,1} = 'Binary classifiers';

Optimal_for_all{2,1} = 'CYT';

Optimal_for_all{3,1} = 'ERL';

Optimal_for_all{1,2} = 'OAtrain';

Optimal_for_all{1,3} = 'OAtest';

Optimal_for_all{1,4} = 'Class1Atrain';

Optimal_for_all{1,5} = 'Class1Atest';

Optimal_for_all{1,6} = 'Class2Atrain';

Optimal_for_all{1,7} = 'Class2Atest';

Optimal_for_all{1,8} = 'MSE';

Optimal_for_all{1,9} = 'Time';

Optimal_for_all{2,2} = Max_Roundn_Mean_N_ht_M_OAtrain_subset;

Optimal_for_all{2,3} = Max_Roundn_Mean_N_ht_M_OAtest_subset;

Optimal_for_all{2,4} = Max_Roundn_Mean_N_ht_M_Atrain1_subset;

Optimal_for_all{2,5} = Max_Roundn_Mean_N_ht_M_Atest1_subset;

Optimal_for_all{2,6} = Max_Roundn_Mean_N_ht_M_Atrain2_subset;

Optimal_for_all{2,7} = Max_Roundn_Mean_N_ht_M_Atest2_subset;

Optimal_for_all{2,8} = Min_Roundn_Mean_N_ht_M_MSE_subset;

Optimal_for_all{2,9} = Min_Roundn_Mean_N_ht_M_Time_subset;

%---------------Training the remaining binary classifiers-----------

%The above process has shown how to train one binary classifier. To

train

 APPENDIX C: Matlab CODE – Training process of classifiers

145

%all the binary classifiers, the above process must be repeated as

many

%times as the number of classifiers to train. Each time, the

appropriate

%target matrix must be fed to the network. The input matrix remains

the

%same, i.e. one for the E.coli, and one for the Yeast classifiers.

