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Abstract

The dynamic analysis of catenary vibration of mine hoist ropes on South African mines is
examined. This research has been preceded by studies in the mining industry, which have
laid the foundation fot the definition of design guidelines of hoist systems to avoid catenary
vibrations or rope whip. These guidelines are based on a classical linear analysis of a taut
string, and in essence rely on ensuring that the frequency of excitation at the winder drum
due to the coilingmechanism, does not coincidewith the linear transverse natural frequency
of the taut catenary. Such an approach neglects the nonlinear coupling between the lateral
catenary motion and the longitudinal systern response. Although previous research sur
gested the possibility of autoparametric coupling between the catenary and vertical rope,
this was not developed further on a theoretical level.. The possibility of SUchbehaviour is
defined by considering the equations of motion of the coupled system.

A design methodology is developed for -letermining the parameters of a mine hoist systern
so as to avoid rope whip. The methodology accounts for the nonlinear coupling between
the catenary and longitudinal system. In order to implement the proposed methodology,
two phases of the analysis are developed. In the first phase the stability of the linear steady
state motion is examined in the context of the nonlinear equations of motion, by applying
a harmonic balance method. The stability analysis defines regions of secondary resonance,
where it is shown that such regions may arise at sum and difference combinations of the
linear lateral and longitudinal natural frequencies due to autoparametric excitation. Prior
to this research, this phenomenon had not been appreciated in the context of the mine hoist
system, A laboratory experiment was conducted to confirm the existence of these regions
experimentally. In reality, the system is non-stationary since the dynamic characteristics of
the system change during the winding cycle, and hence the steady state stability analysis can
only describe potential regions of nonlinear interaction on a qualitative basis. The second
phase of the analysis deals with a non-linear numerical simulation of the hoist system, which
accounts for the non-stationary nature of the systems dynamic characteristics, and includes
transient excitations induced during the wind.

The methodology developed is assessed by considering the Kloof mine rope system, where
rope whip was observed. This study demonstrates that although an appreciation of the
steady state system charecterisc.cs is useful, the stability analysis alone is not sufficient.
It is necessary to account for the non-stationary aspects of the winding cycle if a realistic
interpretation of the observed behavlcur is to be achieved. To compliment this study, a
motion analysis system was developed to record catenary response on an existing mine hoist
installation. Such data has not been recorded before. This data provides direct evidence of
the autoparametric nature of the coupled catenary/vertical rope system.
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A man breaking his journey between one place and another at a third place of no name,
character, popv.latiotl or significance, sees a unicorn cross his pa!h and disappear. That in
itself is startling, but there ere precedents fOI' mystical encounters of varzous kinds, or to be
less extreme, a choice of persuasions to put it down to fancYl until ~ "My God," says a second
man., "1 m'l$t be dreaming, I thought! saw a unicorn;" At which point a dimension. is added
that makes th(;. experience as alarming as it will euer be. A 'third uiiiness, you understand,
adds no further dimensi.on but only spreads it thinner, and a fourth thinner still, and the
m'lre witnesses there are the thinner it gets and the more reasonable it becomes until it .s
as thin as reality, the name we give to the commOn experience .... "Look, lookl" recites the
crowd. "A horse with ail arrow in its forehead! It must have been mistaken for a deer."

Tom Sioppard.
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Outline of the Thesis

The topic of catenary vibration or rope whip in hoisting systems on South
African mines was examined in the early 70's by Dimitriou and Whillier[1973]'
and Mankowski, Whillier and Louw[1974]. This research resulted in the devel-
opment of design guidelines for tl-e avoidance of rope whip, based on classical
taut string theory. The possibility of autoparametric response of the system
was intuitively described by Dimitriou and Whillier[1973], but not formalised.
Mankowski[1982] resea.rched the forced nonlinear response of the system nu-
merically, culminating in a Ph.D. thesis submitted to this University. His thesis
examined, and alluded to, the difficulty associated with modelling nonlinear as-
pects of the Kloof mine hoist system, and consequently of nonlinear hyperbolic
partial differential equations. Numerical results defined the forced response
of the modelled system. Unfortunately, the simulation exhibited numerical
instability, and a complete simulation of the winding cycle of Kloot Mine
was not achieved. Nev _.cheleas, Mankowski's contribution provided invalu-
able information concerning the behaviour of the mine hoist system, as well as
the application of dynamic simulation techniques employing Bergeron'sjl Sdl]
impedance method. However, this effort did not clarify or extend the existing
design guidelines.

The current thesis intends to compliment previous research, by developing
a methodology pertaining to the avoidance of catenary whip on mine hoist
systems. In this regard, during the initial design phase, the nonlinear forced
resonance of the system is not. of primary concern. It is the definition of
system parameters likely to reduce the potential for rope whip, and hence the
avoidance of significant nonlinear interactions, which is of primary importance.
Hence the nonlinear equations of motion of the catenary are linearised about
the steady state first order solution of the system, and the stability of this
motion to small disturbances is examined. The philosophy of this approach
is to capture the fundamental nature of mechanisms relating to the growth
of the catenary response, in such a manner that a routine approach may be
employed during the design phase of a shaft head layout to avoid such regions.
This approach may appear to discard the reservations apparent in recent lit-
erature regarding the study of nonlinear systems, specifically with respect to
the discovery of chaotic behaviour and consequently the importance of retain-
ing the integrity of the nonlinear nature of the system. This is particularly
important in terms of the final validation of the system parameters selected,
since transient excitation, as well as the non-stationary nature of the system
may lead to unexpected behaviour. To address this, a numerical simulation
retaining nonlinear terms as well as transient excitation was developed. The
simulation is computationally intensive, and is intended to be used as the final
validation of the design parameters.
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In Chapter 1 of this thesis, a description and definition of the scope of the
work and its context in the South Ah ican mining industry is presented. The
coi:nponents of the mine hoist system are examined and sources of excitation
are identified. Relevant rest-arch pertainmg to studies of the dynamics of the
general system are reviewed. A detailed account of past research concerning
catenary dynamics of mine hoist systems, and the current guideline employed
for the design of a system in order to avoid catenary whip is presented.

In Chapter 2 a discussion relating to research conducted in the literature con-
cerning the dynamics of strings and cables is presented. The purpose of this
chapter is to establish a perspective on the types of nonlinear behaviour aSSO-

ciated with taut strings and cables. These studies consider strings and cables
fixed at each end. Such boundary conditions are relevant to most cable sys-
terns, where in prj ctice the longitudinal wave speed is significantly larger than
the lateral wave speed; this permits simplification of the equations of motion
by neglecting the longitudinal inertia of the, system, there! introducing a
quasi-static definition for the longitudinal response. This re~resei.cs the point
of departure between studies presented in the literature, and the mine hoist
system, where due to the coupling between the catenary and vertical cable
across the sheave, retention of the longitudinal eystem iner+ia is essen1ial.

In Chapter 3 the derivation of the equations of motion of the coupled catenary
and longitudinal system is presented. The equations are derived by applying
Hamilton's principle. In the most general fcrm, the equations of motion include
rope curvature, axial transport velocity of the rope, and utilise a nonlinear
strain definition relating "J,.e axial tension in the cable to motion in three
orthogonal directions. These equations form the basis for further development.

In Chapter 4 the theoretical basis for the first phase of the proposed method-
ology is presented. The equations of motion developed in chapter 3 are sim-
plified. A datum solution is then formulated. This solution is only valid in the
absence of primary or secondary resonance conditions. The variational form
of the solution is developed by substitution of this solution into the nonlinear
equations of motion followed by linearisation, and normal mode orthogonali-
sation. This results in a set of coupled Hill type ordinary differential equations
with periodic coefficients. The stability of the system is firstly examined by
....pplying a harmonic balance method. The harmonic balance method was ap-
plied, since it is possible to prepare a general nui•.-srica]code for assessing the
stability of the system. Although the definition of regions of stability may be
achieved in closed form, by applying a perturbation method such as multiple
scales, it is likely tbat a number of regions may occur simultaneously, resulting
in anomalous regions requiring special attention. In addition, perturbation
methods require the concept of a small parameter, as well as a higher level
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of skill from the designer. However, a multiple scales method is a.t1plied to
substantiate the regions determined, as well as to define conditions of tuning
which' -mId lead to internal resonance. 'the results from a simple laboratory
experiin 'It are presented to further validate the nume-ical programme devel-
oped, as well as to illustrate the significance of the secondary resonance regions
at an additive combination of the longitudinal ant: lateral natural frequency,
Finally the stability analysis of the Kloof Mine rope system is presented and
discussed.

Chapter 5 presents the numerical simulation developed as t:1C second phase
of the methodology The simulation accounts for the non-stationary nature of
the system, and transient excitations. These effects could not be accounted
for in the steady state stability analysis. An important aspect of a numerical
simulation concerns the damping mechanism applied. Experimental resuiz s
relating to a definition of a damping mechanism applicable to mine hoist cables
are scarce. The damping mechanism applied in the simulation is discussed
and motivated. A numerical simulation of the Kloof Mine rope system is
presented for both th.:::ascending and descending wind. The results confirm the
observations of Dimitriou and Whillier[1973L where severe rope whip occurred
on the ascending cycle but not on the descending cycle.

Chapter 6 concludes the study, where a critical appraisal of the work is pre-
sented, and suggestions for further research are discussed.
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Chapter 1

Introduction

The development of the mining industry in Soutf A fr;' nas stimulated both
technical and social change. The primary funcu,», .» the industry is the ex-
traction of mineral rich ore from natural reserves. During the early stages of
development, this necessitated ore extraction from depths measurable in hun-
dreds of meters. Currently the local gold mining industry is internationally
distinguished for developing mines to depths of thousands of meters. The need
for such depth has dictated the development of high speed hoisting equipment
to accommodate production requirements. Due to the capital cost and strin-
gent safety criteria defined by legislation, an active area of research concerning
the technical aspects of hoisting has emerged. Research has been pursued un-
der the auspices of The Chamber of Mines Research Organisation (COMRO),
which supports research in the Shafta programme. Backeberg(1990J states that
this programme was established to solve problems associated with access to
the reef, and incorporates two main areas of investigation within conventional
hoisting, namely, winding ropes and shaft steelwork/conveyances.
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The Shafts programme can be broadly divided into four main projects which
are pertinent t.) this study

o Winder Ropes - Factors of Safety

e Rope Degradation Mechanisms

o Shaft Steelwork Design

o Conveyances ann Guide R.ollers

Each of these projects are pertinent to current and future production, safety
and maintenance costs associated with the hoisting process. The projects are
interrelated and generally pursue one main theme: the extension of the safe
operating envelope of single hoist winding systems. Naturally, benefits will be
derived by systems operating at shallower depths. The rope factors project
examines the extent to which the legal factor of safety can be lowered, thus
easing the current depth constraint. Consequently, rope selection strategy,
and the aspect of compensating the reduction in overall rope factor of safety
by reducing dynamic loads through more stringent winder control, have been
considered.

The Rope Degradation Mechanism programme examines wear and damage
mechanisms relate ' to the winding process and hence is not only concerned
with the reduction rope strength, but also with extending the operating life
of the rope. With regard to this programme, Chaplin[1989] has identified sev-
eral deterioration mechanisms, namely plastic and frictional wear due to high
contact stresses generated during coiling, fcllowed 1:.. axial slipback during the
unwinding process. Fatigue loading, due to the combined effect of fluctuating
tension and bendi ig over the sheave or underlying coil layer on the winder
drum surface, is also identified as a damage mechanism. An experimental pro-
gramme has been suggested to study such mechanisms and ,he feasibility of
commissioning an experimental facility is currently being considered by the
Council for Scientific and Industrial Research (CSIR).

The production constraint of deep level mining will dictate higher winding
speeds. Current winding speeds of 18 ta]« will be extended to 25-30 m/s.
Harvey[1973] attributed the cautious approach to winding speed to "present
limitations in shaft steelwork and conveyance desiqn" - which "lead to problems
in conveyance oscillations". The Shaft Steetwork Design programme essen-
tially addressed this problem. The Structural Dynamics Research Corporation
(SDRC) was commissioned by COMRO[1990] to investigate the mechanism of
slamming behaviour of the conveyance between the guides. Slamming occurs
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when the conveyance is excited betweenthe guides to the extent that the guide
rollers become inoperative) resulting in steel to steel ( .mtact between the skip
and guide. Through numerical simulation, SnRC identified significant param-
eters leadlng to slamming and hence derived design guidelines. The results of
the study demonstrated that slamming is influenced by guide alignment, con-
veyance speed, guide length and the ratio ofmid span guide stiffness to support
stiffness. Although this work was carried out independently by SDRG, Tondl
(sec Schmidt and Tondl[1986}) investigated a similar problem for the German
mining industry. Tondl showed that by incorporating rotational and transla-
tional degrees of freeuom j as well as the effect of periodic guide stiffness, the
coupled conveyance/guide system linear-sed to one with periodic coefficients.
He thus concluded that the system was parametrically excited and derived ap-
proximate solutions to the stability intervals, These intervals are related to the
same parameters subsequently identified by SDRe. The aspect of guide align-
ment, which was identified as a contributory factor to slamming, has received
attention, and two devices capab'e of measui.ng alignment have been designed
and developed. Since it will not be possible to guarantee perfect guide align-
ment, the Conveyances and Guide Rollers Project was initiated. This project
compliments the former in that it focusses on the design of conveyances and
lateral conveyance suspension systems, to accommodate and minimise dynamic
loads induced by the alignment of the shaft steelwork.

It is evident that the mining industry is involved in significant research. Hoist-
ing technology is a complex field, continually under assessment and revision.
The ip":u.stry employs current technology, as well as investing in international
res-arch and development. The study presented in. the current thesis covers
a small aspect of the global effort. It was stimulated through assessing past
research carried out at the University, the aim being to refine and re-initiate
research into phenomena associated with catenary dynamics, in preparation
for current and future application.
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1.1 The Mine Hoist System

The mine hoist system consists of a headgear, crtical shaft and winding house.
The headgear is necessary to elevate the conveyance above ground level to
effect the dumping of the conveyance load. Thus the design necessitates the
existence of an inclined catenary passing over a sheave in the headgear to
the conveyance in the vertical shaft. During the design stage, parameters
such as rope diameter, sheave diameter, winder drum diameter and power
are determined. It is at this critical stage that the dynamic behaviour of the
overall system is addressed. Every attempt should be made to ensure that the
design speed of the system and the production rate of the shaft is attainable
in practice, as little can be done subsequently to correct a system for adverse
dynamic behaviour.

In essence three different configurations of the hoist system exist, and are
illustrated in figure 1.1.

a) A single drum hoisting sys+em.

b) A Koepe winding system.

c) A Blair multi rope hoisting system.

The single drum winder configuration is the simplest design. It consists of a
single drum, single cable and conveyance. This system is .I1'~nei.'allylimited to
shallower winds; or lower payloads.

The Koepe system is based on a bollard type friction principle. Each con-
veyance is attached between a head and tail rope. The system ia counter
balanced, where a differential torque is supplied by the winder to accommo-
date the difference in. mass between the full ascending conveyance and the
empty descending conveyance. No storage facility for the rope on the winder
drum is required. Generally the Koepe winding system is used for shallower
winds « lOOOm). The Koepe winding configuration is not addressed in this
study. However tail whip is a consideration on these systems, and is viewed as
a potential area, for future research.

The Blair multi-rope winder is an extension of the single drum winder config-
uration, in that two ropes support the conveyance, driven by two single drum
winders. The rope between the two winders is continuous, the winders are me-
chan.ically coupled, and a compensating sheave on the conveyance facilitates
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equal load sharing between the two ropes. If it is assumed that the compen-
Bating sheave perfectly isolates the cables from one another, then this system
could be approximated as two single drum winders.

This study addresses single drum and Blair multi-rope double drum winders.
Although these basic systems differ in physical appearance, for the purpose of
dynamic studies they may be reduced to, andtreated as a single drum winding
system. Thus the particular layout of the mine hoist system studied is in fact
that of a, single drum winder, where design parameters determined for this
system would he readily applicable to either configuration.

(a.)

Fr'joUOIl t1hael
Drive Headgear Sb...avQ~

(b) (c)

Figure 1.1: Hoisting system configurations

a) Singh! Drum Winder. b) Koepe Winder. c) Blair Multi-rope Winder.
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1.1.1 Excitation Sources

Winder technology developed with the mining industry's need to mine to
greater depths. As shaft depth increased, the cost of wire ropes increased
due to a higher strength requirement. In order to maximise the life of the
rope, mechanisms causing rope damage were minimised. During winding, rope
damage may occur at the winder drum due to miscoiling, gaps or pull-through,
which may result in crushing or even failure of the rope due to the high contact
pressures developed, In order to minimise this damage, coiling mechanisms
were designed to ensure a uniform controlled coiling pattern on the winder
surface and on subsequent layers.

In the Ie te 1950'b an invention by Fran) L Lebus (Dimitriou and Whillier
[1973]) resolved these problems, and resilted in a system where controlled
coiling at high speed could be achieved. This system achieved a neat multi-
layer coiling pattern e••n.bl;.ig 'uhe storage of cable on the ~:rum without the
rl.amaging effects of miscoiling. This consisted of grooving the drum as illus-
trated in figure 1.? ThE:CI oss-cver points on the Lebus drum are diametrically
nposed, and as the cable passe; through a cross-over, it is shifted one half of

Its diameter on one side of the r'rum, and one half on the other. When the
cable reaches a drum flange, a filler guider i.he layer change, and spooling con-
tinues in the opposite direction. A cross section of the typical coiling pattern
is illustrated in figure 1.3.

Previous research bv Dimitriou and Whillier [1973]1identified, .rious excita-
tion sources, the rr.ajor excitation being that due to the coiling mechanism
employed r::'il tIl...v-inder drum surface in order to achieve a uniform coiling
pattern. In their analysis, it was shown that the longitudinal and lateral exci-
tation due to the Lebus «evice forms the primary source of excitation to the
system. ",he excitation is defined with reference to the co-ordinate system
illustrated in figure 1.4. The x axis is parallel to the drum axis, whilst the
y,z directions represent she normal and tangential co-ordinate directions of the
drum surface,

Consider a rope being coiled onto the drum and taking up successive positions
as illustrated in figures 1.3, 1.4.

G A pulse ill the x direction occurs at each coil cross-over until a layer
change, and then the direction of the pulse reverses.

lOther sources of excitation" neglected in this study, may arise due to ovality of the
winder drum or head sheave, and shaft steelwork misalignment.
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o While the cable is winding onto the drum surface, there will be no pulse
in the y direction, as the cable remains at coustant radius. When a
layer change occurs at position 3-4, a strong y pulse occurs. Thereafter
a smaller y pulse occurs at each successive coi. crossover as the cable
mounts over the underlying coil layer.

e A pulse in the z direction occurs at each' coil crossover, as the coiling rate
is momentarily increased as the cable rises rver and across the Lebus
surface or lower coil layer . This pulse is acce .ituated at a layer change,

The various pulses occurring in the rope are illu rtrated in relation to the rope
position in figure 1.4. The frequency at which the pulses occur is directly
related to the drum winding speed. Since the re is a coil cross-over every half
revolution of the drum, the excitation freorency is twice that of the drum
rotational frequency, for a 1800 Lebus sleeve.

L
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Figure 1.2: Mankowski[1982], Figure 2.4(a): Winder drum fitted with a Lebus
liner
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overs at the drum
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1.2 The Study of Dynamics in the Industry

1.2.1 Longitudinal Dynamic Studies

Various aspects of hoisting technology have .been examined in the past. Ini-
tially the industry was concerned with adequate rope factors of safety. This
stimulated research into the longitudinal behaviour of a cable supporting an
end mass under emergency braking. This aspect was first investigated by
Vaughan[1903], where a lumped parameter model of the rope was employed
to simulate a descending cable with a suspended mass at its end, suddenly
stopped at the top support, Vaughan's [1903] analysis demonstrated that a
critical depth exists, where, due to kinetic shocks, the cable is more severely
stressed than that at greater depth. Perry[1906] solved a similar problem util-
ising the solution to the wave equation, however his analysis concentrated on
the waveform and frequency of subsequent stress oscillations. These analy-
ses assumed idealised instantaneous deceleration and thus simulated extreme
loading conditions. Perry and Smith[1932] assessed the influence of mechanical
breaking on winding equipment. Part of their study focused on the ca1culaticn
of kinetic tension in the rope due to acceleration/deceleration or emergency
breaking. They illustrated that if a ramp acceleration/deceleration profile was
applied with a period equal to that of the fundamental longitudinal mode,
minimum dynamic response would occur. Pollock and Alexander[1951], ex-
tended this work, refining the analysis by including higher order terms in the
solution, and examining the residual response of the rope after the accelera-
tion/deceleration had ended. Harvey and Laubscher[1965] examined the lon-
gitudinal behaviour of the hoist system, including the inertial effects of winder
motor / drum and sheave, for the purpose of developing a control system capa-
ble of reducing residual response amplitudes during emergency braking. The
control system developed imposed an emergency deceleration profile consisting
of a ramp change until a predetermined maximum value had been obtained,
holding this value constant until the end of the braking cycle. Active winder
control is currently being assessed, with respect to the initial acceleration and
deceleration profiles imposed during normal winding (Backeberg[1990]). This
will result in lower residual response during normal operation, thus improving
the fatigue life of ropes currently in use.

More recently, with the discovery of significant ore reserves between 3000-
5000m levels, the aspect of rope factor of safety has been re-examined. The
rationale being that a reduction in this factor may extend current hoisting
technology to accommodate mining to greater depth without the use of mul-
tiple hoist systems. Natu.rally this would also benefit existing installations in
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terms of the allowable rope life, or increased payload and production rate.

Greenway[1989] re-addressed the problem as studied by Vaughan[1903], Perry
[1906], Perry and Smith[1932], Pollock and Alexander[1951], deriving a model
of the longitudinal response of the rope with a suspended end mass under var-
ious acceleration/deceleration profiles. This study was primarily intended to
be a parametric study to assess the influence of physical parameters on the dy-
namic response, By utilising a non-dimensional approach, it was demonstrated
that the peak response of the upper end dynamic force, and hence the ratio
of dynamic to static factor of safety, is a weak function of the ratio of rope
mass tr; attached mass. Also, the dynamic factor of safety is a weak function
of shaft depth and of rope selection strategy. The aspect of reduced dynamic
response with an acceleration profile of period equal to the fundamental lon-
gitudinal mode was confirmed. This study established that scope exists for
reducing the rope factor of safety, through controlled ramp acceleration and
deceleration profiles. In a similar vein, Greenway[1990a] evaluated the lim-
its of hoisting from great depth. As noted, the cost of developing main and
subshaft hoist systems provides strong motivation for deep single lift winding
systems. Greenway[1990a] concludes that the factor of safety of the rope, and
to a lesser extent, winding speed are primary parameters influencing' depth
and production constraints.

The static and dynamic characteristics of wire rope has received concerted at-
tention by Costello et al[1983]. The models developed are accordingly complex
and non-linear, and are summarised by Costello[1983]. An important aspect of
the rope construction is its torsional response due to axial load. Butson[1981]
examined this problem in the context of deep level mining. A result of his
thesis confirmed that in the case of long wire cables rotationally restrained
at the ends, the rotational coupling can be discarded, reducing the problem
to an uncoupled we,veequation. Greenway[1990b), re-examined this problem,
since triangular strand rope construction, which exhibits torsional coupling is
currently utilised in the South African mining industry. Greenway's analysis
included an investigation of the lay length changes which occur as a conse-
quence of the torsional response. It was concluded that the lay length change
is more strongly influenced by the total rope mass, rather than the end load.
Consequently, the application of such cables to deep level ruining may be prob-
lematic.
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1.2.2 Coupled Dynamic Studies

In the early 70's, it was realised by the mining industry that further research
concerning the dynamic behaviour of the catenary system, including both lat-
eral as well as longitudinal behaviour was required. Dimitrlou and Whillier
[1973J initiated research in this direction. Their analysis concentrated on the
quasi-static description of the linear transverse and longitudinal natural fre-
quencies of the catenary and vertical cable, as a function of shaft depth. It
was considered that the main source of excitation was due to periodic im-
pulses applied to the drum end of the rope as a result of coil cross-overs.
Consequently an analysis of the rope movement during coiling on to the drum
was conducted, resulting in a description of pulse frequency and displacement
magnitudes. They demonstrated that a 1800 Lebus liner would impart even
harmonics of the drum rotational frequency, whilst a single groove Lebus liner
would impart all harmonics of tl.e drum rotation frequency. Furthermore, the
magnitudes of the first three harmonics of the excitation would be similar.
Subsequently graphical plots consisting of the natural frequencies and excita-
tion frequency versus shaft depth were prepared", as illustrated in figure 1.5. .Lt
was hoped that this information would explain the phenomenon of rope whip.

Kloof Mine in Carltonville South Africa, was experiencing rope whip, and
was utilised as a case study. Figure 1..5 is based on the Kloof Mine system
parameters. Catenaries A,D which were of similar length exhibited the most
severe vibrations . .It was observed that the rope whip was more severe with a
full skip ascending than an empty skip descending. With reference to figure 1.5,
severe vibration began at phase 1 during ascent, continuing up until "he end of
the cycle. It was observed from the frequency plots that this condition came
about as a result of the coil cross-over frequency coinciding with the second
lateral mode of the cable. Furthermore, the fourth longitudinal mode of the
system crosses the second harmonic of the coil cross-over excitation freque ncy
line at the start of phase 1. Hence, the frequency of the longitudinal osciillation
matches the frequency of the tension fluctuations induced by the amplitude
of the second lateral mode of the catenary. Thus it may be expected that
longitudinal an.d lateral oscillations would interact, pet-haps mutually exciting
one another.

2Dirnitriou and Whillier, and Mankowski employed the notation FTCn for the nth lateral
mode of the catenary, and FLVn for the nth longitudinal mode of the vertical cable, where
the vertical cable was treated as fl: ed at the sheave end. Four catenaries are represented
this figure namely A-D; catenaries A,B represent the overlay winder, whilst B,D represent
the underlay winder.
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Figure 1.5: Dimitriou & Whmi~r[1973]: Linear frequency map

The catenary lengths for the Kloof underlay and overlay winders were:
A = 74.4m, B = 79,6m, C = 69.8m, D = 75.3m.

The passage to phase 2 coincides with a layer cross-over, and a significant
axial pulse would be introduced to the system, promoting higher amplitudes,
Observations of the lateral response of the vertical cable confirmed that ampli-
tudes rose at the start of phase 1 and were approximately of equal wavelength
to that of the catenary,

Dimitriou and Whillier [1973]were aware of the limitations of a linear analysis.
This prompted a discussion on aspects of nonlinear system dynamics, provid-
ing a plausible description of the observed behaviour. In this discussion, the
concept of both the jump phenomenon and of subharmonic resonance of the
vertical rope was described, The latter referred to the occurrence of a lateral
response of the vertical rope, at half the frequency of longitudinal harmonic
tension fluctuations, It was stated that this is a natural consequence of string
vibration, as lateral response is a subharmonic of tension fluctuation, This
discussion led to a brief description of primary stability intervals associated
with parametrically excited systems, and hence the importance of considering
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the possible influence of longitudinal tension fluctuations with respect to the
lateral response of the catenary and vertical rope. The observed lateral re-
sponse of the vertical rope was attributed to this effect: with regard to tension
fluctuations induced by the lateral motion of the catenary. The concept of mu-
tual excitation of the catenary by the lateral response of the vertical rope, and
visa versa was briefly discussed. The possibility of an amplitude dependent
natural frequency relationship pertaining to the catenary was presented as one
explanation for the different behaviour between the ascending and descend-
ing cycles. Although these concepts were discussed, no forma'! mathematical
treatment was pursued, and thus the discussion led to an 'ntuitively described
relationship between the lateral natural frequency of the c. tenary and the lon-
gitudinal natural frequency of the vertical rope system. On reflection, these
relationships in essence described the possibility 01 autoparametric coupling

. between the vertical rope and the catenary, as well as the condition of internal
resonance.

Dimitriou and Whillier [1973Jconcluded that a more detailed study including
the non-linear aspects of the system would be required to interpret the forced
nonlinear response observed at Kloof Gold Mine, However, provided care was
exercised during the design stage, so as to avoid the coincidence of an excita-
tion frequency with any linear lateral natural frequency, then to some degree,
later problems could possibly be reduced or avoided. This unfortunately dis-
cards the observations concerning the parametric nature of the system, and
reverts to a purely linear classical approach. This approach has been adopted
by the industry in simplified form. Boshoff[1977J prepared a document for
The Anglo American Corporation, describing a hoist system design methodol-
ogy for the avoidance of rope whip, which still stands today. This document
considers only the first mode of the catenary and the first harmonic of the
coil cross-over frequency, and neglects the longitudinal modes of the coupled
system. Cognisance was taken of the possible effect of transient excitations
which occur at the layer change, in that these may cause miscoiling problems.
For this reason, the layer change locavion was specifically chosen not to occur
simultaneously with a catenary : ceo However, since the phase of the
transverse excitation changes by i~ .r a layer change, the transverse exci-
tation may be used to precipitate the build up of a resonant condition. Usually
it !& not possible to wind to a great depth without inducing resonance in the
catenary on either the ascending or descending cycle. It was sugested that it
is preferable to accept a resonant condition on the down wind as opposed to
the upwind as a design strategy.

Mankowski[1982J extended the study of the the Kloof Mine system by devel-
oping a digital computer program, capable of simulating the forced response of
the system. This followed the suggestion by Dimitriou and Whillier [1973Jthat
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a comprehensive analysis was required which included nonlinear effects, as well
as accounting for the coupling between the catenary and vertical rope. In this
study, Mankowski[1982] investigated three different programming strategies.

Firstly, a lumped mass model of the system was employed. The model retained
three translational degrees of freedom for each mass element in the catenary,
whilst only considering the longitudinal motion of the vertical rope. The effect
of gravity on the catenary was accounted for, as well as nonlinear geometric
deformation of the cable elements. Thus the analysis was not limited to small
deflection theory. The displacement function induced by the coil cross-over was
simulated accurately, in the three orthogonal directions. The analysis did not
account for the velocity of the cable, as this was considered a secondary effect.
A simulation was performed on a system where the conveyance was close to the
sheave, and the performance of the programme assessed. It was found that
the formulation required substantial computational effort in order to attain
accuracy and numerical stability and thus an alternative formulation based
on the method of characteristics wa.simplemented. Once again computational
effort was a limiting factor, and finally a.method based on Bergeron's [1961]
impedance technique was employed. Expertise with the impedance method
was gleaned by applying it firstly to simulate the longitudinal response of
the system under harmonic excitation. Subsequently, the nonlinear lateral
response of a rope with a clamped/pinned boundary condition, excited by a
harmonic displacement at the clamped end, was successfully simulated. Both
simulations performed satisfactorily and consequently, a fina1model attempt-
ing to accommodate both longitudinal and lateral behaviour was developed.
In this process, the catenary was simplified to assume a parabolic shape sym-
metrical with respect to the span, where the axial variation in tension due
to gravity was discarded. This was justified on the basis that the catenary
was taut and had a sag to span ratio of less than 1:20. Only lateral response
of the catenary was modelled as stated "..each lumped mass is constrained
to move in an x-y plane perpendicular to the span .. ", whilst the vertical rope
was constrained to exhibit only longitudinal motion. T catenary tension was
calculated on the basis of the rope stretch, and conpled to the vertical rope
through an inertial balance across the sheave. The excitation at the drum
was modelled as a displacement function of time, accounting for the lateral
and longitudinal pulses applied to the system. The longitudinal pulse was ac-
commodated by increasing or reducing the unstretched length of the catenary,
hence directly influencing the calculation of the average tension. The axial
travelling velocity was not modelled as it was considered to be unimportant,
however the system parameters were varied according to the drum velocity and
hence the vertical rope length, as a function of time. This model exhibited nu-
merical difficulties ill that high frequency modulations in the output occurred.
As a result: anum erical damping function was employed tID smooth the data.
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Even though care was taken to con-rr .ct the digital simulation algorithm,
and det. .iled simulations of the lateral and longitudinal behaviour tested the
robustness of each algorithm independently: the coupled system simulation
became unstable at approximately 800 m during the raising cycle. "The reason
for the termination of the graphical output at 45 s, is primarily, the breakdoum
of the relation governing the speed of transverse disturbances in the inclined
cable.... asvl the simulation becomes unstable". Thus the simulated amplitude
of the inclined cable was so severe that the system approached i:I. slack rope
condition. Due to this, further discussion concerning the simulated behaviour
of the coupled system was restricted to the region between shaft bottom and
800 m. Mankows]i-i[19821 attributed the instability of the simulation to the
neglect of rope slip at the sheave, " ..slip at the headsheaoe would occur as
soon as the tension in the inclined cable drops sufficiently and that slip would
prevent further reduction in tension".

With regard to the stability of the system, Mankowski [1982] states "As a
resonant condition is approached and the amplitudes increase, a form of auto-
parametric excitation sets in with the result that growing amplitudes reinforcz
higher tension fluctuation and visa-versa. Taking into account tlie almost ex-
ponential rise in the 'velocity and tension ampli' ..ides exhibited in the simulation
results beyond 1DOOm, it is possible that auto-parametric ezciiatioti is one cause
for 'the breakdouni of the simulation model during resonance",

A simulation of the Kloof winding cycle was thus performed between the depths
of 1300-800 m only. Mankowski[1082] discussed the results of the simulation
at length. Concerning the longitudinal motion of the skip he states: "One
puzzling aspect ... is the appearance of the fourth longitudinal mode. The
fourth mode appears in all the computer output ... and is seen to be present
before the completion of the acceleration profile and persists until a depth of
approximately 900m where it locks in on 2 x FTC2 (the second transverse
mode of the catenary)". Mankowski[1982] detailed the dominant frequency
content of the skip response versus shaft depth in figure 11.28 of his thesis".
This is reproduced in figure 1.6. The unshaded circles in ....icate the variation
in the skip velocity during the simulation. The solid lines in this figure reflect
the natural frequencies of the longitudinal system. These lines were calcu lated
from a theoretical model of the longitudinal system, where the sheave inertia
and skip mass were accounted for as lumped masses. The longitudinal modes
are indicated in braces, where the sign indicates the relative phase between
the sheave an-i skip motion. The dotted line indicates the relative amplitude

3Figures of this form were constructed by counting the cycles of the output records man-
ually, and not by employing a Fourier analysis. Hen ie no indication is presented concerning
the amplitudes associated with the frequency content, and in essence only the dominant
modes of the wave form were extracted,
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ratio between the sheave and skip, where the numerical ratios are presented on
the upper ordinate of the figure. This amplitude ratio is defined as the ratio
of' the skip motion to the sheave motion, and hence the relative minimum
at 3.75 Hz indicates a larger sheave motion than skip motion. The figure
clearly indicates the presence of the fourth longitudinal mode in the simulation.
Mankowski[1982] could find no plausible explanation for the persistence of
the fourth longitudinal mode and states: "... the propensity of the model
to exhibit a fourth mode ap'[lears to be an uiliereni feature of the computer
simula' 'on model : until a precise mathematical closed-form solution to the
tum-lin iar problem can be formulated, the phenomenon remains intractable to
ezplcsuuion" .

D:lptlt at .kip 1>91... ""n. D

Figure 1.6: Mankowski[1982]' Figure 11.28: Longitudinal frequency content of
skip velocity- simulation model and theoretical modes of double mass model.

The frequency content of the response depicted in figure 1.6 was described by
Mankowski[1982] as follows:

o The first longitudinal mode is excited by the acceleration profile. In prac-
tice, the first longitudinal mode mav be excited by either the acceleration
profile, or by the large axial pulse introduced by a layer change.
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e Longitudinal response at 2 x FTC2 is due to the lateral response of the
catenary at FTC2.

e The response of the skip at FTCl if! due to tension fluctuations in the
inclined cable at frequency FTC1. This is associated with lateral sub-
harmonic response of the inclined cable at frequency ~FTCI due to the
cable rising above its equilibrium configuration.

Figure 11.29 and 11,30 of Mankowski's thesis are reproduced in figure 1.7. The
first figure (figure 11.29) contains the dominant frequencies present in both the
inclined cable tension and the skip velocity records from the numerical simula-
tion. In Figure 1.7) the shaded circles serve two purposes, they indicate both
the frequency of the tension variation occurring in the inclined cable and the
variation in the skips velocity. The second figure (figure 11.30) presents pos-
sible excitation frequencies of the longitudinal rope, namely that at the drum
revolution frequency, coil cross-over and 2x coil cross-over, and the autopara-
metric excitation frequencies due to the transverse motion of the catenary,
namely at FTCl, FTC2, 2 x FTC2. Mankowski[1982] attempted to describe
the presence of the fourth longitudinal mode, by examining the steady state
k.lgitudinal response as a function of shaft depth, due to an excitation at these
frequencies ie at FTCl, FTC?, 2 x FTC2. This did not prove fruitful,
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Figure 1.7: Mankowski[1982]:Frequency content. of the simulation and the dou-
ble mass model.

The autoparametric coupling between the catenary and vertical rope is evident
in the simulation, especially in the region where the second transverse mode
clearly causes longitudinal response in the vertical rope. This occurs at ap-
proximately 925m, after which the longitudinal response is dominated by the
lateral response of the catenary at 2 x FTC2. It is interesting to note tha~ with
respect to the coupling between the longitudinal and lateral catenary motion,
two conditions of internal resonance are approached whereby the longitudinal
natural frequency tunes to twice the lateral frequency of the catenary. Namely
at approximately 925m FLV 4 = 2 x FTC2, where frequency locking occurs,
and towards the end of the simulation FLV2 = 2 x FTC1 at 700m.

The concluding chapter of Mankowski's thesis draws attention to the corre-
lation achieved between the simulation and observed results. Dimitriou and
Whi1lier[1~73lobserved that the amplitude of lateral motion began to grow at
approximately 9000. The motion settled into a clearly defined second mode,
where the out of plane amplitude was largest and of the order of 1m. On occa-
sions these vibrations continued to the end of the wind with a gradual change
in mode but no perceptible change in amplitude. On other occasions severe
rope whip occurred at the beginning of phase 2 (indicated in figure 1.5, at
approximately 550m ), following a layer change, where the in-plane amplitude
reached amplitudes in excess of 2m. Mankowski's simulation predicts large am-
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plitude catenary motion (greater than 1m amplitude) at approximately 900m.
On this basis, it was judged that a fair correlation between the simulation and
observed behaviour was achieved. Unfortunately a simulation of the descend-
ing skip was not presented. This would have been a useful validation of the
simulation, as rope whip was not observed for the descending cycle.

,
Although the aspect of autoparametric excitation was identified as a mecha-
nism affecting the stability of the simulation, the question as to whether this
was representative of the system was left fer future experimental and theo-
retical validation. As stated ".. until [uriher invprovemenie in the simulation
model are made to accommodate slack tensile t:ol.:1itioM uul cable slip at the
headsheave, the question of pur. .metric excitation otr'lJ,rrinf] in practice cannot
be answered definitely".

Mankowski[1982] suggested that further experimental work was aecessary to
fully appreciate the complexities of the system, an,~ to validate the digital
simulation. In this regard rotational accelei ion measurements of the head-
sheave would be essential. Experimental activity on operating shafts is lim-
ited due to I'iroduc~ion reecraints. In light of this, Bn.ck~berg[198.) constructed
a laboratory model of the system for further «xpenmental assessment. 'I'he
model consisted of an hydraulic actuator which provided axial excitation to
a wire rope passing over a sheave to a suspended end mass. Figure 1.8 il-
lustrates the laboratory model. The purpose (If this work clearly stemmed
from Mankowski's thesis in that. it was iiteuded to complement the simulation
through correlation with experimental observation. The configuration of the
model focussed the experimental results on the parametric behaviour of the
system. Unfortunately a dimensional analysis tuning the laboratory model
to simulate even approximately the parameters of an actual installation was
not performed. In particular, the tuning of the first longitudinal mode was
substantially higher than the lateral catenary modes excited during the test.
Thus any possibie interaction between the longitudinal and lateral catenary
modes was not marked. Nevertheless, the results indicated that a relatively
small axial parametric excitation was sufficient to excite the lateral modes of
the catenary. The aspect of nonlinear response, namely the iump phenomenon
was observed to Q. degree. The headsheave was observed to rotate when large
amplitude catenary motion occurred, accentuating the coupling between the
the catenary and vertical rope. This illustrated that slip at the sheave could
arise. The scope of the investigation did not extend to the determination
of the regions of parametric stability of the system, and thus these were not
identified.
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1.3 Scope for Analytical Research

As is evident from prev 'JUS research, adverse catenary motion is a phenomenon
which is cause for concern in the minin r industry. Such motion is commonly
referred to as rope whip. The fundamental parameters governing rope whip
have not been clearly defined, and thus the dynamic integrity of hoisting sys-
tems has depended on the experience and intuition developed in the wining
industry.

Mankowski[1982] identified a number of features of the hoist system which
contribute to the complexity of the system behaviour. It is evident that these
aspects motivated his research, and that emphasis was placed on modelling
the nonlinear aspects of the system and its response numerically. Features of
the system identified in the modelling process were:

o Friction and slip of the cable at the headsheave.

o The geometrically complex nature of 'the cable construction.

o The inclination and sag of the catenary.

e Geometric stiffening and the associated tension variations in the catenary
during large amplitude transverse motion.

e,) The complex boundary conditions applied to the rope at the conveyance
end and aL the winding drum.

o Intermediate boundary conditions at the headsheave, coupling the cate-
nary to the vertical rope.

The scope for analytical research within the context of those items identified
by Mankowski[1982] is substantial. Mankowski[1982] chose to develop a digital
programme modelling the effect of gravity as well as geometric stiffening, and
thereby investigated the dynamic behaviour of the system.

In contrast, it is proposed here that an approach which develops the nonlinear
partial differential equations of motion for the mine hoist system prior to nu-
merical implementation, enhances the scope for describing the dynamic nature
of the system. This is inferred from studies presented in the literature con-
cerning the dynamic analyses of nonlinear taut strings and cables with pinned
end conditions. These studies provide excellent paradigms for advanced stud-
ies in nonlinear dynamics, Although the techniques applied in this study are
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not novel, the unique characteristics of the mine hoist system, which arise due
to the boundary condition at the sheave, and hence the coupling between the
lateral catenary and longitudinal system response, presents a novel extension
to current knowledge regarding mine hoist catenary dynamics, and perhaps a
practical vehicle for further analytical development. This aspect of the cou-
pling between longitudinal and lateral motion in the mine hoist system ne-
cessitates the retention of the longitudinal system inertia, which is commonly
neglected in analyses of taut strings and cables with pinned end conditions.
Furthermore the system is excited periodically, and has a nonstationary na-
ture due to the transport velocity necessary to complete a winding cycle. The
inclination of the catenary and its curvature introduce a further dimension for
study.

It is likely that a comprehensive treatment including all the former aspects will
lead to a situation intractable to analysis. In this context, it is necessary to
capture the fundamental nonlinear aspects of the system, which promote rope
whip. The autoparametric nature of the system was identified in previous stud-
ies as a potential mechanism promoting rope whip and thus warranted further
research. Although literature is available on the parametric, autoparametric
and internal resonance of dynamic systems, the mine hoist system provides
a vehicle for a practical investigation novel to the literature. In this regard,
the system has peculiar features in that the lateral natural frequencies of the
catenary and vertical rope are related to higher modes by integer multiples.
Specific tuning between the lateral modes and the longitudinal system modes
may result in commensurate frequency relationships. Thus it is possible for the
system to exhibit regions where not only parametric response, but autopa-a-
metric as well as internal resonance occurs simultaneously in the preset ~eof
external excitation. Furthermore, since the excitation is periodic, it ir possible
tha.i;more than one internal resonance can be stimulated simultaneo ....Slyby dif-
ferent harmonics of the excitation frequency. If one considers that iT' addition
to this, the dynamic characteristics of the system are non-stationary, a recipe
exists for sustained research beyond the scope of this thesis. It is proposed
that these features alone justify sufficient scope for an analytical study.
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1.4 Scope of the Study

The autoparametric behaviour of the mine hoist system has been addressed
superficially in previous research, thus this aspect of the system behaviour
forms the initial focus of the study. The linear stability of the stationary system
is governed by the relationship between parametric and autopararnetrically
induced excitation frequencies, and the tuning of the natural frequencies of the
system. It is the definition of such relationships which is considered central to
developing an understanding of the potential effect of adverse tuning conditions
on the system response. In order to account for transient excitations and the
nonstationary nature of the dynamic characteristics of the system) a nonlinear
numerical simulation of the system is developed. The specific aims of the thesis
are thus:

e The development of the non-linear equations of motion of the mine hoist
system.

e The investigation of the autoparametric nature of the system, leading to
the definition of the steady state stability of the first order response of
the system.

e The development of a numerical simulation of the system which accounts
for transient excitation and the non-stationary nature of the system,

() The development of a design methodology for selecting the mine hoist
parameters so as to avoid rope whip.

In conclusion, the goal of the research involves proposing a strategy for select-
ing the system parameters so as to avoid rope whip. Conversely, this is viewed
as ascertaining the hoist system dynamic characteristics which contribute to
the onset of rope whip. Although the description of the large amplitude re~
sponse occurring during rope whip is of secondary importance when compared
to the definition of the system characteristics required to avoid rope whip, this
is a. necessary aspect of the study and is addressed through the development
of a numerical simulation in the later part of the thesis. This gives further
insight into the behaviour of existing systems exhibiting rope whip, leading to
design strategies concerning the influence of transient excitation on the overall
system behaviour.



Chs,pier 2

The Dynamics of §trings and
Cables

Cables are utilised as structural elements in many situations, a few being ship
mooring cables, guy towers, suspension bridges, overhead power lines, and
hoisting equipment. The specific configuration of the cable may permit a linear
approximation of its behaviour, however in general, a cable exhibits nonlinear
behaviour; the degree of nonlinearity being dependent on the configuration
and loading to which the cable is subjected. The analysis of dynamic systems
can be similarly divided into studies where a linear or a nonlinear approach is
adopted. The latter may be imperative for an understanding of the phenomena
associated with the observed behaviour. Prior to pursuing a particular analysis
strategy with respect to the mine hoist system, it is necessary to examine the
broader aspects of the possible behaviour of strings and cables.

Although this thesis is concerned with the dynamic aspects of cables, it is
pertinent to briefly consider the static response of a suspended cable. This
will provide an insight into the possible nonlinear nature of the problem, as
well as facilitating a description of the terminology employed. Thereafter, a
brief development of the linear dynamic theory, leading to nonlinear dynamic
studies of cables and strings is presented.

24
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2.2 Static Response of Cables

Irvine and Sinclair[1976]' present a static analysis of an elastic cable for an
arbitrary sag to span ratio, subjected to vertical point loads. PugsleY[1983]
presented a review of an analysis by Pipard and Chitty, which considers an
approximate method for a shallow sag cable "Subjected to vertical point loads.
The method reduces to that presented by Irvine[1981] for shallow sag cables,
which is briefly described below.

As stated by Irvine[.l981], the word catenary derives from the Latin word for
chain, meaning the profile of a chain hanging between two points, under its
self weight. The mathematical description of this profile is obtained by solving
the. differential equations of equilibrium associated with a differential element
of the chain. Figure 2.1 illustrates a cable supported at equal height, with
initial sag due to its self weight. A free body diagram of a differential element
of the cable is presented in the lower part of the figure. The span of the cable
is defined as the chord length between"the supports, whilst the sag represents
the displacement of the profile from the chord. A Lagrangian co-ordinate s
is employed, and is aligned along the arc length or equilibrium profile of the
cable. In the theoretical development which follows, it is assumed that the
element supports tensile loads only, and that the flexural rigidity is zero.

Figure '2.1: Irvine (1981): Equilibrium of an element of cable
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On application of a force balance to the differential element in figure 2.1, the
equations of equilibrium are obtained as :

3:...(Tdz) ::::-mg
ds ds

d2z dz 2 1H- = -mg[1+ (-) ]'.i
dx2 dx

Where T,m refer to the tension and mass per unit length of the cable re-
spectively. Integration "1 the second equation, and solving for the integration
coefficient yields:

Tdx ::::H
ds

Where H represents the horizontal component of the tension at the supports.
Since no horizontal loads are applied to the cable, H is constant everywhere.
The above equations may be manipulated into the form:

d2z ds
H(-)=-mg-.

dx2 dx

Under the condition of inextensiblity, (~~)2+ (~:)2 = 1, the above equation
yields:

Solving this equation, subject to the bo mdary conditions, results in the math-
ematical description of the profile as a iunction of the span x:

Although this represents the correct solution for the profile of an inextensible
cable, supported at equal elevation under its self weight, significant simplifica-
tions may be made when the cable is taut, and its sag to span ratio is small.
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Although Irvine (1981] advises that such an analysis is appropriate for sag
to span ratios less than 1:8, Pugsley (1983] states that the results should be
applicable with considerable accuracy to cables with larger sag to span ratios.

In the case where the sag to span ratio is small, ~; ~ 1, the cable equation
(2.1) reduces to:

xz= -(I-x)
2

Where z = mgl~/H and x = y. It is evident that the tJrofile is symmetric! with
respect to the mid-plane of the span line. The sag to span ratio 8 is defined
as the ratio of the cable sag at mid span, to the span length:

Thus far, the equilibrium profile of a cable due to it::, self weight has been
considered. The analysis can be generalised to include the case of concen-
trated point loads, however, in preparation for the discussion of the dynamic
behaviour of a sagged cable, consideration of the mechanism by which the ca-
ble supports additional load through deformation from its equilibrium profile
is pertinent. Simply stated, additional tension may be generated in the cable
to first order through geometric adjustment of the profile, and to second order
through stretch. Both mechanisms contribute to the nonlinear response of a
sagged cable. The first mechanism dominates the resporse of a deep sag cable,
where the axial stiffness of the cable is much greater th m the geometric cate-
nary stiffness, and thus inextensible cable behaviour dominates the response.
The latter mechanism dominates the load deflection response when the cable
is taut, and additional tension is generated through axial cable strain. These
mechanisms may be investigated by formulating the additional tension gener-
ated in the cable when its profile changes from its equilibrium condition, under
the action of external load. This load may be a consequence of direct static
forces, or inertia forces. The problem is considered below.

lIrvine[1981] extends this analysis to include the case of, n inclined cable under its self
weight, and demonstrates thut an approximate profile ruay be obtained. This profile is no
longer symmetric with respect to the span or the mid point of the chord joining the supports.
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Consider a cable in equilibrium, where its profile due to self weight is z. If
the cable is loaded further, additional deflection w OCcurs. Th« deflection w,
in .luces additional ten=ion r in the cable, and the profile ch.inges to z + w.
Employing a Lagrangian strain measure, it can be shown flat the additional
tension generated is related to the displacement of the element through Hooke's
Law, and is given as:

Where u, z, w represent the longitudinal displacement, the equilibrium profile,
and the additional vertical displacement induced by the load respectively.

Since t1-
the de:
manipulateu

'1Y'onentof ,the additional tension generated during
,. trc. , h = T ~;, . the previous equation may be

In the absence of longitudinal loads, h is constant, and this equation may be
integrated with respect to x to obtairr':

u; mg il 101 1 dw 2- = u(l) --u(O) + - wdx + -(-) dx
EA H 0 .0 2 dx

(Z.2)

Important obs- '-,raFons may be made regarding the form of equation (2.2).
Firstly, the cable may be influenced by the support movement, in which case
u( J), u(:) would not necessarily be zero. Secondly, it is influenced by the final
cable profile via the term JJ wdx. It is important to note tr at this term will
be zero if an antisymmetric change w in the profile occurs. The third term
JJ H~:)2dx is a measure of the change in arc length of the cable, and is thus a
second order effect due to cable stretch. The dominance of these t.wo terms is
related to the cable parameter A2. TL ; derivation and discussion of the cable
parameter wiil be considered further in the section regarding the dynamics of
sagged cables.

2 'Nhere Le = J~(~ )3.1:1: ~ /(1 + 862), and W, z vanish at the limits of the integration,
and the relationship ~~ = -!!}l- has beep employed in the reduction.
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2.3 Dynamics of Strings and Cables

The development of the wave equation for a taut flat string is associated with
many of the eminent personalities in the historical development of dynamics
and mathematical physics. Lindsay traced the historical development of the
subject in the ;n~roduction to the second revised edition of Rayleigh's "The
Theory of Sou-td" [1945],where it is evident that numerous people have applied
themselves to the etudy of string dynamics, for instance Pythagoras, Galileo
Galilei, Hooke, Taylor, Bernoulli, D'Alembert, Euler and Lagrange. These
analyses resulted in the wave equation, which is commonly presented in the
literature (I,S representative of a taut flat string undergoing small amplitude
longitudinal or lateral motion. This equation may be derived on application of
Newton's Second Law of motion to a differential element of the string. If small
amplitude motion is assumed such that only first order terms are retained,
then the equations of motion describing the longitudinal and lateral motion of
the string decouple and are given as:

Ct:- {!;
'E

(:1 = ,j--V p

"I rzrrtz:
::. ::: \1EAIT
Ct V

where Ct, CI represent the lateral and longitudinal wave propagation speeds
respectively, and wand u represent the lateral and longitudinal displacements
respectively.

Note that TIEA is the longitudinal strain under the initial tension T, and
in typical applications with steel cables, this value is small, thus the ratio

I'
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cdcl « 1, and the longitudinal disturbances have a significantly higher prop-
agation speed than the transverse disturbances. For a fixed le:gth of string,
the propagation speed of the longitudinal disturbance is thus sufficiently high
compared to that of the lateral propagation speed to view the tension as being
spatially uniform along the length of the string (Oplinger[1960]). This leads
to the concept of spatially uniform but temporally variable tension. Although,
when the string satisfies this condition, a state of constant tension may exist
along the length of the string, additional tension change may occur during
the motion due to changes in the arc length of the string. Accounting for the
variation of tension due to the stretch of the string leads to the nonlinear de-
scription of the taut flat string. Thus this approach accentuates the nonlinear
behaviour of a string where the catenary approaches that of a flat profile. On
the other hand, the nonlinearity may be introduced via initial curvature, in
which case the string is commonly referred to as a cable. In this case, addi-
tional tension may be generated during the motion due to geometric changes
in the unstretched profile of the cable, III combination, these effects define
the nonlinear nature of cable dynamics, and in the special case where the
curvature approaches zero, and the amplitude of vibration is small, the wave
equations evolve. A brief discussion outlining the salient features of string and
cable dyna.nics follows. In this discussion, a string is defined as the limiting
configuration of a cable, where the curvature is by definition zero.
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2 •.t Taut String Analyses

2.4.1 Nonlinear Taut String Analyses

Carrier[1945] investigated the nonlinear frequency response of a stretched string.
In this analysis, the equations of motion accounted for bosh longitudinal and
lateral inertia. A solution for the in-plane motion of the string due to an ini-
tial in-plane sinusoidal deformation was obtained by applying a perturbation
method. This analysis indicated that to first order in the perturbation, the
nonlinearity induces a stiffening response with increasing lateral amplitude.
The nonlinear period is thus amplitude dependent, and decreases with respect
to the linear period, as the lateral amplitude of motion increases. Carrier [1945]
also considered the coupled out-of-plane problem, and the condition whereby
the string describes a quasi-elliptic orbit. Oplinger[1960] investigated the in-
plane frequency response of a nonlinear taut string, and derived equations
of motion on the basis of spatially uniform but temporarily variable tension.
Thus longitudinal inertia was not regarded as significant in his solution. The
nonlinear nature of the system W'l.S introduced by relating the change in arc
length due to the amplit.ude of the motion, to the additional tension generated
via. Hooke's Law. Application of the method of variable separation resulted
in trigonometric functions for the spatial domain, and periodic elliptic func-
tions for the temporal domain. This analysis confirrr ed the presence of the
jump phenomenon, as well as c.\ frequency-amplitude relationship common to
nonlinear systems. Experimental correlation was achieved by constraining the
string to planar motion, confirming the validity of the analysis and of the hy-
pothesis of temporally variable but spatially uniform tension. The analysis
however did not include the case of nonplanar or whirling motion. Murthy
and Ramakrishna[1965}, and Mi1es[1965] examined the nonplanar motion of
the nonlinear stretched string. Murthy and Ramakrishna[1965] derived their
equations by formulating the potential and kinetic energies of the system and
applying Hamilton's principle. Their analysis neglected the longitudinal mo-
tion and hence longitudinal inertia, resulting in equations defining the non-
linear motion of a string where all particles of the string were constrained to
move in planes perpendicular to the equilibrium chord. Although the equa-
tions provided nonlinear terms coupling the in- and out-of-plane motion, which
provided a plausible mechanism describing the transition from planar to non-
planar motion, the equations developed were inconsistent with regard to the
longitudinal response of the string. Anand[1ge6] adopted the equations defined
by Murthy and Ramakrishna[1965], including a viscous damping term, and ex-
tending their analysis to examine tf.3 nonlinear forced response of the string
in the presence of damping. Anand's[1966] analysis examined both the in- and
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out-of-plane response of the string resulting from an in-plane distributed driv-
ing force, and it was demonstrated that the stability of the planar motion, and
the occurrence of the jump phenomenon was a function of the magnitude of the
driving force and the degree of damping. The analysis also demonstrated that
under constant damping action and excitation, the degree of non-linearity was
described by a dimensionless parameter 71 = ('r}cdct)2, where ci, Ct, n refer to the
longitudinal wave speed, the lateral wave speed and the mode number respec-
tively. Since the longitudinal wave speed is fixed by the material properties,
whilst the lateral wave speed is dependent 011 the initial tension, '" is directly
proportional to the square of the mode number, and inversely proportional to
the initial tension. Thus a decrease in the initial tension accentuates the non-
linear behaviour. This parameter is related to the ratio of the peak additional
tension generated during an oscillation, Tp, to the equilibrium tension in the
string, which directly effects the nonlinear natural period, as demonstrated by
Carrier [1945]. Although (his parameter may be reduced by increasing l' -.

initial tension, the neglect of the possibility of modal interaction between
longitudinal and lateral modes limits the degree to which such an approach
would apply without invalidating the premise of the analysis. Anand[1969aJ
rederived the equations of motion, whilst examining the free response of a
damped nonlinear string, due to sinusoidal initial conditions, showing that in
general coupling exists between the longitudinal and transverse modes. This
coupling was not accounted for in the previous analyses of Oplinger [1960],
Murthy and Ramakrishna [1965] and Miles[1965]. Anand [1969a] showed that
by neglecting the inertia term in the longitudinal equation of motion, a static
compatibility relationship between the longitudinal and lateral response could
be determined. Inclusion of this relationship in the transverse equations of mo-
tion, resulted in transverse equations of motion identical to those employed by
Oplinger [1960]. Thus although the equations of motion developed by Murthy
and Rarr~akrishna[1965] qualitatively described experimentally observed be-
haviour, Anand[1969a] showed these to be incorrect, and thereby confirmed the
consistency of the equations iormulated by Oplinger[1960] which were based
on the concept of spatially uniform but temporally variable tension. Although
Anand [1969a] did not employ this concept in deriving his equations of mo-
tion, it was effectively introduced by neglecting the longitudinal inertia term.
Specifically, Anand's [1969a] approximation requires that the longitudinal nat-
ural frequency of the string be much higher than the lateral natural frequency
and the frequency of excitation. Thus modal interaction between the longitu-
dinal and lateral modes could be neglected. Anand[1969a] showed that with
regard to the decay of the free response of the nonlinear damped string with
nonplanar initial conditions, the nonlinearity and coupling between the equa-
tions of motion induces an oscillatory energy transfer between the two planes
of vibration, which results in the string describing an elliptic orbit, where the
axes precess during the free decay. Anand[1969b] pursued this analysis further



by investigating the stability of damped forced and undamped free vibrations
of the nonlinear stretched string. This was accomplished by examining the
stability of the variational form of the in-plane and out-of-plane equations of
motion. In the variational form, these equations reduce to coupled Hill-type
equations, and the stability map was constructed by considering the roots
of the characteristic equation. This analysis confirmed experimental observa-
tions, in that the in-plane oscillation becomes unstable in particular regions
of the parameter space, resulting in non-planar motion. Thus the analysis
demonstrated the potential complexity of the response of the non-linear taut
string. Anand[1969b] also proved that in the case of free undamped vibration,
planar motion is unstable and circular motion results, whilst planar motion
is stable in the presence of damping, Eller[1972] provided experimental val-
idation to Anand's (1969b] theoretical predictions. Gough[1984] related the
perturbation in the orbital angular frequency and the frequency of precession
of the orbital motion during free vibraton decay of a nonlinear damped string
to the mean square radius and area, of the orbital motion respectively. The
planar and nonplanar motion of a taut string due to in-plane excitction is
well summarised by Nafeh and Mook[1983]. Their discussion details the lo-
cus of the in-plane and out-of-plane response amplitudes due to a constant
excitation level and variable frequency, and with respect to a variable excita-
tion amplitude at a frequency close to the in-plane natural frequency. Legge
and Fletcher[198tl] compare the free response of a taut string between rigid
supports with that observed when one support has a mechanical impedance
associated with it. They show that due to the meet ..~tical impedance, and
the nonlinear coupling between the modes, response Ol-J.....rs in modes not nor-
mally excited by the initial dist urbance, Watzk:v[1992] derives the equations
of motion for the large amplitude response of a stiff elastir 'retched string,
where both bending stifness and torsional coupling are i: ded. Although
.his study appears to be motivated primarily for assessing .ae vibration of
musical instruments, the concept of torsional coupling is certainly relevant to
mine hoist ropes. Whereas in Watzky's derivation, torsional coupling is intro-
duced as a consequence of material torsion, in the context of mine hoist ropes,
torsional response is ,1, consequence of rope construction, where coupling exists
between longitudinal and torsional motion. 8'1<:h roupling has been examined
by Butson[1981], Gl'eenway[1990b] in the context of linear longitudinal models
only, and provides an interesting incentive for examining t Ie nonlinear lateral
motion of such a rope.

Tagata[1977, 1983] examined the lateral nonlinear response of a taut string
subjected to a longitudinal parametric excitation. This study was preceded
by Lubkin and Stoker[1943] who considered the conditions governing the lin-
ear stability of a taut string to a longitudinal excitation, Tagata's[197'7, 1983]
analysis examined the nonlinear large amplitude response due to an axial exci-
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tation, for the first, second and third parametric instability regions of the first
lateral mode,

In summary, the previous studies considered the nonlinear response of a. taut
string of fixed length, where longitudinal inertia is not dominant, and the
lateral motion of the string is consequently governed by an equation of motion
having the general form:

2 I

w« + 2RWt - (c~ - ~l, r (v; + w;)dx)wxx = f
tit Jo (2.:1)

where v, w represent the motion of the string orthogonal to its axis, and .iFf.
represents the damping action, This equation has become synonymous with
the nonlinear dynamic response of a taut string. The integral term repre-
sents the chang J in arc length of the string, and accounts for the nonlinear
stiffening/ amplitude dependence of the dynamic characteristics.

2.4.2 Travelling 'rant Strings

The analysis of travelling strings initially addressed processes in the textile
and related industries. According to Sack[1954], Skutsch[1897] first investi-
gated. the linear transverse vibration of axially travelling strings. Sack [1954J
presented a linear analysis of the lateral response of a travelling string sub-
jected to a. lateral excitation at one support. This analysis demonstrates that
the natural frequency of a travelling string decreases with increasing trans-
port velocity, and that the related mode shapes are complex, representative of
travelling waves as opposed to the real normal modes associated with station-
pry strings. This behaviour is attributed to the gyroscopic or Coriolis term
associated with a travelling medium. The equation of motion of a travelling
string undergoing small amplitude lateral motion is commonly referred to as
the threadlin» equation and is given as:

(2.4)

The ratio of the first linear natural frequency of a string travelling axially
at velocity Va to that of a stationary string is shown to be 1 - (Vo./Ct)2, In
hoisting applications 011 South African mines, (Va/et) ~~0.14 - 0.075, thus the
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error induced by neglecting the axial velocity would be of the order of 2%}
Mote[1966b) presented a nonlinear analysis of a flat o....i~llly moving string.
This analysis indicated that in the presence of axia ..1 '-~"·i(;,ity, the nonlinear
stretch behaviour of the string can contribute significsru ly to changes in the
fundamental period. Mote [1966b] varied the parameters of a string undergoing
periodic motion with an amplitude equivalent to k% of It's span. The results
generated by Mote[1966b] are illustrated in figure 2.2, where (3 = ~/Ct, Wmax =
V It and v represents the midspan deflection, P represents the initial tension,
and r - 2/(1 - (32\ represents the nondimensional period of the fundamental.
The shaded regioi epresents cable parameters employed on South African
mines. Although this result may be valid in the case -,;1' a travelling string,
axially restr~;:r' ~tj to maintain a. constant unstretched length of string between
the supports, s not directly applicable to the mine hoist system as the
sheave end does not fulfill such a restraint. However the result is of interest as
it emphasises the differing mechanisms governing the system response.

~ 20Fi-rr:::==~:::=.::-==~::;;;:;;:::::
ffi ~~~~
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I. ,2 0.15 -~--.Os .04 .03 .02 .01
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Fie-' ~.nd~""","" pufod ~ oulllatlon for ....... ~ 0,005 at a IvndloA
of .ondlmon.lonal :.»1.1 lon.loH t·. (Porlod ",odldod hy n._lhOOfY
I. IndkalC1!~V a lick on I~. urd!.crlo ct Ih. p«tfculor 'IrlRO v.I«1ly {i.l

Figure 2.2: Mote (196G): Nonlinear fundamental period of an axially translat-
ing string

3TLh prompted Mankowski [1982] to discard axial velocity in his simulation of the mine



36

Kim and Tabotrok[1972J presented a derivation of the nonlinear equations of
motion of (1, travelling string by considering the momentum and continuity
equations of the string, as well as a mass tension constitutive law. The equa-
tions were solved by employing the method of characteristics, and applied to
simulate the response of a taut flat travelling string, plucked at its mid span.
8hih[1971, 1975] examined the three dimensional nature of the equations de-
veloped by Ames et 801[1968], examining the phenomenon of =lllptic ballooning,
which is associated with a moving string under boundary excitation, where the
major axis of the elliptic envelope is aligned with the direction of the excita-
tion. It was proved that circular ballooning was unstable, a result observed
experimentally by Ames et 801(1968],where the motion became unstable once a
circular envelope was approached, followed by a jump to second mode planar
motion.

In a similar vein, Mote and Naguleswaran[1966a] investigated the linear vi-
brations of travelling handsaw blades due to tension changes induced in the
band by the axial velocity. Their analysis considered the flexural stiffness of
the band and presented an approximate formula for determining the band
natural frequency as a function of the axial velocity. The theoretical results
were validated experimentally. Naguleswaran and Williams(19681 examined
the parametric nature of a pulley belt or band saw blade, due to tension
changes caused by eccentricities in the pulley wheels, or flaws in the blade.
It was confirmed experimentally that primary parametric resonance occurred
when the frequency of the tension fluctuations approached twice that of the
lateral natural frequency of the travelling band. Th.is application has been
pursued further recently, Mote and WU[1985],Wu and Mote[1986], Wang and
Mote[1986: 1987].
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2.5 Small Amplitude Vibration of Sagged Ca-
bles

2.5.1 Stationary Sagged Cables

Irvine and Caughey[19741, Irvine[1981] trace the historical development of
sauged cables, and conclude that by the early 1800's correct solutions had
been achieved for the limiting cases of catenaries, namely taut strings and
vertically hanging cables. However, the intermediate condition had not been
solved. The symmetric modes of flat sagged cables where the sag to span ratio
was neither ."~ronor infinite was analysed initially by Rohrs(1851)[1851] and
Routh(1868)[1884]. Both authors assumed inextensiblc cable behaviour, thus
solving the wave equation subject tv a constraint condition. The resulting so-
lutions applied essentially to situations where the catenary stiffness associated
with its geometric profile is low compared to the axial stiffness of the cable
element. Although solutions for the limiting conditions of the cable were es-
tablished, no single theory could describe the transition continuoi ..isly between
deep sag cable behaviour and the limiting case of the taut string. Specifically,
the modal characteristics of the symmetric modes of flat sag and deep sag
cables were at that stage known to be governed by the roots of the frequency
equations, cited respectively as:

1 1tan( -(31) = -{312 2

Where {3 = (mw2 / H) L The roots of the above equations are vastly different,
where the first root of each equation is rr and 2.86rr respectively. This difference
reflects the fact that in the limiting 'condition of a flat sag cable, the taut string,
the fundamental mode is symmetric with respect to the midspan, whilst in the
case of the deep sag cable, the fundamental is antisymmetric with respect to the
midspan. Irvine and Caughey[1974] note that the assumption of inextensible
cable behaviour is unrealistic when considering a cable where the sag tends
to zero, since any deformation would necessitate elastic stretch. By allowing
for elastic stretch, Irvine and CaugheY[1974] demonstrated that a consistent
theory could be developed describing the transition from deep sag to taut
string behaviour.
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The aerodynamic failure of Tacoma Narrows bridge in 1940 prompted fur-
ther research into cable dynamics. Pugsley[1949], Saxon and Cahn[1953],
Goodey[1961], developed the deep sag inextensible cable theory further. How-
ever, it was only when cable elasticity was accounted for that the dynamic
behaviour of a cable could adequately be described in the transition region be-
tween that of the t It flat string to the deep' sag profile. Laasonen[1959] and
later Soler[1970] presented an analysis whereby cable elasticity was accounted
for, and identified a dimensionless parameter, which Irvine and Caughey 4[1974]
later termed the cable parameter, A 2• Irvine and Caughey [1974]demonstrated
that this single parameter was sufficient to describe the transition between
taut string and deep sag cable behaviour. A brief development of the theory
pertaining to the dynamic characteristics of small amplitude sagged cables is
presented below.

Irvine and Caughey [1974] demonstrated that by considering small amplitude
oscillations w from the equilibrium profile of the cable z, and accounting only
for first order terms, the in-plane equation of motion of a shallow sag cable
reduced to:

(2.5)

Where m represents the mass per unit length, and h represents the additional
component of the horizontal tension generated during the motion, which is
given to 1 rst order as:

u; mg lal-=- wdx
EA H 0

(2.6)

It is pertinent to note that the term ~:tin equation (2.5) represents to first
order the curvature of the cable in its equilibrium configuration. Employing
the argument introduced previously, equation (2.6) confirms that no additional
tension is generated in the cable during the oscillation, if the mode shape, or
displacement w from the equilibrium profile is antisymmetric about the mid-
plane of the span. Thus it is clear, that the equation of motion (2.5) reduces
to that of the wave equation for antisymmetric modes, and consequently, to
first order the curvature of the cable does not influence the natural frequency.

4Laasonen's[1959] results are equivalent to those of Irvine and CaugheY[1974}, however
the latter formulated the problem in a. more physical sense, which perhaps explains why so
little reference is made to Laasonen.
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Conversely, symmetric mode shapes introduce tension changes due to geomet-
ric adjustment during the oscillation, and consequently cable curvature can
significantly affect the natural frequency of symmetric modes.

Since the cable profile was assumed shallow, an approximate quadratic cable
profile for z may be utilised and substituted into equation (2.5). In this in-
stance the curvature is constant, and the equation of motion may be solved to
obtain was a function of h. Substituting the solution for w into equation \ .. 6),
results in a transcendental characteristic equation, the roots of which represent
the linear natural frequencies of the cable, spanning all configr rations from a
taut string to a deep sag cables.

(2.7)

Where w = wl/(H/m)~, and _A2 = (mgl/H)21/{HLe/ EA\ The dependence of
the characteristic equation on the cable parameter _A~ .irly demonstrated.
The Iimiting configurations of .,\2 ~ 0,00 represent the taut string and deep
sag cable rei.• actively, The dependence of the natural frequencies on _A2 is
illustrated in figure 2.3,

l ..1:.;, ':,
10'"2 10'"' Wl 102 ~ 104
3.3 Ganoral dimenalonless curves for the first four natural frequencies of a
flat-sag suspended cable: (e) first symmetric in-plane mode, (b) first
antlsymmetric in-plane model. (c) second symmetric in-plane mode. (d)
second antisymmotric in-plane mode.

Figure 2.3: Irvine (1981): In-plane natural frequencies of a cable.

With reference to figure 2.3, it is evident that the antisy-nmetric modes are
independent of .\, and equivalent to those of a taut string. The symmetric
modes he-weverchange significantly as ,\ increases with increasing sag or cable
------_ .._---

5This frequency equ ltiClIl is identical to that derived by Laa.sonen [1959).
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curvature, resulting in a modal cross-over or mode reversion, after which the
antisymmetric mode becomes the fundamental in-plane mode of a deep sag
cable. Irvine[1981] also considered the case of a cable inclined at an angle B to
the horizontal plane, and concluded that if the cable parameter were modified
to account for the angle of inclination, >': == (mglcosO / H)2l/(H Lei EA), then
the results presented in figure 2.3 would apply, This result is not strictly
correct, since the asymmetry of the mode shapes asso 'iated with inclined cables
causes frequency veering as opposed to modal cross-ov .r.. ,
myengar and Rao[1988] presented a study of the natural frequencies of a sagged
cable under a constant lateral load. In this case the eouilibrium profile is non-
planar, and hence curvature coupling exists betweei, ':,., '1J.~ and out-of-plane
equations of motion. The stability of the cable due to aLLadditional periodic
lateral load was considered. The emphasis of this analysis was clearly directed
at power transmissio ...i lines. Rao and Iyengar[1991J extended this analysis to
examine the response of a shallow sag cable in its first symmetric in-plane and
out-of-plane mode, due to forced harmonic excitation in the in-plane and a
uniform static load in the out-of-plane directions. A special case of tuning was
chosen such that the firs', symmetric in-plane mode tuned to twice the first
symmetric out-of-plane mode, and hence an internal resonance of 2:1 existed,
coupling the response between the in-plane and out-of-plane symmetric modes.
Simultaneously an in-plane external resonance was induced. The tuning of
the internal resonance was dependent on the cable curvature, and hence the
quadratic nonlinearities present in the system. By comparing the response of
the system due to an external resonance, with and without internal resonance,
it was concluded that cable curvature and hence the quadratic nonlinearity
has a significant effect on the system response. The stability analysis of the
system confirmed that regions existed where steady state periodic motion did
not exist.

In a similar fashion to the analyses of Lubkin and Stoker[1943], Tagata[1977,
1983], Takaha.shi[1991] examined the stability : flat-sag cables to periodic
axial excitation. The sag to span ratio was varied to span the first modal
cross-over region. It was demonstrated that the widths of the unstable regions
were affected by the sag to span ratio in the regions of modal cross-over, and
that combination parametric resonances arose. Perkins[1992b] showed that the
equations of motion applied by Takahaskhi[1991] were inconsistent, leading
to erroneous conclusions. Perkins[1992b] showed that such a configuration
resulted in parametric as well as external excitation, and that combination
parametric resona.nces did not arise.
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2.5.2 Travelling Sagged. Cables

Simpson[1972] investigated tl:.e in-plane free vibration of a horizontal travel-
ling elastic catenary. The equations o ' motion were derived by generalising
the equations of a static catenary. Simpson's[1972] analysis considered a cate-
nary with a sag to span ratio of 1:20. Through a process of linearisation of
the nonlinear equations of motion, Simpson [1972] confirmed previous results
pertaining to flat travelling strings, and demonstrated the influence of cable
curvature on the natural frequencies. Simpson's [1972] results indicated that
frequency coalescence between modes may occur, as well as mode reversion,
whereby a higher order mode reverts to the shape of a lower order mode for
certain axial velocities.

More recent analyses by Tri ant afyllou[1985] , Perkins and Mot.e[1987] have re-
considered the problem of cables with initial sag translating between arbitrar-
ily inclined eyelets. Triantafyllou[1985J presented an analysis which considered
the case of small sag and large sag translating cables. His analysis confirmed
the results of Simpsonjlj'"?', and provided further explanation to the occur-
rence of mode reversion ai,d frequency coalescence. The results indicated that
for small sag horizontal cables, the p.r. nomenon of mode reversion and fre-
quency c+Iescence occurred) whereas v, -m the cable was inclined, frequency
coalescence was replaced. by frequency avoidance or veering, where the fre-
quencies approach closeiy but are distinct. Also, ouly partial mude reversion
occurs, where the mode shapes become hybrid combinations of symmetric and
antisymmetric modes. Perkins and Mote [1987] derived the three dimensional
equations of motion for an arbitrarily sagged translating cable based on a finite
strain approach a",d conservation of cable mass. On linearising the equations
of motion, they demonsu ated that the phenomenon of frequency coalescence
is conditional on the symmetry of the mode shapes, and thus frequency .-eer-
ing as opposed to coalescence occurs for both translating cables and inclined
cables, as the mode shapes become asymmetrical. The results of the anal-
ysis were compared with those of Simpson [19721 for a horizontal small sag
tr=nslating cable, and with those of Irvine a J. Caughey [1974] for station-
ary cables. It was demonstrated that the results confirmed those of Simpson
[1972]' except that frequency crossings were replaced by veerings, and those
of Irvine and Caughey[19H]r except at extreme values of the cable parameter
,\2. The large difference at small values ,.\2 was attributed to the modal
interaction of longitudinal modes w'vh lateral modes, not accommodated by
Irvine and CaugheY's[1974] derivation which assumed quasi-static strc .ch in
the longitudinal direction. Tue divergence of the behaviour was accentuated
by varying the cable elasticity, thus in practice with steel wire ropes, this be-
haviour is associated with higher tra- rerse modes, where longitudinal/ lateral
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modal interaction is more significant. Perkins and Mote [1987] noted in this
study that a second stab le equilibrium profile could exist, after the divergence
arrd buckling of the stable catenary at speeds greater than the lateral wave
speed. This concept was developed further, Perkins and Mote[1989}, and con-
firmed experimentally. Burges and Triantafyllou[1988] investigated the aspect
of longitudinal and lateral modal inter::lctiop. further. They examined sta-
tionary small sag horizontal and inclined cables. Modal interaction between
the first elastic or longitudinal mode and the higher (18-22) transverse modes
was considered. It Was demonstrated that longitudinal interaction promoted
the phenomena of frequency coalescence and avoidance in the horizontal case,
whereas only ..voidance occurred in the inclined case,

The results obtained by Perkins and Mote are presented in figure 2.4, and
figure 2.5., where a comparison between those of Irvine and Caughey[1974] for
a stationary sagged c?ble, and those of Simpson[1972] for a translating cable
with a sag to span ratio of 1:20, is presented respectively.
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Figure 2.4: Perkins and Mote (1987): In-plane natural frequencies of a cable-
Comparison with Irvine's theory.
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Figure 2,5: Perkins and Mote (1987): In-plane natural frequencies of a trans-
lating cable - Comparison with Simpson's theory.
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2.6 Large Amplicude Vibration of Sagged Ca ..
hIes

Luogno, Rega and Vestroni[1982] defined a simplified two degree of freedom
model for transverse in-plane and out-of-plane motion of a sagged cable. The
purpose of the study was to demonstrate monofrequent in-plane and out-of-
plane oscillation. As defined by Luogno et al[1982]' monofrequent oscillations
occur when one of the normal displacement co-ordinates prevails over the oth-
ers, and all points move with a frequency that is equal to or a multiple of
the nonlinear frequency of that co-ordinate. Thus monofrequent oscillations
reduce to the modal oscillations of the linear system, as the nonlinearity van-
ishes. This provides a convenient basis for ascertaining the influence of system
parameters on the nonlinear frequency amplitude relationship. The equations
of motion developed contained both quadratic and cubic nonlinearities, associ-
ated with the curvature and stretch of the cable respectively. The initial con-
ditions required to induce in-plane (extensional) and out-of-plane (pendulum
type) monofrequent oscillations were determined. It was shown that in-plane
or extensional monofreque.it oscillations could be induced for any tuning of the
in- and out-of-plane modes, conversely out-of-plane monoirequent oscillations
could only be induced in the absence of internal resonance. With regard to
the in-plane motion, it was demonstrated that the nonlinearities, and the am-
plitude of the induced motion strongly influenced the nonlinear frequencies of
the cable. Drift of the midpoint of the in-plane oscillations occurred due to the
quadratic nature of the nonlinearity related to cable curvature. I'he variation
of the nonlinear frequency from the linear frequency depended strongly on the
cable parameters, where a softening behaviour was observed as the cable cur-
vature increased, whilst hardening behaviour occurred as the cable approached
a taut string. The importance of internal resonance was demonstrated with
respect to the out-of-plane or pendulum type monofrequent oscillations, which
depended strongly on the degree of tuning between the symmetric in- and
out-of-plane modes. The internal resonance condition (where the first sym-
metric in-plant' mode tunes to twice the first symmetric out-of-plane mode
at a modal cross-over as defined by Irvine and CaugheY[1974] ) divided the
system behaviour between a hardening or softening type.

Rega, Vestroni and Benedettini[1984] , examined the planar response of a sagged
cable with sag to span ratios of less than 1/8, where the amplitude of response
was sufficiently large to necessitate: the inclusion of higher order nonlinearities.
The spatial variable was eliminated from the partial differential equations of
motion by using the linear eigenfunctions of a shallow sag cable, and apply-
ing an integral formulation. The resulting equations of motion reflected both
quadratic and cubic nonlinearities; the quadratic nonlinearity is induced by
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the cable curvature and thus the ability of the cable to absorb additional ten-
sion by geometric adjustment of the profile. The cubic nonlinearity reflects
the additional tension generated via second order stretch of the cable. These
terms are related to the first and second integral on the right hand side of
equation 2.2. The equation pertinent to the temporal doma.in was thus cast in
the form:

Since the quadratic coefficient is a consequence of the cables ability to absorb
additional tension through geometric adjustment of the profile, which vanishes
with respect to the antisymmetric modes of a suspended cable, the antisym-
metric modes exhibit hardening behaviour only. Quadratic nonlinearities do
however influence symmetric modes, where a softening-hardening behaviour
results, as demonstrated by Luogno et al (1982], depending on the cable pa-
rameters. The nonlinear frequency amplitude relationship was developed and
indicated that the point of modal cross-over where the first symmetric and
antisymmetric modes coalesce became dependent on the amplitude of motion.
Al-Noury and Ali[1985] presented a similar analysis, focussing on cables with
small sag to span ratios. Their study included the out-of-plane co-ordinate in
the equations of motion. This study concentrated on describing the resulting
nonlinear behaviour due to excitation in the horizontal plane, excitation in the
vertical plane, and excitation in the horizontal plane such that primary res-
onance occurred, when the transverse and vertical linear natural frequencies
are closely spaced. Similar observations were made concerning the depen-
dence of the softening, hardening behaviour on the cable parameters. The last
case studied indicated the presence of strong coupling between the in-plane
and out-of-plane modes, and the potential complexity of the ensuing response.
Takahashi and Konishi[1987aJ examined this problem further) and extended
the analysis to include the three dimensional behaviour of arbitrarily inclined
cables with arbitrary sag to span ratios. A Galerkin approach was adopted for
the spatial domain, whilst the method of harmonic balance accounted for the
temporal domain. The analysis investigated the free response of the cable, and
hence defined the nonlinear frequency of vibration as a function of the ampli-
tude of :n-plane and out-of-plane initial deformations. The analysis confirmed
that the in-plane behaviour exhibited a generally hardening response, although
softening behaviour could be achieved depending on the system parameters.
Due to the nonlinear coupling between the in-plane and out-of-plane equations
of motion, where in-plane terms behave as coefficients in the out-of-plane equa-
tion of motion, out of plane response due to an in-plane excitation would result
from bifurcation or parametric instability. Conversely, out-of-plane terms oc-
cur independently in the in-plane equatio: 1 of motion, thus providing direct
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excitation of the in-plane response due to out-of-plane excitation. This i.s con-
firmed by the analysis of Luogno et al [1982], where out-of-plane monofrequent
oscillations were strongly coupled to in-plane motion. Consequently, out-of-
plane excitation of a cable results in three dimensiona 1 Il:q~i(m, and thus the
nonlinear out of plane behaviour is influenced by the in-plane '·t {"om;'_In the
second part of the study, Takahashi and KOJlishi[1987b], the !,~abi11.1:}of the
out-of-plane response due to in-plane excitation was examined. It wat demon-
strated that the stability regions associated with the out-of-plane vibrations,
occurred due to parametric excitation via tile nonlinear coupling terms. Thus
this analysis examined the parametric stability of the out-of-plane motion and
concluded that in the general case both simple and sum type combination para-
metric resonances occurred", The existence of the stability regions was shown
to be dependent on the cable parameters, and on the symmetry of the excita-
tion, which dictates the symmetry of the response and hence the importance
of the cable curvature. In this regarc it was demonstrated that in the case of
a horizontally supported sagged cable subjected to a symmetric excitation (
quadratic nonlinearities included ), as opposed to an antisymmetric excitation
( quadratic nonlinearities excluded ), the stability chart could be significantly
different. In the latter, principal simple parametric resonances of symmetric
modes do not arise. In the case of an inclined cable, the asymmetry of the
profile resulted in the occurrence of all types of instability regions, irrespective
of the forcing function. Benedettini and Rega[1987] presented a further study,
employing a perturbation method, to investigate the planar behaviour of a hor-
izontal cable with initial sag to in-plane primary resonance. It was concluded
that the cable was most sensit.ive to cubic nonlinearities when its parameters
conformed to those of a taut string, and thus hardening behaviour was ob-
served, with one unstable and two stable periodic solutions. When a sagged
configuration was analysed) it was evident that the quadratic nonlinearities
lead to a softening-hardening behaviour, and consequently up to five periodic
solutions may exist close to resonance, The sensitivity of the system to ini-
tial conditions was demonst.rated by a numerical simulation of the equations
of mot.ion. Rega and Benedettini[1989a, 19!?9b], pursued their study further,
by examining the superharmonic and subharmonic behaviour" of 3. cable to
in-plane excitation, for cables with various sag to span ratios. The studies
demonstrated that the second order superharmonic produces notably stronger
effects generally. This behaviour is accentuated by increased curvature or more

6Simple parametric resonances occur at intervals 2w;/n, where Wi represents the linear
natural frequency, A principal region is defined by n = 1, and secondary and tertiary regions
follow :1. :::: 2,3 respectively. A sum type co-nbination resonance occurs in tlw intervals
(Wi +Wj)/n, n = 1,2,:l, ..,

7In this context, subharrnonic refers to the situation where the response frequency is a
subharmonic of the excitation frequency, the converse applying for the supezharmonic case,
A second order and third order subharmc nic would arise when response occurs at fJ/2 or
fJ/3 respectively, where fJ represents the excitation frequency.
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dominant quadratic nonlinearity in the equations of motion.

Perkins[1992a] presents a study of the nonlinear modal interactions in a sagged
cable when it is excited tangentially to the equilibrium profile, at one support.
This study examines the condition whereby the first symmetric in-plane mode
tunes to twice the first symmetric out of plane mode, and consequently an
internal resonance exists. The longitudinal excitation was tuned to excite a
principal parametric resonance of the out-of-plane mode, and due to the in-
ternal resonance, this excitation could simultaneously excite primary external
resonance of the in-plane mode. Pel'kills[1992aJ demonstrated that Ihe cable
response was either p.anar or highly coupled. A two degree of freedom model
was applied to examine the stability of the planar and nonplanar 1!l-.!oions8.
The bifurcation condition governing planar stability indicated that the pres-
ence of the internal resonance greatly reduces the planar stability and enhances
nonplanar response. It was also found t,hat the principal parametric resonance
disrupted the saturation phenomenon that we l normally occur in the case
of primary external resonance alone. The theoretical model provided a good
qualitative description of the experimental behaviour observed in a laboratory
exercise. It was demonstrated that a small support motion could induce sub-
stantial out-of-plane motion. Perhaps it is pertinent to note that the mine
hoist system lends itself to combinations of tuning of a similar nature, with
respect to the longitudinal and lateral modes, and the excitation. This aspect
will be elaborated further in later chapters.

8Perkins notes that this condition of tuning coincides with the modal cross-over, and
therefore the first in-plane symmetric and antieymmetric modes, and the second out-of-
plane mode occur simultaneously. If the system was excited to induce principal parametric
resonance of these modes, a truncated two degree of freedom model would not apply,
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2.7 Conclusion

The purpose of this chapter W(1,S to establish an overall perspective of var-
ious aspects of the noaunear dynamic nature of a suspended cable or taut
string, and thereby reflect the depth and diversity of the subject. It is clear
on reviewing the literature that a structural ~able provides a remarkably good
vehicle for the study of nonlinear dynamics. Recent research (Molteno [1990],
O'Reilly and Holmes [1992]) confirms that chaotic motion has been observed in
a taut stationary string, and {his will no doubt stimulate further research. The
particular studies reviewed were applied to a cable or string fixed at its extrem-
ities, and for this reason the results are not directly applicable to a mine hoist
system. Many other studies exist concerning aspects of taut string and cahle
vibrations which are not considered pertirrnt to this thesis. For instance stud-
ies regarding the response of a taut string to travelling loads (Rndeman[1976),
Sagartz[1975], Schultz[1968]), or where the string or cable supports a discrete
mass (Rosenthal[1981], Smith[1964], Wickert[l9H8]). An interesting applica-
tion regarding the effect of Coriolis coupling on a moving string resulted in a
vibrating string being considered as a basis for the development of an angular
motion sensor (Quick [1964]), and consequently the consideration of nonlinear
effects and methods to quench these (Dimeff et al, [1966]),

issues pertinent to the mine hoist system, namely the potential importance
of cable curvature, transport velocity, nonlinear cable stretch and 'ongitudinal
inertia, require assessment in light of the literature reviewed.

Considering the Kloof Mine system, which is typical of many shafts in South
Africa, the sag to span ratio? varies between 1:100 and 1:500, whilst the non-
dimensional cable stiffness parameter 10 A: varies between A: ~ 4 to A: ~ 0.03
for an empty skip at shaft head to a fully laden skip at shaft bottom reo
spectively, The small sag to span ratios typically encountered on mine hoist
systems justifies Mankowski's treatment of the catenary as a horizontally sup-
ported truncated catenary symmetrical about its mid point. This approxima-
tion will be applied in this thesis. In terms of the cable parameter, and with
reference to Irvine's results [1981]' the natural frequency of the first in-plane
mode (I,t shaft head, vrith an empty skip will be in error by approximately
15%, whilst the higher frequencies will be unaffected. On the ascending cycle,
when the skip is at shaft head, this ratio is of the order of A2 ~ 0.3 ai.1 thus
the in-plane natural frequencies of the cable will be well predicted by classical

9The sag to span ratio is given as (d: /) = mg~;;«(}), 'vhere H is the horizontal component
of tension, m the mass per unit length, / the span length, and e the angle of inclination.

lOKloof Mine system parameters are H = 80 - 340kN, m' = 8,[ikg [m, I = 75m, E =
1.1 x LOll, A = 1.02)( 10-3, e = 50°
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taut string theory. Since the dominant lateral excitation is in the out-of-plane
direction, avoidance of a directly excited mode could be assessed by consider-
ing the linear lateral natural fre encies of the catenary. However I since cable
curvature provides coupling betv en the in-plane and out-of-plane ruction, as
demonstrated by Luogno et ali1982], Takahashi and Konishi [1987aL[1987b},
Perkins [1992a], curvature is an important parameter to include in a numerical
simulation.

With regard to the transport velocity of the cable, the effect on the linear
natural frequencies is small, causing frequency changes of less than 2%. For
this reason, it has been neglected in previous analyses (Dimltriou and Whillier
[1973], Mankowski [1982]) of mine holst systems. Although the lateral natural
frequencies of the catenary are not strongly influenced by the Coriolis force
developed, it is noted that if a real normal mode method is applied for the
purpose of a numerical simulation, then a realistic simulation would dictate
the inclusion of this effect. This occurs since the actual mode shapes associated
with a travelling medium ate complex, and consequently in the context of a
real normal mode solution, implies that the 00riolis force couples and excites
the higher modes resulting in a nonsynchronous behaviour.

A number of the studies presented regarding strings and cables with pinned
end conditions neglected the longitudinal inertia, due to the large difference
between the longitudinal and lateral wave speeds. In the context of the mine
hoist system, the longitudinal wave speed is far greater than the lateral wave
speed, however the longitudinal response is dictated by the modal response of
the coupled system, and thus modal interaction between the transverse and
longitudinal modes of the system must be accommodated.

Since the intention of this study is to examine the steady state stability of the
stationary system as well as to develop a numerical simulation to account for
the nonstationary nature Oi.' the system, the equations should be developed to
account for transport velocity, catenary curvature and nonlinear stretch of the
cable. These equations can then be simplified where appropriate as the thesis
develops.



Chapter 3

Equations of Motion.

301 Introduction

The purnose of this chapter is to develop the equations of motion of the coupled
system. The coupled system refers to ~he catenary, headsheave, conveyance,
and the coupling which exists between the catenary and the vertical rope.
Mankowski[1982] attempted a lumped parameter numerical simulation of the
mine hoist system by accounting for curvature and nonlinear rope stretch in
the catenary, and coupling the catenary motion inertially through the head-
sheave to longitudinal motion in the vertical rope. It is preferred to achieve
the description of the system in a more theoretical manner, by applying a
continuum mechanics approach as developed by Luogno et ",1[1984],and later
applied by Perkins and Mote(1987]. In this approach, the Lagrangian func-
tion of the system is formulated, and Hamilton's principle is applied to define
the nonlinear equations of motion of the system. Since the definition of the
Lagrangian function depends on the strain measure adopted) and the bound-
ary conditions assumed, simplifications introduced are clearly evident in the
theoretical development. This is considered to provide an advantage over a
purely numerical approach as developed by Mankowski[1982], as it allows for
an appreciation of the resulting equations of motion in terms of conventional
techniques applied in nonlinear dynamics. To facilitate the development, the
methodology applied by Perkins and Mote[1987] in deriving the equations of
motion applicable to a sagged travelling cable, is presented. This approach
is then extended to the mine hoist system, where the appropriate boundary
conditions are accounted for. The full nonlinear equations of motion, consis-
tent with the strain measure adopted are presented, where further truncation
is applied as appropriate in later chapters.
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The Sagged Travelling Catenary

3.2.1 Equations of Motion

A saggt".l, travelling elastic cable passing betwee-i two fixed eyelets is illustrated
in figure (3.1). The cable is treated as a one dimensional continuum, located in
the vertical Xl - X2 plane with gravity, g, aligned with the -§.2 direction. The
cable passes from the static equilibrium configuration i to a final configuration
Xi during the motion. 'I'he unstretched or natural state is defined by Xol. The
cable has c cross sectional area and transport velocity of AO and CO in the
natural state XO, a modulus of elasticity E, and a mass density of p. The
equilibrium configuration is defined by the position vector Ri(Si,l;) where 8;'
is the arc length co-ordinate referenced to the equilibrium configuration. Unit
vectors in the equilibri urn configuration are 1i,'!1i,Ji in the tangential, normal
and bi-normal directions respectively. The final configuration is defined by
Rf(Si,t) =:; Ri(Si, t) +U(Si, t) where U(Si, t) represents the three dimensional
motion of the final configuration, with respect to the equilibrium profile. The
motion of a cable particle which includes the particle transport velocity cf tf
is illustrated in figure 3.1. Thus:

Figure 3.1: Catenary configuration

IThe purpose of introducing the natural or unstressed state, facilitates the extraction
of the equations describing the equilibrium profile of the catenary from the equations of
motion.
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R! (Si , f) = Ri (Si , t) + U (Si , t) (3.1)

The motion U(Si, t) is defined. in the tangential, normal and hi-normal direc-
tions of the equilibrium configuration as:

The cable is considered as a one dimensional continuum in the f_i direction.
Second order deformation effects are accounted for by utilising the ti compo-
nent of the Green-Lagrange strain tensor. Luogno et al[1984}, Perkins and
Mote[1987} define the Lagrangian strain in the final configur. tion as:

where So denotes the arc length of the unstressed cable configuration. The
Lagrangian strain in terms of the initial differential element d.S" and the final
element dS! is defined as e! ::;::H(dSf(~;()~SO)2}. Introducing an intermediate
equilibrium state, dSi results in the strain measure e!:

The Lagrangian strain resulting from a deformation from the equilibrium C0n-
figuration Xi to the fina.l configuration Xi is defined as €: 2:

2The following manipulation is required:

[{ }T { , }' £I }T]'/ . 1 a· i:). u· . d S: 2
e = e' + 2' aSi U(S' 1 t) . a§Il.(S" t) + 2 {aSi .!Z(S', t) . '1.' (dSO)

where: U(Si 1 t) = uti + 1/[1; + w!l
&t" &,," & Ri(Si t) - tiand: &8' .:::Il.'!l' &5' = -",t' asr" - _

IsrU(si 1 t) = (U" - KVW + (v" + KU)'!li + w,sQi
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in which ( ),e denotes parbia] differentiation with respect to Si and I\, refers
to the curvature of the equilibrium configuration Xi.

The Lagrangian strain may be formulated in a. more direct. manner by consid-
ering the deformation associated with a differential element in Xi, referenced
to a differential element in x'. Figure 3.2 presents a differential element of the
cable in the u - wand u - v plane, with curvature K, deformed from the equi-
librium profile Xi to the final profile Xi. The differential length of the element
in the final configuration can be calculated by considering the projection of
the element onto the three orthogonal cartesian planes defined by X

"
X2,X3:

Since de = KdSi ,and € = ~(dS?;;.~~Sif,and neglecting the differential products
v,$dSidO,u,$dSidO which vanish in the limit dSi -+ 0, the Green-Lagrange strain
e can be derived.

U+U."o.su. -~
f--~

W.! :W+W ••ds
! ,

iz t ?? 22 )? ? ? 2 »

ds1

u+w plane
u+v plane

Figure 3.2: Displacement of a different! 1element of cable from Xi to x'
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3.2.2 Hamilton '8 Principle

In order to apply Hamilton's principle, the action integral is formulated as a
combination of the kinetic er:ergy IT?, the strain energy 7t! j and the gravita-
tional potential energy 'Ir/,' of the system. The action integral is stated as:

,

The strain energy of the cable IT! in the final configuration Xi formulated
in terms of the equilibriu. rn strain energy IT! of the cable in the equilibrium
configuration i is:

where pi represents the tension in the cable in the static equilibrium state
Xi, This represents a r(("'1C~.'dform applied by Perkins and Mote[19871 to
the more complete derivation provided by Luogno et al[1984~. It implies that
~~: ;:::::J 1, and thus the deform>: ion of the cable from its unstretched length to
the static equilibrium profile is in-elastic. This assumption is well justified for
practical cables as can be ascertained by considering the constitutive law for
, ' .. 1 bI· pi - EAo i h j _ l[(dSi)2-(~SO?] dSi _ [ 2Pi]!.a umaxia ca e. - . e, were e - 2 (dS") -, dSO - 1+ EAo :.I,

For practical cables E~o < < 1, and consequently the approximation ;~~ ~ 1 is
justified, Since conservation ....f momentum and mass requires that ciA' = COA 0

and AidS; = AOdS!) it follows that by the same argument Ai and ci may be
treated as constants,

The kinetic energy of the cable in the final configuration X~, referenced to the
equilibrium configuration X\r, is formulated as:

The velocity of the cable V J in the final configuration Xi, may be obtained in
d'ms of the equilibrium configuration i, as follows:
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!_ ~[R!(Si)] - 8 [Ri(St ) U' ('t )] dS
i

t.-8S!- ,t -OSi- ,t+_\.J,t dS!

! _.i ~_ i dSi
t. - [t. + OSi U(S ,t)] dS!

The term ~:j is defined by considering the conservation of mass and momen-
tum of a cable element:

Thus the velocity of the cable, referenced to the equilibrium profile may be
formulated as:

The gravitational potential energy 7ft of the cable in its final configu-ation X!,
written in terms of the gravitational potential energy 7f~of the cahle in the
equilibrium configuration Xi is:

where It, in are the components of the normal and tangential unit vectors pro-
jected on the vertical cartesian unit vector §.2, §.2 = ld.i + lnli..' .

The equations of motion are determined by applying Hamilton's Principle,
which requires stationarity of the action integral for arbitrary variations 6U( s, t),
vanishing at the limits to) tl'

(3.2)
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On applying the condition of stationarity with respect to arbitrary variations
8U(Si\. t), the above equation reduces to:

where:

Integration by parts with respect to t in the second term and Si in the third,
leads to:

If the cable passes through fixed eyelets, as in the analysis of Perkins and
Mote[1987], then 8U!~ vanishes at the eyelets and consequently the last term
in the above equation vanishes. Thus the equations of motion are obtained
by satisfying Hamilton's principle by setting the integrand identically to zero.
Perkins and Mote[1987] obtained the following equations of motion.

14 Component

v ComponCalt

w Componen!

where £11 = 1 + U," -,..;11 , £12 = tI,,,, + I<U and Q3 = w,s.
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The equations of static equilibrium are extracted by setting the time derivatives
and displacement components u, v, w to zero. Thus the equations governing
the static equilibrium profile are:

Perkins and Mote[19S7] show that by considering a momentum balance be-
tween the natural configuration XO and the equilibrium configuration i,when
the cable is stationary, a description of the equilibrium configuration results
\Mh ich is identic3,1to that of the inelastic catenary solution in elementary stat-
ics, On linearising the equations of motion about the equilibrium profile, and
retaining only first order terms in the displacements) Perkins and Mote(l9S7]
determined the natural frequencies of a shallow sag, inclined travelling cable,
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3.3 The Mine Hoist System

In the case of the mine hoist system, the boundary conditions differ from
those applied to cables pinned at each end. Figure 3.3 represents the model
of the mine hoist system analysed. In this figure, the catenary refers to the
section of rope between the winder drum and rheave wheel. In practice, the
static tension in the catenary is high, and consequently the asymmetry due
to the cable inclination is small. The catenary profile is flat and lies close to
the chord between the drum and sheave. ThE;sag to span ratio at the mid
point of the ehord, where the sag is measured perpendicular to the chord, is
of the order of 1:100 or less. In this regard it is acceptable to treat the cable
as a flat sag cable, by neglecting variations in the tension and treating the
curvature as constant. This results in a symmetric parabolic cable equilibrium
profile, where the inclination of the cable is accounted for by modifying the
gravitational constant to gcos(f)), where 0 represents the angle of inclination
of the chord from the horizontal axis'', Initially the equations of motion are
developed to account for the general case of an inclined sagged catenary as
illustrated in figure 3.3. Subsequent simplification of the equations of motion
is introduced, on the .asis of assuming constant tension and curvature, leading
to the equilibrium profile of a flat sag parabolic cable.

Headgear

Figure 3.3: Mine hoist configuration

3Mankowski[1982] made a. similar simplification, justified on the basis that the variation
III axial tension due to the inclination of the cable is small in comparison to the static tension,
hence a symmetric parabolic catenary was employed in his analysis.
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The system parameters are the catenary length leI the total rope length lv,
the material density of the cable p, the linear mass density of the cable m,
the cross-sectional area of the cable .4., the elastic modulus of the cable E, the
sheave wheel mass moment of inertia J, the mass of the skip and pay load M,
and the transport velocity ci.

The boundary condition at the drum end is treated as pinned. Thus the winder
is considered as a perfect power source, and dynamic interaction between the
winder and hoist system is neglected". The sheave end boundary condition
represents the fundamental difference between studies regarding strings and
cables and the mine hoist system. In this study the coupling between the cate-
nary motion an _,the vertical rope is accommodated. To simplify the analysis,
it is assumed that the catenary-sheave-vertical rope interface is accounted for
by a rigid band passing over the sheave. The catenary is attached to this band,
which admits motion tangential to the equilibrium profile. Thus the catenary
is effectively supported by frictionless rollers at the sheave, such that lateral
motion at the point of attachment to the .band is eliminated, as illustrated
in :figure 3.4. This effectively couples the sheave inertially to the longitudinal
system response". Although la~eral movement of the vertical rope occurs in
practice through autoparamet :ic excitation due to the catenary motion, only
longitudinal motion of the vertical rope is admitted. Thus the model proposed
is ultimately identical to that implemented numerically by Mankowski[1982].
The aspect of including lateral motion of the vertical rope is viewed as a future
research incentive.

The definition of the dynamic response of this model requires equations of
motion describing the three dimensional motion of the catenary, the motion of
the sheave wheel, and the longitudinal motion of the vertical rope and skip.
Figure 3.4 illustrates the variables u(s, t), v(s, t), ''.V(8, t) which represent the
motion at a station along the catenary in the tangential, normal and bi-normal
direction of the equilibrium profile respectively, where s refers to the arc length
co-ordinate measured along the equilibrium configuration. The co-ordinates
U17 17(s, t),U2 represent the tangential motion at the sheave, the longitudinal
motion of the vertical rope, and the motion at the skip respectively. Continuity
of motion across the sheave requires u(lc, t) = Ul = 17(lc, t).

4This is a significant assumption which was introduced to simplify the analysis at this
stage of the research. Kaczmarczyk[1993] is considering the effect of including the electrical
characteristics of the winder motor.

5Appendix M presents an alternative formulation, where the kinematics of the cable
sheave contact are defined through geometric considerations, resulting in constraint rela-
tionships governing the motion of the cable at the sheave end.
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Ul®=~.
R

Rigid band

Figure 3.4: Catenary - sheave interface

3.3.1 Equations of Motion and Equilibrium

The equations of motion are developed for the system described, by following
a similar developme at to that of Perkins and Mote[1987]. The kinetic, elastic
and gravitational potentia! energy of the system is defined in terms of the
equilibrium state of the system. The equations of motion are extracted via
Hamilton's principle. By setting displacements and time derivatives to zero
the equations defining the equilibrium state of the system result.

In this analysis the Lagrangian strain e defines the strain measure in the cate-
nary:

Since lateral motion is not permitted in the vertical rope, the strain measure
applied in the vertical rope £ is defined as:

l=U,8

The strain energy of the cable «l in the final configuration, formulated in terms
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of the equilibrium strain energy '7r~ of the cable in the equilibrium configuraf in
lS:

I . ric . 1 r . 1
'Tie = 1f~ + Jo (pt + 2'AE€)€ds +k (P + 2"AEE)7.ds

where pi ,pi represent the tension in the catenary and vertical rope in the
static equilibrium state respectively.

The kinetic energy of the cable in the final configuration, referenced to the
equilibrium configuration is formulated as:

where VJ ,Vi represents the particle velocity of the rope in the catenary and
vertical section respectively; (Ut +c'), (U2 +ci) represent the tangential velocity
at the sheave and skip respectively.

The velocity of the catenary VI in the final configuration is obtained as:

where: al = 1+ u,s - K,V, a2 = V,s + KU, a3 = W,S'

The velocity of the vertical rope VI in the final configuration is obtained as:

'VI = {ci(l + it )+ it }r_ ,8 ,t ....

The gravitational potential energy "Irt of the cable in the final configuration,
written in terms of the gravitational potential energy "Ir~ of the cable in the
equilibrium configuration is:
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where It, In are the components of the normal and tangential unit vectors pro-
jected on the vertical cartesian unit vector ~:i, ~2 ::::: ld.i+ inl1.i .

The Lagrangian of the system is thus:

The Lagrangian is split into discrete and continuous components for co.rve-
mence:

£(s, t, u, V, W, u,s, V,s, W,S) U,t) V,t, W,t, U, u,S) U,t) UI, UI, U2) U2) ~
£1(8, t,U, 'V, W, U,s, 'U,S) W,Sl U,t) V,t, Wit)

+£:2(8, t, U, U,S) U,t) + £3(t, Ul1 Ul) + £4(t, U2, U2)

where:

c 1 I (. i)2
3 = 2R2 Ul + C

The equations of motion are determined by applying Hamilton's principle,
which requires stationarity of the action integral for arbitrary variations in
the dependent co-ordinates, compatible with the boundary conditions, which
vanish at to! tl.

(3.3)
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Applying the condition of stationarity with respect to arbitrary variations in
the co-ordinates 8U(s, t),8u(s, t),OUl,Bu2, leads to the requirement that:

where:

UTes, i) = {u(s, i), l1(S, t), w(s, i)}

BUT(O, t) = {O, 0, O}

Applying these conditions, the equations of motion result as:

aCI _ ~/a~l) _ i.(ac1) = 0all.. at t au as au'
8£2 _ ~/8~2) _ !_(8C2) = °au at t ou as art

oc, a aC3 aCI ec,
08 - a+(r) + -;=\Tllc - a_J Ilc ==

'Ul ~ Ul au U

0£4 _ ~(8£,!) + a£211 == 0aU2 at OU2 Ott v
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Performing the necessary manipulations results in a set of six nonlinear differ-
ential equations defining the motion of the mine hoist system.

[(P'+AiSe)c 1 ,-[(P'+A:B<)t<"2] -pglt= [pA'(u,t+O'''l)] t+ [pAic'(u,t+O'''l)] .-pAic't<[v,t+C'Q2], ,

[(~i i""" (i iE)'J I i( i)2(_ )1 [ I (. ')'P + A ~fJ - P + A e at Ire - peA c 1J,S - ~t" le = R2 ul + C J,t

The first three equations are identical to those derived by Perkins and Mote[1987].
The fourth equation describes the longitudinal motion of the vertical rope. The
fifth and sixth equations describe the inertial balance across the sheave, cou-
pling the catenary to the vertical rope, and the boundary condition required
to achieve dynamic equilibrium between the skip and the tail of the vertical
rope, respectively.

The equations of static equilibrium, for a constant velocity state c:t = 0, are
extracted by setting the time derivatives and displacement components to zero.
Thus the equations governing the static equilibrium profile are:

(3.4)

(3.5)

-.=:i
P s +mg = 0

f
(3.6)

(3.7)
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(3.8)

Perkins and Mote[1987] solved the equilibrium equations governing the profile
of a cable with arbitrary inclination and sag. This was accomplished by in-
troducing a momentum balance across a segment of arc length s', extending
from the the lowest point on the profile where the tension is Po, to any other
station along the arc length where the tension is pi6. Referring to figure 3.5,
the momentum balance yields:

l~--ei
_pgA1Sl~2

+P elOf".)

Figure 3.5: Control volume of segment of cable.

Since ti = 12§.1 + 11§.2' [1, l2 can be defined. Together with the first two equilib-
rium equations, the tension distribution and curvature can be defined ail:

Integration of the cable curvature leads to:

6The approximation AO ~ Ai and CO ~ ci is introduced on the basis that pi/EAO « 1.
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and the arc length co-ordinate:

where M2 = (Po - pAici2)/ pgAi. The equation for the catenary profile X~(XD
and the arc length Si are used to define the tension Po and the position of the
catenary in the Xl, X2 plane, given ci, and the initial cable length u. Although
this approach accurately accounts for the tension and curvature distribution in
the equilibrium configuration, as noted previously, substantial simplification
can be made in the context of the mine hoist system by treating the catenary
as a flat sag cable.

3.3.2 Flat Sag Cable Approximat.ion

In the mine hoist system, the catenary is inclined. However, due to the high
tension in the catenary as a, result of the payload and mass of the vertical
rope, the cable profile lies close to the chord between the drum and sheave.
Irvine[1981] derived the profile of a static inclined cable, under sufficient ten-
sion such that the profile lies close to the chord, as illustrated in figure 3.6.
The approximate profile with respect to the chord is defined as:

1 E
Z = -x(l - x)[l - -(1 - 2x)]2 . 3

where z = z/(mg[2cos(I))/ H), x = xli, E :::: mglsin(O)/ H; z represents the
perpendicular distance between the profile and the chord, x represents the
distance from the upper support along the chord length, and H represents
the component of the cable tension p, ojected onto the chord at the upper
support. This profile is asymmetric with respect to the mid span, where the
asymmetry is dictated by the magnitude ~ E. H € « 1, the variation of
the tension is considered to be negligible with respect to the static tension,
and the profile may be approximated by a symmetric parabola with respect
to its mid span". By assuming such a profile, Irvine[1981} suggests that the
natural frequencies of an inclined cable can be determined from the frequency
equation of a flat sag horizontal cable, where the cable parameter is corrected

'The same solution is obtained by considering the cable to be supported at equal eleva-
tion, and correi ting the gravitational constant to gcos(B).
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Figure 3,6: Flat sag inclined cable

to ,\2 = (mglcos(6)1 H)/(H Lei EA). Perkins and Mote[1987] demonstrated
that the loss of symmetry of the profile of an inclined cable, Jeads to frequency
veering as opposed to coalescence ill the proximity of a modal cross-over.

In the context of mine hoist systems, the cable tension is sufficiently high such
that the assumption of a fiat sag cable profile SJ netrical with respect to the
span is reasonable", Ma.nkowski[19S2] introduced this approximation by treat-
ing the catenary as being horizontally supported, symmetric with respect to
the mid-span, and correcting the gravitational constant to gcos( 0). Although
the equations derived account correctly for the tension and curvature; distribu-
tion in the catenary, this approximation will be introduced, and consequently
the system analysed is presented in figure 3.7.

Considering the equ.arons of static equilibrium of the catenary, the variation
of tension along the cable due to its self weight is negligible, and the cable
tension and curvature are constant. Thus pi, S ::::l 0, ci is constant and it ~ 0
and In ::::l 1. Equation 3.4 is trivial, whilst equation 3.5 results in a description
of the equilibrium curvature where 9 has been corrected to gcos(O). Applying
these approximations to equations 3.4,3.5 results in:

BIn typical mine hoist systems, 0.01 < e < 0.05, ,\2 < 2
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~+

Figure 3.7: Mine hoist model

pAigcosO
I\, = pi _ pAi(Ci)2

Equations 3.6-3.8 define the static tension distribution in the rope, which give:

Thus the equilibrium curvature of the catenary is determined by:

pAicosO
I," = M + pAil'll

The equilibrium profile is defined by:

z = ~x(l- xi

where z = zj(mgl2cos(O)1 H), x = xli; z represents the perpendicular distance
between the profile and the chord, z represents the distance along the chord
between th- drum and sheave.
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The equations of motion are simplified further by treating u = O(v2) = O(w2),

and retaining terms up to 0(v3), 0(w3), and terms to 0(v2), 0(w2) which have
curvature K, as a coefficient". Thus the equations of motion ap-Iied to analyse
the mine hoist system are defined a.s:

U,tt + 2CiUt,s - ciK,{V,t + 2civ,3 + ciK,u} + c:t {1+ U,s - K,v} =

(c; - Ci2)u,ss + cf{v,sv,ss + tv,sW,ss - K,V,s} (J.9)

(3.10)

• • 2'2
W,lt + 2c'wt,s + c:tw,s = (cv _- c' )w,ss+

2( 32 12 }cr { u,sw,s),s + '2W,OW,88+ 2v",w,ss + w,sv,ov,ss

-KCUVW,ss + w,sv,s} (3.11)

._ ,) i- i {I -} (2 ;2)_I~.tt + .....c Ut,s + C,t + U,s = CI - C U,ss

where CI = E/ p, Cv = pi/ pAi, represent the longitudinal a.nd lateral wave
speed respectively. ci, c~ represent the transport velocity and acceleration of
the rope respectively.

9The same equations result if the strain measu -e is defined as: e = U,S - /Cv+Hv~.+W~3)
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The displacements u, v, ware referenced to the local tangential, normal and
bi-normal directions of the catenary profile respectively. In the limit where
/1, == 0, the unit vectors ti,!]_i, Ji align with the cartesian unit vectors §.1, §.2'~'

and the arc length co-ordinate s is replaced by the cord length co-ordinate x.
The displacements in the cartesian plane Uc, Ve, We may be found by applying
a transformation of axes 'Ue = U + Z:z:V, Ve = V - ZxU, We = wtO.

3 Ai: Conclusion

This chapter has developed the equations of motion applicable to the mine
hoist system. However, further development is required to account for the exci-
tation mechanism. In this regard, the excitation can be defined broadly as corn-
prising of inertial loading of the system due to the acceleration/deceleration
profile employed to accelerate the system to, or decelerate the system from the
nominal winding velocity, and periodic boundary excitation at the drum due
to the coil cross-over mechanism. The latter excitation comprises of periodic
pulses normal, transverse and tangential to the drum radius. Once the rope
has traversed the full drum width) a layer change occurs, which induces a sig-
nificant axial and radial pulse to the rope at the drum end. Following the layer
change, the traverse direction of the rope changes, and consequently the lateral
component of the periodic excitation due to the coil cross-over profile changes
phase by 180°. To complicate matters further, during the wind the system
parameters are changing due to the decreasing or increasing length of the sus-
pended vertical cable. Thus both the system parameters and the excitation
are strictly non-stationary. This aspect introduces a substantial complication
to a purely theoretical analysis of the system. Mankowski[1982] appreciated
that a theoretical analysis of the system, which accounted for the complex
excitation induced by the coil cross-over, as well as the nonlinear nature of the
system would lead to a situation intractable to analysis, and thus proposed a
numerical analysis of the system. Although ultimately a numerical simulation
of the system would be essential, in the current study where the equations of
motion have been developed, it is possible to examine the stationary nature of
the system to stationary periodic excitation at the drum, prior to a numerical
simulation. Achieving desirable stationary system characteristics would ex-
tend the current linear design approach, 'uhus pr oviding an initial selection of

laThe equations of motion could have been derived to reflect displacements in a cartesian
reference frame directly ( Luogno et al (1984]), however it was decided to use a Lagrangian
reference, since it results in a more concise presentation for the general equations. The strain
measure applied by Luogno et al[1984J, f = u,:&' + Y,:&,v,:r -I- tv~:&' can be obtained by applying
the co-ordinate transformations Uc = U + Z:r"J '(;C = V - =:vU to the equivalenc strain measure
f = u" -- kt, + tv~s in the Lagrangian reference fi arne, and ordering terms appropriately.



system parameters £01' assessment in a numerical simulation. SInce the excita-
tion definition is dependent on whether a stationary or nonstationary analysis
is 'pursued, it will be presented where appropriate in later chapters.



Stationary Analysis of the
Mine Hoist System

The purpose of this study is to identify conditions leading to, or promoting the
occurrence of rope whip on mine hoist systems. Although the analysis of the
large non-linear motion the system may present a challenging problem, it is not
the initial focus of this study. Ideally, the analysis of the system should evolve
in a consistent manner, supporting further more complex studies. This phi-
losophy has been applied, where the current analysis of the mine hoist system
consists of two phases. This chapter considers the first phase, which examines
the steady state behaviour of the system in the absence of rope curvature and
transport velocity. The rationale of this phase grows from the approach pre-
sented by Dimitriou and Whillier[1973}, where the linear natural frequencies
of the system were examined as a function of the shaft depth. Dimitriou and
Whillier[1973] proposed their quasi-static linear analysis to identify regions
where primary external resonance of the system could be expected. This anal-
ysis did not provide information regarding the severity of the interaction of the
longitudinal and lateral modes, and hence the significance of the system tun-
ing. Since the lateral excitation induced by the Lebus coiling motion is more
significant than the longitudinal excitation, it is usual to attempt to avoid lat-
eral catenary resonance, whilst neglecting the longitudinal system behaviour.
This strategy is often not successful, particularly with respect to deep shafts.
In fact it would be unusual to find a mine hoist system in practice, where pri-
mary external resonance of the system does not occur at [ we stage during the
ascending or descending cycle. Although catenary resonance generally occurs,
some systems exhibit more severe behaviour than others. This supports the
notion that the overall system tuning may be ar. important feature influencing
the system behaviour. This is a pertinent observation, since it is possible for

72



73

the lateral catenary motion to induce autoparametric system response due to
the non-linear coupling between the lateral and longitudinal modes. Dimitriou
arid WhiIlier[1973] discussed this possibility qualitatively, and proposed that
an autoparametric excitation mechanism was probably responsible :tor the ob·
served lateral motion of the vertical section of the rope. Although the results
presented by Diniitriou and Whillier[1973] provide a basis for' a qualitative
discussion, in practice they are only useful to define conditions of primary
exter: ~ resonance of the system. In order for an analysis to be practical, a
quantitative analysis, accounting for the degree of excitation, damping, and
the system tuning is required.

In the context of Industry, such an analysis should present the results in an
unambiguous and simple manner. Ideally the analysis should identify regions
of avoidance regarding the system parameters, rather than presenting the de-
sign engineer with a thorough non-linear steady state solution of the modal
amplitudes, which may be multi-valued and even non-periodic. Linear dy-
namic characteristks of a system. are generally well understood hy graduate
engineers, however this is not the case with regard to non-linear studies. It 1S
for this reason that the concept of avoidance of non-linear interaction is pro-
posed as a basis for assessing the dynamic behaviour of the system. Thus the
method presented considers the avoidance of significant non-linear behaviour
as a criterion for designing a mise hoist system. This criterion is based on the
formulation of a datum steady state solution. 'I'he datum solution is chosen
as the linear solution in the absence of primary external resonance.

Regions of non-linear interaction, where the response will deviate from the da-
tum solution due to non-linear effects are identified by considering the stability
of the motion in the context of the non-linear equations of motion. The linear
stability analysis is defined by considering the stability of a system of equations
with periodic coefficients, and consequently regions of avoidance are identified
by constructing a stability chart which is synonymous with the Strutt stability
chart. This represents the first phase of the analysis, where system param-
eters satisfying this criterion are selected. The non-stationary nature of the
system, as well as transient excitation induced during a layer change requires
a more advanced analysis. Chapter 5 presents a complete non-linear numer-
ical simulation of the system, which accounts for the non-stationary system
characteristics, transient excitations, rope curvature and winding velocity.
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4~1 The Steady State Analysis

The non-linear equations of motion of the system developed in Chapter 3, are
considered in the absence of catenary curvati ....re and axial transport velocity.
Initially, the lateral stability of the catenary was investigated under the influ-
ence of stationary periodic axial excitation. In this case the trivial condition
v(s, t) = w(s, t) = 0 for the lateral motion represents a possible solution, where
non-trivial lateral motion results as a consequence of dynamic instability. By
applying the trivial condition, v(s, t) == w(s, t) == 0, to the equations of mo-
tion, an independent linear wave equation describes the forced steady state
longitudinal system response This equation can be solved in closed 'form.
Conversely the non-linear lateral equations of motion represent variational
equations, which describe the stability of the trivial state of the lateral modes
to small disturbances. Since the longitudinal steady state response may be de-
fined in closed form, tel Ins which couple the lateral variational equations to the
longitudinal motion may be eliminated by direct substitution. Consequently
the linear stability of the lateral variational modes is described by a set of Hill
type equations with periodic coefficients. This analysis is presented in detail in
Appendix B, where a perturbation technique and a harmonic balance method
are applied to define regions of linear instability of the trivial lateral motion
of the catenary to small disturbances. The stability analysis confirms that
the lateral stability of the trivial state of the catenary is disrupted when con-
ditions of simple and additive combination parametric resonance arise. Such
conditions are related to the proximity of the axial excitation frequency to a
condition of parametric resonance, and the amplitude of the parametric excita-
tion, which is governed by the steady state longitudinal motion. Although the
longitudinal excitation is small, this motion is amplified at longitudinal ..reso-
nance, enhancing regions of lateral instability. Consequently narrow regions
of parametric instability may result when the system is tuned to a condition
of longitudinal resonance, even when the system is not closely tuned to a
parametric resonance. The amplitude of the forced longitudinal response is
sensitive to dissipation, and consequently these regions are quickly eroded by
the inclusion of longitudinal damping.

Since the external longitudinal excitation of the system is small in compari-
son to the lateral excitation, the longitudinal response induced by the forced
lateral motion is significant. Accounting for tile lateral motion enhances the
autoparametric nature of the system, whereby lateral catenary motion causes
forced longitudinal system response. Autoparametric response is enhanced
when the system tunes to an internal resonance, for instance where a longi-
tudinal mode is tuned to twice the frequency of the lateral mode. In such
a case, lateral motion may induce significant longitudinal reponse. In addi-
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tion, due to the coupling between the lateral and longitudinal motion, regions
of secondary resonance may arise when the excitation tunes to additive and
difference combinations of the longitudinal and lateral modes.

As the most significant excitation to the system occurs axially, and in the
out-of-plane lateral direction parallel to the winder drum surface, in-plane
excitation and consequently in-plane response due to the drum excitation is
assumed negligible. In the absence of catenary curvature direct excitation of
lateral in-plane motion, due to curvature coupling with the longitudinal mo-
tion does not arise. Products coupling the in-plane and longitudinal motion
exist in the in-plane equation of motion, thus the in-plane modes are paramet-
rically excited, and consequently non-trivial response arises through instability
or bifurcation. Thus the linear steady state out-of-plane response due to lon-
gitudinal and lateral out-of-plane excitation forms the basis for constructing a
datum solution. Three dimensional motion: or rope whip followed by further
intermodal energy exchanges between the longitudinal and lateral modes is
initiated as a consequence of bifurcation of the planar steady state motion.

Longitudinal and lateral damping is accounted for in the steady state datum
solution. The particular form of the damping model assumed is of significance,
particularly with regard to the longitudinal response. In the past, Industry
has assumed that a relative proportional viscous damping mechanism! ap-
plied to the longitudinal dissipation. Rudimentary tests performed by industry
(Thomas et al.(1987], Greenway[1989J) approximate the dimensionless modal
damping ratio of the fundamental longitudinal mode at ~ 2 - 3<J() of critical.
Further experimental tests were performed at Elandsrand Gold Mine (Constan-
con [1992]) in an attempt to determine an appropriate damping mechanism.
A detailed discussion regarding the longitudinal damping estimates extracted
from the experimental results is presented in Appendix G. These results in-
dicate that the first mode is more highly damped than higher modes, a result
which is inconsistent with a relative proportional viscous damping mechanism.
A general proportional damping model'' appears to characterise the longitudi-
nal dissipation characteristics of the mine hoist rope adequately. This model is
applied for convenience, and is not considered to represent the true nature of
the damping mechanism. With regard to the lateral damping characteristics of
a mine hoist rope, Mankowski[1986] presents dissipation factors extracted from
a laboratory experiment. Based on Mankowski's dissipation factors, it appears

1A relative proportional damping mechanism considers the material dissipation charac-
teristics to be distributed in a manner which is proportional to the stiffness properties of
the rope.

2A general proportional damping mechanism considers the material dissipation charac-
teristics to be distributed in a manner which is proportional to both the stiffness and mass
properties of the rope.
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that aerodynamic drag may represent a more significant lateral damping effect
than the inherent properties of the hoist rope. This is discussed further in
Appendix H. In the context of the stationary steady state analysis, a proper-
tional lateral damping mechanism will be assumed, where the damping in the
fundamental mode is of the order of 0.05% of critical.

4~2 The Linear Dtitusti Solution

In order to pursue the strategy proposed, it is necessary to formulate the datum
solution to provide a basis for the stability analysis, and the comparative study
of the system tuning. In the absence of axial transport velocity and catenary
curvature, the undamped non-linear equations of motion for the catenary, as
developed in chapter 3, reduce to:

(4.1)

_ 2{( ) 3 2 1 2 }V,tt ::::C'V,8S + C U,sV,s ,8 + 21)I'~t,S$+ '2w,sv,ss + v,sw,s'W,ss (4.2)

_ 2{ 3 ~ 1 2 }W,tt ::::cW,ss + c (u,sw,s),s + '2w,sw,ss + '2v,sw,ss + w,sv,sv,ss (4.3)

where c, c represents the longitudinal and lateral wave speed respectively. The
three dimensional motion of the catenary is described by the displacements
U(8, t), v(s, t), W(8, t), which represent the longitudinal, in-plane lateral and
out-of-plane lateral motion respectively. In the absence of in-plane lateral
excitation, a trivial solution is assumed for the in-plane lateral displacement,
ie. V(8, t) ::::O. Since the in-plane motion is assumed trivial, the in-plane
equation of motion may be discarded at this stage. Thus the equations of
motion describinr the planar response of the catenary due to out-of-plane
lateral and axial boundary excitation reduce to:

(4.4)
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- 2r( ) 3 2 1
W,tt = CW,ss + C 1, U,SW,9 ,s + '2W,sW,SSj (4,5)

The solution of equations (4.4),(4.5) leads to the definition of the non-linear
planar steady state response of the system. A consistent non-linear analysis
would address these equations by approximating the solution via a harmonic
balance or alternative method. Although this was an attractive analytical
route to follow, it is important to consider the significance of such complexity
in terms of a practical industrial solution, and particularly in the context of
defining a simple design criterion. It is for this reason, that a linearised solution
to equations (4.4),(4.5) is sought, which reflects single valued response and
provides a datum for approximating the degree of non-linear interaction which
could be expected.

Primary external resonance of the catenary represents a principal consideration
in the assessment of the mine hoist system. In general such a condition is
unavoidable. However in these regions it would be advantageous to assess the
system parameters, so that further non-linear coupling could be minimised.
From a practical perspective it is accepted that mine hoist ropes will reflect
dynamic behaviour, thus at this stage the knowledge of the steady state non-
linear amplitude is of secondary importance with regard to the achievement of
the best possible condition of tuning to minimise or avoid such behaviour.

Secondary conditions of resonance have not received attention in the context of
the mine hoist system. Here the linear solation approximates a possible branch
of the non-linear motion. Secondary resonance arises when this solution branch
is unstable, and the response is attracted to an alternative dynamic state.
In the context of this discussion, a linearised form of equations (4.4),(4.5) is
proposed for the datum solution as:

(4.6)

W,tt = cW,ss (4.7)

These equations reflect the coupling between the lateral and longitudinal IT!O-

tion, where the lateral steady state motion provides direct excitation to the
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longitudinal system. Retaining the non-linear lateral coupling term in the
longitudinal equation of motion is consistent with the ordering uo( w2). Con-
versely, the counter coupling of the longitudinal response on the lateral motion
is discarded, since if uo( w2), then the quadratic term (u,sv,s),s o(w3). This im-
plies that the lateral motion is small, and hence excludes the condition of
primary external resonance of the catenary.. Away from regions of primary
external resonance of the catenary, the cubic term w~wss may be neglected.
Thus the datum solu.tion proposed is valid for identifying regions of secondary
resonance, however due to the neglect of cubic terms, it is not valid close
to a condition of primary external resonance. However, it is the boundary "'If
stability which is sought, which ma.ybe close to, but not exactly tuned to a COl .

dition of primary external resonance. Since the solution essentially describes
the lower branch of the response on either side of the resonant condiuon, it
cannot predict regions of subcritical stability, where a higher amplitude stable
solution branch may exist, which may be reached through initial conditions
due to transient forces. The intention of the analysis is to identify regions
where non-linear interaction is likely, .and even under conditions or primary
external resonance of the catenary, the datum solution will reflect the compli-
ance of the longitudinal to lateral tuning, and it is proposed that the exponen«
of growth associated with the unstable datum solution in this region provides
a comparative basis for assessment. Thus the stability analysis of the datum
solution requires both the definition of the region of instability as well as the
exponent of growth. This is a normal consequence of the stability technique
chosen to examine the stability of the datum solution to small disturbances.

In conclusion, the datum solution is defined to »rovide a basis for a compara-
tive assessment of the system tuning with regard to system parameters, and is
not intended to represent the global non-linear steady state solution. Since the
datum solution is valid in the absence of primary external resonance, regions
of secondary resonance may be identified confidently. In light of the non-
stationary nature of the system, an extensive study of the non-linear planar
stationary motion would be counter productive, sine- numerical simulation
would ultimately be required. It is emphasised ~.h, tatum solution was
primarily motivated to illustrate the ex.stence of sec .y resonance condi-
tions, which are less obvious to a designer. It is expected i.hat further research
will refine the datum solution, to account for primary external resonance of the
catenary. Appendix J presents a further discussion of the stationary steady
state behaviour in the context of non-linear studies presented in the literature,
and with regard to the existence of secondary and internal resonance condi-
tions which are defined via the method of multiple scales. Appendices C,D,E
present the closed form datum solution in the presence of general proportional
damping, and axial and lateral out-of-plane boundary excitation at the winder
drum, due to the first two harmonics of the Lebus groove excitation.
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4.3 Stability of the Datum Solution

The steady state planar response, which is referred to as the datum solution,
and represents the closed form continuous solution to equations (4.6) ,(4.7), is
considered in the context of the non-linear equations (4.4),(4.5) of motion of the
catenary. Variational equations of motion are' constructed by considering small
perturbations around the steady state datum solution. This is represented by:

u(s, t) = 11(8, t) + UD(S, t)
v(s, t) = :U(s, t)
w(a, t) - w(s, t) + WD(S, t) (4.8)

where u(s, t), v(s, t), w(s, t) represent small variations in the longitudinal,
in-plane lateral aud out-of-plane lateral motion with respect to the steady
state datum solution UD(S, t), VD(S, t), WD(S, t). Substituting equations (4.8)
into equations (4.4),(4.5), and considering the homogeneous'' component of the
linearised equations leads to":

_ _ -2- 2 _ \ 1 2-
V,tt = /-L1Vt,ss+ C V,ss + c {( V,sU,s),S + 2(w,sv,s),s} (4.10)

_ - + -2- + 2{(- ) + r -) j_ 3 (' 2- ) }W,tt = /-LIWt,ss r: w,ss C w,su,s ,s ~w,su,s ,s T 2" W,sW,s ,5 (4.11)

(= I/pAR2, TJ = M/pA

where /1 represents the catenary length, whilst /2 represents the total cable
length. The longitudinal equation (4.9) is defined over the entire length of the

3Non-Homogeneous terms arise in the lateral variational equations. These terms rep-
resent a residue related to the neglect of the non-linear terms in the datum solution. In
tne presence of small steady state lateral motion ie. away from regions of primary external
catenary resonance, the residue is considered small and is neglected.

4The boundary conditions at the sheave, and the skip are introduced via the use of the
Dirac delta and Heaviside step functions. Thus the equations (4.9,4.10,4.11) represent the
overall system equations rather than just tnose pertaining to the catenary.
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rope 0 ~ s :::;l2, whilst the lateral equations (4.10),(4.11) '~rf'defined only over
the catenary length 0 :::;s :::;!1.

The variational equations of motion may be reduced to ordinary differential
form by applying a normal mode expansion for the continuous variables ie.

(4.12)

where </>(s), ~(s) represent the longitudinal and lateral eigen functions of the
linear system. These are defined in Appendix C, D. Performing the orthog-
onalisation, leads to a set of coupled linear parametrically excited ordinary
differential equations of the form:

(4.13)

4 [02: [P(nnt)] = 0
n eeI Wuw(nt,2nt)

o «:(nt, 2nt) 1
Vvu(Ol,2nt,3nt,4nt) 0

o WWIh(fU, 2~1t,snt, 4nt) J

Where [Ad] represents an initial stress matrix which represents the change in
the variational natural frequencies due to a change in the average dynamic
tension in the catenary. [Ad] is defined in Appendix F.3.

The parametric coupling matrix [P(nnt)] and its constituent submatrices are
defined in Appendix (F). It is pertinent to note th ~4- although modal trun-
cation may occur with respect to the variational equations of motion, due to
the application of the normal mode expansion, the datum solution is obtained
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as a continuous solution and is not truncated. Periodic components in the
parametric coupling matrix are generated up to the fourth harmonic of the
Lebus coil cross-over frequency as a result of the first and second harmonic
of the Lebus ,;roove exc.vation. The parametric excitation matrix contains
submatrices coupling the longitudinal and lateral modes. It is well established
that regions of simple parametric resonance, are dependent on the diagonal
terms in the parametric excitation matrix ( Hsu[1963]). Conversely regions of
combination parametric resonance are dependent on the off diagonal terms.
'1HUB simple parametric resonance does not arise with regard to the longitudi-
nal modes alone. However, since the! submatrices [Uuw), [Wuw] exist, regions of
combination parametric resonance arise with respect to the longitudinal and
lateral out-of-plane modes, Since the submatrices Wnw], [WuwJ are not iden-
tical, it is possible that both additive and difference regions of combination
resonance may arise, depending on the system parameters. Since the sub-
matrices n~!)l,[WwwJ are symmetric, both simple and additive combination
parametric resonance can occur with regard to the lateral in- and out-of-plane
modes.

4.3.1 Stability of the Variational Equations

The criterion proposed as a design strategy for the mine hoist system amounts
to an examination of the stability of the datum solution to small disturbances.
The stability of the motion is dependent on the stability of equation (4.13),
Linear systems with periodic coefficients have received r ich attention in the
literature. A general discussion regarding parametric excitation is presented in
Appendix K. A number of techniques can be applied to define the boundary
of stability, for instance direct numerical integration combined with Floquet
theory, perturbation techniques and the harmonic balance method. The first
is numerically intensive, whilst the second is limited to the existence of small
excitation and requires special attention for anomalous conditions of tuning
(Hsu[1963]). Since a general approach is required which is capable of providing
a stability chart regardless of the state of tuning, or the amplitude of excita-
tion, a harmonic balance technique was applied. Taka.hashi[1981b] described
an algorithm for determining regions of simple and combination parametric
resonance of a parametrically excited system. This technique was applied in
this study, A discussion of the method propcsed by Takahashi(1981bJ is pre-
sented in Appendix K.

The method is based on assuming an harmonic expansion for the response in
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the form:

{y(t)} = e'\t{~bo + I:(an8in nOt + bncos nOt)}
n=l

(4.14)

Direct substitution of the assumed expansion (4.14) into equation (4.13), and
applying the harmonic balance method leads to a relationship defining the re-
sponse of the system in terms of the exponent /\, and the coefficients bo, an, bn•
Takahashi[1981b] demonstrated that this relationship could be formulated con-
veniently in matrix form. As a result, the method reduces to an eigenvalue
extraction for the exponent ..\. The stability of the system is thus dependent
on Re(..\) < O. In regions of instability, the exponent Re(..\) reflects the initial
exponential rate of growth of a disturbance away from the steady state solu-
tion. This exponent is extracted as a normal consequence of the solution, and
is valuable in terms of the comparative study, since it is applied to assess the
severity of a region of instability.

4.3.2 Experimentat Validation

The method proposed to examine the stability of the steady state lateral mo-
tion of the catenary was confirmed experimentally. An experiment was con-
ducted on a laboratory model of the mine hoist system. A photographic il-
lustration of the experimental model is presented in figure 4.1. The model
comprises of a guitar string, a pulley and a, dead weight. The guitar string
passes from a steel slider at one end, over a pulley wheel to a dead weight at
the other end. An electro-dynamic shaker was applied to excite a single fre-
quency sinusoidal lateral motion in the catenary". The model was constructed
so as to enable easy adjustment of the catenary length, and hence tuning of
the lateral natural frequencies. It was found that the longitudinal system ex-
l:ibited a single natural frequency in the test bandwidth, which could be tuned
to some degree by changing the mass of the dead weight". The free length
between the pulley and dead weight was kept as short as possible to prevent
lateral parametric excitation of this section 7. The parameters of the model

5Since position feedback control was not applied to the shaker, the motion of the slider
was monitored to ascertain that tile system response did not affect the excitation wave form.

6The higher longitudinal modes fell well beyond the the test bandwidth of 0-100Hz. The
first longitudinal mode occurred at approximately 20Hz, whilst the second occurred at ~
1.2 kHz.

7When a longer free length was accommodated, at certain tuning conditions, violent
interactions between the catenary and free length section were evident. This presents an
interesting condition of practical importance which is currently being considered.
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Table 4.1: Laboratory model parameters

Parameter 1 2 3
Catenary Length lc(m) 0.479 0.486 0.790
Dead Weight M (kg) 1.95 1.45 1.9
Pulley Inertia J (kgm2) 1.56 X 10-5 1.56 X 10-5 1.56 X 10-5
Linear String Density m (kg/rn) 0.00745 0.00745 0.0268
Longitudinal Wave Speed c (m/s) 1512.6 1512.6 845 ,
Longitudinal Damping Factor ( (%) 0.2 0.2 0.8 _jLateral Damping Factor (" (%) 0.125 0.125 0.35

were accurately measured, and are tabulated in table 4.1. The most difficult
parameter to measure was the longitudinal and lateral damping fcLctor.These
factors were approximated by impulsively exciting the system and determining
the modal bandwidth of each mode.

Figure 4. J: Laboratory model of the mine hoist system

The lateral amplitude of the excitation applied to the slider was monitored
with an LVDT. The motion of the catenary in the lateral in- and out-of-
plane direction was monitored with proximity probes. Since the range of the
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T bl L! 2 T diti f th 1 b d 1a e :.t. : umng con 1 Ions 0 e a ora;ory mo e
Case W W1 Resonance Condition
1 20.34 Hz 52.89 Hz n ~ Wl,n ~ W2

n ~ W +Wl ~ 73.23H s
n ~ !(Wl +W2) = !W3 ~ 79.33H z

2 22.5 Hz 45 Hz n ~ W1,n ~ W2
n ~ W +WI ~ 6'7.5H z

1---
n ~ !(W1 + W2) ~ 67.5Hz I3 16.55 Hz 16.69 Hz n ~ (1)1,n ~ W2, n ~ W3
n ~ Hw +WI) ~ WI ~ 16.62Hz
n ~ W +Wl ~ W2 ~ 33.24Hz _j
n~W +W2 ~ W3 ~ 501I.2

proximity probes was limited to ±O.5mm, they were positioned close to the
pulley wheel where the lateral amplitudes remained small. The motion { the
dead mass was monitored with a piezo Cf~ stal accelerometer. The transoucer
signals were analysed continuously by constructing the autospectra of each
transducer signal on a Genrad 2515 analyser.

The purpose of the experiment was to confirm the existence of secondary re-
gions of resonance related to combination parametric resonance of the out-of.
plane lateral and longitudinal modes, as well as additive combination pararnet-
ric resonance involving either the in-plane or out-of-plane lateral modes only.
Three cases of system tuning were considered as presented in table 4 2, where
st, (N', Wi represent the excitation frequency, and the longitudinal and lateral
natural frequency respectively.

The first case represents a general state of tuning, where the combination
resonance involving the longitudinal and first lateral mode is distinct from
other combination resonances involving the lateral modes only. The second
case considers the cot ...dition where a region of combination resonance involv-
ing the longitudinal and first lateral mode overlaps with the second region 'If
combination resonance of the first and secort:d lateral modes, as well as the
second region of primary resonance of the third lateral mode etc. The third
case considers the condition where the longitudinal and first lateral mode are
closeJy tuned to one another. In this case, regions of combination parametric
resonance occur simultaneously with conditions of primary external resonance
of the lateral modes. The second and third cases coincide with a condition
of internal resonance ie. 2WI = W, WI = W, as defined by the perturbation
analysis presented in Appendix J .
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The boundary of stability of the planar steady state motion was determined
experimentally by adjusting the excitation frequency, and then increasing the
excitation amplitude until the response reflected a sudden growth in the mo-
tion. This condition was examined by viewing the signals from the proximity
probes as a, Lissajous plot on an oscilloscope. It was clearly evident that once
a region of instability was entered, the steady state forced response was dis-
rupted, indicating a change in the nature of the motion. In the first case,
the boundary of stability associated with the longitudinal and lateral combi-
nation resonance resulted in unstable planar motion, which remained planar",
However, the combination resonance relating to the lateral modes only ic.
n = HW1 +W2) ~ ~W3" . was characterised by non-planar motion". In regions
close to primary external resonance of the lateral modes ie.n = Wi, the bound-
ary of stability was characterised by a growth of the in-plane motion, leading
to non-planar whirling motion.

With regard to the second and third case, the boundary of stability was charac-
terised by planar and non-planar motion. With regard to the third case, it was
found that since the natural frequency of the longitudinal mode was slightly
lower than that of the first lateral mode, the left hand side of an unstable
region of instability was characterised by a combination resonance involving
the lateral and longitudinal modes; On this boundary, the planar steady state
motion became unstable and initially remained planar. The right hand side
of an unstable region was characterised by a growth of the in-plane motion
immediately leading to non-planar motion.

In all cases, for a large enough amplitude, violent non-planar motion was ob-
served. It was also evident that once this motion had evolved, it was difficult
to detune the resonance by simply increasing or decreasing the excitation fre-
quency.

The stability chart of the steady state motion constructed from the experimen-
tal model was compared with the stability chart obtained via the analytical
technique proposed in this chapter. The variational equations were truncated
to account for a s ngle longitudinal mode, and thi 'e in and out-of-plane lateral
modes. The harmonic balance method was applied to determine these regions,
where a five term harmonic expansion was employed. The accuracy of the
st.ability chart was verified via direct numerical simulation of the variational
eq'J.atl0ns. The experimental and analytical stability charts pertaining to the

80n the boundary of stability, the autospectra of the longitudinal and lateral response
1 dicatr.d dominant response close to the natural frequencies related to the longitudinal and
rirst lateral modes respectively.

9The autospectrum of the lateral motion indicated multi-modal response in the lateral
modes.
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laboratory model are presented in figure 4.2 tor the three cases considered,
The experimental results are indicated in :figure 4.2 by a +, whilst shaded
regions indicate the analytically determined regions,

Figure 4.3 illustrates typical stable and unstable motion observed durlng the
experiment. The photographs were obtained by strobing the cat« ."ry at a
slightly lower frequency than the excitation frequency, and using a time ex-
posure to photograph the motion, These photographic slides illustrate the
stable/unstable' motion of the catenary on the boundary of stability for the
third case of tuning. In this case, the excitation frequency and amplitude were
such that the system passed from stable to unstable motion through the left
hand boundary of the second and third region of primary external resonance.

Generally, the experimentally determined boundary of stability correlates well
with the analyticelly determined regions of instability, Since the datum so-
lution is representative of the steady state motion away from conditions of
primary external resonance, the boundary of stabilit:/' associated with regions
close to primary external resonance are approximate. However, since the condi-
tion of primary external resonance is contained within the region of instability,
and since the lateral damping factor is small and consequently the modal band-
width is small, reasonable accuracy was achieved even for this condition. With
regard to the first case of tuning, the second region of combination parametric
resonance related to the lateral modes ie. n = HWl + W2) == ~\W3indicates
stiffening behaviour, as predicted by the analytical solution. It was difficult to
excite this region, since more precise tuning was required, and consequently
it was not easy to tune the system to a condition of neutral stability and
thus identify the boundary precisely. It III also important to recognise that
although the laboratory model is representative of the mine hoist system, the
analytical technique models a slider at the pulley end. It is proposed that
this contributes to the higher degree of stiffening predicted analytically for the
region, in comparison to the experimental results; also as discussed in chapter
5, the application of a normal 1110de technique contributes to stiffer behaviour.
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Figure 4.2: Stability chart of the laboratory model
a) Caao 1.
b) Case 2.
c) Case 3.
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Figure 4.3: Stable/unstable catenary motion - Case 3.

a) Stable motion n ~!:iil! b) Unstable motion n~:::;lW2

c) Stable motion n~ W3 d) Unstable motion n~~W3
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4.4 The Kloof Mine Hoist System

The stability analysis developed in this chapter is applied to examine the Kloof
Mine hoist system. As discussed in chapter 1, this system experienced severe
rope whip during the ascending cycle. Dimitriou and Whill:~Lll$J731analysed
this system by examining the quasi-static description of the system charac-
teristics. Although this is a useful approach to identify potential regions of
primary external resonance, it fails to account for the physical system param-
eters such as damping, the level of excitation and the potential influence of
lateral to longitudinal tuning. The Kloof Mine Hoist system parameters ap-
plied in the analysis are presented in table 4.4. Figure 4.4(a,b) presents the
linear dvnamic characteristics c .he system during the descending and ascend-
ing cycie respectively. The hor .(oatal lines in figure 4.4(a,b) represent the first
and second harmonic of the Lebus excitation frequencies, at a constant nomi-
nal winding speed of 15 m/slO• The vertical lines reflect the layer change-over
locations. It is evident in figure 4.4(b) that during the ascending cycle the
second lateral mode of the catenary is resonant at approximately 700m. This
occurs simultaneously with the second longitudinal mode. Prior to this con-
dition at approximately 900m, the fourth longitudinal mode is tuned to twice
the second lateral catenary mode and hence a condition of internal resonance
anses,

The stability chart of the steady state solution was constructed as a function of
shaft depth and the nominal winding velocity, whilst the excitation amplitude
at the winder drum, as determined from the Lebus groove geometryl! was
held constant. The purpose of this chart is to reflect regions of avoidance of
likely non-linear interaction, and hence to determine a viable winding speed
for the given system parameters. Only two regions of instability were evident
on the ascending cycle, and these were related to direct external resonance
of the third and second lateral catenary mcdes, at the beginning and end of
the wind respectively. The eigenvalue exponents associated with these regions
did not reflect any local maximum, or special condition of tuning between the
lateral and longitudinal system. Figure 4.5 illustrates the stability chart for
the ascending cycle12• The region of instability is related to primary external
resonance of the second and fourth catenary modes. Although the steady
state or datum solution accounts for conditions away from primary external

laThe nominal winding speed reflects the drum surface speed, consequently the rope speed
increases as the number of rope layers increase.

11Appendix A presents the definition and calculation of' the Lebus groove excitations.
12The shaded region of the chart represents an unstable solution, where the eigenvalue of

exponent X is greater than zero, The contours on the shaded region represent the magnitude
of the exponent ,,\, The maximum exponent is 110, whilst the countour lines represent an
exponent of 0,01,,1,1,10,50,100,
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resonance of the catenary, it is clearly evident from the eigenvalue plot that
a significant region of interaction is predicted close to 15m/s, which spans
approximately 100 m from 650m~750m. This region is characterised by the
interaction of two conditions of resonance. The solid l'nes on this figure reflect
various conditions of .sonance. The solid line represented by (b) reflects the
additive combination resonance of the second catenary and second longitudinal
mode. Even though the second catenary mode is resonant away from this
winding speed, the eigenvalue plot reflects that the severity of the tuning drops.

In order to accentuate regions of secondary resonance) a similar stabili ty chart
was constructed for the ascending and descending cycles, where the winding
velocity was maintained at 15 mIs, whilst the amplitude of the excitation and
hence of the steady state motion was increased proportionately. These charts
are presented in figures 4.6,4.7 respectively. In these charts the nominal Lebus
groove excitation is amplified by a factor of 15. Secondary regions of resonance
are evident In these figures. However substantial steady state excitation would
be required to activate such regions. With regard to the ascending wind, pre-
sented in figure 4.6, the region at 250m is related to a condition of parametric
combination resonance of the first lateral and longitudinal modes, which tune
to the first harmonic of the Lebus excitation frequency. The region to the right
of the primary resonance (~ gOOm)legion is related to resonance of the fourth
longitudinal mode, corrbined with the internal resonance between the fourth
longitudinal and second lateral modes. The descending cycle exhibits similar
regions of secondary resonance. The two most significant regions are related
to primary external resonance of the third lateral catenary mode (:::::l ~OOm)
and of the second lateral mode towards the end of the wind (~ 1700rn). The
latter condition is larger and more important as it spans a greater section of
the wind. This is confirmed by the simulation results presented in Chapter 5.
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Table 4.3: Kloof Mine - System parameters
J Sheave Inertia. 15200 ~wm2
M Skip Mass. 7920 kg
MO Skip Pay-load. 9664 kg
m Linear Rope density. 8.4 kg/m
V Nominal Winding Speed. 15 ta]«
De Depth of wind. 2100m
Lc Catenal'Y Length. 74.95 m
E Effective Youngs Modulus of the rope, 1.1Ell
Ax Effective steel area of the nope. O.(l01028m2

f3 Cross over arc. 0.4 rad .
Dd Drum Diameter. 4.28 m
Ds Sheave Diameter. 4.26 m
Dr Rope Diameter. 0.048 m
fl-a. General proportional damping parameter 0.159
fl-b(SZ) General proportional damping parameter 10.4982
(1 Lateral proportional modal damping ratio 0.05%~~--'--. . ~--------~

15.5
.-..
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~ 15.....
C,)
0.....
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600 650 700 750 800 850 900
Depth (m)

Figure 4.5: Stability chart of the steady state datum solution - Ascending

a) 2!hebl'l1 = W2 +W2

b) OLebus = W2
c) nLebus = W4
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tft5 Conclusion

The purpose of the steady state analysis was to identify regions where non-
linear interaction is likely. The analysis wagvalidated experimentally and then
applied to examine the K'oof Mine hoist system c1:. aracterisslcc. Satisfactorv
correlation was achieved with respect to the laboratory experiment. In the
context of a hoisting system, the analysis would provide a preliminary assess-
ment of the hoist characteristics. It is important to emphasise that the sta-
tionary steady state analysis was intended to compliment the linear approach
proposed by Dimitriou and Whillier[1973}. It is limited in that it does not ac-
count for the non-statlonary behavicur of the system, nor does it account for
the transient excitation introduced during the acceleration/ deceleration phases
or during layer change-overs. In effed, the mine hoist system does not achieve
steady state; the effect of the winding velocity is to attenuate and delay the
resonant condition. The transient excitations introduced at the layer change,
may also signiflcantlv influence the dynamic state of the system; the location
of layer changes is pertinent, since the phase of the out- of-plane lateral ex-
citation changes by 180" after a layer chan.je, This mechanism. can be used
to advantage to precipitate resonant amplitudes from developing further. In
terms of the stationary analysis of the Kloof Mine hoist system, the ana131ais
serves to confirm to some degree the observation of Dimitriou and Whillie»
that the lateral motion may induce significant longitudinal interaction at ap-
proximately 700m. It is evident, from the stability (figure 4.5) plot that this
OCCursin the vicinity of 15m/s. Hopefully such information would draw at-
tention to this condition of tuning, and such a condition would be avoided.
For realistic stationary excitation levels calculated from the drum geometry,
significant regions of secondary resonance as observed in the laboratory exper-
iment, do not arise on the K100f mine hoist system. However, at substantially
larger excitation levels such regions may be entered, as is evident in figures
4:.6,4.7. During a winding -:ycle, the dynamic response never reaches stead!
Jtate, and consequently the residual response due to the non-stationary nature
of the system may activate regions of secondary resonance. In light of these
additional features of the system, a numerical simulation is necessary as a final
validation of the system design. Such a simulation is presented in the following
chapter.



Chapter 5

Nonlinear Nurnerical
Simulation

Chapter 4 presentee. a stability analysis of the steady state out-of-plane datum
solution. The stability of this motion was investigated as a criterion to identify
system parameters which reduced the nonlinear coupling between the lateral
and longitudinal motion. The analysis confirmed the existence of simple and
additive combination parametric resonances of the lateral modes, as well as the
possibility of parametric. resonance involving adcitive and difference combina-
tions of the longitudinal and lateral modes. A further ,,~iscussiollregarding the
steady state motion is presented in Appendix J, where the existence of these
regions of .iecondary resonance is confirmed by applying the method of mul-
tiple time secles to examine the nonlinear equations of motion directly. The
perturbation analysis also identifies conditions of tuning which lead to internal
resonance. Although an appreciation of the steady state stability of the system
may be useful for identifying regions of potential nonlinear interaction, the sys-
tem is non-stationary, and steady state motion is never attained. In addition
the Lebus excitation at the drum was idealised in the stability analysis as a two
term iurier expansion of the groove profile. In reah ty the Lebus groove pro-
file induces strong pulses at each coil cross-over. Thuu modelling the geometry
of the cross-over region accurately is essential. For this reason, a numerical
simulation capable of approximating the real time response of the system is
developed. Since such an analysis is intended to simulate the behaviour of the
system as realistically as possible, nonlinear terms consistent with the strain
definition, as well as cable curvature and cable transport velocity are included
in the analysis.
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This chapter progresses through three phases. Firstly the nonline ..xr partial dif-
ferential equations of motion as derived in chapter 3 are considered. Thereafter,
a numerical simulation of these equations is developed. In the early stages of
this study, the normal mode method was applied to transform the partial
differential equations of motion to ordinary differential form. An eztensive
simulation based on this approach was developed. The numerical simulation
failed to correlate with measurements extracted from the laboratory model of
the system. This exercise demonstrated the limitations of a nonlinear normal
mode approach, and resulted in the development of a quasi-static model for
the catenary section. Finally a nonlinear simulation of the Kloof Mine hoist
system, based on a quasi-static model which includes catenary curvature and
transport velocity, is presented. Tne numerical simulation predicts dynamic
interactions on the up-wind, leading to rope whip, as observed by Dimitriou
and Whillier[1973]' whilst negligible interaction occurs on the down-wind.

5.1 Nonlinear Equations of Motion

5.1.1. Simplifications Applied in the Modelling Process

The nonlinear equations of motion were developed by applying Hamilton's
principle. In developing these equations, the Lagrangian strain in the axial
direction of the rope was defined as.'

1(2 2)
€ = Us - IW + 2" Vs + w~

Since the catenary curvature is small, the catenary is treated as a symmetric
horizontally supported cable with constant curvature, where the equilibrium
curvature is defined as:

mgc08(O)
/'i, = --=--:-::-,-..:...

H

where 0 refers to the angle of inclination of the catenary and H is the equi-
librium tension. Typically the curvature will vary between 1 x 10-4 < /'i, <
1 X 10-3•

lSll1ce the correct expression for the strain \8: e = u, -II:V+ ~( U. _II:V)2 +w~ +( V8 +11:1.1)2),
uO(v·), O(w2), II:O(u) , where u, v, w represent axial, lateral in-plane and out-of-plane motion
respectively.
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The cat mary remains in contact with the sheave, admitting longitudinal mo-
tion tangential to the equilibrium profile ie. 01)(le) == 0, bw(lc) = O. No slip
occurs across the sheave; finally the lateral motion of the vertical rope is re-
strained.

The transport velocity of the rope is neglected with respect to longitudinal
motion, but is included with respect to the lateral catenary motion".

5.1.2 ~,educed. Equations of Motion

Applying these simplifications, the undamped" nonlinear equations of motion
of the mine hoist system are defined as.

(1 + (8(s -Ie) + 1]8(,Q- lu))Utt = c2uss +
c2(VsVss + WsWss - IWs)[H(s) - H(s -Ie)] (5.1)

Where ( = PA~2' 'IJ = ~, and Ie, Iv refer to the length of the catenary and
vertical rope respecti vely".

Vtt + 2VVs,t == (c2 - V2)VS8 + c2 [vJ{us - K.V + ~(v; +w;)}L
+K.{us - leV + Hv; + w~)} (5.2)

Where c2, and c2 represent the longitudinal and lateral wave speeds, '" repre-
sents the catenary curvature, and V the axial transport velocity of the rope.--_._-------

2This follows from the observation that the importance of the Coriolis coupling is de-
pendent on the ratio of the transport velocity to the wave speed. ie ~ ~ 10-1, where as
¥- ~ 10-3, where c, c represent the longitudinal and lateral wave speed respectively.

sSince a proportional damping mechanism is applied, modal damping factors will be
introduced at a later stage.

4 I, R, M, E, A refer to the sheave inertia, sheave radius, conveyance mass, modulus of
elasticity, and effective steel area of the rope respectively.
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502 Normal Mode Model of the Equations of
Motion

Initially the normal mode technique was applied to discretise the equations of
motion. Altl.ough this technique is commonly applied to obtain approximate
solutions to weakly nonlinear continuous systems, it was found that the simu-
lation based on this method did not correlate with laboratory measurements.
For this reason an alternative technique was ultimately applied. Neverthe-
less, the normal rr.ode technique applied to model the system is presented and
discussed for the purpose of documenting the limitations of this approach.

In applying the normal mode method, trivial boundary conditions are required,
such that the spatial variables can be approximated by applying the linear
eigenfunctions or normal modes of the system. This can be accomplished
by transforming the equations of motion so that the boundary excitation is
introduced as distributed inertial forces in the equations of motion.

The following transformation is a valid transformation",

u(s, t) = u(O, t) - 2~e[v(O, t)2 + w(O, t)2] {f[H(S) - Hi« -Ie)] + H(s - Ie) }

Ii:-+ 2/es(2/r. - s)[H(s) - H(s -le)]w(O, t)

+i1(s, t)

s
v(s, t) = v(O, t)(l - r.;) + v(s, t)

w(s, t) = w(O, t)(l - t) + tiI(s, t)

Substituting these co-ordinate transformations into the equations of motion
(5.1,5.3,5.2), leads to a set of equations, where the boundary excitation in-
duces an equivalent distributed inertial load. In this reference frame, trivial

5This transformation ensures that the longitudinal strain remains unchanged during a
static rigid body displacement, in accordance with the tension compensation mechanism
induced by the sheave interface ie the equation of motion at the sheave due to a static
displacement field. reduces to [us - /cv +Hv: +w:)h = u, 12= 0, where 1,2 refer to stations
on the catenary and vertical sides of the sheave respectively. The transformation adopted
satisfies this conuition.
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boundary conditions exist at the winder drum. Since the excitation in the
in-plane direction v(O, t) is of the order of O.5mm, it is included only as a
"'el:1,k source of direct excitation of the in-plane motion. For this reason, it is
not carried through the subseqnent equations, and results only in defining the
direct excitation of the in-plane motion Fv(s, t).

2-= c Uu
1

- T;W(O, t)wu - II:v.][H(s) - N(s -10)]

+Fu(s, t) (5.4)

Vtf + 2Vv."t:= (-& - V2)vu + c2 [(ii"v.). 4- ~(V.)2VH + Hw;v.).:
-IW2 [v Vs s - tts + x:v - HWs)2 + HVs)2]

_C2W(I:'~) [(w.v.). + ~W,] + Fu(s, t) (5.5)

Wtt + 2Vw.,t:= (c2 - V2)w •• + c2 [(lI"ws) s :+ ~(ws)2w., + Hv;w.).]
-KC2 [v wH + iU.V.]

2 w(O,t) [W(O,t)_ - 3- - -,... + -1
C Ie I. Wu - us« - w.w,. - V.V8J ~V$

(5.6)

whet !!

FIJ(s, t) := -[1+ (6(s -Ie) + T/C(s -Iv)] X

{~~ - 2t ~~~lf} [[H(s) - H(s -/e)]f; + H(s -10)]

F ( ) __ ( i- !_)82v(O, t) 2V (1)(0, t)
u s, t - . Ie 8t2 + Ie {)t

F ( t) _ -(J _ !_)?2W(O, t) 2V 8w(O, t)
tV S, - Ie 8t2 + Ie at

vCO, t) = w(o, t,l = 'iI(O, t) :: °
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It is evident that these equations of motion contain spatially distributed forc-
ing functions, as well as terms with periodic coefficients. It is convenient to
transform the partial differential equations into a set of ordinary differential
equations. Usually this is accomplished by means of the expansion theorem
(Meirovitch[1970]), where the solution is expanded in terms of a superposition
of the linear eigenfunctions (the normal modes) multiplied by time depen-
dent functions. Since the dynamic characteristics of the mine hoist vstem are
non-stationary due to the changing length of the vertical rope, tln, approach
cannot be applied directly. The normal mode expansion may be applied to
approximate the non-stationary spatial domain by assuming the vertical
length changes slowly with time. In this context, .slowly m....._1.3 that small
changes in the dynamic characteristics occur during a period of the fundamen-
tal frequency of the system. This condition applies to the mine hoist system
except towards the shaft head, where the longitudinal system characteristics
change significantly over a short depth. If the system is treated as one with
slowly vlzrying parameters, then the change in the vertical length l, which in-
troduces the non-stationary nature to the spatial variables, can be observed
on a slow time scale r = €i, where € is a small parameter. his case an
approximate solution can be found by considering an expai.s \ the form,
:L~=1¢(s, l)nqn(t), where ¢n(s, I) represents the eigenfunction "4 .ae nth mode,
and 1= 1( r). Thus the eigenfunctions can be f; nd as a function of the vertical
length l( r ), and applied to transform the system to ordinary differential form
discreetly during the numerical simulation", Since the boundary conditions
applicable to the transformed partial differei.tial equations of motion are triv-
ial, a normal mode method is readily applied to convert the partial differential
equations into nonlinear ordinary differential form ie.

u(s, t) = E ¢(s )q(t)

:u(3, t) = 'L <1>( s )p( t)

6If one Accounts for the slowly varying .Jroperties of the dynamic characteristics, addi-
tional terms are introduced in the equations of motion. This effect is being considered by
Kaczmarczyk]! !993].
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Substituting the normal mode expansions into equations (5.4,5.5,5.6), and or-
thogonalising these equations with respect to the linear normal modes rPiJ CPi,
a set of nonlinear ordinary differential equations result".

qi + 2(wWi + VVij)cii +wrqi + L1jjlcPjqlc
3 1

+Pijlcl('2q.iQkQI + "2TjT/cQ, + 'rjq/cT,) + rijkqiqk +

CijPj + 'TJijk(qjq/c - rFk) - fi,J{ijqj -I- v(~~t) «ijl;'tjql; + l{ljTj) = Qi(t) (5.8)

Where:

(5.9)

7Modal damping is added to the equation of motion via (u,IJ,w.; where, may be defined
to account for a general proportional viscous damping mechanism an defined in Appendix G
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During the accelerating or decelerating phase of the winding cycle, or at layer
change where the rope rises in the in-plane direction by a full rope diameter,
transient excitation is applied to the system. This excitation can be accounted
for in the equations of motion by introducing additional inertial forces. At a
layer change, the reversal in the direction of traverse in the out-of-plane direc-
tion can be accounted for by changing the phrase of the out-of-plane excitation
appropriately. Thus the ordinary differential equations of motion of the mine
hoist system are expressed in a concise form, and readily coded in a numerical
simulation. Initial simulation trials provided convincing results. In fact the
simulation of the Kloof mine hoist system based on the normal mode model
correlated well with the observations of Dimitriou and Whillier[1973]. Such a
simulation is presented in figure 5.1, for the ascending and descending cycle of
the Kloof Hoist system, between the depths of 50-1400 m". In this figure, the
in and out-of-plane lateral motion at the quarter point of the catenary, and the
longitudinal motion of the sheave and skip are presented. Large lateral cate-
nary motion is evident on the ascending cycle, as well as significant longitudinal
oscillation at the sheave. The tension .atio across the sheave is sufficiently high
on the ascending cycle, such that frictional slip across the sheave must occur,
Such a condition invalidates the simulation, and the simulation was stopped
short of the full wind. It is clear from this simulation that significant dynamic
effects could be expected on the ascending cycle, as confirmed by Dimitriou
and Whillier's observations. The acceleration and deceleration phase of the
winding cycle, as well as the transient response induced by a layer change over
is clearly marked. Layer change over locations are represented by the vertical
lines in the figure. The in-plane motion is referenced to the chord line between
the drum and sheave, and consequently the mean position rises with increas-
ing shaft depth in accordance with the decreasing rope curvature due to the
increasing vertical rope mass and thus catenary tension.

8The Kloof Mine hoist system actually extends over a 2100m shaft depth. The simulation
was executed over a 1400m shaft depth to emulate Mankowski's simulation. It is not clear
why Mankowski truncated the shaft depth in his simulation; it is presumed that this was to
reduce the simulation time.
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Figure 5.1: Kloof Mine simulation - Normal mode model

(a-d) - Descending Wind.
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(c,g) Out-of-plane Lateral Motion - s = lcl4
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Reservations concerning the applicability of the normal mode method with
reference to nonlinear dynamic systems, lead to an examination of the de-
gree of correlation attainable between numerical results, and experimentally
extracted measurements. Since an accurate correlation exercise from on site
measurements would be difficult to control, the stationary laboratory model
was applied. It was clear that although the numerical simulation correctly
predicted the onset of in-plane motion, the amplitudes were grossly incorrect
within regions of primary and secondary resonance. It is noted that in the lab-
oratory experiment, sinusoidal excitation amplitudes of Irnm were applied for
a 475mm catenary length. In the context of the mine hoist system, excitation
amplitudes of 7mm are applied to catenary lengths of 70m. Clearly the level of
excitation applied in the laboratory experiment was significantly higher; per-
haps it could be argued that for lower levels of excitation the system would be
weakly nonlinear and hence the normal mode method would be appropriate.
Since the transient excitations applied to the mine hoist system during layer
changes, and during the acceleration/ deceleration profiles are significant, it was
decided not to accept the normal mode method. On comparing the numerical
results to experimental measurements, it was evident that the numerical sim-
ulation predicted substantial stiffening, resulting in a pronounced backbone,
whereas the experimental measurements indicated that the laboratory model
did not exhibit a backbone.

In applying the normal mode method, it is assumed that the linear normal
modes of the system form a spatial basis for the nonlinear motion. This as-
sumption has found acceptance on condition that the system conforms to that
of a weakly nonlinear system, where the nonlinear motion remains close to
that of the linear motion. Szernplinska Stupnika [1983] considered the valid-
ity of such an assumption, and proposed the nonlinear norm- I mode method.
In this approach, Szemplinska-Stupnika calculated the nonlinear steady state
response of a system via the conventional normal mode method, and the non
linear normal mode method proposed. Since the steady state response was
considered, a harmonic temporal response was assumed, and the equations
of motion resulted in nonlinear ordinary differential equations describing the
spatial domain and boundary conditions of the solution. Significant differ-
ences in the response were found. Nayfeh et a1[199.'2]considered this problem,
with reference to continuous systems with quadratic and cubic nonlinearities.
Nayfeh et al, applied perturbation techniques directly to the Lagrangian of the
system, followed by averaging over the fast time scale to obtain the ordinary
differential equations that govern the modulation and phase of the response
directly. Nayfeh et. al observed that the conventional norrr .~lmode technique
is based on a.pplying a. Galerkin procedure to minimise errors between the as-
sumed and exact spatial distribution, leading to ordinary nonlinear differential
equations of motion which minimise this error. By con=idering a simple non-
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linear system with quadratic and cubic nonlinearities for various conditions of
tuning, Nayfeh et al, demonstrated that the normal mode technique gener-
ally fails to correctly account for the spatial variations of the drift terms, and
other harmonics. It also incorrectly predicts the effective nonlinearity and the
nonlinear frequency shift.

At the stage of completing the laboratory experiment, a significant effort had
been invested in developing the normal mode simulation of the mine hoist
system. The significance of the effect of the normal mode approximation on
the response was not fully appreciated. Although it would be expected that
a simulation model based on a normal mode approach would exhibit modal
truncation, it was not expected that the truncation would be so severe that
it would drastically alter the dynamic characteristics of the system. In an
attempt to investigate the aspect of modal truncation, additional longitudinal
modes were included with little success. It became evident that the normal
modes related to the linear eigenfunctions of the longitudinal system, could
not adequately describe the tension distribution in the catenary, as induced
by the lateral motion; in particular the drift term in the longitudinal equation
of motion which is produced by the quadratic coupling of the longitudinal co-
ordinate to the lateral motion was not correctly accounted for, as supported
by Nayfeh et al, This feature of the normal mode model occurs as a result
of applying the linear eigenfunctions to the spatial domain, which are not
compatible with the nonlinear deformation relationship in the catenary. Thus
constraint forces are induced in the system, and the tension compensation
normally afforded by the sheave interface is disrupted. As a result the nonlinear
nature of the system is aliased by the presumed dynamic motion:

If one considers a quasi-static relationship for the catenary then a constraint
equation ci.evelopsrelating the longitudinal to lateral motion, such that the
quasi-static strain in the catenary is described by: g( t) = Us + Hv; +w;). In
applying a normal mode method, it is assumed that the lateral motion v( s) =
<p(s)q(t),w(s) = <p(s)r(t), where (P(s) = sin(7:); as a result, a quasi-static
deformation would require that the longitudinal deforrr ation in the catenary
permits a longitudinal strain deformation of the form Us = g(t)+A+Bcose1:

S
).

If a normal mode based on the continuous longitudinal system is applied, such
a relationship cannot be accommodated. Furthermore, longitudinal modes
with a wavelength of the order of the catenary section would imply shcrt
wavelengths in the vertical section. As a result, although the spatial distri-
bution Bcose1:

S
), may be satisfied in the catenary section by the inclusion

of higher longitudinal modes, the normal co-ordinates involved would require
elastic deformation of the vertical section, and thus constrain the longitudi-
nal motion. This problem can be overcome by splitting the system at the
sheave, and applying fxed free normal modes to the catenary section alone.
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The catenary section could then be coupled to the sheave and vertical lon-
gitudinal system with independent normal co-ordinates. Thus the vertical
system would contain a rigid body mode, enabling the tension to bA correctly
distributed between the catenary and vertical section. Considering, the mine
rope system, the catenary is generally shorter than the vertical system, and
the natural frequencies of the normal co-ordinates applied to model the cate-
nary section would be significantly higher than the response and excitation
frequencies. As a result the ret ention of longitudinal inertia in the catenary
section is unnecessary. A more usual proposition supporting this notion is
that since the longitudinal wave speed in the catenary section is fa,r greater
than the lateral wave speed, the interaction between longitudinal and lateral
motion would occur in a quasi-static manner, wher the tension distribution
in the catenary is spatially uniform. Since the retention of longitudinal inertia
in the catenary section is thus unlikely to be significant, and would increase
the number of co-ordinates required in the simulation model, it is sensible to
apply a quasi-static description to the catenary section directly. The implica-
tion of a quasi-static constraint is that secondary regions of resonance related
to combination parametric resonance involving different lateral modes of the
catenary would be eliminated (Perkins[lY92l..1). However, on the basis of the
stability chart extracted from the laboratory experiment, such regions are less
significant and more difficult to excite. The more important combinatir es-
onance involving the lateral and longitudinal system would be accounted for
due to the retention of the longitudinal inertia of ~hevertical section. This ob-
servation prompted a reappraisal of the normal mode discretisation technique,
leading to the development of a more conventional quasi-static mode: of the
mine hoist system. .
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5.3 Laboratory Measurements

A validation of the the numerical simulation was achieved by considering the
laboratory model introduced in chapter 4. The laboratory model was tuned
to the first case presented in tables (4.1),(4.2) of chapter 4. The system was
excited with a constant amplitude, a.ad the er .elope of the motion in the in and
out-of-plane direction, at the mid point of the string was measured visually. It
would have been useful to track the motion of the guitar string, so that polar
plots of the steady state motion could be directly compared with the results of
tho numerical simulation, however suitable measurement transducers were not
available. The envelope of the motion was measured with video COD cameras.
A camera was aligned normal to each plane. A screen lined with graph paper
was placed behind the guitar string, within the focal depth of the camera,
such that the envelope of the steady state motion could be detected visually.
The excitation frequency was increased incrementally, and the amplitude of
the excitation was adjusted so that it remained constant. This process was
repeated for excitation amplitudes of 0.1,0.5 and 1mm, over a bandwidth from
40-80 Hz. The measurement resolution was judged to be of the order of 0.5
mm,

The experimental envelope of the in and out-of-plane motion is presented in
figure 5.2 for three sinusoidal excitation amplitudes of 0.1,0.5 and 1 mm. This
'figure reflects the in and out-of-plane motion simultaneously, where the posi-
tive absolute motion of the out-of-plane and the negative absolute motion of
the in-plane response is presented on a single axis. During the experiment, it
was found that non-planar motion developed rapidly. It also became evident
that the system did not exhibit a backbone, and consequently non-planar mo-
tion developed at appro}' .mately the same frequency regardless of whether the
the excitation frequency was increased or decreased. An interesting region of
motion was observed between approximately 55-57 Hz, where large non-planar
motion occurred. The motion was clearly non-periodic, and it was not possi-
ble to measure the amplitude of the envelope consistently by using the video
camera technique. A beating motion appeared to develop between the in and
out-of-plane modes, and the motion appeared to be chaotic. Whereas the re-
gion close to primary resonance at 53 Hz resulted in the mass being raised to
a new equilibrium level due to the arc length change in the catenary, the re-
gion between 54-57 Hz was charac ' erised by substantial longitudinal dynamic
motion, and a saturation phenomenon appeared to develop with respect to the
lateral modes.
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Figure 5.2: Experimental steady state amplitudes

(a) 0.1 rom Excitation amplitude.
(b) 0.5 mrn Excitation amplitude.
(c) 1 mm Excitation amplitude.
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504 Quasi..Static Laboratory Model

A quasi-static model is developed by considering the catenary and vertical sec-
tion separately and imposing equilibrium and compatibility at the sheave. In
the laboratory model, the pulley wheel is light, and is neglected. A schematic
of the laboratory model is presented in figure 5.3.

M

Figure 5.3: Quasi-sta.ic laboratory model

The equations of motion of the catenary section arc:

(5.10)

(5.11)

(5.12)

By neglecting the longitudmal inertia in equation (5.10), a quasi-static con-
straint relationship develops whereby:
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g(t) represents the quasi-static strain in the catenary which is spatially uni-
form. This constraint relationship enables Us to be formulated as:

(5.13)

Substituting the quasi-static relationship into equatio..s (5.11,5.12) results in
the quasi-static description of the lateral equations of motion as:

(5.14)

(5.15)

The quasi-static strain in the catenary can be evaluated by considering the
equilibrium of the oscillator which is coupled to the catenary section. With
eference to figure 5.3, these equations are developed as:

111e
!la = ';) (v; + w;)ds

. (;

Manipulating these equations, the equation of motion for the suspended mass
is obtained as:
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where ko = 1~,which represents the static stiffness of the catenary section.
Thus the equation can be written in standard form as:

where X = 2(wn - Cl~' and Wn represents the natural frequency of t'l" tongi-
tudinal system.

Since Ul == g(t)lc - Ya this equation reduces to:

(5.16)

The equation describing get) is genera'ed through further manipulation of the
previous equations:

. AE() M ..
'Ul = ----g t - -U2

Cl Cl

This leads to:

. () kr. () M .. 1 .9 t + -g t = --'U2 + -y",
Cl cllc te (5.17)

The lateral excitation at the slider is introduced by transforming the lateral co-
ordinates such that the boundary conditions become trivial, and the dynamic
motion is then referenced to the base motion. This is achieved by applying the
transformation:

v(s, t) == v(s, t) + ~o (1 - -Zs)
c c

Introducing this transformation into equations (5.14,5.15,5.16,5.17) results in
the forced equations of motion as:

(5.1.8)
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(5.19)

2
.. 2r' 2 2 { ( Va )}
U2 + ."WnU2 + u)nU2 = -Wn Ya + 2lc '

{ . d ( V; ) . ( . l }
-X Va+ dt 2le -g t) e (5.20)

. () ke ( ) M .. 1 . 1 d ( v; )9 t + -g t = --U2 + -Va + -- -
Cl Clle t; lc dt u, (~ 21)

Examining these equations, it is evident that if the average damping effort
in the catenary section is equivalent to that in tJ.. suspended oscillator, then
X = O. Additional concentrated damping at the sneave can be accommodated
by making X < O. Since the longitudinal equation and that for the quasi-static
strain are coupled, they may he further reduced to produce a single third order
ordinary differentia] equation of motion for the suspended. system.

The equation of motion for the suspended mass, and that for the quasi-static
strain get) are ordinary differential equations. The equations of motion for the
lateral motion of the catenary are converted to ordinary differential form by
applying a normal mode expansion:

Applying this expansion to equations (5.18,5.19), and orthogonalising the
equations in the usual manner, a. set of nonlinear ordinary differential equa-
tions result. For the special case where the longitudinal damping () C1 is zero,
the equations can be represented as a set of coupled nonlinear ordinary dif-
ferential equations, with quadratic and cubic nonlinearities. In the absence of
longitudinal damping, the longitudinal equation. of motion can be incorporated
into the equation describing the quasi-static strain get) to give:
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Applying the normal mode expansion for the lateral motion v(s, t), w(s, t):

Thus g{i) ca.n be written as:

where '1 = wi;;. Applying the normal mode expansion to the lateral equations
of motion, the equations of motion of the system are:

It is apparent from these equations of motion, that the longitudinal system is
quadratically coupled to the lateral modes. The lateral modes are quadrati-
cally coupled to the longitudinal mode, and cubic coupling arises due to the
intermodal coupling of the lateral in and out-of-plane modes. In addition, the
lateral system is subject to both parametric and external excitation, whilst
the longitudinal system is subjected to external excitation only. Nayfeh and
lv1ook[1983]discuss tp.e analysis of ship pitch-roll motion with regard to a two
degree of freedom model with quadratic nonlinearities. In the absence of para-
metric excitation ((3i(t) = 0) and cubic nonlinearity (Cj = 0), the out-of-plane
and lo-vgitudinal equations of motion for the laboratory model are similar In
form to those analysed by Nayfeh and Mook, which are considered further in
Appendix J.
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5.4.1 Experimental Correlation

The quasi-static equations of mot .., '"\.developed for the laboratory model were
coded with the Matlab-Simulinl software programme. An Adams-Gear algo-
rithm was applied with a variable step size and a relative integration error
tolerance of 10-6• The numerical simulation accounted for a single longitudi-
nal mode, and two lateral modes in the in and out-of-plane directions. The
physical parameters applied in the numerical simulation are tabulated in table
4.1 of chapter 4. I~was assumed that the average longitudinal damping effort
was equivalent in the catenary and vertical section of the string, and thus X
was set to zero.

For the purpose of the correlation, the numerical simulation was conducted
at a series of points in 40-8G Hz range. Each simulation was executed for 40
seconds to allow the steady state motion to evolve. The comparison of the
numerically simulated steady state response and the experimental results for
an excitation am.plit.udeof 0,5 mm is presentee! in figure 5.4.

It is evident that excellent correlation was achieved. It is interesting to observe
that the plateaux region between 54-56 Hz is not related to the presence of
the second lateral mode. In fact similar results are obtained for a single mode
model. The plateaux region dissipates as the excitation amplitude reduces; it
is characterised by strong longitudinal dynamic motion. An intensive study of
the equations of motion would be required to adequately explain the observed
behaviour. However, it is sufficient to observe that the equations of motion
reflect quadratic coupling between the lateral and longitudinal mode, whilst
quadratic and cubic coupling arises in-the lateral equations of motion. The
observed behaviour 1S attributed to the accentuated quadratic nature of the
system due to the specific physical parameters, and consequently the plateaux
region is characterised l)y a saturation phenomenon where the longitudinal
dynamic motion develops at the expense of a saturated lateral motion. A sec-
ondary region of resonance occurs between 72-75 Hz. This region is related
to the combination resonance of the longitudinal and first lateral mode. Al-
though the out-of-plane measurements correlate well with the experimental
measurements, larger in-plane motion is predicted by the simulation, resulting
in a symmetrical response envelope. This is partly attributed to the neglect
of gravity on the in-plane motion", but more likely due to differing boundary
C iditions in the two planes due to the physical construction of the model.

9Accounting for curvature in the in-plane mode introduces direct excitation of the sym-
metric in-plane modes. Although the curvature is small, a simulation which accounted for
curvature of the string illustrated that the response envelope became asymmetrical, where
the in-plane motion was ± 2mm less than the out-of-plane motion.



20

15

10
......
~

5
._.
Q)

0't:!
::I........-! -5

-10

-15

-201
40 45 70 7550 60 6555

Frequency (Hz)

Figure 5.4: Experimental measurements vs simulation results

Steady state mid-plane response amplitudes.
- 0.5 mm excitation, two lateral in and out-of-plane modes.

- 0 - - Experimental Measurements, _-_ Numerical Simulation.

115

80



116

Since the numerical simulation provided satisfactory correlation, the influence
of non-stationary system parameters was examined. In the mine hoist sys-
tem the vertical length of rope changes continuously during the wind, whilst
the Lebus excitation frequency remains constant. Although the laboratory
model was not necessarily scaled to parameters representative of the mine
hoist system, it was decided to numerically assess the influence of a swept sine
excitanou on the response. Unfortunately measurements could not be made to
confirm the numerically simulated results, nevertheless the numerical response
presents interesting features. A sinusoidal sweep was applied to the numerical
mode; between 40-60 Hz, and 60-80 Hz with a positive and negative sweep
rate of D.1He/sec. A linear system subjected to a swept sinusoidal excitation
reflects a delay in resonance with respect to the location of the steady state
resonance. A. study by Nayfeh and Asfar[1988], and Neal and Nayfeh[1990J
on the non-stationary principal parametric excitation of a cubically nonlinear
system demonstrates the passage through resonance for positive ar.d nega-
tive sweep ~ates, illustrating the phenomena of penetration, overshoot and
lingering or dragout of the response. Penetration refers to the phenomenon
where the trivial response grows only after penetration of the region where
the stationary 'rivial response is unstable; this is followed by an overshoot of
the stationary non-trivial response and then convergence with the stationary
non-trivial response. Lingering or dragout occurs for negative sweep rates,
where the non-stat ionary response separates from the stationary response af-
ter convergence wit;" it, and rem ......us non-trivial after the stationary response
is trivial. Surprisingly, in the numerical simulation of the laboratory model,
the maximum response occurs as a precursor to the steady state resonance
regardless of the direction of the sweep. Figures 5.5,5.6 present the response
amplitudes for a positive and negative sweep rate at a O.5mm excitation am-
plitude. An appreciable shift in the resonant peak with respect to the steady
state response is observed. In addition response develops in regions where the
steady state motion is small. A detailed explanation for this behaviour is not
ventured. However, it is suggested that this behaviour is a result of the influ-
ence of the longitudinal system response on the lateral motion. In the case of
the positive sweep rate, as the system approaches resonance, the sUSI -nded
mass is drawn into the catenary, softening the system'". Since steady state
motion is never attained, the lateral natural frequency drops promoting fur-
ther growth. This causes the resonance to occur as a precursor to the steady
state resonance. With regard to a negative sweep rate, the phase between the
lateral and longitudinal motion is such that the average catenary tension rises
due to the acceleration of the suspended mass, raising the catenary tension
and once again promoting resonance as a precursor to the steady state reso-
nant location. An explanation for the splitting of the resonance for a negative

lOSuch response was observed in the steady state simulations, where an overshoot in the
longitudinal motion occurred prior to the system settling at a steady state a.uplitude.
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sweep rate is not ventured. Clearly this system exhibits peculiar behaviour j

and requires experimental and analytical validation in order to consistently
explain the observed phenomena. This behaviour may have implications in
the context of the mine hoist system I however, the excitation amplitudes aDd
sweep rates are significantly less on. vue mine hoist system, and without an
in-depth analytical study erroneous conclusions may be drawn. Finally, sinc€:
the system inherently contair-s both quadratic and cubic coupling terms, it
may be expected that the specific system pd..rameters may influence the degree
of quadratic and cubic coupling, and thereby the character of the response
envelope significantly.
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5.5 Quasi-Static Mine Hoist Model

A quasi static version of the mine hoist system was developed by following a
similar procedure to that impiemented for the laboratory model. This model
is illustrated in figure 5.7.

~A,E,p

I'-- g(t) == H,s + ~(V; + w;) - fW

Tu(s,t)

M

Figure 5"7: Quasi-static mine hoist model

A quasi static relationship is developed for the catenary motion by neglecting
the longitudinal inertia Utt in equation 5.1. As a result a constraint relationship
arises which defines the quasi-static strain g( t) in the catenary:

g(t) = Us + ~(v; + w~) -_ KV (5.22)

Substituting this relationship into the lateral equations of motion (5.2,5.3)
results in a quasi static-description for the lateral catenary motion, and the
equations of motion reduce to:

(5.23)

(5.24)
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The vertical system is modelled as an unrestrained system, where the sheave in-
ertia and the suspended mass are accounted for. When this system is attached
to' the catenary, it is restrained by the dynamic catenary tension, induced by
the quasi-static strain g( t).

[1+ 178(0) + (8(lv]Utt + f.la.Ut = c2uss + 1.I~US3,t

-c?5(0)g(t) + FI,,(t) (,).25)

where 1I.(s, t) represents the total longitudinal motion in the vertical rope, and
.,.,= 1i'i.~2' , == C1. FIJi) accounts for the inertial acceleration loading due
to a uniform longitudinal acceleration. This is defined subsequently.

The lateral boundary excitation at the winder drum can be accommodated
in the equations of motion via a co-ordinate transformation resulting in the
forced equations of motion of the system, referenced to the base motion. This is
achieved by applying co-ordinate transformations to equations (5.23,5.24,5.25)
ie.:

s
v( s, t) == v (s, t) + (1 - 1:;)v(. t)

w(s, t) == w(s, t) + (1- t )Wo(t)

Thus the forced equations of motion for the system are:

Vtt + 2Vvs,t =: (c2 - V2)vss + c2g(t}vss
+Kg(t) + Fv(s, t) + Flv(s, t) (5.26)

(
S )d2vo d (Va

F. (8 t) ::: - 1- - - + 2V - -)
v , t, dt2 d.f t,

where Fr,.(s, t) represents the additional inertial loading applied to the catenary
in the in-plane direction due the radial velocity and acceleration associated
with a layer chango.
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(5.27)

(5.28)

The quasi-static strain g(t) is defined by integrating equation (5.22), and apply-
ing the lateral co-ordinate transformations, and accounting for the longitudinal
boundary condition at the winder drum uo(t). Thus:

(5.29)

where ul(l) represents the longitudinal motion at the sheave. This relationship
defines the compatibility between the catenary and vertical section, as well as
introducing the periodic excitation associated with. the Lebus groove profile,
and the transient excitation associated with a layer change, to the longitudinal
system. These excitations are defined in Appendix A.

During the acceleration or deceleration phase of the winding cycle an additional
inertial load is imposed on the longitudinal system. This load is applied by
introducing a uniform acceleration to the entire system. Since the catenary
is assumed massless, the inertial load generated due to a uniform longitudinal
acceleration au is:

'I'hia load is applied appropriately during the simulation. The lateral excitation
due to the radial displacement and acceleration Vv and av at a layer change is
accounted for m similar fashion, where the inertial load applied tv the in-plane
lateral equation is:



122

The equations of motion for lateral and longitudinal motion can be discre+ised
in the usual manner by applying the normal mode technique, or a Galerkin ap-
proximation. Since a quasi-static relationship implicitly satisfies the nonlinear
relationship between the lateral and longitudinal motion in the catenary, the
limitations evident in the original normal mode model are obviated. However,
modal truncation is possible, and sufficient lateral and longitudinal modes
would be required to simulate the system response accurately. The normal
mode method is applied by assuming a spatial expansion for the lateral and
longitudinal motion as:

where, for the out-of-plane mo, -s, the mode shape is cI>i(S) = sin(~: s)l1 and
the natural frequency is given by Wi = i7rc/lc• (/li(s) represents the longitudinal
mode shapes of the unconstraine.i linear system, where the longitudinal natural
frequencies are calculated via the frequency equation:

where Ii = ¥, Wi represents the longitudinal natural frequency, 11 = m~2'

( = !!" and l1l is the length of the vertical rope. The mode shape, normalised
to unity u.t the sheave end is:

Since the system is un- .mstrained, the fundamental frequency U.'l is trivial,
reflecting the rigid body mode.

11Although it is usual to mass normalise the mode shape, the mode shape is normalised
to unity so that the co-ordinate ri(t) reflects the maximum physical response in that mode.
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Catenary curvature is accounted for in the simulation and consequently the
in-plane natural frequencies may be calculated directly by applying the lin-
ear cable theory developed by Irvine and Caughey[1974], where the in-plane
natural frequency for the symmetric modes is calculated from the frequency
equation:

Wi Wi 4 (Wi)3tan-= ----2 2 A2 2 i=l,3,5···

2
Where Wi = Wilde, and A2 = (-&)3 (glc)2, where Wi represents the in-plane
natural frequency of the symmetric modes.

and the mass normalised mode shape is given by:

- 2C, . WiS . Wi )
<Pi =" (/) szn-l-s1n-21(s - lc

cos Wi 2 2 c c

t[COSW; + 1]
[2 + COSWi - ~i <~inwi]

for i= 1,3,5,' ..

To first order, the asymmetric in-plane modes induce no dynamic tension, and
are identical to the out of plane modes. Thus for i = 2,4,6···, the mass
normalised mode shape is given by <Pi = {fsin( ~:s) and the corresponding
natural frequency is given by Wi = i7rc/ lc.

Because the catenary curvature is small, the effect of curvature on the sym-
metric in-plane modes is only discernible in the first in-plane mode for the
descending cycle, as illustrated in figure 5.S. Since the in-plane motion is ap-
proximated via a modal expansion, for simplicity the In-plane symmetric mode
shapes equivalent to those of a taut string are applied, hence ~i = sin( ~:s),
and the natural frequencies are Wi = i7rc/l/2.

12Perkins[1992a] constructs a single mode in-plane model of a cable with fixed end condi
tions in the region of the first modal cross-over. Consequently, it is necessary to apply the
correct form for the symmetric in-plane mode shape, since it is different to its corresponding
out-or-plane mode shape. .
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On discretising the equations, a set of ordinary nonlinear differential equations
result, where:

1 nlc>nq n!a.t nr,,1

get) == f L: Pi + l.>~iqi + z:: ,8i{ q; + rn + Fg(t)
c i=l i=1 i=1 ,

where:

It is noted that ai represents the component of the quasi-static strain due to
geometric realignment of the in-plane motion. As expected this component
vanishes with respect to anti-symmetric modes. The discretised equations
describing the longitudinal (Pi), in-plane lateral (qi) and out-of-plane lateral
(ri) motion are presented as13•

iii + 2(iWjQi + VijQj + w~{l + 1]i(t)}qi +
(i{ ~Pj + ajqj + {3,{q; + rJ} }qi + c2ai{ ~Pj + ajqj + {3j{q} + rJ}}

== Qi(t) + C2CiiFg(t) (5.31)

rj -I- 2(il.lJirj -I- Viij + w[{l + 1]j(t)}ri

+(i{~Pj + Cijqj +,8d q] + rJ} }qi = Ri(t) (5.32)

where:
13In these equations the summation signs have been left out, and the subscript j refers to

summation over the number of modes.
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iii

Proportional damping has been added to the longitudinal and lateral equations
of motion respectively via (i) (i. The terms Pi(t), Ri(t), Qj(t) arise due to the
direct excitation at the winder drum. These are evaluated as:

1 r-Ri(t) == -- io q>i($)Ji~,(S, t)dsmWii 0

where mUi;, mVi.) mWii represent the modal mass associated with the ith gener-
alised co-ordinate.

Since Cl!i is zero for the antisymmetric modes, the quadratic nonlinearities
introduced by the cs '~enary curvature, and the direct excitation of the in-plane
modes due to curvature coupling, vanish with respect to the anti-symmetric
lateral modes. However, as with the laboratory model, quadratic coupling
between the lateral and longitudinal motion is retained due to the retention of
the longitudinal inertia associated with the vertical section.
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5~6 Longitudinal and Lateral Damping Mech-.amsms

The definition of a damping mechanism which is applicable to mine hoist cables
has not received a great deal of attention, .probably due to the complexity
and variation of the rope construction. Mankowski [1986],[1988]'[1990) has
provided the bulk of the fundamental worv "t;he specific area of mine hoist
cables, whilst earlier work by Yu [1952]and •anderveldt et al (1973]examined
some of the parameters influencing the damping characteristics or wire ropes.

5.6.1 Longit udinal Damping

Usually a visco-elastic damping model is applied in the mining industry to
study longitudinal oscillations of the mine hoist system. Since these works are
concerned primarily with the start up transients, which exhibit dominant first
mode response) the damping model is formulated with respect to the measure-
ment of the logarithmic decrement of the first longitudinal mode. Thomas et
a1.[1987)performed such measurements at Deelkraal Mine with an empty and
loaded skip, at ~ and ~ depth. Greenway[1989) ar lysed these measurements
and showed that the logarithmic decrement of the .t mode was independent
of the total skip mass, but linearly dependent on t>elength. The dimension-
less damping ratio was of the order of 2.5%. The damping mechanism was not
studied further, and proportional damping was assumed in the model. This
resulted in strong attenuation of the higher modes. Mankowski [1986) experi-
mentally examined the attenuation of kinetic shock waves travelling along the
cable, and also the attenuation of the shock on enterir ; 'he winder drum. The
results of the study indicate that the winder drum may absorb as much as
66% of the energy of an incident kinetic shock. Mankowski notes that this
result conflicts with that of Harvey[1965] who reported that" Tests show that
in a typical case, the amplitude of the disturbance is attenuated 0.65 % per
1000 meters of cable and by 1% at each pair of reflections at the drum and
at the conveyance combined.". One surmises that Harvey was referring to low
frequency pulses with a large wave-length and longer periods than those ap-
plied in Mankowski's experiment, which were due to impact loading where the
largest fundamental period of the applied pulse was 11ms. Harvey's results
conform more readily with the logarithmic decrement associated with the first
mode response, as measured during in-situ drop tests by Thomas et al.[1987].

Due to the potential complexity of the damping mechanism, this study fol-
lows the approach adopted by Greenway[1989], in that an equivalent viscous
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damping coefficient is sought to model in some wa,y the overall damping effect,
without concern for the exact mechanism, which is likely to be highly com-
plex and difficult to include in a simulation, The main concern however is the
definition of a convenient and appropriate damping mechanism. Additional
drop tests were performed at Elandsrand Gold Mine ( Constancon[1992]). In
these tests, a man cage was locked between the guides, loaded and suddenly
released. The frc response was monitored, ~nd processed using standard pa-
rameter estimation routines. In order to investigate the higher longitudinal
modes, electronic filtering was applied so as to amplify the response of the
highet modes. The results of the parameter estimation confirmed that the
dimensionless damping coefficient of the first mode was of tne order of 3%,
whilst the higher modes were were of a lesser value. The results of the drop
test are presented in Appendix G. Greenway[1993] analysed these results and
proposed a general proportional viscous damping mechanism, which reflects a
lower damping effect in the higher modes. This damping mechanism is applied
for convenience since an equivalent dimensionless modal damping coefficient
can be calculated for each mode during the simulation.

5.6.2 Lateral Damping

Mankowski [1988] presented experimental measurements, defining a model
of the lateral damping mechanism in terms of the time rate of change of
curvature'". This model was considered by Mankowski on the basis that the
inter-strand motion induced by an irrotational whirling action of the rope
is proportional to the instantaneous curvature of the rope. Mankowski con-
structed an experimental facility to simulate irrotational whirling action of a
typical mine rope. The experimental results presented indicate that the aver-
age power dissipation, and hence the equivalent viscous damping coefficients
are low in comparison to the potential aerodynamic dissipation of the catenary.
A detailed discussion regarding lateral dissipation is presented in Appendix H.
Due to the lack of data concerning the lateral dissipation characteristics (If

mine hoist ropes, <1 proportional damping mechanism is assumed, where the
value of (1 = 0.05% of critical damping is applied. This conforms to the order
of dissipation determined in Mankowski's tests.

14The time rate of change of curvature results in a distributed damping force proportional
to the stiffness properties of the rope.
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5.1 Simulation of the Equations of Motion

The nonlinear ordinary differential equations of motion developed for the mine
hoist system were simulated by applying the Matlab-Simulink programme,
Simulink is a powerful simulation package based on the graphical definition
of a block diagram descr+ ')D for the system equations. Having developed
the block diagram for the system, pertinent physical data pertaining to the
installation is supplied to the Simulink package via a definition routine coded
and executed in the Matlab environment. A mask of input data required ;s
tabulated in table 5.1.

Since the system characteristics change with time, and consequently depth
during the simulation, a look-up table is applied to define the relationship
between the angular winding; velocity and depth. Additional look-up tables
define the longitudinal and lateral natural frequencies, as well as the variation
in the longitudinal damping coefficients, and the Lebus drum excitation and
layer change excitation as CL function of depth. These tables are defined prior
to the simulation, and are interpolated du.ring the simulation. This format
efficiently accounts for the time dependence of the system parameters during
the simulation.

Simulink provides a choice as to the type of integration routine applied. An
automatic step size Adams-Gear routine was applied, with a relative error
tolerance of 10-6, and a maximum st sp size of 10-3 seconds. The maximum
step size tolerance is specified tJ ensure suffvient accuracy with regard to the
excitation look up tables.

In the normal mode simulation introduced in section 5.2, the excitation at
the winder drum was accounted for by considering the first two harmonics of
the Lebus groove profile, as presented in Appendix A. To better emulate the
impulsive nature of the excitation, a look-up table was defined to accurately
model the longitudinal and lateral excitation at the drum, as a function of shaft
depth. Mankowski approximated the three dimensional displacement imparted
to the rope at a coil cross-over as versine functions. This definition is applied,
where the periodic displacement in the u, v, w direction at the drum is de"
as a function of drum rotation. It is possible to define these displac-n ":.\\.
functions as a function of shaft depth, and hence drum rotation via a lu.:k-'lP
table for the entire winding cycle. Since the lateral excitation is introduced
via the lateral acceleration of the the cable, it is a simple manner to construct
the appropriate look-up table bv differentiating the lateral displacement profile
analytically. The lateral excitation induced at a layer change is applied in a
similar fashion. The definition of the Lebus coil cross-over excitation, as well
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as the layer change excitation is presented in Appendix A.

The periodic longitudinal excitaticn due to the coil cross-over profile is intro-
h'duced to the system by Fg(t). The definition of Fg(t) requires that the periodic

axial displacement at the drum u(O, t) as well as the gross lateral motion across
the drum surface is accounted for. The longitudinal excitation due to a layer
change is introduced by adding an additionallongitudinal displacement to the
periodic axial displacement at the layer change, and holding this value con-
stant until it increases at the next layer change. The direction of the wind
influences the longitudinal excitation definition, in that during an ascending
wind the periodic pulses due to the coiling profile, and transient pulses in-
duced at a layer change are tensile, whilst during the descending wind they
are compressive.

I
N~lat
N-Long

IJM
MD
m
a
V
De
Lc
E
Ax
{3
Dd
Ds
Dr
Lx
/la, /lb
(!at

Table 5.1: Simulation :-'-va"'",r'f-i""-ab""'I'-'-1e;>'-s---.
Number of in and out of plane lateral modes.
Number of longitudinal modes.
Sheave Inertia.
Skip Mass,
Skip Pay-load.
Linear Rope density.
Acceleration/Deceleration.
Nominal Winding Speed.
Depth of wind.
Catenary Length.
Effective Youngs Modulus of the rope.
Effective steel area of the rope.
Cross over arc.
Drum Diameter.
Sheave Diameter.
Rope Diameter.
Layer cross over points.
Longitudinal proportional material damping factors.
Lateral proportional modal damping fact-or of the first mode.
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5.8 Kloof Mine Simulation

A simulation of the ascending and descending winding cycle on the Kloof
mine was conducted. The purpose of the simulation was to assess the degree
of correlation achievable vic. a comparison of the the qualitative observations
presented by Dimitriou and Whillier[1973]. .

The parameters applied in the simulation are presented in table 5.2.

Table 5.2: Simulation variables - Kloof Mine

N -lat Number of in and out-of-plane lateral modes. 4
N-J,ong Number of longitudinal modes. 4
J Sheave Inertia .. : 15200 kgm2
M Skip Mass. 7920 kg
MO Skip Pay-load. 9664 kg
m Linear Rope density. 8.4 kg/rn
a Acceleration/Deceleration. O.74m/82
V Nominal Winding Speed. 15 m/s
De Depth of wind. 2100m
Lc Catenary Length. 74.95 m
E Effective Youngs Modulus of the rope. 1.1 X 101l1Vjm2

IAx Effective steel area of the rope. O.(lOl028m2

(j Cross over arc. 0.2 rad
Dd Drum Diameter. 4.28 m
Ds Sheave Diameter. 4.26 m
Dr Rope Diameter. 0.048 m
Lx Layer cross over points. 525m, l050m, 1575m i
/10. General proportional damping parameter 0.159
J.Lb(82) General proportional damping parameter 10.4982
({at Lateral proportional modal damping ratio 0.05%

Since the physi ~1parameters of 0 realistic system are difficult to quantify
accurately, and may change during the life of the rope 15, a sensitivity analysis
was conducted with respect to the nominal winding speed In this study,

15For instance, the payload mass may vary by 5% from cycle to cycle. Manufacturing
tolerances will result in variations in the nominal rope properties. The manufacturers tol-
erance on the linear mass density is -7%-0%, and -1%-4% on the rope diameter ( Haggie
Rand [1990}).The layer change locations V'd.ryduring the life of the rope, since control of
rope deterioration at layer and turn cross-overs requires that the back end (ie. drum end
) be pulled in at short intervals of about six weeks. The front end of the rope is cut and
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the winding sneed was changed incrementally from 14 ta]« to 16 va]« in 0.2
mls ir.crements, for both the ascending and descending cycle. The results
of- the sensitivity study are presented in Appendix L. The sensitivity study
indicated that the response is sensitive to the 'winding velocity, in that the
amplitude of a resonant conditon is sensitive tv the layer change location
with respect to the resonant condition. On the basis of the sensitivity stud}, a
winding velocity of 14.8 ta]« was selected as being representative of the winder
condition, since severe dynamic motion occurred on t'.le ascending cycle. This
winding condition was judged to be sufficiently close to that considered by
Dimitriou and Whillier[1973], and Mankowsrl-i[1982},to be representative of
the Kloof Mine hoist winder.

The results from the simulation are presented in figures 5.9 -5.12 for the de-
scending cycle, and 5.15 -5.19 for the ascending cycle. Each simulation consists
of:

III The lateral in-plane response at the first quarter point of the rope vs.
shaft depth.

o The lateral out-of-plane response at the firpt quarter point of the rope
vs. shaft depth.

o The longitudinal elastic response at the sheave vs. shaft depth.

!ll The longitud: ~elastic response at the skip vs. shaft depth.

G The total rope tension on the catenary side of ~llesheave vs. shaft depth.

f) The total rope tension on the shan side of the sheave vs. )haft depth.

9 The rope tens on ratio across the sheave vs. shaft depth.

o The lateral in-plane modal amplitudes vs. shaft depth.

G The lateral out-of-plane modal amplitudes vs. shaft depth.

All figures are headed by a linear frequency map of the system. This map il-
lustrates the relationship between the first two harmonics of the Lebus groove
excitation frequency, the first four longitudinal and lateral natural frequen-
cies, and the layer change location. The Lebus groove excitation frequency is

tested every six months In accordance with statutory requirements. The ammount cut off
the front end, and the ammount of rope lost due to pulling is augmented by using up spate
dead turns on the drum. A minimum of three dead turns is always required on the drum,
but additional dead turns are allowed for compensation purposes,
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represented by dashed lines; the longitudinal frequencies by dotted lines, and
the lateral natural frequencies by solid lines. The layer change locations are
represei-ted by vertical lines.

The figures relating to the in-plane lateral motion at the first quarter point
of the catenary, are constructed to reflect both the dynamic amplitudes, and
the change in rope curvature with depth. This is achieved by referencing the
motion to the span line between the end points of the catenary. As the vertical
rope length changes, the equilibrium curvature of the cable changes, and hence
the rnear static position of the cable changes. Thus the in-plane displacement
is calculated asll~;

The tension ratio across the sheave is presented h ascertain If rope slip occurs
during the simulation. A simple ballard type friction analysis as presented by
Mankowski[1982] indicates that if the tension ratio lies beyond the limits of
0.625 -+ 1.60 then slip will occur. Since the possibility of slip is not accounted
for in the simulation, this condition would invalidate the simulation beyond
that time.

The results presented in figures 5.9 -5.12 for the descending cycle should be
read from left to right, whilst those presented in figures 5.15 -5.19 for the
ascending cycle should }-~read from right to left.

16The equilibrium c"ofile of the rope, measured from the span line is: Z = f(l - X),
h Z Hz I X ." th (!.o.) 3mgl~ d mq h . (1.) ~were = - mglr anc = re' us z 4 = - 32H ,an ;;,= H' enCe Z 4 = - 32
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509 Simulation Results

5.9.1 Descending Cycle

The simulation results for the descending cycle are presented graphically in
figures 5.9~5.14. General observations concerning the simulation of the de-
scending cycle are:

Q When the skip accelerates down the shaft: the average rope tension in
the catenary drops, and consequently the in-plane motion is off-set in
the negative direction. This effect is observed in the odd in-plane modes
which are capable of geometric adjustment to account for the change in
tension. The reverse effect is noted when the skip is decelerated to rest
at the end of the wind.

(')The layer change over is evident in the the in -plane lateral response,
where it induces transient motion.

e The nonlinear interaction between the lateral and longitudinal modes is
evident, where an increase in the catenary motion causes a negative drift
in the longitudinal motion at the sheave.

e The motion at the sheave drifts in accordance with the gross lateral
motion across the drum. Thus a triangular wave form is perceptible,
where the motion drifts in the negative direction between the start of the
wind and the first layer change, drifting in the opposite direction during
the second layer; this effect +apeats itself, and reflects the increase in "he
rope length due to rope traversing between the drum cheeks.

Specific observations regarding the descending cycle are:

G The in-plane motion remains small through-out the wind.

o The tension ratio across the sheave remains within the no-slip region, .
and thus slip across the sheave does r.ot occur.

e The out-of-plane motion grows towards the end of the cycle. This occurs
since the even (second and fourth etc) catenary modes approach a res-
onant condition with the Lebus excitation frequency at approximately
1900m.
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e At apprcximately nOOm, the second catenary mode and the third lon-
gitudinal mode are equal, promoting coupling between the longitudinal
and lateral motion. In effect a condition of combination resonance may
occur, where the second lateral and third Iongitudinal modes are equal to
the second Lebus excitation frequency (refer to the stationary stability
plot presented in figure 4.7).

o The deceleration cycle begins at approximately 1950 m, and Iongitudinal
transients occur.

I.) 'I'he attenuation of the dynamic tension across the sheave, illustrates a
significant filtering action, which tends to isolate the catenary from the
vertical section.

The sensitivity of the system to the winding speed is well illustrated by con-
sidering the resonant condition towards the end of the wind. 1<'igures5.13,5.14
present results from the sensitivity study for a winding velocity of 14.6 and 15
m/s respectively, .'Whilst the lateral out-of-plane motion reduces at a wind-
ing velocity of 15 rn! s since the passage through resonance is not completed
prior to the deceleration cycle, very different conclusions regarding the dy-
namic integrity of the system would be drawn from the simulation results at
14.6 tsi]», In the latter condition of tuning, the resonant condition occurs
at approximately 1700111;sufficient time exists for the out-of-plane motion to
grow sufficiently to induce in-plane motion, and consequently significant ten-
sion fluctuationa occur in tht. catenary from 1600m onwards. Since the lateral
frequency lines have a low slope, relatively small changes in the winding speed
result in significant shifts in the resonant conditions, and consequently different
behaviour.
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5.9.2 Ascending Cycle

The simulated response of the ascending cycle is presented in figures (5.15-
5.23). This simulation predicts significant dynamic response, where rope whip
occurs and lateral amplitudes of the order of 1m arise in the catenary section.
The tension ratio across the sheave exceeds -the limits for no slip at approx-
imately 300m, and consequently the simulation would not be realistic above
this depth. The rapid growth. in the second in-plane mode, reflected in figure
5.18{c), prior to this condition presents convincing evidence of problematic dy-
namic behaviour. It is noted that according to the stationary linear frequency
map, the system is tuned such that the second and fourth out-of-plane It odes
are directly excited in resonance at approximately 700m. The peak response in
the directly excited second and fourth lateral out-of-plane modes occurs in this
vicinity. The in-plane response increases after the out-of-plane response has
grown. Since the in-plane response is lightly excited, this response is mainly
associated with the nonlinear coupling between the in and out-of-plane modes,
which is consistent with the autoparametric 'nature of the system, whereby out-
of-plane motion couples to parametrically excite in-plane motion. During the
ascending cycle, the Lebus excitation frequency is constant: whilst the lateral
natural frequencies reduce with depth. Thus the passage through resonance
occurs with the excitation frequency passing from below to above the natural
frequency. This is similar to the laboratory model with a positive sweep rate,
where as the excitation frequency increased, the lateral out-of-plane motion
increased, followed by a bifurcation of the trivial in-plane motion. A plateau
region subsequently occurred, where the lateral motion became saturated and
significant longitudinal dynamic motion occurred. This behaviour is reflected
in the simulation, where the amplitude envelope of the modal response of the
even in and out-of-plane lateral modes reflects such a pattern ( refer to figures
5.17,5.18).

The polar response of the catenary is illustrated at four different depths in
figures (5.19-5.23); at the start of the wind the motion is essentially planar,
becoming almost circular in shape between the depth of 700-500 m. There-
after, the circular motion gives way to an elliptic orbit, and consequently large
fluctuations in the catenary tension arise. It is assumed that the latter region
would be termed rope whip by Dimitriou and Whillier[1973]. According to
the numerical simulation) the whip is so severe that a slack rope condition
is approached during the orbit, which clearly represents very severe dynamic
behaviour.

On assessing the overall dynamic response, the auto-parametric nature of the
system is evident. An autoparametric mechanism arises when the motion in
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a directly excited mode provides parametric excitation leading to response in
modes which are not directlyexcited. This effect is important when conditions
of·internal resonance exist in the system, as such a condition promotes inter-
modal response. This situation has been discussed in the literature (Ashworth
and Barr[1987), Bux and Roberts[1986],Cartmell and Roherts[1988J), where
cascading modal interactions arise, and the directly excited response paramet-
rically 'excites another mode, which in tum' excites a further mode, and so
on. Such behaviour occurs with regard to the out-of-plane and in-plane mo-
tion, where out-of-plane response parametrically excites in-plane moti 11. It
was expected that the longitudinal system would promote further intenuodal
response. However, since the sheave tends to isolate the catenarv from the
vertical system due to its large inertia, such regions of secondary resonance
are not clearly evident in the simulated response. It is important to note that
in-plane amplitudes of the order of Lrnarise, where the direct in-plane excita-
tion is of the order of 0.5 mm. This emphasise" the difference between a linear
analysis, where in-plane motion would arise purely due to the direct excitation;
clearly this amplitude occurs as a result of the nonlinear coupling inher=nt in
the system.
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5.9.3 Dimit:riou and Whinier's Observations

L)lmitriou and Whillier[1973] considered the Kloof Mine hoist system, and doc-
umented observations regarding the motion. These observations are extracted
and presented below.

Visual accounts OJ the dynamic behaviour of the catenaries at Kloo] have been
recorded over more than a three year period. Some variations have occurred
during that time but regular features have been noted and these are numbered
belou: for easy reference. The period of main interest covers the second half
of the hoisting cycle" when a full skip is raised, and consists of two distinct
phases, marked in figu ...e 1.5.

Phase 1 starts at approximately t=110 s, when the skip is a(JJut 900 m below
the. headsheave, and lasts for about ,~os.
Phase ,~ starts at the cross-over from the third to the fourth cable [clIyeron the
drum and ends when the skip is at the top of the wind.

Feature 1: All catenaries vibrate to some extent during most of the hoisting
cycle, both during 1'aising and lowering of the skips. Except durin!l phases 1
and 2, these vibrations have no clearly defined mode awl have small amplitudes.
The amplitudes are smaller and the [requencie» are higher when the sA:ipis near
the bottom of the shaft.

Feature 2,: During phase 1, the amplitudes increase and the catenaries settle
into a clear'Iy defined second mode for the horizontal and vertical transverse
components. The amplitude of the horizontal component is usually larqe». Ca-
bles A and D17, in that order, have the greatest amplitude, which is jud.9'ed to be
of the order of 1m. On occasions) these vibrations continue throughout phase
2 with a gradual change in mode but no perceptible cha'nge in amplitude. On
other occasions the mode of vibration loses its clear definition. at the beginning
of phase 2 and the amplitude decreases.

Feature 3,: During phase 1 the vertical cables start vibrating tran.sversely. The
amplitude, viewed at the collar of the shaft, increases in about 15 s to a max-
imum of approximately 0.1 m. These vibrations continue, at maximum am-
plitude throughout phase~. The vibrations are too rapid for the frequency to
be judged by .eye. However, a photograph of the vertical cables f~xhibits an ap-
proximate half sine 'wave of abe,ut 40 m length. This indicates that the main
wavelength is the same as fo)- the catenaries and the main ftequency is ap-

l1Cabies A-D are defined in chapter 1, section 1.2.2,
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proximately 2 Hz (but superimposed harmonics give the appearance of a higher
Jrequency to the naked eye.). .

Feature 4: On occasions) at the begirming of phase 2) the vibrations of cable It
develop a vertical component with an amplitude in excess oj 2 m. The cable
appears to come down with the speed of a.whi1?' Whenever this occurs. the speed
of winding is reduced by the operator and this behaviour has not been subjected
to reguial' observation. One observer. believes he saw. a first mode pattern in
the large. vertical component of the whip: but this observation has not been
corroborated.

Feature 5:. None offeatures 2,3 and 4.. is in evidence when the skips are lowered.
In particular the vertical cables do not vibrate.

Feature 6: Every six weekr; a length of cable is cut at the compensating sheave
and the dead coils are pulled over the drum to ,change the positiOn of the eross«
overs. Immediately after this, the vib'fations during phases 1 and 2 have their
maxim1Lm amplitude. The amplitude decreases gradually during the. six week
interval and the plant cost usually be run at full winding speed during the second
half of the interval,

Feature. 7: An experiment had been tried by the engineering staff at Kloof: the
speed of winding was decreased abruptly at the beginning of phase 1, . It Was
found that a drop in speed in this manner from 15 to 14 m/s was sufficient
to reduce considerably the amplitude of the vibrations during the r'emainder of
phase« 1 and 2.

The simulated behaviour presented in this study larp~y confirms these obser-
vations. The. only notable difference is the lack of !'''JpC'l't.eddynamic motion on
the descending cycle. It is important to realise rhat Dimitriou and Whillier's
observations were visual, and perhaps they were more sensitive to observations
regarding in-plane motion. The lack of in-plane motion ill the descending simu-
lation therefor correlates with these observations, Fuztherrnore, the sensitivity
of the system to the winding speed is an importam ..consideration. In tria re-
gard an increase in winding speed to 14.9 ia]: would place this region within
the decelerating region.iwhere transverse motion would be viewed as normal.
Unfortunately the winder on this system was changed in the late 70's, and
further experimental results could not be extracted. -
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5.10 Conclusion

The simulation exercise conducted has been successful in describing adverse
dynamic behaviour at the Kloof mine. It is noted however, that this is a nu-
merical simulation and consequently is constrained by necessary assumptions,
for instance the assumption of a proportionallateral and longitudinal damping
mechanism, and the neglect of the lateral motion of the vertical rope. It is
also important to note that the winder is treated as an ideal energy source,
and that no account was made for the flexibility of the headgear structure.
Thus any claim that the simulation approaches a precise description of the
actual motion would be dubious. Nevertheless! since the equations of motion
developed describe the physical nature of the system, it is expected that ad-
verse dynamic behaviour in the simulation would support the notion of adverse
dynamic behaviour in reality, and draw attention to this condition of tuning
during a design exercise. Tl 'IS good engineering judgement would be required
to interpret the simulation results.

The assumption in industry that the catenary motion does not generate sig-
nificant tension fluctuations, and hence any assumption that adverse dynamic
catenary motion has no bearing 01- the fatigue life of the rope is clearly ques-
tionable. Significant tension fluctuations were observed in the catenary luring
the simulated ascending cycle. Although these may be tempered in reality by
the support structure flexibility, adverse dynamic catena: y motion will result
in significant tension fluctuations.

A number of features have been observed during the simulation exercise, which
may be used to advantage to improve the dynamic integrity of an existing
installation, without changing the geometric parameters of the system. These
are itemised below:

e The periodic axial and lateral excitation due to the Lebus cross-over can
be reduced, and hence the possibility for whip reduced, by increasing
the cross-over arc length, and by profiling the grooves. Since the filler
length increases with an increasing cross-over arc-length, the transients
induced at a layer change would also reduce. Such an approach has been
promoted by industry, and the machining capability is available.

e An important feature, influencing the catenary motion, is the location of
a layer change with respect to the linear lateral frequencies of the cate-
nary. It is likely that at some stage of the wind linear resonance of the
catenary will arise. Since the phase of the lateral excitation reverses a.f-
ter a layer change, it would be advantageous to position the layer change
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close to the occurrence of linear resonance. In this manner, t he phase
of the excitation may be applied to oppose the residual motion which
has developed on approaching resonance, dissipating the motion to some
extent. This effect is demonstrated in the sensitivity study presented in
Appendix L, where a layer change positioned close to the linear resonance
reduce« "he in-plane amplitudes. Although this may be accomplished on
existing installations by including additional dead turns on the drum,
to allow for fine tuning of the system with regard to the placement of
a layer change, due to pulling the back end of the rope, and cutting the
front end, these locations would not remain constant throughout the life
of the rope. Although the simulation results presented in Appendix L
demonstrate the potential advantage of a layer change location close to
linear resonance, the response is sensitive to the layer change location.
Since the layer change location varies ~ .ng the life of the rope, in prac-
tice this would be an unlikely design strategy. A180, reservations exist
regarding miscoiling of the rope at a layer change due to the dynamics
of the catenary. For this reason .Boshoff suggects that the layer change
be located away from a linear resonance.

(!) Since the periodic longitudinal excitation induces compressive pulses in
the catenary on the descending cycle, it is more difficult to excite whip;
thus it is recommended that if a resonant condition is unavoidable on
either the ascending or descending cycle, then it should be accommodated
on the descending cycle.

It is worth considering the response amplitudes in the context of the excitation
applied to the catenary at the drum. The harmonic amplitudes comprising the
out-of-plane excitation are of the order of 7mm and less, whilst those of the
longitudinal and in-plane lateral excitation are of the order of 0.1 mm. The
amplitude of the in-plane motion is of the order of 1m. This would represent
an amplification of 10 000:1 of the in-plane motion. This clearly highlights the
importance of the nonlinear coupling in obtaining a realistic simulation of the
response.

With reference to the stability analysis presented in chapter 4, a significant
region of instability VIaspredicted in the vicinity of a winding speed of 15 tal»,
where nonlinear interaction could be expected with regard to the steady state
response. This region occurs at approximately 700m, where the second longi-
tudinal mode tuned to the second lateral mode; thus the additive combination
resonance involving the second lateral and longitudinal modes is activated by
the second harmonic of the Lebus excitation. Simultaneously, the second lat-
eral mode and the second longitudinal mode are directly excited in resonance
by the first harmonic of the Lebus coil cross-over frequency. It would be incor-
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rect to attempt to assess the dynamic interactions observed in the simulation
in terms of the stationary stability analysis, since the system is non-stationary,
and steady state amplitudes are not achieved. Also, the transient excitation
due to the start-up and the laye, change excitation Me not accounted for in the
stability analysis. Although good experimental correlation was achieved with
the laboratory model, and led to an appreciation of parametric excitation, the
neglect of-the non-stationary aspect of the system compromises the usefulness
of the stationary stability analysis of the system as a single design criterion.

The design strategy proposed is thus to apply the stationary stability analysis
to identify conditions of resonance, and to develop an appreciation of the
overall system tuning. This would be followed by a sensitivity study based on
direct numerical simulation, where an overall appraisal of the system response
can be obtained. This is still an involved task, and is perhaps better left to a
specialist rather than a design engineer.



Chapter 6 "

Closure

This study presents a non-linear dynamic analysis of a mine hoist system.
During the course of this research, studies concerning the dynamics of strings
and cables were reviewed, leading to a critical appraisal of the research con-
ducted by Dimitriou and Whillier[1973], and Mankowski[1982j, At the outset
of this stu.ly, much emphasis was placed on defining practical criteria to de-
sign a mine hoist layout, or to correct the adverse dynamic characteristics of
an existing installation. 'This was initially addressed by considering the sta-
tionary dynamic behaviour of the system, where the parametric nature of the
system could be confirmed on a laboratory model. It is not surprising that
although an appreciation of the stationary system characteristics may provide
broad guidelines regarding the avoidance of resonance, since the system is non-
linear, the non-stationary aspects of the system ultimately exert an overriding
influence on the system behaviour. This feature was apparent in the sensitiv-
ity study conducted, where the system response was simulated over a range of
winding speeds, Nevertheless, the analytical development was correlated with
experimental results measured on a laboratory model, pr-v-iding confidence in
the numerical simulation, and allowing design strategies to be suggested. Ulti-
mately, a comprehensive dynamic analysis of a mine hoist system is a complex
task, which requires sound engineering judgement tempered with analytical
skills. Th-: techniques developed in this thesis are intended to facilitate the
latter, without replacing sound engineering judgement.

It is in the interest of further development that a critical appraisal of the
current work is provided. This is ir.iportant for two reasons. Firstly tv examine
the limitations of the current analysis and to emphasise that substantial scope
exists for further development. Secondly to highlight such issues for the benefit
of future researchers pursuing similar studies,

156
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The analytical development pursued by the author is presented in Chapters 4
and 5. With regard to the stationary stability analysis presented in Chapter
4, good experimental correlation was achieved with respect to the laboratory
measurements. The definition of the regions of instability of the steady state
motion was based on the assumption of a datum solution. The motivation for
the datum solution came from a desire to identify regions where the trivial
uncoupled lateral linear motion was unstable, thus emphasising the impor-
tance of the non-linea- coupling between the latera I and longitudinal motion
and consequently the state 01 tuning of the system. By applying a harmonic
balance method, this approach would directly account for all conditions of
tuning obviating the need to consider anomalous or special cases. In light of
the experimental results extracted from the laboratory experiment, it would
be advantageous to further interrogate the quasi-static equations of motion de-
veloped in chapter 5, via a study based on the method of multiple scales. Such
a study is currently being pursued at this University (Aligianis[1993]). This
study is intended to examine the nonlinear steady state response, and the sta-
bility of this response directly for specific tuning conditions of the laboratory
model. Further fundament-al development is required to examine the system
response in the presence of a non-stationary excitation. The simulation of the
laboratory model to a swept sine excitation exhibits peculiar behaviour. Such
behaviour requires experimental corroboration, as well as fundamental analyt-
ical studies in order to assess the implications of such response on the system
behaviour with regard to increased winding velocities. This would represent !1.

further extension to the stationary analysis suggested above.

The numerical simulation presented in Chapter 5, iilustrated the danger of
applying a normal mode technique directly to the equations of motion. This
was particularly frustrating, but a worthwhile experience for the author. The
initial results from the normal mode simulation were convincing; to the extent
that the severity of the problem only became apparent once the laboratory data
Wa5 available. It is clear from this experience that drawing conclusions based
purely on a numerical simulation is a dangerous exercise a.nd should be viewed
with skepticism until experimental correlation is achieved. It IS in this regard
chat criticism of the final simulation of the mine hoist system is levelled. The
correlation of this system is based on observations provided by Dimitriou and
Whillier. Although a video motion analysis system was developed to facilitate
such a correlation, and such a study is currently in progress, a number of
correlatons would be required to convincingly satisfy this criticism. It was
decided at this stage to correlate the simulation results broadly with a system
which was known by Industry to exhibit adverse dynamic motion, and which
had received a great deal of attention in the past, but had not as yet been
successfully simulated over the entire ascending a.nd descending winding cycle.
Further experimental correlation is clearly necessary, and is currently being
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pursued with a major mining house. It is interesting to note that on this
particular winder, resonance occurs on the ascending cycle to the extent that
the vibration of the headgear superstructure is visible and audible. As a result
the winder speed has been reduced from 15 ta]» to 13.8 tn]«.

The definition of damping mechanisms capable of correctly predicting the lat-
eral and longitudinal dissipation characteristics of mine hoist ropes requires
substantial experimental effort. Rudimentary tests were carried out by the
author I and a general proportional damping model was applied to model the
longitudinal dissipation. Although Mankowski[1988j[1990] has examined the
lateral dissipation characteristics of a mine hoist rope describing irrotational
whirling motion, further studies will be required. The damping rr.echanism
assumed in a dynamic simulation may exert a significant influence on tile sim-
ulated response, and consequently until accurate data is available, a numerical
simulation can be viewed as approximate at best. Conversely, an over ambi-
tious degree of accuracy would be naive.

In the process of developing the analytical model of the mine hoist system,
it was assumed that no lateral motion occurs in the vertical rope. Dimitriou
and Whillier observed that such motion was related to the adverse catenary
motion on the ascending cycle, and hypothesised that it may promote mutual
excitation of the catenary via the vertical rope and vice versa. The neglect
of the lateral motion in this study was chiefly due to the added complexity
associated with accounting tor such motion in the discretised model. Such de-
tail would require the incorporation of a substantial number of lateral modes,
significantly extending the computational effort. It is the authors' opinion that
such detail should be inccrporated only after a fundamental appreciation of
the system behaviour has been achieved. Simple laboratory tests confirm that
violent interactions between the lateral motion on the catenary and vertical
section can arise. This represents a further aspect for consideration. Such
motion was experimentally monitored on a mine hoist system and is presented
in appendix I. A further limitation on the current mine hoist model is that it
assumes that the winder is an ideal energy source, and the headgear is rigid.
With the advent of advanced winder motors, the electrical winder characteris-
tics are receiving attention in the context of controlling the longitudinal system
behaviour due to transients induced during the acceleration and deceleration
phase of the winding cycle. This development has been promoted by new
legislation which permits the lower, ••g of the rope factor of safety on instal-
lations with such control, enabling winding to depths of 4000 m without the
use of subshafts. Kaczmarczyk [1993Jis currently investigating the simulated
response of the hoist system by including the electrical characteristics of the
winder motor.
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It is natural to question whether an effective strategy exists whereby adverse
catenary motion can be corrected or controlled on an existing installation,
This is Ci. difficult issue to address) since experience indicates that such strate-
gies ultimately lead to a lowering of the winding velocity, and a consequent
10s3In production rate. With the advances in control technology and electric
motors, it is natural to consider active control strategies. These have not been
considered previously, Due to the high druminertia such strategies cannot be
affected directly by the winder. However, it may be possible that if the sheave
is energised to equalise the tensicn between the catenary and vertical system,
then an effective strategy may develop to correct such motion. A simulation of
the ascending cycle of the Kloof hoist system with a low sheave inertia at 14.8
mls resulted in a greatly reduced catenary motion. This aspect is currently
being investigated with the aid of the laboratory model.

This study has provided a substantial challenge to the candidate. It is natu-
ral to be self critical of certain analytical aspects of the work. For instance,
it would have been particularly satisfying to complement the simulation of
the laboratory model with an analytical study of the steady state motion via
the method of multiple scales. The peculiar motion obtained with the non-
station.ary excitation also represented an attractive avenue of analytical study.
In this regard the candidate had to continually redirect the effort towards a
practical outcome, even when the analytical aspects of the subject could have
been motivated through personal interest. On the otherhand, the experienc ....'
gained from dealing with a practical system, where it is difficult to obtain nhys-
ical measurements and quantify the physical parameters accurately, provided
valuable experience in that the results achieved required continued critical
appraisal.

Clearly further analytical studies are to be pursued in the laboratory and on
site to extend this work further. It is hoped that this study will provide support
to future researches in the field of mine hoist dynamics, as well as enabling
the University to facilitate an informed assessment of existing installations on
behalf of the mining industry.



Apperrdix A

Excitation Definition

This appendix considers the definition of the excitation mechanisms applied
in the stationary stability analysis, and in the non-linear numerical simulation
of the system. In the stationary sta bility analysis the excitation accounts for
the stationary periodic displacements which occur at the winder drum during
constant velocity winding, due to the coiling mechanism, In the numerical
simulation, the excitation definition comprises of the former excitation, as well
as those excitation mechanisms which give rise to transient system response
at various stages of the winding cycle.

During ascent of the conveyance, the winding cycle consists of an initial accel-
eration to achieve the nominal winding velocity. The conveyance then ascends
at a constant winding speed until it decelerates as the conveyance approaches
the bank at the head of the shaft. In the process of winding, the rope is coiled
onto the drum, and forced \'.isplacement excitation occurs at the drum due to
the Lebus liner and the resulting coiling pattern. During the constant velocity
phase, the excitation imparted to the system via the coiling pattern is periodic
and stationary. Since it is not possible to wind the entire length of rope onto
the drum in a single layer, multiple layers are required. Typically four layers
of rope are wound onto the drum. At the end of a layer, as the rope reaches
the drum flange, it cha.nges its traverse direction and rises a full rope diameter
to continue coiling on the next layer. The layer change imparts appreciable
longitudinal and in-plane lateral transients to the system. Following the layer
change, due to the reversal of the traverse direction, the out-of-plane lateral
excitation due to the coiling mechanism changes phase by 1800 relative to that
of the previous layer. Consequently stationary periodic excitation only occurs
during the constant velocity phase of the wind, whilst the rope is traversing
across the drum surface. Transient excitations occur during the acceleration

160
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and deceleration phases, as well as during a layer change. Thus the excitation
applied to the system, and considered in this appendix consists of:

o Longitudinal and lateral in and out of plane stationary periodic excita-
tion due to the Lebus liner coil cross-over profile.,

e Longitudinal excitation due to the acceleration/deceleration profile,

Q Longitudinal and in-plane lateral excitation due to a layer change.

Other excitation sources not considered in this study may arise due to ovality
of the winder drum and head sheave, or clue to shaft steelwork misalignment.
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Figure A.l: Mankowski[1982j, Figure 2.4(a): Winder drum fitted with a Lebus
liner
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A.I Lebus con Cross-Over Excitation
..
Dimitriou and Whillier [1973] identified the Lebus coiling mechanism as the
primary source of periodic excitation applied to the system during the constant
velocity winding phase. They considered the lateral out-of-plane excitation due
to the coiling mechanism to be most significant, and. analysed the frequency
content of the wave form. In this analysis, they examined a. symmetrical 1800
Lebus liner, as well as asymmetrical designs with multiple cross over regions.
Their analysis demonstrated that in the case of the 1800 symmetrical liner,
periodic excitation occurred, with a fundamental frequency of twice the angu-
lar velocity of the drum. Also the first and second harmonics of the lateral
out-of-plane excitation were of a similar order and considered significant. With
regard to asymmetrical liners, it was demonstrated that the excitation was pe-
riodic with a fundamental excitation at the angular velocity of the drum. The
«rnplitude of the harmonics varied in magnitude with the degree of asymmetry,
but no obvious advantage could b , found. Since 1800 symmetrical Lebus liners
are commonly used in the mining industry, the definition of the excitation is
based on this configuration.

A 1800 lined Lebus drum consists of two parallel grooved circular shells offset
from one another by half a rope diameter. The shells are joined at the cross-
over insert, which maintains the continuity of the grooves, as illustrated in
figure A. Consequently a coil cross-over occurs twice per drum revolution. The
cross-over geometry induces excitation in the lateral out of plane w-direction,
and in the axial u-direction of the rope. The axial excitation OCcursdue to
the difference in arc length between the diametral arc and that traversed at
the cross-over interface. Excitation normal to the drum or in the in-plane v-
direction occurs on the second and higher layers as a consequence of the rope
rising over underlying coils of the lower layers.

The lateral in-plane displacement of the rope on the second rope layer is cal-
culated from the geometry of the underlying layer as illustrated in figure A.2.

v'3
'0 = (1- -)d

2

On the third layer the rope will rise through twice this distance, whilst on the
fourth layer it will rise through three times this distance etc. Thus accounting
for the layer number, n:

,(3
Vn = (n - 1)(1 - -)d2
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where Vn represents the in-plane amplitude during the nth layer.

When the rope exits from the cross-over region, its total displacement is : (.'.>:'
a rope diameter in the out-of-plane lateral direction, relative to the r'~trjl
position. Thus the magnitude of the lateral out-of-plane displacement is:

d
w=-

2

The magnitude of the displacement in the u direction can be calculated by
considering the geometric prope " of the cross-over region as illustrated in
figures A.3,A.2. During a cross-o. : 1eaxial velocity of the rope increases to
accommodate the difference between the arc length traversed through a cross-
over, and that which would be traversed in the absence of a cross-over. Thus
relative to the nominal axial displacement due to the winding velocity, this
difference represents the additional axial displacement applied to the system.
This difference is calculated as:

u ~ (0.125 + 0.018(n _1)2) ::(3
Figure A.4 illustrates the physical motion of the rope in the u, v, w directions
for one rotation of the drurrr'. The motion in the u direction illustrates that the
average winding velocity is slightly larger than that of the peripheral velocity
of the drum. This is reflected by the dotted line in figure A.4 (a). The periodic
component of the longitudinal motion is consequently the motion relative to
this line, as presented in figure A.5 (a). The lateral in-plane displacement
v due to the rope rising over an underlying coil is presented in figure A.4
(b). This motion consists of periodic pulses. Fignre A.4 (c) presents the

IThe physical parameters employed reflect those of the Kloof mine winder - v;, :::
15m/B,Rd ::: 2.14m,d ::: 48mm.(3 = O,2rad, where v;"Rd,d,/3 represent the nominal
winding velocity, the drum radius, the rope diameter and the cross over arc respectively.
Note that the P, plots reflect the displacement amplitudes for an upwind on the second
layer ie. u is negative whilst the rope is traversing in the positive v direction. The dis-
placement profile 11 is calculated continuously with respect to the cross-over arc f3, via
u(O) ::: [(Rde)2 + (g~)2 + (2Vl)2]t - Rde 0 ~ e ~ /3/2, and a similar relationship for
/3/2 ~ e ~ (3. The displacement profile ~. is calculated as a triangular pulse of magnitude
(1- V3/2)d. The dis):,', .•,\(, . (,. :1 ;, calculated as a ramp of magnitude d/2.
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lateral out-of-plane displacement w, and reflects the total lateral displacement
for one revolution. This displacement comprises of both the average traverse
velo...:r.y ( reflected by the dotted line) and the periodic displacement at the
coil cross-over, as presented in Figure A.5.

The Fourier spectra of the periodic wave-forms presented in figure A.5 are
presented in figure A.6. Figure A.7 presentsthe periodic wave forms and their
reconstruction from the first and second harmonics of the Fourier spectrum.
The periodic displacement functions are:

2

u(t) =L Re(Uneinflt)
n=l

2

v(t) = E Re(Vneinnt)
n=l

2
W(t) = L: Re(Wneinilt)

n=l

The harmonic amplitudes Un, Vn, Wn are complex and contain both amplitude
and phase information. For a 1800 Lebus liner, the excitation frequency n is
related to the nominal winding velocity Ve and the drum diameter Rd by:

It is evident from the spectra presented in figure A.6 that. the most significant
excitation occurs in the out-of-plane later-al direction (w), and is an order of
magnitude larger than the first harmonic of the in-plane lateral excitation v.
Although the longitudinal excitation is small, the axial stiffness is high and
consequently significant periodic axial forces can be generated''.

The displacement profiles presented in figures A.4,A.5 were constructed numer-
ically. A Fourier transform of the displacement profiles provided the amplitude
and phase information of each wave form. In this way, both the magnitude
and phase relationships between the longitudinal and lateral excitations can be
assebrledfor use in either the stability analysis, or the numerical simulation".

2Dimitriou and WhilHer [1973] estimate the axial forces due to the longitudinal excitation
to be of the order of 5KN.

3This definition was applied in the non-lineal' normal mode simulation. An alternative
definition, as applied by Mankowski, was applied to the quasi-static model, and is defined
in section A.4



Figure A.2: Geometry of rope layers
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Figure A.,1: Cross-over geometry
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A.2 Acceleration/Deceleration Excitation

The longitudinal transient response of the system due to the initial accelera-
tion or deceleration profile is commonly viewed as the most significant aspect
of the dynamic response. Consequently many studies in the mining industry
have focussed on long.cudinal oscillations such as Vaughan[1903, 1917J,Pollock
and Alexander[1951], Perry and Smith[1932], Greenway[1989]' whilst neglect-
ing the coupled dynamics of the catenary. The inertial loading due to the
acceleration and deceleration profile is significant and is modelled in modal
space by applying a co-ordinate transformation to the system. Considering
the inertial term in the longitudinal equation of motion [1+ (8( Ie) + rt8( Iv) jUtt,
where ( ::::I/ pAR2 and rt = !vII pA, and applying a co-ordinate transformation:

where u represents the dynamic motion at any point along the rope relative to
an axial rigid body motion u(t). Since the rigid body motion is not a function
of the spatial variable, the equivalent inertial load applied to the system is:

F(s, t) = ~[l + (c5(lc) + TJo{lv)J:fr(t)

This load is evaluated in modal space as:

where Pi(t) represents the equivalent modal force applied to the ith mode;
:fr(t) represents the acceleration or deceleration n: the system; mii, <Pi represent
the modal mass and mode shape of the ith longitudinal mode respectively, as
defined in Appendix C for the normal mode model.
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A.3 Layer Change Excitation

At a layer change the effective radius of the drum increases/decreases by one
rope diameter (d) over the Cross-overare, during the up or down wind respec-
tively. Immediately after this, the rope reverses its direction of traverse. The
reversal of the transverse motion causes the-lateral out-of-plane excitation to
change in phase by 1800• If the winder is treated as an ideal energy source, with
a constant drum speed, then in order to accommodate the effective change in
diameter at a layer change, the rope experiences a velocity change in a direc-
tion tangential and normal to the drum surface. The change in velocity results
in a longitudinal and in plane lateral acceleration of the system, and conse-
quently longitudinal and lateral in plane transient response. Since the system
is non-linear, these pulses may pre-empt a jump to an alternative dynamic
state. For this reason, this excitation source has been included in the analysis.
A simple approach is developed below to approximate the acceleration pulse
induced by a layer change.

Rope d

Figure A.8: Fill-r geometry
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In figure . . the detail of a 1800 Lebus liner is presented, whilst figure A.S
presents a section of the liner at the drum flange. A filler is positioned 'on
the drum flange to achieve a layer change. In this figure, the layer change
occurs over an arc length {3. If it is assumed that the winder is an ideal energy
source, then the angular velocity of the drum w remains constant. During the
layer change the rope changes its radial position by one rope diameter. If it is
assumed that the radial profile is: '

For a constant angular velocity w of the drum, ()= wt:

( . 2( 7rwt)r t) = dsin 2{3

The radial acceleration of the rope is given as:

"() 1d(7rW)2 (7rwt)rt =- - cos-
2 {3 f3

The axial acceleration is determined from th .._ change of the arc length s of the
profile.

Substituting for the profile r'( (}) and simplifying:

Converting to the time domain and carrying out the differentiation with respect
to time:
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In view of the previous section, the additional loading in the longitudinal modal
co-ordinates, for the normal mode model, is given by:

"

ln the quasi-static model, the longitudinal excitatic.i due to the layer change
is applied through a displacement at the drum. Across the arc of the layer
change, this displacement is given by:

This displacement is held constant until the next layer change, where an ad-
ditional displacement function is applied in a step-wise manner until the end
of the wind.

A co-ordinate transformation is applied to account for the inertial loading in
the in-plane lateral direction, Since the catenary is restrained in the lateral
direction at the sheave end, the displacement varies from that at the drum,
linearly to zero at the sheave. Thus the co-ordinate transformation applied is:

where fj represents the dynamic motion of the cable with respect to the rigid
body motion r(t). Thus the distributed inertial loading is:

Fv(s, t) = -(1 - ;:)r(t)

This equivalent modal load applied to the ith mode can be evaluated in the
usual manner as:
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where mii, <Pi represent the modal mass and mode shape of the ith lateral mode
respecti vely.

These loads are calculated at the appropriate time during the wind. It is
interesting to note that since the layer change (". '1 Z. ove: a short time interval!
the radial acceleration is significant and is of thl: ordr t of 30g, whilst that of
the axial acceleration is of the order of 2g.' Figure A.!~ presents a plot of the
physical rope displacement in the region of the layer change, and the associated
axial and normal acceleration of the rope) as a function of drum rotation. It is
pertinent to note that radial acceleration is inversely proportional to the square
of the arc length, whilst the axial acceleration is inversely proportional to the
cube of the arc length (f3)j thus the layer change transient can be significantly
reduced by increasing the riser and cross-over arc".

4A long filler is undesirable since it leads to additional wear of the rope Iltl'ands. Ex-
perience regarding the cross-over arc length is that the stability of the coi'mg pattern is
adversely affected with an increase in the cross-over arc. Currently the maxir. LIm cross-over
arc is of the order of 30°.
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A.4 Excitation Definition for the Quasi",Static
Model

In developing the quasi-static model with the Simulink software, it was possible
to define the geometry of the coil cross over region by means of a look-up table.
This is advantageous since the impulsive nature of the excitation is retained for
little additional computational effort. Mankowski(1982] defined the coil cross
over excitation by means of versine functions in terms of the period of the
Lebus frequency T the duration of the Lebus cross-over Ta, and the delay time
between two successive layer cross overs re- The forcing function displacements
are illustrated in figure (A.IO). These functions are defined by:

T = 7rRd/Ve
7"{3= 7"{3/7r

Td = 7" - T(3

W = 7':/7"(3

u(O, t) = ~U[l - cos(wt)]
v(O. t) = ~V[l - CJs(2wt)}
w{O, t) ::::!W[l - cos(wt)]

u(O, t) = U[t - 7"/3]/7"d
v{O,t)=O
11)(0, t) = d/2

e < t :5 7"r;
o < ·t $ 7"r;
o < t :5 7"/3

7"/3 < t :5 7"

7"/3 < t :5 7"

7"/3 < t :5 t

where u(O, t), v(O, t), w(O, t) refers to the periodic forced displacement at the
drum in the longitudinal, in-plane lateral, and out-of-plane lateral directions
respectively; d refers to the rope diameter t {3 refers to the arc of the layer cross
over region, Ve the surface speed of the drum, and Rd refers to the winder
drum radius.

u ~ (0.125 +O.018(n - 1)2)cP / R...{3
V = (n - 1)(1 - y'3/2)d = 0.134(n - l)d
W=d/2

where U, V, Ware determined by considering the geometry of the layer cross-
over region, and n represents the layer number. The lateral excitation is ap-
plied to the catenary by a co-ordinate transformation, which results :n an
equivalent inertial load being applied in the transformed reference frame. The
versine function is easily differentiated in the cross-over region allowing the
forcing function to be defined as a function of shaft depth for the in and out-
of-plane lateral modes, and defined in a look-up table.
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AI pendix B

Parametric Response due to
Longitudinal Excitation Only

This appendix documents work carried out in the early stages of the study,
where the lateral stability of the catenary waf>examined in the absence of cable
curvature and axial transport velocity, due to stationary longitudinal excitation
at the winder drum. The equations of motion developed in chapter 3, including
relative proportional viscous damping and excluding cable curvature and axial
transport velocity are:

(1+ (6(8 - It) + T}o(s - l2))Utt :::::c2uss + J.LUt,ss
+c2(vsvss + wswss)[H(s) - H(s -it)] (B.1)

Where s refers to the axial co-ordinate measured along the rope from the
drum to the suspended mass. 11,12 refer to the length of the catenary and
total length of the rope respectively. e2, and (;2 represent the longitudinal and
lateral wave speeds. (= p:'R2' T} = ~, and I, R, M, E, A refer to the sheave
inertia, sheave radius, conveyance mass) modulus of elasticity, and effective
steel area of the rope respectively. 1-', J.1.1 represent the longitudinal and lateral
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damping mechanism respectively. Lateral damping is low, of the order of 0.02%
of critical, and will consequently be discarded at this stage of the analysis.
Longitudinal damping is more appreciable, and is of the order of 1.5% for the
first mode, and is therefore retained. Damping is discussed in more detail in
chapter 51.

In the absence of lateral excitation, the lateral motion may be assumed to he
trivial, and hence the response of the rope is purely longitudinal. The purpose
of the analysis was to examine where such a solution would be stable. In the
absence of lateral motion, the longitudinal equation of motion reduces to:

(B.4)

This is a linear equation, and the steady state longitudinal response due to
harmonic excitation at the winder drum, urn, t) = Re(E~=l Uneinnt), can be
formulated in closed forrrr'. The axial system response in the catenary section
of the rope to such an excitation is presented in appendix Cas:

i
U(Sl, t) ::::RnfI:[AlI.cos.XnS + BnsinAnS]einnt]

n=l

where An ::::n~, and An, Bn are defined in Appendix C.

On substituting the solution Lr the longitudinal response into equations (B.2),(B.3),
the Iinearised form of the lateral variational equations of motion contain iden-
tical ter.ns, and thus only one of the two need be considered. Instability of
the trivial solution predicts departure from longitudinal motion to non-planar
motion. The severity of this motion will depend on the nonlinear nature of
the system, and whether internal resonance occurs, which would further pro-
mote the coupling between the lateral and longitudina. motion. The linearised
variational equation governing the lateral stability of the catenary is:

(B.5)

lThis model accounts for relative proportional viscous damping, and consequently the
modal damping factor increases in proportion to the natural frequency, and the higher
modes become successively more damped. On site drop test measurements are presented
in appendix G, and indicate that a general proportional damping mechanism may i.e more
appropriate.

2n represents the coil cross-over frequency,
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r.J.'hisequation is converted to an ordinary differential equation with periodic
coefficients by applying an eigenfunction expansion for v(s, t) as:

11.
v( 5, t) ::::E(Pi( S )qi( t)

i=l
(B.6)

where the eigenfunction ePi(S) which satisfies the boundary conditions is:

Substitution of equation (B.6) into equation (B.5), and orthogonalising with
respect to 9i{S) results in a set of coupled ordinary differential equations with
periodic coefficients!

The parametric coupling matrix [Dij]nCosnUt is identical to that derived in Ap-
pendix F for [Www(nnt)1\ where the axial harmonics of the excitation U11.eil1Jlt
are in phase or 1800 out of phase.
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Bol StabiAity Analysis

The variational equations of motion governing the lateral stability of the sys-
tem are linear equations with time varying coefficients. At this stage of the
study, the lateral stability of the system due to longitudinal excitatlcn was
considered as a potential indicator for large'amplitude catenary motion. Dim-
itriou and Whillier[1973] , Mankowski(19S2J and Backeberg[1984J were aware of
the potential influence of parametric excitation and response, however no for-
mal mathematical development was performed to examine this phenomenon.
Intuitive criteria centred around the observation that regions of main para-
metric resonance- may exist where a lateral mode tunes to half the frequency
of the Lebus coil cross-over frequency. This is often termed subharmonic res-
onance, as identified by Dimitriou and Whillier[1973J, where lateral response
occurs at a subharmonic of the axial excitation frequency. Dirnitriou and
Whillier[19'/3] discussed subharmonic resonance with regard to the experiment
of Melde (1859); and the analysis of Lubkin and Stoker[1943J. In this discus-
sion, It WaSproposed that subharmonic resonance would be· amplified if a
longitudinal mode was simultaneously resonant. Dimitriou and Whillier[1973]
did not identify this conditi-n with internal resonance, where the longitudinal
mode tunes to twice the lateral mode, and consequently the nonlinear cou-
pling which subsequently arises, where autopaz ametric resonance conditions
develop. It was recognised that regions of combination resonance ill rnechani-
cal systems had been reported in the literature, but as no formal analysis was
performed proving their existence in the context of the mine hoist system, they
were not considered.

The complexity of the mine rope problem is compounded by the fact that. in
reality the rope is moving with an axial transport velocity, and consequently
the natural frequencies of the system are continuously changing. This effect
is of considerable importance in the mine hoist system, since the travelling
system may pass through a region of instability sufficiently rapidly to contain
the growth of the lateral amplitude to an acceptable value. Thus in reality
the importance of the re;s_lOnof instability is likely to be a function of both
the transport velocity and the amplitude of the parametric excitation. This
conforms to the case of a parametrically excited system with non stationary
parameters, as discussed by by Nayfeh and Asfar[1988], Neal and Nayfeh[1990],
and cocsidered extensively by Mitropolsldi[1965].

3Main parametric resonance occurs when np = 2w;.
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Parametric Resonance ofMDOF Systems

Hsu[1963] considered the primary regions of instability of a a multi-degree
of freedom system subjected to periodic parametric excitation, where the pe-
riodic excitation was represented as a Fourier expansion containing an infi-
nite series of harmonic functions. In his method, a perturbation approach
was applied to analyse the size of the regions of parametric instability, when
the parametric. coupling terms are small. Nayfeh(1973a, 1992] reconsidered
this and other problems related to parametrically excited linear and non-
linear systei ;181 by applying the method of multiple scales , More recently
Szemplinska,-Stupnika(1978] and Takahashi[1981aJ have extended the method
of the generalised harmonic balance as proposed by Bolotin[19641, to include
combination r -sonance regions. Unlike perturbation techniques, the harmonic
balance methods are not limited to the concept of a, small parameter. The
use of ultaspherical polynomial approximation techniques, employing Flo-
quet stability theory have also been proposed (Sinha et a1.[1979), Srinivasen
and Sankar[1974). The latter methods are computationally intensive for any
sizeable system, Hsu's(19631 method Was initially applied to study the sysxem.
In retrosp-rt, Sfayfeh's[1973bJ method of multiple scales is more convenient,
as it results in a uniformly valid expansion, and does not require the averaging
techniques applied by Hsu[1963}.

Hsu's(1963] results may be applied directly tv a system of equations of the
form:

where [DJs represents the parametric coupling matrix of the 8th harmonic,
which may be a non-symmetric full matrix, and [W[] is a diagonal matrix with
its terms equal to the square of the linear natural frequencies of the system,
which are assumed to be distinct, and s refers to the sth harmonic of the
excitation frequency w.
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B.2.1 Hsu's Perturbation Solution

In analysing the system, Hsu[1963] represented the equations of motion in first
order form as:

(B.S)

where the solution Xi(t) contains a component representing the free response
of the linear solution, and a power series expansion in the perturbation term
<::

n

Xi(t) = A(t)coswit + Bi(t)sinwit +L EqX~q)
q=l

(B.9)

(B.l0)

The first two terms on the right hand side of these equations are termed the
variational part of the solution, whilst the remaining term is the perturbation
part of the solution. In essence the variational component of the solution
represents the response of the system to an initial disturbance or a variation
of the trivial solution. If this component of the solution is stable, then the
disturbance remains bounded, and the response to the disturbance is essentially
dictated by the free response of the system. However in a region of instability,
the variational component of the solution grows without bound, indicating
that the system is unstable if subjected to an arbitrarily small disturbance.

In equation (B.10) above, Ai, Bi are assumed to vary slowly with time, and
consequently are assumed time independent, when differentiating with respect
to time. However, since A, B, may be functions of time, the condition of slowly
varying parameters is satisfied only when:

dA.i dBi .-cosw·t + -smw·t = 0dt ' dt I
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Substitution of the assumed solution (B.9), into the equation motion (B.8)
results in:

Wi(-A;sin""'it - WiAiCOSWit + B;t;OSWit - uiBisinwit) +
.' d2xQ

w[(Ajcoswjt + Bisinwit) + W[L €Qxl +L €q dt2i

= -€ {t t dijcosswtx j}
s=l}=l ,

(B.ll)

Considering only the first order powers" of e and equating terms, the follow-
ing system of equations are obtained; the solution of which determines the
coefficients Ai, Be

(B.12)

dAi . dBi-w·--smw·t +w·-cosw·t +
t dt t t dt I

d2 1
€(__!i + w7x~) -dt2 t t -

€ S n
2L L')dfjAj(cos(Wj + sw)t
s=lj=l

+ cos(Wj - sw)t) + ctjBj(sin(wj + Sw)t
+ sin(wj _. sw)t)} (B.13)

Hsu[1960] then proceeded by considering the variational and perturbation part
of the solution separately. Those terms which result in small divisors are
retained in the variational pa ..t of the solution, whilst the remaining terms are
carried to the perturbation component of the solution. If one assumes that
the system is tuned such that Wi are distinct and Wj ± sw are not close to ±Wi,

then all the terms on the right hand side of equation (B.13) are retained in the
perturbation part of the solution, which is bounded. The equations describing
the variational part of the solution are:

4Expa.ntlions developed to higher order would define the second and subsequent regions
of instability. These are known to be smaller and more difficult to enter than the primary
region, and consequently only the primary parametric region is considered by Htlu[19ti3].
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dAi dBi .-.-cosw·t + -smw·t ;:::0dt I dt t

dAi. -l dBi--·-smw·~ + _·-cosw··t;:::0dt t dt I
(B.14)

Solving for A, B; leads to constant coefficients, and thus the solution is bounded
and st~ble.

However in cases where Wj ± sw is ck.se to ±Wi, the stability of the system must
be examined as small divisor terms occur in the perturbation part of the solu-
tiO'II x(q), and are consequently carried to the variational part of the solution.
The variational equations can be transformed into a set of autonomous equa-
tions by applying. the Kryoloff-Bogoliuboff-Van der Pohl averaging technique,
where it is assumed that Ai, B; are slowly varying functions of time relative to
the averaging period, and are therefore treated as constants. The stability of
these autonomous equations, and consequently the stability of the variational
solution, can then be determined by examining the characteristic roots of the
autonomous equations.

Proceeding in this manner, Hsu[1963] determined that for an undamped sys-
tem, the motion would be unstable and grow without bound if the following
conditions were satisfied.

Main parametric resonance
Combination parametric resonance

Further analysis provides the regions of instability as a function of the pertur-
bation coefficient e. These regions are given by:

Main parametric resonance

Combination sum type parametric Tf;tlO"tance:

1 1

(d(S)d(S)) 2' (d(S) AS») ~W"+W' f "" W·+W· € "J,", 1 _ _ 11 JI < w < I 1 + _ _1L~
oS 28 WiWj 5 2s WiWj
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Combination difference type parametric resonance

1 1

W· -w· e (-d(~)i.~»):r W' - W' e (-d~~.)d($»).2"
t J _ __ lJ Jl < w < I J + -. . lJ •Jf •

S 213 WiWj oS 28 WiWj

.,
These regions are termed main and combination SUmand difference type res-
onances respectively. These results confirm that in a coupled system, the
diagonal terms of the parametric coupling matrix: d~;) govern the size of the
ma.in parsmetric resonance region, whilst the off diagonal terms d~J) govern
the size of the combination parametric resonance region. Difference type reso-
nances can only occur if dlJ) dW < 0 and conversely sum type can only occur if
d~J)dJ~l> O. Thus only sum type combination resonances will occur if the cou-
piing matrix is symmetric, whilst both may occur if the matrix is asymmetric.
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Anomalous Cases

The results from Hsu's[1963] analysis confirm that if the parametric coupling
matrix is diagonal, which results in a set. of uncoupled Mathieu equations, then
only main parametric resonances will occur. In the general case of a nonsym-
metric coupling matrix, main as well as sum and difference type parametric
resonances occur. In the mine hoist system, the parametric coupling matrix
is always symmetric, and consequently parametric resonances of the difference
type do not arise. Hsu[1963] notes that in the case where repeated natural fre-
quencies of the system occur, or when different combinations of i, i,s overlay
each other, then an anomalous situation arises, where more than one resonance
is excited simultaneously, and a more detailed analysis is required. The former
case of repeated natural frequencies has been analysed by Nayfeh[1983o] and
Tezak et al[1982]. The later case of multi-frequency excitation of a two degree
of freedom system is considered by Nayfeh[1983a].

The stability analysis presented considers the stability of the motion in the
nd'jhbourhood of the first order expansion. Consequently principal" regions
of main and combination parametric resonance are considered. This follows
Hsu's[1963] argument that although higher order regions may co-exist within
the principal parametric regions, and therefore secular terms arise in the higher
order expansion, for small parametric excitation the bonne' "'r'y of stability
would be dictated by the principal region, and hence the stability of the first
order expansion. In the case of the mine hoist system, anomalous conditions
.lmost always arise since the natural frequencies of the catenary are related
by integer multiples, or are commensurable. Thus if one harmonic of the ex-
citation tunes to a region of parametric resonance, then other harmonics will
simultaneously excite other resonances. These may be main or combination
parametric resonances of the summed type. Thus it is possible to develop a
number of anomalous cases, depending on the number of harmonics accounted
for in the longitudinal excitation, and the number of lateral modes accounted
for in the eigenfunction expansion". Three conditions are examined for the
mine hoist system, as presented in table B.1.

It is shown that the first two cases are in fact not anomalous, and Hsu's[1963]
formulae call be applied directly. However in the last case, a stability criterion
is derived which requires explicit solution to determine the span of the region

5F'or a multi-degree-of-freedom parametrically excited system, with a single excitation
frequency 0, regions of instability arise at. 0 = Wi ± (J)j/n; the principal region refers to
n = 1, and is obtained by considering the first order expansion. Secondary regions occur at
n = 2,3· .. as defined by the second order and higher expansions.

6Although the model is truncated to account for a finite number of lateral modes, the
forced longitudinal response represents the complete solution, without modal truncation,
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Table B.1: Anomalous regions of parametric resonance
Case DOF Harmonics Resouacce Condition
Case 1 2 DOF .5 = 1,2 W ~ 2v..'1,2w ~ 2W2
Case 2 3 DOF $ = 1 W ~ 2W2 ~ WI + W3

Case 3 2 nOF s:;::; 1,2,3 W ~ !4112w ~ 2Wb3w ~ Wl + W2

of instability. Nayfeh[1983a] presented results of an analysis of a two degree
of freedom system to multi-frequency excite tion, The third case considered
here is identical to the fifth case presented by Nayfeh[1983aJ, where simulta-
neous main resonance and a summed combination resonance arises due to two
different harmonics.



189

B.3.1 Case 1: 2 DOF - s = 1,2

This case represents a two degree of freedom system excited by a periodic
function with two harmonic components at a frequency wand 2w. It is assumed
that w is close to 2W1, and W2 since the natural frequencies of t he system are
. -lated by integer numbers. Employing a detuning parameter AE, the excitation
frequency w may be written as:

or as:

~I) - W1 = CJ.h + ...\€
2w - W2 = W2 + 2AE (B.15)

Transferring small divisor terms in the perturbation part of the solution to the
variational part, and expanding the var:",tional part of equation(B.13) for the
two degrees of freedom:

:I {
dAl. dBl e ....,

---smwlt+-· -COSWlt = -- I:.
dt dt 2Wl 3=1

A1dl'(COS(Wl + Sw)t + COS(WI - Sw)t)+
Bldl'l)(sin(wl + sw)t + sin(wl - sw)t)+
A2dl~(cos(w2 + sw)t + COS(W2- sw)t}+
B2di~(sin(w2 + sw)t -+- sin(w2 - sw)t)

1(B.16)

J

Ald~~)(cOS(Wl + sw)t + COS(WI - sw)t)+
Bld~;)(sin(Wl + sw)t + sin(Wl ,sw)t)+
A2d~~«('i)s(w:, + sw)t + COS(W2- sw)t)+
B2d~1(sin(W2 + sw)t + Si~(W2 - sw)t)

)

J (B.17)

Substituting equations (B.15) into the above equations and retaining terms
which would cause secular behaviour of the perturbation solution: ie any terms
which result in frequencies close to W1 or W2 in equations (B.16),(B.17) respec-
tively, results in:

(1)
dAl . dBl fdll {A ( ") . ( \) }---SJnWlt + -d COSWlt = --2- lCOS Wl ..,. 101\t -. Blsm Wi + fl\ t
dt t WI
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These equations may be solved to determine" !!& .!!& dB..!..!l:.!b. Applyingdt ' dt ' dt , dt •
the Kryoloff-Bogoliuboff-Van der Pohl averaging technique", and applying the
transformation:

Xl - Al + iBl
X2 -- Al - iBI
Yi - A2 + iB2
12 - A2 - iB"

Results in four first order equations:

dX1 iedll X -i!>.t= --- 2edt 4WI

dX2 iedn X if At-- = -- Ie
dt 4WI

dYi ied22 y -ik~t= --- ?e
dt 4W2 ~

dY2 i€d22 y; i2£At (B.IS)= -- Iedt 4w2

These equations can be converted into autonomous form", and consequently
the stability of the equations can be examined by considering the roots of the
characteristic equation.

7Where it is implied henceforth that dll and d22 are the parametric camponents of the
first harmonic and second harmonic respectively.

BThis is accomplished by substituting <f?i = Wit, and averaging the equations as
2lrr f;rr Il1td~i where Ai, Bi are treated as constants.

9The autonomous form is obtained by applying the transformations Xl = Xl e,·j 1ft, X2 =
X 2ei1ft, YI = Y Ie-if At,Y2 = Y 2ei£>.t
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Assuming a solution of the form:

Xl X pt-i~t- Ie ~

X2
X pt+iil:.t- 2e 2

Yi - Y1 eqt-if>.t

Y2 - y 2eqt+i~>'t (B.19)

Substituting equations (B.19) into the equations (B.18») results in:

(B.20)

The characteristic equation is obtained by setting the determinant of equation
(B.20) to zero:

2 \ 2 2 J2 2d2
( 2 € 1\ € all) (2 2 \ 2 e 22 ) 0p +----- q +€I\ -_. ::::

4 16w~ 16w~

Thus:

( 42 \2)1q = ±€ :-- - 1\ 2

16w~

In order for the system to be neutrally stable, the roots p, q of the above
equations must be imaginary.

Thus the stability region is given by:
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Su.bstituting EX from eqt1ation (B.I5) into the above equations and simplifying;
results in the stability intervals:

It is evident that these are the same as Hsu\s~1963J regions, for s = 1,2, and
thus this case is not an anomalous case, although this would not be evident
beforehand. .
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B.3.2 Case 2: 3 DOF - s ::::1

This case represents a three degree of freedom system excited sinusoidally at
a frequency W close to 2W2. In thrs case a main and combination parametric
re~')nance is excited simultaneously ie. w:::::: 2W2 ::::::Wl + W3. Employing a
detuning parameter .Ac,the excitation frequency w may be written as:

w = WI +wa + AE

01 as:

1.,1) - W2 = W2 +AE
W -Wl - W3 +Af
w-l.I,;a - WI + At

Proceeding in the same manner as the preceding section, and retainin g secular
terms of the perturbation solution in the variational part of the solution results
in three equations.

dA3 . dBa Ed31{ .) }--d smwat + -d COSW3t = --2 - A1COS(W3 + fA)t - B1sm(w3 + d. t
t t W3

and:

i=l,2,3
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The above six: equations may be solved to determine ~,~. Applying the
Kryoloff-Bogoliuboff- Van der Pohl averaging technique, and applying the trans-
formation:

Xl - Al «t»;
X2 = A1 - ie,
Yi = A2 +iB2

y; = A2 -ts,
Zt - As +iB3

Z2 - A3 -iBs

Result: in six first order equations:

dX1 if-di3 Z -it>.t= --- 2edt <!w1
ax, if-d13Z i<!>.t

dt - +-- 1e
4Wl

dYi i€d22 y.: -ie).t

dt
_. --- 2e

4W2

dY2 if.d221'1 tf>'t

dt - +-- Ie
4W2

ez, ifd31 X -if>.t

dt - ---, 2e
4w3

dZ2 iEd3l X if>'t (B.2l)- - +--- Iedt 4W3

Equations (B.21) can be conveniently transformed into two second order au-
tonomous equations:

., . • f.2d13d31
Xl + ~Af.Xl - 16. Xl = 0

WIW3

.. • • €2d22d22
Yi +~/\dl- 16wi Yi = 0

(B.22)

(B.23)

The solutions to equations (B.22),(B.23) are:
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These solutions are neutrally stable if a, b are imaginary. Thus the stability
region is defined by:

2d2
:2'12 € 22(;1">-42

W2

Substituting €A from equation (B.21) into the above equations and simplifying,
results in the stability intervals:

It is evident that once again these regions are the same as Hsu's[1963] regions,
and thus this case is not anomalous. The largest region would dictate the
stability of the system, and thus the relative magnitudes of the coefficients are
important.
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B.3.3 Case 3! 2 DOF - s ::::1,2,3

This case represents a two DOF system excited by a periodic runction with
three harmonic components at frequencies w, 2w, 3w. In this case a
main and combination parametric resonance is excited simultaneously by the
second and third harmonic respectively, ie 2w ~ 2WI ,~1w~ WI + ;..)2. Employing
a detuning parameter A€, the excitation frequency w may be written as:

or as;

2w - WI = WI + 2A€
3w - WI = W2 + 3A€
3w -. W2 = WI + 3A€

Proceeding in the same manner as the preceding section, and retaining secular
terms of the perturbation solution in the variational part of the solution results
in the equations.

These equations may be solved to determine i&. 4& !ilh. 4!b.. Applying thedt ' d.t ' dt ' dt •
Kryoloff-Bogoliuhoff- Van der Pohl averaging technique, and applying the trar, j-
formation:
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x, = Al + iBl
X2 = Al - iBI
Yt = A2 + iB2
112 - A2 - iB'J

Results in four first order equations:

dX1
dt
sx,
dt
dYt
dt
dl'2
dt

.
= __::_{d~~X2e-i'}.~>'t + dgl}2e-i3(,\t}

4Wl

_ +4u: {dg>Xlei2f)lt+dg>Y'iei3(,\t}
WI .

= _~ {d~~)X2e-i3f,\t}
4W2

- +~ {dW Xlei3~>'t}
4w:.!

(B.24)

By applying successive differentiation and substitution, equations (B.24) are
converted into two second order equations.

(B.25)

where:

ei2)
a - _!!..

4wl
ed(3)

l, 12- 4wl
ed(3)

c - ~
4w'J, -- 2eA

(B.26)
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Assuming a solution of the form:

Yi y l't-i·)'t- le

Y2 - Y2ept+ht

(B.27)

Substitution into the equations (B.25) results in:

[
(p-iJ)2~i32'Y(P.-it)-cb. .' ia(~+it') , 1{~'1}::::{ b } (B.28)

-za(p - 2{') (p + t{')2 - t~(p + ~I)- cb Y 2 •

The characteristic equation is obtained by setting the determinant of equation
(B.28) to zero:

thus the roots of p2 are:

(B.29)

Which can be written as:

For neutral stability, the roots of p mu..t be imaginary. Thus two situations
may arise:

i) .6.:=; 0 and r > 0

ii) r ± -/ii < 0 and real.
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Thus this case is ano nalous and does not reduce to 11su's[1963] form. Equation
(B.29) must be solved for various values of A€ and the boundary of the stability
region constructed, such that the roots for p are always imaginary.

The two limiting cases ie a == 0 and b :.::c = 0 are considered to illustrate that
the stability condition conforms to known results.,

Case 1: b == c == 0

This case is equivalent to removing the third harmonic from the excitation,
thus Hsu's(19631 result should be obtained for main parametric resonance with
s == 2:

In this case:

Thus:

't'22 2 2P == -"I ,._- + a4

Thus for p to be imaginary:

Substituting for A€confirms Hsu's[1963] result for s == 2.
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Case 2: at::::: 0

This case is equivalent to removing the second harmonic from the excitation,
thus Hsu's(1963] result should be obtained for combination parametric reso-
nance with s = 3:

In this case:

and

p2 = ~[(_ 5,2 + 2cb) ± ~JE]
2 4 4

It can be shown that the discriminant becomes complex before the root p
becomes complex, thus the stability is governed by the discriminant:

Once again substituting for A€confirms Hsu's[1963] result for .9 == 3.
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Kloof Mine Observations

Observations performed at Kloof mine were well documented by Dimitriou and
Whillier[1973] in the section Dynamic behaviour of winding ropes at Kloo], and
will be discussed in light of the present analysis. Figure B.l is reproduced from
their paper, and represents the dynamic characteristics of the Kloof mine, in
''3rms of the uncoupled linear transverse catenary natural frequencies (FTCn),

the transverse natural frequencies of the vertical rope (FVTn), and the Ion-
gitudinal natural frequencies of the vertical rope (FV Lr,). Figure B.2 rep-
resents the lateral and longitudinal natural frequencies calculated according
to appendix C. Note that the longitudinal natural frequencies calculated by
Dlmitriou and Whillier[1973]' and presented in figure B.I, treated the vertical
rope as if it were fixed end at the sheave. The longitudinal natural frequen-
cies presented in figure B.2 include the catenary length and the inertia of the
sheave.
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Figure B.l: Dimitriou and Whillier (1973): Kloof Mine shaft dynamic charac-
teristics
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Dimitriou and Whillier[1973] made the following observations regarding Kloof.

(1) Large catenary motion occurs, starting in phase 1, when the skip is ap-
proximately 900m below the head sheave during the rising cycle, however
large motion is not observed when the skip is lowered.

(ii) During phase 1, the amplitude increases and the catenaries settle into a
clearly defined second mode.

(iii) During phase 1, the vertical ropes start vibrating transversely at a similar
wavelength to that of the catenary. This is not observed when the skip
is lowered.

(iv) On occasions, at the beginning of phase 2, the vibrations develop a large
vertical component in excess of 2m. One of the authors believes a first
mode pattern was observed in the vertical component of the motion.
This motion was termed whip,

(v) By reducing the speed of winding abruptly at the beginning of phase 1
from 15m/s to 14m/s, the amplitude of the vibrations was significantly
reduced.
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These observations contain much detail. confirming the potentially complex
behaviour of the mine rope system. Considering figure Bvl , the authors at-
tributed the resonance and whip behaviour of the catenary to a combination
of parametric response due to the; longitudinal excitation at the drum, and
autoparametric excitation due to p irametric response of the lateral modes
of the vertical rope, and consequently amplified parametric excitation of the
catenary. Dimitriou and Whillier[1973j c()m~ent:

"At Kloo], at the beginning of phase 1, the catenaries are approaching the
resonant condition FTC2 = 2N, due to the z-ezcdaiion (out-of-plane lateral
excitation) and their amplitude is growing ... J'. "Therefore, the tension in the
catenaries fluctuate with increasinq magnitude, e, at a frequency p close to
4N .. thus approaching the condition for subharmonic excitation of the vertical
ropes. "

"Another factor, which promotes subha1'monic resonance in both the catenaries
and vertical ropes, is the harmonic component at p = 4N of the ui-ezciiaiiot:
(longitudinal ezciiation], The magnitude) e, of this component is only of the
order 10-4• However at the beginning of phase 1, € it] amplified by resonance
of the longitudinal mode of the ropes at FLV3 = 4N .. ".... "The growth of the
transverse vibrations of the ueriical ropes p'rovides increased parametric exci-
tation of the catenaries ... " "Eventually, the two ropes (catenary and vertical)
mutually excite one another .... ".

Although this argument was constructed in an ad hoc manner, it succinctly de-
scribes the potential interactions which may arise. Dimitriou and Whillier[1973]
note that for an appreciable rope length, at least one or more of the higher
lateral frequencies of the vertical rope will tune closely to one or more of the
natural frequencies of the catenary. In this sense, the system may maintain a
state of autoparametric resonance for an appreciable period of the wind.

At the time of executing this phase of the study, it was realised that the as-
pect of autoparametric excitation via the forced lateral motion of the catenary
would be important. However, it was decided that an appreciation of the linear
stability of the system in the presence of longitudinal excitation only would
represent a beneficial first step.

In the context of the Kloof system, the first and second harmonic of the
longitudinal excitation frequency induces main parametric resonance of the
first and second catenary modes simultaneously. As noted by Dimitriou and
Whillier[1973]' the effective amplitude of the parametric excitation depends on
the proximity of the harmonic excitations to a condition of longitudinal reso-
nance. It was determined in section B.3.1 that this condition of tuning is not
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anomalous, and the size of the region of parametric resonance can be deter-
mined directly from Hsu's[1963J results, The resulting regions of instability!"
for main resonance of the first and second catenary modes are illustrated in
figure B.3(a),(b) respectively. This figure represents a composite of three lev-
els of longitudinal damping ranging from undamped to a maximum of 1.5% of
critical in the first longitudinal mode. The lower part of the figure represents
the absolute value of the difference between'the longitudinal response at the
sheave and winder drum, and is consequently related to the tension fluctu-
ations occurring in the catenary. The parameter epsilon in the upper figure
represents a scaling factor applied to the longitudinal excitation at the winder
drum, Thus the actual excitation level for the Kloof winder is achieved when
epsilon is unity.

It is clear from this figure that the regions of parametric instability are strongly
influenced. by the degree of longitudinal damping. The peak response in figure
B.3(c),(d) relates to resonance of the second, and fourth longitudinal modes
respectively+'. Since relative viscous proportional dampmg has been applied
in the model, the modal damping factor applicable to the itk longitudinal mode
is related to that in the first mode by the ratio WdWl' Consequently if the first
mode is set to have a modal damping factor of 1.5%, the damping factors for
the second third and forth modes would be of the order of 4%, 9% 14% respec-
tively. The assumption of relative proportional damping by industry has led to
the conclusion that the longitudinal behaviour of the system can be modelled
by considering the fundamental mode only, as response in the higher modes
is strongly attenuated. This is clearly evident in figure B.3(c),(d), where the
resonant peak is quickly eroded with the inclusion of longitudinal damping.
As a result the region of parametric resonance becomes dependent on the base
level of excitation applied at the drum, rather than on the longitudinal tuning
of the system. Figure B.4 presents a stability plot of the system, where the
harmonic balance method proposed by Takahashijlfldl a] has been applied to
determine the regions of system stability. Identical parameters applied in fig-
ure B.3 have been used, and the stability plot represents a composite of three
levels of damping. The predicted regions of instability via the perturbation
result, and the harmonic balance method are identical. The harmonic balance
method is however more general, since it does not require special considera-

-
laThe longitudinal excitation amplitudes were calculated for the first and second har-

monic of the Lebus excitation frequency in accordance with Appendix A.These are :
Ul = O.2m '1, U2 = O.lmm

11Dimitriou and Whillier neglected the sheave inertia in their calculation of the longi-
tudinal natural frequencies; consequently in their calculation the natural frequency of the
third longitudinal mode was higher and resonant at approximately 900m. Once the sheave
inertia is accounted for, resonance of the third longitudinal mode is delayed and occurs at
approximately 500m below the sheave, whilst the fourth longitudinal mode is resonant at
approximately 900m.
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tion when dealing with anomalous cases, and depending on the order of the
Fourier expansion assumed, can identify the higher order or secondary regions
of instability for both main and combination resonance. It is also not limited
by the notion of a SIT. all parameter.

Although regions of parametric instability do occur, they do not occur over
extended lengths of the shaft when epsilon is·unity. The effect of these regions
will be reduced due to the winding speed 01 the system, and consequently
these regions are not viewed as sufficient to warrant the definition of a design
criterion. Nevertheless, this exercise was useful in developing an understand-
ing or the system stability and partly confirmingthe intuitive interpretation of
Dimitriou and Whillier[197.3]in a formal manner. It is likely that ~ignificant
longitudinal response would occur due to the coupled lateral motion of the
rope. This is a form of autoparametric ercitation, where lateral response due
to the lateral excitation at the winder drum, promotes longitudinal paramet-
ric excitation. This concept provided the basic incentive for developing the
stability analysis of the coupled system, where both longitudinal and lateral
excitation of the catenary is accounted for, as presented in chapter 4.

Finally, it is noted that this analysis provides evidence ofmain as well as com-
bination parametric resonances, due to longitudinal excitation. Combination
parametric resonance regions do not arise in a string with pinned end condi-
tions, since the lateral eigenfunctions are orthogonal to the longitudinal eigen-
functions. With regard to the influence of rope curvature, Takahashi[1991]
considered the regions of parametric resonance of a pinned cable with curva-
ture, under axial excitation at one boundary. Takahashi[1991] reported the ex-
istence of regions of additive combination resonance, however, Perkins[1992bJ
corrected these findings, and demonstrated that only main parametric reso-
nance regions existed, where in addition to being parametrically excited, the
system Wasdirectly excited due to in-plane curvature coupling. It is surmised
~;hatin the present system, since the Iateral eigenfunctions are not orthogonal
to the longitudinal eigenfunctions, additive combination parametric resonance
regions will arise in the presence of external excitation due to the catenary
curvature. In pra-ctice the catenary curvature is small, and further analysis
accounting for catenary curvature was not undertaken.
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Appendix CC

]Linear Longitudinal System
Response

The purpose of this appendix is to present the eigenfunctions associated wit '.1
the longitudinal linear system, in the absence of lateral r,ttenary motion, for
use in a normal mode analysis of the non-linear equations of motion. The
solution cf longitudinal steady state motion of the system, in "he presence of
relative and general proportional viscous damping, due to an harmonic axial
excitation at the winder drum is subsequently presented.

Figure C.l illustrates the system under consideration, which consists of a rope
of material density p, cross sectional area A, and modulus of elasticity E. The
system i.1 split into two sub-systems denoted by displacement co-ordinates
Ul(Sl, t) and U2(S2, t). The sub-systems are coupled by a sheave of mess mo-
ment of inertia I. The conveyance is represented by a mass M, which is
suspended at the free end of the second system. The co-ordinates 5}, 52 rep-
resent the position along the rope from the catenary end and the sheave end
respectively.

The equations of motion and boundary conditions of the two systems are
presented as:

System 1

82 83 82Ul Ul 2 Ul

8t2 = J1. 8si8t + c oai (C.l)
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M

Figure 0,1: The longitudinal system

where c represents the longitudinal wave speed c = jETP, and f.t represents
the damping coefficient related to the intrinsic dissipation property of the wire
rope. This particular form of damping mechanism represents a relative propor-
tional damping model, where t he damping action is orthogonal to the normal
modes of the undamped system, and proportional to the stiffness properties.

The boundary conditions for the rope are given as:

Ul(O, t) - L: Re(Unejwt)
ul(h, t) = U2(O, t)

(C.2)
(C.3)

Where Un is complex and contains the amplitude and phase of the nth harmonic
of the excitation applied at the drum due to the Lebus cross over excitation.

System 2

(C.4)

The boundary conditions for the rope are given as:
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(C.5)

(C.6)

System Coupling

The coupling of tho catenary system to the vertical section is achieved by
ensuring continuity of the longitudinal displacement, as well as a momentum
balance across the sheave w heel. These conditions are satisfied by:

(C.7)
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C.l Undamped Natural Frequencies

Setting the damping factor fJ. :::::: 0, and the harmonics of the boundary exci-
tation Un = 0, the undamped natural frequencies of the system can be deter-
mined by assuming.

'Ul(~l' t) - [Alcos1'SI + BISin1'Sl}ejwt
U2(S2, t) - [A2cos1'S2 + B2Sin1'S2]eiwt

(C.8)

where l' ::::; :

From equation (C.2):

Ul(O, t) == 0

Substituting the expressions (C.S) into equation (C.6) gives:

(C.9)

1 A2 - l\!fw~
W iere -- --::iF'

Use of relations (0.8) and equation (C.9) gives:

(C.10)
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From equation (0.3):

which requires that:

(0.11)

Equation (0.7) requires:

Substituting relations (C.8) into this equ.ation results in:

(0.12)

h r"2 w2rwere = AER2

Equations (0.10),(0.11),(0.12) can be written in matrix form as:

In order for the coefficients Bl, A2, B2 to be non-trivial, the determinant must
be equal to zero. This defines the frequency equation as:

The roots of the frequen.cy equation determine Ii, and hence the ith natural fre-
quency of the system is Wi = C,io The ith eigenfunction coefficients Bli' A21, B2i
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are determined by scaling the coefficients. such that Bli .......1, and solving for
A2il B2i from equations (C.11), (C.12).
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Forced Longitudinal Damped Response

The damped steady state lonnitudinal respons(~due to the boundary excitation
at the winder drum is determined in the absence of lateral catenary motion.

Since relative proportional viscous damping is included in the equations of mo-
tion, the eigenfunctions presented in relations (C.8) are complex. The complex
eigenfunctions can be determiner. by considering the proportionally damped
wave equation:

This equation is variable separable ie:

u(s, t) ::: ~(s)q(t)

and consequently:

Assuming the response is harmonic:

q(t) = eiwt

and solving for "y.
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Thus 4>(s) may be presented in the form:

Thus conveniently 4>( s) is of the same form as that determined for the un-
camped response in relations (C.8), however it is now a complex function.

Applying the boundary conditions stated in equations (0.2),(0.3),(0.6),(C.7),
and assuming that the excitation is represented by a single harmonic at fre-
quency W, then the forced response of the rope is given by:

where:

The following matrix equation for the coefficients AI, Bl, A2, B2 may be «e-
fined.:

[A] {x} = {b}

where.

[A] =
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{b) = { 0
where:

A2 _ Mw2
- AE

a = tan-1!:!.¥-c
()= pAp,

Due to the influence of damping, the .longitudinal motion of the system will
be phase shifted from the excitation, as expected. This can be demonstrated
by <'rmsidering the catenary motion u,(81, t).

If the applied excitation is of the form Ul(O, t) = Re(Ueiwt) = IUlcos(wt + <1»,
where Ll..l is the excitation frequency, then the response is given by:

The longitudinal response due to a periodic axial excitation at the winder drum
can be determined for each harmonic of the excitation, and consequently the
overall response can be determined via superposition of the forced harmonic
responses.
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C.2.1 Determination of the Modal Damping Coeffl..
cient

In order to select the material dampinz constant .J.i to achieve a prescribed
relative proportional modal damping coefficientin the first mode (11 the free
response of the equation for q(t) may be examined:

2

q+ WnJ.lq' + l..Jiq := 0c2 n

Thus:

If the material damping coeffdent is selected on the basis of the modal damp-
ing ratio, then:

2C2Cl
/J,= ---

Wl

and it followsthat:

This demonstrates that (n is proportional to the ratio of the nth natural fre-
quency of the fundamental WI. Hence if J.l is selected on the basis of the
fundamental, the higher modes will become successively more dam];ed and
less significant in the response,
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c.s General Proportional Damping

Gl'eenway[1989] provided a rudi nentary damping estimate regarding the damp-
19 coefficient extracted from free response data captured during deceleration

tests at Deelkraal Mine. This estimate was obtained from the logarithmic
decrement of first longitudinal mode; Greenway[1989] showed that if a rela-
tive proportional damping model was applied, a material damping coefficient
/l could be defined. A viscous relative proportional damping model results
in the higher modes becoming successively more damped. Since the damp-
ing factor is critical to the steady state stability analysis, further site tests
were conducted to determine if the damping estimate related to the higher
modes followed such a relationsliip. In that test it was found that the higher
modes were more lightly damped than the fundamental, and that the damp-
ing estimate obtained for the fundamental was dependent on the mean rope
tension. These results are presented and discussed in detail in Appendix G.
Greenway[1993] demonstrated that if the dependence of the first mode on mean
tension was neglected, a general proportional viscous damping model could be
constructed, which accounts for the lower damping estimates measured in the
higher modes.

The analysis presented regarding the relative proportional damped longitudi-
nal response, can be readily modified. to include the case of general viscous
proportional damping. For general viscous proportional damping, two mate-
rial damping coefficients are introduced, /la, fi,b, where the first relates to
a damping force which is proportional to the mass properties of the system,
whilst the second relates to a clamping force which is proportional to the stiff-
ness properties of the system. This is analogous to a Rayleigh damping form
in a discrete system. The linear longitudinal equation of motion is governed
by:

2
Utt + fi,a Ut ~ fi,bUt,iJS + C 'l.I,ss

For a forced response at frequency w:

U(s, t) = ¢;(s)eiwt

Thus:
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Thus:

where:

The modal damping factor i_<1n be obtained by applying a normal mode ex-
pansion, and considering the principal modes qio

Thus it foilows that:

1 J.La Jib(i ;:::-(- + -Wi)2 Wi c?'

With reference to Appendix G, the material damping constants a, b would be
related to J.La, P'b as:

J.La = a

The forced response for general proportional viscous damping can be obtained
from the equations developed in section Co2 by appropriate substitution for /0
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C.4 Longitudinal Response - Kloof Mine

The steady state forced longitudinal response for the Kloof Mine is exam-
ined. This exercise demonstrates the difference between a relative proportional,
and a general proportional damping model. Appendix G presents longitudi-
nal damping factors extracted by Gr.._;enway{l989]from free decay results at
Deelkraal Mine and by Constancon[1992] from free decay results obtained from
Elandsrand Mine. Since no other data is available, this data will be utilised
as being representative of the Kloof Mine rope damping properties.

CA.1 Relative Proportional Damping Model

The relative proportional material damping co-efficient u, is selected on the
basis of the Deelkraal! data as presented in table G.1 of Appendix G. This data
indicated that the material damping constant b increased roughly in proportion
to the rope length. Thus the relative proportional damping coefficient f.l is
defined as:

where" represents the length of the rope.

The data tabulated in Appendix G table G.1 provides b = O.03sec, at a rope
length of ~l of the depth of the shaft, where l = 2062m. Thus

c = JEAlm = 3658ml8

()
24 X 0.03

fl. 82 = C -'--82 = 25982
3 x 2062

By selecting the damping constant }1, the modal damping factor of the nth

mode is set to (n = (ll:!!n.. The modal damping factors for the first four modes
WI

are presented in figure C.2. As is evident, in comparison to the fundamental,
the secoI!d and higher modes are significantly damped.

lThe data was recorded by Thomas et al.[1987], and the logarithmic decrement was
extracted by Greenway[1989J.
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C.4.2 General Proportional Damping Model

A general. proportional damping model is presented in Appendix G. This
model was proposed by Greenway(1903], based on measurement s captured. by
Constancon[1992] and Page[1992] at Elandsrand Gold Mine. Measurements
were captured at 73 level, which represents an active rope length betwee-i the
drum and skip of 2090m. Due to time limitations, further measurements were
not obtained at a different level, and thus the variation of the damping con-
stants with rope length could not be determined. However at 73 level, material
damping coefficients of {Ja ;:::;0.159 and flb ;:::;O.00164c2 were determined from
the test data. As stated in Appendix G, this model provides a convenient
fit to the measured data, rather than physical evidence of ::..general viscous
damping mechanism. Further experimental results would be required to ,'cfine
the physical basis fr. ""'('P model. Since the measurements at Deelkraal mine
indicate that· ,)i -1' coefficient b increases in proportion to rope
length, a sin, '.,":~.L1 regard to the proportional damping
coefficient flb. Thu ' oroposed is:

fla ;:::;0.159

The modal damping coefficients based on this model are presented in figure 0.3,
It is evident in this figure that the fundamental mode is mort damped than the
higher modes. This emphasises the difference between the damping models,
and consequently the need to accurately determine the damping mechanism.
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C.4.3 Forced Longitudinal Response

The Kloof Mine system parameters are presented in table C.1. The natural
frequencies of the first four modes, for a full ascending skip, are presented in
figure 0.4(a). In figure C.4(a), the horizontal lines represent the Lebus groove
excitation frequencies I'..t the first and second harmonic of the coil cross-over
frequency.

The modulus of the lcngitudinal forced response at the sheave wheel due to
the first and second harmonic excitation at the winder drum, is presented in
'figureC4(b),(c) respectively. 'I'he response amplitude is dramatically affected
by the damping model assumed. It is clear that the higher modes would
be active if the general proportional viscous damping model applied. The
damping models proposed have been formulated on the basis of extremely
limited data, and as such are approximate. However,at this stage the general
proportional damping model is the most representative model available, and
will bJ utilised until further experimental studies provide a better description.

)
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Figure C.3: Modal damping factors - General proportional damping

(1\ = t(;; + ~Wll)
Ma= 0.159 Mb = 10.4982
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Figure CA: Linear steady state forced response

(a) Longitudinal Natural Frequencies vs Shaft depth
(b) Forced Longitudinal R.esponse at the Sheave Wheel - First Harmonic
(c) Forced Longitudinal Response at the S~eave Wheel - Second Harmonic
Relative proportional dampiag. -- General proportional damping,

7L(O,t)·= '2.89 x 1O-4COS(0It + (Pt) + 1.05 x lO-4cos(2nlt + ¢2)
0, = ~ = 14.01rad/s, cPl = 1.669rad, ~f;2 = -1.374rad



'fable C.1: Kloof Mine ~System parameters
J Sheave Inertia. 15200 kgm2'

M Skip Mass. 7920 kg
MD Skip Pay-load, 9664 kg
m Linear Rope density. 8.4 kg/m
V Nominal Winding Speed. 15 m/s
De Depth of wind. 2100m
Lc Catenary Length. 74.95 m
E Effective Youngs Modulus of the rope. 1.1 x 101lN/m2
Ax Effective steel area of the tope. O.001028m~
/3 Cross over arc. 0.2 rad
Dd Drum Diameter. 4.28 m
Ds Sheave Diameter. 4.26 m
Dr Rope Diameter. 0.048 m
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Appendix D

Linear Lateral Catenary
Response

This appendix presents the linear analysis of the catenary, in the absence of
curvature, and longitudinal coupling. In this context, the equation of motion
governing the in and out-of-plane motion reduces to the linear wave equation
associated with a taut string. It is well established that the undamped wave
equation is variable separable, ie v(S(t):::: L,<f>i(s)qj(t). The natural frequency
of the ith principal mode of a string with pinned end con. ;. ions is given by
Wi :::: i'if; where CI represents the lateral wave speed which is related to the

tension T and linear mass density of the rope m, by CI :;:::: jT tm, and It
represents the chord length be'ween the pinned ends.

The eijenfunction for this configuration is given by:

rPi(S) :;::::sin(il~ s)

Since curvature is neglected, the in-plane and out-of-plans eigr .ifunctions and
natural frequencies are identical.
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Forced Response

The lateral response of the catenary to all out-of-plane harmonic boundary
excitation Weiwt at the drum end, in the presence of relative proportional
viscous damping is presented': The equation of motion has the same form as
that presented in Appendix C, governing tbe damped longitudinal behaviour
of the rope. ie,

(D.l)

where III represents the coefficient of lateral dissipation, and co-ordinate $1

represents the distance measured along the rope from the drum to the sheave.
This equation is vari ....ole separable, and thus the solution may be expressed
as:

where:

T
C2 -1--

m

The boundary conditions are:

w(O, t) = liVeiwt

1W represents both phase and amplitude and is a complex entity
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w(lt, t) = 0

Under these boundary conditions, the solution can he show.: :0 he:

( t) W '( (I )\ j., 'A, ( ) iwtW 811 .r =:: --. --[-8m 'II 1 - 81)e =:: 'PI 81 e
sm'll 1

Sin('e."'ilis complex, the tl.. _.Jonseis phase shifted with respect t.o the excitation.
Considering the first harmonic of the excitation as w(O, t) = Re(Weiwt), where
w is the excitation ~ '\ency, the response is:

W(81' t) == (Re(¢;l)coswt - Im(¢l)sinwt);:: Al(S1)cOS(wt + <PI)

where:

.. -t _l(!mUPI))
<.PI - an Re( ~I)

The forced lateral catenary response due to a periodic lateral excitation at the
winder drum can thus be constructed via superposition of the forced response
due to each harmonic in the periodic excitation,



Appendix JE

Linear Coupled System
Response

This appendix presents the solution to the linearised stationary steady state
system response as proposed in Chapter 4, The equations of motion devel-
oped in Chapter 4, considered the stationary steady state solution, for small
lateral amplitudes in the absence of curvature, such that nonlinear terms were
neglected in the lateral equations of motion) but retained in the longitudinal
equation of motion. The in-plane lateral excitation is significantly less than
the out-of-plane lateral and longitudinal excitation, and is consequently ne-
s' scted. Thus planar response occurs in the u - w plane, and consequently the
equations of motion under consideration for the catenary section are:

(E.l)

(E.2)

The vertical rope is laterally restrained and consequently the equation of mo-
tion describing longitudinal motion U2(S2, t) is:

(E.3)
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where c, c represent the longitudinal and lateral wave speeds respectively, and
S1, S2 represent the co-ordinates measured along the catenary from the drum
end to the sheave, and along the vertical rope from the sheave to the conveyance
respectively, Ul(S1, t), U2(S2, t) represent the longitudinal displacement in the
catenary and vertical rope respectively.

Since the equation of motion for the lateral' response is uncoupled from the
longitudinal equation of motion, the lateral response due to forced bound-
ary excitation LWncos(nwt) can be derived in closed form", as presented in
Appendix D. The lateral response couples independently to the longitudinal
equation of motion, and consequently this coupling term may be viewed as a
distributed forcing function over the catenary length.

The boundary conditions for the system, in the absence of longitudinal exci-
tation at the drum end are:

u(O, t) = 0 (E.4)

w(O, t) = 2:Wncos(nwt) (E.5)

(E.6)

In addition, since lateral motion exists, the inertial balance at the sheave is
given as: :

(E.7)

The quadratic nature of the coupling term c2 °8111 882~ in the longitudinal equationx 81

of motion (E.!), and ~a::)2 in equation (E.7) describing the inertial balance
across the sheave, results in the generation and t.ransmission of longitudinal
excitation induced by the forced lateral catenary motion, to the catenary and------------------------

1In subsequent sections, subscript 1,2 will refer to terms evaluated at the first and second
harmonic of the excitation frequency respectively
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where c, c represent the longitudinal and lateral wave speeds respectively, and
s1, 52 represent the co-ordinates measured along the eaten ry from the drum
end to the sheave, and along the vertical rope from the sheave to the conveyance
respectively. Ul(Sl, t), U2(S2, t) represent the longitudinal displacement in the
catenary and vertical rope respectively.

Since the equation of II! .iion for the lateral' response is uncoupled from the
longitudinal equation of motion, the lateral response due to forced bound-
ary excitation I:Wncos(nwt) can be derived in closed form", as presented in
Appendix D. The lateral response couples independently to the longitudinal
equation of motion, and consequently this coupling term may be viewed as a
distributed forcing function over the catenary length.

The boundary conditions for the system, in the absence of longitudinal exci-
tation at the drum end are:

u(O,t) = 0 (E.4)

wen, t) = :L VV.co5(nV.lt) (E.5)

(E.6)

In addition, since lateral motion exists, the inertial balance at the sheave is
given as: :

(E.7)

The quadratic nature of the coupling term c2 ~w aa2~in the longitudinal equationo» 81

of motion (E.l), and i( :~)2 in equation lE.7) describing the inertial balance
across the sheave, results in the generation and transmission of longitudinal
excitation induced by the forced lateral catenary motion, to the catenary and

1In subsequent sections, subscript 1,2 will refer to terms evaluated at the first and second
harmonic of the excitation frequency respectively
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vertical rope. This excitation consists of a time independent component, and
a dynamic component at multiples and beats of the lateral response frequency.
This can be demonstrated by con.idering the case where the forced lateral
response is comprised of two frequencies, namely at the fundamentai and the
second harmonic of the Lebus excitation frequency. Thus the lateral forced
resps -ase could be represented by:

w(s, t) = IW1(S, t)lcos(wt + <PI) + IW2(S, t)lcos(2wt + (h)

where IW1(St, t)l, IW2(Sl, t)1 represent the maximum value of the response at
any point along the catenary, due to the first and second harmonic of the
excitation spectrum respectively.

The longitudinal excitation induced via the lateral response w(s, t) is:

1 2 r . I JJ 'II '"2"c • (Wl Wl + W2W2) +Wi Wl cos(2CtJt + 2cPl)

+lW~ W~ + w;w~){cos(wt + cP2 - cPl) + cos(3wt + rPl + cP2)}+
W;W~ cos( 4wt + 2<P2)] (E.8)

The first term OD the right hand side of equation (E.8) is independent of time,
and represents a static distributed force, which induces drift in the longitudinal
response. Effectively 'is drift represents the mean displacement about which
longitudinal motion occurs. The longitudinal excitation induced at frequencies
w, 2w, 3w, 4w demonstrates the autoparametric nature of the system, whereby
the lateral motion induces longitudinal excitation.

The longitudinal system response due to the dynamic component of the exci-
tatiou induced by the lateral motion follows, whilst the response due to the
drift term is considered in section E.l.

Consider the longitudinal excitation induced by the linear lateral response of
the catenary to the fundamental lateral excitation W1cos( wt). The longitudmal
excitation occurs dur +'0 the coupling term ~8w £.8~ in the longitudinal equation

81 81

of motion. Since:
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Thus it can be shown that",

where D1(Sl) represents the static or drift excitation term. This term will be
considered fu/1'l>r in section E.1.

The longitudinal system response, considering the relevant boundary condi-
tions described in equations (E.4),(E.6),(E.7) , is:

where" A = 4btlc2_~21+8i"'W~ and 'lh(Sl,t) and 'U2(·'l2,i') represent the forced
longitudinal motion of the catenary and vertical rope at frequency 2w respec-
tively.

The constants Ai, B, are determined by the solution to the equations.

where:



233

[AJ ==

o
sitv; 2/1

r~· I ITSm')'2 1 - COS')'2 1

o

o
-1
o

.A2COS')'2i2 + Asin')'2l2

(o) ~ {

(b) ~ {

where:

A2 _ 4l1{w2
- A&

a:::;: tan-l~ c

..\2 == 72 + i(2

2",

72 = - +( ~ )2)1/4 e-iOi/2

{} == PA."
all == tGn-l~ c,

The longitudinal response induced by the forced lateral response due to the
second harmonic of the lateral e.l.citation vhcos2wt, is obtained by appropriatr
substitution into the above equations.

The longitudinal response due to the interaction of the first and second lateral
harmonic motions is developed along the same lines below. In this case time
independ=nt terms do not arise, but rather dynamic cerrns at wand 31.41 arise.

where Ii! ,Wi refers to the complex conjuga of Ii!, WI.
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The longitudinal system response at ejwt is thus obtained as:

A = . C2i~,!12WiW2(iG + i12)

4sin·y~llsiniI2h[(112 + iG_)2(C2+ jl-lw) - w2]

B == . . c2'i;IhWi):V2( 112 - it:)
4sinl~hsiniI2h((112 - 1~)2(c2 + jJ.lw) - w2]

and the loading vector {b} is:

{h} = {

-Asin('y12 + ii;)h 0- Bsin( 112 - "l~)h }

Wt'Yt! W2'Y12 _ ('Y12+'/1~ ).A+('Y12 -"Yl~ )13
2"1 sin'Yi! hsin"Y12h 'Yl·

o

By appropriate substitution, the longitudinal response at the third harmonic
of the Lebus excitation frequency can be obtained.

The total steady state longitudinal response may thus be obtained as a linear
combination of that due to the longitudinal excitation at the winder drum,

4In the case of general viscous damping as described in Appendix G: .

A = C2"Y;, "Il~ WiW2(7i, + "112)

4sin"Yi,ltsin"ll~h[("Y12 + l'iY(c2 + j/Jb"") + 2jw/Jo. - w2]
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as presented in Appendix C and that induced by the lateral response of the
catenary".

Clearly, the direct longitudinal excitation at the winder drum results in axial
response at integer multiples of the coil cross over frequencies w, 2w, whilst that
due to lateral catenary coupling accentuates these components, and introduces
additional excitation at 3w,4w, as well as a drift term.

The drift in the longitudinal response as derived above causes a change in the
average tension in the rope. As a consequence of this, the natural frequencies
related to she lateral modes of the the variational equation '1 of motion presented
in Chapter 4, increase.

bIt is noted that the results presented consider the case where the lateral excitation
harmonics have a zero phase angle. Different phase angles can easily be accommodated in
the analysis by including the phase information in the harmonic amplitudes Wn. Thus in
general Wll would be a complex number.
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E.l Longit udi 'al Drift Term

The drift induced in the longitudinal response due to the static component of
the excitation D(.'St), is examined in this section. This occurs as a result of the
quadratic term Re[w,s]Re(w.,ssl in the longitudinal equation of motion. Con-
sider the steady state lateral response WI due'to the fundamental of the lateral
excitation at the drum, Re[W1eiflt}. The static component of the excitation
applied to the longitudinal system is:

The longitudinal response to the drift term is obtained by satisfying the equa-
tiona:

(E.9)

and the boundary conditions:

Ul(Ojt) = 0

U2(O, t) = Ul(ll, t)
aU1 I ow " aU2
a + 2(a)"1(/1,t) = J82i(O,t)81 '''1

The resulting drift in the longitudinal response is given by integrating equation
(E.g) and satisfying the boundary conditions. This leads to:

D -~[W'SW~B],S (E.IO)u,S!) -

uD == -~[w,sw~s] (E.ll).s

uD (81) I r1 (E.12)== -- fw w*]ds4 Jo - ,S ,8 ..



Evaluating equation (E.l~), and accounting for the first and second harmonic
of the lateral response leads to:

The drHt in the longitudinal response as derived above causes a change in the
average tension in the rope. As a consequence of this, the natural frequencies
related to the lateral modes of the the variational equations of motion presented
in Chapter i!, increase. The drift induced by the lateral response due to the
second harmonic of the lateral excitation at the winder drum can be evaluated
by appropriate substitution. Thus the total longitudinal response of the system
consists of a static drift to account for the lateral motion, and a dynamic
component. The influence of the drift terms on the variational equations is
considered further in Appendix F.:i.



Appendix JF

Parametric coupling Matrices

Chapter 4 presented a discussion which led to the proposition that the stability
of the coupled linear steady state motion, as determined in appendices C,D,E,
could serve as a criterion for determining design parameters so as to minimise
the potential for nonlinear system behaviour. The homogeneous component
of the linearised variational equations pertaining to the system are presented
below, where the boundary conditions at the sheave and conveyance have been
introduced with the use of the dirac delta function 8(s - l) and the Heaviside
step [unction H(s - l).

- - -2- 2{ _ 1 2- \
V,tt = Ji.IVt,8S + C V,ss + c (v,su,s),s + 2(w,sv,s ,s} (F.2)

(=: I/pAR2, TJ = H/pA

where c2, (;2 represent the longitudinal and lateral wave speeds respectively.
u(s, t) represents the total longitudinal steady state response due to the lon-
gitudinal excitation at the winder drum, and that induced by the lateral cate-
nary motion, as derived in Appendices C, E respectively. w(s, t) represents
the steady state out-of-plane lateral catenary response as derived in Appendix
D. tt,V,w represents the variation of the motion about the steady state linear
response in the longitudinal, in-plane lateral and out-of-plane lateral directions
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respectively. h represents the catenary length, whilst l2 represents the total
cable length. The longitudinal equation (F.1) is defined over the entire length
of-the rope 0 :::;s :::;[2, whilst the lateral equations (F.2),(F.3) are defined only
over the catenary length 0 S S :::; ll'

By applying a normal mode technique, wher~:

(F.4)

the equations of motion were reduced to a 5,- of coupled linear parametrically
excited ordinary differential equations of the form:

(F,5)

where:

4 [0E [P(nnt)] == 0
n=l Wuw(nt,2nt)

o Uuw(fU,2nt) 1
Vvv(nt, 2n~, 3nt, 4Dt) 0

o Www(nt, 2nt, 3nt, 4nt)

Where [Ad] represents an initial stress matrix. This matrix describes the
change in the variational natural frequencies as a result in a change in the
average tension in the catenary due to the forced excitation. [Ad] is defined in
section F.3.

The parametric coupling matrices are obtained on orthogonalising equations
(F.1),(F.2),(F.3) with respect to the undamped longitudinal and lateral mode
shapes <Pi('S), <Pj(s). It is evident from the above equation that parametric
excitation occurs at multiples of the coil cross-over frequency n.

The submatrices [Uuv{nOt)], [Vvv(nfU)], [H'vu(nHt)], iWww(nOt)] are derived in
subsequent sections.
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F.l Longitudinal Parametric Coupling

In order to extract the submatrix (Uuu(nnt)] in the parametric coupling matrix
[P(nnt)], a normal mode approximation is applied to the longitudinal equation
of motion (F.l). This is accomplished by ass~ming:

w = E <Pi(s)rdt)

Where the undamped longitudinal anr. lateral mode shapes of the ith longitu-
dinal and lateral mode are epiCS), <.Pi(S) respectively, where:

<Pi ( s) = sin-'(is 0 ::; S ::; II
(/>i(S)= S'in'YiltcOSYi(S -II) + (cos'Yill - r; sin'Yilt)sin'Yi(s - h) h::; s ::;l2
Pi(S) = si''I,bj8 0 :; S ::; II

where 6i = i7r/lll'Yl = wNc2, where Wi is the Zll! longitudinal natural frequency,
Substituting the above equations into equat.ion (F.l), and pre-multiplying by
the ith undamped longitudinal mode (Pi, and integrating 'over the domain of
the rope leads to:

(F.6)

The integrals f~2l1+(8(s-II)+1]6(s-l2)]¢i¢>jds and c2 fci2 ¢>i¢>;dsare orthogonal
for the normal mode' of a system by definition. These expressions are termed
the modal mass and modal stiffness mij, kii respectively, where the ra~;~ kidmii
is qual to the square of the undamped natural frequency W[. Thus it is only
necessary to calculate the modal mass and the remaining integrals on the right
side of equation of equation (F.6). ie:
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k·· - C2!A-.·A.'.'ds - w~m":'& - 0/1 '1'1. - t n

The last integral on the rip]..' .iand side of equation (F.6) accounts for the dirac
delta function employed to represent the boundary condition at the sheave
wheel, coupling the catenary to the vertical rope. This term may be integrated
by parts as:

Thus the submatrix (Uuw(nOt)] is evaluated as:

Ai = Sin1'ilt

1'i =wdc
I [,3. IB, = COS"'(i 1 - TS1n'¥i 1

n_M 1"_ I
., - pA .. - pAR'

Where Wi is the ith undamped natural frequency of the longitudinal system.

If one considers the response due to the nth lateral harmonic of the out-of-
plane excitation at the winder drum, Wnejn!1t, where the response wn(s, t) in
complex form is given by":

() Wn . ((l )) inOt
W1', s, t =. 1 sin "tt« 1 - S e

S1,n,ln 1
(F.7)

1Wn represents the amplitude and phase of the excitation and is generally a complex
entity.
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where

Evaluation cf the integral £01' IUu.w(nOt) ] leads to:

[U~w(nnt)li,j = L { Qj""1I" w_. ["11"1In';"("11" 1!){6~+'1:-'Y"n}-( -1); .'inhjlt){'Y~(o~'t'1r")-(6i-"lrn) o}1
mil sinh'n 11) [(0;+"1;).-"1(,.][(0;-'1,)2-'1;" 1 J

-1.(-1)j'Yl S w: _sin1iIL} ein!1t
2.. n J n.1tn"Ylnil

The parametric coupling matrix. [Uuw(nOt)] is complex, ~lence the form of the
matrix due to an excitation Re{Wneinl1t} will be Re([Uu.w(nf!t)]). If the first
and second harmonic of the Lebus excitation frequency are considered, two sets
of parametric coupling matrices arise, namely Re{[Uuw(Ot)]}, Re{(UtLw(2!1t)]}.
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Fo2 Lateral Parametric Coupling

This section presents the lateral parametric coupling matrices [Wuw(nDt)],
[WWtL (nDt)], [V;IV(nDt)]. The lateral out-of-plane equation of motion is:

. 3
- - - -L -2-- + 2{(- ) -L ( -) -t (2 - ) }W,tt - /kIWt,ss I C W,ss C 11J,sU,s ,5 I W,sU,s. ,8 - 2'w,s'UJ,s ,8 (F.8)

Substituting the normal mode approximations (FA) into equation (F.8), and
pre-multiplying by the ith undamped lateral mode <Pi, and integrating the
equation over the domain of the catenary? leads to:

(F.9)

Since the normal modes of the catenary ar....orthogonal by definition and hence
the integrals j~l<PiIPids = mii , "(;2 f~l <PicI>~'ds = kii' where the terms mii) k,i
refer to the modal mass and stiffness of the catenary, and the ratio kii/mii
is represents the square of the ith undamped natural frequency of lateral vi-
bration of the catenary wr Thus it is necessary to calculate the modal mass
and the remaining integrals in the last two terms on the right hand side of
equation(F.9).

-2 {It /I -2
kij = C J

o
<Pi<Pjds = wimii

2In this case, the domain reduces to the catenary length, as the lateral mode is only
defined for the catenary
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The remaining integrals ate defined by'

Parametric coupling matrix [Wuw(nflt)]

Substituting the solution for the lateral out-of-plane response Wn from equation
(F.7), due to the nth harmonic of the lateral cut-of-pi .ne excitation at the
Lebus drum, WneinOt, and carrying out the integration. for the first integral
above leads to:

Parametric coupling matrix [WtlIw(nOt)]

The second integral above for [~Vww(nnt)] is simplified into two separate com-
ponents. The integral depends on the forced response u due to the longitudinal
excitation at the drum and. as a result of the lateral catenary motion, and on
the forced lateral response w.

Considering the first part of the integral which is due to the total longitudinal
response u.ie:

The total dynamic longitudinal response including the fundamental and the
second harmonic longitudinal and lateral excitation at 0,20 is:

'l.t1(S •.t) - Re [RleiOt +R2e2iOt + R3e3iOt + R4e4int+
{ ...,t1sin[(!12 + ')'G)(h - s) + B1sin[(!'2 -')'~)(h - s)}eiOt
+A2sin2')'ll (11 - s)e2iOt +
{A3.qin[(!12 + ')'11)(/1 - ~,) +E3sin[(!12 - I'h)(ll - s)}e3iOt +
A4sin2')'12( 11 - .3)e4iOt]
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where An, En are determined from Appendix E as:

and An) En, In are obtained from the solutions to the forced longitudinal sys-
tem response as defined in Appendix E.

The parametric coupling matrix relating to the longitudinal response will be
evaluated as two component matrices. ie

[Www(n!1t))n=1,2,3,4 = [Www(nfU)];1=1,2,3,4 + [liVww(n!1i));=1,2,3,4

Where [Www(n!1t));=1,2,3,4 results from the terms Rneinnt in the longitudinal
response, whilst [~VUlw(nQt))~=112,3,4 results from the remaining terms.

Considering the coupling matrix [Www(nnt)p due to the longitudinal response
term 19.ne_inflt, the integral (Www(nntW is given by:

The parametric coupling matrix [Www(nnt)]~j is obtained by considering the
term A2sin2,/( h -.5)~2iwt separately. Carrying out tr' appropriate integration
leads to:

[
TXT (£"'I )]2 A ..c J: 2 0 ( l) c2 [ or + 0; - 41~ ] 2ifltrvww 2~d ij = 4 'j.UiVjl/1 sm 21/1 1 -.. [(80 s 0·)2 _ 4 2 ][( 1:, _ 1: 0)2 2] e

mu , + VJ 1/1 V, VJ - 4111
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The matrices [vVww(nOt)J2 for n = 1,3,4 can be evaluated by appropriate
substitution in tb.f: ahove equation.

The coupling matrix due to the forced lateral response W is defined by:

r 3 _ 3c2 111 ow 2 ~ ILWww(nflt)]---2-CP:{(!,))L...<I>;},.ds
mii 0 os

(F.ID)

If one considers the forced lateral response due to the first and second harmonic
of the Lebus frequency then:

2 TV,
R ("\:"""' n ' (I ) inrlt) .W = e L.... -, --l'-s2n'Yln I - S e = WI + W2

n::::1 Szn'Yln 1,

Consequently dynamic'' components of (W,s)2 occur at nfl, n = 1···4, given
respectively as:

I )2 1r2R (OWl i)w;) R (OWl)2 2R" OWl OW2) R (OW2 )21tWa =-" e---'- + e- + '.-f---- + e--, 2 L os os Os . as us as J

Consider the second component Re(~ )2:

(OWl)2 1 (( 'YiI WI):: 2 ( ) 2irl::)Re -0' = -2Re -.- -z cos /11 t, - s e
S s2n'Y111

Substituting this expression into equation (F.lD) and performing the integra-
tion:

where A = ~ if i = i, and A = 0 if i of j.
3The static component of this term affects the lateral variational frequencies, and is

considered further in section F.3.
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The remaining matrices for n = 1,3,4 may be evaluated by appropriate sub-
stitution and integration of equation (F.lD).

Thus the total parametric coupling matrix [Www(nfU)] is obtained from:

4

[Www(nnt)] == L Re{[Www(nOt)p + [Www(nDtW + [Www(nDt)p}
11.:::::1

The parametric coupling matrix [Vvv(nnt)] is obtained in an identical fashion.
It is not identical to [Www(nOt)} since the term (tL'~SVIS),S in equation (F.2) is
pre-multiplied by ~, where as (W~S'W,S),S in equation (F.3) is pre-multiplied by
~. [V'vll(nnt)] can be constructed from the component matrices 01 [Www(nnt)}
as:

[Vv~(n!1t)] = t Ile{[Www(n!1t)p + [iVww(nDtW + ~[Www(nnt)J3}
11.:::::1

Since the real part of the component matrices constitute the overall parametric
coupling matrix, the parametric oupling matrix may be expanded to:

4

[P(n!1t)} =E ((Pc)nC(}S(n!1t) + [Ps]nsin(nOt)}
11.=1

Thus if the first two harmonics !1,2n of the Lebus cross-over frequency are
accounted for, the system is excited parametrically at 0,20, 3!1,40 by sine
and co-sine functions. Thus the parametric matrices relating to each harmonic
are impedance functions, and are phase shifted with respect to each other.
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F 03, Drift Terms

This section considers the influence of the drift term in the longitudinal re-
sponse uD(s), and the static component of w~s in equations (F.2),(F.3) on the
lateral variational equations. The longitudinal drift uD(s) was determined in
Appendix E.l as": .

D -~[WISW~SJ.S (F.Il)u,SS =

uD = -~[WISW~S] (F.12)IS

UD(Sl) 1lSI (F.13)= -4" 0 [w.sw~sld8

Considering the first harmonic of lateral response Wi, the static component of
Re(wl,.)Re(wlD) is denoted (wl,.)b:

(F.l4)

Drift terms do not affect the variational form of the longitudinal equation
of motion (F.l). However they do effect the variational form of the lateral
equations of motion (F.2-F.3). These equations are reproduced below, where
only static or drift components of the linear steady state response are retained.

(F.15)

(F.16)

Substituting equations (F.12),(F.14) into the above equations leads to:

(F.J.7)

4W· represents the complex conjugate of w
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(F.18)

Since the lateral in-plane variational equation (F.17) reduces to its linear coun-
terpart, the drift terms exert no influence on the natural frequencies of the
in-plane variational modes. However, in th~ case of the out-of-plane varia-
tional equation? the drift terms do exert an influence. Effectively the final
term in equation (F.18) modifies the linear lateral natural frequencies of the
out-of-plane modes. This influence can be ascertained by applying a normal
mode approximation for w, and carrying out tl.e appropriate integration. This
results in a modified modal stiffness matrix with off diagonal terms, coupling
the lateral out-of-plane modes.

This matrix is given by:,

(;'2 lit /I c2 IiI 1. .[k··] = --' . <1>·qLds ~ -- <1>·{-(w w*iJ}'.)· .1JdsI) I J I 2· s 8 J IS
mji 0 ffiii 0

where c,c,mH, <I> represent the lateral wave speed, the longitudinal wave speed,
the modal mass, and the ith linear eigenfunction respectively, and <1>' represents
differentiation of <1> with respect to s. The linear eigenfunction satisfying the
boundary conditions is:

where

Performing the integration leads to:

= C20;Oj { IWnll'Yl" I }2{ sin("tl" --rjJtl sin(r/" .- riJll
2mj, Isin('YI" 11)1 (OJ + OJ +;-;:-- 'YiJ - (8; - OJ - 'YI"+ 'YiJ

sin('YI" - 'YiJIt sin('YI .. - 'YiJ'1+ (OJ - OJ + 'YIn - 'YiJ (OJ + OJ - 'YIn+ 'YiJ
sin('i'ln + 'YUh + sin('YI .. + 'Yin)lt

(Oi - OJ - 'YIn - 'YU (0, - OJ + 'YI.. + 'Yi;')
Sitt('Yln + 'Yi!!.E:_ + sine 'YI"+ 'YiJll }

(OJ + 0; - 'YI" - 'Yi,,) (Oi + OJ + 'YI"+ 'YiJ
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where [w[J represents a diagonal matrix containing the linear natural frequen-
cies of the out-of-plane modes, and [A.ij]n represents additional stiffness cou-
pling generated between the out-of-plane modes due to the n,th harmonic of the
lateral response. Since this matrix is a function of the excitation amplitude,
the stiffness of the variational system changes with the lateral response ampli-
tude, and consequently the natural frequencies of the out-of-plane variational
modes change and detune from the in-plane modes. The modified natural
frequencies of the lateral variational modes are thus found by extracting the
eigenvalues of [kij).ie: "

It is important ~o note that the detuning of the variational system: 1 a con-
sequence of the assumed linear solution, and is consistent only where this
solution is valid. The variation in the natural frequency corresponds to the
frequency at which the system would respond, to small disturbances about the
linear solution .. In constructing the linear steady state solution, it was assumed
t; 'at the lateral response amplitude was small, and therefore terms of o(w3)

were neglected. This is unlikely to be the case in a region of external lateral
resonance.



Appendix G

Longit udinal Damping
Estimates

Damping Mechanisms

A crucial step required in a dynamic simulation concerns the definition of an
appropriate damping mechanism. Greenway[1989] examined the loganihrnic
decrement associated with the free response of the first longitudinal mode of a.
conveyance at Deelkraal Mine, due to emergency braking. The sheave support
structure was strain gauged to measure rope load, providing time data for the
event. The data was gathered by Thomas et a1.[1987], as a part of a report for
COMRO(1987). The logarithmic decrement was extracted from this data, for
an empty and full conveyance, decelerated at stations at approximately quarter
and three quarters of the shaft depth. The results of these tests are presented
in cable G.1. In interpreting the logarithmic decrement with respect to the
longitudinal oscillations, Greenway[1989] considered the longitudinal equation
of motion of the system in the principal modal co-ordinates as:

(G.1)

where qi represents the ith principal mode; the damping coefficient a represents
the material damping constant corresponding to a distributed damping force
U,t, which is proportional to the mass properties; b represents the material
damping constant corresponding to the distributed damping force Uxx,t, which
is proportional to the stiffness properties. The latter type of damping amounts
to relative damping since it is associated with the relative velocities of the

251
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displacement co-ordinates. Greenway[1989] considered relative damping to be
appropriate, and thus set a = 0: whilst retaining the coefficient b.

Considering this equation in the form:

where (i represents the modal damping ratio associated with the ith mode and
Wi represents the ith natural frequency. Comparison of the equations leads to:

bWi(0 .
I -- 2

Thus for a constant damping coefficient b; the modal damping ratio in each
principal mode is proportional to the undamped natural frequency of that
mode. Although the data was limited, Greenway[1989] demonstrated that
with respect to this data, the logarithmic decrement depended on the con-
veyance mass and the vertical length of the rope" whilst the material damping
coefficient b was less sensitive to skip mass, but related to the rope length.
Greenway[1989] non-dimensionalised the equations of motion, and derived a
dimensionless damping parameter f3 = bc/2l where c and I represent wave
speed and rope length respectively. This accounted for the variation of the
materi :-~ldamping coefficient as a function of rope length.

Proportional relative damping results in a relationship between the modal
damping factor of the first mode, and higher modes, such that (n = (1~'
Thus the modal damping factor of the higher modes increases in proportion to
the ratio of the undamped natural frequencies, and thus higher modes be-
come successively more highly damped. This has lead to the assumption
that the fundamental mode dominates the longitudinal response, whilst the
higher modes are more strongly attenuated and consequently less important.
Greenway[1989] notes that the assumption of proportional modal damping is
implemented in his analysis since it appears to be intuitively correct. Dim-
itriou and Whillier[1973] briefly commented that data obtained regarding the
free decay response of skips, exhibited a linear decay profile, which is asso-
ciated with friction , and hence a Coulomb damping mechanism rather than
a viscous damping mechanism. This confirmed experimental results of Van-
derveldt et a1.[1973] regarding the lateral dynamic characteristics of stranded
wire rope. Dirnitriou and Whillier[1973) concluded that Coulomb damping
played a greater roli than viscous damping in mine hoist wire ropes. As is
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evident, the aspect of damping in mine heist ropes he. not been given a great
deal of attention. It is surmised that this is dve to the production losses
which would be incurred if an adequate experimental program was instituted
to measure and formulate a damping model for the rope. This model is likely
to be a complex non-linear function reflecting the rope construction and mean
tension. Nevertheless, if accurate simulations are to be performed, a more
thorough experimental determination of the damping levels will be required.

It was decided that approximate damping factors would have to be applied due
to the limited data available. However, the decision as to the application of a
relative proportionally damped model, as opposed to a hysteretically damped
model could be investigated. It was this aspect which provided the incentive
for performing further site tests.

Drop Tests

Anglo American Corporation (AAC) was assessing a. levelock system on a con-
veyance at Elandsrand Gold Mine. The levelock system is a hydraulically
actuated device which clamps the conveyance or man cage between the guides
during unloading and loading cycles. The device releases the clamping force so
that the skip or roan cage slides without overshoot to its new equilibrium po-
sition. As part of the test program, it was decided to assess the cage response
due to a pre-load in the cage, :ollowed.by a rapid release in the clamping force.
This was accomplished by clamping an empty cage in position at the station,
inserting a dead weight, and subsequently releasing the clamping force. Once
the cage had settled to its new equilibrium position, it was repositioned at the
station and clamped; the load was removed and subsequently the clamping
force was released. In this manner, the free decay of the longitudinal oscilla-
tions could be examined in the presence of a fixed rope length, with various
mean tensions and cage mass. Six tests were performed, namely":

e Seven ton drop.

C) Seven ton lift.

Q Seven ton drop.

1:1) Seven ton lift.

o Three ton drop.

11 ton:: lOOOltg
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o Three ton lift.

Three different transducers were monitored during the tests. An accelerometer
and displacement LVDT were recorded by AAC personnel''. Strain gauges
were applied to the draw bar structure by University personnel, providing
measurement of the rope force at the conveyance. The data from the AAC
transducers was recorded directly without any pre-f. <r~ring.In order to amplify
the response of the higher longitudinal modes, the r asurement from the draw
bar load cell was filtered prior to amplification. An analogue high-pass filter
with a frequency cut-off of O.5Hzwas used.

The time traces from the AAC accelerometer are presented in figure G.2. The
repeatability of th« data is reflected in figures G.2(a),(d) where two records
from different tests are superimposed. Similar results were obtained for the
LVDT and draw bar measurement. Frequency response functions were created
by treating the time data as being representative of the unit impulse response
of the longitudinal system. The frequency response functions were constructed
by applying a Fourier transformation to the time data. The frequency response
functions" for the AAC accelerometer records are presented in figure G.3. The
I-Deas package was utilised to perform this task, where an exponential window
was applied to the time data prior to performing the Fourier transformation.
A circle fit method was applied to extract the natural freq -:-yand corrected"
damping factor for each FRF. The results from the ana .s are presented ill
table G.2 for the AAC accelerometer. The first mode was curve fitted for
the LVDT measurement, whilst the draw bar measurement provided damping
estimates for the second and third modes. These results are presented in tables
a.3,G.4.

2The purpose of the AAC test was to assess the gross motion of the conveyance. The
processing of the data to achieve further damping estimates, was proposed as a result of
the research carried out in this thesis, which indicated that relative proportional damping
overestimated the modal damping factors in the higher modes.

3A spectral resolution of 0.02 Hz was achieved.
4The damping factor was corrected to account for the exponential window.
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G.3 Discussion

The objective of the test was primarily aimed at determining if a relative
proportional modal damping mechanism, as proposed by Greenway[1989] is
appropriate to mine hoist ropes. Since the natural frequency of the second
mode is approximately four times higher than the first, relative proportional
modal damping would imply that the second mode should reflect approxi-
mately four times the modal damping ratio of the first mode. Clearly this did
not occur. Although an adequate degree of repeatability was achieved with
respect to the modal damping factor of the first mode, because the cor .eyance
is dose to a nodal point for the higher modes, and consequently the modal
coupling is reduced, a higher signal-to-noise ratio occurs WIth regard to the
measured response of the second and higher modes. As a result, difficulty was
encountered in curve fitting the second and third modes, as reflected by the
scatter of the damping estimates presented in tables G.2,G.4.

This form of test is crude, and one would not expect to achieve highly accurate
damping estimates. Nevertheless, the test was useful in that it confirmed that
significantly higher damping factors were not measured for the higher modes,
ana consequently a relative proportional damping mechanism alone would not
be appropriate.

The damping factor measured for the first mode reflects a strong dependency
on the initial rope tension, or the amplitude of the impulse. Figure G.l presents
a plot of the measured damping factor of the first mode verses SKipload. The
time traces of the response, and the estimated damping factor reflect that
the damping effect is lower when the cage is dropped as opposed to when it
lifts. This effect may be the result of a number of different mechanisms, and
clearly more extensive and accurate testing techniques would be required to
determine these, However, when the skip is dropped, the mean tension in the
rope rises; as a result of the rope construction the strands lock more readily,
preventiug relative interstrand motion, and resulting in a lower damping co-
efficient. During the lift cycle, overshoot of the cage results in a drop in the
mean rope tension, promoting interstrand movement and consequently higher
damping factors. Since the higher modes are tess strongly coupled to the
impulsive force induced in the test, the mean tension changes related to the
higher modes would be less significant, and hence have less effect on the modal
damping factors". The mechanism proposed would result in a dependence of
the damping estimate on the magnitude of the initial impulse applied to the
system and in this context the response would be nonlinear. Consequently the

5Aerodynamic effects may also be pertinent to the response of the first mode, as a
downward forced draft of approximately lOm/s exists in the shaft.
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technique adopted to extract the damping estimate would no' be valid.

In' practice, the disturbances applied to the system during the winding cycle
are not as severe as those applied in the drop test", It may be argued that
although the damping mechanism may be nonlinear when considering large
disturbances, a linear mechanism may apply for smaller disturbances. Figure
G.1 illustrates that the damping r: ) of the' first mode is approximately lin-
early dependent on the load in the skip or the initial impulse. In this context,
the intercept of a line fitted through the data, with the abscissa would repre-
sent a linear estimate for small disturbances of the fundamental mode. A least
squares curve fit of the data provides a linear damping estimate of 4.65%,
which is of the order of the measurements extracted by Greenway[1989J as
presented in table G.1.

A number of options exist regarding a practical approach to deriving a damp-
ing model, which reflects to some degree the longitudinal dissipation of the
rope. For analytical reasons it is convenient to apply proportional damping
models, since the continuous solution can be extracted in closed form. A more
flexible method results if the system response is analysed via the normal mode
technique, since modal damping factors can be applied independently to each
principal mode"; however the disadvantage of a normal mode approach is that
it requires that sufficient modes are included in the analysis to prevent modal
truncation.

The damping estimates can be examined in she context of a general propor-
tional form, where the damping constants a, bin equation (G.1) are not equal
to zero. This would require that the damping action is proportional to both
the mass and stiffness properties of the rope. In this sense the modal damping
coefficient would be:

1 a
('11. = -2(- + bwn)

Wn

where a, b represent the material damping coefficients, and Wn represents the
natural frequency of the nth mode.

The damping estimates related to the first mode were considered more repeat-
able than those of the higher modes. Thus the constants a, b were extracted

6With regard to the winding cycle, large motion does occur at the conveyance during the
acceleration and deceleration phase, and thus one may expect stronger attenuation during
a deceleration from the nominal winding speed and visa versa.

7A hysteretic damping model would necessitate this approach.
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by considering the experimental damping estimates as a function of frequency,
pertaining to t1 .e first mode only. The constants" were extracted by applying
a least squares minimisation procedure. The experimental data and analytical
curve iit are presented in figure G.4. Figure G.5 presents the curve fit together
with the estimates extracted for the second and third modes. It is clear that
although such a damping model may adequately account for the dependence
of the modal damping estimate of the first mode on the mean tension, it does
not simultaneously satisfy low damping estimates for the higher modes.

Greenway[1993} interpreted the data differently, by globally fitting the data
to the damping model. This results in a damping model which neglects the
.lependence of the first modal damping estimcte on the mean tension, whilst
adequately accounting for lower damping factors in the higher modes. Figure
G.6 presents a plot of the experimental data and curve fit. This approach
prov+les a damping model" -hich adequately describes the trends in an average
manner. The advantage of this model is that it can be directly incorporated
into existing analyses, and accommodates .more correctly the lower damping
in the higher modes. The justification for applying such a model would be its
convenience rather than being physically correct.

Figure G.7 presents the data curve fitted such that the linear modal damping
coefficient of the first mode is applied, thus eliminating the dependence of this
coefficient on the mean tension.

8A negative coefficient was obtained for a, which is not physically sensible.
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Conclusion

Although the test data is sparse.. and an extensive test program would be
required to assess the dependence of the modal damping estimates on rope
length and mean tension, important observations regarding the data can be
proposed. •

o The assumption of proportional relative damping is not appropriate since
it results in large modal damping factors for the higher modes.

o The modal damping estimate is dependent on the mean tension in the
rope, which indicates that for large disturbances frictional effects are
important. The linear decay of the response in figure G/l(a,b,c) confirms
that hys; .~reticeffects are evident.

o It is possible to propose a general proportionally '-__.~/ed.model which
adequately describes the modal damping estimates ill the low as well as
higher modes. This model is proposed for convenience in an analytical
study, and is not intended to acc~)Untfor the actual damping mechanism.

e A substantial effort by the industry is required to correctly quantify the
nature cf the damping mechanism, which adequately accounts for mean
tension and rope length.

The damping mechanism is complex; although general proportional damping
may represent the damping mechanism in an average sense, interstrand friction
and hence Coulomb effects are likely to playa roll, Thus it is possible that
a more accurate linea» model would result as a combination of general pro-
portional and hysteretic damping action. These :findings are based on limited
data, and are not well substantiated. Clearly substantial scope exists for fur-
t:,er work which would lead to a more accurate determination of the damping
mechanism appropriate to mine hoist ropes.
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Qepth I LoadedUnloacled I i1(Hz) I 8 I b(s) I (1 % I
Table 0.1: Deelkraal Data - GreenwaY[1989]

3/4 down load ()278 0.163 0.03 2.6
3/4 down empty U.388 0.230 0.03 3.7
1/4.down empty 0.731 0.173 0.12 2.7

'fable 0.2: Elandsrand ~Drop test measurements - AAG accelerometer
I Depth I Load I h(Hz) I fz(lIz) I (1% I (2 % I
751evel +7 ton O.28~ 1.05 2.90 1.81
751evel -Tton 0.337 1.102 6.76 2.20
751evel +7 ton 0.289 1.074 2.50 1.29
751evel -7 ton 0.343 1.114 16.75 1.26
75Ievel +3 ton 0.329 1.105

1
4.86 1.42

75level -3 ton I 0.34 1.148 5.37 0.65

Table G.3: Elandsrand - Drop test measurements - AAC LVDT
! Depth I Load I i1(H z) I (1% I
75lev
751evel
751evel
751evel
751evel
751ev,:1

I +7 ton 0.289 2.94
-7 ton 0.337 7.43
+7 ton 0.289 2.53
-7 ton 0.345 6.97
+3 ton 0.331 4.23
-3 ton 0.338 4.07
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9

Table G.4: Elandsrarld - Drop test measurements - 'A/ITS load cell
[Depth I LO(1d I !2(Hz) I fa(Hz) I (2% I (3 % i
7
7
7
7
7
7

5Ievel +7 ton 1.048 1.927 2.25 2.42
5Ievel -7 ton 1.066 1.908 0.22* 2.60
5Ievel +7 ton 1.091 1.947 1.282 1.85
51evel -7 ton 1.114 1.981 0.701· 1.94
5Ievel +3 ton 1.108 2.021 0.798 -
Slevel -3 ton 1.118 - 0.951 I -

10
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Figure G.1: Drcn Test: Modal damping ratio (1 verses conveyance load
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Appendix ]j[

Lateral Damping of the
Catenary

Information concerning the lateral damping coefficients applicable to mine
hoist ropes is sparse. Vanderveldt et al [1973] examined the lateral damp-
ing coefficients obtained from a number of ~-in diameter 65-inch long wire
cables of different construction and material. The study concluded that:

o The dimensionless damping coefficient decreases with increasing axial
load, and in the case of the cables tested, this coefficient varied between
0.05-0.15 % of critical.

o The major component of the damping mechanism is due to coulomb
friction.

e The structural strength, heat treatment or alloy used is unrelated to the
damping mechanism.

o The rope construction and geometry significantly influence the damping
effort, however this is not strongly dependent on the number of wires,
but rather as speculated, a feature of wire/strand interaction and hence
construction geometry.

Although these results define broad dissipation characteristics of wire cable,
mine hoist ropes are of larger diameter, experience higher tensions, and longer
amplitude wavelengths dian those tested by Vanderveldt et al. Mankowski
[1988] experimentally simulated the energy loss of a typical mine hoist cable
undergoing non-planar whirling motion. The experimental apparatus mea-
sured the power loss in a.cable which was spun about its geometric axis, whilst
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being deflected to induce curvatui e along its length. This was achieved by sup-
porting a length of cable in thrust bearings, inclined so as to simulate cable
sag. The rotation of the cable about its geometric centre effectively simulated
the flexural effects of an irrotational cable undergoing non-planar whirl, and
hence the power 10s!3per cycle was directly related to the time rate of change of
rope curvature", Mankowski obtaired an empirical relationship between power
dissipation, rotational frequency, amplitude ~nd catenary span empirically as:

Watts

Where Pn is the internal power kiss for the nth mode, .4n is the amplitude of
vibration of the nth mode, Fn is the frequency of vibration (Hz), SSR is the sag
to span ratio defined as 2nAn. Mankowski determined the coefficients Gl,G2span.
for a cable which was of a similzr construction and size to that employed at
Kloof as 01= 42.75J and G2 = O.34m-l. The units of these coefficients were
related to the damping capacity and curvature characteristic of the rope.

The energy losses achieved were small, as reflected in table H.I, where the
calculated energy loss associated with the modal amplitudes observed at Kloof
Mine are tabulated. Mankowski [1990] extended this work to investigate the
effect of the power dissipation associated with a transverse kinetic shock trav-
elling up the rope. Although the research provides valuable results, the ex-
perimental method is limited, since although various sag to span ratio's were
achieved in the testing rig, the mean axial tension applied was significantly
lower chan that found in practice (the mean axial tension was varied between
1-30KN, whereas in practice the axial tension in the catenary varies between
120-300 KN). As it has been established that the dissipation mechanism is
likely to be dominated by friction, the dissipation measured is likely to be de-
pendent on the mean tension, which cannot be simulated correctly by the ex-
perimentaJ apparatus. Furthermore, as is shown subsequently, it appears that
aerodynamic drag may be as significant in practice as the damping mechanism
associated with the time rate of change of curvature. Although Mankowski
defines an empirical formula for the particular rope tested, relating power loss
to the steady state amplitude and frequency of motion, this particular for-
mat would be difficult to apply in a non-stationary simulation of the system.
However, the latter analysis of the power dissipation relating to transverse ki-
netic shocks may be valuable if a wave mechanics approach is adopted in the
simulation.

lThe time rate of chang of curvature is defined as Y:c:c,t! where y represents the amplitude
of the lateral motion. This implies a damping mechanism which is proportional to the
stiffness properties of the rope.
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H.I Aerodynamic Damping

Since the lateral damping mechanism in the rope is not well defined, and
Mankowski's[1988] tests indicate that the energy dissipation related to the
time rate of change of the rope curvature is low, it is likely that during rope
whip, aerodynamic drag may be significant, and warrants consideration. The
results of Mankowski's tests, which were conducted on a similar rope to that
employed on the Kloof mine are tabulated in table H.I, together with an
equivalent viscous modal damping coefficient''.

The following relations were applied to convert Mankowski's results into an
equivalent viscous and dimensionless damping coefficient:

where:

P represents the average power dissipation.X; represents the modal amplitude,
m represents the effective modal mass of the catenary, PR represents the linear
mass density of the rope, [e represents the catenary length.

H.1.l Aerodynamic Drag

Aerodynamic drag is proportional to the square of the rope velocity. Since
the transport cable velocity is significant compared to the lateral velocity of
the rope, the drag characteristic of the rope in the lateral direction is likely to
be difficult to assess accurately. An upper bound to the modal drag force is
estimated by neglecting the axial transport velocity of the rope, and treating
the rope as a cylinder in steady state cross flo-w. Treating the rope as a cylinder,

2The purpose of presenting Mankowski's data in this form, is primarily to provide a
comparative basis with respect to the equivalent aerodynamic dissipation, tabulated in table
H.2.
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with a drag coefficient of I, the drag force per unit length of rope is calculated
as:

Fd = ~PdIVI2 sign(V)

where V represents the absolute lateral velocity of the rope, p ~ lkg/m:&
represents the air density, and d represents the rope diameter. The modelling
of this drag force in modal space would be complex, as it would require the
calculation of the absolute velocity, as well as a projection of the drag force
onto the in and out of plane axes. For this reason: the following calculations
are performed for motion in a single plane.

H.1.2 Planar Motion

In modal space the planar velocity of the rope is expressed as:

n 11.

V(S)2 = [2:2:iPi(s)<Pj(s)ciiqj]
i=l j=l

1.1r
<I>i( s) - sine T;S )

Considering only direct coupling between the lateral catenary modes and the
drag force, ie i= i, the drag force for the ith mode is:

where d represents the cross-sectional diameter of the rope.

The modal dam! ;ng force is obtained by orthogonalising the drag force in
modal space:

Ie '

Q~ = i loT IFj(s)l<pi(S)ds
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Qi 1pdi r, .3(i7['s)d )'2' (')
d = '2-;;;:- io sui z;- s qj szgn q;

Qi 4pd'2' ( . )d = -3---qi szgn qi
1iPR

The equivalent viscous damping coefficient and average power loss during a
cycle are calculated as3:

(H.l)

(Aero = c~ero = 16pdXn
2mwn 97['2pR (H.2)

Hol.3 Non..Planar Motion

When the motion is non-planar, the absolute velocity vector of the rope is
composed of motions in both planes. In this case the drag force is:

where:

n n
V( S)2 = [2:L <Pi( s )<I>j(s)( qjqj + r\rj)]

i=l j=l

3For velocity squared damping, where the damping force is defined as Fd ;:: c2X2sign(X),
it can be shown [1978] that the equivalent viscous damping coefficient is defined as Ceq =
~"..inC2X, where X is the amplitude at frequency Wn
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The drag force in the v, w plane would be obtained as:

Fa, ~ Fd,cos(<f;)

Fa, = Pd,sin( <f;)

If one considers single mode behaviour in both planes simultaneously ie i == j 1

the modal force in each plane .would simplify to:

Ri 4pd (.2 '2)' (')
d = -3· .• qi + r'i sm <p

1rPR

where Q~,R~ represent the modal components of the aerodynamic drag force
in the v, w directions respectively.

If the the motion is circular ie q = i;then the rele "
equivalent viscous and non-dimensional r1.~illpin>~~
section would increase by V2.

.'1Pt>presented for the
nts in the previous
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Equivalent Aerodynamic Power Losses

Table H.2 represents the average aerodynamic power loss, for planar single
mode motion (Cd :-: 1). The equivalent viscous and dimensionless damping
coefficients are calculated via relations H.l,H.2 with the same parameters as
used by Mankowski. For non-planar circul~r whirl, these values should be
increased by ..;2,

It is likely that the drag coefficient is lower than 1 due to the axial transport
velocity, and hence this calculation represents an upper bound to the aerody-
namic dissipation. Nevertheless, even if a drag coefficient of 0.1 is assumed,
dissipation through aerodynamic drag may be as significant as the mechanism
proposed by Mankowski, especially in the fundamental mode.

Table H.l: Damping coefficients - M~nkowski[1988] -Kloof Mine

Mode Frequency Amplitude Power Loss Equivalent Viscous 1 Equivalent Modal .1
NO. Hz m Watts Damping Oeq (N s m) Damping ( %
1 1.12 1 7.6 0.306

T
0.007 ]2 2.24 0.575 46.21 1.413 0.016

3 3.tS 0.5 92.3 1.65 0.012
4 4.48 0.375 171.8 3.08 I 0.017

Table H.2: Damping coefficients - Aerodynamic -Kloof Mine

Mode Frequency Amplitude Power Loss Equivalent Viscous J Equivalent Modal]
No. Ez m Watts Damping Ceq (N s m) Damping ( %_j
1 1.12 1 112.9 4.56 l

-
2 2.24 0.575 171.8 5.25 0.06
3 3.36 0.5 381.3 6.84 0.05
4 4.48 I 0.a75 381.3 6.84 0.04
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H.a Damping Model Applied in the Simula...
t.ion

It is clear that in reality the damping mechanism is complex and falls beyond
the realms of this study. It is commonly found in dynamic analyses that the
most tenuous step an analyst can make is the assumption of one damping
mechanism over another. An inappropriate damping mechanism may change
the character of the response, as well as the amplitudes and consequently the
correlation between simulation and reality dramatically, This issue is further
complicated in this study, since the system is non-linear, and it is proposed
that the mechanism leading to whip :s related to the parametric stability of
the system, which is known to be sensitive to damping effort. In fact, al-
though viscous damping stabilises regions of simple parametric resonance, it
can be shown to have the reverse effect ~'Uregions of combination parametric
resonance (Nayfeh and Mook (1983]).

A numerical parametric study of damping would require substsn'Jal computa-
tional effort.which would be negated in the absence of an experimental research
efforv, For this reason, a relative proportional viscous damping mechanism is
applied, where the aspect of. the aerodynamic drag is left for future consider-
ation.



Appendix I

Video Measurement System.

Catenary vib ation on mine hoist· .ipes has received attention in the past
through computer simulation and analytical modelling. However, due to in-
strumentation difficulties associated with the rope transport speed, measure-
ments quantifying vibration levels or frequency content have not been per-
formed. This appendix describes the video measurement system which was
developed to measure the vibration of mine rope catenaries in situ.

JLl Video System

Motion analysis methods have been introduced in recent years, through the de-
velopment of frame grabber cards and high resolution CCD cameras (750x 750
lines). The principle of operation is simple; the motion of the object is recorded
via the video camera and recorder onto video tape. The recorded image is re-
played through the frame grabber card, frame by frame, where the; age is
digitised and the object is tracked via a numerical algorithm. The resolution of
the system is determined by the resolution of the recorder and frame grabber
card. The frequency bandwidth of the system is dependent on the framing
speed of the video equipment used. Standard video equipment is capable of a
framing speed of 25 frames per second, or a bandwidth of 12.5 Hz. It is possible
to double the framing speed at the cost of a lower frame resolution, by utilis-
ing a time lapse format video recorder, which formats the even and odd fields
sequentially. Thus the bandwidth is increased to 25 Hz, at the expense of the
effective image resolution (approximately 300x300 lines). This approach was
applied, as a bandwidth of 25Hz was considered . ~equate. Apart from its pas-
sive nature, this form of instrument has significant advantages over many other
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methods when low frequency measurements with minimal drift are required.
It is at a. disadvantage when one considers its relatively small bandwidth and
the possibility of aliasing the motion, which cannot be overcome. Thus it is
crucial that the response bandwidth lies within the system bandwidth of 25Hz.
Since catenary vibrations on mine hoist ropes lie well within this bandwidth,
the video meascrement system is ideally suited to this task.

:L2 Rope Tracking

This application requires the tracking of a travelling cope in a plane normal
to its axial direction. Zoom lenses are utilised to magnify the image to obtain
the maximum resolution. The rope is viewed against the sky, and by adjusting
the contrast the rope appears as a black bar on a white background. Since it is
possible to electronically superimpose two images from different cameras, it is
possible to track the 2D motion of the rope in a plane normal to its axis. The
set-up configuration, and resulting video image after mixing the two signals is
illustrated in figure 1.1,1.2. The tracking programme locates the vertical and
horizontal edge of the combined image, as illustrated in figure 1.2. The pixel
co-ordinates are stored on disk, and provide a direct measurement of the rope
motion.

][.3 Hardware Configuration

The hardware configuration of the the system developed is listed below. The
measurement and recording equipment required on site consists of two CCD
cameras, a camera synchronisation circuit, a signal mixer, a time lapse recorder
and a video monitor. The site test work revealed that the set up time and
measurement process was short and required no interference to normal mining
operations. The analysis phase required the time base corrector unit, which
is necessary to enhance the quality of the video synchronisation signal from
the video recorder, to the quality required by the frame grabber card. This
unit also compensates for signal drop out, thus providing a high quality freeze
capability. Once the vertical and horizontal edges of the rope had been located
via the frame grabber and software, the video recorder was automatically ad-
vanced one frame. This measurement was then stored in a data file and the
process was repeated. Typically 20 000 frames were processed for a complete
winding cycle.
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(i) Two Pulnix TM-765 CCD high resolution black and white video cameras.

(ii) '70-300mm Zoom lenses.

(iii) Two channel video camera synchroniser.

(iv) Two Channel Video mixer.

(v) National Panasonic Time lupse Recorder AG-6720

(vi) National Panasonic Time Base Corrector

(vii) Data Translation DT2853 Frame grabber card.

(viii) IBM compatible PC 386

IAl: Dual Camera Measurement

It was originally envisaged that the system would measure the two dimensional
motion of the rope, by focussing each camera at a.point on the rope, and sur-
veying the geometrical location of the cameras and their angle of inclination
from the horizontal plane. During an on site commissioning test, it became
apparent that although accurate measurements may be possible in a labora-
tory environment, the achievement of accurate geometrical positioning on site
is unlikely. This is mainly due to the fact that in order to focus both cameras
at the same point on the rope, the rope would have to be marked, wound
out and held stationary whilst the cameras were focussed, Consequently the
winding process would be interrupted, leading to a loss in production. It was
also clear that triangulation of the geometrical location of the cameras and
rope would require accurate surveying. In addition to this, it was also neces-
sary to monitor a series of winding cycles, so that optimum zoom adjustment
of the cameras was achieved to maintain the largest image within the field of
view, maximising the sensitivity of the system. Since the zoom on each cam-
era could be adjusted independently, a further variable would be introduced.
Nevertheless, with these reservations in mind, it was found in fact that with
little effort, the approximate two dimensional motion of the rope could be
successfully obtained.

The two camera system was also applied to track the catenary motion and
the lateral motion of the vertical rope at the shaft collar simultaneously. This
measurement provided evidence of the autoparametric excitation of the vertical
rope by the catenary.


