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Abstract

This work is concerned with the Inverse Eigenvalue Problem for ordinary

differential equations of the Stiirm-Liouville type in the general form

d ( ()dll(t\,:r)) {() ( )} ( ,--d 7' x I + q x - t\p:r u A, Xl = 0,
.1' c.r

(I :::: .7' S; b.

The central problem considered ill this research is the approximate reC011-

struction of the unknown coefficient function q(:l') in the Stiinu-Liouville cqua-

t JOIl Irom a given finite spectral data set ~i(q), for i = 1 : n . A solution is

sought using a finite element discretization method. The method works br

solving the non-Iinear system arising out of the difference between the eigen-

values A,(q) of the Sturm-Liouville differential equatiou and the given spec-

trnl data ~i(q). Numerical results me presented to illustrate the effectiveness

of the discretization method ill question.
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Chapter 1

Background and Introduction

Inverse Eigenvalue Problems (IEP) occur in many real life situations. Several

important motivating applications arise in the physical and social sciences

such as nuclear and molecular spectroscopy, structural analysis, vibrating

strings, graph partitioning, the educational testing problem, the problem of

communality which arises in factor analysis, control design, system identifi-

cation, seismic tomography, principal component analysis, exploration and

remote sensing, antenna array processing, geophysics, particle physics, cir-

cuit theory, mechanical system simulation and several others lead to closely

related variations of the model of IEP.

A significant common phenomena in all these applications is that the
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physical parameters of a certain system are to be reconstructed from the

knowledge of Its dynamical behaviour, in particular its natural frequencies

and (or) normal modes.

The classical Sturm-Liouville Pi oblem (SLP) consists of a linear second-

order ordinary differential equation written in the formally self-adjoint form

d ( du(>., x))-dx rex) dx +{q(x)->.p(x)}u(>.,x) =0, (1.1)

defined over an interval a :5 x :5 b with appropriate boundary condi-

tions (BCs) at a and b. Since about 1800, the study of the eigenvalues and

eigenfunctions of SLPs arising in mathematical physics has given rise to

many deep results of classical and modern analysis. An eigenvalue is a

value of >. for which (1.1) has a nontrivial solution subject to the BCs,

and the solution, unique up to scalar multiples, is the associated eigen-

function. The regular theory which dates back to Stiirm (1809-1882) and

Liouville(1803-1835) assumes that the coefficient functions are well-behaved.

Consider T(X), q(x), p(x) to be piecewise continuous with p strictly >0 on a

bounded closed interval [a.b]and that regular boundary conditions are im-

posed, namely
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The inverse nature of the problem requires that one (or more) of the co-

efficient functions in the differential equation be computed from a knowledge

of its spectral data. Classical theory insists that two full sets of eigenvalues,

each derived from a different set of boundary conditions, are necessary in

order to reconstruct an exact analytic coefficient function. Frequently, in

real-life situations, this amount of data is simply not available. A second

real difficulty is that the finite data available is also noisy.

The goal of this Research Report is to attempt to approximately recon-

struct the coefficient function q(x) in the regular Sturm-Liouville problem

(1.1) with the boundary conditions (1.2) and (1.3) anti given a finite number

of exact and noisy eigenvalues.

An early important result in this direction which gave vital impetus for

the further development of inverse problem theory, was obtained in 1929 by

Ambartsumyan ([1]). He proved that if we denote by '\0 < >'1 < A2 < ....

the eigenvalues of the Sturm-Liouville problem

_u" + q(x)u AU, (O:::;x:::;1l") (1.4)



where q(x) is a real continuous function, and if >"n = n'i. (n = 0, 1, 2, ...) then

q(x) == O.

The Swedish mathematician Borg ([4])was the first to indicate the imnor-

tance of Ambartsumyan's result. He was the first to carry out a systematic

investigation of an important inverse problem, namely, the inverse prob-

lem for the classical Sturm-Liouville equation of the form (1.4) from given

spectra. Borg showed that, in general, one spectrum does not determine a.

Sturm-Liouville equation, so that the result of Ambartsumyan is an excep-

tion to the general rule. In the same paper, Borg showed that two full spectra

of a Stiirm-Liouville operator for different boundary conditions determine it

uniquely. In this paper Borgproved the following:

Theorem 1 Let

(1.5)

where >"0 < >"1 < >"2 < ... and J.Lo < J.Ll < J.L2 < ... be two sets of eigenvalues

of (1.4) with boundary conditions (1.2) where {lm};n=1 and {hn}!=1 are real

numbers; then, the infinite sequences (1.5) determine the function q(x) and

numbers {lm} ~=1 and {hn} !=1 uniquely.

Immediately after Borg's paper had been published, important research

on inverse problem theory was carried out by Levinson ([14]). His 1949paper
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contains proofs of some of the results obtained by Borg. In the same paper,

he proved that in the absence of negative eigenvalues (bound states), a scat-

tering phase given for any positive energy and any fixed angular momentum

determines the potential uniquely.

Since Levinson's work, a number of important research papers on the

Inverse Eigenvalue Problem have been published. These include Yitshak

([24]) who worked on the Inverse Eigenvalue Problem for it vibrating system.

In this paper, he denoted the first 11. eigenvalues of a simply connected mass-

spring system by {Ai}~=l' He then supposed that a simple oscillator of mass

m and stiffness k is attached to the system and denoted the eigenvalues of

this system by {{Li}~=1' The central problem of his work was the construction

of the physical elements of the system from {Ai}~=1, {{Li}~=1 , m and k. Also,

classical approaches to determining the solvability of IEPs involve techniques

developed from algebraic theory and geometry. A list of some of the related

paners can be found in [[2], [7), [9j, [10], [11), [12], [15], [17], [23)).

Research on development and implementation of numerical algorithms for

IEPs has also received some attention. Published papers on numerical algo-

rithms using finite-difference schemes can be found in [[8), [20), [18], [19]). In

the paper by Richard H Fabiano, Roger Knobel and Bruce Lowe, ([20)) a cen-
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tred finite-difference scheme was used to reduce the inverse Sturm-Liouville

problem with Dirichlet eigenvalues to a matrix inverse eigenvalue problem.

In 1983 a paper was published by Wang and Garbow, ([22]), on a method

using Newton iteration and the least squares techniques to solve inverse real

symmetric eigenvalue problems. What has been said so far is a summary of

some previous work done in the area in question.

\Vhat follows in subsequent chapters is a description of the research work

we have pursued. It is a Computational M.Sc and therefore, we will not

concentrate on stating and proving theorems but rather on developing an

algorithm and computer programme for numerical and graphical representa-

tion of results.

The next chapter describes the Stiirm-Liouville system and the mathe-

matical and physical description of the problem. We will describe in chapter

3 the numerical formulation , analysis of the inverse problem and test our

ideas by considering numerical examples. In the concluding chapter, we will

discuss our results and give hints of future possible research work.
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Chapter 2

Numerical formulation of the

Inverse Problem.

We discuss in this chapter, the formulation of the inverse problem. There are

at: ast two inverse problems which could be considered for (1.1). The first,

we call the infinite inverse proble-n which consists of determining the function

q(x) given enough spectral data together with an asymptotic formula for the

computation of an infinite number of eigenvalues. The second is the finite

inverse problem.

In this research we shall assume that only a firdte amount of spectral data

has been collected. To solve such a finite inverse problem, we hope to produce
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a function q(x) which has approximately the correct spectral behaviour.

2.1 Finite Element Discretization Method.

A solution to the Stiirm-Liouville equation is sought using the Galerkin finite-

element method and a trial solution based on linear elements. The method

works by discretizing the problem. Here we consider a finite dimensional

subspace consisting of continuous piecewise linear functions. For this pur-

pose, we let a = Xl < X2 < ... < Xn = b be a partition of the interval [a" b]

into subintervals Ic = [Xi, &i+1J of length hi = xi+1 - Xi, i = 1 : n - 1. The

basis of the finite element method is to select a set of linearly independent

functions M(x), i = 1 : n, and then to look for an approximate solution to

the differential equation of the form

n
u(x) c= u(x) =LUjN.i(x).

j;=l

(2.1)

The problem now is to decide which basis functions to use and then how to

determine thl3 coefficients u.j, j = 1 : n, in such a way as to obtain u(x) as

the best approximation available.
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2.2 Derivation of Element Equations

The Galerkin weighted residual method forms algebraic equations by evalu-

ating the inner product (R, Ni) = 0, i = 1: n, that is

(2.2)

where

R(x;u) = -!(r(x)~~(.'\,x)) + {q(x) - Ap(X)}U(/\,x),

is a non-zero function called the residual of the equation. By substitution,

(2.2) will now become,

We will now consider the weak form of the governing equation (2.3) by

integrating the first term by parts once and rewriting as

lb dN du . lb lb-'r(x)-d dx + Niq(x)udx - A NiP(x)udx =
0. dx x a a

If we let

9



(2.5)

then the boundary term contains the flux f, but for the eigenproblem this

term must vanish from the system of equations. .ie boundary term occurs

in two different ways in the system of equations, that is fNi at each node on

the boundary of the domain, and as the difference of two such expressions

at each node on inter-element boundaries. In the first case, the boundary

conditions require that the terms vanish at the domain boundary nodes.

Thus, imposing f(x) = 0 and u(x) = 0 clearly eliminates the term and the

entire equation in which the term appears respectively. In the second case, a

nonzero difference in flux at an inter-element boundary represents an applied

concentrated load, however the eigenproblem does not permit applied loads.

Now, since the boundary term must vanish from the system of equations,

we will ignore it by eliminating it from the weak form of the element equa-

tions. By summing (2.2) over the number of elements we will obtain

n-1j(e)L RNidx=O,
e=1

i = 1 : n, which implies

10



n-l fee) dN du n-l (e) n-l (e)?; dx'r(x)dxdx+?;f NifJ(x)udx-A?;f Mp(x)fJ.dx=O,

(2.6)

where e denotes an element. Substituting the general form of the element

trial solution into the weighted residual equation in (2.6) , we obtain

(2.7)

Equation (2.7) is written in a conventional matrix eigenvalue proolem as

[AJ U = A [BJ u, (2.8)

where (Aj, Uj) is an eigenpair and [AJ= [KrJ + [KqJ. For a typical element

1X1+1dNi dNj
= -d r(x)-d dx,

Xi X X
(2.9)

The matrices Kr, Kq and B formed are all tridiagonal since

K rij = 0, K qij = 0, Bij = ° for all I i - j I> 1. We choose the linear basis
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functions {Ni}i,;;-l as

N;{x) = (2.10)

0, otherwise

where h = Xi+1 - Xi.

The only nonzero global trial functions on element e are N; and Ni-j-l,

and so Nk = 0on element e if node k does not belong to that element. If for

simplicity we assume that r(x) and p(x) are constants then we can generally

write for the element e, AW = 0, l, k =I=- i+ 1,

K ~~)= 1"'i+l(dNi)2d =:_rn r d ' X h'
Xi X

i= 1:n,

With the components of the element matrix K r(e) completely defined in this

manner and summing over all n - 1 elements, the entries of the matrix K r

are given by

12



1

Similarly, the matrix. B is given by

B='.::. 1 4
6

\

1

2 1

141

1 2

Now assume q(x) in the form q(x) = L:1=1 qlNi, where Ni and ql are piece-

wise linear basis functions and constants to be determined respectively. The

entries of the matrix Kq are then

(2.11)
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(2.12)

(2.13)

Evaluate the integrals in equations (2.11) , (2.12) and (2.13)to obtain

h
Kqii = 12(3qi + qi+1),

h
Kqi+1,i+l = 12 (qi + 3qi+l), i = 1 :n-1.

Inan expanded matrix form, we obtain the entries of Kq as

h
Kq=-

12

We can now write

(Kr + Kq)'u = ABu (2.14)

14



The problem may now be stated as follows: Given K r and the spectrum

{).i}f=l, we must approximately reconstruct the potential q(x) such that Kr+

Kq has the given spectrum. This is known as the additive inverse eigenvalue

problem CAIEP) which may be written in the form

A(q) =Kr+Kq. (2.15)

As indicated AIEP means that a given matrix K r is perturbed by the

addition of a specially structured matrix K q in order to match the eigenval-

ues.

In conclusion, we have discussed numerical formulation of the IEP by

the use of a finite element discretization method and have now obtained the

disc ',ized Sturm-Liouville differential equation in n by n matrix forms.
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Chapter 3

Numerical methods for solving

the finite IEP

We now discuss in this chapter, a numerical method for solving the finite in-

verse problem. Given distinct eigenvalues {5.;};=1 ' the method works by

solving approximately the nonlinear system ariring out of the difference

between the computed eigenvalues {/\(q)}~=land the given spectral data

{5.i} ;=1 . The general system of equations to be solved is

f(q) = =0. (3.1)



The overall algorithm is outlined as follows.

(i) Choose an initial q(x).

(ii) Use a well known documented routine to calculate ti exact eigenvalues,

(iii) (a) Use thes ..._...cact eigenvalues to reconstruct q(x).

OR (b) Use perturbed {~i}f=1to reconstruct q(x).

METHOD

Wenow solve the non-linear system in (3.1) by applying Newton's method.

This method gives a very efficient means of converging to a root, if a suffi-

ciently good initial guess is used. Newton's method is given by the following.

For some initial vector q, if I(q) = 0 where I denotes the column vector

of n components (fI,/?, ..., In)T and q is a column vector of n components

(ql, q2, ... , qn)T, if f(q) is continuously differentiable then,

BBli == J(q), i = 1 : n, j = 2 : n - 1
qj

where J is the Jacobian matrix and the range in j is due to boundary condi-

tiona imposed on qj. Newton's method is

(3.2)
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In each step of Newton's method we have to solve a system of linear equations

to obtain t::.qk. Now, from equation (2.14)

A = u(q)T(Kr + Kq)u(qj
u(q)TBu(q) (3.3)

Differentiating (3.3)with respect to qj, we obtain

OAi(q) Ui(q)T KqjUi(q)
oqj = Ui(q)TBui(q) , i = 1 : n, j = 2 : n - 1,

where K qj is the partial derivative with respect to qj of the system K q. Thus,

the components of the Jacobian of f is

(3.4)

and one step of Newton's method is defined by (3.2).

The system in (3.2) to be solved is over-determined and this is due to the

fact that the first and last elements on the leading diagonal of the system K q

were evaluated and kept fixed and as a result, the number of columns of the

system were reduced by 2 whilst that of rows were not changed. Solving this

over-determined system does not pose problems to MATLAB, a progranuning

language used in this research report because it uses the least-square method

to solve the over-determined system. MATLAB solves the system in question

18



directly by simply using the operator "\" as

Now, the method for solving (3.1) is as follows:

ALGORITHM

Choose a starting value qO.

Steps

for k = 1 :until convergence

1. Construct K r +K q.

2. Find the eigenvalues and eigenvectors of K r +K q .

3. Stop if

IIAi(qk) - ).;11, i = 1 : n is sufficiently small,

4. Form J(qk) by

5. Compute qk+l by solving the equation J(qk)(qk+l - qk) = - f(qk).

6. Form Kr +Kq.

19



--- - -------------------------

7. Find the eigenvalues {A(qk-rl)} and the corresponding eigenvectors

{u(l+1)} of Kr+Kq.

8. Repeat the process starting from (1) until (3) is satisfied.

End of algorithm.

3.1 Numerical Examples, Results and Com-

ments

In this section, we test our ideas by presenting numerical solutions to a few

examples of the Inverse Sturm-Liouville problem. The spectral data in each

test case for a given q(x) was computed using the well known documented

routine SLEIGN2 (SLN2) which :s described in ([6]). SLN2 is an interactive

and easy to use package. Throughout tests conducted, SLN2 performed in a

generally accurate and reliable manner ([16]). Its ability to solve problems

with exceptional robustness and very little user input makes it a first-class

code. Its robustness is far in excess of that of any other code which has

been used to test Sturm Liouville computations ([16)) . The SLN2 code can

be down-loaded from www.math.niu.edurzettl/s12/sleign2.f 0l1. the World

W.ideWeb.

20
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In choosing our examples for numerical experiments, we took into consid-

eration the fact that we have used l'near basis functions in the discretization

process. The examples include constant, linear, quadratic, transcendental,

function discontinuity, derivative discontinuity and oscillatory functions as

choices for q(x). The constant, linear and quadratic examples show the

behaviour of the method on low-order polynomials whilst the 2sin(2x) ex-

ample indicates its ability to handle simple trigonometric functions. In order

to simulate real-life situations, we also considered examples having function

rJ'scontinuity, derivative discontinuity and rapid oscillatory functions. The

latter three are simple models of shocks, waves of different tynos, earthquakes,

impulses in mechanical systems and so 011.

Our choice of these examples was motivated by the desire to test our

computational ideas on a problem in which a polynomial q(x) has an order

higher than the basis functions as well as on problems which approximate

real-life geophysical occurences,

In all the examples below, we consider the simple SLP

-Vii + q(x)u = AU, x E [a, b],

subject to u'(a) = u'(b) = 0 . We concentrate on derivative boundary con-

ditions in all our examples because they automatically help in our simpli-

21



fications as explained in section 2.2. q(x) is the coefficient function to be

reconstructed. With these numerical examples, we shall be able to point out

the strengths and weaknesses of the method used. We will discuss results

of solving test problems, investigate the accuracy of the method used and

determine how the choice of the number of eigenvalues and initial guess q(x)

affect the accuracy of the coefficient function q(x).

The table of values in each of the examples shows the 2-norm of the dif-

ference between SLN2 computed ("exact") eigenvalues Ai(q) and the eigen-

values 5..(q), i = 1:n, obtained by solving the inverse problem. We denote

this by 111112 = 11>.(q) - 5.(q)112 after the corresponding number of iterations.

In all our numerical examples, we will use q(x). * (randn(n, 1) * K + 1),

where 0 < K < 1 as the initial guess. The variable K determines the

closeness of this initial guess to q(x). The function rondnin, 1) is a built-in

MATLAB ft. .ction which defines ti random numbers. For best results, the

value of the tolerance (the difference between SLN2 computed eigenvalues

and eigenvalues obtained from inverse problem) should be kept small. The

tolerances used in all examples were in the range (10-6,10-3).

Examples 1-7 below are test examples to show the reconstruction of coef-

ficient functions q(x). The number of nodal points which correspond to the

22



number of Neumann eigenvalues used for a good approximation are in the

range of 40 _ 100. A good approximation here means that the coefficient

function q(x) was reconstructed with a very small relative error (see figures

1.2, 2.2, 3.2, 4.2, 5.2, 6.2 ). We also noticed that as we increased the num-

ber of discretized points which corresponds to the number of eigenvalues, a

better approximation of the coefficient function was reconstructed until the

accuracy of q(x) remained the same (see figures 1.1a, 2.1a, 3.1a, 4.1a, 5.1a,

6.1a). For examples]. through 6 the the accuracy of q(x) remained the same

for 60 and above SLN2 computed eigenvalues .

Example 7 was used as a test example to verify the effect of the method on

the number of turning points in the coefficient function to be reconstructed.

The accuracy remained the same for more than 100 SLN2 computed eigen-

values used for a coefficient function with two turning points. For more

than two turning points in the coefficient functions, poor approximations

were obtained and in some cases convergence was not possible for even more

than 100 SLN2 computed eigenvalues used (see fig 7.1). In all our graphs

1/ 0" represents exact solution and" _" represents approximate solution.
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Example 1

q(x) = 10, subject to u'(O) = u'(l) = 0, x E [0,1].

A graph of q_exact and q_approximate
10.06 r---,----r--,---r---,,..--.,..---,-----.--.-----,

10.04 ... ..

s
~ 10.02
.~
c.c.
j
"C
C
<U

id 9.98

9.96

9.94
0
L---L.

1
-__i--..l.--_J_--..lc__--L..-_.J_--L---L.-__j
~ M M M M M ~ M M

grid points

Fig lola

Fig 1.1a shows the reconstruction of q(x) = 10 from 40 SLN2 computed

eigenvalues. An increase in the number of SLN2 computed eigenvalues from

24



40 to 60 gives a better approximation of q(x). (See figs 1.1 and 1.2 below).

A graph of q_exact and q_approximate.
15r---.---.----r---.---.r---,---.----r---.--~

~~--O~.1----0L.2---0~.3----0L.4---0J.5----0~.6---~O.~7---0~.8--~O.L9--~
grid points

Fig l.lb

Fig 1.1b shows the construction of q(x) = 10 for n = 60 SLN2 com-

puted eigenvalues as exact input data. q(x) was randomly perturbed by

randn(n, 1) * 0.025 + 1 and used as initial guess. A graph of the relative

error, fig 1.2 and table 1.2 showing iteration number and convergence are
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respectively shown below.

A graph 01 relative error in q(xj

I
2 .r

I

Ig I
<I> 1.5 ; ..
<I>.~
:§
l.'!

. . .. .

1 I·
I

. .
..... : :. .: -: :, .0.5 ...

0.80.1 0.3 0.70.4 0.5 0.6
grid points

0.2

Fig 1.2

Table 1.2

Iteration No. Ilflh Iteration No. IlJlh
1 1.4e+OOl 7 2.3e-004
2 4.ge-OOl 8 1.0e-~
3 1.6e-001 9 7.2e-005
4 1.ge-002 10 6.4e.-00S
S 7.6e-003 11 5.2e-DOS
6 2.2e-003 12 1.0e-OOS

26
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o~--~ -L__~ L- __ ~· __~ ~ __ ~ __ -L__~
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.B 0.9

grid points

Fig 1.3

Fig 1.3 shows the graph of q(x) when q(x) is perturbed by randn(n,l) *

0.025+ 1 and used as initial guess. A graph of the relative error, fig 1.4 and

table 1.3 showing iteration number and convergence are respectively shown

below:
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0.06r---,----r--,---
A graph of relative error in q(x)

0.01

0.05

0.04
z,
0'

.5

~O.03
Q).~
iii
~

0.02

0.1 0.2 0.3 0. 0.5 0.6
grid points

0.7 O.S 0.9

Table 1.3
Fig 1.4

Iteration No. [Irlb Iteration No. II rl h
1 1.ge+OOl 6 9.3e-004
2 3.8e-OOl 7 1.0e-004
'"' 7.6e-002 8 3.4e-004J

4 2.4e-002 9 8.4e-005
5 8.4e-003 10 4.ge-005

28



Example 2

q(x) = x, subject to u'(O) = u'(1) = 0, x E [0,1].

A graph of q_exact and q_approxirnate

0.1 0.2 0.3 0.4 0.5 0.6
grid points

0.7 0.8 0.9

Fig 2.1a

Fig 2.1a shows the reconstruction of q(x) = z, using 45 SLN2 computed

eigenvalues. An increase in the number of SLN2 computed eigenvalues gives

better approximation of q(x). (See figs 2.1b and 2.2).
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1.2
A graph of q_8xact and q_approxlw'It8.
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E
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E
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-O.20L--0-'-.-1 --0.1-..2--0--'.-3 --0.J....4----'0.'-5--0...l..6- 0:7 0:8 0:9

grid points

Pig 2.1b

Fig 2.1h shows the construction of q(x) for n = 60 SLN2 computed eigenval-

ues as exact input data. q(x) was randomly perturbed by randn(n, 1)*0.05+1

and used as initial guess. A graph of the relative error, fig 2.2 and table 2.1
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fig 2.2 and table 2.1 showing convergence are respectively shown below:

A graph of relative error In q(x}

2.5 I ....__..........- ,,_;_.....-..- ....- .......- - ......-- _.......- ,;...-.-.........,_._ .........,.....,........;r"': __. ..... ,.....

0.5

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9
grid points

Fig2.2

Table 2.1

Iteration No. II1ib Iteration No. IIJJh
1 1.ge+OO2 7 5.0e-004
2 3.ge+OOO 8 1.7e-004
3 7.5e-OOl 9 l.le-004
4 9.8e-002 10 6.0e-005
5 1.2e-002 11 5.le-005
6 4.2e-003 12 3.0e-005
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Example 3

q(x) = x2, subject to u'(O) = u'(l) = 0, :r E [0,1]

0.9

0.8

A graph of q_exact and q_approximate

.!!! 0.7
'"E
.~ 0.6

~0"0.5 .. , ..... ~, ..
"C
C
OJ
00.4 ... , ..
'"~
olO.3

0.2

0.1

o 0.4 0.5 0.6
grid points

0.7 0.8 0.90.2 0.3

Fig 3.1a

Fig 3.1a shows the reconstruction of q(x) = x2 for 50 SLN2 computed eigen-

values. An increase in the number from 50 to 60 gives a better approximation.

(flee figs 3.Ib and 3.2).
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Fig 3.1b

Fig 3.1b shows the construction of q(x) from n = 60 SLN2 computed eigen-

values as input data. q(x) was perturbed randomly by ramdmlti, 1)*0.025+1

and used as initial guess. Since q(x) is symmetric, we only show the con-

struction in the interval [0,1]. A graph of relative error, fig 3.2 and table 3.1
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iteration number and convergence are respectively seen below:

X10-5
4.S;.:-:.;:..._-,--,.---,----.--.,--_-,-_-,-_-,_--,_---,

A graph of relative error in q(x)
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g t
CD 1
~ 2 I·
~
~

1.5

0.5 .. , .... ,;..

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

grid points

Fig 3.2
Table 3.1

Iteration No. Ilflh Iteration No, Ilflb
1 6.5e+OOO 6 2.1e-004
2 6.8e-OOl 7 ., . 1.0e-004
') 2.2e-002 8 6.7e-005

j --- 8.5e-003 9 5Ae-005!-_. 4
5 2.7e-003 10 4.2e-005....
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A graph of q_exact and q_approximate.
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Fig 3.3

Fig 3.3 shows the reconstruction of q(x) = x2 with a random noise of

(randn(n, 1) * 0.05+ 1) in the SLN2 computed eigenvalues.
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A graph of relative error in q(x)
0.018,--,---"T--,---,------r--.----.---,--..,..---,
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0.014
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grid points
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Fig 3.4
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Example 4

q(x) = 2sin(2x), subject to u'(O) = u'(~) = 0, x E [0,1].

A graph of q_exact and q_approximate

2

*E.~ 1.5
IS:
j
"C
c:
ttl

U 1 .
~
j

o o.z 0.4 0.6 0.8
grid points

1.2 1.4 1.6

Fig 4.1a

Fig 4.1a shows the reconstruction of q(x) = 2 sin 2x for 55 SLN2 computed

eigenvalues. An increase from 55 to 60 computed eigenvalues gives a better

approximation of q(x). (See figs 4.1b and 4.2).
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Fig 4.1b

Fig 4.1b shows the construction of q(x) for n = 60 SLN2 computed eigenval-

ues as input data. q(x) was randomly perturbed by randn(n, 1)*0.05+ 1 and

used as initial guess. A graph of relative error, fig 4.2 and table 4.1 showing
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showing iteration number and convergence are respectively shown below:

-3
1.2x 10 A graph of relative error in q(x)

°0~----OL.2-----0~.4-----0~.6-----0~.-8----_L-----1L.2-----1L.4----~1.6
grid points

Table 4.1 Fig4.2

Iteration 1"\0. Ilflb Iteration ~o. illih
1 S.5e+001 7 8.0e-003
2 2.0e+000 8 2.ge-003
3 -i.le-OO 1 9 l.le-003
-i 1.4e-00 I 10 4.2e-004
5 S.5e-002 11 15e-004

1---'6 2. 1e-002 12 4.8e-005

In fig 4.3 , we show the sensitivity of the method to noise in the computed

eigenvalues. A random noise level of randn(n, 1) *0.05+1 is applied to SLN2

computed eigenvalues. Initial guess of q(x). *randn(n, 1) * 0.05 +1was used.
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Fig 4.4 shows a graph of the relative error.

A graph of q_exacl anrf q_appr('ximale.
2.5.----.,..-----.---r----r----r----r----,----.

~
E
.~
0.
0.

d
'C
C..
g
~

Fig 4.3

Fig 4.3 shows the reconstruction of q( x) = 2sin 2x with a random noise of

(randn(n, 1) * 0.05+ 1) in the SLN2 computed eigenvalues.
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Fig 4.4

Example 5

q(x) = {
2 0:::; x 5 0.5

3, 0.5 < x:::; 1

and subject to the boundary conditions ul(O) = ut(l) =O.
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1.Bo'--o-'-.1----Jo.c...2---:o.L..3---L-~O.L....5--0..L.6----J--O.L..B--O..L.9---,
grtd points

Fig 5.1.

Fig 5.1 shows the construction of q(x) for n = 60 SLN2 computed eigenvalues

as input data. q(x) was randomly perturbed by randn(n, 1) * 0.025+ 1 and

used as initial guess. A graph of relative error, fig 5.2 and table 5.1 showing
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5.1 showing iteration number and convergence are respectively shown below:

A graph of relative error in q(x)
0.02.----r---,----r----,--"---,---,----.--..,--,

, , . , .
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0.006 .......~... - ... , ;. :. .

0.004 · ...... -: : , : ; .· .· .
0.002 .••.••.-••.........:..•...... ";•..•.•..• !.••••.•.

~ ~ ~ M M M M ~ U U
grid points

Fig 5.2

TableS.1

Iteration No. IIJI h Iteration No. Ilflb
1 1.ge+OOO S 6.5e-00S
2. 3.7e-003 6 6.0e-00S
3 1.2e-004 7 S.2e-OOS
4 7.5e-OOS 8 3.1e-00S

Example 6

{

4x2, 0 s x s 0.5
q(x) =

4(x _1)2, 0.5 < x::; 1
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and subject to the boundary conditions u'(O) = u'(1) = O.

*.~ 0.6

ea.a.
'"J 0.4
-g
'"
~d 0.2

A graph of q_exact and q_approxlmate.

0.8

-0.20 0.1 0.2 0.3 0.4 0.5
grid points

Fig 6.1

Fig 6.1 shows the construction of q(x) for n = 60 SLN2 computed eigenvalues

as input data. q(x) was randomly perturbed by randn(n, 1) * 0.05+ 1 and

used as initial guess. A graph of relative error, fig 6.2 and table 6.1 showing
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A graph of relative error In q(x)

6.1 showing iteration number and convergence are respectively shown below:
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grid poln\s

Fig 6.2
Table 6.1

Iteration No. Ilflb Iteration No. Ilflb
1 6.6e-OOl 4 5.4e-005
2 6.2e··OO4 5 l.le-005
3 1.5e-004

The graphs in Fig 6.3 and Fig 6.4 below show the construction of q(x)

and the relative error respectively when q(x) was perturbed randomly by

randn(n, 1) * 0.5 + 1 and used as initial guess.
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A graph of q_exact and q_approximate.
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Fig 6.3
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A graph of relative error in q(x)
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Example 7

q(x) =sin(2x) , and subject to u'(O) = u'(,rr) = O.

A graph of q_exact and q_approximate

~
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-1 : .
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o 0.5 1.5 2
grid points

2.5 3

Fig 7.1

3.5

Fig 7.1 shows the construction of q(x) for n = 100 SLN2 computed eigenval-

ues as input data. q(:r) was randomly perturbed by randn(n, 1) * 0.0025+ 1

and used as initial guess . In examples with more than two _. ruing points

not reported, we attempted to reconstruct q(x) without much success. (See
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example 7).

3.1.1 Sensitivity of data to random noise

The sensitivity of the method to noise is investigated. In the examples shown,

we calculated our spectral data using SLN2. In real-life situations, data ob-

tained by other means (e.g experiment) may contain noise. To test our ideas

L'orsuch noisy data, we investigated the sensitivity of the SLN2 computed

eigenvalues to random noise of (randn(n, 1) *K + 1, where 0 < K < 1. The

variable K in this case allowed us to determine the noise level. Curves (figs

3.3 and 4.3) obtained as a result of noise in data were not smooth but the

least-square method can be used to smoothing them for better approxima-

tions.
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Chapter 4

Concluding Remarks

The goal of this research report has been to use a finite element discretiza-

tion method to investigate the approximate reconstruction of the coefficient

function q(x) in the Sturm-Liouville differential equation given a finite set of

Neumann eigenvalues. We have so far dealt with coefficient functions that

range from low order polynomials (constant, linear and quadratic), higher or-

der to slowly and more rapidly oscillating functions, a discontinuous function

and a simple approximation to shock.

Examining our work, we find that the use of the finite element method

in question appears to be an effective way of solving the rEP. Some com-

putational evidence was used to show how these can be obtained in prac-
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tice. Promising results were discussed although basis functions used were lin-

ear.

The following are noted. Although linear basis functions are easy to

program it may not be very effective for the reconstruction of coefficient

functions that are of very high order. The numerical scheme developed uses

equispaced discretized points which inight not be efficient for certain coef-

ficient functions. Too little or no work has been done on Sturm-Liouville

inverse eigenvalue problems with periodic and Dirichlet-Neumann boundary

conditions.

It may therefore be necessary to investigate the inverse Stiirm-Liouville

problem with the application of more sophisticated schemes such as the ap-

proximate reconstruction of at least two coefficient functions, the application

of basis functions of higher orders, variable discretized points subject to any

of the aforementioned boundary conditions.

It is therefore hoped that this will serve to stimulate our research further

in future, concentrating mostly on problems and research areas identified

above.
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Chapter 5

Appendix

Programmes

Matlab is the programming language used in this research report. It is

well suited for this study because it allows interactive experimentatio·· and

graphical insights into the behaviour of methods and functions. It is also de-

signed for easy computation of various matrix based scientific and engineer-

ing problems. A remarkable feature of MATLAB is its graphic capabilities.

Below is the programme.
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function [q,it]=newt13(a,b,n,tol)

% ****************************************************************
% solving the additive invers'leigenvalue problem by the *
% finite element discritization method, that is the programmme *

% approximately rElconstructs the potential q from *

% -u"+(q(x)-lambda)u=O where lambda is a given set of spectral *

% data (the spectral data involved consist of partial information*

% of the eigenvalues). a,b are initial and final values of x, n *

% is the length ()fthe reconstruction vector, h is the increment *

% in x and tol is the tolerance. *
% *********~~**~******************.*******************************
format compact

format long e

h=(b-a)/(n-1);

x=[a:h:b];

load eigval.dat

lambda=eigval(:,1);

q=input initial q

%load gi 'sn spectrum

%initial guess of q
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[B,KrO]=constmat(n,h); %function assembling constant matrices

it=O;

Kq1=zeros(size(B));Kq2=zeros(size(B));Kq3=zeros(size(B));

Jb=zeros(size(B));

z1=[1,1,O;1,4,1;O,1,O] ;z2=[4,1,O;1,4,1;O,1,O];

z3=[O,O,O;O,4,1;O,1,1]; %elements of the matrix Kqj

Kq1(1:3,1:3)=z1;Kq3(n-2:n,n-2:n)=z3;

ndf=1000;

while ndf>tol

Kq=recmat(a,q,n,b,h); %function assembling reconstruction

%matrix

sum=KrO+Kq; %summation of constant and reconstruction

%matrices KrO and Kq respectively

[v,lam]=eig(8um,B); %computation of eigenvalues 'lam' and the

%corresponding eigenvectors 'v' of the

[lam,vJ=eigsot(lam,v);

df=lam-lambda;

%function updating sorting

%update solution of nonlinear

%system
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ndf=norm(df); %monitors rate of convergence

%at each iteration

Jb=Jacmat(n,v,B,Kq1,Kq2,Kq3,z1,z2,z3,h); %function computing

newq=q-(Jb\df);

%Jacobian

%over-determined system

q=newq;

it=it+1;

end

q_exact=exact values of the coeff. function q(x) for grph work:

disp('please enter to see graph')

pause

plot(x,q_exact,'o' ,x,q);

xlabel('grid points');ylabel('q_exact and q_approx.'),grid on;

gtext (j II0 II reps. exact and u.,u reps. approx.')

title('A graph of q_exact and q_approx.')

function [B,KrO]=constmat(n,h)

% This function computes the entries of the n-by-n

% symmetric tridiagonal matrices B and KrO.

B=zeros(n,n);
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KrO=zeros(n,n);

B(1,1)=2;

KrO(l,l)=l;

for i=2:n-l

B(i-l,i)=l;

B(i,i-l)=B(i-l,i);

B(i,i)=4;

KrO(i-l,i)=-l;

KrO(i,i-l)=KrO(i-l,i);

KrO(i,i)=2;

end

B(n-l,n)=1;B(n,n-l)=B(n-i,n);B(n,n)=2;

KrO(n-l,n)=-l;KrO(n,n-l)=KrO(n-i,n);KrO(n,n)=l;

B=(h/6)*B;

KrO=(l/h)*KrO;

function Kq=recmat(a,q,n,b,h)

% This function computes the entries of the n-by-n

% symmetric tridiagonal matrix Kq which contains the

% coefficient function q(x).
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Kq=zeros(n,n);

Kq(1,1)=30+q(2);

Kq(1,2)=q(1)+q(2);

for i=2:n-1

Kq(i,i-1)=q(i-1)+q(i);

Kq(i,i)~4*(q(i)+q(i+1»);

Kq(i,i+1)=q(i)+q(i+1);

end

Kq(n,n-1)=q(n-1)+q(n);

Kq(n,n)=q(n)+30;

Kq=(h/12)*Kq;

function [lam,v]=eigsot(lam,v)

% This function sorts the eigenvalues "laru"and the

% corresponding e~genvectors "v".

1am=diag (lam);

[lam,eip]=sort(abs(lam»;

v=v(:,eip);

function Jb=Jacmat(n,v,B,Kq1,Kq2,Kq3,z1,z2,z3,h)

% This function computes the entries of the Jacobian matrix Jb.Kq1 is the
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% matrix obtained as a result of the partial derivatives of K~ w.r.t q2,

% Kq2 is w.r.t qi, i=3:n-1 and Kq3 is w.r.t qn. zl,z2,z3 are submatrices

% of Kq1,Kq2 and Kq3 respectively.

for k1=1:n

Jb(k1,1)=(1/(v(: ,k1). '*B*v(: ,k1)))" 'v(:,k1). '*Kq1*v(: ,k1));

end

k2=2;

while k2<=n-l

Kq2(k2-1:k2+1,k2-1:k2+1)=[4,1,O;1,4,1;O,1,O] ;

for i=l:n

JbCi,k2)=(1/(v(:,i).'*B*v(:,i)))*(v(:,i).'*Kq2*v(:,i));

end

Kq2(k2-1:k2+1,k2-1:k2+1)=zeros(3,3);k2=k2+1;

end

for k3=1:n

Jb(k3,n)=(1/(v(:,k3).'*B*v(:,k3)))*(v(:,k3).'*Kq3*v(:,k3));

end

Jb=(h/12)*Jb;
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