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Abstract 

Non-communicable diseases, including cardiovascular disease (CVD), are on the rise in 

African populations. High serum LDL cholesterol (LDL-C) levels is a risk factor for CVD, 

but the contribution of high LDL-C levels to CVD in African populations remains poorly 

understood. Genetic variation in the LDLR, APOB, PCSK9 and LDLRAP1 genes is 

known to be associated with alteration in LDL-C levels in many populations. This study 

aims to examine whether genetic variants in these four genes are associated with 

differing LDL-C levels in African populations, considering LDL-C as a polygenic trait. 

Publicly available African whole genome sequence data were interrogated, and variants 

were selected for genotyping using functional predictive bioinformatics tools. Participants 

(n=1000) from the AWI-Gen study were selected using a case-control study design 

based on clinical cut-offs of LDL-C levels (500 with LDL-C>3.5 mmol/l, 500 with LDL-

C<1.1 mmol/l). Genotyping was carried out on 19 selected SNPs chosen from across 

the four genes. Logistic regression analysis revealed that, after adjusting for sex, fasting 

glucose levels, BMI and geographic region, the minor alleles at two SNPs remained 

significantly associated (p<0.05) with low LDL-C levels - LDLRAP1 rs12071264, c.533-

22A>G (OR 0.5866, p<0.01) and APOB rs6752026, c.433G>A (OR 0.6898, p=0.04). 

The minor alleles G and A, were associated with lower LDL-C levels, suggesting gain of 

function effects. The variant alleles at both loci are extremely rare in European 

populations (MAF<0.001) and this may explain why they have not previously been 

reported in LDL-C association studies. Since African populations, in general, have 

reduced LDL-C levels these variants could be African-specific LDL-C associated 

variants and may suggest a unique gene-environment interaction. Using a limited 

number of potentially functional variants in African populations and after extensive 

adjustment for potential covariates, significant associations were detected with variants 

in two of the four genes studied.  
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1. Introduction  

The incidence of non-communicable diseases (NCDs) is on the rise in Africa as well as 

Southern Africa (Mayosi et al., 2009), with an estimated increase of 10% by 2030 (World 

Health Organisation, 2015). One reason is that the marginalisation of NCDs has resulted 

in the lack of treatment and prevention for NCDs. This has contributed to an increase in 

NCDs (Mayosi et al., 2009). Another contributory factor is the change of lifestyle 

experienced by many urbanising African communities: an increase in the intake of high 

calorie, Westernised food, accompanied by reduced physical activity (Mayosi et al., 

2009; Agyepong et al., 2017). In 2014, NCDs accounted for 43% of total deaths in South 

Africa (World Health Organisation, 2014). In addition, it is now becoming apparent that 

underlying genetic factors also play a role in predisposing to NCDs.  

The most prevalent NCD worldwide is cardiovascular disease (CVD) (Mayosi et al., 

2009). CVDs are disorders of the heart and blood vessels which include, but are not 

exclusive to, coronary heart disease, congenital heart disease and rheumatic heart 

disease. These diseases predispose individuals to heart attacks and strokes and can 

often lead to premature death if not treated early enough. CVDs are the leading cause of 

death worldwide (Sidney et al., 2016; World Health Organisation, 2017), with an 

estimate of 17.7 million deaths in 2015 due to CVD globally. This is approximately 33% 

of all deaths worldwide (World Health Organisation, 2017).   

South Africa, and Africa, face a unique situation in which there is a rapid rise in the 

health burden (due to communicable and non-communicable diseases), along with an 

increasing population size. The population of people under age 25 years in sub-Saharan 

Africa (SSA) is estimated to double to 450 million by 2050, placing a foreseeable large 

health burden on the continent attributed to the predicted rise in NCDs (Agyepong et al., 

2017). Studies have demonstrated that genetic variants play a role in conferring risk to 

NCDs (Wooster et al., 1995; Williams et al., 2008; Walley, Asher and Froguel, 2009). 

Therefore, research is imperative in characterising genetic diseases and genetic profiles 

in African populations to aid the pathway to preventative, and hopefully to personalised, 

medicine. The emphasis on genetic research forms part of the Lancet Commission on 

the future of health in SSA (Agyepong et al., 2017), specifically to reduce the rise of 

NCDs and to provide treatment for priority CVDs.    
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Over 75% of deaths caused by CVDs in 2012 occurred in low- and middle-income 

countries (LMICs) (World Health Organisation, 2017). In 2015, 1.6 million deaths were 

attributed to CVD in Africa, and this number is expected to increase to 2.6 million by 

2030 (Barr et al., 2016). Death due to CVD is common in South Africa (Steyn and 

Fourie, 2007) and 38% of deaths related to NCDs were due to CVDs in 2013 (Keates et 

al., 2017). Two main factors contributing to the steady rise of CVDs in Southern Africa 

are increased urbanisation and prevalent CVD risk factors, like obesity and 

hypertension. Socioeconomic status is changing for many, and as a result, so do eating 

habits and physical activity. Intake of foods that are higher in fats and sugars are 

increased and physical activity decreases, causing a rise in the risk of CVD (Mayosi et 

al., 2009; Soko, Masimirembwa and Dandara, 2016). Studies have found that infectious 

diseases such as HIV/AIDS and TB can also increase risk of CVD. Given the high 

burden of HIV in African populations, this increased risk of CVDs is significant (Huaman 

et al., 2015; Soko, Masimirembwa and Dandara, 2016). 

In European populations, common risk factors for CVD include hypertension, 

dyslipidaemia (Wilson et al., 1998),  diabetes (Bonora and Muggeo, 2001) and obesity 

(Bastien et al., 2014). However, the contribution of these factors to CVD in Africa is 

unknown. As a result, the importance of research in this area is crucial to enable 

informed health care decisions going forward. In this study we focus on one of the 

known risk factors for CVD: high levels of cholesterol, particularly low density lipoprotein 

cholesterol (LDL-C). As data is limited on both CVD and LDL-C levels in African 

populations, it is important to investigate LDL-C levels and determine whether they are a 

major contributing factor to CVD in these populations.  

Cholesterol is a type of lipid molecule, synthesised naturally by all animal cells, but 

primarily by liver cells, and transported in the blood to sites in the body where it is 

needed. It plays an essential role in the animal cell membrane by controlling fluidity and 

maintaining the barrier between the environment and the cell. The body also uses 

cholesterol to create steroid hormones and bile acids, and it is essential in making up 

the myelin sheath of axons (Brown and Goldstein, 1986). Most importantly, elevated 

cholesterol in the blood can lead to CVD. 
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When physicians measure cholesterol/lipid levels, they usually look at triglycerides, LDL-

C and high-density lipoprotein cholesterol (HDL-C). LDL and HDL are lipoproteins that 

carry cholesterol around the body. High levels of HDL-C are protective and are caused 

by positive changes in lifestyle: exercise, losing weight and reducing cigarette smoking. 

It is protective because HDL helps to carry cholesterol found in blood vessel walls back 

to the liver (Toth, 2005). In contrast, high levels of LDL-C have a deleterious effect by 

contributing to causing CVD.    

High LDL-C levels are often caused by consumption of fatty, processed foods and 

physical inactivity, but can also be caused by predisposing genetic factors. A study done 

by Snieder, van Doornen and Boomsma, (1999) found that the heritability of LDL-C is 

more than 50%. A study conducted by Weiss et al., (2006) reports similar heritability 

estimates in the range of 40-60%. Another study by Beekman et al., (2002) shows that 

there was 83% heritability of LDL-C in a pair of monozygotic Dutch twins. Despite the 

high heritability, there is still variance that is not accounted for. In the general population, 

LDL-C levels have multifactorial origins (genetics plus the environment).  

Mendelian or monogenic disorders involving high LDL-C are most often highly 

penetrant. This makes the identification of a causal or associated variant less complex 

than multifactorial disorders (Antonarakis and Beckmann, 2006).  A common Mendelian 

disorder caused by high LDL-C levels is familial hypercholesterolaemia (FH) (Stecher 

and Hersh, 1949; Arnett and Shah, 2014). 

1.1. Dyslipidaemia  

Dyslipidaemia refers to abnormal lipid profiles, where an individual has lipid levels (LDL-

C, HDL-C, triglycerides or total cholesterol (TC)) higher (LDL-C>5 mmol/l) or lower (LD-

C< 3.5 mmol/l) than the normal range  (Durrington, 2003). In this study the focus is on 

high and low levels of LDL-C, specifically, in the blood plasma. Dyslipidaemia and lipids 

will refer to high or low LDL-C levels in this study. Cholesterol is transported in the blood 

by lipoproteins. It moves into and out of cells using cellular mechanisms and specific 

proteins. Too much cholesterol in the bloodstream results in a build-up of plaque in 

artery walls which leads to CVD, therefore, the level of cholesterol in the bloodstream 

needs to be kept within an optimal range.  
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Several lipoproteins transport cholesterol in the blood, with the two most common being 

LDL and HDL. LDL-C binds to its receptor, low density lipoprotein receptor (LDLR), and 

this complex is internalised into the cell. Once inside the cell, LDL-C regulates 

cholesterol levels by inhibiting the production of cholesterol in cells by supressing the 

cholesterol producing enzyme: 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase 

(Brown, Faust and Goldstein, 1975). Various variants in the genes involved in 

cholesterol metabolism, namely LDLR, low density lipoprotein receptor adaptor protein 

(LDLRAP1), apolipoprotein B (APOB) and proprotein convertase subtilisin kexin type 9 

(PCSK9), result in elevated levels of LDL-C in the plasma.  

High levels of LDL-C, referred to as hypercholesterolaemia, over prolonged periods, 

have negative effects. For example, LDL-C can build up on artery walls to form plaques, 

restricting blood flow to and from the heart. In monogenic cases, e.g. FH, the build-up of 

LDL-C starts from birth and although asymptomatic, can present with end-stage 

consequences such as premature heart attacks or strokes (Wiegman et al., 2015). 

FH, an autosomal dominant trait, is the most common single gene disorder in the world 

(Genest, 2017), with between 14 and 34 million affected people worldwide 

(Nordestgaard et al., 2013). It is characterised by high levels of LDL-C in the plasma 

(fasting LDL-C level of  >5 mmol/l) (Catapano et al., 2016). FH can be caused by 

variants in several different genes that affect the uptake of cholesterol by cells, or the 

metabolism of cholesterol once taken up by cells. Amongst the many types of familial 

hyperlipidaemias, FH is classified as type IIa, where variants affect levels of only LDL-C 

(Hegele, 2009). Other types of hyperlipidaemias affect different lipids, such as HDL-C, 

triglycerides and very dense lipoproteins. 

The phenomenon of low levels of LDL-C in the blood is known as hypolipidaemia. While 

this form of dyslipidaemia is significantly more rare than hyperlipidaemia, it can be 

protective against CVD and can promote longevity (Hooper, van Bockxmeer and 

Burnett, 2005; Langsted et al., 2016). Familial or genetic forms of hypolipidaemia are not 

well characterised due to many different genes having been associated with the disorder 

(Hooper, van Bockxmeer and Burnett, 2005). Specific types of variants, i.e. gain of 

function or loss of function variants in PCSK9 specifically, are now known to cause low 

or high levels of LDL-C, respectively. Two of the most well described genes associated 
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with hypolipidaemia are PCSK9 (Abifadel et al., 2003) and APOB (Hooper, van 

Bockxmeer and Burnett, 2005; Schonfeld, Lin and Yue, 2005). 

1.2. Clinical relevance of dyslipidaemia 

There have been reports of loss of function variants in PCSK9 causing low levels of 

LDL-C in different populations (Marais et al., 2015). One loss-of-function variant (R46L) 

was identified in a Danish population (Langsted et al., 2016). Two nonsense variants 

(Y142X and C679X) were identified in African Americans, with an observed 40% 

reduction in LDL-C levels in carriers (Cohen et al., 2005). In a group of 653 Zimbabwean 

women, only the Y142X variant was identified that lowered levels of LDL-C (Hooper et 

al., 2007). Individuals with low levels of LDL-C are at an advantage, as there is an 88% 

reduction in risk of CVD (Cohen et al., 2006) and a 30% lower incidence of ischemic 

heart disease (Benn et al., 2010; Langsted et al., 2016). There are no particular 

symptoms associated with low levels of LDL-C.  

On the other hand, high levels of LDL-C have deleterious effects in humans, having a 

direct correlation to CVD and death at early ages. The most dangerous aspect of high 

LDL-C is probably that there are no obvious symptoms. Often, individuals are only made 

aware of their high LDL-C status only once they, or close family members, have 

experienced an early CVD event such as cardiac arrest before the age of 55 (men) or 60 

(women) (Nordestgaard et al., 2013; Farnier et al., 2017). Thus, it is imperative to 

diagnose hypercholesterolaemia as soon as possible, as cholesterol build-up begins in 

the foetus and increases over time, putting emphasis on preventative treatment and 

lifestyle changes (Wiegman et al., 2015).  

Familial hypercholesterolaemia (FH), an autosomal dominant trait, is diagnosed 

according to defined clinical criteria. The three most commonly used guidelines are 

defined by the Make Early Diagnosis to Prevent Early Death (MEDPED) programme, the 

Dutch Lipid Clinic Network (DLCN) and the Simon Broome Registry Group (SBRG). A 

patient is diagnosed with hypercholesterolaemia if they have: 

a. LDL-C > 4 mmol/l 

b. Family history of CVD 

c. Phenotypic presentations of hypercholesterolaemia 
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A 

B C 

Figure 1.1: Visual representations of hypercholesterolaemic symptoms. A: Xanthelasma: 
fat deposits around the eye. B: Xanthoma: fat deposits around tendons. C: Corneal 
arcus: circular grey ring formed by fat deposits around iris. 
Images taken from: A: https://en.wikipedia.org/wiki/Xanthoma, B: 
http://www.texasfootdoctor.org/xanthomas-of-the-achilles-tendon.html, C): 
http://www.iridology-swansea.co.uk/corneal-arcus/ 

The phenotypic presentation of hypercholesterolaemia includes xanthomas, 

xanthelasmas, corneal arcus (figure 1.1) and premature CVD. However, these 

symptoms generally only present on patients with extremely high LDL-C levels, and in 

older patients (Brown and Goldstein, 1974). Heterozygous FH patients often experience 

CVD before the age of 55, and homozygous patients before the age of 20 

(Nordestgaard et al., 2013).   

 

  

 

 

 

 

 

 

There are several potential confounders that affect lipid levels, the most important being 

HIV infection, particularly relevant in SSA. HIV infection and its treatment are reported to 

have various effects on lipid levels. In a South African cohort from Limpopo, Vos et al. 

(2017) report on HIV infection being associated with low LDL-C levels. Anastos et al. 

(2007) found that women treated for HIV had higher levels of LDL-C. Ritonavir, 

indinavir/ritonavir and nelfinavir were specifically associated with high LDL-C, indicating 

that the type of treatment affects lipid levels. This in turn affects the chances of a patient 

experiencing CVD (Sandler et al., 2014; Zhou et al., 2015; Zidar et al., 2015). These 

studies suggest that HIV infection and HIV treatment affect LDL-C levels independently. 

In addition, there is evidence to suggest that HIV also affects levels of insulin, where HIV 

https://en.wikipedia.org/wiki/Xanthoma
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infected men more often have diabetes than women (Palmer et al., 2014; Koethe et al., 

2016).  

Diet, as an environmental factor, also affects lipid levels. A study carried out on a 

Japanese population showed that with conforming to a Western way of life, LDL-C levels 

increased (Egusa et al., 1993). A group of Japanese between the ages of 30 and 69 

years from Los Angeles and Hawaii were used as Westernised participants. Japanese 

participants of the same ages were recruited from Hiroshima, where a more traditional 

diet was followed. They found that the Japanese population that was Westernised had 

increased intake of animal protein, and decreased consumption of vegetable/plant 

protein. As a result, they had increased levels of LDL-C levels. Diabetes was also 

increased in the population that adopted the Westernised diet.  

Obesity is also found to be a factor that affects LDL-C levels. A Canadian study of 

16 000 individuals, aged 18 to 74 years, found an association between obesity and lipid 

levels, amongst other phenotypes. The study found that obesity was correlated with 

raised LDL-C levels (Reeder et al., 1997). A study conducted in Thailand reports three 

times higher LDL-C levels in obese individuals compared to non-obese individuals 

(Kulanuwat et al., 2015) and Magkos, Mohammed and Mittendorfer (2008) found a 50% 

increase in LDL-C levels in obese individuals compared to lean individuals. 

It is understood that HIV infection, diet and obesity can act as confounders when 

studying LDL-C levels.  

1.3. Treatment of dyslipidaemia 

The revised world frequency for heterozygous FH is closer to 1 in 250 (Akioyamen et al., 

2017) individuals than the previously reported 1 in 500 individuals (Austin et al., 2004) 

and this can be attributed to FH being largely underdiagnosed in earlier studies, or the 

definition having been revised in the more recent studies (Nordestgaard et al., 2013; 

Watts et al., 2014). It is recommended the LDL-C levels higher than 5 mmol/l (160 

mg/dl) in adults be treated with medication and a change in lifestyle needs to be 

introduced (Jialal and Barton Duell, 2016).  

Homozygous FH cases are rare with frequencies of 1 in 160 000 to 300 000 (Cuchel et 

al., 2014). These patients present with very high levels of LDL-C, i.e. >10 mmol/l 
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(400mg/dl) and are especially difficult to treat (Jialal and Barton Duell, 2016). 

Homozygous patients require immediate treatment and care as lack of treatment can 

lead to early CVD and death before the age of 20, making early diagnosis and 

intervention very necessary (Versmissen et al., 2008). 

Treating hypercholesterolaemia is done by prescribing medication and encouraging the 

incorporation of lifestyle changes in patients. Treatment has mostly been done by 

administrating statins. Statins are a group of drugs that inhibit the enzyme HMG-Co A, 

thereby preventing the production of cholesterol in the liver and allowing the plasma 

levels of LDL-C to decrease. Lifestyle changes include following a healthy diet and 

regular exercise (Klug et al., 2015). 

There has been a recent breakthrough in the treatment of high LDL-C, including 

homozygous FH, by inhibiting the enzyme PCSK9 (Stein, 2012; Raal et al., 2015). When 

LDL-C is taken into the cell, the receptors are not targeted for degradation by PSCK9 

and return to the cell surface, hence increasing the intake of LDL-C into cells and 

reducing plasma levels of LDL-C.  

Ference et al., 2012 found that starting treatment earlier, i.e. in childhood, decreases the 

chances of the patient experiencing CVD, highlighting the need of detecting and 

diagnosing hyperlipidaemia as early as possible. Hypolipidaemia cases require no 

treatment as low LDL-C levels are protective against CVD and other heart conditions. 

1.4. Genes associated with dyslipidaemia 

In monogenic forms of dyslipidaemia, one variant in any of the known FH genes can 

alter lipid levels, enough to cause disease. However, as LDL-C levels are a continuous 

variable in a population, there must be variants in other unknown genes that influence 

an alteration in LDL-C levels. In individuals where variants are not detected in the 

monogenic genes, many variants in many different genes can cumulatively contribute to 

altering lipid levels. 

There are many genes described in the literature that are associated with dyslipidaemia. 

Over 90 loci have been associated with the quantitative trait of TC levels as identified by 

meta-analysis genome wide association studies (GWAS) carried out on different 

populations all over the world (Kathiresan et al., 2009; Teslovich et al., 2010). 
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Associated variants for TC as a quantitative trait were identified in and close to the 

following genes (table 1.1) (Talmud, Futema and Humphries, 2014; García-Giustiniani 

and Stein, 2016):   

Table 1.1: List of genes found to be associated with total cholesterol levels  

Genes associated with TC levels 

ABCA1 CAPN3 GPD1 MAFB PTRF 

ABCA1 CAV1 GPIHBP1 MAP3K1 PYGM 

ABCA8 CETP HFE MC4R RAB3GAP1 

ABCG1 CIDEC HMGCR MLXIPL RAF1 

ABCG5 CILP2 HNF1A MOSC1 SAR1B 

ABCG8 CITED2 HNF4A MSL2L1 SBNO1 

ABO CMIP HPR MTTP SCARB1 

AGPAT2 COBLL1 IRF2BP2 MVK SLC22A8 

AMPD1 COQ2 IRS1 MYLIP SLC25A40 

AMPD3 CPT2 JMJD1C NAT2 SLC39A8 

ANGPTL3 CTF1 KLF14 NPC1L1 SLCO1B 

ANGPTL4 CYP26A1 KLHL8 NYNRIN SORT1 

APOA1 CYP2D6 LACTB OSBPL7 SPTY2D1 

APOA1 –C3 –A4 –A5 CYP7A1 LCAT PABPC4 ST3GAL4 

APOA5 DNAH11 LDLR PCSK9 STARD3 

APOB ERGIC3 LDLRAP1 PDE3A TOP1 

APOC2 EVI5 LILRA3 PGS1 TRIB1 

APOC3 FADS1 – 2 – 3 LIPC PINX1 TRPS1 

APOE FLJ36070   LIPG PLA2G6 TTC39B 

APOE–C1–C2 FRK LMF1 PLEC1 TYW1B 

ARL15 FRMD5 LMNA PLIN1 UBASH3B 

BRAP GALNT2 LOC55908 PLTP UBE2L3 

BSCL2 GCKR LPA PPARA ZMPSTE24 

C6orf106 GPAM LPL PPARG ZNF648 

  LRP1 PPP1R3B ZNF664 

TC = total cholesterol 
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This list is not by any means a complete comprehensive set of genes with allelic variants 

that affect lipid levels; however, it does serve as an indication of how many genes can 

influence LDL-C levels.  

In patients with raised LDL-C levels (LDL-C > 5mmol/l), pathogenic variants are 

identified in 60 to 80% of cases (Talmud, Futema and Humphries, 2014). In patients 

where a single variant could not be identified for FH, it is expected that other loci 

cumulatively contribute to the polygenic phenotype (Talmud et al., 2013). With the 

number of genes listed in table 1.1, it is suggested that dyslipidaemia is not only 

monogenic, and can be caused by variants in unknown genes (Benn et al., 2016). 

Although there are a small number of ‘core’ genes that have a big effect on the 

phenotype (LDL-C levels), there are other genes, with small effects, that contribute to 

the phenotype (Boyle, Li and Pritchard, 2017). With this in mind, a genetic risk score 

could by generated to assess the combined impact of “small-effect—genes" on the 

phenotype. This is known as a polygenic risk score (PRS). The variants are weighted 

according to the odds ratio generated in logistic regression (see chapters 2 and 3) and 

may be population specific, with most research being done in populations of European 

origin.  

Monogenic FH is primarily caused by pathogenic variants in four genes: LDLR, APOB, 

PCSK9 and LDLRAP1. PCSK9 and APOB have also been associated with 

hypolipidaemia. Variants in LDLR account for most cases of FH that have been 

documented thus far (table 1.2). The four genes that cause monogenic forms of 

dyslipidaemia will be discussed in further detail below.  

All four genes code for proteins that aid in the intake and metabolism of LDL-C and the 

LDL-C receptor. Due to the monogenic nature, and therefore high impact on 

dyslipidaemia and LDL-C metabolism of the above mentioned four genes, they have 

been chosen for further investigation to examine LDL-C levels as a quantitative trait in 

Africans.  
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Table 1.2: Estimated frequencies of variants in genes that cause FH in populations 

of European origin adapted from Benn et al., 2016 

Gene Estimated frequency of variants 
that cause FH due to high LDL-C 

levels 

LDLR 95% 

APOB  2-11% 

PCSK9  ~1% 

LDLRAP1  Rare 

Other  Unknown 

 

These genes play a vital role in the metabolism of LDL-C in liver cells (figure 1.2). LDL-C 

transports cholesterol which circulates in the arteries. There is a protein called 

apolipoprotein B on LDL-C that binds to the LDL-C receptor on cells (Innerarity et al., 

1987), which is internalised with the help of an adaptor protein called LDLRAP1 (Eden et 

al., 2002). Once internalised, the LDL-C:LDLR protein complex separates and the 

receptor is targeted for degradation by the enzyme PCSK9 (Maxwell and Breslow, 

2004).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Components in LDL-C endocytosis. APOB, a component on LDL, 
binds to LDLR. An adaptor protein, LDLRAP1, mediates the intake of the 
APOB-LDLR complex into the cell. Once inside the cell, LDL-C dissociates 
from the receptor and LDLR is metabolised by an enzyme called PCSK9. 
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1.4.1. Low Density Lipoprotein Receptor (LDLR) 

The LDLR gene codes for the low-density lipoprotein receptor protein. The gene is 

mapped to chromosome 19p13.2 and comprises 18 exons (NCBI, 2017). The receptor 

functions to maintain the plasma levels of LDL-C by binding to LDL-C and internalising it 

through receptor-mediated endocytosis. Once internalised, the receptor dissociates from 

its ligand (LDL-C) and LDLR returns to the cell surface to bind plasma LDL-C again.  

Loss of function (LoF) variants in this gene render the receptor ineffective, thus leaving 

increased levels of LDL-C in the blood stream. Heterozygous variants at this locus result 

in haploinsufficiency of the receptor (Seidman and Seidman, 2002), therefore FH 

causing variants in LDLR are inherited in an autosomal dominant manner (Brown and 

Goldstein, 1974). LDL-C levels are high (5-15 mmol/l) and medical intervention and 

lifestyle changes are necessary.  

1.4.2. Apolipoprotein B (ABOP) 

The APOB gene maps to chromosome 2p24.1 and has 29 exons (Deeb et al., 1986; 

NCBI, 2017). It codes for the APOB protein which is a component on LDL-C and binds 

to LDLR and is internalised into liver cells for metabolism (Innerarity et al., 1987; 

Hooper, van Bockxmeer and Burnett, 2005). Loss of function variants in this gene affect 

the binding affinity of APOB to LDLR, thus decreasing the internalisation of LDL-C 

(Innerarity et al., 1987, 1990; Hooper, van Bockxmeer and Burnett, 2005). Variants in 

APOB are associated with both hyperlipidaemia and hypolipidaemia (Lee et al., 2017). 

Variants that cause hyperlipidaemia are inherited in an autosomal dominant fashion 

(Innerarity et al., 1987). For example, in a study conducted in a Cauasian European 

population, the variant R3500Q causes raised lipid levels (Benn et al., 2016). Rare 

variants in APOB have also been identified in a Korean population (Lee et al., 2017). 

1.4.3. Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) 

The PCSK9 gene maps to chromosome 1p32.2 and has 12 exons (Varret et al., 1999; 

NCBI, 2017). This gene codes for a protease that binds LDLR and targets the receptor 

for degradation (McNutt, Lagace and Horton, 2007). The mode of inheritance of variants 

in PCSK9 is autosomal dominant (Abifadel et al., 2003).  
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Gain of function (GoF) variants in PCSK9 increase the degradation of LDLR in the cell, 

therefore restricting the number of receptors that return to the surface of the cell. This 

results in an increased level of LDL-C in the plasma (Abifadel et al., 2003). Loss of 

function (LoF) variants in this gene cause low levels of LDL-C as the degradation of 

LDLR is reduced and, therefore, more receptors return to the surface of liver cells, 

allowing more plasma LDL-C to be internalised and metabolised (Cohen et al., 2005). 

This finding has been exploited in treating hypercholesterolaemia very successfully 

(Robinson et al., 2015). 

1.4.4. Low Density Lipoprotein Adaptor Protein 1 (LDLRAP1) 

The final gene examined in this study was LDLRAP1. The gene maps to chromosome 

1p36.11 and has 9 exons (NCBI, 2017). The adaptor protein assists the receptor-

mediated endocytosis mechanism of the LDLR:LDL-C complex (Soutar, Naoumova and 

Traub, 2003; Michaely et al., 2004). Variants in this gene cause hypercholesterolaemia, 

but the mode of inheritance of hyperlipidaemia is autosomal recessive in this case as 

two deleterious mutations are necessary to result in high LDL-C levels (Soutar and 

Naoumova, 2004). 

1.5. Variant frequencies in the common dyslipidaemia genes 

There are many variants that have been identified in the four genes. For instance, a 

search on Ensembl gave 9923 associated variants listed for LDLR, 9758 for APOB, 

4919 for PCSK9 and 4427 for LDLRAP1 (https://www.ensembl.org, accessed 21 Oct 

2017). Most of these variants have no functional impact on the gene product and are 

neutral. The Leiden Open (source) Variation Database (LOVD) (Fokkema, den Dunnen 

and Taschner, 2005) is a database that contains FH causal variants ; however, the data 

is outdated as it was last updated in 2011. It can be accessed at 

http://www.ucl.ac.uk/ldlr/Current/  

It has now been well established that the presence/absence and/or frequency of 

particular variants is variable in different populations. For example, the Y142X variant in 

PCKS9 is observed in 2% of African Americans, but < 0.1% in European Americans 

(Cohen et al., 2005, ). The R46L variant in PCSK9  is observed in 3% of Canadians 

(Saavedra et al., 2014) and 1.7% in a European American population, but in only 0.15% 

https://www.ensembl.org/
http://www.ucl.ac.uk/ldlr/Current/
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in the African American population (Hallman et al., 2007). The former is accompanied by 

an 88% reduction in risk for CVD (Cohen et al., 2006) and the latter is associated with a 

86% reduction in CVD (Saavedra et al., 2014). Accounting for population-specific 

genetic substructure is therefore important to consider in studies of multifactorial traits. 

1.6. Dyslipidaemia is the South African Context 

In some South African populations, the prevalence of FH is significantly higher than the 

worldwide prevalence due to founder effect. Variants, specifically in LDLR, have been 

well documented in the South African Afrikaner (Jenkins et al., 1980), Indian 

(Rubinsztein et al., 1992) and Jewish (Seftel et al., 1989) populations. These variants 

are high impact and cause monogenic FH (table 1.3). While other studies may quote 

different prevalences (Ibe et al., 2017), the prevalences are similar to those listed below, 

highlighting the fact that FH is a common disorder.  

Table 1.3: Prevalence of FH in South African populations and variant profiles 

Population Estimated 

Frequency 

Common deleterious 

variants in LDLR 

Reference 

South African 

Afrikaner 

1/75 

individuals 

c.681 C>G  (Leitersdorf et al., 1989) 

c.1285 G>A  (Leitersdorf et al., 1989) 

c.523 G>A  (Kotze et al., 1990) 

South African 

Ashkenazi 

Jewish 

1/67 

individuals 
654_656del 

 

(Meiner et al., 1991) 

South African 

Indian 

1/100 

individuals 

c.2054 C>T 

 

(Soutar, Knight and 

Patel, 1989) 

 

There is no equivalent data available on variants causing hyper- or hypolipidaemia for 

the black South African population. This may be merely due to the lack of genetic 

studies in this population, or it could be due to a general low level of lipids in the black 

African populations (Hooper et al., 2007), with consequent low frequencies of diseases 

associated with hyperlipidaemia. Therefore, the purpose of my study was to identify 

variants that have a phenotypic effect on lipid levels as a quantitative trait in black 

African populations. A case-control study design based on clinical cut-offs (highest LDL-

C and lowest LDL-C in the study participants) was used and the study approach was a 



 
 

15 

candidate SNP screen of markers in selected genes in a case-control (high LDL-C vs 

low LDL-C) study cohort. Four genes were chosen as good candidates as they are 

known to be associated with monogenic dyslipidaemia. Variants in these genes were 

identified and their frequency assessed in African populations.  

Because hyperlipidaemia is underdiagnosed and undertreated globally, identifying 

variants which alter lipid levels could prove pivotal in increasing diagnoses and 

implementing treatment earlier to prevent premature CVD and death.  

1.7. Study Rationale 

To identify functional variants in candidate genes with the potential to affect LDL-C 

levels, this study used publicly available whole genome sequence data from African 

populations. Variant frequencies in different populations were considered. To establish 

whether variants in the candidate genes were predicted to contribute to high and low 

LDL-C levels, the variants were examined using bioinformatics tools to identify 

potentially functional variants.   

Suitable variants were chosen, based on potential function and allele frequency, to be 

investigated in participants from the AWI-Gen study. AWI-Gen is an Human Heredity 

and Health in Africa Consortium (H3Africa) study referred to as AWI-Gen (Africa Wits 

INDEPTH partnership for genomic studies) (Ramsay et al., 2016). The AWI-Gen study 

includes >10 000 participants from different sites across Africa (South Africa, Ghana, 

Burkina Faso and Kenya). One thousand participants between the ages of 35 and 85 

years were chosen for the current study, primarily based on their LDL-C levels (500 

participants with high LDL-C levels and 500 participants with low LDL-C levels).  

The participants, although originating from different sites across Africa, were assigned 

into two groups: 500 with the lowest LDL-C levels (controls) and 500 with highest LDL-C 

levels (cases). We recognise that different African populations harbour genetic 

differences (Durbin et al., 2010; Pickrell et al., 2012) that may influence our ability to 

detect population-specific LDL-C associated variants. Population substructure is the 

distinct genetic difference between populations due to ancestral origin of the population 

and can lead to false positive associations. If there are differences in the relative 

proportions of different populations in cases, compared to controls, the associations 
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could reflect populations differences rather than differences due to disease (Tian, 

Gregersen and Seldin, 2008). To avoid this, various factors need to be accounted for, 

including ethinicity. Sometimes country of origin is used as a proxy for ethnicity, as 

objective measures are relatively poor when only a small number of genetic markers are 

included in a study. In this study, the participants were grouped together to increase the 

power to detect variants associated with LDL-C levels, but geographic region was 

included as a potential confounder. The genotype data was corrected for multiple 

testing, and geographic region was used as a covariate in logistic regression analysis. 

As data for African populations is very limited concerning this subject, this study should 

be considered a small pilot study that aims to serve as a starting point for future studies 

focusing on lipid levels.  

This study aimed to identify variants in candidate genes that may play a role in LDL-C 

levels in Africans. It would have been ideal to examine the full DNA sequence of all four 

genes, however, due to cost constraints, a genotyping approach was used and only a 

small set of selected variants was chosen for investigation.    

1.8. Aim and objectives 

1.8.1. Aims 

To use a computational approach to identify potentially functional genetic variants in 

African whole genome sequence data in established candidate genes known to alter 

LDL-C levels (LDLR, APOB, PCSK9 and LDLRAP1), and to test their association with 

LDL-C levels in participants from the AWI-Gen study. 

1.8.2. Objectives 

1. To identify variants in the coding and flanking regions of LDLR, APOB, PCSK9 

and LDLRAP1 from African whole genome sequences (WGS). The WGS data 

were obtained from the 1000 Genomes Project (KGP) and the African Genome 

Variation Project (AGVP).  

2. To assess the potential functional impact of the variants by using relevant 

bioinformatics tools and to choose a small number for further investigation. 
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3. To test variants for association with high or low LDL-C levels in 1000 participants 

from the AWI-Gen study and to analyse the data in a “case-control” study design 

(high LDL-C considered as cases and low LDL-C considered as controls). 

1.9. Study approach  

Since it is known that the four genes LDLR, APOB, PCSK9 and LDLRAP1 are 

monogenetically associated with LDL-C levels in populations worldwide, they were 

chosen as candidates and used as a starting point for investigating the possible 

aetiology and landscape of LDL-C levels in black African populations. Variants were 

identified in these genes from African WGS data through a process of assessing the 

predicted functional impact, minor allele frequency and type of variant (missense, 

regulatory, synonymous and nonsense) for each variant. Selected variants were 

genotyped in a cohort of 1000 AWI-Gen participants: 500 with low LDL-C levels and 500 

with high LDL-C levels. Regression analysis was done with the expectation of finding an 

association between LDL-C levels and alleles. Figure 1.3 summarises the study 

approach. 

 

Figure 1.3: Flow diagram of study approach. 
*Variants may be present in other populations, too, but are more common in African populations 
**Variants were chosen if predicted to have an effect on the protein, or if the minor allele was 
present in at least 20% of the population. KGP frequencies were used. 

  

Statistical analysis of variants 

Select variants for genotyping based on functional impact as well as allele frequency** 

Functional annotaion to assess likely functional impact of the variants  

Identify African-enriched* variants in these candidate genes 

Identify variants from VCFs 

Extract sequences (VCFs) from public databases (KGP and AGVP) 

Choose genes/areas of interest (candidate gene approach) 
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2. Methods and Materials 

The aim of this project was to identify variants in WGS from African populations, and to 

test their association with LDL-C levels in a cohort from the AWI-Gen study. This project 

can be divided up into 2 sections, namely, the initial bioinformatics section which aimed 

at identifying variants in appropriate genes, and the subsequent laboratory section which 

aimed to look at the frequency of these variants in a “case-control” (high vs low LDL-C) 

approach. The bioinformatics section makes use of online databases and tools that are 

freely available. Figure 2.5, at the end of this chapter, shows a flow diagram of the 

methods used for this study. 

Study participants were chosen from the AWI-Gen (Africa, Wits-INDEPTH Partnership 

for GENomic studies) project, a Human Heredity and Health in Africa (H3Africa) 

Consortium study (Ramsay et al., 2016). Together with the International Network for the 

Demographic Evaluation of Populations and their Health in low- and middle-income 

countries (INDEPTH), the study aims to understand the interaction between genetic, 

epigenetic and environmental risk factors for obesity and cardiometabolic diseases in 

sub-Saharan Africa. AWI-Gen has over 10 000 participants that have been recruited 

from six sites across East, West and South Africa in four countries: Kenya, South Africa, 

Ghana and Burkina Faso (figure 2.1). Extensive phenotypic data was collected for each 

participant. 
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Figure 2.1: Map displaying sites that AWI-Gen participants were selected from. Participants 
were selected from six sites from four countries: Burkina Faso (Nanoro), Ghana (Navrongo), 
Kenya (Nairobi) and South Africa (Agincourt, Dikgale and Soweto). 

 

WGS data were pulled from public databases. Public bioinformatics databases provide 

easily accessible genetic data, freely, to the public. The data can be stored in many 

different file formats, and some databases occasionally require a letter of request that 

informs the centre/group to which the data belongs what the data will be used for. The 

two public databases with WGS data that were used are the 1000 Genomes Project 

(KGP) and the African Genome Variation Project (AGVP) databases. These databases 

were chosen because they both contain genome sequences of African populations. The 

files that were extracted were VCF files (variant call format) – which stores all the 

variation identified in the individuals’ WGS.  

The variants were examined for deleteriousness by means of online tools that are freely 

available to the public, e.g. Variant Effect Predictor (VEP) (McLaren et al., 2010) and 

Combined Annotation Dependent Depletion (CADD) (Kircher et al., 2014). These tools 

are provided through a genome annotation portal such as Ensembl (ensemble.org) and 

by universities such as the University of Washington (cadd.gs.washington.edu), 

respectively. The tools assess and then predict the effect variants have on the function 
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of a protein, enabling one to determine whether the variants are predicted to have a 

functional effect. Suitable variants, based on predicted function or minor allele frequency 

(MAF>0.20) in the combined African data, were chosen to be genotyped in a cohort of 

AWI-Gen participants. 

Thereafter, the chosen variants were genotyped in individuals from the AWI-Gen study, 

selected for high or low LDL-C levels. Association analysis was carried out to determine 

whether the variants were associated with the two extremes of lipid levels in African 

populations.   

2.1. Participants 

Participants from the AWI-Gen study were used in this study. The AWI-Gen study 

collected fasting LDL-C levels for all participants and 1000 participants were selected for 

this study. The study also collected additional phenotype data from participants: fasting 

glucose levels, medication use, body mass index (BMI) and alcohol use, among many 

others.  

The AWI-Gen study consists of over 10 000 participants with various phenotype data. 

Only 1000 individuals were chosen in this study due to budget constraints. For this 

study, participants were excluded based on the following criteria: 

 Diabetes  

 BMI > 35 

 Problematic alcohol use  

 Individuals on medication for hyperlipidaemia 

 DNA with a concentration less than 4 ng/µl  

 

The age of the participants ranged between 35 and 80 years old. Looking at the bell 

curve of normal LDL-C levels (figure 2.2), 1000 participants on the two extremes were 

chosen: 500 with the highest LDL-C levels (> 3.5 mmol/l) and 500 participants with the 

lowest LDL-C levels (< 1.1 mmol/l). This approach is based on extreme phenotyping (Li 

et al., 2011; Gurwitz and McLeod, 2013).  



 
 

21 

Figure 2.2: Hypothetical data following normal distribution. Coloured areas show the two 
groups of participants chosen, based on LDL-C levels, the group with low LDL-C levels 
were used as a ‘control’ group against which the group with high LDL-C (‘cases’) were 
compared. 

 

 

 

The approach of extreme phenotyping is used to separate samples into “cases” and 

“controls” when studying a quantitative trait. This study includes 500 cases (high LDL-C 

levels) and 500 controls (low LDL-C levels). The power of this study is 97.91%, to detect 

a variant with a MAF of 0.1 and odds ratio (OR) of 0.5 using a sample size of 1000 

samples. The power would be 83.43% to detect a variant with the same parameters but 

with an OR of 1.5. Quanto was used to determine the power of the study (Gauderman, 

2002). 

A post-hoc power analysis was done on two SNPs that were significantly associated 

with LDL-C levels. The two SNPs were rs12071264 and rs6752026. A study of 500 

cases and 500 controls would be 85.94% powered to detect association with the first 

SNP (MAF = 0.090, OR = 0.5866). The power would be 75.09% to detect association 

with the second SNP (MAF = 0.135, OR = 0.6898) in a study of the same size.  

A chi square test was done to determine whether sex was equally represented between 

the high and low LDL-C level groups. Two-sample Wilcoxon rank-sum tests were carried 

out to determine whether LDL-C, BMI and age were significantly different between the 

two LDL-C groups. 
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Ethics was obtained from the Wits Human Research Ethics Committee (Medical): 

M160833 (Appendix A). 

2.2. Candidate gene selection 

Four genes were selected to be investigated: LDLR, APOB, PCSK9 and LDLRAP1. As 

described in the introduction, these genes are known to cause monogenic FH when they 

contain pathogenic mutations. In this study, however, they were studied to identify 

variants that would be associated with LDL-C levels as a polygenic trait. 

2.3. Whole genome sequences available for study 

WGS data were used in this study. They were extracted from two public databases 

namely, KGP and AGVP, in VCF file format with 1000 bp flanking region on either side. 

AGVP and KGP (Durbin et al., 2010) called their variants by aligning the sequences to 

the human reference genome (GRCh37) (Gurdasani et al., 2015). For this study, a total 

of 975 individuals from eight different populations were investigated from low coverage 

(2 to 4 X) WGS data. Coverage is the number of times a nucleotide has been read or 

sequenced (Sims et al., 2014). Low coverage data can reduce the chances of accurately 

calling a variant, especially when a variant is rare, as the data is only supported by 2 to 

4 reads. There were 655 individuals from KGP and 320 individuals from AGVP. The 

breakdown of population distribution is presented in Table 2.1. 

Table 2.1: Numbers of samples with available low coverage WGS data from each 
black African population from KGP and from AGVP 

Population Number of samples 

KGP 

Esan, Nigeria (ESN) 111 

Gambian, West Gambia (GWD) 220 

Luhya, Kenya (LWK) 115 

Mende, Sierra Leone (MSL) 98 

Yoruba, Nigeria (YRI) 111 

AGVP 

Baganda, Uganda 100 

Ethiopian, Ethiopia  120 

Zulu, South Africa 100 

KGP= The Thousand Genome Project 
AGVP = African Genome Variation Project 
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Figure 2.3: Map of Africa showing countries from which WGS data was 
publicly available for analysis: Ethiopia, Gambia, Kenya, Nigeria, Sierra 
Leone and South Africa 

The countries from which the populations originate are highlighted in figure 2.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The KGP aimed to create a catalogue of human genome data and find variants with 

frequencies of at least 1% in the population. In this project a total of 2504 whole 

genomes from different populations were sequenced. In total, 26 populations were 

sampled from Africa, East Asia, South Asia, Europe, and North and South America. The 

sequences from KGP were constructed using low coverage genome sequencing (2-4 X), 

deep exome sequencing as well as microarray genotyping. It is interesting to note that 

28% of all novel variants found were from African populations alone (The 1000 

Genomes Project Consortium et al., 2015).  

The AGVP (Gurdasani et al., 2015) identified that while African populations are the most 

genetically diverse, the characterisation of variation in African genomes is limited. The 
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paper describes 1481 individuals from 18 different populations from sub-Saharan Africa, 

but whole genome sequences (4X coverage) are only available for 320 individuals from 

3 populations: Baganda, Ethiopian and Zulu. There is also genotype data available for 

all 1481 individuals from the HumanOmni2.5M genotyping array.   

2.4. Variant Selection and Functional Annotation  

From these African whole genome sequences, data from the four genes of interest 

(LDLR, APOB, PCSK9 and LDLRAP1) were extracted, with a 1000 bp flanking region on 

either side. A total of 3541 variants were identified. The SNPs from these regions were 

functionally annotated using CADD and Ensembl’s VEP to identify deleterious variants. 

VEP includes the tools SIFT and PolyPhen2 (see descriptions below). SNPs were 

selected in two stages: firstly, based on predicted deleteriousness, MAF (4% to 20%) 

and type of variant, and secondly based on a minimum MAF of 20%, and maximum of 

45%, in African populations. Sequences from KGP and AGVP were mapped to 

GRCh37, therefore VEP was used on Ensembl’s archive site for GRCh37. 

CADD (Combined Annotation Dependent Depletion) measures deleteriousness (variants 

that reduce the fitness of an organism), and not just molecular and functional 

pathogenicity of a variant. CADD combines annotation from sources such as VEP and 

data from the ENCODE Project which includes information on conservation metrics, 

regulatory information and transcription factor binding regions to name a few. These 

variants are then contrasted to simulated variants and deleteriousness scores are 

generated (Kircher et al., 2014). Variants that had a score greater than 10 were selected 

as potentially deleterious. 

SIFT (Sorting Intolerant From Tolerant) (Kumar, Henikoff and Ng, 2009) is primarily used 

in predicting whether nonsynonymous variants are deleterious or not by assessing 

whether an amino acid substitution is likely to affect the function of a protein. The 

algorithm compiles a dataset of aligned protein sequences for a sequence of interest. 

Each position is scanned, and a probability of deleteriousness is calculated, and a 

matrix generated for each of the 20 amino acids occurring at that position. A substitution 

is then predicted, and a score is assigned to that position. Positions that are highly 

conserved are generally more intolerant than less conserved positions. The scores that 

are given to each variant are interpreted as follows: <0.05 = damaging, >0.05 = tolerated 
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(Kumar, Henikoff and Ng, 2009). In this study, variants that were scored <0.05 were 

selected as potentially deleterious.  

PolyPhen2 (Polymorphism Phenotyping v.2) (Adzhubei et al., 2010) also focuses on 

predicting whether nonsynonymous variants are likely to be harmful or not. The tool 

does this by calculating the impact of an amino acid change on the structure and 

function of a human protein. It calculates a Naïve Bayes probability score, reporting 

variants as benign (0), possibly damaging (0.5) or probably damaging (1). In this study, 

variants that were scored as possibly damaging and higher (> 0.5) were selected as 

potentially deleterious. 

After generating scores for all the variants in all four genes, only those variants that 

occurred in six or more of the eight populations being studied were chosen. After this, 

variant selection happened in two phases: the first phase filtered variants based on 

deleteriousness, the type of variant (missense, synonymous, nonsense, regulatory) and 

MAF (between 0.04 and 0.2). Variants had to have at least one moderately deleterious 

score (PolyPhen2 > 0.5, SIFT <0.05, CADD>10).  The second phase filtered variants 

based on only MAF. As the sample size of the total cohort was 1000, the variants that 

were chosen for a MAF between 0.2 and 0.45 to increase the power of finding an 

association. The MAF for African populations was used from dbSNP, which is generated 

from KGP. Linkage disequilibrium (LD) was assessed for the selected variants. LD 

analysis was carried out using Haploview (r2>0.4) (Barrett et al., 2005). 

2.5. Genotyping approach 

There are many methods to carry out genotyping including, TaqMan Real-Time PCR, 

ARMS-PCR and array genotyping. The most economical option available for this project 

proved to be the use of the MassARRAY System by Agena Bioscience. The 

MassARRAY System is provided as a commercial service by Inqaba Biotech in Pretoria, 

South Africa.  

The DNA used for the genotyping was obtained from the Biobank based at the Sydney 

Brenner Institute for Molecular Bioscience (SBIMB) after receiving appropriate approval 

from the steering group. The DNA had been extracted using either the salting out 

method (Miller, Dykes and Polesky, 1988) or the automated Qiasymphony (Qiagen, 
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Hilgen, Germany) method. The Biobank stores working aliquots at 4°C, and a storage 

aliquot at -80°C. DNA for this project was taken from the working aliquots. The 

concentration for each of the 1000 samples was normalised to ~30 ng/µl and ~10 µl 

DNA was sent for genotyping. 

The MassARRAY platform measures the mass of molecules and assigns a nucleotide 

base to a position based on the difference in mass.  When designing an assay for the 

MassARRAY system, specific software is used to test whether SNPs of interest can be 

genotyped (failed SNPs are indicated in tables 1 and 2 in appendix B and were excluded 

from further downstream steps). 

After confirming SNPs that could be genotyped using the MassARRAY through an in 

silico test, the area of interest was amplified and PCR products of 80-120 bp in length 

were generated. The PCR product was cleaned with SAP (shrimp alkaline phosphatase) 

to neutralise dNTPs that haven’t been incorporated. A single base extension (SBE) 

reaction followed, where only one base (which is the SNP of interest) was added at the 

end of the primer. The SBE primers were specifically designed so that they were 15 to 

30 bp long, or 4500 to 9000 Da in mass.  

The mass of each SBE primer, as well as each individual nucleotide was known prior to 

the SBE reaction. In the MassARRAY system, the SBE product was excited, the DNA 

was ionised and it moved through a vacuum to a detector. The time that it took for it to 

get to the detector is determined by the mass and the system calculated the difference 

of the mass before and after extension, hence determining the genotype of the SNP of 

interest. Figure 2.1 shows the stepwise process of the MassARRAY system. 
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Figure 2.4: Process of MassARRAY genotyping. The area of interest was amplified, and PCR 
products were cleaned to remove unincorporated nucleotides. Single base extension followed 
which included a specific primer that extends with only one base. This base is at the position of 
the SNP of interest. The PCR products were put into a mass spectrometry machine where the 
masses of the products were measured. Genotypes were then derived from the differences in 
mass. (Image taken from MassARRAY manual supplied by Inqaba biotec). 
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2.6. Data Analysis 

PLINK v.1.9 is an open source tool that is used primarily for genome wide association 

studies (GWAS) analysis (Purcell et al., 2007; Chang et al., 2015). PLINK v.1.9 

(www.cog-genomics.org/plink/1.9) was used to analyse genotype data from the 

MassARRAY system.  Files that are compatible with PLINK v.1.9 (.map and .ped) were 

generated from the raw data received from the MassARRAY system. These were then 

converted into .bim, .bam and .fam files in PLINK v.1.9 for further association analysis. 

The data was separated into high and low LDL-C participant categories so that a case-

control type of analysis could be carried out. High LDL-C level participants were tagged 

as cases, and low LDL-C participants were tagged as controls.  

Quality control measures for samples and SNPs after genotyping were followed as per 

Anderson et al. (2011). There were some genotyping failures, so not all samples have 

data for each SNP. Therefore, samples that had more than 30% missing SNP data were 

excluded from further analysis. Similarly, some SNPs fail genotyping in many samples, 

therefore, SNPs that failed in more than 40% of samples were excluded. In addition, 

SNPs incompatible with Hardy-Weinberg equilibrium (HWE) at p< 0.005, differential 

missingness < 0.00001 and MAF < 0.01 were excluded from further analysis. The 

dataset was not assessed for extreme heterozygosity and duplications because the 

number of SNPs genotyped were too few to accurately calculate estimates (Anderson et 

al., 2010).  

SNP frequencies were calculated from the genotyping data for each region (West, East 

and South Africa). A Fisher’s Exact Test was carried out to see if the SNP counts for 14 

SNPs differed across the three regions.  

2.6.1. Multiple testing  

When carrying out association tests, more than one comparison is being carried out. As 

the number of inferences (tests) increases, the probability of an erroneous inference 

occurring increases, i.e. the probability of detecting a false positive association. The 

chance of false positives occurring and rejecting the true null hypothesis, therefore 

needs to be corrected for. In this study, 14 SNPs were tested. Therefore, 14 hypothesis 

tests were carried out resulting in an increased probability of a false association 
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occurring. A statistical p value of, for example, 5% will tell you that there is a 5% chance 

of false positives occurring. When one does many tests, it is important to correct, or 

adjust p values, for multiple testing.  

The Benjamini-Hochberg method, or the false discovery rate (FDR) adjusts p values so 

that the number of false positives that will be reported are reduced (Benjamini and 

Hochberg, 1995). The method considers the proportion of the rejected null hypotheses 

which are rejected in error. This ensures that the significantly associated SNPs are less 

likely to be false positives.  

P values were only corrected for in allelic association. Correction for multiple testing was 

not done in logistic regression after adjusting for covariates, as the study is a hypothesis 

based study rather than an exploratory based study. We, therefore, think that correction 

for multiple testing does not need to be done after adjusting for covariates. 

2.7. Case-Control Association Analysis 

2.7.1. Logistic regression 

Allelic association was carried out using PLINK v.1.9 to determine which alleles of the 14 

SNPs were significantly associated with LDL-C levels. The p values were corrected for 

multiple testing using the Benjamini-Hochberg method. All variants with a significance 

level of p<0.05, corrected for multiple testing, were considered significant. The odds 

ratios (OR) and 95% confidence intervals (CI) were calculated using the major allele 

(A2) in this study as a reference. Therefore, the OR explains the effect the minor allele 

(A1) has on the phenotype. The OR is a numerical value that represents the association 

between a SNP and LDL-C levels (Szumilas, 2010).  

Logistic regression is predictive regression analysis carried out on a dichotomous 

dependent variable (high or low LDL-C in this case). It is a predictive analysis that 

describes the relationship between a dependent variable and an independent variable 

(SNP variant) (Walker and Duncan, 1967). Logistic regression gives an OR that is the 

estimated measure of association between an exposure (variant) and outcome (LDL-C 

levels). The OR gives the odds of an outcome occurring if an exposure is present, 

compared to odds of the outcome occurring without the exposure variable. It gives a log 

odds increase of the outcome. An OR >1 signifies that the minor allele (A1) is 
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associated with increased levels of LDL-C (>3.5 mmol/l). In contrast, an OR < 1 means 

that the minor allele is associated with decreased levels of LDL-C (<1.1 mmol/l). 

Logistic regression was carried out for the 14 SNPs that passed quality control. The 

analysis was adjusted for potential covariates, namely: sex, BMI, glucose levels and 

region of origin of participants (East (Nairobi), West (Ghana and Burkina Faso) and 

South Africa (Dikgale, Soweto and Agincourt)). 

2.7.2. Polygenic risk score 

A polygenic risk score was calculated using six significantly associated SNPs with p < 

0.05 in the allelic association, before adjusting for potential confounders. For each SNP, 

if the OR was >1 (i.e. the minor allele was associated with a high LDL-C level), the minor 

allele homozygous genotype was given a score of 0, the heterozygote genotype was 

given a score of 1, and the major allele homozygous genotype was given a score of 2. 

On the other hand, if the OR was <1 (i.e. the minor allele was associated with a low 

LDL-C level), the minor allele homozygote genotype was given a score of 2, the 

heterozygote genotype a score of 1 and the major allele homozygous genotype was 

given a score of 0.  

R was used to create a frequency plot with the polygenic risk score for cases and 

controls. A Kruskall-Wallis rank test was done using STATA v.14.2 (StataCorp, 2015) to 

determine whether the polygenic risk score for cases and controls are significantly 

different to each other. 

In addition, to show the linear correlation of the polygenic risk score against the mean of 

LDL-C level per risk score, a plot was generated using R v.3.4 (R Core Team, 3.4).  

2.7.3. Visualisation of results 

Box and whisker plots were generated for two SNPs that were significantly associated 

with LDL-C levels after logistic regression and correction using the false discovery rate 

adjustment. The effect of the addition of each allele is shown, plotted against LDL-C 

levels in the 1000 participants. The plots were generated in R.  
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A Shapiro-Wilk test was carried out to assess the normality of LDL-C levels across the 

genotypes. This was followed by a Kruskal-Wallis test to determine whether the LDL-C 

levels were statistically different (p<0.05) across the three genotypes, followed by a 

post-hoc contrast analysis. This was done for the two SNPs that were statistically 

significant after adjusting for covariates in logistic regression analysis (rs6752026 and 

rs12071264). This was done using Real-Statistics software (Charles Zaiontz, 2018).  
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Figure 2.5: Flow diagram summarising the filtering and association analysis carried out for this study. 
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3. Results   

3.1. Participants 

The 1000 participants from the AWI-Gen study were chosen from among six sites: three 

sites from South Africa (Agincourt, Dikgale and Soweto), and one each in Burkina Faso 

(Nanoro), Kenya (Nairobi) and Ghana (Navrongo). They were selected from among 

those at the extremes of the LDL-C level distribution and numbers of participants from 

each site are shown in table 3.1. Despite the participants originating from different sites, 

they were pooled into one sample set for regression analysis. Due to the diversity of 

African populations, population substructure was corrected for in the logistic regression 

analysis using geographic location as a proxy. The distribution of participants from each 

region (South, West and East Africa) is distributed evenly. However, the number of 

cases and controls from each region is greatly skewed; East Africa, there are 30 controls 

and 276 cases, West Africa: 302 controls, 23 cases, and South Africa: 168 controls, 201 

cases. This was adjusted for in the logistic regression analysis. 

Table 3.1: Distribution of 1000 participants across AWI-Gen sites stratified by sex 

  

High LDL-

C (n=500) 

Low LDL-

C (n=500)   

  

AWI-Gen Site M F M F 

Total  

(site) 

Region Total 

(Region) 

Agincourt (SA) 52 75 51 49 227 
South 

Africa 
369 Dikgale (SA) 11 18 16 35 80 

Soweto (SA) 45 0 17 0 62 

Navrongo (Ghana) 0 6 84 148 238 West 

Africa 
325 

Nanoro (Burkina Faso) 12 5 12 58 87 

Nairobi (Kenya) 133 143 16 14 306 
East 

Africa 
306 

Total (sex) 253 247 196 304 1000   

M = Male, F = Female, SA = South Africa 
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The phenotype data (outlined in tables 3.2, 3.3 and 3.4) used for this study on the AWI-

Gen participants were: age, BMI, fasting glucose levels, sex, HIV status and 

antiretroviral treatment (ARV), and LDL-C levels. LDL-C was significantly different since 

they were divided into two groups based on the LDL-C levels. Sex, BMI and glucose 

levels show a significant difference (p<0.05) between the two groups of participants. The 

mean age of the high LDL-C level group and low LDL-C level group was 51.07 and 

50.32 years, respectively. Age was the only phenotype to show no significant difference 

(p = 0.1938) between the two groups.  

Table 3.2: Phenotype characterisation of 1000 AWI-Gen individuals: sex, age, BMI, 

glucose levels and LDL-C cholesterol 

Phenotype Characterisation 

Phenotype High LDL-C (n=500) Low LDL-C (n=500)  p value 

Sex (%F) 49.40% 60.80% <1.00x10-3 

  Mean 

Standard 

deviation Mean 

Standard 

deviation   

Age  51.07 ±7.10 50.32 ±6.31 0.19 

BMI 26.27 ±4.32 21.52 ±3.62 <1.00x10-3 

Glucose* 5.10 ±0.69 4.62 ±0.68 <1.00x10-3 

LDL-C 4.37 ±0.70 0.85 ±0.19 <1.00x10-3 

* Fasting glucose levels, %F = % females 

There were more women in the low LDL-C group, and the high LDL-C group was 

characterised by a higher BMI, and higher fasting glucose levels. The phenotypes were 

also evaluated by sex in table 3.3. The only phenotype that was significantly different 

between the sexes was LDL-C levels (p = 0.005). The remainder of the phenotypes: 

age, BMI and glucose levels showed no significant difference between males and 

females. 
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Table 3.3: Phenotype characterisation of 1000 AWI-Gen participants separated by 
sex: LDL-C levels, age, BMI and glucose levels 

Phenotype Female (n=551) Male (n=449)  

 Mean Standard 

deviation 

Mean Standard 

deviation 

P value 

LDL-C 2.41 ±1.78 2.85 ±1.87 5.00x10-4 

Age 50.71 ±6.62 50.68 ±6.86 0.74 

BMI 23.96 ±4.68 23.82 ±4.60 0.74 

Glucose* 4.85 ±0.69 4.87 ±0.76 0.23 

* Fasting glucose levels 

Data on HIV infection (table 3.4) was missing for 57 individuals (11.4%) of cases and 

297 (59.4%) of controls, with little information on treatment. In the high LDL-C group, 

most participants were recorded as HIV negative (383/500), with the rest of the 

participants either being HIV positive, or no data was recorded. In the low LDL-C group, 

there was no data recorded for most participants (297/500). 

Although HIV infection was not used as an exclusion criterion when participants were 

selected, it has been identified as a potential confounder due to the effects HIV infection 

and ARV treatment have on LDL-C levels. However, due to the amount of missing data 

on HIV for the AWI-Gen individuals, HIV status and treatment could not be included in 

logistic regression analysis as a covariate. 

In the high LDL-C group, 13.54% are HIV positive, and from the low LDL-C group, 

37.93% are HIV positive. From these individuals that are HIV positive, 63.33% and 

42.86% have received ARV treatment from the high and low LDL-C groups, respectively. 

It seems that more individuals in the low LDL-C group are HIV positive, however, more 

individuals from the high LDL-C group receive treatment.
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Table 3.4: HIV status and treatment of 1000 AWI-Gen participants 

Treatment 

status 
High LDL-C (n=500) Low LDL-C (n=500) 

HIV status 
Positive: 

60 

Negative: 

383 

Unknown: 

57 

Total 

500 

Positive: 

77 

Negative: 

126 

Unknown: 

297 

Total 

500 

On Treatment 38 1* 0 39 33 0 0 33 

Not on 

treatment 
1 1 0 2 12 1 0 13 

No data 21 381 57 459 32 125 297 454 

*This participant has a negative status but is documented as having received treatment. This could be a potential data capture error in AWI-
Gen. 
 

The distribution of the LDL-C levels across 5940 AWI-Gen individuals (figure 3.1 A) of the parent study indicates that low LDL-C 

levels are common, with 66% of the individuals having LDL-C levels below 4 mmol/l. LDL-C levels in the control group with low 

LDL-C for the present study ranged from 0.4 mmol\l - 1.2 mmol/l. The case group with high LDL-C group had LDL-C levels 

ranging from 3.7-14.2 mmol/l. Two individuals were excluded from further analysis in my study due to very high LDL-C levels of 

14.2 mmol/l and 8.23 mmol/l (sample ID TNG0S and TEJ0C), as they could potentially skew the analysis as outliers. It is 

possible that these individuals have FH, rather than a polygenic form of hypercholesterolaemia, which also prompted their 

exclusion. Figure 3.1 B and C represents the LDL-C data for both the high (cases) and low (controls) groups, excluding the 

outliers.
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Figure 3.1: Graphs showing the distribution of LDL-C levels across AWI-Gen Participants. A: 
Distribution of LDL-C levels in 5940 AWI-Gen participants. B: High LDL-C levels in 498 AWI-
Gen participants (cases). Two individuals were excluded due to extreme outlying high LDL-C 
levels. C: Low LDL-C levels in 500 AWI-Gen participants (controls). 
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3.2. Selection of SNPs based on function and frequency  

There were 3541 variants identified in all eight populations in all four genes. Seventy-six 

variants that occurred in six or more of the eight populations were selected. The variants 

were filtered based on deleteriousness, the type of variant (missense, start/stop lost, 

regulatory) and MAF. Thirteen variants were chosen based on moderate 

deleteriousness as well as MAF (4%-20%) and an additional 16 were chosen solely on 

MAF (20%-45%). There were 29 variants that were finally selected to be tested. Figure 

3.2 is a summary of the selection of SNPs. 

 

Figure 3.2: Flow diagram of variant filtering. Filtering and quality control measures were done on 
over 3000 variants, leaving 19 variants that were finally selected for genotyping. 

 

3.3. Genotyping 

An in silico MassARRAY assessment test was done on the 29 variants selected. Only 19 

variants of the initial 29 variants remained to be finally genotyped. The 19 SNPs listed in 

table 3.5. Linkage disequilibrium (LD) was assessed for the 19 variants. None of the 

selected 19 variants were in LD with each other. A comprehensive table of all 29 SNPs 

that had initially been chosen can be found in Appendix C table 1 and 2. Table 3.6 is a 

summary of the genotype data from the 19 SNPs. 

 

 

3541 variants  

• All variants 
detected in 
four genes 

76 variants 

• Variants that 
occurred in 
six or more 
of the eight 
populations  

29 variants 

• Variants with 
at least 1 
moderately 
deleterious 
score 

• Variants with 
MAF 
between 0.2 
and 0.45 

• Type of 
variant 

19 variants 

• Variants that 
passed the 
MassARRAY 
test 
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Table 3.5: List of the 19 SNPs that were genotyped in AWI-Gen participants using 

the MassARRAY platform 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genomic locations are reported using NCBI Build 37 (hg19) 

 

 

  

Gene Variant Minor allele (A1) Type of variant 
Amino acid 

change 

LDLR 

rs72658855 T Synonymous N to N 

rs11669576 A Missense A to T 

rs5929 T Synonymous P to P 

rs3826810 A Regulatory region N/A 

rs5925 C Synonymous V to V 

rs2569540 C Intronic N/A 

rs17242635 A Intronic N/A 

APOB 

rs12720855 G Missense S to P 

rs679899 A Missense A to V 

rs6752026 A Missense P to S 

rs12720820 C Intronic N/A 

rs12714102 C Intronic N/A 

rs3791981 G Intronic N/A 

PCSK9 

rs7552471 T Synonymous S to S 

rs4927193 C Intronic N/A 

rs45613943 C Intronic N/A 

LDLRAP1 

rs12071264 G Intronic N/A 

rs35910270 - Deletion in 3’UTR N/A 

rs13373894 A Intronic N/A 
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Table 3.6: Results of genotyping for the 19 SNPs selected for genotyping 
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High LDL-C Low LDL-C 

A1/A1   
n(f) 

A1/A2 
n(f) 

A2/A2 
n(f) 

MAF HWE 
A1/A1   

n(f) 
A1/A2 

n(f) 
A2/A2 

n(f) 
MAF HWE 

L
D

L
R

A
P

1
 

rs12071264 0.005 995 5 G 0.697 0.090 3 60 435 0.066 0.467 6 101 390 0.114 1.000 

rs13373894 0.006 994 6 A 0.000 0.465 33 364 101 0.432 <0.001 71 353 72 0.499 <0.001 

rs35910270 0.005 995 5 del 0.843 0.400 65 242 191 0.373 0.444 96 232 169 0.427 0.314 

P
C

S
K

9
 rs4927193 0.010 990 10 C 0.159 0.237 40 157 297 0.240 0.006 24 185 287 0.235 0.455 

rs7552471 0.009 991 9 T 0.691 0.086 2 84 408 0.089 0.409 4 75 418 0.084 0.766 

rs45613943 0.006 994 6 C 0.579 0.277 31 174 292 0.237 0.458 49 217 231 0.317 0.918 

A
P

O
B

 

rs12720855 0.005 995 5 G 0.505 0.076 4 63 431 0.071 0.301 3 75 419 0.081 1.000 

rs12720820 0.399 601 399 C 0.003 0.305 9 133 154 0.255 0.002 31 153 121 0.352 0.103 

rs3791981 0.006 994 6 G 0.657 0.475 103 253 141 0.462 0.652 125 236 136 0.489 0.282 

rs12714102 0.198 802 198 C 0.434 0.460 77 199 117 0.449 0.684 98 188 123 0.469 0.136 

rs679899 0.005 995 5 A 0.026 0.123 18 110 370 0.147 0.012 5 89 403 0.100 1.000 

rs6752026 0.005 995 5 A 0.340 0.135 4 93 401 0.101 0.805 10 147 340 0.168 0.260 

L
D

L
R

 

rs72658855 0.005 995 5 T 0.234 0.031 0 20 478 0.020 1.000 2 37 458 0.041 0.197 

rs11669576 0.105 895 105 A 0.000 0.198 25 139 290 0.208 0.153 28 109 304 0.187 <0.001 

rs5929 0.006 994 6 T 0.878 0.117 2 98 398 0.102 0.145 12 106 378 0.131 0.168 

rs5925 0.004 996 4 C 0.141 0.152 15 134 350 0.164 0.625 14 111 372 0.140 0.132 

rs2569540 0.006 994 6 G 0.561 0.432 89 249 159 0.430 0.648 101 229 167 0.434 0.171 

rs17242635 0.271 729 271 G 0.000 0.484 0 363 13 0.483 <0.001 0 343 10 0.486 <0.001 

rs3826810 0.005 995 5 A 0.314 0.106 5 80 413 0.090 0.583 9 102 386 0.121 0.403 

A1 = minor allele, A2 = major allele, MAF = minor allele frequency, HWE = Hardy-Weinberg equilibrium, Genomic locations are reported 
using NCBI Build 37 (hg19) 
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3.4. Quality control 

3.4.1. Sample Quality Control 

Five individuals (AB0484, AB0675, NRE0G, AB0459 and NBI0D) were removed from 

the analysis due to too many SNPs having failed genotyping (> 0.3 failure rate). Of 

the five samples that failed, three had no results, hence achieving a missingness 

score of 1 as no data was generated for these individuals. Two had failed due to bad 

DNA quality, as reported by Inqaba. Two more individuals were removed as they 

were outliers for LDL-C levels, as mentioned earlier. Table 3.7 shows the number of 

SNPs with missing data for each individual.  

In total, seven individuals were excluded, leaving 993 individuals in the study. 

Table 3.7: Samples removed due to SNP genotype failure QC criteria 

Sample ID Number of missing SNPs Missingness 260/280 

AB0484 19 1.00 1.93 

AB0675 19 1.00 2.07 

NRE0G 19 1.00 2.06 

AB0459 18 0.95 2.00 

NBI0D 18 0.95 1.83 

260/280 ratio = purity of DNA. A ratio of ~1.8 is considered good quality 

3.4.2. SNP Quality Control 

Table 3.8 shows five SNPs that were removed due to having failed quality control 

measures. Four SNPs (LDLR rs11669576, LDLR rs17242635, APOB rs12720820 

and APOB rs12714102) were removed due to high missingness (>10%). A fifth SNP 

was removed because it was not in HWE (LDLRAP1 rs1333894) with a p value 

<0.005. 

Table 3.8: SNPs removed due to failing quality control measures 

Gene rs number HWE p value Missingness 

LDLRAP1 rs13373894 <0.005 0.006 

LDLR 
rs11669576 <0.001 0.105 

rs17242635 <0.001 0.271 

APOB 
rs12720820 0.003 0.399 

rs12714102 0.434 0.198 

HWE = Hardy-Weinberg equilibrium 
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All SNPs showed no differential missingness, which checks whether controls and 

cases differ in missingness, i.e. that there is no stark difference in missingness 

between cases and controls. No SNPs exceeded the cut off of p = 0.00001. Standard 

MAF cut off was 1%. The lowest MAF was 3%, therefore no SNPs were flagged for 

removal. Data from a total of 14 SNPs were used for further analysis. 

The 14 SNPs were analysed using a case-control approach. Case-control analysis 

was done because participants were chosen using a method based on extreme 

phenotyping. Participants with high LDL-C levels were classified as cases and those 

with low LDL-C levels as controls. 

3.5. Population allele frequencies 

Figure 3.3 depicts the minor allele frequencies of 14 SNPs that were evaluated in 

logistic regression (section 3.6). The African (green bar) and European (red bar) 

frequencies were taken from KGP, and the Eastern (n=306), Western (n=323) and 

Southern (n=364) frequencies were calculated from the genotype data of the AWI-

Gen participants (bars are shades of blue). The frequencies of the alleles at some 

loci were very similar and different in others between the AWI-Gen participant 

regions, indicating some variation between the Eastern, Western and Southern 

African populations (figure 3.3) However, there is a stark difference in allele 

frequency between most of the African population frequencies and the European 

frequencies, supporting the notion that African populations often have different allele 

frequencies compared to non-African populations.  

 A p value cut-off of <0.05 was used to indicate that the frequencies between East, 

West and South African populations differ significantly. Five SNPs are similar in 

frequency across the three regions. Allele frequencies for nine SNPs do differ across 

all three African regions, namely: LDLR rs72658855, rs5925, APOB rs679899, 

rs3791981, PCSK9 rs7552471, rs4927193, rs45613943, LDLRAP1 rs12071264 and 

rs35910270. It is interesting to note that the differences usually are because of the 

allele frequencies in West Africans being more different to East and South African 

frequencies.  

The allele frequencies were compared across the three African regions (East, West 

and South Africa) and are shown relative to the combined African and European 

population in KGP (Figure 3.3). Nine of the 14 loci showed significant frequency 
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differences within Africa. Generally, however, the frequencies in East and South 

Africa are more similar to one another, when compared to West Africa, in line with 

their demographic histories. A table comparing pairwise frequencies can be found in 

Appendix C (table 4). 
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Figure 3.3: Histograms showing frequencies of 14 variants that were genotyped and passed 
QC in each of the four genes. The African (green) and European (red) frequencies were 
obtained from KGP. East, West and Southern African (shades of blue) frequencies were 
calculated using genotyping data. The p values indicate frequency differences across East, 
West and South African populations. A significant difference across East, West and South 
African population frequencies (p<0.05) is indicated with an asterisk (*). 
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3.6. Case-Control Association Analysis 

3.6.1. Logistic regression 

Logistic regression was carried out to determine whether there was an association 

between the variants and LDL-C levels, where cases were participants with high 

LDL-C levels, and controls were those with low LDL-C levels. Allelic association was 

carried out using PLINK v.1.9. Six SNPs (bold and highlighted in table 3.9) were 

significantly associated with LDL-C, tested under multiple correction using Benjamini-

Hochberg (FDR). FDR reduces the chances of a SNP falsely being selected as 

associated by statistical means. Variants were considered as significant with an 

adjusted p<0.05 which is indicated in bold and shaded in the table below.  

Table 3.9: Allelic association of 14 SNPs with and without adjustment for 

multiple testing using FDR in 993 individuals 
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APOB rs6752026 <0.0001
 

0.0002 A 0.1018 0.1680 0.5613 0.4309 0.7314 

PCSK9 rs45613943 0.0001 0.0005 C 0.2374 0.3169 0.6709 0.5503 0.8180 

LDLRAP1 rs12071264 0.0002 0.0011 G 0.0665 0.1137 0.5557 0.4046 0.7632 

APOB rs679899 0.0013 0.0047 A 0.1472 0.0998 1.5570 1.1860 2.0430 

LDLR rs72658855 0.0065 0.0181 T 0.0202 0.0413 0.4783 0.2782 0.8223 

LDLRAP1 rs35910270 0.0148 0.0346 del 0.3730 0.4266 0.7997 0.6680 0.9573 

LDLR rs3826810 0.0297 0.0595 A 0.0907 0.1207 0.7267 0.5445 0.9699 

LDLR rs5929 0.0424 0.0741 T 0.1018 0.1310 0.7516 0.5702 0.9909 

LDLR rs5925 0.1448 0.2252 C 0.1633 0.1398 1.2010 0.9388 1.5350 

APOB rs3791981 0.2407 0.3370 G 0.4626 0.4889 0.8999 0.7544 1.0730 

APOB rs12720855 0.4059 0.5166 G 0.0716 0.0815 0.8689 0.6237 1.2100 

PCSK9 rs7552471 0.6389 0.7454 T 0.0894 0.0835 1.0780 0.7877 1.4750 

PCSK9 rs4927193 0.8367 0.8464 C 0.2388 0.2349 1.0220 0.8306 1.2580 

LDLR rs2569540 0.8464 0.8464 G 0.4293 0.4336 0.9826 0.8226 1.1740 

OR = odds ratio, L95 = lower 95% confidence interval, U95 = upper 95% confidence interval, 
Genomic locations are reported using NCBI Build 37 (hg19) 

Logistic regression was carried out using PLINK v.1.9. Sex, BMI, glucose levels and 

the region the participant originated from were identified as potential confounders. 

Sex, BMI and glucose levels were significantly different between the cases and 
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controls. The region (East, West and South Africa) the participant originated from 

was also identified as a confounder because we acknowledge that different African 

populations show population stratification. These factors were, therefore, corrected 

for. Age was not a confounder as it was not significantly different between cases and 

controls. Two SNPs, (bold and shaded in table 3.10) LDLRAP1 rs12071264 and 

APOB rs6752026, remain significant (p<0.05) after adjusting for above mentioned 

covariates. Both SNPs have OR values below one (meaning that the minor allele 

(A1) is associated with low LDL-C levels; with the major allele (A2) is associated with 

high LDL-C levels).     

Table 3.10: Logistic regression with 14 SNPs, adjusted for covariates sex, BMI, 

glucose levels and region in 993 individuals 

GENE SNP 
Minor 
Allele 
(A1) 

N OR L95 U95 P value 

LDLRAP1 rs12071264 G 993 0.5866 0.3914 0.8791 0.0097 

APOB rs6752026 A 993 0.6898 0.4847 0.9816 0.0391 

LDLR rs72658855 T 993 0.4983 0.2463 1.0080 0.0527 

LDLRAP1 rs35910270 G 993 0.8004 0.6341 1.0100 0.0608 

APOB rs679899 A 992 1.3620 0.9691 1.9130 0.0753 

LDLR rs5929 T 992 0.7452 0.5258 1.0560 0.0984 

PCSK9 rs7552471 T 989 1.3560 0.8964 2.0510 0.1492 

PCSK9 rs45613943 C 992 0.8280 0.6401 1.0710 0.1508 

LDLR rs3826810 A 993 0.8147 0.5688 1.1670 0.2637 

PCSK9 rs4927193 C 988 1.1460 0.8811 1.4910 0.3093 

APOB rs3791981 G 992 0.9115 0.7272 1.1420 0.4211 

LDLR rs5925 C 993 1.0400 0.7653 1.4130 0.8022 

APOB rs12720855 G 993 1.0470 0.6879 1.5950 0.8288 

LDLR rs2569540 G 992 0.9810 0.7810 1.2320 0.8693 

N = no. of individuals genotyped, OR = odds ratio, L95 = lower 95% confidence interval, U95 
= upper 95% confidence interval, Genomic locations are reported using NCBI Build 37 (hg19) 

Figure 3.4 is a recap of the study design. The flow diagram in figure 1.3 was 

reproduced and additional information was added to indicate the results generated 

for each step in the study.  
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Figure 3.4: Flow diagram of study outline with results. This flow diagram is a replica of figure 
1.3, with the results of each step given in blue. 

 

Using the data for the 14 SNPs from table 3.10, a forest plot was generated using the 

OR and 95% confidence interval values (figure 3.5). The forest plot distinctly shows 

how the minor allele for two significant SNPs is associated with low LDL-C levels, 

and that the remaining 12 SNPs are not significantly associated with LDL-C. The top 

two SNPs are the significant variants because the CI lines do not cross the x=1 (red 

line) intercept. The CI lines of the remaining 12 SNPs do cross the intercept, 

indicating that they are not significantly associated with LDL-C levels. 

Statistical analysis of variants 

14 variants passed QC and analysed in logistic regression 

in silico test by MassARRAY to test compatibility of variants 

19 variants passed test and genotyped 

Select variants for genotyping based on functional impact as well as allele frequency 

29 variants selected for genotyping 

Functional annotaion to assess likely functional impact of the variants 

Using CADD, PolyPhen2 and SIFT  

Identify African-enriched variants in these candidate genes 

76 variants selected in four genes occurring in >6 of 8 populations 

Identify variants from VCFs 

3541 variants dentified in candidate genes 

Extract sequences (VCFs) from public databases (KGP and AGVP) 

WGS from Ethiopia, Uganada, Kenya, The Gambia, Sierra Leone, Nigeria and South Africa 

Choose genes/areas of interest (candidate gene approach) 

LDLR, APOB, PCSK9 and LDLRAP1 
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Figure 3.5: Forest plot for the 14 SNPs that were genotyped and passed QC. The plot 
shows data for SNPs after adjusting for covariates: sex, BMI, fasting glucose levels and 
region (logistic regression). Bars represent 95% confidence interval (CI). The first two SNPs 
are significantly associated with LDL-C levels as the CI bars do not cross x=1 (red line). 
Since the OR is <1 for the first two SNPs, the minor alleles of the two SNPs are significantly 
associated with low LDL-C levels: rs12071264 and rs6752026. The remaining 12 SNPs are 
not significantly associated with LDL-C levels because the CI bars cross the x=1 line. 

 

Figure 3.6 shows the association of the genotypes with LDL-C levels. The genotype 

AA for rs12071264 LDLRAP1 (OR 0.5866) correlates with higher LDL-C levels (figure 

3.6 A), supporting the allelic association of the common A allele with increased LDL-

C. With more G alleles (heterozygous and minor allele homozygous genotypes) the 

trend was associated with lower LDL-C levels, suggesting that the presence of the 

minor allele G contributes to lower LDL-C levels in this populations.  

The other associated SNP, rs6752026 APOB (OR 0.6898), shows that the genotype 

GG correlates with high LDL-C levels (figure 3.6 B) supporting the allelic association 

of common allele G with higher LDL-C levels. The heterozygous and homozygous 

minor allele A genotypes are associated with lower LDL-C levels.  

There is a decrease in LDL-C only when the minor allele is present (in both the 

heterozygous and homozygous genotype) for both SNPs. This suggests that these 

alleles have a dominant mode of action. 
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The LDL-C levels were not normal for each genotype group, therefore a Kruskal-

Wallis test was carried out to assess whether LDL-C levels were statistically different 

(p<0.05) across the genotype groups for both SNPs. Thereafter, a post-hoc contrast 

test was done to determine which 2 groups were statistically different (p<0.05) from 

each other. For rs12071264 and rs6752026, the Kruskal-Wallis p values were 0.0007 

and 0.0008, indicating that the LDL-C levels are different across the three genotypes. 

The post-hoc contract test showed a statistical difference between rs12071264 AA 

and GA (p=0.0011) and rs6752026 GG and AG (p=0.0148). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Box and whisker plots of the 2 SNPs significantly associated with LDL-C levels 
after logistic regression. The 993 AWI-Gen individuals with low and high LDL-C are included 
in the plots. A: rs12071264 LDLRAP1 (OR 0.5866), shows how LDL-C levels decrease with 
presence of minor allele G. B: rs6752026 APOB (OR 0.6898) shows how LDL-C levels 
decrease with minor allele A. For each locus, having at least one minor allele is associated 
with lower LDL-C. 
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3.6.2. Polygenic Risk Score 

A polygenic risk score (PRS) was calculated as per the methods section (2.7.2) using 

the six SNPs significantly associated with LDL-C with p < 0.05 after correction for 

multiple testing, but before including the potential confounders. Significantly 

associated SNPs before adjusting for confounders were used so more SNPs could 

be included in generating the PRS. In the plot, the number of high risk alleles is 

counted for each individual and can range from 0 to a maximum of 12 alleles. The 

plot (figure 3.7 A) shows the frequency (proportional number of individuals) of cases 

and controls for each score. The curve of the controls (low LDL-C) is shifted to the 

right (higher score), as expected. This indicates that a higher score is correlated with 

lower LDL-C levels (controls) and therefore is suggested to correlate with a protective 

effect to CVD. The two groups are significantly different from each other (p = 0.001).  

Figure 3.7 B clearly shows the correlation of the generated risk score and LDL-C 

levels. It is apparent that individuals with a greater number of high risk alleles have 

lower LDL-C levels. Alleles individually have a small effect on the phenotype, but 

when considering alleles across several associated genetic loci, the additive effect is 

clearly seen to influence the phenotype. 
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Figure 3.7: Correlation of the polygenic risk score (PRS) with LDL-C levels in 993 
individuals. Six LDL-C associated SNPs p<0.05 after adjustment for multiple testing but 
before adjusting for covariates were included in the calculation of the PRS. A: PRS 
calculated using six SNPs. Plot shows the frequency of cases and controls for each score. 
The curve of the controls is shifted to the right, indicating that in controls the LDL-C levels 
decrease with the addition of alleles associated with lower LDL-C levels (either common or 
minor allele). B: Plot of risk score against mean LDL-C level per risk score. It was found that 
with the addition of each allele associated with lower LDL-C levels (common or minor allele), 
the mean LDL-C level of the participants decreased. 

 

 

 

  

B 

A 



 
 

52 

4. Discussion 

The aim of this study was to identify variants that may be associated with variation in 

LDL-C levels in black African populations. Four genes were investigated: LDLR, 

APOB, PCSK9 and LDLRAP1. Variants in these genes have been found to be 

associated with LDL-C levels as a quantitative trait in various populations worldwide. 

In addition, pathogenic variants in these genes are known to be associated with 

monogenic forms of dyslipidaemia, more specifically familial hypercholesterolaemia 

(FH). Using a computational approach, variants were identified in the four genes in 

WGS data in African individuals sourced from public databases (AGVP and KGP) 

where WGS data are freely available.  

Over 3500 variants were identified across the four genes. These variants were then 

filtered, using a computational approach which considered base-line frequency of the 

minor allele across all eight African populations studied, as well as predicted 

deleteriousness of the variant. Following the filtering process, 29 variants were 

selected for laboratory genotyping, but only 19 were genotyped because 10 variants 

failed the MassARRAY in silico test. The 1000 participants were chosen by applying 

a case-control study design, where participants were specifically chosen because of 

either high or low LDL-C levels. The 19 variants were genotyped in a group of 998 

AWI-Gen participants: 500 with low LDL-C levels (controls) and 498 with high LDL-C 

levels (cases). Two individuals were removed from the high LDL-C group because 

they were identified as outliers. Selecting participants using an adapted extreme 

phenotyping method enriches the presence of variants that contribute to a 

quantitative trait and increases the power for association as compared to random 

sampling (Barnett, Lee and Lin, 2013; Xu et al., 2018). This selection method also 

reduces the number of individuals needed for genotyping to detect a specific effect 

size. Emond et al., (2012) used an approach of extreme phenotyping to successfully 

identify a gene that modifies chronic infection in cystic fibrosis in 91 individuals. Yang 

et al., (2015) found that extreme phenotyping was more effective for identifying 

variants associated with maize kernel phenotypes than conventional GWAS.  

Logistic regression analysis was subsequently carried out using a case-control study 

design to determine whether the selected SNPs were associated with LDL-C levels.  
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4.1. Characterisation of participant phenotype  

The AWI-Gen participants (approximately 10 000 in total) were sampled from six 

geographic sites (Agincourt, Dikgale, Navrongo, Nairobi, Nanoro, Soweto) 

representing populations across East, West and South Africa (Ramsay et al., 2016). 

For this particular study, we selected 1000 participants from the 10 000 for further 

investigation. The individuals were chosen based on their LDL-C levels: 500 with low 

LDL-C levels and 500 with high LDL-C levels. As the selection criterion was LDL-C, 

irrespective of site of collection, the individuals included in this study were not evenly 

distributed across the six sites. Different African populations harbour different levels 

of genetic diversity (Durbin et al., 2010; Pickrell et al., 2012), predicting that the 

participants from the different sites may be genetically different to each other. 

Therefore, the pooling of six different groups that potentially exhibit population 

stratification into one sample group could be a confounder. The confounder of 

population substructure could possibly influence the detection of associated variants 

with LDL-C.  

However, when participants were sorted into geographic regional groups (East, West 

and South Africa) instead of site (Agincourt, Dikgale, Navrongo, Nairobi, Nanoro, 

Soweto), the participants were evenly distributed across the sample of 1000 

participants in the study. Though, to control for population sub-structure between 

regions, participants’ regions were used as a covariate in logistic regression.  

In addition to LDL-C levels, the following phenotype data was used in this study: age, 

BMI, sex, glucose levels, HIV status and HIV treatment. Age was the only phenotype 

variable to show no significant difference between cases and controls and was 

therefore excluded as a covariate.  

HIV-related information from AWI-Gen was limited and many data points were 

missing (table 3.4). Consequently, HIV-related variables could not be factored into 

the combined analysis model. From the HIV data available to us, there are more 

participants who are HIV positive in the low LDL-C level (control) group. It seems that 

this correlates with a study by Vos et al. (2017) where HIV positive individuals were 

found to have lower LDL-C levels when compared to a control group. In addition, 

more participants in the high LDL-C level group (cases) were treated for HIV, 

suggesting that perhaps HIV treatment could be related to higher LDL-C levels 

(Anastos et al., 2007). To reiterate, HIV infection status and treatment could not be 
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used as a covariate in logistic regression analysis due to many missing data points 

for the 1000 participants of this study.   

The other three phenotype variables, namely, sex, BMI and fasting glucose levels, 

showed a significant difference between cases and controls (table 3.2) with p-values 

< 0.0001. They could be possible confounders; therefore, they were used as 

covariates in subsequent analyses. 

Using the MassARRAY, 19 SNPs were genotyped. Following quality control of the 

genotype data, seven individuals were removed from the dataset. Two individuals 

were removed as outliers with extremely high LDL-C levels and a further five 

individuals were removed due to high SNP genotyping missingness. Five SNPs were 

removed due to high missingness and low HWE. This left 993 individuals and 14 

SNPs to be further analysed.  

The small number of exclusions of participants (seven) and SNPs (five) reflects the 

high quality of DNA. 

4.2. Genetic Associations with LDL-C 

This study investigated AWI-Gen participants in a case-control study design based 

on clinical cut-offs of LDL-C levels, with the aim of identifying variants associated with 

LDL-C in African populations. This study aimed to determine genetic contributions to 

a multifactorial trait, using individuals with extreme LDL-C levels.  

There are studies that have shown that allelic variants in four genes, LDLR, APOB, 

PCSK9 and LDLRAP1, have been associated with both polygenic and monogenic 

forms of dyslipidaemia. Kathiresan et al., (2009) found that in a GWAS of 20 000 

individuals, allelic variants of LDLR, APOB and PCSK9 were associated with LDL-C 

levels. A study that was done on 841 Amish individuals found that a variant in APOB 

was associated with an increase in LDL-C (Shen et al., 2010). Loss of function 

variants in LDLRAP1 were found to be associated with raised lipid levels in six 

Spanish patients (Sánchez-Hernández et al., 2018). Therefore, allelic variants 

associated with LDL-C levels have been identified in all four genes when examining 

LDL-C as a multifactorial trait.  

In African populations, or populations with African ancestry, few studies have been 

undertaken looking at association with alleles at the four genes being investigated 

and LDL-C levels. A GWAS carried out on 3263 individuals of African descent from 
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different populations identified alleles in LDLR associated with LDL-C levels (Willer et 

al., 2013). Two nonsense variants in PCSK9 were found to be associated with low 

LDL-C levels in a sample of 128, of which 64 individuals were African American 

(Cohen et al., 2005), and a nonsense variant identified in Zimbabwean women 

associated with low LDL-C levels (Hooper et al., 2007). 

4.2.1. Genetic association analysis 

Following quality control, 496 cases with high LDL-C levels and 497 controls with low 

LDL-C levels were included in the association analysis. These participants were 

genotyped for 19 SNPs that were selected from data on African populations with a 

view to choosing the SNPs based on potential functional impact of the variant allele, 

and with substantive frequencies of the variant allele in African populations. After 

quality control, only 14 SNPs were included for analyses going forward. The allelic 

association analysis showed six SNPs (APOB rs6752026, rs679899, LDLR 

rs72658855, LDLRAP1 rs12071264, rs35910270 and PCSK9 rs45613943) were 

significantly associated with LDL-C levels (p<0.05) after correcting for multiple testing 

using the Benjamini-Hochberg method (table 3.9) and before adjusting for potential 

confounders. Three of the associated SNPs (APOB rs6752026, rs679899, LDLR 

rs72658855) are missense variants, LDLRAP1 rs12071264 is a variant in intron 5, 

close to the intron:exon splice junction, LDLRAP1 rs35910270 is a 1 bp deletion 

variant in the 3’ untranslated region and PCSK9 rs45613943 is found towards the 

end of intron 5. At least one variant in each of the four genes showed allelic 

association with LDL-C, suggesting that genetic variation at all four genes likely 

contribute toward LDL-C level variation in East, West and South African populations.  

4.2.1.1. Significant association with two variants 

Logistic regression was carried out with adjustment for four potential covariates (sex, 

BMI, fasting glucose levels and participant region). After adjustment, four SNPs that 

showed allelic association were no longer statistically associated with LDL-C levels in 

the logistic regression (table 3.10). Only two variants remained significantly 

associated after adjusting for the four covariates: LDLRAP1 rs12071264 (p < 0.01) 

and APOB rs6752026 (p < 0.04). 

The first variant is in LDLRAP1: rs12071264, c.533-22A>G (OR: 0.5866, 95%CI: 

0.40-0.88). The variant is found in the middle of the gene in intron 5. The minor G 

allele was found to be associated with low LDL-C levels and occurs at a frequency of 
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0.1415 in the KGP combined African sample. This variant is extremely rare in non-

African populations (absent in the KGP European samples) and is not represented in 

frequently used GWAS arrays. ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) was 

used to check if this variant has any previous associations with LDL-C. However, no 

clinically relevant information for rs12071264 was found. It must be noted that 

ClinVar records studies with variants primarily associated with monogenic traits and 

that have mainly been carried out in populations other than African. It will, therefore, 

not always be predictive of the effect for polygenic associations or for variants in 

African populations. There is no information regarding this SNP on the GWAS 

catalogue (https://www.ebi.ac.uk/gwas/home).  

Using SplicePort (Dogan et al., 2007), this SNP (c.533-22A>G) was found to be close 

to a splice site. Variants that are found a few base pairs away from a splice site can 

affect the way the gene is spliced. Consequently, the altered transcript of the 

LDLRAP1 gene could contribute toward lowered LDL-C levels. The major allele in all 

populations is associated with higher LDL in Africans. The fact that the minor allele is 

associated with lower levels of LDL-C may suggest that this variant acts as a gain of 

function variant associated with lower LDL-C, or causes allelic insufficiency of 

LDLRAP1 due to alternate splicing and that this contributes to lower LDL levels in 

African populations. 

The true effect of this variant remains unknown. Variants in LDLRAP1 have not 

previously been shown to associate with low LDL-C levels, but variants causing high 

LDL-C have been identified (Sánchez-Hernández et al., 2018). This SNP is absent in 

European populations and was likely not included in GWAS arrays used to date. This 

may therefore be a unique African LDL-C associated variant. There are no LDL-C 

association with LDLRAP1 in African populations.  

The second variant significantly associated with LDL-C levels was a missense variant 

in exon 5 of the APOB gene: rs6752026, c.433C>T (OR: 0.6898, 95%CI: 0.69-0.48). 

APOB is transcribed from the reverse strand. In the literature the variant is listed as a 

C to T variant, even though the actual variant is G to A. This SNP is a proline to 

serine missense variant and the A allele (encoding the serine) is associated with 

lower LDL-C levels. When a variant changes the amino acid property/charge at a 

specific position, the structure and/or function of the protein may be affected (Sauna 

and Kimchi-Sarfaty, 2011). The amino acid change here is from a polar amino acid to 

a non-polar amino acid. It is reported as benign by ClinVar, although it had a 

https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ebi.ac.uk/gwas/home
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“probably damaging” PolyPhen2 score (0.919) and a “deleterious” SIFT score (0.03) 

suggesting that this SNP could be deleterious as a consequence of altering the 

protein structure. The consequence of the variant could be a gain of function variant. 

This would result in the APOB protein binding with a higher affinity to LDLR, 

decreasing levels of LDL-C in the blood plasma.  

ClinVar does not usually report on genetic associations with complex traits, and this 

may be why it is reported as benign, even though other prediction tools suggest a 

high probability of being damaging. This SNP shows association with the trait, and 

due to the predicted functional impact it may contribute to altering the phenotype. As 

most available published studies are based on European populations, it is highly 

likely that this variant has not been previously reported because it occurs at very low 

frequencies in European KGP populations (0.1%) and is not represented on GWAS 

arrays.  

Even though there are no studies reporting on this APOB variant, previous studies 

have identified other APOB variants to be associated with LDL-C in non-African 

populations. A missense variant causing FH was found in APOB in a French family 

(Elbitar et al., 2018). In contrast, two studies in a Spanish and French population 

found deleterious variants that are thought to cause low LDL-C and APOB protein 

levels (Martín-Morales et al., 2013; Rimbert et al., 2016). Studies on variants in 

APOB affecting lipid levels in African populations were not found in the literature.  

In association studies, very often the associated variant is not the casual/functional 

variant itself. So, it is highly likely that these two SNPs, if not causal, may be in LD 

with the actual functional variants with functional impact on the phenotype (Clarke et 

al., 2011). 

4.2.1.2. Associations of LDLR, APOB, PCSK9 and LDLRAP1 with 

LDL-C in the literature 

In this study, allelic association with variants in these four genes have shown 

suggestive or significant association with LDL-C levels. For two of the genes 

investigated, LDLR and PCSK9, no SNPs remained significantly associated (p<0.05) 

with LDL-C levels after logistic regression and adjusting for covariates.  

The effect of the PCSK9 protein on LDL-C levels is a relatively new discovery. 

However, it is now well documented the functional PCSK9 variants are associated 

with both high and low levels of LDL-C in many populations (Abifadel et al., 2003; 
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Cohen et al., 2005). The fact that none of the LDLR and PCSK9 variants tested in 

this study were found to be significantly associated in logistic regression does not 

indicate that these genes are not involved in variation in LDL-C levels in Africans.  

There is relatively little literature available for comparative studies. A Korean study 

(Lee et al., 2017) aimed to identify rare variants in 22 patients with extremely low 

LDL-C. The study sequenced both genes and used PolyPhen2 and SIFT as well as 

Mutation Taster to functionally annotate the variants. They found eight rare variants 

in two candidate genes (APOB and PCKS9) that were associated with low LDL-C.  

Another study (Lange et al., 2014) also used extreme phenotyping to select their 

participants, approximately half of which were European American, and performed 

exome sequencing. They used ANNOVAR and GENCODE to annotate the variants 

as nonsense, splice, missense, synonymous, UTR and noncoding. In addition to 

finding known and novel variants in three of the genes we investigated (LDLR, APOB 

and PCSK9), Lange et al., (2014) discovered a locus (PNPLA5) previously not 

associated with LDL-C. The PNPLA5 protein appears to have a role in lipogenesis in 

the liver (Wilson et al., 2006), however, the exact function of the protein remains 

unclear.  Variants in APOB and PCSK9 were found to be associated with low LDL-C 

levels, and variants in LDLR with high LDL-C. 

As already mentioned, Sánchez-Hernández et al., (2018) and Pirillo et al., (2017) 

identified several duplications, deletions and SNPs that cause high LDL-C levels in 

Spanish and Italian populations, respectively. 

To identify rare variants with a large effect on LDL-C levels in an African setting, an 

approach that would include sequencing of a gene panel with genes known to be 

involved in lipid levels, in a sample of participants chosen by clinical cut-offs of LDL-C 

levels could lead to the identification of alleles with a large contribution to the 

phenotype. Few studies have been carried out on black African populations exploring 

the effect of variants in LDLR, APOB, PCSK9 and LDLRAP1. Another approach to 

identify rare variants with large effects on LDL-C in African populations, would be to 

carry out an exploratory GWAS to search for novel high-effect loci contributing to the 

trait.  

A study carried out on 1860 black South African individuals (Setswana speaking) 

aimed to identify variants associated with LDL-C levels. Van Zyl et al., (2014) 

investigated whether variants in LDLR associate with LDL-C levels in these black 
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South Africans. The LDLR gene was sequenced and two novel LDL-C associated 

variants were identified in 30 individuals. The study showed that a C to T promoter 

variant (rs17249141) was associated with lower LDL-C levels. Four variants were 

associated with higher LDL-C levels; one intron variant (rs2738447) and three 

variants in the 3’ UTR (rs14158, rs2738465 and rs3180023). 

In addition to causing dyslipidaemia in other populations, a PCSK9 nonsense variant, 

C679X (rs28362286) showed an association with low LDL-C levels in a cohort of 

Zimbabwean women (Hooper et al., 2007). The frequency of this SNP in the cohort 

of Zimbabwean women was 3.7%. This variant was initially identified in my study 

while carrying out functional annotation; however, it was excluded for genotyping due 

to its low allele frequency in the African populations (0.008) and it would have had 

insufficient power in my study.  

The MAF used to select the variants was taken from the combined African frequency 

reported in dbSNP (which come from KGP). This was the most suitable proxy 

population to use for the African frequency estimate during the SNP selection 

process.  

In conclusion, my study has provided suggestive evidence of the role of genetic 

variation of all four genes in LDL-C levels in black Africans. However, the sample size 

was underpowered to detect modest to small effects. After adjusting for both multiple 

testing and potential confounders, only 2 out of the 14 SNPs tested in this study 

remained significantly associated with LDL-C levels. In both cases the rare allele was 

associated with lower LDL-C. This may suggest that the allelic variants have a gain 

of function impact, or are in close LD with functional variants, that contribute to 

decreasing LDL-C levels in Africans.   

4.2.2. Gene-Environment interactions 

LDL-C levels are influenced by genetic variants at many different loci; however, the 

phenotype is a complex trait also influenced by other factors. Lipid levels can be 

influenced by sex, BMI and age, as well as lifestyle choices such as diet. Lipid levels 

have been reported to have an estimated heritability ranging between 40 and 60% 

(Weiss et al., 2006). GWAS studies of very large sample sizes have generally 

explained only 10-12% of the variability in LDL-C levels (Teslovich et al., 2010). 

Some of the missing heritability could be explained by gene-environment interactions 

and gene-gene interactions (also referred to as epistasis) (De et al., 2017).  
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Gene-environment interactions have been identified in some studies, where 

medication, like hormone replacement therapy, and lifestyle choices (exercise and 

diet) can affect lipid levels (Hagberg, Wilund and Ferrell, 2000). A significant 

correlation was found between dietary cholesterol and plasma cholesterol levels, 

where increasing dietary cholesterol increases lipid levels (Kim et al., 2013). If an 

increase in dietary cholesterol results in an increase in plasma cholesterol levels, 

then it follows that one may expect a decrease in dietary cholesterol, in addition to an 

increase in daily exercise, to result in a decrease in plasma cholesterol. As an 

exception, this would not necessarily be the case for monogenic causes on high LDL-

C, like FH, that are primarily the result of a highly penetrant pathogenic mutation. 

It is interesting that African American populations generally have lower lipid levels 

that non-African populations (Bentley and Rotimi, 2012). Diet and exercise could 

contribute to explaining the generally low levels in African populations – as dietary 

cholesterol tends to be low, and daily activity is higher than in more urban 

populations – but a genetic predisposition to lower LDL-C cannot be excluded. Data 

on diet and physical exercise on the AWI-Gen participants was not available at the 

time of this study, and this information was therefore not used as potential covariates 

in logistic regression. In addition, the data is self-reported and may not be an 

accurate reflection of behaviour. 

In the AWI-Gen study, among the 1000 selected participants, there are more 

individuals with high LDL-C levels in East Africa than there are in West Africa. This 

could be due to the type of diet patterns followed in East Africa. Although fat intake is 

lower in African populations than in the global west, East African populations seem to 

consume more fat compared to West Africans. Burlingame (2003) reports that East 

African populations get 30-32% of energy from fat, whereas populations in West 

Africa get 23% of their energy from fat. Diet, could therefore, be one explanation for 

this skewed distribution.  

HIV data on the AWI-Gen participants was not complete. It is known that infection 

and ARV treatment affect LDL-C levels and therefore this is an important omission 

and could influence the outcome of this study. More HIV-related data should be 

included in future studies to properly assess the impact of HIV status and treatment 

on LDL-C levels in African populations.  
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Alternatively, there could be genetic predisposing factors to low LDL-C levels in 

different African populations. In our study, participants from East and South African 

differ in frequencies to West African frequencies for most of the SNPs (figure 3.2 and 

appendix C table 4). There could be genetic predisposing factors that contribute 

differently to the phenotype in each population.  

However, the LDL-C level landscape in African populations is likely due to a 

combination of genetic predisposing factors, as well as environmental effects. For 

both significantly associated SNPs identified in this study, it was the major alleles that 

were associated with higher LDL-C levels. Although this may suggest that the normal 

distribution of LDL-C levels in African populations would be expected to be higher, 

the rare alleles may have some gain of function effect that associates them with 

lower LDL-C levels.  

4.2.3. Polygenic Risk Score 

A polygenic risk score (PRS) is used to determine the combined effect of multiple 

variants identified in an association study on a phenotype (Dudbridge, 2013). 

Variants are chosen for inclusion in the score based on significantly associated loci 

and knowledge of the risk allele. This score is used to predict the genetic risk for 

developing a disease and may use a simple additive or weighted model. In the latter, 

alleles at specific loci are weighted according to the extent of the effect on the 

phenotype (OR or beta value) and/or significant p value. A simple PRS was 

generated in this study based on the additive effect of alleles associated with a low 

LDL-C phenotype. 

We included six SNPs with p<0.05 (after correcting for multiple testing but before 

adjusting for potential confounders) from the allelic association in this PRS, rather 

than the two SNPs that were significantly associated (p<0.05) after adjusting for 

covariates. This was done because a PRS can include markers with small effects 

and which show a trend toward the phenotype under investigation and because a 

PRS does not work well with a very small number of SNPs (Guo et al., 2017; 

Paquette et al., 2017).  

Figure 3.7 A shows that the curve based on data from the controls shifted to the right 

in terms of a protective effect for LDL-C levels, compared to the PRS for the case 

group. The shift is modest, but significant (p=0.001) which suggests that there is an 

association of the variants identified with LDL-C levels. This shift would be better 
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assessed with the inclusion of the larger sample size in the full AWI-Gen cohort, but 

unfortunately, we do not have data to test this. 

A post hoc power analysis was done on the two significant SNPs. rs12071264 would 

be detected with 85.94% power (MAF 0.090), and rs6752026 (MAF 0.135) would be 

detected with 75.09% power. The SNPs are therefore well powered to detect an 

association in a case-control group of 500 (1000 individuals in total).   

Figure 3.7 B shows clearly that with each addition of an allele associated with lower 

LDL-C, there is a trend to low LDL-C levels and the protective effect for LDL-C 

increases.  

4.2.4. Visualisation of genotype association with LDL-C levels 

Figure 3.6 A depicts a box and whisker plot for LDLRAP1 rs12071264 (OR 0.5866). 

Genotypes with the minor allele (G) are associated with lower LDL-C levels and 

therefore in an individual who has the genotype AA, the LDL-C levels are higher, as 

expected. The minor allele of this SNP is associated with lower LDL-C levels in this 

African population. The SNP is an intronic variant and may affect transcription by 

affecting the affinity of transcription factors binding to the DNA, or it may cause 

alternate splicing amongst other consequences (Pagani and Baralle, 2004). This 

variant has not been detected in Asian and European populations according to KGP 

data, however, the frequency of the variant ranges from 0.07 to 0.20 in African 

American and African populations. Therefore, this variant may be associated with 

LDL-C levels only in African and African American populations.   

The second SNP, APOB rs6752026 (OR 0.6898) also shows significant association 

of the minor allele (A) with low LDL-C levels. The homozygous AA and heterozygous 

AG are associated with low LDL-C levels (figure 3.6 B), and the homozygous GG 

genotype is associated with increased LDL-C levels. This SNP has a very low 

frequency in European populations but has frequencies of 0.05-0.2 in African and 

African American populations. This could also therefore also be an African-specific 

association. 

Statistical tests showed a significant difference between the homozygous major allele 

genotype and the heterozygous genotype for both SNPs. This indicates that the 

presence of one minor allele reduces LDL-C levels, supporting the association of the 

minor allele with low LDL-C levels. 
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4.3. LDL-C Levels in African Populations 

The LDL-C distribution in African populations is generally considered to be lower than 

in non-African populations, therefore, it is counter intuitive that the common alleles at 

the two associated SNPs would associate with higher LDL-C levels in Africans. As 

suggested above, the rare alleles could have a gain of function effect for low LDL-C, 

and/or gene-environment interactions could play a role, and low-fat diets and high 

physical activity could also contribute to lower LDL-C levels in African populations. 

However, as African populations become more urbanised, a more western lifestyle 

will follow, which could increase LDL-C, especially in those with a genetic 

predisposition for high LDL-C levels.  

Detecting hyperlipidaemia early in individuals and administering treatment and 

lifestyle changes can reduce the number of CVD related events, and subsequently 

reduce the health burden on the African and South African health service (Kromberg, 

Sizer and Christianson, 2013). Precision public health is using data to implement 

intervention strategies that will most efficiently benefit the majority of individuals in a 

population (Dowell, Blazes and Desmond-Hellmann, 2016). Using population specific 

genetic variants to predict LDL-C levels will only be effective if they have good 

predictive potential and the assays are affordable. At present a serum cholesterol 

test remain a better and more cost-effective measure of LDL-C levels. Intervention 

strategies such as lifestyle changes and appropriate prescription of medication for 

high LDL-C that is effective for the population in question could be implemented for a 

better outcome.  

4.4. Limitations of this study 

The study has several strengths, but also some weaknesses. On the positive side, 

this study was a big African-based study in comparison to other African-based 

studies. It was designed to study groups with very high and very low LDL-C levels, 

thereby increasing the chances of finding genetic associations with LDL-C levels. 

The variants genotyped in this study were selected carefully for informativeness 

based on predicted function and MAF. Finally, a candidate gene approach testing 

genes previously shown to be associated with LDL-C was used, further enriching the 

potential for finding association signals with LDL-C levels. 

The AWI-Gen participants were all African, however, they were multi-ethnic, with 

uneven distribution across ethnic groups and this could have caused bias due to 
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population sub-structure. False positives could have arisen due to the differences in 

allele frequencies across the three geographical regions. However, because lipid 

data on African populations are limited, this study serves as a starting point for 

subsequent research endeavours on understanding genetic associations with LDL-C 

levels in African populations. Due to this, it is likely that the two significant SNPs 

identified in logistic regression could be false positives as their frequencies differ 

across the three geographical regions. Replication studies are necessary to confirm 

or reject this finding. 

A small number of SNPs were tested per gene and it would have been ideal to 

sequence the entire gene or have a more representative set of markers to capture all 

the haplotype blocks across each gene. Only a limited number of SNPs were 

genotyped due to budget constraints. There was also attrition of SNPs due to the 

elimination of 10 SNPs by the in silico MassARRAY assay validation platform due to 

the system predicting that primers would not bind effectively to the DNA sequence, 

preventing amplification of the region of interest, and therefore genotyping would fail. 

In the end, only 19 SNPs were genotyped in this study.  

African populations have lower linkage disequilibrium (LD) among loci in comparison 

to European and Asian populations (Teo, Small and Kwiatkowski, 2010). Due to the 

low LD in African populations, more SNPs are needed to capture all the haplotype 

blocks, however, when applying fine mapping (a high density of SNPs in the region of 

interest), if an association were found, it would make it easier to find the causal 

variant because it is likely to be on a smaller haplotype block. In other populations, 

LD blocks are larger, therefore not many SNPs are required to be genotyped to cover 

all LD blocks. With the small selection of SNPs genotyped in this study, we reduce 

the chance of finding associations, and therefore also the chance of finding a causal 

variant in LD with the selected SNPs. It is, therefore, imperative that more SNPs are 

selected when carrying out a GWAS on African populations to cover the many LD 

blocks.  

The sample size was relatively small. However according to Quanto, this study was 

powered enough to detect association with the variants in this cohort. The post hoc 

analysis on power resulted in 85.94% and 75.09% power to detect association with 

rs12071264 and rs6752026. To fully assess the potential predictive value of the 

polygenic risk score would require a much larger study. An increase in sample size 
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would also increase the detection of a number of significant SNPs with smaller 

effects that could be found using logistic regression analysis.  

Most studies reporting on LDL-C in the literature are based on non-African 

participants, therefore we need to assess whether the effects of the variants are 

similar in African populations or whether different variants (sometimes in the same 

genes) may be involved. African populations are largely under studied and may have 

different genetic aetiologies with respect to variation in LDL-C levels. In addition, 

many studies have examined gene mutation involvement in monogenic forms of high 

LDL-C related disorders (e.g. FH) and have therefore failed to detect low penetrance 

alleles associated with LDL-C levels as a multifactorial trait. The GWAS catalogue, 

which is better suited to report on complex trait associations, as opposed to ClinVar, 

did not have information on associations with the two associated SNPs this study 

identified. In part this could be because they are absent or extremely rare in non-

African populations.  

Despite knowing that HIV status can affect LDL-C levels, HIV data could not be used 

in logistic regression due to many missing data points. HIV status should have been 

used as a criterion for exclusion if enough data had been available. In areas where 

HIV is common, the genetic association of LDL-C in the context of HIV should be 

studied specifically. This should be done with a good understanding of the effects of 

ARVs on lipid levels, which is a complex focus area. 

Diet and physical exercise were not used as confounders in logistic regression as the 

data for the AWI-Gen participants was not available when this study was started.  

As this study employed a candidate gene approach, we chose genes previously 

identified in the literature – so we chose genes known to be involved in LDL-C level 

variation in European populations, but for which African studies are lacking. Miller et 

al., (2016) investigated seven genes in a South African Xhosa woman to find 

associations with low LDL-C levels. In the study APOB, MTTP, PCSK9, ANGPTL3, 

SAR1B and APOC3 were sequenced and APOE was genotyped. They found two 

novel variants in APOB that showed no association with LDL-C. However, they did 

find a homozygous APOE ɛ2 association with low LDL-C levels. This indicates that in 

African populations, there may be other genes that contribute to LDL-C levels.  
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4.5. Future research to understand the genetic contribution 

to LDL-C levels among Africans  

To more thoroughly evaluate the contribution of genetic variation from the four genes 

of interest, a comprehensive set of LD pruned SNPs for each gene could have been 

selected to ensure that all LD blocks were covered. If this were done, haplotype 

analysis could determine more accurately what the contribution of genetic variation 

from each gene is relative to the phenotype. Furthermore, to capture all genetic 

variation fully, it would be ideal to sequence the four genes explored in this study, 

along with other genes implicated with LDL-C as a complex trait, in African 

populations. Deep whole genome sequencing on African populations with attached 

relevant phenotype data would therefore be useful. Association analysis could 

identify genes implicated with LDL-C levels that may not show the same associations 

in other populations.  

If the sample size is large enough, associations could be found with rare variants of 

low or modest effect on the phenotype that would give additional insight into the 

genetic landscape of African populations concerning the prediction of LDL-C levels.   

In addition to genetic susceptibility, gene-gene and gene-environment effects 

contribute greatly to LDL-C levels, as only 10% of variability can be attributed to 

common variants. Genetic variation, together with DNA methylation epigenetic 

effects, could explain the phenotype variation more extensively (Soto-Ramírez et al., 

2013). Gain of function effects for the rarer alleles could help to explain why, despite 

the fact that the common alleles for the two associated SNPs from this study are 

associated with high LDL-C levels, the LDL-C levels in African populations tend to be 

generally low.  

Extensive research on the functional impact of the SNPs highlighted in this study as 

well as other studies, particularly variants in PCSK9, could help understand the 

underlying mechanisms of the variants and the reason for the effects they have on 

LDL-C levels in African populations. This would aid in clarifying whether variants 

contributing to LDL-C levels in African populations are different to variants in non-

African populations. 

From our limited study, it seems likely that there are African-specific gene variants 

that affect LDL-C levels in African populations and that additional African-specific 

genes and variants are involved (Miller et al., 2016). To fully assess this possibility, a 
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different study approach is necessary, and could include a full GWAS analysis with a 

SNP array enriched for common African genetic variation, whole exome sequencing 

or whole genome sequencing in a large cohort of African participants with the 

relevant phenotype and behavioural data.  
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5. Conclusion 

Few studies have been done on genetic associations with LDL-C levels in black 

African populations. This study, albeit small, has shown that variants in four common 

LDL-C associated genes showed allelic association with LDL-C levels is 993 African 

participants from the AWI-Gen study. After logistic regression and adjusting for 

potential covariates, two significantly associated alleles (LDLRAP1 rs12071264G and 

APOB rs67520260A) were found to associate with low LDL-C levels in East, West 

and South African populations, with suspected gain of function effects. The average 

LDL-C levels for individuals with different genotypes at these loci showed the 

expected correlation with LDL-C levels. One SNP was a missense SNP 

(rs6752026A) in APOB and the other was an intronic variant (rs12071264G) in 

LDLRAP1.  

The LDLRAP1 intronic variant is close to a splice site and if not directly be involved in 

alternate splicing, the SNP could possibly affect binding of the splicing machinery, 

thereby affecting the way or speed with which the transcript is spliced. This variant is 

absent in European populations. The effects of the APOB missense SNP remain 

unknown but SIFT and PolyPhen2 predicted it to be likely deleterious suggesting that 

it could alter protein functionality. This SNP specifically, could have a functional 

impact in LDL-C metabolism through its action on the APOB protein.  It is observed in 

very low frequencies in European populations (0.1%). The absence and low 

frequency of the two SNPs, respectively in European populations, suggest that they 

may have an African-specific effect on LDL-C. The minor alleles of both variants are 

associated with low LDL-C levels, suggesting that the variants have a GoF effect. 

The polygenic risk score using six LDL-C associated SNPs showed that with an 

increase in the number of alleles associated with high LDL-C levels, there was a 

significant difference in LDL-C levels between individuals in the high and low LDL-C 

groups. In addition, individuals with a higher risk score had, on average, higher LDL-

C levels. Box and whisker plots also showed that with the presence of the minor 

allele (heterozygous and homozygous) in both variants, the LDL-C levels were lower.  

Due to the population substructure, one might expect significant differences across 

African populations, but we observed that the minor allele frequencies for most 

variants were not significantly different across East, West and South African 

populations, with some exceptions. However, the allele frequencies for rs6752026 
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and rs12071264 differed significantly between African and European populations, 

with rs6752026 not observed in European and Asian populations. An improved future 

study design would be to consider sampling taking onto consideration a population 

specific selection approach. 

Genetic association studies rely on linkage disequilibrium and therefore associated 

variants are often not causal, but in LD with the LDL-C trait. Therefore, the variants 

that have been identified are not necessarily the functional variant itself, but may be 

in LD with the causal/functional variant. This is highly likely for rs12071264, as it was 

selected for high MAF rather than functional impact. This could explain why an 

intronic SNP, with no obvious functional impact (although it may affect splicing), was 

significantly associated with LDL-C levels in this study.  

Africa is generally a genetic data-scarce region, therefore, extensive studies on the 

genetic aetiology of LDL-C level variation in African populations are few. The genes 

chosen for this study were based on data from previous associations in European 

populations. Whereas some SNPs may replicate in African populations it is important 

to use exploratory approaches that have the potential to identify novel Africa genetic 

contributions to the variation in lipid levels. A future exploratory approach should 

include use of the H3Africa SNP genotyping array on the full AWI-Gen study of over 

10,000 individuals. This work is currently underway and could yield novel 

associations (possibly African-specific) that contribute to complex traits such as LDL-

C levels, generating a wealth of information in data-scarce region. 
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7.3. Appendix C: Various tables 

Table 1: Variants chosen according to deleteriousness, type of variant and 

MAF 

Low Density Lipoprotein Receptor (LDLR) 

Genomic 
location 

rs number 
PolyPhen2 

score 
SIFT 
score 

CADD 
score 

African 
MAF 

Global 
MAF 

Type of 
variant 

Notes 

19:11210921 rs72658855 - - 15.14 T = 0.04 T = 0.01 synonymous   

19:11222300 rs11669576 benign (0.08) 
Tolerated  
(1) 1.68 A = 0.20 A = 0.07 missense   

19:11226800 rs5929 - - 12.1 T = 0.12 T = 0.12 synonymous    

19:11242133 rs3826810 
Unknown 
(0) - 4.198 A = 0.12 A = 0.08 missense   

Apolipoprotein B (APOB) 

Genomic 
location 

rs number 
PolyPhen2 

score 
SIFT 
score 

CADD 
score 

African 
MAF 

Global 
MAF 

Type of 
variant 

Notes 

2:21225753 rs1042031 
Benign 
(0.00) - 1.71 T = 0.16 T = 0.12 missense 

Failed 
MassARRAY 
test 

2:21229860 rs12720855 

possibly 
damaging 
(0.64) - 23.60 G = 0.08 G = 0.02 missense   

2:21231524 rs676210 

probably 
damaging 
(0.99) - 27.10 A = 0.12 A = 0.37 missense 

Failed 
MassARRAY 
test 

2:21250914 rs679899 

possibly 
damaging 
(0.64) 

Tolerated 
(0.12) 26.60 A = 0.13 A = 0.49 missense   

2:21260934 rs6752026 

probably 
damaging 
(0.92) 

Deleterio
us 
(0.03) 25.30 A = 0.11 A = 0.03 missense   

Proprotein convertase subtilisin/kexin type 9 (PCSK9) 

Genomic 
location 

rs number 
PolyPhen2 

score 
SIFT 
score 

CADD 
score 

African 
MAF 

Global 
MAF 

Type of 
variant 

Notes 

1:55518370 rs7552471 - - 20.40 T = 0.08 T = 0.02 synonymous   

1:55523855 rs28362263     9.68 A = 0.09 A = 0.03 missense 

Failed 
MassARRAY 
test 

Low Density Lipoprotein Receptor Adaptor Protein 1 (LDLRAP1) 

Genomic 
location 

rs number 
PolyPhen2 

score 
SIFT 
score 

CADD 
score 

African 
MAF 

Global 
MAF 

Type of 
variant 

Notes 

1:25889539 rs12071264 - - 4.70 G = 0.14 G = 0.04 intronic   

1:25893927 rs35910270  -  - 4.73 -0.42 -0.49 frameshift   

Genomic locations are reported using NCBI Build 37 (hg19) 
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Table 2: Variants chosen according to MAF only 

Low Density Lipoprotein Receptor (LDLR) 

Genomic 
location 

rs number 
PolyPhen2 
score 

SIFT 
score 

CADD 
score 

African 
MAF 

Global MAF 
Type of 
variant 

Notes 

19:11230881 rs5925 - - 0.51 C = 0.15 C = 0.34 synonymous   

19:11238239 rs2569540 

Probably 
damaging 
(0.96) 

Deleterio
us (0) 1.20 C = 0.42 C = 0.32 missense   

19:11237772 rs2569542 - - 0.34 A = 0.54 A = 0.31 stop lost 

Failed 
MassARRAY 
test 

19:11239618 rs17242635     1.73 A = 0.24 A = 0.17 splice region   

19:11239701 rs201052824 - - 3.20 
Del = 
0.69 Del = 0.41 frameshift 

Failed 
MassARRAY 
test 

19:11232199 rs2569546 

Possibly 
damaging 
(0.66) 

Tolerated 
(0.12) 1.41 A = 0.67 A = 0.38 missense 

Failed 
MassARRAY 
test 

Apolipoprotein B (APOB) 

Genomic 
location 

rs number 
PolyPhen2 
score 

SIFT 
score 

CADD 
score 

African 
MAF 

Global MAF 
Type of 
variant 

Notes 

2:21239661 rs12720820 - - 1.82 C = 0.24 C = 0.15 
regulatory 
region   

2:21246306 rs12714102 - - 0.62 C = 0.43 C = 0.20 
regulatory 
region     

2:21245367 rs3791981 - - 2.20 G = 0.43 G = 0.20 
regulatory 
region     

2:21223763 rs58411594 - - 0.40 T = 0.34 T = 0.12 
downstream 
gene   

Failed 
MassARRAY 
test 

Proprotein convertase subtilisin/kexin type 9 (PCSK9) 

Genomic 
location 

rs number 
PolyPhen2 
score 

SIFT 
score 

CADD 
score 

African 
MAF 

Global MAF 
Type of 
variant 

Notes 

1:55509872 rs4927193 - - 3.89 C = 0.22 C = 0.15 
downstream 
gene     

1:55518622 rs45613943 - - 3.55 C = 0.29 C = 0.12 
regulatory 
region     

1:55526428 rs11206517 - - 1.29 G = 0.21 G = 0.08 
regulatory 
region   

Failed 
MassARRAY 
test 

1:55521313 rs472495 - - 2.39 T = 0.32 G = 0.42 
regulatory 
region   

Failed 
MassARRAY 
test 

Low Density Lipoprotein Receptor Adaptor Protein 1 (LDLRAP1) 

Genomic 
location 

rs number 
PolyPhen2 
score 

SIFT 
score 

CADD 
score 

African 
MAF 

Global MAF 
Type of 
variant 

Notes 

1:25876516 rs74425832 - - 6.89 G = 0.25 G = 0.08 
regulatory 
region   

Failed 
MassARRAY 
test 

1:25890373 rs13373894 - - 1.74 A = 0.38 A = 0.11 intron     

Genomic locations are reported using NCBI Build 37 (hg19) 
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Table 3: 29 variants initially selected for genotyping in 1000 individuals

G
e

n
e
 

rs
 n

u
m

b
e

r 

M
is

s
in

g
n

e
s
s
 

N
 

M
in

o
r 

A
ll
e

le
 

(A
1

) 

A
ll
 d

a
ta

 H
W

E
 

A
ll
 M

A
F

 High LDL Low LDL 

A1/A1 
n(f) 

A1/A2 
n(f) 

A2/A2  
n(f) 

MAF HWE 
A1/A1 

n(f) 
A1/A2  

n(f) 
A2/A2  

n(f) 
MAF HWE 

L
D

L

R
A

P

1
 rs12071264 <0.01 995 G 0.70 0.09 3 60 435 0.07 0.47 6 101 390 0.11 1.00 

rs35910270 <0.01 995 G 0.84 0.40 65 242 191 0.37 0.44 96 232 169 0.43 0.31 

P
C

S
K

9
 

rs4927193 0.01 990 C 0.16 0.24 40 157 297 0.24 0.01 24 185 287 0.24 0.46 

rs7552471 <0.01 991 T 0.69 0.09 2 84 408 0.09 0.41 4 75 418 0.08 0.77 

rs45613943 <0.01 994 C 0.58 0.28 31 174 292 0.24 0.46 49 217 231 0.32 0.92 

A
P

O
B

 rs12720855 <0.01 995 G 0.51 0.08 4 63 431 0.07 0.30 3 75 419 0.08 1.00 

rs3791981 <0.01 994 G 0.66 0.48 103 253 141 0.46 0.65 125 236 136 0.49 0.28 

rs679899 <0.01 995 A 0.03 0.12 18 110 370 0.15 0.01 5 89 403 0.10 1.00 

rs6752026 <0.01 995 A 0.34 0.14 4 93 401 0.10 0.81 10 147 340 0.17 0.26 

L
D

L
R

 

rs72658855 <0.01 995 T 0.23 0.03 0 20 478 0.02 1.00 2 37 458 0.04 0.20 

rs5929 <0.01 994 T 0.88 0.12 2 98 398 0.10 0.15 12 106 378 0.13 0.17 

rs5925 <0.01 996 C 0.14 0.15 15 134 350 0.16 0.63 14 111 372 0.14 0.13 

rs2569540 <0.01 994 G 0.56 0.43 89 249 159 0.43 0.65 101 229 167 0.43 0.17 

rs3826810 <0.01 995 A 0.31 0.11 5 80 413 0.09 0.58 9 102 386 0.12 0.40 
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Table 4: MAF differences between geographical regions 

Gene rs number E/W E/S W/S 

LDLR 

rs72658855 0.01 <0.01 <0.01 

rs5929 0.25 <0.01 0.01 

rs2569540 0.26 <0.01 0.01 

rs3826810 <0.01 <0.01 <0.01 

rs5925 <0.01 <0.01 5.16 x10-5 

APOB 

rs12720855 0.49 <0.01 <0.01 

rs679899 1.20 x10-7 1.03 x10-7 0.01 

rs6752026 2.41 x10-16 <0.01 3.01 x10-10 

rs3791981 0.28 <0.001 0.01 

PCSK9 

rs7552471 0.01 <0.01 4.34 x10-5 

rs4927193 0.26 2.22 x10-5 <0.01 

rs45613943 4.07 x10-7 3.60 x10-5 <0.01 

LDLRAP1 
rs12071264 4.00 x10-4 1.00 x10-3 2.78 x10-6 

rs35910270 3.89 x10-5 1.00 x10-3 3.89 x10-7 
E/W: p value of frequencies between East and West Africa 

E/S: p value of frequencies between East and South Africa 

W/S: p value of frequencies between South and West Africa 

Significant difference p<0.05 (highlighted in bold) 

 


