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Abstract

Previous research of sequential investment strategies for portfolio selection have shown that there are
strategies that exist that can beat the best stock in the market. In this dissertation, an algorithm is
presented that uses a nearest neighbour approach similar to the one used by Györfi et al [20, 21, 22].
The approach is however extended to include zero-cost portfolios and uses a quadratic approximation,
instead of an optimisation step, to determine how capital should be allocated in the portfolio based
on the neighbours that have been found. A portfolio that results in an increase in the investor’s
capital and compares favourably to certain benchmarks, such as the best stock, indicates that there are
patterns in the time series data. Other features of the algorithm presented is to allow for the data to be
clustered by a selection of stocks or partitioned based on time. The algorithm is tested on synthetic
datasets that depict different market types and is shown to accurately determine trends in the data. The
algorithm is then tested on real data from the New York Stock Exchange (NYSE) and data from the
Johannesburg Stock Exchange (JSE). The results of the algorithm from the real datasets are compared
to implemented versions of past strategies from the literature and compares favourably.
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Chapter 1

Introduction

In this dissertation, an algorithm that uses a pattern matching approach for zero-cost portfolio selec-
tion for sequential investment strategies is presented. Sequential investment strategies are strategies
that use past behaviour to determine how an investor can allocate their wealth amongst a number of
assets in a portfolio [6, 10, 45, 25, 8]. Previous strategies of portfolio selection for sequential in-
vestment presented by several authors [6, 10, 45, 25, 8] only considered investors holding long only
positions on the assets. The algorithm presented in this dissertation and described in Gebbie and
Loonat [18] allows the investor to hold a short position on some assets and a long position on the
remainder of the assets to arrive at a portfolio that is a zero cost portfolio.

As described in a survey by Li et al [33], the Universal Portfolios approach investigated by Cover
[10] and the Exponentiated Gradient approach investigated by Helmbold et al [25] can be classified
as follow the winner approaches. Various agent-based (‘experts’) pattern matching approaches, each
using a different criteria for classifying matches and patterns, have been investigated by Györfi et al
[20, 21, 22]. Similar to the strategies discussed in the survey by Li et al [33], this dissertation aims to
demonstrate that the algorithm can beat the best stock in the market, this would infer that the algorithm
has successfully found patterns in the time series data. This dissertation also aims to investigate
how an analytic approach, derived using the mutual fund separation theorem [31], compares to an
optimisation approach in terms of accuracy versus running time.

The literature review in Chapter 2 has an in depth discussion of the Universal Portfolios approach by
Cover et al [10] and the four algorithms (Histogram, Kernel, Nearest Neighbour and First Neighbour)
introduced by Györfi et al [20, 21, 22]. These approaches are discussed in depth because the results
obtained by the Universal Portfolios approach presented in Cover et al [10] and results obtained from
the Nearest Neighbour approach presented in Györfi et al [21] are compared to the results obtained
from the algorithm in this dissertation. Attempts at recovering the results in [10, 21] are achieved by
implementing a version of the Universal Portfolios approach and Nearest Neighbour approach, these
recovered implementations are used to compare results achieved by the algorithm on datasets not
investigated in Cover et al [10] and Györfi et al [21], namely the extended NYSE dataset (referred to
as NYSE Merged) and the JSE datasets. A discussion on thick modelling based on the work of [3] and
[46] is also discussed. An overview of the Borodin et al paper titled “Can We Learn to Beat the Best
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Stock” is presented to demonstrate an alternate approach to portfolio selection and the interesting
extensions that their ANTICOR algorithm implements. A summary of the Li and Hoi [33] survey
is also included in Chapter 2 to give an overview of portfolio selection techniques from published
literature.

Chapter 3 provides a detailed description of the derivation of the algorithm that is presented as well
as pseudocode for the algorithms. The algorithm is inspired by the Györfi et al Nearest Neighbour
algorithm [21] but has been extended to include zero-cost (active) portfolios and a quadratic approxi-
mation instead of an optimisation step to determine the portfolio used. The algorithm is also presented
in an online form, however it is important to note that while the algorithm does use online learning
[8, 41, 40, 15], the pattern matching is not truly online.

A summary of the datasets used is given in Chapter 4. The data used is in price relative format or is
converted into price relative format. A price relative is the ratio of the price of a stock at time t to
the price of the stock at time t − 1. There are four sets of real data, two New York Stock Exchange
(NYSE) datasets obtained from [19] and two Johannesburg Stock Exchange (JSE) datasets obtained
from [47] and they will be referred to as:

1. NYSE

2. NYSE Merged

3. JSE OHLC

4. JSE Intraday

There are four sets on synthetic data (SDC) each portraying a market with a certain characteristic, the
characteristics are as follows:

i. A market without significant growth in the price of the stocks. (see section 4.1.1)

ii. A market where the price increases over time. (see section 4.1.2)

iii. A market where a stock can either increase or decrease over time based on a random variable.
(see section 4.1.3)

iv. A market where a few stocks increase over time and a few stocks decrease over time. (see section
4.1.4)

Chapter 5 discusses the results of Kolmogorov-Smirnov tests on the synthetic datasets to ensure that
the algorithm behaves as expected for each of the different market characteristics. Chapter 5 also
describes the process used to implement the algorithms presented in Chapter 3, and compares the
performance of the methods discussed in Chapter 2 to the actual results obtained from the algorithms
on the datasets described in Chapter 4.

The MATLAB code that has been used is included in Appendix A of this dissertation.
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Chapter 2

Literature Review

2.1 Universal Portfolios

Thomas M. Cover describes the Universal Portfolios algorithm for portfolio selection in [10]. The
goal wealth of the Universal Portfolio is the wealth achieved by the best constant rebalanced portfolio.
A constant rebalanced portfolio is a portfolio that fixes the fraction of an investor’s wealth that is as-
signed to each stock and rebalances the wealth at these same fractions at the beginning of each trading
period. The notation used by Cover in [10] represents the stock market vector by x = (x1, x2, ..., xm),
where xi is the price relative of the ith stock. b = (b1, b2, ..., bm) denotes the portfolio of the investor,
where bi is the fraction of the investors wealth assigned to stock i. Sn denotes the wealth achieved by
the portfolio at time n and the total number of stocks is m. b̂ and Ŝn represent the universal portfolio
and the wealth achieved by the universal portfolio respectively.

The Universal Portfolio strategy is a performance weighted strategy and is initialised by assigning the
same fraction of wealth to each of the stocks as follows:

b̂1 = (
1

m
,

1

m
, ...,

1

m
) (2.1)

b̂k+1 =

∫
bSk(b)db∫
Sk(b)db

(2.2)

where Sk(b) =
k∏
i=1

btxi

The integration is over the set B = {b ∈ <m :bi ≥ 0,
m∑
i=1

bi = 1} and the wealth of the universal

portfolio is given by Ŝn =
n∏
k=1

b̂t
kxk.

Cover [10] tests the Universal Portfolios algorithm on real data from the New York Stock Exchange
over a 22 year period from 1963 to 1985. The results obtained are for m = 2 stocks and the integrals
are all quantised. The quantisation is done as follows:
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b̂k+1 =

∫ 1

0

bSk(b)db∫ 1
0 Sk(b)db

is replaced by b̂k+1 =

20∑
i=0

i
20Sk(

i
20)

20∑
i=0

Sk(
i
20)

(2.3)

Ŝn =
n∏
k=1

b̂t
kxk is calculated using b̂k =

20∑
i=0

i
20Sk(

i
20)

20∑
i=0

Sk(
i
20)

(2.4)

Thomas M. Cover shows that the Universal Portfolio method can perform better than a buy and hold
strategy of a single stock.

2.1.1 Recovering Prior Results

Using the same data from the New York Stock Exchange that was used in [10], the results that were
obtained were recovered. Figure 2.1 shows that the Universal Portfolio strategy when tested on 2
stocks, Iroquois Brands Ltd. and Kin Ark Corp., outperforms buy and hold strategies for those stocks.

(a) Figure taken from Cover [10].
(b) Figure generated in MATLAB using the code from
Appendix A.2

Figure 2.1: Wealth gained from the Universal Portfolios strategy.

Figure 2.2 shows the fraction of the investors wealth assigned to Iroquois Brands Ltd. on each trad-
ing day using the Universal Portfolio strategy. Using the method outlined in [10], the results were
recovered using MATLAB.
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(a) Figure taken from Cover [10].
(b) Figure generated in MATLAB using the code from
Appendix A.2

Figure 2.2: Fraction of wealth allocated to Iroquois Brands Ltd.

2.2 Györfi et al Algorithms

Four algorithms for portfolio selection are introduced by Györfi et al in [20], [21] and [22]. They all
have a similar structure, where the algorithm looks at the past k days and searches through the entire
history to find k days in the history that are similar to the past k days. The algorithms differ in the
manner in which matches are defined, how many matches to find and which partitions of the history
the algorithm should search. Each algorithm defines an array of ‘experts’ H(k,`) = {h(k,`)(·)} where
k, ` > 0 are integers, k is the period length and ` is used to determine the matching criteria. A positive
probability distribution qk,` is used to combine the experts such that the investor’s capital becomes:

Sn(B) =
∑
k,`

qk,`Sn(H(k,`)) (2.5)

The following notation is used to describe these algorithms in [20], [21] and [22]:

i. xi denotes the return vector at time i. The return vector contains the price relatives for each of
the stocks.

ii. xi−1i−k denotes the return vectors from time i− k to time i− 1.

iii. b denotes the portfolio vector, the fraction of wealth assigned to each stock.
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2.2.1 Histogram Strategy

The idea of the histogram strategy is to assign integer values to the price relatives in the stock market
vector. The partitions used in [20] is determined by using constants a and w which are determined by
` ∈ 1, 2, ..., L.

a =
1

2(1 + 2 log10 `)
and w = a

−1
`

Here x is the price relative of a stock and q is the integer assigned to the corresponding price relative.
M = 2 + 2(`) represents the total number of price relative partitions.

q =



0 : x ≤ a

1 +

⌊
log10(xa)
log10(w)

⌋
: x ∈ (a, 1]

`+ 1 +
⌊
log10(ax)+` log10(w)

log10(w)

⌋
: x ∈ (1, 1a ]

2`+ 1 : x > 1
a

1 2 3 4 5 6
Price Relative

2

4

6

8

Integer

Figure 2.3: A plot of the partitioning function produced in Mathematica when ` = 4 and M =
2 + 2(4) = 10.

Figure 2.31 shows a possible way of partitioning the stock market vectors, the x-axis represents the
value of the price relative and the y-axis represents the integer associate with the price relative. It
can be observed that there is more integer bands closer to one. A function G`(x) represents the

1The Mathematica notebook used to produced the figure is available at https://github.com/FayyaazL/Pattern
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discretisation of the stock market vector and the set of matches J is defined as follows:

Jk,`,n = {k < i < n : G`(x
i−1
i−k) = G`(x

n−1
n−k)}

For each n > k+ 1 the best constant rebalanced portfolio is found, using optimisation, over the stock
return vectors at times i ∈ Jk,`,n. The experts can be formally defined as:

h(k,`)(xn−11 ) = arg max
b

∏
i∈Jk,`,n

〈b,xi〉

2.2.2 Kernel Strategy

The kernel strategy defines the set of matches at time n with the following set:

Jk,`,n = {k < i < n : ‖xi−1i−k − x
n−1
n−k‖ ≤ rk,`}

The general idea with the kernel method is to find the times i in the history where the norm of the
difference between the past k days at time n and the past k days at times i is less than a radius rk,`
which is defined in terms of k and `. A disadvantage of this method is that if rk,` is too small then
very few or no matches could be found and if rk,` is too large then too many matches will be found.
The experts are formally defined as follows and solved using optimisation:

h(k,`)(xn−11 ) = arg max
b

∏
i∈Jk,`,n

〈b,xi〉

2.2.3 Nearest Neighbour Strategy

The nearest neighbour algorithm that is introduced in [21] and [22] is similar to the kernel strategy,
however instead of using a radius the nearest neighbour strategy uses an integer ˆ̀ to determine how
many nearest neighbour matches to use. [21] and [22] formally define the strategy as follows:

ˆ̀= bp`nc

Where p` ∈ (0, 1) and n is time.
The p` used in the results section of [21] is defined as:

p` = 0.02 + 0.5
`− 1

L− 1

where ` = 1, ..., L.
The set of matches is defined as:

Jk,`,n = {i : k + 1 < i < n such that xi−1i−k is among the ˆ̀nearest neighbours }
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The experts are defined as follows and is solved using optimisation:

h(k,`)(xn−11 ) = arg max
b

∏
i∈Jk,`,n

〈b,xi〉

2.2.4 First Neighbour Strategy

The first neighbour strategy is a variant of the nearest neighbour strategy and is implemented because
it is computationally faster than the nearest neighbour strategy. The idea is to split the history up into
segments and to search for the best match in each of the segments. This is done by using a term s`
to denote the segment length and is defined in the paper as s` = 2 + 50 `−1

L−1 . The strategy can be
formally written as follows:

Ni = arg min
(i−1)s`+k≤j≤is`

‖xj−1j−k − x
n−1
n−k‖

Here Ni is the instant of the nearest neighbour match in the ith segment and the experts are defined
as follows and solved using optimisation:

h(k,`)(xn−11 ) = arg max
b

∏
1≤i≤

⌊
n−1
s`

⌋〈b,xi〉

2.2.5 Recovering Prior Results

In table 2.1, a comparison of the results obtained from the nearest neighbour strategy by Györfi et al in
[22] and the results obtained from implementing a recovered version of the Nearest Neighbour algo-
rithm is shown. The experiments were carried out for the experts using k = 1, ..., 5 and ` = 1, ..., 10.
It can be observed that values obtained in the recovery attempt has the same order of magnitude as the
values obtained in [22]. Only the Nearest Neighbour Strategy has been recovered as this showed to
be the best performer [21] and is the approach that the algorithm in this dissertation extends by using
a cash neutral portfolio (active portfolio) and a quadratic approximation instead of an optimisation
step.
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Stocks Györfi et al Recovered

Iroquois Best Agent 1.439e+13 Best Agent 1.629e+13
Kin Ark Total Wealth: 1.156e+12 Total Wealth: 8.9729e+11

Com Met. Best Agent 3.148e+4 Best Agent 2.601e+04
Mei. Corp Total Wealth: 3.505e+3 Total Wealth: 3.8402e+3

Com. Met. Best Agent 8.257e+13 Best Agent 3.748e+13
Kin Ark Total Wealth: 4.781e+12 Total Wealth: 2.7121e+12

IBM Best Agent 296.3 Best Agent 267.440
Coca-Cola Total Wealth: 74.37 Total Wealth: 80.9688

Table 2.1: Recovering the prior results of the Györfi et al [21] Nearest Neighbour algorithm using the
MATLAB code in Appendix A.1

The difference between the results from Györfi et al [22] and the recovered results may be attributed
to two possible reasons, the optimisation method used and the initialisation of the agents. The opti-
misation method used in the literature as stated in [22] is Spellucci’s DONLP2 [51] method which is a
variant of the sequential quadratic programming method, while the method used to recover the results
is MATLAB’s fmincon method which uses a gradient descent method [44]. In Györfi et al [21], it
is suggested that the agents are initialised at time k+ 1 and in the implementation of the algorithm in
this dissertation the algorithm is initialised at time 3`.

Although the results from the literature and the results obtained from the recovered implementation
of the Nearest Neighbour are not exact, it does have the same order of magnitude as observed in table
2.1. This allows for an accurate comparison of the methods on datasets not experimented on in [21].

2.3 Thick Modelling

Pesaran and Timmerman [46] investigate the predictability of stock returns by applying a recursive
modelling approach to predict all possible forecasting models and the stock returns are predicted
based on the best model. Aiolfi and Favero [3] describe this approach as thin modelling because the
approach uses only the best model to forecast the returns.

Aiolfi and Favero [3] extend the approach of predicting stock returns of Pesaran and Timmerman [46]
to one that is based on thick modelling. Thick modelling is achieved by considering more multiples
of the predicted possible forecasting models [2, 3].

An interesting result in [3] is that the results of thin modelling approach of Pesaran and Timmerman
[46] are weakened in the decade 1990-2000.

It can be observed that the approach used in this dissertation is one of thick modelling that does not
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rely on the best result but rather multiple results to determine portfolio selection.

2.4 “Can We Learn to Beat the Best Stock”

Borodin, Yaniv and Gogan [8] present the ANTICOR method in their paper Can we learn to beat the
best stock. An alternate approach to portfolio selection is taken where the ANTICOR algorithm uses
statistical relations between stocks to determine the portfolio to be used in the next trading period.

The approach of the ANTICOR algorithm is to define two consecutive trading windows formulated
as [t−2w+1, t−w] and [t−w+1, t], where w is the number of trading days in the window. Borodin
et al [8] uses the logarithm of the price relatives in these trading windows and calculates the cross
correlation matrix of the two trading windows [33]. Borodin et al [8] shows that the performance
of the ANTICOR algorithm relies on the choice of the trading window w. In order to learn the best
w, Borodin et al [8] defines ANTI1 which uses experts (agents) with window lengths ranging from
2 ≤ w ≤ 30 that each has a uniform buy and hold investment.

An interesting approach used by Borodin et al [8] is to extend the approach from purely trading on the
stocks to trading on the algorithms. This approach is denoted as ANTI2 and trades on the algorithms
from ANTI1. It is shown that the results achieved from this compounding significantly improves the
performance of the portfolio.

Another interesting result of [8] is that the algorithm is not only tested on the NYSE data set [19]
but is further tested on the Toronto Stock Exchange (TSE), 25 stocks from the SP500 and 30 stocks
composing the Dow Jones Industrial Average (DJIA). The four markets are then reversed and experi-
mented on to ensure that the algorithm performs favourably on markets that are different in nature.

2.5 “Online Portfolio Selection: A Survey”

Li and Hoi [33] provide a comprehensive survey on portfolio selection that discusses 25 techniques
from published literature. These techniques are classified into the following 5 categories:

1. Benchmarks

2. Follow the Winner

3. Follow the Loser

4. Pattern-Matching-Based Approaches

5. Meta-Learning Algorithms

The techniques classified as benchmarks are the buy-and-hold strategy, the best stock strategy and
the constant rebalanced portfolios strategy. These strategies are merely used, as the classification
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suggests, as a benchmark for the other strategies. Cover [10] states that his Universal Portfolios
strategy aims to beat the best stock and sets the best constant rebalanced portfolio as a target wealth for
the strategy. A buy-and-hold strategy is where stocks are bought in the first period and no rebalancing
is done.

Techniques that rebalance the portfolio based on the assets that are performing well are classified as
Follow the Winner approaches. The Universal Portfolios strategy of Cover [10] can be classified as
such an approach and is discussed in detail in Section 2.1. Another strategy classified as a Follow
the Winner approach is the Exponential Gradient strategy proposed by Helmbold et al [25] which
tracks the stock with the best performance but does not drastically change the updated portfolio in
comparison to the previous portfolio. The approach proposed by Gaivoronski and Stella [17] that
tracks the best constant rebalanced portfolio, the Online Newton Step approach proposed by Agarwal
et al [1] and the aggregating approach proposed by Vovk and Watkins [53] that uses a finite set of
investment strategies that an investor would consider to be reasonable have also been classified as
strategies that are Follow the Winner approaches.

Follow the Loser approaches, based on the principle of mean reversion, uses the idea that if a stock
performs poorly in the current period it will perform well in the following periods and that if a stock is
performing well in the current period it will perform poorly in the following periods. The ANTICOR
strategy presented by Borodin et al [8] and discussed in section 2.4 has been classified as a Follow the
Loser approach. Other strategies classified as Follow the Loser approaches are the Passive Aggressive
Mean Reversion approach in [36] and the Confidence Weighted Mean Reversion approach in [35]
proposed by Li et al which is named based on the online learning chosen. The Online Moving
Average Reversion proposed by Li and Hoi [32] is also classified as a Follow the Loser approach.

The Györfi et al [20, 21, 22] approaches, outlined in Section 2.2, along with the correlation driven
nonparametric learning approach proposed by Li et al [34] have been classified as pattern matching
based approaches and are described to have two steps. The first step is the sample selection and the
second step is the portfolio optimisation.

Approaches classified as Meta-Learning Algorithms are approaches similar to Follow the Winner
approaches but has a broader class of experts. Vovk and Watkins [53] Aggregating Algorithms is
classified as both a Follow the Winner approach and a Meta-Learning Algorithm. Fast Universalisa-
tion proposed by Akcoglu et al [4, 5], an extension of Universal Portfolios [10], is also classified as
a Meta-Learning Algorithm because it uses a wide class of investment strategies apart from the best
constant rebalanced portfolios. Online Gradient and Newton Updates proposed by Das and Banerjee
[14], which is an extension of the Exponential Gradient [25] and Online Newton Step [1], and the
Follow the Leading history approach proposed by Hazan and Seshadhri [24], which has a working set
of experts dynamically flowed in and dropped out, are also classified as Meta-Learning Algorithms.
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Chapter 3

Algorithm

3.1 The Algorithm and Mathematical Model

The model that is used in this dissertation has a similar structure the model used by Györfi et al
[20, 21, 22] and Cover et al [10]. The price relative of each stock is denoted by:

xm,t =
pm,t
pm,t−1

(3.1)

Where xm,t is the price relative of stock m at time t and pm,t is the price of stock m at time t.
Equivalently written in vector form as xt.

The algorithm is formally defined as 3 algorithms and is based on the Györfi et al [21] Nearest
Neighbour algorithm, it is however extended to include zero cost (cash neutral) portfolios and uses
an analytic quadratic approximation instead of an optimisation step to determine the portfolio selec-
tion. Algorithm 1 is named the Online-Learning Algorithm (OLA), Algorithm 2 is named the Pattern
Matching Algorithm (PMA) and Algorithm 3 is named the Matching Algorithm (MTA).

The Online-Learning Algorithm serves the purpose of managing the portfolio. It takes in as input
the portfolio controls bm,t, the agent controls Hn,t, the updated agent controls Hn,t+1, the feature
realisation xt, the past agent wealth Sn,t−1 and the past portfolio wealth St−1.

bm,t denotes the fraction of the portfolio’s wealth allocated to stock m at time t and is referred to as
the portfolio controls. St denotes the portfolio wealth and is updated as follows:

∆St =

[∑
m

bm,t(xm,t − 1)

]
+ 1 (3.2)

St = St−1∆St. (3.3)

Hm,t denotes the fraction of an agents wealth allocated to stock m at time t and is referred to as the
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agents controls. Sn,t denotes the agent wealth and is updated as follows:

∆Sn,t =

[∑
m

Hnm,t(xm,t − 1)

]
+ 1. (3.4)

Sn,t = Sn,t−1∆Sn,t. (3.5)

The portfolio controls bm,t is updated using the agent controls as follows:

bm,t+1 =
∑
n

qn,t+1Hnm,t+1. (3.6)

Where qn,t+1 represents the agent mixer control for agent n at time t+ 1. The agent mixer control is
determined by an agent mixer update rule which will be referred to as rule g. The following mixture
update rules are considered:

(a) Universal Portfolio
The Universal Portfolios update mixture rule, inspired by Cover et al [10], is calculated as fol-
lows:

qn,t+1 = Sn,t (3.7)

The agent mixtures at time t+1 is proportional to the wealth achieved by the agents at time t.

(b) Exponential Gradient

qn,t+1 = qn,te

(
ηSn,t∑
n qn,tSn,t

)
(3.8)

(c) Exponential Weighted Moving Average

qn,t+1 = λqn,t + (1− λ)

(
qn,tSn,t∑
n qn,tSn,t

)
(3.9)

In the experiments the Universal Portfolios update mixture rule is used. The agent mixtures will need
to be re-normalised. Similar to having absolute portfolios and active portfolios, the agents can also
be absolute or active. In the case of absolute agents it is required that

∑
n qn = 1 and all qn ≥ 0, the

normalisation is as follows:

qn,t+1 =
qn,t+1∑
n qn,t+1

. (3.10)

In the case of active agents it is required that
∑

n qn = 0 and that
∑

n |qn| = 1, the normalisation is
as follows:

qn,t+1 =
qn,t+1 − 1

N

∑
n qn,t+1∑

n |qn,t+1 − 1
N

∑
n qn,t+1|

(3.11)
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The Online-Learning Algorithm then returns the updated portfolio controls bm,t, the past agent wealth
Sn,t−1 and the past portfolio wealth St−1.

Algorithm 1 Online-Learning Algorithm (OLA)
Require:

1. updated agent-controlsHn,t+1

2. current feature realisation xt
3. current portfolio controls bt
4. current agent-controlsHn,t

5. past agent-wealth Sn,t−1
6. past portfolio wealth St−1

for t-state do
Step 1: The portfolio wealth is updated
St = St−1(bt(xTt − 1) + 1)
Step 2: The agent wealth is updated
Sn,t = Sn,t−1(Hn,t(xTt − 1) + 1)
Step 3: The agent mixture is updated for rule g
qn,t+1 = g(qn,t, Sn,t)
Step 4: The agent mixtures are re-normalised

qn,t+1 =

{∑
n qn,t+1 = 1, qn,t+1 ≥ 0∑
n |qn,t+1| = 1,

∑
n qn,t+1 = 0.

Step 5: The portfolio controls are updated
bt+1 =

∑
n qn,t+1Hn,t+1

Leverage corrections
if (ν =

∑
m |bm,t|) 6= 1 then

renormalise controls
bn,t+1 = 1

ν bn,t+1

renormalise mixtures
qn,t+1 = 1

ν qn,t+1

end if
end for
return (bt+1,Sn,t,St,qn,t+1)

The agent controls are determined using algorithm 2 and algorithm 3. The Pattern Matching Algo-
rithm is used to iterate over the agents and returns the agent controls of each of the agents by calling
on the Matching Algorithm.

There are a total number of N agents and each agent is represented by parameters k, `, w and τ . The
parameter k is used to determine the window length of the agent, the parameter ` is used to determine
the amount of matching times of the agent, the parameter w is used to represent the stock cluster and
the parameter τ is used to represent the horizon parameter. There is a total of K values of k, L values
of `, W values of w and τn values of τ . The total number of agents is N = τnWKL, however in this
dissertation only the default choice of τn = 1 is used in the experiments.
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Algorithm 2 PATTERN-MATCHING Algorithm (PMA)
Require:

1. features xt
2. n-agent parameters k, `, s(n), τ

3. partitions {p`}
for n-agents do
Hn,t+1=MATCHING(τ ,{p`},{xtt−k}s(n),{xt}(p`,s(n)))

end for agents
returnHt+1

The Matching Algorithm contains the actual process of finding matches in the history of the price
relative data and calculating the covariance, Σ, and mean, µ, of the matches (see Section 3.3) to
update the controls using equation 3.23.

3.2 Portfolio Selection

A derivation of a quadratic approximation for determining the portfolio controls, as outlined in [18],
will now be presented.

Algoet and Cover [6] shows that if a market is stationary ergodic, a log-optimal strategy is the best
choice of strategy over the long term. The log optimal portfolio selection problem is given by:

b∗(Xt−1
1 ) = arg max

b
E
[
log(b(Xt−1

1 )Xt)|Xt−1
1

]
. (3.12)

Where Xt denotes the random expectation return vector given some past Xt−1
1 and b∗ denotes the

log optimal portfolio.

Györfi et al [23] shows the semi-log-optimal strategies and log-optimal strategies have the same
performance when tested on NYSE data. The semi-log-optimal portfolio takes on the following form:

b∗(Xt−1
1 ) = arg max

b
E
[
h(b(Xt−1

1 )Xt)|Xt−1
1

]
. (3.13)

We can consider the semi-log-optimal portfolio optimisation problem [45, 31]

max
ω
{ωTµ− γ

2
ωT Σω} s.t. ωT1 = 1 (3.14)

the following notation changes have been made:

1. The return expectation vector is denoted by µ.

2. Σ denotes the asset return covariance matrix.
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3. The portfolio control vector is denoted by ω.

4. γ denotes the risk aversion parameter.

Equation (3.14) can be rewritten as the mutual-fund Lagrangian

L = ωTµ− γ

2
ωT Σω − λω(ωT1− 1) (3.15)

and can be solved by using Kuhn-Tucker Methods. Equation (3.15) leads to the following two equa-
tions:

ω∗ =
1

γ
Σ−1 (µ− λω1) (3.16)

ω∗T 1 = 1. (3.17)

We can use (3.16) and (3.17) to find the Lagrange multiplier:

λω =
1TΣ−1µ

1TΣ−11
− γ

1Σ−11
. (3.18)

We can substitute (3.18) into (3.16) to find a formulation of the mutual fund separation theorem:

ω∗ =
Σ−11

1TΣ−11
+

1

γ
Σ−1

(
µ− 1

1TΣ−1µ

1TΣ−11

)
. (3.19)

Equation (3.19) is a form of the active fund separation theorem and can be rewritten as :

ω∗ = ωB + ωA (3.20)

where

ωB =
Σ−11

1TΣ−11
(3.21)

ωA =
Σ−1

γ

(
µ1T − 1µT

1TΣ−11

)
Σ−11 (3.22)

The equations for ωA and ωB is used directly in the agent generating algorithms. µ denotes the mean
of the portfolio return vector and Σ denotes the covariance matrix. The agent controls can now be
calculated for either absolute or active agents as follows:

Hn,t =

{
hT 1 = 1,h = ωB (Σ) + ωA(γ,µ,Σ) s.t. h ≥ 0

hT 1 = 0,h = ωA(γ,µ,Σ) s.t.
∑
|h| = 1⇔ |h|T 1 = 1

(3.23)
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3.3 Pattern Matching

The pattern matching part of the algorithm involves each agent searching through the entire history
for matching times. A time t in the history is a match depending on the k and ` terms of the agent. k
is the window length of the agent that determines how many time periods in the window. ` is used to
determine how many matches each agent should use, this is denoted by ˆ̀. The following choices of ˆ̀

have been investigated in this dissertation:

1. Trivial
ˆ̀= ` (3.24)

2. Györfi et al Nearest Neighbour [21] based where ˆ̀ is determined by a variable p` ∈ (0, 1). The
choice of p` used in this dissertation is the same choice used in [21].

p` = 0.02 + 0.5
`− 1

L− 1
(3.25)

ˆ̀= bp`tc (3.26)

The agent thus uses the closest ˆ̀ matching times. In the event of a tie, the agent will use the older
matching time only for the trivial case and the agent will use all matching times of the ties for the
Györfi et al Nearest Neighbour [21] based case.

The matching criteria used in this dissertation is the Euclidean norm or Euclidean distance between
two time periods formally defined as follows:

‖xt−1t−k − xT−1T−k‖ (3.27)

Where T represents the time that the agents are going to invest into, t represents times from the past
and xt−1t−k represents a sequence of price relative return vectors for k consecutive time periods.

The set of matching times can be formally defined as:

J = {t|t is amongst theˆ̀minimum values of‖xt−1t−k − xT−1T−k‖} (3.28)

x̂ can be defined as a sequence of the price relative vectors at the matching times in set J . The mean
and covariance of x̂ is used in equation 3.23 to calculate the agent controls.

3.4 Partitioning

The algorithm in this dissertation takes into account the possibility of partitioning the history. As
discussed in section 3.3, each agent is required to search for a total of ˆ̀matching times. One option,
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the trivial option, is to have each agent search the entire history for the best ˆ̀ matching times. An
alternate approach could be to partition the history into ˆ̀partitions and have each agent search for the
best match in each partition to get a total of ˆ̀matching times. The choice of partition can be chosen
with the intention of decreasing the computational similar to Györfi’s first neighbour algorithm [21].
The partitioning may also be chosen with the intention of increasing the wealth of the portfolio,
this could be based on side information or giving preference to matches that are more recent. The
following are possible methods of partitioning the data:

1. Trivial Partitioning: Using the entire history

{pt}1 = {(1, . . . , 1, 1, 1)}. (3.29)

2. Over-lapping Partitioning

{pt}T =



(0, . . . , 0, 0, 1)
(0, . . . , 0, 1, 1)
(0, . . . , 1, 1, 1)

...
(1, . . . , 1, 1, 1)


. (3.30)

3. Exclusive Partitioning

{pt}T =



(0, . . . , 0, 0, 1)
(0, . . . , 0, 1, 0)
(0, . . . , 1, 0, 0)

...
(1, . . . , 0, 0, 0)


. (3.31)

4. Side-Information Partitioning

{pt}T =



(0, 0, 0, . . . 0, 0, 1, 1)
(0, 0, 0, . . . 1, 1, 0, 0)

...
(0, 1, 0, . . . 0, 0, 0, 0)
(1, 1, 1, . . . 0, 0, 0, 0)


. (3.32)

The partitions used for side-information partitioning can be based on observations made on the
data or could be chosen to favour certain days of the week.

While various possible methods of partitioning the data is discussed in this dissertation, only the
trivial method of partitioning the data is used in the experiments.

3.5 Clustering

As discussed in section 3.4, partitioning refers to when the data that an agent searches is dependent
on time. Clustering is when the data that an agent searches is based on the selection of stocks.
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Each cluster has an index of w and there are a total of W clusters. The choice of clusters used in the
experiments is on classifying the stocks.
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Algorithm 3 MATCHING Algorithm (MTA)
Require:

1. look-ahead-rule τ

2. partition {p`}
3. k-tuple {xtt−k}s(n)
4. data partition {xt}(p`,s(n))

for t-state do
for p` ∈ {p`} do

for j-states ∈ p` do
find a test-tuple
s
t(j)
t(j)−k = {xt(j)t(j)−k}(p`,s(n))

find distance to k-tuple
εk,j = {xkt−k}s(n) − s

t(j)
t(j)−k

if k=1 then
compute the 2-norm for vector ε1,j
εj =

∑
m∈objects

√
εm1,j2 =

√
ε1,jεT1,j

distance measure of dim(objects)
{εj}p` ← εm,j = εj∀m

else
column-wise 2-norms for matrix εj,k
{εj}p` ← εm,j =

∑k
k′=1

√
ε2mk′,j

end if
end for states
if dim({p`}) = 1 then

Switch NN algorithm partition choice [21]
ˆ̀= P (`, t)
Find ˆ̀matching-times in a single partition
j` = min

j∀dim(j)=`
{εj}

else
Find the best match in each of the ` partitions
j` = min

j∀p`∈{p`}
{εj}p`

end if
end for partitions
update the look-ahead-rule
jn = j` + τ
Update the agent-tuple
xn,t = {xt1}t∈jn
Update the mean and covariance
µ = µ(xn,t − 1)
Σ = Σ(xn,t − 1)
Update the agent-controls
Hn,t+1 = Hn,t+1(γ,µ,Σ)

end for t-state
returnHn,t+1
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Chapter 4

Data

4.1 Synthetic Data

The algorithm was tested on four synthetic data cases (SDC) for both active and absolute portfolios.
The synthetic data was generated for 10 stocks over 1000 time periods. The price relatives xm,t for
each stock at each time period was randomly generated from a lognormal distribution (lognrnd
function in MATLAB generated using the Mersenne Twister pseudorandom number generator [38]
and initialised using a specific seed value), each synthetic data case defines a mean, µ, and variance,
v, used to generate the dataset. The mean, µ̄, and standard deviation, σ̄, of the associated normal
distribution is given by :

µ̄ = log

(
µ2√
v + µ2

)
(4.1)

σ̄ =

√
log

(
v

µ2
+ 1

)
(4.2)

Table 4.1 summarises the four synthetic data cases, each case was generated 30 times and initialised
with seed values 1, 2, . . . , 30 respectively.

4.1.1 Synthetic Data Case 1 (SDC 1)

Synthetic Data Case 1 (SDC 1) was generated from a lognormal distribution with a mean price rel-
ative, µ = 1, and a variance, v = 0.0002, to simulate a stock market where there is no significant
increase or decrease in the value of a stock over time.

The expected outcome is that neither the active portfolio nor the absolute portfolio will be able to
learn which stocks it should hold a long position or short position.
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4.1.2 Synthetic Data Case 2 (SDC 2)

Synthetic Data Case 2 (SDC 2) was generated from a lognormal distribution with a mean price rela-
tive, µ = 1.001, and a variance, v = 0.0002, to simulate a stock market where the value of the stocks
are increasing over time.

The expected outcome is that the absolute portfolio will learn which stocks to hold a long position
on, however the active portfolio will not be able to learn which stocks to hold a short position on as
no stocks decrease in value over time.

4.1.3 Synthetic Data Case 3 (SDC 3)

Synthetic Data Case 3 (SDC 3) was generated from a lognormal distribution with a random mean
price relative, µ ≥ 1, assigned to each stock and a variance, v = 0.0002. The random means is
calculated as follows:

µm = 1 + max[0,min(0.0005 + 0.0005δ, 0.001)] (4.3)

where δ is a random number generated from a standard normal distribution (using the randn function
in MATLAB with the Mersenne Twister pseudorandom number generator [38] and initialised using
a specific seed value). This simulates a stock market where some stocks are increasing in value and
some stocks are decreasing in value over time.

The expected outcome is that both the active portfolio and the absolute portfolio will learn to hold
a long position on the stocks increasing in value over time and hold a short position on the stocks
decreasing in value over time, however it is expected that the absolute portfolio will beat the active
portfolio due to the growth rate of the stocks increasing in value over time.

4.1.4 Synthetic Data Case 4 (SDC 4)

Synthetic Data Case 4 (SDC 4) was generated from a lognormal distribution with mixed means as-
signed to the price relatives, µ = 0.999 was assigned to 3 stocks and µ = 1.001 was assigned to the
remaining stocks, and a variance, v = 0.0002. This dataset simulates a stock market where the value
of some stocks are increasing and the value of some stocks are decreasing.

The expected outcome is that both the active portfolio and the absolute portfolio will learn to hold
a long position on the stocks increasing in value over time and hold a short position on the stocks

22



decreasing in value over time.

Summary of Random Datasets

Dataset µ v

SDC 1 1 0.0002
SDC 2 1.001 0.0002
SDC 3 random≥ 1 0.0002
SDC 4 mixed 0.0002

Table 4.1: The means and variances that were chosen when generating the synthetic data sets. The
random means for SDC 3 was calculated using Eqn. (4.3) and the means for SDC 4 was generated as
described in section 4.1.4.

4.2 Real Data

The algorithm is tested on four sets of real data, summarised in Table 4.3, two data sets from the
New York Stock Exchange (NYSE) obtained at [19] and two data sets from the Johannesburg Stock
Exchange (JSE) obtained at [47].

4.2.1 NYSE Data

The NYSE dataset, as described in [19], comes from Yoram Singer and contains close-to-close price
relatives for 36 stocks listed on the New York Stock Exchange from 1962-1984. This is the same data
set used by Györfi et al in [20, 21] and Cover in [10].

4.2.2 NYSE Merged Data

The NYSE Merged dataset, as described in [19], was obtained from Yahoo! Finance and was cleaned
and prepared by Gábor Gelencsér. This dataset contains close-to-close price relatives data for 23
stocks listed on the New York Stock Exchange from 1962-2006. The data of the 23 stocks during
1962-1984 is identical to the data described in section 4.2.1.
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Figure 4.1: A sample of the NYSE data for stock IBM. The data is in comma separated value (.csv)
files, the first value is the date and the second value is the price relative of the stock.

4.2.3 JSE OHLC Data

The JSE OHLC dataset was obtained from Thomson Reuters Tick History (TRTH) [47] and contains
daily data for 42 stocks listed on the Johannesburg Stock Exchange (JSE) from 1995-2015, however
not all of the 42 stocks were listed in 1995 and the data for these stocks begins at a later time. The
data lists the open, high, low and close prices for all of the 42 stocks, as shown in figure 4.2.

Figure 4.2: A sample of the original JSE OHLC data.(Screenshot from Microsoft Excel.

The raw data was processed into four datasets:

1. close-to-close:
The price relative for the m-th asset is calculated using the closing price and calculated as
follows:

xm,t =
cm,t
cm,t−1

. (4.4)
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where xm,t represents the price relative and cm,t represents the closing price at time t.

2. open-to-close:
The price relative for the m-th asset is calculated using the open price and closing price of the
asset from the same trading period and is calculated as follows:

xm,t =
cm,t
om,t

. (4.5)

where xm,t represents the price relative, cm,t represents the closing price at time t and om,t
represents the opening price at time t.

3. close-to-open:
The price relative for the m-th asset is calculated using the opening price of the current trading
period(t) and the closing price from the previous trading period (t − 1) and is calculated as
follows:

xm,t =
om,t
cm,t−1

. (4.6)

where xm,t represents the price relative, cm,t represents the closing price at time t and om,t
represents the opening price at time t.

4. open-to-open:
The price relative for the m-th asset is calculated using the opening price and calculated as
follows:

xm,t =
om,t
om,t−1

. (4.7)

where xm,t represents the price relative and om,t represents the opening price at time t.

Splits, mergers and missing data1 were handled by assigning a price relative of 1 for that day.

Figure 4.3: A sample of the processed JSE OHLC data to close-to-close price relatives for Anglo
American PLC (AGLJ.J). The data is stored in Microsoft Excel (.xls) files, the first value is the date
and the second value is the price relative of the stock.

1Splits and mergers were identified as having a xm,t < 0.7 and xm,t > 1.3 respectively.
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4.2.4 JSE Intraday Data

The JSE Intraday dataset was obtained from Thomson Reuters Tick History (TRTH) [47], in a
comma-separated values (CSV) file, and consists of high frequency data for 40 stocks listed on the
Johannesburg Stock Exchange (JSE) during 2013. The file contains the following fields:

Field Description
RIC Reuters Instrument Price
Date[L] Date of order book event
Time[L] time (in microseconds) of order book event
Type Type of LOB event (Trade, Auction or Quote)
Price The volume of the trade or auction
Volume The price at which the trade or auction was executed
Market VWAP Traded volume weighted average price (VWAP) of the share
Bid Price level 1 bid price
Bid Size level 1 bid size
Ask Price level 1 ask price
Ask Size level 1 ask volume

Table 4.2: Description of the fields available in the CSV file.

The CSV file was split into weekly data per RIC by the QuERI Lab team2 and saved as MAT-Files.
The high frequency data was converted into 5 minute bar data using the trade price. The 5 minute
barred data starts at 9h30 and ends at 16h30 for normal trading days and starts at 9h30 and ends at
11h30 for early close days. The 5 minute bar data was then converted into price relative data for each
stock and saved as MAT-Files.

Summary of Real Datasets

Data Set Time Period Stocks
NYSE [19] 1962-1984 36
NYSE Merged [19] 1962-2005 23
JSE OHLC [47] 1995-2015 42
JSE Intraday [47] 2013 40

Table 4.3: Description of the real data sets that the algorithm was tested on.

2Quantifying Emergence, Risk and Information. The data was prepared by Dieter Hendricks and Michael Harvey.
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Chapter 5

Results

5.1 Implementation

5.1.1 Parameters Chosen

In all experiments the following parameters were used:

i. k = (1, 2, . . . , 5) which implies that K = 5

ii. ` = (1, 2, . . . , 10) which implies that L = 10

iii. w = 1 for all experiments with the exception of the clustered results where w = 3. This implies
that W = 1 for experiments with the trivial choice of clusters and W = 3 for the experiments
that include clusters.

iv. τn = 1

v. The pattern matching used is formulated in equations 3.25 and 3.26

This implies that the number of agents, N = τnWKL, is 50 when the trivial choice of clusters
(W = 1) are used and 150 for the experiments that include clusters (W = 3).

5.1.2 Comparison to Results from the Literature

As a measure of performance of the algorithm, the results are compared to Györfi et al’s nearest
neighbour method [21, 22] and Thomas Cover’s Universal Portfolio method [10]. It can be observed
that if the algorithm described in this dissertation were to replace the analytic solution with an opti-
misation step for the absolute case, the algorithm would be analogous to Györfi’s Nearest Neighbour
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method [21, 22]. The pattern class, as described in section 5.1.4, therefore implements a recovered
version of the Nearest Neighbour algorithm in this manner, using fmincon for the optimisation, as
to allow for accurate comparisons of the computational running times. A MATLAB function imple-
menting Thomas Cover’s Universal Portfolio method [10] was created and recovered the exact results
obtained in [10].

Results obtained from the algorithm presented in this dissertation that compare favourably to the
results obtained from the methods presented in the literature and benchmarks such as the best stock
would indicate that the algorithm has successfully exploited patterns in the time series data.

5.1.3 Implementation Process

Figure 5.1 outlines the process followed to conduct the experiments. Step 2 of the process checks for
gaps in the data and inaccuracies caused by splits and mergers and replaces these values with a price
relative of one.

Step 1: Load price relative data into MATLAB

Step 2: Process and run checks on the price relative
data

Step 3: Transfer data and define the parameters of the
pattern class

Step 4: Save the results

Figure 5.1: A process flow diagram illustrating the steps that have been followed in generating the
results.

5.1.4 Pattern Class

A MATLAB class named pattern (see Appendix A.1) was created to implement the algorithms 1, 2
and 3. The class contains the following properties:

28



Property Description
x The price relative data
k A list of the k values
` A list of the ` values
c A tuple describing the clusters
NTYPE The portfolio type (active, absolute or gyorfi opt)
b The portfolio controls
S The portfolio wealth
h The agent controls
SH The agent wealth

Table 5.1: A summary of the properties contained in the pattern class.

The class contains the following methods:

Function Description
pattern The constructor of the pattern class
offline Offline estimation of the wealth S and portfolio controls SH
online Online estimation of the wealth S and portfolio controls SH
learn Updates the agent controls h, the portfolio controls b and the

wealth S
partition Partitions the data
quadbet Solves the quadratic approximation (Equation 3.23)
match Implements the pattern matching

Table 5.2: A summary of the Methods contained in the pattern class.

5.2 Synthetic Data

Experiments were run for both the absolute and active portfolios on all four synthetic data sets. Each
data set depicts a different behavioural characteristic of a market, as described in section 4.1. Table
5.3 shows the best wealth achieved from all of the 30 runs per dataset as well as the average wealth
achieved from all of the 30 runs per dataset.
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5.2.1 Wealth Achieved from Synthetic Datasets

Wealth Gained (S) from Investing in Synthetic Data

Data Port. Wealth Best Agent
Best Avg. Best Avg.

SDC 1
Abs.
Act.

1.2315
1.4507

0.9917
1.0516

1.8063
1.7532

1.2505
1.3579

SDC 2
Abs.
Act.

3.2410
1.4508

2.6119
1.0516

4.6545
1.7532

3.2696
1.3583

SDC 3
Abs.
Act.

2.3202
1.4901

1.6850
1.1709

3.0908
1.7816

2.0899
1.4508

SDC 4
Abs.
Act.

2.4554
2.9275

1.8964
2.0554

2.9307
3.2698

2.2501
2.2975

Table 5.3: Wealth achieved by the active and absolute portfolios for 30 runs of each synthetic data
case.

5.2.2 Kolmogorov-Smirnov Tests

Two-sample Kolmogorov-Smirnov tests were run on the datasets because it is a non-parametric test
and makes no assumption about the distribution of the datasets. The following notation is used:

1. S1 refers to the total wealth gained from the portfolio.

2. S2 refers to the wealth gained from the best agent of the portfolio.

3. S3 refers to the wealth gained from the best stock.

The following combinations of two-sample Kolomogorov-Smirnov were performed:

1. S2 > S1 : The alternative hypothesis that the cumulative distribution function (CDF) of the
wealth gained from the best agent of the portfolio, S2, is larger than the CDF of the total wealth
gained from the portfolio, S1, at the 5% significance level.

2. S2 > S3 : The alternative hypothesis that the CDF of the wealth gained from the best agent of
the portfolio, S2, is larger than the CDF of the wealth gained from the best stock, S3, at the 5%
significance level.

3. S3 > S1 : The alternative hypothesis that the CDF of the wealth gained from the best stock, S3,
is larger than the CDF of the total wealth gained from the portfolio, S1, at the 5% significance
level.
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Comparison of Average p Values of Wealth Gained (S) from the Active Portfolio

Best Agent
vs.

Total Wealth

Best Agent
vs.

Best Stock

Best Stock
vs.

Total Wealth
Hyp. S2 > S1 S2 > S3 S3 > S1

p̄ p > p̄ p̄ p > p̄ p̄ p > p̄

SDC 1 0.8085 0.1719 0.0310 0.0000 0.6540 0.0129
SDC 2 0.8087 0.1719 0.0000 0.0000 0.8731 0.4072
SDC 3 0.8304 0.1719 0.0000 0.0000 0.9044 0.5627
SDC 4 0.7254 0.0129 0.0000 0.0000 0.6218 0.0057

Table 5.4: Comparisons of the average p values of the wealth gained from the active portfolio. The
first p value in each column is average p value, of the 30 data sets for each case, using two-sample
Kolmogorov-Smirnov tests for the alternative hypotheses (Hyp.). The second p value is obtained
from the two-sample Kolmogorov-Smirnov tests for the alternative hypothesis that the cumulative
distribution function (CDF) of the p values for the 30 data sets for each case is larger than the CDF of
the average p value at the 5% significance level.

Comparison of Average p Values of Wealth Gained (S) from the Absolute Portfolio

Best Agent
vs.

Total Wealth

Best Agent
vs.

Best Stock

Best Stock
vs.

Total Wealth
Hyp. S2 > S1 S2 > S3 S3 > S1

p̄ p > p̄ p̄ p > p̄ p̄ p > p̄

SDC 1 0.8931 0.4072 0.0002 0.0000 0.6469 0.0129
SDC 2 0.6424 0.0129 0.0000 0.0000 0.5672 0.0009
SDC 3 0.5933 0.0023 0.0004 0.0000 0.7949 0.1003
SDC 4 0.8457 0.2742 0.0000 0.0000 0.6441 0.0057

Table 5.5: Comparisons of the average p values of the wealth gained from the absolute portfolio. The
first p value in each column is average p value, of the 30 data sets for each case, using two-sample
Kolmogorov-Smirnov tests for the alternative hypotheses (Hyp.). The second p value is obtained
from the two-sample Kolmogorov-Smirnov tests for the alternative hypothesis that the cumulative
distribution function (CDF) of the p values for the 30 data sets for each case is larger than the CDF of
the average p value at the 5% significance level.

Two-sample Kolmogorov-Smirnov tests were also used to compare the wealth achieved from one
of the synthetic data cases against the wealth achieved from the other three synthetic data cases per
seed value as shown in tables 5.6 and 5.7. As expected, the results show that the active portfolio
performs the best on SDC 4 as this dataset includes stocks that are decreasing in value over time and
the absolute portfolio performs the best on SDC 2 as this dataset contains the most stocks that are
increasing in value over time.
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Comparison of p Values of Wealth Gained (S) from the Active Portfolio

SDC 1 SDC 2 SDC 3 SDC 4
SDC 1 - 0.9765 0.0669 0
SDC 2 0.9786 - 0.0669 0
SDC 3 0.7928 0.7916 - 0
SDC 4 0.9653 0.9649 0.9535 -

Table 5.6: Comparison of the average p values from two-sample Kolmogorov-Smirnov tests for the
alternative hypothesis that the cumulative distribution function (CDF) of wealth gained from the active
portfolio on SDC i is larger than the CDF of wealth gained from the active portfolio on SDC j at
the 5% significance level, where i represents the rows and j represents the columns of the table.
The p values is the average of 30 comparisons, each comparison using a seed value of 1, 2, . . . , 30
respectively.

Comparison of p Values of Wealth Gained (S) from the Absolute Portfolio

SDC 1 SDC 2 SDC 3 SDC 4
SDC 1 - 0 0 0
SDC 2 1.0000 - 1.0000 0.9997
SDC 3 1.0000 0 - 0.1289
SDC 4 1.0000 0 0.5055 -

Table 5.7: Comparison of the average p values from two-sample Kolmogorov-Smirnov tests for the
alternative hypothesis that the cumulative distribution function (CDF) of wealth gained from the ab-
solute portfolio on SDC i is larger than the CDF of wealth gained from the active portfolio on SDC
j at the 5% significance level, where i represents the rows and j represents the columns of the table.
The p values is the average of 30 comparisons, each comparison using a seed value of 1, 2, . . . , 30
respectively.

5.3 NYSE Data

Experiments were run on the same two stock combinations used by Thomas Cover [10] and Györfi et
al [20, 21, 22] for both the absolute and active portfolios. The results of the wealth achieved from the
active portfolio and the absolute portfolio are compared to the wealth achieved from the implemented
versions of the Györfi nearest neighbour algorithm [21] and the Universal Portfolio method [10]. As
this is the same dataset used in [21] and [10], the results are compared to the actual results published
in [21] and [10]. However, since the results from the Universal Portfolio method [10] was identically
recovered it is only shown once in the results tables.

The experiments were carried out on the following stock combinations:

i. Iroquois Brands Ltd. and Kin Ark Corp.

ii. Commercial Metals and Mei Corp.
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iii. Commercial Metals and Kin Ark Corp.

iv. IBM and Coca-Cola

v. All 36 NYSE stocks

5.3.1 Iroquois Brands Ltd. and Kin Ark Corp.

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 1.02e+12 1.76e+13 12574.51
Active Portfolio 1.00e+11 4.97e+11 12450.93
Györfi Nearest Neighbour (R) 1.01e+12 1.63e+13 15624.21
Györfi Nearest Neighbour 1.16e+12 1.44e+13
Universal Portfolio 38.67
Best Stock 8.92

Table 5.8: Comparison of wealth gained from Iroquois Brands Ltd. and Kin Ark Corp. for the
different strategies.

time
1965 1967 1970 1972 1975 1977 1980 1982

S
 (

W
ea

lth
)

100

102

104

106

108

1010

1012
IROQU & KINAR (NYSE)

Absolute Portfolio
Active Portfolio
Gyorfi Nearest Neighbour
Universal Portfolios

Figure 5.2: Wealth gained when investing in Iroquois Brands Ltd. and Kin Ark Corp. from the
different strategies.
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5.3.2 Commercial Metals and Mei Corp.

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 3.56e+03 2.61e+04 12503.29
Active Portfolio 4.28e+01 2.49e+02 12617.22
Györfi Nearest Neighbour (R) 3.58e+03 2.60e+04 17051.50
Györfi Nearest Neighbour 3.51e+3 3.15e+4
Universal Portfolio 72.63
Best Stock 52.02

Table 5.9: Comparison of wealth gained from Commercial Metals and Kin Ark Corp. for the different
strategies.

time
1965 1967 1970 1972 1975 1977 1980 1982

S
 (

W
ea

lth
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10-1

100

101

102

103

COMME & MEICO (NYSE)

Absolute Portfolio
Active Portfolio
Gyorfi Nearest Neighbour
Universal Portfolios

Figure 5.3: Wealth gained when investing in Commercial Metals and Mei Corp. from the different
strategies.
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5.3.3 Commercial Metals and Kin Ark Corp.

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 2.99e+12 3.46e+13 12711.53
Active Portfolio 1.05e+11 3.75e+11 12653.46
Györfi Nearest Neighbour (R) 3.09e+12 3.75e+13 15112.28
Györfi Nearest Neighbour 4.78e+12 8.26e+13
Universal Portfolio 78.47
Best Stock 52.02

Table 5.10: Comparison of wealth gained from Commercial Metals and Kin Ark Corp. for the differ-
ent strategies.
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Figure 5.4: Wealth gained when investing in Commercial Metals and Kin Ark Corp. from the different
strategies.
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5.3.4 IBM and Coca-Cola

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 7.84e+01 2.74e+02 12759.65
Active Portfolio 9.70e+00 1.98e+01 12714.48
Györfi Nearest Neighbour (R) 7.83e+01 2.67e+02 17460.24
Györfi Nearest Neighbour 74.37 296.3
Universal Portfolio 14.18
Best Stock 13.36

Table 5.11: Comparison of wealth gained from IBM and Coca-Cola for the different strategies.
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Figure 5.5: Wealth gained when investing in IBM and Coca-Cola from the different strategies.

5.3.5 All 36 Stocks

The 36 stocks that are included in this data set are:

1. 3M Company

2. Alcoa

3. Altria Group

4. Arco

5. Coca Cola

6. Commercial Metals

7. Dow Chemical Company

8. DuPont

9. Eastman Kodak

10. Espey

11. Exxon Mobil

12. Fischback
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13. Ford Motor Company

14. Fortune Brands

15. General Electric

16. General Motors

17. Gran Tierra Energy Inc.

18. Gulf Oill

19. Hewlett-Packard

20. IBM

21. Ingersoll-Rand Plc

22. Iroquois Ltd.

23. Johnson & Johnson

24. Kimberly-Clark Corp

25. Lukens

26. Mei Corp.

27. Merck & Company

28. Mobil

29. Kin Ark Corp.

30. Pillsbury

31. Procter & Gamble

32. Schlumberger N.V.

33. Sears

34. Sherwin-Williams

35. Texaco

36. Wyeth

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 5.42e+01 1.36e+02 20231.17
Active Portfolio 5.29e+01 7.13e+01 19783.48
Györfi Nearest Neighbour (R) 3.43e+11 7.45e+12 42604.55
Györfi Nearest Neighbour 3.3e+11 7.7e+12
Best Stock 54.14

Table 5.12: Comparison of wealth gained from all 36 stocks for the different strategies.
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Figure 5.6: Wealth gained when investing in all 36 stocks from the NYSE Dataset using the different
strategies.
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5.4 NYSE Merged Data

Experiments were run for both the absolute and active portfolios and compared with the results of the
wealth achieved from the implemented versions of the Györfi nearest neighbour algorithm [21] and
the Universal Portfolio method [10].

The experiments were carried out on the following stock combinations:

i. Commercial Metals and Kin Ark Corp.

ii. IBM and Coca-Cola

iii. All 23 NYSE stocks

5.4.1 Commercial Metals and Kin Ark Corp.

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 3.07e+19 4.37e+20 52490.41
Active Portfolio 7.36e+16 7.93e+16 52393.40
Györfi Nearest Neighbour (R) 3.19e+19 4.73e+20 53655.29
Universal Portfolio 2192.43
Best Stock 1344.3

Table 5.13: Comparison of wealth gained from Commercial Metals and Kin Ark Corp. for the differ-
ent strategies.

38



time
1965 1970 1975 1980 1985 1990 1995 2000 2005

S
 (

W
ea

lth
)

100

105

1010

1015

COMME & KINAR (NYSE Merged)

Absolute Portfolio
Active Portfolio
Gyorfi Nearest Neighbour
Universal Portfolios

Figure 5.7: Wealth gained when investing in Commercial Metals and Kin Ark Corp. from the different
strategies.

5.4.2 IBM and Coca-Cola

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 1.79e+03 5.12e+03 52785.56
Active Portfolio 7.79e+00 2.63e+01 52034.46
Györfi Nearest Neighbour (R) 1.79e+03 4.75e+03 57482.15
Universal Portfolio 229.13
Best Stock 365.92

Table 5.14: Comparison of wealth gained from IBM and Coca-Cola for the different strategies.
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Figure 5.8: Wealth gained when investing in IBM and Coca-Cola from the different strategies.

5.4.3 All 23 Stocks

The 23 stocks included in this dataset are:

1. 3M Company

2. Alcoa

3. Altria Group

4. Coca Cola

5. Commercial Metals

6. Dow Chemical Company

7. DuPont

8. Eastman Kodak

9. Ford Motor Company

10. Fortune Brands

11. General Electric

12. General Motors

13. Hewlett-Packard

14. IBM

15. Ingersoll-Rand Plc

16. Johnson & Johnson

17. Kimberly-Clark Corp

18. Merck & Company

19. Kin Ark Corp.

20. Procter & Gamble

21. Schlumberger N.V.

22. Sherwin-Williams

23. Wyeth
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Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 8.05e+04 3.34e+05 82137.89
Active Portfolio 1.45e+06 5.42e+05 72899.44
Györfi Nearest Neighbour 3.68e+17 5.60e+18 109240.30
Best Stock 3496.7

Table 5.15: Comparison of wealth gained from all 23 stocks for the different strategies.
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Figure 5.9: Wealth gained when investing in all 23 stocks from the different strategies.

5.5 JSE Daily Data

Experiments were run for both the absolute and active portfolios on all four datasets (close-to-close,
open-to-close, close-to-open and open-to-open) and the results compared to the wealth achieved from
the implemented versions of the Györfi nearest neighbour algorithm [21] and the Universal Portfolio
method [10].

The experiments were carried out on the following stock combinations:

i. Anglogold Ashanti Ltd. (ANG) and Anglo American PLC (AGL)

ii. Standard Bank Grp. Ltd. (SBK) and Firstrand Ltd. (FSR)

iii. Tiger Brands Ltd. (TBS) and Woolworths Holdings (WHL)
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iv. 10 JSE Stocks

v. 20 JSE Stocks

vi. 30 JSE Stocks

5.5.1 ANG and AGL

Close-to-Close

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 4.05 13.10 9635.16
Active Portfolio 1.28 3.40 9927.13
Györfi Nearest Neighbour (R) 4.02 13.27 13624.61
Universal Portfolio 2.52
Best Stock 3.608

Table 5.16: Comparison of wealth gained from ANG and AGL on the close-to-close dataset for the
different strategies.
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Figure 5.10: Wealth gained from ANG and AGL on the close-to-close dataset for the different strate-
gies.
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Close-to-Open

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 1.24 2.60 9790.80
Active Portfolio 1.04 2.82 9870.83
Györfi Nearest Neighbour (R) 1.24 2.56 12860.68
Universal Portfolio 0.97
Best Stock 2.661

Table 5.17: Comparison of wealth gained from ANG and AGL on the close-to-open dataset for the
different strategies.
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Figure 5.11: Wealth gained from ANG and AGL on the close-to-open dataset for the different strate-
gies.

Open-to-Close

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 97.75 395.58 11191.85
Active Portfolio 50.21 91.82 10653.35
Györfi Nearest Neighbour (R) 97.53 398.74 16447.74
Universal Portfolio 3.41
Best Stock 4.677

Table 5.18: Comparison of wealth gained from ANG and AGL on the open-to-close dataset for the
different strategies.
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Figure 5.12: Wealth gained from ANG and AGL on the open-to-close dataset for the different strate-
gies.

Open-to-Open

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 5.11 26.65 9618.84
Active Portfolio 1.43 9.10 10646.90
Györfi Nearest Neighbour (R) 5.07 25.66 13857.72
Universal Portfolio 2.28
Best Stock 3.178

Table 5.19: Comparison of wealth gained from ANG and AGL on the open-to-open dataset for the
different strategies.
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Figure 5.13: Wealth gained from ANG and AGL on the open-to-open dataset for the different strate-
gies.
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Figure 5.14: Comparison of wealth gained from ANG and AGL for the different datasets
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5.5.2 SBK and FSR

Close-to-Close

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 55.53 187.62 11146.49
Active Portfolio 7.77 13.40 11844.85
Györfi Nearest Neighbour (R) 55.60 189.08 17033.11
Universal Portfolio 18.17
Best Stock 21.090

Table 5.20: Comparison of wealth gained from SBK and FSR on the close-to-close dataset for the
different strategies.
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Figure 5.15: Wealth gained from ANG and AGL on the close-to-close dataset for the different strate-
gies.
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Close-to-Open

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 12.35 25.13 9316.14
Active Portfolio 1.57 3.06 9491.70
Györfi Nearest Neighbour (R) 12.31 25.14 14686.09
Universal Portfolio 7.89
Best Stock 12.465

Table 5.21: Comparison of wealth gained from SBK and FSR on the close-to-open dataset for the
different strategies.
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Figure 5.16: Wealth gained from ANG and AGL on the close-to-open dataset for the different strate-
gies.

Open-to-Close

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 2.53 5.12 9450.77
Active Portfolio 1.04 1.80 9519.02
Györfi Nearest Neighbour (R) 2.53 5.00 15057.26
Universal Portfolio 2.66
Best Stock 2.972

Table 5.22: Comparison of wealth gained from SBK and FSR on the open-to-close dataset for the
different strategies.
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Figure 5.17: Wealth gained from ANG and AGL on the open-to-close dataset for the different strate-
gies.

Open-to-Open

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 113.43 412.75 9463.65
Active Portfolio 13.97 18.87 9538.53
Györfi Nearest Neighbour (R) 113.02 415.45 13284.45
Universal Portfolio 20.29
Best Stock 20.548

Table 5.23: Comparison of wealth gained from SBK and FSR on the open-to-open dataset for the
different strategies.
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Figure 5.18: Wealth gained from SBK and FSR on the open-to-open dataset for the different strate-
gies.
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Figure 5.19: Comparison of wealth gained from SBK and FSR for the different datasets

49



5.5.3 TBS and WHL

Close-to-Close

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 7.07 19.97 8027.34
Active Portfolio 0.49 1.80 7689.70
Györfi Nearest Neighbour (R) 7.07 19.49 12436.46
Universal Portfolio 8.24
Best Stock 8.971

Table 5.24: Comparison of wealth gained from TBS and WHL on the close-to-close dataset for the
different strategies.
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Figure 5.20: Wealth gained from TBS and WHL on the close-to-close dataset for the different strate-
gies.
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Close-to-Open

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 4.38 9.00 8395.69
Active Portfolio 0.79 1.88 8550.23
Györfi Nearest Neighbour (R) 4.46 8.83 9666.32
Universal Portfolio 4.89
Best Stock 4.975

Table 5.25: Comparison of wealth gained from TBS and WHL on the close-to-open dataset for the
different strategies.
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Figure 5.21: Wealth gained from TBS and WHL on the close-to-open dataset for the different strate-
gies.

Open-to-Close

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 5.59 12.73 7929.85
Active Portfolio 5.00 7.19 8782.45
Györfi Nearest Neighbour (R) 5.59 12.75 10848.55
Universal Portfolio 1.94
Best Stock 1.892

Table 5.26: Comparison of wealth gained from TBS and WHL on the open-to-close dataset for the
different strategies.
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Figure 5.22: Wealth gained from TBS and WHL on the open-to-close dataset for the different strate-
gies.

Open-to-Open

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 45.30 266.17 7170.39
Active Portfolio 5.52 28.54 7205.59
Györfi Nearest Neighbour (R) 45.80 273.44 12233.72
Universal Portfolio 8.81
Best Stock 9.235

Table 5.27: Comparison of wealth gained from TBS and WHL on the open-to-open dataset for the
different strategies.
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Figure 5.23: Wealth gained from TBS and WHL on the open-to-open dataset for the different strate-
gies.
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Figure 5.24: Comparison of wealth gained from TBS and WHL for the different datasets

5.5.4 10 Stocks

The following 10 stocks were selected:
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1. Anglo American PLC

2. Anglogold Ashanti Ltd.

3. BHP Billiton PLC

4. Comp. Fin Richemont

5. Impala Platinum Hld.
Ltd.

6. MTN Group Ltd.

7. Naspers Ltd.

8. SABMiller Plc

9. Sasol Ltd.

10. Standard Bank Grp. Ltd.

Close-to-Close

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 68.49 135.03 10346.55
Active Portfolio 9.28 12.84 10177.76
Györfi Nearest Neighbour (R) 194.76 854.62 19112.52
Best Stock 89.722

Table 5.28: Comparison of wealth gained from 10 stocks on the close-to-close dataset for the different
strategies.
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Figure 5.25: Wealth gained from 10 stocks on the close-to-close dataset for the different strategies.
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Close-to-Open

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 7.11 11.43 9990.58
Active Portfolio 2.68 3.39 9944.98
Györfi Nearest Neighbour (R) 13.45 30.53 17016.54
Best Stock 56.363

Table 5.29: Comparison of wealth gained from 10 stocks on the close-to-open dataset for the different
strategies.

time
1998 2000 2002 2004 2006 2008 2010 2012 2014

S
 (

W
ea

lth
)

100

101

10 stocks (JSE OHLC close-to-open)

Absolute Portfolio
Active Portfolio
Gyorfi Nearest Neighbour

Figure 5.26: Wealth gained from 10 stocks on the close-to-open dataset for the different strategies.

Open-to-Close

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 15.90 33.40 10092.90
Active Portfolio 15.21 19.86 10228.13
Györfi Nearest Neighbour (R) 101.80 415.97 16014.21
Best Stock 169.830

Table 5.30: Comparison of wealth gained from 10 stocks on the open-to-close dataset for the different
strategies.
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Figure 5.27: Wealth gained from 10 stocks on the open-to-close dataset for the different strategies.

Open-to-Open

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 60.62 342.40 9991.06
Active Portfolio 12.03 20.57 9959.97
Györfi Nearest Neighbour (R) 254.00 2292.47 15967.62
Best Stock 69.494

Table 5.31: Comparison of wealth gained from 10 stocks on the open-to-open dataset for the different
strategies.
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Figure 5.28: Wealth gained from 10 stocks on the open-to-open dataset for the different strategies.
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Figure 5.29: Comparison of wealth gained from 10 stocks for the different datasets

5.5.5 20 Stocks

The following 20 stocks were selected:
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1. Absa Group Ltd.

2. Anglo American PLC

3. Anglo Platinum Ltd.

4. Anglogold Ashanti Ltd.

5. BHP Billiton PLC

6. Bidvest Ltd.

7. Comp. Fin Richemont

8. Firstrand Ltd.

9. Gold Fields Ltd.

10. Impala Platinum Hld.
Ltd.

11. MTN Group Ltd.

12. Naspers Ltd.

13. Nedbank Group Ltd.

14. Old Mutual Plc

15. Remgro Ltd.

16. SABMiller Plc

17. Sanlam Ltd.

18. Sasol Ltd.

19. Standard Bank Grp. Ltd.

20. Steinhoff Inter. Hldgs

Close-to-Close

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 16.20 63.18 9286.16
Active Portfolio 9.52 12.11 8743.07
Györfi Nearest Neighbour (R) 98.84 330.37 16101.32
Best Stock 89.722

Table 5.32: Comparison of wealth gained from 20 stocks on the close-to-close dataset for the different
strategies.
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Figure 5.30: Wealth gained from 20 stocks on the close-to-close dataset for the different strategies.
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Close-to-Open

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 8.82 16.87 9792.60
Active Portfolio 5.28 5.24 9211.79
Györfi Nearest Neighbour (R) 11.00 27.01 16951.11
Best Stock 56.363

Table 5.33: Comparison of wealth gained from 20 stocks on the close-to-open dataset for the different
strategies.
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Figure 5.31: Wealth gained from 10 stocks on the close-to-open dataset for the different strategies.

Open-to-Close

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 4.80 8.88 6929.55
Active Portfolio 6.80 6.07 7947.06
Györfi Nearest Neighbour (R) 30.26 104.46 17818.14
Best Stock 169.830

Table 5.34: Comparison of wealth gained from 20 stocks on the open-to-close dataset for the different
strategies.
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Figure 5.32: Wealth gained from 20 stocks on the open-to-close dataset for the different strategies.

Open-to-Open

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 14.73 73.61 7192.71
Active Portfolio 9.13 14.76 7279.49
Györfi Nearest Neighbour (R) 44.88 192.99 17479.31
Best Stock 69.494

Table 5.35: Comparison of wealth gained from 20 stocks on the open-to-open dataset for the different
strategies.
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Figure 5.33: Wealth gained from 20 stocks on the open-to-open dataset for the different strategies.
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Figure 5.34: Comparison of wealth gained from 20 stocks for the different datasets

5.5.6 30 Stocks

The following 30 stocks were selected:
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1. Absa Group Ltd.

2. African Rainbow Miner-
als

3. Anglo American PLC

4. Anglo Platinum Ltd.

5. Anglogold Ashanti Ltd.

6. Aspen Pharmacare Hldgs

7. BHP Billiton PLC

8. Bidvest Ltd.

9. Comp. Fin Richemont

10. Discovery Holdings Ltd.

11. Firstrand Ltd.

12. Gold Fields Ltd.

13. Growthpoint Prop Ltd.

14. Impala Platinum Hld.
Ltd.

15. Imperial Hldgs Ltd.

16. Mediclinic International
Ltd.

17. MTN Group Ltd.

18. Naspers Ltd.

19. Nedbank Group Ltd.

20. Old Mutual Plc

21. Remgro Ltd.

22. SABMiller Plc

23. Sanlam Ltd.

24. Sasol Ltd.

25. Shoprite Hldgs Ltd.

26. Standard Bank Grp. Ltd.

27. Steinhoff Inter. Hldgs

28. Tiger Brands Ltd.

29. Truworths International

30. Woolworths Hldgs

Close-to-Close

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 20.48 58.27 7582.84
Active Portfolio 7.34 6.24 7902.99
Györfi Nearest Neighbour (R) 124.91 590.51 22071.10
Best Stock 85.025

Table 5.36: Comparison of wealth gained from 30 stocks on the close-to-close dataset for the different
strategies.
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Figure 5.35: Wealth gained from 30 stocks on the close-to-close dataset for the different strategies.

Close-to-Open

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 8.07 15.80 7619.28
Active Portfolio 5.66 5.50 7926.28
Györfi Nearest Neighbour (R) 22.53 54.80 22668.78
Best Stock 51.018

Table 5.37: Comparison of wealth gained from 30 stocks on the close-to-open dataset for the different
strategies.
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Figure 5.36: Wealth gained from 30 stocks on the close-to-open dataset for the different strategies.

Open-to-Close

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 5.16 11.98 7826.80
Active Portfolio 4.58 5.57 7926.12
Györfi Nearest Neighbour (R) 50.17 317.92 21033.86
Best Stock 1278.827

Table 5.38: Comparison of wealth gained from 30 stocks on the open-to-close dataset for the different
strategies.
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Figure 5.37: Wealth gained from 30 stocks on the open-to-close dataset for the different strategies.

Open-to-Open

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 21.54 73.88 7775.83
Active Portfolio 11.48 18.89 7701.35
Györfi Nearest Neighbour (R) 161.16 1069.81 20687.51
Best Stock 131.886

Table 5.39: Comparison of wealth gained from 30 stocks on the open-to-open dataset for the different
strategies.
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Figure 5.38: Wealth gained from 30 stocks on the open-to-open dataset for the different strategies.
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Figure 5.39: Comparison of wealth gained from 30 stocks for the different datasets

5.6 JSE Intraday Data

Experiments were run for both the absolute and active portfolios and the results compared to the
wealth achieved from the implemented versions of the Györfi nearest neighbour algorithm [21] and
the Universal Portfolio method [10].

66



The experiments were carried out on the following stock combinations:

i. Anglogold Ashanti Ltd. (ANG) and Anglo American PLC (AGL)

ii. Standard Bank Grp. Ltd. (SBK) and Firstrand Ltd. (FSR)

iii. Tiger Brands Ltd. (TBS) and Woolworths Holdings (WHL)

iv. 10 JSE Stocks

v. 20 JSE Stocks

vi. 30 JSE Stocks

vii. 20 JSE Stocks (with clusters)

5.6.1 ANG and AGL

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 1.38 3.33 177033.42
Active Portfolio 2.16 5.01 179485.68
Györfi Nearest Neighbour (R) 1.36 3.21 197655.19
Universal Portfolio 0.66
Best Stock 0.874

Table 5.40: Comparison of wealth gained from ANG and AGL for the different strategies.
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Figure 5.40: Wealth gained from ANG and AGL for the different strategies.

5.6.2 SBK and FSR

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 1.82 2.19 191591.89
Active Portfolio 2.02 2.01 192963.34
Györfi Nearest Neighbour (R) 1.82 2.15 211923.58
Universal Portfolio 1.08
Best Stock 1.084

Table 5.41: Comparison of wealth gained from SBK and FSR for the different strategies.
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Figure 5.41: Wealth gained from SBK and FSR for the different strategies.

5.6.3 TBS and WHL

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 1.95 3.06 183586.69
Active Portfolio 2.24 3.29 184105.51
Györfi Nearest Neighbour (R) 1.95 2.99 192232.43
Universal Portfolio 0.91
Best Stock 0.991

Table 5.42: Comparison of wealth gained from TBS and WHL for the different strategies.
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Figure 5.42: Wealth gained from TBS and WHL for the different strategies.

5.6.4 MTN and VOD

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 2.13 3.55 177338.23
Active Portfolio 2.13 3.25 178564.85
Györfi Nearest Neighbour (R) 2.13 3.57 188460.89
Universal Portfolio 1.12
Best Stock 1.181

Table 5.43: Comparison of wealth gained from MTN and VOD for the different strategies.
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Figure 5.43: Wealth gained from MTN and VOD for the different strategies.

5.6.5 10 Stocks

The following 10 stocks were selected:

1. Anglo American PLC

2. Anglogold Ashanti Ltd.

3. BHP Billiton PLC

4. Comp. Fin Richemont

5. Impala Platinum Hld.
Ltd.

6. MTN Group Ltd.

7. Naspers Ltd.

8. SABMiller Plc

9. Sasol Ltd.

10. Standard Bank Grp. Ltd.

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 1.89 2.79 235571.99
Active Portfolio 3.86 5.40 245606.82
Györfi Nearest Neighbour (R) 3.95 14.05 305828.26
Best Stock 1.934

Table 5.44: Comparison of wealth gained from 10 stocks for the different strategies.
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Figure 5.44: Wealth gained from 10 stocks for the different strategies.

5.6.6 20 Stocks

The following 20 stocks were selected:

1. Anglo American PLC

2. Anglo Platinum Ltd.

3. Anglogold Ashanti Ltd.

4. BHP Billiton PLC

5. Bidvest Ltd.

6. Comp. Fin Richemont

7. Firstrand Ltd.

8. Gold Fields Ltd.

9. Impala Platinum Hld.
Ltd.

10. MTN Group Ltd.

11. Naspers Ltd.

12. Nedbank Group Ltd.

13. Old Mutual Plc

14. Remgro Ltd.

15. SABMiller Plc

16. Sanlam Ltd.

17. Sasol Ltd.

18. Shoprite Hldgs Ltd.

19. Standard Bank Grp. Ltd.

20. Steinhoff Inter. Hldgs
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Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 1.74 2.35 257512.67
Active Portfolio 3.42 4.29 249349.02
Györfi Nearest Neighbour (R) 5.68 21.62 361423.57
Best Stock 1.934

Table 5.45: Comparison of wealth gained from 20 stocks for the different strategies.
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Figure 5.45: Wealth gained from 20 stocks for the different strategies.

5.6.7 30 Stocks

The following 30 stocks were selected:

1. African Rainbow Miner-
als

2. Anglo American PLC

3. Anglo Platinum Ltd.

4. Anglogold Ashanti Ltd.

5. Aspen Pharmacare Hldgs

6. BHP Billiton PLC

7. Bidvest Ltd.

8. Comp. Fin Richemont

9. Discovery Holdings Ltd.

10. Firstrand Ltd.

11. Gold Fields Ltd.

12. Growthpoint Prop Ltd.

13. Impala Platinum Hld.
Ltd.

14. Imperial Hldgs Ltd.

15. Massmart Hldgs Ltd.

16. Mediclinic International
Ltd.

17. MTN Group Ltd.
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18. Naspers Ltd.

19. Nedbank Group Ltd.

20. Old Mutual Plc

21. Remgro Ltd.

22. SABMiller Plc

23. Sanlam Ltd.

24. Sasol Ltd.

25. Shoprite Hldgs Ltd.

26. Standard Bank Grp. Ltd.

27. Steinhoff Inter. Hldgs

28. Tiger Brands Ltd.

29. Truworths International

30. Woolworths Hldgs

Strategy Portfolio Wealth Best Agent Wealth Running Time
Absolute Portfolio 1.67 2.16 288899.03
Active Portfolio 3.07 3.76 262565.41
Györfi Nearest Neighbour (R) 6.03 12.61 417960.19
Best Stock 1.934

Table 5.46: Comparison of wealth gained from 30 stocks for the different strategies.
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Figure 5.46: Wealth gained from 30 stocks for the different strategies.
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5.6.8 20 Stocks Clustered

Investing in JSE Intraday Data with Clusters for Active Portfolios

Resources Industrials Financials

Stocks

AGLJ MTNJ SBKJ
BILJ NPNJn FSRJ
SOLJ SABJ OMLJ
IMPJ CFRJ SLMJ
ANGJ REMJ NEDJ
GFIJ SHFJ
AMSJ BVTJ

SHPJ
Best Agent 9.1018 3.4470 3.6698
Total Wealth 4.6368
Running Time 635243

Table 5.47: Wealth achieved by the active portfolio for using clusters.

Investing in JSE Intraday Data with Clusters for Absolute Portfolios

Resources Industrials Financials

Stocks

AGLJ MTNJ SBKJ
BILJ NPNJn FSRJ
SOLJ SABJ OMLJ
IMPJ CFRJ SLMJ
ANGJ REMJ NEDJ
GFIJ SHFJ
AMSJ BVTJ

SHPJ
Best Agent 5.6655 2.6341 2.6059
Total Wealth 2.2093
Running Time 632121

Table 5.48: Wealth achieved by the absolute portfolio for using clusters.
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Figure 5.47: Wealth gained from 20 stocks when using clusters compared to the different strategies.
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Chapter 6

Conclusion

6.1 Overall Summary

In this dissertation, an algorithm for portfolio selection that allows for long only portfolios (absolute
portfolios) and zero cost portfolios (active portfolios) is presented. The results obtained from both the
active and absolute portfolios are compared with strategies from the literature, namely the Universal
Portfolios strategy by Thomas Cover [10] and the Nearest Neighbour method by Györfi et al [21]. It
can be argued that the algorithm is analogous to Györfi’s nearest neighbour algorithm when using the
same choice of neighbours Györfi uses in [21], a long only portfolio and an optimisation step instead
of the analytical approach. However it is important to note that the algorithm presented potentially
allows for the algorithm to be implemented online, as well as the inclusion of the ability to cluster the
stocks and partition the time series.

While clustering has been investigated, only the trivial form of the partitioning has been investigated.
The results obtained from using clusters in section 5.6.8 show that clustering the stocks into resources,
financials and industrials can be advantageous.

It can be concluded from the results that there are patterns that exist in both the New York Stock
Exchange and the Johannesburg Stock Exchange and these patterns can potentially be exploited. The
results of the algorithm for both the absolute and active portfolios compares favourably with the
strategies from the literature and in most cases can beat the best stock. The results from the two stock
combinations show that the wealth achieved from the absolute portfolio has a slight variance to the
results achieved from Györfi’s nearest neighbour strategy, this indicates that the quadratic approxi-
mation is highly accurate in comparison to the optimisation. This claim is further supported by the
figures that show the wealth achieved from the different strategies for the two stock combinations. As
the number of stocks are increased, it can be observed that the accuracy of the quadratic approxima-
tion decreases as the number of stocks increase. This is illustrated perfectly in Chapter 5, sections 5.5
and 5.6, for the JSE data as the number of stocks chosen increase from two stock combinations to 10,
20 and 30. However the loss of accuracy is the cost of achieving better computational performance.
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Another observation can be made on the JSE daily data results in section 5.5 that the choice of price
relative data set can have a significant impact on the wealth achieved. For instance the resources two
stock combination (ANGJ and AGLJ) perform the best on the open-to-close data set, the financials
two stock combination (SBKJ and FSRJ) performs well on the open-to-open and close-to-close data
set and the industrials two stock combination (TBSJ and WHLJ) performs the best on the open-to-
open data set. All of the two stock combinations and multiple stock combinations perform poorly on
the close-to-open data set in comparison to the other price relative data sets, this could most likely
be linked to the fluctuations in stock prices caused overnight between the closing price and opening
price.

One of the criticisms of the results in this dissertation could be that trading costs, market impacts and
stock liquidity are not taken into account. To address the concerns relating to stock liquidity, in ma-
jority of the stock combinations for the Johannesburg Stock Exchange only highly liquid stocks have
been selected. However, it should be kept in mind that the aim of this dissertation is to confirm the
existence of time-series patterns in the financial market data investigated and not to find a profitable
trading strategy, even though the existence of a profitable trading strategy is a key measure of the
existence of non-trivial patterns that have not yet been arbitraged out of the system.

6.2 Further Work

Possible areas of further work on this topic can include investigating different methods of partitioning
the time series data as mentioned in Chapter 3, investigating the pattern matching aspect of portfolio
selection and an investigation on the use of parallel computing to significantly decrease the computa-
tional running time of the agents.

Another extension would be to make the algorithm truly online [15, 40]. This can be achieved by
creating a library of the matches offline, including an update rule, and having the algorithm search
the library for the closest match at each time iteration.

In this dissertation, there is no consideration made to performance measures other than the wealth
gained of the portfolios. There are however more effective measures of algorithm performance that
are an important aspect of testing online algorithms, such as the approach suggested by Mohr and
Schmidt [40] based on average competitive performance. These issues are not directly addressed in
this dissertation, however it is an important consideration to take into account once the algorithm
becomes truly online.
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Appendix A

MATLAB Code

A.1 Pattern Class

The algorithms have been implemented using a MATLAB class called pattern1, as discussed in section
5.1.4. The first input parameter is the price relative data. Below is a guide on how to import and
prepare the data for the pattern class.

%% Load data
stock1 = csvread('stock1.csv');
stock2 = csvread('stock2.csv');

% x is the return vector of the stocks
x = [stock1(:,2) stock2(:,2)];

% size of x
[m,n]=size(x);
% reshape x to [Stocks,Features,Times]
x = reshape(x',n,1,m);

The second input parameter is the k values and the third input parameter is the l values. The forth
parameter defines any clustering of the stocks and and the fifth parameter states the portfolio strategy
that should be used. See below for examples on how the method is run for the different portfolios.

1. Active Portfolio

%% Active Porfolio

p = pattern(x,1:5,1:10);

2. Absolute Portfolio
1The pattern code is available at https://github.com/FayyaazL/Pattern
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%% Absolute Portfolio

p = pattern(x,1:5,1:10,[],'absolute');

3. Györfi’s Nearest Neighbour

%% Gyorfi Nearest Neighbour

p = pattern(x,1:5,1:10,[],'gyorfi_opt');

The above examples do not take into account running the code with clusters, below is an example of
how to do so.

%% Clustered stocks
resources = [1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0];
industrials = [0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1];
financials = [0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0];
clusters = [resources; industrials; financials];
clusters = logical(clusters);

p = pattern(x,1:5,1:10,clusters);

The pattern class is shown below.

classdef pattern
% PATTERN Pattern matching and learning class
%
% The class implements both online and offline pattern matching and
% learning over k-tuples for M objects and N features as specified in
% an MxNxP data matrix X. The algorithm searches for L nearest-neighbour
% K-tuple matches in the provided partition of data. A qaudratic
% approximation is used to find the log-optimal portfolio using T+1
% expected return subsequent to the pattern matching times T for each
% k and ell to find H(K,L,CI;T) and SH(K,L,CI;T) for each K-tuple
% L value and cluster CI. The controls are then aggregate using machine
% learning to provide the controls B and realised accumulated
% performance S. If the K matching patterns are predefined then K is
% the index over the matching patterns. The default is and empty
% matching pattern and to use the last k-tuple as the matching pattern.
%
% See Also: PATTERN/MATCH, PATTERN/OFFLINE, PATTERN/LEARN, PATTERN/ONLINE, HFTS

%
% A. OHLC patterns
% B. Fundamental model patterns
% C. (side information partitioning)
%
% 1. *Data*
% 2.1 M (date-times)
% 2.2 N entities (objects e.g. stocks)
% 2.3 P features (OHLC)
% 2. *Pattern* (k-tuple) [historic or user provided]
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% 2.1 k-tuple (k free parameter)
% 2.2.1. k=1...K
% 2.2.2. k=1,...,N*K multiples of N (DSI)
% 2.2 k-tuple ConSet=[A,b] A*x>=b active/absolute (0,1)
% 2.2.1. active (many stocks,stock+cash)
% 2.2.2. absolute (single stock, long only portfolio)
% 3. *Segment (s) and Partition (p)*
% 3.1. [111...1] : full partition search for L nearest neighbours
% 3.2. [10..0],[010...0],...,[0...01] : L partitions for single best fit in each
% partition
% 3.3. [001],[011],[111] for partitions weight to current time
% 3.4. ball radius (1-sigma ball relative to average distance)
% 4. *Distance*
% 4.1. surface norm
% 4.2. vector norm
% 5. *Predictors*
% 5.1. dependent (correlated) matching times j(n,ell)
% 5.2. independent matching times j(1...n,ell)
% 5.3. different matching times ???
% 5.4. [equi-probable] view is geometric average E[r]_t = exp(r_1+...+r_L)
% 6. *Agents*
% 6.1. Active/Absolute mean-variance
% 6.2. Canonical Agents:
% 6.2.1. controls H (NxMxT) M objects, N agents, T times)
% 6.2.2. performance SH (arithmetic) (TxN for T times and N agents)
% 6.2.3. horizon parameter (t to include delay)
% 6.3. allow mixture of long-only with cash neutral.
% 7. *Algorithm*
% 7.1. Online/Offline
% 7.2. Parallel computing
% 7.3. Interface agents (h,SH)
% 8. *Machine Learning* (EG,EW,EWMA,UNIV + abs/act + part/comb)
% 8.1. Weighted Arithmetic Average over all agents to create optimal predictors
% 8.1.1. Performance weighted averaging (using arithmetic averaging)
% B(T) = SUM(K,L) (SH(T-1|K,L) H(T|K,L)) / SUM(K,L) SH(T-1|K,L)
% this is probability wieghted where the probability is
% proportional to the returns.
% 8.1.2. Exponentially weight more recent performance data
% 8.2. parameters: window W_L, forgetting factor Lamba_L
% 8.3. either fully invested or active.
% 9. *Sectors and States* (clusters)
% 9.1. CI PxN for P clusters and N objects

% Authors: Tim Gebbie, Fayyaaz Loonat (2016,2017)

%% public properties
properties

b = []; % aggregated controls (T,M) Time x Objects
S = []; % aggregated performance (T,1) Time x 1
h = []; % agent controls (N,M,T) Agents x Objects x Time
SH = []; % agents performance (T,N) Time x Agents

end
%% private properties
properties (Access = private)

x = []; % data as price relatives (M,F,T) Objects x Features x Time
k = []; % k-tuple size
ell = []; % partition size
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p = []; % current partition
s = []; % segment specification
ci = []; % clusters (C,M) Cluster x Objects
mnp = []; % dimensionality (M,F,T)
ntype = 'active'; % agent normalisation (estimation)
lntype = 'absolute'; % agent relative (learning) normalisation
ltype = 'univlearning';
lparam = []; % learning parameters
ptype = 'trivial';
qH = []; % agents controls (T,N) Time x Agents
xnk = {}; % predefined patterns
horz = 1;

end
%% methods
methods

%% constructor
function p = pattern(varargin)

% P = PATTERN/PATTERN constructor
%
% P = PATTERN(X,K,ELL,CI,NTYPE,LNTYPE,LTYPE) For data X (price relatives)
% and is MxNxP dimensional data for M objects, N features and
% P date-times. dim(X) is dim(Price)-1. A typical object is
% a stocks, e.g. AGL, a typical feature is a factors such as
% OPEN, HIGH, LOW, CLOSE (OHLC), and date-times are the time
% stamps for the data.
%
% Example 1:
% >> x = 1+0.2*randn(10,1,1000);
% >> p = offline(p);
% >> p.S
%
% P = PATTERN(X,XNK,ELL,CI,NTYPE,LNTYPE,LTYPE) For matching
% pattern XNK instead of K-tuple range.
%
% P = PATTERN(X,XNK,ELL,CI,NTYPE,LNTYPE,LTYPE,TREND)
% LONGTERM is TRUE to use long-term relative views. This is
% by default false.
%
% The data X is homogenize in time. K is the set of tuple
% sizes if there is no matching pattern e.g. [1:3], if there
% is a matching pattern it is the number of matching patterns.
% The number of matching times is ELL this is typically 10
% per partition. The cluster definitions is CI, this is by
% default the trivial cluster (all the objects) when CI is
% empty. CI is KxM for K clusters of M objects. NTYPE is the
% strategy normalisation and can be either 'active', 'absolute'
% or 'gyorfi_opt'. LNTYPE is the agent normalisations and can
% be either 'active' or 'absolute'.
% The LTYPE is the learning type this is by default 'univ'.
%
% Note: X are price relatives (P(t)/P(t-1)). These can be
% conveniently computed using EXP(DIFF(LOG(P))).
%
% See Also PATTERN/DISPLAY, PATTERN/SUBSREF

if nargin==0
% null constructor
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else
%% Compute price relatives as returns
x0 = varargin{1}; % (dim = n-1);
% size of the data (M=OBJECTS, N=FEATURES, P=DATATIMES)
mnp0 = size(x0);
% catch the case of M,N,1 (data sliced at a single time)
if length(mnp0)==2

mnp0(1:2) = mnp0;
mnp0(3) = 1;

end
xnk0 = varargin{2};
% trivial cluster
ci0 = true(1,mnp0(1));
% set defaults for optional inputs
optargs = {x0 xnk0 10 ci0 'active' ...

'absolute' 'univlearning' 'trivial' false};
% now put these defaults into the valuesToUse cell array,
optargs(1:nargin) = varargin;
% number of k's
p.k=size(xnk0);
% class test
switch class(xnk0)

case 'cell'
% Case 1: multiple (k0) user defined patterns
% dimensions of the possible matching pattern input
xnlmnp = size(xnk0{1});

case 'double'
% Case 2: single user defined pattern or k-tuples
% dimensions of the possible matching pattern input
xnlmnp = size(xnk0(1));

end
% check for either tuple or pattern
if (xnlmnp(1)==mnp0(1)) && (xnlmnp(2)==mnp0(2))

% user defined patterns
[p.x, p.xnk, p.ell, p.ci, p.ntype, p.lntype, p.ltype, p.ptype]...

= optargs{:};
else

% Place optional args in memorable variable names
[p.x, p.k, p.ell, p.ci, p.ntype, p.lntype, p.ltype, p.ptype]...

= optargs{:};
end
switch p.ltype

case 'eglearning'
p.lparam = 0.01;

case 'univlearning'
p.lparam = Inf;

case 'ewlearning'
p.lparam = 0.99;

end
% ensure the inputs are feasible
if isempty(p.ci) || strcmp(p.ci,':'), p.ci = ci0; end;
% update the size property
p.mnp = mnp0;
% control parameters
L = size(p.ell,2); % partitions (param 1)
W = size(p.ci,1); % cluster
K = size(p.k,2); % tuples (param 2)
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% initialise state variables and pre-allocate memory
p.b = nan(p.mnp(3)+1,p.mnp(1)); % Time x Objects
p.h = nan(L*W*K,p.mnp(1),p.mnp(3)+1); % Agents x Objects x Time
p.qH = nan(p.mnp(3)+1,L*W*K); % Time x Agents
p.S = ones(p.mnp(3)+1,1); % Time x 1
p.SH = ones(p.mnp(3)+1,L*K*W); % Time x Agents
%% partition the data
p=partition(p);

end
end
%% offline (to force offline estimation)
function p=offline(p)

% PATTERN/OFFLINE Offline estimation
%
% P = OFFLINE(P) to estimate (H,SH) for T=K*L:T0 for K and L.
%
% See Also: PATTERN/ONLINE

tmin0 = 3*max(p.ell);
t0 = p.mnp(3);
if t0<tmin0

error('pattern:offline','Not enough Data L*K>T');
end
% Find matching times j for pattern [offline loop]
for t=tmin0:t0 % time loop

p = online(p,t);
end

end
%% online (to force online estimation)
function p=online(varargin)

% PATTERN/ONLINE Online estimation
%
% P = ONLINE(P) to estimate (H,SH,B,S) at T for the range of
% K and L over the specified clusters CI. This requires the
% online structure for learning to have been initialised. T
% is taken to be the last time in the object.
%
% P = ONLINE(P,T) to estimate online values at time T using the
% data from times 1 to T (1:T).
%
% See Also: PATTERN/ONLINE, PATTERN/MATCH, PATTERN/MATCH

%% input parameters
p = varargin{1}; % (dim = n-1);
% set defaults for optional inputs
optargs = {p p.mnp(3) {}};
% now put these defaults into the valuesToUse cell array,
optargs(1:nargin) = varargin;
% Place optional args in memorable variable names
[p, t, s0] = optargs{:};
%% control parameters
L = size(p.ell,2); % partitions (param 1)
W = size(p.ci,1); % cluster
K = size(p.k,2); % tuples (param 2)
%% Model Identification Loop
% initial controls
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% t+1 rows as the last row is for an unrealised return
ht = nan(W*K*L,p.mnp(1)); % agents controls
xt = p.x(:,:,1:t);
% exit if there is not enough data
if 3*max(p.ell)>t

error('pattern:online','Not enough data K*L>T');
end
if (t>p.mnp(3))

error('pattern:online','Not enough data T> dim(X,T)');
end
% partition the data
p = partition(p,t);
% partition
p0 = p.p;
% matching loop
for w0=1:W % clusters (groups)

ci0=p.ci(w0,:);
% the cluster referenced data block with fixed partition
xtw0 = xt(ci0,:,:);
for ell0=1:L, % parameter 1 -> passed to match (ell neighbours)

ell1 = p.ell(ell0);
for k0=1:K % parameter 2 -> passed to match (k-tuple)

% expert index KLrow(w0,k0,ell0)
KLrow = sub2ind([W*K,L],K*w0-k0+1,ell0);
% (k,ell)-agents matched pattern for cluster ci(w0)
% --- 1. select the pattern -------------------------
if isempty(p.xnk)

% k index tuple size
xnk0 = xtw0(:,:,end-p.k(k0)+1:end)-1; % r= R - 1

else
% k index of the matching pattern
xnk0 = p.xnk{p.k(k0)};

end
% --- 2. pattern matching ---------------------------
[hklt,s0]=match(xtw0,p0,xnk0,ell1,p.ntype,p.horz,s0,L); % online
% ------------------------------------------------
% expert controls per cluster mapping
ht(KLrow,ci0) = transpose(hklt);

end % k
end % ell

end % w
% initialise h,SH if it is the trivial object
% compute the update performance for the prior agent step
if any(isnan(p.h(:,:,t)))

dSH = ones(size(p.SH(t,:)));
else

dSH = transpose((p.h(:,:,t) * (p.x(:,1,t)-1))+1); % was exp
end
% remove NaN
ht(isnan(ht))=0;
% update the agents
p.h(:,:,t+1) = ht;
% update the agent accumulate performance (geometric returns)
p.SH(t+1,:) = p.SH(t,:) .* dSH;
% update options
p.s = s0;
%% online update the learning
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p = learn(p,t);
end
%% learning
function p=learn(varargin)

% PATTERN/LEARN Machine Learning based on performance
%
% P = LEARN(P) The updates the aggregated agents and agent
% performance (B,S) using the specified learning type.
%
% P = LEARN(P,TYPE) will reset the learning
%
% Table 1: Learning types
% +----------------+---------------------------------------+
% | TYPE | Description |
% +----------------+---------------------------------------+
% | 'univlearning' | Universal learning (log-optimal) |
% | | [PARAM=[NONE] |
% | 'eglearning' | Exponentiated Gradient |
% | | [PARAM=ETA in [0,1] typ. [0,0.2] |
% | 'ewlearning' | EWMA in control based learning |
% | | [PARAM=LAMBDA in [0,1] typ. [0.9,0.99]|
% +----------------+---------------------------------------+
%
% References:
% [1] Cover, T., M. (1991) Universal Portfolios
% [2] Gyorfi, L., Udina, F., Walk, H., (2008) Experiments on universal
% portfolio selection using data from real markets
% [3] Cover, T. M., (1996), Universal Portfolios with Side Information
% [4] Algoet, P. H., Cover, T. M., (1980) Asymptotic optimality and
% symptotic equipartition properties of log-optimum investments
% [5] Helmbold, D., P., Schapire, R., E., Singer, Y., Warmuth, M.,
% K.,(1998) On-line portfolio selection using multiplicative updates
%
% See Also: PATTERN/MATCH

% SHX = exp(diff(log(SH)) for price path SH!

%% input parameters
p = varargin{1}; % (dim(x) = t) price t+1;
% set defaults for optional inputs
optargs = {p p.mnp(3)};
% now put these defaults into the valuesToUse cell array,
optargs(1:nargin) = varargin;
% Place optional args in memorable variable names
[p, t] = optargs{:};

%% Machine Learning
if (size(p.h,1)==1)

% only single agent
% ---- ONLINE update ----
b0 = p.h(1,:,t+1);
qH0 = 1;
% -----------------------

else
% multiple agents
switch p.ltype

case 'univlearning'
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% compute weights
qH0 = p.SH(t+1,:);

case 'eglearning'
eta = p.lparam; % learning parameters
% update the weights using the exponentiated gradient
% algorithm
if all(p.qH(t,:)==0) || all(isnan(p.qH(t,:)))

qH0 = p.SH(t+1,:); % initialise
else

qH0 = p.qH(t,:) .* exp(eta .* ...
p.SH(t+1,:) ./ (p.qH(t,:) * p.SH(t+1,:)'));

end
case 'ewlearning'

lambda = p.lparam; % learning parameters
% update term
if all(p.qH(t,:)==0) || all(isnan(p.qH(t,:)))

qH0 = p.SH(t+1,:);
else

Z = (p.qH(t,:) .* p.SH(t+1,:))./ (p.qH(t,:) * p.SH(t+1,:)');
% update the weights using the exponentiated gradient algorithm
qH0 = lambda * p.qH(t,:) + (1-lambda) * Z;

end
end
%% renormalise the weights
switch p.lntype

case 'active'
qH0 = (qH0 - mean(qH0));
norm0 = sum(abs(qH0));
if norm0>eps

qH0 = qH0 ./ norm0;
else

qH0 = zeros(size(qH0));
end

case 'absolute'
qH0 = qH0 ./ sum(qH0);

end
%% create the performance weighted combination of experts.
% ONLINE
% -------------------------------------------------------
b0 = qH0 * p.h(:,:,t+1);
% -------------------------------------------------------
%% compute normalization abs(long) + abs(short)
tb = nansum(abs(b0));
% renormalize controls (leverage=1) [FIXME LEV]
if tb==1
elseif tb>eps

b0 = (1/tb) * b0;
% update the agent mixture weights for leverage
qH0 = (1/tb) * qH0;

else
switch p.lntype

case 'absolute'
% update the agent mixture weights for leverage
qH0 = zeros(size(qH0)); % FIXME (should be equally weighted)
% zero weights
b0 = zeros(size(b0));

end
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end
end % only 1 agent
%% compute the leverage corrected output price relative
% compute the updated returns
dSH = p.SH(t+1,:)./p.SH(t,:);
% uses the inputed online structure reference.
if all(isnan(p.qH(t,:)))

dS = 1;
else

dS = ((dSH-1) * transpose(p.qH(t,:)))+1; % LINRET was exp
end
% update the properties
p.qH(t+1,:) = qH0;
p.b(t+1,:) = b0;
p.S(t+1,:) = p.S(t,:) * dS;

end
%% partition
function p=partition(varargin)

% PATTERN/PARTITION Partition the data
%
% P = PARTITION(P) single partition: [111...1] for the
% partition type 'trivial'. NP=ELL as the number of partitions.
% The type of partition as TYPE.
%
% Table 1: Partition Types
% +-------------+------------------------------------------+
% | TYPE | Description |
% +-------------+------------------------------------------+
% | 'trivial' | [111...1] (single partition) |
% | 'overlap' | [0...001][0...011][0...111]...[1...111] |
% | 'exclusive' | [100...0][010...0]...[000...1] |
% | 'sideinfo' | partition using side-information |
% +-------------+------------------------------------------+
%
% P = PARTITION(P,T) Relative to time T.
%
% Note 1: Side Information base learning will partition the data based
% on the state of the side information. The required state will
% then be used to determine which partition to use at time T
% for the model estimation and learning.
%
% Note 2: Removes all days with the same returns as these are
% considered incorrect data days.
%
% See Also

p = varargin{1}; % (dim = n-1);
% set defaults for optional inputs
optargs = {p p.mnp(3)};
% now put these defaults into the valuesToUse cell array,
optargs(1:nargin) = varargin;
% Place optional args in memorable variable names
[p, t] = optargs{:};
% create the partitions
switch p.ptype

case 'trivial'
% trivial (default) partition [111...1]

92



p.p=true(1,t);
case 'exclusive'

if any(size(p.ell)>1) && (floor(t/p.ell)<1),
error('pattern:partition',...

'Only single ELL allowed for type EXCLUSIVE');
end
% ELL exclusive partitions
p.p=false(p.ell,t);
% number of partitions
ni = 0:floor(t/p.ell):t;
if ((t-ni(end))>0)

ni = ni(1:end-1); % drop the last partition
ni = [ni t]; % extend the last partition

end
for j=1:p.ell

p.p(j,ni(j)+1:ni(j+1))=true;
end

case 'overlap'
% ELL overlapping partitions
if any(size(p.ell)>1) && (floor(t/p.ell)<1),

error('pattern:partition',...
'Only single ELL allowed for type EXCLUSIVE');

end
% ELL exclusive partitions
p.p=false(p.ell,t);
% number of partitions
ni = 0:floor(t/p.ell):t;
for j=1:p.ell

p.p(j,ni(j)+1:t)=true;
end

case 'sideinfo'
% ELL references the side-information factor
%
% 1. use one of the factors to partition based on
% side-information.
% 2. The side-information factor will be excluded
% from the nearest-neighbour calculation
error('pattern:partition','Side Information unsupported');

end
end
%% sanity check data
function p = sanitycheck(p)

% SANITYCHECK Remove insane data days (all zero, nan, 1 @T)
end
function p = commutecheck(p)

% COMMUTECHECK Check that the commutation of controls holds
%
% Figure 1: Commutation of the weight b, and agents H using
% agents weights q and the returns of the stocks r
% +-----+ +--------+ +-----------------------+
% |(r,H)| q -> | b= q H | N -> | tilde b (1/lambda) b |
% +-----+ +--------+ +-----------------------+
% |r | r |r
% +--------+ +-----------+ +----------------------+
% |SH = H r|q -> | S = q' SH | N -> | S = (1/lambda) q' SH |
% +--------+ | S = b r | | S = tilde b r |
% +-----------+ +----------------------+
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%
% See Also:

% r,H -> b = q H -> S = b r

% S = H r <-> S = br
end
%% subscript assignment
function p = subsasgn(p,s,b)

% PATTERN/SUBSASGN Subscript assigment
%
% P.<VarName> = Value
%
% See Also: PATTERN/SUBSREF

varName = s(1).subs;
switch varName

case {'learntype'}
p.ltype = b;
if ˜isempty(p.SH) && ˜all(all(p.SH==1))

switch p.ltype
case 'univlearning'

p.lparam = Inf;
case 'eglearning'

p.lparam = 0.01;
case 'ewlearning'

p.lparam = 0.99;
otherwise

error('pattern:subsasgn:learntype',...
'Unrecognized Learning');

end
% update the learning
tmin0 = 3*max(p.ell);
t0 = p.mnp(3);
if t0<tmin0

error('pattern:subsasgn:learntype','Not enough Data L*K>T');
end
% Find matching times j for pattern [offline loop]
for t=tmin0:t0 % time loop

p = learn(p,t);
end

end
case {'learnparam'}

p.lparam = b;
if ˜isempty(p.SH) && ˜all(all(p.SH==1))

% update the learning
tmin0 = 3*max(p.ell);
t0 = p.mnp(3);
if t0<tmin0

error('pattern:subsasgn:learnparam','Not enough Data L*K>T');
end
% Find matching times j for pattern [offline loop]
for t=tmin0:t0 % time loop

p = learn(p,t);
end

end
case {'learnnorm'}
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p.lntype = b;
if ˜isempty(p.SH) && ˜all(all(p.SH==1))

% update the learning
tmin0 = 3*max(p.ell);
t0 = p.mnp(3);
if t0<tmin0

error('pattern:subsasgn:learnparam','Not enough Data L*K>T');
end
% Find matching times j for pattern [offline loop]
for t=tmin0:t0 % time loop

p = learn(p,t);
end

end
otherwise

error('pattern:subsref','Incorrect reference');
end

end
%% subscript reference by time
function p = subsref(p,s)

% PATTERN/SUBSREF Sybscript reference
%
% P = P(T) subscript reference out the pattern object over time
% range T.
%
% P.<VarName> to reference out the required properties such as
% H the agent controls, SH the accumulated geometric agent
% performance, B the aggregated controls, and the aggregated
% agent performance.
%
% Examples: p.h(:,:,end)
%
% See Also: PATTERN/SUBSASGN

switch s(1).type
case '()'

if size(s.subs,2)==1
% subscript reference object by time
% (M,N,P) -> (:,:,P0)
t0=s(1).subs{1};
p.x = p.x(:,:,t0);
p.mnp = size(p.x);
% retain the internal state history
t1 = [t0 t0(end)+1]; % for online functionality
p.h = p.h(:,:,t1); %
p.SH = p.SH(t1,:);
p.b = p.b(t1,:);
p.S = p.S(t1);
p.qH = p.qH(t1,:);
% re-partition
p = partition(p);

elseif size(s.subs,2)==2
% subscript reference object by time and clusters
% (M,N,P) -> (M0,:,P0)
error('pattern:subsref','CI subsref not supported');

end
case '.'

% A reference to a variable or a property. Could be any sort of
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% subscript following that. Row names for () and {} subscripting
% on variables are inherited from the dataset.
varName = s(1).subs;
switch varName

case {'h','SH','S','b'}
p = p.(varName);
if size(s,2)==2

p=subsref(p,s(2));
end

case {'ci'}
p = p.ci;

case {'cin'}
% number of clusters
p = size(p.ci,1);

otherwise
error('pattern:subsref','Incorrect reference');

end
otherwise

error('pattern:subsref','Incorrect reference');
end

end
function display(p)

% PATTERN/DISPLAY Display the Pattern object
%
% See Also PATTERN

disp(p);
if ˜isempty(p.x)

fprintf('\tParameters\n');
fprintf('\t--------------------\n');
fprintf('\tk-tuples : %s\n',num2str(p.k));
fprintf('\tell neighbours : %s\n',num2str(p.ell));
fprintf('\t#clusters : %d\n',size(p.ci,1));
fprintf('\tlearn param. : %3.2f\n',p.lparam);
fprintf('\thorizon : %d\n',p.horz);
fprintf('\n');
fprintf('\tData x(M,N,P)\n');
fprintf('\t--------------------\n');
fprintf('\tobjects (N) : %d\n',p.mnp(1));
fprintf('\tfactors (M) : %d\n',p.mnp(2));
fprintf('\tstates (P) : %d\n',p.mnp(3));
fprintf('\tpartitions : %d\n',size(p.p,1));
fprintf('\n');
fprintf('\tAlgorithm Constraints\n');
fprintf('\t--------------------\n');
fprintf('\tmatching cons. : %s\n',p.ntype);
fprintf('\tlearning : %s\n',p.ltype);
fprintf('\tlearning cons. : %s\n',p.lntype);
fprintf('\tpartition : %s\n',p.ptype);

end
end

end % end methods
end
%% helper functions
function [w,s]=quadbet(varargin)
% QUADBET Quadratic optimal bet
%
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% W = QUADBET(f,H,gamma) Solve the optimal tactical bet. The expected
% view F and covariance matrix H are required as is the risk aversion
% GAMMA.
%
% W(1) is the benchmark bet (fully invested minimum variance
% portfplio).
% W(2) is the tactical bet based on the long-term eqiulibrium
% view F. This is by default zero.
%
% use speudo inverse pinv(omega) is possible is conditioning is an issue

%% initialise the inputs
f = varargin{1};
H = varargin{2};
s = [];
% initialise inputs
optargs = {f H 1 s};
% now put these defaults into the valuesToUse cell array,
optargs(1:nargin) = varargin;
% Place optional args in memorable variable names
[f, H, gamma, s] = optargs{:};

%% compute the optimal portfolio
% get the size of the covariance matrix
[m,n] = size(H);
% diagonals of one
I = ones(m,1);
% invert the covariance matrix
invHI = H\I;
invH = inv(H);
% benchmark weights
w(:,1) = (I' * invHI) \ (invHI);
% active weights
w(:,2) = (1/gamma) * (I' * invHI) \ (invH * ( f(:) * I' - I * f(:)') * invH ) * I;

end
function [hkl,s] = match(varargin)
% PATTERN/MATCH Pattern Match for a given K-tuple and matching data set.
%
% [HKL]=MATCH(X0,P0,XNK,L0,NTYPE,TREND,HORZ) X0 are the factor relatives. P0 the
% partition. K0 is the k-tuple size over the current data set, it is
% computed from the user definied pattern (k-tupel) XNK. XNK is a MxNxK0
% double for X0 a MxNxP size double for T>>K0. L0 is the number of
% neighbours to include from the partitioning P0 of the data. NTYPE is
% the normalisation type. This excludes the time loop over the the
% matching horizon. This is the online version of the pattern matching
% and learning algorithm. HKL is a Mx1 control vector that satifies the
% normalisation type NTYPE.
%
% See Also: PATTERN/ONLINE, PATTERN/OFFLINE, QUADBET

% Author: Tim Gebbie

%% initialise the input variables
x0 = varargin{1};
p0 = varargin{2};
xnk = varargin{3};
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optargs = {x0,p0,xnk,20,'active',1,{}};
% now put these defaults into the valuesToUse cell array,
optargs(1:nargin) = varargin;
% Place optional args in memorable variable names
[x0,p0,xnk,ell0,ntype,horz,s,L] = optargs{:};

%% Loop parameters wrt to partition
q0 = size(p0,1); % number of partitions
m0 = size(x0,1); % number of objects

%% Portfolio agent constraints
switch ntype

case 'absolute'
hkl = (1/m0)*ones(1,m0);

case 'active'
hkl = zeros(1,m0);

case 'gyorfi_opt'
hkl = (1/m0)*ones(1,m0);

end
% the pattern as returns computed from price relatives
k0 = size(xnk,3);
% check consistency
if any(size(k0)>1), error('portchoice:pattern:match','Incorrect K'); end
if any(size(ell0)>1), error('portchoice:pattern:match','Incorrect L'); end

%% Find matching times j for pattern
for q=q0 % maximum of ell partitions [P(ell)][temporal]

% the partition
psi = p0(q,:);
% for agent h(k,ell) for cluster ci, and partition psi
snk = x0(:,:,psi)-1;
% find the times (this allows for inhomogenous partitions)
jell = find(psi);
% reset the distance measure for partition
ed = Inf(size(snk,3),m0);
%% get the test tuples by looping over partition snk
for j=k0:size(snk,3) - horz % only allow jell+1 in partition

% distance (element-wise difference)
edi = xnk - snk(:,:,j-k0+1:j);

if (k0==1)

ed(j,1:m0) = norm(edi);
else

% reshape the distance by objects and factors
edi = reshape(edi,size(edi,1),size(edi,2)*size(edi,3));
ed(j,1:m0) = norm(edi);

end
end % j segment loop
%% sort the matching times

pl = 0.02 + 0.5*((ell0-1)/(L-1));
pell0 = floor(pl*j);

if (q0==1)
% ell matches in a single partition
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[˜,nj]=sort(ed,'ascend'); % ˜ -> pat.ed not required

% Take into account ties of the norm
if pell0>0

while pell0<length(nj) && (ed(nj(pell0))==ed(nj(pell0+1)))
pell0 = pell0 + 1;

end
end

% update the matching times
njell = jell(nj(1:pell0,:));
% update the norm
ed = ed(nj(1:pell0,:));

% update the distances
% pat.ed = pat.ed(nj(pat.ell0,:));
% find the ell matching times
% --- LOOK AHEAD RULE ------------
jnk = njell+horz; % 1-step look ahead
% --------------------------------

else
% find the single closest match in the ell partitions
[˜,nj]=min(ed); % ˜ -> pat.ed not required
% find the matching time
njell = jell(nj);
% the uncertainty as the norm
ed(q) = ed(nj);
% update the matching times
% --- LOOK AHEAD RULE ---------------
jnk(q) = njell+horz; % 1-step look ahead
% -----------------------------------

end
end % end partition loop
%% find the predictions
E = eye(m0,m0);
hatx = zeros(pell0,m0);
% initialise prediction vector
for mj = 1:m0 % loop over objects

% select first factor (price relative) @JNK matching times
hatx(:,mj) = x0(mj,1,jnk(:,mj))-1; % r = R - 1
% matching error (diag covariance matrix)
E(mj,mj) = mean(ed(:,mj).ˆ2);

end % loop over objects/stocks
%% find the agents using mean-variance approximation

% -------------------------------
f = mean(hatx,1); % expected view : r = R-1

% -------------------------------
% E = (1/sum(diag(E)))*E; % relative distance error
% T = mean(range(hatx,2)) * eye(size(E)); % entropy
% construct the experts for the k,ell choice
if size(hatx,1) > 2

H = cov(hatx); % r = R-1
if any(diag(H)==0)

% remove zero covariance
zi = (diag(H)==0);
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H(zi,zi) = nanmean(diag(H))*eye(sum(zi));
elseif all(H==0)

% all are zero use diagonal matrix
H=eye(m0);

end
else

H = eye(m0);
end
if rcond(H)<1e-2,

% warning('portchoice:newbcrp','Bad H conditioning using diag(H)');
H = diag(diag(H));
if rcond(H)<1e-2,

H=eye(m0);
end

end;
% combine intrinsic uncertainty with estimation uncertainty
% ------------------------------
% H = H + E + T; % intrinsic + estimation + entropy
% H = H + E; % intrinsic + estimation
% H = H; % intrinsic uncertainty
% ------------------------------
% approximate log optimal k,l-th expert using quadratic approx.
% ----------------------------
[hkl0,s] = quadbet(f,H);
% ----------------------------
switch ntype

case 'absolute'
% fully invested
hkl = sum(hkl0,2);
if sum(abs(hkl))>1+eps

% find the biggest short-sold asset
[˜,i0] = min(hkl);
% aggressiveness factor
n0 = abs(hkl0(i0,1) / hkl0(i0,end));
% rescale the tactical portfolio
hkl = hkl0(:,1) + n0 * hkl0(:,end);

end
case 'active'

% cash neutral
hkl = hkl0(:,end);
% leverage unity
hkl = hkl/sum(abs(hkl));

case 'gyorfi_opt'
optfun = inline('-log(prod(x*transpose(b)))','b','x');
xx = hatx +1;
[˜, m] = size(xx);
b0 = (1/m)*ones(1,m);
[hkl2, ˜] = fmincon(@(b) optfun(b,xx),b0,[-eye(m);eye(m)],...

[zeros(1,m)';ones(1,m)'],ones(1,m),1,[],[],[],...
optimset('Algorithm','sqp','Display','off'));

hkl = hkl2';
end
end
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A.2 Universal Portfolios

The following MATLAB function was used to recover the results of Cover’s Universal Portfolio [10]
algorithm2. The function takes in the price relative data and returns the portfolio wealth, the wealth
of the stocks and the fraction allocated to the first stock.

function [universalwealth, stock1wealth, stock2wealth, bm] = cover_up_rec(x)
% COVER_UP_REC - Implementation of Thomas M. Cover's Universal Portfolio
% for two stocks
%
% Syntax: [universalwealth, stock1wealth, stock2wealth, bm] = cover_up_rec(x)
%
% Inputs:
% x - Price Relative Data of the two stocks
%
% Outputs:
% universalwealth - Wealth acheived by the portfolio
% stock1wealth - Wealth acheived by stock 1
% stock2wealth - Wealth acheived by stock 2
% bm - Fraction of wealth allocated to stock 1

%% STEP 1: Initialise Variables

[n, ˜] = size(x);
stock1wealth=zeros(n,1);
stock2wealth=zeros(n,1);
universalwealth=zeros(n,1);
bm = zeros(n,1);
bm(1) = 0.5;

% Sn is the wealth accumulated from the constant rebalanced portfolios
Sn = zeros(n,21);

%% STEP 2 Update the Portfolio
for i = 1:n

% Update the wealth of stock 1 and stock 2
stock1wealth(i) = prod(x(1:i,1));
stock2wealth(i) = prod(x(1:i,2));

% Update the wealth achieved by the universal portfolio
Sn(i,:) = (0:0.05:1)*x(i,1) +(1:-0.05:0)*x(i,2);
universalwealth(i) = (sum(prod(Sn(1:i,:))))/21;

% Update wealth assigned to stock 1
if i >1

b = sum((0:0.05:1)*(prod(Sn(1:i,:))'))/(sum(prod(Sn(1:i,:))));
bm(i) = b;

end
end
end

The function is called up as follows:
2The code is available at https://github.com/FayyaazL/Pattern
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%% Load data
stock1 = csvread('stock1.csv');
stock2 = csvread('stock2.csv');

% x is the return vector of the stocks
x = [stock1(:,2) stock2(:,2)];

[U_S, S1, S2, b] = cover_up_rec(x);
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