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Abstract

Energy storage has become an important issue for society, there is a need
for affordable and efficient devices that can store energy optimally. Super-
capacitors are energy storage devices that can solve society’s energy storage
problem. They can store the energy generated by renewable energy systems.
In this work approaches will be studied that may be used to estimate capac-
itance of materials that can be used as the electrode of these devices. These
materials must have high energy density, which will address one of the limita-
tions of supercapacitors. To estimate the capacitance of the double layer, the
double layer theory and ab initio numerical tools based on density functional
theory (DFT) are used. The ab initio tools work with periodic systems, when
charging the system one violates the periodicity of the system. This is over-
come by using the effective screening medium method, which prevents energy
divergent of the system. In this work different configurations of the water
molecules are used to average the different orientations of water molecules
in the electrolyte. The Pt(111) electrode is used, and electrolyte of sodium
ion and water. In different configurations the sodium ion in the electrolyte is
located at different positions. The capacitances calculated using two differ-
ent approaches that we developed in this work are comparable to previously
estimated capacitance. This is achieved by using minimal computational ef-
forts. In previous studies the double layer capacitance was estimated to be
in the range of 5 µF ·cm−2 and 20 µF ·cm−2 , we obtained capacitance within
that range. Double layer capacitance can be estimated to a good accuracy
with the methods developed in this work. Though there are improvements
that can be made on the methods that have been developed in this work to
better estimate the double layer capacitance. And also more research has to
be done in this field to come up with a theory that will accurately estimate
capacitance. At the moment calculating the double layer capacitance is not
trivial due to the lack of theory that describe the processes taking place at
the surface of the electrode where the capacitance is calculated.
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Introduction

In this work capacitance will be studied theoretically and numerically by
using the double layer theory at the interface between a metal electrode and
an electrolyte.

Energy storage has been of great concern in the modern society consider-
ing the number of power outages we have been experiencing in South Africa.
The energy that is generated by renewable energy systems needs to be stored
and sustained to be able to use the energy whenever it is needed. These en-
ergy storage mechanisms need to be environmentally friendly, sustainable,
easily accessible and affordable. At the moment the energy storage devices
we are exposed to are primarily batteries, in particular lithium-ion batter-
ies. Batteries have traditionally been used to power most electronic devices,
including electric cars like the Tesla cars [1]. The Tesla model S car has a
large lithium-ion battery that is used to store the energy to power the car
[2]. Batteries store energy based on electrochemical reactions. Studies have
been conducted on the performance of lithium-ion batteries during charging
and discharging [3, 4]. It has been found that the charging and discharging
of batteries are very slow and the life-time is short, but they are able to store
large amounts of energy.

There is a need for devices that can perform better compared to bat-
teries for energy storage. These devices should be able to store energy at
a large scale that can be used by companies that provide electricity to the
community. So these devices should have fast charging and discharging cy-
cles, thus providing large energy release. Supercapacitors [5, 6, 7] are good
candidates to improve the short term storage of energy. They are very effi-
cient for energy storage under high power conditions. For example; electric
vehicles store energy while braking and rapidly release energy during accel-
eration. Supercapacitors use different mechanisms of energy storage than
batteries, as they primarily aim at improving the capacitance of an electro-
chemical device[8, 9]. Supercapacitors use high surface area electrodes and
thin dielectric layers of ions and electrolyte to achieve a very high capaci-
tance. Compared to other devices used in the electric cars for energy storage,
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they perform much better [10]. This performance comparison is based on the
energy storage efficiency, charging and discharging rates [11]. Especially in
situations where large amounts of energy are needed like during acceleration
of the vehicle. Energy recharge happens when the vehicle brakes, and they
are much more responsive than batteries [12]. Supercapacitors can also be
used as uninterrupted power supply (UPS). The UPS is an electrical device
that is used to provide emergency power when there is a power surge or load
shedding [13]. It provides power at an instant during a power cut, by supply-
ing the energy that is stored in the supercapacitors in the UPS. The world’s
largest UPS is in Alaska, and it provides power to the Golden Valley Electric
Association (GVEA). GVEA itself provides electricity to Fairbanks city in
Alaska and the neighbouring communities when there is a power cut [14].

Figure 1: Schematic diagram for electric double layer capacitors (EDLCs) [15].

Supercapacitors can be classified according to their different types of en-
ergy storing mechanisms. Some mechanisms involve chemical reactions tak-
ing place, and there are other mechanisms were no chemical reactions take
place during the energy storage process. The different types of supercapci-
tors are: pseudocapacitors, electric double layer capacitors, and hybrid ca-
pacitors. The mechanisms for energy storage involve the Faradaic process
in pseudocapacitors, non-Faradaic process in electric double layer capacitors
and a combination of both mechanisms in hybrid capacitors [11].

From henceforth in this work the electric double layer capacitors will be
refereed using the acronym EDLCs, as they are popularly known.

EDLC devices are made up from two electrodes, a separator and an elec-
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trolyte, as seen in Figure 1. The electrode is a metal or porous material
where charges accumulate on the surface, thus creating a double layer with
ions from the electrolyte [16]. The double layer will be discussed in the next
chapter. The double layer formation will result in the storage of energy, the
higher the surface area of the electrode the more energy will be stored. The
capacitance is given by C = εA/d, where A is the surface area of the elec-
trode, ε is the dielectric constant of electrolyte and d is the thickness of the
capacitor. This is the classical capacitance of a plate capacitor. The stored
energy E is directly proportional to the capacitance C, E = 1

2
CV 2, where

V is the electrostatic potential across the two electrodes. The separator is
used to separate the two oppositely charged electrodes in order to avoid elec-
tric short-circuiting of the system. Studies have been conducted on various
porous materials that can be used as the electrode for the double layer ca-
pacitance. These studies include activated carbons [17, 18]. They found that
the activated carbons with larger pores are much suited for high power super-
capacitance. However, there are also limitations on the storage of charges in
the pores of the activated carbons [19]. The limitations include the stability
of the material when exposed to charges. Other materials that are used as
electrodes include aluminium, platinum and carbon materials. The double
layer capacitance for carbon materials is estimated to be between 5 µF ·cm−2

and 20 µF · cm−2 [20]. In literature the double layer capacitance for other
electrode is estimated to be in the same range.

A model system of solid/electrolyte interface will be studied in this work
and its capacitance will be calculated. Studies of charged solid/electrolyte in-
terfaces have been active research since the days of Hermann von Helmholtz.
So first, the concept of the double layer theory that was introduced by
Helmholtz will be discussed. Second, the numerical details that are used
to calculate the properties of the model system will be discussed, which will
enable to calculate capacitance. The computational tools used in this work
to study the double layer capacitance are based on ab initio methods. Fi-
nally, I will discuss results and give an outlook on future studies. Only a
single electrode will be studied to calculate the capacitance of the system.
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Chapter 1

Double layer theory

1.1 Electrical double layer
The double layer model was first introduced in the mid 1800s by Hermann
von Helmholtz [21]. He showed that when one puts a charged electrode into
an electrolyte solution, there will be a double layer formation at the interface.
The charged electrode will not come into direct contact with ions of the same
charge, due to electrostatics governed by Coulomb’s law. But ions of different
charge will be attracted to the surface of the electrode. Then a layer will
form close to the electrode, made of ions surrounded by a shell of solvent
molecules. This system is called a double layer. The Helmholtz model is
useful in visualising the environment of ions near charged surfaces. These
charged surfaces can be metals with applied potentials, or ions on the surface
of an insulator. The chemical potential of the system is spatially dependent
on x, the distance from the electrode. It is expressed as,

µ(x) = zeV (x) + kT ln ρ(x). (1.1)

Where V is the electrostatic potential, Q = ze is the total charge of the ion,
ρ(x) is the charge density of ions at a particular point x, k is the Boltzmann
constant and T is the absolute temperature.

The total charge density is given by

ρ(x) =
∑
i

ni(x)zie, (1.2)

when one sums over all ions in the system, and ni(x) is the concentration of
these ions in the electrolyte.

This model was further studied by Louis Gouy in 1910 [23], he was the first
to consider the charged ions of the electrolyte in spatial distribution. He took
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1.1. ELECTRICAL DOUBLE LAYER 10

Figure 1.1: [22] The potential is represented as ψ, which is the same as the
electrostatic potential V , i.e. ψ ≡ V . The double-layer models that were studied
by: (a) Helmholtz, (b) Gouy and Chapman, (c) Stern with the inner Helmholtz
plane(IHP) and outer Helmholtz plane (OHP).

into account that these ions will be subjected to electric fields. In 1913 David
Chapman [24] used Poisson equation to describe this situation assuming that
the interface has no dipoles. This implies that the potential is uniform, i.e.
the inner potential is the same as the outer potential. For a charged system
to be in equilibrium the potential must be uniform throughout the surface.
This keeps the overall charge on the double layer neutral. From Figure 1.1,
we can see that at x = 0, which is on the surface of the electrode, the electric
potential is zero, V0 = 0. Combining this with equation (1.1) we obtain the
chemical potential of ions on the surface,

µ(0) = zeV0 + kT ln ρ0, (1.3)

where ρ0 is the concentration of ions at the surface of the electrode [25].
With V0 = 0, we get

µ(0) = kT ln ρ0 (1.4)

From equation (1.1), suppose that µ is the same throughout the system,
i.e. the system is in equilibrium, we find that µ(0) = µ(x). This gives,

kT ln ρ0 = zeV (x) + kT ln ρ(x). (1.5)

By summing over all ionic species in the electrolyte, we get a slightly
different equation

kT ln ρ0 =
∑
i

zieV (x) + kT ln ρ(x). (1.6)

10



1.1. ELECTRICAL DOUBLE LAYER 11

Which leads to,

ln

(
ρ(x)

ρ0

)
=
∑
i

−zieV (x)

kT
. (1.7)

From equation (1.7) follows the expression for the charge density ρ(x)

ρ(x) = ρ0

∑
i

exp

[
−zieV (x)

kT

]
, (1.8)

which is a Boltzmann distribution.
Chapman observed that the excess charge density ρ as a function of dis-

tance x, from the surface can be expressed by the Poisson equation.

ρ(x) = −εε0

(
d2V (x)

dx2

)
, (1.9)

where ε is the dielectric constant of the electrolyte and ε0 is the permittivity
of free space.

The Helmholtz model itself does not consider the dependence of capac-
itance on the applied potential. Gouy-Chapman observed that an applied
potential increases the concentration of ions near the electrode, and the ca-
pacitance will also change. They developed a double-layer model that op-
erates with diffusion of ions between different interfaces. In this diffusion
model of the double layer, the Maxwell-Boltzmann statistics [26] can be ap-
plied, where the ions are distributed as a function of their distance from
the electrode surface. This results in an exponential decrease of the electric
potential away from the surface. In recent years a lot of research has been
made to validate the Gouy-Chapman model. In one of the studies the au-
thors modelled an interface of a metal with ionic liquid solution [27], and
they predicted the capacitance of that system as a function of the applied
potential.

Otto Stern in 1924 [28] investigated the Helmholtz double layer model
again in order to improve the Gouy-Chapman model; in cases when a strong
potential is applied to charge the surfaces of the electrodes. Stern basically
combined the two models, the Helmholtz and Gouy-Chapman model: One
of the assumptions that Gouy-Chapman made is that the ions can be re-
garded as point charges [29], and that ions can get close to the surface. This
assumption is not physically valid, as the ions are surrounded by solvent
molecules. Ions themselves have finite size, they are not point charges [30],
and therefore they cannot directly be in contact with the surface of the elec-
trode [31]. Stern postulated a so-called Stern layer, which consists of the
inner Helmholtz plane (IHP) and the outer Helmholtz plane (OHP). In the
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1.1. ELECTRICAL DOUBLE LAYER 12

inner Helmholtz plane the ions are strongly adsorbed on the surface of the
electrode, while on the outer Helmholtz plane the ions are not specifically
adsorbed. Beyond the outer Helmholtz plane a diffuse layer is formed.

Using the above assumptions one can derive expressions for the capaci-
tance of the system. By combining equation (1.8) and (1.9) we get,

d2V (x)

dx2
= − ρ0

εε0

∑
i

exp

[
−zieV (x)

kT

]
. (1.10)

For simplicity I will drop the explicit x dependence of V in the following.
Using the relation,

d2V

dx2
=

1

2

d

dV

(
dV

dx

)2

, (1.11)

equation (1.10) can be expanded as,

d

(
dV

dx

)2

= − 2

εε0

ρ0

∑
i

exp

(
−zieV
kT

)
dV. (1.12)

Furthermore, one can use the definition of the charge density in equation
(1.2) to replace ρ0:

d

(
dV

dx

)2

= − 2

εε0

∑
i

nizie exp

(
−zieV
kT

)
dV. (1.13)

Equation (1.13) is now in an integrable form, and we get(
dV

dx

)2

=
2kT

εε0

∑
i

ni

[
exp

(
−ziV
kT

)
+ C

]
, (1.14)

where ni is the ion concentration in the bulk, and C is an integration constant.
To determine this constant we consider the ions far away from the electrode,
where the system is neutral, and so we have the condition V = 0. This
condition can be formally expressed as,

lim
x→∞

V (x) = 0. (1.15)

From Figure 1.1, it can be observed that far away from the surface the

electric potential V becomes constant. This will result in
dV

dx

∣∣∣∣
x→∞

= 0, and

with the condition in equation (1.15) implies that C = −1, and(
dV

dx

)2

=
2kT

εε0

∑
i

ni

[
exp

(
−zieV
kT

)
− 1

]
. (1.16)

12



1.1. ELECTRICAL DOUBLE LAYER 13

Finally, let us consider a system with symmetric electrolyte. This means
that the electrolyte has only one cationic species and one anionic species both
with the same charges of different sign. This mean that |z+| = |z−| = z and
n+ = n− = n, so we can drop the summation above. Then equation (1.16)
is written as,

(
dV

dx

)2

=
2kTn

εε0

[
exp

(
−zeV
kT

)
− 1 + exp

(
zeV

kT

)
− 1

]
. (1.17)

In this work we study a system with a negatively charged electrode, this
further simplifies equation (1.17). Then we can write the equation as,

dV

dx
=

√
8kTn

εε0

sinh

(
zeV

2kT

)
. (1.18)

A detailed derivation from equation (1.17) to equation (1.18) is given in
the Appendix (i). The surface charge density, being the charge per unit area
of the electrode, is given by

σ = εε0

(
dV

dx

)∣∣∣∣
x=0

. (1.19)

The potential difference between the surface and the outer Helmholtz
plane(OHP) is given by,

dV

dx
=
Vd − V0

d
, (1.20)

where d is the thickness of the Helmholtz layer as seen in Figure 1.1, V0

and Vd are potential on the surface of the electrode and in the Helmholtz
layer respectively.

Then,
V0 = Vd −

σ

εε0

d. (1.21)

Substitute equation (1.19) and (1.21) into equation (1.18), to get:

σ =
√

8kTnεε0sinh

ze
(
Vd − σ

εε0
d
)

2kT

. (1.22)

Capacitance is defined as the ratio of the change in surface charge density
with respect to the change in potential,

C =
dσ

dV
. (1.23)

13



1.1. ELECTRICAL DOUBLE LAYER 14

Taking the inverse of equation (1.23) will make it easier to calculate the
capacitance.

In equation (1.22), let A =
√

8kTnεε0 , B = ze
2kT

, D = zed
2kTεε0

Then equation (1.22) becomes,

σ = Asinh (BVd −Dσ). (1.24)

Rearranging equation (1.24) and taking the inverse of the hyperbolic sine,
we get:

Vd =
arsinh

(
σ
A

)
B

+
Dσ

B
. (1.25)

The inverse of the expression of capacitance in equation (1.23) is,

1

C
=
dV

dσ
. (1.26)

Taking the derivative of equation (1.25) and using the derivative of the
hyperbolic sine, to get

1

C
=

1

AB

1√(
σ
A

)2
+ 1

+
D

B
. (1.27)

Substituting back A, B and D and simplifying equation (1.26),

1

C
=

d

εε0

+
2kT

ze [σ2 + 8kTεε0n]
1
2

. (1.28)

This is the total capacitance of the system, the sum of capacitance of
Helmholtz layer and diffuse layer. The first term is the Helmholtz capacitance
and the second term is diffuse layer capacitance. The above equation can be
written as

1

C
=

1

CH
+

1

Cd
. (1.29)

In this work only the Helmholtz capacitance will be studied,

C =
εε0

d
(1.30)

=
σ

∆V
. (1.31)

This expression for capacitance is the same as the expression for capaci-
tance of parallel plates with a medium of dielectric constant ε. To calculate

14



1.1. ELECTRICAL DOUBLE LAYER 15

the capacitance of the double layer, one need to know the surface charge
density and the potential difference. The derivation for the expression of ca-
pacitance above can also be obtained in electrochemistry textbooks [32, 33].
To get these quantities computational tools will be used to assist in simulat-
ing double layer and obtain the required information. These tools use density
functional theory, which will be discussed in the next chapter.

15



Chapter 2

Density Functional Theory

2.1 Introduction
This is a brief discussion of the modelling methods that are mostly utilised
to investigate the ground state properties of the systems of interest. Density
Functional Theory(DFT)[34, 35, 36] is used to investigate the ground state
properties of a given system. It is a theory where one replaces the many-body
wave functions with an electron density ρ(~r) as basic physical entity. Note
that for a system of N electrons the wave function depends on three spatial
variables, 3N . It is then much easier to use the electron density, which de-
pends on only 3 spatial variables. Therefore DFT can be applied to larger
systems with hundreds of atoms. The DFT formalism also simplifies numer-
ical ab initio computations for many-electron systems, and in particular for
solids. DFT is based on two famous theorems by Hohenberg and Kohn [37],
and its practical implementation goes back to Kohn and Sham [38].

2.2 Kohn-Hohenberg Theorems
To investigate the properties of a many-electron system Hohenberg and Kohn
established two famous theorems [37] .

They assumed that the electronic structure of matter may be explained
using the time independent Schrödinger equation. For an N-electron system,
the Schrödinger equation is given by

ĤΨ = EΨ. (2.1)

Where Ĥ is the many-electron Hamiltonian operator, Ψ is the wave function
and the total electronic energy related to Ψ is E.

16



2.2. KOHN-HOHENBERG THEOREMS 17

The Hamiltonian is given by

Ĥ =
N∑
i

(
−1

2
∇2
i

)
+

N∑
i

υ(~ri) +
N∑
i<j

1

rij
, (2.2)

where υ(~ri) =
∑

ν
Zν
riν

is the external potential acting on electron i which
is caused by nuclear charges Zν . Atomic units are assumed, } = m = e2 = 1.

The ground state energy and the wave function are determined by mini-
mizing the energy functional,

E[Ψ] =

〈
Ψ|Ĥ|Ψ

〉
〈Ψ|Ψ〉

. (2.3)

Here the expectation values of the Hamiltonian operator is given by:〈
Ψ|Ĥ|Ψ

〉
=

∫
d~xΨ∗ĤΨ. (2.4)

For arbitrary Ψ we find that,

E[Ψ] ≥ E0 (2.5)

This equation tells us that the total energy functional related to a general
wave function Ψ, is greater than the ground state energy E0. By minimizing
E[Ψ] over all possible wave functions, only the wave function related to the
ground state energy E0 will minimize E[Ψ],

E0 = min
Ψ E[Ψ]. (2.6)

In 1964 Kohn and Hohenberg [37], proposed their first theorem, which
states that the external potential υ(~r) is in one-to-one correspondence to the
ground state electron density ρ(~r).

The ground state energy is assumed to be a functional of the ground state
electron density, ρ(~r), i.e.

E = E[ρ]. (2.7)

To prove this theorem one would consider two N-electron systems with
different external potentials υ1(~r) and υ2(~r). Each of these potentials is
supposed to give the same electron density ρ in the ground state. With
two different external potentials we would however have two Hamiltonians
H1 and H2 with different eigenstates Ψ1 and Ψ2 but the same ground state
density.

17



2.2. KOHN-HOHENBERG THEOREMS 18

Using the variational principle of equation (2.5) and taking Ψ1 as a trial
function for the Hamiltonian H2, we find that

E1 < 〈Ψ2|H1|Ψ1〉 = 〈Ψ2|H2|Ψ2〉+ 〈Ψ1|H1 −H2|Ψ1〉 (2.8)

= E2 +

∫
[υ1(~r)− υ2(~r)] ρ(~r)d~r, (2.9)

where E1 and E2 are the ground state energies forH1 andH2, respectively.
Similarly, taking Ψ2 as the trial wave function for the Hamiltonian H1,

E2 < E1 +

∫
[υ2(~r)− υ1(~r)] ρ(~r)d~r. (2.10)

Then adding equation (2.9) and (2.10), gives

E1 + E2 < E2 + E1 (2.11)

This is a contradiction! One would conclude that the two N-electron
Hamiltonians which differ by their external potentials cannot give the same
ground state density, ρ. This proves the first theorem, and shows that ρ
uniquely determines the external potential υ, the N-electron Hamiltonian,
and all ground state properties related to ρ.

One can express the total energy E[ρ] depending on the electron density
ρ(~r) for a given external potential υ(~r) as:

Eυ[ρ] = T [ρ] + Vne[ρ] + Vee[ρ]. (2.12)

Where T [ρ] is the ground state kinetic energy functional, Vne[ρ] is the
electron-nucleus attraction functional, and Vee[ρ] is the electron-electron re-
pulsion functional.

Eυ[ρ] =
〈

Ψ[ρ]|T̂ + V̂ee + V̂ne|Ψ[ρ]
〉

(2.13)

=
〈

Ψ[ρ]|T̂ + V̂ee|Ψ[ρ]
〉

+

∫
d~rυ(~r)ρ(~r). (2.14)

This can be written as,

Eυ[ρ] = F [ρ] +

∫
υ(~r)ρ(~r)d~r. (2.15)

Where F [ρ] is a universal functional, which is independent of the external
potential and only depends on the electron density ρ(~r). The minimum value
of Eυ[ρ] is the ground state energy E0.

18



2.3. KOHN-SHAM DENSITY FUNCTIONAL THEORY 19

The second theorem states that: When E[ρ] is varied over the allowed
class of trial densities then the minimum value is the true ground state energy,
and the related density ρ0(~r) is the true ground state density. This is given
as,

Eυ[ρ] ≥ E0[ρ0]. (2.16)

A proof of this theorem can be found in [39].

2.3 Kohn-Sham density functional theory
The many-electron ground state energy is obtained by minimizing the energy
functional in equation (2.15) [39, 36]. The corresponding electron density ρ,
satisfies the Euler-Lagrange equation

F [ρ]

δρ(~r)
+ υ(~r)− µ = 0, (2.17)

where µ is the chemical potential. Which means that Eυ[ρ] is minimized
under the constraint

N =

∫
ρ(~r)d~r, (2.18)

and µ is the corresponding Lagrangian multiplier.
The solutions of equation (2.17) should minimize E[ρ], but to determine

F [ρ] we need to approximate T [ρ] and Vee[ρ]. Thomas-Fermi and other mod-
els contain direct approaches to approximate these quantities [39]. These
approaches are simple, but they have their limitations, and thus compromise
the accuracy of the approximation for T [ρ] and Vee[ρ].

Kohn and Sham [38] postulated an indirect approach that trades simplic-
ity for accuracy of the approximation. Kohn-Sham realised that the failure
of the Thomas-Fermi model was due to the poor description of the kinetic
energy. To overcome this problem, they developed an orbital theory based
on a non-interacting reference system with mean field potential υs.

Then the electron density of this non-interacting reference system is given
by,

ρ(~r) =
N∑
i=1

|ψi|2, (2.19)

where ψ are Kohn-Sham orbitals.
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For the reference system Kohn-Sham postulated a general single electron
Hamilton operator,

ĥs =
N∑
i

(
−1

2
∇2
i + υeff (~ri)

)
. (2.20)

The corresponding Schrödinger equation is given by,

ĥsψi =

[
−1

2
∇2 + υeff (~r)

]
ψi = εiψi. (2.21)

The electrons interact only via the mean field potential, υeff . One may
use a Slater determinant to determine the ground state wave function for the
full non-interacting N-electron system,

Ψs =
1√
N !
det [ψ1ψ2ψ3...ψN ] . (2.22)

The kinetic energy of this non-interacting reference system is,

Ts[ρ] =

〈
Ψs

∣∣∣∣∣
N∑
i=1

(
−1

2
∇2
i

)∣∣∣∣∣Ψs

〉
. (2.23)

With this wave function, we can approximate the kinetic energy in equa-
tion (2.23). However Ts[ρ] is not the same as the kinetic energy function in
the universal functional F [ρ]. To overcome this, Kohn-Sham re-wrote equa-
tion (2.15) by writing it as a sum of the kinetic energy of the non-interacting
reference system Ts, the electron-electron repulsion potential Vee, and the
exchange correlation energy Exc.

F [ρ] = Ts[ρ] + Vee[ρ] + Exc[ρ]. (2.24)

The exchange correlation energy then includes all the quantum effects of the
system, which are correlations and corrections of the approximate kinetic
energy Ts.

Then the total energy in equation (2.15) is given by,

E[ρ] = Ts[ρ] + Vee[ρ] + Exc[ρ] +

∫
υ(~r)ρ(~r)d~r. (2.25)

To get the Kohn-Sham effective potential υeff from equation (2.25),

υeff =
δE[ρ]

δρ(~r)
=
δ
{
Ts[ρ] + Vee[ρ] + Exc[ρ] +

∫
υ(~r)ρ(~r)d~r

}
δρ(~r)

(2.26)
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The kinetic energy functional of the non-interacting reference system
Ts[ρ], and the electron-electron repulsion potential Vee are part of the ex-
change correlation functional Exc[ρ] from equation (2.24). Then equation
(2.26) can be written as,

υeff =
δExc[ρ]

δρ(~r)
+ υ(~r) +

∫
ρ(~r′)

|~r − ~r′|
d~r′. (2.27)

Where, the first term is the exchange correlation potential

υxc(~r) =
δExc[ρ]

δρ(~r)
. (2.28)

The second term is the external potential, υ(~r), and the third term is the
classical Coulomb potential,

υC =

∫
ρ(~r′)

|~r − ~r′|
d~r′. (2.29)

The classical Coulomb potential includes the electron-electron repulsion
potential.

Then equation (2.27) can be written as,

υeff = υxc(~r) + υ(~r) + υC . (2.30)
If we now vary Eυ[ρ] under the constraint of orthonormal ψi,

εiψi =

[
−1

2
∇2 + υeff (~r)

]
ψi. (2.31)

This equation explains that the motion of the electrons of an interacting
system can be mapped on a non-interacting system as suggested in equation
(2.21); where electrons are considered to be moving in a mean field potential
called the effective potential. The complicated interactions of the electrons
are all contained in this effective potential υeff .

The total energy according to Kohn-Sham is given by,

E =
N∑
i

εi −
1

2

∫ ∫
ρ(~r′)ρ(~r)

|~r − ~r′|
d~r′d~r + Exc[ρ]−

∫
υxc(~r)ρ(~r)d~r, (2.32)

where,
N∑
i

εi =
N∑
i

〈
ψi

∣∣∣∣−1

2
∇2 + υeff (~r)

∣∣∣∣ψi〉 (2.33)

=Ts[ρ] +

∫
υeff (~r)ρ(~r)d~r. (2.34)
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Then substituting equation (2.34) into the total energy in equation (2.32),
we get

E = Ts[ρ]+Exc[ρ]+

∫
υeff (~r)ρ(~r)d~r−1

2

∫ ∫
ρ(~r′)ρ(~r)

|~r − ~r′|
d~r′d~r−

∫
υxc(~r)ρ(~r)d~r.

(2.35)
Equations (2.19), (2.30), (2.31) and (2.35) are the Kohn-Sham equations.

The Kohn-Sham effective potential υeff depends on the electron density ρ(~r)
via equations (2.19) and (2.31). So in order to solve the Kohn-Sham equa-
tions, one must apply a self-consistent method. This is done by starting from
an initial guess of ρ(~r), then construct the effective potential using equation
(2.30) and obtain the Kohn-Sham orbitals from the eigenvalue problem in
(2.31). With these orbitals, we can calculate a new electron density ρ(~r)
using equation (2.19). This process is repeated until convergence is achieved,
and using the final electron density in equation (2.35) one may calculate the
total energy Eυ[ρ] with respect to ρ.

The exchange correlation energy functional Exc[ρ] is generally unknown.
It has to be approximated to get the total energy of the system. This allows
for the improvement of the Kohn-Sham approach based on better approxi-
mations of the Exc[ρ]. These equations also require less computational effort
compared to similar theories, like the Hartree-Fock method [39]. A large
variety of functionals have been suggested to approximate the exchange cor-
relation functional. Recently, Perdew proposed a way to categorize these
approximate functionals, which is called the Jacob’s ladder [40]. For large
systems the Kohn-Sham approach works better than the quantum chem-
istry methods [41], which are restricted to systems of 10 or less atoms. If
the exchange correlation functional could ever be accurately approximated,
it would give us the exact electron density ρ(~r) and the total ground state
energy E.
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Chapter 3

Numerical details

3.1 Periodic boundary conditions
There are different boundary conditions that can be imposed on a many-
electron system.

There are systems without clear boundaries. This condition is called
free boundary condition. It is applied to systems like molecules in vacuum.
Extremely fast processes where the effects of boundary are negligible are also
described by free boundary condition.

For rigid boundaries, some atoms at the boundaries are fixed. Such a
configuration is not physical, and it has the serious disadvantage that it can
induce artifacts. However this condition can often be combined with other
and better boundary conditions.

In this work periodic boundary conditions is used. With periodic bound-
ary conditions the fundamental simulation box is reduced to a unit cell. The
atoms are contained within the unit cell, and the unit cell is repeated with
no overlaps or any voids. All the unit cells have the same size, shape, and
number of atoms in them. Equivalent atoms in the unit cells have the same
positions and momentum. Atoms on the edges of the unit cell can inter-
act with the copy-atom in neighbouring unit cells. So periodic boundary
conditions help to create a structure similar to bulk solids.

3.2 Plane wave basis sets
In this work we only working with systems that are subjected to periodic
boundary conditions. The nuclei of the electrons are arranged in a pattern
that is repeating itself periodically. The effective potential that acts on the
electrons is also periodic, i.e. υeff (~r) = υeff (~r+ ~R) with ~r being the position
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3.2. PLANE WAVE BASIS SETS 24

of the electrons in the unit cell, and ~R being the lattice vector. The obvious
choice of basis functions to study periodic systems are plane waves because
of Bloch’s theorem [42]. In Bloch’s theorem a wave function ψ in a periodic
potential υeff (~r) takes the form,

ψk(~r) = ei
~k·~ruk(~r) (3.1)

where ~k is the wave vector and uk(~r) is a periodic amplitude function, i.e.
uk(~r) = uk(~r+~R) with the same periodicity as the crystal structure. Equation
(3.1) is a modulated plane wave, which is the product of a periodic function
times a plane wave. Bloch states are not periodic, they take up a phase factor
ei
~k·~R after translation by ~R as,

ψk(~r + ~R) = ei
~k·(~r+~R)uk(~r + ~R) (3.2)

(3.3)

= ei
~k·~Rei

~k·~ruk(~r) (3.4)

= ei
~k·~Rψk(~r) (3.5)

Since the amplitude function uk(~r) has the same periodicity as the crystal,
one can expand it as follows:

uk(~r) =
∑
~G

ck, ~Ge
i ~G·~r (3.6)

where ~G is the reciprocal lattice vector from the so-called reciprocal space
(or k-space). ~G is related to a Bravais lattice vector, ~R in real space by
~G · ~R = 2πn with n ∈ Z [42].

The Bloch state, equation (3.1) can now be written as:

ψk(~r) =
∑
~G

ck, ~Ge
i(~k+ ~G)·~r (3.7)

The higher Fourier components |~G+~k| have small contribution to equation
(3.7) as they correspond to states with large kinetic energies. So cutting the
expansion of the Bloch states at some values of |~G + ~k| defines the cut-off
energy Ecut, with

~2|~G+ ~k|2

2m
≤ Ecut. (3.8)
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Figure 3.1: Cut-off energy convergence for PtH2ONa system. The system consist
of 27 platinum atoms, 32 water molecules and a sodium ion.
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Figure 3.2: k-points convergence for PtH2ONa system. The system consist of 27
platinum atoms, 32 water molecules and a sodium ion.

Rather than choosing all k-points within the first Brillouin zone to de-
termine the Bloch states at these points, one only chooses a specific number
of k-points, as implemented in the Monkhorst-Pack grid [43]. The grid is
uniformly spaced at the points nk1 × nk2 × nk3 in the first Brilloiun zone.
It is essential to converge all numerical results with respect to this reduced
k-point grid and with respect to the cut-off energy Ecut. In this study we

25



3.3. EFFECTIVE SCREENING MEDIUM 26

converged the k-points and the cut-off energy for PtH2ONa system. The
system has 27 platinum atoms, 32 water molecules and a sodium ion. The
results are shown in Figure 3.1 and 3.2, where the total energy difference per
atom was plotted against the cut-off energy and k-points respectively. The
cut-off energy I chose to use in this work is 60 Ry and the k-point grid is
(3 × 3 × 1). Denser k-point grids and larger basis sets will take longer to
compute, and the given parameters are well within the converged range of
parameters.

We effectively solve the single electron Schrödinger equation given in
equation (2.31) for a solid, with a periodic effective Kohn-Sham potential
υeff , given in equation (2.30). The Kohn-Sham wave function ψi are Bloch
states, which can be expanded using a plane wave basis sets like in equation
(3.7). And the advantage of the plane-wave basis sets is the usage of the
fast Fourier transformation(FFT) to calculate the electron density, external
potential and the total energy [44, 45] .

3.3 Effective Screening Medium
The effective screening medium (ESM) approach [46], is a first principles
computational method for charged systems. It was developed to overcome
problems that one faces when trying to simulate a periodic repeated system
with an applied electric potential. In such a system, the periodic bound-
ary conditions are violated [47]. The ESM method solves this problem by
removing periodic boundary conditions along a direction perpendicular to
an electrode surface, but retaining periodicity parallel to the surface of an
electrode. The slab is the interface between Pt and the ionic solution, and it
is centred around zero. It is sandwiched between two media, which can be a
vacuum, metal or dielectrics with respective relative dielectric constant ε(~r).
These media are referred to as the ESM. The electrons are restricted into the
region between the two media with x ∈ [−L/2, L/2]. From Figure 3.3, the
space w between the boundary of the cell and the ESM medium is vacuum,
which is optional, and the size of the super cell is L in the z-direction. In Fig-
ure 3.3 the slab contains interfaces between an electrode and the electrolyte,
and it is then shifted to the left or right of the unit cell so that it is centred
around zero.

Introducing a potential V (~r) to the system as part of the ESM changes
the Kohn-Sham total energy functional in equation (2.35) [46], becomes
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Figure 3.3: ESM scenario for double layer capacitance. Medium I and II can be
a vacuum and/or metal, or it can be a dielectric. In this work, medium I and II
are vacuum and/or metal. The width w, is the space between the boundary of the
cell and the ESM medium. In this work the super cell lies along the z-direction,
[48].

E[ρe, V ] = Ts[ρe]+Eex[ρe]+

∫
ε(~r)

8π
|∇V (~r)|2 d~r+

∫
[ρe(~r) + ρc(~r) + ρn(~r)]V (~r)d~r.

(3.9)
Here ρe(~r) is the electron charge density, ρn(~r) is the nuclear charge den-

sity and ρc(~r) is the classical charge density, which includes external charges.
Then the total charge density is given by

ρt = ρe(~r) + ρn(~r) + ρc(~r). (3.10)

And we can re-write equation (3.9),

E[ρe, V ] = Ts[ρe] + Eex[ρe] +

∫ [
ε(~r)

8π
|∇V (~r)|2 + ρt(~r)V (~r)

]
d~r, (3.11)

where V (~r) is the total electrostatic potential, Coulomb and electron-ion
potential, and ρt(~r) is the total charge density.

From the energy functional in equation (3.11), the Poisson equation is
obtained using the variational principle δE

δV
= 0 [46] , i.e.

δ
{
Ts[ρe] + Eex[ρe] +

∫ [ ε(~r)
8π
|∇V (~r)|2 + ρt(~r)V (~r)

]
d~r
}

δV
= 0. (3.12)

This gives

2

8π
∇ · [ε(~r)∇]V (~r) + ρt(~r) = 0, (3.13)

27



3.3. EFFECTIVE SCREENING MEDIUM 28

and finally the Poisson equation,

∇ · [ε(~r)∇]V (~r) = −4πρt(~r). (3.14)

The electronic charge density, ρe(~r) may be obtained using density func-
tional theory, where ρn(~r) and ρc(~r) are known (externally) [46]. Using the
Poisson equation, in equation (3.14), one may obtain the electrostatic poten-
tial V (~r).

Let me emphasize again that the total charge density ρt(~r) does not only
have electronic and nuclear charges, but also external charges. These external
charges lead to a classic charge density ρc(~r), which ensures that charge
neutrality is satisfied. This means that,∫

Υ

ρt(~r)d(~r) = 0, (3.15)

where Υ is the region with the ESM.
We can formally define a Green’s function related to the Poisson equation

(3.14) [46],

∇ · [ε(~r)∇]G(~r, ~r′) = −4πδ(~r − ~r′). (3.16)

We may then obtain the solution of the Poisson equation for appropriate
boundary conditions. These boundary conditions must be imposed on equa-
tion (3.14) and also on equation (3.16), as the electrostatic potential V (~r)
follows from,

V (~r) =

∫
G(~r, ~r′)ρt(~r′)d~r′. (3.17)

The Green’s function itself may be determined analytically for specific
boundary conditions, and then we obtain the electrostatic potential V (~r) for
the system from the knowledge of ρt(~r) .

Assume that, ε(~r) only depends on the z-direction, and that the period-
icity in the slab is retained parallel to the surface. Then for vectors ~r||, ~r′||
parallel to the surface, equation (3.16) becomes,

{
∂z [ε(z)∂z] + ε(z)∇2

||
}
G
(
~r|| − ~r′||, z, z′

)
= −4πδ

(
~r|| − ~r′||

)
δ (z − z′)

(3.18)
In the Laue representation [46], equation (3.18) becomes{

∂z [ε(z)∂z] + ε(z)g2
||
}
G
(
~g||, z, z

′) = −4πδ (z − z′) (3.19)
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Where g|| = |~g|||, is the absolute value of a reciprocal lattice vector that
is parallel to the surface.

Imposing the following boundary conditions to equation (3.14) and/or
(3.18) will specify a number of useful Green’s functions [46].

(i) pbc: Here the system preserves the periodicity of the system, no ESM is
applied to the system.

(ii) bc1: ∂zV (~g||, z)|z=±∞ = 0 , ε(z) = 1 everywhere.
Here the ESM in medium I and II is vacuum. This is known as open
boundary conditions. In this case no screening takes place. The con-
figuration is vacuum− slab− vacuum.

(iii) bc2: V (~g||,±z1) = 0 , ε(z) =


∞, in medium I.
∞, in medium II.
1, in the region between the two media.

Here the configuration is metal − slab−metal.

(iv) bc3:

{
V (~g||, z)|z=z1 = 0,

∂zV (~g||, z)|z=−∞ = 0
, ε(z) =

{
1, in medium II.
∞, in medium I.

Here the configuration is metal − slab− vacuum.

(v) ∂zV (~g||, z)|z=±∞ = 0 , ε(z) =

{
εr, in medium I and II.
1, between the two media.

Here the slab is sandwiched between two media with finite dielectric
constant, εr, the configuration is medium−slab−medium. The dielec-
tric constants, ε = 1 and ε =∞ are for vacuum and metal respectively.

For example, by solving equation (3.19) with boundary condition (ii), the
Green’s function [46] is,

G
(
~g||, z, z

′) =
4π

2g||
exp

(
−g|||z − z′|

)
(3.20)

Substituting equation (3.20) back into equation (3.17), we obtain the
electrostatic potential of the system. This boundary condition applies to
neutral systems. Otherwise for g|| = 0, ∂zV (0,−∞) should not be zero. The
same applies to g|| = 0, ∂zV (0,+∞) should not be zero.

In this work boundary condition (iv) is often used. With this boundary
condition one can introduce excess charges into the system. The metal will
induce an equal and opposite image charge to neutralize the overall system.
This provides screening of the charges to prevent energy divergence.
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3.4 Quantum Espresso
Quantum Espresso [45] is a program package put together to model materials,
and to calculate their electronic structure. The code is based on density func-
tional theory, plane wave basis sets and pseudopotentials for representation
of the ionic cores. The code allows one to use different exchange-correlation
functionals. It also has an ESM option, which makes it possible to study
charged materials, and particularly non-periodic or partially periodic sys-
tems like a double layer (which is not periodic in the z-direction). With this
code I will obtain the total energies, potential energies and charge densities
of a double-layer system to finally calculate its capacitance.
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Chapter 4

Results and discussion

Our set-up to determine double layer capacitances will consist of an electrode,
a liquid and ions solvated by the liquid. There are many different approaches
to study a charged system using ab initio methods. In one study Neurock
and Filhol [49] performed calculations of a charged electrode. They charged
the electrode by addition and subtraction of electrons from the electrode.
And they also introduced an oppositely charged background charge(jellium)
to neutralize the system. The disadvantage of this approach is that the
oppositely charged ions from the jellium are distributed everywhere in space.
This makes the potential outside the surface of the electrode very small.
Another approach is called the effective screening medium (ESM). It was
originally suggested by Sugino and Otani [46]. Their method allows one to
study charged metal-liquid interfaces as well, which was discussed in section
3.3 of this dissertation. Their approach will be used throughout this work.

For all calculations done in this work, Quantum Espresso [45] is used.
Preliminary studies are done first in this chapter to study how the system
behaves under the influence of the ESM. Then a double layer model is de-
veloped for some systems of interest. From these model systems we used
different approaches to determine capacitance, and then discuss the results.

4.1 Preliminary results
The system that is studied in this section is periodic in two dimensions. It
consists of 27 aluminium atoms, 32 water molecules and a sodium ion. The
aluminium atoms form the electrode, with three layers of 9 atoms per layer
per unit cell. The layers are arranged such that only the first layer is in
contact with the electrolyte. The water molecules and the sodium ion are a
model electrolyte, where water surrounds the ions to shield them from strong
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fields that arise during the formation of a double layer.
Different simulations were done with different boundary conditions for

the ESM. First we only considered an electrode with the boundary condition
described as bc1 (see section 3.3), which specifies both ESM media as vacua.
The results are shown in Figure 4.1. From the figure, one can see that
the potential is flat on both sides of the cell, as this system was not charged.
The boundary condition bc1 does not allow charges to be introduced into the
system, and the system has open boundaries. Across a vacuum the potential
is constant, and therefore the flat potential away from the slab shows that
there is vacuum. The charge density is located around the aluminium layers,
and decays into vacuum on both sides of the slab.

Then we considered a full system under different boundary conditions.
This time we charged the system, and in order to prevent energy divergence
we used bc3. This boundary condition allows excess charge to be introduced
into the system, and the metal ESM screens the charges to prevent energy
divergence. In Figure 4.2, the black curve, labelled pbc, is the result for a
reference system, where we retained the full periodicity of the system. The
red curve, labelled bc3, is for a charged system with boundary condition bc3.
The three dips in the potential show the positions of the aluminium atoms
in their respective layers. Around z = 2 Å is the surface of the electrode.
Beyond the surface of the electrode there is water.

The vacuum ESM medium labelled ESM1 in Figure 4.2a, is located to
the left of the electrode as seen in Figure 4.2a. There, the potential is not flat
for both curves. This is due to the fact that we did not allow for sufficient
vacuum regions before the electrode. Sufficient vacuum is needed to shield the
vacuum ESM from the charges on the electrode so that there is no potential
difference in the vacuum ESM. For the charged system, one can observe a
dipole potential, which leads to a little dip in the curve around z = −11
Å at ESM1. It is caused by the dipole layer at the interface between the
electrode and the vacuum as expected from the classical boundary conditions
of electrodynamics [50]. Another dipole layer is observed near the ESM2
(metal), which is located to the right of the water molecules.

On the electron density plot, Figure 4.2b, there is no difference between
the two systems. This is due to the equal number of atoms in both systems.
The plot does not drop to zero at both edges of the cell, which is due to
insufficient vacuum before the electrode.

The configuration used in Figure 4.3 is different from the configuration
used in Figure 4.2. Figure 4.3, shows the total electrostatic potential and
charge density of two different systems. One system is labelled AlH2O, be-
cause it contains no sodium ion. The other system labelled AlH2ONa, which
contains sodium. The two systems have an electrolyte that is positively
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Figure 4.1: The plot of potential (a) and electron density (b), as a function of the
distance from the surface (z-plane) of the electrode for a system of 27 aluminium
atoms. The boundary condition is bc1, and the system is not charged.
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Figure 4.2: The graphs of the potential (a) and the electron density (b) for the
system AlH2ONa, when there is insufficient vacuum between the electrode and the
ESM medium. ESM1 represents vacuum and ESM2 represents a metal. The red
curve(labelled bc3) is for the charged system. The black curve (labelled pbc) is
a reference system where the periodicity of the system is preserved. For pbc the
system is not charged and for bc3 the system is charged.
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Figure 4.3: Plot (a) is the potential and (b) electron density for systems AlH2ONa
and AlH2O. Shifted position of the atoms in the z-plane to give more vacuum
left of the electrode. In (a), the region a is the vacuum, b is the electrode, c is
the electrolyte with water molecules, d is where Sodium is positioned, H is the
Helmholtz layer, ESM1 (vacuum) and ESM2 (metal). And in (b), p is the peak
that shows the gain of electron when sodium is introduced in the system. Both
systems are charged.
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charged and there is enough space for a vacuum slab, marked a in Figure
4.3a. We can see this from the flattened potential before the electrode, where
ESM1 is vacuum. The potential in this medium is used as energy reference
for the system since it is constant. ESM2 is the ESM medium that repre-
sents a metal. It screens the charges introduced into the system. The sodium
ion is placed at z = 4.7 Å, marked d in Figure 4.3a. This gives the distance
between the sodium ion and the surface of the electrode to be 9 Å. When the
sodium ion is introduced, there is a significant change in potential and charge
density at the location where the sodium ion is placed. In the charge den-
sity plot, Figure 4.3b, the introduction of the sodium is seen by a maximum
peak, labelled p, compared to the system without sodium. It shows a gain
in charge density. The region marked as H in Figure 4.3a is where the hy-
drated ions on the electrolyte are adsorbed near the surface of the electrode.
This region H is called the Helmholtz layer and it gives rise to the double
layer capacitance. The distance between the hydrated ions and the surface
of the electrode was determined to be around 2 Å [51]. From the double
layer theory in chapter 1 of this dissertation, the double layer capacitance is
defined by the potential difference and the electrode surface charge density,
equation (1.30). The potential in this region includes the dipole potential
of the water molecules shielding the sodium ions. It also includes potential
from the charges, as in this region there are oppositely charged ions from the
surface of the electrode and from the electrolyte.

4.2 Simulation of double layers
The model system consists of a slab, which is sandwiched between two ESM
media and is periodic in the x and y-direction. The slab comprises of the
electrode and the electrolyte. The electrode has three layers of Pt(111) in the
z-direction, each layer has 9 platinum atoms, and the first layer is in contact
with electrolyte. Note: in Figure 3.3 the x-direction is used instead of the
z-direction. The electrolyte consist of the sodium ion (Na+) and 32 water
molecules, so the overall system is PtH2ONa. The length of our simulation
cell was 32 Å with vacuum of about 4 Å on both sides of the cell before the
ESM, and the height was 8.32 Å. For the electrolyte to give correct density,
we allowed 15 Å of the length for the electrolyte.

The solvated sodium ion gives rise to a double layer on the surface of the
electrode after adsorption. The sodium ions are surrounded by a solvation
shell from the water molecules, and electrostatic forces hold the ions in place.

The configuration adopted for this simulation is metal− slab− vacuum,
as described in section 3.3. The vacuum is on the Pt side of the slab with
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ε = 1, and the metallic medium of the ESM is placed to the right of the
electrolyte side with ε = ∞. The interface between the charged surface of
the electrode and the solvated ions of the electrolyte is a standard model often
used to describe double-layer capacitance [51, 52, 53]. For all calculations
the k-points were set to (3× 3× 1) on the Monkhorst-Pack grid, as shown in
Figure 3.2. The positions of the electrode atoms were converged since they
are placed in a fixed position, only the water molecules and the sodium ions
are placed randomly. We relaxed the water molecules and the sodium ion
using the GPAW [54] code with the exchange correlation functional PBE [55].
And the plane wave cut-off energy and the charge density cut-off were set to
60 Ry and 600 Ry, respectively. We used the exchange correlation functional
PBE [55]. In this work we generated 8 configurations with different positions
of Na+.

Figure 4.4: Snapshot of the arrangement of atoms in one of the configurations for
PtH2ONa, silver = Pt, red = Oxygen, small blue = Hydrogen, big blue = Sodium.

Within the slab the number of atoms is held fixed throughout our cal-
culations. The water molecules shield the ions of the electrolyte from the
fields created during the formation of a double layer near the surface of the
electrode.

It has been shown before that it is possible to study charged water/metal
systems from a first principles approach [51], and in particular the wa-
ter/Pt(111) interface has been studied using these methods [56].

4.2.1 Charge on the system

By charging the system we essentially bring a test charge from infinity to a
specific point P along the z-axis, which results in a potential difference.

The system consist of two phases, which are the metal electrode and
the electrolyte. They form a double layer system when charge is introduced
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Figure 4.5: Plot for one configuration, (a) is the potential of the system and (b)
is the charge density of the system, the system is PtH2ONa (charged).
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into the system, which happens near the surface of the electrode. The total
potential across the interface is the sum of the classical potentials due to
the positive and negative charges and the potential due to the orientation of
dipoles related to the water molecules. It is given by,

V = electrostatic potential + dipole potential (4.1)

And the total potential difference across the electrode-electrolyte interface
results from the sum of the differences for each of the two contributions. This
gives,

∆V = ∆ (electrostatic potential) + ∆ (dipole potential) (4.2)

I will discuss the electrostatic potential first, and then I will discuss the
dipole potential.

4.2.2 Electrostatic potential

The overall electrostatic potential is denoted by φ. For the electrode-electrolyte
interface, we now want to describe several components separately.

Electrode:
The potential that we encounter by bringing a test charge from infinity to

a point P outside the surface of the electrode. We thus charge a region, which
is just outside the surface of the electrode, because the relevant electrons do
not sit directly on the surface of the electrode. This potential near the surface
of the electrode, is referred as the outside electrode potential φM .

Electrolyte:
The electrolyte is charged due to the Na+ ion, leading to a potential

outside the surface of the electrolyte, which is called the outer electrolyte
potential φS.

Next we combine the two systems to obtain a charged model system,
PtH2ONa (charged). This system forms a double-layer, and in order to get
the potential across the electrode-electrolyte interface, we have to take the
difference between φM and φS to get,

∆φ = φM − φS. (4.3)

This potential difference is solely due to the charges in the system, and
therefore it is a difference in electrostatic potential. It is also referred to
as the contact potential difference or the Volta potential difference. It is
discussed in many textbooks of electrochemistry [32, 33]

39



4.2. SIMULATION OF DOUBLE LAYERS 40

4.2.3 Dipole potential

The dipole potential, χ , is caused by the dipole orientation of the water
molecules, after a charge is introduced. The full dynamics of their orientation
is beyond the scope of this work, we are only interested in averaging over some
variations of the potential. To visualise the dipole potential we again analyse
various contributions separately.

Electrode:
The electrode has a very small dipole potential, which can be neglected,

such that χM = 0. In this case we do not have excess charges resulting in
double-layer formation. This mean that the surface of the electrode is neutral
Pt(neutral), only the electrolyte is charged.

Electrolyte:
Here again, we start with a test charge at infinity, and bring it to a point P

in the electrolyte. Point P is just inside the surface of the dipole layer. Tech-
nically speaking we thus charge the electrolyte phase, i.e H2ONa (charged).
This will generate a potential across the surface of the electrolyte χS. This
potential on the surface of the electrolyte is only due to the orientation dipole
in the dipole layers after charging the phase.

The dipole potential difference is given by

∆χ = χM − χS. (4.4)

Since χM = 0, then we have

∆χ = −χS. (4.5)

Now from equation (4.1) we get the total potential across the interface,

V = φ+ χ. (4.6)

From equation (4.2), we will get the total potential difference,

∆V =∆φ+ ∆χ (4.7)
= (φM − φS) + (−χS) . (4.8)

In general we find that,

∆V = (φM − φS) + (χM − χS) (4.9)
= (φM + χM)− (φS + χS) (4.10)
=VM − VS. (4.11)
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Equation (4.11) is the total potential difference on the electrode-electrolyte
interface, where

VM ≡ V charged
P tH2ONa

, (4.12)

is the potential for the whole system.
On the other hand the term

VS ≡ V charged
H2ONa

+ V neutral
P t , (4.13)

includes the potential from the electrolyte and the electrode.
This gives,

∆V = V charged
P tH2ONa

−
(
V charged
H2ONa

+ V neutral
P t

)
. (4.14)
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Figure 4.6: Graph of average total potential difference (∆V ) on the electrode-
electrolyte interface. The gray shaded part is the Helmholtz layer which is esti-
mated to be around 3 Å wide, its potential difference will be written as ∆VH .

The potential is averaged in the x and y-direction and plotted along the
z-direction. The value for the total potential difference in the Helmholtz layer
in Figure 4.6 is

∆VH = 1.08± 0.13 eV (4.15)

This computation was done for different configurations of the system;
in each configuration the water molecules has different orientations and the
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sodium ion has different position within the electrolyte. There is an uncer-
tainty in the results, as there are systematic errors in the numerics caused
by the introduction of the ESM. Furthermore our calculations comprise only
a half cell, and other errors also affect the final results. These errors include
the screening potential that arises when the ESM screens the ions of the
electrolyte solution. There are techniques to overcome such errors [57, 58],
but in this work I used Quantum Espresso [45] which is the tool that was
available and accessible, which does not compensate for these errors.

4.2.4 Charge density

For the charge density, we follow the same procedures that we developed
for the total potential difference. The total charge density is defined as the
difference between the charge density of the complete charged system and
the sum of the charge densities of the electrolyte and neutral electrode,

∆ρz = ρchargedP tH2ONa
−
(
ρchargedH2ONa

+ ρneutralP t

)
. (4.16)

The charge density is again averaged in the x and y-direction and plotted
along the z-direction. Figure 4.5b shows the charge distribution of the system.
The positive values indicate electron density accumulation and the negative
values indicate electron density depletion.

From Figure 4.7, one can observe that near the surface of the electrode the
charge accumulation is at its maximum. As one moves away from the surface
∆ρ becomes zero, which shows that the system becomes neutral. The region
between −10 Å and −5 Å is the location of the electrode. In this region we
observe both a gain and a loss of charge.

The total charge Qz, is calculated by integrating the charge density over
the electrode/electrolyte interface along the z-direction [59]. It is given by

Qz =

∫ zmax

zmin

∆ρ(z′)dz′. (4.17)

Here zmax is the point of the electrode/electrolyte interface, and zmin is a
point in the z-direction where electron density difference has vanished to zero.
This factor quantifies the electron transfer in the system, which is calculated
to be

Qz = 0.30± 0.02e, (4.18)

where e = 1.602× 10−19 C.

42



4.3. CAPACITANCE 43

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-20 -15 -10 -5  0  5  10  15  20

Δ
ρ
 (

e
/Å

)

z(Å)

Figure 4.7: Graph of the total charge density difference of the system, the system
is PtH2ONa(charged).

4.3 Capacitance
Now I will study the capacitance of the system in two different approaches,
from the potential difference and total energy of the system.

4.3.1 Capacitance from potential difference:

In this approach I will compare calculated capacitance using the Helmholtz
potential difference ∆VH , and the total potential difference ∆V of the system
from Figure 4.6.

To calculate the capacitance of the system based on the Helmholtz po-
tential difference ∆VH , I need the surface charge density σ. The electrode
consists of 3 layers of platinum(111), and the calculated surface area of the
electrode is,

A = 59.9 Å2 .
This gives a surface charge density of,

σ =
Q

A
=

4.81× 10−20 C
59.9× 10−16 cm2 = 0.80± 0.06× 10−5 C · cm−2. (4.19)

Previously determined charge densities for platinum electrode are 1.19× 10−5 C · cm−2

[58] and 1.14× 10−5 C · cm−2 [60]. These values were obtained using ab initio
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methods, their surface charge density values are comparable to the calculated
surface charge density given in equation (4.19). The difference comes from
the surface area of the electrode used.

From this value of surface charge density, I have calculated the capaci-
tance of the system per area of the electrode, i.e.

C

A
=

σ

∆VH
(4.20)

=
0.80× 10−5 C · cm−2

1.08 V
= 7.41± 0.96× 10−6 F · cm−2. (4.21)

This capacitance is also called the Helmholtz capacitance [61], which was
discussed in equation (1.31). It does not depend on the electrolyte concen-
tration, it only depends on the surface area of the electrode where the charge
is stored.

We also calculated the capacitance from the total potential difference
∆V of the system as seen in Figure 4.6, the total potential difference ∆V =
3.4±0.26 eV. To calculate the surface charge density we use the value of the
elementary charge Qe = 1.602 × 10−19 C, to get the surface charge density
2.67× 10−5 C · cm−2.

Using these values, we calculate the capacitance 7.85±0.65×10−6 F· cm−2

from the total potential difference ∆V .
The above calculated values for capacitance are comparable using the

methods mentioned above. The double-layer capacitance for the carbon
electrode has been determined before and it is between 5 µF · cm−2 and
20 µF · cm−2 [20]. And using the platinum electrode the double-layer ca-
pacitance was calculated to be 11 × 10−6 µF · cm−2 [60], so our calculated
capacitance is within the range.

Differentiating the surface charge density with respect to a change in
potential would give the differential capacitance [62, 63, 64],

Cd =
∂σ

∂∆V
. (4.22)

We did not study the differential capacitance across the interface. Note
that the capacitance from the potential difference was calculated by averaging
the electrostatic potential and the charge density for different configurations.
I averaged over 8 different configurations of the system retaining the same
number of atoms. Throughout the different configurations the position of
the atoms in the electrode were kept fixed. The averaging was done since
the sodium was not fixed in one specific position. The average position of
the sodium away from the electrode surface was about 1.26 Å. The water
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dipole also had to be averaged since the orientation of water molecules is
not the same in all configurations. Table 5.1 and 5.2 in Appendix (ii) has
the Helmholtz potential difference ∆VH and total potential difference ∆V for
each configuration with different position of Na+, and their respective cal-
culated capacitances. Figure 4.4, shows a snapshot of a single configuration
of the system. In this figure one can observe the orientation of the water
molecules. However we could not study the dynamics of the dipole orienta-
tion of the water molecules, and also not the adsorption of the hydrated ions
on the surface of the electrode as in [65, 66]. It would have been an excessive
numerical effort for very little gain in accuracy at the moment.

4.3.2 Capacitance from total energy difference:

An alternative method to calculate the capacitance is to use the total energy
of the system. Capacitance C is assumed to be related to the change in total
energy ∆E as,

C =
Q2
e

2|∆E|
. (4.23)

Here, ∆E = Echarged
P tH2ONa

−
(
Echarged
H2ONa

+ Eneutral
P t

)
and Qe = 1.602× 10−19 C

is the elementary charge. The energy difference is taken for the same systems
for which I worked out the potential difference before.

The calculated total energy difference is,

|∆E| = 0.17± 0.04 Ry = 3.71× 10−19 J. (4.24)

This energy difference was averaged over 8 different configurations of the
system. The position of the sodium in each configuration was different, as
seen in Table 5.3 in Appendix (ii). Also the dipole orientation of the water
molecules was not the same in all configurations. This way we tried to
include the dynamics of the electrolyte, simply by averaging through different
configurations of the system.

With the total energy difference value, we obtain the capacitance of the
system as:

C =
Q2
e

2|∆E|
(4.25)

=
(1.602× 10−19 C)

2

2 (3.71× 10−19 J)
= 3.46× 10−20 F. (4.26)
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Table 4.1: Double layer capacitance from different electrode materials.

Electrode Electrolyte Method of study Capacitance (F · cm−2)

MoS2 H2SO4
aExperiment 70×10−3

Gold H2SO4
bExperiment 10×10−6

Graphene [BMIM][BF4] cDFT 8×10−6

Pt(111) Na+ dDFT 11×10−6

Al LiCl eDFT 10.4×10−6

aReference[67] , bReference[68], cReference[69], dReference[60],
eReference[70]

Then taking the capacitance of the system per area of the electrode,

C

A
=

3.46× 10−20 F
59.9× 10−16 cm2 = 5.80± 1.81× 10−6 F · cm−2. (4.27)

This capacitance is comparable to the capacitance calculated above using
the potential difference approach. Here the difference might come from a
charge accumulation that was estimated in the Helmholtz layer in the first
approach. This comes from the limited information on how to locate the
Helmholtz layer in the double layer theory. We might have over estimated
the charge accumulation in the Helmholtz layer which gave us higher capac-
itance. And we might have under estimated the total potential difference of
the system ∆V , which resulted in higher capacitance in the potential differ-
ence approach. In these two approaches, the potential difference and energy
difference were averaged over 8 different configurations. Table 5.1, 5.2 and 5.3
in Appendix (ii) summarises the results we obtained for each configuration.
The averaging was done due to the the different orientations of the water
molecules and different position of the sodium ions. By properly defining the
charge accumulation on the surface of the electrode and by quantifying the
contributions from chemical bonding might improve the value for capacitance
that we obtained here.

Table 4.1, shows a list of different capacitances obtained both experimen-
tally and using ab initio methods with different electrodes and electrolytes.
The experimental values were obtained at different scan rates of 1 mV · s−1

[67] and 10 mV · s−1 [68] , the electrolyte used is 0.5M of H2SO4 in both ex-
periments. These experimental values strongly depend on the scan rates; the
higher the scan rate, the lower is the capacitance one obtains. The experi-
mental capacitance also contains contributions from charge transfer reactions
at the electrode called the Faradaic processes. The capacitance that results
from this process is called pseudo-capacitance [11, 71]. This type of capaci-
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tance is generally greater than the pure electrochemical capacitance. We can
see from this table that materials like MoS2 are excellent candidates to be
used as an electrode for a supercapacitor. In this experiment thin film MoS2

was used which behaves differently from bulk materials. They will provide
very high capacitance, due to their morphology, which gives large surface
area for double layer formation [72, 73, 74, 67]. But there is also a con-
siderable contribution from pseudo-capacitance, something that is not fully
understood up to now. There are a lot of other materials that can be used
as the electrode for the double layer capacitance [68, 69, 60, 70]. Note that
for the capacitance in table 4.1 which are obtained using DFT, the authors
used the potential difference approach. Our results are comparable to these
previous studies.

4.4 Summary and Future work
The scope of this work was to estimate the Helmholtz double layer capac-
itance using ab initio methods. The formation of the double layer on the
surface of the electrode results in formation of a strong electric field. To
shield the sodium ions, we used water molecules as solvent, and our model
electrolyte consisted of sodium ions and water molecules. We did not study
the orientation of the dipole of water molecules solvating the sodium ions. To
prevent dissociation when charging the system, we used an effective screening
medium(ESM). The ESM is a medium of different dielectric constant located
at the edges of the simulation cell. As ESM media we used vacuum(ε = 1)
and metal(ε = ∞); vacuum is used as energy reference, and the metallic
medium ensures the neutrality of the system. We had to charge the system
in order to simulate the electrochemical double layer of the system. The
effect of the ESM was investigated in detail to get a better understanding
of this method on a charged system. The lesson we learned in this study is
that, when using the ESM, one always has to provide enough vacuum be-
tween the ESM media and the electrode. Generally the scheme has shown its
usefulness, in particular for our model system. Our model system consisted
of platinum electrode and an electrolyte, where the electrolyte consists of
water molecules and sodium ions.

The Helmholtz capacitance was estimated based on two approaches. The
first approach took into account the approach of the potential variation on
the interface; and the second approach took into account the total energy
of the system. The capacitance that we obtained is comparable to previous
results using ab initio molecular dynamics methods and experimental results.
Our methods can certainly be improved to obtain better capacitance, and to
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understand the physical chemical processes that influence the capacitance of
a given system.

Future research in this field is very open at the moment. We need better
theories that can account for all the chemical and electrochemical processes
taking place at the surface of the electrode. These processes include the
adsorption of ions and the dynamics of solvent molecules. We also need
theories for pseudo-capacitance or quantum capacitance, and ways to ob-
tain them using ab initio methods. None of these subjects has been fully
understood or studied rigorously up to now, so the prediction of capaci-
tance is not trivial. The lack of proper theory to predict the double layer
capacitance requires one to explicitly state what we are referring to when
measuring or calculating double layer capacitance. Since different strategies
and approaches to calculate or measure double layer capacitance obviously
give different results. We are not sure if the experimental values are cor-
rect, or if they just measure something else than what our theory predicts.
Recently, researchers have used different experimental techniques such as
scanning tunnelling microscopy [75] and scanning electrochemical microscopy
[76] to improve the measurement of double layer capacitance. And for the
theoretical methods, new computational methods have been developed to
study the metal-electrode/liquid-electrolyte interface to predict double layer
capacitance. However, these theoretical methods do not fully account for the
screening of ions in the electrolyte. Having methods that will fully account
for the screening of the ions, might assist in accurately defining the electro-
chemical double layer in the metal-electrode/liquid-electrolyte interfaces and
for other systems as well.
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Chapter 5

Appendix

(i)

The following derivation is obtained with the assistance of the electrochem-
istry textbooks [32, 33].

From equation (1.16) we have,(
dV

dx

)2

=
2kT

εε0

∑
i

ni

[
exp

(
−zieV
kT

)
− 1

]
. (5.1)

To simplify equation (5.1) further, we consider a symmetric electrolyte(1:1
or z:z-electrolyte). This mean that |z+| = |z−| = z and n+ = n− = n. Then
we can drop the summation and write equation (5.1) as,(

dV

dx

)2

=
2kTn

εε0

[
exp

(
−zeV
kT

)
− 1 + exp

(
zeV

kT

)
− 1

]
. (5.2)

Let y =
zeV

kT
, then equation(5.2) is written as

(
dV

dx

)2

=
2kTn

εε0

[
e−y − 1 + ey − 1

]
(5.3)

=
2kTn

εε0

[
ey − 2 + e−y

]
(5.4)

=
2kTn

εε0

[
ey − 2e−

y
2 e

y
2 + e−y

]
(5.5)
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(5.7)

Using the hyperbolic sine function, we find that

(
dV

dx

)2
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2kTn

εε0

[
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2 − e− y2

2

)]2

(5.8)

=
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(5.9)
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εε0

sinh2
(y

2

)
. (5.10)

Substituting back, y =
zeV

kT(
dV

dx

)2

=
8kTn

εε0

sinh2

(
zeV

2kT

)
. (5.11)

Taking the square root, we get

dV

dx
= ±

√
8kTn

εε0

sinh

(
zeV

2kT

)
. (5.12)

To decide which square root is taken, we consider a positively charged
electrode and negatively charged electrode. For a positively charged elec-
trode, V > 0 and dV

dx
< 0. And for a negatively charged electrode V < 0

and dV
dx

> 0. The square root that describes a system which is studied in
this work, turns out to be the positive square root: we negatively charge the
electrode, and then equation (5.12) is written as,

dV

dx
=

√
8kTn

εε0

sinh

(
zeV

2kT

)
. (5.13)

(ii)
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Table 5.1: Table of the Helmholtz potential difference (∆VH) for each configura-
tion with respective capacitance, and the position of Na+ from the surface of the
electrode. The average capacitance per area, CA = 7.26± 0.96 µF · cm−2 .

Configuration Na+ position (Å) ∆VH (Ry) C
A
( µF · cm−2)

1 1.43 1.16 6.52
2 -1.68 0.88 8.05
3 1.70 1.12 7.41
4 1.11 1.11 6.42
4 0.08 1.04 7.08
6 2.34 0.90 9.36
7 2.55 1.25 6.91
8 2.52 1.15 6.99

Table 5.2: Table of total potential difference (∆V ) for each configuration with
respective capacitance, and the position of Na+ from the surface of the electrode.
The average capacitance per area, CA = 9.60± 0.65 µF · cm−2 .

Configuration Na+ position (Å) ∆V (Ry) C
A
( µF · cm−2)

1 1.43 2.89 9.24
2 -1.68 3.59 7.44
3 1.70 3.24 8.26
4 1.11 3.20 8.35
4 0.08 3.69 7.24
6 2.34 3.18 8.38
7 2.55 3.53 7.57
8 2.52 3.39 7.87

Table 5.3: Table of total energy difference (∆E) for each configuration with
respective capacitance, and the position of Na+ from the surface of the electrode.
The average capacitance per area, CA = 6.38± 1.80 µF · cm−2 .

Configuration Na+ position (Å) |∆E| (Ry) C
A
( µF · cm−2)

1 1.43 0.17 5.66
2 -1.68 0.14 7.26
3 1.70 0.19 5.05
4 1.11 0.19 5.05
4 0.08 0.10 9.46
6 2.34 0.24 4.08
7 2.55 0.12 8.16
8 2.52 0.15 6.38
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