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ABSTRACT: 

The cost of healthcare has become generally expensive the world over, of which 

the greater part of the money is spent buying drugs. In order to reduce the cost of 

drugs, drug manufacturers came up with the idea of manufacturing generic drugs, 

which cost less as compared to brand name drugs. The challenge which arose was 

how safe, effective and efficient the generic drugs are compared to the brand 

name drugs, if people were to buy them. As a consequence of this challenge, 

bioequivalence studies evolved, being statistical procedures for comparing 

whether the generic and brand name drugs are similar in treating patients for 

various diseases. This study was undertaken to show the existence of 

bioequivalence in drugs. Bioavailability is considered in generic drugs to ensure 

that it is more or less the same as that of the original drugs by using statistical 

tests. The United States of America’s Food and Agricultural Department took a 

lead in the research on coming up with statistical methods for certifying generic 

drugs as bioequivalent to brand name drugs. Pharmacokinetic parameters are 

obtained from blood samples after dosing study subjects with generic and brand 

name drugs. The design for analysis in this research report will be a 2 2 

crossover design. Average, population and individual bioequivalence is checked 

from pharmacokinetic parameters to ascertain as to whether drugs are 

bioequivalent or not. Statistical procedures used include confidence intervals, 

interval hypothesis tests using parametric as well as nonparametric statistical 

methods. On presenting results to conclude that drugs are bioequivalent or not, in 

addition to hypothesis tests and confidence intervals, which indicates whether 

there is a difference or not, effect sizes will also be reported. If ever there is a 

difference between generic and brand name drugs, effect sizes then quantify the 

magnitude of the difference. 
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drugs, average bioequivalence, population bioequivalence, individual 
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Chapter 1 

Introduction 

1.1 General Introduction 

The cost of healthcare is high mainly due to expensive drugs. Generic drugs (test 

treatment formulation) are manufactured, with some stages which are carried out 

when manufacturing brand name drugs (reference treatment formulations) 

excluded, for example, expensive clinical trials. As a result, generic drugs cost 

less as compared to the brand name drugs hence reducing healthcare costs. During 

drug development bioequivalence studies are used. This chapter motivates the 

need for carrying out bioequivalence studies. In bioequivalence studies the test 

treatment and reference treatment formulations are compared to check if they are 

bioequivalent. 

Definitions of generic and brand name drugs, bioavailability and bioequivalence 

are discussed in this chapter. Relevant methods for bioequivalence studies, 

pharmacokinetics and pharmacodynamics are mentioned. The source of data and 

data collection method is stated. The outline of the rest of this research report 

completes this chapter. 

1.2 Background Information 

Bioequivalence studies are used in the industries where drugs are manufactured, 

pharmaceutical industries, during the development of new and generic drugs. The 

basis of this bioequivalence study was to compare a drug product to be tested 

(generic drug) with an appropriate reference treatment formulation (brand name or 

original drug or innovator drug). The cost of healthcare is expensive, with the 

main contributing factor to the high cost of healthcare being the cost of drugs 

according to many researchers who include, Chow and Liu (2000), Meredith 

(2003), Midha and Mackay (2009), Kamerow (2011), Mastan, Latha and Ajay 

(2011) and Qayyum (2012). Generic drugs are manufactured to try and reduce the 

cost of drugs in the market. They are cheaper than the brand name drugs but the 

quality should be almost the same as that of the reference drugs, in terms of the 
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safety and effectiveness in treating ailments. Maintaining the quality of generic 

drugs is mentioned in many research papers, though, consumers are concerned 

about that generic drugs may be bioequivalent but not necessarily therapeutic 

equivalent. To avoid this fear many guidelines or guidance and regulations on 

bioequivalence covering the licensing of generic products have been published as 

mentioned in Section 2.2 on literature review to ensure that the market dispenses 

quality drugs. 

Therapeutic equivalence refers to the effectiveness and safety of the generic drugs 

in producing similar results as compared to the reference drugs in terms of 

treating diseases. The Medicines Control Council of South Africa (MCC, 2003) 

guideline to bioequivalence defines therapeutic equivalence as two 

pharmaceutical products that are therapeutically equivalent after same quantities 

of a drug have been administered to patients, regarding both their efficacy and 

safety, as determined from an appropriate bioequivalence, pharmacodynamics, 

clinical or in vitro studies. Southern African Development Cooperation (SADC, 

2007) guidelines to bioequivalence defines therapeutic equivalence in a similar 

manner compared to the MCC (2003) since they both talk of that two 

pharmaceutical drugs, the generic and reference should be more or less equally 

safe and effective, after administration of a drug in the same molar dose, as 

determined from an appropriate bioequivalence method. 

1.2.1 Test and Reference Treatment Formulations 

A test treatment formulation is a drug which has more or less the same chemical 

composition and is as safe and effective, after it has been administered to a 

patient, as the reference drug. A reference treatment formulation (brand name 

drug) is the original drug formulation from which the test (generic) is developed. 

Meredith (2003) stated that a test treatment drug must contain similar amounts of 

the same active ingredient in the same formulation and route of administration as 

compared to the reference treatment formulation. Dighe (1999) also looks at 

generic drug formulations as drugs which when prescribed to patients are the 

same as brand name drugs in terms of possessing the identical active drug 
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substance in the same amount or concentration and the same dosage form after 

being administered by the same route of administration as the brand name drug 

products. Mastan et al. (2011) contrasted the terms brand name and generic drug, 

by referring to a brand name drug as a formulation available in the market, sold 

under a known trademark protected name while a generic is the same as a brand 

name in dosage, safety, strength and its intended use. According to Qayyum 

(2012) the reference treatment formulation is the compound that was developed 

first and was approved to be marketed for purposes of treating health conditions 

after it showed satisfactory efficacy and safety. The generic drug is a result of the 

modification which is done on the reference drug though preserving the quality 

such that both drug formulations are pharmaceutically equivalent and the same in 

terms of how they are taken, as well as quality and performance. SADC (2007) 

defines a reference treatment formulation as a pharmaceutical control drug 

product to be compared to a new product being developed. Both drug 

formulations should produce similar effects after being administered, in equal 

quantities and using the same route of administration, in terms of efficacy, safety 

and quality. Based on the above definitions of generic and brand name drugs by 

Meredith (2003), Dighe (1999) and Mastan et al. (2001), it is evident that in 

bioequivalence studies generic drugs are tested to check whether they are safe and 

effective for treating diseases as compared to the brand name drugs. In South 

Africa the Medicines Control Council is a body which is responsible for 

ascertaining drug formulations as bioequivalent or not. MCC (2003), on 

discussing generic and reference drugs, indicated that the reference product must 

be a drug available in South African pharmacies. The generic drug is then 

manufactured modelling the reference product on the South African market so as 

to ensure that both drugs are pharmaceutically equivalent, hence quality, 

effectiveness and safety is maintained. 

1.2.2 Bioavailability 

A bioequivalence study allows researchers to compare bioavailability between the 

generic drug and the reference drug to find out if there is a significant difference 

between the two formulations. Qayyum (2012) define bioavailability as the 
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concentration of a drug that is in the blood after dosing. Bioavailability according 

to the definitions provided by the MCC (2003) and SADC (2007) refers to the rate 

and extent to which the active pharmaceutical ingredient (API) is absorbed from a 

pharmaceutical product and becomes available at the appropriate part of the body. 

This definition of bioavailability correlates with one provided by the Food and 

Drug Administration (FDA, 2003) which states that bioavailability is the rate and 

extent to which the active ingredient of a drug formulation is absorbed from the 

drug product and becomes available at the site of action. In general, 

bioavailability is whereby a drug formulation administered is absorbed in the 

body and become available where it is intended to be used. 

1.2.3 Bioequivalence 

A generic drug is said to be bioequivalent if its difference in terms of 

bioavailability is minimal as compared to a reference drug when evaluated in 

similar conditions. SADC (2007) defines bioequivalence as an insignificant 

difference in terms of bioavailability between two pharmaceutically equivalent 

products or pharmaceutical alternatives under similar conditions in an 

appropriately designed study. FDA (2003) defines bioequivalence as a small 

difference in the rate and extent to which the active ingredient in pharmaceutical 

equivalents or pharmaceutical alternatives becomes available at the site of drug 

action when administered using same quantities of the drug under similar 

conditions in an appropriately designed study. Rani and Pargal (2004) and Lopes 

(2009) also define bioequivalence as an insignificant difference between the brand 

name and generic drug formulations in terms of their bioavailability. The basis of 

bioequivalence is that when two treatment formulations of the same drug, generic 

and reference, are equivalent in the rate and extent of their drug absorption, they 

should have the same therapeutic effect. In practice, we can never have two 

treatment formulations with exactly the same bioavailability, an insignificant 

difference would always exist. 
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1.2.4 Pharmacokinetic and Pharmacodynamics Studies 

Pharmacokinetic and pharmacodynamics studies are used in conjunction to 

establish bioequivalence. Pharmacokinetics is the study of the way in which drugs 

move through the body, that is, what the body does to the drug while 

pharmacodynamics account for the effect that drug(s) have on the body. 

Pharmacokinetics is a science describing drug: 

 Absorption from the administration site; 

 Distribution to, tissues and target sites of desired and /or undesired 

activity; 

 Metabolism; 

 Elimination or excretion (Peer, 2007). 

1.3 Significance of the Research 

Brand name drugs and generic drugs are both available in the market, but the 

brand name drugs are usually expensive compared to the generic. The cost of 

healthcare has been rising in the last two decades and the main aspects causing the 

increase according to Chow and Liu (2000), Borgherini (2003), Meredith (2003), 

Midha and Mckay (2009), Kamerow (2011), Mastan et al. (2011) and Kalpesh, 

Sokindra and Kishore (2013) are the expensive drugs. The cost of drugs, 

especially the original ones, makes medical expenses escalate to a point where the 

majority of people cannot afford it. Hence, high costs of drugs necessitate 

bioequivalence studies, as there is a need to find drugs which cost less as 

compared to the brand name ones. Generic drugs cost less than the original drugs 

though their effect on treating patients is similar to that of the original drugs. 

Generic drugs are developed at a lower cost because some stages or tests which 

were done when manufacturing brand name drugs are skipped now, for example, 

expensive chemical trials are not necessary. Kamerow (2011) states that generic 

drugs which can be procured at a lesser cost as compared to brand name drugs are 

available in the market for a wide range of major diseases including diabetes, 

hypertension, heart failure, lipid disorders and acid reflux. Bioequivalence studies 

are an area of research pursued by many researchers in recent years because there 
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is a need to reduce the financial burden of high medical costs due to expensive 

drugs. In addition to being bioequivalent, the pharmaceutical effectiveness of a 

generic drug should also be of almost the same degree with the reference drug so 

as to preserve the quality of a generic drug. The stages carried out in 

bioequivalence studies involve: designing the study, conducting the study and the 

evaluation of results. 

It has been observed by Kamerow (2011) that in the United States of America 

(USA), healthcare consumes a big part of the country budget, approximately 10% 

of the budget. He goes on to indicate that, it is observed that changing from using 

original drugs to generic drugs seems to be a feasible way of reducing the costs of 

the healthcare budget and quotes figures to substantiate the claim that costs are 

really reduced by switching to generic drugs. The USA government was able to 

save $33bn in 2007 by adopting a programme called Medicare, where generic 

drugs are prescribed to patients. Overall savings from the healthcare budget were 

estimated to be $139 in 2009 from the allocated amount by using the generic 

prescriptions in the United States (US). It is further indicated in the article by 

Kamerow (2011) that the amount saved in 2009 was not much significant 

contrasted with the $2.5 trillion annual healthcare bill, but, it should be noted that 

such reductions will eventually go a long way in saving some funds on healthcare. 

Mastan et al. (2011) had the same observation and opinion as Kamerow (2011) on 

that a good strategy for lowering healthcare costs is to introduce generic drugs 

which are much cheaper compared to the brand name drugs. This strategy has 

been effective in reducing total prescription cost by 11% without sacrificing 

quality. Generic drugs have captured more than 65% of the global market and 

account for 66% of prescriptions filled in the US but for less than 13% of the cost. 

Borgherini (2003) is also of the opinion that healthcare costs can be drastically 

reduced by introducing generic drugs in the market. Many countries including 

those in the industrialized world have a challenge of incurring high healthcare 

costs, hence they realise that there is a need to substitute the brand name drugs by 

generic drugs. He indicates that drug patents in the European Union expire after 

six to ten years after registration, after which generic drugs are then introduced in 
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the market at a lesser cost because registration costs of original drugs are not 

carried over to the generic ones. 

Advantages of using generic drugs are: 

 There is more knowledge about the chemical composition as well as the 

therapeutic effects of a generic drug as compared to a brand name drug; 

 A uniform name can be chosen for a test treatment formulation when it 

gets distributed into the market; 

 Pharmacists have the freedom to select the most suitable formulation of 

generic drug in terms of quality and price (Meredith, 2003). 

However, Meredith (2003) just like many researchers on bioequivalence mentions 

that the safety and effectiveness of generic drugs need to be monitored. The 

disadvantage highlighted is that the rate and extent of absorption may differ 

between test and reference treatment drugs and that the physical properties of the 

generic drug such as, colour, shape, size and flavour might not be the same as that 

of the brand name drug. Borgherini (2003) and Mastan et al. (2011) also note that 

the reduction in costs of drugs due to the use of generic ones is undisputed, though 

there are disadvantages of using generic drugs, they discuss three disadvantages. 

The first disadvantage is that the difference in costs of purchasing generic drugs is 

not much between those using medical aid compared to those who are not. There 

is therefore the non-cost benefit felt by those using medical aid. Secondly, the 

clinical equivalence of generic drugs as compared to brand name drugs is not fully 

investigated. FDA (2001) approves the sale of generic drugs which are 

bioequivalent to be within 90% confidence interval, this reduces costs but as 

argued by many researchers, clinical equivalence is not fully assessed. Thirdly, 

confusion arises, especially with elderly patients when packaging changes, for 

example, if a pill which used to be yellow and round is now dispensed as a green 

pill in the form of an oblong shape after a generic drug is introduced or changed. 

According to the observations by Kamerow (2011) and Midha and McKay (2009) 

it is quite evident that the use of generic drugs have pros and cons, but the fact 

that they are lower in costs and their drug safety and effectiveness is similar to the 

original drugs necessitates further research to be done in addressing the 
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disadvantages. In addition to being bioequivalent, the pharmaceutical 

effectiveness of a generic drug should also be of almost the same degree with the 

reference drug so as to preserve the quality of a generic drug. 

1.4 Aims and Objectives 

1.4.1 Aims 

The aims of the research were to: 

 Establish whether the test treatment formulations are safe and efficient as 

compared to the reference drugs when administered to patients; 

 Ensure that the test treatment formulation are a copy of the reference 

treatment drugs with the same dosage, strength, route of administration as 

well as its intended use; 

 Justify why bioequivalence studies are necessary; 

 Provide areas for further research. 

1.4.2 Objectives 

The objectives of this study were to assess bioequivalence between a generic drug 

and a brand name drug (an antibiotic) using statistical tests. Pharmacokinetics, 

pharmacodynamics, clinical studies and in-vitro as well as in-vivo studies are 

suggested by Mastan et al. (2011) for the purpose of assessing bioequivalence. 

1.5 Research Instruments 

Blood samples obtained through a 2 2 crossover design from fourteen sheep were 

used to get the data for the research project. The data set was obtained courtesy of 

the University of Pretoria at Onderstepoort within the Directorate of Veterinary 

Pharmacology. It consists of fourteen sheep, each being dosed by a test and 

reference treatment formulation in phase one (sequence one) then reference and 

test treatments in phase two (sequence two). The drugs were administered intra 

muscular, whereby the original drug was an antibiotic. The antibiotic was used to 

test the effect of heart water (parasite infection) and 10 mg/kg was administered 

per time interval. 
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The drugs were tested on sheep to evaluate bioequivalence hoping that if they are 

bioequivalent chances are likely that if administered on human beings the same 

effect would be noted. When they are tested on human beings results would have 

already been shown that the drugs are bioequivalent, such that the main focus 

would be to check if the same effect of the drugs is achieved. 

The software to be used will be a combination of Microsoft Excel (2010), SAS 

Enterprise Guide 7.1 and SAS 9.4. 

1.6 Outline of the Rest of the Project 

The next section of the research, Chapter 2, looks at the literature review. In this 

chapter, the evolution of bioequivalence studies is traced and then the 

fundamental concepts are defined and discussed, notably: 

Average bioequivalence (ABE) assessed by the confidence interval approach and 

Schuirmann’s interval hypothesis testing using two one-sided tests procedures on 

the pharmacokinetic parameters, area under a curve (AUC) and      for the test 

and the reference treatment drugs. Wilcoxon Mann-Whitney two one-sided test is 

used to analyse the bioequivalence for the parameter     . Population 

bioequivalence (PBE) and individual bioequivalence (IBE) are also discussed. 

The procedure recommended by the Food and Drug Administration (FDA, 2001) 

is used to assess PBE. Chapter 3 describes the methodology, which includes the 

study design to be used in this research report, 2 2 crossover design, 

pharmacokinetic parameters needed for the bioequivalence study. Parametric, 

nonparametric distributions are discussed. Outliers, power of a test, bootstrapping 

and effect sizes are also covered. Chapter 4 deals with the results and analysis of 

results achieved after using statistical models/techniques to establish 

bioequivalence between test and reference drugs. Chapter 5 discusses the 

conclusion and recommendations based on the research. 
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Chapter 2 

Literature Review 

2.1 Introduction 

In this chapter, a review of bioequivalence studies from where they started until 

current time is undertaken. Pharmacokinetic parameters, notably,       , 

      ,     and      are the metrics which are used to compare bioavailability 

between the test and reference treatment formulations.       ,        and 

     should be logarithmically transformed before statistical data analysis is 

carried out, while,      is analysed on the original scale of measurement. The 

justification for transforming the data is discussed in this chapter as well as the 

criteria used to certify drugs as bioequivalent. This chapter also looks at 

bioequivalence models and methods of assessing ABE, PBE and IBE. 

2.2 A Short Account of the Beginnings of Bioequivalence Studies 

The Americans were pioneers of this area of drug development leading to 

marketing the final product. The Food and Drug Administration, the research 

centre responsible for checking and ascertaining that the test treatment and 

reference treatment formulations are bioequivalent took a considerably amount of 

time, dating back from the early 1970s to come up with statistical models of ABE, 

PBE and IBE which are generally accepted worldwide. Other countries also set up 

their drug development centres emulating the Americans (Jones and Kenward, 

2003). Midha and Mckay (2009) also indicated that bioequivalence studies have 

been ongoing for over twenty years and are accepted by pharmaceutical industries 

as a method of approving generic drug products which are sold at a reduced cost 

compared to the brand name drugs. 

Chow and Liu (2000) trace the evolution of bioequivalence studies from its early 

days and state that the research and developments on bioequivalence studies 

commenced from the early 1970s and are in four stages. The first stage was from 

the early 1970s to 1984, when the Drug Price Competition and Patent Restoration 

Act (1984), was passed. The next stage was from 1984 to 1992, when a 
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bioequivalence guideline was published: FDA (1992) Guidance on Statistical 

Procedures for Bioequivalence Using a Standard Two-Treatment Crossover 

Design. The third phase, where population and individual bioequivalence and 

their statistical procedures were discussed kicked off from 1992. The fourth phase 

started from the beginning of the twenty first century, basically reviewing and 

updating the research conducted in the last thirty years of the twentieth century. 

Another guideline on BE studies, FDA (2001) Guidance for industry: Statistical 

Approaches to Bioequivalence, was issued out during this period. 

During the early 1980s focus shifted from bioavailability, to bioequivalence 

though the two studies still complement each other and are assessed through 

statistical methods. The Drug Price Competition and Patent Term Restoration Act 

of 1984 whereby generic drug products could only be approved through 

bioavailability and bioequivalence studies was a noble one because there is need 

to find the balance between producing drugs which cost less compared to the 

original ones while the quality of the drugs need not be compromised to ensure 

safety and effectiveness when administered to patients. In 1986 concerns were 

raised over the safety and efficacy of generic drugs. The challenge was that 

generic drugs could match the required standard for them to be approved as 

bioequivalent but therapeutic equivalence was not fully investigated. There was a 

need, through statistical tests or evidence to assure people that the bioequivalent 

drug products were also therapeutically equivalent. Midha and Mckay (2009) 

pointed out that issues or challenges on whether bioequivalent drug products are 

also therapeutic equivalent were addressed by the FDA (2003) during a meeting 

on bioequivalence of solid oral dosage forms. 

Since certain acceptable standards have to be attained in order to approve a 

generic drug, it happened that when bioequivalence studies started to gain 

momentum, regulatory authorities were also put in place to approve or disapprove 

the generic products. In US, the FDA published guidelines on how industry can 

properly use bioavailability and bioequivalence studies well, which were entitled 

Guidance for Industry: Bioavailability and Bioequivalence Studies for Orally 

Administered Drugs General Considerations. Such guidelines are continuously 
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being improved or updated to meet the current changes in pharmaceutical needs 

and technology. Other FDA guidelines were in 1992, 1999, 2001 and 2003 and 

then elsewhere following the research done in US, regulatory authorities were 

established which published guidelines to be followed if a generic drug is to be 

licensed such that it becomes available on the market at a lower cost as compared 

to the brand name drug. 

In South Africa generic drugs are controlled by the medicines regulatory 

authority, known as the Medicines Control Council (MCC, 2003), which was 

established in the early 1970s. The MCC (2003) is a body that was constituted 

under the Medicines and Related Substances Control Act, 101 of 1965, to monitor 

the regulation of medicines in South Africa. The members of this statutory body 

are chosen by the Minister of Health and its major function is to safeguard and 

protect the public through ensuring that all medicines that are marketed and used 

in South Africa are safe, therapeutically effective and are consistently of the 

required standard of quality. 

Regulatory authorities established in other countries include Japanese guidelines 

(2001), MCC (2003), Central Drugs Standard Control Organization (CDSCO, 

2005) and SADC (2007). These regulatory authorities concur on that generic 

products have to be pharmaceutically equivalent and should be of the same 

bioavailability as compared to the original drugs after administration. There is 

also a criterion, pharmacokinetic parameters, which they use to certify a test 

treatment formulation as bioequivalent to a reference treatment formulation. 

2.3 Pharmacokinetic Parameters 

Wang and Bakhai (2006) recommended that statistical analysis of bioequivalence 

should be based on non-compartmental pharmacokinetic parameters, namely: 

AUC: refers to the area under a curve, it depicts a blood concentration time curve 

which illustrates information on the extent of the absorption of a drug, be it 

generic or brand name. Appendix 1 has figures showing AUC for the sheep used 

in this research report. 
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       : is the area under the plasma/serum/blood concentration time curve from 

time zero to time t, where t is the last time point where the amount of drug 

concentration can be measured. 

      : is the area under the blood concentration time profile from time zero to 

infinity. 

    : is the maximum value of drug concentration. 

    : is the time point corresponding to     . 

  is the elimination constant which describes the loss of drug activity from the 

body per time unit (for example, per hour). Chow and Liu (2000) states that   is 

the constant rate at which the drug is excreted and can be estimated as the slope of 

the terminal part of the logarithmically transformed concentration time curve 

multiplied by –2.303. The justification of multiplying 2.303 by a minus is due to 

the fact that at the stage where the drug is excreted from the body (elimination 

phase), the slope of the line is negative. 

  

 

 : refers to the time taken for the drug concentration to decrease by half when a 

drug is eliminated from the body. 

Regulatory guidelines on bioequivalence studies recommends that all 

concentration dependent pharmacokinetic parameters, for example, AUC from 

time zero to time t, AUC from time zero to infinity and      should be 

logarithmically transformed using either common logarithms to base 10 or natural 

logarithms (base e). The choice of adopting the use of common or natural 

logarithms should be consistent and should be stated in the bioequivalence study 

report (FDA, 1992). The view of transforming the bioequivalence 

pharmacokinetic parameters AUC and      is also expressed by Concordet 

(2004) stating that transforming the parameters prior to the analysis enables the 

researcher to proceed using assumptions of normality. He also indicates that the 

logarithmic transformation of the parameters      and AUC helps to make the 

variance constant so as to obtain a symmetric distribution but the parameter      

rarely follows a symmetric distribution and the variance remains unstable. 
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There are several reasons given motivating why the parameters AUC and      

should be logarithmic transformed: 

2.3.1 Clinical Rationale 

In the USA a committee responsible for giving direction as to what needs to be 

done in bioequivalence studies, known as the Generic Drugs Advisory Committee 

(GDAC) agreed in a meeting which was held in September 1991 that the ratio of 

the means of two treatment formulations, test and reference, need to be considered 

for the evaluation of bioequivalence instead of the difference of the means. The 

ratio of means can only be compared statistically after the data has been 

logarithmic transformed (FDA, 1992). 

2.3.2 Pharmacokinetic Rationale 

The 2 2 crossover design used in bioequivalence studies consists of subjects, 

period, sequence and treatment effects. As a result, it is assumed to be a model 

where all these components are added to each other. However, since GDAC 

(1991) advised that the ratio of two treatment formulations be used to assess 

bioequivalence, the 2   crossover design would then become a model where the 

various components, (subjects, period, treatment effects and sequence) are 

multiplied because of the logarithmic transformation to get the ratio of means 

(Rani and Pargal, 2004). 

2.3.3 Statistical Rationale 

Statistical analysis is done effectively and efficiently if the bioequivalence dataset 

approximately follows a log-normal distribution. In practice, the pharmacokinetic 

parameters AUC and      are usually skewed and there is a correlation between 

the means and the variances, whereby as the means of the treatment formulations 

increase, the variances also increase. Logarithmic transformation is carried out to 

reduce skewness in the parameters so that they become almost symmetrical and 

ensures that the increase of the means does not affect the variance (Concordet, 

2004). 
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     is obtained from a set of discrete values, though not exact, they are 

measured with errors. Parametric statistical methods used in bioequivalence 

studies cannot be applied for the parameter     , as they are considered 

inappropriate (Hauck and Anderson, 1984). Nonparametric tests such as the 

Wilcoxon Signed-Ranks test, Wilcoxon Rank Sum test or Wilcoxon Mann-

Whitney two one-sided tests seem appropriate for the analysis of      (Westlake, 

1976). 

2.4 Bioequivalence Criteria 

The regulatory authorities indicate that generic products and brand name products 

are bioequivalent if the ratio of the means of      and AUC of the two treatment 

formulations should lie in the range 0.80 to 1.25. If the ratio is less than 0.80 we 

say there is sub-availability while greater than 1.25 implies super-availability. 

Schall and Endrenyi (2010) point out that the bioequivalence range need to be 

tightened from 0.90 to 1.111 especially for cases of formulations with narrow 

therapeutic index (window).      (time to reach maximum blood concentration) 

should also be similar between the generic product and the original product. 

Regulatory authorities FDA (2001) strive to ensure that the scientific or statistical 

approaches used for assessing bioequivalence are of an acceptable standard, as 

mentioned earlier, so that the quality of generic drugs, though at reduced costs, is 

high. 

All stakeholders, at all possible levels, both nationally and internationally, have 

been convened in meetings, conferences and workshops to discuss as well as to 

reach agreements on approaches to standardise bioequivalence of pharmaceutical 

products in order to satisfy pharmaceutical equivalence. According to SADC 

(2007) the key issue is to ensure safety and efficacy of generic or new drugs in 

line with the FDA (2001) guidelines and regulatory bodies in other countries. 

Regulatory bodies concur that generic drugs could be bioequivalent but they 

should be also pharmaceutically equivalent at the site of action for a desired 

period of time. 
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2.5 Pharmacokinetic and Pharmacodynamics Models 

Pharmacokinetics and pharmacodynamics techniques are used in the development 

of drugs to ascertain bioequivalence of new or generic drugs. Greenblatt, Moltke, 

Harmatz and Shade (1998) discuss pharmacokinetics and pharmacodynamics 

procedures noting that they have been applied during the process of the 

development of new drug entities as well as for the improved understanding of the 

clinical actions of drugs that are already marketed. Pharmacokinetics is based on 

mathematical equations that allow the prediction of a drug’s behaviour and more 

emphasis is put on the relationships between drug concentrations and the time 

elapsed after administering the treatment formulation. According to the FDA 

(1999), population pharmacokinetics is the study which looks at the amount by 

which treatment formulation effects measured in a study subject differ after 

dosing with the test and reference treatment formulations., whereas 

pharmacodynamics measures the effect of drug concentration in individuals. In 

general, pharmacokinetics is the study of the way in which drugs move through 

the body during absorption, distribution metabolism and excretion and 

pharmacodynamics refers to the relationship between drug concentration at the 

site of action and the resulting effect including the time course and intensity of 

therapeutic and adverse effects. In short, pharmacokinetics refers to the effect the 

body has on the drugs whereas pharmacodynamics accounts for the effect that 

drugs have on the body. Models for pharmacokinetic and pharmacodynamics are 

used in the development of drugs and they complement each other in the sense 

that, pharmacokinetic models project the time period by which the treatment drug 

would be still available in the body after a treatment drug has been administered 

but the pharmacodynamics models accounts for the intensity of drug effects on 

subjects used for research, whether human or animals (Greenblatt et al, 1998). 

The combination of pharmacokinetics and pharmacodynamics give rise to kinetic-

dynamic modelling which investigates the drug concentration-effect relationship. 

This relationship is important in bioequivalence studies because clinical 

therapeutic of a drug is determined by a concentration-effect relationship.  
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 KINETIC-DYNAMIC MODELING 

Figure 2.1 Concentration-Effect Model 

The diagram above is adapted from Greenblatt et al. (1998) 

Greenblatt et al. (1998) point out that some models have been developed which 

incorporates the concentration-effect relationship. The models are: 

Sigmoid     : E 
         

  

           
        (2.5.1) 

Exponential: E m CA
       (2.5.2) 

Linear: E m C       (2.5.3) 

where; 

E: Effect, 

C: Concentration, 

    : is the maximum pharmacodynamics effect, 

EC50: is the 50% effective concentration, 

C
A
: the exponent A represents the steepness of the concentration-response 

relationship in ascending order, though the biological importance of A is not 

established. 

(t, C) (t, E) 

(C, E) 
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The sigmoid      is an important model since conclusions can be drawn from it 

about the potency and efficacy of drugs producing the same clinical effect, 

individual differences in drug sensitivity, the mechanism of action of 

pharmacologic potentiators or antagonists, and the possible clinical role of new 

medications, these realisations were made by Greenblatt et al. (1998). The model 

has limitations, it does not apply to all concentration-effect data and an example 

of where the sigmoid      cannot be used is when the experimental data is not 

consistent with the model. Many researchers use both techniques, 

pharmacokinetic and pharmacodynamics in the development of generic drugs, of 

which nowadays the emphasis is more on the accuracy and sensitivity of the 

results when measuring drug concentration and drug effects respectively. 

2.6 Compartmental and Non-Compartmental Models 

Models have been developed that explain the interaction between an organism and 

drugs. There are two classes of models, namely: the non-compartmental and the 

compartmental models. According to Schutz (2009), compartmental models use 

kinetic models to describe and predict the amount of treatment drug in the body. 

Compartmental models are subdivided into non-compartmental, two compartment 

models and multi-compartment models. The non-compartment model (single 

compartment) considers a study subject (organism) as one homogeneous 

compartment whereby if a dose is administered, the blood concentration of a drug 

is distributed uniformly to other body fluids or tissues resulting in the excretion of 

the drug being directly proportional to the drug concentration in a subject under 

study. Peer (2007) describes the human body as a single compartment through 

which the drugs circulates through various organs of the body. A drug taken orally 

in tablet form is absorbed into this compartment as the tablet dissolves in the 

stomach and drug elimination from this compartment is due to the actions of the 

liver as well as kidneys. While the tablet is being dissolved in the stomach, the 

rate of absorption of the drug into the circulating blood is greater than the rate it is 

eliminated and the concentration of drug in the blood increases. After the tablet 

has been dissolved the rate of elimination is greater and the concentration 

declines. 
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A non-compartmental (single compartment) model measures the concentration of 

a drug administered by estimating the AUC. A numerical integration method, the 

trapezoidal rule is used to estimate the area under a curve of a concentration. The 

equation encompassing method of residuals is used to estimate the constant rate of 

absorption of a treatment formulation (Chow and Liu, 2000). 

   
       

 (     )
(           )      (2.6.1) 

where; 

   and    are the absorption and the constant rate of elimination, respectively, 

   is the amount of drug administered, 

V is the volume of distribution, 

F is the fraction of the drug that penetrates the body up to where circulation takes 

place, 

t is the time period for drug concentration in the body. 

In equation 2.6.1      and      can be similarly obtained as follows: 

     
     

     
 log(

  

  
) and       (2.6.2) 

      
       

 (     )
(               ).     (2.6.3) 

In practice,      and      are not found by applying the formulae in equation 

2.6.2 and 2.6.3 but are read from the blood concentration profiles. 

  
 
 is the amount of time taken for the drug concentration to decrease by a half is 

considered when a drug is eliminated from the body, computed as: 

logD log   
    

     
         (2.6.4) 

where D is the quantity of drug in the body. Thus, at D=
  

 
, that is, t=  

 

 we have 

log(
 

 
) 

     
 

     
         (2.6.5) 

Hence 

  

 

 
     

  
         (2.6.6) 

where    is given by 

   ( 2.303)(
     

  
)        (2.6.7) 
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The concentration-time graph of a one-compartment model is a linear graph or 

approximately linear. However, in reality, this model seems inadequate in 

pharmacokinetics since an organism’s supply of blood is not the same for all 

parts, there are areas or parts of an organism which receive more blood supply as 

compared to others. A two compartment model comprises the central 

compartment, there is more blood supply, for example, liver and kidneys and in 

the peripheral compartment organs of the body have a lower blood flow, for 

example, the brain tissues. The elimination of a drug tends to be rapid for a two 

compartment model in the central compartment though in rare occasions it occurs 

in the peripheral compartment or even in both. The two compartment model, 

according to many researchers performs better than the non-compartmental model 

though in real life each body tissue has its own distribution characteristics, hence 

a multi-compartment model is suggested, which is represented by fitting a curve. 

Pharmacokinetics parameters, such as the area under the curve are then calculated. 

The compartmental models are able to predict the concentration of a treatment 

formulation at any time as compared to non-compartmental models but are 

difficult to develop and validate. Non-compartmental models do not have the 

limitation of having different compartments within an organism. Both are used in 

finding pharmacokinetics parameters (Peer, 2007). 

2.7 Methods of Assessing Bioequivalence 

2.7.1 Average Bioequivalence 

Patterson (2010) points out that the FDA (1999) initially used average 

bioequivalence to assess the bioequivalence between brand name and generic 

drugs, though later on, there were debates as to whether certifying drugs using the 

average bioequivalence criterion was enough or not. It has been noted that average 

bioequivalence has limitations since it only compares the population means 

between test and reference treatment formulations. The intra subject variance of 

the formulations or the subject by formulation interaction is not taken into 

account. Hence, there is a major concern to know whether approved test treatment 

products can be used safely and interchangeably, if certified bioequivalent using 
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average bioequivalence. As a result of the limitations of average bioequivalence, 

the FDA (2001) recommended a statistical test procedure for PBE and IBE. 

Currently, researchers on bioequivalence of generic and original drugs combine 

population bioequivalence and individual bioequivalence for certifying 

formulations as bioequivalent or not.  

The Average Bioequivalence criterion (ABE) is given as: 

(µT µR)
2
≤  

         (2.7.1.1) 

also given as: 

                   (2.7.1.2) 

where; 

   The average bioequivalence limit which is   =ln(1.25), 

   Mean of the test treatment formulation, 

   Mean of the reference treatment formulation, 

(     )  Mean difference of the two treatment formulations. 

2.7.2 Confidence Interval Approach 

Bioequivalence study data is best evaluated using 90% confidence intervals of the 

individual parameters of interest, usually,      and AUC, after transforming 

original data using logarithmic transformation based on common logarithms (base 

10) or natural logarithms (base e). According to Chow and Liu (2000) the 

confidence interval approach is one of the many methods which can be used for 

certifying drugs as bioequivalent or not. 

To calculate confidence intervals for untransformed data, we let; 

 ̅   Mean of the test treatment formulation in period 1, 

 ̅   Mean of the test treatment formulation in period 2, 

similarly; 

 ̅   and  ̅   Mean of the reference treatment formulation in periods 1 and 2 

respectively, 

 ̅   
 

 
 ( ̅     ̅  ): is the estimate for the test treatment drug averaged over 

both periods, 



22 

 ̅   
 

 
 ( ̅     ̅  ): is the estimate for the reference treatment drug averaged 

over both periods. 

Bioequivalence studies usually start with the same number of study subjects,    

and   , in sequence 1 and sequence 2, but the number that completes the study 

may not be equal. According to Chow and Liu (2000) it should be noted that  ̅  

and  ̅  are the equivalent to  ̅  and  ̅ , least square means for the test and 

reference formulations respectively. 

According to Rani and Pargal (2004) an ANOVA gives the mean square error 

(MSE), which is needed to obtain an unbiased estimate of   
  (the pooled sample 

variance of period differences from both sequences). MSE, in ANOVA Table 2.1 

is used when calculating the confidence intervals. 

Table 2.1 ANOVA Table 

Sources of 

variation 

Degree of 

freedom 

(DF) 

Sum of 

squares (SS) 

Mean sum 

of squares 

(MS) 

F Statistic 

Treatment t
a
-1 SST MST MST/MSE 

Subject n
b
-1 SSS MSS MSS/MSE 

Period t-1 SSP MSP MSP/MSE 

Error (t-1)(n-2) SSE MSE  

Total tn-1    

The 90% confidence interval approach discussed on untransformed data also 

applies when data is transformed. For example, using the pharmacokinetic 

parameter, AUC, if transformed it becomes lnAUC. 

The mean after the logarithmic transformation becomes: 

 n̅ AUC ∑  
         

 

 
         (2.7.2.1) 

where the subscript t represents the test treatment formulation of the AUC for the 

    study subject and n is the sample size. 
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The geometric mean is obtained by transforming the mean back to original data. 

Geometric mean  (       )      (2.7.2.2) 

The confidence interval approach, first suggested by Westlake (1976), states that 

bioequivalence may be concluded if a (1 2α) 100% confidence interval for the 

difference        or ratio 
  

  
 is within an acceptance range (  is usually set at 

0.05). If the ±20 rule (for original data) is used, this means that the confidence 

interval for the difference of the means of the two treatment formulations must be 

between  0.2 and 0.2. Likewise, the confidence interval for the ratio of means 

must be totally included in the interval 0.8 to 1.2 or 80% to 120%. The lower 

bound (LB) for the confidence interval is 0.8 and 1.2 is the upper bound (UB) for 

the confidence interval. Average bioequivalence is achieved if the confidence 

interval is totally included in the equivalence interval 0.80 to 1.25 or 80% to 

125% for the logarithmic transformed data, where 0.8 is the LB and 1.25 is the 

UB. There are several methods which can be used for calculating confidence 

intervals. Researchers on bioequivalence studies suggest that among the several 

available methods, the most appropriate one for a particular research project 

should be selected. 

2.7.2.1 Classic Confidence Interval of the Difference of the Means 

Let  ̅  and  ̅  be the respective least squares means for the test and reference 

formulations. The classic or shortest (1 2 )  100% confidence interval can be 

obtained based on the following t statistic: 

T 
(  ̅    ̅  ) (       )

 ̂ √
 

  
  

 

  

 

where    and    are the number of subjects in sequences 1 and 2, respectively 

and  ̂  the mean square error is obtained from  ̂ 
 , the pooled sample variance of 

period differences from sequences.    and    are the lower and upper confidence 

interval bounds for the interval of the difference of the means. 
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   ( ̅   ̅ )   (              ) ̂ √
 

  
  

 

  
 

and         (2.7.2.1.1) 

   ( ̅   ̅ )  (              
) ̂ √

 

  
  

 

  
. 

2.7.2.2 Classic Confidence Interval of the Ratio of the Means 

A confidence interval for the ratio: 
  

  
 may be computed from the confidence 

interval on the difference of the means of two treatments by dividing by  ̅  to 

obtain the formula: 

   (      ̅    )       

and         (2.7.2.2.1) 

   (      ̅    )      . 

   and    are the lower and upper confidence interval bounds for the ratio of the 

means for the test and reference treatment formulation. 

2.7.2.3 Westlake’s Symmetric Confidence Interval of the Difference of the 

Means 

Compute values of    and    so that, according to Chow and Liu (2000) the 

classic confidence interval derived from an unpaired two sample t statistic in 

equation 2.7.2.1.1 is:         where k is the upper     percentile of a central 

t distribution with (      2) degrees of freedom. In general, a (1 2 ) 100% 

confidence interval for the difference       can be expressed as: 

       , where    and    are chosen so that the probability from    to    

based on a central t distribution with (      2) degrees of freedom is (1 2 ), 

that is, 

      ∫     
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      ̂ √
 

  
  

 

  
 ( ̅   ̅ ) 

and         (2.7.2.3.1) 

       ̂ √
 

  
  

 

  
 ( ̅   ̅ ). 

Finally, conclude bioequivalence if 

|                (2.7.2.3.2) 

2.7.2.4 Westlake’s Symmetric Confidence Interval of the Ratio of the 

Means 

A confidence interval for the ratio may be computed from the confidence interval 

on the difference of means using the formula  

   (       ̅    )       

and         (2.7.2.4.1) 

   (      ̅    )      . 

2.7.2.5 Confidence Interval of the Ratio of Means Based on Fieller’s 

Theorem 

The (1 2α) 100% confidence limits for    
  

  
 are the roots of the quadratic 

equation  

( ̅    ̅ )
   (               

)   (                )    (2.7.2.5.1) 

where; 
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/       (2.7.2.5.2) 
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   ∑ (      ̅   )
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26 

     
 

.
 

  
  

 

  
  /

[∑ (      ̅   )(      ̅   )   ∑ (      ̅   )(      ̅   )
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         (2.7.2.5.5) 

Additionally, in order for the roots of the quadratic equation to be real, rational 

and positive, the above values must satisfy the conditions 

 ̅ 

√    
                

and         (2.7.2.5.6) 

 ̅ 

√    
                

. 

In this research report the classic or shortest confidence interval (C.I.) approach 

will be used to assess ABE. The choice of using this C.I. approach instead of 

others, discussed above, is based on the fact that this approach is globally applied 

and accepted on evaluating ABE. Classic C.I. has a weakness of that the required 

level of equivalence to conclude ABE, 0.8 to 1.25, may not be achieved if the 

within subject variability is large. To overcome this weakness, bootstrapping, as 

described in Sections 3.12 and 4.7 can be used. Limitations of other C.I. 

approaches seem to be more than the weakness of the classic C.I. method. 

Westlake’ symmetric confidence interval approach is a modification of the classic 

C.I. Many researchers criticize Westlake’s C.I. because they are symmetric about 

   instead of  ̅   ̅  and the tail probabilities for the hypotheses are not 

symmetric, they divert from being two sided, becoming a one sided hypothesis as 

      or the standard error increases. Westlake can be used for decision making 

not necessarily for estimation and hypothesis testing. Confidence interval based 

on Fieller’s theorem is very attractive since variability of the treatment 

formulations is accounted for. However, Fieller’s method’s limitations are that it 

is derived using very mild assumptions of normality and is an approximation, not 

an exact procedure since the method is developed by substituting an estimate of 

the intra subject correlation (Chow and Liu, 2000). 
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2.7.3 Interval Hypothesis Testing Approach 

In order to investigate average bioequivalence the student t-test or Fisher test are 

not recommended since the hypothesis tested is not the same. For the classical 

student t-test as well as the Fisher test (ANOVA), the hypothesis tested is: 

H0:         bioequivalence 

H1:         bioinequivalence  (2.7.3.1) 

Where,    represent the population mean for the test treatment and    stands for 

the reference treatment formulation. While, the hypothesis for a bioequivalence 

study is: 

Additive bioequivalence test of hypotheses 

H0:          or           bioinequivalence 

H1:               bioequivalence (2.7.3.2) 

 (    ;    ) represents absolute equivalence interval. 

Multiplicative bioequivalence test of hypotheses 

    
  

  
            

  

  
         bioinequivalence 

            
  

  
         bioequivalence (2.7.3.3) 

 (    ;    ) is the relative equivalence interval where, 0<    1<    for example, 

0.8 to 1.25. 

Multiplicative hypotheses for the bioequivalence test become additive after a log 

transformation 

H0:ln   ln  <ln    or ln   ln  ˃ln    

H1:ln    ln   ln    ln         (2.7.3.4) 
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2.7.3.1 Schuirmann’s Two One-Sided Tests Procedure  

Schuirmann (1987) introduced the idea of using an interval hypothesis to evaluate 

ABE, applying the following null and alternative hypotheses: 

                                    

         (2.7.3.1.1) 

               

where    and    are limits selected to satisfy bioequivalence. The hypotheses 

2.7.3.1.1 can be separated to form two one-sided tests below: 

               versus               

               versus                 (2.7.3.1.2) 

The first hypothesis test whether the treatment effect is too low and the second 

tests whether the treatment effect is too high. If both null hypotheses are rejected, 

it can be concluded that the test treatment is average bioequivalent compared to 

the reference treatment formulation by using the Schuirmann’s two one-sided tests 

procedures. Jones and Kenward (2003) states that the method gets its name, 

TOST, because the process of deciding if the 90% confidence interval lies within 

the acceptance limits is the same as rejecting both of the following one-sided 

hypotheses in equation 2.7.3.1.3 at 5% level of significance. 

   :       ln1.25 versus    :      ln1.25  (2.7.3.1.3) 

If both tests are rejected, the conclusion of bioequivalence is made at α 

significance level. That is, conclude that    and    are average bioequivalent at 

the α significance level if  
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( ̅    ̅  )    

 ̂ √
 
  

  
 
  

                 

and        (2.7.3.1.4) 

    
( ̅    ̅  )    

 ̂ √
 
  

  
 
  

                  

If the hypothesis being tested leads to the same conclusion, parametric tests will 

be preferred, but if the conclusion is not the same, nonparametric tests are then 

used. 

2.7.3.2 Anderson and Hauck’s Test  

Unlike Schuirmann’s tests procedures, Anderson and Hauck (1984) suggested a 

one sided hypothesis interval approach for concluding ABE between two 

treatment formulations. The significance level of the Anderson and Hauck test is 

given by: 

    (       ̂)     (        ̂)    (2.7.3.2.1) 

where; 

  ( )  ∫             
 

  
      (2.7.3.2.2) 

 ̂  
     

 ̂ √
 

  
  

 

  

        (2.7.3.2.3) 

    
( ̅    ̅  ) (      )  

 ̂ √
 

  
  

 

  

      (2.7.3.2.4) 

Anderson and Hauck’s test (1984) has a higher probability of concluding ABE as 

compared to the C.I. approaches discussed in Sections 2.7.2.2, 2.7.2.3, 2.7.2.4 and 

2.7.2.5 and is also powerful contrasted to Schuirmann’s TOST procedures. 

However, Anderson and Hauck’s weaknesses are mainly on that the actual 

significance level ( ) may be bigger than the nominal significance level and this 

test may also conclude ABE even when variability is very large due to the fact 

that its rejection region is open ended. As a result of the serious limitations of 
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Anderson and Hauck’s test, Schuirmann’s TOST procedures are widely used 

(Chow and Liu, 2000). 

Bayesian methods can also be used to assess average bioequivalence. The main 

Bayesian methods according to Chow and Liu (2000), Jones and Kenward (2003) 

include the Rodda and Davis method as well as the Mandallaz and Mau’s method. 

2.7.4 Wilcoxon Mann-Whitney Two One-Sided Test Statistics 

Chow and Liu (2000) indicated that because the 2 2 crossover design consists of 

two sequences, that is, RT and TR, a distribution free sum of the ranks test can be 

applied directly to the two one-sided tests procedure. The Wilcoxon Mann-

Whitney two one-sided test statistics is applied when assessing average 

bioequivalence for the pharmacokinetic parameter      because this parameter 

does not exhibit normality hence a distribution free test is applied. The Wilcoxon 

Mann-Whitney two one-sided test statistics is as follows: 

Let:                 (2.7.4.1) 

The following hypotheses are tested: 

      
                      

    

and         (2.7.4.2) 

      
                     

   . 

where 

  
              (2.7.4.3) 

  
              (2.7.4.4) 

Let       {
                                                   
                                                                     

 (2.7.4.5) 

Where      
 

 
 (          )                         (2.7.4.6) 

When carryover effects are absent, the expected value and variance of      is 

given by: 

 (    )   {

 

 
 ,(      )   (     )-          

 

 
 ,(      )    -                          

   (2.7.4.7) 
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where                             and  (    )   (   ) 

    
  

  
  
 

 
 (2.7.4.8) 

Therefore,  (    )   (    )   (    ) 

   
      (2.7.4.9) 

Define    to be the value obtained by adding ranks of the responses for study 

subjects in sequence 1, given as: 

    ∑   
  
   (    )       (2.7.4.10) 

Therefore, the Wilcoxon Mann-Whitney test statistic for     is: 

        
  (    )

 
       (2.7.4.11) 

                        (   ),     (2.7.4.12) 

where  (     ) is the (     )   quantile of the distribution of   . 

Similarly, for the second set of hypotheses: 

       
     versus        

    we reject     if  

        
  (    )

 
   ( )     (2.7.4.13) 

Where    is the sum of the ranks of *    + for subjects in sequence 1. Hence, 

average bioequivalence can be concluded if     and     are both rejected, that 

is:  

     (    ) and     ( )     (2.7.4.14) 

The expected values and variances for    and    under the null hypotheses     

and      when there are no ties, are given by: 

 (  )    (  )   
    

 
      (2.7.4.15) 

 (  )    (  )   
 

  
       (        )   (2.7.4.16) 

If some ranks are equal, assign the mean of the ranks to compute    and   . In 

this case, however, the expected values and variances of    and    become: 

 (  )    (  )   
    

 
      (2.7.4.17) 
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 (  )    (  )   
 

  
       (          )   (2.7.4.18) 

where 

   
 

(       )(         )
 ∑  (  

    )
 
       (2.7.4.19) 

Where q is the number of groups with the same rank values and    is the 

magnitude of ranks with the same value in group V. Suppose all observations are 

different,                  for V 1,2,…, n and Q 0, equation 2.7.4.19 

reduces to equations 2.7.4.17 and 2.7.4.18. 

Since    and    are symmetric about their mean, 
     

 
, we have   (    )  

       ( )  

When        , is a large sample size (say,           ) and the ratio     and 

   is close to 
 

 
 , the distribution becomes approximately normal (symmetric): 

     (    ) and     ( )     (2.7.4.20) 

for average bioequivalence testing, that is, we may conclude bioequivalence if 

    ( ) and       ( )      (2.7.4.21) 

where  ( ) is the     quantile of a symmetric distribution, and 

    
    (  )

√ (  )
 

   ,
  (       )

 
-

√  
  
        (        )

    (2.7.4.22) 

    
    (  )

√ (  )
 

   ,
  (       )

 
-

√  
  
        (        )

    (2.7.4.23) 

Note that the expected values and variances in    and    should be replaced with 

that given in equations 2.7.4.17 and 2.7.4.18 if ties exist. 

2.7.5 Population Bioequivalence 

According to Chen and Lesko (2001), population bioequivalence puts emphasis 

mainly on prescribability (pre-approval), that is, can a patient be safely and 

effectively started on some other drug formulation. 
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The population bioequivalence (PBE) criterion is: 

Reference-scaled criterion 

      
(     )  (  

    
 ) 

  
      , for   

    
    (2.7.5.1) 

Constant-scaled criterion 

     
(     )  (  

    
 ) 

  
      , for   

    
    (2.7.5.2) 

where; 

    Population bioequivalence limit, 

    Mean of the test treatment formulation, 

    Mean of the reference treatment formulation, 

  
   The total variance of the test treatment formulation, 

  
   The total variance of the reference treatment formulation, 

  
   Specified threshold value of the total variance. 

The reference-scaled criterion is to be applied when the total variance,   
  is 

greater than an FDA (2001) specified threshold value,   
  0.04. Otherwise, the 

constant-scaled criterion is used. Population bioequivalence is concluded if it can 

be demonstrated that         where the recommended value for    1.7448, 

found as follows: 

    
                                                

               
 

  
   (    )   (  

    
  ) 

  
  

  
   (    )       

    
 

 1.7448 
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The FDA (2001) guidance document uses the notation    
    

  and    
    

  

for the total variances of the respective formulations. The hypothesis tested is: 

  
   :        versus   

   :       .    (2.7.5.3) 

PBE is concluded if   
    is rejected. 

2.7.6 Individual Bioequivalence 

Chen (2007) states that the FDA started investigations as from 1992 to find out 

whether average bioequivalence is adequate for the assessment of comparisons 

between test and reference treatment formulations. In 1999 the question of 

whether average bioequivalence is sufficient or not, was posed to the generic 

drugs Advisory Committee Meeting to deliberate on the issue, check whether 

average bioequivalence has limitations and motivate the need for assessing 

individual bioequivalence as prerequisite for approval of generic drugs. 

Subsequently groups were formed through the Centre for Drug Evaluation and 

Research of the FDA from the academics, industry and regulatory authority to 

explore the issue of individual bioequivalence. The underlying questions to 

address this issue were asked: 

 Is there a need to change the basis of bioequivalence criteria from average 

bioequivalence to individual bioequivalence? 

 What are the desirable properties of bioequivalence criteria if we are not 

satisfied with the current criteria based on average bioequivalence? 

 What are the general approaches in developing the criteria of individual 

bioequivalence if this concept is chosen for bioequivalence assessment? 

(FDA, 1999). 

Switchability is the main thrust of individual bioequivalence. It looks at the 

possibility of safely and effectively switching a patient from the original marketed 

formulation to another. Individual bioequivalence evaluates three components: 

 comparison of means, 



35 

 compares subject by formulation interaction, 

 compares within subject variances. 

The key issues involved in the formulation of the criteria for individual 

bioequivalence are the individual therapeutic window and intra subject variability. 

An individual therapeutic window can be viewed as the distance between the 

minimum effective exposure and the maximum tolerable exposure of a drug, 

whereas the intra subject variability can be viewed as the distribution of the 

individual’s responses to the drug. In theory, if a drug product given is both 

efficacious and safe to a patient, the distribution of his or her responses should fall 

within his or her own therapeutic window. When a test product is introduced that 

is interchangeable with the reference product, the distribution of this patient’s 

responses from the test product must also fall within his or her therapeutic 

window (Chen, 2007). 

Therapeutic window is defined as an interval of bioavailability metric or 

pharmacokinetic response such as        in which the drug is efficacious and 

safe (Chow and Liu, 2000). The lower and upper limits of a therapeutic window 

are known as: the minimally effective level (MEL) and the maximally tolerated 

level (MTL) respectively. If the difference between the MTL and MEL is large, 

the therapeutic window is wide while if the difference is small, the therapeutic 

window is narrow. 

The individual bioequivalence criterion (IBE) is: 

  
      

      
             

 (         )
  2(1  )           (2.7.6.1) 

Reference-scaled criterion 

          
(     )    

  ( 
  

 
    

 ) 

   
      , for    

     
  (2.7.6.2) 
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Constant-scaled criterion 

          
(     )    

  ( 
  

 
    

 ) 

   
      , for    

     
  (2.7.6.3) 

Here    
  is a constant (pre-set value), of which the FDA (2001) recommended 

value for    
  0.04 

IBE is concluded if        . Currently, the FDA (2001) recommended value for 

    2.2448 when   
  0.02 and    2.4948 when   

  0.03. 

    
                                           

               
 

  
   (    )      

   (    
     

 )   

   
  

  
   (    )             

    
 

 2.2448. 

  
  or    

 the pre-specified threshold value for both PBE and IBE is 0.04. 

where; 

   Individual bioequivalence limit, 

   Mean of the test treatment formulation, 

   Mean of the reference treatment formulation, 

  
  Subject by formulation interaction component of the variance, 

(   
     

 ) are between subject variances of the test and reference formulations 

respectively, 

   
  Within subject variance of the test treatment formulation, 

   
  Within subject variance of the reference treatment formulation. 

The denominator of    
  provides a scaling factor FDA (2001) suggested that the 

reference scaled individual bioequivalence be applied when the estimated 
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magnitude of    
  exceeds a pre-set value of the variance (   

 ) :(   
 ˃   

 ), 

otherwise, a constant-scaled criterion is used. 

The hypothesis tested is: 

  
   :        versus   

   :           (2.7.6.4) 

IBE is concluded if   
    is rejected. 

2.8 Comparison of Average Bioequivalence, Population Bioequivalence and 

Individual Bioequivalence 

Endrenyi, Amidon, Midha and Skelly (1998) observe that it is not easy to use the 

models for individual bioequivalence, they are more complicated and have more 

parameters than those applied for average bioequivalence. More questions arose 

as well investigating whether individual bioequivalence is really necessary or not: 

 Has average bioequivalence failed, that is, have there been documented 

problems observed following the substitution of bioequivalence? 

 Is there evidence that subject by formulation interactions are important? 

 What populations, for example, healthy volunteers or patients, are 

appropriate for the evaluation of IBE and, in particular, for the study of the 

subject by formulation interaction? 

 Are comparisons of within (intra) subject and intra formulation variations 

relevant? (Endrenyi et al, 1998). 

All these questions were dealt with by groups formed at the Centre for Drug 

Evaluation and Research. One such group comprises of Chen, Patnaik, Hauck, 

Schuirmann, Hyslop, and William (2000) who worked on individual 

bioequivalence as well as developing the statistical methods to assess 

bioavailability measures. Individual bioequivalence has an advantage over 

average and population bioequivalence because it allows assessment of subjects 

by formulation interaction and compares population averages as well as variances 

between the test and reference treatment drugs. Population bioequivalence 
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accounts for average bioequivalence only, variances are not considered, hence as a 

result, there is need for individual bioequivalence to complement population 

bioequivalence. The need for individual bioequivalence is further enhanced by 

that pharmacokinetic responses for test and reference products differ among 

individuals. Meredith (2003) is among such researchers who are argued that 

population bioequivalence should go hand in hand with individual bioequivalence. 

He states that bioequivalence is achieved by certifying two treatment drugs as 

ABE, but, there are concerns on the use of ABE only since it does not effectively 

evaluate treatment formulations with a narrow or wide therapeutic interval or high 

intra subject or inter subject variability. To alleviate the fears observed using 

ABE, the use of IBE is suggested. 

Drug interchangeability, which can be classified as either drug prescribability or 

drug switchability differentiates between population and individual 

bioequivalence. The treatment formulation a physician chooses to prescribe to a 

patient compared to the other available drugs is known as drug prescribability. 

Drug switchability is a case where a patient is switched from one treatment 

formulation to another, ensuring that the concentration of the drug has been toned 

to a steady, efficacious and safe level as compared to the first one. Switchability, 

an attribute obtained through individual bioequivalence, is synonymous to a 

guarantee that once drug products have been certified as bioequivalent, they can 

then be used interchangeably in the target population, hence the seriousness by all 

stakeholders currently in pursuing the blending of population and individual 

bioequivalence. Prescribability is assured by population bioequivalence through 

comparing the population means and variance components between the test and 

the reference treatments. The concept of individual bioequivalence is really 

important because it ensures that, for a certain period, as deemed sufficient by 

regulatory authorities (Chen et al, 2000). The bioavailability or bioequivalence 

measure for an individual remains unchanged in order to ascertain safety and 

efficacy of that individual (FDA, 2001). 
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Average bioequivalence is compared and contrasted with individual 

bioequivalence, of which the observations are: 

 Average bioequivalence is used by the FDA to approve the marketing of 

thousands of generic drugs; 

 For a few other drugs, in vivo studies are waived and market access is 

granted based on in vitro studies; 

 Large amount of empirical evidence suggests that generic drugs are used 

regularly without problems of safety or efficacy. 

However, on the other hand, the realisations were that individual bioequivalence: 

 Has been proposed by the FDA (2001) as an improvement on the study 

design, in formativeness and method of analysis of bioequivalence studies; 

 Controversial topic with many debates and public discussion; 

 Has not been universally accepted (Chen and Lesko, 2001). 

The other drawback of IBE is that it allows patients to be switched from a 

reference treatment formulation to its corresponding test treatment. However, it 

falls short regarding switching a patient from one test treatment to another generic 

drug formulation, a trend happening in practice (Patterson, 2010). 

To show that test and reference formulations are average bioequivalent it is only 

necessary to show that the ratio of the means AUC and      for test and reference 

treatment formulations are within the accepted bioequivalence interval as per a 

regulatory authority specifications. It is possible for one drug to be much more 

variable than the other, yet similar in terms of the means, therefore, ABE has 

some limitation since it does not consider the variability. Population 

bioequivalence is a measure which combines the mean and variance of the drug 

products. Individual bioequivalence has more information to enable the approval 

of generic drugs as bioequivalent though there are also challenges on using IBE 

models. The way forward which seem to be a general consensus among 

researchers on bioequivalence, is that the concepts involved in population 

bioequivalence need to be integrated with individual bioequivalence so as to be 
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thorough on ascertaining generic drugs as being bioequivalent (McCarthy and 

Guo, 2008). 

The next chapter looks at the criteria used for selecting study subjects for a 

bioequivalence study, assuming human beings are used. The crossover design is 

discussed and implemented using data obtained from the study subjects (sheep). 

Data from sheep dosed using the RT and TR was assessed for ABE and PBE 

using various statistical techniques. 
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Chapter 3 

Methodology 

3.1 Introduction 

This chapter focusses on the methods of how the test treatment and reference 

treatment formulations will be compared in terms of their bioavailability. Methods 

include in vitro studies, comparative clinical studies, pharmacodynamics studies 

and pharmacokinetic studies. Pharmacokinetic studies are preferred as compared 

to the other methods of assessing bioequivalence and justification is given as to 

why they are chosen in a bioequivalence study. 

Bioequivalence regulatory authorities prescribe standard requirements for 

candidates to be used in the study, tables with such requirements are available in 

this chapter. A 2 2 crossover design is used once study subjects have been 

identified and enrolled to find pharmacokinetic parameters. Some study subjects, 

with very low or extremely high bioavailability, known as outliers are discussed 

in this chapter, including the various methods for detecting them. Methods of 

statistical analysis are classified into parametric and nonparametric, where the 

former method is applied on the pharmacokinetic parameters:       ,        

and      but      utilizes the latter method. This chapter also discusses the 

power of a test, bootstrapping and effect sizes. 

According to the FDA (2003) and Mastan et al. (2011), bioequivalence between a 

test drug and reference drug can be assessed through mainly four ways, namely: 

 in vitro studies, 

 comparative clinical studies, 

 pharmacodynamic studies, 

 pharmacokinetic studies. 

The methods of assessing bioequivalence, mentioned above, are applied 

depending on the type of treatment formulation or method of administering the 

drug(s). They can be used in isolation or as combinations. Bioequivalence is well 
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established through pharmacokinetic studies. Pharmacodynamics studies are not 

recommended where pharmacokinetic methods can be used. Clinical studies can 

be utilized for situations where other methods for assessing bioequivalence cannot 

be used (Wang and Bakhai, 2006). In vitro studies are more appropriate for 

immediate release (IR) solid oral dosage forms (Polli, 2008). The FDA (2003) 

guidance for bioequivalence has a clause, 21 CFR 320.24, which clearly indicates 

that clinical studies need to be avoided if possible. These guidelines also indicate 

that bioequivalence can be tested by in vitro or in vivo studies given immediate 

release solid oral dosage forms approved after 1962 and for bio-problem treatment 

formulations approved before 1962. Pharmacokinetic studies are usually used or 

preferred in assessing bioequivalence because the parameters obtained enable the 

researchers to measure bioavailability. The measurements taken should indicate 

the concentration of the drug in the body, that is, the amount of the treatment drug 

in a given volume of blood. If for some reasons, measurements of the drug cannot 

be extracted through the blood, then measurements can be achieved through 

urinary excretion. 

3.2 Study Subjects for a Bioequivalence Study 

Study subjects which are preferred for a bioequivalence study should possess 

attributes like: 

 The study subjects for population bioequivalence are chosen in such a 

manner that there is maximum variability among them but differences 

between pharmaceutical products should be noticeable without much 

difficulty; 

 Healthy volunteers of either sex, in the range 18 to 55 years old are 

normally preferred to be in the study; 

 Women who still have a potential of giving birth are screened on an 

individual basis; 

 The weight of study subjects is also considered before enrolling into the 

bioequivalence study, the recommended weight should be proportional to 

the body mass index. Non-smokers, who have never consumed alcohol, 

are preferred; 
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 Candidates for study are thoroughly screened and undergo a medical 

examination before they can be enrolled (FDA, 2003). 

Below are Tables 3.1, 3.2 and 3.3, showing regulatory requirements (human 

beings) for demographics, sample size and whether study subjects need to be fed 

or fast for different regulatory bodies from Tamboli, Todkar and Sayyad (2010) 

contrasted with FDA (2003) and MCC (2003) bioequivalence requirements. 

Regulatory requirements in tables below were included in this research report to 

discuss what is needed if human beings were to be used in a bioequivalence study. 

Table 3.1 Regulatory Requirements for Demographics  

Regulatory 

Authority 

Age Gender BMI (kg/m²) 

India Greater than or equal to 

18 years, but if the 

treatment formulation is 

for use by the elderly, the 

majority of the study 

subjects should be 60 

years of age or older. 

Gender 

selection 

should be 

consistent 

and depend 

on usage and 

the safety 

criteria. 

Not specified. 

USA 18 years or older. Male or 

female. 

Not specified.  

Europe 18 years or older. Male or 

female. 

18,5 to 30kg/m² 

Canada 18 to 55 years. Males or 

female. 

Ratio of height/weight 

should be within 15% 

of the normal interval 

of healthy volunteers. 

ASEAN 18 to 55 years. Male or 

female. 

 

18 to 25kg/m² 

South 

Africa 

18 to 55 years. Male or 

female. 

Recommended BMI or 

within 15% of the 

normal body mass. 

Brazil 

(ANVISA) 

18 to 50 years. Male or 

female. 

Within 15% of the 

accepted interval. 
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Table 3.2 Regulatory Requirements for Sample Size 

Regulatory 

Authority 

Minimum Sample size specifications 

India 16 years or more. The number of subjects required for a 

study should be statistically significant 

and should be large enough to allow for 

possible drop outs from the study. 

USA 12 years The total number of subjects in the 

study should provide sufficient power 

to conclude bioequivalence. 

Europe 12 years or more. The sample size calculation method 

determines the sample size. 

Brazil 12 years or more. The number of subjects required is 

determined by: 

 The error variance linked with the 

main characteristic to be studied as 

estimated from a pilot experiment 

obtained from previous studies or 

from published data. 

 The desired level of significance. 

 The expected deviation from the 

reference treatment formulation 

compatible with bioequivalence. 

 The required power. 

South 

Africa 

12 years or more 

subjects for immediate 

release and 20 subjects 

for modified release 

oral dosage forms 

The number of subjects should be 

justified on the basis of providing at 

least 80% power of achieving the 

acceptance criteria or appropriate 

equations should be used to calculate 

the sample size. 
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Table 3.3 Fasting and FED Study Requirements 

Regulatory 

Authority 

Fasting requirements 

India Should fast for 10 hours or more at night followed by 4 

hours of fasting after taking a treatment formulation. If 

dosing is done many times at night, fasting should be 2 

hours before and 2 hours after dosing. 

Europe and Brazil Greater than or equal to 8 hours before and greater than 

or equal to 4 hours after dosing. 

USA and Canada Should be greater than or equal to 10 hours and continued 

for at least 4 hours after dosing. 

ASEAN Greater than or equal to 8 hours before taking the 

treatment formulation. 

South Africa The same time period of fasting should be maintained 

before and after dosing. 

 

All of these criteria above were relevant if the data that were used for 

bioequivalence analyses were for human trials, but they were from an animal trial. 

Animals used in bioequivalence studies must be healthy and from a homogeneous 

group (age, breed, sex, weight, hormonal and nutritional status, level of 

production among other aspects). When it is difficult to conserve homogeneity of 

all animals within a study (for example, sheep), it would be acceptable to use non-

homogeneous stock provided that animals in each treatment group were carefully 

matched for characteristics including age, weight and sex. Selected animals must 

be representative of the target population for which the product is intended. Group 

size: for ethical and economic reasons, the appropriate number of animals should 

be carefully estimated; it depends on several factors including variance of the 

response, differences in the two treatment formulations and level of rejection of 

the hypothesis (The European Agency for the Evaluation of Medicinal Products, 

2001). 

3.3 Crossover Design 

The two sequences, two periods, crossover study design is recommended by many 

researchers on assessing bioequivalence using pharmacokinetics parameters. In 
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this research report, generic and brand name products are administered to study 

subjects (experimental units) with the objective of trying to establish differences 

(if any) due to availability of generic and brand name products on different study 

subjects. A crossover study seeks to investigate the response of individual study 

subjects to two different treatments (Jones and Kenward, 2003). 

Sequence Period 1 Washout Period 2 

1 R  T 

2 T  R 

Figure 3.1 2 2 Crossover Design 

A crossover design is a design used when collecting blood samples from study 

subjects such that pharmacokinetic parameters can be obtained. In a crossover 

model, study subjects are randomized into two groups then given a sequence of 

treatments at uniform intervals of time (periods). In the first sequence, each study 

subject receives, say, a test treatment in period 1, then a reference treatment in 

period 2 and this arrangement is reversed in the second sequence, reference 

treatment is given followed by the test treatment. 

Wang and Bakhai (2006) illustrated the 2 2 crossover design diagrammatically as 

shown below: 
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A model for the 2 2 crossover design from Chow and Liu (2000) is given as: 

    = +   +  + (   )+ (     )+          (3.3.1) 

where; 

     represents the response, for example, AUC of the     subject in the     

sequence at the     period, 

  The overall mean of the model, 

    The random effect of the     
subject in the     sequence where i 1,2,…,g, 

   The fixed effect of the     period, where j 1,…,p and ∑ Pj 0, 

 (   )  The direct fixed effect of the formulation in the     sequence which is 

administered at the     period and ∑ (   )  0, 

 (     )  The fixed first order carryover effect of the formulation in the     

sequence which is administered at the (   )   period where  (   )  0 

and ∑ (     )  0, 

     The random error in observing      . 

It is assumed that     are independently and identically distributed (iid) with mean 

0 and variance   
 , and      are independently distributed with mean 0 and 

variance   
 , where t = 1,2,…,L (the number of formulations to be compared).     

and      are assumed to be mutually independent. The estimate of   
  is usually 

used to explain the inter-subject variability, and the estimates of   
  are used to 

assess the intra subject variabilities for the     formulation. 

3.3.1 Advantages of a Crossover Design 

The crossover designs are preferred as compared to other experimental designs 

because they are not influenced much by physiological variables. Greenblatt et al. 

(1998) states that physiological variables such as age, gender, body height, 

ethnicity, hepatic and renal disease might affect drug disposition. Using crossover 

designs, therefore, enables the researcher(s) to find the difference between the 
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drug concentrations of a generic and a brand name drug due to formulations of the 

drug.  

The crossover design is viewed favourably because of its advantages: 

 Each subject receives both treatment formulations hence a comparison can 

be made within subjects; 

 It eliminates the inter subject variability from comparison between 

formulations; 

 With a proper randomization of subjects to the sequences of treatment 

formulations, the crossover design provides the best unbiased estimates for 

the differences (or ratios) of the means (Jones and Kenward, 2003; FDA, 

1992 and Chow and Liu, 2000). 

Each trial subject acts as his own control since both drug formulations are 

administered per study subject. The crossover design is thus very useful because 

both treatments, generic and brand name, are given to the same subject. Drug 

concentration measurements are taken from each study subjects for both treatment 

formulations such that bioequivalence can be assessed (Galpin, 2007). 

3.3.2 Disadvantage of a Crossover Design 

The crossover design is a powerful study design where comparison is made within 

study subjects though it has a disadvantage of that it is not suitable for treatment 

formulations with long half-life and the effect of a treatment given in one period, 

called a carryover effect, might still be present at the start of the following period. 

3.4 Carryover Effect 

There are cases where it is not possible to totally eliminate the effect of a previous 

treatment resulting in a carryover effect. A carryover effect is a situation where 

some amount of a treatment (drug) from one period will still be available when 

blood samples are taken on the next period. Senn (2001) indicates that a carryover 

effect arises if a treatment (drug) administered in one period continue to affect the 

study subject in subsequent period(s). He goes on to state that a carryover effect 
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introduces bias to estimates of the amounts of a particular drug in blood samples 

(generic or brand name), because the assumption will be that the effect of one 

treatment is being observed yet two or more drugs will be still within the study 

subject(s).  

The carryover effect arises due to a short interval of time allowed to pass before 

administering the next drug formulation to a study subject. Other causes of a 

carryover effect could be as a result of: 

 Drugs which have a long half-life, though with an inadequate washout 

period; 

 Trial subjects with poor metabolism rates, hence taking a long time to 

eliminate the drug in the body; 

 Random occurrence (Patterson, 2010). 

In bioequivalence studies a long washout period is allowed between dosing 

periods such that the carryover effect is eliminated. The washout period is the 

interval between dosing periods. In a crossover design, the washout period should 

be long enough such that the effect of one treatment formulation administered at 

one period is not available at the next period of dosing (Chow and Liu, 2000). 

Jones and Kenward (2003) indicated that a washout period, between dosing 

periods, should be at least five half-lives so as to ensure that the carryover effects 

are eliminated completely. As a consequence of having a long washout period, 

there is no need to test for a differential carryover effect (FDA, 2001). 

The 2 2 crossover model without the carryover effect becomes: 

               (   )            (3.4.1) 

where the components of this model are defined in equation 3.3.1. 

 

The crossover design, Figure 3.2, was used at the University of Pretoria at the 

Directorate of Veterinary Pharmacology where sheep were randomized then dosed 

with the reference treatment formulation (an antibiotic) followed by the test 

treatment formulation after an adequate washout period was allowed before the 
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next dosing period to obtain the bioequivalence data. The model 3.3.1 was used in 

this study when assessing ABE and PBE. 

3.5 Pharmacokinetic Parameters 

The pharmacokinetic parameters obtained after collecting the blood samples from 

study subjects are     : the rate (but also extent) of absorption. Estimated 

directly from the data, where      max(  ,  ,  ,…  ). 

    : is the corresponding time point estimate at which      occurs. 

Chow and Liu (2000) and Wang and Bakhai (2006) explained how to calculate 

the AUC: the extent of drug absorption, obtained as follows: 

       ∑ (
        

 

 
   )(        )      (3.5.1) 

                     

        
     

 
       (3.5.2) 

λ = Slope *  2.303        (3.5.3) 

Slope is obtained from the plots of ln(Concentration) in Appendix 4, at the time 

points where the elimination of the drugs become approximately linear. 

Calculations for finding the AUC in this study were done from Appendix 1 to 

Appendix 5. 

 

3.6 Parametric versus Nonparametric Tests 

Parametric and nonparametric tests will be used in this research study to analyse 

the figures obtained after collecting blood samples from the study subjects in 

order to determine the pharmacokinetics parameters. Given a data set, a researcher 

needs to make a choice as to whether use parametric or nonparametric tests so that 

reasonable decisions based on the data obtained can be taken. The selection of the 

tests to use is guided by the nature of the data, as indicated earlier. If the data 

follows a normal distribution or approximately so, the parametric tests are 

recommended in order to get best results but if the data does not follow a normal 

distribution, nonparametric tests are appropriate. There are quite a number of 

ways which can be used to determine whether the data set is normal or not, 

common approaches of checking normality include: plotting a histogram, finding 

the coefficient of skewness or kurtosis. Kurtosis is a measure which indicates 
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whether the data is peaked or flat relative to a normal distribution. It is easy to 

visualize whether the data follows a normal distribution or is skewed if a 

histogram is plotted. When determining normality by skewness, the coefficient of 

skewness is used. The coefficient of skewness for a normal distribution is equal to 

zero. Data sets with a coefficient of skewness greater or less than zero need to be 

transformed to try and reduce skewness: The transformations which can be 

applied on data include the log transformation, square root, square, inverse, 

bucketing and many more. However, in this report, the choice of tests was as per 

the FDA (2001) recommendations since most of the research done on 

bioequivalence is per criteria established by the FDA. 

3.6.1 Parametric Tests 

Concordet (2004) points out that a statistical property of the distribution of data is 

that all data can be completely described by a finite number of parameters. 

Guassian (Normal) distribution, N(    ), is an example of a parametric 

distribution. Parametric distributions assumptions are: 

 homoscedasticity, 

 independence, 

 normality. 

Homoscedasticity refers to a situation where the variance of the dependent 

variable is constant, that is, it does not vary with independent variables which are: 

the drug formulation, study subject and period. 

Independence is a situation whereby the random variables which feature in the 

bioequivalence analysis are independent. 

Normality in a distribution is achieved if the pharmacokinetic parameters used in 

the bioequivalence analysis are normally distributed. 

For bioequivalence studies the pharmacokinetic parameters which usually utilise 

the parametric tests are the AUC and     . 
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ABE and PBE were used to test for bioequivalence between the two drugs for the 

sheep, on the pharmacokinetic parameters. 

3.6.2 Nonparametric Tests 

Nonparametric tests are applied for situations where the distribution of data is not 

defined by a finite number of parameters. It can only be defined by its shape, 

number of modes, regularity and other features. It should be noted that for 

nonparametric distributions, the number of parameters used to estimate the 

distribution with n data increases with n. A known statistical distribution cannot 

be linked to nonparametric tests, that is, we cannot say that this distribution of 

data follows a Normal, Exponential, Binomial, Poisson, Geometric or some other 

of the common statistical distributions. The nonparametric tests are usually less 

powerful, since it is more difficult to show bioequivalence even for cases where 

there is bioequivalence, as compared to their parametric counterparts but 

nonetheless there are situations which require nonparametric methods (where the 

distribution is not normal, as pointed out earlier). For bioequivalence studies, 

    , is analysed by using nonparametric methods (FDA, 2001). 

Nonparametric tests are a branch of statistical inference (decision making) 

whereby the estimation or hypothesis tested is not necessarily about a population 

or sample statistic and distribution assumptions are not used as compared to the 

parametric tests. According to Galpin (2007) nonparametric tests are appropriate 

for a data set which is severely skewed whereby even transforming the data to 

approximate normality is a futile exercise, hence normality of the data cannot be 

assumed and there is no indication as to which distribution the data can follow. 

When a data set is normally distributed, the mean is equal to the median and we 

use the mean as our measure of centre. However, if the data set is skewed, then 

the median is a much better measure of centre. Therefore, just like the Z (normal 

distribution), t (Student test) and F (Analysis of Variance) tests made inferences 

about the mean(s) on parametric tests, nonparametric tests make inferences about 

the population median(s). 
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Parametric tests were used in this study when assessing ABE and PBE for the 

pharmacokinetic parameters AUC and      because the histogram for the data, 

Appendix 7, Figure 1 and Appendix 8, Figure 1, exhibits a distribution which is 

almost normal. Non-parametric test, Wilcoxon Mann-Whitney test statistics were 

used in this study to evaluate ABE and PBE for the parameter      because the 

data is not normally distributed. 

3.7 Outliers 

In a bioequivalence study there are observations obtained from the drug 

concentration time profiles which are extremely high or low as compared to the 

rest, such observations are called outliers. Outliers are probable as a result of an 

error in typing data or a data value(s) obtained mistakenly from a study subject(s) 

which is/are not supposed to be included in the research for a variety of reasons. 

Outliers are defined by Patterson (2010) in terms of the residuals in the model, 

whereby a data value that is too large or small cannot be fitted into the model, 

hence becomes an outlier. There are four different types of outliers: 

 Observations which arise unexpectedly in concentration time profiles; 

 Observations which are very huge or minute in one of the treatment 

formulations; 

 A large significant difference, extremely large or small, in bioavailability 

when the generic drug is contrasted to the reference formulation; 

 Observations which exhibit an unusually high or low concentration of drug 

in a study subject in both treatment formulations (Chow and Liu, 2000). 

Causes of outliers are varied, though basically common according to many 

authors on bioequivalence. Frequent changes in laboratory tests may result in 

some observations becoming too high or low, hence becoming outliers. Human 

error on measuring the concentration of blood can also cause an outlier (Karasoy 

and Daghan, 2012). 
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Other causes of outliers may be attributed to: 

 Defects in a drug, treatment formulation may be broken (though coated) or 

having a wrong dosage; 

 Sudden changes in a study subject, probable someone starts vomiting or 

develops diarrhoea; 

 Laboratory error, say, a wrong drug is prescribed; 

 A study subject can have an unusual reaction to a treatment formulation or 

both drugs resulting in a subject by formulation interaction which was not 

expected (Schall, Ring and Endrenyi, 2010). 

There are tests which can be used to detect outlying subjects. Chow and Liu 

(2000), Ramsoy and Elkum (2004) and Karasoy and Daghan (2012) discussed 

methods of identifying outliers: 

3.7.1 Likelihood Distance Test (LD) 

The LD was developed on the basis that the period and treatment formulation 

effects do not exist on the 2 2 crossover model 3.4.1. The model 3.4.1 with the 

period and treatment formulation equal to zero reduces to: 

                                          (3.7.1.1) 

The parameters of interest in model 3.7.1.1 are:  ,   
  and   
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The maximum likelihood estimators (MLEs) of the parameters   ,    and    

derived by maximizing L( ) given that   =   are: 
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The LD statistic becomes: 

   ( ̂)    [ ( ̂)   ( ̂( ))]      (3.7.1.6) 

where  ̂( ) is the MLE of   after deleting the     subject. It can be shown that as n 

approaches infinity    ( ̂) is asymptotically distributed as a chi-square with three 

degrees of freedom. The     subject is considered to be an outlier if     ( ̂)  

    
  ( ) where    

  ( ) is the     upper percentile of a central chi-square 

distribution with three degrees of freedom. 

3.7.2 Estimates Distance Test (ED) 

ED is a method of detecting outliers and was developed based on the difference of 

the parameter estimates obtained after deleting the     subject, slightly different 

from the LD which is based on the difference in the log-likelihood function after 

deleting the     subject. 

   ( ̂)      ( ̂   ̂  )
 ∑̂  ( ̂   ̂  )    (3.7.2.1) 

Equation 3.7.2.1 is the ED statistic where ∑̂   is the MLE of the variance matrix 

below  

∑ [

      

    
  (   )  

     
 

]     (3.7.2.2)) 

The    ( ̂) statistic was shown to be asymptotically distributed as a chi-square 

with three degrees of freedom by Chow and Tse (1990). The     subject is 

identified as an outlier by the ED test if    ( ̂)      
  ( ). 
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3.7.3 Hotelling    Test (HT) 

This is an outlier detection procedure based upon the order statistics of the two-

sample Hotelling    statistic. This procedure was proposed by Liu and Weng 

(1991) according to Ramsoy and Elkum (2004). HT is based on the assumption 

that there are no period effects and the compound symmetry covariance structure 

for f responses observed on the     subject is relaxed such that it becomes 

spherical. These assumptions enable HT to identify only one outlier. In practice, 

pharmacokinetic parameters can have more than one outlier. To detect outlying 

subjects, let    (         )
  be the vector of the response variables observed on 

the     subject. Define 

  
  (      ̅)      (      ̅)     (3.7.3.1) 

where   ̅and   are the sample mean and the matrix of the sums of squares and 

cross-products computed from          The HT statistic for the     subject is: 

  
   

(   )  
 

(
   

 
     

 )
       (3.7.3.2) 

To detect whether subject i is an outlier or not, we compare the value obtained 

from equation 3.7.3.2 to the critical value. The     subject is identified to be an 

outlier if at   0.05 level of significance: 

  
      

    (  
 )    ( )

       (3.7.3.3) 

3.7.4 Mean-Shift Test (MS) 

The mean-shift test was developed by Wang and Chow (2003) based on the 

likelihood function. The mean shift for the     subject’s response on the     

treatment formulation is: 

                              (3.7.4.1) 
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Two quantities developed from the model 3.7.4.1 are: 

     
(    ̅  ) (    ̅   )

∑ (    ̅  ) (    ̅   )
      (3.7.4.2) 

and 

     
 ̅ 

 

∑  ̅ 
  .        (3.7.4.3) 

where in equations 3.7.4.2 and 3.7.4.3,    is the vector of residuals for the     

subject,  ̅  stands for the mean of    and    is a vector whose members are 1. 

Combining equations 3.7.4.2 and 3.7.4.3 the MS statistic is: 

                    (3.7.4.4) 

The statistic    is used to test whether the     subject is an outlier or not and is 

distributed as the sum of two independent beta random variables: 

        ,  ⁄  (   )  ⁄ -      ,  ⁄  (   )  ⁄ -  (3.7.4.5) 

The     subject is detected as an outlier if    is greater than the    order statistic 

at   0.05 level of significance for a given sample size. 

3.7.5 Residuals Test 

The residuals test utilizes the means of treatment formulations to detect outlying 

subjects. Given     the     treatment formulation mean, the resulting studentized 

residuals,     where i 1,2,…,n and j = 1,2,…,f. The test compares the maximum 

values of the residuals with the critical values. The     subject is identified to be 

an outlier if the maximum residual:        ( ). 

The Cook’s distance, likelihood distance test (LD), Figure 4.1 and Figure 4.2 in 

Chapter 4 is used to detect the outlying observations for the pharmacokinetic 

parameters        and      respectively. The likelihood distance test could be 

obtained using the model 3.7.1.1, and equations 3.7.1.2 and 3.7.1.6 though in this 

study the model in equation 3.4.1 is applied to get LD, where the pharmacokinetic 

parameters        and      for both untransformed and transformed data are 
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subjected to ANOVA in which the variance is partitioned into components due to 

animals (sheep), periods, sequence and treatment effects. 

3.8 Outliers simulation 

Karasoy and Daghan (2012) conducted a simulation bioequivalence study using 

twenty three study subjects to detect outlying observations. The same 

observations were identified to be outliers by the LD, ED, HT MS tests. 

Confidence intervals obtained for the pharmacokinetic parameter AUC including 

the outlier and without the outlier were both totally included in the C.I. acceptance 

range, 0.8 to 1.25. The outlier changed the ratio of means but equivalence limits 

were not affected much, Table 3.4. 

Table 3.4 Outliers Ratio of Means and Confidence Intervals 

AUC 90% C.I. with outliers 90% C.I. without outliers 

Ratio of 

means 

Lower limit Upper limit Lower limit Upper limit 

0.9581 0.9989 0.9815 0.9975 

Ratio of 

means 

0.979 0.990 

Ramsoy and Elkum (2004) also conducted a simulation study to identify outliers 

using LD, ED, HT and MS. The same outlying subjects were detected by all the 

methods, similar to the study done by Karasoy and Daghan (2012). Ramsoy and 

Elkum (2004) further contrasted the tests checking if any was better. They 

observed that all tests performed well, though ED outperformed other methods 

where there is only one outlier. 

3.9 Power of a Test 

Statistical power analysis is performed at the planning stage of a bioequivalence 

study since it assists in improving the chances of achieving efficient results when 

assessing average bioequivalence. Appropriate sample size for a study is 

determined by power analysis as well as the research objective, design, data 
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analysis method, type 1 error, variability and effect size. In a bioequivalence 

study, sample size, refers to the number of subjects or volunteers participating in 

the study. Chow and Liu (2000) point out that appropriate sample size for a study 

is chosen depending on a power function of the statistic for the hypothesis of 

equality between treatment formulation effects. 

The statistical power of a test is defined, in general, as the probability of rejecting 

the null (research) hypothesis when it is actually false. (reject    when    is 

false). Ahmad and Yahya (2015) states that in terms of efficacy for a drug, power 

of a test refers to the probability of correctly concluding that a drug is effective 

when in fact it is. With reference to a 2 2 crossover design used in 

bioequivalence studies, power implies not mistakenly concluding that the two 

treatment formulations are bioequivalent when there are not. Important aspects to 

be known about the power of a test: 

 As the sample size increase, the power of the test also increases. That is, 

by taking larger samples, we improve our ability to find a difference in 

means of the treatment formulations, if they really exist; 

 As the population variances decrease, the power of the test increases. It 

should, however, be noted that the researcher has no control over the 

variances; 

 As the difference in the means:       increases, the power also 

increases. The difference in the means of the two treatment formulations 

can also not be controlled by the researcher (Elsayir, 2012). 

Factors that affect the power of a test are mainly, the sample size, significance test 

and effect size: 

 If the sample size is large, the power of a test increases; 

 If the level of significance is high, the power of a test also becomes high 

because the acceptance region is reduced; 
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 If there is a large difference between the true value of the mean of the 

treatment formulations and the hypothesized value of the mean, the power 

of a test becomes high (Chow and Liu, 2000). 

The power of a test is determined from the outcomes of a hypothesis test. When a 

hypothesis test is performed, there are four possible outcomes. Two of the four 

outcomes are correct while the other two are wrong. The conclusions which are 

not correct are known as the type 1 and type 2 errors, also sometimes referred to 

as consumer’s risk and producer’s risk respectively. Four conclusions on 

hypothesis testing are: 

   is true and your test leads you fail to reject   : correct decision; 

   is true but your test leads you to reject   : wrong decision (Type 1 error); 

   is false but your test leads you to fail to reject   : wrong decision (Type 2 

error); 

   is false and your test leads you to reject   : correct decision (Crawshaw and 

Chambers, 2001). 

The four conclusions for a hypothesis test can be depicted on a table, Table 3.5: 

Table 3.5 Classical Type 1 and Type 2 errors 

  Test decision 

Fail to reject    Reject    

Actual situation 
   is true Correct decision Type 1 error 

   is false Type 2 error Correct decision 

 

The power of a test is defined as the probability of correctly rejecting    when    

is false. The choice of the null hypothesis is based on the seriousness of the errors 

which can be committed. Chow and Liu (2000) illustrate the relationship between 

type 1 and type 2 errors for a bioequivalence trial as in Table 3.6: 
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Table 3.6 Bioequivalence Type 1 and Type 2 errors 

Decision True State    

Bioinequivalent Bioequivalent 

Bioinequivalent  

(fail to reject    ) 

Right decision Type 2 error 

Bioequivalent (reject    ) Type 1 error Right decision 

A type 1 error, also referred to as the consumer’s risk in bioequivalence terms, is 

more serious contrasted to a type 2 error, the producer’s risk. Hence to control 

both, that is, having the errors remaining as minimal as possible, the significance 

level is controlled at an acceptable level, while there should be a way to try to 

minimize the type 2 error, usually done by choosing an appropriate sample size 

(Chow and Liu, 2000). 

3.10 Simulation of Power 

The TOST procedure is normally preferred for power simulation in 

bioequivalence studies. It is difficult to calculate the exact power for TOST since 

the relevant formulae require some complex numerical integration. Simulation is 

used as an alternative to computations given that an algebraic approach cannot be 

found. The intention is to find a sample size which will achieve a certain desired 

power. Power should generally be at least 80%. Simulating power empirically 

yields an approximate power estimate which is nearly accurate because a large 

number of data sets are generated as per specifications of the distribution used for 

the power analysis. 

A bioequivalence study was conducted with the objective of finding a sample size 

necessary to achieve at least 95% power. Two different treatment formulations 

were used with a geometric mean ratio of 1.1 and variance 0.1003. Hypothesis 

tested is: 

  :      ln(0.8) or       ln(1.25) versus 

  :ln(0.8)        ln(1.25)     (3.10.1) 



62 

Table 3.7 Power and sample size SAS 9.4 output 

Fixed Scenario Elements 

Distribution Normal 

Method Exact 

Lower Equivalence Bound -0.22314 

Upper Equivalence Bound 0.223144 

Alpha 0.05 

Mean Difference 0.09531 

Standard Deviation 0.223942 

Nominal Power 0.95 

 

Computed N per Group 

Actual Power N per Group 

0.952 68 

The SAS 9.4 output, Table 3.7, indicates that 68 study subjects will be required to 

obtain an actual power of 95.2% (Sun, 2010). 

3.11 Power curve 

Table 3.8 Power curve and sample size SAS 9.4 output  

Fixed Scenario Elements 

Distribution Normal 

Method Exact 

Null Difference 0 

Alpha 0.05 

Mean Difference 4 

Standard Deviation 3 

Number of Sides 2 
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Computed N per Group 

Index Nominal Power Actual Power N per Group 

1 0.80 0.805 10 

2 0.90 0.903 13 

3 0.95 0.954 16 

The three groups in Table 3.8 results in different power values per given sample 

size. As the sample size increase in a particular group, the power also increases. 

Sample group size 10, power 80.5%, sample group size 13, power increases to 

90.3% and a further power increase to 95.2% is achieved when the sample group 

size is 16. The power curve, Figure 3.3 illustrates visually the increase in power as 

the sample group size increases (Plets and Strominger, 2013). 

This study had two groups of 7 sheep in sequence 1 and the other 7 were in 

sequence 2. Comparing the sample size of the groups in this study and the groups 

in the simulation study, Figure 3.3, it was observed that more sheep were needed 

in this study to obtain a power of at least 80%. 

Figure 3.3 Power curve and sample sizes  
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3.12 Bootstrapping 

Bootstrapping is a technique which enables researchers to do statistical inference 

without checking any model assumptions and without any sampling distribution. 

Bootstrapping is a nonparametric method which refers to sampling with 

replacement from the original data. It depends solely on the original data, thus 

avoiding as many assumptions compared to parametric methods (Moony and 

Duval, 2012; Schmidheiny, 2012 and Rochowicz, 2011). Bootstrapping is also 

defined as a resampling method which is effectively performed using a computer 

for estimating sample statistics such as the measures of spread, confidence 

intervals, hypothesis testing and other statistical properties. The number of 

bootstrap samples depends on what you like to do. If bootstrapping to estimate the 

standard error, twenty five to two hundred resamples should be sufficient but for 

all other applications, bootstrap samples should be more than one thousand. For a 

situation where there is a small number of data values in a given sample, 

bootstrapping technique can be used to increase the sample size. Population 

parameter estimates can then be obtained from this large sample which could have 

been formed through bootstrapping. As a result, aspects of the population such as 

skewness, kurtosis and percentiles can be checked (Efron and Tibshirani, 1993). 

Boostrapping is a powerful statistical technique and a very useful tool used when 

the distribution of a statistic is unknown, very complex or when the sample size is 

small and asymptotic distribution assumptions such as normality may not be 

appropriate. The bootstrap method in short is: 

 Resample a given data set with replacement a specified number of times, 

where each, bootstrap sample has the same number of data points as the 

number in the original sample though some of the values of the original 

sample might not appear, some might appear once, twice or thrice; 

 Calculate a statistic of interest for each of the bootstrap samples; 

 The distribution of the statistic from the bootstrap samples can then be 

used to obtain estimated standard errors, create confidence intervals, and 

to perform hypothesis testing with the statistic (Rice and Thornotn, 2013). 
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Bootstrapping statistics actually enables a researcher to analyse any distribution 

and make inferences. Bootstrapping liberates researchers from being limited to 

doing statistical analysis using known sampling distributions only by using 

computers. Bootstrapping as a computer intensive method, can be easily 

performed nowadays because modern computers have fast processors and are 

within the reach of researchers (Chernick, 2008). Besides bootstrapping as a 

resampling method, there are other techniques available in literature, which 

include the jacknife, cross–validation, random subsampling and permutation 

procedures. Permutation tests unlike, bootstrap, are procedures whereby 

resampling is done though not randomly, instead, it considers all possible 

permutations (arrangements) of the sample (Moony and Duval, 2012). 

Bootstrapping has pros and cons: 

Advantages  

 Checking assumptions of a distribution is not required. 

 Can be used for cases where permutation tests fail because bootstrap 

requires very minimum assumptions. 

 A large sample size is obtained. 

Disadvantages 

 Efficient computers in terms of speed are needed. 

 Randomness when sampling with replacement should be understood. 

 Bootstrap is not exact. 

 Large sample sizes must be generated though for large samples, 

permutation tests perform better than bootstrap (Moony and Duval, 2012). 

Bootstrapping was done in this study, Appendix 9, to illustrate the fact that as the 

sample size is increased statistical inference can be made without checking any 

model assumptions. 
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3.13 Assessing Average, Population and Individual Bioequivalence 

3.13.1 Average Bioequivalence 

The 90% confidence interval for the ratio of means of the parameter      and 

AUC should lie within the interval 0.80 to 1.25, the bioequivalence acceptance 

range. The acceptance interval may need to be changed especially in cases where 

the drugs have a narrow therapeutic range. In such cases a wide acceptance range 

of 0.90 to 1.111 should be applied (Schall and Endrenyi, 2010). 

Quite a number of regulatory authorities use the above interval to certify a generic 

formulation as average bioequivalent compared to a reference formulation. Below 

is a table, Table 3.9 showing different regulatory authorities accepted intervals for 

the pharmacokinetic parameters AUC and     . 

It should be noted that in South Africa the average bioequivalence acceptance 

interval for the pharmacokinetic parameter      of 0.75 to 1.33 differs with most 

regulatory authorities. However for formulations which have a narrow therapeutic 

range, the average bioequivalence acceptance range is the same as the regulatory 

authorities on Table 3.9, for most regulatory authorities (countries), that is, the 

interval from 0.8 to 1.25 (Galgate, Jamdade, Aute, Chaudhari, 2013). 

Table 3.9 Regulatory Acceptance Criteria for Bioequivalence (Tamboli et al, 

pp.91). 

Regulatory 

Authority 

90% confidence interval on log transformed data 

                      

India 80-125  80-125  80-125  

USA 80-125  80-125  80-125  

Europe and 

Australia 

80-125  80-125  Not applicable 

South Africa 75-133 and 80-

125 (for narrow 

therapeutic range) 

80-125  Not applicable 

ASEAN 80-125  80-125  80-125  
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Decision rules based on confidence intervals and the acceptance range on 

certifying drug formulations as average bioequivalent or not: 

 C.I. entirely outside the acceptance range. Average bioinequivalence 

proven; 

 C.I. overlaps the acceptance range. Average bioequivalence not proven; 

 C.I. lies entirely within the acceptance range. Average bioequivalence 

proven (Schutz, 2013). 

3.13.2 Population Bioequivalence 

To establish population bioequivalence, unbiased estimators obtained using the 

method-of-moments (MM) are used on logarithmic transformed values of      

and AUC. Population bioequivalence is achieved if the 90% upper confidence 

bound calculated after finding unbiased estimators is less than or equal to the 

population bioequivalence limit,    1.7448, as recommended by the FDA 

(2001). 

3.13.3 Individual Bioequivalence 

Individual Bioequivalence focuses on estimation of the mean difference between 

test and reference formulation, the subject by formulation interaction variance and 

the within subject variance for each of the formulations. To estimate the 

components of IBE the FDA (2001) recommends the method-of-moments 

approach by Chinchilli and Esinhart (1996). It is also indicated that the restricted 

maximum likelihood (REML) method is useful to estimate mean difference and 

variances when subjects with missing data are included in the statistical analysis. 

A 90% upper confidence bound for individual bioequivalence is calculated and 

then compared to the individual bioequivalence limit. The FDA (2001) 

recommended value for    2.2448 when   
  0.02 and    2.4948 when 

  
  0.03.   

  represents the subject by formulation variance component when 

calculating   . Individual bioequivalence is achieved if the 90% upper confidence 

bound is less than or equal to the bioequivalence limit. 
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Individual bioequivalence is necessary in bioequivalence studies since it takes into 

account between subject variation, within subject variability and subject by 

formulation interaction, hence having the property of switchability, whereby 

patients can be changed from one drug formulation to the other, a property not 

found when assessing bioequivalence using ABE and PBE. However, in this 

research report, IBE cannot be calculated since the data used is a from a standard 

2 2 crossover design which is not appropriate for assessing IBE (FDA, 1999; 

2001; Chow and Liu, 2000 and Jones and Kenward, 2003). The FDA (1999) 

guidance for industry and FDA (2001) guidance on statistical approaches 

recommends the higher order designs such as: [RTR, TRT] or [RTRT, TRTR] for 

the evaluation of IBE. Examples of higher order designs are illustrated in Table 

3.10 In higher order designs, each study subject receives each treatment 

formulation more than one time in a sequence or period hence such designs are 

called replicate crossover designs. The more sophisticated the design becomes, the 

more information for assessing bioequivalence can be extracted. 

Table 3.10 Examples of 2 3 and 2 4 Crossover Designs 

Three period crossover design 

 

 Period 

1 2 3 

Sequence 
1 T R T 

2 R T R 
 

Four period crossover design 

 

 

 

 

To estimate the within and between subject variances, components which are 

necessary when finding IBE, the appropriate design is the replicate design. 

Pharmaceutical companies and bioequivalence regulatory bodies around the globe 

prefer using the 2 2 crossover design for assessing ABE, however, this design is 

 Period 

1 2 3 4 

Sequence 
1 T R T R 

2 R T R T 
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not adequate to estimate the subject by formulation interaction (Jones and 

Kenward, 2003). IBE is discussed in this research report but cannot be evaluated 

since some necessary components for assessing IBE cannot be obtained from a 

standard 2 2 crossover design. 

3.14 Effect Sizes 

When presenting the results of a statistical research (or study), in addition to null 

hypothesis significance tests, researchers are encouraged to also report effect sizes 

(ES) as well as their corresponding confidence intervals. Kelley and Preacher 

(2012) is for the above view, that is, of including effect sizes and confidence 

intervals when reporting research results as emphasized by methodologists, 

journal editors, reviewers and professional organizations. Elsayir (2012) states 

that effect sizes have been available for decades, though not reported by 

statisticians when presenting results of their findings from research studies. He 

also indicated that the concept of effect sizes is actually from meta-analysis. Meta-

analysis refers to a branch in social sciences and statistics where results or 

information from past research are used to motivate future studies (Nandy, 2012). 

Becker (2000) defines meta-analysis as a summary of previous research findings 

that uses quantitative methods to compare outcomes from different studies. Coe 

(2012) also indicated that effect sizes have been available for at least sixty years, 

though most of the literature on statistics does not cover effect sizes, with the 

exception of the books or material on meta-analysis. ES are rarely taught in 

introductory courses on statistics. Effect sizes are useful because: 

 They enable researchers to report the magnitude of the difference of the 

means between two treatment effects by a unit less measure. It becomes 

easy for researchers to explain whether the results are practically viable or 

not basing their opinion on the actual size of the unit less ES, instead of 

only reporting the statistical significance; 

 Effect sizes enable researchers to make comments on meta-analysis 

findings by comparing standard effect sizes from different bioequivalence 

studies; 
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 Effect sizes from past studies can be used in the planning stages of another 

study; 

 Effect sizes help in sample size calculations for any study (Coe, 2012 and 

Nandy, 2012). 

A statistical hypothesis is an assumption about the actual value of a population 

parameter, whereby there is the null hypothesis, H0 (a claim) and the alternative 

hypothesis, Hα (used to ascertain as to whether the claim is valid or not). 

Hypothesis testing refers to the formal procedure used by statisticians or 

researchers in related fields to reject or fail to reject the null hypothesis (claim). 

Results which indicate that H0 is reject (statistical significant) imply there is a 

difference, say, between means of two different groups (claim not valid). 

However, the magnitude or size of the difference is not known, hence, there is a 

need then to quantify the difference which leads to the calculation of effect sizes 

and their corresponding confidence intervals (Kelly and Preacher, 2012; Becker, 

2000; Nandy, 2012 and Elsayir, 2012). 

Researchers define effect sizes in a similar way however, there are variations in 

some of the definitions. The definition of effect size is split into the terms effect 

and size, then combined later as: Effect is a change or state of change caused by 

somebody or something while size refers to the degree of how huge or small a 

quantity is. Combining the two, effect size refers to expressing the difference of 

treatment means in terms of a specific value (Nandy, 2012). Effect size is a family 

of metrics that measure the magnitude of the difference between the treatment 

effects. ES differ from significance tests in the sense that they are independent of 

sample size (Becker, 2000 and Elsayir, 2012). Effect sizes are a family of indices 

that assign a number to the size of the difference between treatment effects and 

are used to address a question of interest (Kelly and Preacher, 2012). 

The definitions of ES by Nandy (2012), Becker (2000) and Elsayir (2012) are 

basically the same, however, the one by Kelly and Preacher (2012) is broad since 

it links effect size with the question of interest. Effect sizes determine the practical 

importance of a study. Effect size analysis actually compares the mean of the test 
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treatment group with the mean of the reference treatment group. Statistical 

significance does not indicate the magnitude of the effect hence silent on the 

practical significance of a study (Steyn, 1999). Elsayir (2012) also talks of effect 

sizes being a useful method used when presenting findings from a research study 

and interpreting how the study is effective. ES has many advantages when 

compared to tests of statistical significance. They actually propel researchers to 

report results moving beyond the null hypothesis tests. 

Confidence intervals give an indication as to whether two treatment means from 

different groups are the same or not, just like the hypotheses tests but the 

difference between an effect size and confidence interval is that an ES is an index 

that measures the magnitude of the difference of the means between treatments 

given as a range while confidence interval reflects the degree of confidence for 

having the magnitude of the difference of means in the interval. That is, effect size 

is a value, of which guidelines are then available, according to the various indices, 

on how to interpret them whereas given a confidence interval, one can indicate, 

with confidence, that a percentage of a particular statistic would lie in that interval 

(Steyn, 1999). 

Effect sizes have the following facets, where facet relates to some characteristics 

of the effect size that relates to the manner by which the term is used. Facets of ES 

include: 

 dimension, 

 measure or index, 

 value (Kelly and Preacher, 2012). 

Dimension reflects to the type of information of interest so as to identify the 

appropriate units to be used. In real life there are a variety of dimensions, for 

example in Physics, dimensions include distance, weight, density, force and many 

more, of which all of them have different units. Variance is an example of an ES 

in statistics. Variance and other related measures of dispersion (spread) are unit 

less, hence effect size dimension gives a roadmap on how a research question will 
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be addressed in terms of the difference in magnitude (generally mean values) 

(Elsayir, 2012 and Kelly and Preacher, 2012). 

Effect size measure, also known as effect size index, gives the formula that is 

suitable to calculate ES for a given situation (Lakens, 2013). 

Effect size value is the number obtained when formulae has been used on 

bioequivalence data to obtain some statistics of interest. It is the magnitude of the 

effect size which is then used when reporting research findings (Becker, 2000). 

Effect sizes are measured using a variety of formula depending on the situation 

(or study) since they vary from study to study. The two main ways of measuring 

effect sizes are: 

 By calculating the difference between the means; 

 By finding the relationship between the independent variable and the 

respective measurements of the dependent variable (Kelley and Preacher, 

2012). 

In essence, effect sizes are either reported as the magnitude of an effect or 

correlation coefficient, that is, the strength of the relationship between variables. 

The necessary characteristics of ES are that: 

 Computed numerical values need to be compared from different 

bioequivalence studies; 

 Ability to calculate the standard error; 

 Should not be directly linked to sample size (Nandy, 2012). 

The fact that ES is not affected by sample size is also shared by Becker (2000) 

and Elsayir (2012). 

Mathematically, the effect size is the magnitude of the difference between the 

actual of the statistic and the value specified in the null hypothesis. In other 

words, it is the difference between two means, generally, mean of the generic drug 



73 

minus the mean of the reference drug divided by the standard deviation of the two 

types of drugs. The division by the standard deviation is necessary since it enables 

researchers to compare effect sizes across experiments. It should be noted that 

means on their own simply gives the differences, on average, but does not say 

anything about the dispersion (spread) of the difference between the means. Types 

of effect sizes are discussed by researchers such as Nandy (2012), Becker (2000), 

Elsayir (2012), Warmbrod (2001), Lakens (2013) and Coe (2002). 

3.14.1 Mean Differences Between Group Effect Sizes 

3.14.1.1 Cohen’s, d 

Cohen’s d is calculated by t-tests if given two independent samples. These effect 

sizes fall in the interval from    to   and their interpretation is based on the 

number of standard deviations. 

d 
 ̅    ̅ 
       

 where         √
(    )  

  (    )  
 

     
   (3.14.1.1.1) 

3.14.1.2 Hedge’s, g 

Compute ES using Hedge’s, g if the sample size is small. Hedge’s compares the 

means of two groups where the mean differences have been standardized. Some 

authors on ES state that the Cohen’s, d is also known as the Hedge’s g effect sizes 

(Warmbrod, 2001; Coe, 2002 and Elsayir, 2012). While others such as Becker 

(2000), Nandy (2012) and Lakens (2013) view these two types effect sizes as 

different. The slight difference between the Cohen’s, d and the Hedge’s g effect 

sizes is the minus two on the denominator of the pooled standard deviation. 

g 
 ̅    ̅ 
       

 where         √
(    )  

  (    )  
 

       
   (3.14.1.2.1) 
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3.14.1.3 Glass’s,   

Effect sizes are calculated by the Glass’s,   if the sample has unequal variances 

for given groups. The sample standard deviation of the reference group only is 

used so that effect size would be within accepted limits (Becker, 2000). 

  
 ̅   ̅ 
  

        (3.14.1.3.1) 

General guidelines for interpretation of effect sizes: 

 Less than or equal to 0.20 is a small effect size, where the variance 

explained is 1%; 

 The magnitude of a moderate effect size is 0.50, with the variance 

explained being 10%; 

 Greater than or equal to 0.80 is a large effect accounting for 25% 

variance explained (Cohen, 1992). 

Cohen (1992) interpreted effect sizes as either being: small, medium and large 

depending on the assumption that both the reference and test groups are 

approximately normally distributed. 

3.14.2 Correlation or Regression Effect Sizes 

3.14.2.1 Pearson’s Correlation Coefficient 

Pearson’s, r 

    
∑(   ̅)(   ̅)

√∑ (      ̅)
  

   √∑ (     ̅)
  

 

 where  1     1   (3.14.2.1.1) 

Pearson’s, r is ES is used to indicate the strength of the relationship between two 

variables. 
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Pearson’s,    

Pearson’s    is known as the coefficient of determination gives the amount 

variation, in percentages, accounted for by the linear regression model.    gives 

an indication as to how the model fits data (Nandy, 2012). 

3.14.2.2 Cohen’s,    

   
  

     
  

    
       (3.14.2.2.1) 

is used in multiple linear regression where      . The standardized ES is the 

amount of variation explained by the model over the amount not explained. 

Cohen’s    is a biased estimate and tend to overestimate the ES for ANOVA. The 

unbiased estimate is called Omega-squared (Elsayir, 2012). 

3.14.3 Contigency Tables Effect Sizes 

Table 3.11 2 2 Table showing Smokers, Non-Smokers and their Disease Status 

Risk 
Disease Status 

Present Absent 

Smokers a b 

Non-smokers c d 

3.14.3.1 Odds Ratio (OR) 

OR 
  

  
        (3.14.3.1.1) 

Odds Ratio is used in situations where there are binary or categorical outcomes. 

OR values ranges from zero to infinity. If OR is greater than one, there is an 

increase in the odds relative to the reference group and a decrease in odds is 

attained if OR is less than one (Wilson, 2011). 
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3.14.3.2 Relative Risk (RR) 

RR 
 
(   )⁄

 
(   )⁄

        (3.14.3.2.1) 

RR is a measure of risk relative to the independent variable. Relative risk is 

approximately equal to OR for small probabilities. Given as: 

 
(   )⁄

 
(   )⁄

 
  

  
        (3.14.3.2.2) 

The risk of disease X among smokers in Table 3.11 is equal to the relative risk 

times the risk of disease X among non-smokers if RR is greater than one (Wilson, 

2011). 

3.14.4 ANOVA or GLM Effect Sizes 

3.14.4.1 Eta-Squared,    and Partial Eta-Squared,   
  

Both are measures that estimate the association between variables of given 

samples. 

    
           

       
 ;   

  
           

               
 where 0    1 (3.14.4.1.1) 

these ES standardizes the amount of variance shared by the continuous and 

categorical outcomes. Partial Eta-Squared accounts for the percentage of the 

variance in the dependent variable explained by the variance in the independent 

variable. The interpretation of these effect sizes is synonymous to that of    

(coefficient of determination) in linear regression. Eta-squared is biased and 

generally overestimates the variance explained in the population. However, as the 

sample size increases, Eta-squared decrease (Lakens, 2013). 
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3.14.4.2 Omega-Squared,    

 ̂  
                               

               
     (3.14.4.2.1) 

Omega-squared estimate the amount of variance in the population that is 

explained by the treatment. Omega-squared is always smaller than    or   
  since 

Omega relates to the population and Eta measures the sample variance 

(Warmbrod, 2001). 

3.14.4.3 Intraclass Correlation Coefficient 

Intra correlation coefficient (ICC) is used for finding inter-rater reliability for two 

or more raters, though can also assess test-retest reliability. The ratio between 

group variance to the total variance is also a measure of ICC. 

ICC  
                   

            (   )       
     (3.14.4.3.1) 

ICC is interpreted in a similar way as Omega-squared (Warmbrod, 2001). 

3.14.5 Chi-Square Tests Effect Sizes 

3.14.5.1 Phi, Φ 

Φ √  

 
        (3.14.5.1.1) 

used when there are crosstabs or chi-square tests specifically to test for the 

equality of proportions or tests of independence between two binary variables. Phi 

effect sizes are similar to correlation and Cohen’s, d since they all measure the 

relationship between variables. The interpretation of the phi effect sizes is like 

that for Pearson’s, r and    (Nandy, 2012). 
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3.14.5.2 Cramer’s, Φ or V 

Cramer’s phi can be used with categorical variables with more than two categories 

given contingency tables. 

   √
  

 (   )
  k min(R;C)    (3.14.5.2.1) 

measures the inter-correlation of the variables, but is biased since it increases with 

the number of cells. An increase in the number of rows and columns is an 

indication of a strong correlation between variables (Nandy, 2012). 

Table 3.12 Magnitude of Effect Sizes (Nandy, 2012, pp 28) 

Effect Size Small Medium Large 

r 0.10 0.30 0.50 

r
2
 0.01 0.09 0.25 

   0.01 0.06 0.14 

R
2
 0.01 0.06 0.14 

Cohen’s, d 0.20 0.50 0.80 

Cramer’s, V 0.10 0.30 0.50 

Cohen’s, f
2
 0.02 0.15 0.30 

OR 1.44 2.47 4.25 

 

The following is relevant regarding the choice of effect size preferred in a given 

study: 

 If all studies in the analysis are based on the same kind of data (means, 

binary or correlational), the researcher should select an effect size based 

on that kind of data; 

 When some studies use means, other studies use binary data and some 

studies use correlational data, formulae to convert among effect sizes can 

then be applied; 
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 Studies that use different measures may differ from each other in 

substantive ways hence there is a need to consider this possibility when 

deciding if it makes sense to include the various studies in the same 

analysis (Kelly and Preacher, 2012). 

When conversions are done to different ES measures, certain assumptions need to 

be made about the nature of the underlying effects. It should be noted that even if 

these assumptions do not hold exactly, the decision to use conversions is often 

better than the alternative, which is simply to omit the studies that happened to 

use a different metric since this would involve loss of information and possibly 

resulting in a biased sample of studies. Conversions were illustrated by Nandy 

(2012) moving from correlation, chi-square and odds ratio effect sizes to Cohen’s, 

d effect sizes, the formulae are given in Table 3.13. 

Table 3.13 Effect Size Conversions 

Effect Size Converted to Cohen’s (d) 

Correlation 
   

  

√    
 

Chi-Square 

         df 1 

         df > 1 

  √
   

    
 

√
   

 
 

Odds Ratio 
  

   (  )

    
 

 

It should be noted that while it is a noble idea to report effect sizes when 

presenting findings of a research study as suggested in this section, there are, 

however limitations: 

 A problem may arise when interpreting standardized effect sizes if there is 

a limit on the sample size; 
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 Where the ES is not calculated using data which follows a normal 

distribution; 

 When the ES is derived from a measure with an unknown reliability; 

 There can also be issues related to variance estimate, notably if the 

methods of calculating effect sizes may have an influence on the estimate 

of the variance, for example, if the difference between the means is 

computed from dichotomous data or if the numerator of the differences is 

adjusted for baseline or other covariates or the study data involves clusters 

(Coe, 2012). 

ES were calculated in this study on results found on ABE by using the C.I. 

approach, TOST, Wilcoxon Mann-Whitney test statistics and PBE. ES were 

also calculated on results obtained after bootstrapping. 

Results obtained after assessing ABE and PBE between the test and reference 

treatment formulations are outlined and analysed in the next chapter of this 

study. Outliers were checked and the sample size required to achieve the 

required power is also discussed. Effect sizes were used to quantify the 

difference between the ratios of means of the two treatment formulations. 
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Chapter 4 

Results and Analysis 

4.1 Introduction 

Pharmacokinetic parameters     ,     ,        and        obtained from 

sheep 1 to 14 are in Tables 4.1, 4.2, 4.3 and 4.4. Steps used for calculating 

       are in Appendices 1, 2, 3, 4 and 5. Data sets in tables mentioned above 

were used to compare the bioavailability between the test treatment and reference 

treatment formulations in this research report. 

Outliers are identified using the Cook’s likelihood distance test, though will not 

be deleted from the data set as recommended by the FDA (1992) and Patterson 

(2010). If the power of a test is at least 80%, the bioequivalence study can be done 

efficiently, saving on time and resources since the appropriate number of study 

subjects will be found prior to the commencement of the study. Section 4.3 

contains SAS 9.4 outputs illustrating the effect of sample size in determining the 

power of a test. By achieving the relevant sample size to obtain desired power of a 

test, of at least 80%, pharmacokinetic parameters for the test treatment and 

reference treatment formulations are then tested for bioequivalence. ABE is 

assessed through the classic confidence interval approach and the interval 

hypothesis testing approach using Schuirmann’s TOST procedures. Results for the 

parameter      are obtained using the nonparametric test, Wilcoxon Mann-

Whitney two one-sided test statistics. In this chapter, the test treatment and 

reference treatment formulations are shown to be population bioequivalent (PBE) 

by using the relevant criteria. Bootstrapping, a resampling method which 

increases the sample size is done and pharmacokinetic parameters        and 

     are shown to be average bioequivalent by the classic confidence interval 

approach. Effect sizes are covered in Section 4.7. 
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Table 4.1 Values of      and      in Sequence 1 

 

Animal 
   

Test 5 2 7.3284 1.991757 

 

6 2 9.4104 2.241815 

 

9 9 21 3.044522 

 

10 2.02 13.5789 2.608517 

 

11 2 9.5904 2.260763 

 

12 1 8.4611 2.135479 

 

14 1 11.4642 2.439229 

Reference 5 2 11.9468 2.480463 

 

6 1 16.2239 2.786485 

 

9 2 10.3462 2.336619 

 

10 2 12.8158 2.550679 

 

11 1 8.0715 2.088339 

 

12 0.5 14.7725 2.692767 

 

14 0.5 15.699 2.753597 

 

Table 4.2 Values of      and      in Sequence 2 

 

Animal 
   

Reference 1 2 17.303 2.85088 

 

2 2 8.5327 2.143906 

 

3 2 11.0619 2.403507 

 

4 2 10.7164 2.371775 

 

7 2 9.7471 2.27697 

 

8 2 11.4669 2.439465 

 

13 1 10.2324 2.325559 

Test 1 2 11.5974 2.450781 

 

2 2 9.3668 2.237172 

 

3 4 11.1924 2.415235 

 

4 2 12.6993 2.541547 

 

7 2 11.2346 2.418998 

 

8 2 12.7964 2.549164 

 

13 2 12.8171 2.55078 

The crossover design, Figure 3.2, was used at the University of Pretoria at 

Onderstepoort within the Directorate of Veterinary Pharmacology where 

randomization was done such that some sheep ended up in sequence 1 while 

others in sequence 2. Table 4.1 shows values of      and      from the 
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bioequivalence data obtained, courtesy of the University of Pretoria after dosing 

sheep 5, 6, 9, 10, 11, 12 and 14 in sequence 1 with the test treatment formulation 

in period 1, an adequate washout period was allowed to pass, then sheep were 

dosed with the reference treatment formulation in period 2. Table 4.2 indicates 

values of      and      for sheep 1, 2, 3, 4, 7, 8 and 13 in sequence 2 after 

dosing with the reference treatment formulation in period 1, a long enough 

washout period was taken then sheep were dosed with the test treatment 

formulation in period 2. 

Table 4.3 Calculating        for the sheep in Sequence 1 

Sequence 1 

     

 

Animal 
  

ʎ 
  

Test 5 132.0207 0.0195 0.192945 132.1218 4.883724 

 

6 170.1138 0.2103 0.130879 171.7206 5.145869 

 

9 222.0024 0.209 0.07494 224.7913 5.415172 

 

10 173.6732 0.0075 0.222355 173.7069 5.15737 

 

11 119.2981 0.1943 0.084889 121.587 4.80063 

 

12 138.9857 0.0972 0.095022 140.0086 4.941704 

 

14 190.5718 0.0664 0.160888 190.9845 5.252192 

Reference 5 170.5818 0.0597 0.10755 171.1369 5.142464 

 

6 196.4537 0.0066 0.242045 196.481 5.280566 

 

9 207.0228 0.1126 0.145411 207.7972 5.336562 

 

10 159.9659 0.0845 0.179335 160.4371 5.077902 

 

11 119.1357 0.0376 0.162292 119.3674 4.782206 

 

12 153.0361 0.1695 0.154854 154.1307 5.037801 

 

14 220.8329 0.1949 0.151353 222.1206 5.403221 

AUC was calculated using formulae 3.5.1 and 3.5.2, the procedure for the 

calculations are outlined in Appendices 1, 2, 3, 4 and 5. Table 4.3 shows values of 

       after sheep 5, 6, 9, 10, 11, 12 and 14 were dosed with the test treatment 

formulation in period 1 followed by the reference treatment formulation in period 

2. Table 4.4 is for values of        for sheep 1, 2, 3, 4, 7, 8 and 13 in sequence 2 

dosed with the reference treatment formulation in period 1 then the test treatment 

formulation in period 2. 
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Table 4.4 Calculating        for the sheep in Sequence 2 

Sequence 2 

     

 

Animal 
  

ʎ 
  

Reference1 1 167.1385 0.0336 0.19534 167.3105 5.119851 

 

2 166.5281 0.1206 0.146724 167.3501 5.120088 

 

3 181.6076 0.0852 0.166944 182.118 5.204655 

 

4 152.5701 0.1561 0.148981 153.6179 5.034468 

 

7 174.1533 0.0079 0.256715 174.1841 5.160113 

 

8 152.1165 0.0507 0.192024 152.3805 5.026381 

 

13 195.1567 0.0985 0.117522 195.9948 5.278088 

Test 1 170.3735 0.1173 0.162799 171.094 5.142213 

 

2 164.6649 0.0885 0.119894 165.4031 5.108385 

 

3 187.0004 0.1407 0.15338 187.9177 5.236004 

 

4 184.3159 0.0517 0.192347 184.5847 5.218108 

 

7 201.7071 0.1005 0.123786 202.519 5.310834 

 

8 183.1658 0.0099 0.22369 183.2101 5.210633 

 

13 214.0738 0.0992 0.172126 214.6501 5.369009 

 

4.2 Outliers 

4.2.1 Outliers for AUC from time zero to infinity 

 

Figure 4.1 Outliers for the Parameter        
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Observations 5 and 12 are outliers for the pharmacokinetic parameter       , 

transformed data, shown in Figure 4.1. Considering        for the 

untransformed data, Appendix 7, Figure 2 there are also two outliers. The same 

number of outliers for the transformed and untransformed data identified could be 

attributed to the fact that untransformed data was nearly symmetric, hence 

transforming did not change the data structure much. The histogram in Appendix 

7, Figure 1 is almost symmetric, confirming that the original data was almost 

symmetric. 

Observation 3 is the only outlier for the pharmacokinetic parameter      detected 

in Figure 4.2. Comparing the outlier outputs for the transformed and 

untransformed data, Figure 2, Appendix 8 exhibits three outlying observations 

whereas for the transformed data there is only one outlier. The histogram in 

Figure 1, Appendix 8 is skewed to the right which explains the need to transform 

the data and the difference of the number of outliers identified using transformed 

and original data. 

4.2.2 Outliers for      

 

Figure 4.2 Outliers for the Parameter      
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The Cook’s likelihood distance test was used in this research report because it 

clearly identifies the outliers, indicating the exact number of the observation 

which is an outlier graphically. Suppose other methods for detecting outliers were 

used, ED, HT or MS, the same outliers could have been identified for the 

parameters        and      though in a different format, not as figures 

obtained using the LD. 

Outliers can be detected from a dataset but cannot be removed for the evaluation 

of bioequivalence (FDA, 1992 and Patterson, 2010). An outlier detection test can 

be done but this is not necessarily an expectation of the medicine agencies. 

Deleting an outlier is unacceptable since outliers do not usually affect the overall 

results on bioequivalence because the individual observations form a negligible 

portion of the overall average results, for example, when calculating the parameter 

AUC the contribution of say one or two observations does not affect the AUC 

value that much. The inference on bioequivalence done by various regulatory 

authorities is based on the complete data set. The implication for not removing 

outlying observations when doing data analysis and evaluation is that in practice 

outliers do not exist in a bioequivalence data set. It is recommended that 

statisticians need to check for the normality assumptions in their bioequivalence 

models, though, they are advised not to spend too much time since outliers do not 

contribute much on bioequivalence results. The opinion of other authors on 

bioequivalence is that the decision of deleting outlying observations in a data set 

depends on the discretion of different bioequivalence regulatory bodies (Patterson, 

2010). 
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4.3 Power 

Table 4.5 Power        

Mu1 Mu2 StDev1 StDev2 Corr N 

5.1432 5.1566 0.04412 0.04412 0.69172 

28 

42 

56 

 

Alpha StDevDiff NCP Critical Value Power 

0.05 0.034644 

4.18906 4.21001 0.50552 

6.28360 4.07855 0.68712 

8.37813 4.01620 0.81156 

 

Table 4.6 Power      

Mu1 Mu2 StDev1 StDev2 Corr N 

2.4644 2.4204 0.0665 0.0665 -0.11476 

28 

42 

56 

 

Alpha StDevDiff NCP Critical Value Power 

0.05 0.099295 

5.49805 4.21001 0.61826 

8.24708 4.07855 0.80065 

10.9961 4.01620 0.90279 

In Tables 4.5 and 4.6, Mu1 and Mu2 are the least squares mean for the test and 

reference treatments respectively while StDev1 and StDev2 are the respective 

standard deviations for the test and reference treatment formulations. For the 

parameter AUC the power of the test increases from 0.50552 to 0.68712 and 

eventually to 0.81156 shown in Table 4.5 as the sample size increases from 28, 42 
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and 56 respectively. Considering the parameter      as the sample sizes increase 

from 28 to 42 and to 56, the respective power increases from 0.61826 to 0.80065 

and finally to 0.90279 in Table 4.6. 

This confirms the discussion in Section 3.9 stating that as the sample size 

increases, the power of a test also increases. This strategy of increasing the power 

is used if the power is low. Increasing the power of a test by taking a larger 

sample size improves the ability to find the difference in means of the treatment 

formulations when they indeed exist. As the population variance gets smaller, the 

power of a test improves by increasing and vice versa and as differences in means 

increases the power increases, but the researcher has no control over the 

population variances or difference in means. The feasible way for the researcher 

to improve the power of a test if it is low, is to increase the sample size (Elsayir, 

2012). 

4.4 Average Bioequivalence 

4.4.1 Confidence Intervals Approach 

4.4.1.1 Classic Confidence Interval of the Difference 

The ANOVA Table 4.7 is used to find the variance (mean square error) which is 

half of 0.00565711 obtained from model 3.4.1 and needed when calculating 

confidence intervals (C.I.) using formula 2.7.2.1.1. The variance for a 2 2 

crossover design is multiplied by 0.5, however, if a parallel design is used the 

MSE in Table 4.7 is captured as it is for purposes of calculating C.I. (Concordet, 

2004). Multiplying the MSE by 0.5 is done in all cases where the ANOVA using 

GLM procedure is done, that is, in Tables 4.10 and 4.13.  
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Table 4.7 ANOVA for        using the GLM Procedure in SAS 9.4 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 15 0.66681567 0.04445438 7.86 0.0005 

Error 12 0.06788537 0.00565711     

Corrected Total 27 0.73470104       

 

R-Square Coeff Var Root MSE           

0.907601 1.461718 0.075214 5.145576 

 

Source DF Type I SS Mean Square F Value Pr > F 

Treatment 1 0.00092452 0.00092452 0.16 0.6931 

Period 1 0.04656188 0.04656188 8.23 0.0141 

Seq 1 0.02983240 0.02983240 5.27 0.0405 

Animal 12 0.58949687 0.04912474 8.68 0.0004 

 

Table 4.8 ANOVA for        using Mixed Procedure in SAS 9.4 

Least Squares Means 

Treatment Estimate S.E. DF t Value Pr > |t| Alpha 

Lower 

Bound 

Upper 

Bound 

R 5.1398 0.04423 12 116.20 <.0001 0.1 5.0610 5.2187 

T 5.1513 0.04423 12 116.46 <.0001 0.1 5.0725 5.2302 

 

ANOVA Table 4.8 provides the mean for the reference treatment, 5.1398 and the 

mean for the test treatment, 5.1513. 
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Table 4.9 Confidence Intervals (C.I.) for AUC from time zero to time t 

 Standard 

error 

Lower 

Bound 

Lower 90% 

Confidence 

Limit 

Upper 90% 

Confidence 

Limit 

Upper 

Bound 

C.I. for 

difference 

of means 
0.02843 

 0.2231  0.03917 0.06217 0.2231 

C.I. for 

ratio of 

means 

0.8 0.96159 1.06414 1.25 

 

Average bioequivalence of the two treatment drug formulations has been achieved 

at 5% significance level using classic C.I. of the difference of the means as well as 

the classic C.I. of the ratio of the means since for the C.I. of the differences, the 

limits  0.03917 and 0.06217 in Table 4.9 lie entirely in the acceptance range, 

 0.2231 to 0.2231. For the C.I. on the ratios, 0.96159 and 1.06414 in Table 4.9 

lie entirely in the acceptance interval of 0.8 to 1.25. 

Therefore the test treatment and reference treatment formulations are average 

bioequivalent using the pharmacokinetic parameter AUC from time zero to time t 

by the classic confidence interval approach. 
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Table 4.10 ANOVA for        using GLM Procedure in SAS 9.4 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 15 0.65811748 0.04387450 7.58 0.0006 

Error 12 0.06941768 0.00578481     

Corrected 

Total 27 0.72753516       

 

R-Square Coeff Var Root MSE           

0.904585 1.476892 0.076058 5.149865 

 

Source DF Type I SS Mean Square F Value Pr > F 

Treatment 1 0.00125533 0.00125533 0.22 0.6497 

Period 1 0.04444893 0.04444893 7.68 0.0169 

Seq 1 0.02774817 0.02774817 4.80 0.0490 

Animal 12 0.58466505 0.04872209 8.42 0.0004 

The MSE for the parameter AUC to infinity is half of 0.00578481 in Table 4.10 

obtained using model 3.4.1. 

Table 4.11 ANOVA for        using Mixed Procedure in SAS 9.4 

Least Squares Means 

Treatment Estimate S.E. DF t Value Pr > |t| Alpha L.B. U.B. 

R 5.1432 0.04412 12 116.57 <.0001 0.1 5.0645 5.2218 

T 5.1566 0.04412 12 116.87 <.0001 0.1 5.0779 5.2352 

The mean for the reference treatment drug is 5.1432 while the one for the test 

treatment formulation is 5.1566, both in Table 4.11.  
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Table 4.12 Confidence Intervals for AUC from time zero to infinity 

 Standard 

error 

Lower 

Bound 

Lower 90% 

Confidence 

Limit 

Upper 90% 

Confidence 

Limit 

Upper 

Bound 

C.I. for 

difference 

of means 
0.02875 

 0.2231  0.03784 0.06464 0.2231 

C.I. for 

ratio of 

means 

0.8 0.96287 1.06677 1.25 

The lower confidence limits and upper confidence limits for the mean differences 

of the parameter AUC from time zero to infinity,   .03784 and 0.06464 in Table 

4.12 for the two treatment formulations are totally included within the average 

bioequivalence bounds  0.2231 and 0.2231. 

Similarly, for the confidence intervals for the ratio of the means, 0.96287 and 

1.06677 in Table 4.12 lies entirely within the average bioequivalence range, 0.8 to 

1. 25. 

Average bioequivalence of the two treatment formulations, test and reference 

formulations, is therefore concluded for the parameter AUC from time zero to 

infinity using the classic confidence interval approach. 
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Table 4.13 ANOVA for      using GLM Procedure in SAS 9.4 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 15 0.76395940 0.05093063 0.76 0.6965 

Error 12 0.80427853 0.06702321     

Corrected 

Total 27 1.56823793       

 

R-Square Coeff Var Root MSE            

0.487145 10.59982 0.258888 2.442385 

 

Source DF Type I SS Mean Square F Value Pr > F 

Treatment 1 0.01351912 0.01351912 0.20 0.6613 

Period 1 0.06208561 0.06208561 0.93 0.3548 

Seq 1 0.00676723 0.00676723 0.10 0.7561 

Animal 12 0.68158744 0.05679895 0.85 0.6105 

 

The MSE for the parameter      is half of 0.06702321 in Table 4.13 found using 

the model 3.4.1. 

Table 4.14 ANOVA for      using Mixed Procedure in SAS 9.4 

Least Squares Means 

Treatment Estimate S.E. DF t Value Pr > |t| Alpha L.B. U.B. 

R 2.4644 0.06650 12 37.06 <.0001 0.1 2.3458 2.5829 

T 2.4204 0.06650 12 36.40 <.0001 0.1 2.3019 2.5389 
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From Table 4.14, the least mean squares 2.4644 and 2.4204 for the reference 

treatment and test treatment, respectively, are obtained. 

Table 4.15 Confidence Intervals for      

 Standard 

error 

Lower 

Bound 

Lower 90% 

Confidence 

Limit 

Upper 90% 

Confidence 

Limit 

Upper 

Bound 

C.I. for 

difference 

of means 
0.09785 

 0.2231  0.21860 0.13040 0.2231 

C.I. for 

ratio of 

means 

0.8 0.80364 1.13928 1.25 

Average bioequivalence of the two treatments has been achieved using the classic 

confidence interval approach for the difference of means of parameter      

because both confidence limits  0.21840 and 0.13040 in Table 4.15 are totally 

included in the acceptance range of  0.2231 to 0.2231.  

Considering the C.I. for the ratio of means, average bioequivalence is also 

concluded since the confidence limits 0.80364 and 1.13928, Table 4.15, lies 

entirely in the acceptance range of 0.8 to 1.25. 

The test treatment and reference treatment formulations have been shown to be 

average bioequivalent using the classic confidence interval approach. 

4.4.2 Interval Hypothesis Testing Approach 

4.4.2.1 Schuirmann’s Two One-Sided tests procedure 

The generally accepted method of testing for ABE according to Jones and 

Kenward (2003) and Chow and Liu (2000) is the TOST procedure proposed by 

Schuirmann (1987). 

The Schuirmann’s two one-sided tests lower and upper limits, 0.9908 and 1.0153, 

calculated by using 2.7.3.1.4 are obtained from Table 4.16. The geometric mean is 
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applied hence the confidence limits are for the ratio of means. The lower and 

upper limits (above) lie entirely in the confidence acceptance range 0.8 to 1.25, 

which implies that average bioequivalence is achieved. 

Using the hypotheses approach, average bioequivalence is achieved if    is 

rejected on both sets, in favour of the alternative hypothesis. C.I. limits in Table 

4.16 indicate that the null hypothesis of 2.7.3.1.2 is rejected on both sides of the 

test, therefore, average bioequivalence is concluded using the Schuirmann’s two 

one-sided tests procedure at 5% significance level for the parameter AUC from 

time zero to infinity. 

Table 4.16 TOST for        

N 

Geometric 

Mean Coefficient of Variation Minimum Maximum 

14 1.0030 0.0258 0.9491 1.0363 

 

Geometric 

Mean 95% CL Mean Coefficient of Variation 95% CL CV 

1.0030 0.9881 1.0180 0.0258 0.0187 0.0415 1.0030 

 

Geometric 

Mean 

Lower 

Bound   90% CL Mean   

Upper 

Bound Assessment 

1.0030 0.8 < 0.9908 1.0153 < 1.25 Equivalent 

 

Test Null DF t Value P-Value 

Lower 0.8 13 32.82 <.0001 

Upper 1.25 13 -31.96 <.0001 

Overall       <.0001 
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Table 4.17 TOST for      

N Geometric Mean Coefficient of Variation Minimum Maximum 

14 0.9815 0.1474 0.7930 1.3030 

 

Geometric 

Mean 95% CL Mean Coefficient of Variation 95% CL CV 

0.9815 0.9018 1.0682 0.1474 0.1066 0.2396 

 

Geometric 

Mean 

Lower 

Bound   90% CL Mean   

Upper 

Bound Assessment 

0.9815 0.8 < 0.9157 1.0520 < 1.25 Equivalent 

 

Test Null DF t Value P-Value 

Lower 0.8 13 5.22 <.0001 

Upper 1.25 13 -6.17 <.0001 

Overall       <.0001 

Average bioequivalence is concluded using      as in Table 4.17, 0.9157 to 

1.052 is totally included in the average bioequivalence interval, 0.8 to 1.25. 

Considering hypotheses 2.7.3.1.2, both sets rejects the null hypothesis, which 

implies that average bioequivalence is found between the two treatment 

formulations at 5% level of significance using the Schuirmann’s two one-sided 

tests procedures. 

4.4.3 Wilcoxon Mann-Whitney Two One-Sided test statistics 

For the pharmacokinetic parameter      the Wilcoxon Mann-Whitney test 

statistics are shown in Appendix 6 and the ±20 rule is used since the data is 

untransformed.      is sampled from discrete values, thus a nonparametric 

method is applied to assess ABE. RL calculated using equation 2.7.4.10 and    

are the sum of ranks of the response for sheep in sequence 1 and sum of ranks for 
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sheep in sequence 2 respectively. WL and    the Wilcoxon Mann-Whitney test 

statistics for the null and alternative hypothesis respectively are calculated using 

equations 2.7.4.11 and 2.7.4.13 respectively. 

Table 4.18 Wilcoxon Mann-Whitney Two One-Sided test statistics 

RL 77    57 

WL  49    29 

W0.95 37 W7;7;0.05 40 

Recall the hypothesis is as follows: 

      
                   

    and       
                  

    

Of which the decision rule says: 

                        (   ) and we reject     if     ( ), whereby 

average bioequivalence is achieved if both sets of hypotheses are rejected at 5% 

significance level. 

The Wilcoxon Mann-Whitney two one-sided test statistics indicate that indeed 

    is rejected at 5% level of significance and     is also rejected. Average 

bioequivalence of the two treatments, the test and reference drug formulations is 

concluded since   =49 is greater than  (   )=37 and   =29 is less than 

 ( )=40. 

4.5 Population Bioequivalence 

Kenward and Jones (2003) suggested that PBE can be calculated using data either 

from the 2 2 crossover design or from a replicate design, as long as an 

appropriate mixed model is fitted. The same view is shared by the FDA (1999, 

2001), whereby they state that the standard 2   crossover design may be used for 

PBE. 
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ANOVA Tables 4.19, 4.20 and 4.21 on covariance parameter estimates       , 

      and      indicates FA(1,1) and FA(2,2) the total variance for the 

reference treatment formulation and total variance for the total variance of the test 

treatment formulation respectively. Least square means, reference and test 

treatment formulations for       ,        and      are obtained from Tables 

4.8, 4.11 and 4.14 respectively. The values of FA(1,1) and FA(2,2) are substituted 

in equation 2.7.5.1, the reference-scaled moment based criterion for finding the 

population bioequivalence value to be compared to   =1.7448, the population 

bioequivalence limit FDA (2001). The reference-scaled criterion is applied in all 

the three cases since   
      

 , that is, the total variance for the reference drug 

formulation is greater than 0.04, the pre-specified constant total variance. If the 

specified constant total variance was less than the total variance for the reference 

treatment drug then the constant-scaled criterion 2.7.5.2 could have been used. 

Table 4.19 ANOVA for Covariance Parameter Estimates for AUC from time zero 

to time t 

Covariance Parameter Estimates 

Cov Parm Subject Group Estimate 

FA(1,1) Animal   0.1610 

FA(2,1) Animal   0.1350 

FA(2,2) Animal   0.09814 

Residual Animal Treatment R 0.000486 

Residual Animal Treatment T 0.000518 

 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Seq 1 12 0.61 0.4509 

Period 1 12 8.23 0.0141 

Treatment 1 12 0.16 0.6931 

 

Estimates 

Label Estimate S.E. DF t value Pr > |t| Alpha L.B. U.B. 

test-ref 0.0114 0.0284 12 0.40 0.6931 0.1 -0.0391 0.0621 
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Table 4.20 ANOVA for Covariance Parameter Estimates for AUC from time zero 

to infinity 

Covariance Parameter Estimates 

Cov Parm Subject Group Estimate 

FA(1,1) Animal   0.1612 

FA(2,1) Animal   0.1311 

FA(2,2) Animal   0.1001 

Residual Animal Treatment R 0.000530 

Residual Animal Treatment T 0.000537 

 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Seq 1 12 0.52 0.4837 

Period 1 12 6.97 0.0216 

Treatment 1 12 0.29 0.5991 

 

Estimates 

Label Estimate S.E DF t value Pr > |t| Alpha L.B. U.B. 

test-ref 0.0158 0.0292 12 0.54 0.5991 0.1 -0.0363 0.0679 
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Table 4.21 ANOVA for Covariance Parameter Estimates for      

Covariance Parameter Estimates 

Cov Parm Subject Group Estimate 

FA(1,1) Animal   0.2312 

FA(2,1) Animal   -0.02211 

FA(2,2) Animal   0.2594 

Residual Animal Treatment R 0.002344 

Residual Animal Treatment T 0.000233 

 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Seq 1 12 0.12 0.7359 

Period 1 12 0.93 0.3548 

Treatment 1 12 0.20 0.6613 

 

Estimates 

Label Estimate S.E. DF t value Pr > |t| Alpha L.B. U.B. 

test-ref -0.0439 0.0978 12 -0.45 0.6613 0.1 -0.2183 0.1305 

Table 4.22 compares population bioequivalence values (    ) for the 

pharmacokinetic parameters        ,        and     . All the      values are 

less than 1.7448 (population bioequivalent limit) FDA (2001). Therefore 

population bioequivalence of the two treatment formulations, reference and test, 

has been achieved using the moment-based criterion 2.7.5.1.  
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Table 4.22 Evaluation of Population Bioequivalence 

         Results Conclusion 

       0.904515 

1.7448 

Reject    
Population 

Bioequivalent 

       0.906715 Reject    
Population 

Bioequivalent 

     1.070594 Reject    
Population 

Bioequivalent 

The hypotheses criterion for assessing population bioequivalence equivalent to 

criterion 2.7.5.1 and 2.7.5.2 is: 

  
   :        versus   

   :        

Population bioequivalence is concluded if   
    is rejected. 

In Table 4.22, the null hypothesis is rejected in favour of the alternative 

hypothesis therefore population bioequivalence is concluded for       ,        

and for     . 

4.6 Bootstrapping 

Bootstrapping resamples are on Appendix 9. These bootstrap samples were 

obtained using the INDEX function on Excel. The function is: INDEX((range of 

cells), ROWS(range of cells)*RAND()+1, COLUMNS(range of 

cells)*RAND()+1) (Rochowicz, 2011).  
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4.6.1 Bootstrapping        

Table 4.23 ANOVA for the Bootstrap Samples of        using the GLM 

Procedure in SAS 9.4 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 15 0.13972056 0.00931470 0.42 0.9701 

Error 96 2.13268671 0.02221549     

Corrected 

Total 111 2.27240727       

 

R-Square Coeff Var Root MSE           

0.061486 2.887142 0.149049 5.162497 

 

Source DF Type I SS Mean Square F Value Pr > F 

Treatment 1 0.00020412 0.00020412 0.01 0.9238 

Period 1 0.02811500 0.02811500 1.27 0.2634 

Seq 1 0.02184208 0.02184208 0.98 0.3239 

Animal 12 0.08955937 0.00746328 0.34 0.9805 

 

Table 4.24 ANOVA for the Bootstrap Samples of        using the Mixed 

Procedure in SAS 9.4 

Least Squares Means 

Treatment Estimate S.E. DF t value Pr > |t| Alpha L.B. U.B. 

R 5.1638 0.01917 96 269.39 <.0001 0.1 5.1320 5.1957 

T 5.1611 0.01917 96 269.25 <.0001 0.1 5.1293 5.1930 
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The MSE is half of 0.02221549 in Table 4.23 the least mean squares for the test 

and reference formulation are 5.1611 and 5.1638 respectively from Table 4.24. 

The calculated C.I for bootstrap samples is for the ratio of means. When 

calculating the bootstrap C.I. the critical values used are from the Normal 

distribution since the sample size is large, n=112. For a large sample the t-

distribution approximates the Normal distribution. Table 4.25 indicates that the 

bootstrap C.I. for AUC from time zero to infinity is 0.98281 to 1.02119 which lies 

entirely in the confidence acceptance region 0.8 to 1.25. ABE is therefore 

concluded for the bootstrap samples by using the classic C.I. approach. 

Table 4.25 Bootstrap C.I. for        

 Standard 

error 

Lower 

Bound 

Lower 90% 

Confidence 

Limit 

Upper 90% 

Confidence 

Limit 

Upper 

Bound 

C.I. for 

ratio of 

means 

0.02817 0.8 0.98281 1.02119 1.25 

 

  



104 

4.6.2 Bootstrapping      

Table 4.26 ANOVA for the Bootstrap Samples of      using the GLM 

Procedure in SAS 9.4 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 15 1.11089103 0.07405940 1.49 0.1228 

Error 96 4.75928937 0.04957593     

Corrected 

Total 111 5.87018040       

 

R-Square Coeff Var Root MSE            

0.189243 9.183376 0.222657 2.424561 

 

Source DF Type I SS Mean Square F Value Pr > F 

Treatment 1 0.09528051 0.09528051 1.92 0.1689 

Period 1 0.00001635 0.00001635 0.00 0.9855 

Seq 1 0.59020016 0.59020016 11.90 0.0008 

Animal 12 0.42539402 0.03544950 0.72 0.7334 

The MSE is 0.5 0.04957593 obtained in Table 4.26 while the least squares mean 

for the test treatment is 2.4537 and that of the reference treatment is 2.3954 in 

Table 4.27. The calculated C.I. for the ratio of means for the pharmacokinetic 

parameter      is 1.0371 to 1.09818 in Table 4.28. This confidence interval is 

totally included in the ABE acceptance region 0.8 to 1.25. Bootstrap samples of 

     have been proved to be average bioequivalent by the classic C.I. approach. 
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Table 4.27 ANOVA for the Bootstrap Samples of      the Mixed Procedure in 

SAS 9.4 

Least Squares Means 

Treatment Estimate S.E. DF t value Pr > |t| Alpha L.B. U.B. 

R 2.3954 0.02928 96 81.81 <.0001 0.1 2.3468 2.4440 

T 2.4537 0.02928 96 83.81 <.0001 0.1 2.4051 2.5024 

Table 4.28 Bootstrap C.I. for      

 Standard 

error 

Lower 

Bound 

Lower 90% 

Confidence 

Limit 

Upper 90% 

Confidence 

Limit 

Upper 

Bound 

C.I. for 

ratio of 

means 

0.04208 0.8 1.03710 1.09818 1.25 

 

4.7 Effect Sizes 

Table 4.29 Effect Sizes Values for Different Types of ES 

Effect size             

Cohen’s d 2.316 0.656 

Pearson’s, r 0.692 0.115 

Eta-Squared,    0.002 0.018 

Pearson’s, r and Eta-Squared,    ES are calculated using equations 3.14.2.1.1 and 

3.14.4.1.1 of which, according to Cohen (1992), both ES are interpreted as small. 

This implies that there is an insignificant difference of bioavailability between the 

two treatment formulations. Eta’s squared for        effect size, 0.002, is also a 

small ES. However, the parameter exhibits a        medium ES, 0.692, using 

Pearson’s and a large ES, 2.316, using Cohen’s, d.      also has a medium ES 

when calculated using Cohen’s, d. Ideally, all ES should be small since for two 

treatment formulations to be bioequivalent, the magnitude of the difference of the 

means should be minimal. 
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A summary of the results discussed in this chapter follows in the next chapter. We 

consider all statistical tests carried out and then conclude as whether the aims and 

objectives of the study were achieved or not. Limitations of the study and possible 

improvements which can be done are also covered in the next chapter. 
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Chapter 5 

Conclusion on Results and Recommendations 

5.1 Introduction 

The aims and objectives of this research report have been achieved since it has 

been established by statistical techniques that the test and reference treatment 

formulations are ABE and PBE. Generic drugs (test), which cost less as compared 

to the brand name drugs (reference) can be taken without much fear because it can 

be shown that two treatment formulations are bioequivalent hence reducing the 

cost of healthcare. The model used, 2 2 crossover design, is however inadequate 

for assessing IBE which gives room for the use of a higher order model. 

5.2 Summary 

Average bioequivalence between the test and reference drugs used in this research 

report is achieved for the pharmacokinetic parameters AUC and      by using the 

classical (shortest) confidence intervals, Schuirmann’s two one-sided tests and 

interval hypotheses. ABE is also concluded from the bootstrap samples of 

       and      by using the classic C.I. approach. For the parameter      

evaluated by the nonparametric test, Wilcoxon Mann-Whitney two one-sided test 

statistics, we also conclusively arrive at the decision of average bioequivalence 

between the generic and brand name drug since both sides of the test suggests that 

the formulations are bioequivalent. Using the Wilcoxon Mann-Whitney two one-

sided test statistics, both sides of the test should be average bioequivalent but if 

one is not, then bioequivalence is not wholly achieved. 

Pharmacokinetic parameters,       ,        and      proved to be population 

bioequivalent because      is less than 1.7448 (population bioequivalence limit). 

Using hypothesis 2.7.5.3,   
    is rejected, confirming that the two treatment 

formulations are bioequivalent. Outliers could not have had too much effect on 

the results as discussed in the analysis Section 4.2. Individual bioequivalence 
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could not be assessed due to the inadequacy of the model design used for dosing, 

that is, the 2 2 crossover model, discussed in Section 3.13.3. 

Based on the results obtained for average bioequivalence and population 

bioequivalence, it can be indicated that bioequivalence studies can go a long way 

if applied by regulatory authorities in various countries on certifying drug 

formulations as bioequivalent or not, hence reducing healthcare costs. Generic 

drugs should be as safe and effective as brand name drugs, of which, to guarantee 

safety and effectiveness of generic drugs bioequivalence studies play a crucial 

role. It should be stressed that the quality of generic drugs should not be 

compromised, but should be similar to that of brand name drugs. 

5.3 Conclusion 

Many physicians and pharmacists have done research on average bioequivalence 

and the majority of them concur that there are limitations if drugs are certified as 

bioequivalent by assessing average bioequivalence only. They agree that it is not 

enough to show that drugs are average bioequivalent instead there is a need to 

investigate population and individual bioequivalence. As discussed above, 

population and individual bioequivalence have components which are not 

possessed by average bioequivalence which are important if drugs are to be 

certified as bioequivalent. ABE looks at only the comparison of means between 

the generic and brand name drug, while, PBE compare the means and variances of 

the test and reference formulation and has a property of prescribability. IBE 

compares means, within subject variances and subject by formulation interaction, 

hence has a property of switchability, where a patient can be safely and effectively 

transferred from one drug formulation to the other. PBE and IBE offer more 

components which are important when certifying drugs as being bioequivalent. 

But, there are challenges faced, especially when implementing IBE. Individual 

bioequivalence requires higher order designs and is expensive to carry out. 

Bioequivalence studies are worthwhile in certifying drugs as bioequivalent, 

leading to people buying generic drugs at a lower cost as compared to brand name 

drugs, hence reducing healthcare costs. However, there are issues which make 
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people not to be completely satisfied when purchasing generic drugs. For 

example, bioequivalence procedures were not properly followed in the US in the 

late 1980s on certifying drugs as bioequivalent which led the public to develop 

lack of confidence on generic drugs. Other issues include: 

 The development of generic drugs does not require large and extensive 

trials to be conducted on study subjects hence, generic drugs are still 

viewed as inferior compared to the brand name drugs; 

 The use of the same acceptance limit(s) for all drugs by most regulatory 

authorities is questionable since some treatment formulations have a 

narrow or wide therapeutic range; 

 Use of normal and healthy subjects, generally between 18 and 55 years is 

of concern since this sample age group cannot be representative of the 

whole population in various countries. Infants and elderly, say, above 70 

years are likely to react differently when they take the same drugs with 

people who are in the interval 18 to 55 years; 

 Packaging of the generic drugs (different from the brand name) can also be 

an issue to be concerned about, especially to the elderly (Meredith, 2003). 

5.4 Recommendations 

The use of generic drugs has generally gained momentum worldwide. As a result, 

bioequivalence studies still need to be improved so as to overcome some of the 

issues noted above, which lead some people to view generic drugs as inferior 

compared to brand name drugs. Issues which need to be addressed so as to 

improve bioequivalence include: 

 Higher order crossover designs should be used because there are the ones 

needed to evaluate IBE. Drugs with high intra subject (within) or inter 

subject (between) variability which are not covered by ABE but are dealt 

with under IBE; 

 Additional simulation assessment must be considered when evaluating the 

value of data collection period for PBE and IBE; 
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 The sensitivity of subject by formulation interaction to sample size and 

inherent variability of the compounds should be further explored through 

simulation studies. 

The use of generic drugs all over the world will continue because generic drugs 

are cheaper, hence, reduces the cost of healthcare. Though generic drugs are 

cheaper, caution must always be taken when using them especially with regard to 

certain drug classes and patient populations. 
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Appendices 

 

Appendix 1 Concentration Time Profiles for Subject (Sheep) and 

Period after dosing with Reference and Test Formulations. 

 
Figure 1: Fit Plot for Concentration Time Profile for Sheep 1, 

Sequence 2, Test Treatment in Period 2 

 
Figure 3: Fit Plot for Concentration Time Profile for Sheep 2, 

Sequence 2, Reference Treatment in Period 1 

 

 

 

 

 

 
Figure 2: Fit Plot for Concentration Time Profile for Sheep 1, 

Sequence 2, Reference Treatment in Period 1 

  
Figure 4: Fit Plot for Concentration Time Profile for Sheep 2, 

Sequence 2, Test Treatment in Period 2 
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Figure 5: Fit Plot for Concentration Time Profile for Sheep 3, 

Sequence 2, Test Treatment in Period 2 

 

 

 

Figure 7: Fit Plot for Concentration Time Profile for Sheep 4, 

Sequence 2, Reference Treatment in Period 1 

 

Figure 6: Fit Plot for Concentration Time Profile for Sheep 3, 

Sequence 2, Reference Treatment in Period 1 

 

 

  

Figure 8: Fit Plot for Concentration Time Profile for Sheep 4, 

Sequence 2, Test Treatment in Period 2 
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Figure 9: Fit Plot for Concentration Time Profile for Sheep 5, 

Sequence 1, Reference Treatment in Period 2 

 

 

 

Figure 11: Fit Plot for Concentration Time Profile for Sheep 6, 

Sequence 1, Test Treatment in Period 1 

  

Figure 10: Fit Plot for Concentration Time Profile for Sheep 5, 

Sequence 1, Test Treatment in Period 1 

 

 

  

Figure 12: Fit Plot for Concentration Time Profile for Sheep 6, 

Sequence 1, Reference Treatment in Period 2 
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Figure 13: Fit Plot for Concentration Time Profile for Sheep 7, 

Sequence 2, Test Treatment in Period 1 

 

 

 

Figure 15: Fit Plot for Concentration Time Profile for Sheep 8, 

Sequence 2, Reference Treatment in Period 1 

  

Figure 14: Fit Plot for Concentration Time Profile for Sheep 7, 

Sequence 2, Test Treatment in Period 1 

 

 

  

Figure 16: Fit Plot for Concentration Time Profile for Sheep 8, 

Sequence 2, Test Treatment in Period 2 
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Figure 17: Fit Plot for Concentration Time Profile for Sheep 9, 

Sequence 1, Reference Treatment in Period 2 

 

 

 

Figure 19: Fit Plot for Concentration Time Profile for Sheep 10, 

Sequence 1, Test Treatment in Period 1 

  

Figure 18: Fit Plot for Concentration Time Profile for Sheep 9, 

Sequence 1, Test Treatment in Period 1 

 

 

  

Figure 20: Fit Plot for Concentration Time Profile for Sheep 10, 

Sequence 1, Reference Treatment in Period 2 
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Figure 21: Fit Plot for Concentration Time Profile for Sheep 11, 

Sequence 1, Test Treatment in Period 1 

 

 

 

Figure 23: Fit Plot for Concentration Time Profile for Sheep 12, 

Sequence 1, Test Treatment in Period 1 

  

Figure 22: Fit Plot for Concentration Time Profile for Sheep 11, 

Sequence 1, Reference Treatment in Period 2 

 

 

  

Figure 24: Fit Plot for Concentration Time Profile for Sheep 12, 

Sequence 1, Reference Treatment in Period 2 
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Figure 25: Fit Plot for Concentration Time Profile for Sheep 13, 

Sequence 2, Test Treatment in Period 2 

 

 

 

Figure 27: Fit Plot for Concentration Time Profile for Sheep 14, 

Sequence 1, Test Treatment in Period 1 

  

Figure 26: Fit Plot for Concentration Time Profile for Sheep 13, 

Sequence 2, Reference Treatment in Period 1 

 

 

 

Figure 28: Fit Plot for Concentration Time Profile for Sheep 14, 

Sequence 1, Reference Treatment in Period 2 
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Appendix 2 Calculating AUC from time zero to time t. 

 

 Actual 

time Animal Conc Treatment  

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

0.00 1 0 T NA NA NA 0.00 1 0 R NA NA NA 

0.50 1 8.3332 T 4.1666 0.50 2.0833 0.50 1 10.1554 R 5.0777 0.50 2.53885 

1.00 1 10.4159 T 9.37455 0.50 4.687275 1.00 1 12.5728 R 11.3641 0.50 5.68205 

2.00 1 11.5974 T 11.00665 1.00 11.00665 2.00 1 17.303 R 14.9379 1.00 14.9379 

4.05 1 11.1884 T 11.3929 2.05 23.35545 4.00 1 9.9144 R 13.6087 2.00 27.2174 

6.07 1 8.204 T 9.6962 2.02 19.554 6.00 1 8.5193 R 9.21685 2.00 18.4337 

9.00 1 7.1336 T 7.6688 2.93 22.49515 9.03 1 6.1342 R 7.32675 3.03 22.22448 

12.00 1 5.1534 T 6.1435 3.00 18.4305 12.00 1 4.4043 R 5.26925 2.97 15.63211 

24.00 1 1.7674 T 3.4604 12.00 41.5248 24.00 1 1.8197 R 3.112 12.00 37.344 

36.00 1 0.7566 T 1.262 12.00 15.144 36.00 1 0.687 R 1.25335 12.00 15.0402 

48.00 1 0.2632 T 0.5099 12.00 6.1188 48.03 1 0.1749 R 0.43095 12.03 5.185765 

72.00 1 0.1173 T 0.19025 24.00 4.566 72.00 1 0.0336 R 0.10425 23.97 2.498525 

96.00 1 0 T 0.05865 24.00 1.4076 96.02 1 0 R 0.0168 24.02 0.40348 

      

170.3735 

      

167.1385 
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Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

0.00 2 0 R NA NA NA 0.00 2 0 T NA NA NA 

0.50 2 6.0324 R 3.0162 0.50 1.5081 0.50 2 7.7087 T 3.85435 0.50 1.927175 

1.00 2 8.3025 R 7.16745 0.50 3.583725 1.00 2 8.9049 T 8.3068 0.50 4.1534 

2.00 2 8.5327 R 8.4176 1.00 8.4176 2.00 2 9.3668 T 9.13585 1.00 9.13585 

4.00 2 7.8854 R 8.20905 2.00 16.4181 4.00 2 8.2435 T 8.80515 2.00 17.6103 

6.00 2 7.6404 R 7.7629 2.00 15.5258 6.00 2 6.3296 T 7.28655 2.00 14.5731 

9.00 2 6.7815 R 7.21095 3.00 21.63285 9.00 2 5.3302 T 5.8299 3.00 17.4897 

12.00 2 4.9191 R 5.8503 3.00 17.5509 12.00 2 3.9859 T 4.65805 3.00 13.97415 

24.00 2 2.4476 R 3.68335 12.00 44.2002 24.00 2 3.113 T 3.54945 12.00 42.5934 

36.00 2 0.9889 R 1.71825 12.00 20.619 36.00 2 1.0224 T 2.0677 12.00 24.8124 

48.00 2 0.458 R 0.72345 12.00 8.6814 48.00 2 0.3971 T 0.70975 12.00 8.517 

72.00 2 0.1206 R 0.2893 24.00 6.9432 72.00 2 0.1688 T 0.28295 24.00 6.7908 

96.00 2 0 R 0.0603 24.00 1.4472 96.00 2 0.0885 T 0.12865 24.00 3.0876 

      

166.5281 

      

164.6649 
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Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

0.00 3 0 T NA NA NA 0.00 3 0 R NA NA NA 

0.50 3 6.3276 T 3.1638 0.50 1.5819 0.50 3 9.5422 R 4.7711 0.50 2.38555 

1.00 3 9.0636 T 7.6956 0.50 3.8478 1.03 3 10.5317 R 10.03695 0.53 5.35304 

2.00 3 11.0009 T 10.03225 1.00 10.03225 2.00 3 11.0619 R 10.7968 0.97 10.43691 

4.00 3 11.1924 T 11.09665 2.00 22.1933 4.00 3 10.7004 R 10.88115 2.00 21.7623 

6.00 3 10.0088 T 10.6006 2.00 21.2012 6.00 3 9.3407 R 10.02055 2.00 20.0411 

9.00 3 8.2297 T 9.11925 3.00 27.35775 9.00 3 7.2836 R 8.31215 3.00 24.93645 

12.00 3 6.4307 T 7.3302 3.00 21.9906 12.00 3 5.5551 R 6.41935 3.00 19.25805 

24.00 3 1.248 T 3.83935 12.00 46.0722 24.00 3 2.1309 R 3.843 12.00 46.116 

36.00 3 1.1917 T 1.21985 12.00 14.6382 36.00 3 0.8436 R 1.48725 12.00 17.847 

48.00 3 0.4199 T 0.8058 12.00 9.6696 48.00 3 0.3536 R 0.5986 12.00 7.1832 

72.00 3 0.1407 T 0.2803 24.00 6.7272 72.00 3 0.0852 R 0.2194 24.00 5.2656 

96.00 3 0 T 0.07035 24.00 1.6884 96.00 3 0 R 0.0426 24.00 1.0224 

      

187.0004 

      

181.6076 
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Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

0.00 4 0 R NA NA NA 0.00 4 0 T NA NA NA 

0.52 4 5.6722 R 2.8361 0.52 1.465318 0.50 4 8.84 T 4.42 0.50 2.21 

1.02 4 8.761 R 7.2166 0.50 3.6083 1.00 4 10.7492 T 9.7946 0.50 4.8973 

2.00 4 10.7164 R 9.7387 0.98 9.576388 2.00 4 12.6993 T 11.72425 1.00 11.72425 

4.00 4 9.3046 R 10.0105 2.00 20.021 4.00 4 12.5011 T 12.6002 2.00 25.2004 

6.00 4 8.0849 R 8.69475 2.00 17.3895 6.00 4 10.8577 T 11.6794 2.00 23.3588 

9.00 4 6.7065 R 7.3957 3.00 22.1871 9.00 4 8.3821 T 9.6199 3.00 28.8597 

12.00 4 3.9893 R 5.3479 3.00 16.0437 12.00 4 6.1864 T 7.28425 3.00 21.85275 

24.00 4 1.5077 R 2.7485 12.00 32.982 24.00 4 1.4588 T 3.8226 12.00 45.8712 

36.00 4 0.9594 R 1.23355 12.00 14.8026 36.00 4 0.4553 T 0.95705 12.00 11.4846 

48.00 4 0.2773 R 0.61835 12.00 7.4202 48.00 4 0.2713 T 0.3633 12.00 4.3596 

72.00 4 0.1561 R 0.2167 24.00 5.2008 72.00 4 0.0517 T 0.1615 24.00 3.876 

96.00 4 0 R 0.07805 24.00 1.8732 96.03 4 0 T 0.02585 24.03 0.621262 

      

152.5701 

      

184.3159 
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Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

0.00 5 0 R NA NA NA 0.00 5 0 T NA NA NA 

0.50 5 8.3506 R 4.1753 0.50 2.08765 0.50 5 3.9791 T 1.98955 0.50 0.994775 

1.00 5 9.7089 R 9.02975 0.50 4.514875 1.00 5 4.8763 T 4.4277 0.50 2.21385 

2.00 5 11.9468 R 10.82785 1.00 10.82785 2.00 5 7.3284 T 6.10235 1.00 6.10235 

4.00 5 11.3999 R 11.67335 2.00 23.3467 4.00 5 6.9689 T 7.14865 2.00 14.2973 

6.00 5 8.5153 R 9.9576 2.00 19.9152 6.00 5 6.5418 T 6.75535 2.00 13.5107 

9.00 5 6.4408 R 7.47805 3.00 22.43415 9.00 5 5.0062 T 5.774 3.00 17.322 

12.00 5 4.486 R 5.4634 3.00 16.3902 12.00 5 3.7108 T 4.3585 3.00 13.0755 

24.00 5 1.5305 R 3.00825 12.00 36.099 24.00 5 2.1651 T 2.93795 12.00 35.2554 

36.00 5 1.0458 R 1.28815 12.00 15.4578 36.00 5 0.9521 T 1.5586 12.00 18.7032 

48.00 5 0.4962 R 0.771 12.00 9.252 48.00 5 0.2425 T 0.5973 12.00 7.1676 

72.00 5 0.1494 R 0.3228 24.00 7.7472 72.00 5 0.0195 T 0.131 24.00 3.144 

96.00 5 0.0597 R 0.10455 24.00 2.5092 96.00 5 0 T 0.00975 24.00 0.234 

      

170.5818 

      

132.0207 
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Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

0.00 6 0 T NA NA NA 0.00 6 0 R NA NA NA 

0.50 6 6.9937 T 3.49685 0.50 1.748425 0.50 6 13.105 R 6.5525 0.50 3.27625 

1.00 6 8.9846 T 7.98915 0.50 3.994575 1.00 6 16.2239 R 14.66445 0.50 7.332225 

2.00 6 9.4104 T 9.1975 1.00 9.1975 2.02 6 15.0403 R 15.6321 1.02 15.89264 

4.00 6 9.0616 T 9.236 2.00 18.472 4.00 6 12.9108 R 13.97555 1.98 27.71817 

6.00 6 7.9323 T 8.49695 2.00 16.9939 6.00 6 11.1877 R 12.04925 2.00 24.0985 

9.00 6 6.341 T 7.13665 3.00 21.40995 9.00 6 7.6651 R 9.4264 3.00 28.2792 

12.00 6 4.7806 T 5.5608 3.00 16.6824 12.00 6 5.213 R 6.43905 3.00 19.31715 

24.00 6 2.0218 T 3.4012 12.00 40.8144 24.00 6 2.1001 R 3.65655 12.00 43.8786 

36.00 6 1.1188 T 1.5703 12.00 18.8436 36.00 6 0.845 R 1.47255 12.00 17.6706 

48.00 6 0.5665 T 0.84265 12.00 10.1118 48.00 6 0.209 R 0.527 12.00 6.324 

72.00 6 0.2103 T 0.3884 24.00 9.3216 72.00 6 0.0066 R 0.1078 24.00 2.5872 

96.00 6 0 T 0.10515 24.00 2.5236 96.00 6 0 R 0.0033 24.00 0.0792 

      

170.1138 

      

196.4537 
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Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

0.00 7 0 T NA NA NA 0.00 7 0 R NA NA NA 

0.50 7 5.6495 T 2.82475 0.50 1.412375 0.50 7 6.5191 R 3.25955 0.50 1.629775 

1.00 7 9.2156 T 7.43255 0.50 3.716275 1.00 7 7.7943 R 7.1567 0.50 3.57835 

2.00 7 11.2346 T 10.2251 1.00 10.2251 2.00 7 9.7471 R 8.7707 1.00 8.7707 

4.00 7 10.0604 T 10.6475 2.00 21.295 4.00 7 9.6688 R 9.70795 2.00 19.4159 

6.00 7 9.0281 T 9.54425 2.00 19.0885 6.00 7 9.4525 R 9.56065 2.00 19.1213 

9.00 7 7.9102 T 8.46915 3.00 25.40745 9.00 7 8.0507 R 8.7516 3.00 26.2548 

12.00 7 6.1167 T 7.01345 3.00 21.04035 12.00 7 6.1368 R 7.09375 3.00 21.28125 

24.00 7 2.3893 T 4.253 12.00 51.036 24.00 7 2.155 R 4.1459 12.00 49.7508 

36.00 7 1.5392 T 1.96425 12.00 23.571 36.00 7 0.6776 R 1.4163 12.00 16.9956 

48.00 7 0.5665 T 1.05285 12.00 12.6342 48.00 7 0.1722 R 0.4249 12.00 5.0988 

72.00 7 0.1782 T 0.37235 24.00 8.9364 72.00 7 0.0079 R 0.09005 24.00 2.1612 

96.00 7 0.1005 T 0.13935 24.00 3.3444 96.00 7 0 R 0.00395 24.00 0.0948 

      

201.7071 

      

174.1533 
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Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

0.00 8 0 R NA NA NA 0.00 8 0 T NA NA NA 

0.50 8 10.3496 R 5.1748 0.50 2.5874 0.50 8 11.7661 T 5.88305 0.50 2.941525 

1.00 8 11.3571 R 10.85335 0.50 5.426675 1.00 8 11.6697 T 11.7179 0.50 5.85895 

2.00 8 11.4669 R 11.412 1.00 11.412 2.00 8 12.7964 T 12.23305 1.00 12.23305 

4.00 8 9.798 R 10.63245 2.00 21.2649 4.00 8 11.8217 T 12.30905 2.00 24.6181 

6.00 8 8.3814 R 9.0897 2.00 18.1794 6.00 8 10.5832 T 11.20245 2.00 22.4049 

9.00 8 6.2741 R 7.32775 3.00 21.98325 9.00 8 8.5582 T 9.5707 3.00 28.7121 

12.00 8 4.4873 R 5.3807 3.00 16.1421 12.00 8 5.0771 T 6.81765 3.00 20.45295 

24.00 8 1.3102 R 2.89875 12.00 34.785 24.00 8 1.6423 T 3.3597 12.00 40.3164 

36.00 8 0.7934 R 1.0518 12.00 12.6216 36.00 8 0.7412 T 1.19175 12.00 14.301 

48.00 8 0.0965 R 0.44495 12.00 5.3394 48.00 8 0.369 T 0.5551 12.00 6.6612 

72.00 8 0.0507 R 0.0736 24.00 1.7664 72.00 8 0.0099 T 0.18945 24.00 4.5468 

96.00 8 0 R 0.02535 24.00 0.6084 96.00 8 0 T 0.00495 24.00 0.1188 

      

152.1165 

      

183.1658 
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Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

0.00 9 0 R NA NA NA 0.00 9 0 T NA NA NA 

0.50 9 8.9297 R 4.46485 0.50 2.232425 0.50 9 5.4319 T 2.71595 0.50 1.357975 

1.00 9 8.8112 R 8.87045 0.50 4.435225 1.00 9 6.0926 T 5.76225 0.50 2.881125 

2.00 9 10.3462 R 9.5787 1.00 9.5787 2.00 9 7.797 T 6.9448 1.00 6.9448 

4.02 9 9.0897 R 9.71795 2.02 19.59787 4.03 9 7.9162 T 7.8566 2.03 15.97509 

6.02 9 9.0147 R 9.0522 2.00 18.1044 6.00 9 7.8071 T 7.86165 1.97 15.46125 

9.00 9 7.8452 R 8.42995 2.98 25.14935 9.00 9 21 T 14.40355 3.00 43.21065 

12.00 9 6.7688 R 7.307 3.00 21.921 12.00 9 4.9914 T 12.9957 3.00 38.9871 

24.00 9 2.2146 R 4.4917 12.00 53.9004 24.02 9 2.3927 T 3.69205 12.02 44.36613 

36.00 9 1.9167 R 2.06565 12.00 24.7878 36.00 9 1.3136 T 1.85315 11.98 22.20691 

48.00 9 0.7285 R 1.3226 12.00 15.8712 48.00 9 0.6073 T 0.96045 12.00 11.5254 

72.00 9 0.1126 R 0.42055 24.00 10.0932 72.00 9 0.3871 T 0.4972 24.00 11.9328 

96.00 9 0 R 0.0563 24.00 1.3512 96.00 9 0.209 T 0.29805 24.00 7.1532 

      

207.0228 

      

222.0024 
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Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

0.00 10 0 T NA NA NA 0.00 10 0 R NA NA NA 

0.50 10 10.2244 T 5.1122 0.50 2.5561 0.50 10 12.3016 R 6.1508 0.50 3.0754 

1.02 10 12.6899 T 11.45715 0.52 5.919528 1.00 10 12.0091 R 12.15535 0.50 6.077675 

2.02 10 13.5789 T 13.1344 1.00 13.1344 2.00 10 12.8158 R 12.41245 1.00 12.41245 

4.00 10 11.8779 T 12.7284 1.98 25.24466 4.00 10 11.009 R 11.9124 2.00 23.8248 

6.00 10 9.5904 T 10.73415 2.00 21.4683 6.00 10 7.0098 R 9.0094 2.00 18.0188 

9.00 10 6.5224 T 8.0564 3.00 24.1692 9.00 10 5.1347 R 6.07225 3.00 18.21675 

12.00 10 4.4539 T 5.48815 3.00 16.46445 12.00 10 4.166 R 4.65035 3.00 13.95105 

24.00 10 1.5653 T 3.0096 12.00 36.1152 24.00 10 2.4456 R 3.3058 12.00 39.6696 

36.00 10 0.7419 T 1.1536 12.00 13.8432 36.00 10 0.4982 R 1.4719 12.00 17.6628 

48.00 10 0.5626 T 0.65225 12.00 7.827 48.00 10 0.1133 R 0.30575 12.00 3.669 

72.00 10 0.0075 T 0.28505 24.00 6.8412 72.00 10 0.0845 R 0.0989 24.00 2.3736 

96.00 10 0 T 0.00375 24.00 0.09 96.00 10 0 R 0.04225 24.00 1.014 

      

173.6732 

      

159.9659 
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Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

0.00 11 0 T NA NA NA 0.00 11 0 R NA NA NA 

0.50 11 3.3788 T 1.6894 0.50 0.8447 0.50 11 6.902 R 3.451 0.50 1.7255 

1.00 11 8.0922 T 5.7355 0.50 2.86775 1.00 11 8.0715 R 7.48675 0.50 3.743375 

2.00 11 9.5904 T 8.8413 1.00 8.8413 2.00 11 7.5862 R 7.82885 1.00 7.82885 

4.00 11 7.941 T 8.7657 2.00 17.5314 4.00 11 6.3671 R 6.97665 2.00 13.9533 

6.00 11 6.3055 T 7.12325 2.00 14.2465 6.00 11 5.1882 R 5.77765 2.00 11.5553 

9.00 11 4.075 T 5.19025 3.00 15.57075 9.00 11 3.5803 R 4.38425 3.00 13.15275 

12.00 11 2.6357 T 3.35535 3.00 10.06605 12.00 11 2.5373 R 3.0588 3.00 9.1764 

24.00 11 1.1382 T 1.88695 12.00 22.6434 24.00 11 2.1088 R 2.32305 12.00 27.8766 

36.00 11 0.6876 T 0.9129 12.00 10.9548 36.00 11 0.8041 R 1.45645 12.00 17.4774 

48.00 11 0.3857 T 0.53665 12.00 6.4398 48.00 11 0.3844 R 0.59425 12.00 7.131 

72.00 11 0.1943 T 0.29 24.00 6.96 72.00 11 0.0376 R 0.211 24.00 5.064 

96.00 11 0 T 0.09715 24.00 2.3316 96.00 11 0 R 0.0188 24.00 0.4512 

      

119.2981 

      

119.1357 

  



137 

 

Actual 

Time Animal Conc Treatment 
 

  

 

 

Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

0.00 12 0 T NA NA NA 0.00 12 0 R NA NA NA 

0.50 12 7.8037 T 3.90185 0.50 1.950925 0.50 12 14.7725 R 7.38625 0.50 3.693125 

1.00 12 8.4611 T 8.1324 0.50 4.0662 1.00 12 13.0554 R 13.91395 0.50 6.956975 

2.00 12 7.9048 T 8.18295 1.00 8.18295 2.00 12 11.8779 R 12.46665 1.00 12.46665 

4.00 12 7.779 T 7.8419 2.00 15.6838 4.00 12 9.5409 R 10.7094 2.00 21.4188 

6.00 12 6.3584 T 7.0687 2.00 14.1374 6.00 12 7.8499 R 8.6954 2.00 17.3908 

9.00 12 4.6266 T 5.4925 3.00 16.4775 9.00 12 4.7223 R 6.2861 3.00 18.8583 

12.00 12 3.2415 T 3.93405 3.00 11.80215 12.00 12 3.6077 R 4.165 3.00 12.495 

24.00 12 1.4207 T 2.3311 12.00 27.9732 24.00 12 1.5017 R 2.5547 12.00 30.6564 

36.00 12 1.2319 T 1.3263 12.00 15.9156 36.00 12 1.0317 R 1.2667 12.00 15.2004 

48.00 12 0.5042 T 0.86805 12.00 10.4166 48.00 12 0.2023 R 0.617 12.00 7.404 

72.00 12 0.215 T 0.3596 24.00 8.6304 72.00 12 0.1695 R 0.1859 24.00 4.4616 

96.02 12 0.0972 T 0.1561 24.02 3.749002 96.00 12 0 R 0.08475 24.00 2.034 

      

138.9857 

      

153.0361 
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Actual 

Time Animal Conc Treatment 
 

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment  

 

 

 

 

 

0.00 13 0 T NA NA NA 0.00 13 0 R NA NA NA 

0.50 13 11.5164 T 5.7582 0.50 2.8791 0.50 13 8.6753 R 4.33765 0.50 2.168825 

1.00 13 12.5293 T 12.02285 0.50 6.011425 1.00 13 10.2324 R 9.45385 0.50 4.726925 

2.00 13 12.8171 T 12.6732 1.00 12.6732 2.00 13 9.9372 R 10.0848 1.00 10.0848 

4.00 13 12.6859 T 12.7515 2.00 25.503 4.00 13 9.806 R 9.8716 2.00 19.7432 

6.00 13 11.1342 T 11.91005 2.00 23.8201 6.00 13 8.2917 R 9.04885 2.00 18.0977 

9.00 13 9.0335 T 10.08385 3.00 30.25155 9.00 13 7.1497 R 7.7207 3.00 23.1621 

12.00 13 7.864 T 8.44875 3.00 25.34625 12.00 13 5.3897 R 6.2697 3.00 18.8091 

24.00 13 1.6182 T 4.7411 12.00 56.8932 24.00 13 2.5165 R 3.9531 12.00 47.4372 

36.00 13 1.1014 T 1.3598 12.00 16.3176 36.00 13 1.2794 R 1.89795 12.00 22.7754 

48.00 13 0.2994 T 0.7004 12.00 8.4048 48.00 13 0.7405 R 1.00995 12.00 12.1194 

72.00 13 0.0992 T 0.1993 24.00 4.7832 72.00 13 0.2485 R 0.4945 24.00 11.868 

96.00 13 0 T 0.0496 24.00 1.1904 96.00 13 0.0985 R 0.1735 24.00 4.164 

      

214.0738 

      

195.1567 
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Actual 

Time Animal Conc Treatment  

 

 

 

 

 

 

Actual 

Time Animal Conc Treatment  

 

 

 

 

 

0.00 14 0 T NA NA NA 0.00 14 0 R NA NA NA 

0.50 14 7.1283 T 3.56415 0.50 1.782075 0.50 14 15.699 R 7.8495 0.50 3.92475 

1.00 14 11.4642 T 9.29625 0.50 4.648125 1.00 14 15.6876 R 15.6933 0.50 7.84665 

2.00 14 10.381 T 10.9226 1.00 10.9226 2.00 14 15.0303 R 15.35895 1.00 15.35895 

4.00 14 10.1862 T 10.2836 2.00 20.5672 4.00 14 13.3239 R 14.1771 2.00 28.3542 

6.00 14 8.6332 T 9.4097 2.00 18.8194 6.00 14 9.0957 R 11.2098 2.00 22.4196 

8.98 14 6.6623 T 7.64775 2.98 22.81579 9.00 14 7.7843 R 8.44 3.00 25.32 

12.00 14 5.286 T 5.97415 3.02 18.02202 12.00 14 6.4883 R 7.1363 3.00 21.4089 

24.00 14 2.7502 T 4.0181 12.00 48.2172 24.00 14 2.6646 R 4.57645 12.00 54.9174 

36.00 14 1.4059 T 2.07805 12.00 24.9366 36.00 14 1.0833 R 1.87395 12.00 22.4874 

48.00 14 0.5451 T 0.9755 12.00 11.706 48.00 14 0.4232 R 0.75325 12.00 9.039 

72.00 14 0.0664 T 0.30575 24.00 7.338 72.00 14 0.1949 R 0.30905 24.00 7.4172 

96.00 14 0 T 0.0332 24.00 0.7968 96.00 14 0 R 0.09745 24.00 2.3388 

      

190.5718 

      

220.8329 
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Appendix 3 Slope and Intercept (vertical axis) of figures in Appendix 4 

Figure Intercept (vertical intercept) Slope 

1 2.49478 -0.07069 

2 2.59006 -0.08482 

3 2.37959 -0.06371 

4 2.13646 -0.05206 

5 2.54009 -0.06666 

6 2.58152 -0.07249 

7 2.33197 -0.06469 

8 2.72571 -0.08352 

9 1.58798 -0.04670 

10 2.47347 -0.08378 

11 2.30245 -0.05683 

12 3.08311 -0.10510 

13 2.41261 -0.05375 

14 3.39896 -0.11147 

15 2.51812 -0.08338 

16 2.93585 -0.09713 

17 2.56782 -0.06314 

18 1.42249 -0.03254 

19 2.45498 -0.07787 

20 2.88456 -0.09655 

21 0.94957 -0.03686 

22 2.11897 -0.07047 

23 1.51104 -0.04126 

24 2.39776 -0.06724 

25 2.74958 -0.07474 

26 2.33186 -0.05103 

27 2.57993 -0.06986 

28 2.68121 -0.06572 
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Appendix 4 Finding   on Calculating        

 

   = 0.1173 

  = (-0.07069)*(-2.303) 

= 0.162799 

Figure 1: Fit Plot for In(Conc) for Sheep 1, 

 Test Treatment in Period 2 

 

 

 

 

 

 

 

 

 

 

 

   = 0.0336 

  = (-0.08482)*(-2.303) 

= 0.19534 

Figure 2: Fit Plot for In(Conc) for Sheep 1, 

 Reference Treatment in Period 1 
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   = 0.1206 

  = (-0.06371)*(-2.303) 

= 0.146724 

Figure 3: Fit Plot for In(Conc) for Sheep 2, 

 Reference Treatment in Period 1 

 

   = 0.0885 

  = (-0.05206)*(-2.303) 

= 0.119894 

Figure 4: Fit Plot for In(Conc) for Sheep 2, 

 Test Treatment in Period 2 
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   = 0.1407 

  = (-0.06666)*(-2.303) 

= 0.15338 

Figure 5: Fit Plot for In(Conc) for Sheep 3, 

 Test Treatment in Period 2 

 

 

  =0.0852 

  =(-0.07249)*(-2.0303) 

= 0.166944 

Figure 6: Fit Plot for In(Conc) for Sheep 3, 

 Reference Treatment in Period 1 
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   = 0.1561 

  = (-0.06469)*(-2.303) 

= 0.148981 

Figure 7: Fit Plot for In(Conc) for Sheep 4, 

 Reference Treatment in Period 1 

 

 

   = 0.0517 

  = (-0.08352)*(-2.303) 

= 0.192347 

Figure 8: Fit Plot for In(Conc) for Sheep 4, 

 Test Treatment in Period 2 
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   = 0.0597 

  = (-0.04670)*(-2.303) 

= 0.10755 

Figure 9: Fit Plot for In(Conc) for Sheep 5, 

 Reference Treatment in Period 2 

 

 

   = 0.0195 

  = (-0.08378)*(-2.303) 

= 0.192945 

Figure 10: Fit Plot for In(Conc) for Sheep 5, 

 Test Treatment in Period 1 
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   = 0.2103 

  = (-0.05683)*(-2.303) 

= 0.130879 

Figure 11: Fit Plot for In(Conc) for Sheep 6, 

 Test Treatment in Period 1 

 

 

   = 0.0066 

  = (-0.1051)*(-2.303) 

= 0.242045 

Figure 12: Fit Plot for In(Conc) for Sheep 6, 

 Reference Treatment in Period 2 
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   = 0.1005 

  = (-0.05375)*(-2.303) 

= 0.123786 

Figure 13: Fit Plot for In(Conc) for Sheep 7, 

 Test Period in Period 2 

 

 

   = 0.0079 

  = (-0.11147)*(-2.303) 

= 0.256715 

Figure 14: Fit Plot for In(Conc) for Sheep 7, 

 Reference Treatment in Period 1 
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   = 0.0507 

  = (-0.08338)*(-2.303) 

= 0.192024 

Figure 15: Fit Plot for In(Conc) for Sheep 8, 

 Reference Treatment in Period 1 

 

 

   = 0.0099 

  = (-0.09713)*(-2.303) 

= 0.22369 

Figure 16: Fit Plot for In(Conc) for Sheep 8, 

 Test Treatment in Period 2 

  



149 

 

   = 0.1126 

  = (-0.06314)*(-2.303) 

= 0.145411 

Figure 17: Fit Plot for In(Conc) for Sheep 9, 

 Reference Treatment in Period 2 

 

 

   = 0.209 

  = (-0.03254)*(-2.303) 

=0.07494  

Figure 18: Fit Plot for In(Conc) for Sheep 9, 

 Test Treatment in Period 1 
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   = 0.0845 

  = (-0.07787)*(-2.303) 

= 0.179335 

Figure 19: Fit Plot for In(Conc) for Sheep 10, 

 Reference Treatment in Period 2 

 

 

   = 0.0075 

  = (-0.09655)*(-2.303) 

= 0.222355 

Figure 20: Fit Plot for In(Conc) for Sheep 10, 

 Test Treatment in Period 1 
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   = 0.1943 

  = (-0.03686)*(-2.303) 

= 0.084889 

Figure 21: Fit Plot for In(Conc) for Sheep 11, 

 Test Treatment in Period 1 

 

 

   = 0.0376 

  = (-0.07047)*(-2.303) 

= 0.162292 

Figure 22: Fit Plot for In(Conc) for Sheep 11, 

 Reference Treatment in Period 2 
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   = 0.0972 

  = (-0.04126)*(-2.303) 

= 0.095022 

Figure 23: Fit Plot for In(Conc) for Sheep 12, 

 Test Treatment in Period 1 

 

 

   = 0.1695 

  = (-0.06724)*(-2.303) 

= 0.154854 

Figure 24: Fit Plot for In(Conc) for Sheep 12, 

 Reference Treatment in Period 2 
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   = 0.0992 

  = (-0.07474)*(-2.303) 

= 0.172126 

Figure 25: Fit Plot for In(Conc) for Sheep 13, 

 Test Treatment in Period 2 

 

 

   = 0.0985 

  = (-0.05103)*(-2.303) 

= 0.117522 

Figure 26: Fit Plot for In(Conc) for Sheep 13, 

 Reference Treatment in Period 1 
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   = 0.0664 

  = (-0.06986)*(-2.303) 

= 0.160888 

Figure 27: Fit Plot for In(Conc) for Sheep 14, 

 Test Treatment in Period 1 

 

 

   = 0.1949 

  = (-0.06572)*(-2.303) 

 = 0.151353 

Figure 28: Fit Plot for In(Conc) for Sheep 14, 

 Reference Treatment in Period 2 
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Appendix 5 Calculating AUC from time zero to infinity 

 

Sequence 1 

       

 

Animal 
  

Slope Constant ʎ 
  

Test 5 132.0207 0.0195 -0.08378 -2.303 0.192945 132.1218 4.883724 

 

6 170.1138 0.2103 -0.05683 -2.303 0.130879 171.7206 5.145869 

 

9 222.0024 0.209 -0.03254 -2.303 0.07494 224.7913 5.415172 

 

10 173.6732 0.0075 -0.09655 -2.303 0.222355 173.7069 5.15737 

 

11 119.2981 0.1943 -0.03686 -2.303 0.084889 121.587 4.80063 

 

12 138.9857 0.0972 -0.04126 -2.303 0.095022 140.0086 4.941704 

 

14 190.5718 0.0664 -0.06986 -2.303 0.160888 190.9845 5.252192 

Reference 5 170.5818 0.0597 -0.0467 -2.303 0.10755 171.1369 5.142464 

 

6 196.4537 0.0066 -0.1051 -2.303 0.242045 196.481 5.280566 

 

9 207.0228 0.1126 -0.06314 -2.303 0.145411 207.7972 5.336562 

 

10 159.9659 0.0845 -0.07787 -2.303 0.179335 160.4371 5.077902 

 

11 119.1357 0.0376 -0.07047 -2.303 0.162292 119.3674 4.782206 

 

12 153.0361 0.1695 -0.06724 -2.303 0.154854 154.1307 5.037801 

 

14 220.8329 0.1949 -0.06572 -2.303 0.151353 222.1206 5.403221 

         Sequence 2 

       

 

Animal 
  

Slope Constant ʎ 
 

 

Reference1 1 167.1385 0.0336 -0.08482 -2.303 0.19534 167.3105 5.119851 

 

2 166.5281 0.1206 -0.06371 -2.303 0.146724 167.3501 5.120088 

 

3 181.6076 0.0852 -0.07249 -2.303 0.166944 182.1179 5.204655 

 

4 152.5701 0.1561 -0.06469 -2.303 0.148981 153.6179 5.034468 

 

7 174.1533 0.0079 -0.11147 -2.303 0.256715 174.1841 5.160113 

 

8 152.1165 0.0507 -0.08338 -2.303 0.192024 152.3805 5.026381 

 

13 195.1567 0.0985 -0.05103 -2.303 0.117522 195.9948 5.278088 

Test 1 170.3735 0.1173 -0.07069 -2.303 0.162799 171.094 5.142213 

 

2 164.6649 0.0885 -0.05206 -2.303 0.119894 165.4031 5.108385 

 

3 187.0004 0.1407 -0.0666 -2.303 0.15338 187.9177 5.236004 

 

4 184.3159 0.0517 -0.08352 -2.303 0.192347 184.5847 5.218108 

 

7 201.7071 0.1005 -0.05375 -2.303 0.123786 202.519 5.310834 

 

8 183.1658 0.0099 -0.09713 -2.303 0.22369 183.2101 5.210633 

 

13 214.0738 0.0992 -0.07474 -2.303 0.172126 214.6501 5.369009 
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Appendix 6 Wilcoxon Mann-Whitney Two One-Sided Tests Calculations 

 

Sequence Subject Period 
 

Diff L Ranks L U Ranks U 

1 Number 1 2 
     RT 5 2 2 0 0.314 8 -0.314 3 

RT 6 1 2 0.5 0.814 12.5 0.186 12.5 

RT 9 2 9 3.5 3.814 14 3.186 14 

RT 10 2 2.02 0.01 0.324 9 -0.304 4 

RT 11 1 2 0.5 0.814 12.5 0.186 12.5 

RT 12 0.5 1 0.25 0.564 10.5 -0.064 5.5 

RT 14 0.5 1 0.25 0.564 10.5 -0.064 5.5 

2 
        TR 1 2 2 0 0 3.5 0 7.5 

TR 2 2 2 0 0 3.5 0 7.5 

TR 3 4 2 -1 -1 1 -1 1 

TR 4 2 2 0 0 3.5 0 7.5 

TR 7 2 2 0 0 3.5 0 7.5 

TR 8 2 2 0 0 3.5 0 7.5 

TR 13 2 1 -0.5 -0.5 2 -0.5 2 
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Appendix 7 Outliers Plot and Histogram for        untransformed data. 

 

Figure 1 Fit Histogram for Residuals of        untransformed data 

Appendix 8 Outliers Plot and Histogram for      untransformed data. 

 

Figure 1 Fit Histogram for Residuals of      untransformed data 

 

 

Figure 2 Fit Outliers Plot for        untransformed data 

 

 

Figure 2 Fit Outliers Plot for      untransformed data 
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Appendix 9 Bootstrap Samples of        and      

 

Bootstrap 

Samples of 

       ln       

 Bootstrap 

Samples of 

     ln     

160.4371 5.077902 11.4669 2.439465 

171.7206 5.145869 12.8158 2.550679 

187.9177 5.236004 10.3462 2.336619 

154.1307 5.037801 9.7471 2.27697 

171.094 5.142213 11.4642 2.439229 

202.519 5.310834 11.9468 2.480463 

174.1841 5.160113 10.3462 2.336619 

184.5847 5.218108 10.7164 2.371775 

171.1369 5.142464 8.5327 2.143906 

154.1307 5.037801 12.6993 2.541547 

207.7972 5.336562 9.7471 2.27697 

174.1841 5.160113 9.4104 2.241815 

171.7206 5.145869 10.3462 2.336619 

222.1206 5.403221 10.2324 2.325559 

202.519 5.310834 10.7164 2.371775 

171.094 5.142213 11.2346 2.418998 

195.9948 5.278088 11.0619 2.403507 

153.6179 5.034468 9.4104 2.241815 

190.9845 5.252192 15.699 2.753597 

184.5847 5.218108 7.3284 1.991757 

171.1369 5.142464 11.4669 2.439465 
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Bootstrap 

Samples of 

       ln       

 Bootstrap 

Samples of 

     ln     

207.7972 5.336562 10.2324 2.325559 

173.7069 5.15737 17.303 2.85088 

171.1369 5.142464 10.2324 2.325559 

182.118 5.204655 21 3.044522 

132.1218 4.883724 11.2346 2.418998 

190.9845 5.252192 12.8171 2.55078 

183.2101 5.210633 15.699 2.753597 

202.519 5.310834 11.2346 2.418998 

174.1841 5.160113 17.303 2.85088 

152.3805 5.026381 9.7471 2.27697 

167.3501 5.120088 11.2346 2.418998 

190.9845 5.252192 8.4611 2.135479 

182.118 5.204655 12.8171 2.55078 

196.481 5.280566 9.4104 2.241815 

187.9177 5.236004 10.7164 2.371775 

152.3805 5.026381 8.0715 2.088339 

132.1218 4.883724 8.0715 2.088339 

140.0086 4.941704 12.7964 2.549164 

160.4371 5.077902 11.4669 2.439465 

160.4371 5.077902 8.0715 2.088339 

207.7972 5.336562 12.7964 2.549164 

119.3674 4.782206 10.7164 2.371775 
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Bootstrap 

Samples of 

       ln       

 Bootstrap 

Samples of 

     ln     

152.3805 5.026381 11.0619 2.403507 

167.3501 5.120088 8.0715 2.088339 

195.9948 5.278088 11.4642 2.439229 

165.4031 5.108385 10.7164 2.371775 

171.094 5.142213 21 3.044522 

160.4371 5.077902 12.8171 2.55078 

184.5847 5.218108 12.8158 2.550679 

202.519 5.310834 11.0619 2.403507 

195.9948 5.278088 12.8158 2.550679 

153.6179 5.034468 11.1924 2.415235 

182.118 5.204655 11.9468 2.480463 

196.481 5.280566 11.1924 2.415235 

173.7069 5.15737 9.5904 2.260763 

184.5847 5.218108 10.2324 2.325559 

196.481 5.280566 17.303 2.85088 

171.1369 5.142464 11.0619 2.403507 

165.4031 5.108385 15.699 2.753597 

174.1841 5.160113 12.7964 2.549164 

171.094 5.142213 7.3284 1.991757 

132.1218 4.883724 11.9468 2.480463 

184.5847 5.218108 11.0619 2.403507 

195.9948 5.278088 11.0619 2.403507 
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Bootstrap 

Samples of 

       ln       

 Bootstrap 

Samples of 

     ln     

160.4371 5.077902 10.2324 2.325559 

224.7913 5.415172 9.3668 2.237172 

132.1218 4.883724 12.6993 2.541547 

196.481 5.280566 8.5327 2.143906 

174.1841 5.160113 9.4104 2.241815 

153.6179 5.034468 10.7164 2.371775 

165.4031 5.108385 9.7471 2.27697 

222.1206 5.403221 15.699 2.753597 

160.4371 5.077902 16.2239 2.786485 

222.1206 5.403221 11.5974 2.450781 

214.6501 5.369009 17.303 2.85088 

214.6501 5.369009 10.7164 2.371775 

187.9177 5.236004 21 3.044522 

214.6501 5.369009 14.7725 2.692767 

171.7206 5.145869 12.8171 2.55078 

132.1218 4.883724 11.2346 2.418998 

222.1206 5.403221 11.4669 2.439465 

165.4031 5.108385 9.3668 2.237172 

140.0086 4.941704 16.2239 2.786485 

153.6179 5.034468 8.5327 2.143906 

207.7972 5.336562 7.3284 1.991757 

167.3105 5.119851 8.4611 2.135479 
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Bootstrap 

Samples of 

       ln       

 Bootstrap 

Samples of 

     ln     

140.0086 4.941704 11.5974 2.450781 

167.3105 5.119851 8.4611 2.135479 

140.0086 4.941704 9.7471 2.27697 

119.3674 4.782206 11.4642 2.439229 

153.6179 5.034468 10.3462 2.336619 

187.9177 5.236004 15.699 2.753597 

222.1206 5.403221 8.0715 2.088339 

167.3105 5.119851 11.5974 2.450781 

167.3105 5.119851 7.3284 1.991757 

196.481 5.280566 8.0715 2.088339 

165.4031 5.108385 13.5789 2.608517 

202.519 5.310834 11.5974 2.450781 

173.7069 5.15737 12.7964 2.549164 

154.1307 5.037801 11.4669 2.439465 

184.5847 5.218108 11.5974 2.450781 

132.1218 4.883724 7.3284 1.991757 

154.1307 5.037801 16.2239 2.786485 

183.2101 5.210633 14.7725 2.692767 

171.7206 5.145869 12.6993 2.541547 

222.1206 5.403221 13.5789 2.608517 

167.3105 5.119851 12.8158 2.550679 

207.7972 5.336562 9.5904 2.260763 
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Bootstrap 

Samples of 

       ln       

 Bootstrap 

Samples of 

     ln     

153.6179 5.034468 10.2324 2.325559 

183.2101 5.210633 10.7164 2.371775 

207.7972 5.336562 12.8171 2.55078 
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Appendix 10 SAS codes 

Power AUC 

data pairedauc; 

Mu1=5.1432; Mu2=5.1566; StDev1=0.04412;StDev2=0.04412; Corr=0.691717; 

N=28;Alpha=0.05; 

StDevDiff = sqrt(StDev1**2 +StDev2**2 -2*Corr*StDev1*StDev2); 

NCP = (Mu2-Mu1)**2 /(StDevDiff**2/N); 

CriticalValue = FINV(1-Alpha, 1,N-1, 0); 

Power = SDF('f', CriticalValue,1, N-1, NCP); 

proc print data=pairedauc; 

run; 

 

Power calculation 

proc power; 

twosamplemeans test=equiv_diff alpha=0.05 

lower=&log_pt_8 upper=&log_1_pt_25 std=&std_derived 

meandiff=&log_true_gmr 

npergroup=. 

power =0.95; 

run; 

 

Power curve 

proc power;  

twosamplemeans test=diff  

nulldiff= 0  

meandiff= 4  

stddev= 3  

power= 0.8 0.9 0.95  

alpha = 0.05  

npergroup = .;  

plot y=power yopts=(ref=0.8 0.9 0.95);  

run; 
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ANOVA 

lnAUC 

proc glm data=lnAUC; 

   class Treatment Period Seq Animal; 

   model lnAUC=Treatment Period Seq Animal; 

   random Animal/ test; 

run; 

 

Mixed Procedure: ANOVA 

lnAUC 

proc mixed data=lnAUC; 

      class Seq Period Treatment Animal;  

      model lnAUC=Seq Period Treatment;  

      random Animal(Seq);  

      lsmeans Treatment/pdiff cl alpha=0.1;  

      estimate 'T/R' Treatment 1 2 / cl alpha=0.1;  

     * make 'LSMEANS' out=lsmean; *used in old SAS versions;  

     * make 'estimate' out=est; *used in old SAS versions;  

run; 
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ANOVA code for covariances 

lnAUC 

 

proc mixed data=covauc; 

classes Seq Animal Period Treatment; 

model lnAUC= Seq Period Treatment / ddfm=satterth; 

random Treatment/type=FA0(2) sub=Animal G; 

repeated/grp=Treatment sub=Animal; 

estimate 'test-ref' Treatment -1 1/ CL alpha=0.10; 

run; 

 

TOST 

lnAUC 

ods graphics on; 

proc ttest data=TOSTFL dist=lognormal tost(0.8, 1.25); 

paired TestlnAUC*ReflnAUC; 

run; 

ods graphics off; 

 

 


