

TOWARDS AUTOMATED THREE-

DIMENSIONAL TRACKING OF NEPHRONS

THROUGH STACKED HISTOLOGICAL

IMAGE SETS

A dissertation submitted to the Faculty of Engineering and the Built Environment,

University of Witwatersrand for the degree of Master of Science in Engineering.

Charita Bhikha

August, 2015

i

DECLARATION

I declare that this research proposal is my own unaided work. It is being submitted

to the Degree of Master of Science in Engineering to the University of the

Witwatersrand, Johannesburg. It has not been submitted before for any degree or

examination to any other University.

……………………..

Signature

……... day of ……………… year ………….

ii

ABSTRACT

The three-dimensional microarchitecture of the mammalian kidney is of keen

interest in the fields of cell biology and biomedical engineering as it plays a

crucial role in renal function. This study presents a novel approach to the

automatic tracking of individual nephrons through three-dimensional histological

image sets of mouse and rat kidneys. The image database forms part of a previous

study carried out at the University of Aarhus, Denmark. The previous study

involved manually tracking a few hundred nephrons through the image sets in

order to explore the renal microarchitecture, the results of which forms the gold

standard for this study. The purpose of the current research is to develop methods

which contribute towards creating an automated, intelligent system as a standard

tool for such image sets. This would reduce the excessive time and human effort

previously required for the tracking task, enabling a larger sample of nephrons to

be tracked. It would also be desirable, in future, to explore the renal

microstructure of various species and diseased specimens.

The developed algorithm is robust, able to isolate closely packed nephrons

and track their convoluted paths despite a number of non-ideal conditions such

as local image distortions, artefacts and connective tissue interference. The

system consists of initial image pre-processing steps such as background removal,

adaptive histogram equalisation and image segmentation. A feature extraction

stage achieves data abstraction and information concentration by extracting shape

iii

descriptors, radial shape profiles and key coordinates for each nephron cross-

section. A custom graph-based tracking algorithm is implemented to track the

nephrons using the extracted coordinates. A rule-base and machine learning

algorithms including an Artificial Neural Network and Support Vector Machine

are used to evaluate the shape features and other information to validate the

algorithm’s results through each of its iterations.

The validation steps prove to be highly effective in rejecting incorrect tracking

moves, with the rule-base having greater than 90% accuracy and the Artificial

Neural Network and Support Vector Machine both producing 93% classification

accuracies. Comparison of a selection of automatically and manually tracked

nephrons yielded results of 95% accuracy and 98% tracking extent for the

proximal convoluted tubule, proximal straight tubule and ascending thick limb of

the loop of Henle. The ascending and descending thin limbs of the loop of Henle

pose a challenge, having low accuracy and low tracking extent due to the low

resolution, narrow diameter and high density of cross-sections in the inner

medulla. Limited manual intervention is proposed as a solution to these

limitations, enabling full nephron paths to be obtained with an average of 17

manual corrections per mouse nephron and 58 manual corrections per rat nephron.

The developed semi-automatic system saves a considerable amount of time and

effort in comparison with the manual task. Furthermore, the developed

methodology forms a foundation for future development towards a fully

automated tracking system for nephrons.

iv

ACKNOWLEDGEMENTS

I would like to thank my supervisors Robyn Letts, Prof. David Rubin and Adam

Pantanowitz, for their invaluable support, advice, feedback, and constant interest

and motivation.

I would also like to thank all members of the Biomedical Engineering Research

Group for their inspiring discussions and stimulating ideas.

Thank you to all of my friends and family for providing support, enthusiasm and

comfort throughout the course of my studies.

Finally, many thanks to the team at the Departments of Cell Biology, Connective

Tissue Biology, and Neurobiology, Institute of Anatomy, University of Aarhus,

Aarhus, Denmark, for providing the data which forms the core of this project.

v

CONTENTS

Declaration i

Abstract ii

Acknowledgement iv

List of Figures ix

List of Tables xii

List of Symbols xiii

List of Abbreviations xiv

1. Introduction ... 1

2. Background .. 3

2.1 An Overview of Renal Histology ... 3

2.2 Existing Solutions ... 5

2.2.1. Nephron Tracking and Three-Dimensional Reconstruction 5

2.2.2. Glomeruli Detection .. 6

2.2.3. Automated Tracking of other Biological Structures 7

2.3 The Nephron Tracking Problem ... 8

2.4 Graph Theory ... 8

2.5 Machine Learning ... 9

2.5.1. An Overview of Basic Machine Learning Principles 9

2.5.2. Application to Medical Imaging .. 11

2.5.3. Application to the Nephron Tracking Problem.................................... 12

3. Project Framework ... 14

3.1 Research Question .. 14

3.2 Rationale ... 14

3.3 Objectives ... 16

vi

3.4 Assumptions ... 16

3.5 Success Criteria .. 16

4. Analysis of the Problem Domain ... 17

4.1 The Image Sets Acquired from the University of Aarhus 17

4.2 An Ideal Solution .. 21

4.3 The Complexities of the Problem ... 21

5. System Overview ... 24

6. Image Processing ... 26

6.1 Image Registration ... 26

6.2 Image Processing Procedure .. 29

6.2.1. Conversion to Grayscale .. 29

6.2.2. Background Removal .. 29

6.2.3. Histogram Equalisation.. 31

6.2.4. Thresholding .. 32

6.2.5. Removal of Unwanted Cross-Sections .. 33

6.3 Image Segmentation ... 34

6.4 Automatic Parameter Variation .. 35

7. Feature Extraction .. 37

7.1 Node Allocation ... 37

7.2 Shape Measurements .. 39

7.3 Data Structures ... 44

7.4 Glomeruli Detection ... 45

8. Tracking Algorithm .. 48

8.1 Local Image Registration ... 50

8.2 Graph-based Tracking .. 52

8.3 Edge Formation .. 53

8.4 Skipping Images ... 54

8.5 Validation Steps ... 54

8.6 Region Control ... 56

vii

8.7 Reconstruction .. 58

8.8 Manual Intervention ... 58

9. Machine Learning Validation .. 60

9.1 Feature Selection .. 60

9.2 Training Set Formation .. 61

9.3 Training .. 62

9.4 Reinforced Learning ... 63

9.5 Feature Analysis ... 64

9.6 Optimisation ... 66

10. Results .. 68

10.1 Pre-Tracking Stages ... 68

10.2 Measuring Similarity between Paths .. 70

10.3 Possible Outcomes ... 72

10.4 Tracking Results ... 74

10.5 Efficacy of Validation Steps ... 82

10.6 Machine Learning Classification .. 83

10.7 Monitoring Runtime Output ... 87

10.8 Processing Times .. 87

11. Analysis & Discussion ... 90

11.1 Performance per Area of the Nephron ... 91

11.2 Effect of Image Properties on Performance ... 93

12. Recommendations & Future Work ... 96

12.1 Recommendations for Future Image Sets .. 96

12.2 Future Work ... 99

13. Conclusion .. 100

References .. 102

viii

Appendices

Appendix A: Longitudinal reconstructions

Appendix B: Additional Results

Appendix C: Nephron Tracking Spreadsheet

Appendix D: Performance Data

Appendix E: A Review of the Path Comparison Method

Appendix F: Additional Feature Analysis

Appendix G: Proof of Ethics Clearance

Appendix H: MATLAB Code

Appendix I: Research Article published in the journal Computational and

Mathematical Methods in Medicine

ix

List of Figures

Figure No. Page

2.1 Basic anatomy of the nephron .. 4

2.2 Viewing a nephron’s path as a walk through nodes in 3D space. 9

2.3 The generalised process for machine learning algorithms 10

4.1 Examples of images in the cortex and the medulla 18

4.2 Labelled structures in sections through the cortex and inner medulla . 20

4.3 Examples of interfering physical artefacts in the image sets 22

5.1 A high level overview of the nephron tracking system 25

6.1 The image pre-processing outputs at each stage 26

6.2 An example of local non-rigid distortion ... 27

6.3 The issue posed by the four-polygon alignment method 28

6.4 The procedure for background removal ... 30

6.5 Visual effect of local and global histogram equalisation 32

6.6 An example of connective tissue cross-sections in the cortex 33

6.7 Parameter variation using custom sigmoid functions 36

6.8 Features of the datasets having an inherent sigmoidal characteristic ... 36

7.1 K-means clustering of nephrons resulting in Voronoi cells 39

7.2 Processing of the shape profile data ... 42

7.3 The shape profiles relative to nodes on a cross-section 42

7.4 Comparison of shape profiles of a pair of nodes forming a move 43

7.5 The features extracted per cross-section in each image 44

x

7.6 A result of the glomeruli detection method .. 47

8.1 An activity diagram of the tracking algorithm 48

8.2 An example of a manually tracked rat nephron is shown 49

8.3 The efficacy of additional translational image alignment 51

8.4 An example of an area which cannot be aligned, introducing error..... 51

8.5 The concept of vertical and horizontal tracking 53

8.6 Examples of moves blocked by the distance validation rule................ 55

8.7 Examples of moves blocked by the bidirectional validation rule 55

8.8 Examples of moves blocked by the skipping validation rule 56

8.9 Formation of a region signal from the output of the region classifier .. 57

8.10 A graph of the relationships between error and automaticity 59

9.1 Labelling of the training examples ... 62

9.2 A schematic showing the method employed for reinforced learning ... 63

9.3 Results of the RELIEFF feature selection method 65

9.4 Results of Principal Component Analysis ... 65

9.5 Measurement of the convergence of training accuracy 67

10.1 The variety of cases which could occur during pre-processing 69

10.2 The different cases which could occur during tracking 72

10.3 Examples of incorrect linkage to multiple structures 73

10.4 A histogram of the number of manual corrections required 77

10.5 Examples of premature termination during tracking 79

10.6 An example of an image after automatically tracking a rat PCT 80

xi

10.7 A manually vs. automatically tracked mouse nephron......................... 80

10.8 A manually vs. semi-automatically tracked mouse nephron 81

10.9 A manually vs. semi-automatically tracked rat nephron 81

10.10 Examples of true and false positives and negatives of the ANN 86

10.11 An example of an output log during the tracking of a nephron 88

10.12 A pie chart of the distribution of execution time among routines 89

11.1 The implication of a chosen slice thickness on tracking 93

11.2 Measurements of the changes in morphology for three image sets 94

12.1 An example of a mouse slide at a much higher resolution 97

12.2 Examples of a longitudinal and transverse slice through the kidney ... 98

xii

List of Tables

Table No. Page

4.1 Characteristics of the average mouse and rat dataset 18

8.1 Different modes of tracking are created at transitions 57

9.1 The intermediate and final output classes of the learning functions 61

10.1 The segmentation accuracy of samples from 4 datasets 69

10.2 Test results on a chosen set of 16 mouse nephrons 75

10.3 Test results on a chosen set of 11 rat nephrons 75

10.4 The accuracies and invalid move rejection rate of the validations 83

10.5 The confusion matrix and accuracies of the ANN and SVM 84

10.6 The confusion matrix of the final classification of the test set 85

10.7 Various performance indicators for the ANN and SVM 85

10.8 The distribution of time among the main components of the code 88

10.9 The times taken to process cortical and medullary images 89

11.1 A summary of the implications and effects of artefacts 91

11.2 A high-level ceiling analysis of the system .. 95

xiii

List of Symbols

Vectors are indicated by variables in bold.

z Image number

fi Shape factor i where i={1,…,6}

K Number of clusters or centroids or nodes per segment

f Nephron number

mV

Number of observations

Number of examples

Number of elements in a vector V

n Number of features

iz Identity number of a single nephron cross section in image z

r
Residual

Radius in shape profile

X Input for machine learning algorithm

Y Output for machine learning algorithm

� Automatically tracked path

� Manually Tracked Path

α Accuracy

β Extent

θ
Polynomial coefficients in machine learning

Angle in shape profile

δ Angle increment for shape profile

Iz Image z

C
General constant

Set of centroids

Tbgrnd Threshold for background removal

xiv

List of Abbreviations

3D Three-dimensional

2D Two-dimensional

PCT Proximal Convoluted Tubule

PST Proximal Straight Tubule

DTL Descending Thin Limb

LH Loop of Henle

ATL Ascending Thin Limb

TAL Thick Ascending Limb

DCT Distal Convoluted Tubule

ICT Interstitial connective tissue

BV Blood vessels

ANN Artificial Neural Network

SVM Support Vector Machine

ML Machine Learning

1

CHAPTER 1

Introduction

The kidney performs the vital bodily functions of water and solute exchange,

blood pressure regulation and urine concentration through the functional unit of

the nephron. Approximately one million nephrons intricately populate each

human kidney, producing distinct regions with differing functionalities [1] [2].

The spatial distribution of nephrons within the kidney forms its microarchitecture.

The microarchitecture of the kidney has recently been the focus of a number of

studies [3] [4] [5]. In particular, the functional implications of the renal

microstructure on the underlying physiological mechanisms involved are of great

interest [6] [7] [8]. Nephrons are the target for many drugs which regulate blood

pressure and solute concentrations and hence important bodily functions [2]. A

deeper understanding of its anatomy may lead to a better understanding of

physiological function and disease, which may be beneficial to drug development,

disease diagnosis and treatment.

A deeper characterisation of the microarchitecture also enables further

development of models and simulations that accurately describe the functionality

of the nephron and the kidney. This is a fundamental step towards the

development of an artificial kidney or dialysis device. For researchers studying

and modelling kidney function, some of the most useful statistics are the ratio of

long-looped nephrons to short-looped nephrons and the change of this ratio across

different individuals and species, the distribution in lengths within these

categories, and the relative lengths of different parts of the nephron [7] [9].

A previous study carried out by the Department of Biomedicine at the University

of Aarhus, Denmark, involved manually tracking the paths taken by a few

hundred nephrons through histological image sets of mouse and rat kidneys, and

thereafter performing an in-depth analysis of the findings [9] [10] . The manual

tracking task required an exhaustive amount of time and effort per dataset, which

2

posed a limit on the amount of data that could be acquired. This created the need

for an automatic tracking tool which could be used as a standard tool on

multiple datasets. This would allow the renal characterisation of multiple species

as well as diseased specimens. Since the microstructure of nephrons can vary in

the same kidney, it is important to obtain large samples when taking

measurements such as nephron lengths, in order to render the findings more

statistically accurate and representative of a variety of kidney specimens.

The image database [11] has been made available for use through collaboration

between the University of Aarhus, Denmark, and the University of the

Witwatersrand, Johannesburg. This study attempts to aid and improve the process

of modelling the renal microstructure by creating an automatic software tool to

track nephrons through the image sets. The manually tracked nephrons form the

gold standard comparison for this study.

Various potential methodologies have been investigated and tested. The system

developed in this dissertation comprises three main stages; image pre-processing,

feature extraction and nephron tracking. Machine learning algorithms have been

employed to accurately guide the tracking algorithm. The final system is semi-

automated, occasionally requiring user input for tracking in the inner medulla

where the small size, dense nephron cross-sections prove to be difficult to track

automatically.

Chapter 2 introduces basic concepts of the kidney on both macroscopic and

microscopic scales in order to highlight details that are relevant to the problem.

An overview of existing methodologies in related fields is also discussed. The

aims, objectives, rationale and scope of the study are presented in Chapter 3.

Particular characteristics of the images which make the tracking task complex and

introduce a number of non-ideal factors are explored in Chapter 4. A brief

overview of the system is included in Chapter 5, and the developed methodology

consisting of the stages of image pre-processing, feature extraction and tracking is

detailed in Chapters 6, 7 and 8, respectively. Chapter 9 is dedicated to the

machine learning aspects of the system. Results are presented in Chapter 10,

followed by a detailed analysis and discussion in Chapter 11. Final conclusions

are drawn and recommendations made in Chapter 12.

3

CHAPTER 2

Background

This chapter serves to provide background knowledge on concepts and fields

relevant to this study, and to explore existing solutions, methodologies and

applications.

2.1 An Overview of Renal Histology

A basic understanding of the anatomy and histology of the kidney is required in

order to correctly model the problem, identify structures in the images and

interpret results of the study in light of their biological implications.

The kidneys are a pair of bean-shaped organs lying posteriorly in the abdominal

cavity [12]. From a high-level perspective, one of the main functions of the

kidneys is to take in unfiltered blood, and produce urine and filtered blood as

outputs. This filtering and reabsorption function is performed by the kidney‟s

functional unit called the nephron. Approximately 1 million nephrons populate

each human kidney [13].

A nephron is a long, tortuous, unbranched tubular structure, varying in diameter

along its length [1]. Its length is broken up into seven parts, namely the proximal

convoluted tubule (PCT), proximal straight tubule (PST), descending thin limb

(DTL), ascending thin limb, (ATL), thick ascending limb (TAL) and distal

convoluted tubule (DCT) [1]. The nephrons are arranged such that the PCT, PST,

TAL and DCT occur in the outer part of the kidney called the cortex, while the

DTL and ATL form loops of Henle in the inner region called the medulla [1], as

illustrated in Figure 2.1. Water and various solutes are exchanged between the

filtrate and the blood along the length of the nephron [14].

A glomerulus and Bowman‟s capsule (making up a renal corpuscle) occurs at the

start of each PCT; this is the site at which blood is filtered to form the renal

4

filtrate which fills the nephron tubule lumen. The renal corpuscle has a vascular

pole at which the glomerulus meets blood vessels (afferent and efferent arterioles)

and a urinary pole where the Bowman‟s capsule fuses with the nephron tubule [1].

The glomeruli are clearly visible in the image sets.

At its distal end, each DCT joins a collecting duct which is a common structure

collecting the filtrate from a family of nephrons [1]. This is the only site at which

branching will be seen in the nephron network [1]. The collecting ducts drain into

the minor and major calyces of the kidney, which then empty into the ureters and

subsequently the bladder.

Figure 2.1: Basic anatomy of the nephron. Adapted from [1].

Toluidine blue is the dye used in preparation of the image sets. It is a basic stain

commonly used in renal pathology [15]. It has a high affinity for acidic tissues,

producing a bluish purple stain [16]. It also increases the sharpness of histological

images [16]. In a typical Haematoxylin and Eosin (H&E) stained kidney

specimen, the various parts of the nephrons can be distinguished by the number of

nuclei, diameter, thickness of the wall and types of cells making up the tubule [1].

The given images stained with toluidine blue results in the diameter and wall

thickness being the only differentiating features.

Glomerulus

Collecting Duct (CD)

Proximal Convoluted Tubule (PCT)

Proximal Straight Tubule (PST)

Descending Thin Limb (DTL)

Ascending Thin Limb (ATL)

Loop of Henle (LH)

Thick Ascending Limb (TAL)

Distal Convoluted Tubule (DCT) Cortex

Medulla

Inner Medulla

Outer Medulla

Juxtamedullary

Region

5

The nephrons are in close contact with the renal blood supply in order to perform

the filtering and solute exchange functions [1]. The arteries, veins and capillary

networks are seen in the image sets, having varying sizes and are more irregularly

shaped compared to the nephrons. However, many blood vessels, especially those

emerging to and from the glomeruli, are very similar in appearance to the

nephrons and may be confused.

The presence of loops of Henle in the inner medulla and the convolutions in the

cortex are high-level examples of structure influencing renal function [14].

Looking closer, there are cortical nephrons with short loops and juxtamedullary

nephrons with long loops. These have differing filtering rates [10]. Deeper

characterisation of the renal microarchitecture may reveal additional structural

aspects which have important functional implications.

2.2 Existing Solutions

2.2.1 Nephron Tracking and Three-Dimensional Reconstruction

The spatial distribution of nephrons has been explored in previous studies

although all instances of tracking were performed manually and therefore the

resulting statistics were based on a limited number of nephrons. The mouse or rat

kidney is commonly used as it is small enough to fit on microscopic slides while

adequately representing the structure of mammalian kidneys.

One of the previous studies carried out at the University of Aarhus, Denmark

(from which the image sets were obtained) involved reconstructing 151 complete

nephrons from the manually tracked data of a mouse kidney [10]. The tracking

was done on 30 families of nephrons, where a family refers to all nephrons

emptying into a common collecting duct [10]. The glomeruli were used as starting

points. A number of statistics were calculated and the spatial interrelations of each

part of the nephrons were thoroughly discussed, revealing some important

features of the kidney [10]. A later study involved manually tracking 56 nephrons

of a rat kidney and taking a variety of measurements such as the lengths of

different parts of the nephron and glomerular volumes [9]. Computer-aided 3D

reconstruction was also carried out for visualisation purposes.

6

In a different set of studies by Pannabecker and Dantzler [4] [5], the 3D

architecture of the rat kidney was investigated. Various cross-sections of rat

nephrons were physically labelled using differential

staining/immunocytochemistry techniques. Immunofluorescence allowed visual

differentiation between parts of the nephron by means of distinct fluorescence

during microscopy. The digitised images were used to manually track the TDL

and TAL near the papillary tip. 3D reconstruction involved creating a mesh of

three-dimensional cylinder-like objects which were created for each individual

nephron cross-section in each image. Existing imaging software called Amira

visualisation was used. Although immunofluorescence aided the tracking process,

the tracking procedure was not automated in any obvious manner.

Both these sets of studies involved manually tracking nephron cross-sections in

different areas of interest in the kidney. The tracking processes were computer-

aided in the sense that the software provided a user-interface; the tracking was not

automated or predictive and no machine learning was used.

2.2.2 Glomeruli Detection

The glomeruli need to be detected as they serve as good starting points for

tracking. Automated glomerulus detection is an important step during computer-

aided diagnosis of kidney disease during a biopsy [17]. The change in size and

shape of glomeruli is an indicator of the degree of damage in the kidney [17]. The

biggest challenge for accurate detection is the fact that the surrounding contours

are not continuous [18] and that other surrounding tissue produce strong noise

levels [17]. The shape and size of the glomeruli also vary.

A set of papers [19] [20] document using a log edge detector and wavelet

transform to produce a low resolution image with enhanced glomeruli edges.

Spline curve fitting is applied through a genetic algorithm to obtain an accurate

closed curve around the glomeruli. Another study [17] has shown that the

watershed algorithm can produce a more accurate closed glomerulus edge.

These methods often require a starting seed and are not suitable for purely

automated glomeruli detection. The images in this study differ widely from those

used in other studies (usually H&E images). In contrast to images in previous

7

studies, the nephrons produce stronger edges than glomeruli. Also, accurate

closed curves around the glomeruli are not necessarily needed, merely indicate

coordinates. A custom glomerulus detection method is therefore devised for this

study.

2.2.3 Automated Tracking of other Biological Structures

It is important to note the difference between automatic tracking and automatic

segmentation. Automatic segmentation is the isolation of independent structures

in images, such as the separation of organs in CT and MRI images [21] [22], or

the differentiation between tissue types in histological images, mostly for

purposes of visualisation or further processing. The segmentation can be pixel

(2D) or voxel (3D) based. Commonly employed techniques for segmentation

include edge detectors [23], histogram-based methods, the watershed transform,

region growing [21], morphological operations and active contour modelling [22].

In contrast, automatic tracking utilises segmentation results to create an abstract

computational reconstruction of the structure for purposes of accurate

measurement. Currently, there exists no method for the automatic tracking of

nephrons through serial slices. However, methods for the automatic tracking of

other biological structures do currently exist, although these are for one or a few

objects in a single image.

A common example is the tracking of blood vessels in retinal images [23]. One

study [24] makes use of a Kalman filter as the basis for tracking, using the

position and orientation of vessel fragments as states. Gradient information and

expected vessel structure are used to estimate the next state during tracking.

System noise is also taken into account. A number of verification or correctness

checks specific to the problem are used to improve results [24]. Another study

[25] uses correlations with rotated templates to track vessels iteratively in local

pixel areas, in order to avoid image-wide operations which are generally slow.

The portal and hepatic venous trees of the liver has also been automatically

tracked. One approach uses Laplacian-based contraction to obtain a skeleton of

the vessel system [26], which is then broken up into nodes. Tracking consists of

8

using orientation and diameter consistency metrics to model continuity between

nodes. Maximisation of the continuity function provides the best candidate.

2.3 The Nephron Tracking Problem

The methods from the aforementioned applications cannot be directly applied to

the current nephron tracking problem due to a number of factors. The nephrons

are sectioned transversely, enabling one to track individual nephron cross-sections

from image to image. In contrast, retinal images and CT images of the hepatic

venous tree capture a single longitudinal view of the entire structure in question.

Another crucial difference is the vast number of independent nephrons needing

tracking versus one or a few structures in other applications. Moreover, the

tortuosity of the nephrons poses a major challenge. The vast amount of data (700-

3000 high resolution sections through the kidney per dataset) also poses a

limitation on how the data is to be processed in an efficient manner.

Although existing methodologies cannot be used directly and completely to fulfil

the requirements of the automated nephron tracking problem, several of the

methods have been adopted and combined in the current approach. This includes

graph-based tracking, various metrics to indicate confidence per iteration and a set

of validation rules to eliminate error. In addition to this analytic heuristic

technique, the high modelling capability of machine learning is employed for path

validation. Machine learning is highly appropriate for such a problem as it can

automatically model the complex system with high accuracy through training. The

machine learning component is discussed in greater detail in Section 2.5.

2.4 Graph Theory

The primary structure of the designed tracking algorithm in this study adopts basic

concepts used in graph theory as described by [39] and is summarised below.

A graph (G) consists of a collection of nodes (V) interconnected through edges

(E). In general, a node is an object which possesses certain attributes. An edge

connects two nodes, establishing a relationship between them, i.e. G = (V, E) and

E = (V1, V2). An edge can be undirected or directed where the edge points from a

parent node to a child node. Each node has a potential to have 0-1 parent/s and 0-

9

n children. In terms of nephron tracking, each individual nephron cross-section

can be seen as a node. The „nodes‟ are then progressively linked, or tracked, to

form a list of parent-child pairs.

A walk is a sequence of nodes and edges as shown in Figure 2.2. Given a set of

directed edges, a walk can be reconstructed through inference of the parent-child

pairs. The resultant nephron path can be seen as a bidirectional walk in 3D space

through the nodes making up a nephron, starting at some initial seed and ideally

ending at the glomerulus and collecting duct.

Figure 2.2: A nephron‟s path can be seen as a walk through a set of nodes in 3D

space. The walk occurs in two directions from a starting seed (green) towards

endpoints (blue) which should be a glomerulus and collecting duct.

2.5 Machine Learning

2.5.1 An Overview of Basic Machine Learning Principles

A machine learning algorithm forms a hypothesis, or a prediction function, based

on experience through given inputs and outputs [27], i.e. a training set {X,Y}.

Once a learning algorithm has been trained, it can be used to predict new unseen

examples. The process is summarised in Figure 2.3.

x

y

z

10

Figure 2.3: The general process followed when using machine learning

algorithms. hθ(x) is the prediction function.

The weights (θ) of the generalised polynomial function hθ(x) as in equation (2.1)

are adjusted with each example, such that some cost/error objective function as in

equation (2.2) is minimised [27]. This is done through methods such as gradient

descent and back-propagation [27], and is termed „learning‟. Popular learning

algorithms include Logistic Regression, Decision Trees, Bayesian Classifiers and

many more [28].

 () () () (2.1)

∑ . (

)/ () . (
)/

∑

 (2.2)

where x
i
 and y

i
 are the input features and output of the ith example, respectively.

m is the number of examples and n is the number of features.

Learning can be supervised, where the correct outputs are provided [29], or

unsupervised, where intrinsic patterns are sought for within the given data [29]. A

supervised problem may be of a regression type, where there is a continuous

valued output, or a classification type, where the output is a discrete label [27].

Randomisation and normalisation (feature scaling) of the input is essential for

good results during training [28]. Once the machine learning algorithm is well-

trained, it can be used to classify new, unseen examples.

An underfit hypothesis is one that is too simple or of a low order [28]. It has high

bias and cannot even represent the training set well. An overfit hypothesis is one

that has too high an order. It works very well for the training set but cannot

 𝜃(𝑥) Training set 𝐗
𝑥
 𝑥𝑛

⋮ ⋱ ⋮
𝑥
𝑚 𝑥𝑛

𝑚
 ; 𝐘

𝑦
⋮
𝑦𝑚

Training Process

Prediction

𝑥𝑛𝑒𝑤 ,𝑥 𝑥𝑛-

11

accurately predict new examples [28]. It is said to have high variance as it

captures noise and outliers [28]. The regularisation parameter of a machine

learning algorithm controls the level of generalisation of the hypothesis and can

be adjusted to address under- or over- fitting [28]. Additional features or

polynomial features can also solve a high bias problem, while decreasing features

and adding more training examples can resolve overfitting. In addition to the

training set, a validation and test set is also used during training to prevent bias

towards the training set.

Additional theory on machine learning can be found at [27] and [28].

2.5.2 Application to Medical Imaging

Artificial intelligence, or machine learning, has found application in the medical

imaging field. It is particularly advantageous because biological structures cannot

usually be described with high accuracy through simple predictive equations.

Large modelling capacity combined with flexible input and output choices make

these algorithms highly desirable.

Feature-based machine learning (FML) involves computing features of objects in

the images which are then used as inputs to the machine learning algorithm. The

output is typically not in the image space but rather a classification or numerical

value [30]. One such application involved using a multi-layer perceptron neural

network to classify breast lesions as either malignant, fibroadenoma, fibrocystic

disease or benign [31]. Features such as cellularity, cohesiveness, clump thickness

and uniformity were computed from images of fine needle aspirate smears [31].

Pixel, or voxel, based machine learning (PML) uses image pixels as direct inputs,

or features. PML can automatically infer features and hence reduces error and data

loss that occurs through feature extraction [30]. The output can be a classification

or a processed image containing, for example, a detected coordinate, boundary

curve or enhanced object [30]. For example, a feed-forward neural network has

been used to aid detection of boundaries during automatic segmentation of the

colon in CT images [32]. Using a processed binary image as an input, the network

is able to extract fluid filled regions of the colon [32]. The training time and

12

computational power required for PML is very large due to the high

dimensionality produced by image inputs.

2.5.3 Application to the Nephron Tracking Problem

The nephron tracking problem has a large number of inputs (either raw or

processed images, or features such as shape, colour, position, size) and complex

unknown functions. A non-linear, high dimensional machine learning algorithm is

able to model these functions through supervised learning on the datasets.

For this study, two supervised classifiers are chosen for performance comparison.

These are an Artificial Neural Network (ANN) and a Support Vector Machine

(SVM), which are the most popular and powerful non-linear machine learning

algorithms [28]. Both ANNs and SVMs are capable of modelling complex

systems with high accuracy through supervised learning.

An ANN is a biologically inspired non-linear machine learning algorithm. It

consists of multiple calculating units called neurons, each of which outputs a

weighted sum of its inputs [27]. The neurons are arranged into multiple

interconnected layers. Propagation of the input through the layers results in an

intricate interrelation of the inputs dependant on the weighting factors at each

neuron [27]. ANNs are capable of representing highly complex hypotheses, as the

input features are progressively mapped into more complex features by the deeper

layers [27]. It mimics the notion of the brain‟s plasticity, using „one algorithm for

all learning‟ [28].

An SVM is one of the most powerful machine learning algorithms available [28].

It is sometimes cleaner than logistic regression and ANN for complex hypotheses

[28]. It is also known as a large margin classifier as it maximises the distance of

the boundary from the examples. It uses computed features called landmarks,

which can be computed with or without a variety of kernels.

For each of the algorithms, regularisation, the chosen features, the number of

examples and the degree of the hypothesis need to be carefully chosen to optimise

performance. It has been shown that most algorithms in the same class seem to

13

perform equally well, provided that there are a large number of training examples

(>10000) [28].

The large amount of data available (3 sets of mouse kidneys of ≈1000 images/set

and 3 sets of rat kidneys of ≈4000images/set) means that sufficient training can

occur in order to optimise a highly complex hypothesis function. Some sets can be

used for training and others for independent testing. Multiple datasets will result

in an algorithm that is not an over-fit to one particular set of images.

Feature-based learning is chosen as image-based outputs are not required

(nephron detections are more easily obtained through other methods due to the

homogenous, easily identifiable nature of the cross-sections). The approach is to

use the machine learning classification as a validation step post-tracking. This also

reduces the dimensionality of the problem.

ANNs have low transparency – the optimised weightings cannot be easily

interpreted to infer a model of the system. SVMs are slightly more transparent as

the landmarks and margins can be interpreted [28]. However, transparency is not

an issue, as this problem does not require an understanding of the underlying

mathematical model. The algorithm simply relies on an output of tracking

accuracy for purposes of path validation.

14

CHAPTER 3

Project Framework

3.1 Research Question

The work presented in this study forms part of a larger research goal, which aims

to aid the process of exploring the spatial microstructure of the kidney in order to

advance research findings in the fields of renal physiology and pathology. It also

aims to verify the existing conclusions drawn from the small sample of nephrons

in the previous study, on a larger more representative sample set.

In terms of this study, the research aims to:

 Determine how 3D structures, or representations, of individual nephrons

can be automatically extracted from serial slices of the kidney.

 Develop methodologies towards an automated nephron tracking system.

 Determine how effectively and accurately an automated approach to

tracking can be compared to the manual method.

 Quantify how much manual intervention is necessary in the automatic

approach to obtain the paths of entire nephrons.

Once tracked, the results can be processed to extract useful statistics or reconstruct

a 3D representation of the renal microstructure.

3.2 Rationale

Why does software need to be developed?

The manual tracking problem requires an exhaustive amount of effort per dataset.

Each mouse and rat dataset has on average 1000 and 3000 images, respectively.

Manually tracking one long-looped mouse nephron requires tracking about 1800

nephron cross-sections. This poses a limit on the amount of data that can be

acquired (the number of nephrons and kidneys analysed). This creates the need for

an automatic tracking algorithm which could be used as a standard tool on

15

multiple datasets, requiring little to no human effort apart from operation and

occasional human intervention in the tracking process, although this should be

minimised. Larger sets of results are needed in order for the extracted

characteristics to be statistically representative of all kidney specimens.

Methods for 3D reconstruction from 2D images have been widely established,

such as in 3D magnetic resonance (MRI) and computed tomography (CT) scans.

However, these tools are not suitable to this problem due to a number of reasons:

 The problem is not limited to visualisation, but requires accurate measurements

to be made per nephron, which requires accurate tracking of each individual

nephron‟s cross-sections through the images.

 Existing tools are adapted to isolating only a few objects with relatively simple

shapes/contours, e.g. the gross structure of the liver or heart, whereas the

kidney has thousands of densely packed, intertwined nephrons, each of which

takes a tortuous path in 3D space.

 MRI/CT image sets are not typically as large in volume (hundreds to thousands

of high resolution images for the kidney data sets). This poses a challenge in

terms of memory.

 Due to the large number of intertwined nephrons surrounded by interstitial

tissue, generic algorithms could very easily incorrectly link nephrons or

misjudge the correct path.

Existing software packages could perhaps be used on the results of the tracking

algorithm rather than the raw images for purposes of visualisation. This research

focuses on the development of the methods required for automated tracking rather

than research on aspects of nephrology. Developing these methods is an essential

step towards fully automated nephron tracking.

The resources that were required for this research project include the image sets

and software development tools both of which were readily available. In

particular, MATLAB Version R2012a [33], the Image Processing Toolbox,

Neural Network Toolbox and Statistics Toolbox were used.

16

3.3 Objectives

The designed system needs to be:

 Automated to a high degree: Minimal effort must be required for setup and

calibration, and user input must be minimised during tracking.

 Robust: It is able to track the convolutions in the tortuous path of nephrons and

is capable of handling a wide range of cases, accommodating variability in the

input data.

 Intelligent: The system makes use of modern techniques and makes informed

decisions through computed models rather than depending on hard-coded rules.

 Practical: The code is reasonably efficient and user interaction is made easy.

3.4 Assumptions

 For purposes of verification, the assumption is made that the manually tracked

data is absolutely correct. The accuracy of the algorithm will be measured

against this gold standard. Visual inspection can also be used to verify results

on nephrons which have not been previously tracked.

 The algorithm is only expected to work for datasets with reasonably clear data,

which follows the constraints outlined in Section 12.1.2.

 A few parameters can be adjusted at the start of automated tracking in order to

optimise the code for a particular dataset, i.e. calibrate the system to the input.

3.5 Success Criteria

The solution will be deemed successful if:

 The algorithm is able to track large portions of the paths of the manually

tracked nephrons in an automatic manner.

 Complete nephron paths can be obtained using limited manual intervention.

 The algorithm works with a variety of datasets, with a minimal number of

parameters needing to be adjusted.

 The algorithm has high specificity and sensitivity.

 The results can be used to provide a visual representation of the spatial

distribution of the nephrons.

 The developed methodologies contribute to future work in this field.

17

CHAPTER 4

Analysis of the Problem Domain

In order to construct a working solution to the problem, the available data must

first be analysed to identify requirements, constraints and limitations posed by the

images.

4.1 The Image Sets Acquired from the University of Aarhus

The image sets acquired from the University of Aarhus, Denmark consist of

images from three mouse kidney specimens and three rat kidney specimens.

According to their previous studies [9] [10], tissue blocks were cut from each of

the six kidneys perpendicular to the longitudinal axis extending from the cortical

capsule to the papillary tip [10]. The tissue blocks were then fixed with

glutaraldehyde, post-fixed with OsO4, stained én bloc with uranyl acetate, and

embedded in flat molds in Epon [9] [10]. The blocks were then sliced transversely

into consecutive sections using a microtome equipped with a Diatome histoknife

[9]. Each slice was then stained with toluidine blue [9], digitised using a

microscope and digital camera and labelled sequentially. A custom software

interface was used for the manual tracking and labelling task; which is discussed

in detail in [9] [10].

The animal experiments were carried out in accordance with the animal care

license provided by the Danish National Animal Experiments Inspectorate [9]

[34] (ethics clearance number 2004/561-818). Due to the work being purely

computational, additional ethics clearance was not required on part of the

University of Witwatersrand.

Some noteworthy characteristics of the datasets are tabulated in Table 4.1.

18

Table 4.1: Characteristics of the average mouse and rat dataset [9] [10] [11]

 Mouse data Rat data

Isotropic scale factor (x-y) 1.16 μm per pixel 1.53 μm per pixel

Slice thickness
2.5 μm x 0.5=5 μm

(every 2
nd

 slice present)
2.5 μm

Average no. of images 984 4392

Resolution 2500 x 1675 pixels 2750 x 2500 pixels

A nephron cross-section is defined as a cross-section through a single nephron at

one location in an image. As one proceeds through an image set, it can be seen

that the microstructure or morphology changes drastically from the cortex to the

medulla. The Appendix contains a reconstructed view of the entire specimen in a

longitudinal plane in order to illustrate the regions and the changes between them.

Figure 4.1 displays examples of images in the cortex and medulla [11].

 Rat 1 Mouse 1 Mouse 3

C
o
rt

ex

M
ed

u
ll

a

Figure 4.1: Examples of images in the cortex (left) versus the medulla (right) [11]

are shown at equal magnification. A change in nephron characteristics,

particularly wall intensity, tubule density and decreasing diameter can be seen.

Histological Variations

Nephrons belonging to the same collecting duct family have their loops running

together in the medulla [10]. Cortical nephrons have shorter loops of Henle while

juxtamedullary nephrons extend deeper into the medulla, have longer loops of

19

Henle and larger glomeruli [1] [10]. Different cross-sections of the nephron may

stain with different intensities as the cell composition varies. The DTL in

particular has very thin, lightly stained walls as can be seen in images of the

medulla in Figures 4.1 and 4.2.

Cortex

The renal cortex is composed primarily of the PCT, DCT and glomeruli, which

are relatively large in diameter (Glomeruli: 150-240μm, PCT: 40-50μm, DCT: 20-

50μm [2]) as seen in Figure 4.2. Large blood vessels (arcuate arteries and veins)

and smaller capillaries are also present. While most nephron cross-sections appear

circular, there are many elliptical and elongated cross-sections in the cortex due to

the turning and winding of the PCT and DCT. The PCT is longer, larger in

diameter and more convoluted than the DCT [10], making up the majority of

cross-sections in the cortex. The PCT also has a fuzzier border. The glomerulus,

PCT and DCT related to the same nephron are found in the same vicinity in the

cortex [10]. The glomeruli are randomly dispersed throughout the cortex and are

easily distinguishable by eye on the microscopic images as large circles

containing a ball of convoluted blood vessels. From observation, the TAL and

initial DCT cross-sections are much smaller in diameter than PCT and distal DCT

cross-sections and are dispersed in between these larger tubules.

Medulla

The outer medulla contains a mixture of large PCT and DCT cross-sections as

well as small DTL and ATL cross-sections. Deeper in the outer medulla, the PST

with an outer diameter of about 60μm, suddenly narrows to about 10-15μm and

continues as the DTL into the inner medulla [1] [2].

The inner medulla primarily consists of the thin limbs of the loop of Henle. These

are seen as densely packed circular structures. The descending limb has a much

thinner wall than the ascending limb. All cross-sections are circular except for

small elongated cross-sections at the bends of the loop of Henle. From

observation, the surrounding capillary networks called the vasa recta are difficult

to distinguish from nephron cross-sections as they are very similar in appearance.

20

Figure 4.2: A section of an image through the cortex (top) and inner medulla

(bottom) showing numerous structures [11].

The varying structure from the cortex to medulla means that processing

parameters will have to change progressively through the image set in order to

accommodate the varying intensities, sizes of objects and the amount of unwanted

objects such as blood vessels, the interstitial connective tissue, the background,

and artefacts.

Analysis of the images from the medulla poses a greater challenge compared with

the cortex because the cross-sections are much smaller and concentrated, making

it more difficult to isolate them accurately. Even though tracking in this area

would be more prone to error (as the probability of mistakenly jumping onto the

wrong cross-section is higher), the fact that the paths are mostly straight and

unidirectional in this region can be used as a criterion for error checking. Other

known information can also be used for guidance or error checking, e.g. slices 1-

300 may consist primarily of the cortex, or a diameter of 5-10 pixels indicates a

thin limb of the loop of Henle in the medulla.

Glomeruli

Circular and elongated

tubules of the PCT

Blood vessel

(artery/vein)

Small circular tubules of the TAL

Thin walled tubules of the DTL

Thick walled tubules of the ATL

21

 4.2 An Ideal Solution

An ideal solution would consist of aligning the images and producing binary

images using the required conditioning steps. A 3D segmentation algorithm such

as region-growing, Watershed segmentation or the flood-fill algorithm could then

be applied to the entire 3D volume, ideally isolating a particular nephron given a

starting seed. Each isolated volume could then be independently analysed.

However, the data presents many complexities which do not make such a solution

viable. Image misalignment, local distortions and missing data (or tissue) between

adjacent images produces a definite discontinuity from image to image. This, in

combination with interference from connective tissue cross-sections and other

non-ideal factors result in multiple nephrons being linked using these techniques.

Since there is not continuity between adjacent images (in contrast to the x-y image

planes), linkage of the nephron cross-sections merely by pixel connectivity is not

reliable and is error prone as it requires only a few pixels to be incorrectly

connected from different nephrons. This is especially true for the inner medulla

where tubule density is high. Such a solution would also not be capable of

intelligently handling distorted images and artefacts. Additionally, these

algorithms require the whole volume to be actively processed, which is difficult to

carry out as it requires a massive amount of physical memory on the order of

25GB.

4.3 The Complexities of the Problem

Broadly speaking, the complications are firstly due to features of the specimens

themselves, and secondly due to the large amount of data per dataset. The

designed system must be able to counteract these complexities while accurately

tracking the path of each nephron through the 3D image space.

4.3.1 Artefacts

Physical artefacts are structures, or processes, which contaminate or distort the

original tissue, causing reduced visibility or complete obscuration of the tissue.

They are induced during tissue preparation. An image artefact is an anomaly

caused during the image capturing process.

22

Large physical artefacts seen in the images include tissue cuts, folds and external

matter, which affect all the nephron cross-sections in the vicinity. Some artefacts

only affect single nephron cross-sections, such as the presence of external matter

in the lumen. A number of examples are displayed in Figure 4.3. Artefacts hinder

tracking if they occur in a number of successive images. This is typically where

user-input is then required.

Figure 4.3: Examples of interfering physical artefacts in the image sets [11].

These include cuts, folds, external matter, blurring effects, bright spots and

occluding matter in the lumens.

Some images also have areas of sharp non-uniform intensities, particularly large

bright spots which could be a result of both non-ideal tissue preparation and

image capturing. These cause incorrect merging of cross-sections or elimination

of a large number of nephron cross-sections during pre-processing. These images

23

cannot simply be excluded as the frequency of images with artefacts is too high

(one in every 5-10 images). Also, the artefacts do not affect all of the nephron

cross-sections in the image and the defective images are useful for the most part.

The presence of these vastly different artefacts require each image to be evaluated

and processed individually during tracking so that the artefact can be bypassed

automatically or by the user. This is another reason why a generic three-

dimensional tracking algorithm such as flood-fill cannot be used.

Another anomaly is the misalignment between images. This is due to local tissue

distortions (a physical artefact causing non-rigid deformation) as well as capturing

slides which were not aligned (an image artefact causing translation and rotation).

This is discussed in more detail in Sections 6.1 and 8.1. In addition to the

nephrons, interstitial connective tissue and blood vessels are present. Although

these are not artefacts, they do cause interference during tracking. Blood vessels

link the glomeruli of multiple nephrons, while connective tissue causes the

incorrect linking of multiple nephrons during tracking.

4.3.2 Memory

Each image set occupies about 700MB and 2GB for the mice and rat datasets,

respectively when stored in a compressed form (JPEG images). In order to be

processed in MATLAB (or any software), the images must be decompressed into

a matrix form, where each matrix entry is a pixel value occupying at least four

bytes. This then equates to a decompressed size of about

 = 14GB

for a mouse dataset and

 = 64GB for a rat dataset.

This implies that it is not possible to process the whole volume at once

considering typical physical memory limitations of 8-16GB. Rather, smaller

batches of images should be processed in a more intelligent, controlled manner, as

is required for the complex nephron path tracking problem.

24

CHAPTER 5

System Overview

The task of manually tracking nephrons through an image stack is a seemingly

trivial one for a human being. However, transferring the vision, interpretation and

decision making abilities of the human operator into software is a very complex

task. Obtaining results that are as accurate as manual tracking results is even more

difficult. In order to attempt to do so, the system developed in this study uses a

combination of techniques from the domains of computer vision, feature

computation, graph theory and machine learning.

Although the purpose of this system is not to make an “end-diagnosis”, from a

methodological perspective, the problem fits the generic architecture of a

Computer Aided Diagnosis (CAD) system [35]. CAD systems assist medical

practitioners in interpreting microscope, x-ray, MRI and ultrasound images by

automatically marking, measuring or detecting certain regions of interest [29].

These systems use a combination of image processing and artificial intelligence

techniques. The architecture of a CAD system can be generalised as [29] [35]:

1. Image Pre-processing: Involves steps such as image registration, noise

reduction, edge enhancement and intensity equalisation in order to increase

quality or amplify visibility of features [29].

2. Definition of Regions of Interest: Separating or detecting the objects of interest

using methods such as image segmentation or contour matching [29].

3. Feature Extraction and Selection: Computing features by measuring

characteristics such as size, shape and colour [29] [36].

4. Classification: Involves pattern recognition through supervised classifiers such

as a Decision Tree, Artificial Neural Network or Bayesian Network classifier,

or unsupervised methods such as clustering.

25

A number of factors affect the accuracy of these systems, for example image

quality, noise and complexity of the target objects [11]. Figure 5.1 describes the

architecture of the designed nephron tracking system.

Figure 5.1: A high level overview of the nephron tracking system, showing the

main sub-systems and the flow of information between them.

The system is implemented in MATLAB [33] as a series of independent modules

where structures of information are progressively passed on from one stage to the

next. This framework is related to an object-orientated approach in that the major

functions are decomposed into independent, reusable blocks. The development of

the system is incremental, involving continuous reiteration through the three main

stages to achieve optimal performance.

There are a number of parameters in each stage which need to be calibrated to

each image set. These are discussed in their relevant sections. In order to easily do

so, a single settings file must be initialised prior to execution, which contains all

of the information needed to automatically adjust and vary the parameters

involved.

MACHINE LEARNING

TRAINING

IMAGE

PROCESSING

&

SEGMENTATION

FEATURE

EXTRACTION

- Shape Factors

- Node Allocation

- Shape Profile

TRACKING

ALGORITHM

INPUT:

IMAGE SET

OUTPUT: 3D

NEPHRON MODELS

MEASUREMENTS &

VISUALISATION

RECONSTRUCTION

MACHINE LEARNING

FUNCTION (Trained)

MANUALLY

TRACKD DATA

PERFORMANCE

EVALUATION

26

CHAPTER 6

Image Processing

Computer vision aims to mimic the capabilities of human vision by processing,

analysing and transforming raw images into a form that can be more easily and

accurately interpreted by a machine [36]. It forms a crucial component of many

automated processes in the real world [37] including the current nephron tracking

task.

The image processing steps prepare the images for subsequent stages by creating

uniformity among all nephron cross-sections and counteracting non-ideal factors

described in Section 4.3. The images are processed such that required features

(nephron cross-sections) are enhanced while unwanted features (such as

interstitial connective tissue (ICT) cross-sections, large blood vessels, background

pixels and large artefacts) are filtered out or reduced. The final product of image

pre-processing is a binary image of the lumens of the nephrons as shown in Figure

6.1.

Figure 6.1: Each colour image is processed into a binary image containing

nephron cross-sections of all sizes. Each raw image [11] undergoes conversion to

grayscale, background removal, histogram equalisation and binarisation.

6.1 Image Registration

Image alignment was carried out on the datasets [11] during the previous study in

order to ease the manual tracking process [9] [10]. The procedure involved

iteratively estimating the translational and rotational offsets between adjacent

images and applying the rigid transformation using custom software written in C

27

[9]. This alignment was apparently not sufficient due to the local distortions

induced during the sectioning process [9]. The distortions have the effect of

pinching, compressing or stretching local regions of tissue. The rat image sets

were then further aligned using five manually placed landmarks which divided

each image into four polygons, each of which then underwent a non-rigid

transformation [9].

These processes have resulted in the images being sufficiently aligned from a

global perspective. However, local distortions in the mouse datasets were still not

fully compensated for, especially since only every second slice of the dataset [11]

is present. This is shown in Figure 6.2, where one local area can be aligned while

a nearby area is misaligned.

Figure 6.2: A pair of superimposed adjacent sub-images (binarised) from a mouse

dataset is shown (derived from [11]). The bottom right area is well-aligned while

the top areas are misaligned. This cannot be corrected using a translation and

rotation only as the misalignment is due to localised stretching/compression.

Misalignment due to local distortions in the rat datasets was minimal as they were

compensated for by the four-quadrant alignment method. However, this had

resulted in nephron cross-sections incorrectly merging at the junctions of the four

polygons, as shown in Figure 6.3. This resulted in multiple nephrons being linked

during tracking. The nephrons around these junctions were therefore excluded

from the study as the merge cannot be reversed.

28

The images were not further aligned during the pre-processing stage, although

further alignment is performed during the tracking process as the local distortions

require the areas around each cross-section to be handled locally and

independently. This local alignment is discussed in Section 8.1 as part of the

tracking system. Advanced non-linear image registration techniques such as

RANSAC [37] were not applied as:

- Cropped local regions can be aligned using simpler methods. Non-linear

alignment usually makes use of six more parameters in addition to the two

employed (x and y translation), which increasing the order of the process.

- Large cumulative transforms over the image set must be avoided as they may

over-morph the images.

- A small amount of the misalignment is due to the progressive change in

morphology and not only due to induced distortions. A non-linear registration

would counteract this change in morphology, which is undesirable as the

characteristic nature of the nephrons must remain unchanged.

Figure 6.3: The arrows indicate the junctions of the polygons created during the

four-polygon alignment method, which results in the merging of cross-sections

from different nephrons. In the labelled image (below) the merge between cross-

sections from nephrons 40 and 41 can be seen [11].

568

1300 1350 1400 1450 1500

1000

1050

1100

1150

1200
1300 1350 1400 1450 1500

1000

1050

1100

1150

1200

569

1300 1350 1400 1450 1500

1000

1050

1100

1150

1200
1300 1350 1400 1450 1500

1000

1050

1100

1150

1200

29

6.2 Image Processing Procedure

Each nephron tubule consists of a lumen enclosed by the tubule wall, which

differs in thickness depending on its location, i.e. the PCT, PST and DCT have

thick walls while the DTL, ATL and TAL have very thin walls. It would be ideal

to extract both the wall and lumen of each tubule but this is a difficult task due to

the walls of adjacent tubules touching one another. One potential method which

could be applied is spline curve fitting using a genetic algorithm, which has been

used to isolate different types of tissue in histological images [19]. However, the

vast number of single nephron cross-sections per image that would need

separation is too large (≈ 8000 per image in the cortex to ≈ 36000 per image in the

medulla) and the problem becomes unnecessarily complex for current purposes.

It was decided that the lumen of a nephron cross-section alone contains sufficient

amount of information to represent the original structure in the colour image, i.e.

location, size and shape of the nephron cross-section is provided by the lumen

alone. The lumens are also more easily and accurately isolated juxtaposed to the

walls of the nephrons and are thus chosen as the objects to be isolated. Each

image undergoes the following procedures:

6.2.1. Conversion to Grayscale

The staining used on the specimens (toluidine blue [10]) results in all structures

being monochrome. The colour information is thus discarded by conversion to a

grayscale image by retaining the value component (or luminance) of the hue-

saturation-value (HSV) image. The colour information could however be useful

(e.g. if a more differentiating stain is used in future image sets) and this would

require the pre-processing stage to be modified accordingly.

6.2.2. Background Removal

The tissue slice is isolated by removing the white background space. First, the

image is thresholded at the image‟s average intensity value plus some constant C.

 () (6.1)

30

This is chosen instead of a constant value only as each image differs in intensity,

some by a large amount. Furthermore, this value results in a sharp contrast

between the background (BG) and the tissue. The C value must be chosen to suite

each image set. For example, the images in one rat dataset have a very large bright

tissue centre. A C value that is too low causes the nephron cross-sections to merge

into one large binary element when binarised. The large component could then be

mistaken for the background. Another mouse dataset has a darker background

with lots of matter, and a C value that is too high results in large chunks of the

background not being removed. This value must be chosen once-off during

system calibration by a trial-and-error approach.

Figure 6.4: The procedure for background removal is shown. The raw image [11]

is binarised. The background mask is formed by morphological closing and

inversion of the largest components in the binary image. Finally the mask is

multiplied with the image.

The binary image is segmented (using simple 8-neighbour connectivity),

thereafter obtaining the largest cross-sections which then form a background

mask. The mask first undergoes morphological image closing using a 20x20

circular kernel in order to remove small objects occurring in the background. The

Tbgrnd=190+10

Original Image Background Mask

Image with
background removed

31

mask is then inverted and applied to the original image by multiplication. These

steps are shown in Figure 6.4. Background removal must occur prior to (and

without any) image equalisation so as not to amplify the intensity or texture of

matter occurring in the background.

6.2.3. Histogram Equalisation

Histogram equalisation involves normalising the histogram of an image such that

all intensity values are equally distributed among the pixels in the image. It is the

most crucial image processing step and is required in order to counteract uneven

intensities on both a local and global scale as illustrated in Figure 6.5.

1. „Globally‟: Uneven intensity may occur across large areas in the image, such as

random large bright spots or a brighter centre as a result of the image acquisition

process. Furthermore, some images are irregularly bright or dark in comparison to

the rest of the image set. Global equalisation is achieved by using a large

equalisation window [36], about a tenth of the size of the image.

2. „Locally‟: Uneven intensities may occur in small local areas (especially in the

inner medulla) as a result of narrow diameter nephron cross-sections having a

much lighter wall. Local equalisation is applied by using a much smaller

equalisation window of about 5 times the size of the average nephron cross-

section in the image.

The sizes of the equalisation windows must be suited to each image per dataset.

Images of the cortex require a large local equalisation window (≈ 40 pixels), as

the nephron cross-sections are larger than in the medulla. Too small a window

results in „hyper-equalisation‟, where large white areas (such as large nephrons)

acquire a rough, broken texture. The nephron cross-sections in the inner medulla

are much smaller and have very thin, light tubule walls, and are thus much more

dependent on good equalisation. This requires a smaller local equalisation

window (≈ 20 pixels). A window that is too large will not adequately equalise the

intensity of these nephron walls, resulting in the cross-sections being removed or

merged when binarisation occurs.

32

Figure 6.5: Top: There are large regions of uneven intensity (shown in green)

which require equalisation with a large window. There are also much smaller,

local uneven intensities due to thin walled cross-sections. If not equalised locally,

these groups of nephrons will merge into large binary cross-sections and would

not be able to be differentiated. Middle: After global equalisation, the image

intensity is uniform over large areas as seen in the real and conceptual histograms.

Bottom: After local equalisation, uniform intensity is achieved across small areas

as well. Images adapted from [11].

6.2.4. Thresholding

The image is thresholded at a constant value T to create a binary image. Adaptive

thresholding is not used as uniformity was achieved through the equalisation

steps. The threshold value is chosen such that it does not allow independent

lumens to merge while also not letting small nephron cross-sections disappear. It

After global eq.

Original Image

After global & local eq.

33

also varies through the image set such that the inner medulla images have a

slightly higher value to prevent the dense, thin-walled cross-sections from

merging, while the cortex has a lower value to prevent segmentation of large

nephron cross-sections.

6.2.5. Removal of Unwanted Cross-Sections

Unwanted cross-sections include those of the blood vessels and connective tissue.

Connective tissue cross-sections appear between nephron cross-sections in the

cortex. They are characteristically irregularly shaped, fragmented and typically

small and thin, as shown in Figure 6.6. It is difficult to remove these cross-

sections without also removing some nephron cross-sections which are similar in

appearance (particularly cross-sections of the TAL and DCT). It is important not

to remove these nephron cross-sections as the TAL and DCT will otherwise not

be able to be tracked.

Figure 6.6: Connective tissue cross-sections have been manually marked in green

in images of the cortex from a rat (left) and a mouse (right) image set (adapted

from [11]). The irregularly shape connective tissue cross-sections are distinct,

although there are some nephron binary cross-sections which have similar

characteristics.

Size-based component exclusion: Binary components that are very small (<10

pixels) and very large (> 100 000 pixels) can be confidently identified not to be

nephron cross-sections and are removed. Large components are normally large

blood vessels while small components are small connective tissue cross-sections

or noise from the equalisation.

34

Morphological erode/dilate cycles: Performing morphological eroding p times,

followed by a dilation p times results in the elimination of larger connective tissue

cross-sections. While this works well, it is applied very sparingly as it also results

in the removal of small nephron cross-sections. This cannot be done in the inner

medulla where the cross-sections are only a few pixels wide.

Shape-based clustering: Clustering the cross-sections based on their shape

factors is another possible way to eliminate unwanted cross-sections.

Morphological operations and clustering invariably results in the loss of some

nephron cross-sections as well (usually elongated or C-shaped cross-sections).

This is highly undesirable, as the tracking process depends on each cross-section

along the nephron‟s path to be present, especially elongated ones. It is therefore

decided to include all possible data (including unwanted ICT) rather than to have

missing data.

Obtaining the final binary image is one of the most important tasks, as the

accuracy of following stages depends on how well cross-sections are isolated

from one another. A compromise must be made between the number of

connective tissue cross-sections present and the number of small nephron cross-

sections which do not get eliminated.

Further pre-processing involves the removal of highly distorted images and

replacing them with the image above or below. An average of 4 images per

dataset had to be been manually replaced. However, an automatic method can be

devised if a larger number of images are defective, for example by analysing the

mean intensity of each image in the image set.

6.3 Image Segmentation

Connected component segmentation [36] (using a 4-connected neighbourhood) is

used to segment the image into independent nephron cross-sections. Although this

is the simplest segmentation technique, it produces satisfactory results because a

good binary image was obtained in the previous steps. A labelled binary image is

formed, where all the pixels belonging to one component have a unique value.

35

Watershed segmentation or region-growing on the equalised image are other

possible segmentation techniques, which could perform better in cases where

independent lumens incorrectly merge through a few connected pixels. However,

they do tend to over-segment the image [17], resulting in the division of elongated

nephron cross-sections.

6.4 Automatic Parameter Variation

A very important factor during pre-processing is accommodating for the change in

morphology from the cortex to the medulla. The cortico-medullary boundary is an

area where the proximal straight tubule (≈ 60μm in diameter) suddenly narrows to

a diameter of 10-15μm to form the thin descending limb of the loop of Henle [1]

[2]. This change requires almost all parameters of the pre-processing steps to vary

accordingly to ensure that cross-sections of all sizes are extracted.

In order to accommodate for this relatively sudden change, the parameters are

made to vary along the image set according to a modified sigmoid function ()

(also known as a generalised logistic function [38]) as in equation 6.2, which has

its inflection point set at the transition zone. This transition zone must be chosen

empirically through observation during system calibration.

 ()

 (6.2)

Where z is the image number, UL is the upper limit, LL is the lower limit, k is the

z value at which the inflection point occurs and δ is a steepness coefficient [38].

The steepness coefficient is chosen by the best outcome during experimentation

on a few images. The sigmoid function allows relatively constant parameter

values in the cortex and inner medulla as shown in Figure 6.7. Some parameters

of the tracking algorithm, such as the tracking radius, also make use of this

function.

The suitability of this function can be validated by examining the change in

certain characteristics along the image set, such as the number of cross-sections

and average nephron cross-section width. As shown in Figure 6.8, these

36

characteristics have an inherent sigmoidal shape; hence the function models the

change well. The curve seen near the initial images is due to the tissue slices

progressively growing from the edge and is not due to differing tubule

characteristics, and is therefore not modelled.

Figure 6.7: The equalisation window size and threshold value are made to vary

according to custom sigmoid functions. The equalisation window is quantised.

The parameters are for a mouse dataset with its inflection point at the 350
th

 image.

Figure 6.8: Features of the datasets (black) such as the average nephron cross-

sectional width (right) and number of cross-sections per image (left) have an

inherent sigmoidal characteristic, as shown in red. The graphs are of a rat dataset.

Modelling the processing parameters using tailored sigmoid functions for each

image set results in uniform results (quality and accuracy of binary images) across

all datasets, i.e. it serves as a calibration mechanism. Subsequent stages therefore

do not have to cater for any particular dataset and can be designed in a generalised

manner for standard input data.

0 500 1000
10

20

30

40

50

60

E
qu

al
is

at
io

n
W

in
do

w
 S

iz
e

Image No.

0 500 1000
180

185

190

195

200

Image No.

T
hr

es
ho

ld

0 500 1000 1500 2000
0

1

2

3

4

5
x 10

4

Image No.

N
u
m

b
e
r

o
f

S
e
g
m

e
n
ts

0 500 1000 1500 2000
0

5

10

15

20

Image No.

A
v
e
ra

g
e
 s

e
g
m

e
n
t

w
id

th
 (

P
ix

e
ls

)

37

CHAPTER 7

Feature Extraction

Feature extraction aims to simplify and concentrate useful information from raw

data. It forms an intrinsic image of the input data, which is an array of information

representing important physical characteristics of the objects involved [37]. Within

the images, large amounts of the data are not useful, for example the large number

of pixels making up the background. The pixel information can instead be

condensed into a set of features per nephron cross-section, which represent the

problem to a sufficient degree. Intuitively, the most useful information about a

nephron cross-section is its size, shape, colour and location.

7.1 Node Allocation

A node is defined as a point coordinate in the 3D image space. The pixel locations

per cross-section can be reduced into a set of nodes allocated along the cross-

section, hence modelling their location. For example, a circular nephron cross-

section can be represented by one central coordinate, instead of a few hundred

pixel locations, and an elongated cross-section can have multiple nodes allocated

along its length. This abstraction greatly simplifies the problem, reduces the size

of the data, decreases the computational load on subsequent stages and

concentrates significant information.

Node allocation was first achieved by using the circular Hough transform [37] to

locate circles occurring within a certain radius range in the binary images. At first

glance the results seemed good, but deeper inspection revealed that many cross-

sections were not allocated a node, and elongated cross-sections were not handled

adequately. This method was computationally expensive due to its iterative,

analytical nature and offered no control over how many nodes would get allocated

per cross-section.

Finally, K-means clustering was used to allocate nodes. K-means clustering is an

unsupervised learning method which groups m observations into k clusters [39].

38

Each cluster is defined by its centroid, which is the mean of all the observations

assigned to it. These centroids are used as the nodes and are found by solving the

optimisation problem in equation 7.1.

 ∑ ∑ ‖ ‖

 (7.1)

Where x is the observations, S is the observations partitioned into k sets

{S1,S2,…Sk}, μi is the mean of the observations in Si and C = {c1,c2,…ck} is the set

of k centroids [39].

Each non-zero pixel on an isolated binary cross-section is made an observation.

Shape criteria (area and circularity, which are discussed in Section 7.2.1) are used

to decide on the number of nodes (K) to allocate to a cross-section. Cross-sections

with an area below 5 pixels are ignored (K=0) as these are typically pixels due to

equalisation noise. If the cross-section is circular (circularity>0.95) or small

(area<300), one centroid is requested (K=1). For elongated cross-sections, the

requested K value begins at 2 and is incremented until the average pairwise

distance between adjacent nodes is less than a desired minimum value. This value

is chosen to be close to the average cross-sectional width in the current image (≈

20 pixels in the cortex and ≈ 8 pixels in the medulla). This ensures that an

adequate number of nodes are allocated per cross-section depending on its size

and shape. Figure 7.1 displays examples of allocated nodes on cross-sections of

various shapes and sizes.

A characteristic of the K-means clustering method is that it groups data into

Voronoi cells [39], which is suitable to the node allocation problem. Some

disadvantages are the susceptibility to local minima and varying results due to

randomised initial conditions [28]. This is overcome by running the clustering

multiple times per cross-section until certain conditions are met. An important

advantage of the method is that a desired number of centroids can be requested.

39

Figure 7.1: K-means clustering divides cross-sections into similarly sized Voronoi

cells. The centroids from K-means clustering are used as nodes for the cross-

sections. A suitable number of nodes are allocated automatically per cross-section.

7.2 Shape Measurements

Tracking of a nephron using only the 3D set of nodes results in the linkage of

multiple nephrons, blood vessels and connective tissue due to the close proximity

of the intertwining nephrons. By only considering the point cloud, the algorithm is

blind to a large amount of available information. Shape information about each

cross-section is thus also captured. The idea behind incorporating shape

information into the tracking is to retain information about the original cross-

sections so that the algorithm can make intelligent, confident and informed

decisions at each incremental step of the process.

7.2.1 Shape Factors

A shape factor, or metric, refers to a dimensionless value that is dependent on an

object's shape but is independent of its size [40]. It usually indicates the degree to

which an object deviates from an ideal shape, such as a square or circle [40].

Various shape factors are calculated per cross-section to capture abstract

information about each cross-section along with its nodes.

Shape metrics are calculated using various measurements of an object. Primary

measurements include the object‟s area, perimeter and chord lengths [40].

Secondary measurements which are useful include the convex area (the area of a

polygon of the lowest degree which covers the object), equivalent diameter,

centroid and moments of the object about the centroid [37] [40]. The first moment

is the mean and the second is the variance. Moments are used to calculate an

equivalent ellipse which has the same variance as that of the object [37]. The

40

minor and major axes are then the perpendicular axes of the aforementioned

ellipse, and the orientation is the angle that the major axis makes with the

horizontal axis [37].

Shape metrics combine these measurements to describe a number of shape

characteristics. Circularity, eccentricity, solidity and aspect ratio were chosen as

useful descriptors for the cross-sections. Area and minor axis length are also

captured as absolute valued descriptors. These values are extracted using the

MATLAB regionprops function [33]. The shape factors are briefly described:

The aspect ratio is the ratio of the major axis to the minor axis and indicates

the length and symmetry of an object [36]. For a circle or bisymmetric object, the

aspect ratio is 1 while it is >1 for an elongated object.

Circularity measures how close an object‟s shape is to a circle [36] and is

given by equation 7.2. A value close to 1 indicates a very circular object while an

elongated object has a value near 0.

 (7.2)

Solidity is the ratio of the area to the convex area of an object, and measures

its virtual hardness or density [36]. Generally, this area is larger than or equal to

the area of the object. Objects with holes and multiple concave areas have a low

solidity. Waviness is also sometimes used, where the perimeters of the object and

polygon are used instead of the areas [36]. Waviness does not take holes into

account.

Eccentricity is typically associated with an ellipse, being defined as the ratio

of the distance between the foci of the ellipse and its major axis length [37]. Using

moments, an equivalent ellipse can be calculated for an arbitrary shape, hence an

eccentricity value. Eccentricity is a value between 0 and 1, with 0 indicating a

circular shape and 1 indicating an elongated shape.

The extent is an area ratio between the object‟s area and the region area,

where the region is the bounding box of the object [37]. It generally describes the

degree to which the object fills the bounding box. Extent can give a combined

41

indication of elongation, orientation and solidity [37]. It is useful for detecting

highly irregularly shaped objects. Note that this metric is orientation sensitive, e.g.

an elongated object lying horizontally or vertically will have high extent, while it

would have low extent if lying at 60⁰.

7.2.2 Shape Profile

The shape factors are useful for cross-sections that are round and elliptical, but

they do not adequately describe cross-sections that are more irregularly shaped,

such as glomeruli or connective tissue cross-sections. Also, a move from one

cross-section to another cannot be adequately described by merely comparing

shape factors. As an additional feature the shape profile around each node is

calculated.

The shape profile of an object is a polar plot of the distance to its boundaries with

respect to a reference point [36]. It is commonly used to compare the structure of

two objects. It transforms a 2D shape representation into a 1D plot [36], hence

reducing computational effort during matching. It allows shape comparison of

objects of different sizes by normalisation of the distance.

First, the edge of the cross-section is obtained using a Sobel edge detector [37].

This method produces a well-defined closed curve around the cross-section. The

edge pixels are then processed into an ordered set of points. The angles and radii

relative to the reference point are calculated as in equations 7.3 and 7.4.

 (
 () ()

 () ()
) (7.3)

 () ‖ ‖ (7.4)

where Pedge is the vector of edge coordinates, Pref is the reference coordinate, θ is

the vector of angles and r(θ) is the vector of radial distances.

If the object is concave, the plot will be multivalued [36]. This redundancy

increases the order of the matching procedure back to 2D. This problem is solved

by simply taking the nearest r value for a given θ, and is called unwinding [36]. In

order to produce a consistent feature set, the radius at constant angle increments is

42

interpolated. The degree of abstraction is dependent on the chosen angle

increment δ [36]. The unwinding and interpolation is shown in Figure 7.2.

Figure 7.2: The shape profile of the cross-section on the left is shown, with the

reference point indicated by the green dot. The original shape profile, shown in

black, is unwound to form the plot in blue. This is then interpolated to acquire the

distances at desired angle increments (15º), forming the final shape profile shown

in red.

Figure 7.3: The shape profiles relative to nodes on the cross-sections [11] (green

dots) are shown. 15 degree increments were chosen.

43

Another problem is pixel quantisation leading to discontinuous angles in small

sized cross-sections. This problem is solved by scaling each cross-section up to

50x50 pixels prior to shape profile calculation. The final r vector is then down

scaled. Examples of shape profiles are shown in Figure 7.3

The shape profile of a given object will be different depending on the chosen

reference point. The centroid is commonly selected [36], but the allocated nodes

have been chosen instead as they are more relevant to the problem and allow an

accurate relative comparison of shape profiles between linked nodes. This is

illustrated in Figure 7.4.

Figure 7.4: If a tracking iteration attempted to move from cross-section 1 (top left)

to cross-section 2 (top right), the shape profile of the nodes involved would need

to be compared, rather than the profiles around the centroids. As can be seen,

when the respective nodes are used, the shape profile is similar for a large range

of the angles and can hence be compared. The move shown is a legitimate move

between nephron cross-sections of the same nephron. Images adapted from [11].

Correlation of the shape profiles (equation 7.5) and a measure depending on their

absolute difference (equation 7.6) are two similarity measures which can be used

to compare a pair of shape profiles.

 (() ()) (7.5)

 (| () ()|) (7.6)

44

Where is the similarity measure between profiles r1(θ) and r2(θ), corr is the

correlation function, count is a function returning the number of elements

satisfying the condition in its argument and δ is the angle increment.

7.3 Data Structures

Each cross-section gets assigned a group of nodes and shape metrics with a shape

profile per node as shown in Figure 7.5. Ideally, all the information belonging to a

node should be stored along with it. However, the nodes, shape factors and shape

profile occupy different amounts of memory and require different access speeds.

Figure 7.5: A clip of a raw image is shown [11]. The extracted cross-sections after

pre-processing are highlighted in green and the allocated nodes are shown as

black dots. Each cross-section will have k nodes, 6 shape factors and k shape

profiles. As can be seen, many cross-sections in the cortex are not of actual

nephrons but rather of the connective tissue between them. The glomeruli are also

highly segmented.

The nodes need to be constantly and quickly accessed during tracking. Since they

simply consist of x-y-z coordinates, they can be stored in working memory

(RAM) for efficient access. In order to link the nodes with the other information,

each cross-section is allocated an identity number, and each node is allocated an

identity number relative to the cross-section it lies on. The nodes are stored in a

cell array with each cell containing a fixed array for the node data for one image.

Each row in the fixed array contains information about one node. Nodes lying on

a common cross-section have the same identity number (ID), hence allowing for

easy detection of elongated cross-sections during tracking.

1. Area

2. Minor axis length

 ≈ diameter

3. Circularity

4. Eccentricity

5. Aspect Ratio

6. Solidity

Cross-section i in image n

6 shape descriptors

k=2 nodes

k=2 shape profiles (1

per node) = 24x2x2

elements

120

45

The shape factors are accessed often and consume moderate memory. It is thus

stored in working memory in the same manner as the nodes. Each row of the fixed

arrays corresponds to the row for the nodes and is hence implicitly linked.

The shape profiles occupy a massive amount of memory as they consist of 50

elements per node (24 angles, 24 distances, 1 cross-section ID, 1 node ID). The

shape profiles of an average rat dataset would occupy

 if stored uncompressed in working memory. Since

they are only accessed during machine learning validation, they are stored on hard

disk and only the required elements are accessed using an input-output matfile

structure in MATLAB.

The chosen storage format together with custom-coded utility functions (see

Appendix) provides ease of access and complete traceability of information

related to any particular nephron cross-section.

7.4 Glomeruli Detection

The glomeruli can be distinctly located by eye and possess unique characteristics

which can distinguish them from other tissue. The glomeruli have a characteristic

rough texture from the clump of tiny entangled blood vessels. A C-shaped white

space is present in most glomeruli. This is the urinary pole which is often seen

fusing with the nephron tubule in the span of 1-3 images. A glomerulus spans 15-

30 images in the mouse datasets and 50-70 images in the rat datasets, depending

on the depth into the kidney (cortical glomeruli are smaller while juxtamedullary

glomeruli are larger [1]).

In order to fully model a glomerulus, an ellipsoid should be fitted in the 3D image

space to cover its full volume. For purposes of tracking, the presence of a

glomerulus must be detected when the nephron tubule merges with the urinary

pole, so that tracking can be terminated. This termination is critical as it has been

seen that the afferent/efferent arterioles are sometimes tracked out of the

glomerulus, through connecting vessels and to the glomeruli of other nephrons.

46

This linking of multiple nephrons is highly undesirable. Two methods suitable to

the given image sets have been devised for glomeruli detection.

The first method involves measuring the peak densities of an edge image. A log

edge detector is applied to the binary image. In the edge image, the glomeruli

have more edge pixels than the surrounding nephrons due to the numerous small

binary fragments making up the glomerulus. Therefore, the average pixel density

at the glomeruli is higher than elsewhere. An averaging filter is applied after

which the peaks are extracted. Distance-based clustering is then used to obtain

single point representations of the glomeruli.

The second method involves grouping alike cross-sections using shape factors as

features during unsupervised learning. K-means clustering is used. If 5 clusters

are chosen, clustering groups the cross-sections into those that are:

1. very circular – high circularity

2. slightly elliptical - low eccentricity and circularity

3. very elongated – high eccentricity and aspect ratio

4. very small in size – small area

5. concave, C-shaped structures – low solidity

The last class distinctly contains most of the C-shaped urinary poles of the

glomeruli, along with some C-shaped nephron cross-sections.

An example of the results produced using these two methods is shown in Figure

7.6. Both methods have false positives and negatives but could perhaps be

combined to improve accuracy. Issues with these methods include:

1. Nephrons become smaller deeper into the image set and hence their mean edge

values go up as well, producing false positives. Connective tissue also

sometimes looks like glomeruli. Parameters of the algorithm need to be varied

per image to get accurate results.

2. Some glomeruli are missed (false negatives) as their edges are not pronounced

or the C-shape is not present.

47

The glomeruli coordinates found from the union of the results of the two methods

can be used as starting seeds for tracking. Another method was found to be more

suitable for glomeruli termination during tracking. The method forms part of the

validation and machine learning stages of the system and is discussed in Chapter

9. It basically involves detecting the fragments making up the glomerulus during

tracking through a trained classifier.

Figure 7.6: The glomeruli detection using the edge image density is shown by the

black dots. The detection using shape clustering is shown by the cross-sections

highlighted in white. True glomeruli locations were manually marked in green.

Both methods can detect a large number of glomeruli and could be used to cross

validate the results. Image from [11].

48

CHAPTER 8

Tracking Algorithm

When a nephron is manually tracked by eye, an intuitive process is used by the

brain. Once a nephron cross-section has been fixated on, a nephron cross-section

within the same vicinity is searched for in the next image. Size, shape and colour

are also subconsciously compared. The tracking algorithm uses a similar process,

with a number of generalised rules to accommodate the tortuous paths taken by

the many nephrons. The algorithm is highly dependent on the quality of pre-

processing and accuracy of feature extraction stages. The major processes of the

tracking algorithm are shown in Figure 8.1. Each activity is discussed in its

respective section in this chapter.

Figure 8.1: An activity diagram of the tracking algorithm. Each iteration explores

possible child nodes from one parent node. Once the open list is empty, manual

intervention is requested at the end points. Once the nephron is complete, the

closed list is reconstructed into an ordered path.

49

Figure 8.2: An example of a manually tracked rat nephron is shown [11]. The

spatial dimensions of the x-y-z image space are illustrated. Note that the positive z

direction extends from the cortex to the medulla as shown. Colour is used to

highlight the different parts of the nephron as shown by the colormap on the right.

This convention will be used for all 3D plots.

An example of a manually tracked nephron is shown in Figure 8.2. The tracking

algorithm aims to produce such a result in an automatic manner. The z-dimension

of the 3D image space refers to the dimension along the image set, where z=1 is

the first image in the cortex. Note that „upwards‟ (z+1) refers to movement

towards the medulla while „downward‟ (z-1) refers to movement towards the

cortex. This is contrary to the standard orientation where the cortex is positioned

superiorly and the loop of Henle is drawn extending downwards. Prior to

proceeding, a few symbols are defined:

 Image z

 The set of all nodes in image z

 The set of nodes on cross-section i in image z

 The k

th
 node on cross-section i in image z

1400

1600

1800

2000

1200

1400

1600

1800

0

500

1000

1500

2000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500
DCT

TAL

ATL

DTL

PST

PCT

1400

1600

1800

2000

1200

1400

1600

1800

0

500

1000

1500

2000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

x
y

z

Medulla

Cortex

50

8.1 Local Image Registration

Local alignment is needed (in addition to the previous alignments [9] discussed in

Section 6.1) due to the presence of local image distortions and progressive change

in morphology. The procedure followed involves cropping images Iz, Iz+1 and Iz-1

around the current node location.

Image Iz is multiplied by a Gaussian function in order to give the centre of the

image (the area around the current location) a higher weight than the

surroundings. This is particularly useful when tissue folds occur, where two areas

of the same sub-image can be aligned differently, such as in Figure 8.4. The

preference is then given to the choice which best aligns the current node.

The sub images in Iz+1 and Iz-1 are cross-correlated against sub-image Iz, in order to

obtain two pairs of translational offsets (xoff, yoff) between the images [41]. The

offset is obtained by extracting the peak coordinate (global maximum) of the

correlation result. The transform in equation 8.1 is applied to each pixel and each

node in images Iz+1 and Iz-1. This local alignment only takes translation into

account; it is assumed that local rotational offsets are minimal as the previous

alignment had largely compensated for rotational offsets.

 (8.1)

The offsets are typically only a few pixels, but they have a large impact on the

accuracy of tracking since some nephron cross-sections are also just a few pixels

wide. The example in Figure 8.3 shows how a small alignment can increase

tracking accuracy.

After alignment, vertical tracking is attempted. The alignment is not cumulative; it

is only with respect to the three images for the current iteration, so that accurate

links can be made to the cross-sections above and below. After tracking, the

newly found nodes (now in the transformed axes) are mapped back to the original

axes using the inverse transform T
-1

. The transformation must be reversed because

each sub-image has a different transform which is not valid for other areas in the

same image or other images.

51

Figure 8.3: Although prior image registration was performed, there still exists an

offset between adjacent images as shown on the left. After basic translational

alignment (xoff=2, yoff=9) in the local region, the cross-sections are much better

aligned (on the right), allowing more accurate tracking. Original image from [11].

The transform is also applied to the sub-images themselves in order to obtain an

alignment measure. This value is used to flag images which are highly misaligned

even after the alignment procedure. This occurs when artefacts and tissue folds

produce missing tissue and non-linear distortion such as in Figure 8.4.

Figure 8.4: Some images cannot be aligned accurately due to artefacts. Such

images can be flagged and thus ignored by measuring an alignment metric. If

these images are not bypassed, tracking mistakes can easily occur as shown by the

red dots. The green arrows indicate corresponding areas. Images from [11].

427 426

52

8.2 Graph-based Tracking

Initial tracking attempts made use of hard-coded rules to handle bends and turns

and explicitly controlled the tracking direction. Rules for a number of cases were

created but these resulted in an inflexible system which was only capable of

handling ideal turns and bends (which were modelled by the rules) and tracked

only small pieces of the nephron. Inspection of the results showed that the

majority of errors occurred when the tracking direction was not chosen correctly.

The final tracking algorithm abandoned the concept of direction decision making.

Instead, all directions are explored at each node and the final direction is

implicitly determined in the reconstructed path.

A graph-based approach is employed for tracking that is similar to the structure of

path finding algorithms [42]. The algorithm forms a graph in 3D space by

establishing edges between the nodes previously allocated during feature

extraction. Edge formation is described in Section 8.3.

The algorithm processes one node per iteration and continuously updates an open

and closed list. It is given a starting seed, or node. Once the current node has been

explored, it is added to a closed list, which contains all explored nodes. The new

found nodes (child nodes of the current node) are added to an open list, which

consists of all unexplored nodes. A new current node is selected from the open list

at each iteration of the algorithm. This continues until the open list is empty.

Ideally, given a starting seed, edges should be formed such that all nodes

belonging to the nephron being tracked are collected in the closed list. Each node

is stored along with its parent node, forming a linked list. The trajectory can then

be reconstructed post-tracking.

By using linked lists and exploring all possible routes, the direction of tracking

does not have to be explicitly controlled or limited in any way. The direction can

be arbitrary, enabling the tracking of highly convoluted curves in variable

directions, as well as branched structures. This accommodates for increased

variability in the plane in which the nephrons are sliced, whereas previous

methods did not have any tolerance for tissue that was not sliced in cross-section.

53

8.3 Edge Formation

The edges are established through a controlled set of criteria. Given a particular

node
 in image , it has the potential to connect to three other nodes through

two types of edges as shown in Figure 8.3.

Vertical edge – Includes potential connections to cross-sections in the image

above (Iz-1) and below (Iz+1) the current cross-section. Nodes are searched for

which lie within some tracking radius around the current node, i.e. a node

satisfying equation 8.2 will become a child node of the current node. The tracking

radius varies from the cortex to medulla according to a sigmoidal function.

 (‖
 ‖) (8.2)

Only one node is allowed to be formed in each direction. If multiple nodes satisfy

the condition, the one with the smallest Euclidean distance is used. The

confidence of a vertical edge is <1, as the possibility of linking to an incorrect

cross-section exists due to the large number of closely packed nephrons in the

presence of image distortions and misalignments.

Figure 8.5: Each node in image z has the potential to connect to 2 nodes vertically

(in images z+1 and z-1) within some tracking radius and 1 node horizontally on

the same cross-section as itself. This allows cross-sections to easily be linked

through turns and bends.

Horizontal edge – This involves linking together all nodes that lie on the same

cross-section as the current node, i.e.
 . The current node is termed the „entering‟

node. The pairwise distances between all nodes are used to establish the linkage

from the entering node towards the outermost nodes. Only the outermost nodes

Cross-section in Iz at

coordinate P

z

x

y

Cross-sections in

Iz+1 near P

54

are added to the open list for exploration. The intermediate nodes are not explored

above and below, i.e. they are „locked‟. This prevents incorrect linking.

8.4 Skipping Images

An image may be termed defective if it has a large amount of interfering artefacts

or distortion, which obscures cross-sections of the nephron at hand. These images

can safely be skipped while tracking the nephron. However, a maximum of 5 μm

of the specimen may be skipped at a time (1 image for the mouse and 2 images for

the rat datasets), as the morphology can change vastly in this span and would

introduce too large a probability of error in tracking (e.g. jumping onto another

nephron).

Since the tracking algorithm makes use of nodes rather than the images

themselves, it is unaware of the presence of an image artefact. Skipping is thus

attempted whenever tracking in the upward or downward direction is not

successful. This results in skip attempts occurring too frequently at every dead

end, for example on the last cross-section of a U-shaped bend. A set of skipping

criteria are established to prevent skip attempts from occurring too frequently. A

direction buffer is used to ensure that skips occur only on straight cross-sections,

by checking if there have been recent successful tracking iterations in a particular

direction. A refractory period is also used, which is the time (in number of

iterations) after a successful skip during which other skips cannot occur.

8.5 Validation Steps

Tracking using the nodes alone would work if the images were exactly aligned

and the data only contained information of the nephron cross-sections. However,

many of the cross-sections actually belong to connective tissue (ICT) and blood

vessels (BV), which are randomly dispersed between the nephron cross-sections

and lie in close proximity to the nephrons. Even though the correct nephron path

may be found, much interference is caused by connective tissue cross-sections,

causing the path to branch from the nephron‟s path and even link onto other

nephrons. A rule-base of three validation steps is incorporated in order to

eliminate incorrect moves from one cross-section to another.

55

a. Distance Validation – The Euclidean distance (in x, y space) between a parent

and potential child node must be less than the sum of their radii, as in equation

8.3. A coefficient Dcoeff allows some leeway on this rule. This ensures that even if

a cross-section lies within the tracking radius, consistency in terms of size and

relative displacement is maintained. Many cases of ICT cross-sections linking to

nephrons are eliminated by this rule as shown in Figure 8.6.

 ‖ ‖

 (8.3)

Where cp and cc are the parent and child nodes and MAp and MAc are the minor

axes of the parent and child node. The radii are approximated as half the minor

axes lengths.

Figure 8.6: Examples of moves blocked by the distance validation rule. Images

from [11].

b. Bidirectional Movement Validation – If a move is made from node A in image

Iz to node B in image Iz+1, then an attempted move from node B into image Iz must

lead back to node A (i.e. bi-directionality must be maintained). If not, the move is

discarded. Moves between ICT cross-sections and glomeruli are typically not

bidirectional and are hence largely eliminated as in Figure 8.7.

Figure 8.7: Examples of moves blocked by the bidirectional validation rule.

Images from [11].

175 174175 174 142 143142 143

164

17401760178018001820

1060

1080

1100

1120

1140

163

17401760178018001820

1060

1080

1100

1120

1140

164

17401760178018001820

1060

1080

1100

1120

1140

163

17401760178018001820

1060

1080

1100

1120

1140

252

16801700172017401760

960

980

1000

1020

1040

250

16801700172017401760

960

980

1000

1020

1040

252

16801700172017401760

960

980

1000

1020

1040

250

16801700172017401760

960

980

1000

1020

1040

56

c. Skipping Validation – This ensures that a move involving a skip is only allowed

if the shape of the cross-section remains relatively constant during the skip

according to equation 8.4. This is so that skips are not allowed on turns and bends,

as this presents a high chance of error.

∑

|

 |

 (

)

 (8.4)

Where is the overall change in shape factors,

 and

 are the i
th

 shape

factors of the parent and child cross-sections, respectively. For a skip to be valid,

 must be less than 30%. Figure 8.8 displays two invalid skip attempts.

Figure 8.8: Examples of moves blocked by the skipping validation rule. Images

from [11].

8.6 Region Control

Certain control variables of the tracking algorithm are altered when a transition is

made between the cortex and medulla, in order to make the algorithm more

suitable to tracking in the respective regions. For example, once the PST narrows

into the DTL, horizontal edge formation and vertical edge formation in the

downward direction (from Iz to Iz-1) is disabled. This is so that only an upward,

unidirectional path is allowed to be formed up to the loop of Henle. Using this

known information about the nephrons structure prevents tracking errors in the

inner medulla, which are common due to small nephron cross-sections merging

(when separating walls are too thin) and being very close to one another. This of

course assumes that no large bends occur in the medulla. The conditions activated

for different regions are tabulated in Table 8.1.

124 126124 126 156 158156 158

57

Table 8.1: Different modes of tracking are created by altering conditions at

transitions between different parts of the nephron.

Conditions
Cortex

(PCT)

Cortex→Medulla

(PST→DTL)

loop of Henle

(DTL→ATL)

Medulla→Cortex

(ATL→TAL)

Upward vertical

tracking
Enabled Enabled Disabled Enabled

Downward vertical

tracking
Enabled Disabled Enabled Enabled

Horizontal tracking Enabled Disabled Disabled Enabled

Size of cropping

window for

alignment

Initialised

to 80
Reduce to 50 Stay at 50 Increase to 80

The transitions are detected using the 5
th

 output of a machine learning classifier

(discussed in Section 9.2) that produces a continuous valued output with „0‟ being

a move in the cortex and „1‟ being a move in the medulla. A vector of this output

along the tracking iterations produces a real-time „region signal‟ which is used to

indicate the transition from the cortex to the medulla. The signal is smoothed

through a running average filter with an m sized window to produce a signal as in

Figure 8.9. Hysteresis thresholding (with an upper medulla threshold and a lower

cortex threshold) is applied to the signal to activate different modes of tracking.

This method prevents a rapid fluctuation of activations.

Figure 8.9: The output of the region classifier (black) is smoothed to form a

region signal (blue). It is thresholded with hysteresis (red) to produce a binary

decision for the activation of different conditions during tracking. The graph

shown is for tracking of a whole mouse nephron from the glomerulus to the DCT.

Medulla

Cortex

| PCT | PST | DTL | ATL | TAL | DCT |

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Iteration No.

R
e
g
io

n
 S

ig
n
a
l

58

8.7 Reconstruction

Once tracking is completed, the final path is reconstructed through inference of

the parent-child node pairs. The longest path forms the nephron path, while

shorter branches are eliminated as they are most likely ambiguous nephron paths

near turns or pieces of connective tissue that were mistakenly linked. This

reconstructed graph is a skeleton structure of the tracked nephron. Each

coordinate in the skeleton can be linked to the original cross-section in the binary

image as well as its shape factors, either of which can be used to reconstruct a 3D

rendering of the tracked nephron.

Lastly, the automatically tracked path must be evaluated in 3D space. At this

stage, known information about the kidney can be used, e.g. the proximal and

distal convoluted tubules intertwine and must thus be in the same vicinity in the

cortex [10], or the PCT is longer and more convoluted than the DCT [10]. If the

results do not adhere to one or more of these expectations, it could then be that the

result is incorrect.

Since each vertical move has some associated uncertainty, the reconstructed path

can be seen as having weighted edges. The path can then be broken at points with

a high uncertainty. In this way, multiple nephrons may be able to be separated if

incorrectly linked during tracking.

8.8 Manual Intervention

Premature termination of tracking (due to non-ideal/inadequate pre-processing,

feature extraction, image artefacts and distortions) commonly occurs in the inner

medulla. One way to overcome premature termination during tracking without

introducing error is to allow the user to manually link the end point/s of the

automatically tracked path onto the correct path. This of course steers away from

a purely automated system, but it still dramatically reduces the time and effort

required for the manual tracking task. The degree of automation can be controlled

by sensitivity of the validation stages as shown in Figure 8.10.

59

Figure 8.10: The number of false positives increases with increasing validation

sensitivity, resulting in premature termination of tracking. This means only a

portion of the nephron is tracked, but with a low error, where error refers to the

deviation onto an incorrect path. If manual correction is used, the number of

corrections required for continuation of tracking will increase with sensitivity (up

to LN, the length of the nephron). This means a decreased level of automation but

also a decreased chance of error. Note that this graph is merely conceptual.

More than two endpoints are sometimes detected as the last cross-section making

up a bend is usually seen as an endpoint. Manual corrections are implemented by

displaying to the user the main endpoints of the automatically tracked path, along

with 2-3 cropped images before and after the problematic cross-section. The user

then simply clicks on the cross-sections which should have been linked by the

algorithm. These are added to the open list and the algorithm continues from those

points. Correct endpoints (termination at the glomerulus) can simply be ignored.

L
ev

el
 o

f
A

u
to

m
at

io
n

N
o

. o
f M

an
u

al C
o

rrectio
n

s

Validation Sensitivity
E

rr
o
r

P
ro

b
ab

il
it

y

1

Blocks everything

LN

0

No validation

100

≈15
A

cc
u

ra
cy

 (
α

)

60

CHAPTER 9

Machine Learning Validation

Tracking nephrons using the rule-base for validation results in some nephrons

being correctly tracked while others are incorrectly linked to other nephrons, ICT

cross-sections or blood vessel networks. A large amount of information is not yet

taken into account, such as the shape profile and some shape metrics.

The purpose of the machine learning (ML) stage is to incorporate some form of

intelligent decision making when linking one node to another during tracking.

Machine learning is a suitable technique for this application, as it can

automatically amalgamate the large amount of information into a generalised rule

through training. The formed rule, or hypothesis, may be unintuitive to a human

being and too complex to model using hard-coded logic or inflexible heuristics.

The rule-base eliminates invalid moves between pairs of cross-sections. Likewise,

machine learning is incorporated such that a trained learning algorithm assesses

the shape descriptors and other features of the cross-sections and classifies the

move into one of five classes. This classification result is used by the tracking

algorithm to make decisions during tracking. A supervised ANN and SVM are the

chosen classifiers as they are non-linear and able to form complex hypotheses.

9.1 Feature Selection

The chosen features must fully characterise a move from one cross-section to

another and provide a good degree of distinction between different types of

examples. Since two cross-sections are being compared, it is useful to look at their

combined features. A total of 67 features are formulated which include:

 x1-x6: the difference in the shape factors of area, eccentricity, solidity, aspect

ratio, minor axis and circularity

 x7-x12: the mean of the shape factors of area, eccentricity, solidity, aspect

ratio, minor axis and circularity

 x13: the minimum area between the two cross-sections

61

 x14: the Euclidean distance between the two nodes in the x-y plane

 x15: the image difference, which is normally 1 but can be 2 or 3 if images

have been skipped

 x16: the magnitude of image alignment offset – a high offset coupled with

other odd features may be a flag for an invalid move

 x17: the position of the pair (average z coordinate) relative to the image set,

which indicates depth into the kidney, i.e. cortex, outer medulla, inner

medulla

 x18: the correlation coefficient between the two shape profiles

 x19: a correlation coefficient between the two sub-images around the location

of the move

 x20-x43: shape profile at 15 degree intervals of cross-section 1

 x44-x67: shape profile at 15 degree intervals of cross-section 2

9.2 Training Set Formation

The training set is created by capturing moves, or pairs of nodes, during

unsupervised tracking (without any machine learning validation) of a chosen set

of nephrons. Five classes are chosen for classification as described in Table 9.1.

Each parent-child pair is assigned a label as shown in the examples in Figure 9.1.

Table 9.1: The intermediate output classes of the learning functions and their

combination into final classes

Final Class Intermediate Class

Nephron

(Valid)

1. A normal move between circular cross-sections

2. A normal move involving elongated cross-section/s

Non-nephron

(Invalid)

3. An abnormal move typically involving ICT or blood vessel

cross-sections

4. A move involving a glomerulus cross-section

x 5. A move in the inner medulla

62

Normal Elongated Abnormal Glomeruli Inner Medulla

Figure 9.1: The moves attempted by the unregulated tracking algorithm are

captured, displayed and labelled to form training examples for the machine

learning algorithms. Two examples of moves from each of the five classes are

shown. Images from [11].

A voting scheme [29] between the five classes is then used to determine the final

classification as valid or invalid. Class 4 is used to terminate tracking at the

glomerulus while class 5 is used as a region signal to change the mode of tracking

(parameters of the algorithm) from the cortex to inner medulla (as in Section 8.4).

The shape factors and descriptors belonging to each cross-section in the pair can

be extracted as required and the 67 features are then combined to form the input

matrix. A multi-class classifier is produced using the one-vs.-all approach.

9.3 Training

The training set consisted of 9424 examples, with a ratio of

0.58 : 0.10 : 0.11 : 0.07 : 0.13 for classes 1 to 5, respectively. Although the types

214 215

214 215

35 34

35 34

124 126

124 126

51

53

51

53

428

1260 1280 1300 1320 1340

820

840

860

880

900

429

1260 1280 1300 1320 1340

820

840

860

880

900

428

1260 1280 1300 1320 1340

820

840

860

880

900

429

1260 1280 1300 1320 1340

820

840

860

880

900

77 76

77 76

306 307

306 307

23

25

23

25

120

650 700 750 800

600

650

700

750

121

650 700 750 800

600

650

700

750

120

650 700 750 800

600

650

700

750

121

650 700 750 800

600

650

700

750

353 354

353 354

63

of examples are skewed, there are a sufficient number of examples per class (at

least 650). The input is randomised and each feature is normalised. The labelled

data set was split into training, validation and test sets with a 0.7:0.15:0.15 ratio,

respectively. Training of the ANN and SVM was carried out using built in

MATLAB functions [33].

A threshold is applied to the continuous output of the ANN in order to deem the

result positive or negative. This threshold has an impact on the sensitivity of

invalid move rejection. For the SVM, the width of a radial basis function (RBF)

kernel has the analogous effect. It is critical that false positives are minimised as a

false positive would halt the tracking process by blocking a valid move along the

path of the nephron, hence preventing the rest of the nephron from being tracked.

A false negative on the other hand, would allow an incorrect path to be formed,

but the incorrect branch is typically halted due to the presence of many invalid

moves through connective tissue, and is therefore not as critical as a false

positives.

9.4 Reinforced Learning

In addition to manual selection of examples, a method involving feedback from

the tracking algorithm and the training process was used in order to collect a

sufficient number of examples per output class. This reinforced learning

procedure prevented the formation of a skewed dataset or the under-representation

of a certain class, which may have affected classification accuracy. This feedback

process is illustrated in Figure 9.2.

Figure 9.2: A schematic showing the method employed for reinforced learning,

which aims to decrease skewness among the five output classes.

ML Regulated

Tracking on nephron

k

Labelling &

Collection of

training data

Training

High confidence results

(>0.95 or <0.1)

Low confidence results

Initial training set from

nephron 0

Trained ANN

64

9.5 Feature Analysis

A number of the features may be redundant or irrelevant. A subset of the most

useful features can be determined through various feature selection techniques.

The RELIEFF feature selection method [43] has been used which ranks each

feature by its importance. The analysis shows that shape profile correlation,

average solidity, the pair‟s z-position and average eccentricity are the most useful

features. The raw shape profiles have a medium importance, while the image

difference, difference in area and difference in minor axis length have the least

impact on classification and could be removed. However, the number of features

is not too excessive (only 18 features and 2 shape profiles) and so all features are

included.

Figure 9.3: The RELIEFF feature selection method allocates a weight to each of

the 67 features indicating its importance during classification of a move.

It is also useful to visualise the separability of the five classes and the impact of

the features on the five classes of examples. One could simply view plots of two

Shape profile 2

Shape profile 1

Image mismatch

Shape profile correlation

Z-position

Image misalignment

Image difference

X-Y distance

Minimum area

Mean aspect ratio

Mean solidity

Mean eccentricity

Mean area

Mean circularity

Mean minor axis length

Change in minor axis length

Change in aspect ratio

Change in solidity

Change in eccentricity

Change in area

Change in circularity

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

22

Weight

F
e
a
tu

re
s

65

or three features at a time and try to deduce their relationship and their impact on

classification. However, this is limiting and does not represent the overall effect of

all features on the classification problem.

Principal Component Analysis (PCA) is a dimensionality reduction technique,

useful for visualising high dimensional data. It uses Single Value Decomposition

(SVD) to obtain eigenvectors and eigenvalues. A training set of 9424 examples

and 67 features was reduced to 2 dimensions yielding the plot in Figure 9.4.

Figure 9.4: The scatter plot displays 9400 examples in terms of reduced features

z1 and z2, which were projected from the first 2 eigenvectors of the data. Moves

that are normal (blue), involving elongated cross-sections (green), connective

tissue (red), glomeruli (yellow) and moves in the inner medulla (cyan) are shown.

Figure 9.4 shows that there are large overlaps between the different classes of

moves especially between connective tissue and glomeruli types. However, this is

expected as the cross-sections in these two classes are very similar. Despite

overlapping, separating lines can be visualised between the other classes.

Additionally, a machine learning algorithm using all 67 features will have better

resolving ability between the classes than that seen in the plot. The PCA plot uses

only two principal features which do not retain variance. That is, the number of

eigenvectors (K) needed to adequately represent the original data should satisfy

equation 9.1.

66

∑

∑

 (9.1)

Where Si is the ith eigenvalue. Additional feature analysis plots can be found in

the Appendix. For K=2 and n=67, the value is only 0.4677, therefore variance is

not retained and the two reduced features do not represent the information offered

by all 67 features.

An SVM with an RBF kernel is well suited to creating the arbitrarily shaped

hypothesis function required. A neural network with a large number of neurons

could also form a complex hypothesis function.

9.6 Optimisation

Initially, the training data was categorised into valid and invalid moves (instead of

the five intermediate classes). This resulted in low classification accuracy even

with an increasing number of training examples and hidden units of the ANN.

This was because there are different types of valid and invalid moves (as indicated

by the five final classes), each of which has its own unique characteristics. The

different types could not accurately be modelled into one hypothesis function and

hence a multi-class classifier had to be used. This resulted in improved

classification accuracy.

Under certain conditions, obtaining more training examples improves

performance significantly. If the features provide sufficient information to

accurately predict the output, and if the learning algorithm can fit a complex

function (so that underfitting is addressed), then a large training set will optimise

performance as it will minimise overfitting [28].

From the Principal Component Analysis of the features, it can be seen that the

features do adequately model a move from one nephron cross-section to another.

The features are also informative enough for a human operator to correctly

classify a move. Both an ANN with a large number of hidden layers (50) and an

SVM are capable of forming complex, non-linear hypotheses. The number of

training examples was thus increased until there was no longer an increase in

performance as shown in Figure 9.5.

67

Figure 9.5: Five performance indices were measured on a test set after training the

SVM (using an RBF kernel of a width of 5) with a varying number of randomised

training examples. The performance converges around a 1000 examples.

10
1

10
2

10
3

10
4

0

20

40

60

80

100

Number of Examples

P
e
rf

o
rm

a
n
c
e
 I

n
d
ic

e
s

Accuracy

Precision

Sensitivity

Specifity

F1 Score

68

CHAPTER 10

Results

The accuracy of each stage is dependent on the accuracy of previous stages as

each stage‟s output is an input for the following stage. The results of each stage

are analysed and discussed.

10.1 Pre-Tracking Stages

The pre-tracking stages include the pre-processing and feature extraction stages.

10.1.1 Pre-Processing

The goal of the pre-processing stage was to produce binary images in which each

binary component represents one nephron cross-section. This has been achieved

in the majority of cross-sections in each image by careful selection and variation

of the pre-processing parameters using sigmoid functions.

These automatically varying parameters are suitable to the majority of images in

the set but may not be suitable for a few outlying images resulting in the

occasional merging of binary components which were meant to be independent.

This is termed „under-segmentation‟. Also, the compromise between the

equalisation window size and the threshold value sometimes results in the over-

segmentation of some binary components which were meant to be whole. These

two cases are depicted in Figure 10.1.

The performance of the pre-processing stage is thus evaluated by measuring

segmentation accuracy, which is defined as the percentage of binary components

correctly representing the nephron cross-sections. Due to the impracticality of

manually evaluating each cross-section in any one image, 12 samples were

selected from different datasets for evaluation. The samples were chosen such that

the cross-sections contained were representative of all cross-sections in the

respective area. Table 10.1 presents the results.

69

Figure 10.1: A clip of an image in the medulla of a rat dataset is shown with its

binary image superimposed. Binary components correctly produced are shown in

white. Purple components are those which were over-segmented, producing

multiple binary components per nephron cross-section. Components in blue are

those which have been incorrectly merged into single components. Red dots

indicate nephrons which have no overlying binary components, thus producing

missing data. Nodes allocated subsequent to binary image formation are shown by

the „+‟ symbols. Original image from [11].

Table 10.1: The segmentation accuracy of samples from 4 datasets in the cortex,

outer and inner medulla.

 Segmentation Accuracy (%)

 Cortex Outer Medulla Inner Medulla

Mouse 1 98.59 98.75 97.24

Mouse 2 98.48 96.62 95.01

Rat 5 95.13 82.92 88.86

Rat 4 96.01 93.61 90.30

The majority of extracted binary components correctly represents the structures in

the original image. Under-segmentation occurs when groups of nephrons have

very thin walls in comparison to surrounding nephrons (such as in the DTL)

causing independent cross-sections to merge. Over- and under-segmentation

Correctly segmented

Under-segmented

Over-segmented

Missing data

70

mostly occurs in images of the medulla of the rat datasets because the centre of

the images is much brighter than the periphery.

10.1.2 Feature Extraction

K-means clustering in combination with the shape criteria has resulted in a highly

flexible and adaptive node allocation method. The majority (>99%) of cross-

sections receive an ideal number of nodes, especially since the randomly

initialised K-means is repeated if the adjacent node criterion is not met. Even on

under-segmented binary components (such as the large blue components in Figure

10.1), a node is correctly allocated at the location of each nephron cross-section.

On incorrectly segmented binary components, nodes are not allocated per nephron

cross-section as each binary component undergoes independent node allocation.

The degree to which the shape factors and shape profiles represent the original

nephron cross-section in the colour image is dependent on the extracted binary

components during pre-processing. Accuracy of feature extraction stage is thus

dependant on the pre-processing stage or segmentation accuracy. Given ideal

binary components, the measured shape factors and shape profiles are ideal (100%

accurate).

10.2 Measuring Similarity between Paths

In order to evaluate the outcome of a tracking instance, the automatically tracked

path must be compared to the corresponding manually tracked nephron. Single

number evaluation metrics are used to indicate performance and similarity.

The accuracy of an automatically tracked nephron is measured against the

manually tracked data, which forms the gold standard. The following is defined

for ease of description:

 The manually tracked path of nephron f

 The automatically tracked path of nephron f

where a path is a set of coordinates in 3D space.

71

When the result has a low degree of correctness, it is either because tracking

terminated prematurely or the path deviates onto an incorrect one (linkage with

another nephron, blood vessel, or ICT cross-sections), or a combination of these.

The outcome of tracking a particular nephron is hence evaluated using two

measures:

1. = % of that is correct – „accuracy‟

2. = % of , that covers – „extent‟

These are calculated by obtaining the per image residuals as in equations 10.1-2.

 () .‖
‖/ * + (10.1)

Where is the ith coordinate in the automatically tracked path , is the

number of coordinates in ,
is the z coordinate (image number) of the ith

coordinate,
is the subset of the manually tracked path containing all

coordinates in image
 and is the per image residual of with respect to .

Similarly the residual of with respect to Ψ is:

 () .‖
‖/ * + (10.2)

The residual indicates the minimum distance of each node in one set to nodes in

the same image of the other set. It provides a measure of the discrepancy between

the two paths on a per coordinate basis. In order to obtain a single valued

similarity measure between whole paths, the residuals are thresholded at some

tolerance. This is to allow for differences due to slight image misalignments and

differing node positions (the manually placed coordinates may not be in the centre

whereas the automatically allocated nodes are more towards the centre), as they

should not technically contribute to the error. Accuracy and extent are then

defined as in equations 10.3 and 10.4.

 () (10.3)

 () (10.4)

72

Where tol is the tolerance in pixels and count is a function returning the number

of elements satisfying the condition in its argument.

10.3 Possible Outcomes

The outcome of a tracking instance can be one (or a combination) of four types of

cases as shown in Figure 10.2.

Case 1: ↑α, ↑β

Case 2: ↑α, ↓β

Case 3: ↓α, ↑β

Case 4: ↓α, ↓β

Figure 10.2: The target nephron‟s path is shown in blue while the path of other

structures is indicated by the grey line. Solid lines indicate tracked paths and

broken lines indicate untracked paths. The circles and crosses indicate the

beginning and end of tracking, respectively.

Case 1: Ideally, the tracking algorithm should track the full length of the target

nephron without mistakenly tracking the path of any other nephron or blood

vessel (case 1). This would lead to a high α value (the tracked path is well

correlated to the target path) and a high β value (a large percentage of the target

path has been tracked). However, this is not achieved due to a number of

hindering factors.

Case 2: Most often, only a portion of the target path is correctly tracked with no

incorrect paths being formed (case 2). This produces a high α value but a low to

medium β value depending on where along the path premature termination had

occurred. This premature termination is usually caused by artefact interference

and large local distortions, which trigger one of the validation steps, causing

tracking to terminate. Examples can be seen in the middle column of Figure 10.5.

Cases 3 and 4: Sometimes incorrect links are made to one or more structures other

than the target nephron (cases 3 and 4). This is caused by artefacts and distortions

End Start Target Nephron

Other structure

Incorrect Link

73

as shown by examples in Figure 10.3. This leads to a low α value as the tracked

path does not fully correlate to the target path. The β value can vary depending on

how much of the target path has been found in addition to the incorrect paths.

Figure 10.3: Three examples of incorrect linkage to multiple structures are shown.

The numbers indicate the order of moves/iterations during tracking, while their

colours indicate analogous structures. In the first example (left), the horizontal

edges of the large cross-section created by the artefact results in the target nephron

being linked to another nephron and an unrelated glomerulus. This move passes

all validation stages, with the ANN output of (0.384 0.015 0.277 0.531 0.001) for

the five classes. In the other two examples (middle and right), a tissue fold

obscures the cross-section of the target nephron and brings a cross-section of

another nephron directly beneath the current nephron cross-section. The algorithm

sees these as valid moves and incorrect links are made. Images from [11].

It is difficult to correct cases 3 and 4 as it cannot be detected without the use of

manual data (there are no α or β measurements for unseen data) or manually

inspecting the tracked path. Therefore, the algorithm has been designed to

minimise the possibility of these cases by establishing the four validation steps.

Despite these preventative measures, there are still some incidents of incorrect

linking as it is difficult to model each of a variety of cases without hindering

normal tracking. Also, some of the invalid moves appear to be valid according to

74

the model for each validation step, especially incorrect links made to other

nephrons.

As a result of the „strictness‟ imposed by the validation steps, there is a higher

occurrence of premature termination (as opposed to tracking without the

validation steps). If the problematic areas are not bypassed, the extent of tracking

remains low (as only a portion of the nephron is tracked) even though the

algorithm is capable of tracking the rest of the nephron. Manual intervention is

used to manually bypass such points so that tracking can continue.

10.4 Tracking Results

The tracking algorithm successfully tracks large portions of the nephrons

automatically, occasionally requiring manual correction in order to obtain full

nephron paths. Different parts of the nephrons were tracked with varying

accuracies and extents as shown in Tables 10.1 and 10.2 due to differing tubule

characteristics. In particular, the PCT and PST were tracked well, while the DTL

and ATL were more problematic in both the mouse and rat datasets.

16 nephrons from 2 mouse datasets and 11 nephrons from 2 rat datasets were

chosen to form a test set to test the tracking algorithm. Only short-looped

nephrons were chosen as the long-looped nephrons proved to be too error prone to

track as the cross-sections become increasingly difficult to track deeper in the

inner medulla. The chosen nephrons were ones for which manual tracking had

been performed and ones that were not used to form the training set for the

machine learning algorithms. The nephrons were tracked automatically to various

points, i.e. some nephrons were only tracked to the DTL while others were

tracked to the DCT, etc. This is because a number of consecutive cross-sections of

some nephrons became so small that corresponding binary components were not

extracted and tracking (without extensive manual intervention) could not proceed

as a result.

The path of each tracked nephron was broken up into the six components (PCT,

PST, DTL, ATL, TAL and DCT). α and β values were measured in isolation for

75

each component, along with the number of manual corrections required in each

component. The Appendix contains a spreadsheet of the detailed results.

Summarised results are presented in Tables 10.2 and 10.3.

Table 10.2: Test results on a chosen set of 16 mouse nephrons. The number of

manual corrections is given as the mean ± 1 standard deviation.

Area of

Nephron

MOUSE

Accuracy

- αMEAN

(%)

βMEAN (%)
βIDEAL (%)

[9]

Extent -

βMEAN/

βIDEAL

(%)

Average

Number of

Manual

Corrections

PCT 95.14 27.36 25 109.44 1.20 ± 1.11

PST 98.24 16.33 18 90.72 0.50 ± 0.71

DTL 80.57 13.90 19 73.16 5.44 ± 1.69

ATL 85.67 14.94 14 106.71 2.46 ± 1.87

TAL 96.32 13.19 14 94.21 3.64 ± 1.55

DCT 72.13 14.29 10 142.90 5.86 ± 3.00

Full 87.49 100 100 100 19.09 ± 1.65

PCT to DTL 57.59 62 7.67 ± 1.25

PCT to TAL 87.38 90 13.25 ± 2.00

Table 10.3: Test results on a chosen set of 11 rat nephrons. The number of manual

corrections is given as the mean ± 1 standard deviation.

Area of

Nephron

RAT

Accuracy

- αMEAN

(%)

βMEAN (%)
βIDEAL (%)

[9]

Extent -

βMEAN/

βIDEAL

(%)

Average

Number of

Manual

Corrections

PCT 96.32 28.48 25 113.92 5.20 ± 4.70

PST 90.17 14.64 18 81.33 5.00 ± 2.75

DTL 84.63 15.83 19 83.32 24.00 ± 8.19

ATL 88.47 15.63 14 111.64 13.50 ± 6.95

TAL 97.48 11.50 14 82.14 6.67 ± 3.09

DCT 95.23 13.91 10 139.10 4.33 ± 2.49

Full 80.85 100 100 100 58.70 ± 4.70

76

α indicates how much of the tracked nephron is correct by measuring similarity to

the manually tracked nephron. It is low if the path deviates onto other structures

and is high if the tracked path contains data of only the target nephron, be it a

small or large portion. β measures how much of the target nephron is tracked; it is

low (relative to the ideal β value per segment) if only a small portion is tracked. It

can still be high if the path branches onto incorrect structures, as long as a large

part of the target nephron is found.

Note that α and β are measured by comparing individual coordinates of the

manual and automatically tracked nephrons. The automatically traced path

typically contains more coordinates since the algorithm tracks all cross-sections

related to the nephron rather than just those required, i.e. all 3-4 elongated cross-

sections making up a bend are automatically tracked, while the manual path will

label only 1-2 of the elongated cross-sections at a bend. The algorithm also tracks

glomeruli cross-sections, whereas the manual path terminates on the last PCT

cross-section. This has the overall effect of producing a higher than ideal β value.

The indistinct locations of some transitions (e.g. PCT to PST, or the end of the

DCT) also results in the measured beta values being higher than the ideal values.

Note that the beta values are relative to the entire nephron length and not the

segment in question, for example the PST makes up 25% of the total length, and

hence a measured beta value of 24% means that 96% of the PST was tracked.

The number of manual corrections varies with the sensitivity of the validation

steps. For example, decreasing the ANN threshold, increasing the coefficient of

the distance validation or turning bidirectional validation off will decrease the

number of requests for manual correction by the algorithm. However, this

increases the chance of branching onto incorrect structures (decreases α) as shown

conceptually in Figure 8.10. The settings/conditions for the validation steps were

therefore chosen such that the algorithm tracks with high accuracy while also not

requesting for manual intervention at unnecessary/unreasonable points.

The frequency of manual intervention is dependent on the number of image

artefacts and distortions encountered along the path of the nephron, and the

77

visibility of the cross-sections. Examples of manual corrections are shown in

Figure 10.5. A longer path (in terms of the number of moves) requires more

corrections, e.g. the rat nephrons are on average 4.7 times longer than mouse

nephrons and long-looped nephrons are at least 1.5 times longer than short-looped

nephrons from observation of the manual data. The cross-sections of the DCT in

the mouse are very small and hence harder to track than the larger cross-sections

in the rat. The number of corrections required in each area of the nephron in the

mouse and rat is compared in Figure 10.4, where the rat data is normalised

(divided by 4.7) in order to highlight differences other than the image set size.

Figure 10.4: The number of manual corrections required for mouse and rat

nephrons is shown. The rat data is normalised by the ratio of a mouse and rat

dataset (1:4.7) in order to make a better comparison unrelated to image set size.

PCT PST DTL ATL TAL DCT 1 2 3 4 5 6
0

1

2

3

4

5

6

A
v
e
ra

g
e
 N

o
.

o
f

C
o
rr

e
c
ti
o
n
s
 (

N
o
rm

a
lis

e
d
)

Mouse

Rat ÷ 4.7

78

 Automatic

Endpoint
Problematic Image Manual Correction Notes

Small cross-

sections

merged during

pre-processing

Large artefact

prevents

accurate

alignment

Drastic change

in morphology

within one

image

Missing tissue;

A skip is not

allowed due to

sharp change in

morphology

Artefact in 472

skipped;

Artefact in 473

produces a

large binary

cross-section

which is linked

to another

nephron

450 451 452

465 467 468

517 518 519

489 490 491

471 473 474

79

Matter in

lumen results

in ML rejection

due to

inconsisent

shape

Fragmented

cross-section

seems

abnormal to the

ML algorithm

Figure 10.5: Examples of premature termination during tracking requiring manual

intervention. The reasons summarised on the right are indicative of the variety of

non-ideal situations encountered. Original images from [11].

A number of examples of automatically tracked nephrons compared to their

manually tracked versions are shown in Figures 10.6 to 10.9. The slight

discrepancies seen between the automatic and manual paths are due to different

image alignments and different point coordinates used by the two methods.

136 138 139

1154 1155 1156

80

Figure 10.6: Examples of labelled images are shown with the red numbers

indicating manually tracked nephrons. The automatically tracked nephrons are

superimposed, shown in white with black crosses at the nodes. The automatically

tracked cross-sections correspond to the manually labelled cross-sections of the

PCT of nephron 41 (left) and nephron 10 (right). The cross-sections of 41 that are

not highlighted are of the DCT. Original images from [11].

Figure 10.7: A manually tracked nephron (nephron 0 from mouse 1) is shown on

the left. The same nephron is successfully tracked automatically by the tracking

system. This nephron in particular was only manually tracked to the PST due to

low visibility of the DTL cross-sections. The automatic tracking algorithm also

experiences difficulty in tracking the DTL. The tracking terminates automatically

at the glomerulus. α0=97%; β0>100%

23

1250 1300 1350 1400 1450 1500 1550 1600 1650

900

950

1000

1050

1100

1150

1200

1250

1300

81

Figure 10.8: A manually tracked mouse nephron is shown on the top left. The

PCT and PST are successfully tracked automatically as shown on the top right but

the path terminates prematurely due to the presence of an artefact. A complete

path is obtained with 5 manual corrections on the DTL and 3 on the ATL, as

shown in the bottom image. This is minimal when considering a total of 1222

coordinates making up the path. αAUTO=97.13%; βAUTO=39.84%; αSEMI-

AUTO=98.77%; βSEMI-AUTO=90.23%

82

Figure 10.9: A manually tracked rat nephron is shown on the left. The same

nephron is successfully tracked automatically by the tracking system with 56

manual corrections in the DTL and ATL. The paths can be seen to be almost

identical.

10.5 Efficacy of Validation Steps

Although the types of invalid moves are diverse, the rule-base attempts to model

the majority through hard-coded, direct rules while the machine learning

validation attempts to model them in a more generalised, less rigid manner.

The validation steps for a particular move are carried out in a set sequence with

the least computationally expensive step being first. This is so that if an invalid

move is detected, it does not have to go through all of the subsequent stages.

However, for testing, all validation steps were carried out. The rejection rates and

accuracies are detailed in Table 10.4. The „accuracy‟ of a validation step refers to

the percentage of true positives (moves flagged as invalid that were actually

invalid).

83

Table 10.4: The invalid move rejection rate by the various validation steps and

their accuracy is shown. A total of 8017 moves were flagged as invalid in the test

set of nephrons.

Validation Step

% of total

invalid moves

flagged

% of captured

moves that are

unique

% Accuracy

Distance Val. 40.21 25.94 99.67

Skip Val.
Total 38.59

25.38 90.01
Skips 98.97

Bidirectional Val. 29.92 18.94 92.05

ML Shape Val. 57.61 42.46 93.62

All four rules have produced accuracies above 90% with the distance validation

rule being the most accurate (99.67%) and the machine learning validation being

the most highly triggered (captures 57.61% of all invalid moves). Given a large

set of detected invalid moves, certain fractions are uniquely captured by each of

the validation steps as shown in Table 10.4. Of the 8017 invalid moves, 49.65%

are captured by more than one rule.

Ideally, the machine learning validation stage should be able to perform the tasks

of distance and skipping validation, as the rules should be spontaneously

integrated into the learnt hypothesis. Since 57.54% of moves captured by the

machine learning step are those captured by other rules, it can be said that it does

perform the tasks of the rule-base to some degree. It can also be said that the rule-

base models the abnormalities to a good degree since the majority of invalid

moves are eliminated even without the machine learning component.

10.6 Machine Learning Classification

The trained machine learning algorithms eliminate a large number of invalid

moves which would have otherwise resulted in multiple nephrons, ICT and blood

vessels being linked (42.46% of its detections are not captured by the rule-base).

Both the ANN and SVM were capable of forming complex hypotheses and have

performed similarly, producing classification accuracies of approximately 93% on

the test set. The confusion matrices are contained in Table 10.5.

84

Table 10.5: The confusion matrix and classification accuracies of the ANN and

SVM on a test set of 712 examples. The examples were classified into one of the

five classes. Combined results for classes 1 and 2 (valid moves) and classes 3 and

4 (invalid moves) are shown in bold.

Predicted

Class

Target Class

 y1 y2 y3 y4 y5 Accuracy (%)

 C

la
ss

if
ic

a
ti

o
n

 A
lg

o
ri

th
m

 A
N

N

(t
h
re

sh
o

ld
=

0
.7

) y1

y2

384

23

28

36

14

4

7

1

0

0

88.7
94.8

56.3

y3

y4

7

7

3

0

48

13

6

32

0

0

75.0
85.3

61.5

y5 1 0 1 0 97 98.0 98.0

 Accuracy

 (%)

91.0 53.7 60.0 69.6 100.0 83.8

96.3 78.6 100.0 93.7

 y1 y2 y3 y4 y5

S
V

M
 (

R
B

F
 k

er
n
el

o
f

w
id

th
 5

)

y1

y2

372

32

18

48

11

6

7

0

0

0

91.2
95.1

55.8

y3

y4

17

1

0

1

63

0

26

13

7

0

55.8
79.7

86.7

y5 0 0 0 0 90 100.0 100.0

Accuracy

 (%)

88.2 71.6 78.8 28.3 92.8 82.3

 96.1 80.9 100.0 93.0

The class 5 output of both classifiers is highly accurate and is successfully used as

the region signal. The classification accuracies of the first 4 output classes are

variable between the ANN and SVM. For example, the ANN is better at predicted

y4 while the SVM is better at predicted y2. For purposes of final classification,

many false positives and negatives are irrelevant, as long as they belong to

another acceptable class, e.g. a move involving elongated cross-sections (y2) can

be classified as y1 and a glomerular move (y4) can be classified as abnormal (y3).

The first four output classes (y1-y4) are thus combined into a final decision Y

according to equation 10.1.

(()) (10.1)

Y ranges from 0 (an invalid move) to 1 (a valid/normal move). The threshold

applied to Y determines the binary decision on validity of a move.

85

The ANN was made purposely less sensitive and more precise by selecting a high

threshold (0.7) in order to substantially minimise false positives. The width of the

RBF kernel of the SVM was also chosen to minimise false positives, but it was

not as flexible as the threshold of the ANN in manipulating the achieved

sensitivity and precision. The confusion matrix and performances of this final

classification are detailed in Tables 10.6 and 10.7.

Table 10.6: The confusion matrix of the final classification of the test set.

Classification

Algorithm
Predicted

Class

Target Class

Valid Invalid

ANN

(threshold=0.7)

Valid

Invalid

444

19

34

120

SVM with RBF

kernel (width=5)

Valid

Invalid

439

2

39

137

Table 10.7: Various performance indicators for the ANN and SVM. The SVM

shows slightly superior behaviour. Equations from [28].

Indicator Equation

Performance (%)

ANN

(threshold=0.7)

SVM with RBF kernel

(width=5)

Accuracy () 91.41 93.35

Precision () 95.90 99.55

Sensitivity () 92.89 91.84

Specificity () 86.33 98.56

F1 Score () 94.37 95.54

From the indices in Table 10.7, the SVM shows slightly better performance than

the ANN. It produces fewer false positives on the test set. However, it is less

flexible for use than the ANN due to its binary valued output. The continuous

valued output of the ANN is advantageous as the four class outputs can be

weighed against one another to produce a more accurate final classification.

Examples of true and false positives and negatives produced by the ANN are

shown in Figure 10.10.

86

True Negatives True Positives

False Positives False Negatives

Figure 10.10: Examples of true and false positives and negatives produced by the

ANN are shown. False negatives typically involve connective tissue cross-

sections. False positives involve nephron cross-sections which have unusual

characteristics.

Most false positives seem to consist of nephron cross-sections that were

fragmented due to matter in the lumen or non-ideal pre-processing. Moves

involving C-shaped, elongated nephron cross-sections were also sometimes

mistaken for invalid moves due to their low solidity which is normally a

characteristic of glomeruli cross-sections. False negatives typically involved ICT

cross-sections which were similar in appearance to nephrons. These occur most

frequently when skips are made at the last few cross-sections of a bend.

95 9695 96

89 8889 88

77 7677 76

39 4039 40

22 2122 21

181 182181 182

98 10098 100

96 9596 95

87

10.7 Monitoring Runtime Output

It is useful to monitor various variables and flags during the tracking process. For

purposes of prototyping, verification and testing a live output log is created by the

algorithm. The log is useful when analysing a path post-tracking. Figure 10.11

displays a snippet of an output log while tracking a nephron.

Figure 10.11: An example of an output log during the tracking of a nephron is

shown. Each row is the output for one iteration of the tracking code. The left-most

number is the size of the open list which indicates how many nodes are yet to be

explored. The image number of the current node is then output. A number of

strings representing the findings and validations at the current node are then

shown.

The size of the open list is a useful indicator of the stability of the tracking

instance, i.e. if the size diverges at a high rate (grows large very quickly), it is

likely that the path has deviated onto another nephron or blood vessel. If many

validation steps are being activated over a long period, it is likely that the

glomerulus has been reached.

10.8 Processing Times

The main aim of this research was to develop the techniques required for

automated tracking rather than to optimise efficiency for a user-end application.

Nevertheless, good programming practices have been followed, such as the use of

4 Img:24 down

4 Img:23 down <-=->

5 Img:22 down <-=->

6 Img:21 down <-=->

7 Img:20 down <-=->

8 Img:19 <-> BidirValDn shapeValDn

8 Img:19 down

8 Img:18 skipdw:1

8 Img:18 skipBlockDn BidirValDn endpoint

7 Img:20 up down

7 Img:19 BidirValDn shapeValDn skipdw:1

7 Img:19 misAlignDw endpoint

6 Img:21 up skipdw:1

6 Img:21 up

Size of

open list

Image no. of

current node

Horizontal edges

found at current node

Vertical edges at

current node

Validation

steps block

an edge

A skip is

attempted

88

functions, pre-allocation of memory and efficient use of available memory.

Parallel processing was used for the pre-processing and feature extraction stages

in order to decrease execution time (by using a MATLAB pool [33], or cluster,

operating on a parfor loop). However, the current implementation can be made

more efficient. Computational bottlenecks include the convolution (which uses a

2D FFT) required for image alignment, continuous calling of the ANN structure

and reading in three images per iteration (which processes one node) of the

algorithm. Specifications of the computer that was used are detailed in the

Appendix. Using this computer, the algorithm processed 3 nodes per second.

MATLAB‟s high level language and built-in toolboxes enabled rapid prototyping

and testing. However, it is generally slow at run-time in comparison to a possible

implementation in C++ or another lower level language. Further parallelisation

and use of a GPU for imaging operations would also improve speed. The

execution times taken by various parts of the tracking code were measured using

the MATLAB Profiler, the details of which are presented in Table 10.8.

Table 10.8: The distribution of time among the main components of the code is

shown for the automatic tracking of the PCT and PST of a short-looped mouse

nephron (no manual interventions).

Piece of Code (MATLAB function name) Time (%) Time (sec)

Reading in 1-3 images (imread) 21.52 95.31

Image alignment (conv2) 20.62 91.29

Machine learning validation (nnet) 24.13 106.84

Reading shape profiles (iomatfile) 19.30 85.47

Rest of tracking code 14.43 63.92

Total 100 442.83

89

Figure 10.12: A pie chart of the distribution of time among the main components

of the code is shown.

The times taken by the high level stages per mouse and rat image were also

measured and are presented in Table 10.9. The timings are proportional to the

number of cross-sections in the image, hence the longer processing times for inner

medullary images (see Figure 6.8). While most operations in the pre-processing

stage are image-wide (and therefore less dependent on the number of cross-

sections), the feature extraction stage is highly dependent on the number of cross-

sections as each cross-section is individually processed.

Table 10.9: The times taken to process cortical and medullary images of the

mouse and rat datasets by the three stages of the nephron tracking system.

Process
Average Time (sec/image)

Mouse Rat

Pre-processing
Cortex 2.31 3.64

Medulla 3.94 6.21

Feature Extraction

(using 8 parallel cores)

Cortex 7.68 14.20

Medulla 13.08 55.28

Tracking one short-looped nephron 15 min/nephron 30 min/nephron

Reading in 1-3
images (imread)

22%

Image alignment
(conv2)

21%
Machine learning
validation (nnet)

24%

Reading shape
profiles

(iomatfile)
19%

Rest of tracking
code
14%

90

CHAPTER 11

Analysis & Discussion

The validation steps generally increase α (accuracy, or similarity to manually

tracked nephron) while manual intervention increases β (the extent to which a

nephron is tracked). Just as the validation steps eliminate invalid moves, they also

block valid moves in the presence of artefacts, image distortions and

misalignments, which cause normal morphology to appear abnormal. This is

further described in Table 11.1.

Table 11.1: A summary of the implications and effects of different types of

artefacts on the tracking process.

Artefact Implication Effect on Tracking

Bright

centre

Stronger histogram equalisation

needed, which over-segments larger

nephron cross-sections, producing

numerous independent binary

components for a single nephron

cross-section.

Bidirectional validation triggers

which results in premature

termination = more manual

interventions

Tissue folds,

Stretching,

compression

Missing tissue and large

misalignment which cannot be

corrected is produced.

Jumping onto a cross-section of

another structure as the fold

brings other tissue directly

underneath.

External

matter

Obscures the nephron cross-sections

either completely (missing cross-

sections) or partially (change in

shape of cross-sections)

Premature termination if

obscuration is complete or shape

validation is triggered and blocks

movement for partial obscuration.

Bright spots Under-segmentation (merging) of a

small group of cross-sections

Other structures are linked to the

nephron being tracked through

the merged cross-sections

91

11.1 Performance per Area of the Nephron

Each portion of the nephron is discussed with reference to the results in Tables

10.1 and 10.2. A statement applies to both the mouse and rat datasets if it is not

explicitly stated.

The majority of the cortical labyrinth is composed of the PCT and PST, which

form 43% of a nephron‟s length (from measured β values). The algorithm is able

to track the full length of the PCT and PST in the mouse and rat with averages of

2 and 10 manual corrections, respectively. The manual corrections are only

required when large distortions and artefacts are encountered. Although the PCT

was predicted to be the most challenging part to track due to its convoluted nature,

it is tracked with high accuracy (95.14% in the mouse and 96.34 in the rat) as:

- The cross-sections are well isolated as they are large in diameter (15-30 pixels

wide) and well-defined (they have thick walls).

- The average distance between neighbouring cross-sections (≈ 25 pixels) is

larger than the average image misalignment of 4 pixels.

A class 2 move is successfully detected by the ML algorithms when the PCT of a

nephron joins the glomerulus at its urinary pole, thus terminating the tracking.

Without this, fragments in the glomerulus would be tracked towards the vascular

pole, and tracking would continue through the adjoining blood vessel

(afferent/efferent arterioles), which then joins blood vessel systems and other

glomeruli, which is undesirable.

The PST of the mouse is also tracked well with 98.24% accuracy as the cross-

sections are well isolated and defined, and the paths have a relatively straight

course. In comparison, tracking of the rat PST produced a lower accuracy of

90.17% due to a higher frequency of tissue folds leading to incorrect linking with

other nephrons.

As the PST narrows into the DTL, class 5 moves are successfully registered by

the machine learning algorithm. The level of the class 5 output is used as a region

signal to change the mode of tracking into a unidirectional one for the inner

medulla. This reduces error in the inner medulla tremendously as ambiguity

92

decreases when only one unidirectional path is allowed to be formed. Without

this, incorrect links are easily made to DTL cross-sections of other nephrons,

especially where cross-sections incorrectly merge when bright spots are present in

the image.

The DTL in the mouse and rat are tracked with moderate accuracies of 80.57%

and 84.63%, respectively, as the cross-sections are very small in diameter (3-8

pixels) and very dense (≈ 6 pixels between neighbouring cross-sections). This

results in a higher error probability during tracking as these values are comparable

to the average misalignment of 4 pixels. Confusion is more likely among

identical, closely packed nephrons which are not ideally aligned.

The DTL of the rat requires many manual corrections (≈ 24) to produce high

tracking extent. Frequent premature termination occurs because over- and under-

segmentation in the binary image cause the cross-sections to appear abnormal to

the ANN, thus blocking many moves. Similarly, the cross-sections in the mouse

are less well defined than in the cortex, making it more difficult to isolate them.

The ATL faces the same challenges as the DTL. However, these cross-sections

are slightly larger (6-12 pixels) and have thicker walls, and are thus tracked more

accurately in comparison to the DTL. It requires about half the number of manual

corrections in both the mouse and rat datasets.

The TAL is tracked well (with 96.32% and 97.48% accuracies in the mouse and

rat, respectively) as its cross-sections are well isolated and relatively large (8-12

in the mouse and 13-20 in the rat), and the path is straight.

The DCT differs vastly in the mouse and rat datasets. In the mouse, the DCT

remains narrow as it progresses from the TAL. The small cross-sections making

up a convoluted path are difficult to track. Fast changes in morphology (due to

only having every second slice) combined with small-sized cross-sections trigger

the distance validation rule. An average of 5 corrections is required in the mouse

DCT.

The rat DCT is tracked well as its characteristics are comparable to the rat PCT.

The cross-sections are much larger than in the mouse. Although the DCT is longer

in the rat, it also requires an average of 5 corrections. Branching is correctly

93

handled when the DCT of multiple nephrons join through a common collecting

duct.

Manual intervention is useful when the path terminates prematurely (usually due

to image artefacts), as the user simply bypasses the problematic cross-section. In

cases where incorrect links are made between different nephrons, manual

intervention is not useful. The latter case is difficult to identify and correct

without comparison to the manually tracked data or manual inspection.

In principle the automatically generated path could be more correct than the

manually tracked path (due to the potential for human error especially in the inner

medulla), but it was assumed that the manually tracked path is absolutely correct.

11.2 Effect of Image Properties on Performance

In general, the results are highly dependent on the quality of the images, the size

of the nephron cross-sections and the amount of interfering connective tissue

cross-sections. A larger slice thickness (e.g. every second slice in the mouse (5

μm) compared to 2.5 μm in the rat) produces less accurate results as the change in

morphology is more abrupt from image to image. As shown in Figure 11.1, a

certain slice thickness may be sufficient in the cortex where the nephron cross-

sectional diameter is large, but it may cause too much of ambiguity for smaller

cross sections in the inner medulla.

Figure 11.1: A chosen slice thickness has different implications for tracking in the

cortex and inner medulla due to the different size of the structures. In the inner

medulla, a larger change in morphology per image is perceived. This, along with

misalignment and distortion, introduces tracking error.

Inner Medulla Cortex

94

This increased rate of change in morphology from the cortex to medulla can be

measured by a simple ratio of the number of non-overlapping white pixels to the

total number of white pixels in each pair of adjacent binary images. The

measurements, as shown in Figure 11.2, indicate an increase of 20-25% in the

change rate from the cortex to the inner medulla. This simple measure does,

however, include the effects of misalignment and can therefore be seen as a

perceived change in morphology. This is a large contributing factor to the high

tracking error in the inner medulla.

Figure 11.2: The changes in morphology for three image sets were measured. In

each case, there is a noticeable increase in the morphology change rate during the

transition from the cortex to inner medulla (indicated by arrows).

A high frequency of images containing artefacts and tissue folds decreases the

accuracy of the findings tremendously, as it only requires a single incorrect move

to cause the path to deviate from the nephron at hand onto another structure (i.e.

the tracking process is chaotic or stability is completely dependent on results of

the current iteration). This is especially applicable for tracking in the inner

medulla, where the high tubule density coupled with an artefact may result in two

nephron cross-sections joining incorrectly and the turn being mistaken for a loop

of Henle. In conclusion, the amount of local image distortions, spatial resolution

and slice thickness of images in the inner medulla are the main determining

factors of the accuracy and extent of automated tracking in the inner medulla.

0 10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

Position in Image Set

C
h
a
n
g
e
 i
n
 M

o
rp

h
o
lo

g
y
 (

%
)

mouse1

mouse3

rat5

95

11.1 Ceiling Analysis

A ceiling analysis estimates the error due to each component of a pipeline system.

It can provide a good idea on which modules of the system are worth expending

additional time and effort on [28]. A singe real number evaluation metric

representing the overall system performance is measured by progressively

simulating the ground truth for the previous stages to artificially produce 100%

accuracy. Table 11.2 contains the ceiling analysis for the nephron tracking system

based on measured performances and projections.

Table 11.2: A high-level ceiling analysis of the system. These values have been

determined through careful observation and assessment of the results of the three

stages as well as the images themselves.

Component

Overall accuracy

with error

carried over

Accuracy of

stage given ideal

previous stages

Overall accuracy

given ideal

previous stages

(%)

Image Quality 75 75 75

Image Pre-processing 73 95 90

Feature Extraction 70 99 94

Tracking Algorithm 63 90 95

Overall 63 63 100

The analysis shows that the quality and resolution of the images themselves are

the main limiting upper bound on the accuracy and extent of the overall system. If

high quality images are to be used, the systems accuracy goes up to 90%.

Thereafter, improving the tracking algorithm would improve accuracy by about

5%.

96

CHAPTER 12

Recommendations & Future Work

12.1 Recommendations for Future Image Sets

Creating image sets that have minimal distortions and artefacts is essential if

complete automation is to be achieved. Attaining an ideal image set of thousands

of images may be impractical; however, the images can be artificially manipulated

by manually removing and replacing defective images, or specially pre-processing

a few images that have outlying characteristics.

The inner medulla poses the biggest challenge. Even by eye, tracking the small,

thin-walled, lightly stained nephron cross-sections of the DTL in the midst of

hundreds of identical cross-sections proves to be confusing and challenging. A

thinner slice thickness (increased resolution in the z-direction) would improve

tracking in the inner medulla as the change in position at turns and bends could be

better resolved.

Higher resolution images would also offer improved accuracy in isolation and

tracking of cross-sections in the inner medulla. An example of a higher resolution

image is shown in Figure 12.1, where there are additional features that would be

useful that were not visible on the lower resolution images, such as the tubule

walls and brush borders. This of course would require more time and effort in

capturing the images, as well as massive processing and memory resources if each

image is to be at such a high resolution. Another useful addition would be using

physical markers on the slides to aid automatic image alignment.

97

Figure 12.1: A clip of a slide from one of the mouse datasets taken at a much

higher resolution is shown. Compared to the image sets used, the nephron cross-

sections as well as the connective tissue could be better isolated on higher

resolution images. Image from [11].

12.1.1 Staining Choice

The toluidine blue stain seems to have been ideal for the purpose of tracking as it

leaves the lumens open (white in appearance), making it easy to isolate one

nephron cross-section from another both by eye and automatically in software.

The suitability of this stain for the tracking purpose may be emphasised by

comparison with differently stained kidney specimens (such as H&E) where the

lumens appear cloudy and nuclei are darkly stained [1] (which would then have to

be compensated for during pre-processing).

One disadvantage of the toluidine blue stain is that different parts of the nephron

cannot be easily distinguished. Techniques employed in the studies by

Pannabecker and Dantzler [4] [5] on manually reconstructing the rat nephron may

be advantageous in this regard. Immunohistochemistry techniques (using

antibodies which bind to segment specific proteins) were used to stain various

parts of the nephron differentially. This resulted in the DTL, ATL, collecting duct

and blood vessels fluorescing with different colours. Using such staining methods

would provide differentiating colour information and features to the tracking and

machine learning algorithms, respectively. The confidence of results would

increase as different types of cross-sections could be easily distinguished from

one another and ICT interference would be virtually eliminated as only cross-

98

sections of interest would be highlighted. Fluorescent dyes which still leave the

lumens open could therefore be the best staining choice for the tracking purpose.

12.1.2 Image Constraints

If the designed system is to be used on a new image set, the images must conform

to the following constraints:

 All images must have the same resolution and a uniform scaling factor.

 The images must be a serial stack labelled sequentially.

 The resolution must be high enough such that nephron cross-sections can be

easily distinguished, e.g. a DTL cross-section must be at least 5 pixels in

diameter.

 At least every 5μm of the specimen (or preferably a slice thickness less than

the diameter of the DTL) must be included in the dataset to adequately

represent the change in morphology of the nephrons.

 Transverse sections through the kidney must be used (i.e. such that nephron

cross-sections appear mostly circular). Sections producing longitudinally sliced

cross-sections will not be accurately tracked, as the appearance of the cross-

sections is then completely as shown in Figure 12.2. Tracking longitudinal

sections even by eye is difficult and error prone. Also, this type of data is not

available, and so training, testing and verifying an algorithm on longitudinal

sections cannot be done. Due to inadequate training and tuning, the algorithm

would not handle such cases with high accuracy.

Figure 12.2: Examples of a longitudinal (left) and transverse (right) slice of the

kidney. Images from [11].

99

12.2 Future Work

The current approach looks at properties of the current cross-section and potential

cross-sections in images above and below; it does not analyse patterns or

properties of the local neighbourhood around it apart from using a local window

for alignment. Looking at the surrounding area may be the key to solving

problems especially in the inner medulla. Also, a machine learning algorithm that

operates along a length of the detected path rather than only on a cross-section to

cross-section basis may lead to more accurate results, especially in the DTL where

the small cross-section diameter causes ambiguity.

The colour or intensity information from the original or equalised image may be

used to compute additional features for machine learning algorithms. The colour

images in combination with a full six-parameter homography could be used for a

more accurate image registration, which may improve the tracking results.

Additional properties of the path around the current node, such as a 3D direction

vector, can also be modelled and used for tracking conditions and validations.

Even though the current algorithm can track nephrons orientated in various

directions, the system still only has three degrees of freedom, for example a

nephron segment that is angled 45° to the x-y plane will be tracked as a

combination of horizontal and vertical edges rather than directly at 45° in the 3D

image space. Future approaches for tracking could perhaps use more degrees of

freedom.

This study focused on developing the methods required for (semi-) automated

tracking. In order for the system to be used practically on a large number of

nephrons, a more efficient version should be implemented in a language such as

C++ using neural network and image processing libraries, many of which are

open source. A user interface for system calibration, tracking (including manual

intervention) and viewing of results should be included.

100

CHAPTER 13

Conclusion

The aim of the present study was to develop an automated system for the

tracking of nephrons. A proposed methodology involving image processing and a

custom tracking algorithm supervised by machine learning algorithms was

presented. A number of features were extracted in order to retain shape

information during the data abstraction process. The ANN and SVM have high

classification accuracies of ≈ 93% and eliminate invalid moves caused by a

number of hindering factors such as artefacts and distortions.

The system is successfully able to track large portions of the nephrons

automatically through both highly convoluted and straight paths. Particularly, the

PCT, PST and TAL (which form more than half of the nephron length) are

tracked with high extents and accuracies in both the mouse and rat datasets. The

DTL and ATL prove to be problematic due to image artefacts in combination with

the small nephron cross-section size, thin walls and high tubule density in the

inner medulla. These are tracked with good accuracy but require many manual

corrections to achieve high extent. The DCT is tracked well in the rat but not in

the mouse.

While only portions of the paths can be obtained automatically from the

starting seed, full nephron paths can be obtained with an average of 17 and 62

manual corrections in the mouse and rat datasets, respectively. This is reasonable

considering the thousands of coordinates making up a nephron path, each of

which had to be previously manually tracked. Although complete automation is

still elusive, the system saves a considerable amount of time and effort compared

101

with the manual tracking task as it performs 99% of the task automatically.

Minimising image defects is crucial in improving performance and decreasing the

amount of manual intervention required.

The developed system thus serves as a semi-automatic tool to aid the tracking

process, decreasing the number of user interactions from 1100 to 17 per mouse

nephron and 5000 to 62 per rat nephron. The methods developed during this study

form a foundation for further development towards a fully automated nephron

tracking system.

102

REFERENCES

[1] L. C. Junqueira and J. Carneiro, "Basic Histology - Text & Atlas," in The Urinary

System.: McGraw-Hill, 2005.

[2] William A. Beresford. Histology Full-Text, Chapter 23 Urinary System, Anatomy

Department, West Virginia University, Morgantown, USA. [Online].

http://wberesford.hsc.wvu.edu/histolch23.htm

[3] Pannabecker TL, Dantzler WH, Layton HE Layton AT, "Functional implications of

the three dimensional architecture of the rat renal inner medulla," 2010.

[4] Thomas L. Pannabecker and William H. Dantzler, "Three-dimensional architecture

of collecting ducts, loops of Henle, and blood vessels in the renal papilla,"

University of Arizona Health Sciences Center, Department of Physiology, Tucson,

Arizona, American Physiological Society, 2007.

[5] Thomas L. Pannabecker, Diane E. Abbott, and William H. Dantzler, "Three-

dimensional functional reconstruction of inner medullary thin limbs of Henle‟s

loop," Department of Physiology, College of Medicine, University of Arizona,

Tucson, Arizona, American Physiological Society, 85724-5051, 2003.

[6] W. Kriz, "The architectonic and functional structure of the rat kidney," Z Zellforsch

Mikrosk Anat, 1967.

[7] Pannabecker Thomas L., "Comparative physiology and architecture associated with

the mammalian urine concentrating mechanism: role of inner medullary water and

urea transport pathways in the rodent medulla," Am J Physiol Regul Integr Comp

Physiol, 2013.

[8] H Ren et al., "Direct Physical Contact between Intercalated Cells in the Distal

Convoluted Tubule and the Afferent Arteriole in Mouse Kidneys," PLoS One, 2013.

[9] Erik I. Christensen et al., "Three-dimensional reconstruction of the rat nephron," Am

J Physiol Renal Physiol, Department of Biomedicine, Anatomy, Aarhus University,

Denmark, 2013.

[10] Xiao-Yue Zhai et al., "Three-Dimensional Reconstruction of the Mouse Nephron,"

Departments of Cell Biology, Connective Tissue Biology, and Neurobiology,

Institute of Anatomy, University of Aarhus, Denmark, American Society of

Nephrology, ISSN: 1046-6673/1701-0077, 2006.

[11] Image Sets of 3 Mouse and 3 Rat Kidneys, 2013, Departments of Cell Biology,

Connective Tissue Biology, and Neurobiology, Institute of Anatomy, University of

Aarhus, Denmark.

[12] Keith L. Moore, Arthur F. Dalley, and Anne M. R. Agur, Clinically Orientated

Anatomy, 6th ed.: Lippincott Williams & Wilkins, ISBN 978-1-60547-652-0, 2010.

http://wberesford.hsc.wvu.edu/histolch23.htm

103

[13] RN Douglas-Denton, B Diouf, MD Hughson, WE Hoy, and JF Bertram, "Human

nephron number: implications for health and disease,"

http://www.ncbi.nlm.nih.gov/pubmed/21604189, 2011.

[14] Arthur C. Guyton and John E. Hall, Textbook of Medical Physiology, 11th ed.

Philadelphia, Pennsylvania: Elsevier, ISBN 0-7216-0240-1, 2006.

[15] SB. Nicholas, JM. Basgen, and S. Sinha, "Using stereologic techniques for podocyte

counting in the mouse: shifting the paradigm.," Am J Nephrol, California, USA,

2011.

[16] Gokul Sridharan and Akhil A Shankar, "Toluidine blue: A review of its chemistry

and clinical utility," J Oral Maxillofac Pathol, Department of Oral Pathology and

Microbiology, YMT Dental College and Hospital, Maharashtra, India 2012.

[17] Jun Zhang and Jiulun Fan, "Medical Image Segmentation Based on Wavelet

Transformation and Watershed Algorithm," Department of Information and Control,

Xi 'an Institute of Post and Telecommunications, , Weihai, Shandong, China, IEEE,

2006.

[18] Cathy Merritt, Tony Kasvand Hiromitsu Yamada, "Recognition of Kidney

Glomerulus by Dynamic Programming Matching Method," 1988.

[19] Hong Zhu, XueMing Qian, Tao Huang Jun Zhang, "Genetic Algorithm for Edge

Extraction of Glomerulus Area," Department of System Integration, Institute of

Information and Automation Engineering, Xi‟an, Shannxi Province, China, 2004.

[20] Jun Zhang, Jinglu Hu Jiaxin Ma, "Glomerulus Extraction by Using Genetic

Algorithm for Edge Patching," School of Information, Production and Systems,

WASEDA University, Kitakyshu, Fukuoka, Japan, 2009.

[21] Paola Campadelli, Elena Casiraghi, and Stella Pratissoli, "Automatic segmentation

of abdominal organs from CT scans," Universita‟ degli Studi di Milano, Department

of Computer Science, Milano, IEEE, 2007.

[22] Hae-Yeoun Lee, Noel C. F. Codella, Matthew D. Cham, Jonathan W. Weinsaft, and

Yi Wang, "Automatic Left Ventricle Segmentation Using Iterative Thresholding and

an Active Contour Model With Adaptation on Short-Axis Cardiac MRI," IEEE, vol.

57, no. 4, 2010.

[23] Bahadir Karasulu, "Automatic Extraction of Retinal Blood Vessels: A Software

Implementation," vol. 8, no. 30.

[24] Tamir Yedidya and Richard Hartley, "Tracking of Blood Vessels in Retinal Images

Using Kalman Filter," The Australian National University and National ICT

Australia, Australia,.

[25] Ali Can, Hong Shen, James N. Turner, Howard L. Tanenbaum, and Badrinath

Roysam, "Rapid Automated Tracing and Feature Extraction from Retinal Fundus

Images Using Direct Exploratory Algorithms," IEEE Transactions on Information

104

Technology in Biomedicine, New York, vol. 3, no. 2, 1999.

[26] Xin Kang et al., "Automatic Labelling of Liver Veins in CT by Probabilistic

Backward Tracing," Children‟s National Medical Center, DC, USA, IEEE, 978-1-

4673-1961-4, 2014.

[27] Michael A. Nielsen, "Neural Networks and Deep Learning," in CHAPTER 2: How

the backpropagation algorithm works.: Determination Press, 2014. [Online].

http://neuralnetworksanddeeplearning.com/chap2.html

[28] Andrew NG. (2014, April) Coursera Online Courses: Machine Learning Course.

[Online]. https://class.coursera.org/ml-005

[29] Ioannis Valavanisa, Stavroula G. Mougiakakoua, Spyretta Golematia, Alexandra

Nikita, Konstantina S. Nikita John Stoitsisa, "Computer aided diagnosis based on

medical image processing and artificial intelligence methods," School of Electrical

and Computer Engineering & Medical School, National Technical University of

Athens, Athens, Greece, 2006. [Online].

http://www.sciencedirect.com/science/article/pii/S0168900206015415

[30] Kenji Suzuki, "Pixel-Based Machine Learning in Medical Imaging," International

Journal of Biomedical Imaging, vol. Department of Radiology, The University of

Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, IL 60637, USA,

November 2011.

[31] Mashor M.Y., Esugasini S., Mat Isa N.A., and Othman N.H., "Classification of

Breast Lesions Using Artificial Neural Network," Proceedings of International

Conference on Man-Machine Systems , 2006.

[32] K Gayathri Devi and R Radhakrishnan, "Automatic Segmentation of Colon in 3D

CT images and removal of opacified fluid using cascade feed forward neural

network," Institute of Technology, India.

[33] MATLAB Version R2012a, MathWorks, Image Processing Toolbox; Neural

Network Toolbox; Statistics Toolbox.

[34] Prof. Henrik Birn, "The Danish Ministry of Food, Agriculture and Fisheries;

Ministeriet for Fødevarer," Institute of Anatomy/Biomedicine 2004/561-818.

[35] K. Wagholikar, "Modeling Paradigms for Medical Diagnostic Decision Support: A

Survey and Future Directions," Journal of Medical Systems, Aug. 2012.

[36] E. R. Davies, Computer & Machine Vision: Theory, Algorithms, Practicalities.

Egham, UK, Surrey: Elsevier, 2012.

[37] Dana H. Ballard and Christopher M. Brown, Computer Vision. Rochester, New

York: Prentice Hall, 1982.

[38] Peter Henderson, Richard Seaby, and Robin Somes, "Growth II," in Types of growth

curve - Logistic curve. Penington, Lymington, Hampshire: Pisces Conservation Ltd,

http://neuralnetworksanddeeplearning.com/chap2.html
https://class.coursera.org/ml-005
http://www.sciencedirect.com/science/article/pii/S0168900206015415

105

2006.

[39] Guojun Gan, Chaoqun Ma, and Wu Jianhong, "Data Clustering Theory, Algorithms

and Applications," in Chapter 9: Center-based Clustering Algorithms. Philadelphia,

ASA, Alexandria, VA: ASA-SIAM Series on Statistics and Applied Probability,

2007.

[40] L. Wojnar and K.J. Kurzydłowski, Practical Guide to Image Analysis.: ASM

International, 2000.

[41] Barbara Zitova and Jan Flusser, "Image registration methods: a survey," Elsevier:

Image and Vision Computing, Department of Image Processing, Institute of

Information Theory and Automation, Academy of Sciences of the Czech Republic

2003.

[42] Amit Patel. (2014) Stanford Theory Group. [Online].

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

[43] Kenji Kira and Larry Rendell, "The Feature Selection Problem: Traditional Methods

and a New Algorithm," 1992.

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

APPENDICES

Appendix A: Longitudinal reconstructions

Appendix B: Additional Results

Appendix C: Nephron Tracking Spreadsheet

Appendix D: Performance Data

Appendix E: A Review of the Path Comparison Method

Appendix F: Additional Feature Analysis

Appendix G: Proof of Ethics Clearance

Appendix H: MATLAB Code

Appendix I: Research Article published in the journal Computational and

Mathematical Methods in Medicine

1

Appendix A: Longitudinal Reconstructions

Figure A1: Two longitudinal sections were reconstructed from a mouse image set. The

change in morphology can be seen, as well as the zones at which the changes occur.

Clips of the transverse images are also shown.

C
O

R
TEX

M

ED
U

LLA

1

Appendix B: Additional Results

Please refer to the CD to view two videos (of a whole mouse nephron and the

PCT-PST of a rat nephron) created from the tracking results.

Figure B1: The results of a tracking instance were used to automatically extract

the original nephron cross-sections (in the colour image) relating to the tracked

nephron. The nodes and their interconnection are shown in red. The slices show

an area where the nephron proceeds downwards and then turns upwards. The first

elongated cross-section of the bend was automatically chosen during the

reconstruction. The nephron then terminates at the glomerulus, as it merges into

the urinary pole. The tracking algorithm tracks along a few of the C-shaped cross-

sections but eventually terminates the tracking deeper into the glomerulus.

2

Figure B2: A histogram of the image offsets in the x-y plane between adjacent

images during the tracking of 12 mouse nephrons

Figure B3: A loop of Henle (top) and the PCT, PST and DTL (bottom) of a mouse

nephron is plotted using the extracted minor axis feature. The radius varies wit the

size of the cross-sections. The transition between the thick PST and thin DTL can

be seen.

0 5 10 15 20 25 30 35 40
0

5

10

15

Offset (pixels)

F
re

q
u

e
n

c
y

(%
)

3

Figure B4: The PCT of a rat nephron is shown to convey the intricacy and

complexity of the convolutions present in the PCT.

Figure B5: Without machine learning validation, incorrect linkages are often

made to interstitial tissue cross-sections, which in turn link to other nephrons.

Unlike machine learning validation the other validation rules are not always

effective in preventing such cases.

Appendix C: Spreadsheet of Tracking Results

Appendix C: Results of Nephron Tracking

Average Runtime: 5.78 minutes/nephron

MOUSE

Nephron No.
Alpha (%) Beta (%) PCT PST DTL +LH ATL TAL DCT Full Nephron

Up to

TAL

Up to

ATL

Up to

DTL

set1neph3 99,00 77,80 1 2 5 3 2 12 25

set1neph75 99,13 100,00 0 1 4 0 6 7 18

set3neph8 98,63 97,03 0 0 6 3 5 2 16

set3neph38 96,56 100,00 1 0 9 0 1 6 17

set2neph15 99,51 89,13 3 0 3 4 4 6 20

set3neph26 99,00 91,14 1 0 5 4 0 5 15

set3neph4 80,15 97,77 0 0 5 1 2 5 13

set3neph3 95,81 98,41 0 0 8 11 0 2 21

set2neph14 93,48 92,01 0 0 3 4 5 3 15

set1neph70 94,83 84,83 2 1 3 2 4 na 12

set2neph26 99,10 90,15 2 0 5 0 5 na 12

set2neph22 92,41 91,26 0 0 7 4 2 na 13

set1neph38 96,34 82,15 3 1 7 1 4 na 16

set3neph20 96,15 88,10 1 0 8 6 na na 15

set1neph22 93,90 87,81 1 1 5 4 na na 11

set1neph133 94,85 100,00 3 0 6 na na na 9

set1neph46 98,24 52,14 1 2 5 na na na 8

set3neph13 100,00 70,70 0 0 6 na na na 6

COUNT 18 18 18 15 13 9 9 4 2 3

Mean 95,95 88,36 1,06 0,44 5,56 3,13 3,08 5,33 17,78 13,25 13,00 7,67

18,60

Std. Dev. 4,45 11,76 1,08 0,68 1,71 2,75 1,94 2,91 3,49 1,64 2,00 1,25

Average Length 360 230 210 210 180 200 1390

Average Length (%) 25,90 16,55 15,11 15,11 12,95 14,39

Weighted Indication 7,59 3,20 39,97 22,54 22,14 38,37

TOTALSNumber of Corrections in each part of the Nephron
Similarity Metrics to Gold

Standard

1

Appendix C: Results of Nephron Tracking

Average Runtime: 28 minutes/nephron

RAT

Nephron No.
Alpha (%) Beta (%) PCT PST DTL +LH ATL TAL DCT Full Nephron

Up to

TAL

Up to

ATL

Up to

DTL
Other

set5neph10 94,69 98,45 0 2 28 26 6 1 63

set4neph140 91,75 98,80 6 7 10 17 11 5 56

set5neph52 94,55 78,88 2 2 33 7 7 na 51

set5neph31 87,73 94,51 6 6 15 9 5 na 41

set5neph41 94,51 72,84 0 8 27 8 9 na 52

set5neph146LL 92,81 40,40 8 7 na na na na 15

set5neph145 85,51 57,70 2 7 na na na na 9

set4neph52 93,08 57,81 8 8 na na na na 16

set5neph47 93,33 36,36 2 na na na na na 2

set5neph11 91,92 27,96 16 na na na na na 16

set4neph11 94,35 47,04 8 na na na na na 8

set5neph147 80,15 48,15 na na na 7 1 na 8

set5neph40 99,80 18,28 na 1 16 na na na 17

set5neph42 99,59 62,07 na 3 30 16 6 7 62

COUNT 11 10 7 7 7 3 2 3 3 3

Mean 92,41 59,95 5,27 5,10 22,71 12,86 6,43 4,33 59,50 48,00 13,33 8,67

56,71

Projected rat from mouse (x4.7) 4,96 2,09 26,11 14,73 14,46 25,07 83,56

Std. Dev. 4,97 24,97 4,53 2,62 8,21 6,62 2,92 2,49 3,50 4,97 3,09 5,73

Average Length 1800 900 780 780 680 980 5920

Average Length (%) 30,41 15,20 13,18 13,18 11,49 16,55

Weighted Indication 8,91 8,61 38,37 21,72 10,86 7,32

Similarity Metrics to Gold

Standard
Number of Corrections in each part of the Nephron TOTALS

2

1

Appendix D: Performance Data

MATLAB Profiler results

The MATLAB Profiler measures the execution time of functions, sub-functions

and subroutines to aid optimisation of code. The profiler was used to measure an

instance of tracking (TrackerFinal.m). The results show that neural network

validation, reading images into MATLAB and the fft/ifft used during alignment

are the longest subroutines, while the overheads in re-ordering the image matrix

and transferring large variables to functions takes up 75% of the self-time of

TrackerFinal.m

2

*Self time is the time spent in a function excluding the time spent in its child functions. Self

time also includes overhead resulting from the process of profiling.

System Specifications

Development and testing was performed using a system with the following specifications.

The developed system should use a system with similar or better performance

specifications.

- Processor: Intel Core i5 @ 3.10 GHz

- RAM: 16.00GB

- 512 MB Graphics memory

- MATLAB Version R2011b

- Toolboxes used: Image Processing Toolbox, Statistics and Machine Learning

Toolbox, Neural Network Toolbox and the Parallel Computing Toolbox.

1

Appendix E: A Review of the Path Comparison Method

The MATLAB function used to compare an automatically tracked nephron path to

a manually tracked one is displayed below.

function [metric, residual] = comparePaths2(x,y, tol)

if nargin==2, tol = 10; end

residual=100.*ones(1,size(y,1)); % Pre-allocate a

vector

%Compare each element in y to coordinates in relevant

image in x
for i=1:1:size(y,1)

 % Get coordinates in images i, i+1 and i-1 in x
 t1 = or(or(x(:,3)==y(i,3)-

1,x(:,3)==y(i,3)+1),x(:,3)==y(i,3));
 xi = x(t1,1:3);

 % Calculate Euclidean distances to those coordinates

from y(i)
 dis = dist(xi,y(i,1:3));

 % Residual is the minimum distance (sum of square

difference)
 if ~isempty(dis)
 residual(i) = min(dis);
 end
end

% The comparative metric is a threshold of the residual
 metric = 100.*sum(residual<tol(y(:,3)))./size(y, 1);

The residual is calculated as the sum of square distance to the corresponding points

in the manual path. As can be seen in Figure E1, most points are within 15 pixels

of the manually tracked path. Whether or not the points actually belong to the

nephron of interest or an adjacent one is assessed by comparing the residual to the

average cross-sectional radius of a nephron in the respective area. In the cortex, a

point is deemed correct if the residual is less than 20 pixels while in the inner

medulla, a stricter criterion of 10 pixels is imposed due to the narrow diameter of

the thin limbs. The metric is then simply the percentage of points which were

deemed correct. High residual values may be indicative of:

 Any correct points which were not included in the manually tracked path, e.g.

the glomerulus.

 An image artefact.

2

 Deviation of the automatically tracked path onto an incorrect path.

Figure E1: Points from an automatically tracked mouse nephron are compared to

the manually tracked path (in black). The similarity measured by the algorithm

produces α=97.45% and β=99.84% using a residual threshold of 25 pixels. The

points are colour- and size- coded to its corresponding residual value.

1000 1100 1200 1300 1400
50

100

150

200

250

300

350

400

450

500

550

x-y plane

z
 a

x
is

0

5

10

15

20

25

30

35

40

45

50Auto. points

Manual Path

Glomerulus

which was not

tracked manually

R
es

id
u

al
 (

p
ix

el
s)

1000 1100 1200 1300 1400
50

100

150

200

250

300

350

400

450

500

550

x-y plane

z
 a

x
is

0

5

10

15

20

25

30

35

40

45

50Auto. points

Manual Path

← Cross-sectional

radius in the cortex

← Cross-sectional

radius in the inner

medulla

1

Appendix F: Additional Feature Analysis

Principal Component Analysis (PCA) was performed on data containing various

combinations of features in order to visually determine the effect that the features

have on classification ability and hence to see which are the most useful features.

The generalised method used to perform PCA on data X is as follows:

Algorithm: PCA

A = (1/m).*(X'*X) Calculate covariance matrix from data (X)

[U, D, V] = svd(A) Perform single values decomposition to get

 U = columns of eigenvectors of A.AT

 V = rows of eigenvectors of AT.A

 D = diagonal matrix of eigenvalues

Z = X*U(1:K) Project data to lower dimension K using first K

eigenvectors

X_rec = Z*U(1:N)' Recover original data in higher dimension N

(optional)

Table F1: The reduced feature plots of different classes of examples with a brief

discussion on each.

PCA Feature Plot Description

All features except shape profile features:

When the shape profile features (the actual

shape profiles and the similarity metric) are

excluded, examples of elongated cross-

sections (green) and glomeruli (yellow)

cannot be clearly differentiated, validating

the need for the shape profiles as part of the

feature set. However, a separating boundary

can be seen between the normal moves

(blue) and those of connective tissue (red),

highlighting the role that the shape factors

play in the classification.

-12 -10 -8 -6 -4 -2 0 2 4
-15

-10

-5

0

5

10

z1

z
2

2

All features except shape factor features:

With the shape profile as the only shape

features, a boundary can now be seen

between elongated and glomeruli types.

However, there is a large overlap between

the normal and connective tissue moves,

again showing the importance of shape

factors.

No shape factors or shape profile

features:

With no shape features, very little can be

said about any of the classes apart from the

moves in the inner medulla (cyan), which is

most likely classified solely on the z-

position feature. This implies that the

remaining features (e.g. xy-distance, image

difference) can be used to increase

confidence of a normal move (blue) but

nothing can be said about the other types.

-20 -15 -10 -5 0 5

-15

-10

-5

0

5

10

15

20

z1

z
2

-16 -14 -12 -10 -8 -6 -4 -2 0 2
-6

-5

-4

-3

-2

-1

0

1

2

3

z1

z
2

1

Appendix G: Proof of Ethics Clearance

Clearance from the Animal Ethics Committee was not required due to the research

being purely computational, as indicated in the email below. Ethics was obtained

by the Danish team when the kidneys were originally processed.

Fwd: Concerning the Animal Ethics Screening Committee
(AESC) at the university

Robyn Letts <robyn.letts@gmail.com> Wed, Jan 7, 2015 at 10:31 AM
To: Charita Bhikha <charita.bhikha@gmail.com>

---------- Forwarded message ----------
From: Arne Andreasen <aa@biomed.au.dk>

Date: 7 December 2014 at 17:57
Subject: Concerning the Animal Ethics Screening Committee (AESC) at the university
To: Robyn Letts <robyn.letts@gmail.com>

Dear Robyn

Concerning the Animal Ethics Screening Committee (AESC) at the university:

I have managed to find the ethics clearance number that was in use at our Institute of Anatomy
when the mouse kidneys were prepared. Since then the Institute of Anatomy has been
abolished, some of the functions are now a part of the bigger Institute of Biomedicine.

The license number belonged to Professor Henrik Birn, the number under The Danish Ministry
of Food, Agriculture and Fisheries, was 2004/561-818.

The Danish name of this ministry is Ministeriet for Fødevarer.

I really hope this information will help you.

Kind regards

Arne

PS Please confirm that you got this e-mail

mailto:aa@biomed.au.dk
mailto:robyn.letts@gmail.com

2

RE: Enquiry on Ethics Clearance

Kennedy Erlwanger <Kennedy.Erlwanger@wits.ac.za>
Fri, Aug 8, 2014 at

12:49 PM
To: Charita Bhikha <charita.bhikha@gmail.com>
Cc: Robyn Letts <Robyn.Letts@wits.ac.za>, David Rubin <David.Rubin@wits.ac.za>,
Sidney Engelbrecht <Sidney.Engelbrecht@wits.ac.za>

Dear Charita,

I can confirm that you do not require clearance from the AESC of the University of the
Witwatersrand as your study is purely computational and does not involve the direct use of
animals or animal tissue.

Kindly note that for any ethical issues around the original animal based study you will have to
rely on what the researchers are able to avail to you. Although the AESC of the University of
the Witwatersrand would not be able to give retrospective clearance for the study, the nature
of the study (as you have described) does not require clearance from the AESC.

Sincerely,

Kennedy

(Chairman, AESC- University of the Witwatersrand)

Assoc Prof K.H. Erlwanger

School of Physiology

Faculty of Health Sciences,

University of the Witwatersrand

7 York Road, Parktown, 2193

SOUTH AFRICA

Private bag 3, Wits, 2050, South Africa.

Tel: +27 (0)11 717 2454

Fax: + 27 (0)11 643 2765

Email: Kennedy.Erlwanger@wits.ac.za

tel:%2B27%20%280%2911%20717%202454
tel:%2B%2027%20%280%2911%20643%202765
mailto:Kennedy.Erlwanger@wits.ac.za

3

 From: Charita Bhikha [mailto:charita.bhikha@gmail.com]

Sent: 08 August 2014 09:40 AM
To: Kennedy Erlwanger
Cc: Robyn Letts; David Rubin
Subject: Enquiry on Ethics Clearance

Dear Prof. Erlwanger

I am a masters student in the School of Electrical and Information Engineering. I would
like your advice pertaining to the need for ethics clearance for my research project.

My research involves image processing and analysis on histological image sets of
mouse and rat kidneys. These images have been acquired from a group at the
University of Aarhus,Denmark. They had originally processed the kidney specimens
into digital images.

Since the work is purely computational, and no animals are involved, will I need ethics
approval from the AESC? The group in Denmark who had originally done work on
these images, have mentioned in their publications that ethics had been obtained.
Their paper quotes:

"All animal experiments were carried out in accordance with the provisions for the
animal care license provided by the Danish National Animal Experiments
Inspectorate."

http://ajprenal.physiology.org/content/306/6/F664

Sidney Engelbrecht had advised that ethics clearance is not needed, so long as the
original ethics clearance certificate or number is provided. However, the group in
Denmark seems to be having difficulty in locating their clearance certificate/number,
as it was done a long while ago. Kindly advise as to what is required from Wits'
perspective, and if you require more detailed information.

Kind Regards

Charita Bhikha

mailto:charita.bhikha@gmail.com
http://ajprenal.physiology.org/content/306/6/F664

1

Appendix H: MATLAB Code

The systems user interface is by means of two MATLAB scripts –

PreprocessAndFeatureExtractInterface and TrackerInterface. These make use of a number of

custom functions, each tasked with a specific function. The functions were written such that

they required minimal inputs to provide specific output information, i.e. sub-processes of the

tracking were decoupled. They can be used outside the script to analyse the intermediate

stages of data. Function encapsulation and abstraction makes the code efficient, and easy to

maintain, upgrade and debug. Figure H1 shows an overview of functional dependencies.

Figure H1: A code dependency graph of the system. The two main scripts of the system make

use of various custom-coded functions which are independent of one another. Each function

passes information to the function/script above it.

2

MATLAB Code:

Pre-processing and Feature Extraction

PreprocessAndFeatureExtractInterface.m

% PreprocessAndFeatureExtractInterface.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 15-Mar-2015

% Function hierarchy of files required:
% getSettings.m
% getSetProperties.m
% PreprocessRawImgs.m
% getProcessingParams.m
% ProcessImgStd.m
% FeatureExtractBWImgs.m
% getProcessingParams.m
% extractFeatures6.m
% findShapeProfileStretch.m
% litekmeansMod.m
% PreprocAndFeatureExtract.m
% getProcessingParams.m
% ProcessImgStd.m
% extractFeatures6.m
% findShapeProfileStretch.m
% litekmeansMod.m

% ---------------------------- START OF CODE -----------------------------

%% Option 1 - STAGE 1: PRE-PROCESSING

% Instructions:
% 1. Set imInPath in getSetProperties.m to the path of the folder
% containing the raw colour images
% 2. Set imOutPath in getSetProperties.m to the directory where the outputs
% will be saved. Use the convention setNdataV where N is the image set
% number and V is the version.
% 3. Set imageSetNo to the image set being used.
% 4. Set version to the output version to be created.
% 5. Open 'getSettings' (right click) and modify the parameters
% related to the image set no. being used. Save and close.
% 6. Set outputLog to true if a live output is desired, otherwise set it to
% false.
% 7. Run this section of code. Press CRTL+C to cancel.

% NOTE: A binary image is written to hard disk at each iteration, and so
% one may cancel (in order to pause) and continue by changing the start
% index in settings.

clc, clear

imageSetNo = 0;
version = 1;
settings = getSettings(imageSetNo,version)
outputLog = true;

PreprocessRawImgs(settings,outputLog);

% ---
%% Option 1 - STAGE 2: FEATURE EXTRACTION

3

% Instructions:
% 1. Set imOutPath in getSetProperties.m to the path of the folder
% containing the BINARY images
% 2. Set featFile to the directory where the features will be saved.
% 3. Set SPFile to the directory where the shape profiles will be saved.
% The shape profiles must be saved separately as they require a large
% amount of memory. Note that these folders must already exist.
% 4. Set imageSetNo to the image set being used.
% 5. Set version to the output version to be used.
% 6. Open 'getSettings' (right click) and modify the parameters
% related to the image set no. being used. Save and close.
% 7. Set outputLog to true if a live output is desired, otherwise set it to
% false.
% 8. Run this section of code. Press CRTL+C to cancel.

% NOTE: The nodes and shape factors are stored in the workspace (RAM)
% during execution of this block of code. Cancellation will result in loss
% of the information already processed. The shape factors may or may not be
% written to hard disk on each iteration, see comments in
% 'getSettings' for more information.

clc, clear

featFile = 'Test\test0feat1.mat';
SPFile = 'Test\test0SP1.mat';
imageSetNo = 0;
version = 1;
settings = getSettings(imageSetNo,version)
outputLog = true;

FeatureExtractBWImgs(featFile, SPFile, settings, outputLog);

% ---
%% Option 2: PRE-PROCESSING & FEATURE EXTRACTION

% Instructions:
% 1. Set imInPath in getSetProperties.m to the path of the folder
% containing the raw colour images
% 2. Set imOutPath in getSetProperties.m to the directory where the output
% binary images will be
% saved.
% 3. Set featFile to the directory and name of where the features will be
% saved (a .mat file).
% 4. Set SPFile to the directory where the shape profiles will be saved.
% The shape profiles must be saved separately as they require a large
% amount of memory.
% Note that these folders must already exist; they will not be created.
%
% 5. Set imageSetNo to the image set being used.
% 6. Set version to the output version to be used.
% 7. Open 'getSettings' (right click) and modify the parameters
% related to the image set no. being used. Save and close.
% 8. Set outputLog to true if a live output is desired, otherwise set it to
% false.
% 9. Run this section of code. Press CRTL+C to cancel.

% NOTE: The nodes and shape factors are stored in the workspace (RAM)
% during execution of this block of code. Cancellation will result in loss
% of the information already processed. The shape factors may or may not be
% written to hard disk on each iteration depending on the chosen settings
% (see 'getSettings' for more information).

featFile = 'Test\test0feat1.mat';
SPFile = 'Test\test0SP1.mat';

4

imageSetNo = 0;
version = 1;
settings = getSettings(imageSetNo,version)
outputLog = true;

PreprocAndFeatureExtract(featFile,SPFile,settings,outputLog);

% ----------------------------- END OF CODE -------------------------------

getSettings.m

function settings = getSettings(imageSetNo,OutVersion)

% getSettings - This function is meant to be modified by the user to
% initialise settings or parameters for pre-processing and feature extraction.
%
% Syntax: settings = getSettings(imageSetNo)
%
% Inputs:
% imageSetNo - The image set identifier number
% OutVersion - The preprocessing and feature extraction version
% number
% Outputs:
% settings - A struct of the parameters are returned with field
% names and values.
%
% Other m-files required: getSetProperties.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 12-Mar-2015

%------------- START OF CODE --------------

% MODIFY THE PARAMETERS THAT ARE RELEVANT:

 % >>> Open getSetProperties and set parameters for the image set
 settings = getSetProperties(imageSetNo,OutVersion);

% The start and end index of the images to be processed (referring to the
% binary images that are to be produced).
 settings.startImg = 1;
 settings.endImg = 2;

% SETTINGS FOR SHAPE PROFILE
 settings.angStep = 15; % Angle increment
 settings.scale = 50; % Target scale in pixels
 settings.saveMethod = 0; %'RAM'=0; 'HARDDISK'=1;

%------------- END OF CODE --------------

getSetProperties.m

function setProperties = getSetProperties(set,OutVersion)

% getSetProperties - Returns a struct containing a number of properties
% related to a specific image set (set) and the version of the
% preprocessing and feature extraction output (OutVersion). These

5

% properties are widely used to automatically refer to the images and
% features. The properties for the 6 image sets and a test set are included.

% The properties are:
% id A unique identifier number for the image set
% offset The offset between the numeric part of the colour
% set and the binary set or The index of the first colour
% image (sometimes not '1' due to starting images being
% blank)
% latestVersion The latest version of data that exists for the set
% imOutPath The directory to which the output binary images will be
% saved OR the path to the existing binary image set
% imInPath Path to the colour image set
% imLabPath Path to the labelled colour image set
% range The number of integers in the numerical part of the
% colour image's name
% imsize Image dimensions in pixels [width height]
% setsize Number of images in the set
% originalSetName A string describing the origin of the image set

% Syntax: setProperties = getSetProperties(set,OutVersion)
% setProperties = getSetProperties(set)
% setProperties = getSetProperties()
%
% Inputs:
% set - The image number of the set (1-6) as a numerical or string
% default = 'test'
% OutVersion - The preprocessing and feature extraction version number
% default = 1
%
% Outputs:
% setProperties - A struct of the properties for the image set

% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 12-Mar-2015

%------------- START OF CODE --------------

setProperties = struct;

if nargin==0
 set = 'test';
 OutVersion = '0';
end

if nargin==1
 OutVersion = '1';
end

if isnumeric(OutVersion)
 OutVersion = num2str(OutVersion);
end

switch set
 case {0, 'test', 'Test'}
 setProperties.id = 0;
 setProperties.offset = 0;
 setProperties.latestVersion = 1;
 setProperties.imOutPath = 'Test\out\B_img';
 setProperties.imInPath = 'Test\in\C_img';
 setProperties.imLabPath = 'Test\labelled\L_img';

6

 setProperties.range = 2;
 setProperties.imsize1 = [1675 2500];
 setProperties.imsize2 = [2500 2750];
 setProperties.setsize = 100;
 setProperties.originalSetName = 'test';

 case {1, '1','set1','Set1'}
 setProperties.id = 1;
 setProperties.offset = 39;
 setProperties.latestVersion = 5;
 setProperties.imOutPath = ['dataOut\set1data' (OutVersion) '\img'];
 setProperties.imInPath = 'dataIn\imageSet1\morphed-image--';
 setProperties.imLabPath = 'dataIn\imageSet1n\image--';
 setProperties.range = 4;
 setProperties.imsize = [1675 2500];
 setProperties.setsize = 900;
 setProperties.originalSetName = 'mouse 1';

 case {2, '2','set2','Set2'}
 setProperties.id = 2;
 setProperties.offset = 0;
 setProperties.latestVersion = 2;
 setProperties.imOutPath = ['dataOut\set2data' (OutVersion) '\img'];
 setProperties.imInPath = 'dataIn\imageSet2\morphed-image--';
 setProperties.imLabPath = 'dataIn\imageSet2n\image--';
 setProperties.range = 4;
 setProperties.imsize = [1675 2500];
 setProperties.setsize = 990;
 setProperties.originalSetName = 'mouse 3';

 case {3, '3','set3','Set3'}
 setProperties.id = 3;
 setProperties.offset = 0;
 setProperties.latestVersion = 1;
 setProperties.imOutPath = ['dataOut\set3data' (OutVersion) '\img'];
 setProperties.imInPath = 'dataIn\imageSet3\morphed-image--';
 setProperties.imLabPath = 'dataIn\imageSet3n\image--';
 setProperties.range = 4;
 setProperties.imsize = [1675 2500];
 setProperties.setsize = 1000;
 setProperties.originalSetName = 'mouse 4';

 case {4, '4','set4','Set4'}
 setProperties.id = 4;
 setProperties.offset = 0;
 setProperties.latestVersion = 1;
 setProperties.imOutPath = ['dataOut\set4data' (OutVersion) '\img'];
 setProperties.imInPath = 'dataIn\imageSet4\aU';
 setProperties.imLabPath = 'dataIn\imageSet4n\B-';
 setProperties.range = 4;
 setProperties.imsize = [2500 2750];
 setProperties.setsize = 4000;
 setProperties.originalSetName = 'rat 5';

 case {5, '5','set5','Set5'}
 setProperties.id = 5;
 setProperties.offset = 29;
 setProperties.latestVersion = 6;
 setProperties.imOutPath = ['dataOut\set5data' (OutVersion) '\img'];
 setProperties.imInPath = 'dataIn\imageSet5\aU';
 setProperties.imLabPath = 'dataIn\imageSet5n\C-';
 setProperties.range = 4;
 setProperties.imsize = [2500 2750];
 setProperties.setsize = 3500;
 setProperties.originalSetName = 'rat 8';

7

 case {6, '6','set6','Set6'}
 setProperties.id = 6;
 setProperties.offset = 0;
 setProperties.latestVersion = 1;
 setProperties.imOutPath = ['dataOut\set6data' (OutVersion) '\img'];
 setProperties.imInPath = 'dataIn\imageSet6\aU';
 setProperties.imLabPath = 'dataIn\imageSet6n\A-';
 setProperties.range = 4;
 setProperties.imsize = [2500 2750];
 setProperties.setsize = 4000;
 setProperties.originalSetName = 'rat 4';

 otherwise
 disp('Invalid set.')

end

%------------- END OF CODE --------------

getProcessingParams.m

function Parameters = getProcessingParams(dataset, imgNo)

% getProcessingParams - This function returns the processing parameters for
% a specific image in a specific image set. This function is meant to be
% adjusted by the user during once-off calibration/setup of the functions
% for the image sets. Eight processing parameters, each of which varies
% according to a custom sigmoid function (see custSigmoid.m), is calculated
% and returned.
%
% Syntax: settings = getSettings(imageSetNo)
%
% Inputs:
% dataset - The image set identifier number
% imgNo - The number of the image in the image set, e.g. 4
% or an identifier string, e.g. 'Set4'
% Outputs:
% Parameters - An array of the parameters are returned in order.
% These are:
% 1. Background threshold value
% 2. Equalisation window size
% 3. Binarisation threshold value
% 4. Maximum Noise pixel size
% 5. Maximum Allowed pixel size
% 6. Number of erase cycles
% 7. Connective tissue area in pixels (mean)
% 8. Desired adjacent node distance
%
% Example:
% P = getProcessingParams(3, 350)
% Gets the parameters for image number 350 in image set 3 in an array P.
%
% Other m-files required: custSigmoid.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 12-Mar-2015

%------------- START OF CODE --------------

switch dataset
 case {'Set1', 1} % mouse-1

8

 eq_win = custSigmoid(imgNo,-1, 18, 60, 300, 3);
 noise_pixel_size = custSigmoid(imgNo, 1, 7, 1, 200, 1);
 allowed_pixel_size = custSigmoid(imgNo, 1, 7000, 5000, 300, 6);
 erase = custSigmoid(imgNo, 1, 1, 0, 200, 6);
 th = custSigmoid(imgNo, 1, 180, 200, 300, 2);
 ctarea = custSigmoid(imgNo, 1, 20, 7, 200, 1);
 bthr = 10; %low due to normal centre and darker background with lots of

bits
 dist = custSigmoid(imgNo, 1, 20, 10, 350, 2);

 case {'Set2', 2} % mouse-3

 eq_win = custSigmoid(imgNo,-1, 20, 40, 300, 3);
 noise_pixel_size = custSigmoid(imgNo, 1, 7, 1, 200, 1);
 allowed_pixel_size = custSigmoid(imgNo, 1, 7000, 5000, 350, 6);
 erase = custSigmoid(imgNo, 1, 1, 0, 200, 6);
 th = custSigmoid(imgNo, 1, 180, 200, 350, 2);
 ctarea = custSigmoid(imgNo, 1, 20, 7, 200, 1);
 bthr = 30; %low due to normal centre and darker background with lots of

bits
 dist = custSigmoid(imgNo, 1, 20, 10, 350, 2);

 case {'Set3', 3} % mouse-4

 eq_win = custSigmoid(imgNo,-1, 20, 40, 350, 3);
 noise_pixel_size = custSigmoid(imgNo, 1, 7, 1, 300, 1);
 allowed_pixel_size = custSigmoid(imgNo, 1, 7000, 5000, 350, 6);
 erase = custSigmoid(imgNo, 1, 0, 0, 300, 6);
 th = custSigmoid(imgNo, 1, 180, 200, 350, 2);
 ctarea = custSigmoid(imgNo, 1, 20, 7, 300, 1);
 bthr = -10; %low due to normal centre and darker background with lots of

bits
 dist = custSigmoid(imgNo, 1, 20, 10, 350, 2);

 case {'Set4', 4} % rat

 eq_win = custSigmoid(imgNo,-1, 20, 60, 1300, -10);
 noise_pixel_size = custSigmoid(imgNo, 1, 10, 0, 1200, 1);
 allowed_pixel_size = custSigmoid(imgNo, 1, 4000, 3000, 1300, 3);
 erase = custSigmoid(imgNo, 1, 0, 0, 1300, 3);
 th = custSigmoid(imgNo, 1, 180, 200, 1200, 1);
 ctarea = custSigmoid(imgNo, 1, 20, 5, 1000, 1);
 bthr = 45; %high due to bright centre with little background variation
 dist = custSigmoid(imgNo, 1, 20, 10, 1200, 2);

 case {'Set5', 5} % rat

 eq_win = custSigmoid(imgNo,-1, 20, 60, 1300, -10);
 noise_pixel_size = custSigmoid(imgNo, 1, 10, 0, 1200, 1);
 allowed_pixel_size = custSigmoid(imgNo, 1, 4000, 3000, 1300, 3);
 erase = custSigmoid(imgNo, 1, 0, 0, 1300, 3);
 th = custSigmoid(imgNo, 1, 180, 200, 1200, 1);
 ctarea = custSigmoid(imgNo, 1, 20, 5, 1000, 1);
 bthr = 45; %high due to bright centre with little background variation
 dist = custSigmoid(imgNo, 1, 20, 10, 1200, 2);

 case {'Set6', 6}

 eq_win = custSigmoid(imgNo,-1, 14, 16, 300, 3);
 noise_pixel_size = custSigmoid(imgNo, 1, 7, 1, 200, 1);
 allowed_pixel_size = custSigmoid(imgNo, 1, 7000, 5000, 300, 6);
 erase = custSigmoid(imgNo, 1, 1, 0, 200, 6);
 th = custSigmoid(imgNo, 1, 180, 200, 300, 2);

9

 ctarea = custSigmoid(imgNo, 1, 20, 7, 200, 1);
 bthr = 10; %low due to normal centre and darker background with lots of

bits
 dist = custSigmoid(imgNo, 1, 20, 10, 350, 2);

 case {0, 'test', 'Test'}

 eq_win = 15;
 noise_pixel_size = 2;
 allowed_pixel_size = 6000;
 erase = 0;
 th = 185;
 ctarea = 10;
 bthr = 10;
 dist = 15;

end

 Parameters=[round(bthr),round(eq_win),th,round(noise_pixel_size),...
 round(allowed_pixel_size),round(erase),ctarea,dist];

%------------- END OF CODE --------------

PreprocessRawImgs.m

function dummy = PreprocessRawImgs(settings,outputLog)

% PreprocessRawImgs - This function performs preprocessing on the raw
% colour kidney images using the settings struct provided. The output
% binary images are saved to disk automatically to the path specified.
%
% Syntax: [~] = PreprocessRawImgs(imInPath,imOutPath,settings,outputLog)
%
% Inputs:
% settings - A struct of the desired settings for pre-processing
% as created using the getSettings function
% outputLog - Enable (1) or disable (0) live logging/printing to
% the command window.
% Outputs: none
%
% Example:
% PreprocessRawImgs('dataIn\imageSet1col\',...
% 'dataOut\imageSet1bin\',...
% getSettings(1), 1);
%
% Other m-files required: getProcessingParams.m
% ProcessImgStd.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 12-Mar-2015

%------------- START OF CODE --------------

ss = settings;

% !!! parallel for loop
parfor i = ss.startImg:ss.endImg

 % Output log if required

10

 if outputLog, fprintf(['\n' num2str(i) ' ']), end
 % =================== PREPROCESSING ======================

 % Obtain raw image
 im_num = [];
 for i1 = 1:1:(ss.range)-size(num2str(ss.offset+i),2)
 im_num = [im_num '0'];
 end
 img = rgb2gray(imread([ss.imInPath im_num ...
 num2str(ss.offset+i) '.jpg'], 'jpg'));

 % Preprocess raw colour image into binary image
 P = getProcessingParams(ss.id, i);
 imset = ProcessImgStd(img,P);
 imin = 255.*uint8((imset(:,:,6))>0);

 % Store binary image
 imwrite(imin, [ss.imOutPath num2str(i) '.jpg'], 'jpg', 'Quality', 50);

end

%------------- END OF CODE --------------

ProcessImgStd.m

function [imout] = ProcessImgStd(imin,params)

% ProcessImgStd - This function performs a number of image processing steps
% on a raw image of a kidney in order to extract a binary image
% representative of the nephron lumens. The chosen steps are optimised to
% reduce unwanted objects and enhance nephron cross-section contours.
%
% Syntax: imout = ProcessImgStd(imin,params)
%
% Inputs:
% imin - The input image, colour or grayscale
% params - An array of 8 parameters as obtained from the
% getProcessingParams.m function.
% Outputs:
% imout - The mxnx6 array of output images at each stage:
% 1. Grayscale
% 2. Grayscale with background removed
% 3. Equalised image (locally & globally)
% 4. Thresholded image
% 5. Thresholded, small segments removed
% FINAL binary image -> 6. Thresholded, small & large segments removed
%
% Example:
% Out_541 = ProcessImgStd(In_541,getProcessingParams('Set2', 541));
%
% Other m-files required: Image Processing Toolbox
%
% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 12-Mar-2015

%------------- START OF CODE --------------

% Set default parameters
if nargin==1
 bthr = 180;
 eq_win = 64;
 th = 180;

11

 noise_pixel_size = 40;
 allowed_pixel_size = 5000;
 erase = 1;
end

if nargin==2
 bthr = params(1);
 eq_win = params(2);
 th = params(3);
 noise_pixel_size = params(4);
 allowed_pixel_size = params(5);
 erase = params(6);
end

% =========== Image Pre-Processing ============ %

% Convert to grayscale if necessary
if size(imin,3)==3
 IM(:,:,1) = rgb2gray(imin);
else
 IM(:,:,1) = imin;
end
IM(:,:,1) = uint8(IM(:,:,1));

% Remove Background
a = IM(:,:,1);
bthr = mean(mean(a))+bthr;
b = 255.*uint8(IM(:,:,1)>bthr);
bg_mask = bwconncomp(b, 4);
numPixels = cellfun(@numel,bg_mask.PixelIdxList);
idx = find(numPixels>allowed_pixel_size*10); %==max(numPixels)
temp = zeros(size(a));
for i=1:size(idx,2)
% a(bg_mask.PixelIdxList{idx(i)}) = 0;
 temp(bg_mask.PixelIdxList{idx(i)}) = 1;
end
se = strel('disk',20);
temp = imclose(temp,se);
temp = imdilate(temp,strel('disk',2));
a = a.*uint8(~temp); %imagesc(IM(:,:,2)), colormap gray
IM(:,:,2) = uint8(a);

% Histogram Equalisation
[w,h] = size(IM(:,:,2));
IM(:,:,3) = adapthisteq(IM(:,:,2),'NumTiles', round([w/eq_win h/eq_win]./6));
% IM(:,:,7) = IM(:,:,3);
IM(:,:,3) = adapthisteq(IM(:,:,3),'NumTiles', round([w/eq_win h/eq_win]));

% Erode/dilate equalised image
% kernel = [0 1 0; 1 1 1; 0 1 0];
% bg = imdilate(IM(:,:,3),kernel);
% fg = imerode(IM(:,:,3),kernel);
% IM(:,:,7) = fg-imcomplement(bg);

% Double thresholding
% temp = double(IM(:,:,3));
% temp1 = abs(temp-255);
% imagesc((temp>170)+(temp1>180))
% % hold on
% colormap gray

% Thresholding to form binary image
% High th prevents segments from joining
% Low th makes them join
c = IM(:,:,3);

12

thr = th;%graythresh(c).*255.*th
c(c<thr)=0;
c(c>=thr)=255;
IM(:,:,4)=uint8(c);

% ======== Remove unwanted components ======== %

% Erode/Dilate Routine to remove surrounding tissue
d = IM(:,:,4);
for t = 1:erase, d = imerode(d,[0 1 0; 1 1 1; 0 1 0]); end
for t = 1:erase-1, d = imdilate(d,[0 1 0 ; 1 1 1 ; 0 1 0]); end

% Remove small segments
d = uint8(bwareaopen(d, noise_pixel_size,8));
d = 255.*uint8(d==1);
IM(:,:,5)=uint8(d);

% Remove large segments
yy = uint8(bwareaopen(d, allowed_pixel_size));
yy(yy==1) = 255;
e = d - yy;
IM(:,:,6)=uint8(e);

imout = IM;

%------------- END OF CODE --------------

ProcessImgWS.m

function [imout] = ProcessImgWS(imin,params,fs)

% ProcessImgWS - This function performs a number of image processing steps
% on a raw image of a kidney in order to extract a binary image
% representative of the nephron lumens. The steps are similar to those
% implemented in ProcessImgStd.m with the addition of watershed
% segmentation to obtain isolated nephron cross sections.
%
% This function is not used due to oversegmentation of elongated nephron
% sections and merging with interstitial tissue segments.
%
% Syntax: [imout] = ProcessImgWS(imin,params,fs)
%
% Inputs:
% imin - The input image, colour or grayscale
% params - An array of 8 parameters as obtained from the
% getProcessingParams.m function.
% fs - The filter size to use during watershed segmentation.
%
% Outputs:
% imout - The mxnx8 array of output images at each stage:
% 1. Grayscale
% 2. Grayscale with background removed
% 3. Equalised image (locally & globally)
% 4. Thresholded image
% 5. Thresholded, small segments removed
% 6. Segmented by Watershed method
% 7. After merging close-by segments
% FINAL binary image -> 8. Thresholded, small & large segments removed
%
% Other m-files required: Image Processing Toolbox
% modWatershed.m
%
% Author: Charita Bhikha

13

% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 28-Mar-2015

%------------- START OF CODE --------------

% Set default parameters
if nargin==1
 bthr = 180;
 eq_win = 64;
 th = 180;
 noise_pixel_size = 40;
 allowed_pixel_size = 5000;
 erase = 1;
 fs = 3;
end

if nargin==3
 bthr = params(1);
 eq_win = params(2);
 th = params(3);
 noise_pixel_size = params(4);
 allowed_pixel_size = params(5);
 erase = params(6);
 fs = 3;
end

% =========== Image Pre-Processing ============ %

% Convert to grayscale if necessary
if size(imin,3)==3
 IM(:,:,1) = rgb2gray(imin);
else
 IM(:,:,1) = imin;
end
IM(:,:,1) = uint8(IM(:,:,1));

% Remove Background
a = IM(:,:,1);
bthr = mean(mean(a))+bthr;
b = 255.*uint8(IM(:,:,1)>bthr);
bg_mask = bwconncomp(b, 4);
numPixels = cellfun(@numel,bg_mask.PixelIdxList);
idx = find(numPixels>50000); %==max(numPixels)
temp = zeros(size(a));
for i=1:size(idx,2)
% a(bg_mask.PixelIdxList{idx(i)}) = 0;
 temp(bg_mask.PixelIdxList{idx(i)}) = 1;
end
se = strel('disk',20);
temp = imclose(temp,se);
temp = imdilate(temp,strel('disk',2));
a = a.*uint8(~temp);
a(a==0)=255;
IM(:,:,2) = uint8(a);

% imagesc(IM(:,:,8)), colormap gray

% Histogram Equalisation
% IM(:,:,3) = adapthisteq(IM(:,:,2),'NumTiles', [eq_win eq_win]);
[w,h] = size(IM(:,:,2));
IM(:,:,3) = adapthisteq(IM(:,:,2),'NumTiles', round([w/eq_win h/eq_win]./6));
IM(:,:,3) = adapthisteq(IM(:,:,3),'NumTiles', round([w/eq_win h/eq_win]));

% Thresholding
% High th prevents segments from joining

14

% Low th makes them join
c = IM(:,:,3);
thr = th;%graythresh(c).*255.*th
c(c<thr)=0;
c(c>=thr)=255;
IM(:,:,4)=uint8(c);

% ======== Remove unwanted components ======== %

% Erode/Dilate Routine to remove surrounding tissue
d = IM(:,:,4);
for t = 1:erase, d = imerode(d,[0 1 0; 1 1 1; 0 1 0]); end
for t = 1:erase-1, d = imdilate(d,[0 1 0 ; 1 1 1 ; 0 1 0]); end

% Remove small segments
d = uint8(bwareaopen(d, noise_pixel_size,8));
d = 255.*uint8(d==1);
IM(:,:,5)=uint8(d);

% Watershed method for segmentation
L = modWatershed(IM(:,:,3),fs);
IM(:,:,6)=uint8(L>0);

% Merge watershed and simple segmented images
L = uint8(L~=0 & L~=1); % imagesc(L)
yy = uint8(bwareaopen(L, allowed_pixel_size));
yy(yy==1) = 255;
L = L - yy;
L = imclose(L,[0 1 0; 1 1 1; 0 1 0]);
mg = uint8(L|d);
IM(:,:,7)=uint8(mg);

% Remove large segments
yy = uint8(bwareaopen(mg, allowed_pixel_size));
yy(yy==1) = 255;
e = mg - yy;
IM(:,:,8)=uint8(e);

imout = IM;

%------------- END OF CODE --------------

modWatershed.m

function Iout = modWatershed(I,filtersize)

% Performs watershed segmentation on input image 'I' with a filter size
% specified by 'filtersize'. The method is derived from Matlab's example on
% "Marker-Controlled Watershed Segmentation".
% Link: http://www.mathworks.com/help/images/examples/marker-controlled-watershed-

segmentation.html

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 15-Mar-2015

% ---------------------------- START OF CODE -----------------------------

hy = fspecial('sobel');
hx = hy';
Iy = imfilter(double(I), hy, 'replicate');

15

Ix = imfilter(double(I), hx, 'replicate');
gradmag = sqrt(Ix.^2 + Iy.^2);

se = strel('disk', filtersize);
Ie = imerode(I, se);
Iobr = imreconstruct(Ie, I);

Iobrd = imdilate(Iobr, se);
Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr));
Iobrcbr = imcomplement(Iobrcbr);

fgm = imregionalmax(Iobrcbr);
fgm = bwareaopen(fgm, 5);

bw = im2bw(Iobrcbr, graythresh(Iobrcbr));

D = bwdist(bw);
DL = watershed(D);
bgm = DL == 0;

gradmag2 = imimposemin(gradmag, bgm | fgm);
Iout = watershed(gradmag2);

% ---------------------------- END OF CODE -----------------------------

FeatureExtractBWImgs.m

function dummy = FeatureExtractBWImgs(featFile, SPFile, settings, outputLog)

% FeatureExtractBWImgs - This function performs feature extraction on the
% binary images using the settings struct provided. The features include
% nodes, six shape factors and a shape profile per binary component in an
% image. The nodes and shape factors are stored together in a .m file
% specified by featFile and the shape profiles are stored seperately in
% SPFile due to large file sizes and saving methods.
%
% Syntax: [~] = FeatureExtractBWImgs(binImPath, featFile, SPFile, ...
% settings, outputLog)
% Inputs:
% featFile - The name and directory to the .m file in which the
% features will be saved.
% SPFile - The directory to which the shape profile .m files will be

saved.
% settings - A struct of the desired settings for pre-processing
% as created using the getSettings function
% outputLog - Enable (1) or disable (0) live logging/printing to
% the command window.
%
% Outputs: none
%
% Other m-files required: getProcessingParams.m
% extractFeatures6.m
% findShapeProfileStretch.m
% litekmeansMod.m
%
% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 12-Mar-2015

%------------- START OF CODE --------------

% Initialisations
ss = settings;

16

shapeprof = matfile(SPFile,'Writable',true);
data = [0 0 0 0];
idx = ones(ss.endImg,1);

for i = ss.startImg:ss.endImg

 % Output log if required
 if outputLog, fprintf(['\n' num2str(i) ' ']), end

 % Read in binary image
 imin = 255.*uint8((imread([ss.imOutPath num2str(i) '.jpg'], 'jpg'))>180);

 % Extract features
 P = getProcessingParams(ss.id, i);
 % !!! 'extractFeatures6' contains the parallel for loop
 [cen_array, shape_fac,shape_prof] = extractFeatures6(imin(:,:,1),...
 P(4), P(8), ss.angStep, ss.scale, 1);

 % Store nodes and shape factors
 ccenters{i} = single([cen_array(:,2) cen_array(:,1) cen_array(:,3)]);
 shapefac{i} = single(shape_fac);

 % Store shape profile
 idx(i+1) = idx(i)+size(shape_prof,1);
 if ss.saveMethod==0 % Concatenate matrix in RAM
 data(idx(i):idx(i+1)-1,1:4) = single(shape_prof);
 elseif ss.saveMethod==1 % Concatenate matrix on hard disk
 shapeprof.data(idx(i):idx(i+1)-1,1:4) = single(shape_prof);
 end

end

if ss.saveMethod==0
 shapeprof.data = data;
end
shapeprof.idx = idx;

% Output features to file
save(featFile,'ccenters','shapefac','shapeprof','-v7.3')

%------------- END OF CODE --------------

extractFeatures6.m

function [nodes, shape_factors,shape_prof] = ...
 extractFeatures6(imin,minArea,dist,angStep,scale,clus_method)

% extractFeatures6 - Extracts nodes, shape factors and shape profiles for
% each component in a binary image. This function is custom-coded for binary
% images of kidney cross-sections.
%
% Syntax: [nodes, shape_factors,shape_prof] =
% extractFeatures6(imin,minArea,dist,angStep,scale,clus_method)
%
% Inputs:
% imin - The input binary image.
% minArea - The smallest binary component size to be processed.
% Components with an area (in pixels) smaller than this
% will be ignored. This is so that noise pixels are not
% allocated any features.
% dist - The desired minimum distance between adjacent nodes on a
% single binary component.

17

% angStep - The angle increment to use for the shape profiles.
% scale - The target scale of a binary component to use during
% shape profile extraction. Each component will be scaled
% to this size.
% clus_method - Must an integer 1, 2 or 3 for:
% 1: Matlab's built-in K-means
% 2: litekmeans (faster, less accurate)
% 3: Fuzzy c-means
% Outputs:
% nodes - An (mx3) array of the m nodes allocated on the image.
% Each row is a node. The first two columns are the x
% and y coordinates of the nodes respectively. The 3rd
% column is a binary component ID to be able to link
% nodes that belong to a common component.
% shape_factors - An (mx6) array of the m sets of shape factors. 6
% shape factors are extracted per node:
% 1. circularity, 2. area, 3. eccentricity,
% 4. solidity, 5. aspectRatio, 6. minorAxisLength
% shape_prof - An array of the m sets of shape profiles calculated
% for the m binary components in on the image.
%
% Other m-files required: findShapeProfileStretch.m
% litekmeansMod.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 12-Mar-2015

%------------- START OF CODE --------------

% Input parsing
if nargin==1
 minArea = 10;
 dist = 20;
 angStep = 15;
 scale = 50;
 clus_method = 1;
end

% Segment binay image and obatin required properties
% imlab = bwlabel(imin,4);
imin = bwconncomp(imin,4);

% ======================== Shape Factors ========================

stats = regionprops(imin, 'Area', ...
 'Eccentricity', 'EquivDiameter', 'Perimeter', 'BoundingBox',...
 'MinorAxisLength','MajorAxisLength','Image');

area = zeros(size(stats,1),1);
boundingBox = zeros(size(stats,1),4);
perimeter = area; equivDiameter = area; eccentricity = area;
solidity = area; majorAxisLength = area; minorAxisLength = area;
boxSize = area;
for i=1:1:size(stats,1)
 boundingBox(i,:) = stats(i).BoundingBox;
 area(i) = stats(i).Area;
 perimeter(i) = stats(i).Perimeter;
 equivDiameter(i) = stats(i).EquivDiameter;
 eccentricity(i) = stats(i).Eccentricity;
 majorAxisLength(i) = stats(i).MajorAxisLength;
 minorAxisLength(i) = stats(i).MinorAxisLength;
 % solidity(i) = stats(i).Solidity;

18

 % Alternate solidity measure to increase speed
 tm = round(stats(i).BoundingBox);
 boxSize(i) = tm(3)*tm(4);
 solidity(i) = (stats(i).Area)./boxSize(i) + 0.21;
 if solidity(i)>1, solidity(i)=1; end

end
circularity = 1./((perimeter.^2)./(4.*pi.*area));
aspectRatio = majorAxisLength./minorAxisLength;

% =========================== Nodes ====================================

nodes = cell(size(stats,1),1);
shape_factors = cell(size(stats,1),1);
shape_prof = cell(size(stats,1),1);

parfor k=1:size(stats,1)

 % Obtain an image of the kth segment using the bounding box
 % Bound indices incase near image ends
 t = round(boundingBox(k,:));
% if t(3)>t(4), w = t(3);
% else w = t(4); end
% t(4) = bound(1, size(imin,1),t(2)+w-1);
% t(3) = bound(1, size(imin,2),t(1)+w-1);
% % imseg = uint8(imlab(t(2):t(4),t(1):t(3))==k);
% tx = bound(1,size(imin,1),[t(2)-10 t(4)+10]);
% ty = bound(1,size(imin,2),[t(1)-10 t(3)+10]);
% imseg = uint8(imlab(tx(1):tx(2),ty(1):ty(2))==k);

 imseg = zeros(t(4)+20, t(3)+20);
 imseg(11:11+t(4)-1,11:11+t(3)-1) = stats(k).Image;

 %imagesc(imseg) imagesc(imlab)

 % Normalise to 1
 if area(k)>20*minArea
 kern = strel('disk',round(custSigmoid(area(k), -1, 4, 1, 300, 2)));
 imseg = imerode(imdilate(imseg,kern),kern); %imclose
 end
 imseg = uint8(imseg);
 imseg = imseg./max(max(imseg));
 imseg = uint8(imseg(10+1:end-10,10+1:end-10));

 % Find coordinates in the image ==1 to cluster
 [v,u] = ind2sub(size(imseg), find(imseg==1));
 v = reshape(v,numel(v),1);
 u = reshape(u,numel(u),1);
 step = 1;
 x = [v(1:step:end),u(1:step:end)];
 x = double(x');

 % Dont label connective tissue
 C=[];
 if area(k)<minArea %%|| (area(k)<ctarea && eccentricity(k)>0.9)
 K=0; C=[];

 % If a segment is very small or round, K=1
 elseif area(k)<(40*minArea) || circularity(k)>0.9
 K=1; C = round([mean(x(1,:)) mean(x(2,:))]);

 % If a segment is elongated
 else
 K=2;

19

 terminate=false;
 while terminate==false && K<15 % Maximum centroids per segment

 if clus_method==1
 warning('off','stats:kmeans:FailedToConverge');
 warning('off','stats:kmeans:EmptyCluster');
 [~, C] = kmeans(x', K, 'EmptyAction','drop',...
 'Start', 'sample');
 elseif clus_method==2
 C = litekmeansMod(x, K);
 else%if clus_method==3
 [C,~,~] = fcm(x', K,[2 100 1e-5 0]);

 end
 % K = size(C,1);
 cond = pdist(C);
 cond = sort(cond);
 cond = cond(1:size(C,1)-1);

% cond=[];
% for i=1:1:size(C,1)
% d = sqrt(sum((bsxfun(@minus, C(i,:), C)).^2,2));
% d(d==0)=[];
% cond(i) = min(d);
% end

 if mean(cond)>dist
 K=K+1;
 if K>numel(x)
 terminate=true;
 end
% elseif std(cond)>5
 else
 terminate=true;
 end
 end
 end
 %===

 if K~=0

 if size(C,2)==2 && sum(sum(isnan(C)))==0

 C = round(C);
 % Remove centroids that are on empty space
% rem=[];
% for i=1:size(C,1)
% if imseg(C(i,1),C(i,2))==0, rem=[rem i]; end
% end
% C(rem,:)=[];

 % ============== Shape Profile ============
 spc=[];
 if ~isempty(size(C,1))

% [ang,dis] = findShapeProfile(imseg,angStep,C,scale);
% ang=ang';
 [ang,dis] = findShapeProfileStretch(imseg,angStep,C,scale);
 for ii=1:1:size(dis,2)
 spc = [spc; [ang dis(:,ii) ii.*ones(numel(ang),1)]];
 end
 end
 shape_prof{k} = [spc k.*ones(size(spc,1),1)];

20

 %=====================================

 % Translate to large image axis
 C(:,1) = C(:,1) + t(2) -1;
 C(:,2) = C(:,2) + t(1) -1;

 % Store centroids in array form and cell structure
 s = ones(size(C,1),1);
 nodes{k} = [C k.*s];
 shape_factors{k} = [circularity(k).*s area(k).*s ...
 eccentricity(k).*s solidity(k).*s aspectRatio(k).*s...
 minorAxisLength(k).*s];

 end
 end

end

nodes = cell2mat(nodes);
shape_factors = cell2mat(shape_factors);
shape_prof = cell2mat(shape_prof);

%------------- END OF CODE --------------

findShapeProfile.m

function [ang,dis] = findShapeProfile(imseg,angStep,C,scaling)

% findShapeProfile - This function calculates the shape profile (a
% radial plot) of a given binary segment at the specified angle increment
% around the given centre points. A scaling factor can be used to decrease
% the error associated with pixel discretisation on small segments.
%
% Syntax: [angles,radii] = findShapeProfile(imseg,angStep,centers,scaling)
%
% Inputs:
% imseg - An image of the binary segment
% angStep - The desired angular increment of the profile
% C - The (x,y) location of the reference point/s about
% which the shape profile is desired.
% scaling - The target size to which the image is scaled prior to
% calculation (in pixels)
%
% Outputs:
% ang - The angles starting at -180 up to 179 in steps of angStep
% dis - The associated radii for ang.
%
% Example:
% [angles,radii] = findShapeProfile(seg1,10,[15 20],50);
% Will calculate the shape profile for seg1 at 10 degree intervals around
% the point (x,y)=(15,20). The segment will be scaled to 50x50 pixels prior
% to calculation and the results are de-scaled after calculation.
%
% Other m-files required: none
%
% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 12-Mar-2015

%------------- START OF CODE --------------

% if nargin==0

21

% imseg = zeros(6,6);
% imseg(2:5,2:5) = ones(4,4);
% imagesc(imseg)
% angStep = 15;
% C = [3 4];
% scaling=50;
% end

ang=[];
dis=[];
if angStep>0

 ang = 0:angStep:359;
 tan_ang = tand(ang);

 scale=1;
 if scaling~=0 && (scaling/size(imseg,1))>1
 scale = scaling./size(imseg,1);
 imseg = imresize(imseg, scale, 'nearest','Colormap','original')>0.5;
 C = C.*scale;
 end

 % Find edge image and edge coordinates
 temp = zeros(size(imseg,1)+4,size(imseg,2)+4);
 temp(3:end-2,3:end-2)=imseg;
 C = C +2;
 b = imdilate(temp,[0 1 0;1 1 1;0 1 0]);
 ee=logical(b-temp);
% ee = edge(temp,'log',0.5,0.4);
 [v1,u1] = ind2sub(size(ee), find(ee==1));
 order = double([v1(1:1:end),u1(1:1:end)]);

% %Order edge coordinates
% [xs,ys] = find(ee==1,1);
% order=[xs ys];
% while 1
% ee(xs,ys) = 0;
% nei = ee(xs-1:xs+1,ys-1:ys+1);
% [xs,ys] = find(nei==1,1);
% if isempty(xs), break, end
% xs = xs + order(end,1) -2;
% ys = ys + order(end,2) -2;
% order = [order; xs ys];
% end

 % Find shape profile
 dis=[];
 for ii=1:1:size(C,1)

 cen = C(ii,:);
 de= (bsxfun(@minus,order,cen));
 xx=[];

 for i=1:numel(ang)

 mx = order(:,1);
 my = order(:,2);
 theta = ang(i);

 if theta>0 && theta<90
 mask = and(de(:,1)>=0,de(:,2)>=0);
 elseif theta>90 && theta<180
 mask = and(de(:,1)<0,de(:,2)>=0);
 elseif theta>180 && theta<270

22

 mask = and(de(:,1)<=0,de(:,2)<=0);
 elseif theta>270 && theta<360
 mask = and(de(:,1)>=0,de(:,2)<=0);
 elseif theta==90
 mask = and(de(:,1)<1000,de(:,2)>0);
 elseif theta==270
 mask = and(de(:,1)<1000,de(:,2)<0);
 elseif theta==0
 mask = and(de(:,1)>0,de(:,2)<1000);
 elseif theta==180
 mask = and(de(:,1)<0,de(:,2)<1000);
 end

 mx = mx.*mask;
 my = my.*mask;
 mx(mx==0)=inf;
 my(my==0)=nan;

 %cand is candidate c=y-intercept which we want to be close to 0
 if (theta==90 || theta==270), cand = mx-cen(1);
 elseif (theta==0 || theta==180), cand = my-cen(2);
 else
 cand = -tan_ang(i)*(mx-cen(1))+(my-cen(2));
 end

 cand = abs(cand);
 % cand(cand<0)=nan;

 % Choose candidate with closest angle OR
 % id = find(cand==min(cand),1);

 % Find top candidates at the desired angle
 [~,I] = sort(cand);
 if numel(I)>5
 id1 = (I(1:5));
 else
 id1 = (I(1:end));
 end
 % Choose the one with smallest distance
 distt = sum((bsxfun(@minus,order(id1,:),cen)).^2,2);
 [~,id2] = min(distt);
 id = id1(id2);

 xx(i,:) = order(id,:);

 end

 dis(:,ii) = sqrt(sum((bsxfun(@minus,xx,cen)).^2,2));
 dis(:,ii) = (dis(:,ii)-2)./scale;

 end
end

%------------- END OF CODE --------------

findShapeProfileStretch.m

function [ang,Dis,fang,fdis,a3,d3] =

findShapeProfileStretch(imseg,angStep,centers,scaling)

% findShapeProfileStretch - This function calculates the shape profile (a
% radial plot) of a given binary segment at the specified angle increment

23

% around the given centre points. A scaling factor can be used to decrease
% the error associated with pixel discretisation on small segments.
%
% Syntax: [angles,radii] = findShapeProfileStretch(imseg,angStep,centers,scaling)
%
% Inputs:
% imseg - An image of the binary segment
% angStep - The desired angular increment of the profile
% centers - The (x,y) location of the reference point/s about
% which the shape profile is desired.
% scaling - The target size to which the image is scaled prior to
% calculation (in pixels)
%
% Outputs:
% ang - The angles starting at -180 up to 179 in steps of angStep
% Dis - The associated radii for ang.
% fang (optional) - All angles present along the boundry of the segment.
% fdis (optional) - The associated radii for fang.
% a3 (optional) - The unwinded version of fang (redundant angles removed)
% d3 (optional) - The associated radii for a3.
%
% Example:
% [angles,radii] = findShapeProfileStretch(seg1,10,[15 20],50);
% Will calculate the shape profile for seg1 at 10 degree intervals around
% the point (x,y)=(15,20). The segment will be scaled to 50x50 pixels prior
% to calculation and the results are de-scaled after calculation.
%
% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 12-Mar-2015

%------------- START OF CODE --------------

ang=[];
dis=[];

if angStep>0

 scale=1;
 if scaling~=0 && (scaling/size(imseg,1))>1
 scale = scaling./size(imseg,1);
 imseg = imresize(imseg, scale, 'nearest','Colormap','original')>0.5;
 centers = centers.*scale;
 end

 % Find edge image and edge coordinates using dilation (faster than filter)
 temp = zeros(size(imseg,1)+4,size(imseg,2)+4);
 temp(3:end-2,3:end-2)=imseg;
 centers = centers +2;
 b = imdilate(temp,[0 1 0;1 1 1;0 1 0]);
 ee=logical(b-temp);
% ee = edge(temp,'log',0.5,0.4);
 [v1,u1] = ind2sub(size(ee), find(ee==1));
 edg_pix = double([v1(1:1:end),u1(1:1:end)]);

 for c=1:size(centers,1)

 C = centers(c,1:2);
 ang=[];
 dis = [];

 % Find radius and angle of each edge pixel wrt C
 dis = sqrt(sum((bsxfun(@minus,edg_pix,C)).^2,2));

24

 delta= (bsxfun(@minus,edg_pix,C));
 ang = atan2d(delta(:,2),delta(:,1));
 ang = round(ang);

 % Store full radius and angle profiles
 fang = ang;
 fdis = dis;

 % Unwind and stretch to closest edges at desired angle increments
 des_ang = (-180:angStep:179);
 d=zeros(1,numel(des_ang)); %a=d;
 for i=1:numel(des_ang)
 % t1 = ang(abs(ang-tempang(i))-min(abs(ang-tempang(i)))<4)
 t2 = fdis(abs(fang-des_ang(i))-min(abs(fang-des_ang(i)))<4);
 if isempty(t2)
 t2 = fdis(abs(fang-des_ang(i))==min(abs(fang-des_ang(i))));
 end
 t2 = t2(t2==min(t2),:);
 d(i) = t2(1);
 % a(i) = t1(t2==min(t2),:);
 end

 ang = des_ang;
 dis = d;

 % Unwind and stretch to eliminate redundant angles
 if nargout>2

 [fang,sID] = sort(fang);
 fdis = fdis(sID);

 d=zeros(size(fang,1),1);
 a=d;
 idx=d;
 for i=1:size(fang,1)
 idx = find(des_ang-fang(i)<2) ;
 d(idx(1)) = fdis(i);
 a(idx(1)) = fang(i);
 end
 a(d==0)=[];
 d(d==0)=[];

 a3 = a(1:angStep:end);
 d3 = d(1:angStep:end);
 d3 = d3./scale;

 end
 %=====================================

 dis = dis./scale;
 fdis = fdis./scale;

 Dis(:,c) = dis;

 end
 ang = ang';
end

%------------- END OF CODE --------------

25

litekmeansMod.m

function m = litekmeansMod(X, k)

% litekmeansMod - Fast implementation of k-means clustering. The clustering
% process is repeated up to 20 times if the desired number of centroids is
% not obtained. This is a custom requirement for node allocation on nephron
% cross-sections. This function is a modification of the open-source
% function litekmeans.m written by Michael Chen.
%
% Syntax: C = litekmeansMod(X, k)
%
% Inputs:
% X - d x n data matrix
% k - Number of seeds or centroids required.
%
% Outputs:
% m - the centroids of the clusters formed
%
% Other m-files required: none
%
% Original (litekmeans.m) Written by Michael Chen (sth4nth@gmail.com).
% http://www.mathworks.com/matlabcentral/fileexchange/24616-kmeans-clustering

% Modified by: Charita Bhikha (charita.bhikha@gmail.com)
% March 2015; Last revision: 12-Mar-2015

%------------- START OF CODE --------------

k_goal = k;
count = 0;
% reset = false;
success = false;
n = size(X,2);
last = 0;
label = ceil(k_goal*rand(1,n)); % random initialization
m=[];
u=[];

while success==false

 while any(label ~= last') %&& reset == false
 % remove empty clusters
 [u,~,label] = unique(label);
 k = length(u);
 % transform label into indicator matrix
 E = sparse(1:n,label,1,n,k,n);
 % compute m of each cluster
 m = X*(E*spdiags(1./sum(E,1)',0,k,k));
 last = label;
 % assign samples to the nearest centers
 [~,label] = max(bsxfun(@minus,m'*X,dot(m,m,1)'/2),[],1);
 end

% if length(u)~=k_goal
% reset = true;
% end

 if length(u)==k_goal %reset==false
 success = true;
% break
 else
 count = count +1;
 if count>20

26

 success = true;
% break;
 else
% reset = false;
 n = size(X,2);
 last = 0;
 label = ceil(k_goal*rand(1,n)); % random initialization
 m=[];
 end
 end

end
% [~,~,label] = unique(label);
if ~isempty(m)
 m=m';
end

%------------- END OF CODE --------------

litekmeans.m

function m = litekmeans(X, k)
% Perform k-means clustering.
% X: d x n data matrix
% k: number of seeds
% Written by Michael Chen (sth4nth@gmail.com).

n = size(X,2);
last = 0;
label = ceil(k*rand(1,n)); % random initialization
while any(label ~= last')
 [u,~,label] = unique(label); % remove empty clusters
 k = length(u);
 E = sparse(1:n,label,1,n,k,n); % transform label into indicator matrix
 m = X*(E*spdiags(1./sum(E,1)',0,k,k)); % compute m of each cluster
 last = label;
 [~,label] = max(bsxfun(@minus,m'*X,dot(m,m,1)'/2),[],1); % assign samples to

the nearest centers
end
% [~,~,label] = unique(label);
m=m';

PreprocAndFeatureExtract.m

function dummy = PreprocAndFeatureExtract(featFile,SPFile,settings,outputLog)

% PreprocAndFeatureExtract - This function performs pre-processing and
% feature extraction on the raw colour images using the settings struct
% provided. The output binary images are saved to disk automatically to the
% path specified. The features include nodes, six shape factors and a shape
% profile per binary component per image. The nodes and shape factors are
% stored together in a mat file specified by featFile and the shape
% profiles are stored seperately as specified in SPFile due to its large
% file size and required saving method.
%
% Syntax: [~] = PreprocAndFeatureExtract(imInPath,imOutPath,...
% featFile,SPFile,settings,outputLog)
%
% Inputs:
% featFile - The name and directory to the .m file in which the

27

% features will be saved.
% SPFile - The directory to which the shape profile .m files will be

saved.
% settings - A struct of the desired settings for pre-processing
% as created using the getSettings function
% outputLog - Enable (1) or disable (0) live logging/printing to
% the command window.
%
% Outputs: none
%
% Other m-files required: getProcessingParams.m
% ProcessImgStd.m
% extractFeatures6.m
% findShapeProfileStretch.m
% litekmeansMod.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 12-Mar-2015

%------------- START OF CODE --------------

% Initialisations
ss = settings;
shapeprof = matfile(SPFile,'Writable',true);
data = [0 0 0 0];
idx = ones(ss.endImg,1);

for i = ss.startImg:ss.endImg

 % Output log if required
 if outputLog, fprintf(['\n' num2str(i) ' ']), end
 % =================== PREPROCESSING ======================

 % Obtain raw image
 im_num = [];
 for i1 = 1:1:(ss.range)-size(num2str(ss.offset+i),2)
 im_num = [im_num '0'];
 end
 img = rgb2gray(imread([ss.imInPath im_num ...
 num2str(ss.offset+i) '.jpg'], 'jpg'));

 % Preprocess raw colour image into binary image
 P = getProcessingParams(ss.id, i);
 imset = ProcessImgStd(img,P);
 imin = 255.*uint8((imset(:,:,6))>0);

 % Store binary image
 imwrite(imin, [ss.imOutPath num2str(i) '.jpg'], 'jpg', 'Quality', 50);

 %==
 % Extract features
 [cen_array, shape_fac,shape_prof] = extractFeatures6(imin(:,:,1),...
 P(4), P(8), ss.angStep, ss.scale, 1);

 % Store nodes and shape factors
 ccenters{i} = single([cen_array(:,2) cen_array(:,1) cen_array(:,3)]);
 shapefac{i} = single(shape_fac);

 % Store shape profile
 idx(i+1) = idx(i)+size(shape_prof,1);
 if ss.saveMethod==0 % Concatenate matrix in RAM
 data(idx(i):idx(i+1)-1,1:4) = single(shape_prof);
 elseif ss.saveMethod==1 % Concatenate matrix on hard disk

28

 shapeprof.data(idx(i):idx(i+1)-1,1:4) = single(shape_prof);
 end

end

if ss.saveMethod==0
 shapeprof.data = data;
end
shapeprof.idx = idx;

% Output features to file
save(featFile,'ccenters','shapefac','shapeprof','-v7.3')

%------------- END OF CODE --------------

Utility Functions

isIncluded.m

function [stat, row] = isIncluded(matrix, entry)

% isIncluded - Checks if a given row entry R is present in some matrix
% A. The number of columns in A must be equal to the number of elements in
% R. A status flag and row number is returned.

% Syntax: [stat, row] = isIncluded(matrix, entry)
%
% Inputs:
% matrix - The input matrix (mxn)
% entry - The entry being queried (1xn)
%
% Outputs:
% stat - A flag indicating if the entry was found (1) or not (0)
% row - The row in which the entry was found if applicable
%
% Example:
% [flag, row] = isIncluded([1 2 5; 4 5 6; 7 5 3], [4 5 6])
% Returns flag = 1 and row = 2
%
% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

% Find entry in matrix if columns of matrix!=columns of entry
% matrix = single(full(matrix));
% entry = single(full(entry));

if isempty(entry) || isempty(matrix)
 stat = 0; row = [];
else
 temp = and(((matrix(:,3)-entry(3))==0),and(((matrix(:,1)-

entry(1))==0),((matrix(:,2)-entry(2))==0)));
 % [row,col] = ind2sub(size(matrix),find(tempo));
 % More effecient version on ind2sub
 nrows = size(matrix,1);
 % ncols = size(matrix,2);

29

 idx = find(temp);
 row = rem(idx-1,nrows)+1;
 % col = (idx-row)/nrows + 1;
 stat = ~isempty(idx);

end

%------------- END OF CODE --------------

isIncluded2.m

function [stat, row] = isIncluded2(matrix, entry)

% isIncluded2 - Checks if a given row entry R is present in some matrix
% A. The number of columns in A must be equal to the number of elements in
% R. A status flag and row number is returned.
% Shorter code but slower than isIncluded.m

% Syntax: [stat, row] = isIncluded2(matrix, entry)
%
% Inputs:
% matrix - The input matrix (mxn)
% entry - The entry being queried (1xn)
%
% Outputs:
% stat - A flag indicating if the entry was found (1) or not (0)
% row - The row in which the entry was found if applicable
%
% Example:
% [flag, row] = isIncluded2([1 2 5; 4 5 6; 7 5 3], [4 5 6])
% Returns flag = 1 and row = 2
%
% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

% Find entry in matrix if columns of matrix!=columns of entry
% matrix = single(full(matrix));
% entry = single(full(entry));

stat = 0;
row = [];
if ~isempty(entry) && ~isempty(matrix)
 temp = sum(abs(bsxfun(@minus,matrix,entry)),2);
 idx = find(temp==0);
 if ~isempty(idx)
 row = idx(1);
 stat = 1;
 end
end

%------------- END OF CODE --------------

bound.m

function out = bound(min, max, exp)

30

% bound - Takes in a vector or matrix of numeric values (exp), and a
% minimum and maximum value. All values below MIN is made equal to MIN; all
% values above MAX is made equal to MAX and others are left as is.
%
% Syntax: y = bound(min, max, x)
%
% Example:
% y = bound(5, 15, [0 6 -2 8 10.5 15 21]);
% Returns y = [5 6 5 8 10.5 15 15]
%
% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

 min = min.*ones(size(exp));
 max = max.*ones(size(exp));

 mask = exp > max;
 exp = ~mask.*exp + mask.*max;
 mask = exp < min;
 out = ~mask.*exp + mask.*min;

%------------- END OF CODE --------------

getSegIDNum.m

function [seg_no, row_idx] = getSegIDNum(ccenters, coord)

% Finds the given coordinate (coord) in the node matrix (ccenters) and
% hence the respective segment ID number through the row index.

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

% Find the row of the coordinate
row_idx = find(and(abs(ccenters(:,1) - coord(1))<1 ,...
 abs(ccenters(:,2) - coord(2))<1));
% Obtain the segments ID number
seg_no = full(ccenters(row_idx,3));

custSigmoid.m

function out = custSigmoid(in, mode, FL, SL, TP, steepness)

% custSigmoid - This function models a typical sigmoid function with custom
% transition point, saturation levels and steepness. Mode (+1 or -1) can be
% used to simply flip the function about the turning point.
%
% Syntax: f(x) = custSigmoid(x, mode, UL, LL, TP, steepness)
%
% f(x) .
% | . ,--------------- Second Limit (SL)
% | ./
% | / (mode = 1)
% | /.
% | / .
% | ---------------' . First Limit (FL)
% |_____________________.______________________x

31

% TP
% Inputs:
% in - The input x value
% mode - Set to 1 to have the sigmoid go from the FL to the SL
% or set to -1 to make it go from the SL to the FL.
% FL - The first saturation limit
% SL - The second saturation limit
% TP - The turning or transition point on the x-axis
% steepness - A steepness coefficient of the sigmoid function.
%
% Outputs:
% out - The output f(x) value
%
% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

if mode==1
 out = -mode.*(FL-SL)./(1+exp(-(in-TP)/(10.*abs(10-steepness))))+FL;
elseif mode==-1
 out = -mode.*(FL-SL)./(1+exp(-(in-TP)/(10.*abs(10-steepness))))+SL;
end

%------------- END OF CODE --------------

dist.m

function d = dist(p1,p2)

% Calculates the Euclidean distances between a Mx3 coordinate matrix p1 and
% the coordinate p2.

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

d = sqrt(sum((bsxfun(@minus,p1,p2)).^2,2));

eucdist.m

function dis = eucdist(x,y)

% Given a list of x and y coordinates, this function calculates a
% progressive, cumulative Euclidean distance between adjacent pairs.

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------
dis = 0;
for i=1:1:numel(x)-1
 dis = dis + abs(sqrt((x(i)-x(i+1)).^2+(y(i)-y(i+1)).^2));
end

if numel(x)>2
dis = dis + abs(sqrt((x(1)-x(end)).^2+(y(1)-y(end)).^2));
end

32

% dis = round(dis);
%------------- END OF CODE --------------

Tracking

TrackerFinal.m

% TrackerFinal - This is the main script used to automatically track
% nephrons using the binary images and features from the previous stages.
% It is used as the user interface for tracking and manual correction.

% The following is a list of the m-files required by this script. The
% tabbed files indicate functions that are used exlusively within a
% respective function. The terms 'node', 'point' and 'coordinate' are used
% interchangeably within the function comments.

% ----- M-files required for tracking:
% changeMode.m
% clipImg.m
% findBranch2.m - Implements horizontal tracking
% trackStraight.m - Implements vertical tracking
% findOffset.m - Performs local image alignment
% checkIfInNextImage.m
% reconstructPath.m - Orders closed list into path coordinates
% validationSteps.m - Performs the 5 validations for each move
% formulateFeatures.m
% combineFeatures.m
% manualAdjustClick2.m
% getEndPoints.m
%
% ----- ImageSet-specific functions
% These must be modified to ensure the image set being used is accoomodated for
% getSetProperties.m - Get properties of the image set being used
% getSectionNo.m - Get an identifier for the area of the image set being used
% getShapeProfileCells.m
% getTrackingParams.m - Get tracking parameters for the current image
%
% ----- Function-wide utility functions:
% isIncluded.m
% isIncluded2.m
% bound.m
% displayCoord.m
% displayMove.m
% custSigmoid.m
% dist.m
% sortCell.m
% getSegIDNum.m - Get the ID number for a nephron cross-section
%
% ----- M-files required for display & analysis:
% PlottingTools.m*
% plotTrackingResults.m*
% viewManualNephrons.m*
% array2struct_trackingData.m
% comparePaths2.m - The function used to compare automatically &
% manually tracked nephrons
% getShapeProfile.m - Used to view the shape profile of at a node
% tubeplot.m
% frenet.m
% frame.m
% tubeplot1.m
% saveobjtube.m - Exports the tube as a .obj file for use in a CAD environment

33

% >>>>>>>>>>>>>>>>>>>>>>> INSTRUCTIONS <<<<<<<<<<<<<<<<<<<<<<<<<<

% Settings have been selected and parameters have been tuned for the 3
% mouse and 3 rat datasets. If a new data set is to be used, prior to
% proceeding, the following functions must be modified/checked to ensure
% that parameters and settings for the image set is set up:
% getSetProperties.m - Set up relevant fields for the image set
% getShapeProfileCells.m - Set up the path/s to the shape profile data
% getSectionNo.m - Check if image set is included
% getTrackingParams.m - Set up parameter variation through the image
% set using sigmoid functions
% changeMode.m - Set up tracking settings per area of the
% nephron

% Thereafter, in this script:
% 1. Under section '0. LOAD DATA', set the image set number (imset) to the
% set being used and version to the relevant data version.
% 2. Also choose which machine learning algorithm to load.
% 3. Run the section '0. LOAD DATA'. Variables ccenters, shapefac,
% shapeprof and predictor must be loaded into the workspace

% 4. Under section '1. INITIALISE', set the initial seed. A seed can be
% obtained by using the plotting tools to view the binary image with nodes,
% and then selecting a node with the data cursor to get its coordinate.
% 5. Also set the desired option for capturing moves, liveplot and parallel
% computing.
% 6. Run the section '1. INITIALISE'.

% 7. Run the section '2. RUN TRACKING'. The tracking process will now
% proceed, and a live log will be seen in the command window. Once tracking
% has proceeded as far as possible, the function ManualAdjustClick2.m will
% be called to prompt the user to manually correct the path at the
% end-points. This is done by viewing the 7 images shown, and linking the
% central node in image 4 to the correct one that could not be
% automatically tracked. Once clicked upon, enter the numerical number of
% the image selected and press ENTER. Do this repeatedly until the requests
% (usually 2-3) are done.
% 8. If a mode change has occured during the manual intervention, change
% the parameters accordingly in the section 'A. MANUALLY CHANGE MODE'.
% 9. If manual correction have been done, run section '2. RUN TRACKING'
% again. Repeat this process until the whole path, or desired length of the
% path, has been tracked.

% 10.Finally, run the section '3. RECONSTRUCT PATH'. The final path will be
% contained in the cell array fpath, with fpath{1} being the longest, most
% complete path formed.
% 11.Use PlottingTools.m to view and analyse the data. A number of matrices
% will be present in the workspace:
% closed - The pairs of child-parent nodes found during
% tracking.
% manualCorrec - The pairs of manual corrections made.
% capMoves - The pairs of all moves made during tracking along
% with the alignment and validation results for each
% move.
% MOVES - A struct version of capMoves.
% distMeas - The list of moves that did not pass distance
% validation.
% skipBlock - The list of moves where an image skip was attempted
% but blocked.
% skipAllow - The list of moves where an image skip was allowed.
% biDirInv - The list of moves that did not pass bidirectional
% movement validation.
% misAligned - The list of moves that were blocked due to high image
% misalignment.
% mismatch - The list of moves that were blocked by machine
% learning validation (neural net or svm)

34

% ignored - The list of nodes that were ignored due to being
% below the minimum area threshold.
% fpath - The cell array of unique paths formed, arranged from
% longest to shortest in the array.
% mpath - The cell array of the ambiguous/multiple paths formed.

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

% clc, clear all
% open('plotTrackingResults.m')

%% 0. LOAD DATA
clc
clear all

% Choose data set
imset = 3;
version = 1;

% Choose one, comment the other
load('dataOut\TrainedML\net_67features.mat'), predictor = net;
% load('dataOut\TrainedML\svm_67features.mat'), predictor = svm;

% ^^^
s = num2str(imset); v = num2str(version);
set = getSetProperties(s,v);
load(['dataOut\set' s 'data' v '\set' s 'feat' v '.mat'])
shapeprof = getShapeProfileCells(s,v);

%% 1. INITIALISE

clearvars -EXCEPT ccenters shapefac shapeprof predictor s v set
clc

% Initial seed coordinate
init_seed = [1176 1053 424];

captureMoves = true;
useParallel = false;

% Live plotting options
liveplot = false;
w = 200; %zoom in pixels

% ^^^

numImgs = size(ccenters,2);
minImgIdx = 1;

curr_coord = [init_seed 0 0 0];

ss = changeMode('PCTPST');

log = 1;%fopen('log.doc','w');

if useParallel
 matlabpool open % use parallel processing if available
end

35

ii = curr_coord(3); % ii = variable to track position through image set

terminate = false;
up = false; down = false; branch = false;
up_coord = []; down_coord = []; branch_coord = [];

% Skipping variables
sk_up = 0; prvs_sk_up = [0 0 0 0]; buff_up = ones(1,8);
sk_dn = 0; prvs_sk_dn = [0 0 0 0]; buff_dn = ones(1,8);

mism_up = 0; mism_dn = 0;
err_up = 0; err_dn = 0;
off_up = 0; off_dn = 0;

im_have = [0 0 0];
img = zeros(set.imsize(1),set.imsize(2),3);
imtemp = img;

% Lists
open = curr_coord;
closed = [0 0 0 0 0 0];
deadend = [];
capMoves = [];
misMatch = [];
skipBlock = [];
skipAllow = [];
biDirInv = [];
distMeas = [];
ignored=[];
misAligned=[];
manualCorrec = [];
runtime = [];

modes.PCTPST = 0;
modes.DTL = 0;
modes.ATL = 0;
modes.TALDCT = 0;

loopHenle = false;

% load 'dataOut/Manual Data/mouse1.mat'
% manPath = nef.num87;
% manPath(:,3) = manPath(:,3).*4.3;

%% A. MANUALLY CHANGE MODE

% loopHenle = true;

% ss = changeMode('PCTPST');
% modes.PCTPST = 1;
% modes.DTL = 0;
% modes.ATL = 0;
% modes.TALDCT = 0;

%% 2. RUN TRACKING

looptimer=[];
tic

36

fprintf(['\nImg:' num2str(ii) ' start'])
while terminate==false

% Control mode of tracking
if size(capMoves,1)>10 && std([open(:,3); ii])<20%size(open,1)<1

 IMsig = smooth(capMoves(bound(1,size(capMoves,1),size(capMoves,1)-

100):size(capMoves,1),13),10);
 IMsig_eval = mean(IMsig(end-10:end));

 if (IMsig_eval > ss.IM_sens && modes.PCTPST==true)
 modes.PCTPST = false;
 modes.DTL = true;
 ss = changeMode('DTL');
 fprintf(log,'\n !!!!!!Inner Medulla!!!!!!!')

 elseif (loopHenle==true && modes.DTL==true)
 modes.DTL = false;
 modes.ATL = true;
 ss = changeMode('ATL');
 fprintf(log,'\n !!!!Loop of Henle!!!!!')

 elseif (IMsig_eval < (ss.IM_sens+0.2) && modes.ATL==true)
 modes.ATL = false;
 modes.TALDCT = true;
 ss = changeMode('TALDCT');
 fprintf(log,'\n !!!!DCT - Cortex!!!!!')
 end

end

% Evaluate manual path during tracking (slow)
% [m1, ~] = comparePaths2(manPath,[closed(:,1:2) (closed(:,3)+set.offset)],30);
% [m2, ~] = comparePaths2([closed(:,1:2) (closed(:,3)+set.offset)],manPath,30);
% fprintf(log,['\n' num2str(size(open,1)) ' ' num2str(round(m1)) ...
% ' ' num2str(round(m2)) ' Img:' num2str(ii)]);

% ===================== Track horizontally ========================

if ss.brEnable==1
 [branch, tips, interim] = findBranch2(ccenters{ii}, curr_coord, open, closed);
else
 branch = false; interim = []; tips = [];
end

% If the current node is an 'entering' branch node, dont track vertically
if branch && size(tips,1)==2
 up=false; up_coord=[];
 upflags=[0 0 0 0 0]; upMLpred=[0 0 0 0 0]; upvals = [0 0 0 0 0];
 down=false; down_coord=[];
 dnflags=[0 0 0 0 0]; dnMLpred=[0 0 0 0 0]; dnvals = [0 0 0 0 0];
else

 % ========================= Obtain Images ===========================
 im_want = [ii ii+sk_up+1 ii-sk_dn-1];

 [~,IA,IB] = intersect(im_have,im_want);
 [~,IC] = setdiff(im_want,im_have);
 imtemp(:,:,IB) = img(:,:,IA);
 for k=1:numel(IC)
 imtemp(:,:,IC(k)) = imread([set.imOutPath num2str(im_want(IC(k))) '.jpg']);
 % imtemp(:,:,IC(k)) = rgb2gray(imread([set.imInPath '0'

num2str(im_want(IC(k))) '.jpg']));
 end

37

 % assert(size(imtemp,3)==3)

 img = imtemp;
 im_have = im_want;

 img_clip = clipImg(img, curr_coord(:,1:2), ss.clip, set.imsize)>180;

 % ===================== Track vertically ===========================

 % Get tracking parameters for image ii
 tr = getTrackingParams(ii, set.id);

 % Get shape profiles for current image
 [sectn,iioff] = getSectionNo(ii,set.id);
 SPidx = shapeprof{sectn}.idx;
 spcurr = shapeprof{sectn}.data(SPidx(iioff):SPidx(iioff+1)-1,1:4);

 % >>> UP

 % Attempt to track upwards
 if ss.upEnable==1
 s1=shapefac{ii+sk_up+1};
 [up, up_coord, err_up,off_up,mism_up,~] = trackStraight(...
 cat(3, img_clip(:,:,1),img_clip(:,:,2)), ...
 curr_coord, ii+sk_up+1, ...
 ccenters{ii+sk_up+1}(s1(:,2)>tr.areaLim,:), ...
 tr.trackRad, closed,[tr.maxOffset ss.max_match]);
 else
 up=false; up_coord=[];
 end

 % Validate potential coordinate if found
 if up
 % Get shape profiles for image above
 [sectn,iioff] = getSectionNo(ii+sk_up+1,set.id);
 SPidx = shapeprof{sectn}.idx;
 spup = shapeprof{sectn}.data(SPidx(iioff):SPidx(iioff+1)-1,1:4);

 % Validate the upward edge
 [up, upflags, upMLpred, upvals] = validationSteps(...
 off_up, predictor, tr.trackRad, ...
 curr_coord, ccenters{ii}, shapefac{ii}, spcurr,...
 up_coord, ccenters{ii+sk_up+1}, shapefac{ii+sk_up+1}, spup, ...
 ss, set, mism_up);
 else
 upflags=[0 0 0 0 0]; upMLpred=[0 0 0 0 0]; upvals = [0 0 0 0 0];
 end

 % >>> DOWN

 % Attempt to track downwards
 if ss.dnEnable==1
 s1=shapefac{ii-sk_dn-1};
 [down, down_coord,err_dn,off_dn,mism_dn,~] = trackStraight(...
 cat(3, img_clip(:,:,1),img_clip(:,:,3)), ...
 curr_coord, ii-sk_dn-1, ...
 ccenters{ii-sk_dn-1}(s1(:,2)>tr.areaLim,:), ...
 tr.trackRad, closed, [tr.maxOffset ss.max_match]);
 else
 down=false; down_coord=[];
 end

 % Validate potential coordinate if found
 if down

38

 % Get shape profiles for image below
 [sectn,iioff] = getSectionNo(ii-sk_dn-1,set.id);
 SPidx = shapeprof{sectn}.idx;
 spdn = shapeprof{sectn}.data(SPidx(iioff):SPidx(iioff+1)-1,1:4);

 % Validate the upward edge
 [down, dnflags, dnMLpred, dnvals] = validationSteps(...
 off_dn, predictor, tr.trackRad, ...
 curr_coord, ccenters{ii}, shapefac{ii}, spcurr,...
 down_coord, ccenters{ii-sk_dn-1}, shapefac{ii-sk_dn-1},

spdn,...
 ss, set, mism_dn);
 else
 dnflags=[0 0 0 0 0]; dnMLpred=[0 0 0 0 0];dnvals = [0 0 0 0 0];
 end

end

% =================== Store Iteration Results =======================
while 1

if captureMoves==true
 if up, capMoves(end+1,:) = [curr_coord(1:3) up_coord(1:3) off_up upMLpred'

mism_up upvals]; end
 if down, capMoves(end+1,:) = [curr_coord(1:3) down_coord(1:3) off_dn dnMLpred'

mism_dn dnvals]; end
 if ~isempty(interim), capMoves = [capMoves; [interim

zeros(size(interim,1),13)]]; end
 if ~isempty(tips), capMoves = [capMoves; [tips zeros(size(tips,1),13)]]; end
end

% ======================== Output live log ========================
if up, fprintf(log,'\t up'); end
if upflags(1)~=0, ignored(end+1,:)= [up_coord upvals(1)];
 fprintf('\t sizeValUp '), end
if upflags(2)~=0, distMeas(end+1,:) = [curr_coord(1:3) up_coord(1:3) upvals(2)];
 fprintf('\t distValUp'), end
if upflags(3)~=0, skipBlock(end+1,:) = [curr_coord(1:3) up_coord(1:3) upvals(3)];
 fprintf('\t skipBlockUp'), end
if upflags(4)~=0, biDirInv(end+1,:) = [curr_coord(1:3) up_coord(1:3) upvals(4)];
 fprintf('\t BidirValUp'), end
if upflags(5)~=0, misMatch(end+1,:) = [curr_coord(1:3) up_coord(1:3) upMLpred'

upvals(5)];
 fprintf('\t shapeValUp '), end
if up && sk_up>0
 skipAllow(end+1,:) = [curr_coord(1:3) up_coord(1:3)];
 fprintf(log,'\t skipAllowUp')
end
if err_up, misAligned(end+1,:) = [curr_coord(1:3) curr_coord(1:2) ii+sk_up+1

mism_up];
 fprintf(log,'\t misAlignUp')
end

if down, fprintf(log,'\t down'); end
if dnflags(1)~=0, ignored(end+1,:)= [down_coord dnvals(1)];
 fprintf('\t sizeValDn '), end
if dnflags(2)~=0, distMeas(end+1,:) = [curr_coord(1:3) down_coord(1:3) dnvals(2)];
 fprintf('\t distValDn'), end
if dnflags(3)~=0, skipBlock(end+1,:) = [curr_coord(1:3) down_coord(1:3) dnvals(3)];
 fprintf('\t skipBlockDn'), end
if dnflags(4)~=0, biDirInv(end+1,:) = [curr_coord(1:3) down_coord(1:3) dnvals(4)];
 fprintf('\t BidirValDn'), end
if dnflags(5)~=0, misMatch(end+1,:) = [curr_coord(1:3) down_coord(1:3) dnMLpred'

dnvals(5)];
 fprintf('\t shapeValDn '), end

39

if down && sk_dn>0
 skipAllow(end+1,:) = [curr_coord(1:3) down_coord(1:3)];
 fprintf(log,'\t skipAllowDn')
end
if err_dn, misAligned(end+1,:) = [curr_coord(1:3) curr_coord(1:2) ii-sk_dn-1

mism_dn];
 fprintf(log,'\t misAlignDn')
end

if ~isempty(interim), fprintf(log,'\t <-=->');
elseif branch, fprintf(log,'\t <-> '); end

%========================= Live Display ============================

if liveplot
 I = imread([set.imOutPath num2str(ii) '.jpg'])>100;
 ind = find(closed(:,3)==ii);
 fill = double(round(sub2ind(size(I),open(1,2),open(1,1))));
 imagesc(~imfill(~I,fill)+0.6.*I);
 hold on, colormap hot
 scatter(closed(ind,1),closed(ind,2),'.','b')
 % scatter(ccenters{im}(:,1),ccenters{im}(:,2),'.','b')
 % title([num2str(ii) ' ' num2str(prediction)])
 title(num2str(ii))
 hold off, axis([init_seed(1)-w init_seed(1)+w init_seed(2)-w init_seed(2)+w])
 pause(0.5)
end

break
end

 % ===================== Skipping Control ============================%

sk_up = 0; sk_dn = 0;

% Update skip buffers
buff_up(end+1) = up; buff_up(1) = [];
buff_dn(end+1) = down; buff_dn(1) = [];

% If images were highly mismatched, increase chances of a skip
if err_up, buff_up(1:5)=1; end
if err_dn, buff_dn(1:5)=1; end

% Up
if (~branch && ~up && sum(buff_up)>=3 && ...
 sum(abs(prvs_sk_up-ii)<ss.skipRefrac)<ss.consecSkips)

 [~, ida] = getSegIDNum(ccenters{ii},curr_coord(1:3));
 if shapefac{ii}(ida,2)>tr.skipArea
 if any(prvs_sk_up(end-2:end)==ii), sk_up=2;
 else sk_up=1; end
 prvs_sk_up(end+1) = ii;
 prvs_sk_up(1)=[];
 fprintf([' skipup:' num2str(sk_up)])
 end

end

% Down
if (~branch && ~down && sum(buff_dn)>=3 && ...
 sum(abs(prvs_sk_dn-ii)<ss.skipRefrac)<ss.consecSkips)

40

 [~, ida] = getSegIDNum(ccenters{ii},curr_coord(1:3));
 if shapefac{ii}(ida,2)>tr.skipArea
 if any(prvs_sk_dn(end-2:end)==ii), sk_dn=2;
 else sk_dn=1; end
 prvs_sk_dn(end+1) = ii;
 prvs_sk_dn(1)=[];
 fprintf([' skipdw:' num2str(sk_dn)])
 end

end

% ===================== Update Lists ===========================%

% Dont update if a skip is to be attempted because tracking from curr_coord
% must be attempted again
if sk_up==0 && sk_dn==0

 % If nothing is found from the current node, term it a dead-end
 if (~branch && ~up && ~down)
 deadend(end+1,:) = curr_coord(1,1:3);
 fprintf(log,' deadend ');
 end

 % Done exploring current node, so move it from open to closed list
 if ~isIncluded(closed(:,1:3), curr_coord(1:3))
 closed(end+1,:) = curr_coord;
 end

 % Add found coordinates to the open list
 if up
 if ~isIncluded(open(:,1:3), up_coord) && ...
 ~isIncluded(closed(:,4:6), up_coord) && ...
 ~isIncluded(closed(:,1:3), up_coord)
 open(end+1,:) = [up_coord curr_coord(1,1:3)];
 end
 end

 if down
 if ~isIncluded(open(:,1:3), down_coord) && ...
 ~isIncluded(closed(:,4:6), down_coord) && ...
 ~isIncluded(closed(:,1:3), down_coord)
 open(end+1,:) = [down_coord curr_coord(1,1:3)];
 end
 end

 if branch
 for k=1:1:size(tips,1)
 if ~isIncluded(open(:,1:3), tips(k,1:3)) && ...
 ~isIncluded(closed(:,1:3), tips(k,1:3)) && ...
 ~isIncluded(closed(:,4:6), tips(k,1:3))
 open(end+1,:) = tips(k,:);
 end
 end
 % Only interim nodes get added to the closed list
 for k=1:1:size(interim,1)
 if ~isIncluded(closed(:,1:3), interim(k,1:3))
 closed(end+1,:) = interim(k,:);
 end
 end
 end

 % Terminate if all nodes have been explored
 if isempty(open)

41

 fprintf(log,' terminate ');
 break
 end

 % Define a new current node from the open list
 % 1. Choose a node which is in the lowest image
 newCoord = find(open(:,3)==min(open(:,3)),1);
 curr_coord = open(newCoord(1),:);%open(1,1:6);
 ii = curr_coord(1,3);
 open(newCoord(1),:)=[];

 % OR 2. Choose first node in the list
 %curr_coord = open(1,1:6);
 %open(1,:) = [];

end

looptimer(end+1) = toc; tic
fprintf(log,['\n' num2str(size(open,1)) ' Img:' num2str(ii)])

%== If extremes of image set has been reached, get a new current node ===

while ((ii+sk_up+1)>=numImgs)||((ii-1-sk_dn)<=minImgIdx)
 deadend(end+1,:) = curr_coord(1,1:3);
 fprintf(log,' endpoint ');
 closed(end+1,:) = curr_coord;
 if isempty(open)
 terminate = true;
 fprintf(log,' terminate ');
 break
 end
 curr_coord = open(1,:);
 ii = curr_coord(1,3);
 open(1,:) = [];
end

end % while loop end

runtime = [runtime toc];

manualAdjustClick2

%% 3. RECONSTRUCT PATH

[fpath, mpath] = reconstructPath(closed);

for i=1:size(fpath,2)
 fpath{i}(end,:)=[];
end

MOVES = array2struct_trackingData(capMoves);

fprintf([log,'\n\nLength of closed list: ' num2str(size(closed,1)) '\n'])
fprintf(['MinImg: ' num2str(min(closed(:,3))) '\n'])
fprintf(['MaxImg: ' num2str(max(closed(:,3))) '\n'])
fprintf('...Done!')

%------------- END OF CODE --------------

changeMode.m

function OPTNS = changeMode(mode)

42

% changeMode - Returns a struct containing a number of tracking settings
% related to a specific tracking mode, which is the area of the
% kidney/nephron being tracked. The settings for 4 transitions have been
% tuned. The settings must change at the transition between the zones
% because the morphology changes.

% Syntax: options = changeMode(mode)
%
% Inputs:
% mode - A string of the mode to be changed to. The following are
% valid modes:
% - 'PCTPST'
% - 'DTL'
% - 'ATL'
% - 'TALDCT'
%
% Outputs:
% OPTNS - A struct of various tracking settings tuned to the selected mode

% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

OPTNS.mode = mode;

switch mode
 case 'PCTPST'
 OPTNS.bidirecValid = 1;
 OPTNS.distcoeff = 1;
 OPTNS.skipChange = 30;
 OPTNS.ml_sens = -0.1;
 OPTNS.IM_sens = 0.2;
 OPTNS.max_match = 0.80;
 OPTNS.clip = 80;
 OPTNS.brEnable = 1;
 OPTNS.upEnable = 1;
 OPTNS.dnEnable = 1;
 OPTNS.consecSkips = 1;
 OPTNS.skipRefrac = 1;
 OPTNS.minSize = 0;
 fprintf('Settings: PCT/PST \n')

 case 'DTL'
 OPTNS.bidirecValid = 0;
 OPTNS.distcoeff = 1.5;
 OPTNS.skipChange = 30;
 OPTNS.ml_sens = -0.4;
 OPTNS.IM_sens = 0.2;
 OPTNS.max_match = 0.70;
 OPTNS.clip = 50;
 OPTNS.brEnable = 0;
 OPTNS.upEnable = 1;
 OPTNS.dnEnable = 0;
 OPTNS.consecSkips = 1;
 OPTNS.skipRefrac = 1;
 OPTNS.minSize = 0;
 fprintf('Settings: DTL \n')

 case 'ATL'
 OPTNS.bidirecValid = 0;

43

 OPTNS.distcoeff = 1.5;
 OPTNS.skipChange = 30;
 OPTNS.ml_sens = -0.4;
 OPTNS.IM_sens = 0.2;
 OPTNS.max_match = 0.70;
 OPTNS.clip = 50;
 OPTNS.brEnable = 0;
 OPTNS.upEnable = 0;
 OPTNS.dnEnable = 1;
 OPTNS.consecSkips = 1;
 OPTNS.skipRefrac = 1;
 OPTNS.minSize = 0;
 fprintf('Settings: ATL \n')

 case 'TALDCT'
 OPTNS.bidirecValid = 1;
 OPTNS.distcoeff = 1.7;
 OPTNS.skipChange = 30;
 OPTNS.ml_sens = -0.1;
 OPTNS.IM_sens = 0.2;
 OPTNS.max_match = 0.70;
 OPTNS.clip = 80;
 OPTNS.brEnable = 1;
 OPTNS.upEnable = 1;
 OPTNS.dnEnable = 1;
 OPTNS.consecSkips = 1;
 OPTNS.skipRefrac = 1;
 OPTNS.minSize = 0;
 fprintf('Settings: TAL/DCT \n')

 otherwise
 disp('Invalid mode.')
end

%------------- END OF CODE --------------

clipImg.m

function imout = clipImg(imin, centre, W,imsize)

% clipImg - Simple cropping of an image about a point with a specified
% half-width W. If the required area is outside the bounds of the given
% image, only the portion of the image which exists is returned.

% Syntax: imout = clipImg(imin, centre, width,imsize)
%
% Inputs:
% imin - The input image
% centre - The point around which the cropping must occur
% W - The required half-width around the centre point
% imsize - The size of the image
%
% Outputs:
% imout - The cropped sub-image
%
% Other m-files required: bound.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

 size_y = imsize(1);

44

 size_x = imsize(2);
 x = round(centre(1));
 y = round(centre(2));

 px = bound(1,size_x,[x-W x+W]);
 py = bound(1,size_y,[y-W y+W]);

 imout = imin(py(1):py(2),px(1):px(2),:);

%------------- END OF CODE --------------

findBranch2.m

function [branch, tips, interim] = ...
 findBranch2(CENTERS, COORD, OPEN, CLOSED)

% findBranch2 - This function implements horizontal tracking, i.e. given
% some current node in an image, it checks if other nodes lie on the same
% nephron segment as the current node. If so, all branch nodes found are
% ordered into child-parent pairs and returned as 'tip' branch coordinates
% or 'interim' branch coordinates. A flag is also returned. A check for
% inclusion in the open and closed lists is done to ensure the same set of
% coordinates are not included more than once.

% Syntax: [branch, tips, interim] = ...
% findBranch2(CENTERS, COORD, OPEN, CLOSED)
%
% Inputs:
% CENTERS - The matrix of nodes in the image.
% COORD - The current node, or entering node.
% OPEN - The open list of coordinates (to be tracked).
% CLOSED - The closed list of coordinates (already tracked).
%
% Outputs:
% branch - A flag indicating if a branch has been found (1) or not (0)
% tips - A list of coordinates of end, or exit, branch points. Each
% coordinate is stored with its parent, which may be an
% interim branch point or the entry coordinate.
% interim - A list of coordinates of interim/central branch points. Each
% coordinate is stored with its parent, which may be another
% interim branch point or the entry coordinate.

% Other m-files required: isIncluded.m
% dist.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

 branch = false;
 tips = [];
 interim = [];

 % Find row index of COORD in CENTERS
 idx1 = find(and(abs(CENTERS(:,1) - COORD(1))<1 ,...
 abs(CENTERS(:,2) - COORD(2))<1));
 % Obtain the segments ID number
 seg_no = full(CENTERS(idx1,3));
% [seg_no, ~] = getSegIDNum(CENTERS, COORD);

 % Obtain indexes of other nodes on the particular segment through ID number

45

 idx2 = find(abs(CENTERS(:,3) - seg_no)<1);

 % If other segments have been found
 if numel(idx2)>1

 % Remove index of COORD
 idx2 = idx2(idx2~=idx1);

 % Construct list of coordinates of all the branches
 all_branches = [CENTERS(idx2,1:2) COORD(3).*ones(numel(idx2),1)];

 % If only one other node is on the segment, return it as a tip
 if numel(idx2)==1
 branch = true;
 tips = [all_branches COORD(1:3)]; % child-parent

 % If more than 1 node is present, they need to be ordered
 elseif numel(idx2)>1

 branch = true;

 % Find angles and distances from COORD to all other branch nodes
 dis = dist(all_branches(:,1:2),COORD(1:2));
 ang = atan2d((bsxfun(@minus,all_branches(:,2),COORD(2))),...
 (bsxfun(@minus,all_branches(:,1),COORD(1))));

 % Make all angles positive
 ang(ang<0) = ang(ang<0)+360;

 % Get an order index according to nodes closest to COORD
 [~,ord_idx] = sort(dis,'ascend');

 % Apply the ordering
 % near_dis = dis(ord_idx);
 near_ang = ang(ord_idx);
 all_br_ord = all_branches(ord_idx,:);

 % If the two closest points are opposite each other
 if abs(near_ang(1)-near_ang(2))>120 %&& abs(near_dis(1)-near_dis(2))<20

 % Two closest points' parent is COORD
 br{1} = [all_br_ord(1,:) COORD(1:3)];
 br{2} = [all_br_ord(2,:) COORD(1:3)];
 all_br_ord(1:2,:) = [];

 % Find parent-child pairs of the rest of the branch nodes
 % from the two closest nodes.
 while ~isempty(all_br_ord)

 [minima(1),minIdx(1)] = min(dist(all_br_ord(:,1:2),br{1}(end,1:2)));
 [minima(2),minIdx(2)] = min(dist(all_br_ord(:,1:2),br{2}(end,1:2)));

 if minIdx(1)==minIdx(2)
 [~,sidx]=min(minima(1:2));
 br{sidx}(end+1,:) = [all_br_ord(minIdx(1),:) br{sidx}(end,1:3)];
 all_br_ord(minIdx(1),:) = [];
 else
 br{1}(end+1,:) = [all_br_ord(minIdx(1),:) br{1}(end,1:3)];
 br{2}(end+1,:) = [all_br_ord(minIdx(2),:) br{2}(end,1:3)];
 all_br_ord(minIdx,:) = [];
 end

46

 end

 % The last nodes (without children) are the end-points
 tips = [br{1}(end,:); br{2}(end,:)];
 br{1}(end,:)=[]; br{2}(end,:)=[];
 % The rest are interim nodes
 interim = [br{1}; br{2}];

 % If the two closest points are in the same angle range, select
 % the closest one and progressively find child-parent pairs.
 else

 % The closest point's parent is COORD
 br = [all_br_ord(1,:) COORD(1:3)];
 all_br_ord(1,:) = [];
 child = br(1:3);

 while ~isempty(all_br_ord)
 d = dist(all_br_ord,child);
 parent = child;
 child = all_br_ord(d==min(d),:);
 child = child(1,:);
 br(end+1,:) = [child parent];
 all_br_ord(d==min(d),:) = [];
 end

 % The last node (without children) is the end-point
 tips = br(end,:);
 br(end,:)=[];
 % The rest are interim nodes
 interim = br;
 end
 end

 end

 % If the found branch nodes are already in the open or closed list,
 % they must be ignored as they (and their branches) have already been
 % processed.

 incl1=[]; incl2=[];
 if branch
 for k=1:1:size(tips,1)
 incl1(k) = isIncluded(OPEN(:,1:3), tips(k,1:3)) ...
 || isIncluded(CLOSED(:,1:3), tips(k,1:3));
 end
 for k=1:1:size(interim,1)
 incl2(k) = isIncluded(CLOSED(:,1:3), interim(k,1:3));

 end
 end

 if (sum(incl1)+sum(incl2))~=0
 branch = false; interim = []; tips = [];
 end

%------------- END OF CODE --------------

trackStraight.m

function [flag, tr_coord, err,offset,mismatch,inclflag] = ...
 trackStraight(clipped_imgs, COORD, iiNext, ccentersNext, ...

47

 tracking_rad, CLOSED, maxParams, offset)

% trackStraight - This function implements vertical tracking from a given
% node (COORD) into an image (number iiNext) with a set of nodes
% (ccentersNext). Cropped images of ii and iiNext are re-aligned using x-y
% transalation to produce more accurate tracking. The maximum tracking
% radius, offset and mismatch provided are used to regulate the tracking
% result. This function is also used during bidirectional validation, where
% the [x y] offset is provided instead of being calculated.

% Syntax: [flag, coord, err,offset,match,inclflag] = trackStraight(clipped_imgs,
% ... curr_coord, iiNext, ccentersNext, tracking_rad, closed, maxParams, offset)
%
% Inputs:
% clipped_imgs - The cropped images of the area around the current
% node (COORD) of image ii (current image no.) and iiNext
% COORD - The current node
% iiNext - The number of the next image, in which the nephron must
% be tracked
% ccentersNext - The array of node cordinates in the next image
% tracking_rad - The maximum tracking radius for vertical tracking
% CLOSED - The closed list of coordinates (nodes already tracked)
% maxParams - A 2 element vector of the:
% 1. Maximum offset to be allowed (pixels)
% 2. Maximum image mismatch to be allowed (0-100)
% *offset - The x-y offset between images ii and iiNext. If supplied,
% the offset is not automatically determined.
% * ONLY used during bidirectional validation.
%
% Outputs:
% flag - A flag indicating if a node has been found in the
% next image (1) or not (0)
% tr_coord - The tracked coordinate in image iiNext
% err - An error flag which is set if the:
% = mismatch is high (larger than the maximum allowed)
% = offset is high (larger than the offset allowed)
% = offset is medium and an image has been skipped
% offset - The calculated [x y] offset
% mismatch - A mismatch metric between the two images. A high value
% indicates a large mismatch between the images.
% inclflag - A flag indicating if the tracked node is (1) or is
% not (0) included in the CLOSED list.

% Other m-files required: findOffset.m
% checkIfInNextImage.m
% isIncluded.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

maxoffset = maxParams(1);
maxmismatch = maxParams(2);
% 1. Try to track the tube in the next image (straight) from curr_coord

% Cross-correlate the images to find translational differences
if nargin==7
 [x_off, y_off,mismatch] = findOffset(clipped_imgs);
% [output, ~] = dftregistration(fft2(clipped_imgs(:,:,1)),...
% fft2(clipped_imgs(:,:,2)),1);
% x_off = output(3);
% y_off = output(4);
% match = abs(output(1));

48

else
 x_off = offset(1);
 y_off = offset(2);
 mismatch=0;
end

inclflag = false;
offset = [x_off y_off];

% If correlation is low, dont allow it
if any(isnan(offset)) || (mismatch>maxmismatch)% && abs(curr_coord(3)-iiNext)==1)
 flag=false; tr_coord=[]; err=true;

% If offset is too large, dont allow it
elseif sqrt(x_off.^2 + y_off.^2)>maxoffset;
 flag=false; tr_coord=[]; err=true;

% If offset is medium with a skip, dont allow it
elseif abs(COORD(3)-iiNext)>1 && sqrt(x_off.^2 + y_off.^2)>maxoffset/3;
 flag=false; tr_coord=[]; err=true;
else

 err = false;
% Define translation matrices (use inverse so no holes/overlap is produced)
% T = [1 0 0;...
% 0 1 0;... % not needed as its only translation
% x_off y_off 1];

 % Apply translational transform to nodes of next image so
 % that a better comparison can be made to the current node
 % tr_cent = tfm(ccentersNext(:,1:2), T);
 % tr_cent = [tr_cent (iiNext).*ones(size(tr_cent,1),1)];
 tr_cent = [ccentersNext(:,1)+x_off ccentersNext(:,2)+y_off];
 index1 = checkIfInNextImage(COORD(1,1:3), tr_cent, tracking_rad);

 tr_coord = [];
 flag = false;
 if ~isempty(index1)

 temp = [ccentersNext(index1,1:2) (iiNext)];

 % Check for inclusion in the CLOSED list
 if ~isIncluded(CLOSED(:,1:3), temp)
 tr_coord = temp;
 flag = true;
 else
 inclflag = true;
 end

 if nargin==8
 tr_coord = temp;
 flag = true;
 end
 end

end

%------------- END OF CODE --------------

findOffset.m

function [x_off, y_off, mismatch] = findOffset(IM)

49

% findOffset - Finds the translational offset between two images using
% cross-correlation, implemented using a 2D fft. In addition a gaussian
% function is used to keep focus towards the centre of the reference image
% which is the current node location. A similarity metric is measured
% between the images after applying the found offset to the input image.

% Syntax: [x_off, y_off, mismatch] = findOffset(IM)
%
% Inputs:
% IM - A MxNx2 array containing the reference and input images,
% respectively.
% Outputs:
% x_off - The pixel offset in the x direction (columns)
% y_off - The pixel offset in the y direction (rows)
% mismatch - A mismatch metric between the two images. A high value
% indicates a large mismatch between the images.

% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

IM = double(IM);

% Multiply the reference image by a 2D gaussian function to concentrate the
% alignement towards the current node (which is the centre of the image)
gauss = fspecial('gaussian',size(IM,1),0.2*size(IM,1));
gauss = gauss./(max(max(gauss)));
IM(:,:,1) = IM(:,:,1).*gauss;

% Cross-correlate the two images to find translational difference which
% occurs at maximum correlation
% B = xcorr2(A(:,:,1),A(:,:,2));
s = size(IM(:,:,1))+size(IM(:,:,2))-1;
B = ifft2(fft2(IM(:,:,1),s(1),s(2)).*conj(fft2(IM(:,:,2),s(1),s(2))));
B = fftshift(B);
B = abs(B);
[yy,xx] =ind2sub(size(B),find(B==max(max(B))));
x_off = xx(1)-size(IM,2);
y_off = yy(1)-size(IM,1);

% Limit the offset found
maxOffset = 50;
% if abs(x_off)>maxOffset || abs(y_off)>maxOffset
if sqrt(x_off.^2 + y_off.^2)>maxOffset
 x_off = nan;
 y_off = nan;
 mismatch = 0;
else

 % Apply translational transform to the input image
 IM(IM~=0)=1;
 IM=logical(IM);
 tform = maketform('affine',[1 0 0; 0 1 0; x_off y_off 1]);
 temp = imtransform(IM(:,:,2),tform,'XData',...
 [1 size(IM,2)],'YData',[1 size(IM,1)]);

 % Calculate mismatch metric
 mismatch = sum(sum(abs(temp-IM(:,:,1))))./...
 sum(sum(logical(IM(:,:,1)+temp)));%corr2(A(:,:,1),temp)

50

end

%------------- END OF CODE --------------

checkIfInNextImage.m

function index = checkIfInNextImage(coord, centers, tracking_rad)

% checkIfInNextImage - Returns the index of the found node, i.e.
% centers(index,:) is the new coordinate found

% Syntax: index = checkIfInNextImage(current_coord, centers, tracking_rad)
%
% Inputs:
% coord - The reference node
% centers - The array of node cordinates in the queried image
% tracking_rad - The maximum tracking radius for vertical tracking
%
% Outputs:
% index - The row index in centers of the found coordinate

% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

% Find all nodes in centers within the tracking radius around coord
coord = round(coord);
potential = find(dist(centers(:,1:2),coord(1:2))<tracking_rad);
index = [];
if ~isempty(potential)
 % find the radius of all possibilities
 rad_poss = ((centers(potential,1)-coord(1)).^2 + ...
 (centers(potential,2)-coord(2)).^2);

 % find the node closest to current_coord
 closest = find(rad_poss==min(rad_poss),1);
 index = potential(closest);
end

%------------- END OF CODE --------------

reconstructPath.m

function [maxpath, multpath] = reconstructPath(list)

% reconstructPath - This function forms a linked list from an array of
% child-parent coordinates. Ambiguous paths are removed and the longest
% path is constructed and returned in maxpath. All paths constructed are
% returned in mpath.

% Syntax: [maxpath, multpath] = reconstructPath(list)
%
% Inputs:
% list - The array of child-parent coordinates/nodes (Mx6)
%
% Outputs:
% maxpath - A cell array of the reduced paths

51

% multpath - A cell array of the all the paths found

% Other m-files required: isIncluded.m
% sortCell.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

if sum(list(1,:))==0, list(1,:)=[]; end

% Find all nodes that are not parents, i.e. end points
p=[];
for i=1:1:size(list,1)
 p(i) = ~isIncluded(list(:,4:6),list(i,1:3));
end
ki = find(p==1);

% Track path backwards from each end point
multpath=[];

for kii = 1:numel(ki)
% idxs = ki(kii);
 path = list(ki(kii),1:3);
 k = ki(kii);
 while ~isempty(k)
 [~, k] = isIncluded(list(:,1:3), list(k(1),4:6));
 path = [path; list(k,1:3)];
% idxs(end+1) = k;
 end
 multpath{kii} = path;
% I{kii} = idxs;
end

% Sort segmented paths according to size
multpath = sortCell(multpath);
temp0 = multpath;

% Allocate common pathways to longest path segments
[p,q] = meshgrid(1:1:size(temp0,2),1:1:size(temp0,2));
p = p(:);
q = q(:);

for i1=1:1:size(temp0,2)^2

 r1 = p(i1);
 r2 = q(i1);

 if r1~=r2
 temp1 = temp0{r1};
 temp2 = temp0{r2};
 diff = size(temp1,1) - size(temp2,1);

 if diff>0
 temp2 = [zeros(abs(diff),3); temp2];
 mask = logical(repmat(mean(temp1-temp2,2),1,3));
 mask(end,:) = [1 1 1];
 temp2 = temp2.*mask;
% temp2(bsxfun(@eq,temp2,[0 0 0]))=[];
 elseif diff<0
 temp1 = [zeros(abs(diff),3); temp1];

52

 mask = logical(repmat(mean(temp1-temp2,2),1,3));
 mask(end,:) = [1 1 1];
 temp1 = temp1.*mask;
% temp1(bsxfun(@eq,temp1,[0 0 0]))=[];
 elseif diff==0
 mask = logical(repmat(mean(temp1-temp2,2),1,3));
 mask(end,:) = [1 1 1];
 temp2 = temp2.*mask;
% temp2(bsxfun(@eq,temp1,[0 0 0]))=[];
 end
 temp0{r1} = reshape(temp1,[],3);
 temp0{r2} = reshape(temp2,[],3);
 end
end

% Remove empty coordinates/paths
for i=1:1:size(temp0,2)

 temp = temp0{i};
 temp(bsxfun(@eq,temp,[0 0 0]))=[];
 temp = reshape(temp,[],3);
 temp0{i} = temp;

 if size(temp0{i},1)<8%isempty(kkk{i})
 temp0{i}=[];
 i=1;
 end

end
temp0 = temp0(~cellfun('isempty',temp0));

% Sort cells according to size
temp0 = sortCell(temp0);
maxpath = temp0;

%------------- END OF CODE --------------

validationSteps.m

function [pass, flags, MLpred, vals] = validationSteps...
 (offset, classifier, tracking_rad, ...
 curr_coord, ccentersC, shapefacC, shapeprofC,...
 next_coord, ccentersN, shapefacN, shapeprofN,...
 options, set, mismatch)

% validationSteps - The current node (curr_coord) in image ii has been
% potentially tracked to a node (next_coord) in image iiN by the function
% trackstraight.m. This function implements the five validation steps for
% this potential move from one nephron cross-section to another.
% The features relating to the two nodes (other nodes in the image, shape
% factors, shape profiles) as well as other information (see inputs) are
% used by the validation rules to evaulate characteristics about the move
% and hence its validity.

% Syntax: [pass, flags, MLpred, vals] = validationSteps...
% (offset, net, mu, sigma, tracking_rad, ...
% curr_coord, ii, ccentersC, shapefacC, shapeprofC,...
% next_coord, iiN, ccentersN, shapefacN, shapeprofN,...
% options, set, match)
%
% Inputs:
% offset - The [x y] translational offset between the images
% net - The neural network structure created using the

53

% Neural Network Toolbox
% mu - The mean value to be used to normalise the data
% (derived from the training data)
% sigma - The sigma (standard deviation) value to be used to
% normalise the data
% tracking_rad - The tracking radius (used during bidirectional
% validation)
% curr_coord - The current node coordinate
% ccentersC - The array of nodes in image ii
% shapefacC - The array of the 6 shape factors for image ii
% shapeprofC - The array of shape profiles for image ii
% (contains 4 columns: angle, radii, node ID,
% segment ID)
% next_coord - The coordinate of the next potential node
% ccentersN - The array of nodes in image iiN
% shapefacN - The array of the 6 shape factors for image iiN
% shapeprofN - The array of shape profiles for image iiN
% (contains 4 columns: angle, radii, node ID,
% segment ID)
% options - A struct of settings related to the current mode,
% created using changeMode.m
% set - A struct of properties related to the image set
% mismatch - The image similarity metric from
% trackStraight>findOffset
%
% Outputs:
% pass - A flag indicating if all validation steps have been
% passed(1) or not (0)
% flags - An array of 5 flags indicating which validation steps
% were passed (1) and which were not (0)
% MLpred - The output of the machine learning predictor
% vals - 5 numerical values relating to the result of each of the
% validation steps

% Other m-files required: getSegIDNum.m
% trackStraight.m
% findOffset.m
% checkIfInNextImage.m
% isIncluded.m
% formulateFeatures.m
% Neural Network Toolbox v8.0.1 (R2013a)
% (optional) Parallel Computing Toolbox (R2013a)

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

ii = curr_coord(3);
iiN = next_coord(3);
pass = true;
flags = [0 0 0 0 0];
vals = [0 0 0 0 0];
MLpred = [0 0 0 0 0]';
[seg1, ida] = getSegIDNum(ccentersC,curr_coord(1:3));

% ============== 1. Size Validation ================
if options.minSize~=0 %&& pass==true
 [~, idaa] = getSegIDNum(ccentersN,next_coord(1:3));
 seg_area = shapefacN(idaa,2);
 vals(1) = seg_area +0.000001;
 if seg_area<options.minSize
 flags(1) = 1;
 pass = false;
 end

54

end

% ============== 2. Distance Validation ================
 if options.distcoeff~=0 %&& pass==true
 [~, idb] = getSegIDNum(ccentersN,next_coord(1:3));
 xydis = sqrt(sum((curr_coord(1:2)-(next_coord(1:2)+offset)).^2))...
 /abs(iiN-ii);

 % Use half the minor axes as radii approximations
 sumradii = (shapefacC(ida,6)+shapefacN(idb,6))./2;

% Use shape profile radii instead of (minor axes)/2
% [~,sef] = formulateFeatures(classifier.userdata.mean,...
% classifier.userdata.stddev, ...
% curr_coord(1:3), next_coord(1:3), offset,mismatch,...
% ccentersC, ccentersN, shapefacC, shapefacN, ...
% shapeprofC, shapeprofN,set);
% sumradii = min(sef{1}.SP1(:,2)) + min(sef{1}.SP2(:,2));

 vals(2) = xydis-sumradii*options.distcoeff +0.000001;
 if xydis > sumradii*options.distcoeff
 flags(2) = 1;
 pass = false;
 end
 end

% ============== 3. Skip Validation ================
if (abs(iiN-ii)>1) && options.skipChange~=0 %&& pass==true
 [~, idb] = getSegIDNum(ccentersN,next_coord(1:3));
 change = mean(100.*abs(shapefacC(ida,:)-shapefacN(idb,:))./...
 min([shapefacC(ida,:);shapefacN(idb,:)]));
 vals(3) = change +0.000001;
 if change>options.skipChange
 flags(3) = 1;
 pass = false;
 end
end

% ============== 4. Bidirectional Validation ================
if options.bidirecValid~=0 %&& pass==true
 [~, val_coord, ~,~,~,~] = trackStraight(1, next_coord, ...
 ii, ccentersC, tracking_rad, [0 0 0 0 0 0],[200 2], -offset);
 [seg2, ~] = getSegIDNum(ccentersC,val_coord(1:3));
 if ~(sum(val_coord-curr_coord(1:3))==0 || (seg1==seg2))
 vals(4) = 1;
 flags(4) = 1;
 pass = false;
 end
end

% ============== 5. Shape Validation ================
if options.ml_sens~=0 %&& pass==true

 Xnorm = formulateFeatures(classifier.userdata.mean,...
 classifier.userdata.stddev, ...
 curr_coord(1:3), next_coord(1:3), offset,mismatch,...
 ccentersC, ccentersN, shapefacC, shapefacN, ...
 shapeprofC, shapeprofN,set);

 if strcmp(classifier.name, 'Pattern Recognition Neural Network')
 MLpred = classifier(Xnorm','useParallel','yes');
 elseif strcmp(classifier.name, 'RBF Kernel Support Vector Machine')
 MLpred = svmclassify(classifier, Xnorm);
 end

55

 vals(5) = sum(MLpred(3:4))-max(MLpred(1:2)) ;
 if vals(5) < options.ml_sens
 pass = false;
 flags(5) = 1;
 end
end

%------------- END OF CODE --------------

formulateFeatures.m

function [Xnorm, segfeat] = formulateFeatures(mu, sigma, ...
 curr_coord, next_coord , offset, mismatch, ...
 ccentersC, ccentersN, shapefacC, shapefacN, ...
 shapeprofC, shapeprofN ,set)

% formulateFeatures - This function takes in two nodes and all the features
% of all the data of the images they belong to. The features relating to
% the two nodes are extracted and made available in the struct segfeat. The
% raw features of the two nodes (the nodes themselves, shape factors, shape
% profiles) are combined into a 67-element feature vector Xnorm which is
% normalised to the training data.

% Syntax: [Xnorm, segfeat] = formulateFeatures(mu,sigma, curr_coord, next_coord ,

off,...
% match,centers_curr, centers_next, sf_curr, sf_next, sp_curr,

sp_next,set)
%
% Inputs:
% mu - The mean value to be used to normalise the data (derived

from the training data)
% sigma - The sigma (standard deviation) value to be used to

normalise the data
% curr_coord - The current node coordinate
% next_coord - The coordinate of the next potential node
% offset - The [x y] translational offset between the images
% mismatch - The image similarity metric from trackStraight>findOffset
% ccentersC - The array of nodes in image ii
% ccentersN - The array of nodes in image iiN
% shapefacC - The array of the 6 shape factors for image ii
% shapefacN - The array of the 6 shape factors for image iiN
% shapeprofC - The array of shape profiles for image ii
% shapeprofN - The array of shape profiles for image iiN
% set - A struct of properties related to the image set
%
% Outputs:
% Xnorm - An array of the normalised features of the move
% segfeat - A struct containing the raw features of the move
%
% Other m-files required: getSegIDNum.m
% isIncluded.m
% combineFeatures.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

 % Order features into a struct
 move = [curr_coord next_coord offset];
 segfeat{1}.coord1 = move(1:3);

56

 segfeat{1}.coord2 = move(4:6);
 segfeat{1}.offset = move(7:8);

 t1 = ccentersC;
 t2 = shapeprofC;

 [segNo, idx] = getSegIDNum(t1,move(1:2));
 [~, row] = isIncluded(t1(t1(:,end)==segNo,:), [move(1:2) segNo]);
 segfeat{1}.SF1 = shapefacC(idx,:);
 segfeat{1}.SP1 = t2(and(t2(:,3)==row,t2(:,end)==segNo),1:2);

 t1 = ccentersN;
 t2 = shapeprofN;

 [segNo, idx] = getSegIDNum(t1,move(4:5));
 [~, row] = isIncluded(t1(t1(:,end)==segNo,:), [move(4:5) segNo]);
 segfeat{1}.SF2 = shapefacN(idx,:);
 segfeat{1}.SP2 = t2(and(t2(:,3)==row,t2(:,end)==segNo),1:2);
 segfeat{1}.match = mismatch;

 % Combine the struct parameters into move features
 Xcomb = combineFeatures(segfeat,set.setsize);

 % Normalise the features
 Xnorm = bsxfun(@minus, Xcomb, mu);
 Xnorm = bsxfun(@rdivide, Xnorm, sigma);

%------------- END OF CODE --------------

combineFeatures.m

function f = combineFeatures(rf,maxImg)

% combineFeatures - Raw features (node coordinates, shape factors and shape
% profiles) of moves (node pairs) are combined into the features
% representing a move from one nephron cross-section to another. 67
% combined features are formulated:
% x1-x6: The difference in the shape factors of area, eccentricity,
% solidity, aspect ratio, minor axis and circularity
% x7-x12: The mean of the shape factors of area, eccentricity, solidity,
% aspect ratio, minor axis and circularity
% x13: The minimum area between the two cross-sections
% x14: The Euclidean distance between the two nodes in the x-y plane
% x15: The image difference
% x16: The magnitude of image alignment offset
% x17: The position of the pair (average z coordinate) relative to the
% image set, which indicates depth into the kidney
% x18: The correlation coefficient between the two shape profiles
% x19: The correlation coefficient between the two sub-images
% x20-x43: Shape profile at 15 degree intervals of cross-section 1
% x44-x67: Shape profile at 15 degree intervals of cross-section 2
% * Not in this order in the code
%
% Syntax: featVector = combineFeatures(rawFeats,maxImg)
%
% Inputs:
% rf - A cell array of structs containing the raw features
% maxImg - The maximum image number in the set
%
% Outputs:
% f - An array of the normalised features where each row is an
% example and each column is a feature
%
% Other m-files required: none

57

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

if nargin==1
 maxImg=700;
end

f = zeros(size(rf,1),11);
for i = 1:1:size(rf,1)

 f(i,1) = abs(rf{i}.SF1(1) - rf{i}.SF2(1)); %circularity
 f(i,2) = abs(rf{i}.SF1(2) - rf{i}.SF2(2)); %area
 f(i,3) = abs(rf{i}.SF1(3) - rf{i}.SF2(3)); %eccentricity
 f(i,4) = abs(rf{i}.SF1(4) - rf{i}.SF2(4)); %solidity/extent
 f(i,5) = abs(rf{i}.SF1(5) - rf{i}.SF2(5)); %aspect ratio

 f(i,6) = min([rf{i}.SF1(2) rf{i}.SF2(2)],[],2); %minimum Area

 % xy distance
 f(i,7) = sqrt(sum((rf{i}.coord1(1:2) - (rf{i}.coord2(1:2))).^2));

 % image difference
 f(i,8) = abs(rf{i}.coord1(3) - rf{i}.coord2(3));

 % image alignment offset
 f(i,9) = sqrt(sum((rf{i}.offset).^2));

 % metric from shape profile (temporary)
% a = mf{i}.SP1(:,2);
% tt=[];
% for t=1:3, tt(end+1)=abs(corr([a(t:end); a(1:t-1)],mf{i}.SP2(:,2))); end
% for t=22:24, tt(end+1)=abs(corr([a(t:end); a(1:t-1)],mf{i}.SP2(:,2))); end
% f(i,10) = max(tt);
% f(i,10) = (corr(mf{i}.SP1(:,2),mf{i}.SP2(:,2)));
 f(i,10) = sum(abs(rf{i}.SP1(:,2)-rf{i}.SP2(:,2))<3)/numel(rf{i}.SP1(:,2));

 % image position in z plane
 f(i,11) = 100.*((rf{i}.coord1(3)+rf{i}.coord2(3))/2)/maxImg;

 % minor axis length
 f(i,12) = abs(rf{i}.SF1(6) - rf{i}.SF2(6));

 f(i,13) = (rf{i}.SF1(6) + rf{i}.SF2(6))/2; %minor axis length
 f(i,14) = (rf{i}.SF1(1) + rf{i}.SF2(1))/2; %circularity
 f(i,15) = (rf{i}.SF1(2) + rf{i}.SF2(2))/2; %area
 f(i,16) = (rf{i}.SF1(3) + rf{i}.SF2(3))/2; %eccentricity
 f(i,17) = (rf{i}.SF1(4) + rf{i}.SF2(4))/2; %solidity/extent
 f(i,18) = (rf{i}.SF1(5) + rf{i}.SF2(5))/2; %aspect ratio

 f(i,19) = rf{i}.match;

 f(i,20:43) = rf{i}.SP1(:,2)';
 f(i,44:67) = rf{i}.SP2(:,2)';

end

f(isnan(f))=0;

58

%------------- END OF CODE --------------

manualAdjustClick2.m

% manualAdjustClick2 - Reconstructs a path (ordered list of coordinates)
% from the interim closed list and uses the paths to get end-points which
% correspond to the dead ends of the tracking process. Asks the user to
% link these end-points to their correct nephron cross-section in images up
% to 3 before and after the end-point, through a simple click-and-capture
% interface. Uses these user corrected points as new seeds for another
% tracking instance. Re-initialises relevant variable/settings/lists as is
% required before another tracking instance can occur.

% Instructions: Re-run the section named '2. RUN TRACKING' in
% TrackerFinal.m after this script (and the manual intervention process)
% has finished.

% Other m-files required: isIncluded.m
% findBranch2.m
% reconstructPath.m
% getEndPoints.m
% dist.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

%% 1. Use deadends to get endpoints
% Remove unnecesary dead ends
% size(deadend,1);
% tempdeadend = deadend;
% rem=[];
% for p=1:size(deadend,1)
%
% [branch, tips, interim, ~] = findBranch2(ccenters{deadend(p,3)}, ...
% deadend(p,1:3), [0 0 0 0 0 0],[0 0 0 0 0 0]);
% if size(tips,1)==1 && isempty(interim)
% rem(p) = 1;
% elseif isIncluded(ignored, deadend(p,1:3))
% rem(p) = 1;
% elseif 0%isIncluded(skipBlock, deadend(p,1:3))
% % isIncluded(misMatch, deadend(p,1:3)) ||...
% % isIncluded(distMeas, deadend(p,1:3)) ||...
% % isIncluded(biDirInv, deadend(p,1:3))
% % rem(p) = 1;
% else
% rem(p)=0;
% end
% end
% sum(rem)
% deadend(rem==1,:)=[];
% endPoints = deadend;

%% OR 2. Use endpoints of the reconstructed path
[fpath, ~] = reconstructPath(closed(1:end,:));
endPoints = getEndPoints(fpath)

%% Display each end point with 3 images before and after

potential = [];
for k=1:size(endPoints,1)

59

 coord = endPoints(k,1:3);
 for frame=1:7
 subplot(1,7,frame)
 displayCoord([coord(1) coord(2) coord(3)-4+frame], set);
 hold on
 scatter(coord(1),coord(2),'.','r')
 ind = find(closed(:,3)==(coord(3)-4+frame));
 scatter(closed(ind,1),closed(ind,2),'o','b')
 scatter(ccenters{coord(3)-4+frame}(:,1),ccenters{coord(3)-

4+frame}(:,2),'.','y')
 hold off
 end

[xx,yy] = ginput(1);
ax = input('axis? ');
% ax = ax.Children;

if ax~=0
 potential(k,:) = [xx yy endPoints(k,3)-4+ax endPoints(k,1:3)];
else
 % If labelled 0, it is not a real end point
 potential(k,:) = [0 0 0 0 0 0];
end

end

%% Get nodes closest to the locations clicked on by the user

potential(sum(potential,2)==0,:)=[]; % Remove incorrect end points
old = potential;
new = [];
for ll = 1:size(old,1)
 k1 = dist(ccenters{old(ll,3)}(:,1:2),old(ll,1:2));
 new(ll,1:2) = ccenters{old(ll,3)}(find(k1==min(k1),1),1:2);
end
new = [new old(:,3:6)]

%% Re-initialise

% Store manual interventions
manualCorrec = [manualCorrec; new];

% Get new current node
open = new;
newCoord = find(open(:,3)==min(open(:,3)),1);
curr_coord = open(newCoord(1),:);%open(1,1:6);
ii = curr_coord(1,3);
open(newCoord(1),:)=[];
endPoints = [];

% Re-initialise tracking varaiables
predictionU = 0;
predictionD = 0;

terminate = false;
up = false; down = false; branch = false;
up_coord = []; down_coord = []; branch_coord = [];

skip = false; su=0; sd=0; prvs_sku=[0 0 0 0]; prvs_skd=[0 0 0 0]; sk=0;
up_buff = ones(1,8); down_buff = ones(1,8);

mup = 0; mdn=0;

60

upMisErr = 0;
dwMisErr = 0;
have = [0 0 0];
img = zeros(set.imsize(1),set.imsize(2),3);

%------------- END OF CODE --------------

getEndPoints.m

function endpoints = getEndPoints(mpath)

% Obtains the end points of the recontructed paths created using
% reconstructPath.m. Only the end points of significant path fragments are
% returned (short fragments are ignored). The input (mpath) is a cell array
% of groups of coordinates of the various path fragments.

% See also: reconstructPath.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

endpoints=[];
for i = 1:size(mpath,2)
 if size(mpath{i},1)>=0.05*1*size(mpath{1},1)
 endpoints(end+1,:) = mpath{i}(1,:);
 end
end

Note: getSetProperties.m is included in the Pre-processing section

getSectionNo.m

function [setidx,offset] = getSectionNo(imgNo,imSet)

% getSectionNo - Management function to move through sets of shape profiles
% for 500 images at a time (to reduce memory/RAM requirements)

% Syntax: [setidx,offset] = getSectionNo(imgNo,imSet)
%
% Inputs:
% imgNo - The image number in the set
% imSet - The number of the image set being used (1-6)
%
% Outputs:
% setidx - Index for batches of 500 images
% offset - Image number in the reduced set

% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

if (imSet==4) || (imSet==5)
 if imgNo<501
 setidx = 1;
 offset = imgNo;
 elseif imgNo<1001

61

 setidx = 2;
 offset = imgNo-500;
 elseif imgNo<1501
 setidx = 3;
 offset = imgNo-1000;
 elseif imgNo<2001
 setidx = 4;
 offset = imgNo-1500;
 elseif imgNo<2501
 setidx = 5;
 offset = imgNo-2000;
 elseif imgNo<3001
 setidx = 6;
 offset = imgNo-2500;
 else
 setidx = 7;
 offset = imgNo-3000;
 end

else
 setidx = 1;
 offset = imgNo;
end

%------------- END OF CODE --------------

getShapeProfileCells.m

function shapeprof = getShapeProfileCells(set,OutVersion)

% getShapeProfileCells - Returns a cell array containing a matfile
% input-output struct to the files containing the shape profiles (SP) for a
% specific image set (set) and the version of the preprocessing and feature
% extraction output (OutVersion). The files were saved in groups, e.g. SP
% for images 1-500 in one file and SP for images 501 to 1000 in another
% file, so that reading the matfiles is quicker (reading one very large
% matfile is slow). The function getSectionNo.m then manages the switching
% from one file to another depending on the image number.

% Syntax: shapeprof = getShapeProfileCells(set,OutVersion)
% Then, shapeprof{n} should have 'data' and 'idx' field names
% where n = 1 ... size(shapeprof)

% Inputs:
% set - The image number of the set (1-5) as a numerical or string
% OutVersion - The preprocessing and feature extraction version number
%
% Outputs:
% shapeprof - A cell array of matfile io objects

% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

if isnumeric(OutVersion)
 OutVersion = num2str(OutVersion);
end
v = OutVersion;

62

switch(set)

case {1,'1'}
shapeprof{1} = matfile(['dataOut/set1data' v '/SP1TO801.mat'],'Writable',true);

case {2,'2'}
shapeprof{1} = matfile(['dataOut/set2data' v '/SP1TO990.mat'],'Writable',true);

case {3,'3'}
shapeprof{1} = matfile(['dataOut/set3data' v '/SP1TO1000.mat'],'Writable',true);

case {4,'4'}
shapeprof{1} = matfile(['dataOut/set4data' v '/SP1TO500.mat'],'Writable',true);
shapeprof{2} = matfile(['dataOut/set4data' v '/SP501TO1000.mat'],'Writable',true);
shapeprof{3} = matfile(['dataOut/set4data' v '/SP1001TO1500.mat'],'Writable',true);
shapeprof{4} = matfile(['dataOut/set4data' v '/SP1501TO2000.mat'],'Writable',true);
shapeprof{5} = matfile(['dataOut/set4data' v '/SP2001TO2500.mat'],'Writable',true);

case {5,'5'}
shapeprof{1} = matfile(['dataOut/set5data' v '/SP1TO500.mat'],'Writable',true);
shapeprof{2} = matfile(['dataOut/set5data' v '/SP501TO1000.mat'],'Writable',true);
shapeprof{3} = matfile(['dataOut/set5data' v '/SP1001TO1500.mat'],'Writable',true);
shapeprof{4} = matfile(['dataOut/set5data' v '/SP1501TO2000.mat'],'Writable',true);

otherwise
 disp('Invalid set.')

end

%------------- END OF CODE --------------

getTrackingParams.m

function TRparams = getTrackingParams(imgNo,imSet)

% getTrackingParams - Returns a struct containing a number of variables
% related to a specific image (imgNo) in a specific image set (imSet). These
% parameters are tracking parameters which vary through the image set in a
% sigmoidal manner. The parameters for the 6 image sets have been tuned
% through the sigmoid function parameters.

% Syntax: TRparams = getTrackingParams(imgNo,str)
%
% Inputs:
% imgNo - The image number in the set
% imSet - The number of the image set being used (1-6)
%
% Outputs:
% TRparams - A struct of the tracking variables for image number imgNo
% and image set imSet

% Other m-files required: custSigmoid.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

63

TRparams = struct;

switch imSet
 case 1
 TRparams.trackRad = custSigmoid(imgNo, 1, 15, 10, 250, 5);
 TRparams.maxOffset = custSigmoid(imgNo, 1, 40, 15, 350, 5);
 TRparams.areaLim = custSigmoid(imgNo, 1, 8, 1, 300, 5);
 TRparams.skipArea = custSigmoid(imgNo, 1, 10, 1, 300, 1);

 case 2
 TRparams.trackRad = custSigmoid(imgNo, 1, 20, 15, 300, 5);
 TRparams.maxOffset = custSigmoid(imgNo, 1, 35, 15, 300, 5);
 TRparams.areaLim = custSigmoid(imgNo, 1, 8, 1, 300, 5);
 TRparams.skipArea = custSigmoid(imgNo, 1, 10, 1, 350, 1);

 case 3
 TRparams.trackRad = custSigmoid(imgNo, 1, 20, 15, 300, 5);
 TRparams.maxOffset = custSigmoid(imgNo, 1, 40, 15, 350, 5);
 TRparams.areaLim = custSigmoid(imgNo, 1, 8, 1, 300, 5);
 TRparams.skipArea = custSigmoid(imgNo, 1, 10, 1, 300, 1);

 case 4
 TRparams.trackRad = custSigmoid(imgNo, 1, 20, 10, 1000, 4);
 TRparams.maxOffset = custSigmoid(imgNo, 1, 80, 50, 1300, 5);
 TRparams.areaLim = custSigmoid(imgNo, 1, 12, 6, 1300, 5);
 TRparams.skipArea = custSigmoid(imgNo, 1, 12, 1, 1100, 1);

 case 5
 TRparams.trackRad = custSigmoid(imgNo, 1, 20, 10, 1000, 4);
 TRparams.maxOffset = custSigmoid(imgNo, 1, 80, 50, 1300, 5);
 TRparams.areaLim = custSigmoid(imgNo, 1, 12, 6, 1300, 5);
 TRparams.skipArea = custSigmoid(imgNo, 1, 12, 1, 1100, 1);

 case 6
 TRparams.trackRad = custSigmoid(imgNo, 1, 20, 10, 1000, 4);
 TRparams.maxOffset = custSigmoid(imgNo, 1, 80, 50, 1300, 5);
 TRparams.areaLim = custSigmoid(imgNo, 1, 12, 6, 1300, 5);
 TRparams.skipArea = custSigmoid(imgNo, 1, 12, 1, 1100, 1);

 otherwise
 disp('Invalid set.')
end

%------------- END OF CODE --------------

Plotting & Analysis Functions

Plotting_and_Analysis_Tools.m

% Plotting and Analysis Tools
% *Uses data from execution of TrackerFinal.m

% M-files used: tubeplot.m
% tubeplot1.m

64

% getSetProperties.m
% getShapeProfileCells.m
% custSigmoid.m
% comparePaths2.m
% getShapeProfile.m
% getSegIDNum.m
% displayCoord.m
% displayMove.m
% array2struct_trackingData.m
% DATA required: Workspace data from a tracking instance of TrackerFinal.m
% OR data loaded from saved results

% >>>>>>>>>>>>>>>>>>>>>>> INSTRUCTIONS <<<<<<<<<<<<<<<<<<<<<<<<<<

% 1. Run the first section 'LOAD SAVED RESULT' if tracking had not occured
% 2. Only modify parameters above the '^^^^^^^^'line in each section
% 3. Run one section at a time (CTRL+ENTER). Each section runs indepedantly

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 20-Mar-2015

%% ===
% ------------------------- LOAD SAVED RESULT ----------------------------
% ==

% Choose data set
imset = 1;
version = 5;

% Uncomment the result to load
% load('other\results\2510\set3neph3FULL.mat')
load('other\results\2510\set1neph75FULL.mat')

% ^^^
s = num2str(imset); v = num2str(version);
set = getSetProperties(s,v);
load(['dataOut\set' s 'data' v '\set' s 'feat' v '.mat'])
shapeprof = getShapeProfileCells(s,v);
MOVES = array2struct_trackingData(capMoves);

%% ===
% ------------------------ SAVE TRACKING DATA ----------------------------
% ==

note = 'set1data5 neph61 till atl; 21 corrections';
save('set1neph59TillATL.mat','misMatch','capMoves','open','closed','fpath',...
 'tr','ss','skipBlock','skipAllow','biDirInv','distMeas','ignored', ...
 'net','note','manualCorrec')

%% ===
% ----------------- COMPARE TO LABELLED IMAGE SET ------------------------
% ==

im = 105;
X = 12.5*100;
Y = 9.5*100;
zoom = 2*100;
highlight = closed(:,1:3);

% ^^^
ind = find(highlight(:,3)==im);
I = imread([set.imOutPath num2str(im) '.jpg'])>100;
fill = round(sub2ind(size(I),highlight(ind,2),highlight(ind,1)));

65

subplot 121
imagesc(~imfill(~I,fill)+0.7*I);
hold on, colormap hot, axis equal
if exist('ccenters','var'), ...
 scatter(ccenters{im}(:,1),ccenters{im}(:,2),'.','b'), end
scatter(highlight(ind,1),highlight(ind,2),'.','g')
title(num2str((im))), hold off, axis([X-zoom X+zoom Y-zoom Y+zoom])
im_num = [];
for i1 = 1:1:set.range-numel(num2str(im+set.offset))
 im_num = [im_num '0'];
end

subplot 122
imagesc(imread([set.imLabPath im_num num2str(im+set.offset) '.jpg']));
hold on, scatter(highlight(ind,1),highlight(ind,2),'.','g'),
% scatter(ccenters{im}(:,1),ccenters{im}(:,2),'.','b'),
hold off
axis equal, axis([X-zoom X+zoom Y-zoom Y+zoom])

%% ===
% ----- DISPLAY ALL NODES ON SELECTED IMAGE WITH NEPHRON HIGHLIGHTED -----
% ==

im = 60;
highlight = closed(:,1:3);

% ^^^
I = imread([set.imOutPath num2str(im) '.jpg'])>100;
ind = find(highlight(:,3)==im);
fill = round(sub2ind(size(I),highlight(ind,2),highlight(ind,1)));
imagesc(~imfill(~I,fill)+0.6.*I);
hold on, colormap hot
scatter(ccenters{im}(:,1),ccenters{im}(:,2),'.','b')
title(num2str((im))), hold off

%% ===
% ------------------------- PLOT 3D TUBE VIEW ----------------------------
% ==

 clf
% figure
 path = fpath{1};
 smoothing = 10;

% ^^^
xx = 1.*smooth(path(1:end,1),smoothing)';
yy = 1.*smooth(path(1:end,2),smoothing)';
zz = 1*smooth(path(1:end,3),1)';
radius = 1.5;
colVec = (size(path,1):-1:1);
% tubeplot1([xx;yy;zz],radius,8);
% saveobjtube('neph412.obj',xx',yy',zz',3,1,6)
tubeplot(xx,yy,zz,radius,colVec);

% plot3(xx,yy,zz,'g')
shading flat
colormap jet
grid on;
hold on
axis auto
view([-5 -10 3]);
scatter3(manualCorrec(:,1),manualCorrec(:,2),manualCorrec(:,3),'k*')
hold off

66

%% ===
% ------------------ PLOT MANUALLY TRACKED NEPHRON -----------------------
% ==

% set1 --> mouse1
% set2 --> mouse3
% set3 --> mouse4
% set4 --> rat5
% set5 --> rat8
% set6 --> rat4 (excluded from tracking results)

% figure
load 'other/Manual Data/complete/mouse1.mat'
nephNo = 75; % Not every consecutive number may exist
offset_start = 0;
offset_end = 0;
radius = 1.5;
smoothing = 20;

% ^^^
x = getfield(nef,['num' num2str(nephNo)]);
x(:,1) = 1*smooth(x(:,1),smoothing);
x(:,2) = 1.*smooth(x(:,2),smoothing);
x(:,3) = 1.*smooth(x(:,3)-0,1);

m = (offset_start/100)*size(x,1)+1;
n = size(x,1)-(offset_end/100)*size(x,1);
tubeplot(x(m:n,1),x(m:n,2),x(m:n,3),radius,1:n-m+1)
grid on, axis auto, shading flat, colormap jet
view([1 1 0.5]);

%% ===
% -------- MEASURE SIMILARITY TO MANUALLY TRACKED NEPHRON ----------------
% ==

load 'other/Manual Data/complete/mouse1.mat'
nephNo = 75; % Not every consecutive number may exist
offset_start = 0;
offset_end = 0;
radius = 1.5;
smoothing = 20;
compareTo = closed(:,1:3);

% ^^^
k = custSigmoid(1:5000, -1, 20, 30, 1300, -10);
x = getfield(nef,['num' num2str(nephNo)]);
y = compareTo(:,1:3);
y(:,3) = (y(:,3)+set.offset);
[alpha, r1] = comparePaths2(x,y,k);
[beta, r2] = comparePaths2(y,x,k);
fprintf(['\nAlpha: ' num2str(alpha) ' %%\n'])
fprintf(['Beta: ' num2str(beta) ' %%\n\n'])

%% >>>>>>>>>>>>>>>>>>>>>> VIEW MOVE DATA <<<<<<<<<<<<<<<<<<<<<<<<<<<<<
%% ===
% ------------------ Get shape factors of a move -------------------------
% ==

clc
% close all
% figure(1)
n = 43;
coord = capMoves(n,1:6);

67

% ^^^
[~, id1] = getSegIDNum(ccenters{coord(3)},coord(1:3));
[~, id2] = getSegIDNum(ccenters{coord(6)},coord(4:6));
fields = ['Circularity '; 'Area '; 'Eccentricity '; ...
 'Solidity '; 'AspectRatio '; 'MinorAxLen '];
[fields num2str([shapefac{coord(3)}(id1,:)' shapefac{coord(6)}(id2,:)'],3)]

%% ===
% ----------- Show moves from child-parent node array --------------------
% ==

n = 43;
coord = capMoves(n,:);

% ^^^
displayMovedisplayMove(coord(1:3), coord(4:6),set);
coord(7:end);

%% ===
% --------------- Look at shape profile of a move ------------------------
% ==

% figure(2)
n = 23;
coord = capMoves(n,1:6);

% ^^^
[ang1,sp1]=getShapeProfile(coord(1:3), ccenters{coord(3)},...
 shapeprof{1}.data(SPidx(coord(3)):SPidx(coord(3)+1)-1,:) ,1);
hold on
[ang2,sp2]=getShapeProfile(coord(4:6), ccenters{coord(6)},...
 shapeprof{1}.data(SPidx(coord(6)):SPidx(coord(6)+1)-1,:) ,1,[0 0]);
scatter(0,0,'xr')
hold off
grid on
% Compare various correlation metrics
match(1) = corr(sp1,sp2);
tt=[];
for t=1:3, tt(end+1)=abs(corr([sp1(t:end); sp1(1:t-1)],sp2)); end
for t=22:24, tt(end+1)=abs(corr([sp1(t:end); sp1(1:t-1)],sp2)); end
match(2) = max(tt);
match(3) = 1*sum(abs(sp2-sp1)<2)/numel(sp1);
match(4) = 1/abs(sqrt(prod(sp2-sp1)));
match(5) = 1-0.01.*sum(abs(sp2-sp1)./mean([sp1; sp2]))

%% >>>>>>>>>>>>>>>>>>>>>> VIEW NODE DATA <<<<<<<<<<<<<<<<<<<<<<<<<<<<<
%% ===
% -------------------------- Display a node ------------------------------
% ==

n = 23;
select = capMoves(n,:);

% ^^^
displayCoord(select(1:3),set);
select(4:end)'

%% ===
% ------------------ Get shape factors of a node -------------------------
% ==

68

n = 23;
coord = capMoves(n,1:3);
% ^^^
[~, id] = getSegIDNum(ccenters{coord(3)},coord);
fields = ['Circularity '; 'Area '; 'Eccentricity '; ...
 'Solidity '; 'AspectRatio '; 'MinorAxLen ']
[fields num2str(shapefac{coord(3)}(id1,:)',3.)]

%% ===
% ****************** FOR EASE OF VIEWING OTHER MATRICES ******************
% ==
%%
a=1;
displayMove(skipBlock(a,1:3), skipBlock(a,4:6),set);
skipBlock(a,end)

%%
a=1;
displayMove(skipAllow(a,1:3), skipAllow(a,4:6),set);
skipAllow(a,end-1)

%%
a=1;
displayMove(biDirInv(a,1:3), biDirInv(a,4:6),set);

%%
a=5;
displayMove(distMeas(a,1:3), distMeas(a,4:6),set);
distMeas(a,7:end)

%%
a=10;
displayMove(misMatch(a,1:3), misMatch(a,4:6),set);
misMatch(a,7:end)'

%%
a=1;
displayMove(closed(a,1:3), closed(a,4:6),set);

%%
a=1;
displayMove(misAligned(a,1:3), misAligned(a,4:6),set);
misAligned(a,7:end)

%%
a=3;
subplot 131, displayCoord(manualCorrec(a,4:6), set);
axis off
subplot 132, displayCoord([manualCorrec(a,4:5) ...
 round((manualCorrec(a,6)+manualCorrec(a,3))/2)], set);
axis off
subplot 133, displayCoord(manualCorrec(a,1:3), set);
axis off

displayCoord.m

function [dummy] = displayCoord(COORD, SET, W)

% displayCoord - A custom utility for displaying a sub-image of the area
% around COORD using the width W. COORD must be a 3D coordinate (x,y,z)
% where z denotes the image number in the set. The struct SET of the image

69

% set properties must be provided in order to obtain the image paths and
% properties (as is created by the function getSetProperties). The image
% shown is a combination of the original colour image and the binary image.
% The image number is displayed as the figure title.

% Syntax: displayCoord(COORD, SET, W)
%
% Inputs:
% COORD - The point around which the image must be shown
% SET - The struct of image set properties
% W - The required half-width around COORD (optional; default = 50)
%
% Outputs: none to the command window; diplayed figure
%
% Example:
% displayCoord([250 321 85], getSetProperties(1,5), 80)
% Will display image number 85 from image set 1, version 5. A 160x160
% pixel area around the point [250 321] will be shown. The colour image
% with a transparent version of the black and white image will be
% shown.

% Supporting m-files: getSetProperties.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

dummy=[];

if nargin<3
 W = 50;
end

im_num = [];
for i1 = 1:1:SET.range-size(num2str(COORD(3)+SET.offset),2)
 im_num = [im_num '0'];
end

colIm = (imread([SET.imInPath im_num num2str(COORD(3)+SET.offset) '.jpg']));
bwIm = 50*uint8(imread([SET.imOutPath num2str(COORD(3)) '.jpg'])>200);
temp = cat(3,bwIm,bwIm);
bwIm = cat(3,temp,bwIm);
imagesc(colIm+bwIm);
axis([COORD(1)-W COORD(1)+W COORD(2)-W COORD(2)+W])
axis square
title(num2str(COORD(3)))
hold on
scatter(COORD(1),COORD(2),'*','g')
hold off

%------------- END OF CODE --------------

displayMove.m

function [dummy] = displayMove(coord1, coord2, set, W)

% displayMove - A custom utility for displaying two sub-images
% side-by-side, as is required to display a move of a nephron from one
% image to another. The sub-images are of the area around coord1 and coord2
% using the width W. coord1 and coord2 must be 3D coordinates of (x,y,z)
% where z denotes the image number in the set. The struct SET of the image

70

% set properties must be provided in order to obtain the image paths and
% properties (as is created by the function getSetProperties).

% Syntax: displayMove(coord1, coord2, set, W)
%
% Inputs:
% coord1 - The point around which the first image must be shown
% coord2 - The point around which the second image must be shown
% SET - The struct of image set properties
% W - The required half-width around COORD (optional; default = 50)
%
% Outputs: none to the command window; diplayed figure
%
% Example:
% displayMove([120 359 62],[122 354 63], getSetProperties(2,3), 60)
% Will display image numbers 62 and 63 from image set 2, version 3
% side-by-side. A 120x120 pixel area around each of the points will be
% shown.

% Other m-files required: displayCoord.m
% Supporting m-files: getSetProperties.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 17-Mar-2015

%------------- START OF CODE --------------

dummy=[];

if nargin<4
 W = 50;
end

subplot(1,2,1)
displayCoord(coord1, set);
axis([coord1(1)-W coord1(1)+W coord1(2)-W coord1(2)+W])
axis off
subplot(1,2,2)
displayCoord(coord2, set);
axis([coord1(1)-W coord1(1)+W coord1(2)-W coord1(2)+W])
axis off

%------------- END OF CODE --------------

comparePaths2.m

function [metric, residual] = comparePaths2(x,y, tol)

% comparePaths2 - Calculates the residual, or difference between two sets
% of coordinates representing paths in 3D space (nephron trajectories). The
% residual is calculated as the minimum Euclidean distance between each
% point in y to the path x (the residual is a vector of the size of y). The
% similairty metric is then a threshold applied to the residual using the
% provided tolerance value/s.

% Syntax: [metric, residual] = comparePaths2(x,y, tol)
%
% Inputs:
% x - A Mx3 matrix of coordinates of the first path.
% y - A Nx3 matrix of coordinates of the second path.
% tol - The tolerance or threshold (Euclidean distance) used to
% calculate the similarity metric. This can be a single value

71

% or a vector with N elements.
%
% Outputs:
% metric - The similarity of y to x (%)
% residual - The 1xN vector of residuals of y with respect to x

% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% February 2015; Last revision: 12-Feb-2015

%------------- START OF CODE --------------

if nargin==2
 tol = 10;
end

residual=100.*ones(1,size(y,1)); % Preallocate a vector

%Compare each elemnt in y to coordinates in relevant image in x
for i=1:1:size(y,1)

 % Get coordinates in images i, i+1 and i-1 in x
 t1 = or(or(x(:,3)==y(i,3)-1,x(:,3)==y(i,3)+1),x(:,3)==y(i,3));
 %t1 = x(:,3)==y(i,3);
 xi = x(t1,1:3);

 % Calculate Euclidean distances to those coordinates from y(i)
 dis = dist(xi,y(i,1:3));

 % Residual is the minumum distance (sum of square difference)
 if ~isempty(dis)
 residual(i) = min(dis);
 end

end

% The metric is a threshold of the residual
 metric = 100.*sum(residual<tol(y(:,3)))./size(y, 1);

%------------- END OF CODE --------------

getShapeProfile.m

function [ang, dis] = getShapeProfile(coord, centers, SPmat, display,off)

% getShapeProfile - This function is used to obtain the shape profile (ang and
% dis) related to a given node (coord) from the nodes and shape profile
% matrices (centers and SPmat). There is an option for automatically
% plotting the extracted profile (if display=true) as well as applying an
% x-y offset (off) to the profile. This function is used purely for display
% and analysis pre- or post-tracking.
%
% Inputs:
% coord - The node at which the shape profile is desired.
% centers - The array of nodes on the current image.
% SPmat - The shape profile array for the current image in which
% the queried shape profile is contained. This is a Mx4
% array created during the feature extraction stage by the
% extractFeatures6 function.
% display - A flag to plot the shape profile (1) or not (0)

72

% off - The (optional) x-y offset in a 2 element array
%
% Outputs:
% ang - The angles (degrees) of the extracted shape profile
% dis - The radii related to ang
% diplayed figure

% Other m-files required: getSegIDNum.m
% isIncluded.m

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% February 2015; Last revision: 12-Feb-2015

%------------- START OF CODE --------------

 if nargin==4
 off=[0 0];
 end

 [segNo, ~] = getSegIDNum(centers,coord(1:2));
 [~, row] = isIncluded(centers(centers(:,3)==segNo,:), [coord(1:2) segNo]);
 SP = SPmat(and(SPmat(:,3)==row,SPmat(:,4)==segNo),1:2);
 ang = SP(:,1);
 dis = SP(:,2);

 if nargin==5

 x = (dis.*cosd(ang))-off(1);
 y = (dis.*sind(ang))-off(2);

 ang = atan2d(y,x);
 dis = sqrt(x.^2+y.^2);
 end

 if display==1
 plot(dis.*sind(ang),-dis.*cosd(ang),'-b.')
 end

%------------- END OF CODE --------------

array2struct_trackingData.m

function struc = array2struct_trackingData(arr)

% extractFeatures6 - Extracts nodes, shape factors and shape profiles for
% each component in a binary image. This function is custom-coded for binary
% images of kidney cross-sections.
%
% Syntax: S = array2struct_trackingData(A)
%
% Inputs:
% arr - The input array (capMoves from TrackerFinal.m)
% Outputs:
% struc - The parsed output structure
%
% Other m-files required: none

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 22-Mar-2015

73

%------------- START OF CODE --------------

if nargin==0
 arr = capMoves;
end

struc = cell(size(arr,1),1);
for i = 1:size(arr,1)

 ss.coord1 = arr(i,1:3);
 ss.coord2 = arr(i,4:6);
 ss.offset = arr(i,7:8);
 ss.ML_abn = arr(i,9);
 ss.ML_glom = arr(i,10);
 ss.ML_elong = arr(i,11);
 ss.ML_norm = arr(i,12);
 ss.ML_innmed = arr(i,13);
 ss.mismatch = arr(i,14);
 ss.childArea = arr(i,15);
 ss.distMetric = arr(i,16);
 ss.changeMetric = arr(i,17);
 ss.BidirecFail = arr(i,18);
 ss.MLfail = arr(i,19);

 struc{i} = ss;

end

%------------- END OF CODE --------------

sortCell.m

function out = sortCell(in)

% Sorts a cell array according to size of the contents of the cells.

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 22-Mar-2015

%------------- START OF CODE --------------
for ib=1:1:size(in,2)
 for ia=1:1:size(in,2)-1
 if size(in{ia},1)<size(in{ia+1},1)
 temp = in{ia};
 in{ia} = in{ia+1};
 in{ia+1} = temp;
 end
 end
end
out = in;
%------------- END OF CODE --------------

Note: Functions tubeplot.m, frenet.m, frame.m, tubeplot1.m and saveobjtube.m are used.

These functions are open source plotting tools available online.

74

Glomeruli Detection

GlomeruliDetection.m

%% %%%%%%%%%%%%%%%%%%%%%% GLOMERULI DETECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This is the main script for running glomeruli detection using the devised
% methodology.

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 12-Mar-2015

% Other m-files required: getSetProperties.m
% getProcessingParams.m
% custSigmoid.m
% ProcessImgStd.m
% detectGlomeruli.m
% predictCluster.m
% classifyImgSegments.m
% Image Processing Toolbox
% Statistics Toolbox
% featureNormalize.m
% featureUnnormalize.m
% predictCluster.m

% Instructions:
% 1. Set im to the image number
% 2. Set the parameter set to the image set being used
% 3. Run the first section of code (CTRL + ENTER); max. 30 seconds
% 4. Set the 4 parameters for glomeruli detection. These affect the
% sensitivity of detection
% 5. Run the second section of code (CTRL + ENTER); max. 15 seconds

%------------- START OF CODE --------------

%% 1. Acquire binary image from colour image

im = 7;
set = 'Test';

% --
setprops = getSetProperties(set);
params = getProcessingParams(set,im);
img = imread([setprops.imInPath num2str(im) '.jpg'], 'jpg');
imin = ProcessImgStd(img,params);

%% 2. Run glomeruli detection

% Choose parameters for glomeruli detection
glom_rad = 50;
peak_th = 0.75;
clus_lim = 400;
display = 1;

% --
[imGlom, G1, G2] = detectGlomeruli(imin, glom_rad, peak_th, ...
 clus_lim, display);

%------------- END OF CODE --------------

75

detectGlomeruli.m

function [imGlom, G1, G2] = detectGlomeruli(imin, glom_rad, peak_th, ...
 clus_lim, display)

% detectGlomeruli - Glomeruli are detected by means of a density plot
% created using the edges of the equalised image in imin. High density
% occurs at glomeruli locations. Regions of high density are detected and
% clustered into points through a custom method.
%
% A second method which clusteres and classifies segments based on their
% shape is applied, and used to valid the results of the first method (see
% classifyImgSegments.m).
%
% Syntax: [imGlom, G1, G2] = detectGlomeruli(imin, glom_rad, peak_th, ...
% clus_lim, display)
% [imGlom, G1, G2] = detectGlomeruli(imin)
%
% Inputs:
% imin - The mxnx6 matrix of input images created using
% ProcessImgStd.m
% glom_rad - The average radius of the glomeruli to be detected
% (default = 50)
% peak_th - The threshold to apply to the density function; must
% be a value from 0-1 (default = 0.75)
% clus_lim - The minimum number of points in the density point
% cloud that must be present within glom_rad to form a
% valid cluster (default = 400)
% display - An option for display, 1 = display desired (default = true)
%
% Outputs:
% imGlom - The output image which is the original image with the
% potential glomeruli segments highlighted
% G1 - Glomeruli detections of method 1
% G2 - Glomeruli detections of method 1 validated by method 2
%
% Other m-files required: classifyImgSegments
% predictCluster
%
% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 28-Mar-2015

%------------- START OF CODE --------------

if nargin==1
 glom_rad = 50;
 peak_th = 0.75;
 clus_lim = 400;
 display = 1;
end

% >>>>>>>>>>>>>>>>>>>>>> METHOD 1 <<<<<<<<<<<<<<<<<<<<<<<<<

% Find edge image
I = double(edge(imin(:,:,3),'log'));
% imagesc(1000.*I+double(proc(:,:,3)))

% Apply averaging filter
% H = fspecial('average',glom_rad);
% kkk = imfilter(I,H);
% kkk = kkk./(max(max(kkk)));
% III = kkk;

76

win = glom_rad;
kern = 1/win.*ones(win,win);
kern(round(win*win/2)) = 1;
III = conv2(double(I),kern);
III = III(win/2:end-(win/2),win/2:end-(win/2));
III = III./(max(max(III)));

% Isolate peaks
aa = III>peak_th;

% Get coordinates of 1's
[v,u] = ind2sub(size(aa), find(aa==1));
step = 1;
x = [v(1:step:end),u(1:step:end)];
x = double(x);

% Cluster through custom method (hierachical)
centroid = [];
k = 1;
while ~isempty(x)

 rndidx = round(1 + (size(x,1)-1).*rand);
 y = sqrt((x(:,1)-x(rndidx,1)).^2 + (x(:,2)-x(rndidx,2)).^2);
 pc = find(y<glom_rad);
 if ~isempty(pc)
 if numel(pc)<clus_lim, x(pc,:)=[];
 else
 c1 = x(pc,:);
 x(pc,:)=[];
 % clus{end+1} = c1;
 confidence = double(numel(pc))./double(clus_lim);
 centroid(end+1,:) = [round([mean(c1(:,1)) mean(c1(:,2))]) confidence];
 end
 end
 k = k+1;
end

% >>>>>>>>>>>>>>>>>>>>>> METHOD 2 <<<<<<<<<<<<<<<<<<<<<<<<<
% Use kmeans clustering on binary segments, then obtain the segments
% classified to the centroid that most represents glomeruli. Use these to
% verify the detections of method 1.

imlab = bwlabel(imin(:,:,6)>180,4);
[imtag,C] = classifyImgSegments(imlab, 10);
% Glomeruli centroid obtained through experimemtation
p = predictCluster([860 0.58 3.3 0.91 0.54],C);

clusdata = uint8(imtag==p(1));
[v,u] = ind2sub(size(clusdata), find(clusdata==1));
cx = [v(1:1:end),u(1:1:end)];
cx = double(cx);

th = 1*100;
val = zeros(size(centroid,1),1);
for i=1:1:size(centroid,1)

 if sum(((cx(:,1)-centroid(i,1)).^2+(cx(:,2)-centroid(i,2)).^2)<glom_rad^2)<th

...
 && centroid(i,3)<=5
 val(i) = 0;
 else
 val(i) = 1;
 end

77

end

val = logical([val' val']);
CC = centroid(val);
CC = reshape(CC,[],2);

imGlom =0.1.*imin(:,:,1)+10.*clusdata;
G1 = centroid;
G2 = CC;

% Display
if display
 imagesc(imGlom)
 colormap gray
 hold on
 scatter(G2(:,2),G2(:,1),'.','r')
 scatter(G1(:,2),G1(:,1),'o','g')
 hold off
 axis equal
end

%------------- END OF CODE --------------

predictCluster.m

function p = predictCluster(xtest, centroids)

% Given an array of centroids and test points, this function return
% the index of the centroid that is closest to each of the test points.
% The centroids are obtained using some clustering algorithm on a number of
% example points.

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 28-Mar-2015

 for i=1:size(xtest,1)
 dist = sum((bsxfun(@minus,centroids,xtest(i,:))).^2,2);
 [~, p(i)] = min(dist, [],1);
 end
end

classifyImgSegments.m

function [imtag, C] = classifyImgSegments(imin, K, ownC)

% classifyImgSegments - This function performs classification of binary
% image components based on five shape factors of area, solidity,
% aspectRatio, eccentricity and circularity. These are used as features per
% component. The components' features are then clustered using the K-means
% clustering method. Classification is then based on the nearest cluster
% centroid. The binary image components are then labelled according to the
% classification.
%
% Syntax: [imtag, C] = classifyImgSegments(imin, K)
% [imtag, C] = classifyImgSegments(imin, K, ownC)
%
% Inputs:
% imin - The input binary image
% K - The number of cluster centroids to be used
% ownC - (optional) An array of user-supplied cluster centroids
% which bypasses kmeans clustering

78

% Outputs:
% imtag - The output image tagged by cluster
% C - The centroids of the clusters formed
%
% Other m-files required: Image Processing Toolbox (bwlabel, regionprops)
% Statistics Toolbox (kmeans)
% featureNormalize
% featureUnnormalize
% predictCluster
%
% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 12-Mar-2015

%------------- START OF CODE --------------

% Obtain shape factors
imin = imin>180;
stats = regionprops(logical(imin), 'Area', 'Perimeter', ...
 'PixelIdxList',...
 'Eccentricity', 'MajorAxisLength',...
 'EquivDiameter', 'MinorAxisLength','BoundingBox');

for i=1:1:size(stats,1)
 area(i) = stats(i).Area;
% convexArea(i) = stats(i).ConvexArea;
 perimeter(i) = stats(i).Perimeter;
 equivDiameter(i) = stats(i).EquivDiameter;
 majorAxisLength(i) = stats(i).MajorAxisLength;
 minorAxisLength(i) = stats(i).MinorAxisLength;
% extent(i) = stats(i).Extent;
 eccentricity(i) = stats(i).Eccentricity;

 % Alternate solidity measure to increase speed
 tm = round(stats(i).BoundingBox);
 boxSize(i) = tm(3)*tm(4);
 solidity(i) = (stats(i).Area)./boxSize(i) + 0.21;
 if solidity(i)>1, solidity(i)=1; end

 pixelIdxList{i} = stats(i).PixelIdxList;
end
aspectRatio = majorAxisLength./minorAxisLength;
circularity = 1./(perimeter./(pi.*equivDiameter));
 circularity(circularity==inf) = 0;

% Define Features to use
X = [area' solidity' aspectRatio' eccentricity' circularity'];

if nargin==2
 % Run Kmeans to find hidden structure
 % max_iters = 500;
 [X_norm, mu, sigma] = featureNormalize(X);
 [~, centroids] = kmeans(X_norm, K,'EmptyAction','drop');
 C = featureUnnormalize(centroids, mu, sigma);
else
 C = ownC;
 K = size(C,1);
end

% Classify each segment based on centroids
class = zeros(size(X,1),1);
for i=1:1:size(X,1)
 xtest = X(i,:);
 class(i) = predictCluster(xtest, C);
end

79

%Produce image of classified segments
imtag = bwlabel(imin);
imtag(imtag>0)=1;

for tag=1:1:K
 nn=find(class==tag);
 idxs=[];
 for k=1:1:numel(nn)
 idxs = [idxs ;pixelIdxList{nn(k)}];
 end
 imtag(idxs) = tag;
end

%------------- END OF CODE --------------

featureNormalize.m

function [X_norm, mu, sigma] = featureNormalize(X)

%FEATURENORMALIZE Normalizes the features in X
% FEATURENORMALIZE(X) returns a normalized version of X where
% the mean value of each feature is 0 and the standard deviation
% is 1. This is often a good preprocessing step to do when
% working with learning algorithms.

% Andrew NG
% Coursera Machine Learning Course
% https://www.coursera.org/course/ml

mu = mean(X,1);
X_norm = bsxfun(@minus, X, mu);

sigma = std(X_norm,1);
X_norm = bsxfun(@rdivide, X_norm, sigma);

end

featureUnnormalize.m

function [XX] = featureUnnormalize(X_norm, mu, sigma)

% featureUnnormalize - Inverses the normalisation procedure that had
% occured on X_norm with a mean of mu and standard deviation of sigma.

% Author: Charita Bhikha
% email address: charita.bhikha@gmail.com
% March 2015; Last revision: 28-Mar-2015

XX = bsxfun(@times, X_norm, sigma);
XX = bsxfun(@plus, XX, mu);

end

Note: getSetProperties.m, getProcessingParams.m, custSigmoid.m and ProcessImgStd.m can be found under

other sections

Research Article
Towards Automated Three-Dimensional Tracking of
Nephrons through Stacked Histological Image Sets

Charita Bhikha,1 Arne Andreasen,2 Erik I. Christensen,2 Robyn F. R. Letts,1

Adam Pantanowitz,1 David M. Rubin,1 Jesper S. Thomsen,2 and Xiao-Yue Zhai3

1Biomedical Engineering Research Group, School of Electrical & Information Engineering, University of
the Witwatersrand Johannesburg, Private Bag 3, Johannesburg 2050, South Africa
2Department of Biomedicine, University of Aarhus, 8000 Aarhus C, Denmark
3Department of Histology and Embryology, China Medical University, Shenyang, Liaoning 110122, China

Correspondence should be addressed to Charita Bhikha; charita.bhikha@gmail.com

Received 26 February 2015; Revised 16 May 2015; Accepted 28 May 2015

Academic Editor: Giancarlo Ferrigno

Copyright © 2015 Charita Bhikha et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An automated approach for tracking individual nephrons through three-dimensional histological image sets of mouse and rat
kidneys is presented. In a previous study, the available images were tracked manually through the image sets in order to explore
renal microarchitecture. The purpose of the current research is to reduce the time and effort required to manually trace nephrons
by creating an automated, intelligent system as a standard tool for such datasets. The algorithm is robust enough to isolate closely
packed nephrons and track their convoluted paths despite a number of nonideal, interfering conditions such as local image
distortions, artefacts, and interstitial tissue interference. The system comprises image preprocessing, feature extraction, and a
custom graph-based tracking algorithm, which is validated by a rule base and a machine learning algorithm. A study of a selection
of automatically tracked nephrons, when compared with manual tracking, yields a 95% tracking accuracy for structures in the
cortex, while those in the medulla have lower accuracy due to narrower diameter and higher density. Limited manual intervention
is introduced to improve tracking, enabling full nephron paths to be obtained with an average of 17 manual corrections per mouse
nephron and 58 manual corrections per rat nephron.

1. Introduction

The kidney performs the vital functions of water and solute
transport, blood pressure regulation, and urine concentration
through the functional unit of the nephron. The microarchi-
tecture of the kidney has recently been the focus of a number
of studies [1–3]. In particular, the functional implications
of the renal microstructure on the underlying mechanisms
involved are of great interest [4–6]. A deeper characterisation
of the microarchitecture enables the development of models
to accurately simulate the functionality of the kidney. Some
important data includes the ratio of short- to long-looped
nephrons, relative length, type, and distribution of parts of
the nephron.

A large database of histological images of mouse [7] and
rat [8] kidneys was made available from previous studies
performed at the Aarhus University, Denmark. The previous

work involved manual tracking of the paths taken by a few
hundred nephrons through the image sets and thereafter
performing an in-depth analysis of the findings.

The ultimate objective of this study is to improve under-
standing of the architecture of the human kidney; however,
tracking of human nephrons is subject to a number of
practical limitations and has been left for future work. It
is anticipated that several structural and functional aspects
of mammalian kidneys, including human kidneys, may be
elucidated through these studies of rodent histology.

Each mouse and rat dataset comprises, on average,
1000 and 3000 images, respectively. Manually tracking one
long-looped mouse nephron requires tracking about 1800
elements, which takes hours to carry out. The extensive time
and effort required for such datasets make it impractical to
track large numbers of nephrons.Therefore any semi- or fully
automated tracking procedure would be beneficial.

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 545809, 13 pages
http://dx.doi.org/10.1155/2015/545809

http://dx.doi.org/10.1155/2015/545809

2 Computational and Mathematical Methods in Medicine

This created the need for an automatic tracking algorithm
which could potentially be used as a standard tool on
multiple datasets.This would allow the renal characterisation
of multiple species as well as pathological specimens. Since
the microstructure of nephrons can vary in the same kidney,
it is important to obtain large samples when taking mea-
surements, such as lumen diameters and nephron lengths, in
order to render the findings more statistically accurate and
representative of a variety of kidney specimens.

It is important to note the difference between automatic
tracking and segmentation.The latter is the isolation of inde-
pendent structures in images, such as the separation of organs
in computed tomography andmagnetic resonance images [9,
10], or the differentiation between tissue types in histological
images, mostly for purposes of visualisation or further pro-
cessing. In contrast, automatic tracking utilises the results of
segmentation to create an abstract computational reconstruc-
tion of the structure for purposes of accurate measurement.

Currently, there exists no method for the automatic
tracking of nephrons through serial slices. However, methods
for automatic tracking of other biological structures do
currently exist, with a common example being that of blood
vessels in retinal images [11–13]. Other structures for which
automatic tracking has been attempted include the dendrites
of individual neurons and the portal and hepatic venous trees
of the liver [14].

However, the methods from the aforementioned appli-
cations cannot be directly applied to the nephron tracking
problem due to a number of factors. A crucial difference
is that there are hundreds to thousands of nephrons [15]
that need to be independently tracked through serial slices
(a three-dimensional problem) as opposed to one or a few
structures in single images (a two-dimensional problem). In
particular, the tortuosity of the nephrons poses a major chal-
lenge. Nevertheless, several concepts from existing tracking
applications have been adopted in the current approach, such
as graph-based tracking, metrics to indicate confidence per
iteration, and a set of validation rules to reduce error.

This paper presents a methodology for automatically
tracking nephrons through images obtained from serial
kidney sections using image processing, feature extraction,
graph-based tracking, and machine learning techniques. The
combined application of these techniques presents a novel
approach to the nephron tracking problem.

The research aims to determine how effectively and accu-
rately an automated approach can be compared to themanual
method and to quantify how much manual intervention is
necessary in the automatic approach to track the paths of
entire nephrons. Once tracked, the results can be processed
to extract useful metrics and statistics.

2. Data Acquisition

The dataset was obtained from two previous projects per-
formed at the University of Aarhus as described in the
following.

Experiment 1. Kidneys from three 8-week-old male mice
were fixed through the abdominal aorta with glutaraldehyde.

The tissue blocks were cut perpendicular to the longitudinal
axis from the surface of the kidney to the papilla. The
tissue blocks were fixed overnight in the same fixative and
postfixed with OsO

4
, en bloc stained with uranyl acetate, and

embedded in flat molds in Epon. From each of the three
mouse kidneys 897, 990, and 1064 2.5 𝜇m thick consecutive
sections were obtained using a microtome equipped with a
Diatome histoknife. The sections were stained with toluidine
blue when heated onto the microscope slices [7].

Experiment 2. Kidneys from three 3-month-old male Wistar
rats were cut into 4252, 4384, and 4541 2.5-𝜇m thick serial
sections and processed as described above [8]. All animal
experiments were carried out in accordance with provisions
for the animal care license provided by the Danish National
Animal Experiments Inspectorate.

The multiple serial sections were digitized using a micro-
scope equipped with a digital camera attached to a standard
PC. In Experiment 1, the sections were digitized into images
using a ×4 objective lens resulting in a final image size of
2500 × 1675 pixels and an isotropic pixel size of 1.16 𝜇m.
In Experiment 2, the images were recorded using a ×3
objective lens, producing images of 2750×2500 pixels with an
isotropic pixel size of 1.550 𝜇m. The multiple digitized serial
images were subjected to a classic rigid registration followed
by a nonrigid transformation using custom-made software
written in C [16–18].

3. System Overview

From a methodological perspective, a tracking problem
would fit the generic architecture of a Computer Aided
Diagnosis (CAD) system [18] with stages of preprocessing,
defining regions of interest, feature extraction and selection,
and classification [19]. Figure 1 describes the architecture of
the tracking system developed in the present study.

The systemwas implemented inMATLAB [20] as a series
of independent modules where structures of information
are progressively passed from one stage to the next. This
framework is related to an object-orientated approach in
that the major functions are decomposed into independent,
reusable blocks. The development of the system is incremen-
tal, involving continuous reiteration through the three main
stages to achieve optimal performance.

4. Image Preprocessing

The purpose of the preprocessing stage is to prepare the
images for the feature extraction stage, by creating uniformity
among all nephron cross sections and addressing nonideal
factors. The images are processed such that required features
(nephron cross sections) are enhanced while unwanted fea-
tures (such as interstitial tissue cross sections, large blood
vessels, background pixels, and large artefacts) are filtered out
or reduced.

The lumens of the nephrons are the object chosen to be
isolated because they are more easily and accurately isolated

Computational and Mathematical Methods in Medicine 3

Input:
image set Preprocessing

Image
segmentation

Machine learning
training

Feature
extraction

(i) Shape factors
(ii) Node allocation
(iii) Shape profile

Machine learning
function (trained)

Tracking
algorithm

Reconstruction

Measurements
and visualisation

Output: 3D
nephron
models

Manually
tracked

Performance
evaluation

Figure 1: A high level overview of the nephron tracking system, showing the main subsystems and the flow of information between them.

than the nephron walls which touch each other. Each image
undergoes the following.

(a) Conversion to grayscale is performed as the staining
used on the specimens (toluidine blue [7]) results in
all structures being monochrome. If a more differen-
tiating stainingmethodwas to be used in future image
sets, the colour information should be retained.

(b) Background removal is achieved by forming a back-
ground mask through a threshold filtration, large
component extraction, and morphological image
closing using a circular kernel. The mask is then
inverted and applied to the original image by multi-
plication.

(c) Histogram equalisation is performed in order to
counteract uneven intensities which are commonly
present. Global and local adaptive equalisations are
applied through the use of a large and small equali-
sation window, respectively [21].

(d) Simple thresholding creates a binary image. The
threshold value is chosen so that it does not allow
independent lumens to merge while also not letting
small nephron cross sections disappear.

(e) Morphological erode/dilate cycles result in the
removal of thin interstitial tissue cross sections. The
kernel is chosen carefully so as to not mistakenly
remove small nephron cross sections.

(f) Binary components that are very small (<10 pixels)
and very large (>100 000 pixels) can be confidently
identified to not be nephron cross sections and are
removed.

Obtaining this final binary image is one of the most
important tasks, as the accuracy of the following stages
depends on how well the cross sections are isolated from one
another. Many parameter values are critical when deciding
on how many interstitial tissue cross sections appear in the
images. A compromise must be made between the number
of interstitial tissue cross sections present and the number of
small nephron cross sections that do not get eliminated.

Further preprocessing involves the removal of highly
distorted images and replacing them with the image above
or below (so as to not have missing image numbers in the
set). An average of 4 images per dataset has been manually

replaced. However, an automatic method can be devised if a
larger number of images are defective, for example, analysing
the mean intensity of each image in the image set.

4.1. Sigmoid Function for Automatic Parameter Variation. A
transition zone in the outer medulla exists where the thick
descending limb (≈60 𝜇m in diameter) suddenly narrows to
a diameter of 10–15𝜇m to form the thin descending limb
[22, 23]. This change requires almost all parameters of the
preprocessing steps to change to ensure that nephron cross
sections of all sizes are extracted. In order to automatically
accommodate this change in morphology, the parameters
of the preprocessing steps are made to vary according to
a modified sigmoid function [24] which has its inflection
point set at the transition zone. This also allows relatively
constant parameter values in the cortex and inner medulla.
The parameters of the sigmoid functions must be manually
chosen through experimentation as part of system calibra-
tion.

5. Feature Extraction

Feature extraction aims to simplify and concentrate useful
information from raw data.Within the images, large amounts
of the data are not useful, for example, the large number
of pixels making up the background. The pixel information
can instead be condensed into a set of features per nephron
cross section, which represent the problem to a sufficient
degree. Intuitively, themost useful information about a single
nephron cross section is its size, shape, colour, and location.

5.1. Image Segmentation. Connected component segmen-
tation [21] (4-connected neighbourhood) is used to seg-
ment the image into independent nephron cross sections.
Watershed segmentation is another possible segmentation
technique, which could perform better in cases where inde-
pendent lumens incorrectly merge through a few connected
pixels. However, this method tends to oversegment the image
[25], resulting in the division of elongated nephron cross
sections.

5.2. Node Allocation. A node is defined as a point coordi-
nate in the three-dimensional (3D) image space. The pixel
locations per nephron cross section can be reduced into a
set of nodes allocated along the cross section (e.g., a circular

4 Computational and Mathematical Methods in Medicine

Nephron cross section i in
image n

6 shape descriptors
k = 2 nodes
k = 2 shape profiles

(1 per node)

Figure 2: An example of a raw image is shown.The extracted binary
cross sections after preprocessing are highlighted in green and the
allocated nodes are shown as black dots. Each cross section will have
𝑘 nodes, 6 shape factors, and 𝑘 shape profiles. Many cross sections
in the cortex are not of actual nephrons but rather of the interstitial
tissue between them. The glomeruli are also highly segmented.

nephron can be represented by one centre coordinate, instead
of hundreds of pixel locations). An elongated cross section
can have multiple nodes along its length. This abstraction
greatly simplifies the problem, reduces the size of the data,
decreases the computational load on subsequent stages, and
concentrates the significant information.
𝐾-means clustering is used to allocate nodes [26]. Each

nonzero pixel on a single isolated binary cross section is
designated as an observation. If the nephron cross section
is circular or small, one centroid is requested (𝐾 = 1).
For elongated nephron cross sections, the 𝐾 value increases
until the mean distance between adjacent nodes is less than a
desired value. This ensures an adequate number of nodes are
allocated per nephron cross section depending on its size.

5.3. Shape Measurements. Tracking of a nephron using only
the 3D set of nodes results in the linkage of multiple neph-
rons, blood vessels, and interstitial tissue. By only considering
the point cloud, the algorithm is blind to a large amount of
available information. Therefore, shape information of each
cross section is also captured. Each node gets assigned a
group of shape metrics and a shape profile as shown in
Figure 2. The idea behind incorporating shape information
into the tracking is to make the algorithm intelligent and
highly confident at each incremental step of the process.

5.3.1. Shape Factors. A shape factor refers to a dimensionless
value that is dependent on an object’s shape but is indepen-
dent of its size [27].Thesemetrics are calculated using various
measurements of an object, such as its area, perimeter, and
diameter.They usually indicate the degree to which an object
deviates from an ideal shape, such as a square or circle [27].
Shape factors are extracted to capture abstract information
about each cross section along with the nodes. Circularity,
eccentricity, solidity, and aspect ratio were chosen as useful
descriptors for the cross sections. Area andminor axis length
are also captured as absolute-valued descriptors.

5.3.2. Shape Profile. The shape factors are useful for cross
sections that are round and elliptical, but they do not
adequately describe cross sections that are more arbitrarily

shaped, such as glomeruli or interstitial tissue cross sections.
As an additional feature, the shape profile, or centroidal
profile, of each cross section is calculated.

The shape profile of an object is a polar plot of the distance
to its boundaries with respect to a reference point [21]. It
transforms a two-dimensional shape representation into a
one-dimensional plot [21].The centroid is commonly selected
[21], but the nodes allocated in the previous step have been
chosen instead as they are more relevant to the problem and
will allow an accurate relative comparison of shape profiles
between nodes.

First, the edges of a single cross section are obtained using
a Sobel edge detector [28]. This method produces a well-
defined closed curve around the cross section.The edge pixels
are then processed into an ordered set of points. The angles
and radii relative to the reference point are calculated as in

𝜃 = arctan(
Pedge (𝑦) − 𝑃ref (𝑦)

Pedge (𝑥) − 𝑃ref (𝑥)
) ,

r (𝜃) = 󵄩󵄩󵄩󵄩󵄩Pedge −𝑃ref
󵄩󵄩󵄩󵄩󵄩
,

(1)

where Pedge is the vector of edge coordinates, 𝑃ref is the
reference coordinate, 𝜃 is the vector of angles, and r(𝜃) is
the vector of radial distances. The shape profile undergoes
unwinding and interpolation at desired angles in order to
eliminatemultivalued points and produce a consistent feature
set. The degree of abstraction is dependent on the angle
increment [21], which was chosen to be 15∘.

6. Tracking Algorithm

When a nephron is manually tracked by the eye, an intuitive
process is used by the brain. Once a single nephron cross
section has been fixated, a nephron cross section within
the same vicinity is searched for in the next image. Size,
shape, and colour are also subconsciously compared. The
tracking algorithm uses a similar process, with a number of
generalised rules to accommodate the tortuous path taken
by the many nephrons. The algorithm is highly dependent
on the quality of preprocessing and the accuracy of feature
extraction stages.

A graph-based approach similar to algorithms like the
A-star search algorithm is employed for tracking [29]. The
algorithm forms a graph in 3D space by establishing edges
between the nodes previously allocated during feature extrac-
tion.Open and closed lists are used tomanage the unexplored
and explored nodes, respectively. Each node is stored along
with its parent node, forming a linked list. Ideally, given a
starting seed, edges should be formed such that all nodes
belonging to one nephron are collected in the closed list. Prior
to proceeding, a few symbols are defined:

𝐼
𝑛
: image 𝑛,

C
𝑛
: the set of all nodes in image 𝑛,

𝑐
𝑖

𝑛
: the set of nodes on cross section 𝑖 in image 𝑛,

𝑐
𝑘

𝑖

𝑛
: the 𝑘th node on cross section 𝑖 in image 𝑛.

Computational and Mathematical Methods in Medicine 5

z

x

y

at coordinate P

Cross sections in
In+1 near P

Cross section in In

Figure 3: Each node in image 𝑛 has the potential to connect to 2
nodes vertically (in images 𝑛 + 1 and 𝑛 − 1) within some tracking
radius and 1 node horizontally on the same cross section as itself.
This allows cross sections to be linked through turns and bends.

6.1. Edge Formation. The edges are established through a
controlled set of criteria. Given a particular node 𝑐

𝑘

𝑖

𝑛
in image

𝐼
𝑛
, it has the potential to connect to three other nodes through

two types of edges as shown in Figure 3:

min (󵄩󵄩󵄩󵄩󵄩C𝑛±1 − 𝑐𝑘
𝑖

𝑛

󵄩󵄩󵄩󵄩󵄩
< 𝑟track) . (2)

6.1.1. Vertical Edge. It includes potential connections to cross
sections in the image above (𝐼

𝑛−1) and below (𝐼
𝑛+1

) the current
cross section. Nodes are searched for which lie within some
tracking radius around the current node; that is, a node
satisfying the following condition will become a child node
of the current node.

Only one node is allowed to be formed in each direction.
If multiple nodes satisfy the condition, the one with the
smallest Euclidean distance is used. The confidence of a
vertical edge is <1, as the possibility of linking to an incorrect
cross section exists due to the large number of closely packed
nephrons.

6.1.2. Horizontal Edge. It involves linking all nodes that lie
on the same cross section as the current node, that is, 𝑐𝑖

𝑛
.

The current node is termed the “entering” node.The pairwise
Euclidean distances between all nodes are used to establish
the linkage between the nodes.

6.2. Local Image Registration. Local alignment is needed (in
addition to the alignment in the previous study [8]) due to the
presence of local image distortions and progressive change
in morphology. Images 𝐼

𝑛
, 𝐼
𝑛+1

, and 𝐼
𝑛−1

are cropped around
the current node location.The subimages in 𝐼

𝑛+1
and 𝐼
𝑛−1

are
cross-correlated against 𝐼

𝑛
in order to obtain the translational

𝑥- and 𝑦-offset between the images [30]. These are typically
only a few pixels but have a large impact on the accuracy of
tracking since some nephron cross sections are also just a
few pixels wide. This local alignment only takes translation
into account; it is assumed that local rotational offsets are
minimal. Future work could explore the increase in accuracy
obtained with the use of more complex image registration
methods such as a nonrigid transform. Once a link has been
made between cross sections, the transformation is reversed
to avoid accumulation of the offsets.

6.3. Skipping Images. An image may be termed defective if
it has a large number of interfering artefacts or distortions,
which obscure cross sections of the nephron at hand. These
images can in general be skipped while tracking the nephron.
However, a maximum of 2 images (the equivalent of 5 𝜇m of
the specimen) may be skipped at a time, as the morphology
can change vastly in this span and would introduce too
large a probability of error in tracking (e.g., jumping onto
another nephron). A set of skipping criteria are established
using a direction buffer and refractory period to prevent skip
attempts from occurring too frequently (from every dead
end).

6.4. Validation Steps. Thesteps discussed thus farwouldwork
if the data only contained information of the nephron cross
sections. However, many of the cross sections actually belong
to interstitial tissue and blood vessels which are randomly
dispersed between the nephron cross sections and lie in close
proximity to the nephron at hand. Even though the correct
nephron path may be found, much interference is caused by
interstitial tissue cross sections, potentially causing the path
to branch from the nephron’s path and even link onto other
nephrons. A rule base of three validation steps is incorporated
into the tracking algorithm in order to eliminate incorrect
moves from one cross section to another.

(a) Distance Validation. The Euclidean distance (in the
𝑥-𝑦 plane) between a parent and potential child node
must be less than the sumof their radii (half theminor
axis length is used). This ensures that even if a cross
section lies within the tracking radius, consistency in
terms of size and relative displacement is maintained.
Many cases of interstitial tissue cross sections linking
to nephrons are eliminated by this rule.

(b) Bidirectional Movement Validation. If a move is made
from node A in image 𝐼

𝑛
to node B in image 𝐼

𝑛+1
,

then an attempted move from B to image 𝐼
𝑛
must

lead back to node A (i.e., bidirectionality must be
maintained). If not, the move is discarded. Moves
between interstitial tissue cross sections are typically
not connected in this manner and are hence largely
eliminated.

(c) Skipping Validation. This ensures that a move involv-
ing a skip is only allowed if the shape of the cross
section remains relatively constant during the skip.
This means that skips will not be allowed on turns
and bends, as this presents a high chance of error.The
change in shape ismeasured by the percentage change
in the six shape factors.

6.5. Reconstruction. The path is reconstructed through infer-
ence of the parent-child node pairs. The longest path forms
the nephron path, while shorter branches are eliminated as
they are most likely ambiguous nephron paths or pieces of
interstitial tissue that were mistakenly linked. Each coor-
dinate can be linked to its shape factors, enabling a 3D
rendering of the nephron path with a varying lumen radius.

6 Computational and Mathematical Methods in Medicine

Table 1: The intermediate output classes of the learning functions and their combination into final classes.

Final class Intermediate class

Valid move (1) A normal move between circular cross sections
(2) A normal move involving elongated cross sections

Invalid move (3) An abnormal move typically involving interstitial tissue or blood vessel cross sections
(4) A move involving a glomerulus cross section

x (5) A move in the inner medulla

215214

(a)

126124

(b)

Figure 4: The moves attempted by the unregulated tracking algorithm are captured, displayed, and labelled to form training examples for
the neural network. The image shows examples of a valid (a) and invalid (b) move, which will be labelled with a “1” and a “3,” respectively.

Lastly, the automatically tracked path must be evaluated
in 3D space. At this stage, known information about the
problem can be used, for example, the proximal and distal
convoluted tubules intertwine and must thus be in the same
vicinity in the cortex [7], or the proximal convoluted tubule
is longer and more convoluted than the distal [7]. Incorrect
paths can be eliminated by comparison with typical 3D
features of nephrons, such as curvatures of the bends. If the
results do not adhere to one or more of these expectations, it
could then be that the result is incorrect.

7. Validation Using Machine Learning

The validation rule base results in some nephrons being
correctly tracked, while others are incorrectly linked to other
nephrons, interstitial tissue cross sections, and blood vessel
networks. A large amount of information has not yet been
taken into account, such as the shape profile and shape
metrics. The purpose of the machine learning (ML) stage
is to incorporate some form of intelligent decision making
when linking one node to another during tracking. This is
done by assessing the shape descriptors and other features
of the two cross sections through a trained classifier. A
supervised Artificial Neural Network (ANN) and Support
Vector Machine (SVM) have been used to classify a move
from one cross section to another as either valid or invalid.
This classification is used by the tracking algorithm to make
decisions during tracking.

7.1. Feature Selection. The chosen features must fully char-
acterise a move from one cross section to another and
provide a good degree of distinction between different types
of examples. Since two cross sections are being compared, it

is useful to look at combined features. A total of 66 features
are used including

(i) the means and differences between the shape factors,
(ii) the Euclidean distance between nodes in the 𝑥-𝑦

plane,
(iii) the 𝑧 position of the nodes relative to the image set

to indicate depth into the kidney, that is, cortex to
medulla,

(iv) the image difference, normally 1, that can be 2 or 3 if
images have been skipped,

(v) image alignment offset, high offset coupledwith other
odd features, which may be a flag for an abnormal
move,

(vi) the shape profiles of the cross sections at 15∘ intervals
and a correlation metric of the shape profiles.

7.2. The Training Process. The training set is created by cap-
turing moves (pairs of cross sections) during unsupervised
tracking (without any machine learning validation) of a
chosen set of nephrons. Each parent-child pair is assigned a
label as in Figure 4.

Five output classes listed in Table 1 were chosen to form
the output matrix. A voting scheme [31] between the classes
is then used to determine the final classification as valid or
invalid. Class 4 is used to terminate tracking at the glomerulus
while class 5 is used as a “region signal” to change the mode
of tracking between the cortex and inner medulla. The shape
factors and descriptors belonging to each cross section in the
pair can be extracted as required and the 66 features are then
combined to form the input matrix. A multiclass classifier is
produced using the one-versus-all approach [32].

Computational and Mathematical Methods in Medicine 7
Le

ve
l o

f a
ut

om
at

io
n

Er
ro

r p
ro

ba
bi

lit
y

No validation
Validation sensitivity

Blocking everything

N
um

be
r o

f m
an

ua
l c

or
re

ct
io

ns

100

0
0 1

1

LN

≈3

Figure 5: The number of false positives increases with increasing
validation sensitivity, resulting in premature termination of track-
ing. This means only a portion of the nephron is tracked, but with
a low error, where error refers to deviation onto an incorrect path.
If manual correction is used, the number of corrections required for
continuation of tracking will increase with sensitivity (up to 𝐿

𝑁
, the

length of the nephron). This means a decreased level of automation
but also decreased chances of error.The graph is merely conceptual.

In addition to manual selection of examples, a method
involving a feedback process between the tracking algorithm
and the training process is used in order to collect a fair
number of examples per class. This prevents the formation
of a skewed dataset or underrepresentation of a certain class,
which may affect classification accuracy.

A threshold is applied to the continuous output of the
ANN in order to deem the result positive or negative. This
threshold has an impact on the sensitivity of invalid move
rejection. For the SVM, the width of the radial basis function
(RBF) kernel has the analogous effect. It is critical that false
positives are minimised as these would halt the tracking pro-
cess by blocking a valid move along the path of the nephron,
hence preventing the rest of the nephron from being tracked.
A false negative on the other hand would allow an incorrect
path to be formed, but the incorrect path is typically halted
due to the presence ofmany invalidmoves through interstitial
tissue and is therefore not as critical as a false positive.

8. Manual Intervention

Premature termination of tracking (due to nonideal prepro-
cessing, feature extraction, image artefacts, or distortions)
commonly occurs in the inner medulla. Image spatial resolu-
tion is a limiting factor for these small cross sections. Oneway
of overcoming premature termination without introducing
an error is to allow the user to manually bypass problematic
cross sections at the end points of the automatically tracked
path. This, of course, reduces the automaticity of the system
but still dramatically reduces the time and effort required for
the manual tracking task. The degree of automation can be
controlled by sensitivity of the validation stages, as shown in
Figure 5.

9. Results

9.1. Automatically versus Manually Tracked Nephrons. The
accuracy of an automatically tracked nephron is measured
against the manually tracked data, which forms the gold
standard. The following is defined for ease of description:

Υ
𝑛
: the manually tracked path of nephron 𝑛,

Ψ
𝑛
: the automatically tracked path of nephron 𝑛.

When the result has a low degree of correctness, it
is because either tracking terminated prematurely or the
path deviates onto an incorrect one (linkage with another
nephron, blood vessel, or interstitial tissue cross sections),
or a combination of these. The outcome of the tracking of a
particular nephron is hence evaluated using two correctness
measures:

(1) 𝛼
𝑛
= % of Ψ

𝑛
that is correct – “accuracy,”

(2) 𝛽
𝑛
= % of Υ

𝑛
, that Ψ

𝑛
covers – “extent.”

These are calculated using per image residuals between
the automatic and manually tracked coordinates. 𝛼measures
the similarity to the manually tracked nephron. It is low if the
path deviates onto other structures and high if the tracked
path contains data of only the target nephron, be it a small or
large portion. 𝛽measures how much of the target nephron is
tracked; it is low (relative to the ideal 𝛽 value per segment) if
only a small portion is tracked. It can still be high if the path
branches onto incorrect structures, as long as a large part of
the target nephron is found.

The tracking algorithm successfully tracks large portions
of the nephrons automatically, occasionally requiring man-
ual intervention in order to obtain full nephron paths. 16
nephrons from 2 mouse datasets and 11 nephrons from 2
rat datasets were chosen to form a test set. These were
not used to form the training set for the machine learning
algorithms. Different parts of the nephrons were tracked with
varying accuracies and extents as shown in Table 2, due to
differing tubule characteristics. In particular, the proximal
convoluted tubule (PCT) and proximal straight tubule (PST)
were tracked well, while the descending thin limb (DTL) and
ascending thin limb (ATL) of the loop of Henle were more
problematic in both the mouse and rat datasets. Automatic
tracking of the PCT of a rat nephron is shown in Figure 6
and example of the PCT, PST, and DTL of a nephron tracked
both manually and automatically is compared in Figure 7.
The thick ascending limb (TAL) is tracked well in both the
mouse and rat while the distal convoluted tubule (DCT) is
only tracked well in the rat due to its larger diameter.

Tracking a full mouse nephron requires an average of
19 manual corrections while a full rat nephron requires 58
manual corrections. The frequency of manual intervention
is dependent upon the number of image artefacts and
distortions encountered along the path of the nephron, as
well as the visibility of the cross sections. A longer path (in
terms of the number of moves) requires more corrections;
for example, the rat nephrons are on average 4.7 times longer
than mouse nephrons.

8 Computational and Mathematical Methods in Medicine

Table 2: Test results on a chosen set of 16 mouse nephrons and 11 rat nephrons. The number of manual corrections is given as the mean ±
one standard deviation. Ideal 𝛽 values for the six segments for both the mouse and rat were derived from measurement of manual data and
the results in the appendix of the previous study [8].

Area of
nephron

𝛽IDEAL (%) [8]

Mouse Rat

𝛽MEAN
(%)

Extent:
𝛽MEAN/𝛽IDEAL

(%)

Accuracy:
𝛼MEAN
(%)

Average number
of manual
corrections

𝛽MEAN
(%)

Extent:
𝛽MEAN/𝛽IDEAL

(%)

Accuracy:
𝛼MEAN
(%)

Average
number of
manual

corrections
PCT 25 27.36 109.44 95.14 1.20 ± 1.11 28.48 113.92 96.32 5.20 ± 4.70
PST 18 16.33 90.72 98.24 0.50 ± 0.71 14.64 81.33 90.17 5.00 ± 2.75
DTL 19 13.90 73.16 80.57 5.44 ± 1.69 15.83 83.32 84.63 24.00 ± 8.19
ATL 14 14.94 106.71 85.67 2.46 ± 1.87 15.63 111.64 88.47 13.50 ± 6.95
TAL 14 13.19 94.21 96.32 3.64 ± 1.55 11.50 82.14 97.48 6.67 ± 3.09
DCT 10 14.29 142.90 72.13 5.86 ± 3.00 13.91 139.10 95.23 4.33 ± 2.49
Full 100 100 100 87.49 19.09 ± 1.65 100 100 80.85 58.70 ± 4.70

Figure 6: An example of a labelled image is shown with the red
numbers representing the different manually tracked nephrons.The
automatically tracked nephron (number 41) is superimposed, shown
in white with black crosses at the nodes. Unlabelled “41” cross
sections are of the DCT which was not tracked in this instance.

The average number of corrections required for each part
of the nephron is contained in Table 2. Most corrections are
for the DTL and ATL. Figure 8 displays the ability to track an
entire nephron with manual intervention.

The number of manual corrections varies with the sen-
sitivity of the validation steps. For example, decreasing the
ANN threshold, increasing the coefficient of distance valida-
tion, or turning bidirectional validation off will decrease the
number of requests for manual correction by the algorithm.
However, this increases the chance of tracking incorrect
structures (decreases 𝛼) as shown conceptually in Figure 5.
The settings of the validation stepswere therefore chosen such
that the algorithm tracks with high accuracy (𝛼) while not
requesting excessive unnecessary manual interventions.

9.2. Efficacy of Validation Steps. The validation steps for a
particularmove are carried out in a set sequencewith the least
computationally expensive step being first. This is so that if
an invalid move is detected, it does not have to go through all

Table 3: The invalid move rejection rate and accuracies of the
validation steps are shown. Results are based on 8017 invalid moves.

Validation step
% of total

invalid moves
flagged

% of detected
invalid moves
that are unique

% accuracy

Distance Val. 40.21 25.94 99.67
Skip Val.
Total 38.59 25.38 90.01
Skips 98.97

Bidirec. Val. 29.92 18.94 92.05
ML Val. 57.61 42.46 93.62

of the subsequent stages. However, for testing, all validation
steps were carried out.

9.2.1. Validation through the Rule Base. Although the types
of invalid moves are diverse, the rule base attempts to model
the majority through hard-coded, direct rules while the ML
validation attempts to model them in a more generalised, less
rigid manner. The rejection rates and accuracies are detailed
in Table 3.

All four rules produce accuracies above 90% with the
distance validation rule being the most accurate (99.67%)
and the machine learning validation being the most often
triggered (captures 57.61% of all invalid moves). Given a large
set of detected invalid moves, certain fractions are uniquely
captured by each of the validation steps as shown in Table 3.
Of the 8017 invalid moves, 49.65% were measured as being
captured by more than one rule.

Ideally, theML validation stage should be able to perform
the tasks of distance and skipping validation, as the rules
should be spontaneously integrated into the learnt hypoth-
esis. Since 57.54% of the moves captured by the machine
learning step are captured by other rules, it can be said that
it does perform the tasks of the rule base to some degree. It
can also be said that the rule base models the abnormalities
to a good degree since the majority of invalid moves are
eliminated even without the machine learning component.

Computational and Mathematical Methods in Medicine 9

Automatically trackedManually tracked

1100
1200

1300

800

1000

0

100

200

300

400

Medulla

1100
1200

1300

800

1000

0

100

200

300

400

Cortex

(a) (b)

100

90

80

70

60

50

40

30

20

10

Re
sid

ua
l/e

rr
or

 (p
ix

el
s)

Figure 7: A manually tracked mouse nephron is shown on the left. The same nephron is successfully tracked automatically by the algorithm
(with 𝛼 = 97%) and is shown on the right. Tracking terminates automatically at the glomerulus. Note that, in each plot, the cortex is shown
at the bottom and the DTL extends upwards. The path is coloured by the error, or residual, with respect to the manually tracked nephron.
Slight discrepancies in appearance are due to different image alignments and different point coordinates used by the two methods. The distal
DTL has greater error simply because the manual path was not tracked as far (therefore, 𝛽 > 100%). It can be seen in the error histogram that
most of the residuals are less than 15 pixels. The correct paths of the PCT, PST, and DTL are tracked.

Manually tracked

1000

1100

1200

700
800

900
0

100

200

300

400

500

600

(a)

Automatically tracked

700 1000

1100

1200

800
900

0

100

200

300

400

500

600

(b)

Semiautomatically tracked

1000

1100

12000

100

200

300

400

500

600

700
800

900

(c)

Figure 8: A manually tracked mouse nephron is shown on the left. The PCT and PST are successfully tracked automatically as shown in the
middle plot. Tracking terminates due to diminishing tubule size coupled with artefacts in the inner medulla. A more complete nephron path
is obtained with 5 manual corrections on the DTL and 4 on the ATL, as shown on the right plot (semiautomatically). The paths are coloured
by the error, or residual, with respect to the manually tracked nephron. The maximum residual (shown as dark red) in this instance is 35
pixels. The black asterisks are points of manual correction. This is acceptable considering that a total of 1222 coordinates make up this path.
𝛼AUTO = 97.13%; 𝛽AUTO = 39.84%; 𝛼SEMI-AUTO = 98.77%; 𝛽SEMI-AUTO = 90.23%.

10 Computational and Mathematical Methods in Medicine

Table 4: Results of the ANN and SVM on the test set of 712 examples. The 5 classes have been condensed into valid and invalid classes for
final classification.

Classification algorithm Predicted class Target class Performance indicators (%)
Valid Invalid Accuracy Precision Sensitivity

ANN (threshold = 0.3) Valid 492 32 93.82 93.62 84.61Invalid 12 176

SVM with RBF kernel (width = 5) Valid 475 19 93.25 86.70 90.86Invalid 29 189

9.2.2. Validation through an ANN and SVM. The machine
learning algorithms eliminate a large number of invalid
moves which would have otherwise resulted in multiple
nephrons, interstitial tissue, and blood vessels being linked
(42.46% of detections are unique). The labelled dataset
consisted of 9424 examples, which was split into train-
ing, validation, and test sets with a 0.7 : 0.15 : 0.15 ratio,
respectively.

Both the ANN and SVM produced a classification accu-
racy of approximately 93% on the test set, with the ANN
being purposely less sensitive (84% for the ANN compared
to 90% for the SVM) in order to minimise the number of
false positives. The confusion matrix and performances are
detailed in Table 4.

The impact of different features on classifying different
types of examples is visualised and deduced using Principal
Component Analysis (PCA), a dimensionality reduction
technique. PCA of the features revealed that the shape profile
feature is most significant when differentiating between
classes 1 and 2, while shape factors play more of a role in
distinguishing classes 3 and 4.

9.3. Processing Times. The current implementation is not
optimally efficient, although the main aim was to develop the
technique rather than optimising efficiency for an end-user
application. Computational bottlenecks include the discrete
Fourier transform required for image alignment, continuous
calling of the ANN structure, and reading in three images per
iteration of the algorithm. An implementation of the system
using C++ or anothermore efficient language would decrease
execution time. Parallel processing and use of a graphics
processing unit for imaging operations would also improve
speed.

10. Analysis and Discussion

The validation steps generally increase accuracy (𝛼) while
manual intervention increases the extent to which a nephron
is tracked (𝛽). Each portion of the nephron is discussed with
reference to the results in Table 2. A result applies to both the
mouse and rat datasets if it is not explicitly distinguished.

From the measured 𝛽 values, up to 43% of a nephron’s
length is made up of the PCT and PST. The algorithm is able
to track the full length of the PCT and PST with 1–3 and 2–15
manual corrections in the mouse and rat, respectively, when
large distortions and artefacts are detected.

Although the PCTwas predicted to be themost challeng-
ing part of the nephron to track due to its convoluted nature,

it is tracked with high accuracy (𝛼 = 95.14% in the mouse
and 𝛼 = 96.34% in the rat) as follows.

(i) The cross sections are well isolated as they are large in
diameter (15–30 pixels wide) and well defined (they
have thick walls).

(ii) The average distance between neighbouring cross
sections (≈25 pixels) is larger than the average image
misalignment of 4 pixels.

Similarly, the PST of the mouse is tracked well with 𝛼 =
98.24% as the cross sections are well isolated and defined and
the paths have a relatively straight course. In comparison,
tracking of the rat PST produced a lower accuracy of 90.17%
due to a higher frequency of tissue folds leading to incorrect
linking with other nephrons.

A class 2 move is successfully detected by the ML
algorithms when the PCT of a nephron joins the glomerulus
at its urinary pole, thus terminating the tracking. Without
this, fragments in the glomerulus would be tracked towards
the vascular pole, and tracking would continue through the
adjoining afferent/efferent arteriole, which then joins blood
vessel systems and other glomeruli, which is undesirable.
When the PST narrows into the DTL, a class 5 move is
successfully triggered.The level of the class 5 output is used as
a region signal to change themode of tracking into a unidirec-
tional one for the inner medulla. This reduces error in track-
ing in the innermedulla tremendously as ambiguity decreases
when only one unidirectional path is allowed to be formed.

The DTL in mouse and rat kidneys is tracked with only
moderate accuracies of 𝛼 = 80.57% and 𝛼 = 84.63%,
respectively, as the cross sections are very small in diameter
(3–8 pixels) and very dense (≈6 pixels between neighbouring
cross sections). This results in a higher error probability
during tracking as these values are comparable to the average
misalignment of 4 pixels. Confusion is more likely among
identical, closely packed nephrons which are not ideally
aligned. The DTL requires many manual corrections (27
on average in the rat) to produce a high 𝛽 value. Frequent
premature termination occurs because the cross sections are
lesswell defined,making itmore difficult to isolate them (very
thin nephronwalls cause independent cross sections tomerge
in the binary image), which results in missing cross sections
and invalid moves as seen by the ANN.

The ATL faces the same challenges as the DTL. However,
these cross sections are slightly larger (6–12 pixels) and
have thicker walls and are thus tracked more accurately in
comparison to the DTL. The ATL requires about half the
number of manual corrections when compared to the DTL
in both the mouse and rat datasets.

Computational and Mathematical Methods in Medicine 11

The TAL is tracked well (with 96.32% and 97.48% accura-
cies in the mouse and rat, resp.) as its cross sections are well
isolated and relatively large (8–12 pixels in the mouse and 13–
20 pixels in the rat), and the path is straight.

The DCT differs vastly in the mouse and rat datasets. In
themouse, the DCT remains narrow as it progresses from the
TAL. The small cross sections making up a convoluted path
are difficult to track. Fast changes inmorphology (due to only
having every second slice) combined with small-sized cross
sections trigger the distance validation rule. An average of 5
corrections is required in the mouse DCT.

The rat DCT is tracked well as its characteristics are
comparable to the rat PCT.The cross sections aremuch larger
than in the mouse. Although the DCT is longer in the rat,
it also requires an average of 5 corrections. Branching is
correctly handled when the DCT of multiple nephrons join
through a common collecting duct.

Manual intervention is useful when the path terminates
prematurely (usually due to image defects), as the user
simply bypasses the problematic cross section. In cases where
incorrect links are made between different nephrons, manual
intervention is not useful.The latter case is difficult to identify
and correct without comparison to themanually tracked data
or by manual inspection.

In general, the results are highly dependent on the quality
of the images, the size of the nephron cross sections, and the
amount of interfering interstitial tissue. Thicker slices (e.g.,
every second slice in the mouse (5 𝜇m) compared to every
slice in the rat (2.5 𝜇m)) also produce less accurate results as
the change in morphology is then more abrupt from image
to image. Local image distortions and low image resolution
in images of the inner medulla are the main limiting factor in
automatically tracking full nephron paths.

A high frequency of images containing artefacts and tis-
sue folds decreases the accuracy of the findings tremendously,
as it only requires a single incorrect move to cause the path to
deviate from the nephron at hand onto another structure (i.e.,
the stability of the tracking process is completely dependent
on the results of the current iteration). This is especially
applicable for tracking in the inner medulla, where high
tubule density coupled with an artefact may result in two
nephron cross sections joining incorrectly and the turn being
mistaken for a loop of Henle.

11. Future Work

Further studies would be required to establish if the method
developed is sufficiently generic to be used to map the archi-
tecture of other anatomical structures such as blood vessel
networks in tomographic CT and MRI images. The learning
algorithm would require retraining on new examples, and
parameters could be tuned to control algorithm sensitivity,
allowing the system to adapt to the features of different
structures. The applicability and adaptability of this system
to other fields are an avenue for future work.

11.1. Recommendations for Future Histological Image Sets.
Higher resolution images would offer improved accuracy in
isolation and tracking of cross sections in the inner medulla.

Another useful additionwould be usingmarkers on the slides
to aid automatic image alignment, as well as eliminating or
marking highly distorted images.

A previous study by Pannabecker and Dantzler [2, 3]
manually reconstructed rat nephrons using immunohis-
tochemically stained sections (antibodies which bind to
segment specific proteins) to stain various parts of the
nephrons.This resulted in the DTL, ATL, collecting duct, and
blood vessels fluorescing with different colours. Such staining
methods would provide differentiating colour information
and features to the tracking andmachine learning algorithms,
respectively. The confidence of results would increase as
different types of cross sections could easily be distinguished
from one another and interstitial tissue interference would be
virtually eliminated as only cross sections of interest would
be highlighted. A drawback is that the morphology of the
tubules may not be intact as only particular features of the
tubules would be stained.

12. Conclusion

Theaimof the present studywas to develop an automated sys-
tem for the tracking of nephrons. A proposed methodology
involving image processing and a custom tracking algorithm
supervised by machine learning algorithms is presented. A
number of features are extracted in order to retain shape
information during the data abstraction process. The ANN
and SVM have high classification accuracies and eliminate
invalid moves caused by a number of hindering factors such
as artefacts. The presented system is able to successfully
track large portions of the nephrons automatically through
both highly convoluted and straight paths. Particularly, the
PCT, PST, and TAL are tracked with >90% accuracies in
the mouse and rat datasets and form more than half of the
nephron length. While only portions of the paths can be
obtained automatically from the starting seed, full nephron
paths can be obtained with an average of 17 and 62 manual
corrections in themouse and rat datasets, respectively.This is
reasonable considering the thousands of coordinates making
up each nephron path. Although complete automation is still
elusive, the system saves a considerable amount of time and
effort compared to the manual tracking task as it performs
99% of the task automatically. Performance may improve
with further training of the machine learning algorithms,
optimising automatic parameter variation, and manually
eliminating image artefacts. The methods developed during
this study form a foundation for further development towards
a fully automated nephron tracking system.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the University of Witwa-
tersrand for providing the funding and resources required

12 Computational and Mathematical Methods in Medicine

to carry out this research. The authors are grateful for the
excellent technical assistance of Inger B. Kristoffersen and
Birgitte Lundbøl Grann.The establishment of the histological
material was supported by grants from The Danish Council
for Independent Research, Medical Sciences, FSS 11-104255
(to Erik I. Christensen), the Novo Nordic Foundation, the
Danish Biotechnology Program, Daloon Foundation, the
European Commission (EU Framework Program 6, Euro-
Gene, Contract no. 05085), and the University of Aarhus
Research Foundation. Arne Andreasen was supported by
“Maskinfabrikant Jochum Jensen og hustru Mette Marie
Jensen,” “F. Poulsens Mindelegat,” “Søster og Verner Lipperts
Fond,” and “Bagenkop Nielsens Myopi-Fond.” The Amira
visualization system was donated to Arne Andreasen by the
Toyota Foundation.

References

[1] A. T. Layton, T. L. Pannabecker, W. H. Dantzler, and H.
E. Layton, “Functional implications of the three-dimensional
architecture of the rat renal inner medulla,” The American
Journal of Physiology—Renal Physiology, vol. 298, no. 4, pp.
F973–F987, 2010.

[2] T. L. Pannabecker and W. H. Dantzler, “Three-dimensional
architecture of collecting ducts, loops of Henle, and blood
vessels in the renal papilla,” American Journal of Physiology—
Renal Physiology, vol. 293, no. 3, pp. F696–F704, 2007.

[3] T. L. Pannabecker, D. E. Abbott, and W. H. Dantzler, “Three-
dimensional functional reconstruction of inner medullary thin
limbs ofHenle’s loop,”TheAmerican Journal of Physiology: Renal
Physiology, vol. 286, no. 1, pp. F38–F45, 2004.

[4] W. Kriz, “The architectonic and functional structure of the
rat kidney,” Zeitschrift für Zellforschung und Mikroskopische
Anatomie, vol. 82, no. 4, pp. 495–535, 1967.

[5] T. L. Pannabecker, “Comparative physiology and architecture
associated with the mammalian urine concentrating mech-
anism: role of inner medullary water and urea transport
pathways in the rodent medulla,” The American Journal of
Physiology—Regulatory Integrative and Comparative Physiology,
vol. 304, no. 7, pp. R488–R503, 2013.

[6] H. Ren, N.-Y. Liu, A. Andreasen et al., “Direct physical contact
between intercalated cells in the distal convoluted tubule and
the afferent arteriole in mouse kidneys,” PLoS ONE, vol. 8, no.
9, Article ID e70898, 2013.

[7] X.-Y. Zhai, J. S. Thomsen, H. Birn, I. B. Kristoffersen, A.
Andreasen, and E. I. Christensen, “Three-dimensional recon-
struction of the mouse nephron,” Journal of the American
Society of Nephrology, vol. 17, no. 1, pp. 77–88, 2006.

[8] E. I. Christensen, B. Grann, I. B. Kristoffersen, E. Skriver, J. S.
Thomsen, and A. Andreasen, “Three-dimensional reconstruc-
tion of the rat nephron,”American Journal of Physiology—Renal
Physiology, vol. 306, no. 6, pp. F664–F671, 2014.

[9] P. Campadelli, E. Casiraghi, and S. Pratissoli, “Automatic seg-
mentation of abdominal organs from CT scans,” in Proceedings
of the 19th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI ’07), vol. 1, pp. 513–516, IEEE, Patras, Greece,
October 2007.

[10] H.-Y. Lee, N. C. F. Codella, M. D. Cham, J. W. Weinsaft, and
Y. Wang, “Automatic left ventricle segmentation using iterative
thresholding and an active contour model with adaptation

on short-axis cardiac MRI,” IEEE Transactions on Biomedical
Engineering, vol. 57, no. 4, pp. 905–913, 2010.

[11] A. Can, H. Shen, J. N. Turner, H. L. Tanenbaum, and B.
Roysam, “Rapid automated tracing and feature extraction from
retinal fundus images using direct exploratory algorithms,”
IEEE Transactions on Information Technology in Biomedicine,
vol. 3, no. 2, pp. 125–138, 1999.

[12] T. Yedidya and R. Hartley, “Tracking of blood vessels in retinal
images using Kalman filter,” in Proceedings of the Digital Image
Computing: Techniques and Applications (DICTA ’08), pp. 52–
58, IEEE, Canberra, Australia, 2008.

[13] B. Karasulu, “Automatic extraction of retinal blood vessels: a
software implementation,” European Scientific Journal, vol. 8,
no. 30, 2012.

[14] X. Kang, Q. Zhao, K. Sharma, R. Shekhar, B. J. Wood, and
M. G. Linguraru, “Automatic labeling of liver veins in CT by
probabilistic backward tracing,” in Proceedings of the IEEE 11th
International Symposium on Biomedical Imaging (ISBI ’14), pp.
1115–1118, IEEE, Beijing, China, April-May 2014.

[15] R. N. Douglas-Denton, J. F. Bertram, B. Diouf, M. D. Hughson,
and W. E. Hoy, “Human nephron number: implications for
health and disease,” Pediatric Nephrology, vol. 26, no. 9, pp.
1529–1533, 2011.

[16] Y. L. Zhang, S. J. Chang, X. Y. Zhai, J. S. Thomsen, E. I.
Christensen, and A. Andreasen, “Non-rigid landmark-based
large-scale image registration in 3-D reconstruction of mouse
and rat kidney nephrons,”Micron, vol. 68, pp. 122–129, 2015.

[17] J. S. Thomsen, L. Mosekilde, J. Barlach, C. H. Søgaard, and E.
Mosekilde, “Computerized determination of 3-D connectivity
density in human iliac crest bone biopsies,” Mathematics and
Computers in Simulation, vol. 40, no. 3-4, pp. 411–423, 1996.

[18] K. B. Wagholikar, V. Sundararajan, and A. W. Deshpande,
“Modeling paradigms for medical diagnostic decision support:
a survey and future directions,” Journal of Medical Systems, vol.
36, no. 5, pp. 3029–3049, 2012.

[19] J. Stoitsis, I. Valavanis, S. G. Mougiakakou, S. Golemati, A.
Nikita, and K. S. Nikita, “Computer aided diagnosis based on
medical image processing and artificial intelligence methods,”
Nuclear Instruments and Methods in Physics Research A: Accel-
erators, Spectrometers, Detectors and Associated Equipment, vol.
569, no. 2, pp. 591–595, 2006.

[20] MATLABVersion R2012a,MathWorks, Image Processing Tool-
box; Neural Network Toolbox; Statistics Toolbox.

[21] E. R. Davies, Computer & Machine Vision: Theory, Algorithms,
Practicalities, Elsevier, Egham, UK, 2012.

[22] L. C. Junqueira and J. Carneiro, Basic Histology—Text & Atlas,
The Urinary System, McGraw-Hill, New York, NY, USA, 2005.

[23] W. A. Beresford, “Urinary system,” in Histology Full-Text,
chapter 23, Anatomy Department, West Virginia University,
2014, http://wberesford.hsc.wvu.edu/histolch23.htm.

[24] P. Henderson, R. Seaby, and R. Somes, Growth II: Types of
Growth Curve—Logistic Curve, Pisces Conservation Limited,
Hampshire, UK, 2006.

[25] J. Zhang and J. Fan, “Medical image segmentation based
on wavelet transformation and watershed algorithm,” in Pro-
ceedings of the IEEE International Conference on Information
Acquisition, pp. 484–488, IEEE, Shandong, China, August 2006.

[26] G. Gan, C.Ma, andW. Jianhong, “Center-based clustering algo-
rithms,” inData ClusteringTheory, Algorithms and Applications,
ASA-SIAM Series on Statistics and Applied Probability, chapter
9, SIAM, Philadelphia, Pa, USA; ASA, Alexandria, Va, USA,
2007.

Computational and Mathematical Methods in Medicine 13

[27] L. Wojnar and K. J. Kurzydłowski, Practical Guide to Image
Analysis, ASM International, 2000.

[28] D. H. Ballard and C.M. Brown, Computer Vision, Prentice Hall,
Rochester, NY, USA, 1982.

[29] A. Patel, “Stanford Theory Group: Introduction to A*,”
2014, http://theory.stanford.edu/∼amitp/GameProgramming/
AStarComparison.html.

[30] B. Zitová and J. Flusser, “Image registration methods: a survey,”
Image and Vision Computing, vol. 21, no. 11, pp. 977–1000, 2003.

[31] J. Stoitsisa, I. Valavanis, S. G. Mougiakakou, S. Golemati, A.
Nikita, and K. S. Nikita, “Computer aided diagnosis based on
medical image processing and artificial intelligence methods,”
Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, vol. 569, no. 2, pp. 591–595, 2006.

[32] N. G. Andrew, Machine Learning Course. Coursera Online
Courses, 2014, https://class.coursera.org/ml-005.

Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and
Mathematical Methods
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s
Disease

Evidence-Based
Complementary and
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com

	Introduction
	Background
	2.1 An Overview of Renal Histology
	2.2 Existing Solutions
	2.2.1 Nephron Tracking and Three-Dimensional Reconstruction
	2.2.2 Glomeruli Detection
	2.2.3 Automated Tracking of other Biological Structures

	2.3 The Nephron Tracking Problem
	2.4 Graph Theory
	2.5 Machine Learning
	2.5.1 An Overview of Basic Machine Learning Principles
	2.5.2 Application to Medical Imaging
	2.5.3 Application to the Nephron Tracking Problem

	Project Framework
	3.1 Research Question
	3.2 Rationale
	3.3 Objectives
	3.4 Assumptions
	3.5 Success Criteria

	Analysis of the Problem Domain
	4.1 The Image Sets Acquired from the University of Aarhus
	4.2 An Ideal Solution
	4.3 The Complexities of the Problem
	4.3.1 Artefacts
	4.3.2 Memory

	System Overview
	Image Processing
	6.1 Image Registration
	6.2 Image Processing Procedure
	6.2.1. Conversion to Grayscale
	6.2.2. Background Removal
	6.2.3. Histogram Equalisation
	6.2.4. Thresholding
	6.2.5. Removal of Unwanted Cross-Sections

	6.3 Image Segmentation
	6.4 Automatic Parameter Variation

	Feature Extraction
	7.1 Node Allocation
	7.2 Shape Measurements
	7.2.1 Shape Factors
	7.2.2 Shape Profile

	7.3 Data Structures
	7.4 Glomeruli Detection

	Tracking Algorithm
	8.1 Local Image Registration
	8.2 Graph-based Tracking
	8.3 Edge Formation
	8.4 Skipping Images
	8.5 Validation Steps
	8.6 Region Control
	8.7 Reconstruction
	8.8 Manual Intervention

	Machine Learning Validation
	9.1 Feature Selection
	9.2 Training Set Formation
	9.3 Training
	9.4 Reinforced Learning
	9.5 Feature Analysis
	9.6 Optimisation

	Results
	10.1 Pre-Tracking Stages
	10.1.1 Pre-Processing

	10.2 Measuring Similarity between Paths
	10.3 Possible Outcomes
	10.4 Tracking Results
	10.5 Efficacy of Validation Steps
	10.6 Machine Learning Classification
	10.7 Monitoring Runtime Output
	10.8 Processing Times

	Analysis & Discussion
	11.1 Performance per Area of the Nephron
	11.2 Effect of Image Properties on Performance

	Recommendations & Future Work
	12.1 Recommendations for Future Image Sets
	12.1.1 Staining Choice
	12.1.2 Image Constraints

	12.2 Future Work

	Conclusion
	References
	Appendix A: Longitudinal Reconstructions
	Appendix B: Additional Results
	Appendix C: Spreadsheet of Tracking Results
	Appendix D: Performance Data
	MATLAB Profiler results
	System Specifications

	Appendix E: A Review of the Path Comparison Method
	Appendix F: Additional Feature Analysis
	Appendix G: Proof of Ethics Clearance
	Appendix H: MATLAB Code
	Pre-processing and Feature Extraction
	PreprocessAndFeatureExtractInterface.m
	getSettings.m
	getSetProperties.m
	getProcessingParams.m
	PreprocessRawImgs.m
	ProcessImgStd.m
	ProcessImgWS.m
	modWatershed.m
	FeatureExtractBWImgs.m
	extractFeatures6.m
	findShapeProfile.m
	findShapeProfileStretch.m
	litekmeansMod.m
	litekmeans.m
	PreprocAndFeatureExtract.m

	Utility Functions
	isIncluded.m
	isIncluded2.m
	bound.m
	getSegIDNum.m
	custSigmoid.m
	dist.m
	eucdist.m

	Tracking
	TrackerFinal.m
	changeMode.m
	clipImg.m
	findBranch2.m
	trackStraight.m
	findOffset.m
	checkIfInNextImage.m
	reconstructPath.m
	validationSteps.m
	formulateFeatures.m
	combineFeatures.m
	manualAdjustClick2.m
	getEndPoints.m
	getSectionNo.m
	getShapeProfileCells.m
	getTrackingParams.m

	Plotting & Analysis Functions
	Plotting_and_Analysis_Tools.m
	displayCoord.m
	displayMove.m
	comparePaths2.m
	getShapeProfile.m
	array2struct_trackingData.m
	sortCell.m

	Glomeruli Detection
	GlomeruliDetection.m
	detectGlomeruli.m
	predictCluster.m
	classifyImgSegments.m
	featureNormalize.m
	featureUnnormalize.m

