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ABSTRACT 

In this thesis I explored the development of first year university students’ proof 
construction abilities in the context of consultative group sessions.  In order to do this I 
investigated students’ difficulties in proof construction in the area of elementary set 
theory and the forms of guidance offered as they participated in consultative group 
sessions.  Vygotsky’s (1987) socio-cultural theory is the theoretical framework for the 
study.  His premise that all higher mental functions which include the activity of 
mathematical proof construction, develop as a result of mediated activity in the context 
of more knowing others, motivated my exploration.  Ten students purposefully chosen 
from a first year mathematics major class at the University of Limpopo (a historically 
disadvantaged university) participated in weekly consultative sessions.  Students were 
encouraged to share their thoughts and ideas and critique other students as they 
attempted proof construction exercises.  The lecturer (myself) was present to offer 
guidance whenever necessary.  By establishing the sociomathematical norms pertinent 
to successful proof construction, my aim was to support students in becoming 
intellectually autonomous and to empower those with the potential to become more 
knowing peers to develop their capabilities.  With this in mind I investigated the nature 
of the interactions of the students and lecturer in the consultative sessions.  I also traced 
the journeys of two case study students as they progressed in the first two sessions.   

Two complementary analytical frameworks incorporating social and cognitive aspects 
of students’ development enabled me to obtain a holistic picture of the development and 
scaffolding of proof construction abilities in consultative group sessions. 

Students’ difficulties were found to be similar to those reported in the literature and 
included difficulties within meanings of mathematical terms, symbols, signs and 
definitions, logical reasoning and proof methods and deductive reasoning processes and 
justification.  The most persistent of these difficulties seemed to be the challenge of 
knowing how to use the knowledge of the definitions of relevant mathematical objects, 
proof methods, deductive reasoning processes and justification.  This is also referred to 
as strategic knowledge (Weber, 2001).   

The two case study students showed great improvement in all aspects of their proof 
construction abilities as they progressed from the first to the second session.  This 
highlighted the effectiveness of the consultative sessions in facilitating access to the 
observed students’ zones of proximal development and in allowing students to make 
functional use of the various mathematical objects and processes needed in successful 
proof construction.  This functional use together with the scaffolding received from 
their peers and the lecturer enabled students to develop and internalise proof 
construction skills and abilities. 

Investigation of the nature of the interactions in the consultative sessions examined the 
lecturer’s use of requests for clarification, reflection on proof construction strategy, 
critique and justification, while eliciting elaboration of contributions which could drive 
the proof construction process forward.  The importance of the correct interpretation of 
definitions and their role in providing the logical structure and the justification of each 
step of the proof construction was emphasized.  As the sessions progressed more 
knowing peers emerged from the group who took over the role and responsibilities of 
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the lecturer and provided most of the scaffolding to their peers.  I often called upon 
these more knowing peers to explain and elaborate on completed proof constructions.  
Their presentations were observed to be effective learning opportunities for other 
students.  
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Chapter 1: Introduction 

1.1 The Research Problem 

My philosophical beliefs on the importance of education have been shaped by the 

writings of Bahá’u’lláh who wrote: “Knowledge is as wings to man’s life, and a ladder 

for his ascent. Its acquisition is incumbent upon everyone.” (Bahá’u’lláh, 1988, pp.51-

52).  This belief has motivated me to explore one of the problematic areas in 

mathematics, particularly for first year undergraduate students; that of proof 

construction. 

My primary concern in this thesis is exploring how mathematics lecturers at first year 

university level at the University of Limpopo can help to advance students’ 

understanding of mathematical proof.  This should ultimately help to make higher level 

mathematics courses more accessible to university students. 

Students who major in mathematics related areas at university are expected to have a 

certain level of competence in proof comprehension and construction.  Much research 

on investigating proof construction and the reasoning abilities of students across all 

grades including college and university levels indicates that the use of empirical 

arguments is prevalent at all levels (Coe & Ruthven, 1994; Stylianou, Blanton & Knuth, 

2011; Healy & Hoyles, 2000; Harel & Sowder, 2007; Kuchemann & Hoyles, 2011).  

Empirical proofs are those that rely on inductive or perceptual examples, for example 

students’ attempts to prove that a set is a subset of another set using Venn diagrams.  

Empirical reasoning using diagrams or perceptual and inductive examples is not 

acceptable as proof at university level however.  At university level students are 

expected to read and produce mathematical proofs that obey well defined conventions in 

line with the acceptable practices of the mathematical community (Weber & Alcock, 

2011).  According to Tall (1989) for an argument to be considered a mathematical proof 

it must be based on accepted axioms and definitions.  Furthermore the proof needs to 

proceed using deductive reasoning and employ the appropriate mathematical notation 

and proof techniques.  These stringent requirements coupled with the newly met 
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mathematical objects contained within the mathematical area in which the proof is to be 

constructed can often be overwhelming for first year university students. 

Research carried out at college and university level on students’ challenges in proof 

construction has found three major areas of difficulty.  The first is the mathematical 

language, symbols and signs that students are introduced to in the specific area of proof 

construction.  Students’ lack of understanding of this mathematical language and 

notation is one of the factors that inhibits their ability to understand definitions, and 

definitions play a pivotal role in the proof construction process (Moore, 1994; Dreyfus, 

1999; Stylianou, Blanton & Knuth, 2011).  Secondly logical reasoning processes and 

proof methods involved in the proof construction process which may be likened to road 

maps, essential on the journey through proof construction can pose serious challenges 

(Solow, 1981; Moore, 1994; Stylianou, Blanton & Knuth, 2011).  Thirdly students’ lack 

of deductive reasoning abilities and an appreciation for the need for justification of each 

deduction in the proof construction process can be a hindrance (Dreyfus, 1999; Moore, 

1994; Stylianou, Blanton & Knuth, 2011).  These challenges are exacerbated for first 

year students at the University of Limpopo as the majority of these students do not have 

English as their first language.  Mathematicians such as Thurston (1994, p.164) have 

observed that one’s proficiency in language does not just affect one’s communication 

skills but also has a direct influence on one’s thinking ability.  The schools these 

students attended are situated in rural areas and have been historically disadvantaged.  

These schools still experience many challenges, particularly a shortage of well qualified 

mathematics, science and English teachers.  Students entering the university are often 

under-prepared and this makes their transition to tertiary education even more daunting.  

The dilemma of under-prepared students enrolling for mathematics courses although 

exaggerated among historically disadvantaged students in South Africa, is not unique.  

It is a global problem.  Tall (1995, p.13) reports that "...there is a general consensus 

among university mathematicians in England that students arrive at university to study 

mathematics with less understanding of proof, less proficiency in handling arithmetic... 

and less facility with algebraic manipulation."  Hillel (as cited in Mamona-Downs and 

Downs, 2002, p.166) notes "The problem of the mathematical preparation of incoming 

students, their different social-cultural background, age, and expectations is evidently a 
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worldwide phenomenon.  The traditional image of a mathematics student as well-

prepared, selected, and highly motivated simply doesn't fit present-day realities." 

Researchers such as Stylianou, Blanton and Knuth (2011) have argued that research is 

necessary so that mathematics educators might gain some understanding of the forms of 

thought processes which should be cultivated to promote the understanding and 

development of proof construction abilities as well as curricular and pedagogical 

interventions that might enrich students’ conceptions of proof, and facilitate their 

progress to higher level mathematics courses.  Scholars in mathematics education such 

as Alibert and Thomas (1991); Schoenfeld (1999); Tall (1991) and Blanton, Stylianou 

and David (2011) have identified the necessity for research on the development of 

students’ proof construction abilities while emphasizing the social nature of proof 

construction.  Alibert and Thomas (1991) argue that the formulation of conjectures and 

the development of proofs have two facets: the personal, where the mathematician sets 

out to convince himself, and the collective, where the mathematician sets out to 

convince others of the truth of his argument.  They propose that mathematics courses 

offered at the undergraduate level often present the mathematical argument as a finished 

theory, thus omitting these two facets of the developmental path of the argument (ibid., 

p.215).  These scholars advocate that research be carried out on developing students’ 

proof construction abilities in environments which encourage students’ active 

participation and engagement with the task of proof construction.  

Social constructivist theories are a foundation for most studies researching students’ 

cognitive development together with the nature of their social interaction with peers and 

more knowing others.  My research is framed by Vygotsky’s socio-cultural theory.  

While using this social perspective I study cognitive aspects of students’ development 

of their proof construction abilities.  In this way the social and cognitive aspects are 

brought together to obtain a holistic picture of students’ development.   

Vygotsky’s premise that all higher mental functions arise as a result of mediated 

processes and through co-operative activity (Vygotsky, 1987, p.126) motivated my 

investigation of students’ proof construction abilities in the context of consultative 

group sessions.  A small group of purposefully chosen students was brought together in 

these sessions under the guidance of the lecturer in an environment where the active 
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participation of all students was encouraged as they engaged with proof construction 

exercises.  Vygotsky proposed that when children receive scaffolding from more 

knowing others while participating in purposeful social interaction, they might be 

enabled to access their zones of proximal development where maturing functions are 

developed and internalized.  Chaiklin (2003) argues that Vygotsky considered it a well-

known fact that a child would be better able to solve more difficult tasks with some 

form of collaboration and help than he/she would be able to do independently.  More 

important in Vygotsky’s view is why and how this happens (Miller, 2003; Chaiklin, 

2003).  The question is how can mathematics educators create environments which 

encourage the forms of discourse that would lead to students’ engagement with the 

construction of their own knowledge, and the transformation of their interpretive and 

analytical skills.  This critical question is at the heart of my study. 

My research starts off by attempting to identify the difficulties and challenges (under-

prepared) students experience, and the forms of guidance offered when they are 

engaged with proof construction tasks in the context of consultative group sessions.  

This provides an important starting point because our understanding of how to support 

students’ learning begins with an understanding of where their difficulties lie.  I then 

explore how students’ proof construction abilities are developed and evolve as they 

participate in the consultative group sessions.  By studying the nature of the interactions 

in the consultative sessions, I try to identify the manner in which the lecturer 

encouraged the establishment of the necessary socio-mathematical norms to move the 

agenda of mathematical proof construction forward, and supported students in 

becoming intellectually independent.  In addition I attempt to identify the characteristics 

and modes of reasoning observed in students who go on to become more knowing 

others, taking over the role and responsibilities of the lecturer and becoming active 

agents in the development of mathematical reasoning both for themselves and others.  I 

also use case study methodology to trace the developmental paths of two of the 

participants of my study. 
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My research questions are: 

Research Question 1  

Investigating students' difficulties in proof construction, and the forms of guidance 

offered in the context of consultative group sessions: 

a) What are the challenges and difficulties students face as they engage with proof 

construction in the area of elementary set theory? 

b) What forms of guidance do the lecturer and students offer?  

 Research Question 2 

Investigating the development of students’ proof construction abilities as they 

participate in consultative group sessions through the use of two case studies:  

How do the proof construction abilities of two case studies, Frank and Maria evolve and 

develop as they progress through the sessions?  

Research Question 3 

Investigating the nature of the interactions in the consultative group to explore how 

students’ construction of proof might be facilitated: 

a) How can lecturers encourage and support students who are engaging with proof 

construction while participating in consultative group discussions, to become 

intellectually autonomous? 

b) What are the characteristics and modes of reasoning prevalent in students who seem 

to have the potential to become more knowing peers? 

1.2 Rationale 

Proof is considered to be a fundamental notion, a central idea of modern mathematics 

(Tall, 2002, p.3).  The ability to construct proofs is therefore a crucial skill and a 

primary goal of a pure mathematics course.  The accepted definition of proof may vary 

across different age groups and levels of education; arguments of varying degrees of 

formality may be acceptable in different contexts and communities.  As my study is 
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concerned with proof comprehension and construction at a first year university level, 

the following definitions of mathematical proof are applicable: 

• “a logical argument that one makes to justify a claim in mathematics and to 

convince oneself and others” (Stylianou, Blanton & Knuth, 2011, p.12). 

• “an unbroken sequence of steps that establish a necessary conclusion, in which 

every step is an application of truth-preserving rules of logic” (Hanna & de 

Villiers, 2012, p.3). 

• “a sequence of assertions, the last of which is the theorem that is proved and 

each of which is either an axiom or the result of applying a rule of inference to 

previous formulas in the sequence” (Tall, Yevdokimov, Koichu, Whiteley, 

Kondratieva & Cheng, 2012, p.15).      

Mathematics lecturers at tertiary level have difficulty engendering an appreciation for 

and the necessity of the process of reasoning and proof.  Research has shown that the 

task of proof construction poses great difficulty for students at all levels (Weber, 2001, 

p.101).  Studies done all over the world, have shown that even high attaining students 

have difficulty with the task of proof construction (Healy & Hoyles, 2000; Weber, 

2001; Hart, 1994; Harel, 2007; Selden & Selden, 2008; Recio & Godino, 2001).   

Research on the proof construction abilities and processes used in proof construction on 

students attending college and pre-college has been carried out in other countries such 

as the U.S.A. and U.K., for example Healy and Hoyles (2000); Hart (1994); Harel and 

Sowder (1998, 2007); Blanton and Stylianou (2011); Recio and Godino (2001); Coe and 

Ruthven (1994); Dreyfus (1999); Selden and Selden (2008); Weber (2001) and Tall 

(2007).  With the exception of a few studies such as those by de Villiers (2004) on 

prospective secondary school teachers and their understanding of geometrical proofs, 

there has been very little research on this subject in the South African context, 

particularly among under prepared students.  The plight of South African students’ 

challenges in proof construction in Algebra, especially those at a previously 

disadvantaged institution remains virtually unexplored.  This study, set in a South 

African context, examines students' difficulties and challenges with proof construction 

in the area of elementary set theory.   
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Researchers such as Selden (2012) and Tall (1991) have identified many reasons which 

could account for the struggle university students have when introduced to proof 

construction.  According to Selden (2012, p. 392) proof construction at the tertiary level 

requires the correct interpretation and use of definitions and established theorems as 

well as two essential ingredients: creativity and insight.  In addition there is a general 

lack of explicit instruction in formal proof for students making the transition to formal 

proof construction.  Furthermore, proofs at tertiary level tend to be far more complex 

than those encountered at lower levels of schooling.  Selden (2012, p.393) argues that 

when one compares the typical proofs in geometry that students have come across in 

high school with proofs at tertiary level, “one sees that the objects in geometry are 

idealisations of real things (points, lines, planes), whereas objects in real analysis, linear 

algebra, abstract algebra or topology (functions, vector spaces, groups, topological 

spaces) are abstract reifications”.  Proofs at tertiary level also require students to have a 

deeper knowledge of the mathematical objects in the particular area of proof 

construction.  Clark and Loveric (2008) explore the many challenges students face as 

they make the transition to proof construction in university level mathematics.  They 

propose that this transition requires students to change the kinds of reasoning used, to 

shift from informal to formal language, to reason from mathematical definitions, to 

understand and apply theorems and make connections between mathematical objects 

(ibid., pp.28-29).     

Although most mathematics educators acknowledge the difficulty of proof, there is also 

widespread agreement that the understanding and reasoning skills developed in the 

process of generating a proof are a highly beneficial and an irreplaceable foundation for 

any student wishing to advance their mathematical studies.  Hanna (2007, p.15) 

proposes that although teaching students to recognize and produce valid mathematical 

arguments is a challenge, we need to find ways through research and classroom 

experience to help students master the skills and gain the understanding they need.  

Failure to do this, would deny students access to a crucial element of mathematics. 

Several researchers have advocated investigation of students' notions and understanding 

of proof.  Alibert and Thomas (1991, p.215) encourage mathematics educators to 

investigate students' views of the necessity for mathematical proof and their preference 
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of one type of proof over another.  They emphasize the importance of such study in a 

first year university course where students are exposed to the rigour of formal proof for 

the first time.  Harel and Sowder (2007, p.4) argue that there needs to be research on 

investigating students' difficulties in proof construction, and the type of instructional 

interventions which would be beneficial to the development of students' conceptions of 

proof. 

Furthermore there has been little research on instructional scaffolding in tertiary 

mathematics contexts and the factors that affect the scaffolding process (cf. Blanton, 

Stylianou & David, 2004, p.119).  Section 2.4 presents a discussion of studies on the 

ways in which classes at high school level, and collaborative groups at college and 

university level could incorporate social and sociomathemathical norms such as those 

encouraging critique, explanation and justification.  These studies emphasize the pivotal 

role communication and social interaction play in mathematics learning (cf. Goos, 

2004).  Many of these studies also focus on how students can be supported to develop 

and become intellectually autonomous (Yackel & Cobb, 1996).  Through the 

pedagogical choices made by teachers and lecturers such as incorporating activities such 

as explanation and justification, these environments strive to encourage the active 

participation of all the students in the development of their own cognitive abilities.  

Blanton et al. (2004, 2011) studied how undergraduate students’ appropriation of 

advanced mathematical reasoning skills could be supported by instructional scaffolding.  

They found that an environment which encourages discussions that include 

metacognitive acts such as questioning, critiquing and providing justification of their 

own and their peers’ arguments, as well as instructional scaffolding allows students to 

make gains in their proof construction abilities.     

According to my theoretical framework environments such as those discussed above, 

facilitate students’ access to their zones of proximal development.  I have referred to 

these as environments which enable students’ access to their zones of proximal 

development (or EZPD, discussed in Section 3.3.5).  One of the incentives behind my 

study was to investigate the manner in which an EZPD leading to students’ efficient 

development of proof construction abilities could be created in the form of consultative 

group sessions.   
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According to my theoretical framework, communication of ideas and thoughts using the 

psychological tools of speech and language is the primary means by which individual 

students might develop their understanding of (mathematical) objects and processes.  

Vygotsky’s theory of concept formation describes how concepts are formed and 

undergo (non-linear) development through three basic phases: heap, complex and 

concept.  In line with Vygotsky’s theoretical premise, a main motivation behind my 

study is to show that an essential requisite of concept formation (in proof construction) 

is the functional use of mathematical terms, symbols, logical and deductive reasoning 

processes, proof methods and practices of justification.  Functional use, in the context of 

my thesis refers to the use and application of (mathematical) signs, processes and 

practices while engaging in problem solving tasks such as proof construction, before 

one has complete understanding of these signs, processes and practices.  I hope to show 

that students can be empowered to reach a more complete understanding of the 

underlying mathematical objects and processes while working on proof construction 

tasks, using and applying newly met terms, symbols, logical and deductive reasoning 

processes, proof methods and justification, when interacting with each other in 

discussion and consultation.   

Research on instructional interventions such as the consultative group sessions 

investigated in my study which is situated in a historically disadvantaged South African 

university is critical.  In such universities I believe that instructional scaffolding is even 

more essential.  This study will explore how students progress with the task of proof 

construction when working together in a collaborative group under the guidance and 

help of the lecturer in consultative group sessions. 

1.3 Context of the study 

I will be exploring first year university students’ difficulties and challenges in proof 

construction and the forms of guidance they receive in the area of elementary set theory 

in the context of consultative sessions.  Furthermore I will focus on how these students’ 

proof construction abilities developed as they took part in consultative group sessions. 

In this section I will briefly describe the school background of these students, the way in 

which the first year mathematics course in which the study is situated is taught and the 
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manner in which the consultative sessions were set up.  This is aimed at informing the 

reader of all the factors that could influence the mathematical thinking of the students 

who participated in my study.  

This study focusses on students enrolled for a first year mathematics major course at the 

University of Limpopo, a historically disadvantaged university in South Africa.  Such 

universities were established as separate institutions for black students under the 

apartheid regime and were distinct from institutions for white students.  These 

universities were generally under-resourced and located in poor rural areas and the 

majority of student enrolments comprised of under-prepared black students.  Although 

it has been a major goal of the new government (which came into power in 1994) to 

redress the inherited inequalities through social and educational reforms, schools in 

rural areas still suffer from a lack of resources and well qualified and competent 

mathematics and science teachers.  The shortage of competent mathematics teachers has 

been the result of the singular lack of African students with higher level mathematics 

who could enrol in higher education and teacher education programmes for mathematics 

and science at universities, technical institutes and colleges of education (Howie, Marsh, 

Allummoottil, Glencross, Deliwe & Hughes, 2000, pp. 63-64).  The severity of this 

problem has led to a shortage of qualified teachers teaching in schools with 

predominantly African students (ibid, pp. 63-64).   In 2001 only 14% of schools 

reported that all their mathematics and science educators had what the government 

considered the minimum level of qualifications (CDE, 2004, p.11).  In addition many 

schools in Limpopo do not have adequate facilities such as libraries, laboratories, 

telephones, water and electricity and even lavatories (Department of Education, 2008).   

According to the report; "From Laggard to World Class" (CDE, 2004), the entry of 

newly qualified mathematics and science educators in South Africa is not keeping pace 

with retirements, retrenchments and losses to other sectors.  In 2000 there were 56% 

fewer students at teacher training colleges than in 1994 (ibid., p.10).  As a result of the 

decline in enrolments in teacher training colleges (now amalgamated with universities), 

most analysts have been led to believe that learners will not achieve better results in 

mathematics and science in the near future (ibid., p.10).  The students studying at the 

University of Limpopo are chiefly from these under-resourced schools. 
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The educationally disadvantaged backgrounds of the incoming students, is a major 

contributor to the difficult transition between secondary school and first year university.  

The challenges of this transition are augmented, among others, by the large numbers of 

students enrolled in first year mathematics courses at the University of Limpopo.  

Students entering first year have to adapt to large impersonal classes; typically over 300 

students per class.  This makes it almost impossible for lecturers to reach students 

effectively.  Students also have to cope with covering large amounts of new material in 

a short time and continuous assessments in the form of tests or assignments on a weekly 

basis.  This can be highly stressful.  The academic staff, generally overworked and 

heavily involved in teaching and research, might seem to be unapproachable.  Students 

having difficulties probably feel they have nowhere to turn.  Lecturers expect students 

to be mature enough to shoulder the daunting responsibility of being at university and to 

do much of the work on their own.  Most students fall short of these high expectations.  

It is also the first time that many students are away from their families and their 

responsibilities for those daily chores necessary in the rural setting.  This sense of 

freedom together with the bombardment of differing values and opinions from peers, 

could be a factor that derails the 'weaker' students and takes them even further away 

from really applying themselves to the important task of learning.  English, the language 

of teaching and learning at the University of Limpopo is not the first language of the 

majority of learners enrolled.  This is another significant factor.  The Third International 

Mathematics and Science Study (TIMSS) which took place in 1994 highlighted the 

importance of English language proficiency as a foundation for the development of 

mathematical fluency and skill (Howie et al., 2000, p.64).   

All of these factors lead to an extremely high failure rate especially in the first year of 

study at most South African universities; this is even more accentuated in historically 

disadvantaged universities.  Naledi Pandor, Minister of Education until 2009 noted that 

more than 50% of first year students drop out of higher education institutions in South 

Africa (SABC News, October 12, 2006).  She suggested that alcohol abuse was one of 

the possible causes of the high dropout rate and proposed that "many young people are 

not prepared in academic terms for study at higher education institutions."  Other 

reasons cited for the crippling first year university dropout rate were poor career 

guidance at school, poverty, a sense of alienation expressed by some pupils and a failure 
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by universities to tailor their output to under-prepared students (Cape Argus Sept. 21, 

2008).   

It is in the context of this challenging transition from secondary school to university that 

students meet proofs in the first year major mathematics course.  These proofs are very 

different to the mainly algorithmic mathematics they had encountered at school.  Proofs 

in the South African school curriculum are confined to the proof of a few theorems in 

Euclidean geometry and the proof of trigonometric identities.  Proofs at tertiary level are 

more abstract, requiring students to understand definitions of concepts and link these 

definitions to the steps required in the theorem.  These proofs also have a rigid 

axiomatic structure.  My experience, which includes over 17 years of teaching at the 

University of Limpopo, is that, most university students studying mathematics, 

particularly first year university students find these proofs very challenging.  If first year 

students do not receive the necessary guidance to enable them to overcome these 

challenges, these difficulties become aggravated as they progress to higher level 

mathematics courses.  Instructional interventions such as consultative group sessions 

which could be offered in addition to the traditional methods of instruction could be 

very useful in helping to advance first year students’ conceptions and abilities in proof 

construction.   

Consultative group sessions were set up for this study, with a group of ten purposefully 

chosen participants from the first year mathematics major group.  The aim was to create 

a warm and tolerant environment where every contribution would be welcome.  The 

students were selected from different strata of mathematical ability (according to their 

first semester results) in order to investigate the effectiveness of the sessions for 

students who had varied mathematical abilities.  The students were encouraged to take 

ownership of the proof construction process from the very beginning of the sessions.  A 

volunteer from the participants would come up to the board to attempt the proof of a 

proposition or theorem while other students (and lecturer whenever necessary) made 

contributions.  These contributions questioned points of confusion, provided guidance 

towards proof construction strategy and clarification of mathematical terms, definitions 

and proof methods.  The lecturer and the student’s peers would offer advice on the way 

in which the proof construction should proceed by using logical and deductive 
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reasoning and justification.  The lecturer encouraged students to critique and question 

proof construction steps which did not make sense, and provided guidance whenever 

necessary, such as when incorrect ideas and proof methods persisted.  In this way the 

social and sociomathematical norms pertinent to successful proof construction were set 

up and it was hoped that the participants would adopt these norms and would gradually 

take more leading roles in providing the necessary scaffolding for their peers.   

1.4 Outline of thesis 

The Literature Review Chapter (Chapter 2) begins by providing a discussion of various 

studies on the challenges and difficulties students experience with proof construction all 

over the world.  This chapter also provides a discussion of various frameworks which 

categorize and analyse students’ proof construction attempts.  From amongst these 

frameworks I adopted a framework to use and build on for my analysis of students’ 

proof construction actions and contributions.  Studies on pedagogical interventions 

aimed at leading to an improvement of students’ proof comprehension and construction 

abilities are also included.  My research draws from such studies to set up a 

collaborative inquiry-based intervention in the form of consultative group sessions.  

Frameworks for the analysis of the discourse in classrooms situated in studies that take 

the social aspect of proof into account are also discussed.  A framework was adopted for 

the analysis of the utterances of the lecturer and students as they interacted in the 

consultative sessions.  Overall the Literature Review Chapter provided the background 

for my study, exposing gaps in the literature and pointing to possible interventions 

which could prove useful in research on the development of proof construction abilities.  

It also enabled me to draw on other mathematics educators’ research for my analytical 

frameworks.  These adopted frameworks were adapted and extended according to the 

requirements of my analysis.  

Chapter 3 discusses the theoretical framework on which my thesis is based.  The task of 

proof comprehension and construction is considered to implement higher mental 

functions which according to Vygotsky (1987) develop as a result of the mediated 

processes of speech and language and through cooperative activity.  There is a 

discussion on Vygotsky’s theory of concept formation and its adaptation to the 

mathematical realm.  The central role of the functional use of the sign as being a 
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necessary vehicle for mathematical conceptual development is discussed and extended 

to include mathematical terms, symbols, signs, logical reasoning processes, proof 

methods and the practice of justification.  I discuss Vygotsky’s notion of the zone of 

proximal development (ZPD) as being the space where an individual’s maturing 

functions are developed with the help of more knowing others.  The ultimate aim of the 

consultative sessions is put forward as providing an environment where students’ access 

to their ZPDs is facilitated and encouraged. 

Chapter 4 presents the methodology and methods I used to address my research 

questions.  My ontological and epistemological assumptions are discussed in this 

chapter.  As my primary concern was to understand and explain how individual students 

interpreted the mathematical activity of proof construction as well as to investigate the 

nature of the interactions in the consultative sessions, my study was based in an 

interpretive paradigm.  A detailed presentation of the consultative group method is 

included in this chapter.  I also acknowledge that my interpretation of my observations 

and my analysis of the data collected is shaped by my theoretical framework.  At the 

same time I recognize the possible effects that I might have inadvertently brought to the 

research.  

Chapter 5 sets out in detail the two analytical frameworks used for the analysis of data 

collected in the form of transcripts.  These frameworks were modified and extended as 

further categories and their corresponding indicators emerged as I worked with the data.  

An example of coded and analysed transcript is included in this chapter while the full 

transcripts with detailed coding of Episodes 1, 2, 3, 4 and 5 are in Appendix 1. 

Chapter 6 contains the detailed analysis and discussion of the transcripts with a focus on 

the emergent themes of the difficulties students have with proof construction in the area 

of elementary set theory, and the forms of guidance offered in the consultative sessions.  

The analysis is used primarily to address my first research question in this chapter.  It is 

also used towards addressing research questions 2 and 3 in chapters 7 and 8. 

Chapter 7 presents the discussion addressing my second research question concerned 

with investigating how students working together on proof solving exercises in a 

consultative group develop their abilities of proof comprehension and construction.  I 
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use case studies to focus on two of the participants of my study and track their progress 

as they attempt proof construction exercises in the first two consultative sessions. 

Chapter 8 presents the discussion aimed at addressing my third research question 

concerned with investigating the nature and pattern of student and lecturer interactions.  

I try to trace the patterns of the lecturer’s utterances as I attempt to establish 

sociomathematical norms pertinent to the successful development of proof construction 

abilities.  I also attempt to identify the characteristics and modes of reasoning of those 

students who show potential in becoming more knowing peers.   

In Chapter 9 I discuss the issues surrounding the trustworthiness of my research.  I 

discuss the descriptive, interpretive, theoretical validity and internal generalizability of 

my research (Maxwell, 1992) as well as issues related to reliability. 

Finally in Chapter 10 I present conclusions drawn from my research regarding my three 

research questions.  I summarize the numerous difficulties students encountered and the 

useful forms of guidance they received.  I point to the effectiveness of the consultative 

sessions in advancing students’ development of proof construction abilities by 

facilitating access to their ZPDs and by promoting the functional use of newly met 

terms, signs, symbols, definitions, logical reasoning processes and proof methods and 

the practice of justification.  This confirms Vygotsky’s theory that the development of 

(mathematical) objects towards concept level understanding is accelerated by the 

individual’s functional use of these objects while participating in consultation and 

collaboration with peers and more knowing others.  The efficacy of the consultative 

sessions is further emphasized as a means of promoting the sociomathematical norms 

necessary for successful proof construction, supporting students to become 

intellectually independent and empowering those showing potential in becoming more 

knowing peers to develop their capabilities.  Finally I point to contributions to 

mathematical education scholarship and mathematical pedagogy that my research might 

have made and elaborate on possible areas for future research.      
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Chapter 2 Literature review 

2.1 Introduction 

As a result of the increased attention to the role and nature of proof in mathematics 

education, many researchers such as Stylianou, Blanton and Knuth (2011) have 

observed a growing call for students to engage in proof at all grade levels at school and 

university.  Stylianou et al. (2011) surmise that this increased attention towards the 

centrality of proof in mathematics education has led to greater research in three major 

areas.  The first is a focus on the types of mathematical thinking processes needed for 

proof comprehension.  The second area is concerned with the improvement of students’ 

proof construction abilities and the third on investigating the curricular and pedagogical 

interventions which could possibly lead to developing and improving students’ 

understanding in proof comprehension and construction.  My study will involve aspects 

of all three areas because I will be looking at the difficulties which challenge first year 

university students as they engage in the task of formal proof construction in the area of 

elementary set theory.  I will also be investigating a pedagogical intervention in the 

form of consultative group sessions and examining how students’ difficulties are 

addressed and how their proof construction abilities are developed as they interacted in 

these sessions with one another and the lecturer.  

In my literature review and theoretical framework chapters I have not focussed 

specifically on the course content of elementary set theory but have instead chosen my 

focus to be proof comprehension and construction.  This is because set theory and logic 

are the foundations of mathematics.  According to Hale (2003) the proofs dealt with in 

set theory provide a foundation on which all other branches of mathematics and their 

related proof constructions can operate.  For example, most mathematical theorems are 

of the general form: “If P then Q”.  This is the implication proof discussed in depth in 

my study (P⟹ Q).  The first statement P is the hypothesis, that is a statement that is 

assumed to be true.  The last statement Q is the conclusion.  In order to reach the 

conclusion, one starts with the hypothesis and proceeds with steps arrived at through 

deductive reasoning.  These steps are justified by one or more of the following: rules of 

logic, previous steps in the current proof, previous theorems proved, axioms and 
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previous definitions.  This form of proof is the cornerstone of all (direct) mathematical 

proofs.       

In this chapter I will try to provide a brief yet comprehensive overview of the studies 

carried out by various researchers in the following areas: students’ difficulties with 

proof construction, students’ abilities and their proof schemes, the various analytical 

frameworks used to analyse students’ proof construction actions and contributions and 

their discourse as they interact in collaborative sessions, and pedagogical interventions 

which could possibly lead to the development and improvement of students’ proof 

comprehension and construction abilities.  This will provide the background for my 

research.  

2.1.1 Proof and curriculum 

Proof has historically been included in geometry instruction in high schools all over the 

world because it was believed that deductive reasoning could be most effectively taught 

in the context of formal geometry (Stylianou et al. 2011, p.2).  Many researchers view 

the fact that there is an absence of proof outside of high school geometry as one of the 

blatant deficiencies in mathematics education (Wu, 1996).  Stylianou et al. (2011, p.3) 

observe that new curricula and trends advocating instruction that is more student-

orientated have often meant a decrease in even this small presence of proof in 

mathematics courses in high school.   

Moore (1994) describes the abrupt transition to proofs experienced by students studying 

mathematics at university in the United States.  He states that many students in the 

United States enter university mathematics courses having only been exposed to proof 

in high school geometry.   

 The situation in South Africa is very similar.  Although the first item in the scope for 

grades 10 to 12 in the NCS (National Curriculum Statement) curriculum in South Africa 

(Department of Education, 2003, p.10) is for students to work towards being able to 

“competently use mathematical process skills such as making conjectures, proving 

assertions and modelling situations”, the actual learning outcomes refer specifically to 

proof only in the areas of mathematical number patterns and Euclidean geometry.  In 

the NCS curriculum the content area involving Euclidean geometry was only included 
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in Mathematics Paper 3 which was intended for those students showing exceptional 

mathematical ability, while the majority of students were only taught the content 

material covered in papers 1 and 2.   Students studying the mathematical content of 

paper 3 were expected to develop the ability to generalize, justify and prove 

mathematical number patterns and justify and prove conjectures plus a few theorems 

relating to 2 and 3-dimensional figures in Euclidean geometry (ibid., pp.12-13 and 

p.55).  The grade 10 to 12 CAPS curriculum (Curriculum Assessment Policy Statement) 

published in 2011, intended to help “teachers unlock the power of NCS” will have its 

first matriculants in 2014.  This curriculum has been extended to include the proof of 

theorems and their converses and riders in the areas of the Euclidean Geometry of 

parallelograms, circles and triangles (which were previously only covered in 

Mathematics Paper 3) (Department of Education, 2011).  Proof of some trigonometric 

identities is also included.    

In the English curriculum of the 1950’s and ‘60s, most high school students met proof 

in the context of classic Euclidean geometry (Kuchemann & Hoyles, 2011).  In the 

1970’s and ‘80’s however, proof disappeared from the curriculum and is only making a 

comeback in this century in a less formal way.  Proof is now taught in English high 

schools mainly in the context of algebra rather than geometry as is the case in most 

other countries.   

Stylianou et al. (2011, pp.3-4) note that recent reform movements have called for 

changes that encourage increased engagement of students and teachers with proof.  

They argue that sound research that would provide guidance on understanding the 

teaching and learning of proof would be a catalyst for these changes.  It is hoped that 

my study based on first year university students’ experiences with proof construction, 

will in a small way contribute to the understanding of teaching and learning of proof.   

2.2 Students' abilities, difficulties and notions of proof 

2.2.1 Students’ difficulties in the area of proof comprehension 

and construction 

There has been considerable research in students’ difficulties in the area of proof 

comprehension and construction in the context of undergraduate mathematics and high 
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school.  What follows is a discussion of research in students’ difficulties conducted by 

Solow (1981); Moore (1994); Dreyfus (1999); Weber (2001); Heinze and Reiss (2011) 

and Stylianou et al. (2011).   

One of the difficulties students have when introduced to proofs at first year university is 

the particular mathematical language or discourse used.  Thurston (1994) holds the view 

that linguistic ability does not only play a role in communication skills but is an 

important tool in one’s thinking processes, and that our knowledge of mathematical 

terms and symbols is closely connected with our language facility.  He cites an 

example: when students are introduced to calculus, the only “mathematical symbolese” 

available to them is the equals sign, which they use in place of a verb when writing 

expressions such as “�� = 3�” (Thurston, 1994, p.164).  The challenge of linguistic 

ability is exacerbated at the University of Limpopo by the fact that the first language of 

the majority of students is not English.  Most students prefer to use their mother tongue 

when conversing with one another and only speak, see and hear English in lectures and 

tutorials or when reading their text books.  This makes the challenge of mathematical 

discourse even more difficult as students now have to surmount two hurdles; one being 

the ‘ordinary’ English language often taken for granted and the other the specific 

mathematical language and notation involved in proof construction.  Wenger (2007) has 

discussed the challenge of learning to align one's discourse with that of the larger 

mathematical community in order to become a member of that community.  In addition 

to the unfamiliarity of the mathematical discourse, several studies have shown that 

students' understanding of proof and its function are inadequate, and the need for 

formalism and rigour is not appreciated (Dreyfus 1999, Solomon, 2006).  Studies have 

shown that students’ understanding of the mathematical objects and definitions involved 

in the particular proof construction exercise are also a huge challenge.  Experienced 

mathematicians who have developed the capacity to understand newly met abstract 

mathematical objects, have achieved powerful cognitive growth by developing their 

ability to compress abstract ideas into more accessible objects that can be connected 

together in increasingly flexible ways (Tall, 2007).  This is a quite a tall order for the 

student encountering proof writing at first year university level.  A summary of the 

difficulties that are discussed further below is provided in tabular form at the end of this 

section.  
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Solow (1981, p. vii) acknowledges the difficulty most students have in coming to grips 

with the proving process and attributes some of this to the fact that the knowledge with 

which students should be equipped is often “partially concealed” and not readily 

available.  He likens students’ struggles with the proving process to being asked to play 

a game where one has no knowledge of the rules.  Solow (1981, p.1) describes 

mathematicians as those whose aim is to discover and communicate certain truths.  

These are communicated (using the language of mathematics) in the form of proofs to 

others who also speak the same language.  He argues that students should be introduced 

to the basic grammar of the language of mathematics to ease the transition to proof 

construction.  He recommends that students should be given a thorough and detailed 

explanation of some of the methods that they can employ to unravel the strategies 

behind the various proving techniques.  Having mastered these techniques, the students 

are then enabled to apply them creatively to formulate their own proofs and to 

understand and appreciate the proofs they read in mathematical text books and 

literature.   

Moore’s (1994) research takes place in an undergraduate mathematics course that 

attempts to bridge the gap by teaching students how to communicate effectively using 

mathematical language and how to write proofs similar to those they would encounter in 

upper level university courses.  Moore (1994) notes that much empirical research on 

high school students’ difficulties with proof, uncovered five potential areas of 

difficulties most students encounter.  These are perceptions of the nature of proof, logic 

and methods of proof, problem solving skills, the mathematical language used in proofs 

and mathematical object understanding.  He observes that relatively few studies have 

focussed on university students and how the difficulties mentioned are related to one 

another.  Moore (1994) collected data by acting as a non- participant observer of the 

students and the lecturer in class and tutorial sessions.  His intention was to develop a 

theory of students’ difficulties with proof, emerging from his analysis of data gathered.  

The course covered topics in mathematical logic and methods of proof, the principle of 

mathematical induction, elementary set theory, relations and functions and the real 

number system.  This is very close to the course content of the Algebra semester course 

in which my study takes place. 
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Moore’s analysis of the results of his study showed that there were seven major sources 

of students’ difficulties in the areas mentioned above.  Five difficulties were identified 

in the area of mathematical object understanding.  These were:  

• D1: Students were not able to state definitions.  Proofs depend largely on 

definitions and Moore notes that not knowing the appropriate definitions often 

accounted for students’ failures to produce a proof.  Moore (ibid., p.257-258) 

emphasizes that a good knowledge and understanding of definitions is essential 

to students as this would provide the specific language and notation used in 

proof construction and also play a role in providing justification for each step or 

deduction.  Moreover it is from definitions that one can extract the overall 

structure of the proof. 

• D2: There was a lack of intuitive understanding of mathematical objects.  

Students found it difficult to learn the written form of the definition, as they did 

not have an informal understanding of the mathematical objects involved and 

therefore could not find or create mental pictures of the mathematical objects.  

• D3: Students’ mental images of the relevant mathematical objects were 

inadequate for doing proofs.  Often because of the mathematical language and 

symbols used in the definition, students found these difficult to understand and 

so form an adequate image of the mathematical objects.   

• D4: Students failed to generate and use their own examples.  Moore (ibid. p.257) 

observed that students really appreciated the value of examples in helping them 

understand mathematical objects and their definitions and enabling them to use 

these objects in proof construction.  He noted that, although the lecturer 

encouraged the students to generate and use examples as an aid in understanding 

the mathematical objects, definitions, theorems, problems and notation used in 

proof construction, the students often lacked this ability and this was a hindrance 

to their progress (ibid. p.260).  Moore proposes that one reason might be that 

students have a “limited repertoire of domain-specific knowledge from which to 

pull examples” (ibid. p.260). 

• D5: Students did not know how to structure a proof from a definition.  Moore 

proposed that students’ inability to use definitions to provide the overall 

structure, logic and proof method suitable for a particular proof (the skeleton of 
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a proof) was another great impediment.  The definitions pertinent to a particular 

proof together with the rules of logic and knowledge of the necessary theorems 

and axioms generally provide a strategy with which to link the beginning to the 

end the proof (ibid. p.261).  Moore observed that in some cases students knew a 

definition and could explain it but were unable to use the definition to write a 

proof.  Students did not seem to “know how to use their mathematical 

knowledge to produce a proof” (ibid. p.262). 

Moore (ibid. p.257) emphasizes that although examples, images of the mathematical 

objects and informal approaches were helpful, these supporting ideas did not guarantee 

that a student could construct the proof correctly.  As mentioned previously the correct 

interpretation of definitions is extremely important as this plays a prominent role in 

providing the language and revealing the logical structure of the proof while giving 

students an intimation of the sequence of steps required and providing the justification 

for each step.  Moore argued that students’ beliefs about proof in mathematics could 

explain why they neglected to learn and understand the definitions.  Students often felt 

that their images of mathematical objects were sufficient and that the added burden of 

knowing the notation of the definition was not necessary (ibid. p.257).   

The sixth major source of difficulty was: 

• D6: Students were unable to understand and use mathematical language and 

notation and this in turn led to further difficulties in the area of mathematical 

object understanding. 

Difficulties in the area of mathematical object understanding were closely connected to 

difficulties in the area of proof methods and logic which all led to the seventh major 

source of difficulty: 

• D7: Students did not know how to begin the proof.   

Moore (1994) mentions the cognitive overload students undergo as they grapple with 

domain-specific knowledge such as terms, language and notation of the area in which 

they are doing the proof construction as well as extracting images of the newly met 
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mathematical objects from the definitions and using them appropriately while trying at 

the same time to learn what a proof is and how to write one. 

Moore’s analysis also showed that one of the consequences of students’ inability to 

understand the mathematical language and notation was that they found it challenging 

to understand, remember and use definitions in their proof construction tasks (ibid. 

p.263).  Furthermore Moore found that students’ inability to start a proof was a direct 

result of their lack of understanding of all aspects of the (mathematical) objects and 

processes involved in proof construction, such as a lack of logical reasoning and 

awareness of the correct proof methods, and difficulties with the particular language and 

notation involved in proof construction (ibid. p.263).  He also found that the level of 

rigour which students thought sufficient in proof construction was influenced by their 

perceptions of mathematics and proofs (ibid. p.263).   

Dreyfus (1999) attributes the difficulty that students have with proof primarily to their 

lack of exposure to forms of knowledge on which proof depends.  He draws on studies 

regarding forms of knowledge in mathematics which show that a large part of students' 

mathematical knowledge is tacit, so that although it is likely to be used correctly in 

applications, it cannot be used explicitly in reasoning.  In addition students' explicit 

mathematical knowledge is largely not deductive, but inductive, abductive or 

generalized from experience.  He further identifies some of the reasons for students' 

limited understanding of proof.  He proposes that giving an explanation of a 

mathematical argument is very difficult even for reasonably proficient students as they 

lack the cognitive ability to interpret and use the relevant mathematical objects in a 

mathematical argument and more generally, that students have had little opportunity to 

learn the characteristics of a mathematical explanation (ibid. p.91).  Furthermore 

linguistic ability plays a crucial role as proof writing requires good language skills in 

order to provide clear and concise explanations.  According to his findings, which 

resonate strongly with my experiences, some typical practices students engage in when 

constructing proofs are vagueness (which points to a lack of conceptual clarity or 

linguistic ability or a combination) and proofs that are not substantial enough (either 

giving no explanation at all and including only computations or just repeating the claim 

rather than giving an explanation).  Unfortunately mathematics text books often add to 
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the problem because they generally don't distinguish between formal arguments, visual 

or intuitive justification, generic examples or naive induction (ibid. p.97).   

Weber (2001, pp.101-102) acknowledges that among the difficulties students have with 

proof construction is firstly that they do not have an accurate conception of a 

mathematical proof, that is, students are unsure about the validity and generality of 

proof, and often have a pre-conceived notion of its form.  Secondly students lack real 

understanding of definitions and theorems and are therefore unable to apply them 

correctly.  They lack the necessary syntactic knowledge.  Syntactic knowledge refers to 

the particular mathematical content knowledge necessary for proof construction.  He 

points out, however that there are instances where students know what a proof is, can 

reason logically and are aware of the pertinent definitions, mathematical objects and 

theorems relevant to the proof, but are still unable to construct the proof.  This finding 

agrees closely with difficulty ‘D5’ identified by Moore (1994) as discussed earlier.  

Thus Weber (2001) observed that even though students seemed to have the necessary 

knowledge for proof construction, they often failed because they reached an impasse.  

Weber refers to this as a failure to invoke the syntactic knowledge the student has at 

his/her disposal.  Weber proposes that there is a need for 'strategic knowledge' which is 

"knowledge of how to choose which facts and theorems to apply" (ibid., p. 101).   

Stylianou, Blanton and Knuth (2011) identify (mostly at high school level) several areas 

of difficulty that challenge students when attempting to read or construct proofs.  The 

first area of difficulty is the understanding of what can be classified as a proof and the 

appreciation that a proof is a generalized argument which covers all possible cases 

(Stylianou et al. 2011, p.4).  Another problematic area (in agreement with Schoenfeld, 

1985) is the logic and reasoning abilities involved in problem-solving or argument 

construction,  together with the various methods of proof required in proof reading and 

construction.  Third the grasp of the mathematical language, signs and symbols impedes 

students’ understanding of definitions which play a pivotal role in proof construction 

(Stylianou et al. 2011, p.5).  Last they mention that students’ understanding of the 

mathematical objects involved in proof construction exercises becomes an inhibiting 

factor in their proof construction capabilities (ibid. p.5). 
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Heinze and Reiss (2011) argue that apart from the cognitive aspects and challenges 

students face when introduced to the task of proof construction, there is the additional 

challenge of the motivational state of mind of the student and his/ her “willingness and 

social readiness to adequately perform…” (ibid., p.192).  They point out that various 

prominent mathematicians such as B. L. van der Waerden (1903 - 1996) and Henri 

Poincare (1854 - 1912) who described their struggle with mathematical proof 

“implicitly gave the reader a good idea of their positive attitude towards mathematics” 

(ibid., p.192).  They suggest that such a positive attitude would also be very important 

for students studying mathematics.  They propose that mathematics achievement is 

linked to students’ interest in the subject and their motivation and emotional state 

towards it. 

A perusal of the studies discussed earlier and the summary provided in Table 2.1 allows 

us to recognize three major areas of difficulty that emerge and are common in all the 

findings: mathematical language and notation, understanding of mathematical objects 

involved in the proof construction exercise including understanding of definitions, 

ability to generate own examples and the ability to apply these definitions correctly and 

finally deductive reasoning abilities and knowledge of proof methods, techniques and 

strategies.  Armed with this knowledge I am not only better prepared as a researcher and 

lecturer having more insight into the types of problems which would most probably 

challenge my own students but also better equipped to develop an analytical framework 

which will enable me to track proof comprehension and construction abilities as 

students engaged with proof construction over the semester.  Research regarding 

analytical frameworks will be discussed in Section 2.3.    

Table 2.1: Students’ difficulties and challenges in the area of proof comprehension and 

construction   

Researchers Students’ difficulties and challenges in the area of proof 

comprehension and construction  

Solow (1981) • Knowledge that students need is partially concealed 
and not readily available. 

• Inadequate knowledge of proof methods, techniques 
and strategies. 

Moore (1994) • Inadequate knowledge and understanding of 
definitions 

• Inadequate intuitive understanding of mathematical 
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objects. 

• Inadequate mental images of mathematical objects. 

• Failure to generate and use students’ own examples. 

• Inability to extract the structure of a proof from a 
definition. 

• Inability to understand and use mathematical 
language and notation. 

• Inability to start a proof. 

• Lack of logic reasoning abilities and knowledge of 
proof methods. 

• Cognitive overload.  
Dreyfus (1999) • Lack of exposure to forms of knowledge on which 

proof depends. 

• Lack of deductive reasoning abilities. 

• Lack of conceptual clarity and knowing how to use 
relevant mathematical objects in mathematical 
arguments. 

• Lack of an understanding of the characteristics of a 
mathematical explanation. 

• Inadequate linguistic ability. 
Weber (2001) • Lack of an accurate conception of what a 

mathematical proof is. 

• Lack of a real understanding of definitions and 
theorems and the ability to apply them correctly, that 
is, a lack of syntactic knowledge. 

• Lack of strategic knowledge, that is, the knowledge 
of how to choose and apply the assumptions, 
definitions and theorems at one’s disposal. 

Blanton, Stylianou and 
Knuth (2011) 

• Lack of an understanding of what constitutes a 
proof. 

• Inadequate logic and reasoning abilities. 

• Inadequate understanding of mathematical language 
and notation which hinders students’ understanding 
of definitions. 

• Inadequate understanding of the mathematical 
objects contained in the proof construction task. 

Heinze and Reiss (2011) • Cognitive challenges related to mathematical 
reasoning and proof construction. 

• Affective challenges such as a lack of motivation 
and unwillingness to perform and engage with proof 
construction tasks. 
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2.2.2 Students’ abilities, notions and beliefs in proof 

construction and their proof schemes 

Research carried out on students’ proof construction abilities has shown that even 

students at college level have difficulties constructing deductive proofs based on logical 

reasoning and justification.  Students favoured empirical proofs based on examples, 

ritual proofs based on the perceived form of the proof and authoritarian proofs based on 

an authority such as a teacher or a text book.  Below I outline and discuss studies 

carried out by Coe and Ruthven (1994); Healy and Hoyles (2000); Kuchemann and 

Hoyles (2011) and Harel and Sowder (2007). 

Coe and Ruthven (1994) examined the proof practices and constructs of advanced 

mathematics students in their final year at college.  The students were encouraged to 

justify the solutions they gave using rigour and a convincing argument.  They found 

however that the majority provided at best empirical proof, that is, appealing to 

examples as a source of proof, with very few giving any further justification for the 

truth of the conjecture.   

In their comprehensive review of literature, Healy and Hoyles (2000) found that 

empirical research has tended to focus on describing and analysing students' responses 

to proof construction tasks.  These studies provide evidence that most students have 

difficulties in following or constructing formally presented deductive arguments.  They 

found that little attention had been paid to documenting students' views of the meaning 

of mathematical proof, and that the relationship between these views and students’ 

approaches to proof construction had not been empirically investigated (ibid., p.397).  

They then set about investigating these aspects of proof solving.  They studied proof 

solving characteristics of high achieving 14-15 year olds in the United Kingdom.  They 

investigated the way students constructed proofs for themselves as well as how the 

students judged given proofs. They found that the majority of the students were unable 

to construct algebraic proofs.  Students valued general and explanatory arguments and 

predominantly used empirical arguments for their own proofs although the majority 

seemed to be aware that empirical arguments were not general.  Students also seemed to 

prefer arguments presented in words for their own approaches to proof and had the most 
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success in constructing proofs when they used this narrative form, possibly including 

examples and diagrams.  On the other hand students found that arguments containing 

algebra were hard to follow, but believed that the use of complicated algebraic 

expressions would get the best marks from their teachers.  These results are indicative 

of the ritual and authoritarian proof schemes put forward by Harel and Sowder (1998, 

2007) as described in the next section, since students seemed to share the belief that 

proofs having a certain form would be more appreciated by their teacher. 

Kuchemann and Hoyles (2011, p. 171) state that a major challenge in mathematics 

education is for students to develop their ability in structural reasoning, which is to 

“reason mathematically,… make inferences and deductions from a basis of 

mathematical structures” rather than using empirical reasoning where examples are 

given to argue the validity of an argument.  Results from a longitudinal study they 

conducted on high school students’ use of structural reasoning in the field of 

number/algebra indicates that although there was a modest increase in structural 

reasoning over the three years of their study, empirical reasoning remained widespread.  

Interviews with students showed that they lacked confidence and had a poor 

understanding of structural reasoning (ibid., p.188).  They argue that a reason for 

students’ widespread tendency to use empirical methods might be that students could be 

using the empirical evidence to check whether their structural arguments were in fact 

valid (ibid., p.189).  They observed that even students who seemed to have some 

understanding of a structural proof still used calculations to check their proof as if 

acknowledging that their structural argument might have some flaws.    

Harel and Sowder (2007) have done a comprehensive literature review of studies on 

college and pre-college students' proof construction abilities and conceptions of proof.  

In all the studies they considered on both groups of students, they found that the 

external conviction proof scheme class (relying on an external authority such as the 

teacher or a textbook) and the empirical proof scheme class (relying on inductive and 

perceptual examples) dominated the students' approach to proof construction.  These 

classes are described in detail in the Section 2.3.1.   

De Villiers (1999) has suggested that the fundamental reason behind students' problems 

with proof could be attributed to their lack of appreciation of the various functions of 
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proof.  He has identified a number of functions of proof as a useful model for research.  

These are verification, explanation, systematization, discovery, communication and 

intellectual challenge.  In his research on South African mathematics teachers, de 

Villiers (2004) found that most of the teachers in his study saw the function of proof 

only in terms of verification, justification or conviction.  Mathematicians, however, 

often see conviction as a prerequisite for finding a proof of a conjecture.  He designed 

activities using Geometer's Sketchpad to encourage an appreciation of proof and to 

develop the understanding of the different functions of proof and structured these 

activities according to the Van Hiele levels for learning geometry.  The Geometer's 

Sketchpad is a computer program used as a dynamic tool for exploring geometry and 

algebraic graphs.  The Van Hiele levels for learning geometry developed by Dina and 

Pierre Van Hiele (ibid., p.706) are five different levels of thought by which students' 

understanding of geometry could be classified. 

2.3 Frameworks for the categorization and analysis of 

students’ proof constructions  

There has been a large amount of research on the development of frameworks to aid in 

the analysis and categorization of student’ proof construction attempts.  This section has 

been divided into two main subsections: the first will include frameworks which help to 

categorize students’ proof construction attempts (found in Section 2.3.1) and the other 

includes frameworks which might be used to explain and analyse students’ proof 

constructions (found in Section 2.3.2).  A distinction between these frameworks is that 

those described in Section 2.3.2 do not attempt to categorize the type of proof that 

students have constructed but rather give more detailed explanations on the path taken 

by the student. 

2.3.1 Frameworks for categorizing students’ proof 

constructions 

Researchers such as Tall (2002), Harel and Sowder (1998), and Harel (2007) have 

developed schemes to help to categorize students' proof attempts.  The proof schemes 

developed by Harel and Sowder (1998, 2007) appear to be the most comprehensive 

although they do have much in common with the ideas posited by Tall.   
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Three worlds of mathematics 

Tall (2007) sees human learning begin with competencies which are genetic and 

develop by successively building on knowledge.  According to Tall (2007, p.1), 

individuals who have developed an increased sophistication in reasoning ability are able 

to compress knowledge of abstract mathematical objects into simpler to use and hence 

more powerful mathematical objects.  Tall (2002) proposes that mathematical thinking 

evolves through “three linked mental worlds of mathematics”.  These three worlds can 

be summed up as: 

    •   An object based conceptual-embodied world. Here the individual reflects on 

observations made by physical senses to describe, define and deduce properties. These 

are then developed from thought experiments to Euclidean proof. 

    •   An action based proceptual-symbolic world that compresses action schemas into 

thinkable notions operating dually as process and mathematical object (procept). 

    •   A property based formal-axiomatic world of formal definitions and set-theoretic 

proof building axiomatic theories. 

High school students are expected to operate cognitively by reflecting on the properties 

of processes and objects they encounter and by building inferences. Observations such 

as `if two numbers are odd, then their sum is even' or `if a triangle has two equal angles 

then it will have two equal sides' lead students to Euclidean proof. Similarly students 

observe regularities in the symbolic world such as `5+2=2+5', which leads them to the 

more general `x + y = y + x' and the principle of commutativity. In the formal axiomatic 

world which students usually first encounter at first year university level, the starting 

point is the definitions and axioms of the particular mathematical structure and proofs 

are then constructed by means of deduction from these definitions. Thus the transition 

to the formal world requires a considerable change of approach. Students trying to make 

sense of this new culture of mathematics must build on their experience of embodiment 

and symbolism. Tall advocates that one of the major factors affecting students' 

performance is their embodiments and the underlying knowledge they bring with them. 
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Students’ proof schemes 

Harel and Sowder (1998, 2007) have classified proofs according to different proof 

schemes where each category represents a cognitive stage in the students' development.  

They define the aim of instruction as progressively developing the proof schemes 

currently held by students towards proof schemes that are practised by contemporary 

mathematicians.  Three categories (which are not mutually exclusive) have been 

classified each of which has several sub categories.  These are the external conviction 

proof scheme, the empirical proof scheme and the deductive proof scheme.   

The external conviction proof scheme has the sub categories: ritual, authoritarian and 

non-referential symbolic.  The authoritarian proof scheme depends on an authority such 

as a teacher or a book.  The ritual proof scheme is based on the strict appearance of the 

argument and the non-referential symbolic proof scheme depends on symbolic 

manipulation having no real coherent meaning for the student.   

The empirical proof scheme has two sub categories: inductive and perceptual.  The 

inductive proof scheme relies on evidence from examples, direct measurements of 

quantities, substitutions of specific numbers in algebraic expressions and so on, while 

the perceptual proof scheme relies on perceptions.   

The deductive proof scheme has two sub categories each consisting of various proof 

schemes: the transformational proof scheme category, and the axiomatic proof scheme 

category.  The three essential characteristics of transformational proof schemes are 

generality, operational thought and logical inference.  The student satisfies the 

generality characteristic when he/she understands the need to establish the argument 

‘for all’ allowing no exceptions.  Operational thought is manifested when an individual 

forms goals and sub goals on the path to prove.  The logical inference characteristic is 

manifested when he/she realizes that proving or justifying in mathematics is based on 

the rules of logical inference.  The transformational proof scheme is further sub divided 

into contextual (when there is a restriction of the context of the argument), generic 

(when there is a restriction of the generality of the arguments' justification) and casual 

(when there is a restriction on the mode of the justification).  The axiomatic proof 

schemes share the three features of generality, operational thought and logical inference 
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and include the premise that any proving process must have a set of accepted principles 

or axioms as a starting point.   

2.3.2 Frameworks for the analysis of students’ proof 

constructions  

Several analytical frameworks put forward by various researchers with the aim of 

analysing students’ proof construction abilities and their reasoning processes are 

discussed below.  Among these is a comprehensive assessment model for proof 

comprehension developed by Meija-Ramos, Fuller, Weber, Rhoads and Samkoff (2012) 

which I have found offers the best basis from which to develop my analytical 

framework for the analysis of students’ proof comprehension and construction attempts.     

A framework that takes into account the formal-rhetorical and problem oriented 

parts of proof 

Selden, Selden and Mckee (2008a, p.305) have developed a framework for 

distinguishing between different parts of a proof.  They separate proofs into a formal-

rhetorical part and a problem-oriented part.  The formal-rhetorical part is the part that 

can be written using the formal aspects of the definitions and theorems without much 

attention to their deeper meanings or to problem solving.  The remaining problem-

oriented part depends on problem solving and a deeper understanding of the 

mathematical objects.  Students seem to progress in constructing these two parts of 

proof independently. 

A framework that takes into account the mathematical, psychological and 

pedagogical components 

Stylianides and Silver (2011) use an analytic framework developed by Stylianides and 

Stylianides (2008) having three components: mathematical, psychological and 

pedagogical.  This framework was developed on the basis of a conceptualization of 

reasoning and proving that proposes that mathematicians spend the majority of their 

time on activities which involve exploring and conjecturing (Stylianides & Silver, 2011, 

236).  They give examples of experienced mathematicians who have observed the 

thinking processes involved in proof construction.  Lampert (1991) observes that 
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mathematicians produce new knowledge by testing assertions in a reasoned argument 

(ibid. p.125).  Polya (1954b, p.vi) describes the steps mathematicians may use to arrive 

at a proof: guess a mathematical theorem, guess the idea of the proof before going into 

detail, combine observations and follow analogies, try and try again.  Similarly 

Schoenfeld (1983) presented the various stages mathematicians might traverse before 

the end result of proof is attained.  He proposed that there needs to be identification of a 

pattern, using these patterns to formulate conjectures and testing these against new 

empirical evidence and finally working to understand why the conjecture ought to be 

true.   

Stylianides and Silver (2011) adopt the steps of ‘identifying patterns’ and ‘making 

conjectures’ grouped under the category of ‘making mathematical generalizations’ and 

the activities of  ‘providing proof’ and ‘providing non-proof arguments’ grouped under 

the category of ‘providing support to mathematical claims’ in their analytic framework.  

These activities form the mathematical component of the framework.  The 

psychological component of this framework is concerned with students’ perceptions of 

the mathematical nature of these activities.  The pedagogical component of the 

framework is concerned with how the students’ perception of the mathematical nature 

of the activities discussed can be aligned with those of the mathematical community in 

general.  

As this analytic framework focusses on activities such as identifying patterns and 

making conjectures, it is not very useful in the analysis of proof of theorems and 

propositions in the context of my study which focusses on the area of elementary set 

theory.  However the rationale behind the framework, that proof is not arrived at in its 

finished form but that it is worked on instead, passing through several stages, and at 

times proceeding by trial and error until the correct proof is attained, is a very useful 

underpinning.  Students who are being introduced to formal proof should be aware of 

this rationale. 

Syntactic and semantic understanding of proof and the representation system of 

mathematical proof  

Weber and Alcock (2004, 2011) argue that learning to prove at college level “requires 

students to work within a new representation system” (in the sense of Goldin, 1998).  
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Such a representation system as described by Goldin (1988) has as its basis primitive 

characters, configurations and structures.  Characters are the elementary entities, the 

building blocks of the representation system such as elements of a well- defined set, for 

example the symbols and signs used in the algebra of set theory.  Certain rules are used 

to combine characters into permitted configurations, such as sentences (formed from 

words) or mathematical equations (formed from variables, numbers and operation 

signs).  In general, representation systems have some imposed structure and rules 

governing the movement from one set of configurations to another.  Some examples of 

well- known representation systems are mathematical logic, group theory, set theory 

and derivational calculus.  Weber and Alcock (2011, p.326) describe some of the 

defining characteristics of their representation system of mathematical proof: 

• Characters: These include mathematical symbols, logical symbols and the 

mathematical language related to the context of the proof construction. 

• Permissible configurations: These consist of mathematically correct sentences 

that might combine English words and logical symbols. 

• Valid proofs: These follow acceptable proof frameworks that specify the 

assumptions at the beginning of the proof and the desired conclusion of the 

proof construction (ibid., p.326). 

• Reasoning: This should be based on the definitions of mathematical objects or 

using established theorems. 

• Assertions: These can either be assumptions clearly set out at the beginning of 

the proof or statements that have been deduced from previous steps or 

deductions in the proof. 

Weber and Alcock (2011) argue that constructing a mathematical proof using this 

representation system increases the reliability of proofs and makes them more 

acceptable to the mathematics community.  Interestingly this representation system is in 

concord with the proof comprehension model developed by Mejia-Ramos, Fuller, 

Weber, Rhoads and Samkoff (2012) outlined below which incorporates this 

representation system in the first three levels of the local comprehension of a proof.   

According to Goldin (1998) one can operate within and reason about characters and 

configurations within a particular representation system in two ways.  Syntactic 

understanding refers to working within the representation system of the proof itself, 
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using one’s understanding of the characters and configurations to manipulate and 

construct permissible configurations.  Alternatively semantic understanding involves 

the knowledge of representation systems other than the one in which the problem is met 

and using relevant configurations in those systems to link and develop understanding of 

the configuration in the original system.  

Weber and Alcock (2004, p.210) have defined a syntactic proof production as one 

which logically manipulates relevant definitions and other facts while a semantic proof 

production is one in which individuals use their internally meaningful thinking about 

the mathematical objects involved in the proof to guide the deductions required for each 

step in the proof construction.   

A comprehensive assessment model for proof comprehension 

Mejia-Ramos, Fuller, Weber, Rhoads and Samkoff (2012) seek to fill the existing gap in 

current literature for assessing proof comprehension in advanced mathematics at the 

undergraduate level.  They have introduced a comprehensive assessment model which 

can benefit lecturers and educational researchers by revealing the points of difficulty 

blocking students’ understanding of a particular proof.  The model can also be used to 

explore the effectiveness of instruction and do further research on how novel means of 

presentations and instruction on proof construction can affect and improve proof 

comprehension. 

The first three levels of the model are concerned with the local comprehension of a 

proof; that is, at the level of specific terms and statements in the proof addressing “what 

they mean, what their logical status is and how they connect to preceding and 

succeeding statements” (ibid., p.7).  These levels comprise the following:   

The first level of meaning of terms and statements measures students’ understanding 

of key terms and statements in the proof.  This may be assessed by asking students to 

identify definitions of key terms, identify examples illustrating particular terms or 

statements or identify trivial implications of a given statement. 

The second level of the logical status of statements and proof framework is 

concerned with students’ understanding of the different assertions in the proof.  This is 

assessed by asking students to explain their understanding of the purpose of making a 
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particular assumption and then asking them to identify the type of proof framework for 

example direct proof, proof by contradiction, proof by contraposition and so on. 

The third level of justification of claims measures students’ understanding of how each 

assertion in the proof follows on from previous statements in the proof and other proven 

or assumed statements.  Students’ comprehension of this aspect can be tested by 

questioning them on: what justifies claims made in the proof, the identification of the 

specific data supporting a claim and asking them to determine the specific claims that 

are supported by a given statement, that is, to identify given information in the proof 

which is used for the justification of new claims. 

The next four levels of the model are concerned with the students’ holistic 

comprehension of a proof; that is whether the student grasps the central ideas and 

methods of the proof and is able to apply this understanding to other proofs and other 

contexts.  The model here is concerned with students’ understanding of the proof as a 

whole. 

The first level of the holistic comprehension of the proof is summarizing using high 

level ideas.  One of the assessment methods includes asking the student to either 

provide a summary or identify the best summary from several summaries given.   This 

reveals the students’ understanding of the bigger picture or over-arching idea rather than 

the specific logical details.  The idea comes from Leron’s (1983) notion of structured 

proofs where an overview of the proof is first given and the main ideas are 

communicated to give students a better understanding. 

The next level is concerned with identifying the modular structure of the proof or 

breaking down the proof into more manageable components.  Questions that could be 

used to assess students’ understanding of this aspect include asking them to identify the 

purpose of a module of the proof, and to describe the logical relation between two or 

more components of the proof. 

The next level in determining students’ holistic grasp of the proof is whether the student 

is able to transfer general ideas or methods to other contexts.  All the 

mathematicians interviewed in the study listed identifying procedures used in the proofs 

they read in order to see if they could apply them to solve other proving problems as a 
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primary reason for studying the proofs of others.  Students could be assessed by asking 

them to transfer the method or to apply the same method successfully in solving a 

different proof task, or to identify how the proof method could be applied in other 

proving tasks.  They could also be asked whether they recognized the assumptions that 

need to be in place to allow the particular method to be used, that is whether they 

appreciated the scope of the method. 

The last level in assessment of students’ holistic comprehension is illustrating with 

examples.  This is concerned with assessing whether students understand how a proof 

can be illustrated by using specific examples.  Many mathematicians mentioned that 

they used examples to understand proofs that they read in order to make sense of the 

proof.  Some would relate the proof to a diagram to develop understanding.  Students 

could be assessed by asking them to use a specific example to illustrate a sequence of 

inferences or to use a diagram to interpret a statement or its proof.  This involves being 

able to relate the statement or proof to an appropriately chosen diagram. 

I have elaborated on this model to build an analytic framework which will allow me to 

gauge students’ proof construction abilities as they engage in proof construction 

exercises.  This will form part of my analytical framework and will be further described 

in Section 5.2.2. 

2.4 Pedagogical interventions leading to the 

development and improvement of students’ proof 

comprehension and construction abilities 

There has been considerable research on how the concept of proof can be taught in such 

a way as to bring about an improvement in students’ understanding in proof 

construction.  Much research in this area highlights sociocultural aspects which promote 

better learning in the classroom.   

There has also been research aimed at making proof writing more accessible to students 

where the perspective of the researcher is not aligned to the socio-cultural.  The 

common thread connecting these studies is that they all strive to raise students’ 

awareness, enabling them to reflect on and develop their thinking and reasoning 
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processes on proof and proof writing.  I only mention some such studies very briefly 

here due to space constraints.  Melis and Leron (1999) advocate structuring a proof in 

such a way as to enable students to get a global overview as well as insight into the 

sequential view, while Kuntze (2008) found that when students write texts on different 

aspects of proof their proof related meta-knowledge is stimulated hence resulting in 

improvement in proof construction abilities.  Stylianides and Stylianides (2008) propose 

that ‘pivotal counter examples’ promote ‘cognitive conflict’ which encourages students 

to reflect and modify their understandings enabling them to develop and progress in 

terms of proof construction abilities.  Soto-Johnson, Dalton and Yestness (2007) discuss 

three types of assessments positively affecting students’ proof writing abilities.  These 

are presentations of proofs by peers, practice in writing proofs and receiving prompt and 

meticulous feedback.   

Sections 2.4.1 and 2.4.2 present discussion of studies where the sociocultural 

perspective is incorporated.  The sociocultural perspective puts forward the idea that 

social interaction and collaboration with peers and more knowing others is a necessary 

prerequisite for effective learning.  Thus the quality of the interactions and the 

scaffolding received by students is central to our understanding of how students learn.  

Section 2.4.2 outlines studies in which frameworks for the analysis of the discourse 

taking place in these classrooms have been developed.  I have adopted the framework 

developed by Blanton, Stylianou and David (2011) as the best way I could study the 

utterances of students and the lecturer as they interacted in the consultative group 

sessions.   

2.4.1 Studies incorporating the socio-cultural perspective 

Sociocultural factors play an important role as the task of proving is a social one where 

interaction with others is essential (Blanton, Stylianou & David, 2004; 2011).  

Sociocultural factors related to students' transition to mathematical proof particularly in 

undergraduate settings, have been virtually unexplored and have only recently been 

brought to the fore.  In this literature review I have also included studies in classrooms 

(conducted at university, high school and primary school level) which are not 

specifically involved in the teaching of proof as the particular classroom practices 
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described incorporate the sociocultural perspective and make them pertinent to my 

study. 

Sociomathematical norms 

Yackel and Cobb (1996) report on research they conducted at elementary school level.  

Although this research is not concerned with proof in the undergraduate setting in 

particular, their investigation of classroom environments and the norms established in 

these, leading to improved and more effective learning, makes it very pertinent to my 

research.    

Yackel and Cobb (1996) put forward the notion of sociomathematical norms with the 

aim of describing how students develop and become “intellectually autonomous in 

mathematics” (ibid. p.458).  Sociomathematical norms are “normative aspects of 

mathematical discussions that are specific to mathematical activity” (ibid., p.458).  

These are distinguished from general classroom social norms as they relate in particular 

to the mathematical facets of students’ activity (ibid. p.458).   

They begin by using the theoretical framework of constructivism, but they broaden this 

by including a sociological perspective on mathematical activity.  They draw on 

constructs derived from symbolic interactionism whose primary contribution is the 

interactive constitution of meaning, and ethnomethodology with the main contribution 

being the notion of reflexivity.  This sociological perspective proved to be central to the 

development of the notion of sociomathematical norms (ibid., p.459).   

Yackel and Cobb (1996) propose that promoting a sense of social autonomy in children 

is one of the outcomes of establishing social norms in an inquiry based approach to 

mathematics instruction (ibid. p.473).  In addition they propose that teachers foster the 

development of intellectual autonomy by establishing sociomathematical norms in an 

inquiry based tradition of mathematics instruction.  They view students’ development in 

achieving intellectual mathematical autonomy as synonymous with their being able to 

make decisions and judgements in mathematical problem solving activities by using 

their own reasoning processes rather than relying on an authority for assistance or 

confirmation (ibid., p.473).   
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In conclusion Yackel and Cobb (1996) emphasize the importance of the notion of 

sociomathematical norms as a way of examining the mathematical aspects of teacher’s 

and students’ activity in the mathematics classroom (ibid., p.474).  These 

sociomathematical norms are constituted by the interaction of the students and the 

teacher in the classroom.  In the process of interactively establishing these norms, 

students are empowered to become increasingly intellectually autonomous in 

mathematics.  The role of teachers in establishing environments where positive 

sociomathematical norms are generated and students’ intellectual autonomy is 

encouraged is paramount.  This is in conflict with the view that students can reach an 

understanding compatible with the practices of the mathematical community on their 

own (ibid., p.474).   

In a later study Yackel, Rasmussen and King (2000) extend the analysis of social 

interaction patterns that had been successful in primary and high school classrooms to 

the context of undergraduate mathematics.  Their study was conducted on an 

undergraduate class in which differential equations was being taught.  They recorded 

the social and sociomathematical norms detected in students’ explanations when 

involved in problem solving and discuss how these norms were constituted.  They 

focussed on how social and sociomathematical norms encouraged the practices of 

meaning-making and sophisticated mathematical reasoning in their analysis (ibid., 

p.286).  They highlight the importance of social aspects of the classroom and encourage 

university lecturers to examine and reflect carefully on discussions which encourage 

interactions where explanation and justification are prominent.  They encourage 

lecturers to be proactive in promoting such interactions in their classrooms (ibid., 

p.286).  

Collaborative zones of proximal development 

Goos, Galbraith and Renshaw (2002) carried out a three year study on patterns of 

student-student social interaction in secondary school mathematics classrooms.  They 

investigated students working on problem solving exercises in small groups to 

determine how a ‘collaborative zone of proximal development’ could be fostered 

between students with similar levels of competence.  They found that there was a 

successful problem solving outcome when students openly offered their thoughts to 
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each other to be accepted or discarded and acted as critics of one another's thinking.  

Unsuccessful problem solving was characterized by a lack of critical engagement with 

their peers’ thinking processes.  The researchers note that although they focussed on 

student-student interaction, the teacher’s role is crucial in bringing about fruitful 

interaction (Goos et al., 2002, p. 220).  They reiterate that the teacher offered much 

scaffolding in the lessons to help students select strategies, identify errors and evaluate 

answers.  I suggest that the lecturer's role in the difficult task of proof construction is 

even more crucial and that he/she should be in the foreground to help students 

understand definitions, identify misconceptions, recall previous related results if needed 

and develop the correct strategy to prove statements. 

Investigating the teacher’s pedagogical choices 

Martin, McCrone, Bower and Dindyal (2005) investigated the interplay of teacher and 

student actions in a high school geometry class and identified factors pertinent to the 

development of the students' understanding of proof.  Their approach was based on 

Vygotsky's theory that gains in knowledge and understanding are often made with the 

assistance of other peers or lecturers who are more knowing.  By analysing the actions 

of teachers and students (predominantly their discourse) they sought to understand what 

leads to gains in proof construction abilities, and what hinders the development of these 

abilities.  They found that the teacher, through the pedagogical choices he/she makes, 

and the set-up of the classroom environment was able to engage the students in verbal 

reasoning, whole class argumentation and proof construction.  The environment created 

encouraged the students and teacher to participate and contribute actively to the 

development of the students' ability to construct formal proofs.  The teacher's important 

role of "analyzing, coaching and revoicing questions back to students" (ibid., p. 121) 

effectively monitored and influenced the students' reasoning and proof construction 

abilities.  I used aspects of such an environment in my consultative group sessions and  

monitored the students' participation through their discourse and their development in 

proof construction as the course progresses over the second semester. 

The Modified Moore Method 

A mode of teaching that is based on the belief that students do not learn about 

mathematical objects and processes in proof construction by passively writing down the 
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proofs that the lecturer writes on the blackboard but rather by trying to construct the 

proofs themselves, is the modified Moore method (Weber, 2003, p.5).  The lecturer 

presents the students with the definitions of mathematical objects and perhaps a few 

motivating examples regarding those objects and it is then left to the students to prove 

or disprove a set of related propositions.  Students are asked to present their solutions to 

the class followed by critique and discussion by all participants, with the lecturer 

remaining in the background providing little or preferably no help.  Advocates of the 

modified Moore method (MMM) claim that the personal engagement of the students 

achieved in this way, promotes ownership and might result in a deeper understanding of 

mathematical ideas and processes.  Studies done by Smith (2006) and Selden, Selden 

and McKee (2008b) show that students could develop proof conceptions which are 

more meaningful to them in an MMM course.  The MMM course was later referred to 

as IBL or inquiry based learning by Smith, Nichols, Yoo, and Oehler (2011).  Although 

I believe that in the context of under-prepared students, courses taught in the style of 

MMM offer too little scaffolding by the lecturer or tutors, the studies offer some 

evidence that when students engage actively in the task of proof construction and 

validation, these tasks become more meaningful and real to them. 

Scientific Debate 

A similar method aimed at improving students’ proof construction abilities is that of 

scientific debate introduced by Alibert and Thomas (1991, p.230).  After the 

introduction of a mathematical conjecture, an environment is created where students are 

encouraged to put forward arguments and convince their classmates of the truth or 

falsehood of such arguments.  Students begin to realize the need for precise definitions, 

clear arguments and rigorous proofs as a means of deciding on the correctness of 

conjectures.  The organization of such a debate involves precise techniques and rules if 

it is to succeed but it is a powerful tool as the students are actively involved in proof 

construction.  One very useful 'side-effect' is the observation that students no longer 

regard erroneous ideas as faults but as normal scientific events.  The theoretical 

framework on which scientific debate was based includes these pertinent points: 

1) Constructivism: "students construct their own knowledge through interactions and 

conflicts and re-equilibriation involving mathematical knowledge, other students and 
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problems" (ibid., pp.224-225).  The teacher manages the interactions and guides the 

process by setting up the problems and the teaching environment, and is an active part 

of the discussions when necessary. 

2) Learning is enhanced when students actively participate and apply themselves in 

knowledge construction. 

3) Contradictions help to clarify and elucidate proof construction steps and thus 

facilitate the process of knowledge construction. 

4) Working in a group is important and helps students gain personal meaning. 

5) Meta-mathematical factors such as systems of representations are significant in the 

promotion of learning. 

6) Mathematical objects are given meaning as students engage with one another and the 

problem set. 

All the above points were incorporated when facilitating the consultative group 

sessions.   

2.4.2 Studies in which frameworks for analysing discourse in 

collaborative classrooms have been developed 

While investigating classrooms where the sociocultural perspective was taken into 

account, and where student collaboration and cooperation were encouraged with regard 

to problem solving or proof construction tasks, some researchers have developed 

frameworks that might be used for the analysis of the discourse taking place during the 

discussions taking into account students and teacher interaction.  The analysis of the 

discourse during such interactions and the scaffolding received by students from their 

peers and lecturer is central to our understanding of how effective learning takes place.  

All the studies discussed in this section while advocating a very active and participatory 

role for the students also promote a very present and active role for the teacher who 

facilitates the discussion while providing a well-organized and encouraging 

environment.  As mentioned previously I have adopted the framework developed by 

Blanton, Stylianou and David (2011) as this was the most comprehensive and 

incorporated most of the categories put forward by other researchers.  The framework 

also concurred with my own investigation of categories which emerged as I went 

through transcripts of the consultative group sessions.  A summary of the broad 
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categories that these researchers have identified will be given in Table 2.2 at the end of 

the section. 

Establishing a culture of inquiry in secondary school classrooms: analysis of 

teacher’s practices 

Goos (2004) investigates the types of actions that teachers might take in establishing a 

culture of inquiry in secondary school classrooms.  Sociocultural theories of learning 

are used to provide a framework for analysing teaching and learning practices over a 

two year period (Goos, 2004, p.258).  Goos emphasizes the pivotal role played by 

communication and social interaction in mathematics learning.  The notion of the ZPD 

which Vygotsky defined as the distance between the problem solving capabilities of 

children when working alone and with the assistance of more knowing others is also 

used to describe students’ learning as they increasingly participate in class discussions.  

Goos (2004) characterizes classrooms having an inquiry based approach to mathematics 

as those where students learn to communicate mathematically while participating in 

discussions where new or unfamiliar problems are discussed and solved.  Goos (2004) 

investigated patterns of discourse arising when students in an Australian secondary 

school worked together collaboratively on challenging problems, and reports on the 

practices of the teacher as he strives to establish a classroom culture of inquiry.   

The teacher would start by challenging students with problems involving a new 

mathematical object, initiating discussions where he would withhold his own ideas and 

elicit students’ thinking.  Goos discovered three ways in which ZPDs were set up: 

through scaffolding, peer collaboration and interweaving of spontaneous and theoretical 

concepts (ibid. p.282).  Initially the teacher scaffolded students’ thinking processes by 

enacting his expectations as regards to making sense of their own and other’s 

explanations and seeking justification for statements.  As time passed the teacher’s 

support was gradually withdrawn and students completed tasks on their own with the 

help of more capable peers who took over the scaffolding by asking questions which 

allowed them to recognize errors and reflect on their plan of action.  By interweaving 

spontaneous and theoretical concepts, the teacher encouraged connections between 

every-day and scientific concepts.  For example the teacher would paraphrase students’ 

every-day language used for the ideas they expressed by introducing the appropriate 
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mathematical terms for those ideas.  Goos (2004) emphasizes that the sociocultural 

approach has great potential to inform our understanding of how we can propel students 

towards becoming mature members of the wider mathematical community.    

Establishing collaborative classrooms: analysis of teacher’s contributions  

Staples (2007) has done an in-depth case study of a collaborative high school 

mathematics classroom which attempted to answer questions on what collaborative 

practices are required of teachers and students for fruitful results, and how a 

community's capacity to engage in these collaborative practices develops over time.  

The study focussed on a highly accomplished teacher whose task was to teach a ninth 

grade pre- algebra class of lower-attaining group of students.  The theoretical 

perspective of the study is based on sociocultural and situative perspectives which 

consider participation as fundamental to the social process of learning (ibid., p.163).   

Analysis of the data revealed that the teacher's role in organizing collaborative 

participation in class was found to fall into three categories: supporting students in 

making contributions, establishing and monitoring a common ground, and guiding the 

mathematics (ibid., p.172).  This study promotes a "very active and present role of the 

teacher throughout providing a well-defined structure within which students conduct 

their mathematical work" (ibid., p.213).  I believe that such an active role is needed 

during the mathematics tutorials at the University of Limpopo to direct and help under-

prepared students develop their proof construction abilities. 

Investigating student collaboration: analysis of students’ actions 

Mueller, Maher and Yankelewitz (2009) base their research on the importance of 

communication in developing mathematical students’ understanding and the 

increasingly accepted view that students should be encouraged to participate in 

mathematical discussions sharing their views and analysing and evaluating each other’s 

ideas (p.276).  They draw on the ideas of other researchers to construct a framework for 

analysis of student collaboration highlighting three modes: co-construction of ideas, 

integration and modification. 

In the first form of collaboration: co- construction, students exchange ideas back and 

forth, building an argument together from the ground up.  In the second form of 
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collaboration: integration, ideas from the student’s peers strengthen the (originator) 

student’s argument.  In co-construction, the participating students are creators of the 

argument, but in the process of integration, the argument put forward by the originator 

is enhanced by the other participants’ contributions (ibid. p.277).  In the third form of 

collaboration: modification, after a student has put forward an argument that had not 

been expressed clearly or correctly, his peers help to make sense of it, correcting the 

error/s and creating a sound argument as a result. 

The researchers encourage further study and analysis of how students collaborate on 

proof construction exercises in order to understand the necessary factors for the 

promotion of effective mathematical reasoning and argumentation abilities of all 

students (ibid., p.282).  This study served to strengthen my belief that collaboration 

between students is a most effective way of promoting students’ development of proof 

construction abilities.  This framework did not provide sufficient detail for my purposes. 

Inquiry-based learning : analysis of teacher’s actions 

Smith, Nichols, Yoo, and Oehler (2011, p.307) present an exploration of how the 

actions of the instructor changed during the semester in terms of taking up and handing 

over control in class discussions in an inquiry-based learning course (IBL previously 

referred to as the modified Moore method).  The instructor who taught the IBL course 

believed that IBL courses enabled students to become independent thinkers (Smith et 

al., 2011, p. 311).  They observed that the instructor consciously decided at times to 

forfeit his role and then reclaim his position as an authority during discussions (ibid., 

p.311).  In order to analyse patterns in his instruction, they categorized his actions in the 

classroom under the following categories: motivating participation, facilitating whole 

group discussions and discussing and questioning students’ strategies for proof 

construction.  These emerged from the analysis of the data and resonated with the 

studies of Goos (2004) and Yackel, Rasmussen and King (2000).  Smith et al. (2011) 

expected to find the instructor asserting his role of leadership at the beginning of the 

course, tapering off towards the end as students advanced in their understanding and 

gained more confidence.  They found instead that the instructor only seemed to take on 

a leadership role during the middle of the semester and that this was relinquished at the 

beginning and end of the semester.  At the outset he acted more as a facilitator 
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encouraging students to critique the proofs presented and offer their opinions.  Towards 

the middle of the semester his comments were more frequent, and were centred on the 

mathematics being presented, encouraging students to examine and reflect on their 

proof construction strategies (ibid., p.321).  As the students’ confidence and 

participation increased towards the end of the semester, he again relinquished his 

leadership role.  By the end of the course students showed increased understanding that 

mathematics is a social activity requiring active participation.  Smith et al. (2011) 

conclude that although classroom environments such as those described here are rare in 

universities, they are effective in steering students towards more mature ways of 

mathematical thinking and participation (ibid, p. 322).    

Active participation in mathematical proof construction: analysing student and 

teacher utterances 

Blanton, Stylianou and David (2004, 2011) put forward the view that “proof is 

ultimately a socially constructed object whose purpose is to communicate the validity of 

a statement to a community based on established criteria by that community” (Blanton 

et al. 2011, p.290).  They also argue that proof is not arrived at as a finished product but 

rather as an argument that evolves dynamically.  When teaching proofs however, 

lecturers usually demonstrate completed proofs to students without any intimation of 

how the proof was developed.  They agree with other researchers such as Schoenfeld 

(1986) that this could be one reason that the more traditional methods of instruction in 

proof are not effective.  They report on an alternative mode of instruction where 

students actively participate in proof construction in line with the view that proof is a 

social activity.  They investigated the nature of scaffolding in undergraduates' transition 

to mathematical proof in these classrooms.   

Their results indicate that students engaging in discussions in which they are conscious 

of their thinking processes and encouraged to question, critique and provide justification 

of their own and their peers’ arguments, make gains in their proof construction abilities.  

They also found that through the teacher's prompts and facilitative utterances, the 

students' capacity to engage in these types of discussions could become a habit of mind.   

The study is positioned within Vygotsky's theoretical perspective that development 

cannot be separated from the social context in which it occurs.  They use the notion of 
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the Zone of Proximal Development (ZPD) defined as the area of potential cognitive 

development through the help of more knowing others (Blanton et al. 2011, p.292).  

They argue that since the ZPD intends to measure abilities which are in the process of 

development through students’ interactions with more knowing others, the quality of 

these interactions and the scaffolding received by the student is central to the 

understanding of how they learn.  The study thus assesses students' development by 

investigating how students interact with more knowing others and how the instructor 

provides scaffolding or guidance and support to the student in proportion to his/her 

needs.   

Blanton Stylianou and David (2011) developed a coding scheme which lends itself well 

to highlighting evidence of student development within the ZPD.  Instructional 

scaffolding which refers to the guidance and support given to the student to develop 

understanding that he/she might potentially possess, is inferred from the coded 

utterances to show where and how development takes place within the ZPD.  The 

framework was initially developed and is based on the work of Kruger (1993) and 

Goos, Galbraith and Renshaw (2002) who focussed on scaffolding taking place between 

peers.  Blanton et al. (2011) extended this by developing categories and codes for the 

teacher’s/lecturer’s utterances to take into account instructional scaffolding arising 

particularly from the teacher’s discourse in the classroom.   

Teacher’s utterances are categorized by the following:  

- Transactive prompts: defined as requests for critique, explanations, 

justifications, clarifications, elaborations and strategies where the teacher’s 

intention is to prompt students’ transactive reasoning. 

- Facilitative utterances: where the teacher re-voices or confirms student ideas or 

attempts to structure classroom discussion. 

- Didactive utterances: utterances on the nature of (mathematical) knowledge, 

axioms and principles or historically developed ideas that students are not 

expected to re-invent. 

- Directive utterances: providing students with either immediate or corrective 

feedback or information towards solving a problem. 

Student utterances are categorized as follows: 
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- Proposal of a new idea: where students bring new and potentially useful 

information to the discussion.  This could be a new mathematical object or a 

new representation which could potentially reveal a different aspect of existing 

information, an extension of a new idea or an elaboration of an existing idea 

towards a new direction. (New ideas can be correct or incorrect) 

- Proposal of a new plan or strategy: where students suggest a course of action for 

developing a proof, or some aspect of the proof. 

- Contribution to or development of an idea: where students add to existing ideas.  

These are often made by students other than those who made the initial 

suggestions, indicating that the suggested ideas are embraced by others. 

- Transactive questions: where students ask for clarification, elaboration, critique, 

justification or explanation of peer utterances. 

- Transactive responses: where students directly or indirectly respond to explicit 

or implicit transactive questions- these serve to clarify, elaborate, critique, 

justify or explain one’s thinking. 

Table 2.2 below summarizes categories for analysis of student and teacher discourse put 

forward by the researchers that have been discussed above.   

Table 2.2: Categories for analysis of discourse in classrooms where student participation 

and collaboration is encouraged 

Researcher/s Categories for analysis of student/ teacher discourse 

Students’ discourse Teacher’s discourse 

Goos (2004)   1) Scaffolding through enacting 
expectations with regard to making 
sense of own and others’ 
explanations and seeking 
justification for statements made, 
2) Encouraging peer collaboration, 
3) Interweaving of spontaneous 
and theoretical objects. 

Staples (2007)  1) Supporting students in making 
contributions, 
2) Establishing and monitoring a 
common ground, 
3) Guiding the mathematics. 

Mueller, Maher 
and Yankelewitz 
(2009) 

1) Co-construction of ideas 
2) Integration of ideas 
3) Modification of ideas 
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Smith, Nichols, 
Yoo, and Oehler 
(2011) 

 1) Motivating participation in class, 
2) Facilitating whole group 
discussions, 
3) Discussing and questioning 
students’ strategies for proof 
construction. 

Blanton 
Stylianou and 
David (2004, 
2011) 

1) Proposal of a new idea, 
2) Proposal of a new plan or 
strategy, 
3) Contribution to or 
development of an idea,  
4) Transactive questions 
requesting clarification, 
elaboration, critique, 
justification and so on,  
5) Transactive responses 
serving to clarify, elaborate or 
justify one’s ideas. 

1) Transactive prompts requesting 
critique, explanation, justification, 
clarifications, strategies and so on,  
2) Facilitative utterances re-voicing 
or confirming ideas or structuring 
class discussions,  
3) Didactive utterances on the 
nature of mathematical knowledge 
such as axioms and developed 
ideas, 
4) Directive utterances providing 
immediate or corrective feedback. 
 

2.5 Summary 

This literature review provides a background for the research questions addressed in my 

study.  Section 2.2 highlights the difficulties and challenges undergraduate students all 

over the world experience when engaging with formal proof construction as well as 

students’ abilities and conceptions of proof and the proof schemes prevalent in their 

proof construction attempts.  This provides the background for my first research 

question concerning first year students’ challenges with proof construction in the area of 

elementary set theory at the University of Limpopo and the forms of guidance observed.   

Section 2.3 discusses frameworks developed by researchers to categorize and analyse 

students’ proof constructions.  The framework I used as a basis for the analysis of 

students’ proof comprehension and construction abilities is based on an assessment 

model for assessing students’ proof comprehension developed by Meija-Ramos, Fuller, 

Weber, Rhoads and Samkoff (2012) and is one of the frameworks discussed in this 

section.   

Section 2.4 discusses pedagogical interventions conducive to the improvement and 

development of students’ proof comprehension and construction abilities.  In this 

section I focus on those studies where researchers incorporated a socio-cultural 
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perspective in these pedagogical interventions. My framework for the analysis of 

student and teacher discourse is based on the framework developed by Blanton, 

Stylianou and David (2011) and is one of the frameworks discussed here.  My 

methodology for an intervention to be put in place in the form of consultative group 

sessions was also drawn in some ways from the ideas put forward by researchers 

discussed in this section.   

This literature review has thus provided the necessary background for my research in 

providing relevant literature on students’ difficulties, abilities and notions in proof 

construction and the proof schemes prevalent in their proof construction attempts.  

Research on pedagogical interventions that have been found to be effective in advancing 

students’ conceptions and abilities in proof construction has been reported on.  The 

possible frameworks for the analysis of proof construction actions and contributions, as 

well as frameworks for the analysis of the discourse occurring in collaborative sessions, 

have been discussed.  
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Chapter 3: Theoretical Framework 

3.1 Introduction 

As a result of numerous studies, examples of some of which were described in Section 

2.4 which highlight the social aspect of learning in general and of proof itself, I have 

decided to use Vygotsky’s sociocultural perspective as the theoretical framework of my 

study on the teaching and learning of proof.  This is largely because Vygotsky’s pivotal 

idea that the context in which learning occurs is vital to our understanding of how it 

occurs underpins my study. 

3.1.1 Higher mental functions 

One of Vygotsky’s central notions in his study on the processes of development is his 

argument that all higher mental functions arise as a result of mediated processes and 

through co-operative activity (Vygotsky, 1987, p.126).  With the passage of time these 

functions are transformed and become integrated into the child’s own mental activity 

(Vygotsky, 1987, p. 259).  Vygotsky identified language as being the most crucial of all 

mediated processes; he emphasized that participation in social interactions mediated by 

speech is a pre-requisite for higher voluntary forms of human behaviour (Minick, 2005, 

p.36).  Vygotsky argued that language and speech are the most crucial mediational 

means that promote the development of higher mental functions in social and 

collaborative settings (Daniels, 2008, p.48).  Kozulin (1994) commenting on the special 

role played by language and speech in Vygotsky’s psychological system, notes that they 

play a double role;  the first being a psychological tool forming other mental functions, 

and the second arising as a result that they themselves are among these mental 

functions, and hence are also undergoing development.  Vygotsky refers to the central 

aspect of the sign as a vehicle for guiding and developing mental processes and he 

points to the use of tools including psychological tools in the development of higher 

mental functions (Daniels, 2008, p.26).  In this context tools might refer to the actions 

of individuals as they effect change in their environment while sign systems include 

language, writing and number systems (Vygotsky, 1978, p.7).  Vygotsky proposes that 

in the process of conceptual development in children, “the most significant moment in 

the course of intellectual development which gives birth to the purely human forms of 
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practical and abstract intelligence occurs when speech and practical activity, two 

previously completely independent lines of development converge” (Vygotsky, 1978, 

p.24).  In the context of my study practical activity includes the mathematical activity of 

proof construction using mathematical terms, symbols, signs, logical reasoning 

processes, proof methods and justification.  This is coupled together with speech as 

students interact with each other and the lecturer in consultative group sessions studied 

in this thesis.     

Proof comprehension and construction 

As discussed previously when speech and the use of signs are combined in any activity, 

such activity is transformed and made more productive.   According to the definition of 

higher mental functions, mathematical proof comprehension and construction can be 

viewed as activities involving higher mental functions.  When undergraduate students 

who have recently been introduced to the mathematical objects and processes involved 

in proof construction, are brought together in small groups and participate in solving 

proof construction tasks, an environment is created in which social and collaborative 

activity is encouraged. I therefore propose that, in line with Vygotsky’s theory, in the 

course of their participation in consultative group sessions, through their speech and 

communication (written and spoken) together with their use of the newly met terms, 

symbols, signs, logical and deductive reasoning processes and the newly met proof 

techniques, their learning will be greatly supported.    

3.2 Vygotsky’s theory of concept formation 

Vygotsky’s study of the process of concept formation continued from the research done 

by various other researchers interested in the process of concept formation including 

Ach (1921).  The study was based on the assumption that “a concept is not an isolated, 

ossified and changeless formation, but an active part of the intellectual process, 

constantly engaged in serving communication, understanding and problem solving” 

(Vygotsky, 1986, p.98).  Vygotsky surmised from Ach’s experiments that concept 

formation is not a mechanical process, but a creative one taking place in the course of 

problem solving.  Another researcher; Uznadze, (1966) depicts children beginning to 

speak as using words which gradually develop meaning allowing children to set them 
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apart from other words over time (Uznadze, 1966, p.77).  He goes on to conjecture that 

in a similar fashion the development of concepts begins with “forms of thinking which 

are not conceptual but which provide a functional equivalent of concepts” (Uznadze, 

1966, p.77).  These functional equivalents are similar to the mature concepts held by 

adolescents and adults in functional use, but differ in structure and quality (ibid, p.101).  

Vygotsky held the view that the central question in concept formation was how this 

process was accomplished (ibid, p.102).  This was the question which then urged him to 

do further experiments to study the process of concept formation and as a result saw the 

emergence of the developmental phases I will be describing below.  It is also this 

question which forms part of my research which takes place in the context of proofs in 

elementary set theory for first year undergraduates, as I attempt to investigate how 

students’ proof construction abilities develop over the semester course in Algebra.   

Proof construction and comprehension encompasses a range of skills and abilities (as 

described in Section 2.2).  According to Meija-Ramos et al. (2012), these include three 

major aspects: the first is the ability to use often newly met mathematical language, 

symbols and signs.  The second is the ability to recognize the correct proof framework 

or method of the proof and follow the logical structure of proofs, that is, the ability to 

proceed logically from the beginning of the proof to the conclusion.  The third is the 

notion that all claims must be justified and that deductions must follow previous 

statements based on reason and logic.  These abilities form part of the students’ local 

comprehension of proof (as described in my analytical framework described in Section 

5.2.2).  Students’ holistic comprehension of proof includes being able to describe and 

explain the over-arching approach used in the proof, being able to transfer the ideas and 

methods used in previous proof solving activities in other similar proof construction 

activities and being able to illustrate statements and inferences with examples or 

interpret statements with the help of diagrams.  In this thesis I would like to extend 

Vygotsky’s theory of concept formation and the developmental phases he proposed to 

the development of skills students need as they attempt proof constructions in the area 

of elementary set theory.  This includes students’ use of newly met terms, symbols, 

signs, logical and deductive reasoning processes, proof methods and the practice of 

justification.   
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Vygotsky’s study on the process of concept formation revealed that although processes 

leading to concept formation begin in early childhood, the intellectual functions needed 

to form a psychological basis for these only develop and mature at puberty.  The study 

also revealed that “it is a functional use of the word, or any other sign as means of 

focusing one’s attention, selecting distinctive features and analysing and synthesizing 

them that plays a central role in concept formation” (Vygotsky, 1986, p.106).  Vygotsky 

further elaborated that words and verbal thinking are the main processes which lead to 

concept formation and its generative cause, is a specific use of words as functional 

tools.  In terms of this theory it is important that while students are struggling to develop 

the various abilities needed for proof construction, the various mathematical objects that 

are in the process of formation should be discussed with peers and more knowing 

others, so that through this discussion and communication these objects are gradually 

brought to life.  I hope to show that this is precisely what was taking place in the 

consultative discussions within the small group which met weekly to work on proof 

construction exercises.   

Vygotsky’s experimental analysis led him to believe that there are three basic phases 

involved in the individual’s development of concepts, with each of these phases having 

several stages.  The first is the heap phase where objects are linked together without 

having any inherent connections.  Objects are grouped together through vague 

connections that happen by chance in unorganized heaps, a trait known as “syncretism” 

(ibid. p.110).   

The second phase comprises several variations of thinking in complexes.  These are the 

functional equivalents of real concepts as the objects in a complex are related by actual 

connections, a big step from the syncretic thinking of the heap phase.  Primarily what 

sets a complex and a concept apart is that the links between objects in a complex are 

any number of diverse or various concrete and actual existing connections while links 

between objects in a concept are based on a single attribute (ibid. p.113).  Bonds 

between objects in complexes are factual and concrete, whereas in a concept they are 

logical and abstract.  Five different types of complexes were identified by Vygotsky: 

associative, collection, chain, diffuse and pseudoconcept.  The last type of complex, the 

pseudoconcept, was termed by him the bridge between “complexes and the final 
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highest stage in the development of concept formation” (Vygotsky, 1986, p.119).  The 

pseudoconcept is a generalization formed in the child’s mind.  This has the outward 

appearance of a concept but inwardly is still a complex, in that the processes used to 

guide its realization are still the concrete bonds of a complex.  An illustration of 

pseudoconceptual thinking in Vygotsky’s experiments is the child grouping objects 

together with the sample object as though according to an abstract concept.  On further 

detailed study it becomes apparent that the child has only done this grouping because of 

the existence of some concrete bonds between the objects, thus reflecting thinking of the 

complex form.  Vygotsky noted that the pseudoconcept plays a dominant role in the 

child’s thinking and is a vital link in the journey to true concept formation.   

Vygotsky noted that were it not for the functional equivalence of concepts and 

pseudoconcepts which ensures a successful dialogue between the child and the adult, 

mutual understanding would be impossible (cf. Vygotsky, 1986, p.123).  In the specific 

case of mastering language and words, Vygotsky echoed Uznadze’s sentiments that it is 

this functional understanding which enables words to acquire meaning and concepts to 

come into being.  He quotes Uznadze (1966, p.177): “Obviously even before it reaches 

the state of a mature concept, a word is able to substitute functionally for the concept, 

serving as a tool of mutual understanding between people”.  Thus the pseudoconcept 

comprising the essential functional characteristics of the concept, when used in verbal 

communication with adults is a “powerful factor in the development of the child’s 

concepts” (Vygotsky, 1986, p.123).  Similarly I propose that while students are engaged 

in proof construction exercises and involved in written (on the board) and verbal 

communication such as: talking together, consulting, reasoning, explaining and 

clarifying, albeit with limited understanding, they are often operating with the 

functionally equivalent pseudoconcepts.  This usage is indispensable in the formation of 

mature concepts.   I hope to show that the consultative group discussions are very 

powerful factors in the development of mathematical objects and processes necessary 

for proof reading, comprehension and construction. 

The third major phase is that of thinking in true concepts.   

Briefly; throughout Vygotsky’s theory of conceptual development, the use of the word 

is emphasised as an essential part of both developing processes, playing a guiding role 
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in the formation of genuine concepts.  In the domain of mathematical education, the 

term ‘word’ is interpreted less broadly as ‘mathematical terms, symbols and signs’.  

This is further elaborated in Section 3.2.1. 

3.2.1 Adaptation of Vygotsky’s theory of concept formation to 

the mathematical education realm 

Vygotsky’s theory of concept formation has been adapted to the realm of mathematical 

education by Berger (2004a, 2004b, 2004c, 2006) while considering the question of 

how a university student makes sense of what is a new mathematical sign (Berger, 

2004a, p.81).  Drawing an analogy with the focus of Vygotsky’s experiments, that of 

the child learning a new word, she argues similarly that the student uses a newly met 

mathematical sign as a means of communication as well as an “object on which to focus 

and to organize her or his mathematical ideas even before she or he fully comprehends 

the meaning of this sign” (Berger, 2004a, p.81).  Berger (2004a, 2004b, 2006) further 

discusses the problem of how an individual learner who initially only has access to the 

newly met mathematical object through its definition, comes to know or understand that 

mathematical object.  She argues and demonstrates through examples that the 

‘functional use’ of a mathematical sign is both necessary for and productive of 

mathematical meaning-making for a university mathematics student (Berger, 2004a, 

p.82).  Activities such as imitation, association, template matching and manipulation are 

all incorporated in functional usage of a mathematical sign (Berger, 2004a, p.83).  

These are the tools which enable students to make the transition from their own 

personal meaning of the newly met object to an understanding more in line with the 

object’s use in the mathematical community.   

In developing her theory on the functional use of a mathematical sign, she draws on 

Vygotsky’s (1986, 1994) notion of the functional use of the word.  In her analysis of 

mathematical interviews with undergraduate first year university students, Berger 

demonstrates how usage of a newly met mathematical sign evolves primarily through 

activities such as template-matching, association, manipulation and imitation using 

resources such as the definition which was provided in the task, and examples in the 

text book.  I extend the notion of the functional use of a mathematical sign in my study 

to include functional use of newly met mathematical terms, definitions, logical 
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reasoning processes, proof methods and justification.  I argue that students’ functional 

use of the skills necessary for successful proof construction plays an important role in 

the formation of true concepts, bringing students’ proof construction capacities closer to 

those expected of members of the mathematical community.   

Berger adapts and extends Vygotsky’s theory of concept formation making it more 

suitable for the mathematical domain, naming this “appropriation theory” (Berger, 

2004b, p.4).  The main reason for this extension of Vygotsky’s classification (which 

came about from experiments with concrete objects) is that it does not consider what 

happens when students meet abstract objects with concrete representations.  She has 

also “distinguished between the signifier-orientated aspects of object appropriation 

(where the student’s primary focus is on the symbol) and signified-orientated aspects of 

object appropriation (where student’s primary focus is on the idea conjured up by the 

symbol)” (Berger, 2004b, p.4).  A brief description of appropriation theory follows. 

The heap stage which according to Vygotsky was characterized by the grouping 

together of unrelated objects which are linked by chance in the child’s perception is 

adapted to the mathematical context as a stage where learners “associate one sign with 

another because of physical context or circumstance” rather than based on a 

mathematical property of the signs (ibid. p.5).  Thus an indicator for the heap stage is 

the use of non-mathematical criteria when engaging in reasoning and mathematical 

activities. 

Berger identifies six non-linear stages of complex thinking where objects are grouped 

together by actual bonds which exist between them (Vygotsky, 1986, p.112).  Complex 

thinking is the essential pre-curser to conceptual thinking.  In this phase the student 

associates newly met signs with more familiar ones by abstracting or isolating the 

particular properties of these signs.  The importance of complex thinking is that it 

enables students to communicate with their peers and more knowledgeable others using 

words and symbols.  In this way their understanding of these newly met objects moves 

towards an understanding in common with the wider mathematical community.  

Whereas Vygotsky identified five stages of complex thinking; the associative complex, 

the chain complex, the collection complex, the diffuse complex and the pseudoconcept, 

Berger (2004b, 2004c) posits that these categories are not sufficiently adequate to 
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characterize the type of sign usage in the mathematical domain, and the need to 

distinguish between signifier-oriented and signified-oriented usage.  Berger (2004b, 

2004c), while discarding the diffuse complex category, adds the representation complex 

and the template complex.  Berger also adds three sub-categories to the associative 

complex: surface association, example-centred association and artificial association. 

I will be categorizing students’ reasoning in my analysis as falling into heap, complex, 

pseudoconcept or concept thinking categories.  As I will not be differentiating between 

the different types of complex thinking, because of space constraints, I will not go into 

detail about the various types of complexes.   

The pseudoconcept, the final type in the complex stage, which has the appearance of a 

concept to the observer while still a complex because of incomplete or contradictory 

knowledge about the object, forms a bridge between complex thinking and conceptual 

thinking.  Berger (2004c) proposes that students using pseudoconceptual thinking in the 

mathematical realm “are able to use and communicate about a mathematical notion as if 

they fully understand that notion, even though their knowledge of that notion may be 

riddled with contradictions and connections that are not based in logic” (ibid. p.14).  

Berger (2004c) argues that although all complex thinking allows students to 

communicate with others and develop their knowledge about the mathematical objects 

they are grappling with, pseudoconceptual thinking in particular allows students to 

engage and develop their knowledge in a way that is both personally and culturally 

meaningful.  Detecting students’ use of pseudoconcepts is difficult as the 

pseudoconcept has the outer appearance of a concept.  The existence of a pseudoconcept 

can be empirically detected by investigating students’ understanding of the 

mathematical object either before or after the student has used what seems to be a 

concept in an appropriate way, that is, before or after completion of a task which could 

be the construction of a proof or a portion thereof. 

A mathematical concept is formed when the internal links between the different 

properties and attributes of the object as well as the external links between that object 

and other objects are consistent and logical (ibid. p.16). 
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3.3 The Zone of Proximal Development    

In addition to the processes related to the development of higher mental functions and 

the theories of concept formation developed by Vygotsky, his theory on learning and 

development and the central notion of the Zone of Proximal Development (ZPD) are 

pertinent to my study.  I will be using these important ideas as I discuss the learning that 

which place when students engage in proof construction exercises in the consultative 

group sessions.   

Vygotsky argues that the relation between learning and development is complex.  He 

proposes that in trying to match learning with the developmental level of the child, there 

are two developmental levels that need to be determined: the actual developmental level 

and the potential developmental level.  The first is indicative of the child’s mental 

functions and abilities when working entirely on his/her own and the second his/her 

mental capability when working under the guidance of a teacher or more knowing other.  

Vygotsky argued that children’s true mental capability is better determined by 

observing what they can do with the assistance of others, rather than what they can do 

alone (1978, p.85).  He referred to the difference between the two developmental levels 

as the zone of proximal development (ZPD) and defined it as “those functions that have 

not yet matured but are in the process of maturation”, functions that are “currently in an 

embryonic state” (ibid., p. 86).  Vygotsky argued that a child’s mental development can 

only be determined when one has established both the actual developmental level (when 

the child is working alone) and the ZPD.  The ZPD can therefore play a central role in 

research on the development of learning processes (ibid., p. 87).  He proposed that 

education should operate on a few levels above children’s current developmental levels 

and that “the only good learning is that which is [slightly] in advance of development” 

(ibid., p. 89).  Wertch and Stone (1985, p.165) interpret this to mean that good teaching 

“awakens and raises to life those functions which are in a stage of maturing, which lie in 

the zone of proximal development”.  Vygotsky argued that an investigation of the ZPD 

is more helpful in revealing how intellectual progress occurs than just a measure of the 

mental age of a child (Vygotsky, 1986, p. 187).  Del Rio and Alvarez propose that 

Vygotsky articulated the notion of Zone of Proximal Development “in order to deal 

methodologically with the need to anticipate the course of development” (Del Rio & 
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Alvarez, 2007, p. 280).  Different educational settings give rise to different ZPD 

attainments and so researchers can aspire to find better or more ideal conditions for ZPD 

creation.  I hope to show in my thesis that one such setting is obtained when a group of 

students with different abilities together with a more knowing other such as a lecturer 

participate in proof construction exercises actively, and engage each other with 

questions and prompts requesting clarification, reflection, explanation and justification. 

A study concerned with the creation of zones of proximal development 

In her research Miller (2003) endeavours to provide evidence for the view originated by 

Vygotsky that social interactions that take place in discussions with purpose, allow 

students to internalize and develop their cognitive abilities (ibid., p.290).  Using a series 

of ethnographic classroom studies she posits the view that discussions in literature are 

important in developing students’ reflective thought processes.  In the classes studied, 

she reports on key issues about how teachers successfully mediated discussions to 

create a zone of proximal development in which students’ capacities were developed.  

She found that classes which were successful in encouraging fruitful discussion had the 

following characteristics: the teacher made it clear and emphasized that the group would 

be working together, the teacher asked authentic questions about what was puzzling her 

and listened carefully to students, providing support when needed after waiting to see 

whether other students might provide a next step or move.  Teachers in these classrooms 

showed great respect for students, nurturing their potential abilities and allowing them 

to take growing responsibility in critical enquiry (ibid., p.296).  Teachers who were 

unsuccessful in creating zones of proximal development often answered students’ 

questions themselves, headed off student interaction and discouraged students’ 

initiatives and questions that did not agree with their own reasoning processes.    

3.3.1 Consultative group sessions and the notion of EZPD 

In the consultative group sessions in my study, my intention was to allow students to 

have a very active role and a prominent voice.  Similar to the teachers described in 

Miller’s (2003) research who were successful in mediating discussions to create zones 

of proximal development where students’ capacities were developed, I tried to create a 

warm encouraging atmosphere where the views and questions of all participants were 
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invited and appreciated.  In this way I tried to create an environment where active 

engagement, discussion and consultation were encouraged as students interacted with 

one another while doing proof construction tasks.  I hoped that students would be 

enabled to access their zones of proximal development during these sessions.  For ease 

of reference I designate an environment in which access to students’ zones of proximal 

development is encouraged and promoted as the EZPD, that is, an environment in 

which students are enabled to access their zones of proximal development. 

3.3.2 The role of imitation 

The ZPD also highlights the importance of imitation in learning.  Previously it had been 

thought that children’s independent activity, not their imitative activity was indicative 

of their mental development, but Vygotsky argued that psychologists had shown that a 

“person can imitate only that which is within her developmental level” (Vygotsky, 

1978, p. 88).  He gives an example of a child who has difficulty solving a problem in 

arithmetic but grasps it as soon as the teacher has solved it on the blackboard.  The same 

child would not be able to grasp a problem in higher mathematics solved on the board.  

He suggests that, when working with peers or adults in collaborative activities, children 

are able to accomplish a lot more by using imitation.  According to Confrey (1995, 

p.40), the central role that imitation plays in cognitive development, leading to true 

concept formation, contributed towards Vygotsky’s creation of the notion of the zone of 

proximal development.  Chaiklin (2003, p.52) postulates that the assumption underlying 

the possibility of imitation is the existence of maturing psychological functions that are 

not yet able to operate independently but have developed to an adequate level enabling a 

person to make use of the scaffolding received.   

3.3.3 The notion of internalization 

Another key aspect in Vygotsky’s theory of cognitive development is that of 

internalization.  Vygotsky argued that all higher functions originate as social processes 

and are gradually internalized as children interact with more knowing others and master 

these functions for themselves (Confrey 1995, p.40).  Vygotsky emphasized that the 

creation of the ZPD while the child is interacting with peers and more knowing others in 

his/her environment sets into motion a number of internal processes and once these are 
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internalized they become part of the child’s independent area of operations.  The 

guidance and assistance received during this interaction is referred to as scaffolding.   

3.4 Summary 

I have briefly discussed Vygotsky’s socio-cultural theory and his theory of concept 

formation and its adaptation to the mathematical education realm.  I have also discussed 

his emphasis on the central role of the functional use of the word in the process of 

concept formation and extended this to include functional use of newly met 

mathematical terms, symbols, signs, logical reasoning processes, proof methods and 

justification.  It is this theory that underpins the entire study.  
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Chapter 4: Methodology and Methods 

4.1 Introduction 
 

In this chapter I describe how I investigated my research questions and why I used 

particular methods and methodology.  Cohen and Manion (1994, pp.38-39) describe 

methods as the various means by which data is to be gathered by the researcher while 

methodology is summed up as the processes or techniques researchers use in their 

investigation.  Sikes (2005, p.16) writes that methodology refers to the theory of how 

the researcher intends to gather knowledge in his/her research or investigation.  

Methodology is thus focussed on the description and analysis of research methods and 

aimed at understanding the process of scientific enquiry (Cohen & Manion, 1994, p.39). 

My first research question focussed on the challenges and difficulties first year 

undergraduate students have with proof construction in the area of elementary set theory 

and the forms of effective guidance offered to them as scaffolding.  The second and 

third research questions focussed on the development of students’ proof construction 

abilities and the nature of the interactions of students and the lecturer in the context of 

consultative group sessions.  With this in mind I investigated how students could be 

more effectively enabled to make progress and become intellectually autonomous, and 

how those showing potential in becoming more knowing peers could be empowered and 

supported.   

These questions all relied on students’ experiences with proof construction in a group 

context.  I investigated students’ views, thought processes and actions using methods 

based in an interpretive paradigm as my intention was to make sense of the subjective 

experiences and meanings my participants had with proof construction in the 

consultative group sessions (Creswell 2007, p.21, Cohen, Manion & Morrison 2011).  

My primary concern was to understand and explain how individual students interacted 

with and interpreted the mathematical activity of proof construction as they took part in 

consultative group sessions.  My methods of analysis were thus qualitative.  My 

analysis of the data collected in my study is interpretive: based on inferences I made as 

a result of my observations of students’ proof construction actions and utterances using 

the constructs described in my analytical frameworks (see Chapter 5). 
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I have used the case study method to investigate the characteristics of my individual 

students (as related to my research questions) with the hope that this research will help 

inform other researchers’ and teachers’ views on the difficulties and challenges 

undergraduate students might experience and will offer insight into proof construction 

in collaborative group processes particularly in settings similar to the consultative group 

sessions.   

My ontological and epistemological assumptions are discussed in Section 4.2.  The 

methodology of the case study approach will be discussed in Section 4.3.1.  Section 4.4 

gives some background on the setting of study, while Section 4.5 describes the methods 

used.  Section 4.6 discusses the methods used in the consultative group sessions.      

4.2 Ontological and epistemological assumptions 

My ontological assumptions are based in a social constructivist paradigm.  As a 

researcher I do not see the world as having a universal absolute reality, but a reality 

which is dependent on individual perspectives and developed in each of us 

constructively (Hatch 2002, p.15).  My epistemological assumptions arose from my 

ontological assumptions: they required me to get as close as possible to the students 

participating in my study so that I could collect their subjective accounts, experiences 

and actions (Sikes 2004, p.20, Creswell 2007, p.20).  It was necessary to carry out my 

research by collecting data which focussed on how the participants of my study 

experienced and developed proof construction and proof comprehension abilities as they 

participated in consultative group sessions.  I was a participant observer.  I then 

attempted to make sense of my observations and interpret them in order to generate 

meaning from the data collected (Creswell 2009, p.9).  My ontological assumptions 

imply that my interpretation of my observations is not purely objective but subjective 

and has been shaped by my own experiences and background, coloured by my own 

particular perspective (Creswell 2009, p.8).  This perspective was largely shaped by my 

theoretical framework; Vygotsky’s socio-cultural framework.  Vygotsky’s socio-

cultural theory also underpinned the analytical frameworks used for analysis of 

students’ and lecturer discourse and students’ proof construction actions and 

contributions in the consultative sessions.  The analytical framework for analysing 
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student and lecturer utterances is based on the understanding that the teaching and 

learning of proof is a social process.  It assumes Vygotsky’s thesis that all higher forms 

of cognitive learning have their origins in social interaction and are mediated by speech 

(Blanton, Stylianou & David, 2011).  My second analytical framework used for analysis 

of students’ proof construction actions and contributions incorporated the Vygotskian 

notion of the functional use of the sign to interpret students’ use and application of 

newly met terms, symbols, logical reasoning processes, proof methods and the practice 

of justification.  While analysing and interpreting my data, in addition to the effects of 

my particular perspective, I also considered the well-established argument that the very 

act of a researcher acting as an observer in a particular practice affects that practice 

(Brown & Dowling, 2001, p.47).  Hence there was the possibility that the participants of 

my study would have acted differently if they had not been aware that the consultative 

sessions were being video recorded.  I need to thus acknowledge the possible effects 

that I the researcher introduced to what was being researched. 

On the basis of my ontological and epistemological assumptions, I am well aware that 

my study cannot convey the whole or absolute truth.  The interpretations, discussions 

and conclusions I have offered arose from my attempt to discover and describe 

emergent ideas from my research as viewed from my own particular outlook.  However 

I have tried to deliver an honest, trustworthy and coherent account while taking into 

consideration the implications of my ontological and epistemological assumptions.   

4.3 Methodology 

As outlined above, I engaged in qualitative research in this study, using a naturalistic or 

interpretive paradigm.  This paradigm rejects the belief that human behaviour is 

governed by general universal laws.  Rather the position is that individuals’ points of 

view and interpretations of events must arise from the individuals themselves (Cohen, 

Manion & Morrison 2011).  I thus explored students' difficulties and challenges in proof 

construction, and investigated students’ progress in terms of the changes in their proof 

construction activities in the area of elementary set theory while acting as a participant 

observer in the intervention.  I explored an intervention comprising a consultative 

method of group work and its effect on students' development regarding proof 
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construction abilities.  I focussed on the processes of interaction in these consultative 

group sessions to gain a holistic picture of how lecturers could support students to 

become independent thinkers and empower those students who showed promise in 

becoming more knowing peers to develop their capabilities.  My methodological 

approach in this study consisted of case studies.  Section 4.3.1 discusses the 

methodology of case studies.  

4.3.1 Methodology of case studies 

The case study approach allows the researcher an opportunity to fully investigate an 

aspect with which one is concerned within a limited time scale (Bell, 2001, p.10).  The 

aim of a case study approach is "to illuminate the general by looking at the particular" 

(Denscombe 2007, p.36).  The primary case study was the consultative group sessions 

attended by students who were drawn from the first year mathematics major class at the 

University of Limpopo in 2010.  There were also two smaller case studies in which the 

proof construction activities of two specially chosen students (Frank and Maria) were 

investigated.  See Chapter 7 for the latter two case studies.  

It is often problematic to generalize qualitative studies as the particular contexts and 

characteristics of individual participants of different cases are different (Creswell 2007, 

p.74).  The deep level of investigation and intensive analysis involved in case study 

research however, hopefully enables this study to add to the growing literature on 

undergraduates’ experiences with proof construction in a collaborative group context.  

The participants of my study were purposefully selected to be representative of their 

class in terms of mathematical ability (according to their first semester results) and 

gender.  I chose students who were high attaining: 75% - 90% (category A), middle 

attaining: 60% -75% (category B) and low attaining: 45% - 60% (category C) to give 

me the opportunity of assessing proof comprehension and construction capabilities and 

how these abilities progressed in the course of the semester for students of varying 

levels of competence.  They were also representative in terms of gender as half of the 

students were women although I did not focus on gender as an issue of interest.   

I acted as a participant observer and developed less formal relations with the 

participants.  Although I actively participated as a facilitator during the consultative 
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sessions, on viewing the video recorded sessions and studying the transcripts of these 

sessions, I as researcher also acted as a data gathering instrument.  I lectured and tutored 

the students during the second semester in contact periods other than the consultative 

group sessions and therefore had sufficient time to engage with them in other settings.  

Studying social phenomena in a qualitative study necessarily influences the behaviour 

of those being studied (Hatch 2002, p.10).  While interpreting and making sense of the 

data I had to be reflective, keeping track of my influence on the setting.  I attempted to 

ensure that my own bias and emotional responses did not affect the research, that they 

did not affect the students adversely and that these biases were taken into account in my 

interpretation of events. 

4.4 Setting of the study  

The study took place at the University of Limpopo in a first year mathematics major 

course which is taught in two parts: a Calculus portion in the first semester and an 

Algebra portion in the second semester of the year.  The study took place in the second 

semester where the material on elementary set theory and relations was taught under the 

umbrella of topics in Algebra.  As mentioned previously in Chapter 1, the University of 

Limpopo is a previously disadvantaged university situated in a rural setting about 30 

minutes’ drive from Polokwane, the capital city of Limpopo.  Students at the university 

mainly come from previously disadvantaged schools in the Limpopo and Mpumalanga 

provinces.  A shortage of well-qualified mathematics and science teachers in South 

Africa means that mathematics teachers at these schools are often not as well qualified 

as those teaching at schools in urban areas.   

Students registered for this course were divided into two groups and taught concurrently 

in two lecture venues by two lecturers: a colleague and myself.  In 2010, the year that 

my data collection took place, there were 985 students registered for this course.  The 

lectures are taught in a standard lecture format where the students sit quietly, listening 

to the lecturer and taking notes as he/she talks and writes on the blackboard.  More 

recently tablets and data projectors have been introduced.  Students were also assigned 

to tutorial groups and attended one three hour tutorial session per week.  In the tutorial 

sessions, students worked on the exercises relevant to each section of the course with 
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the help of a lecturer and over 20 tutorial assistants.  There was roughly a ratio of over 

20 students per assistant.  In these sessions students were expected to sit quietly 

attempting all the questions in the exercise set given that week and make use of the 

assistance of the lecturer and tutorial assistants by raising their hands and asking 

questions.  The tutorial assistants were chosen from a pool of students who had passed 

the course well and were interested in tutoring.  The lecturers involved met with the 

tutorial assistants once a week to revise and go over all the pertinent material before the 

tutorial thus ensuring that the assistants would be of help to the students.  Continuous 

assessment took the form of weekly tests (covering material done in the previous week) 

written at the end of the tutorial sessions.  The students also wrote two comprehensive 

tests during the course of the semester and an exam at the end of the semester.  A study 

guide containing all the relevant notes and exercises was made available to the students 

at the beginning of the semester.  In 2010 42% of the students passed the course at the 

end of the semester.  This pass rate was quite normal; pass rates for this course (taught 

in the format that it was taught in 2010) ranged from 23% to 40% in the three previous 

years before the study took place. 

4.5 Methods 

The study took place in the year 2010, and was piloted in year 2009 (see Section 4.5.1 

for discussion of the pilot study).  Permission to conduct the research at the University 

of Limpopo was obtained from the Head of the Department of Mathematics and 

Applied Mathematics in the School of Computational and Mathematical Sciences.  

Ethical clearance was also obtained from the Ethics Office of the University of the 

Witwatersrand under whose auspices this research was carried out. 

Twelve first year students were identified and selected based on their performance or 

marks in the first semester of that year.  Four students were selected from each of the 

categories A (75% - 90%), B (60% - 75%) and C (45% - 60%).     

Once the twelve students had been selected, they were invited to an information session 

where they were presented with all the information about the study.  I explained the 

aims and purpose of the study, the methodology I would be using, their part in the study 

and how confidentiality and anonymity would be ensured.  It was also explained that 
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participation was purely voluntary and that non-participation would not affect their 

marks adversely.  Potential participants were assured that they could withdraw from the 

study at any time without any consequences whatsoever.  Each student received a 

participant information sheet with all the information on the study.  The students were 

asked to consider carefully whether they wanted to participate.  Those who were willing 

to participate were asked to sign two consent forms: one for general consent for 

participation in the study and another giving their permission for me to video record the 

consultative group sessions. 

Although all the students who had been selected signed the consent forms, only 10 of 

them actually came to the sessions.  The students were asked to participate in a group 

which met once a week (in addition to regular tutorials) while the material on the 

section on elementary set theory and relations was being taught in class.  Each session 

lasted about three hours.  The students came together in a room equipped with a white 

board and markers to work together on proof solving tasks with my guidance and help.  

Here I implemented the consultative method as described in Section 4.6.  Proof solving 

tasks included proof solving exercises which were included in tutorial exercises, as well 

as proofs of theorems and propositions discussed in class and included in the lecture 

notes.  As discussed earlier, the aim of these sessions was to gain more understanding of 

the processes used by students and the challenges and difficulties they encountered 

when doing proof construction.  Hence I needed to observe the students' interactions 

and discourse in these scaffolded sessions and to identify potential benefits and 

constraints.  I attempted to create an environment which encouraged students' active 

participation and closely monitored the processes and factors which seemed to enable 

students to make progress in their proof construction abilities.  There were four 

consultative group sessions in which the proofs of propositions and theorems relating to 

the Chapter on Elementary Set Theory were covered in detail.   

Ten students attended the first session: two from category A, four from category B and 

four from category C.  The second session was attended by six students: two from each 

of the categories A, B and C.  The third session was attended by five students: two from 

category A and three from category C.  The final session was attended by eight 

students: two from category A, two from category B and four from category C.  The 
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pseudonyms of the students, their respective categories and the sessions they attended 

are shown in Table 4.1. 

Table 4.1: Pseudonyms of participants, the category of their respective first semester 

results and the sessions they attended 

Students who participated Category of first semester 

exam results 

Sessions that students 

attended 

Frank A Sessions 1,2,3 and 4 
Joseph A Sessions 1,2,3 and 4 

Christine B Sessions 1,2 and 3 

Maria B Sessions 1, 2 and 4 

Bonnie B Sessions 1 and 4 
Laura B Session 1 

Gary C Sessions 1,2,3 and 4 
Edgar C Sessions 1,2,3 and 4 

Helen C Session 1 

Kenny C Session 1,3 and 4 

The students were invited to a session at the end of the semester, where they gave their 

feedback on the effectiveness and the value of the consultative sessions. 

4.5.1 The pilot study 

The pilot study took place in the second semester of 2009.  Fifteen first year students 

were purposefully selected on the basis of their first semester marks and invited to an 

information session.  They were told about the study’s purposes and their roles in it and 

how it would affect them.  They were assured of confidentiality and anonymity and that 

participation in the study was entirely voluntary, that they could withdraw at any time 

without any adverse consequences.  Each participant received an information sheet 

detailing all the information just discussed and they were asked to carefully consider 

whether they would like to take part in the study.  All the students expressed their 

willingness and were given two consent forms to read and sign; one was a general 

consent form and the other asked for permission to allow video recordings of the 

consultative group sessions.  We discussed and decided on the most convenient time for 

everyone to attend these sessions, and the students generally expressed their excitement 

and enthusiasm at being involved in a novel intervention.   

Three consultative group sessions took place in which 8 participants attended the first 

session, 12 attended the second session and 9 attended the third session.  Of the 8 
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participants in the first session three were from category A, two from category B and 3 

from category C.  Of the 12 attending the second session, there were 4 students from 

each of the categories A, B and C.  Of the 9 attending the third session, five students 

were from category A, two from category B and two from category C.  The sessions 

were therefore quite representative in terms of students’ mathematical ability.   

The pilot study was undertaken with several aims in mind.  The first was to investigate 

the feasibility and the do-ability of the consultative sessions.  It was particularly 

important to explore whether students would be willing to participate and attend these 

sessions regularly.  This was paramount if the consultative sessions were to yield 

reliable information.  I also needed to pilot the novel intervention method and 

familiarize myself with this method, attempting to learn from my experiences the best 

ways in which to conduct the sessions to create an environment that would be 

conducive to students’ active participation and engagement.  I also needed to identify 

actions and habits (on my part and the students) which might hamper the progress of the 

sessions rendering them unproductive in terms of student engagement.  These piloted 

sessions also helped to inform my decisions on the optimal duration of each session and 

whether my recording instruments were adequate and would provide accurate and 

detailed depictions of what actually occurred.  I also wanted to ensure that my research 

would benefit the participants contributing to their welfare and not causing them any 

harm. 

Regarding the study’s viability, the students who attended the sessions were always 

very keen, punctual and eager and often formed study groups of their own when they 

went back to their places of residence, helping other students who had not had the 

opportunity of participating.  I learned a great deal from the piloted consultative 

sessions.  I had thought that the students would be shy and uneasy about the video 

recorder and that it would be difficult to get them to participate and discuss the proof 

construction tasks openly.  Although they were a little awkward at first, as soon as the 

first student came up and attempted the first proof construction exercise (10-15 minutes 

into the first session), they were at ease.  They offered their contributions without 

hesitation and seemed to forget about the video camera completely. The general mood 

was buoyant and happy and the students often told jokes and laughed.  The feedback 
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was very positive, not confined to those attending these sessions but also from other 

students whom the participants had helped.  Most of the students expressed their 

gratitude for having been involved in this form of instructional intervention.  News of 

these sessions must have spread because many students approached me at the beginning 

of 2010 and asked whether these sessions would be continued that year.       

I made brief field notes and memos during and after the pilot group consultative 

sessions.  I also kept a reflective journal in which I recorded pertinent points regarding 

my methods and data collection.  These are described in greater detail in Section 4.5.4.  

The piloted consultative sessions which were transcribed by a professional transcriber, 

allowed me to start thinking about which analytical frameworks I would use and how I 

would code and analyse the transcripts. 

4.5.2 Video records and transcriptions of consultative group 

sessions 

As with the pilot sessions, the consultative group sessions in the actual study were video 

recorded.  As I was taking an active role in organizing and participating in the group 

sessions I was neither able to observe the students systematically nor make detailed 

field notes during the course of the sessions.  Video recordings were required so that I 

could do detailed observation after the sessions.  Videos offer a powerful medium for 

recording and analysing evolving situations and interactions (Cohen, Manion & 

Morrison 2011, p.530, Derry 2007, p.1).  Their use allows the researcher an 

observational record which is more unfiltered than human observation, and has the 

advantage of being able to be viewed many times (Cohen, Manion & Morrison 2011, p. 

470).  For accurate analysis of the transcripts, the researcher can review the recorded 

sessions several times scrutinizing them with due care when attempting to code the 

transcripts in terms of the categories and their indicators.   

Videos also allow the researcher to capture non-verbal data.  These include the tone of 

voice, inflections and emphases of the speaker, pauses and silences, interruptions and 

mood of the speaker (whether they are excited, angry or happy), speed of talk and how 

many people are talking at the same time (Cohen, Manion & Morrison 2011, p.427).  

This obviously makes transcribing the sessions and analysis of the transcripts more 
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time-consuming.  However even when this non-verbal data is not captured in the 

transcripts of the sessions, the researcher is reminded every time he/she reviews the 

tapes and he/she is therefore able to gain more insight.  The data is subsequently richer 

and has more depth.     

I used a small video camera equipped with a rechargeable long-life battery and a tripod.  

The sound quality was checked with earphones at the beginning of the session, and 

periodically during recording.  The sessions were recorded continuously with the 

camera in a fixed position on the tripod on the periphery of the ‘circle’ of the group of 

participants as they faced the board.  The camera was operated by a young student (the 

same age as the participants), and was only moved and zoomed very occasionally and 

carefully when focussing on someone who was offering a contribution, or on the board 

when one of the participants was writing out his/her proof construction attempt.  The 

recording instrument was made as unobtrusive as possible.  The room was not sound 

proof and at times, the sounds of birds chirping at the window, or chairs and doors 

creaking could be heard in the recorded sessions making transcription at these points 

challenging.  Students’ speech was also sometimes inaudible as some spoke very softly.  

Fortunately these occurrences did not happen often and I could see and hear the students 

clearly in most of the recordings. 

As my video recordings would be my major source of information, and the means by 

which my data could be stored and retrieved, I had to be systematic in selecting all the 

detail necessary to support my analysis and interpretation of students’ proof 

construction activities (Goldman, Erickson, Lemke & Derry, 2007, p.15).  Each three 

hour consultative session was recorded completely and continuously.   

When attempting to transcribe the sessions, I soon realized the enormity of my task in 

terms of time and effort.  I therefore enlisted the help of a professional to whom I gave a 

detailed and comprehensive list of the nomenclature used in the sessions (including the 

mathematical terms, symbols and signs).  Once I had received the completed transcripts, 

I viewed the video recorded sessions together with the transcripts several times, 

checking for errors and making corrections to ensure the accuracy of the transcripts.  It 

was of the utmost importance to ensure the accuracy of the transcripts as I relied on 

these transcripts to inform my investigation in several ways.  First: when investigating 
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students’ difficulties with proof construction, difficulties related to the language and 

terms used when referring to newly met mathematical terms, symbols and signs and 

their development in this regard were important.  Second: I was interested in how 

students offered and received guidance from their peers and so the language they used 

and the forms of guidance they gave were also very important.  The transcripts went 

through an iterative process of revisions and corrections until I was satisfied that they 

were indeed accurate depictions of each session.   

4.5.3 Selection of video recorded events and analytical 

frameworks 

Once I was satisfied that the transcriptions were highly accurate and contained no 

incongruences, I went through them mindful of my research questions and the possible 

frameworks of analysis as proposed by other researchers.  These are discussed in my 

Literature Review Chapter (Sections 2.3 and 2.4).  I did some preliminary coding of the 

transcripts according to analytical frameworks which seemed to be congruent with the 

purposes of my study and the data I had collected.   

I realized that I needed to use two complementary analytical frameworks to address my 

research questions fully.  The first (based on a framework developed by Stylianou, 

Blanton and David (2011)) would allow me to analyse the students’ and lecturer’s 

discourse in order to categorize the nature of their utterances with the aim of tracing 

patterns of scaffolding between the lecturer and the students and between the students 

themselves.  This would help me to gain an understanding of how students could be 

enabled to access their zones of proximal development.  I hoped this analysis would 

also reveal how the norms pertaining to the consultative sessions were established, and 

how students in general were supported to become intellectually independent while 

those showing the potential of becoming more knowing others were empowered to 

develop their capabilities (research question 3).  The second analytical framework 

(based on an assessment model developed by Meija-Ramos, Fuller, Weber, Rhoads and 

Samkoff (2012)) would be used to focus on analysing students’ proof construction 

actions and contributions to trace the development of students’ proof construction 

abilities as they progressed through the sessions (research question 2).  Furthermore this 

analysis could help inform me about the difficulties and challenges that hindered 
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students’ proof construction attempts and the various forms of scaffolding which could 

benefit them (research question 1).  A more detailed elaboration of how the analytical 

frameworks were selected is given in Section 5.2.  

Once these analytical frameworks had been identified and preliminary coding of all 

transcripts done, I needed to select the particular events that would form the basis for 

my study so that I could carry out more detailed coding and analysis.  With this in mind, 

I searched the transcripts for the events which best illustrated the challenges and 

difficulties, the forms of guidance and scaffolding offered by the lecturer and the 

students’ peers, and which showed how the norms pertaining to the consultative 

sessions were established.  The selection of these events was not only based on the 

transcripts and video records but also on my own experiences in the consultative 

sessions and my field notes and memos written during and after each session.  The 

quality of the video clips in terms of their clarity of picture and sound was also an 

important consideration, but this was secondary and did not bias the selection of the 

events.  The events selected were Episodes 1 and 2 from session 1 and Episode 3 from 

session 2.  I then looked through the transcripts for events that showed the first signs of 

visible and obvious improvements in proof construction ability of the two students 

observed in Episodes 1 and 2.  These took place in Episodes 4 and 5 in session 2.  I also 

wanted to focus on the ways in which the norms established by the lecturer were taken 

up by students.  These included encouraging students to clarify, explain and justify 

deductions and conclusions while questioning and critiquing their peers, and proceeding 

from one step to the next using sound logical reasoning.  I searched for those events 

where more knowing students began to assume the role and responsibility of the 

lecturer, becoming active agents offering the required scaffolding to their peers.  This 

was clearly evident in Episodes 3, 4 and 5 of session 2.  Hence my complete selection of 

transcribed video material comprised Episodes 1, 2, 3, 4 and 5 from sessions 1 and 2.  

To present events holistically, each of these episodes contained a completed proof 

construction attempted by students from the beginning to the conclusion.  The episodes 

were consecutive. 

As I engaged with the detailed coding and analysis of the events, using a grounded 

approach I allowed further categories and indicators to emerge from the data I was 
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working with (the transcripts).  Both analytical frameworks were extended and adapted 

in order to better capture all aspects of the discourse and proof construction actions and 

contributions observed in the consultative sessions.  A brief discussion of grounded 

theory as put forward by Corbin and Strauss (1990) is included below. 

Corbin and Strauss (1990, p.5) explain that the procedures of grounded theory (first 

introduced in 1967), are geared towards providing a “thorough theoretical explanation 

of social phenomena under study”.  They put forward eleven procedures or canons to be 

followed by those carrying out grounded theory studies.  These are briefly discussed: 

• In grounded theory research data collection and analysis are interrelated and the 

analysis should begin with the very first data collected.  This is necessary as this 

analysis is used to ‘fine tune’ questions to be asked and observations to be made 

with the next set of data to be collected.  Corbin and Strauss stress that the 

interrelation of data collection and analysis is one of the most important factors 

ensuring the effectiveness of the grounded theory approach. 

• The notions that form the basic units of analysis are brought to the surface 

gradually by comparing incidents and calling the same phenomena by the same 

terms as the analysis progresses. 

• Categories are generated by grouping notions pertaining to the same 

phenomenon together.  These categories are related to one another over time to 

form a theory. 

• In grounded theory, it is not the groups of individuals, units of time and so on 

that determine how sampling proceeds, but the notions and phenomena that 

surface from the study as data collection and analysis go ahead together. 

• As data collection continues and various incidents are noted, these are 

constantly compared to other incidents for similarities and differences resulting 

in notions that are more precise and consistent. 

• The data should be examined for patterns of regularity of incidents occurring 

and the researcher should account for when there are variations in the original 

pattern. 

• The researcher needs to be alert to actions and interactions that change when the 

prevailing conditions change. 
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• The researcher should keep track of all the notions and categories as well as the 

analytical process by using memos throughout the study.  These memos are 

essential when reporting on the research and its implications. 

• The hypotheses which are developed as analysis is ongoing are constantly 

revised by being taken back into the field until they are verified and shown to 

hold true for all evidence collected. 

• As far as possible grounded theorists should share the outcome of the (ongoing) 

analysis with colleagues who are experienced in the same area of research.  This 

will guard against bias and allow for new insights making for a richer and more 

collaborative analysis. 

• Broader structural conditions must be analysed.  The researcher has the 

responsibility to show in their analysis the specific links between conditions, 

actions and consequences (Corbin & Strauss (1990), p.11). 

Corbin and Strauss (1990) put forward three types of coding that may be used as the 

fundamental analytical process, by the researcher; open, axial and selective.  I have not 

gone into much detail about the coding process as my analytical approach was 

fundamentally typological and theory-driven.  The procedures and canons outlined 

above were followed as much as possible but my analysis was primarily guided by the 

categories and indicators described in my analytical frameworks (as described above 

and in Section 5.2).  As the analysis was ongoing categories and indicators that did not 

appear in these frameworks and which emerged according to the canons described 

above were noted, compared and developed into additional categories and indicators.  

These additional categories and their indicators are further discussed in Section 5.2. 

Table 4.2 shows all the proof construction exercises in sessions 1 and 2, in the order in 

which they were attempted and the pseudonyms of the students who attempted the 

exercises.  It should be noted that discussions between the proof construction attempts 

and the brief introduction given at the beginning of the sessions were not included and 

that the duration of each of each of these sessions was over three hours.  As can be seen 

the proof methods of implication, double implication, equality and showing that one set 

is a subset of another set were the main proof methods contained in all the proof 

construction exercises.  In line with the material covered in class, as each session 
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progressed new terms, symbols and concepts were gradually introduced: the Cartesian 

product and the power set in the second session, equivalence classes in the third session 

and some simple number theory proofs in the fourth session. 

Table 4.2: Proofs attempted in the first and second sessions and their duration 

Session Episode 

chosen 

for 

detailed 

coding 

and 

analysis 

Participant 

attempting 

the proof 

construction 

Proofs attempted in each session Duration 

of each 

episode 

Session 
1 

Episode 1 Frank A ⊆ B and B ⊆ C ⟹A ⊆ C 23 minutes 

 Frank and 
Joseph 

A ⋃ (B ⋃ C) = (A ⋃ B) ⋃ C 28 minutes 

Episode 2 Maria 
attempted to 
prove          
a) ⇔ b) 

If A, B, C are sets, the following 
are equivalent: 

a) A ⊆ B 

b) A ⋂ B = A 

c) A⋃ B = B 

63 minutes 
(for:           
a) ⇔b)) 

Remainder 
of proof 
took about 
30 minutes 

Session 
2 

Episode 3 Edgar (A ⋃ B) × C = (A × C) ⋃ (B × C) 22 minutes 

Episode 4 Maria (A ⋂ B) × C = (A × C) ⋂ (B × C) 13 minutes 

 Gary (A × B) ⋂ (C × D) = (A ⋂ C) × (B 
⋂ D) 

16 minutes 

 Joseph (A × B) ⋃ (C × D) ⊆ (A ⋃ C) × (B 
⋃ D) 

5 minutes 

Episode 5 Frank A ⊆ B ⇔ P(A) ⊆ P(B) 19 minutes 

 Joseph P(A) ⋃ P(B) ⊆ P(A ⋃ B) 17 minutes 

 Christine P(A) ⋂ P(B) = P(A ⋂ B) 11 minutes 

 Frank Z ⊆ X and Z ⊆ Y ⟹ Z ⊆ X ⋂ Y 4 minutes 

 Gary and S ⊆ T ⟹ S ⋃ A ⊆ T ⋃ A where A 5 minutes 
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Joseph is any set. 

 Joseph If S ⊆ T and B is any set,          
then S ⋂ B⊆ T ⋂ B 

4 minutes 

4.5.4 Field notes, memos and reflective journals 

Although my time was restricted by my role as a participant observer during the 

consultative sessions, I kept a notebook at all times in which I recorded brief field notes.  

This was done periodically and informally with a great deal of flexibility, to capture 

interesting and significant phenomena which occurred during the sessions (Brown & 

Dowling 2001, Cohen, Manion & Morrison 2011, p. 466-467).  For each session I 

recorded the following: 

• The pseudonyms of all the participants who attended,  

• A chronicle of the proof construction tasks attempted in each session, a 

summary of the activities of the student who attempted the proof construction as 

well as the major contributors,   

• Significant interactions between me and the students and between the students 

themselves,   

• Major difficulties and challenges that students experienced as they engaged with 

proof construction tasks,   

• My observations on how more knowing peers grew in their understanding that 

every proof construction step needed to be justified and explained and how they 

took over the scaffolding of students, 

• Significant improvements in particular students’ proof construction abilities, 

• The general mood and feeling of the students at various stages, particularly 

when they seemed to be tired, happy, excited or enthusiastic. 

I wrote memos at the end of each session on the pertinent points of observation and 

discussion during the session.  These memos gave more detail to the field notes made 

during the sessions.  I also kept a reflective journal which contained: 

• Records of the participants and the selection process as well as my reflections 

and thoughts on the methodology, data collection and analysis of my data. 
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• Reflections on the methods being used, the data I was collecting and my 

intended analysis.   

• Points which needed to be clarified.  I also made a note if any ethical issues 

about the study as a whole occurred to me at any stage. 

The field notes, memos and reflective journal were very helpful as I referred to them, 

particularly in the early stages of analysis to guide me in the coding and analysis.  

4.6 Consultative group method 

The methodology for the consultative group is based on the belief that learners learn 

best when they interact with one another and experts; consulting on the problems and 

questioning one another, while making functional use of newly met terms, symbols, 

signs, logical reasoning processes, proof methods and justification.  According to 

Vygotsky (1978, p.90), an essential feature of learning occurs when one is interacting 

with adults and peers, within a zone of proximal development.  This sets in motion a 

variety of "internal developmental processes" that become part of one's independent 

development once they are internalized. 

Methodologies similar to the one that I have used in the consultative group sessions are 

found in the studies mentioned in Section 2.4.  The studies surveyed were those in 

which a socio-cultural perspective was incorporated in pedagogical interventions 

leading to the development and improvement of students’ proof comprehension and 

construction abilities.  In line with my theoretical framework (Vygotsky’s socio-cultural 

theory), these studies all advocate establishing classrooms where collaboration and 

consultation among students and more knowing others is encouraged.  Students are 

gradually accustomed to explain and justify their reasoning and reflect on and critique 

their own thinking and the explanations given by their peers.  In this way students are 

enabled to access their zones of proximal development leading to a more optimal 

development of their abilities in proof construction which is in fact a very social 

activity.  A common thread running through all these studies is that they strive to 

establish environments in which students can more easily access their zones of proximal 

development (EZPD) and so bring about acceleration in their abilities to reason 

mathematically and develop proof construction abilities.  All of these studies advocate 
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that the teacher/lecturer plays a very active role in guiding and managing an 

environment which encourages active student participation.   

I argue that in the consultative sessions focussing on proof construction, the presence of 

an expert such as the lecturer, tutorial assistant or more competent peer is essential.  

Such an expert could provide scaffolding and help when required, but even more 

importantly help establish the norms that would enable and support students to become 

independent thinkers and empower those with the potential to become more knowing 

peers to develop that capacity.   Proof construction is a difficult task posing numerous 

challenges to students all over the world (see Section 2.2.1) and students generally need 

much practice before they can accomplish this on their own.  As the consultative 

sessions progress more knowing peers can be encouraged to take the lead by the lecturer 

or tutor who would now remain mainly in the background to guide and steer the process 

and intervene when necessary; that is, when the students need help.   

In these sessions I tried to establish such an environment where fruitful discussions 

could take place, and introduced a process of consultation helpful to students when 

constructing proofs.  The concept of consultation I used is one gleaned from the Baha'i 

writings.  Consultation is understood to be a method of discussion where all the 

members in the group are encouraged to offer their views and listen to each other’s 

views in a friendly and tolerant atmosphere while investigating the truth (Baha'i 

International Community 1989, p.1).  In this manner every member of the group was 

encouraged to express his/her views and understanding freely as a contribution to the 

search for the right result.  I had a critical role to play throughout this process; helping 

the students whenever necessary to reach the desired output and encouraging everyone 

to participate and give their views without fear of criticism or ridicule.  I tried to put 

students at ease and constantly asked for their input, ideas, thoughts, comments and 

questions.  I thus transferred the responsibility of finding the correct solution to the 

students themselves.  I questioned and critiqued their thinking processes when they 

were using incorrect strategies or making deductions and conclusions without the 

necessary justification.  I encouraged and praised students who made valid contributions 

while persistently eliciting their thinking, making it clear that what they had to say was 

valued and that they were expected to explain their thinking fully.  Thus students were 
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encouraged to consult and learn from one another on the strategies of how to approach 

and construct proofs, what to do when stuck, how to correctly interpret and apply 

definitions and other pertinent results and many other strategic skills.  These skills are 

invaluable and cannot really be explicitly taught in a formal classroom setting.  I will 

refer to the method just described as the consultative method from now on.  

4.7 Concluding Summary 

In this chapter I have described the methodology and methods used in the study.  My 

ontological assumptions based in a social constructivist paradigm gave rise to my 

epistemological assumption which required me to collect subjective accounts, 

experiences, actions and utterances of students and the lecturer as they interacted in the 

consultative sessions while engaging in proof construction exercises.  Accordingly the 

analysis of my data is interpretive; based on the inferences I made as a result of my 

observations of students’ actions, utterances and contributions together with the 

constructs from my analytical frameworks. 

My ontological assumptions implied that my interpretations could not be purely 

objective but subjective, shaped by my own experiences, background and theoretical 

perspective (Vygotsky’s socio-cultural theory).  Vygotsky’s thesis that all higher forms 

of cognitive learning have their origins in social interaction and that language and 

speech are the main psychological tools which mediate this learning, is at the heart of 

my study.  Vygotsky’s notion of the functional use of the sign was extended to refer to 

students’ use and application of newly met (mathematical) terms, symbols, logical 

reasoning processes, proof methods and justification before they have a complete 

understanding of these objects and processes.  Case study methodology was used to 

gain a holistic picture of how lecturers could support students in becoming independent 

thinkers and empower those showing the potential to becoming more knowing others to 

gradually take on the role and the responsibilities of the lecturer in providing 

scaffolding to their peers.   

This was done in the context of consultative group sessions, an intervention based on 

creating an environment where active consultation and collaboration of students with 

their peers and the lecturer was encouraged.  Students’ difficulties and challenges with 
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proof construction in the area of elementary set theory and the various forms of 

guidance offered are also investigated.  The sessions were video recorded and 

transcribed so that detailed observation could be carried out after the sessions.  

Additional data was in the form of brief field notes made during the sessions, memos 

written at the completion of each session, and a reflective journal kept throughout the 

study.  These recorded the pseudonyms of the students in each session, a chronicle of 

proof construction exercises attempted in each session, summaries of proof construction 

attempts and major contributions from peers, significant interactions, major difficulties 

and challenges encountered, the evolving understanding of students in general and more 

knowing peers in particular, the general mood of students as they expressed feelings 

such as happiness, enthusiasm or frustration and reflections and thoughts on the 

methodology, data collection, ethical issues and analysis of data.  

The transcripts of the video recordings underwent an intensive process of correction and 

revision so that any incongruence of spoken and written actions and utterances could be 

pinpointed and the accuracy of the transcripts ensured.  Once I was satisfied that the 

transcriptions were accurate I then did some preliminary coding according to analytical 

frameworks which were congruent with my theoretical framework, my research 

questions and the data I had collected.  To address my research questions fully, I 

realized I needed to use two complementary analytical frameworks; one for the analysis 

of the utterances of the lecturer and students and the other for analysis of students’ proof 

comprehension actions and contributions.  The first framework allowed me to trace the 

patterns of scaffolding offered to the students by the lecturer as well as that of the 

students to their peers and so reveal the effective ways in which the students were 

supported to access their zones of proximal development.  The second framework 

allowed me to pinpoint students’ difficulties and challenges in proof construction in the 

area of elementary set theory and the scaffolding beneficial to them and traced the 

development of students’ proof construction abilities.       

I then went through a systematic selection process on the basis of my research questions 

to select the events that would be coded and analysed in detail.  The transcripts were 

thoroughly examined for those events that best illustrated the challenges and difficulties 

students experienced with proof construction, forms of guidance from the lecturer and 
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peers and the ways in which the norms pertaining to the consultative sessions were 

established.  I also searched for those events which showed students beginning to 

assume the role and responsibilities of the lecturer, becoming active agents for the 

development of their own and their peers’ proof construction abilities by offering 

scaffolding to their peers when necessary.  Five consecutive episodes were thus selected 

for detailed coding and analysis and these episodes form the basis of the findings of the 

study. 

A discussion of the trustworthiness of the study including concerns about the validity, 

reliability and generalizability of the methodology, methods and analysis of the study is 

found in Chapter 9.        
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Chapter 5: Analytical frameworks and coding of 

video recorded transcripts 

5.1 Introduction 

As discussed in Chapter 1 the skills of being able to read and write proofs are among the 

outcomes expected of students majoring in pure mathematics courses.  My study first 

focussed on students’ difficulties with proof construction and comprehension in the area 

of elementary set theory and the forms of guidance they received from their peers and 

the lecturer as they engaged in proof construction exercises in the consultative sessions 

(Research question 1).  The study was also concerned with how students’ proof 

construction abilities developed and evolved in the context of consultative group 

sessions (Research question 2).  Research question 3 is concerned with studying the 

nature of the interactions in the consultative groups which might contribute to the 

establishment of sociomathematical norms.  I also attempted to identify characteristics 

and modes of reasoning observed in students who showed the potential to become more 

knowing others.  

This chapter discusses the analytical frameworks used to code and analyse the 

transcripts of video recorded consultative sessions held with my small group of 

participants.  A sample of coded transcript is included in this chapter while the complete 

record of the coded transcripts of five episodes which occurred in the first two 

consultative sessions is in Appendix 1.  There were four three hour consultative group 

sessions altogether.  These occurred at one week intervals at the same time that the 

section on elementary set theory was being taught in formal lectures in the pure 

mathematics course in the second semester of 2010.  All four sessions were transcribed 

and coded in brief.  After a thorough perusal of these transcripts, I chose to focus on the 

first two sessions.  The reason was that apart from time and space constraints, the first 

two sessions best illustrated students’ challenges and difficulties and how establishing 

an environment encouraging students’ active participation and engagement was 

conducive to rapid progress in their proof construction abilities.  This is discussed in 

detail in Section 4.5.3.   
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5.2 Analytical Frameworks  

In Section 4.5.2.1 I briefly described the process which led to my choice of analytical 

frameworks.  I will now elaborate on this process.  Originally I started off by using just 

one analytical framework, the framework for the analysis of students’ and lecturer’s 

discourse as proposed by Blanton, Stylianou and David (2004, 2011).  As I worked on 

the detailed coding and analysis of the selected transcripts with my research questions in 

mind, further categories and their corresponding indicators emerged from the data.  

These were primarily concerned with the analysis of students’ proof construction 

actions and contributions such as making correct/ incorrect deductions, correction of 

mistakes or errors, references to definitions or explanation of definitions, giving 

narrative or pictorial examples, correct/ incorrect use of mathematical language and 

symbols, explanations of mathematical objects and the structure of the proof and 

providing justification for deductions.  Working back and forth several times from 

analysis of my data to attempting to address my research questions, I decided that I 

needed to extend the original framework by adding the categories mentioned above but 

I soon realized that this would be cumbersome and not very elegant.  I was reading up 

on emerging literature on proof construction in undergraduate mathematics at that time.  

I came across an assessment model developed by Meija-Ramos, Fuller, Weber, Rhoads 

and Samkoff (2012) which incorporated almost all the categories lacking in the first 

analytical framework.  The fact that I had identified these categories before I came 

across this assessment model pointed to my personal alignment and agreement with the 

framework developed by Mejia-Ramos et al. (2012).  I therefore adopted this model and 

adapted it for use as my analytical framework for proof comprehension and 

construction.  I now had two complementary analytical frameworks; one concerned with 

the social aspect (analysing students’ and lecturer’s utterances and discourse during the 

consultative group discussions) and the other with the cognitive aspect of students’ 

proof construction actions and contributions.  The first framework allows the researcher 

a window into how scaffolding takes place in the zones of proximal development 

created while students are engaged in group discussions.  I hoped this would enable me 

to gain an understanding of how students could be supported in accessing their zones of 

proximal development.  It would help me to see how the norms relating to the 

consultative sessions were established, point to the ways in which students were 
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supported to become intellectually independent and how more knowing peers were 

empowered to develop their capabilities.  The second framework analyses students’ 

proof comprehension and construction actions and contributions and allows us to track 

how proof construction abilities of students evolved as they participated in proof 

construction exercises in the consultative sessions.  This framework also enabled me to 

identify the characteristics of those students who went on to become more knowing 

peers. 

5.2.1 Analysis of student and lecturer discourse 

Blanton et al.’s analytic framework is consistent with Vygotsky’s framework of socially 

constructed knowledge where speech is a psychological tool of development and the 

unit of analysis is the utterances of students and lecturer (Blanton et al, 2011, p.291).  

The zone of proximal development (ZPD) was defined by Vygotsky as the space where 

the possibility of learning beyond the learner’s own abilities takes place with the 

assistance of more knowledgeable others: in this case their peers and the lecturer.  

Looking through the lens of the ZPD we would like to encourage the development of 

cognitive abilities which have not yet fully matured in the course of the interaction of 

the learner with more knowing others (Kozulin, 1998).  Diaz, Neal and Ameya-

Williams (1999) argue that as learning occurs through social interaction, the quality and 

suitability of this interaction is an important factor in the development of students’ 

abilities.  The analysis of the utterances of students and the lecturer in the consultative 

sessions using the categories developed and their indicators should help me address how 

students’ proof construction and reasoning abilities are scaffolded by teacher and peer 

utterances.  

Analytical framework for the analysis of teacher and student utterances 

The framework was initially developed and is based on the work of Kruger (1993) and 

Goos, Galbraith and Renshaw (2003) who focussed on scaffolding taking place between 

peers.  Kruger (1993) defined the transactive nature of reasoning observed in the 

dialogue used by the teacher and students as reasoning which was characterized by 

“clarification, elaboration, and justification of one’s own or one’s partner’s reasoning” 

(Goos, Galbraith & Renshaw, 2003, p.199). Blanton et al. (2011) extended this by 
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developing categories and codes for the teacher’s/ lecturer’s utterances to take into 

account instructional scaffolding arising particularly from the teacher’s discourse in the 

classroom.  A detailed description of the framework and the categories and codes for 

analysis of these utterances can be found in Section 2.4.2. 

A few other categories and indicators or actions emerged as I worked on the analysis 

(mostly on the part of the students) which I realized were important and pertinent to the 

study.  These were: Taking on the role of the more knowing other and the moment 

of realization. In the former, instances where students are seen taking responsibility for 

their own and other’s learning and generally taking on the transactive prompts and 

facilitative utterances of the teacher were tracked as these are indicative of students 

taking a lead in scaffolding other students’ learning.  The moments of realization 

tracked instances where students are seen to be grasping ideas with which they had 

previously been battling.  My aim will be to try to pinpoint what exactly leads to this 

realization.  These last two categories were added to the framework developed by 

Blanton et al.  In addition the category of transactive arguments which includes 

utterances said in the process of writing and doing proof construction and not 

necessarily in response to questions, and the act of reflecting on one’s own thinking 

process and actions (included under the transactive response category) and requests for 

reflection and strategy (included in the transactive questions category) also emerged 

from the analysis.  The following shows the extended framework for discourse analysis 

with my own additions in bold. 

Table 5.1: Categories and indicators of students’ utterances 

Category of students’ 

utterances 

Indicators: Actions/utterances encompassed in the 

category 

Proposal of a new idea Students bring to the discussion  

• a new idea or representation,  

• extend a new idea or elaborate on an existing idea 
towards a new direction. 

Proposal of a new plan or 
strategy 

Students suggest a course of action aimed at developing the 
proof or some aspect of the proof. 

Contribution to or 
development of an idea 

Students contribute towards furthering or adding to an 
existing idea. 

Transactive question Students request reflection on proof construction actions, 
clarification, elaboration, critique, justification, strategy or 
explanation of peer’s utterances 
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Transactive response Students directly or indirectly  

• clarify, elaborate, critique, justify, explain or reflect 

on their thinking,  

• give an answer, agree. 

Transactive argument 

(usually uttered in the 

process of writing and 

doing proof 

construction and not in 

response to other’s 

questions) 

Students  

• say what is being written,  

• explain their reasoning, explain mathematical 

objects, give justification,  

• describe the structure of the proof for example 

start, continuation/ conclusion of plan of proof. 

Taking on the role of 

more knowing other 
Students 

• take responsibility for their own and other’s 

learning,  

• involve other students, questioning, pointing out 

errors and requesting justification, clarification 

and so on, confirm other students’ ideas, 

• take on the transactive prompts and facilitative 

utterances of the teacher. 
Moment of realization Students make gains in their understanding in terms of 

use and interpretation of mathematical objects, 

definitions, proof methods and so on.  These could take 

place either through their own or someone else’s 

contributions. [Aha moment] 
 

With respect to the teacher’s utterances, examination of the transcripts resulted in the 

following further categorizations: requests for reflection and examples (falling into 

the category of transactive prompts), attempting to structure proof writing, highlight 

learning and misconceptions and provide encouragement (falling into the facilitative 

utterances category) and making reference to definitions and explanation of 

definitions and illustrating and clarifying mathematical objects using examples 

(falling under the didactive utterances category).  Table 5.2 shows the extended 

framework with my additions in bold. 

Table 5.2: Categories and indicators of teacher’s utterances 

Category of teacher’s 

utterances 

Indicators: Actions/utterances encompassed in the 

category 
Transactive prompts The teacher requests reflection, critique, justification, 

clarification, elaboration, strategy, examples. 

Facilitative The teacher  

• re-voices or confirms student ideas,  

• attempts to structure the discussion and proof 
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writing,  

• highlights learning and misconceptions,  

• provides encouragement. 
Didactive The teacher  

• offers ideas on the nature of mathematics, axioms 
and principles or historically developed ideas,  

• makes references to definitions and explains 

definitions,  

• illustrates and clarifies mathematical objects 

using examples. 
Directive The teacher provides immediate corrective feedback or 

information towards solving a problem 

Once all utterances had been coded I searched for evidence of patterns of scaffolding by 

the lecturer and peers.  In their study Blanton et al. (2011) did not find any specific 

patterns occurring in the discourse and they point out that this is not surprising as it is 

difficult if not impossible to make connections between new ideas or plans and previous 

specific utterances in complex discussions in the classroom.  Since my study involved a 

small group of students (an average of 7 students taking part in each session), I hope 

that I have been better placed to observe the origins of thoughts and patterns of 

students’ utterances as they developed solutions to proof exercises (ibid., p.303).  

Blanton et al. (ibid.) did find however that a characteristic of successful collaborative 

sessions on proof construction was a high incidence of transactive reasoning together 

with new ideas and elaborations.  They proposed that the teacher’s prompts encouraging 

discussion and drawing students to present new ideas or to provide clarification, 

justification, elaboration and so on, were the most crucial in developing students’ proof 

construction abilities.   

5.2.2 Analysis of students’ proof construction and 

comprehension abilities 

As discussed in Chapters 1 and 2, students introduced to formal proof construction in 

advanced mathematics courses need to produce arguments based on accepted axioms 

and definitions, to proceed using clear deductive logical reasoning and use standard 

mathematical notation and proof methods (Weber & Alcock, 2011, p.323).  Researchers 

have compared learning to construct mathematical proofs to learning a new language 

(Mamona-Downs & Downs, 2002) or mastering a different genre of speech or writing.  
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Arriving at an understanding of a sound mathematical proof, being able to read proofs, 

and construct similar proofs by oneself is a huge challenge for most students meeting 

formal mathematical proof for the first time.  It is however, a necessary part of 

undergraduate mathematics curricula in most parts of the world because it may be 

argued that proof is a crucial element and the most characteristic feature of mathematics 

(Solow, 1981).   

As discussed in Section 2.2.1 when striving to come to grips with the proving process, 

students are challenged by a host of obstacles.  Since the analytical framework I used 

for analysis of students’ proof construction abilities had to encompass all of the 

requirements for proof construction, I urge the reader to refer to Section 2.2.1 and also 

to Table 2.1 which summarizes the difficulties students experience when faced with 

these requirements.   

Analytical framework for analysis of proof construction attempts 

In striving to develop an analytical framework that would take cognizance of all these 

factors and enable the researcher to achieve an understanding of individual student’s 

proof construction and comprehension skills and to see how these developed during the 

weekly consultative group discussions, I adapted a model aimed at the assessment of 

students’ proof comprehension skills.  Mejia-Ramos et al (2012) have developed a 

comprehensive assessment model for assessing proof comprehension in advanced 

mathematics at an undergraduate level (cf. Section 2.3.2).  Since the model’s aim is 

assessment, I have adapted it to enable its use in the analysis of students’ attempts at 

proof construction.  I have used the model in combination with a grounded approach as 

well, allowing sub-categories to emerge as I worked with the data.  I have also 

expanded the model by using the Vygotskian notion of the functional use of the sign 

and the theory of concept formation (Vygotsky,1986, 1994; Berger, 2004a, 2004b, 

2004c, 2006) to interpret the students’ evolving understanding of the meaning of terms, 

signs, symbols logical reasoning processes, proof methods and justification.  The 

extended and expanded analytical framework used to analyse students’ proof 

construction attempts will now be discussed. 
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The model considers two aspects of students’ understanding of proof in advanced 

mathematics.  The first aspect focusses on students’ understanding of the local 

characteristics of the proof such as the meaning of specific terms and statements, the 

logical reasoning employed in connecting statements, and whether each statement and 

conclusion has been made with the necessary justification.  These first three categories 

of the model are concerned with the local comprehension/ construction of a proof 

(Mejia-Ramos et al., 2012, p.7).  The second aspect; holistic comprehension/ 

construction focusses on students’ holistic understanding of the proof.  This relates to 

notions such as the main ideas or methods behind the proof, or parts of the proof and the 

ability to transfer these ideas or methods to other proofs which are similar or presented 

in different contexts.   

As discussed earlier, Vygotsky’s theory of concept formation and the central role of the 

functional use of the word was extended and included in the local aspect of the 

framework.  When investigating how students understand newly met mathematical 

objects and processes related to proof construction, I have used the Vygotskian notion 

of the functional use of an object or process (Vygotsky,1986, 1994; Berger, 2004a, 

2006) which refers directly to my theoretical framework.  This category tracks the 

student’s progress by examining how the student uses an object or process prior to their 

complete understanding.  We track this non-linear progression of the students’ use of 

the object or process between heaps, complexes, pseudoconcepts and concepts.  A 

summary of these stages as elaborated to the mathematical domain and their indicators 

follows.  A more detailed description is found in Sections 3.2 and 3.2.1. 

In the heap stage, the student associates the new object with a previously encountered 

object where there is a chance or circumstantial connection between the two.  Thinking 

in the heap stage is characterised by associating the newly met mathematical object or 

term with previously encountered terms/objects based on non-mathematical criteria.  

In complex thinking the links between objects are based on the actual attributes of these 

objects.  Complex thinking is further categorised into various sub-categories.  The most 

refined form of complex is the pseudoconcept, a special complex which enables 

students to make the transition from complexes to concepts (Berger, 2004c, p.14).  The 

unique feature of the pseudoconcept is its dual nature: it appears to be a concept to the 
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observer whereas it is actually a complex because of the student’s incomplete and 

contradictory knowledge of the object.  The pseudoconcept enables students to engage 

fruitfully and use the object/process in their discussions and deliberations.  This 

engagement hopefully guides them on the path of developing their use and application 

of the object/process to gradually correspond to the way that the object/process is used 

by the mathematical community (Berger, 2004c, p.15).   

The (mathematical) concept is formed when its internal and external links are consistent 

and logical.  Internal links refer to the links between the “different properties and 

attributes of the concept” while external links refer to links between the concept and 

other concepts (Berger 2004c, p.16).   

The local and holistic aspects of my analytical framework for analysis of proof 

construction abilities and contributions will now be described in detail below. 

The first category of the students’ local comprehension/ construction of a proof is 

concerned with the meaning of terms, symbols and signs (L1) and measures students’ 

understanding of key terms, symbols and definitions in the proof.  Here we are 

concerned with students’ use of new and unfamiliar terminology, signs and symbols and 

also students’ knowledge of definitions, that is, students’ ability to explain definitions in 

their own words and in more formal language.  An example of a definition in set theory 

is the definition of subset, where a set A is defined to be a subset of a set B (A⊆ B) if 

and only if for each element x in A, x is in B.   

The next category in the assessment model is concerned with the logical status of 

statements and proof framework (L2).  I propose that this criterion is aimed at 

assessing the student’s mastery of the methodologies and techniques described by 

Solow (1981) in Section 2.2.1.  An example of a type of proof frequently occurring in 

set theory is ‘P implies Q’ or ‘P⟹Q’ in which one assumes that the statement to the left 

of the word ‘implies’ (namely P) is true while the goal is to conclude that the statement 

to the right (namely Q) is true.  That is, we show that Q is true as a logical result of P 

being true (Solow, 1981, p.5).   

The last category in the local aspect of proof comprehension is: justification of claims 

(L3).  This category explores whether the student is able to justify and provide reasons 



95 

 

for new assertions based on previous assumptions or statements.  I have developed sub-

categories and indicators of students’ actions in each of these sub-categories and these 

are described in Table 5.3 below. 

Table 5.3: Categories and indicators for analysis of the local comprehension/ construction 

aspect of proof 

Category Sub-category Indicators 

L1: Meaning of 

terms, symbols and 

signs 
Purpose: In this 
category we consider 
whether the student can 
identify the definition 
of key terms in the 
proof or specify what is 
meant by signs, 
symbols or terms that 
are met in the proof.  

L1a: Using newly met 

terms, symbols and signs 

Students correctly use newly met 
terms and symbols in the proof 
construction process (written or 
spoken).  This is interpreted 
using the functional use of the 
object.  Indicators are given in 
Table 5.5 below. 

L1b: Mathematical 

Definitions 

Students 

• describe or explain the 
meaning of terms or 
symbols, 

• provide definitions of 
symbols or terms used in 
the proof using formal 
language or in their own 
words,  

• make reference to or call 
to mind definitions 
appropriate to the proof 
construction,  

• question the meaning of 
terms, symbols and signs. 

L1c: Illustrating 

mathematical objects 

and definitions with 

examples 

Students illustrate a 
mathematical object or definition 
with examples. 

L2: Logical status of 

statements and proof 

framework 
Purpose:  In this 
category we consider 
whether the student is 
able to follow the 
logical reasoning 
behind the proof and is 
able to identify the 
logical relationship 
between the statement 
that is to be proved, the 

L2a: Selecting correct 

and appropriate 

statements and phrases 

Students identify and select 
correct/ appropriate statements 
or phrases which make sense and 
add to the logic of the proof 
construction process. 
 

L2b: Selecting useful 

and appropriate aspects 

of definitions, selecting 

appropriate assumptions 

Students select useful or 
appropriate aspects of 
definitions, select appropriate 
assumptions (also known as 
strategic knowledge (cf. Weber 
(2001)), 

L2c: Proof methods Students  
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assumptions made and 
the conclusions of the 
proof. This category is 
indicative of students’ 
grasp or lack of the 
strategic knowledge 
that they need to 
successfully complete 
the proof construction 
process. 

• clarify or identify the 
type of proof framework 
or method of proof,  

• follow the reasoning 
process and methodology 
of the proof or 
component of the proof,  

• seek clarification on the 
reasoning process and 
methodology of the 
proof. 

L3: Justification of 

claims 
Purpose:  In this 
category we consider 
whether students can 
provide justifications 
for making new 
assertions or 
deductions following 
from previous steps in 
the proof construction 
process. 

L3a: Making correct 

deductions from 

previous statements 

providing the necessary 

justification 

Students make correct 
assertions/deductions from 
previous statements and 
definitions, recognizing and 
providing the necessary 
justification, providing correct 
explanations when asked. 

L3b: Questioning 

deductions made without 

justification 

Students question and clarify 
when assertions or deductions 
have been made without any 
basis. 

L3c: Identifying basis 

for conclusions  
Students identify the basis for a 
claim, or identify the reasons 
why a conclusion can be made. 

As discussed above, when investigating how students interpret and apply the newly met 

mathematical terms, symbols, signs, logical reasoning processes, proof methods and 

justification I would like to use the Vygotskian notion of the functional use of the object 

or process.  The indicators for the various categories are outlined in Table 5.4 below.  

Note that in the table below the term ‘object’ includes mathematical terms, definitions, 

symbols and signs while the term ‘process’ includes logical and deductive reasoning 

processes, proof methods and the practice of justification. 

Table 5.4: Categories and indicators for the functional use of objects and processes 

Categories for functional use of 

object or process 

Indicators 

Heap level thinking Students associate the newly met 
object/process with a more familiar 
object/process having a vague or chance 
connection and based on non-mathematical 
criteria. 

Complex level thinking Students associate the newly met 
object/process with:  
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• an object/process which shares a 
similar attribute,  

• an object/process previously met in an 
example,  

• a more familiar object/process which 
reminds the student of the newly met 
object/process in some way,  

• a more familiar object having a 
similarity of templates.  This last 
complex is signifier oriented as it 
specifically refers to the template of 
the newly met object. 

Pseudoconcept level thinking Students might be able to use or apply the 
newly met object/process correctly (thus 
giving the appearance of concept level 
knowledge) but reveal their incomplete or 
contradictory knowledge (revealing complex 
level knowledge) in earlier or later activities. 

Concept level thinking Students are able to: 

• correctly and logically explain or 
describe the properties and attributes 
of the newly met object/process, 

• correctly identify and appreciate 
differences in properties of the newly 
met object/process as distinguished 
from other newly met or more familiar 
objects/processes, 

• correctly and logically use or apply the 
object/process. 

Table 5.5 contains the sub-categories and indicators I developed for analysis of the 

holistic aspect of proof construction based on the Meija-Ramos et al. proof 

comprehension assessment model.    

Table 5.5: Categories and indicators for the holistic aspect of proof comprehension 

Category Sub-category Indicators 

H1: Main ideas behind 

the proof and the 

modular structure of the 

proof 
Purpose:   In this category 
we would like to see 
whether the student grasps 
the main ideas and methods 
of the proof. 

H1a: Main ideas of the 

proof 
The student is able to 
describe or explain the 
main ideas or the over-
arching approach used in 
the proof. 

H1b: Proof components  
 

The student is able to break 
down the proof into 
components (where 
applicable). 

H1c: Purpose of each The student is able to 
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proof component  identify the purpose or the 
role of a module or 
particular part of the proof. 

H1d: logical relationship 

between proof 

components  
 

The student is able to 
recognize the logical 
relation between two or 
more modules of the proof. 

H2: Transferring general 

ideas or methods to 

another context 
Purpose:   In this category 
we would like to see 
whether the student can 
apply his/her understanding 
of the proof as a whole to 
other proofs and other 
contexts. 

H2a: Transferring ideas 

and methods to other 

proofs and contexts 

The student is able to use 
ideas and methods that 
he/she grappled with in 
previous proof construction 
exercises in subsequent 
exercises. 

H2b: Appreciating scope 

of methods  
The student appreciates the 
scope of methods 
encountered by recognizing 
the assumptions which 
need to be in place to allow 
the method to be used. 

H3: Illustrating with 

examples 
Purpose: In this category 
we would like to see 
whether the student uses 
examples to improve his 
understanding of the proof 
and statements within the 
proof. 

H3a: Illustrating proof 

construction steps with 

examples  

The student illustrates 
sequences of inferences 
with examples, and uses 
examples to better 
understand the statements 
and inferences made. 

H3b: Illustrating with 

diagrams 
The student interprets 
statements in the proof or 
the proof itself with the 
help of diagrams. 

In all the categories encompassed in both the local and holistic aspects of proof 

comprehension and construction, the student’s ability to do so will be indicated by the 

code while the students’ inability to perform these actions will be indicated by an x 

attached to the code.  For example L1ax will indicate a student’s incorrect use of newly 

met terms and symbols in the proof construction process (written or spoken).  L2ax will 

indicate a student’s incorrect or inappropriate selection of statements or phrases which 

do not make sense and therefore do not add to the logic of the proof construction 

process.  L2bx will indicate a student’s selection of non-useful/ inappropriate or trivial 

aspects of definitions.  L3ax will indicate when a student makes incorrect deductions 

from previous statements or definitions, and so on.  In this way students’ incorrect 

actions and contributions can also be coded. 



99 

 

5.3 Coding of the video recorded transcripts 

The proofs attempted in the four sessions were predominantly proofs involving 

implication, double implication (or equivalence), equality and showing that one set is a 

subset of another set.  These proofs were done in the context of elementary set theory 

and relations and the areas covered included sets, Cartesian products of sets, power sets 

and equivalence classes.  The proofs that I chose to focus on and analyse involved all 

the proof methodologies of implication, equivalence, equality and subsets, first in the 

area of sets covering the newly met concepts of intersection, union and subsets (in 

session 1), then going on to the Cartesian product of sets and power sets (in session 2).  

As discussed (in Sections 5.2 and 4.5.3) I chose to focus on the first two sessions of the 

four weekly consultative sessions.  The reason was that my purpose was to identify 

students’ challenges in this particular area of proof construction and show how 

establishing an environment encouraging students’ active participation and engagement 

led to students’ accelerated progress in their proof construction abilities.  This was best 

illustrated in the first two sessions.  The third and fourth sessions saw a continuation of 

the habits established during the first two sessions.   

The weekly sessions were held in a small room in the mathematics department equipped 

with a white board.  Although every precaution was taken to minimise noise and 

disturbances during video recording, there were times when students’ voices were 

inaudible.  There were also times when one could not see exactly which student was 

making the contribution, for example when the video camera was focussed on the 

person working on the board.  In these instances the contribution is attributed to ‘S’ to 

stand for any of the participating students.  Pseudonyms were used throughout the 

transcripts to ensure confidentiality and anonymity.  

The videos were transcribed by a professional transcriber.  I then went through the 

transcriptions viewing the videos several times to check these transcriptions and ensure 

their accuracy.  A more detailed discussion of the process of transcription is presented 

in Section 4.5.2 while a description of how the transcripts of video recorded events were 

selected is included in Section 4.5.3.  A discussion of the consultative group method 

appears in Section 4.6.   



100 

 

During these consultative sessions, after a very brief revision of definitions that were 

covered in the class, a proposition or theorem would be put on the board and students 

would volunteer to come up and attempt the proof construction while receiving help and 

guidance from all the participants including the lecturer.   

The proof of each theorem constitutes a separate episode.  The proof transcripts have 

been divided into sub-episodes according to the following criteria:  

• A sub-episode contains a complete proof or component of proof (where 

applicable) attempted by the student at the board. 

• Digressions which were omitted from the proof construction were instances 

where students’ attention was diverted to something non-mathematical and 

completely irrelevant for example asking the person who is doing the proof 

construction at the board to move or write more clearly.  Discussions which did 

not concern the actual proof construction being attempted but were still 

concerned with the general mathematical agenda have been allocated to separate 

sub-episodes which were still part of the overall analysis.  This was because I 

wanted to be able to focus on the actual proof construction as a separate entity.  

Once these discussions ended and proof construction resumed, new sub-episodes 

were begun. 

• When the discussion focussed on different themes such as a particular 

misconception or a more in-depth look at a different mathematical object, these 

different notions were also isolated, so that each notion or misconception could 

be discussed in its own sub-episode before going on to the next mathematical 

object and the next sub-episode. 

An example of the coded transcript of sub-episode 2.1 has been included below.  The 

full record of coded transcripts of the five episodes is in Appendix 1.  

5.3.1 An example of coded transcript  

An example of coded transcript of sub-episode 2.1 which took place in the first 

consultative group session follows.  Maria makes a first attempt at the proof of the 

proposition ‘A ⊆ B ⟺ A∩B = A’. 
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Session 1: sub-episode 2.1 

In episode 2 Maria attempted the proof construction of the following theorem: A ⊆ B ⟺ 

A∩B = A.  This proof construction encompasses the method of proof of an implication, 

the method of proof of equality of sets and the method of proof of showing that one set 

is a subset of another.  A successful proof construction also requires knowledge of the 

precise definitions of set equality, subset and intersection and the ability to use these 

definitions in the logical reasoning and justification of each step in the proof.   

Sub-episode 2.1: Maria’s first attempt at proof of a) ⟹⟹⟹⟹ b) or A ⊆⊆⊆⊆ B ⇒⇒⇒⇒ A ∩∩∩∩B = A 

 Speech and actions Student and 

teacher 

utterances 

Proof 

comprehension 

Interpretation 

according to 

Theoretical 

Framework 

(T.F.) and 

general 

comments on 

the proof 

construction 

process 

 This theorem is put up on 
the board to be proved:  
Theorem  If A, B and C 
are sets, the following are 
equivalent. 

a) A ⊆ B 

b) A∩B = A 

c)  A∪B = B    

   

1 Maria:  [goes to the front 
and attempts  the proof 

starting with (a) ⇒ (b) ] 
I think you have to show 
that (a) is equal, implies 
(b) and (b) implies (c).  
And this would mean that 
(a) implies (c) 

[writes:  (a) ⇒ (b), (b) ⇒ 

(c)  (a) ⇒ (c) ]  
 

 

Proposal of 
new idea 
 
Transactive 
argument- 
reasoning and 
explaining 
while writing 
 

H1ax: the main 
approach to be 
used is explained 
with some flaws 
H1bx: breaking 
down the proof 
into components: 
implication is used 
instead of double 
implication 
L1a: correctly 
uses mathematical 
terms/ symbols/ 
signs 

Recognizes that 

(a) ⇒ (b) 
translates to  

A ⊆ B ⇒ A ∩B 
= A 
She interchanges 
the term ”equal” 
with the term 
“implies” 
showing that the 
two are 
associated 
together.  This 



102 

 

might indicate 
complex 
thinking. 

 So you start by saying to 
show that, Ok, A is a 
subset of B implies that A 
is a… I forgot that name, 

what is it? [writes:  A ⊆ B 

⇒ A ∩B = A ] 

 L2a: selects 
correct opening 
statement for 
starting the proof 
showing apparent 
knowledge of what 
needs to be done 
L1a: correct use 
of mathematical 
symbols/signs 
(written) 

 

2 Student:  intersection 
 

Contribution 
to an idea 
 

  

3 Maria: A intersection B 
which is equal to A.  So 
from this if A is a subset 
of B  

Transactive 
argument- 
reasoning and 
explaining 
while writing 
 

L2ax: selecting 
incorrect 
statement to start 
the proof showing  
L2cx: lack of 
logical approach 
in the method of 
the proof 

Adopting a 
method of proof 
which involves 
showing that the 
two sides of the 
implication are 
equivalent.  This 
might indicate 
complex thinking 
of the proof 
method for 
proving an 
implication since 
Maria associates 
this method with 
the more familiar 
method of 
proving an 
identity. 
   
The need for 
justification of 
each statement is 
not well grasped. 

 this means that, mmm, x is 
an element of A, which 
implies that x is also an 
element of B.  And… 

[writes:  If A⊆ B   x ∈ A 

                        ⟹ x ∈ B ] 

 

L2bx: selects non-
useful or trivial 
deductions from 
previous 
statements 
(spoken) 
L1a: the statement 
and non-useful 
deduction 
correctly written 
using 
mathematical 
symbols/signs 

 Then we come to this side.  
That if A is an intersection 
of B which is equals to A  
 

L2ax:selects 
incorrect 
statement to 
continue the proof 
showing  
L2cx: lack of 
logical approach 
in the method of 
the proof; 

 it will mean that A is a L3ax: makes an 
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subset of B.  And this 
would mean that x is an 
element of A.   

incorrect 
deduction from 
previous statement 
(spoken) 

 If and if x is an element of 
A it implies that it is also 
an element of B. 
[writes on the other side 
of the board so it looks 
like this: 
If A⊆ B          if A∩B = A 
x∈A               A ⊆ B 
⇒ x∈B           ⇒ x∈A  

                      ⇒ x∈B ] 
 

L2bx: selects non-
useful or trivial 
deductions from 
previous 
statements 
(spoken) 
L1a: the statement 
and non-useful 
deduction 
correctly written 
using 
mathematical 
symbols/signs 

 

 Then I’ve proven this one 
and I come to the (b).  
Again let A and the 
intersection of B which 
equals to A and would 
imply that A is a union of 
B which is equals to B 

[writes:  let A∩B = A ⇒ 

A∪B = B ] 
Then again if… 

L3cx: Proof is 
concluded without 
any basis 
L2cx: Incorrect 
proof method and 
logic process 

 

5.4 Concluding Summary 

In this chapter I have provided the motivation and described the analytical frameworks I 

have used to address the research questions contained in my study.  I have described 

how engagement with the analysis of the transcripts while considering how to address 

my research questions, led me to realize that I needed two different types of analysis to 

address my research questions fully; one that would consider the social aspect and the 

other considering the cognitive aspect.  My first research question addressed the 

difficulties that students have with proof construction in the area of elementary set 

theory and the forms of guidance they received.  My second research question focused 

on the developing proof construction abilities of students while the third research 

question studied the interactions of the lecturer and students to explore in what ways 
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students were empowered to become intellectually autonomous and how students 

showing potential to become more knowing others were encouraged to develop their 

capacity.  

To identify students’ difficulties and the types of scaffolding found to be effective, I 

needed a framework which would allow analysis of students’ proof construction 

attempts in terms of the following categories: students’ use of correct/incorrect 

mathematical terms, symbols and signs, students’ ability/ inability to use logical 

reasoning and proof methods and students’ ability/ inability to provide justification for 

deductions and conclusions.  The framework I have developed is based on a 

comprehensive assessment model for proof construction at the undergraduate level 

developed by Meija-Ramos et al. (2012).  I have adapted this model for use in the 

analysis of students’ attempts at proof construction.  This framework allowed me to 

track students’ proof construction and comprehension abilities as they progressed 

through the consultative sessions.  It is hoped that this analysis will shed some light on 

whether the consultative sessions are effective in promoting improvement of students’ 

proof construction abilities. 

The framework used to study interactions of the lecturer and students is based on 

research done by Blanton et al. (2004, 2011) and provided the analytical tool that I 

needed to analyse students’ and lecturer’s discourse during consultative group sessions.  

Using this framework I searched for emerging patterns of scaffolding by the lecturer 

and students as well as patterns showing how the sociomathematical norms relevant to 

successful proof construction such as critique, justification and verification of their own 

and their peers’ reasoning processes were established and were gradually adopted by the 

participants.  I also attempted to find the primary factors which might lead students to 

become intellectually autonomous and empower those showing the potential in 

becoming more knowing peers, thus enabling them to take responsibility for their own 

and others’ learning.   

I expected that the use of these two analytic instruments would provide me a holistic 

view of students’ difficulties and challenges and how students could be enabled to 

develop their proof construction abilities more effectively. 



105 

 

It must be noted that in developing both of these frameworks based on research done by 

the researchers mentioned, I have used a grounded approach, allowing additional 

categories, sub-categories and indicators to emerge from the data.    
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Chapter 6: Analysis and discussion of students’ 

difficulties and forms of guidance offered 

6.1 Introduction 

In this chapter I attempt to analyse and present a discussion on themes related to the 

difficulties students have with proof construction in the area of elementary set theory 

and the forms of guidance offered in the consultative group sessions.  These themes 

emerged from the coding and preliminary analysis of the transcripts of the video 

recorded sessions in Appendix 1.  This chapter attempts to provide a comprehensive 

discussion of findings related to my first research question which is set out below for 

ease of reference.   

Research Question 1  

Investigating students' difficulties in proof construction and the forms of guidance 

offered in the context of consultative group sessions: 

a) What are the challenges and difficulties students experience as they engage with 

proof construction in the area of elementary set theory? 

b) What forms of guidance do lecturer and students offer?  

The analysis in this chapter together with the coded transcripts in Appendix 1 will also 

be used to address research questions 2 and 3 in Chapters 7 and 8.    

As discussed in Section 4.5.3 after close and repeated scrutiny of the complete 

transcripts, I decided to focus on the first two consultative sessions as these were the 

most fruitful in terms of significant occurrences related to the research questions.  The 

majority of the challenges and difficulties were exposed and discussed in the first 

session.  This session was also the primary arena where the norms pertaining to the 

consultative sessions were set up.  The second session witnessed a great improvement in 

general of students’ proof construction abilities.  This session also revealed how several 

more knowing peers assumed the role and responsibility of guiding and offering 

scaffolding to their peers while adopting the norms established in the first session.  The 
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five proof construction exercises (each is regarded as a different Episode) which were 

analysed in detail are shown in Table 6.1 below. 

Table 6.1: Proof construction exercises analysed in the first two consultative sessions 

Proof construction exercise Student who 

attempted the 

majority of the 

proof 

Total time 

taken from 

start to 

completion 

of proof 

Session 1 

Episode 1: If A ⊆⊆⊆⊆ B and B ⊆⊆⊆⊆ C, then A ⊆⊆⊆⊆ C Frank 23mins 

Episode 2: If A, B and C are sets, the following 

are equivalent: 

d) A ⊆⊆⊆⊆ B 

e) A∩∩∩∩B = A 

Maria 1hour 
3mins 

Session 2 

Episode 3: (A∪∪∪∪B) × C = (A×C) ∪∪∪∪ (B×C) Edgar 22mins 

Episode 4: (A∩∩∩∩B) × C = (A×C) ∩∩∩∩ (B×C) Maria 13mins 

Episode 5: A ⊆⊆⊆⊆ B ⇔⇔⇔⇔ P(A) ⊆⊆⊆⊆ P(B). Frank 19mins 

It must be noted that throughout this chapter the language used by participants of the 

study (whose first language was not English) has not been altered in any way and is an 

exact reflection of these students’ speech.  Pseudonyms were used to refer to the 

participants of the study to ensure confidentiality and anonymity.  The lecturer is 

referred to by the letter ‘T’ in the transcripts, and whenever it is not clear which of the 

participants is making a contribution, he/she is referred to by the letter ‘S’ standing for 

student.  

6.2 Challenges and difficulties students face and the 

forms of guidance offered 

Difficulties that researchers such as Solow (1981), Moore (1994), Dreyfus (1999) and 

Weber (2001) have identified in the area of proof construction were discussed in 

Section 2.2.1.  These were primarily the specific mathematical language used in proof 

construction, lack of logical reasoning abilities and lack of the knowledge of proof 

methods and insufficient appreciation of the need for justification of each deduction or 

conclusion made during the course of proof construction.  I have reported on illustrative 

examples of students’ difficulties and challenges under the various categories of my 
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analytical framework discussed in Section 5.2.2.  Exemplars of difficulties in each of 

the categories are presented in boxes.  Following each example and whenever possible, 

significant contributions by the lecturer and students directed at guiding and developing 

students’ understanding are cited.  I was not able to do this in some instances where 

guidance was not explicit, even where it was evident that these students had made gains 

in the development of their proof construction abilities.  I argue that gains in 

understanding (throughout participation in the consultative sessions) have been made as 

a result of the students’ functional use of mathematical terms, definitions, symbols, 

signs, logical reasoning processes, proof methods and justification while interacting 

with their peers and the lecturer.  I argue that it is this functional use together with their 

interaction with the lecturer and their peers which enabled the student to make the 

transition to usage of the mathematical objects (including terms, definitions, symbols 

and signs) and processes (including logical reasoning processes, proof methods and 

justification) more aligned with their usage by the mathematical community.   

It will be noted that there are instances where the same example appears and is 

discussed under several categories.  The reason for this is that often while engaging in a 

particular discussion (while attempting to solve proof construction exercises), students 

experienced a whole range of difficulties.  In order to make the analysis more 

systematic, instead of reporting on the difficulties related to a particular discussion all at 

once, I have reported on each of the difficulties under different categories separately.  I 

have attempted to present all examples which emerged in the various relevant categories 

while analysing the transcripts.    

6.2.1 L1: Meaning of mathematical terms, symbols and signs 

The category L1 is concerned with the meaning of mathematical terms, symbols and 

signs.  This category focusses on the students’ use of new and unfamiliar terminology, 

symbols and signs (L1a) and also students’ knowledge of definitions (L1b).  This 

category also includes examining how students illustrated mathematical objects such as 

mathematical terms, symbols and definitions with examples (L1c).  Under the category 

L1, the Vygotskian notion (discussed in Chapter 3) of the functional use of 

mathematical terms, definitions, symbols and signs, is incorporated.  Students’ thinking 

processes, inferred from their usage of signs, words and symbols, are broadly tracked 
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using Vygotsky’s stages of concept formation: heap, complex, pseudoconcept and 

concept.   

The difficulties students experience in understanding the correct meaning of 

mathematical terms, definitions, symbols and signs were most notably evident in the 

first three episodes.  Most of the difficulties were centred on the use and interpretation 

of the symbols and definitions of the implication sign, the double implication sign, 

subsets, equality of sets, the union and Cartesian product.   

6.2.1.1:  L1a: Using newly met terms, symbols and signs  

When students are introduced for the first time to formal proof at first year university, 

one of the difficulties they experience concerns the usage of the particular mathematical 

language or discourse as well as newly met mathematical symbols and signs.  As stated 

earlier, students at the University of Limpopo have to overcome the additional hurdle of 

English being the language of teaching and learning.  This is not the first language of 

the majority of the students.   

Using newly met terms, symbols and signs: Incorrect language use 

Use of the word approximate when referring to the implication sign 

Frank’s use of the word ‘approximate’ when referring to the double implication sign 

was indicative of incorrect language use.  Below is his proof construction (line 1, sub-

episode 1.1) and his explanation: 

 

[1] Frank: I can show you the proof, the steps we can take to solve this proposition. So the first

  step is to let x be an element of A. [writes:  let x ∈ A] The first step that we must take it to let x

  be an element of A.  So we approximate since x is an element of A, then x is an element of B.

   Then since here A is a subset of B. [writes:  ⟺ x∈B (since A⊆B)].  Since x is an element of B

  then we can approximate that x is an element of C since B is a subset of C.  [writes:  ⟺ x∈C

  (since B⊆C)]. 

In sub-episode 1.3 Gary (line 11) questioned Frank for clarification on the double 

implication sign.  Frank’s response in line 14 confirmed that he might be referring to the 

double implication symbol as ‘approximate’.  He could also be associating the word 

‘approximate’ with the actions of deducing or implying.  
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[11] Gary:  Can you explain about you’re, you’re saying the double implication signs? 

[12] Frank:  OK, this one?   

[13] Gary:  Ja 

[14] Frank:  This is for approximately.  If you, we approximate that x an element of B [points to

  ⟺ x∈B (since A⊆B) on the board] it can be implied, like you are implying that this x is an

  element of B since x is an element of A, this element can be in B [points to the board] since A

  is a subset of B, you see?  Ja, you know what I’m saying? I suppose.  You agree with me the

  way I did it? 

I refrained from categorizing this as heap or complex level thinking as Frank (a second 

language English speaker) was probably referring to the double implication symbol or 

the actions of deducing or implying as approximation because he was not familiar with 

the correct terminology.  Presumably as a result of his interaction with his peers while 

making functional use of the implication symbol, he gradually made the transition (see 

line 14) to refer to the implication symbol as ‘implying’.                                                        

 

Using newly met terms, symbols and signs: understanding of mathematical 

terminology often taken for granted by lecturers 

Use of the word ‘suppose’ and the implication symbol 

Words used in the proof construction process often taken for granted by lecturers might 

not be fully understood by students.  This could be exacerbated by the fact that English 

is not their first language.  An example of this was found in sub-episode 1.2, line 4, 

when at Edgar’s suggestion to start the proof construction attempt with a statement 

which would add to the logic of the proof construction process, Frank added a statement 

to the proof construction, containing the word ‘suppose’.  Frank explained as he wrote 

on the board: 

 

[4] Frank: Okay you want me to write suppose A is a subset of B and B is a subset of C implies

  that A is a subset of C.  

[writes as he is speaking directly above his proof attempt: Suppose A ⊆   B and B ⊆ C ⇒ A ⊆ C]  

 

Frank’s use of the word ‘suppose’ and the implication symbol in mathematics discourse 

was inappropriate and he did not seem to be aware that there was a contradiction in the 

mathematical statement he had written on the board.   
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Guidance offered: More capable peers offer clarification and explanation 

Frank was guided by his more capable peers who offered contributions from the 

categories: L1a: clarifying the use of newly met terms, L2c: clarifying logical proof 

framework.  In line 5 (sub-episode 1.2) Gary clarified that the statement on the right of 

the implication sign was one that “we are supposed to prove” and hence should not be 

included in the supposition: 

[5] Gary:  The first thing when you said ‘Suppose that A is a subset of B, right?  And B’s a 

subset of C, so we don’t have to say ‘it implies’ that.  OK, we’re thinking that if we’re saying A 

is a subset of B and B is a subset of C it implies that we are supposed to prove that A is a subset 

of C so we don’t have to say we suppose that it implies that. 

Helen in line 7 (sub-episode 1.2) also clarified that the statement on the right of the 

implication sign was one that “we need to show”:  

[7] Helen:  But also be like, no, for the fact that we’re saying that we need to show that A is a 

subset of C we don’t, you don’t have to say ‘it implies, implies…’ 

Using newly met terms, symbols and signs: use of mathematical terminology often 

taken for granted by lecturers 

Use of the word ‘assume’  

Another example which clearly showed that students often do not understand and 

correctly use words peculiar to formal proof construction is that of Maria in sub-episode 

2.4, line 51, when she answered the question posed by the lecturer: “What do you 

assume?”  Below is the transcript including lines 48 to 51.   

[48] T:  So if a) is true then b) is true.  That’s what you’re trying to prove, right?  If a) is true, 

 then b) is true.  So you start off with assuming something.  What is what you start off with? 

  What do you assume? 

[49] Maria:  I assume that… 

[50] T:  Don’t rub everything out.  Let’s leave it.  What do you assume? 

[51] Maria:  I assume that (a) implies (b) and (b) implies (c) and I want to show that (a) implies

      (c). 

Maria’s erroneous response clearly showed that the use of the word ‘assume’ was not 

correctly interpreted as instead of stating the assumption, she described the plan of 

action that she had previously discussed (in sub-episode 2.1). 
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Using newly met terms, symbols and signs: Association of new or unfamiliar 

mathematical terms, symbols and signs with the more familiar (complex level 

thinking) 

The double implication associated with implication 

Many students did not differentiate between the implication and the double implication 

and seemed to regard them as the same entity.  This seemed to indicate complex 

thinking, where newly met terms, symbols and signs are grouped together because they 

look similar.  For example when Maria questioned the difference between the 

implication and double implication, Frank (in line 32 of sub-episode 1.3) replied that 

there was no difference. The transcript from lines 31 to 33 is included below: 

[31] Maria:  Ja, what’s the difference between?…    

 [referring to the implication and double  implication] 

[32] Frank:  Oh there’s no difference.  

[33] Maria:  There’s no difference? 

Similarly when asked by the lecturer what P implies Q means, Edgar (in line 81 of sub-

episode 1.3) replied: 

[81] Edgar:  I think that in this case if we say that if P implies Q that means… after proving that

 it’s true that P implies Q, we need to also prove the opposite side and the opposite way of Q 

 being, implying to P. 

Edgar was clearly describing the double implication in response to the question asked 

about the implication indicating that the two were regarded as identical.   

 

The double implication associated with the notion of equality 

Many students associated the double implication with the more familiar notion of 

equality, or to an equation (lines 50 and 66 of sub-episode 1.3).  Maria in line 66 

described her thinking of the implication sign: 

[66] Maria:  It means that… like if you are proving something which is, like you’ve got an equal 

 sign like this side is equal to this, so if you put that double implication it means that what you are 

 proving on the left you are sure that is equal to what you are proving on the right.  Ja. 



113 

 

Guidance offered: More capable peers exhibiting complex, pseudoconceptual and 

concept level knowledge offer clarification and explanation 

As the discussion continued and the notions of the implication and double implication 

were further discussed, several students offered their contributions.  Although these 

might have been at complex or pseudoconceptual level, they seemed to play an 

important role in deepening students’ understanding.  Some such as Gary also offered 

contributions that seemed to reveal concept level thinking.  Gary offered an example to 

clarify and distinguish the difference between the implication and the double 

implication.   

a) The double implication is associated with arrows  

In lines 34 to 42 (sub-episode 1.3) Edgar and Helen explained their thinking on the 

difference between the implication and the double implication.  They associated the 

double implication with a double arrow, and gave the method of proof as proving one 

side and then the other, going forward and back. 

[34] Edgar:  OK, let me actually now try to explain (pointing to the board).  Actually you see 

this one which shows an arrow going to that forward one, that one, if you use that one you are 

going to make sure that you prove this side, you prove that one there. 

[35] Helen:  Yes and then the other… 

[36] Edgar:  And then you are going to prove again on the other side. 

[37] Helen:  Yes 

[38] Edgar:  So if you are using the double one 

[39] Helen:  That means you have already shown… 

[40] Edgar:  Yes, if you are using the double one with arrows you know, that one is like what 

applies on one side will also apply on the other side.  

[41] Frank: Ok 

[42] Edgar:  So this one is a shortcut but as our lecturer has said, actually the best way is to use 

the longest method, because the other one you can explain more to, make you to understand. 

  

The newly met terms, symbols and signs appeared to remind the students of more 

familiar symbols and signs and were thus associated with these.  The implication sign 

was associated with a single arrow and the double implication sign with the double 

arrow.  However the method of proof described seemed to be correct.  In these instances 

students were interpreting the implication and double implication sign correctly even 
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though their description and explanation of these terms was flawed.  This could indicate 

pseudoconceptual thinking.  The double implication was also described as a shortcut 

when doing proof construction (line 42, sub-episode 1.3).  Edgar and Helen’s 

contributions were from the categories: L1b: describing mathematical terms in own 

words. 

b) The double implication is associated with an equation  

In line 70 of sub-episode 1.3 Gary associated the double implication with an equation 

having a left and right hand side.  He interpreted the method of proof of the double 

implication as using the right hand side to go to the left hand side and vice versa.  This 

seems to be indicative of pseudo-conceptual thinking on the proof method of an 

implication as in an implication proof, the statement that appears on the left of the 

implication sign is assumed and then one moves towards proving the statement on the 

right of the implication sign.  In a double implication proof one would have to do both.  

Thus Gary’s interpretation and description of the method of proof of an implication 

appeared to be correct.  Gary’s contributions were from the category: L1b: describing 

mathematical terms in own words. 

[70] Gary:  Uh a double implication sign it simply means let’s say if on the left hand side you 

have an equation, it means you can use the right hand side to go, to go back to the right hand 

side, to the left hand side and the other way round, you must leave the right hand side.  That’s 

how we do it. 

c) Illustrating mathematical objects with examples  

As seen above Gary associated the double implication with an equation.  Following this, 

in lines 78 and 79, Gary corrected the proof attempt on the board and applied the double 

implication correctly.  He ably explained why the double implication used by Frank 

should be replaced by an implication symbol and clarified the difference between the 

implication and double implication signs by giving an example.  This seemed to be 

indicative of concept level thinking: 

[78] Gary:  [erases the ⟺] I’ll start by removing the double implication sign because if let’s 

say we say let x be an element in B [writes: let x ∈ B ] we are talking about if A is a subset of B 

[points to A ⊆ B ] and B is a subset of A, [writes B ⊆ A ]  then we’ll say if x is in B it means that 

we will have x in A, right? 
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S: Yes 

[79] Gary:  If we are given that B is a subset of A.  But in this case we are not given that B is a 

subset of A     [points to: B ⊆ A ] so we cannot use the double implication sign here [writes ⇔ 

next to x ∈ A ]  because in this case we’ll say x is an element of B.  And if we use this sign 

[points to ⇔] it means that we will find that x is an element of A [points to x ∈A ] But we are 

not given this statement that B is a subset of A [points to B ⊆ A ]  That’s why I undo that double 

implication sign [points to ⇔ ] I simply use the single [changes  ⇔ to  ⇒ ]. 

Gary’s interpretation and application of the implication sign was correct and seems to 

indicate concept level understanding.  Gary’s contributions were from the category: 

L1c: illustrating mathematical objects with examples. 

Summaries of difficulties and guidance in category L1a 

Summary of difficulties experienced by students    

Difficulties observed in this category included: 

• Incorrect language use 

Incorrect language use was observed when for example the term ‘approximate’ 

was used to refer to the double implication sign and possibly to the actions of 

implying or deducing. 

• Inappropriate use of terms and symbols 

There were many instances of inappropriate use of terms and symbols, the 

knowledge of which is often taken for granted by lecturers such as the words 

‘suppose’ and ‘assume’ and the implication and double implication symbols. 

• Association of newly met terms, symbols and signs with more familiar 

terms, symbols and signs 

Students associated newly met terms, symbols and signs with more familiar 

terms, symbols and signs.  For example the notion of the double implication 

was associated with the notion of equality.  This was probably based on the 

similar appearance of the two symbols which would indicate complex level 

reasoning. 
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Summary of guidance offered 

Forms of guidance included: 

• Functional use of the terms, symbols and signs while interacting with peers 

and the lecturer in the consultative group sessions  

Functional use of the terms, symbols and signs while interacting with peers and 

the lecturer in the consultative group sessions gradually brought students’ use of 

these terms, symbols and signs closer to concept level.   

• More capable peers offer explanations of mathematical terms, symbols and 

signs using simple every-day language  

An example of this was when Gary and Helen clarified that the statement on the 

right of the implication sign was to be proved or shown. 

• Complex, pseudoconcept or concept level contributions help to clarify heap 

or complex level use and interpretation of mathematical objects  

Students offered complex, pseudoconcept or concept level contributions that 

helped to clarify heap or complex level use and interpretation of mathematical 

objects.  An example was the association of the double implication symbol with 

a double headed arrow and the single implication symbol with a single headed 

arrow or the association of the double implication with an equation having a left 

and right hand side.  The method of proof emerging from this was described as 

using one side to prove the other.  Similarly the double implication symbol was 

associated with the notion of an equation and interpreted as using the right hand 

side to go to the left hand side and vice versa.  Together with students’ 

functional use of the notions of the implication and double implication as they 

interacted in the consultative sessions, these contributions seemed to play an 

important role in deepening students’ understanding of these terms. 

• Illustrating mathematical objects with examples 

In order to clarify the difference between the implication and the double 

implication, a more knowing peer offered an example. 
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6.2.1.2:  L1b: Mathematical Definitions 

In the course of the analysis of the five episodes, it became increasingly clear that 

definitions often hindered rather than supported students’ proof construction attempts 

because of the incomplete and contradictory knowledge (indicating complex level or 

pseudoconceptual thinking) that students have of the mathematical terms, signs and 

symbols and the definitions of mathematical objects involved in the proof construction.   

Knapp (2006) suggests that in order for students to be able to meaningfully use a 

definition to prove a statement, three skills are necessary.  First they need to know the 

definition, that is, they should be able to give the definition in their own words and give 

examples and non-examples.  Second they should be able to choose the appropriate 

definition and be able to identify the aspects in the definition which are useful in the 

proving process.  Third they should know how to use the definition in the proof 

construction process. 

Definitions also play a crucial role in providing the structural framework of a proof.  

Moore (1994) emphasised that the correct interpretation of a definition reveals the 

logical structure of a proof and gives students an intimation of the sequence of steps 

required in the proof (cf. Section 2.2.1).  This was confirmed in my study as I observed 

students arriving at an incorrect method of proof for an implication as a result of their 

incorrect interpretation of the definition of the notion of the implication in Episode 2.   

Analysis and discussion of illustrative examples in this category is given below. 

Mathematical definitions: Instances where definitions become stumbling blocks  

The union of two sets  

In sub-episode 2.6 during the course of proof construction, a question about the 

difference between the notions of the union and intersection sparked an interesting 

discussion where it became evident that even though these apparently simple 

mathematical objects were covered at the beginning of the course, most students did not 

have a complete understanding of them and there were in fact quite a few 

misconceptions which could be attributed to the students’ incomplete understanding or 
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misinterpretation of the definitions.  In line 99, episode 2.6, Gary made the following 

statement: 

 

[99] Gary:  OK, ah, can I say something about the union and intersection. At the union it’s either

  let’s say for example x, let’s say x is in A, right?  If we say union it’s either in A or in B, it

  cannot be in both A and B.  But then if you say intersection it means A and B, all of them, they

  contain x. 

At the lecturer’s request (transactive request for examples), Gary (in line 101) went to 

the board to illustrate his interpretation using a Venn diagram.  The depiction of the 

union of two sets clearly showed what seemed to be a commonly held misconception: 

that the union does not contain elements in the intersection of the two sets. I suggest that 

this misunderstanding could have been brought about as a result of students’ 

misinterpretation of the definition of the union of two sets: A∪ B = {x: x∊ A or x∊ B}.  

Students might be getting confused and think that x may be in A or in B but not in both 

(exclusive ‘or’ versus inclusive ‘or’).  This is an example of how the definition of a 

mathematical object, instead of shedding light and clarity on the object introduces 

misunderstandings in the students’ thinking.   

Guidance: Using examples to illustrate the notion of the union to arrive at the 

correct interpretation of the definition  

While trying to clarify and reach an understanding of the definitions of the union and 

intersection, there was a widespread use of examples.  This was initiated by the lecturer 

in line 100 (transactive request for an example), and really helped to bring to light 

many of the students’ misconceptions.   

Edgar (lines 117 and 119) then made a positive contribution by doing another example 

which showed the intersection and union of two sets correctly.  This example and his 

correct use of the notion of union was confirmed and highlighted by the lecturer (using 

a facilitative utterance).  Edgar’s contributions were from the category: L1c: illustrating 

the notions of union and intersection using examples. 
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Mathematical definitions: Associating mathematical objects with a word contained in 

their definitions  

Association of the Cartesian product with the notion of the intersection 

In sub-episode 3.1 Edgar exhibited complex level thinking when he associated the 

Cartesian product with the notion of intersection and I suggest that this was because 

both definitions contain the word ‘and’.  I have included Edgar’s incorrect deduction 

made in line 3 (below) as he attempted to do the proof of: (A∪B) × C ⊆  (A×C) ∪ 

(B×C). 

[3] Edgar:  OK, that’s what I need to show.  So to prove that, um... Firstly we let these Cartesian

  points; x and y be an element of A union B brackets…[writes:  let (x, y) ∈ (A∪B) × C ] This

  will imply that x and y are both elements of A union B and (x, y) an element of, and both of them

  are an element of C.  [writes: ⇒ (x, y) ∈ (A∪B) and (x, y) ∈ C ] Yes? 

Guidance: More knowledgeable peers pinpoint the cause of the misconception, 

encourage reflection through transactive prompts, make reference to the definition 

and explain it in their own words 

In sub-episode 3.1 Gary (in lines 24, 26, 28, 30, 32 and 34) and Joseph (in lines 39, 41, 

43, 45 and 47) acted as more knowing peers and pinpointed the cause of the 

misconception.  They referred to the definition of the Cartesian product reminding the 

other students of the importance of the definition and helping them to have a better 

understanding of what it meant.  In this episode which occurred in the second weekly 

session, a marked change was observed in the way that more knowing peers assumed 

the transactive prompts and utterances of the lecturer as their own and took over the role 

of scaffolding and guiding their peers through the proof construction exercises.  

Referring to the definitions of mathematical objects and clarifying and explaining these 

seemed to have become one of the habits established in these students.  Since the 

relevant transcript and further discussion is included in Section 8.2.3 I will not repeat it 

here.  
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Mathematical definitions: Associating mathematical objects with a word contained in 

their definition  

Association of the notion of the Cartesian product with the notion of intersection  

In sub-episode 4.2 Christine asked whether instead of the Cartesian product symbol, one 

could use the intersection symbol.  She seemed to be associating both of these notions 

with the word ‘and’ since the definitions of the intersection: A ∩ B = {x: x∊ A and x∊ B} 

and the Cartesian product: A × B = {(x, y): x∊ A and y∊ B} both contain the word ‘and’.  

The discussion from lines 8 to 12 (sub-episode 4.2) is included here: 

[8] Christine: Can I ask something? 

[9] Maria: Ja 

[10] Christine: Because ‘and’ means intersection can we say, in the bracket say A intersection

  C.  Can you say that?  

[11] Maria: Hmm? 

[12] Christine: That cross stands for an intersection, right?  Can we put intersections in the

  bracket? 

Guidance: More knowing peer identifies the cause of the misconception 

Joseph offered an explanation in line 22 and this able explanation was confirmed by the 

lecturer who also referred to the definition of the Cartesian product and wrote it on the 

board again for easy reference.  Joseph’s contribution in line 22 (sub-episode 4.2) is 

included below.  

[22] Joseph: I think in terms of the intersection it is when you say like one variable, suppose x is 

in both sets A and B.  Now when you have the crosses where you have two variables, x is in A 

and y is in C.  So we’ve got there, we have x, y – x is the set of, I mean is an element of the set 

before the cross.  And y is an element of the set after the cross.  When you see a cross we 

actually speak of two variables. 
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Mathematical definitions: Associating and interchanging symbols or signs with a 

word contained in the definition of the symbol or sign  

Interchanging the symbols of the union and Cartesian product with words 

contained in their definitions 

Another error which revealed complex thinking occurred several times in episode 3.  

Symbols or signs were associated and interchanged with a word found in the symbol’s 

definition.  This type of thinking causes students to substitute certain words found in the 

definition of terms, signs or symbols with that symbol or sign and vice versa.  An 

example of this was observed in line 78 of sub-episode 3.1 where Edgar wrote: 

[78] Edgar: [ (x, y) ∈ (A×C) or (x, y) ∈ (B×C)   ⇒ (x, y) ∈ (A×C) ∪ (x, y   ] 

Before he could finish writing he was stopped and corrected by his peers in line 79: 

           [79] S: Just write B cross C 

It seems that Edgar thought that the word ‘or’ could be simply replaced by the symbol 

of union because of his association of the union with the word ‘or’ found in the 

definition of the union.   

This type of reasoning occurred again further in the proof construction (sub-episode 3.2) 

when Edgar associated the Cartesian product (that is, the symbol ‘×’) with the word 

‘and’ in line 104.  His repeated errors regarding the use and application of the Cartesian 

product demonstrated that reaching concept level understanding of newly met terms, 

symbols and signs is no easy task but one which takes time and practice.  The transcript 

from lines 100 to 104 has been included below. 

[100] Edgar: This can be that, ja.  Thanks.  That’s a mistake I’ve been making on the right, yes.

   Let me [writes:⇒ x∈A and y∈C or x∈B and y∈C ⇒ x∈A or x∈B and y∈C ⇒ x∈ (A∪B) × C]. 

[101] Gary: y must be an element of C. 

[102] Edgar: Pardon? 

[103] Gary: an element of C. 

[104] Edgar: [erases the C and puts y∈C.  Thus the statement now reads:  ⇒  x∈(A∪B)×

  y∈C ⇒ (x, y) ∈ (A∪B) × C] 
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Guidance: More knowing peers illustrate mathematical objects using examples 

Near the end of sub-episode 3.2 after Edgar had completed the proof, Joseph acting as 

more knowing other picked up the errors made in lines 78 and 104 and illustrated these 

with his own examples in lines 111 and 113.  The transcript and further discussion can 

be found in Section 8.2.3 which contains a discussion of the characteristics of the 

interactions of the lecturer and peers in Episode 3. 

Mathematical definitions: The link between definitions and proof methods 

The implication 

There was much discussion in episode 1 on the notion of the implication.  By using 

transactive prompts for clarification and explanation, the lecturer tried to probe the 

students’ ideas about this notion and gradually guide their understanding towards 

concept level.  The discussion described below took place in sub-episode 1.3 and shows 

that even when students appeared to know the correct definition of a term, they had 

difficulty arriving at the correct proof method as a result of an important 

misinterpretation.   

In sub-episode 1.3, line 95, Joseph gave his explanation of the statement P ⟹ Q: 

[95] Joseph:  If P is true then Q will be true but you can’t say if Q is true then P is true. 

The correct definition of P implies Q is: ‘If P is true then Q is true’.  Joseph’s seemingly 

insignificant departure from this definition:” If P is true then Q will be true” seemed to 

cause him to arrive at the incorrect proof method for proving an implication (cf. sub-

episode 2.4). This is further discussed in Section 6.2.2.3. 

 

Guidance offered: Lecturer tries to show the connection between the definition of 

the implication and the method of proof 

After Joseph’s contribution in line 95 the lecturer (lines 96-98) tried to bring to light the 

correct proof method to be used. 

[96] T: Yes, I like that.  If P is true  

[97] Joseph:  Q is also 

[98] T: then Q is true [writes If P is true, then Q is true] That is a good definition.  So that’s all 

that this means.  P implies Q means that if P, if P is right, if P is true, then Q is true.  [Points to 
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P ⇒ Q]  So when you want to prove this kind of thing that is why we start off with assuming 

that P is true.  And then we move towards proving that Q is true.   

In addition to highlighting the meaning of the definition of the implication symbol 

(using a facilitative contribution), the lecturer also tried to impart the understanding of 

the method one would use to prove an implication (using a didactive contribution).  She 

advised the students that they should start off with assuming that P is true, and then 

move towards proving that Q is true.  

Summaries of difficulties and guidance in category L1b 

Difficulties experienced by students 

• Misinterpretation of the definition 

The definition of the union of two sets: A∪ B = {x: x∊ A or x∊ B} seemed to 

introduce misunderstandings in students’ thinking.  Students seemed to hold the 

view that the union of two sets comprised all the elements of both sets except the 

elements in their intersection.  This was surmised to be because students’ 

interpretation of the definition might be that x may be in A or in B but not in 

both (exclusive ‘or’ versus inclusive ‘or’).  Understanding and interpreting 

mathematical definitions which include unfamiliar mathematical notation and 

terminology is puzzling and confusing to the average student who has not been 

exposed to mathematical definitions before.   

• Association of mathematical objects with a word contained in their 

definitions 

Some students showed a tendency to associate mathematical objects with a word 

contained in the object’s definition.  For example the notion (and symbol) of the 

union (whose definition is: A∪ B = {x: x∊ A or x∊ B}) was associated with the 

word ‘or’.  Similarly the notions (and symbols) of the intersection (whose 

definition is: A ∩ B = {x: x∊ A and x∊ B}) and the Cartesian product (whose 

definition is: A×B = {(x , y): x ∊ A and y ∊ B}) were both associated with the 

word ‘and’.  Students interchanged these symbols with the words associated 

with them (and vice versa).  As a result of this association the notions of the 

Cartesian product and the intersection were associated with each other.  Many 
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students showed a tendency to link the notion of the Cartesian product with the 

notion of the intersection and one student asked whether the symbol of the 

Cartesian product could be replaced by the symbol of the intersection.  This 

notwithstanding the fact that the Cartesian product is a binary operation acting 

on two sets (for example A and B) to create a new set (A ×B), whose elements 

are ordered pairs (x , y), x being an element of A and y an element of B, whereas 

the intersection of two sets comprises single elements that are found in both sets. 

Students’ association of these two mathematical objects with the word ‘and’, 

highlighted the great difficulty that students have in understanding and 

processing the full mathematical definition.  They appeared to rather focus on 

one word that was common to both definitions (but in very different contexts) 

and based all their thinking on this limited understanding.  The opportunity 

offered to students in the EZPD to interact with one another and develop their 

understanding of these notions through the functional use of the terms, signs, 

symbols and their definitions seemed to play a vital role in the development of 

their proof construction abilities.  

• Misinterpretation of the definition of the notion of implication giving rise to 

incorrect proof method 

Students’ description of their interpretation of the notion of the implication 

revealed almost imperceptible deviations from the correct definition.  For 

example Joseph’s explanation of ‘P implies Q’ in line 95 of sub-episode 1.3 as: 

“If P is true then Q will be true”.  Similarly in sub-episode 2.4, line 46, Maria 

gave her explanation of a) implies b) as: “…if a) is true, then we know b) is 

true”.  These seemingly insignificant departures from the correct definition: ‘If 

P is true then Q is true’ could have led Joseph and Maria to believe (in sub-

episode 2.4) that the method of proof of an implication ‘P implies Q’ would be 

to first prove that P is true and that this will then mean that Q is also true. 
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Guidance offered to students 

Forms of guidance included: 

• Using examples to illustrate mathematical objects 

Examples were used to clarify the definition of mathematical objects such as the 

intersection and the union.  Although the use of examples was initiated by the 

lecturer at the beginning of the discussion to clarify the notions of intersection 

and union, the students enthusiastically took over this activity and seemed to 

enjoy doing examples on the board.  Judging by the whole-hearted participation 

and excitement observed, it was clear that students were able to discuss their 

perceptions and conceptions of confusing terms much more easily by using 

examples and were eager to get clarity on these notions.  With the aid of 

examples, students’ understanding of these mathematical objects hopefully 

progressed from complex thinking towards true concept level understanding.   

• More knowing peers encourage reflection on the definition of mathematical 

objects through transactive prompts and by referring to the definition 

More capable peers (such as Gary and Joseph in Episodes 3 and 4) gradually 

assumed the role and responsibilities of the lecturer by adopting the transactive 

requests for clarification, reflection and justification provided guidance and 

scaffolding to their peers.  They also referred to the definition of mathematical 

objects such as the Cartesian product (in episodes 3 and 4) and clarified and 

explained this definition in their own words, showing how it could be applied to 

the particular proof construction exercise with which the group was engaged.  It 

seemed that the importance of definitions had been made apparent to them and 

this seemed to be quickly extended to the other participants through their 

interaction with their peers.  This increased appreciation of definitions of 

mathematical objects could be the result of a growing understanding of the 

necessity for justification of each statement or deduction in the proof.  The 

correct interpretation of definitions seemed to take on an increased significance 

and meaning as they may have now realized that definitions are valuable tools 

which allow them to map the way forward and justify deductions in the proof 
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construction process as opposed to meaningless bits of information that they had 

to memorize and deliver in a test or exam.  

• More knowing peers identify the cause of the misconception 

More knowing peers (such as Joseph in episodes 3 and 4) exhibiting concept 

level understanding of the notions of intersection and Cartesian product were 

often able to identify the cause of their peers’ difficulties.  By pinpointing the 

root cause of students’ confusion and association of the notion of the intersection 

with the notion of the Cartesian product as a result of the word ‘and’ common to 

both definitions of these mathematical objects, Joseph (in episodes 3 and 4) was 

able to help his peers to make progress in the proof construction process.  

Joseph’s swiftness in detecting the root of the misconception and his patience and 

thoroughness of explanation illustrated the effectiveness of peer scaffolding in 

the EZPD.   

• More knowing peers illustrate mathematical objects using examples 

More knowing peers gave examples to illustrate erroneous proof construction 

steps made as a result of students’ association of a mathematical object with a 

word contained in its definition and their tendency to want to replace the 

symbol by this word or vice versa.   

• Lecturer highlights the definition of a mathematical object and tries to 

show the distinction between the definition and the method of proof 

There was a great deal of discussion on the notions of the implication and 

double implication in the first session and the lecturer tried to elicit students’ 

conceptions and thoughts of these notions through requests for clarification and 

explanation.  Towards the end of the first proof construction exercise the 

lecturer drew the students’ attention to the correct definition of the notion of the 

implication and highlighted its importance.  She then continued to clarify the 

distinction between the definition of this mathematical object and the method of 

proof of an implication.  She attempted to make the distinction (in general) 

between the definition of the object and the method of proof that one would use 

to prove the validity of a statement involving that object.  
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6.2.1.3:  L1c: Illustrating mathematical objects and definitions with 

examples 

As is evident from the transcript of the episodes analysed here, using examples to 

illustrate terms, symbols or definitions is a particularly useful tool which can help 

students gain clarity about the whole proof process and should be encouraged by 

lecturers.  Students should be aided to realize that, when used in clarifying and 

exploring newly met mathematical objects and definitions, the use of examples is 

permissible and productive.  One of the characteristics of potential more knowing peers 

was their tendency to turn to examples to illustrate mathematical objects and definitions 

in their explanations to the other students and also to clarify and reach improved 

understanding for themselves.  This ability seemed to be further strengthened as a result 

of their participation in the consultative sessions.  This will be more fully discussed in 

Chapter 8.   

Students’ difficulties in this category resulted mainly from their inability to generate 

useful examples due to their inexperience with newly met mathematical objects and 

their definitions.  This finding is in accord with Moore (1994) who found that, although 

lecturers encouraged students to generate and use examples to aid to their understanding 

of the mathematical objects involved in proof construction, they were often hindered 

because of their inability to do so (cf. Section 2.2.1).  He proposes that this was a result 

of students having a “limited repertoire of domain-specific knowledge from which to 

pull examples” (Moore, 1994, p. 260).  Analysis and discussion of illustrative instances 

where students experienced challenges in this area is presented below. 

Illustrating mathematical objects and definitions with examples: making maximal use 

of examples 

Failure to make maximal use of examples when illustrating the notions of subset 

and equality 

The first example occurring in the first session was that of Joseph in sub-episode 1.3, 

who offered an example clarifying the notions of subset and equality, after an emphatic 

contribution from Helen on this subject.  Unfortunately this example got lost in the 

discussion and was not acknowledged by his peers.  I have included the discussion 

taking place from lines 56 to 60 in sub-episode 1.3: 
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[56] Helen:  Can I say something?  Before you write can I, can I, can I, can I say something?

   We have been given that A is a subset of B.  And then we can’t say A is equal, is not equal, is

  equals to B because we are not given that B is a subset of A. 

[57] Frank:  OK 

[58] Helen:  Yes.  We’re only given that A is a subset of B, that is why we can’t say that A is

  equal to B because we don’t have B as a subset of A 

[59] Frank:  OK 

[60] Joseph:  Ja, it seems to say A is a subset of B, it doesn’t necessarily mean that in every

  element that is in A are the same element that are in B.  There may be…let’s say B consists of

  elements of natural numbers and then A consists of elements that are even numbers. 

The example given by Joseph was a very good one but as later discussion showed, 

seemed to slip past unnoticed.  The reason could have been because the example was 

not done on the board.  The lecturer (in line 63) did try to give Joseph another chance to 

mention the example hoping that Joseph’s peers would take note of it but she was not 

explicit when asking Joseph to repeat what he had said.  Joseph repeated his argument 

but did not mention the example.  The discussion unfortunately continued without 

maximal use being obtained from this particular example.   

Illustrating mathematical objects and definitions with examples: Students having a 

limited repertoire of examples 

Illustrating the notion of the power set with an unhelpful example  

Frank completed the first component of the proof (A ⊆ B ⟹ P(A) ⊆ P(B)) correctly in 

sub-episode 5.1.  His peers including Gary and Joseph tried to build up their 

understanding of the notion of the power set by reflecting on Frank’s proof construction 

actions and asking for clarification and explanation.  In sub-episode 5.2, line 26, Joseph 

tried to strengthen his understanding further by putting an example of a power set on the 

board.  The example he chooses was not very helpful as he drew the Venn diagram of 

the power set of a set A, and tried to populate it with elements without first drawing the 

Venn diagram of the set A itself.   

Guidance offered: A further example done by the lecturer   

Although some clarity seemed to have been gained with Joseph’s example, the lecturer 

sensing that there was a need for further clarification of the notion of the power set, did 
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another example on the board (making a didactive contribution in line 41).  She drew 

the Venn diagrams of the set A containing two elements (1 and 2) and the power set of 

the set A containing all the subsets of A, better illustrating the relationship between 

elements of the set and the elements of the power set of that set. 

Summary of difficulties and guidance in category L1c 

Difficulties experienced by students 

• Failing to make maximal use of examples offered by students in an attempt 

to clarify mathematical objects 

Joseph, a potential more knowing peer, offered a very good example in episode 

1, clarifying the distinction between the notions of equality and subset.  The 

example was not illustrated on the board.  The participants unfortunately did not 

appear to take note of this example.  I suggest that lecturers may need to 

explicitly highlight the importance of examples when these are offered, in order 

to obtain optimal benefit from these.  Examples should be done on the board 

and not merely verbalised as it appears that students do not pay much attention 

to narrated examples. 

• Illustrating a mathematical object or definition with an unhelpful example 

More knowing peers (such as Joseph in episode 5) used examples to illustrate 

newly met objects and definitions when striving to clarify these notions for 

themselves and other participants.  Joseph offered an example of a power set by 

drawing the power set of a set A on the board and tried to populate it with 

elements.  This proved to be difficult as he had not depicted the set A and its 

elements first.  This difficulty probably arose because the notion of the power 

set was still very new and unfamiliar and Joseph’s understanding of the notion 

was not very complete.   
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Guidance offered to students 

Forms of guidance included: 

• Lecturer offers another more illuminating example 

When the lecturer realized that the notion of the power set needed further 

clarification (in sub-episode 5.2), she did another example on the board.  This 

time the set A is drawn followed by the power set of A, thus enabling 

connections to be made between the elements of the set A and the elements of 

its power set P(A).   

6.2.2 L2: Logical status of statements and proof framework 

The difficulties that students had with regards to the logical reasoning and proof 

methodology required in the proof construction process were largely manifested in 

Episodes 1 and 2 where the proofs of: If A ⊆ B and B ⊆ C, then A ⊆ C  and  a) A ⊆ B ⇔ 

b) A∩B = A were attempted.  The category L2 focusses on the selection of correct and 

appropriate statements and phrases which add logic to the proof construction process 

(L2a), selecting useful and appropriate aspects of definitions and assumptions (L2b) and 

selection and application of the correct proof methods (L2c).   

As in category L1 examples of the difficulties are indicated by the use of boxes for each 

one.  Contributions made by students and the lecturer which seemed to lead to students’ 

increased understanding are then identified and made explicit.  It is assumed that in 

addition to the scaffolding received from their peers and the lecturer, students gained 

better understanding through their functional use of mathematical objects and processes 

which include logical reasoning processes and proof methods.  I argue that the 

functional use of these processes is one of the important factors enabling the student to 

make the transition to a usage in line with their usage by the mathematical community.   

6.2.2.1 L2a: Selecting correct and appropriate statements and phrases 

that make sense and add to the logic of the proof construction 

Statements or phrases that add to the logic of the proof construction process include: 



131 

 

• statements usually written at the beginning of the proof attempt, where the 

assumptions and what is to be proved are clearly stated and set forth.   

• statements giving the justification for deductions for example use of an 

assumption or a theorem previously proved. 

• statements usually written at the conclusion of the proof attempt where reference 

is made to the components of the proof construction (where applicable) and 

justification is provided for the conclusion. 

Although the inclusion of such statements is not strictly necessary for the proof 

construction to be correct, these statements make the proof much easier to read and 

understand, and are very helpful especially to those who are new to the process of proof 

construction.  The use of such statements and phrases also helps to clarify whether the 

student who is attempting the proof construction actually knows the overall plan and is 

able to justify deductions and conclusions made.  Lecturers often encourage students to 

use such statements in their proof construction attempts.  Analysis and discussion of 

illustrative instances where students experienced difficulties and challenges in this area 

is given below. 

Selecting correct and appropriate statements and phrases that make sense and add to 

the logic of the proof construction: clearly stating the assumptions and the statement 

to be proved 

In sub-episode 1.1, line 1, Frank attempted the proof of the proposition: If A ⊆ B and B 

⊆ C, then A ⊆ C.  His proof attempt on the board is set out below.  As can be seen 

although the proof was done correctly with the exception of the double implication sign 

being used instead of the single implication sign, there was no statement clearly stating 

the assumptions and presenting what had to be proved at the beginning of the proof.  

This would add to the logic of the proof construction and would also give others, 

including the lecturer, the reassurance that the student does indeed have some idea of 

the overall approach or plan behind the proof. 

[1] Frank: let x ∈ A   

⟺ x∈B (since A⊆B) 

⟺ x∈C (since B⊆C) 

then A ⊆ C. 
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After this proof attempt the lecturer in sub-episode 1.2 asked for input from all the 

participants.  Edgar in line 3 suggested the addition of a statement which would state the 

assumptions and what was needed to be shown.  Edgar’s contribution is included below. 

[3] Edgar:  Ja, I just want to like, I don’t know whether we need to start our proof… We said

  suppose that A is a subset of B and also B is a subset of C and then we specify what we need to

  do, what is it that we need to do in order to actually come up with something that completes the

  equation.  I don’t know, do we, don’t we start by saying, ‘Suppose is a subset of A and also

  that’s a subset of A? 

However when Frank in line 4 tried to add this statement to his proof construction, it 

became obvious that his understanding of the word ‘suppose’ and the implication 

symbol was incomplete, as he wrote a contradictory statement on the board.  This 

incomplete understanding of words such as ‘suppose’ is discussed in Section 6.2.1.1.  

[4] Frank: Okay you want me to write suppose A is a subset of B and B is a subset of C implies

  that A is a subset of C.  [writes as he is speaking directly above his proof attempt:  Suppose A ⊆ 

 B and B ⊆ C ⇒ A ⊆ C]. 

Guidance offered: Peers offer contributions that help to improve understanding of 

mathematical notation and statements that add to the logic of the proof 

construction while Frank makes functional use of these  

Gary and Helen in lines 5 and 7 of sub-episode 1.2 contributed towards guiding Frank’s 

understanding.  Gary in line 5 clarified that the statement on the right of the implication 

sign (A ⊆ C) was ‘to be proved’ and Helen in line 7 also confirmed that this statement 

needed ‘to be shown’.  Frank appeared to understand and made the correction.  The 

transcript of lines 4, 5 and 7 is included in Section 6.2.1.1. 

Selecting correct and appropriate statements and phrases that make sense and add to 

the logic of the proof construction: Following the steps in previous proof construction 

rather than showing evidence of following logical reasoning processes  

In sub-episode 3.2 Edgar appeared to follow the steps used in the previous section of the 

proof construction and did not show evidence that he was thinking and reasoning about 

the mathematical objects just engaged with in the first part of the proof (sub-episode 
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3.1).  To illustrate this: in sub-episode 3.1, after Edgar (line 3) chose an arbitrary 

element from the Cartesian product (A∪B) × C, 

[3] Edgar:  let (x, y) ∈ (A∪B) × C  

Edgar was guided to make this deduction in line 48: 

[48] Edgar:  ⇒ x ∈ (A∪B) and y ∈ C    

In sub-episode 3.2 in line 88, he carried out similar steps which were incorrect in this 

context: 

[88] Edgar: let (x, y) ∈ (A×C) ∪ (B×C) 

⇒ x∈ (A×C) or y∈ (B×C) 

This seems to show that instead of using his reasoning ability to apply the knowledge of 

the newly met terms symbols and signs to this particular situation, he followed the steps 

and procedure that he had used before.   

Guidance offered: More knowing peer requests clarification, justification and 

reflection on actions taken  

Seemingly through Gary’s prompts and questions encouraging Edgar to reflect on his 

actions and the notion of the Cartesian product, Edgar realized his error. Gary’s 

contributions were from the categories: L3b: questioning and requesting clarification 

for incorrect deductions made without any basis, and L1b: prompts from peers 

encouraging reflection on the meaning of the notion of the Cartesian product.   

Interestingly in line 98 (sub-episode 3.2) Edgar’s discourse showed that he did not 

appear to be aware of the cross, and was merely paying attention to the union symbol.  

The transcript from lines 91 to 100 is included below: 

[91] Gary: Oh this statement after letting x, y be an element of A cross C union B cross C ah, can 

you clarify? 

[92] Edgar: Which one? 

[93] Gary: The first statement, x…. after that 

[94] Edgar: After the left 

[95] Gary: Ja.  We have made 

[96] Edgar: Oh this is a union and this is x, y 

[97] Gary: We have A cross C meaning… 

[98] Edgar: There’s no cross here, it’s a union, it’s an “or”.  That means that this can be this, or 

[99] Gary: Ja 
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[100] Edgar: This can be that, ja.  Thanks.  That’s a mistake I’ve been making on the right, yes.  

Let me  

[erases:  ⇒ x∈ (A×C) or y∈ (B×C) and ⇒ x∈A and x∈C or y∈B and y∈C   

and writes:  ⇒ x∈A and y∈C or x∈B and y∈C 

⇒ x∈A or x∈B and y∈C 

⇒ x∈(A∪B) × C ] 

Summary of difficulties and guidance in category L2a 

Difficulties experienced by students 

• Failure to clearly state the assumptions and the statement to be proved at 

the beginning of the proof 

Frank’s attempted proof construction in the first episode did not contain an 

opening statement clearly stating the assumptions in the proof and the goal of 

the proof construction.  At Edgar’s suggestion to include such a statement Frank 

wrote a contradictory statement clearly showing an incomplete understanding of 

the word ‘suppose’ and the implication symbol.  This strengthens my view that 

such statements are helpful to students (helping to clarify and add logic to the 

proof construction) as well as the lecturer in revealing the problematic areas in 

students’ understanding. 

• Following the steps or procedure from previous components and not 

showing evidence of applying logical reasoning in the proof construction 

process 

In episode 3 Edgar appeared to follow the steps just used in the previous 

component of the proof construction process rather than applying logical 

reasoning.  Perhaps this is also an indication that students need to develop their 

sense of accuracy when writing mathematical statements and deductions.  

Students are often unaware that every written symbol and sign has a meaning 

and a consequence.    

Guidance offered to students 

• Peers offer contributions clarifying newly met terms and symbols 

Peers offered contributions clarifying incorrect and contradictory understanding 

of terms and symbols using simple every-day language.  A vast improvement 
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was observed in students’ abilities to select statements that added to the logic of 

the proof construction process in subsequent proof construction exercises.  This 

was presumably as a result of the guidance that students received from their 

peers while they made functional use of newly met objects and processes.  

• More knowing peers request clarification, justification and reflection on 

actions taken in proof construction 

More knowing peers prompted their counterparts to reflect on their proof 

construction actions and reasoning processes used.  They also prompted their 

peers to reflect on the definition of mathematical objects involved in the proof 

construction exercise.  In this way they helped their peers to recognize errors 

made in their logical reasoning processes.  

6.2.2.2:  L2b: Selecting useful and appropriate aspects of definitions and 

selecting appropriate assumptions (strategic knowledge) 

Selecting correct and appropriate assumptions or aspects of definitions to use in the 

proof construction process is a huge challenge for students.  It was evident in my 

analysis of the five episodes, that even when students had a good grasp of all the various 

categories of proof comprehension and construction, the proof could still remain 

challenging because of the lack of strategic knowledge, that is, knowing how to use the 

definitions and assumptions at their disposal to achieve the desired goal.  The process of 

proof construction is not an algorithmic one where the appropriate knowledge and 

information at one’s disposal guarantees success.  Quite often one needs to think 

creatively and be able to reason in an ‘out of the box’ manner to find the way forward.  I 

argue that this could be one of the key aspects of proof construction ability developed 

over time through practice and seems to be greatly aided by working with peers and 

experts.  Analysis and discussion of examples of difficulties in this category is given 

below.   

Selecting useful and appropriate aspects of assumptions and definitions: trying to use 

non-useful or trivial aspects of definitions  

In sub-episode 2.3 the lecturer (lines 17 and 21) tried to clarify the correct proof method 

to be used by drawing Maria’s attention to what she actually needed to prove and what 
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her assumption was (using transactive requests for clarification, reflection and 

strategy).  However Edgar (in lines 22, 24 and 28) made a contribution that was not at 

all helpful and actually derailed the whole proof construction process.  He suggested 

that Maria use the facts that A is a subset of A and that B is a subset of B in her proof 

construction attempt of A ⊆ B ⇒ A ∩B = A.   The transcript from lines 17 to 28 is 

included below. 

[17] T:  Maybe if we just go back to the beginning.  What are you trying to show, first of all? 

[18] Maria:  Here? 

[19] T:  Mmm 

[20] Maria:  I was trying to show that this [underlines A⊆B] implies this [underlines A∩B = A

   in statement:  A ⊆ B ⇒ A ∩B = A] 

[21] T:  So that’s the first thing you want to show that A subset of B implies A intersection B

  equals A.  So what do we start off with? 

[22] Edgar: Isn’t it that we know that A will always be a subset of A. 

[23] Maria:  Hmm? 

[24] Edgar:  A will always be a subset of A.  Always.  In other words always start with A being

  a subset of A. 

[25] Maria:  Oh, here? Or there?  [points to the board] 

[26] Edgar:  Ja, the first one. 

[27] Maria:  OK 

[28] Edgar:  And also B is a subset of B  

Selecting useful and appropriate aspects of assumptions and definitions: Considering 

a statement that is supposed to be proved as an assumption 

One of the most common errors made when students are starting out on their journeys in 

proof construction is using the statements that are to be proved as assumptions in the 

actual proving process.  

An example of this was seen in sub-episode 2.1.  In sub-episode 2.1 Maria made her 

first attempt at the proof construction: A ⊆ B ⇒ A ∩ B = A.  When attempting this proof 

construction she assumed the statement on the right of the implication symbol which is 

supposed to be proved, to be true and made assertions and deductions that were not 

justified.  As she wrote on the board (in line 3), she explained her thought process: 

[3] Maria: A intersection B which is equal to A.  So from this if A is a subset of B.  This means

  that, mmm, x is an element of A, which implies that x is also an element of B.  And [writes:  If 
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 A⊆ B   x ∈ A  ⟹ x ∈ B ].  Then we come to this side.  That if A is an intersection of B which is

  equals to A it will mean that A is a subset of B.  And this would mean that x is an element of A.

  If and if x is an element of A it implies that it is also an element of B.  [writes on the other side

  of the board so it looks like this 

 If A⊆ B          if A∩B = A   

x∈A               A ⊆ B 

⇒ x∈B           ⇒ x ∈A    ⇒ x∈B  ] 

She re-iterated this thought process in line 5 of sub-episode 2.2. 

Guidance offered: Peers critique and question proof construction actions 

In this sub-episode Christine (line 6) referred to an implication as an equals sign, but 

later (in line 8) she described the method for the proof correctly, thus suggesting 

pseudoconceptual thinking.  Christine questioned Maria on her logical reasoning and 

justification and was thus instrumental in helping to create the EZPD in which Maria’s 

learning developed.  As a result of Christine’s questions and critique Maria began to 

realize that she might have made an inappropriate and incorrect deduction.  In line 11 

Maria began to doubt her thought processes.  The transcript from lines 6 to 11 is 

included below.  

[6] Christine:  How?  Isn’t it that A intersection B is equal to A on the other side of the equals 

sign? 

[7] Maria:  Mmm? 

[8] Christine:  Aren’t you supposed to say that A intersection B is a subset of A and the other 

way round? 

[9] Maria:  Ja, but we’ve got an equals sign here, meaning that A is a subset of A intersection B.  

At the same time A intersection B is a subset of A. 

[10] Christine:  Would you say A is a subset of B? 

[11] Maria:  Ja.  Ok 

[writes:  A∩B = A 

a) A∩B ⊆ A and 

b) A ⊆ A∩B ] 

A intersection B is equals A which means that A intersection B subset of A.  Again A intersection, 

OK, again A is a subset of A intersection B. Ok, from this [points to A∩B ⊆ A] would I be wrong 

if I say A is a subset of B? [ adds  ⇒ A ⊆ B ] 
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Selecting useful and appropriate aspects of assumptions and definitions: Considering 

a statement that is supposed to be proved as an assumption  

Another example is found in sub-episode 2.8 when Maria was trying to prove: A∩B ⊆ 

A.  In line 177 after picking x as an arbitrary element of A intersection B, she went on to 

say: “So this would imply that x is an element of A intersection B which is a subset of A 

[writes: ⇒ x ∈ A∩B ⊆ A]” where A∩B ⊆ A is what she is trying to prove.  Maria’s 

proof construction actions fall under the categories: L2bx: selecting the statement to be 

proved as an assumption, L3ax: assertion made without any basis and L1ax: incorrect 

use of mathematical notation and symbols. 

Guidance offered: Lecturer and peers promptly remind the student that the 

statement that she has used in the proof construction still needs to be proved 

One of the benefits to students working on proof construction exercises in the EZPD 

was that they received prompt and corrective feedback from the lecturer and their peers.  

After  Maria’s incorrect statement in line 177, the lecturer (in line 178) made a 

transactive prompt requesting justification and critique from Maria and her peers, as 

well as a directive contribution introducing the notion that students must be sure of the 

truth of statements and assertions that they write.  Maria’s peers also made positive 

contributions from the category: L3b: clarifying and explaining that every statement 

needs to have a justification and logical reasoning behind it.  The transcript from lines 

178 to 181 is included below. 

[178] T:  Is that true? [Maria looks at T]  Is it true?  Every step of the way you must be sure that 

it is true.  Is that true? 

[179] S: No 

[180] Helen:  Not yet, because we’re trying to prove that. 

[181] S:  No, we’re trying to prove. 

Selecting useful and appropriate aspects of assumptions and definitions: Considering 

a statement that is supposed to be proved as an assumption  

Similarly in sub-episode 2.9, line 261 when Maria was trying to prove that A is a subset 

of A intersection B, she once again used the statement she was trying to prove as an 

assumption.  Maria’s incorrect proof construction actions are from the categories: L2bx: 

selecting the statement to be proved as an assumption, L3ax: makes an assumption of a 
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statement that she is trying to prove, H2ax: unable to transfer the ideas just used in the 

previous proof component to this component.   

            [261] Maria:  Ok.  So I let x be an element of A.  If x is an element of A and A is a subset of A

         intersection B [writes:  let x∈A ] Hmm? 

Guidance offered: The lecturer promptly clarifies and highlights the 

misconception and repeatedly draws attention to the assumption 

After Maria’s action of treating the statement which needed to be proved as an 

assumption, the lecturer promptly interjected making a directive contribution offering 

immediate feedback on the incorrect assumption.  She also made a facilitative 

contribution highlighting the fact that one cannot assume what one needs to prove and 

asking her, using a transactive prompt to recall the correct assumption.  This question 

was repeated in line 264 again as a facilitative contribution highlighting the fact that 

students need to always be aware of their assumptions in the proof construction process.  

The transcript from lines 262 to 265 is included below.  Incidentally Maria’s repetition 

(in line 265) of her peer’s utterance in line 263 appeared to be a clear example of 

students learning through the process of imitation, one of the activities encompassed by 

the functional use of a mathematical object or process.  This is also discussed in Section 

7.2.2.1. 

[262] T:  It’s not!  That’s what you’re trying to show… that’s what you’re trying to show…  So 

please don’t get confused with what you are trying to show, you cannot assume that.  But what 

have you assumed, what have you got?   

[263] S: (Some comments) A is a subset of B. 

[264] T:  What have you assumed? 

[265] Maria:  A is a subset of B 

Selecting useful and appropriate aspects of assumptions and definitions: Difficulty in 

using the definitions and assumptions at one’s disposal to get to the desired goal 

In sub-episode 2.11, Maria continued with the second component of the proof, that is, 

showing: A∩B = A ⇒  A⊆ B and showed much more confidence.  She appeared to have 

mastered the proof methods used in the last components of the proof (that is the 

implication proof method and the subset proof method) and was able to transfer these 

methods to the next component of the proof.   
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Maria started the proof correctly choosing an arbitrary element x in the set A in line 310.  

The deduction which followed this was written in line 324 when Maria made the 

deduction: ⇒ x∈B.  This deduction did not follow simply from the previous statement: 

Let x∈A, and the assumption: A∩B = A, but was the desired outcome or deduction for 

the proof to be complete.  Maria appeared to have realized that she needed to use the 

assumption made at the outset of the proof to get to the desired goal, and she also 

recognized that the deduction x∈B would allow her to reach the correct conclusion.  She 

was unable however to proceed with this knowledge to reach the correct conclusion 

logically and sensibly. 

[324] Maria:  OK.  And this, from this it would imply that x is an element of B because here it

  says that A intersection B is equal to A.  [writes:  ⇒ x∈B] 

[325] T:  Break it down into simple steps for us…   

[326] Maria:  [completes the statement she was writing:  ⇒ x∈B (since A∩B = A)] 

Guidance offered: The lecturer and other students try to guide Maria by 

reminding her of the assumption and its correct implication and urging her to use 

logical reasoning 

The lecturer tried to get Maria to reach the correct deduction using transactive prompts 

requesting clarification, explanation, reflection and logical reasoning (lines 327, 331, 

333, 337, 339, 343, 345 and 347) and also using facilitative contributions structuring 

the proof writing and highlighting learning (line 335).  By prompting Maria to reflect 

on her actions, to ensure that every step made sense and to remember the assumption 

made while proceeding with logical reasoning, she tried to develop the strategic 

knowledge needed.  Maria’s peers also contributed in this regard.  The transcript from 

lines 327 to 356 has been included.  

[327] T:  Are we clear?  I think you missed a step. 

[328] Frank:  Since A is a subset of B 

[329] Maria:  Hmm? 

[330] Frank:  Since A is a subset of B.  We want to show that.  We want to show that. 

[331] T:  And is it clear for all of us, is it?  Is it?   

[332] Christine:  No it’s not 

[333] T:  OK, just go back and think about how to make that a bit more clear. 

[334] Maria:  Like? 
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[335] T:  What do we know?  What are our assumptions? 

[336] Maria:  You know that A intersection B is equal to A. 

[337] T:  OK, now you have let x to be? 

[338] Maria:  an element of A. 

[339] T:  What does that mean then? 

[340] Maria:  Like I’ve let x be, to be contained in A.   

[341] T:  Mmm 

[342] Maria:  And since I’ve already assumed that A intersection B is equal to A it means that x 

is also contained in B. 

[343] T:  Ok, that’s not clear.  You have written x is an element of A 

[344] Student:  Right 

[345] T:  And A is…? 

[346] Maria:  Is a subset of 

[347] T:  A is…? 

[348] S:  equals to 

[348] Maria:  is equal to A intersection B 

[349] T:  So what is x an element of? 

[350] S:  x is an element of A intersect B 

[351] T:  Right.  Write that down. 

[352] Edgar:  x is an element of A intersect B. 

[353] Maria:  [erases:  ⇒ x∈B (since A∩B = A)] 

[354] Edgar:  And… that since x, since x is an element in A 

[355] Maria:  [writes:  ⇒ x∈ A∩B (since A = A∩B)] 

Selecting useful and appropriate aspects of assumptions and definitions: Starting the 

proof incorrectly and reaching an impasse 

Frank’s attempt at the proof of P(A) ⊆⊆⊆⊆ P(B) ⇒⇒⇒⇒ A ⊆⊆⊆⊆ B in sub-episode 5.3: 

After successfully completing the proof construction of the first component of the proof 

in sub-episode 5.1, Frank attempted the proof construction of the second component in 

sub-episode 5.3.  When attempting to prove P(A) ⊆ P(B) ⇒ A ⊆ B, Frank struggled to 

start the proof correctly.  Although Frank appeared to know the definition of the power 

set and was able to apply it in sub-episode 5.1, he seemed unable to use this definition 

to provide a strategy for doing the proof in sub-episode 5.3.  He was unable to work out 

how to use the assumption P(A) ⊆ P(B) to prove A ⊆ B.  I have included lines 47 to 55 

of sub-episode 5.3 below.  Here Frank struggled to start the proof correctly and when 
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guided to make the correct first step, he faltered again and made a deduction without 

any justification (line 55). 

[47] Frank: [writes:  let {x} ∈ A] 

[48] T: Now, think about that.  What does everybody say about that?  [silence]  We want to

  show…  What do we want to show? 

[49] Frank: A is a subset of B 

[50] T: So then you have to pick any element… 

[51] Frank: Ja 

[52] T: in where?   

[53] Frank: A 

[54] T: In A, right?  And A is just a set 

[55] Frank: Ok.    

  [erases the brackets so it now reads:  let x ∈ A   ⇒ x∈B (since P(A) ⊆ P(B)) ] 

As seen above Frank (line 47) started the proof of showing A ⊆ B by choosing the set 

{x} as an element of A.  Frank’s mistake here was that {x} is a set and cannot be an 

element of A.  The correct course of action would have been to choose x to be an 

element of A, and then make the connection that {x} is a subset of A and hence an 

element of the power set of A, that is an element of P(A).  When prompted by the 

lecturer and reminded that A was simply a set, Frank (line 55) correctly chose x to be an 

element of A, but then immediately made a deduction without the necessary justification 

which would lead him to the correct conclusion.  I suggest that Frank did not know what 

the next appropriate step or deduction should be after the first step and he jumped to 

what he knew was the correct conclusion without any justification.   

Guidance offered: lecturer asks peers to reflect on reasoning and strategy and 

make contributions towards proof construction and use examples to illustrate 

mathematical objects and processes 

The lecturer used transactive prompts (lines 56, 57 and 59) asking students to reflect on 

their reasoning and strategy, and also requesting them to use examples (lines 64, 66, 68, 

72, 74, 76 and 80) to clarify the notion of the power set and its application in the proof 

construction. The transcript referred to is included below in the discussion on further 

guidance. 
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Further guidance offered: peers offer contributions on strategy and reasoning, 

clarifying the proof construction process by using examples 

Gary and Joseph in lines 61, 62 and 63 offered their contributions on finding the correct 

strategy to progress in the proof showing how much their understanding had progressed 

as they were now able to make positive contributions in the proof construction.  

Whereas in sub-episode 5.1 they were observed trying to build their understanding of 

the power set through engagement and reflection on the notion of the power set as they 

interacted with their peers, in sub-episode 5.3 they were able to use their knowledge of 

the newly met term to find a way forward in the proof construction process.  Joseph 

then went up and completed the proof correctly in line 77 and when he realized that 

Frank was still not clear about the proof construction and the reasoning that he had 

used, he seemed to realize that the justification behind his proof construction steps 

would best be clarified by reflection on the example of a power set.  In line 81 he 

altered the example the lecturer had asked Frank to do on the board by replacing the 

elements 1 and 2 by the general variables x and y.  By doing this the relationship 

between the elements of a set and the elements of its power set were better 

demonstrated.  This showed that Joseph’s understanding of the power set had evolved to 

concept level as he was able to explain and apply the  mathematical object correctly and 

generate well-thought of examples which clarified the object for his peers.  This is 

further discussed in Section 7.2.1.2 and 8.2.5.  The transcript from lines 56 to 81 is 

included below. 

[56] T: Do we agree with that? 

[57] T: So you wanted to show that A is a subset of B.  You’ve taken an element in A and then 

you immediately go to say that element is in B.  Since… 

[58] Student: Is x not in power set B? 

[59] T: Since what?  Does it follow immediately? 

[60] Student: No, it does not follow immediately 

[61] Gary: I was thinking; x being an element of A, right?  Ah, since x is an element of A, what 

it means that… 

[62] Joseph: {x} is an element of the power set… 

[63] Gary: subset {x} can be an element of power set of A, subset {x} is an element of the power 

set of A. 
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[64] T: OK, do you want to write that down?  Maybe…  Draw the Venn diagram of that set A 

that I put up, that example.  Ja, and see what…  Do you remember how we got the power set?  

We had the elements 1 and 2 

[65] Frank: [draws a Venn diagram and writes Ø inside ] 

[66] T: No, first draw A, the set of A 

[67] Frank: Oh, A, here?  [labels the diagram A] 

[68] T: What did A have in it?  1 and 2. 

[69] Frank: 1 and 2 

[70] T: Right 

[71] Frank: [erases Ø, and writes 1, 2 in Venn diagram labelled A ] 1 and 2 

[72] T: Uh huh.  Now the power set is… 

[73] Frank: [writes:  P(A) and draws a Venn diagram with Ø, {1}, {2}, {1, 2} ] 

[74] T: Right.  Does that give you a clue? 

[75] Frank: x is in A. 

[76] T: x is in A.  So x is, it can be the 1 or the 2 in this case. Do you want to go up and show us? 

[77] Joseph: [goes to the board and says as he writes] Subset {x} is an element of power set 

A… is an element of the power set B since, and this is an element of B since this  

[writes:  ⇒ {x} ∈ P(A)              

               ⇒ {x} ∈ P(B) (since P(A) ⊆ P(B))  

              ⇒ x∈B           

           Thus A⊆ B ] 

[78] Frank: But at the beginning I was trying to show that the set was… 

[79] Student: No you can’t say that a set is an element of a set. 

[80] T: Look at A… 

[81] Joseph: The set, it’s like saying this is an x [in the circle labeled A, he erases 1and 2, and 

replaces this with x and  y] so that we say x, we say y.  And then this x that’s in here it can be 

considered as a subset so we say x [draws the Venn diagram P(A) and writes {x}, {y}, {x, y} and 

Ø and erases the Ø, {1}, {2}, {1,2}] and the subset will be {x}, {y} and{x, y} which is the set 

itself .  And this one is just the same like we had a subset. 

Summary of difficulties and guidance in category L2b                

Difficulties experienced by students 

• Selecting non-useful or trivial aspects of definitions 

One of the challenges students faced when first introduced to proof construction 

was the challenge of knowing which aspects of definitions would be useful and 

how to use them.  In their quest to proceed in the proof construction process, 
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students sometimes presented all sorts of irrelevant and non-useful information.  

For example in sub-episode 2.3 Edgar’s contributions included: A is a subset of 

A and B is a subset of B.  These trivial contributions were not at all relevant to 

the proof construction.   

• Treating a statement that is supposed to be proved as an assumption 

A common error by students in their initial attempts at proof construction was 

treating the statement that was supposed to be proved as a given and trying to 

use this statement in their proof construction attempt.   

• Difficulty in using the assumptions and definitions at one’s disposal to make 

progress in proof construction 

There were several instances where students demonstrated sound knowledge of 

the relevant proof methods and exhibited good understanding of the 

mathematical objects, definitions and assumptions relevant to the proof 

construction, and yet failed to drive the proof construction process forward.  

Even though all the other proof comprehension criteria appeared to be satisfied, 

the proof still remained challenging because of the lack of strategic knowledge, 

that is: knowing how to use the definitions and assumptions at their disposal to 

achieve the desired goal.  Perhaps this is one of the key aspects of proof 

construction ability which is only developed with practice over time and may be 

expedited when working with peers and more knowing others in the EZPD (for 

example Joseph and Gary’s contributions in sub-episode 5.3). 

• Starting the proof incorrectly and reaching an impasse 

One occasion occurred when although the student’s knowledge of the relevant 

definitions and proof method pertinent to the proof construction appeared to be 

sound, the student struggled to start the proof correctly (Frank in sub-episode 

5.3).  The difficulty of starting a proof correctly was one of the major sources of 

difficulty identified by Moore (1994).  Even when Frank was assisted to begin 

the proof correctly, he struggled to continue, reaching an impasse.  Weber 

(2001) discusses how quite often students who are aware of what a proof is, can 

reason logically,are aware of the pertinent definitions and have a good grasp of 

the mathematical objects relevant to the proof (students’ syntactic knowledge) 

often fail as they reach an impasse.  He refers to this failure to invoke their 
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syntactic knowledge as strategic knowledge.  It is this strategic knowledge 

which seems to be lacking in this instance.   

Guidance offered to students 

• Peers critique and question proof construction actions 

Peers critiqued and questioned the proof construction actions of students doing 

the proof construction exercise and were instrumental in helping them to realize 

that each step should be accompanied by sound logical reasoning. 

• Lecturer provides prompt corrective feedback and highlights the 

importance of making sure of the truth of each statement made 

When Maria repeatedly used the statement which was supposed to be proved as 

an assumption in the proof construction process even after the method of proof 

had been clarified, the lecturer and peers offered quick corrective feedback.  

The lecturer used transactive prompts requesting Maria to justify her actions 

and prompted her peers to critique incorrect actions.  The lecturer also made a 

directive contribution emphatically reminding all the participants that they had 

to be sure of the truth of every statement.  The lecturer repeated the question: 

“Is that true?”.  This might be significant as students often do not realize the 

importance of ensuring that each step taken is based on sound logical reasoning 

and the repeated question was aimed at emphasizing this message. 

• Lecturer offers prompt feedback and repeatedly draws attention to the 

assumption 

In response to Maria’s attempt to use the statement that was supposed to be 

proved as an assumption once again, the lecturer promptly interjected with a 

directive contribution offering immediate feedback on the incorrect action.  The 

lecturer then made a facilitative contribution highlighting the fact that 

statements which are to be proved cannot be assumed, and a transactive prompt 

asking Maria to recall the correct assumption.  This question was repeated.  

This could be significant as the lecturer was trying to emphasize that students 

had always to be aware of assumptions made in the proof construction process. 

• Lecturer and peers offer guidance by reminding the student of the 

assumption and its correct implication urging her to use logical reasoning 



147 

 

When Maria had difficulty proceeding in the proof construction because of a 

lack in strategic knowledge in sub-episode 2.11, the lecturer used transactive 

requests for clarification, explanation, reflection and logical reasoning and 

facilitative contributions structuring proof writing and highlighting learning to 

steer Maria towards the correct deduction.  Maria was prompted to reflect on 

her actions, to ensure that every step made sense and was logically sound and to 

remember the assumption made at the beginning of the proof.  In this manner 

she was guided to make functional use of logical reasoning processes as she 

continued her proof construction attempt.  Maria’s peers made contributions 

recalling the assumption and together with the lecturer guided Maria towards 

the correct deduction. 

• Lecturer asks the student and peers to reflect on reasoning and strategy and 

use examples to illustrate mathematical objects 

The lecturer used transactive prompts requesting students to reflect on their 

reasoning and find a strategy for the way forward in the proof construction.  She 

also asked them to repeat an example of the newly met notion of the power set on 

the board hoping that this would clarify the interpretation and application of the 

mathematical object in the proof construction process. 

 

• More knowing peers offer contributions towards proof construction and 

clarify proof construction steps by using examples 

More knowing peers offered contributions on strategy and reasoning and made 

improvements on the given example to better illustrate proof construction steps.   

6.2.2.3:  L2c: Proof methods 

Students’ knowledge and familiarity with proof methods such as the proof of an 

implication, proof of equality of sets and the proof of showing that one set is a subset of 

another, were found to be key to successful proof construction.  It was evident however 

that these proof methods were a major challenge when students initially engaged with 

formal proof construction exercises.  One reason could be that these proof methods were 

usually encountered in the course of covering chapters on different topics, in this case, 

set theory.  Lecturers generally do not focus on the proof methods and discuss them as 
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these methods might seem rather obvious to them because most of them emerge from 

the definitions of the mathematical objects met in the area of study.  Whatever the 

reasons, my study highlights the fact that lecturers do need to focus more on these proof 

methods and ensure that students understand and are comfortable with them. 

As previously discussed there is also a link between having the correct understanding 

and interpretation of definitions and the ability to find the correct methods of proof.  A 

good understanding of the definitions of mathematical objects involved in the actual 

proof construction enables one to make the connection to finding the correct proof 

methods.  Moore (1994) emphasized that definitions not only provide the mathematical 

language and notation necessary for proof construction but also reveal the logical 

structure of the proof providing the justification for each step.  Analysis and discussion 

of illustrative examples of the difficulties students had in this area is given below.   

Proof methods: The proof methods of an implication and double implication 

Associating the method of proof of an implication or double implication with that 

of an equation or identity 

Many students associated the notions of the implication or double implication with the 

more familiar notion of an equality, or an equation in episode 1 (cf. lines 50 and 66 of 

sub-episode 1.3).  The complex thinking observed in this episode leads to their use of an 

incorrect method of proof of an implication as seen later in episode 2.  To illustrate, in 

sub-episode 1.3, Maria (line 66) described her thinking of the implication: 

[66] Maria:  It means that… like if you are proving something which is, like you’ve got an equal 

 sign like this side is equal to this, so if you put that double implication it means that what you are

  proving on the left you are sure that is equal to what you are proving on the right.  Ja.  

In episode 2 we observed Maria’s interpretation of this mathematical object extended to 

her method of proving an implication.  Her method of proof was similar to that of 

proving an equality or an identity as shown in line 3, sub-episode 2.1 where she 

attempted the proof of: A ⊆ B ⇒ A ∩B = A: 

If A⊆ B          if A∩B = A 
x∈A               A ⊆ B 
⇒ x∈B           ⇒ x∈A  

                        ⇒ x∈B         
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In sub-episode 2.2 when asked to explain her reasoning, Maria in line 5 said:  

[5] Maria: If, ok, here it says A is a subset of B and on this side it says A is an intersection of B

  which is equal to A.  And if A is an intersection of B which is equal to A it means that A is a

  subset of B.   

Maria’s description and application of the proof method of the double implication 

clearly indicate that she regarded the implication as an equality or identity having two 

sides that she had to prove were ‘equal’ to each other.  Subsequently she took the left 

hand side and the right hand side of the implication independently and by using 

incorrect deductions and trivial implications she attempted to show that each “side” 

resulted in the same statement: x∈B.  This seems to indicate complex level thinking 

about her proof method of an implication. 

Guidance offered: Peers question the logical reasoning in the proof method and 

critique deductions and assertions made without justification 

After Maria’s explanation of her reasoning in line 5 of sub-episode 2.2 shown above, 

Christine who also referred to the implication symbol as an equal sign, questioned the 

logical reasoning behind the proof method and critiqued deductions made without 

justification.  Thus although Christine also had an incomplete understanding of the 

implication symbol, she appeared to have a better grasp of the method of proof and 

realized that the statement to the right of the implication symbol could not be taken as 

given but needed to be proved.  Christine’s contributions are from the category: L2c: 

questions reasoning used and the methodology of the proof and L3b: questioning how 

an assertion is made from the previous statement without any basis.  The transcript from 

lines 6 to 13 is included in Section 6.2.2.1 and will thus not be repeated here. 

Christine was instrumental in creating the EZPD where through her transactive 

questions for reflection, clarity and justification, Maria began to realize that she had 

made the assertion “A is a subset of B” without any justification (line 11).  This seemed 

to be a clear indication of cognitive growth taking place in the EZPD as a result of 

interaction with Maria’s peers (Christine in this case) and functional use of the proof 

method of an implication.  Maria questioned the assertion she had made, asking in line 

11: “…would I be wrong if I say A is a subset of B?”   
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Proof methods: The proof methods of an implication and double implication 

Incorrect interpretation of the definition of implication to arrive at incorrect proof 

method 

Although the correct proof method had been explained by the lecturer and Gary in sub- 

episode 1.3 and mentioned again by the lecturer in sub-episode 2.3, it appeared that 

Joseph and Maria had not grasped these explanations.  In sub-episode 2.4 they revealed 

their persistent incomplete understanding of the proof method.  The discussion from 

lines 42 to 54 is included here.  This took place after the lecturer had once again asked 

Maria to clarify her attempted proof of a) ⇒ b) (by making a transactive request for 

clarification). 

[42] Maria:  And if a) implies b) and b) implies c) we know that a) implies c).  So I came here, I

  wanted to prove that a) is true. 

[43] T:  You want to prove that a) is true? 

[44] Maria:  Ja 

[45] T:  But write down for me, you remember we discussed what implication means?  What

  does the a) implies b) mean?   

[46] Maria:  It means that if a) is true, then we know b) is true. 

[47] Edgar:  But if b) is true it doesn’t mean that a) can be true. 

[48] T:  So if a) is true then b) is true.  That’s what you’re trying to prove, right?  If a) is true, 

 then b) is true.  So you start off with assuming something.  What is what you start off with?

  What do you assume? 

[49] Maria:  I assume that… 

[50] T:  Don’t rub everything out.  Leave it.  What do you assume? 

[51] Maria:  I assume that (a) implies (b) and (b) implies (c) and I want to show that (a) implies

  (c). 

[52] T:  Ok, somebody help her.  What do you assume? 

[53] Frank:  Assume A is a subset of B – you’ll assume that.  Then you’ll be fine.   

[54] Joseph: You are saying if (a)’s true then (b) will be true.  Now let’s prove a) and why it’s

  true, né?  Then let x to be an element of A and see if it leads us to say x will be an element of B.

 Then if that is true it means that b) is true. 

This excerpt clearly revealed that Maria was under the impression that she should first 

prove that the statement to the left of the implication sign was true.  When asked to 

clarify what the statement a) implies b) means, she answered in line 46: “It means that if 
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a) is true, then we know b) is true”.  A seemingly insignificant departure from the 

wording in the definition of a) implies b): ‘If a) is true, then b) is true’ (by including the 

phrase ‘then we know’) seems to be at the root of Maria’s misunderstanding.  Maria 

appeared to think that the proof method which follows from this definition is that she 

had to first prove a) to be true and from this it would automatically follow that b) was 

true.  Joseph echoed this misunderstanding in line 54 (sub-episode 2.4).  He agreed with 

Maria and repeated his previous reasoning from sub-episode 1.3: “You are saying if 

(a)’s true then (b) will be true.  Now let’s prove a) and why it’s true, né?  Then let x to 

be an element of A and see if it leads us to say x will be an element of B.  Then if that is 

true it means that b) is true.”  Again the seemingly insignificant departure: ‘will be 

true’ from the definition seems to mislead Joseph and cause him to use a totally 

incorrect method of proof. 

Guidance offered: More knowing peer clarifies and elaborates the implication  

proof method 

Gary assisted in lines 61, 62 and 67 of sub-episode 2.4 by clarifying and elaborating the 

implication proof method, showing true concept level thinking and creating the EZPD 

where Maria’s proof construction abilities could develop.  In fact Gary played a major 

role as a more knowing other throughout the proof construction process.  Gary’s 

contributions fall in the following categories: H1a: explains the main idea behind the 

proof correctly, L2a: clarifies the reasons behind making a particular assumption and 

what needs to be proved, L1a: mathematical terms, symbols and signs correctly written 

and explained, L2c: correctly explains the method of proof of an implication.  Gary’s 

contributions in lines 61, 62 and 67 of sub-episode 2.4 are included below. 

[61] Gary:  First of all we are trying to show if A is a subset of B it will mean that it might take, 

it might lead us to A being an intersection B being equal to A.  So what we must do now is that 

our assumption will be that A is a subset of B.  After that we use our assumption to prove that A 

is an intersection of B which will be equal to A. 

[62] Gary:  [writes:  Assume A⊆ B   We show that A∩B = A ] 

[above Assume A⊆ B writes:  A⊆ B ⇒ A∩B = A 

Thus written on the board is (a)    ⇒  (b) 

                                            A⊆ B ⇒ A∩B =A         

                        Assume A⊆ B.  We show that A∩B = A] 



152 

 

A is a subset of B. 

[67] Gary:  OK.  First of all we say we must show that (a) implies (b) [points to (a) ⇒(b)] 

meaning that A is a subset of B implies that the A intersection of B will give us A.  Right?  So 

first of all we must show that, we must assume that a) is true.  That’s why we say Assume that A 

is a subset of B.  From this assumption we must show that it will lead us to A being a subset of B 

which will give us A… 

Proof methods: The proof methods of an implication and double implication 

Striving to grasp the correct proof method of an implication 

In line 77 of sub-episode 2.5, Maria showed that she had not yet grasped the method of 

proof of an implication as she asked: 

[77] Maria:  So what I don’t get here is that am I supposed to prove this or this 

[points to:  Assume A⊆ B.  We show that A∩B = A] 

Guidance offered: more knowing peer gives a short simple rule using every-day 

language 

Maria was guided by Helen (line 78, sub-episode 2.5) who told her that she should do 

“the second intersection b) part”.  Helen’s contribution is from the category L2a: 

correctly identifying what needs to be proved in the proof of an implication.  Maria 

seemed to identify with and appreciate this short simple rule using every-day language 

perhaps even more than all the explanations given before.   

Proof methods: The proof methods of equality of sets and showing one set is a subset 

of another 

Complex/pseudoconcept level reasoning of the proof method for showing equality 

of sets (incorporating method of proof of subset) 

Having been guided by Helen to prove A∩B = A, Maria encountered the method of 

proof of showing equality of two sets.  She (in lines 83 and 85 of sub-episode 2.5) 

revealed complex or pseudoconceept level thinking about the proof methodology: 

[83] Maria:  I want to prove that like if like A and A intersection B, these things have something

  in common (pointing to A∩B and A) 

[84] T:  Mmm 
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[85] Maria:  And that thing is x.  So I want to show that if x is contained in A it will also be

  contained in B where they intersect. 

She described the method of proof of equality of the two sets as showing that A and A 

intersection B have something in common, the element x.  This might indicate 

complex/pseudoconcept level thinking of the methodology of the proof of equality of 

two sets as it seemed to give rise to the correct methodology of the proof of equality of 

sets but was not quite correct conceptually.   

Proof methods: The proof methods of equality of sets and showing one set is a subset 

of another 

Further complex/pseudoconcept level reasoning of the method of proof of equality 

of sets 

In sub-episode 2.7 the proof method of showing equality of two sets was discussed 

further.  Here Joseph exhibited complex level thinking about this method.  In line 125 

he talked about proving the equality of sets as proving the equality of the left and right 

of an equation or an identity. 

[125] Joseph: Prove the left then prove the right. 

He went on to elaborate in line 127: 

[127] Joseph: It means if the two are equal, you find that if the left is true then the right must be
  true. 

The actual proof method that he proposes to use, however, seems to be correct as in line 

129 he elaborated further: 

[129] Joseph: Say B intersection A is equals to A, then you let x to be in A, then you should

  show that x is also in the set of A intersection B. 

Joseph described the proof method to prove that set A is a subset of A intersection B and 

it is presumed that he meant to do the converse also.  Thus his reasoning might be 

pseudoconceptual as he appeared to describe the correct method but used an incorrect 

explanation.   
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Guidance offered: Lecturer makes reference to the definition of set equality and 

prompts students to arrive at the method of proof of showing equality of sets 

In sub-episode 2.7, the lecturer brought to light the method of proof for showing 

equality of sets through an explicit reference to the definition of set equality (using a 

transactive request for strategy and making reference to a definition in line 139 shown 

below).  She drew everyone’s attention to how the definition of the notion of equality of 

two sets could be used to obtain the method of proof.  I have included the conversation 

which took place in lines 139 to 155 to show how the correct method of proof is 

eventually arrived at by the use of transactive prompts requesting clarification and 

explanation (lines 141 and 145), strategy and making reference to the definition (lines 

139, 143 and 154) as well as facilitative contributions highlighting learning while 

referring to the definition (lines 149 and 151).  

[139] T:  In other words, what are you trying to do?  Go back to the definition guys, when are 

two sets equal?  …When are two sets equal?  … What does the definition of equality say? 

[140] Edgar:  When every element in the other one is also contained in the other one. 

[141] T:  Ok.  Which means? 

[142] Edgar: Which means that… 

[143] T:  How do we show that two sets are equal? 

[144] Edgar:  We need to prove that it is, this is true…  When, when…  Let’s take a set A and a 

set B.  We need to prove that every element in A is contained in B.  And also every element in B 

is also contained in A. 

[145] T:  And what do we call that? 

[146] Edgar:  Um… 

[147] T:  Yes? 

[148] Helen:  Oh, I think we try to, to prove that if we have a, a subset A and a subset B we try to 

show that A is a subset of B and B is a subset of A. 

[149] T:  Good.  Write that definition down for us please.  That A equals B.  It’s very, very 

important and everybody is missing it here, you know.  It’s a fundamental definition.  A equals 

B…  You can write it right at the top there.  Ja, at the top, even at the top - you’re nice and tall so 

you can reach [all laugh] 

[150] Helen: [comes to the board and writes:  A=B when A⊆B & B⊆A] 

[151] T:  Beautiful, very nice.  That’s what I want.  Does everybody remember that definition? 

[152] S (chorus):  Yes 

[153] T:  OK.  Good.  Now we are trying to show that A intersection B equals A.  What do you 

think we’re trying to show? 

[154] Gary:  That A is a subset of A intersection B and A intersection B is a subset of A. 
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Proof methods: The proof methods of equality of sets and showing one set is a subset 

of another 

Losing sight of the correct proof method and the goal of the proof construction 

Having been guided to realize that to prove equality of sets A⋂B and A, one had to 

prove that A⋂B ⊆ A  and  A⊆ A⋂B, Maria started the proof of A∩B ⊆ A in sub-episode 

2.8.  Although she identified the correct plan of action and began the proof correctly by 

choosing x to be an element of A⋂B, she faltered and had to be guided to make the 

deduction that x will be an element of A and B.  In lines 186 and 187 (included below) 

she again lost sight of what she had to prove and brought in the assumption A⊆ B and 

continued to try to arrive at what she had previously considered to be her desired goal, 

x∊ B (in sub-episode 2.1).    

[186] Maria: This will imply that x is an element of A and x is an element of B.  [writes:  ⇒

  x∈A and x∈B ]  

[187] Maria: And if x is an element of A and an element of B it will mean that x is a, A is a

  subset of B.  That’s what I think, because I say that if A is a subset of B [writes:  A⊆B] it means

  that x is an element of A [ writes:  x ∈ A ]  We should also imply that x is an element of B

   [writes:  ⇒ x∈B]    

[Now on board: to show  A∩B ⊆ A 

                                                                   let x∈A∩B 

                                                                 ⇒ x∈A and x∈B 

                                                                     A⊆B  

                                                                 x ∈ A  

                                                              ⇒ x∈B  ] 

Thus she appeared to revert to complex level thinking again wanting to prove equality 

of both sides of the implication.  This was once again indicative of Maria’s lack of 

strategic knowledge and lack of a clear idea of the proof methodology.  

Guidance offered: Lecturer offers quick, direct and continuous assistance and 

repeatedly draws attention to the goal of the proof construction and peers offer 

contributions 
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On seeing Maria reverting to her previous reasoning mode, the lecturer through 

transactive prompts for strategy and elaboration (line 190 and 192) and facilitative 

utterances attempting to restructure proof writing and highlight learning (lines 188, 194, 

196 and 198) promptly asked Maria to reflect on her strategy.  Joseph as more knowing 

peer also interjected with some contributions.  The transcript from lines 188 to 201 is 

included below. 

[188] T:  Go back to what you are trying to show 

[189] Maria:  Ja 

[190] T:  What are you trying to show? 

[191] Joseph: It will imply that x is an element of A… 

[192] T: Why? 

[193] Joseph: Because it’s an element of A and B and we want to show that A intersection B is a 

subset of A. 

[194] T:  You got it!  What are we trying to show? 

[195] S:  That A intersect B is a subset of A 

[196] T:  So so far we’ve had that x is an element of A 

[197] Maria:  And B 

[198] T:  And B.  So is it an element of A?   

[199] S:  Yes 

[200] T:[nods]  For sure. It’s both.  It’s both an element of A and an element of B.  So we can 

make the conclusion that x is an element of A, as you were saying, that x is an element of A.  Is 

that right? 

[201] Maria: [under ⇒ x∈A and x∈B writes: ⇒ x∈A] 

Further guidance offered: Detailed explanation and elaboration of proof 

presentation by a peer who has reached concept level understanding   

At the completion of the proof of A∩B ⊆ A in sub-episode 2.8 the lecturer asked 

Christine to summarise the proof construction to clarify and elaborate for those who 

were still unsure. She did this in line 229. 

[229] Christine:  [goes up to the board and points to the statements] Ok, we tried to show that A 

intersection B is a subset of A and then we let x be an element of A intersection B.  This means 

that x is in both A and B and this [points to A∩B] is an intersection of A.  So x is an element of A 

and x is an element of B [points to x∈A and x∈B] This means that since x is in both A and B, 

then x is also going to be in A, which you are trying to prove.  Then we conclude by saying that 
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A intersection B is a subset of A.  [points to Thus A∩B ⊆ A]  So she was supposed to write this 

part [draws a line under A∩B ⊆ A ] 

Christine comfortably interpreted and explained the newly met terms used in the proof 

construction such as ‘implies’ and ‘intersection’.  She used these terms with ease and 

was able to show in a very clear manner the connection between what needed to be 

proved and the statements made in the proof construction indicating concept level 

thinking for method of proof of subset.  She identified the basis for each deduction and 

demonstrated as she went through the proof construction process that deductions had to 

be made with the necessary justification.   

Proof methods: The proof methods of equality of sets and showing one set is a subset 

of another 

Striving to grasp the correct proof method of showing one set is a subset of another  

In sub-episode 2.9 Maria correctly identified that she now needs to prove A⊆ A∩B.  

However in line 249 she asked:  

       Maria: So there [points to: to show A⊆ A∩B] I’m coming to show that A is a subset of A  

       intersection B.  Do I have to start with this side [points to the first A] or this side [points to the A∩B].   

Thus Maria had not yet reached a full understanding of the method of proof of showing 

that one set is a subset of another and had not been able to transfer the proof method she 

had just used in the previous component of the proof (where she proved A∩B ⊆ A) to 

this component. 

Guidance offered: More knowing peer gives a short simple rule and lecturer and 

peers repeatedly draw attention to what needs to be proved and what is assumed 

In answer to Maria’s question (in line 249) of which ‘side’ to start with, Helen again 

offered a short simple rule using every-day language of ‘starting with the left’ in line 

250.  Helen’s contributions are from the categories: L2c (clarifies how to start proof in 

the proof framework), L2c (clarifying what needs to be shown in the proof framework). 

Proof methods: The proof methods of equality of sets and showing one set is a subset 

of another 
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Pseudoconcept level reasoning of the proof method of showing one set is a subset of 

another 

In line 362 of sub-episode 2.11 we observed Maria’s pseudoconcept level thinking of 

the proof method of showing that one set is a subset of another.  After following the 

correct method of proof, which entailed picking an arbitrary element of set A and 

showing that this element was also contained in set B, Maria made the correct 

conclusion that A⊂ B.  As she was writing the conclusion on the board she explained:  

[362] Maria: if x is contained in A and in B it means that A is a subset of B.   

She appeared to be under the impression that as x is contained in A and in B, that A 

would be a subset of B, which is not the correct description of the thinking behind the 

proof method.   

Summary of difficulties and guidance in category L2c 

Difficulties experienced by students 

• Association of the method of proof of a double implication and implication 

with the proof method of an equation or identity 

Some students associated the notion and symbol of the double implication with 

the notion of equality.  This association resulted in students following an 

incorrect method of proof for proving an implication.  An example of this is that 

of Maria in sub-episode 2.1 who worked on the left hand side and the right hand 

side of the implication and tried to show that each side resulted in the same 

statement. 

• Incorrect interpretation of the notion of the implication to arrive at the 

incorrect proof method of an implication 

In sub-episode 2.4 Maria revealed her evolving reasoning about the method of 

proof of an implication.  In line 46 (sub-episode 2.4) she described her 

understanding of the definition of the implication a) implies b) to be: “If a) is 

true then we know b) is true”.  The seemingly insignificant departure from the 

wording in the definition of a) implies b): ‘If a) is true, then b) is true’ (by 

including the phrase ‘then we know’) seems to be at the root of Maria’s 
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misunderstanding.  She appeared to think that the proof method following from 

this definition was that she first had to prove a) to be true and from this it would 

automatically follow that b) was true.  This misunderstanding was echoed by 

Joseph in line 54 (sub-episode 2.4) who agreed with Maria and repeated his 

reasoning from sub-episode 1.3 when he said: “You are saying if (a)’s true then 

(b) will be true.  Now let’s prove a) and why it’s true, né? …Then if that is true 

it means that b) is true.”  Again the seemingly insignificant departure from the 

words used in his interpretation of the definition: ‘will be true’ appeared to 

mislead Joseph and causes him to use an incorrect method of proof. 

• Complex/pseudoconcept level reasoning of the proof methods of showing 

equality of sets and showing that one set is a subset of another 

When encountering the proof of showing equality of sets, students revealed 

complex/pseudoconceptual reasoning.  Although the method the students 

proposed seemed to be correct, their explanation and description of the 

reasoning behind the method appeared incomplete and incorrect.  For example 

in sub-episode 2.5 (line 83), Maria conceptualized this proof method as 

showing that the sets had something in common.   

• Losing sight of the correct proof method and the goal of the proof 

construction 

While striving to follow through the method of proof for showing that one set 

was a subset of another, Maria reverted to complex level reasoning and lost 

sight of her goal in the proof construction in sub-episode 2.8.  This showed that 

these proof methods were still problematic for her and that her understanding of 

these methods as indicated by her application might still be at complex level.  

Guidance offered to students 

• Peers question logical reasoning in the proof method and critique deductions 

and assertions made without justification 

Although peers might have also had incomplete understanding of the notion of 

the implication, the questions they raised on the logical reasoning behind the 

proof method and their critique of deductions or assertions made without 

justification began to alert their struggling counterpart of the several incorrect 
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proof construction actions.  For example Christine’s questions about the logical 

reasoning behind the proof method and her critique of deductions and assertions 

made without justification prompted Maria to start questioning her thought 

processes.  As students engaged with the proof method of an implication, 

making functional use of this method allowed them to address their incorrect 

misconceptions and move towards more correct conceptions. 

• More knowing peer clarifies and elaborates the implication proof method 

using his own words  

A more knowing peer who seemed to exhibit concept level thinking on the 

implication proof method assisted by clarifying and elaborating on this method.  

These more knowing peers contributed towards the creation of an optimal 

environment (EZPD) where the proof construction abilities of all participants 

could develop.  By explaining the proof method in their own words, they made 

it easier for their peers to follow and grasp the proof method through activities 

such as imitation.   

• More knowing peer gives a short simple rule using every-day language 

When a more knowing peer offered a short simple rule in every-day language 

on the proof method to be followed, this seemed to be much appreciated by 

their struggling counterpart.  The use of simple every-day language helped the 

student to gain understanding of previous explanations which may not have 

been completely understood. 

• Lecturer makes reference to the definition of set equality and prompts 

students to arrive at the method of proof of showing equality of sets 

The lecturer guided the students towards discovering the method of proof for 

showing equality of two sets by referring to the definition of set equality and 

using transactive prompts requesting clarification, explanation and strategy (in 

sub-episode 2.7).  Students participated by giving an informal definition which 

was gradually refined until the general method of proof was brought to light.  

Further transactive prompts for clarification and strategy then prompted 

students to apply this general method to the particular proof with which they 

were engaged.  The practice of guiding students to develop and arrive at the 

correct method of proof, starting with the definition of a mathematical object 
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was an effective means of alerting all the participants to the importance of the 

definition of a mathematical object, and how that definition could be used to 

arrive at the method of proof.  This is a valuable practice and it would be 

beneficial if students could be taken through such an exercise at least once.  By 

carrying out such an exercise, in terms of the theoretical framework of my 

study, students’ use and application of the proof method of equality of sets was 

brought closer to concept level understanding through the functional use of the 

method and reflection on the definition of set equality.   

• Lecturer offers quick, direct and continuous assistance and repeatedly 

draws attention to the goal of the proof construction and peers offer 

contributions 

When Maria reverted to complex level reasoning on the methods of proof of an 

implication and showing that one set is a subset of another, the lecturer (in sub-

episode 2.8) promptly asked her to reflect on her strategy and reasoning and to 

identify the goal of the proof construction.  Maria’s peers who were 

continuously offering their contributions answered this question correctly.  The 

lecturer then repeated the question drawing the participants’ attention to the 

importance of always keeping the goal of the proof construction in mind. 

 

 

• A detailed explanation and elaboration of the proof construction done by a 

more knowing peer 

One of the most effective means of helping students develop and strengthen 

their proof construction abilities seemed to be having more knowing peers do 

detailed presentations on the proof construction exercise in which the students 

were engaged.  An example of this was evident in sub-episode 2.8 when the 

lecturer asked Christine to do a detailed proof presentation of the component of 

the proof which had just been completed.  The beauty of having these more 

knowing peers doing the proof presentation was that they used simple every-

day language to explain the mathematical objects involved in the proof 

construction.  At the same time they clarified the reasoning process and clearly 

showed their appreciation for the need of justification of all deductions and 
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conclusions.  The other students were encouraged and strengthened as they 

realized the possibility that someone like themselves could reach concept level 

understanding.  One of the crucial functions of lecturers could be the 

identification of more knowing students such as Christine.  These students (with 

whom other students can identify) could be the key to helping other students 

reach similar levels of understanding through their very able presentations using 

every-day language.  These presentations could also promote functional use of 

practices such as logical reasoning processes and proof methods as students 

learn from the more knowing peers through activities such as imitation.  

• More knowing peer gives a short simple rule and lecturer and peers 

repeatedly draw attention to what needs to be proved and what is assumed 

When Maria needed more assistance with the proof of showing that one set is a 

subset of another, Helen (in sub-episode 2.9) again offered a short simple rule 

in every-day language.  As Maria progressed further in the proof construction 

she needed further assistance and the lecturer repeatedly reminded her of the 

goal of the proof construction and that she had to be aware of the assumptions 

made, and to use these in the proof construction process.  More knowing peers 

offered their assistance and guidance continuously until she completed the 

component of the proof construction in which she was engaged.  The 

continuous and patient scaffolding from the lecturer and her peers seemed to be 

instrumental in the vast improvement of her proof construction ability as 

evidenced in sub-episode 2.11 and episode 4. 

6.2.3 L3: Justification of claims 

The categories: L3a (making correct deductions from previous statements and 

definitions while providing the necessary justification), L3b (questioning and clarifying 

assertions and deductions made without any justification) and L3c (identifying the basis 

for a claim or the reasons why conclusions can be made), are all very closely related.  I 

will therefore include analysis of illustrative examples of the challenges and difficulties 

students met in these areas as a whole. 

As in categories L1 and L2, students’ use of deductive reasoning processes and their 

appreciation for the need for justification of deductions was strengthened through their 
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functional use of these processes as they engaged in proof construction in the 

consultative sessions.  This functional use, in combination with the students’ interaction 

and the guidance received from their peers and the lecturer enabled the students to make 

the transition to a usage of these processes in line with that of the mathematical 

community.   

Justification of claims: Lack of appreciation for justification of assertions and 

deductions   

Throughout episode 2 we observed Maria’s lack of an appreciation for justification of 

assertions and deductions made in the proof construction. She also did not appear to be 

aware that she might be questioned and asked for justification of her deductions.  In her 

first proof attempt at A ⊆ B ⇒ A ∩B = A in line 3 of sub-episode 2.1, her proof 

construction attempt was as follows. 

If A⊆ B          if A∩B = A 

x∈A               A ⊆ B 

⇒ x∈B           ⇒ x∈A  

                      ⇒ x∈B         

As she was writing on the board, she explained what she had written on the right: “Then 

we come to this side.  That if A is an intersection of B which is equals to A it will mean 

that A is a subset of B.  And this would mean that x is an element of A…”.  She seemed 

to think that A ⊆ B followed from A ∩B = A.  She repeated this reasoning in line 5.   

Guidance offered: Peers question incorrect reasoning process and ask for 

justification 

In sub-episode 2.2, lines 6, 8 and 10 Christine questioned Maria’s proof method as well 

as her reasoning behind making the assertion A ⊆ B following from A ∩B = A.  This has 

been discussed in Section 6.2.2.2. 

Justification of claims: Lack of appreciation for justification of assertions and 

deductions made  

In sub-episode 2.8 Maria was still struggling to grasp the proof method of the 

implication as well as the logical reasoning and an appreciation of the need for 
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justification of each assertion and deduction made.  Although she had now been guided 

to realize that she should be trying to prove A ∩B ⊆ A, she made an erroneous 

deduction without justification of the very statement she needed to prove (in line 177).  

The transcript from lines 172 to 177 is included below. 

[172] Maria:  [Writes:  to show before A∩B ⊆ A] 

[173] T:  Because that implies that that is true.  So we don’t know that that is true yet – we are

  trying to show that.  Ok, go ahead. 

[174] Maria:  So let x be an element of A  [writes:  let x∈A]  This would imply that…  Ok

  [underneath writes:  ⇒ ] Let x be an element of A intersection B  [next to let x∈A writes ∩ B , 

 thus we have let x∈A∩B ] 

[175] T:  That’s good.  Everybody happy? 

[176] S:  Yes 

[177] Maria:  So this would imply that x is an element of A intersection B which is a subset of 

 A [writes: ⇒ x ∈ A∩B ⊆ A] 

Guidance offered: Lecturer promptly and repeatedly asks for justification and 

peers make suggestions of the correct deduction to make 

The lecturer (in line 178 of sub-episode 2.8) promptly interjected asking Maria to reflect 

on the truth of each statement and ensure the truth of each one.  The lecturer’s 

contributions in line 178 are in the form of transactive prompt requesting critique and 

justification, and a directive contribution highlighting the fact that students need to be 

sure of the truth of every statement.  Joseph (in line 182) made a contribution and 

identified the correct deduction to be made and the reason behind this deduction.  The 

transcript from lines 178 to 182 is included below. 

[178] T:  Is that true?  [Maria looks at T]  Is it true?  Every step of the way you must be sure that 

it is true.  Is that true? 

[179] S: No 

[180] Helen:  Not yet, because we’re trying to prove that. 

[181] S:  No, we’re trying to prove 

[182] Joseph:  I would say x is an element of A and x is an element of B. 
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Justification of claims: Lack of appreciation for justification of assertions and 

deductions made  

In sub episode 2.8 after having brought the proof of A∩B ⊆ A to conclusion, at Frank’s 

suggestion, Maria (in line 219 as shown below in ‘guidance offered’) made the 

conclusion A ⊆ A∩B without any basis or justification.  It was possible that Frank’s 

suggestion could have been made because he still associated the implication with the 

double implication, and thus thought that the conclusion A ⊆ A∩B could also be made.  

Although Maria did try to clarify that this had not been proved yet in line 213, she did 

not appear to have the necessary conviction and later went on to write the erroneous 

conclusion on the board.   

Guidance offered: Lecturer asks more knowing peer to clarify and elaborate while 

going through the proof construction 

At the lecturer’s transactive request for critique and justification, Christine (lines 223 

and 227 of sub episode 2.8) firmly asserted that this conclusion could not be made and 

gave reasons for this.  At the request of the lecturer Christine (line 229) went to the 

board and proceeded through the whole proof construction in detail, explaining at each 

step the reasons why deductions and the final conclusion could be made and clarifying 

the meaning of mathematical objects used in the proof construction as well as the proof 

method.  As she proceeded through the proof construction she clearly identified the 

basis for each deduction and demonstrated that deductions had to be be made with the 

necessary justification.  I argue that while Christine was proceeding with her clear 

elaboration of the proof method, the deductive reasoning processes used and the 

justification needed for each step in the proof construction, her peers were likely to be 

developing their proof construction skills by listening and watching attentively and 

developing their own ability to imitate these practices in their proof construction 

attempts.  The transcript of line 229 was included in Section 6.2.2.3 and thus will not be 

repeated here. 
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Justification of claims: Lack of appreciation for justification of assertions and 

deductions  

In sub-episode 5.3 Frank attempted the second component of the proof construction, 

that is the proof of: P(A) ⊆ P(B)⟹ A ⊆ B.  He began the proof incorrectly by choosing 

{x} to be an element of A.  He was guided to correct this and he started the proof 

correctly in line 55 by choosing x ∈ A.  He then made a deduction which would lead 

him to the correct conclusion, but without the appropriate justification.  He did provide 

the assumption P(A) ⊆ P(B) as his justification, but the deduction did not simply follow 

from this. 

[55] Frank: Ok.  [erases the brackets so it now reads:  let x ∈ A, writes:  ⇒ x∈B (since P(A) ⊆

  P(B)) ] 

Guidance offered: Lecturer requests students to reflect on proof construction 

actions and justify them, provides immediate corrective feedback, requests for an 

example to be done to clarify the proof construction 

Through transactive prompts requesting reflection and justification (lines 56 and 59), 

and a directive utterance giving immediate corrective feedback on the proof 

construction (line 57), the lecturer tried to prompt Frank and the other participants to 

reflect on their proof construction actions and proceed logically.  The transcript from 

lines 56 to 60 is included below. 

[56] T: Do we agree with that? 

[57] T: So you wanted to show that A is a subset of B.  You’ve taken an element in A and then 

you immediately go to say that element is in B.  Since… 

[58] Student: Is x not in power set B? 

[59] T: Since what?  Does it follow immediately? 

[60] S: No, it does not follow immediately. 

Further guidance offered: More knowing peers make contributions offering the 

correct strategy for completing the proof and build on the example given by the 

lecturer 

More knowing peers now contributed significantly towards the correct proof 

construction strategy and Joseph completed the proof using logical reasoning and 

justifying each deduction.  He also changed the example on the board slightly to make 
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the connection to the proof construction steps clearer.  Since a detailed discussion of 

this was given in the section covering L2b (Section 6.2.2.2), I will not repeat the 

transcript or discussion here.  

Summary of difficulties and guidance in category L3 

Difficulties experienced by students 

• Lack of appreciation for the need of justification of assertions and 

deductions 

The lack of an appreciation for the need of justification for each deduction was 

most obviously evident in Maria’s proof attempt in Episode 2.  From the very 

outset it was clear that Maria did not have any idea of how and why there 

should be any need for justification of a statement following from another.  In 

certain instances, she appeared surprised to be questioned and asked for 

justification.   

A lack of an appreciation for justification of deductions was also manifested 

when students who had apparently developed this appreciation, experienced 

difficulty in making progress and became stuck due to a lack of strategic 

knowledge.  Students in this predicament might be tempted to make a deduction 

they know would lead to the desired goal (while skipping a few crucial steps) 

citing as their justification the assumption at their disposal without really 

understanding how the deduction was arrived at. 

 

 

Guidance offered to students 

• Peers question incorrect reasoning process and ask for justification of 

assertions and deductions 

Students who themselves might have lacked clarity about some of the notions 

involved in the proof construction exercise but who did have a good 

understanding of the logical reasoning required and the need for justification of 
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each assertion and deduction, could be instrumental in encouraging their 

counterparts to reflect carefully on and be critical of proof construction steps 

taken. 

• Lecturer promptly and repeatedly asks for justification of deductions and 

peers make suggestions of the correct deduction to be made 

When students persisted in making deductions without justification, the lecturer 

promptly made a directive contribution highlighting the fact that they needed to 

be sure of the truth of every statement they wrote in the proof construction.  She 

also made transactive requests for critique and justification and repeatedly 

asked the question: “Is that true?” attempting to highlight the importance of the 

need for justification of deductions.  It was hoped that this would prompt 

students to make functional use of the practice of justification for each step in 

the proof construction process.  

• Lecturer asks more knowing peer to clarify and elaborate while going 

through the proof construction 

In order to clarify the logical reasoning used in the proof as well as the 

justification necessary for each step, the lecturer asked Christine to go through 

the whole proof construction of the component of the proof which had just been 

completed.  As she proceeded through the proof construction she clearly 

identified the basis for each deduction and demonstrated that deductions had to 

be made with the necessary justification. 

• Lecturer provides immediate corrective feedback and requests students to 

reflect on proof construction actions and to provide justification for each 

step.  She further requests an example to be done to clarify steps made in the 

proof construction 

When students made deductions without the appropriate justification because of 

a lack of strategic knowledge, as in sub-episode 5.3, the lecturer made a 

directive contribution providing immediate corrective feedback.  She then 

prompted Frank and the other students using transactive requests for reflection 

and justification to reflect on their proof construction actions and proceed 

logically.  Once the proof had been successfully completed by a more knowing 

peer, sensing that there was still uncertainty about the proof construction steps 



169 

 

taken, the lecturer asked that an example be done to clarify the notion of the 

power set and the logical reasoning in the proof. 

• More knowing peers make contributions offering the correct strategy for 

completing the proof and build on an example given previously by the 

lecturer 

When Frank (in sub-episode 5.3) had difficulty proceeding with the proof 

construction because of a lack of strategic knowledge, more knowing peers 

(Joseph and Gary in this case) contributed significantly towards proof 

construction strategy and completed the proof successfully.  Sensing some 

uncertainty and confusion in some participants (most obviously Frank), the 

lecturer referred to the example illustrating the notion of the power set and 

asked Frank to reflect on this in order to clarify the proof construction steps 

taken.  Joseph then altered this example slightly by replacing the elements 

contained in the set A by variables so that the connection between the proof 

construction steps taken and the example was better illustrated.  

6.2.4: Students’ holistic aspects of proof comprehension 

The holistic comprehension of proof encompasses the categories H1, H2 and H3.  H1 

involves the main ideas behind the proof and the modular structure of the proof; H2 

involves the capability of students to transfer ideas and methods of proof construction to 

other contexts; and H3 involves the use of examples to illustrate and improve one’s 

understanding of the proof and statements within the proof.  The category H1 which 

encompasses the extent to which students grasped the main ideas and methods of the 

proof has a close connection to category L2c which encompassed proof methods.  

Students having difficulty with the proof methods in a particular proof construction 

would also have difficulties with the main ideas of the proof, breaking the proof down 

into components and identifying the purpose of each component and the relation 

between the various components of the proof.  Thus students with challenges and 

difficulties in the category L2c would implicitly have difficulties in category H1.  

Similarly the category H3 which involves the use of examples to improve students’ 

understanding of the proof is very closely related to L1c which measures their abilities 
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to illustrate mathematical objects or definitions with examples.  Thus difficulties in the 

category L1c would be common to difficulties in category H3. 

In this section I will therefore focus on the difficulties and challenges students had with 

being able to transfer and apply ideas and methods used in previous proof construction 

exercises to other proofs and other contexts (category H2).   

6.2.4.1:  H2: Transferring general ideas or methods to subsequent proofs 

Difficulties students experienced with transferring methods of proof and general ideas 

involved in proof construction to subsequent proof construction exercises were evident 

in episodes 2 and 3.  In episode 2 it was observed that Maria apparently had difficulty in 

transferring the method of proof of showing that one set was a subset of another from 

the component of proof where she had to prove A∩B ⊆ A to the component of proof 

where proof of A ⊆ A∩B was attempted.  We also observed Maria’s inability to transfer 

ideas related to the need for justification of assertions and deductions made in the proof 

construction process.  In episode 3 Edgar had continuing difficulty with the notion of 

the Cartesian product and was unable to transfer the correct interpretation and usage of 

this notion from the first component of the proof to the second component.  

I venture that the difficulties and challenges students have with their ability to transfer 

general ideas or proof methods to other proofs might be related to the cognitive 

overload they experience while engaged with the process of proof construction.  In 

trying to process all the requirements of formal proof construction, including the 

challenges of many newly met mathematical objects, proof methods, logical reasoning 

and the need for justification, it is understandable that they would have some difficulty 

in being able to transfer these ideas immediately after they have been introduced to 

them.  It appears that students need time to internalize new notions such as newly met 

terms, symbols and proof methods, so that these form part of the students’ own 

reasoning processes.  In terms of Vygotsky’s process of concept formation, I interpret 

this to mean that until full concept level thinking has been attained, pseudoconceptual 

thinking might easily revert to complex thinking.  It is only when true concept level 

thinking has been reached by students, that they are able to fully internalize and transfer 

the knowledge they have gained successfully. 
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Transferring general ideas or methods to subsequent proofs: Method of proof of 

showing that one set is a subset of another set 

In sub-episode 2.8 Maria started the proof of A∩B ⊆ A.  She received continuous 

guidance from her peers as she made many errors in both her logical reasoning and her 

lack of ability to provide justification for each deduction.  Maria then started the proof 

of A ⊆ A∩B in sub-episode 2.9.  She asked in line 247 and 249 which side she should 

start with, indicating that she had not been able to transfer the method of proof of 

showing one set is a subset of another set from the proof attempt of A∩B ⊆ A  to the 

proof of A⊆ A∩B.  Helen (line 250) made a contribution of a short simple rule using 

every-day language: “Start with A. Left” and Maria continued, still requiring a lot of 

help with all the proof construction steps.  The relevant transcript is included in Section 

6.2.2.3 and thus will not be repeated here. 

Transferring general ideas or methods to subsequent proofs: Transferring ideas 

regarding the need for justification of assertions and deductions in the proof 

construction process 

Directly following Maria’s difficulty of transferring the method of proof for showing 

that one set is a subset of another as described above, we saw that she had also been 

unable to transfer ideas on the need for justification of assertions and deductions.  In 

sub-episode 2.8 when Maria was attempting to prove A∩B ⊆ A, in line 177 after 

choosing x to be an element of A∩B she made the deduction:  

[177] Maria:  So this would imply that x is an element of A intersection B which is a subset of

  A [writes: ⇒ x ∈ A∩B ⊆ A]  

This action was addressed by the lecturer and her peers who reminded Maria that she 

needed to ensure the truth of every statement and justify each deduction.  This has also 

been discussed in Section 6.2.3.  

Now in sub-episode 2.9, as Maria was attempting to prove A⊆ A∩B, we saw that she 

made a very similar mistake in line 261 after choosing x to be an element of A.  The 

lecturer immediately interjected (line 262) with a directive utterance providing feedback 
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on this error and drew Maria’s attention to the assumption and urged her to use this in 

the proof construction. 

        [261] Maria:  Ok.  So I let x be an element of A.  If x is an element of A and A is a subset of A 

      intersection B  [writes:  let x∈A ] Hmm? 

         [262] T:  It’s not!  That’s what you’re trying to show… that’s what you’re trying to show…  So

  please don’t get confused with what you are trying to show, you cannot assume that.  But what 

  have you assumed, what have you got?   

Transferring general ideas or methods to subsequent proofs: Transferring the correct 

interpretation and usage of the Cartesian product and its elements the ordered pairs  

In sub-episode 3.1 while Edgar was attempting the proof of the first component of the 

proof construction: (A∪B) × C ⊆  (A×C) ∪ (B×C), he was guided to develop his usage 

and interpretation of the Cartesian product by his more knowing peers: Gary and 

Joseph.  Edgar was reminded several times in sub-episode 3.1, of the correct usage and 

interpretation of the notion of the Cartesian product and was finally able to complete the 

first component of the proof.    

However in sub-episode 3.2 when he attempted the proof of the second component of 

the proof: (A×C) ∪ (B×C) ⊆ (A∪B) × C, we saw that he had been unable to transfer the 

correct interpretation and use of the Cartesian product to this component of the proof.  

He made the following incorrect deductions in line 88: 

[88] Edgar: So the other one says  

[writes:  to show (A×C) ∪ (B×C) ⊆ (A∪B) × C 

let (x, y) ∈ (A×C) ∪ (B×C) 

⇒ x∈ (A×C) or y∈ (B×C) 

⇒ x∈A and x∈C or y∈B and y∈C  ]  So it’s fine?   

Summary of difficulties and guidance in the category H2 

Difficulties experienced by students 

• Transferring the method of proof of showing that one set is a subset of 

another 
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On completing the proof of A∩B ⊆ A with much guidance from the lecturer and 

her peers in sub-episode 2.8, Maria began the proof of A ⊆ A∩B in sub-episode 

2.9.  However it was evident that she had not been able to transfer this proof 

method as she asked for guidance on how to start the proof.   

• Transferring ideas regarding the need for justification of assertions and 

deductions 

Throughout her proof construction attempt in episode 2 Maria was reminded 

and advised that any deduction or assertion made in the proof construction 

process needed to be justified.  In particular in sub-episode 2.8 when Maria 

made an unjustified deduction, the lecturer wishing to stress the importance of 

the need for justification, repeatedly asked the question: “Is that true?” and 

made a directive contribution clearly stating that every step of the proof 

construction process had to be justified.  However in sub-episode 2.9 Maria 

made the deduction which was the goal of the proof construction, once again 

without any justification.  

• Transferring the correct interpretation and usage of the notion of the 

Cartesian product  

In sub-episode 3.1 Edgar was assisted to develop his understanding of the 

notion of the Cartesian product with the assistance of more knowing peers 

(Gary and Joseph) who referred to the definition and clarified its application in 

simple every-day language.  They also identified the cause of Edgar’s errors to 

be his association of the notion of the Cartesian product with the notion of the 

intersection.  After the completion of the first component of the proof in sub-

episode 3.1, Edgar started the proof of the second component in sub-episode 

3.2.  He continued to make incorrect deductions indicating his incomplete 

understanding of the notion of the Cartesian product and his inability to transfer 

the guidance he had received on the notion of the Cartesian product in the first 

component to the second component of the proof.     

Guidance offered to students 

• More knowing peer offers a simple rule in ever-day language 
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When Maria needed assistance with the proof method of showing that one set is 

a subset of another, Helen offered a sort simple rule in every-day language by 

telling her to start with the left hand side. 

• Lecturer provides prompt corrective feedback and draws attention to 

assumptions made 

When Maria (in sub-episode 2.9) made a deduction which was actually the goal 

of the proof construction without any justification, the lecturer provided prompt 

feedback using a directive utterance stating that this statement still needed to be 

proved and drew attention to the assumption at Maria’s disposal. 

• More knowing peer requests clarification and prompts struggling 

counterpart to reflect on the mathematical objects involved 

When Edgar in sub-episode 3.2 faltered in his use and interpretation of the 

notion of the Cartesian product, Gary helped him realize his errors by asking 

him to clarify his thought processes and reflect on the definition of the 

mathematical object.  

6.2.5: Difficulties not directly covered under the local or 

holistic proof comprehension and construction categories 

There were just three note-worthy instances of difficulties which were not related to the 

categories used to analyse students’ proof comprehension and construction attempts.  

One difficulty concerned students’ confidence and belief in their own capabilities.  

Another difficulty concerned the negative aspects of the consultative group sessions.   

Although the creation of an environment where students came together and were 

encouraged to share their ideas on proof construction consulting freely and respectfully 

was of great benefit generally, there were instances where students might have been 

misled by incorrect ideas offered by their peers.  Finally I consider the challenges that 

lecturers could have in striving to make optimal use of the consultative group sessions.   

6.2.5.1:  Students’ confidence and belief in their own abilities 

A common problem observed in students’ attempts at proof construction was that they 

did not have the necessary confidence and belief in their own capabilities.   
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There was an example of this in sub-episode 2.8 when after Maria had concluded that 

A∩B⊆ A, Frank (lines 207 and 209) urged her to write the conclusion A =A∩B.  Helen 

(line 215) agreed with him and suggested that  A ⊆ A∩B was also true.  Although Maria 

did voice her opinion that A ⊆ A∩B had not been proved yet, she lacked conviction and 

acted on their suggestions.  In line 219, she made the conclusion: Thus A ⊆ A∩B.   

Guidance offered: More knowing peer elaborates on proof construction  

When the lecturer asked for critique and justification, Christine (line 223 and 227) 

explained that this conclusion could not be made because A ⊆ A∩B had not yet been 

proved.  At the lecturer’s request, Christine (line 229) elaborated and explained in detail 

the proof construction steps that had been taken.  Christine did this very ably 

demonstrating the logical reasoning behind the proof construction and providing 

justification for each deduction and conclusion made.  When a similar situation 

occurred in sub-episode 2.11 Maria was much more confident and appeared to realize 

that she should not just follow her peers’ suggestions blindly if these suggestions did 

not make sense and were not justified. 

6.2.5.2:  Negative aspects of the consultative sessions 

Students can be misled and confused by their peers in the EZPD even though they 

learned a great deal from them.  One of the drawbacks of establishing an environment 

where all the students felt comfortable and welcome to contribute towards proof 

construction, sharing their thoughts on the task at hand, was that incorrect ideas could 

also be presented.  The presence of more knowing others such as lecturers and tutors is 

thus very necessary to prevent these incorrect ideas from taking root in other students 

and becoming misconceptions.  Analysis of some examples where this happened is 

given below. 

 

Negative aspects of the consultative sessions: Incorrect ideas offered by students are 

taken up by peers 
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The double implication associated with the notion of subsets 

In episode 1 (the first proof attempt), there was a great deal of discussion about the 

notions of implication and double implication.  Initially in sub-episode 1.3 Edgar 

showed complex or pseudoconceptual reasoning when he described his thinking on the 

notion of the double implication as arrows going forward and back in lines 34, 36 and 

40.  Later in the same sub-episode where the lecturer asked for further clarification 

Edgar heard Helen’s contribution in line 85 (included below) referring to what P ⇒ Q 

means.   

[85] Helen:  I think it actually means that P is not Q but it may be Q.  I think. 

It is likely that he might have been misled and he may have thought that Helen regarded 

P and Q to be sets.  He then appeared to revert to complex level thinking associating the 

notion of the implication with the notion of subset.  We note that the students had just 

recently been introduced to the new mathematical terminology of set theory where 

capital letters denote sets.  Edgar’s contribution in line 91 (sub-episode 1.3) is included 

below. 

[91] Edgar:  I think that, I think if there are certain elements in P that means all of them they can

  be found in Q.  But not all elements that are in Q can be found in P. 

Negative aspects of the consultative sessions: Incorrect ideas offered by students are 

taken up by peers 

Misinterpretation of the definition of union 

When discussing the notions of intersection and union in sub-episode 2.6, Gary put 

 forward the idea and then did an example showing that the union of two sets did not 

contain the elements from the intersection of the sets.  Christine (who went to do 

another example on the board) confirmed this mode of thinking.  Maria unfortunately 

seemed to be misled by Gary’s and Christine’s incorrect conceptions of the union and 

asked in line 113: 

Maria:  So for union they don’t have anything in common? 
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6.2.5.3:  The challenges lecturers might face in making optimal use of 

consultative sessions 

At the beginning of the proof construction attempt in episode 2, Maria did not have a 

clear idea of how to prove the equivalence of the statements: a) A ⊆ B, b) A∩B = A and 

c) A∪B = B.  Her plan of action was: (a) ⇒ (b), (b) ⇒ (c), (a) ⇒ (c) as she described in 

line 1 of sub-episode 2.1.  The lecturer allowed her to proceed, thinking that perhaps 

this would be clarified later or she had perhaps not noticed the discrepancy.  In 

retrospect the students would have benefitted more if the notion of the equivalence of 

the statements had been elaborated on, and explained in detail at the beginning of the 

proof construction in order to help them have a clearer idea of what had to be done.  

There were also times when I felt that I fell short in the thoroughness of my 

explanations and in providing the appropriate feedback while the students were busy 

with the task of proof construction.  This is an aspect that lecturers need to be aware of 

as they strive to make optimal use of consultative sessions. 

Summary of difficulties and guidance falling outside the categories of my 

framework 

Difficulties experienced by students 

• Students lack confidence and belief in their own capabilities 

It was evident particularly in the first session that even though students (for 

example Maria) seemed to have the correct idea, they were easily misled by 

their peers as they lacked the conviction and belief in themselves and their own 

capabilities.  It became apparent that through their engagement and interaction 

in the consultative group sessions, they gradually built up this confidence and 

belief in themselves.  By the second session they were able to stand their 

ground when questioned, and were able to explain their reasoning in defence of 

their actions.  The proof presentations done by more knowing peers who went 

through the proof construction with conviction and clarified the logical 

reasoning involved and the need for justification of each deduction, plus the 

encouragement received from the lecturer and peers throughout the proof 

construction process were also factors in building up students’ confidence.  
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• Incorrect ideas and conceptions may be propagated 

One possible drawback of students working together in the consultative group 

sessions where participation and sharing of ideas was encouraged was that 

incorrect ideas could be offered by some of the participants and these could be 

adopted by the rest of the students.  This was particularly evident in the first 

session where students were still very new to formal proof construction and all 

the notions involved in the process.  The presence of a more knowing other 

such as a lecturer or tutor is vital at this stage to guide the students towards 

correct ideas and conceptions. 

• Challenges that lecturers might face in striving to make optimal use of 

consultative sessions 

When I went through the transcripts of the video recorded sessions there were 

several instances I wished I could go back and handle the discussions 

differently.  These were times where I felt that I fell short in the thoroughness of 

my explanations or where I felt I had not provided the appropriate feedback that 

one in hindsight realizes should have been provided.   

One of the possible reasons was that the methodology of doing proof solving in 

the context of consultative group discussions was new.  I had used this 

methodology for the first time in the pilot study, a year earlier.  Also the idea 

was to give as much room as necessary so that the students could try to figure 

out as much as possible for themselves.  Consultative group sessions are very 

different to the traditional mode of lecturing where the class silently listens to 

everything the lecturer says, or to tutoring where there is usually one-on-one 

interaction between a student and the tutor.  In consultative group sessions it is 

the students themselves who are the desired participants, as the whole idea is to 

encourage them to actively learn from each other and the lecturer (if necessary) 

as they work on proof construction exercises.  The lecturer’s task is to encourage 

students’ participation and sharing of ideas while establishing the norms that 

would pertain to successful proof construction.  These norms include 

encouraging certain modes of thinking and discussion such as using logical 

deductive reasoning and justification in the proof construction process.  The 

lecturer also provides guidance on definitions and proof methods, when 
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necessary, and assists when incorrect ideas or proof construction actions are 

presented, or when incorrect strategies and proof methods are being used.  This 

rather novel mode of discussion which has proved very effective and exciting, 

(as shown in this study) might also present challenges.  Lecturers not only need 

a thorough understanding of the material to be covered, but they also need to be 

aware that the group brings with it a certain energy which requires the lecturer to 

be dynamic in his/her guidance.       

In order for a lecturer to be effective in engaging students and driving 

discussions of optimal benefit to the students, I propose that not only thorough 

knowledge of the subject matter is needed, but also the lecturer needs to be able 

to think and make decisions on his/her feet on when and where to interject, and 

where it is best to leave students to come to an understanding by themselves.  

I also suggest that it is important for teachers and lecturers to have a thoughtful 

attitude and awareness that they themselves are also always learning when 

teaching.  A lecturer can and does make mistakes and omissions all the time, 

and if he/she adopts a reflective attitude of learning at all times, then he/she will 

be more inclined and empowered to improve.     

6.3 Concluding Summary 

In conclusion I highlight key challenges evident as students attempted proof 

construction in the consultative sessions and I discuss the significant forms of 

scaffolding observed as effective in contributing to overcoming these challenges. 

Difficulties with the meanings of newly met terms, symbols and signs included 

incorrect language use, inappropriate use of terms and symbols and association of newly 

met terms, symbols and signs with more familiar terms, symbols and signs.  The 

functional use of terms, symbols and signs while interacting with peers and more 

knowing others helped bring students’ use and interpretation of these mathematical 

objects closer to concept level.  Clarification of newly met terms and symbols using 

simpler every-day language and pseudoconcept/ concept level explanations which 

likened the terms or symbols to more familiar terms and symbols while conveying the 

correct application and proof method were also very effective. 
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Difficulties with mathematical definitions included misinterpretation of definitions and 

association of mathematical objects and symbols with a word contained in their 

definitions.  Another serious difficulty was students’ misinterpretation of the definition 

of a mathematical object (relevant to a specific proof) resulting in an incorrect proof 

method.  Forms of scaffolding included using examples to clarify definitions of 

mathematical objects.  These were initiated by the lecturer but the students 

enthusiastically took over and participated in this activity whole heartedly.  Using 

examples to clarify and discuss definitions of mathematical objects captured their 

interest and attention.  The lecturer in the first episode also referred to the definitions of 

mathematical objects several times, alerting students’ attention to their importance.  

When students had difficulty in discovering the method of proof of set equality, the 

lecturer prompted students to examine the definition carefully and reflect on the 

appropriate strategy that would result in the correct method of proof.  More knowing 

peers assumed the role and responsibilities of the lecturer in the second session, 

adopting the norms established in the first session.  They explained the meaning of 

definitions in their own words and seemed to pass on to others, their own growing 

appreciation of the importance of the correct understanding and interpretation of 

definitions of mathematical objects, and the implications of this correct interpretation 

for the justification of steps in the proof construction process.  They also used examples 

to illustrate definitions and clarify misconceptions.  The effectiveness of the learning 

environment in the consultative sessions where students made functional use of 

mathematical objects and definitions while interacting with one another, was clearly 

evident.  Students appreciated the usefulness of definitions more fully and strove to 

clarify definitions of mathematical objects for themselves and their peers.  An example 

of this occurred in Episode 5 where Gary and Joseph built their understanding of the 

notion of the power set through interaction with their peers and by reflecting on the 

definition of the notion. 

Difficulties that students experienced with selecting examples to illustrate terms and 

symbols and proof construction steps were mainly a result of their struggle to generate 

appropriate examples.  This could have been caused by their inexperience with the 

mathematical objects and the subject area.  While encouraging the use of examples and 

alerting students to the value of examples in illustrating newly met mathematical 
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objects, lecturers have to be aware that students might not be able to generate helpful 

examples for themselves.  Lecturers might need to provide this form of scaffolding for 

them.  Oral examples from peers were generally ignored.  Lecturers should draw 

attention to these examples and ask that they be done on the board. 

The difficulties that students exhibited in the selection of statements and phrases which 

would add to the logic of the proof construction process were exposed by their struggles 

to clearly state the assumptions and the statement to be proved at the beginning of the 

proof construction.  Such statements are especially important in the initial stages of 

proof construction as they help students to clarify for themselves and others, what needs 

to be proved and raise awareness of the assumptions at their disposal.  Peers offered 

scaffolding in the form of contributions using simple every-day language to clarify 

unfamiliar terms and symbols and encouraged students to make functional use of 

statements which added to the logic of the proof construction process.  Students made 

quick improvement in this aspect. 

Difficulties that students had with the selection of useful or appropriate aspects of 

definitions and assumptions occurred mainly at the initial stages of their introduction to 

formal proof construction when the various proof methods had not yet been fully 

grasped.  These included their use of statements that needed to be proved as statements 

that were given or assumed.  As discussed earlier, the inclusion of statements that would 

add to the logic of the proof construction process, like statements at the beginning of the 

proof construction setting out what needs to be proved and the assumptions at the 

students’ disposal would also help in this regard.  Students also selected non-useful or 

trivial aspects of definitions and assumptions.  They also had difficulty in some 

instances in starting the proof correctly and in driving the proof construction forward, 

even though they appeared to have a good understanding of the assumptions, 

definitions, newly met terms and symbols and proof methods relevant to the proof 

construction, thus revealing a lack of strategic knowledge (cf. Weber, 2001).  Forms of 

guidance included critique from peers on logical reasoning and justification, prompt 

corrective feedback from the lecturer and peers, repeated reminders to students that 

every statement had to be true and justified, repeated reminders to be aware of 

assumptions made and the statement which needed to be proved and appeals to students 
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to be aware of their reasoning processes and use logical reasoning and reflect on 

strategy.  The lecturer encouraged the use of examples to clarify the mathematical 

objects involved in the proof construction in order to shed light on proof construction 

steps.  More knowing peers who assumed the role and responsibilities of the lecturer 

provided scaffolding to their peers by making contributions on strategy, and clarifying 

proof construction steps and reasoning by using examples. 

Proof methods posed a major challenge especially in the initial stages of proof 

construction.  The proof methods of the implication and double implication in particular 

posed great difficulties.  As students interacted in the consultative group sessions, their 

functional use of proof methods enabled them to address their misconceptions and gain 

better understanding in terms of the use and application of these methods.  For example, 

the notion of the implication and the proof method to be used in an implication proof 

was associated with equality and showing each ‘side’ of the implication gave rise to an 

identical statement.  Further on in the proof construction process it became apparent that 

students’ understanding of the method of proof of P⟹ Q was to prove that P was true 

from which it would follow that Q was also true.  This misunderstanding seemed to 

arise from students’ departure from the correct wording of the definition of the notion of 

implication.  The methods of proof for showing equality of sets and showing that one 

set was a subset of another also posed some difficulty.  Once again students’ functional 

use of these proof methods, as they engaged with the proof construction while 

interacting with their peers and the lecturer, allowed them to address misconceptions 

and arrive at the correct use and application of these methods.  Students showed 

complex/pseudoconcept level reasoning on these proof methods describing the method 

of proof of set equality as showing that the two sets had an element in common.  

Although their description of the reasoning used was inappropriate, the method of proof 

that these students tended to pursue seemed to be correct.   

Significant forms of guidance included peers questioning the logical reasoning used in 

the proof method, clarifying and elaborating the proof method and offering a short 

simple rule using every-day language.  The lecturer helped students arrive at the correct 

method of proof of set equality by drawing their attention to the definition of set 

equality and prompting them to reflect on the strategy for proof construction and to 
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apply logical reasoning.  The lecturer also asked more knowing peers who seemed to 

have reached concept level understanding in all aspects of proof construction to go 

through proof components which had just been completed and to elaborate on proof 

methods and proof construction steps.  The identification of such peers is paramount as 

they are very useful for communicating and conveying to their classmates their own 

understanding and appreciation of all aspects of proof construction including the 

important aspect of proof methods.  These students have the potential in helping their 

fellow students’ hidden talents to emerge. 

Difficulties students exhibited with regard to justification of claims included making 

deductions and conclusions without appropriate justification.  Their appreciation of the 

need for justification of statements was abandoned when experiencing difficulty 

because of a lack of strategic knowledge.  Those who were stuck and could not proceed 

often made unjustified deductions and conclusions.  They were encouraged to make 

functional use of deductive reasoning processes and the practice of justification as they 

received scaffolding from their peers and the lecturer.  Forms of guidance included 

peers questioning and critique of reasoning processes.  When students persistently made 

assertions and deductions without justification, the lecturer interjected and asked 

students if they were certain of the truth of such statements reminding students that each 

statement had to be justified.  More knowing peers doing proof presentations of proof 

components which had just been completed, demonstrated to their classmates that each 

step in the proof had to be accompanied by logical reasoning and the appropriate 

justification.  At times the lecturer asked these peers to do examples on the board to 

clarify the mathematical objects related to the proof construction and thus clarify proof 

construction steps. 

Difficulties students experienced with transferring methods and ideas to subsequent 

proof exercises included their inability to transfer methods of proof from one proof 

component to another as well as their inability to transfer knowledge and usage of 

mathematical objects involved in the proof construction as they proceeded through the 

proof.  For example in the initial stages of proof construction the notion that each 

deduction and conclusion made had to be justified and based on logical reasoning, had 

to be repeated several times.  I suggest that one reason for these difficulties may be the 



184 

 

cognitive overload that students experience as they engage with the process of proof 

construction.  In the struggle to master all the requirements of formal proof 

construction, it is understandable that students would have some difficulty in 

transferring these ideas and methods so soon after they have been introduced to them.  

Time is needed for new mathematical objects such as newly met terms, symbols and 

proof methods, to become internalized and attain concept level realization.  Before this 

happens, pseudoconceptual thinking might easily revert to complex thinking.   

Finally difficulties or challenges outside the categories of the framework for analysis of 

proof construction and comprehension included students’ lack of confidence and belief 

in their own abilities, the challenge of incorrect ideas that might be propagated in an 

environment where contributions from all students were welcome, and the challenges 

that lecturers have to keep in mind as they strive to make the very best use of 

consultative sessions.  With respect to students’ confidence and belief in their own 

capabilities, one of the most empowering learning opportunities seemed to be proof 

presentations done by more knowing peers which were delivered with conviction 

showing the others the possibility that students like themselves had been able to master 

proof construction abilities, and reason using sound logical processes.  I also argue that 

the encouragement offered by the lecturer throughout the sessions (in the form of 

facilitative utterances) played a role in bolstering students’ confidence and belief in their 

own capabilities.  Encouragement is a powerful motivator and students should be 

encouraged as much as possible especially in the initial stages when obstacles often 

seem insurmountable.  On the challenge of erroneous ideas and notions put forward 

which could be adopted by other students in the consultative sessions, it is suggested 

that the presence of lecturers or more knowing others is necessary to guide the students 

away from these misconceptions and re-direct them towards more correct ideas and 

methods. 

Competencies that lecturers need to develop as they strive to make optimal use of 

consultative sessions include being able to make quick decisions while taking part in the 

consultative sessions, being able to provide the necessary guidance while at the same 

time allowing students to be active participants and empowering those showing the 
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potential to become more knowing peers to take over the responsibility of providing the 

necessary scaffolding.         

The analysis in this chapter (together with the coded and briefly analysed transcripts 

found in Appendix 1) is also used to trace the paths of development in proof 

construction abilities of two case studies in particular.  The analysis is used to point to 

the areas where there was evidence of transformation in the students’ abilities.  This was 

used to address my second research question in Chapter 7.  The analysis in this chapter, 

together with the coded and briefly analysed transcripts found in Appendix 1 was also 

used to address my third research question (in Chapter 8) by investigating the nature of 

interactions between the lecturer and students, and between students themselves as they 

engaged in proof construction in the consultative sessions.  This enabled me to trace the 

nature and patterns of scaffolding offered by the lecturer as she tried to create an 

environment where students might be best supported to access their zones of proximal 

development (EZPD), thereby making progress in their proof construction abilities.  The 

analysis also enabled the researcher to identify the characteristics of and modes of 

reasoning used by those who seemed to show potential in becoming more knowing 

others.  
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Chapter 7: Investigating how students’ proof 

construction abilities evolve and develop in the 

consultative group   

7.1 Introduction 

In this chapter I will be further analysing and discussing themes which emerged from 

the coding and analysis of video recorded consultative sessions (found in Chapter 6 and 

Appendix 1) to answer Research Question 2.  My second research question is repeated 

below for ease of reference. 

Research Question 2 

Investigating the development of students’ proof construction abilities as they 

participate in consultative group sessions through the use of two case studies:  

How do the proof construction abilities of two case studies, Frank and Maria evolve and 

develop as they progress through the sessions?  

In line with my theoretical framework (Vygotsky, 1986, 1994) the consultative sessions 

were intended to avail to students an environment which encouraged and facilitated 

access to their zones of proximal development and allowed for functional usage of 

newly met terms, symbols, logical reasoning processes, proof methods and the practice 

of justification.  I will argue that these sessions seemed to be highly beneficial leading 

to more effective development of the students’ higher mental functions which 

encompassed their proof construction abilities.  I will be closely examining the journeys 

of two case study students, Frank and Maria, both of whom participated in proof 

construction exercises in the first and second sessions.  Throughout the analysis and 

discussion of students’ proof construction attempts I have made inferences about the 

categories to which students’ usage, interpretation and application of newly met terms, 

symbols, signs, proof methods, logical reasoning and justification processes, belong, 

according to the indicators of my analytical framework which has been described in 

detail in Section 5.2.2.  
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7.2 Students’ progression in the first two sessions 

I have used the journeys of two students, Frank and Maria to illustrate how the 

consultative group sessions might be an efficient means of helping students gain 

understanding and confidence in proof construction.  Students at all levels of 

mathematical proficiency appeared to benefit by their participation in the sessions and 

the interaction with their peers.  Even students who were really struggling with all the 

aspects of proof construction like Maria, made large gains in a relatively short period of 

time. 

Both Frank and Maria were first year students.  In the first module of the Pure 

Mathematics course in the first semester Maria had achieved 67% in the final exam and 

was therefore in the B category (as described in Chapter 4) while Frank had achieved 

80% in the final exam and was in the A category.    

We follow Frank and Maria as they attempt proof construction exercises in the first two 

consultative sessions.  The two sessions were just one week apart.  Frank attempted the 

proof of the proposition: If A ⊆ B and B ⊆ C, then A ⊆ C in the first session in Episode 1 

and the proof of the proposition: A ⊆ B ⇔ P(A) ⊆ P(B) in the second session in Episode 

5.  Maria attempted the proof of the equivalence of the statements: a) A ⊆ B and b) A∩B 

= A in the first session in Episode 2 and the proof of the proposition: (A∩B) × C = 

(A×C) ∩ (B×C) in the second session in Episode 4.  

7.2.1 Frank’s journey: evolution of proof construction 

abilities 

Frank began with the proof of the following proposition: If A ⊆ B and B ⊆ C, then A ⊆ 

C in Episode 1 in the first session.  A successful proof construction of this proposition 

requires knowledge of the methodologies of an implication proof and of showing that 

one set is a subset of another set.  It also requires knowledge of the precise definition of 

subset plus the ability to use this definition in the logical reasoning and justification of 

each step in the proof.  Frank returned to the board in the second weekly session to 

attempt the proof of the proposition: A ⊆ B ⇔ P(A) ⊆ P(B) in episode 5.  This proof 

requires knowledge of the proof methods of the double implication, implication and of 
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showing that one set is a subset of another set, as well as knowledge of the precise 

definitions of subset and power set.  Such knowledge is necessary for the student to take 

appropriate actions that add to the logic of the proof construction and to make correct 

deductions based on the necessary justification.  Below is a discussion of Frank’s proof 

construction attempts in these episodes. 

7.2.1.1:  Episode 1: Frank’s attempt at the proof: If A ⊆⊆⊆⊆ B and B ⊆⊆⊆⊆ C, then A 

⊆⊆⊆⊆ C 

Frank was the first participant to attempt a proof construction task in the first session on 

the board to attempt the proof of: If A ⊆ B and B ⊆ C, then A ⊆ C.   

Sub-episode 1.1 

In sub-episode 1.1, Frank’s initial attempt at proof construction seemed to show some 

familiarity with the framework of an implication proof.  The main written flaw in this 

proof construction was that instead of using the implication symbol, Frank used the 

double implication symbol.  As he wrote the proof on the board, he repeatedly referred 

to the double implication symbol as approximation.  The consistent use of the incorrect 

word when referring to the double implication sign was probably due to the fact that he 

was not familiar with the correct word.   

Sub-episode 1.2   

In sub-episode 1.2 it became clear that Frank’s grasp of terms and symbols associated 

with the proof construction process (which lecturers often take for granted) such as 

‘suppose’ and ‘imply’ and the implication and double implication symbols was 

incomplete.  His incorrect use and incomplete explanation of the notions of the 

implication and double implication confirmed that his interpretation and use of these 

notions was at complex level.  For example, when Edgar suggested the addition of a 

statement (containing the word ‘suppose’) at the beginning of the proof which would 

add to the logic of the proof construction process, by making clear the assumptions in 

this proof, and what had to be shown, Frank (line 4) wrote a contradictory statement 

showing that the word ‘suppose’ and the notion of the implication were incorrectly used 

and interpreted.  This is shown below.  
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[4] Frank: Okay you want me to write suppose A is a subset of B and B is a subset of C implies 

that A is a subset of C.  [writes as he is speaking directly above his proof attempt:  Suppose A ⊆ 

B and B ⊆ C ⇒ A ⊆ C]. 

This could also indicate that Frank’s understanding of the proof framework of an 

implication was at complex level.  Frank received some guidance from his peers.  Gary 

and Helen offered their more appropriate ideas about the proof framework for an 

implication.   In line 5 Gary clarified that the statement on the right of the implication 

was the one “we are supposed to prove” and in line 7, Helen clarified that the statement 

on the right of the implication was the one “we need to show”.   

Sub-episode 1.3 

When Gary in line 11 asked what Frank meant by the double implication sign, he 

answered in line 14 that it stood for approximation.  Through the functional use of the 

newly met terms, symbols and signs as well as statements which added to the logic of 

the proof construction, together with the scaffolding received from his peers, he began 

to align his word usage to that of the mathematical community.  In line 14 probably as a 

result of Frank’s interactions in sub-episode 1.2 with Gary and Helen whose 

understanding of the notion of implication seemed to be at concept level, Frank made 

the transition from ‘approximate’ to ‘imply’ when referring to the implication.   

In line 32 it became evident from Frank’s discourse that he did not make any distinction 

between the implication and the double implication, which explained why he had used 

the double implication symbol instead of the implication throughout the proof.  He 

appeared to be associating the two notions together and this confirmed that his 

understanding of the notions of the implication and double implication was incomplete 

and at complex level. 

In this sub-episode the lecturer continued to ask questions (see Appendix for transcripts) 

probing students’ understanding of the notions of the implication and double 

implication and at the conclusion of proof construction, she also tried to make the 

distinction between the definition of these mathematical objects and the actual proof 

method of an implication proof.  The lecturer’s transactive prompts revealed the 

students’ various (complex and pseudoconceptual) interpretations of the notions of the 

implication and the double implication.  These included associations with the notions of 
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equality, equations, subsets and arrows going forward and back.  These contributions 

probably played a large role in developing Frank’s understanding of the notions of the 

implication and double implication.  As students engaged with the notions of the 

implication and double implication, they made functional use of these mathematical 

objects and the proof method of the implication which appeared to enable them to make 

progress in their use and application of these objects and processes.   

In line 70 Gary contributed guiding Frank and the other participants towards a better 

understanding of the notions of the implication and double implication and their 

respective proof methods.  Although Gary associated the implication proof with an 

equation having a left hand side and a right hand side, he described the method of proof 

as using the left hand to get to the right and vice versa.  This complex/pseudoconcept 

level thinking about the proof framework of an implication was nevertheless helpful and 

a step towards a more correct interpretation and application of the implication proof 

framework.  In line 72 Gary explained why the double implication sign should be 

replaced with the implication sign and in lines 78 and 79 he illustrated the notions of the 

implication and double implication by using an example, showing why the single 

implication had to be used instead of the double implication in Frank’s proof 

construction attempt.  He then corrected Frank’s proof attempt by substituting 

implication signs for the double implication signs.   

Summary of episode 1 

As shown in Table 7.1 Frank made 24 proof construction actions, 13 of which were 

correct.  In Table 7.2 we see that most of Frank’s incorrect actions are from category L1 

(meaning of terms, symbols and signs) while categories L2 (logical status of statements 

and proof framework) and L3 (justification of claims) are almost free of error (1 

incorrect action in each category).  Frank appeared to have a basic understanding of the 

logical reasoning and need for justification of each deduction (encompassed in 

categories L2 and L3).  His use and interpretation of newly met terms, symbols and 

signs and definitions encompassed in category L1 appeared to be at complex level.  

Thus we observe that the categories L2 (logical status of statements and proof 

framework) and L3 (justification of claims) played an important role, allowing Frank to 
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make progress in the proof construction even when his understanding of the usage and 

interpretation of newly met terms, symbols and signs is incomplete.    

As Frank advanced through the proof construction, he made functional use of the terms, 

signs and symbols such as the implication and double implication symbols, as well as 

statements which added to the logic of the proof construction.  Through engagement 

and interaction with other participants together with his functional use of newly met 

terms, symbols, signs, logical reasoning processes, proof methods related to the proof 

construction and justification practices, these mathematical objects and processes were 

refined and could hopefully mature into genuine and true concepts, in line with their 

usage by the mathematical community.  It was interesting to see how Frank’s use and 

application of proof methods and statements which add to the logic of the proof 

construction as well as his use of the terms associated with the implication proof 

improved in the second session in Episode 5. 

7.2.1.2:  Episode 5: Frank’s attempt at the proof of the proposition: A ⊆⊆⊆⊆ 

B ⇔⇔⇔⇔ P(A) ⊆⊆⊆⊆ P(B) 

The proof of this proposition involved the proof of the two implications A ⊆ B ⇒ P(A) 

⊆ P(B) and P(A) ⊆ P(B) ⇒ A ⊆ B and required knowledge of the proof methods of the 

double implication, of implication and of how to show that one set was a subset of 

another set, as well as the knowledge of the precise definitions of subset and the power 

set, a new notion only covered in class very recently. 

Sub-episode 5.1 

Frank started the proof construction by breaking down the proof into components and 

beginning with the first component: A ⊆ B ⟹ P(A) ⊆ P(B) showing that he had 

developed pseudoconcept/ concept level understanding of the double implication proof 

method.   

There was a vast improvement in his use and interpretation of terms and symbols 

related to formal proof construction (category L1a) and his ability to select statements 

and phrases which added to the logic of the proof construction process (category L2a).  

This was presumably a result of the functional use of terms, symbols, signs, logical and 

deductive reasoning processes and proof methods during the proof construction 
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attempts in the first two sessions as well as all the interaction and scaffolding he 

received as he and the other students participated in the EZPD.  Before starting the first 

component of the proof, Frank (in line 1) clearly indicated that he intended to prove the 

first component of the proof.  He wrote out his assumption and what was needed to be 

proved.  His explanation in line 3 confirmed his concept level understanding of being 

able to select appropriate statements which added to the logic of the proof construction 

process (category L2a).  Frank now showed a much better use of notions, terms and 

symbols related to the proof construction process such as ‘suppose’, ‘assume’ and the 

implication symbol (category L1).   

Frank then went on to start the first component of the proof correctly, and showed 

pseudoconcept/ concept level understanding of the proof method of an implication and 

the proof method of showing that one set is a subset of another.  Frank’s elaboration of 

his proof construction in line 3 together with his correct proof construction actions 

confirmed concept level understanding of all three proof methods.  In contrast to his 

proof construction actions and elaborations in Episode 1, he had developed concept 

level use of all the proof methods presumably as a result of his functional use of the 

proof methods and his interactions in the consultative group sessions.  He was now very 

comfortable and able to use all the correct terminology connected with the proof 

methods such as ‘assume’. 

He also exhibited correct interpretation and application of the definition of the newly 

met notion of the power set, translating elements of the power set of a certain set to be 

subsets of that set and vice versa.  This appeared to indicate that his understanding of 

the newly met terms was at pseudoconcept or concept level.  However in lines 5 and 22, 

his incomplete explanations of the notion and his uncertainty about his correct 

deductions in the proof construction seemes to indicate that his understanding of these 

mathematical objects was at pseudoconcept level.  He finished the proof of the first 

component with 17 proof construction actions without any errors (see Table 7.1). 

In this sub-episode Frank’s peers took the opportunity to reflect on, and ask questions 

about his completed proof construction of the first component of the proof and 

strengthened their understanding of the newly met notion of the power set.   
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Sub-episode 5.2 

In sub-episode 5.2 Joseph used his own initiative to do an example (on the board) to 

illustrate the notion of the power set both for himself and others.  In the discussion that 

followed, as students such as Joseph, Gary, Frank and Maria made functional use of the 

notion of the power set, they appeared to have made gains in their understanding of this 

mathematical object.  As the notion of the power set was very new, students did not 

have a large repertoire of useful examples to use and the example given by Joseph was 

not very helpful because he drew the Venn diagram of a power set of a set A trying to 

populate it with elements, without first drawing the Venn diagram of the set A with its 

elements.  The lecturer did another example in order to illustrate the notion of the power 

set more clearly, in line 41.  In this very simple example she first drew a Venn diagram 

of the set A, having two elements and then drew the corresponding power set of the set 

A, in the hope that this would help students to see the connection between the elements 

of a set and the elements of its power set and helping to clarify the mathematical object 

further.   

Sub-episode 5.3 

In sub-episode 5.3 Frank continued with the next component of the proof, the proof of 

P(A) ⊆ P(B) ⇒ A ⊆ B.  He started the proof correctly showing concept level 

understanding in his application of the methodology of the implication proof.  His 

ability to select statements and phrases which add to the logic of the proof construction 

process was again evident as he clearly stated the plan of action, the assumptions and 

what was needed to be proved.  In order to prove A ⊆ B he began by choosing {x} to be 

an element of the set A.   However {x} is a set and cannot be an element of A.  The 

correct course of action would have been to choose x to be an element of A, and then 

make the connection that {x} was a subset of A and hence an element of the power set 

of A, that is, an element of P(A).  When prompted by the lecturer and reminded that A 

was a set and not a power set, Frank (line 55) correctly chose x to be an element of A, 

but then immediately made a deduction (⇒ x∈B (since P(A) ⊆ P(B))) which would lead 

him to the correct conclusion while omitting several crucial steps and without having 

the necessary justification.  It was interesting to note that although an appreciation for 

the need of justification while making deductions and conclusions had always been one 
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of his strengths, this was abandoned when he had difficulty making progress in attaining 

the desired goal.   

Gary and Joseph who were trying to build their understanding of the power set through 

peer interaction as well as earnest reflection on the definition of the power set and 

Frank’s proof construction of the first component of the proof (in sub-episodes 5.1 and 

5.2), now came to Frank’s aid.  They contributed positively by suggesting the correct 

strategy and deductions for correct proof construction.  Joseph went up and completed 

the proof in line 77 and when he realized that Frank was still unclear about the proof 

construction and the reasoning he had used, he altered the example (of a power set) 

which the lecturer had written on the board in sub-episode 5.2 by replacing the elements 

1 and 2 with the general variables x and y.  By doing this the relationship between the 

elements of a set and the elements of its power set was better demonstrated.   

Summary of Episode 5 

In this episode Frank showed concept level understanding of the proof methods of the 

double implication, implication and showing that one set is a subset of another 

(category L3).  The functional use of these proof methods as he engaged with proof 

construction exercises (in session 1) while interacting with his peers had possibly 

enabled Frank to make a great deal of progress in this regard.  He also showed sound 

reasoning abilities and was able to select appropriate statements and phrases which 

added to the logic of the proof construction (category L2) presumably as a result of 

guidance received from his peers and his functional use of such statements.  His usage 

of terms, symbols and signs related to the proof construction process (category L1) was 

correct and appropriate.  The functional use of the terms, symbols and signs involved in 

the proof construction process seemed to have enabled Frank to reach concept level use 

and interpretation.  He also seemed to have pseudoconcept level understanding of the 

interpretation and application of the notion of the power set on which the proof 

construction depended.  His application and use of the notion was correct as was evident 

in his correct proof construction of the first component of the proof in sub-episode 5.1.  

However in sub-episode 5.3 his difficulty in starting the second component correctly 

and making progress in the proof construction was probably due to an incomplete grasp 
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of the notion of the power set (thus leading me to conjecture that his understanding of 

this notion was pseudoconceptual) as well as a lack of strategic knowledge. 

As seen in Tables 7.1 and 7.2 out of 45 proof construction actions in Episode 5, Frank 

did 41 correctly.  His incorrect actions stemmed from his inability to use the assumption 

at his disposal (involving the notion of the power set) to proceed logically in the proof 

construction.  He received most of his guidance from his peers who made 24 correct 

contributions.  There were 15 transactive prompts from the lecturer asking for 

explanation, reflection, strategy, critique, justification and examples to clarify 

mathematical objects and proof construction steps.  The lecturer also made 4 directive 

and didactive utterances (towards the end of the proof construction process) providing 

immediate feedback on incorrect actions and reminding students of the methods of 

proof. 

7.2.1.3: Overall discussion of Frank’s journey 

Frank appeared to have made large gains in terms of his understanding of proof 

methods relevant to these sessions.  Whereas in Episode 1 his understanding of the 

proof method of the implication and the terms and symbols used in the proof 

construction were at complex level, in Episode 5, we saw what appeared to be concept 

level understanding of all proof methodologies (including the implication, double 

implication, subset and equality).  He also showed great improvement in his use and 

application of terms, symbols and signs involved in the proof construction process.  He 

appeared to have reached concept level understanding through functional use of the 

terms, symbols, proof methods and logical and deductive reasoning processes related to 

the proof construction process.  His understanding of the logical reasoning involved in 

proof construction and the need for justification of each statement of which he seemed 

to have some basic understanding in the first episode had been strengthened in Episode 

5.   

In sub-episode 5.3, when attempting to prove P(A) ⊆ P(B) ⇒ A ⊆ B, Frank struggled to 

start the proof correctly.  Although he seemed to know the definition of the power set 

and was able to apply it in sub-episode 5.1, bringing the proof of the first component to 

completion with no errors, he was unable to work out how to use the assumption P(A) ⊆ 
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P(B) to prove A ⊆ B.  It was apparent that although Frank was able to reason logically 

and was aware of the pertinent definitions and mathematical objects relevant to the 

proof (students’ syntactic knowledge), he failed to make progress in the second 

component of the proof construction as he seemed to have reached an impasse.  This 

was probably due to his pseudoconceptual grasp of the notion of the power set and a 

lack of strategic knowledge.  When the lecturer helped him to realize the correct first 

step, he had difficulty in proceeding to the next, and instead made a deduction which 

would have led to the desired conclusion, but without the necessary justification as well 

as omitting several crucial steps.  It was noted that when the students were stuck and 

proceeding with proof construction became challenging, the logical reasoning and 

justification of each step which seemed to be well established habits seem to be 

abandoned.  This was aggravated by the introduction of new and unfamiliar 

mathematical objects which caused uncertainty and confusion.  This could indicate that 

these deductive reasoning processes and the appreciation of the need for justification 

were not at concept level.  

Table 7.1 below summarizes Frank’s correct and incorrect proof construction actions 

and contributions in Episodes 1 and 5 showing his great improvement in proof 

construction abilities from the first session to the second.  This is an indication that 

Frank had made large gains regarding all aspects of proof construction and was well on 

his way to becoming a member of the wider mathematical community.  Contributions 

from Frank’s peers and the lecturer are also shown to have decreased from the first to 

the fifth episode. 

Table 7.1: A summary of Frank’s journey in terms of proof construction actions and 

lecturer and peer’s actions and utterances        

Episodes Proof construction actions and 

contributions 

Lecturer Utterances 

Frank’s actions 

 

Other 

participants 

 

Facilitative Transact

ive 

prompt 

Directive/ 

Didactive 

 Correct      Incorrect Correct       Incorrect    

1 13 11 32 8 5 18 6 

5 41 4 24 5 0 15 4 
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Table 7.2 below shows Frank’s proof construction actions and contributions in the 

various proof comprehension and construction categories.  This table does not include 

the categories where there were no proof construction actions on the part of the student.  

As can be seen there was a general increase in all correct actions and contributions and a 

general decrease in incorrect contributions.  There is an exception in the category L2bx 

which focuses on students’ inability to select useful or appropriate aspects of definitions 

and appropriate assumptions.  As discussed above, it is evident that this aspect of proof 

construction remained a challenging one to students even when gains had been made in 

all other aspects.   

As can be seen from Table 7.2 there was great improvement in the category L1 

(meaning of terms, symbols and signs).  Frank’s use and interpretation of terms, 

symbols and signs had improved (categories L1a and L1b) and he was encouraged to 

use examples to illustrate mathematical objects (category L1c).  In category L2 (logical 

status of statements and proof frameworks), he had improved in most aspects.  He made 

great improvement in episode 5 in selecting appropriate statements which would add to 

the logic of the proof construction (L2a).  His knowledge of proof methods (L2c) had 

also been strengthened and he showed concept level understanding of these in episode 

5.  Although he did select appropriate assumptions and aspects of definitions (L2b) in 

sub-episode 5.1, we can see that he experienced some difficulty with this category in 

sub-episode 5.3 where he needed some assistance.  As mentioned previously, this aspect 

of proof construction remained challenging and I believe a lot more practice and time 

spent on proof construction is necessary for this aspect to be strengthened.  In category 

L3 (justification of claims), there was an increase in Frank’s ability to make correct 

deductions and conclusions based on the necessary justification (L3a and L3c).  His 

only incorrect deduction was as a result of his difficulty with category L2b as discussed 

above.         
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Table 7.2: A summary of Frank’s proof constructions actions and contributions according 

to the various categories 

Frank’s proof 

construction 

contributions and actions 

Episode 1: Number of 

contributions 

Episode 5: Number of 

contributions 

Category L1 
L1a 4 9 

L1b 1 5 

L1c 0 4 
L1ax 7 2 

L1bx 2 0 

Category L2   

L2a 2 6 

L2b 0 1 

L2c 3 8 

L2ax 1 0 
L2bx 0 1 

Category L3 

L3a 2 5 
L3c 1 2 

L3ax 1 1 

Category H1 

H1b 0 1 

7.2.2 Maria’s journey: evolution of proof construction 

abilities 

Maria’s first proof construction attempt in the first session was the proof of the 

proposition:  a) A ⊆ B⟺ b) A∩B = A.  This proof construction encompassed the 

methods of proof of a double implication, an implication, equality of sets and the 

method of proof of showing that one set is a subset of another.  A successful proof 

construction also required knowledge of the precise definitions of set equality, subset 

and intersection and the ability to use these definitions in the logical reasoning and 

justification of each step in the proof.  In the second session Maria returned to the board 

to attempt the proof construction of (A∩B) × C = (A×C) ∩ (B×C) which involved the 

proof methodologies of set equality and showing that one set is a subset of another.  A 

successful proof construction also required knowledge and application of the definitions 

of the notions of the Cartesian product, intersection, subset and set equality. 
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7.2.2.1: Episode 2: Proof of a theorem showing equivalence of two 

statements 

The first theorem Maria volunteered to do on the board in the first session was the proof 

of a) A ⊆ B ⟺ b) A∩B = A.  The proof of the double implication a) ⟺ b), entails 

proving both implications: a) ⟹ b) and b) ⟹ a).  Maria’s attempt to prove a) ⟺ b) in 

the second episode was the main arena where most of her misconceptions and incorrect 

ideas on proof methods were revealed and worked on.  This proof construction took 

place in the first consultative session where students were still very unfamiliar with the 

mathematical objects and methods involved in proof construction and was the most 

fruitful in terms of the amount of learning which seemed to take place.  It was also the 

most lengthy of all five episodes in terms of the duration of the proof.  The first session 

was also the arena where the lecturer established the norms relating to students’ 

expected modes of interaction and participation.  These were communicated to students 

through the lecturer’s use of transactive prompts for reflection, clarification, 

explanation, strategy, justification and critique and facilitative utterances offering 

encouragement and highlighting misconceptions, as well as confirming and re-voicing 

correct ideas and conceptions.    

Maria could be regarded as an average student, grappling and often failing in the task of 

proof construction.  Throughout this proof there was much scaffolding and guidance by 

the lecturer and Maria’s peers.  At some points the lecturer wondered whether Maria 

would ever be capable of understanding the mathematical objects and the various 

methods encompassed within the proof.  However surprisingly after the proof of a) ⟹ 

b), Maria stayed on to do the proof of b) ⟹ a) and here she showed a remarkable 

change in both her confidence and ability.  Presumably as a result of her functional use 

of the newly met terms, symbols, proof methods, deductive reasoning processes and 

justification in activities including imitation (see sub-episode 2.9) while receiving 

scaffolding from the lecturer and her peers, we can see great development in her usage, 

interpretation and application of these mathematical objects and processes.   

Sub-episode 2.1 

Maria’s association of the proof method of the implication with the proof method of an 

equality was already evident in episode 1, when in sub-episode 1.3, line 66, in response 
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to the lecturer’s requests for students’ explanations of the notions of the implication and 

double implication, Maria showed that she associated the implication with the more 

familiar notion of equality as she described the method to be used as proving that the 

two sides of an equation were equal to each other.  In sub-episode 2.1 when Maria was 

attempting the proof of A ⊆ B ⇒ A ∩B = A, her proof construction attempt confirmed 

her complex level thinking and her association of the method of proof of an implication 

with the proof method of an equality or identity.  She subsequently took the left hand 

side and the right hand side of the implication independently and by making incorrect 

deductions and using trivial implications of assumptions showed that each “side” 

resulted in the same statement: x∈B. 

Out of 16 actions, Maria did 5 correctly (refer to Table 7.3).  These were mostly from 

the L1 category (using mathematical terms, symbols and signs correctly), while correct 

actions in the L2 (the use of logical reasoning in the proof construction) and L3 (the 

need for justification of deductions) categories were seriously deficient.  

Sub-episode 2.2 

In sub-episode 2.2 Maria (in line 5) indicated that she believed that the equality of the 

sets A⋂B and A which was supposed to be proved, was a given.  This confirmed her 

incomplete understanding of the proof method of an implication.  Her initial proof 

construction attempts and elaboration of her reasoning process, made it clear that the 

need for justification of each statement following from previous statements and 

assumptions in a logical and sensible way was not appreciated.   

In this sub-episode although Christine also referred to the implication symbol as an 

equals sign, she questioned Maria on her logical reasoning and justification and was 

thus instrumental in helping to create the EZPD in which Maria’s learning was 

developed.  Probably as a result of Christine’s questions and critique and the functional 

use of the method of proof of an implication, Maria (in line 11) began to realize that she 

might have made an inappropriate and incorrect deduction, and that she might not have 

the correct idea about the proof method. 
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Sub-episode 2.3 

Not all the input from Maria’s peers was helpful.  In sub-episode 2.3 Edgar suggested 

that Maria uses a trivial and non-useful implication of a definition in the proof 

construction.  Maria’s attempt to use Edgar’s suggestion leads her in a totally wrong 

direction.  This showed that the strategic knowledge of knowing which assumptions and 

which aspects of definitions are useful as well as the ability to select the appropriate 

implication or deduction from previous statements need to be carefully scaffolded in the 

initial stages of the learning process in proof construction.   

Sub-episode 2.4 

In sub-episode 2.4 Maria revealed her evolving thinking process of the proof method of 

an implication.  Whereas in the previous sub-episodes she appeared to view the proof 

method of an implication as similar to the method of proving that the two ‘sides’ of an 

equation or identity are equal, she now displayed her evolving understanding of the 

proof process: that is to first prove that the statement to the left of the implication sign 

was true and from there, she would know that the statement to the right of the 

implication sign would be true. 

This incorrect method for proof of an implication seemed to be quite a common 

misunderstanding (as confirmed by Joseph in this sub-episode) and appeared to be a 

result of students’ incorrect interpretation of the definition of an implication.  Gary 

assumed the role of more knowing peer, clarifying and elaborating on the proof method.  

He showed true concept level thinking and contributed to creating the environment in 

which Maria was enabled to access her zone of proximal development and develop her 

proof construction abilities.     

Sub-episode 2.5 

However after all the scaffolding offered by Gary and the lecturer, Maria showed that 

she still had not yet grasped the method of proof of an implication as she asked whether 

she should prove A⊆ B or A∩B = A. 

She was guided by Helen who told her that she should do “the second intersection b) 

part”.  Maria seemed to identify with and appreciate this short simple rule perhaps even 

more than all the earlier explanations, reinforcing the impression that some students 
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appear to be looking for a set method, a standard formula or rule they can follow, and 

which will always work.  The suggestion that she should prove ‘the second part’ 

appeared to have satisfied this search.  Also this showed that we (lecturers) may be 

misled into assuming that students understand precisely what we have said.  For 

example the word ‘assume’ might not have been part of Maria’s vocabulary so she 

might not have been able to make sense of all the earlier explanations. 

The next proof method that Maria encountered in this sub-episode was the method of 

proof of equality of two sets (which incorporates the method of proof of showing that 

one set is a subset of another).  Maria revealed complex level thinking in her description 

of the proof methodology describing the method of proof of equality of the two sets (A 

and A intersection B) as showing that A and A intersection B had something in common 

and that was the element x.   

The method she described gave rise to the correct methodology of the proof of equality 

of sets but her description and elaboration were not quite correct.  When proving 

equality of two sets one has to prove that one set is a subset of the other and vice versa.  

In order to prove that set A is a subset of another set B one must show that any arbitrary 

element of set A can be found in set B and Maria has conceptualized this as showing 

that the sets have something in common.   

Sub-episode 2.6 

In sub-episode 2.6 a question on the difference between the intersection and union of 

sets led to a very interesting discussion and revealed the surprising fact that although 

these mathematical objects had been covered as the basic foundation of the coursework 

on elementary set theory and it was generally assumed that thestudents have a firm 

understanding of them, they were not at all well understood.  While trying to clarify and 

reach an understanding of these notions, there was a widespread use of examples 

initiated by the lecturer, and these really helped to bring to light several of the students’ 

misconceptions.   

Students described and illustrated their understandings of the notions of union and 

intersection revealing both complex and pseudoconceptual thinking.  Gary (lines 99 and 

101) depicted the union of two sets by a Venn diagram to include all the elements in the 
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two sets except the elements in the intersection.  Christine (line 110) also did an 

example giving the impression that when considering the union of two sets there could 

not be any elements in the intersection of the two sets.  Maria (line 113) seemed to be 

misled by their incorrect conceptions of the union, and asked for confirmation that the 

union of two sets did not contain any elements that the sets might have in common.  

Edgar (lines 117 and 119) made a positive contribution by doing another example which 

correctly showed the intersection and union of two sets and this was confirmed and 

highlighted by the lecturer.     

Sub-episode 2.7 

Students continued discussing the proof method of showing equality of sets in sub-

episode 2.7.  The lecturer reminded the students to refer to the definition of equality and 

they were guided to use and refer to the definition in order to arrive at the method of 

proof.  Maria (line 162) wrote the correct plan of action on the board; it was hoped that 

through observing the development or extraction of the proof method of equality of two 

sets from the definition, she and all the other students would now not only have 

developed a good concept level understanding of the proof method of equality of two 

sets, but also an understanding of how (in general) to develop the proof method from 

the definition of a mathematical object. 

Sub-episode 2.8 

In sub-episode 2.8 Maria started the proof of A⊆ B⟹ A∩B = A once again, this time 

armed with the knowledge gained from the discussions in the previous sub-episodes, of 

the proof methodologies of an implication and method of proof of set equality.  She still 

seemed to be battling with these proof methods and the need for justification of each 

statement and deduction, and made apparently non-useful deductions and assumptions.  

Maria had still not realized that every step of the proof construction had to be justified 

and that deductions had to be accompanied with logical reasoning (L2 and L3 

categories).  This also indicated Maria’s lack of strategic knowledge as she was unable 

to take the proof further after the first correct step and needed continuous guidance from 

her peers, mostly Joseph at this stage.  Although she started the proof correctly and gave 

the impression that she had now reached concept level understanding of the proof 

method of an implication, she appeared to revert back to complex level thinking after 
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the first few steps, again wanting to prove equality of both sides of the implication.  In 

line 186 she again seemed to lose sight of what she was supposed to prove and brought 

in the assumption A⊆ B and continued to try to arrive at what she had previously 

considered to be her desired goal, x∊ B (in sub-episode 2.1).  This was once more 

indicative of Maria’s lack of strategic knowledge and lack of a clear idea of the proof 

framework or methodology.    

Through continuous assistance from the lecturer and other more knowing peers Maria 

concludes the proof of A∩B ⊆ A.  Sensing that there might still be some confusion 

about the proof construction done so far, the lecturer asked Christine as more knowing 

peer to go over the proof and explain what had been done.  Christine (in line 229) did 

this proof presentation with clarity and conviction,  using newly met terms with ease 

and clearly showing the connection between what needed to be shown and the 

statements made in the proof construction (indicating her concept level thinking for 

methods and ideas relevant to the proof).  She identified the basis for each deduction 

and demonstrated as she went through the proof construction process that deductions 

had to be made with the necessary justification.  This form of explanation from 

students’ peers presented an excellent learning opportunity for them.  In this sub-

episode Joseph, Gary and Christine acted as more knowing others, displaying concept 

level understanding of the proof method as well as good strategic knowledge, and 

guided Maria’s efforts in the proof construction. 

The proof of A∩B ⊆ A ended in line 206.  Looking at all of Maria’s actions in this sub-

episode (highlighted in bold in the coded transcript found in the Appendix) pertinent to 

this proof construction, out of 23 actions, 14 were correct (see Table 7.3).  The incorrect 

actions were mostly from the L2 and L3 categories, showing that Maria was still 

battling with the proof methodology and the logical reasoning of the proof process, as 

well as the ability to provide justification of assertions and deductions following from 

previous statements.   

Sub-episode 2.9 

In sub-episode 2.9 Maria started the proof of A⊆ A∩B to complete the proof of A= A∩B 

and it became clear (in line 249) that she had not been able to transfer the proof method 

of proving that one set is a subset of another from the previous sub-episode as she could 
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not identify the statement she needed to prove.  She was helped to start the proof by 

Helen and Christine and in line 261 she brought in as an assumption, the statement she 

was actually trying to prove.  This was one of the few times that the lecturer (in line 

262) made a directive statement providing immediate feedback on the error of this 

action.  In line 262 the lecturer, after providing feedback, asked Maria what her 

assumption was.  Another one of the participants answered this question, and when the 

lecturer again asked Maria what her assumption was, Maria was now able to answer and 

repeated the assumption just mentioned.  This was a clear indication of imitation, an 

activity I presumed was happening throughout the sessions (but was often difficult to 

detect) as students learned from each other and the lecturer.    

In line 267 Maria once more seemed to lose sight of the goal and what she needed to 

prove, and made a deduction leading to the correct conclusion without providing a basis 

for the deduction and conclusion.  She still did not seem to realize that she could not 

make deductions and conclusions without the necessary justification.  It seemed that it 

was very easy for students to revert to bad habits such as making assertions or 

deductions without justification and losing sight of their goal in the proof construction 

process.  I suggest the reason was that Maria still had not formed a concept level 

understanding of the proof methodology, and seemed to have difficulty in making the 

transition from complex level to concept level in terms of proof methods and the logical 

reasoning and justification process.  Her peers, Joseph, Helen and Christine, patiently 

pointed out the appropriate deduction she should be making from the previous statement 

(line 269) and thus they continued to create the learning environment which facilitated 

Maria’s access to her zone of proximal development (EZPD).  

Out of 29 actions taken by Maria in this component of proof construction 16 were 

correct (see Table 7.3), with most of the incorrect actions coming from the categories 

L2 (indicating Maria’s difficulty in following the proof method, reasoning processes 

and logic of the proof), L3 (indicating Maria’s difficulty in making correct deductions 

and conclusions from previous statements with the necessary justification) and H2 (not 

being able to transfer the methods and logical reasoning used in the previous component 

of the proof to this component).  The scaffolding Maria received as she made functional 

use of newly met terms, symbols and proof methods was probably instrumental in the 
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fast and vast improvement in her proof construction ability which was evident later in 

sub-episode 2.11 and in the second session. 

Sub-episode 2.11 

In sub-episode 2.11 Maria began with the next component of the proof: A∩B = A ⟹ 

A⊆ B.  Now she seemed much more confident about the implication proof framework as 

well as the proof of subset framework and showed that she had transferred the methods 

met in the previous components of the proof to this component.  She appeared to really 

believe in what she was doing and explained her proof construction actions with 

conviction as she proceeded.  Her understanding and correct application of the proof 

methods of an implication and subset proof was confirmed as she correctly identified 

the assumption, what she needed to show or prove and the steps needed to reach the 

desired goal.   

In lines 311, 313, 317 Frank tried to argue and persuade her that since the proof of a) 

⟹ b) has been completed she should now do the proof of b) ⟹ c).  In the past Maria 

might have acted on this suggestion as she had done in the previous proof component, 

but now (in lines 314, 316 and 319) she firmly explained that she was proving b) ⟹ a) 

and was not swayed by his insistent suggestions.   

What Maria now lacked in her proof construction efforts was the logical reasoning 

ability and strategic knowledge of how to use the assumptions to proceed in the proof 

construction and how to make appropriate or correct deductions from previous 

statements.  In line 324 Maria made a deduction which was not a direct logical 

deduction from the previous statement and assumption but was however the desired 

deduction which would enable the desired conclusion to be made.  It was not clear 

whether Maria had made the deduction from logical reasoning or if she was just 

guessing as she knew what the conclusion should be.  Although all the other proof 

comprehension criteria seemed to be satisfied, the proof still remained challenging 

because of the lack of strategic knowledge, that is: knowing how to use the definitions 

and assumptions at one’s disposal to get to the desired goal (L2b).  Perhaps this is one 

of the key aspects of proof construction ability which is only developed over time 

through practice and when working with others in the EZPD. 
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At the proof’s conclusion Maria showed gains in the logical reasoning involved in the 

proof construction concluding the proof correctly and confirming that she had reached 

pseudoconcept/ concept level understanding of the proof methods of subset, implication 

and double implication.  In lines 362 and 366 she gave the correct explanation behind 

the conclusions she was making for the double implication, confirming that her 

understanding for the proof of an implication had evolved to pseudoconcept/ concept 

level.   

Maria had been developing her understanding of the application of logical reasoning 

processes and the proof methodologies of an implication, equality of sets and showing 

that one set was a subset of another during the course of the proof construction.  In the 

same way mathematical terms, symbols and signs, functional use of these proof 

methodologies seemed to enable students’ use and application of these methodologies to 

pass between the various stages of heap, complex and pseudoconcept eventually 

evolving into true concept level thinking.  This will be seen in the proof done by Maria 

in the second session (Episode 4). 

In sub-episode 2.11 out of 32 identified proof comprehension actions 28 were correct 

which demonstrated the vast improvement in Maria’s proof construction ability (see 

Table 7.3).  The only four incorrect actions occurred where deductions were made 

which did not follow simply from previous statements (category L3ax) and not being 

able to identify the correct assumption needed in the proof construction (category 

L2bx).  Most other aspects such as: L1a (correctly using newly met terms and symbols 

(written and spoken) during the entire proof construction process), L2a (selecting 

correct or appropriate statements and phrases which make sense and add to the logic of 

the proof construction), L2b (selecting useful or appropriate deductions or aspects of  

definitions), L2c (selecting the correct proof framework and following the reasoning 

process and proof methodology), L3a (making correct deductions from previous 

statements and definitions), L3c (making correct conclusions with all the necessary 

justification), H1a,b,c,d (explaining the main ideas behind the proof, and identifying the 

role of different modules of the proof and how they relate to one another) and H2a,b 

(using ideas she had struggled with in the previous proof construction and recognizing 

the assumptions which needed to be in place for the method used), had been attained. 
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There were 13 contributions from other students, 8 of which were correct and 

appropriate, while the lecturer contributed 12 transactive prompts and 7 facilitative 

utterances (see Table 7.3). 

Summary of episode 2 

The proof construction Maria attempted in episode 2 encompassed and required 

knowledge of not just one, but four proof methodologies or frameworks: the proofs of 

an implication and double implication, the proof of showing equality of two sets and the 

proof of showing that one set is a subset of another.  It was a rather complex proof 

especially for first year students who had only recently been introduced to the notion of 

proof.  Along with the various proof methodologies, there were also the challenges of 

newly met terms, symbols and signs, the logical reasoning required in proof 

construction, the use of assumptions and definitions, and the appreciation of the need 

for justifying each deduction made from previous statements. 

Maria like many other students battled with most of the aspects of proof construction, 

especially the proof methodologies and logical processes involved as well as the need 

for justification of deductions.  The proof construction turned out to be rather 

longwinded and tiresome.  There were times when the methodology used in the 

previous component of the proof needed to be used again in the next component.  Maria 

was often unable to transfer this knowledge and this was a disappointment for the 

lecturer and perhaps the other students as well.  When students work on their own or 

with peers with similar capabilities as their own, a serious burden is placed on their 

thought processes.  Students doing these proof construction exercises face the combined 

challenge of many newly met notions, terms, symbols and signs, unfamiliar proof 

methods and the challenge of logical reasoning and justification required in the proof 

construction process, all within one proof construction exercise.  It is very difficult for 

students to overcome these many and varied challenges on their own.   

Moore (1994) identified this challenge as the problem of ‘cognitive overload’ that 

students suffer as they grapple with domain-specific knowledge of terms and notions 

contained in the proof construction exercise, as well as the interpretation of definitions 

and their appropriate use.   
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Looking at the proof construction actions or steps taken by Maria in Episode 2, from the 

beginning of proof construction up to the point that it was successfully completed, I 

have identified 133 actions (highlighted in bold in the full transcript contained in the 

Appendix) 76 of which were done correctly (see Table 7.3).  The participation from 

others in the group, including Joseph, Gary, Edgar, Christine, Helen, Frank and others,  

came to a total of 113, most of which (90) were helpful and appropriate.  This shows the 

high level of participation by all students ensuring a very effective EZPD where all 

participants benefitted from the interactions.  The lecturer made a total of 65 transactive 

prompts asking for clarification, reflection, justification, critique, strategy, examples and 

use of reasoning ability.  There were also 38 facilitative utterances highlighting 

learning, giving encouragement and confirming students’ ideas and 5 directive and 

didactive utterances referring to definitions and elaborating on definitions of 

mathematical objects.   

7.2.2.2:  Episode 4: Proof of (A∩∩∩∩B) × C = (A×C) ∩∩∩∩ (B×C) 

In the second session which occurred one week after the first, Maria volunteered to do 

the proof of the proposition:  (A∩B) × C = (A×C) ∩ (B×C).  A successful proof 

construction of this proposition required knowledge of the proof method of set equality 

and the proof methodology of showing that one set is a subset of another as well as the 

precise definitions of subset, intersection and the Cartesian product and the ability to 

use these definitions in the logical reasoning and justification of each step in the proof. 

Sub-episode 4.1 

The proof of (A∩B) × C = (A×C) ∩ (B×C), a proof of showing equality of sets requires 

that one proves that (A∩B) × C ⊆ (A×C) ∩ (B×C) and (A×C) ∩ (B×C) ⊆ (A∩B) × C.  

Hence the proof methodology of showing equality of sets also encompasses the proof 

methodology of showing that one set is a subset of another.  In sub-episode 4.1, 

presumably as a result of her functional use of logical reasoning processes and proof 

methodologies in her previous attempt at proof construction in Episode 2, we observe 

that Maria had successfully mastered both these processes and methodologies and 

seemed to be very comfortable using them and explaining her reasoning to others.  Her 

thorough explanations together with her correct use and application seemed to suggest 
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that her grasp of the proof methodologies encompassed in this proof was now at concept 

level. 

She correctly described the approach that she was going to use (line 7) and broke down 

the proof into two components.  She then systematically started the first component of 

the proof and followed the proof method for showing that one set is a subset of another 

correctly.  Each deduction she made was accompanied by all the correct reasoning and 

justification, and her written use of newly met terms, symbols and signs was excellent.  

She appeared to be fully aware of the logical relationship between statements and 

deductions she had made in the proof and the conclusion she would like to make.  This 

was in stark contrast to the proof she attempted in the first session (episode 2).  Every 

deduction was accompanied by a detailed justification where she explained all her 

reasoning, showing that the justification process had really become a well- established 

habit for her now.  This was presumably as a result of the functional use she had made 

of deductive reasoning processes and the practice of justification of each step of the 

proof construction, while receiving scaffolding from her peers and the lecturer.   

Her written use and application of the newly met terms, symbols and signs was sound, 

but she continually referred to the Cartesian product as ‘times’ or ‘multiply’.  As she 

was able to use and apply the notion of the Cartesian product correctly and sensibly, this 

might indicate that she could work with and apply the mathematical object but was 

reluctant to use the symbol’s longer name.   

Sub-episode 4.2: Discussion of the association of the Cartesian product with the 

intersection 

In sub-episode 4.2 it was evident how interaction and participation in the EZPD by 

Christine, Maria and more knowing others helped them develop their understanding of 

the definition of the Cartesian product.  It became clear in sub-episode 4.2 that Maria’s 

use and application of the notions of the Cartesian product and the intersection was 

incomplete.  

Christine questioned whether she could substitute the intersection symbol for the 

symbol of the Cartesian product (in lines 10 and 12), showing that her understanding of 

the Cartesian product and its definition was at complex level.  I believe her confusion 

arose because the definitions of both the intersection (A ∩ B = {x: x∊ A and x∊ B}) and 
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the Cartesian product (A × B = {(x, y): x∊ A and y∊ B}) contained the word ‘and’ and 

Christine seemed to be associating these mathematical objects with the word ‘and’ and 

thus with each other.  This might be indicative of complex thinking (in particular 

associative complex thinking).  Maria’s response to Christine’s question did not clarify 

this misunderstanding.  Her explanation in line 18 (sub-episode 4.2) is given below. 

[18] Maria: I think that here because we’re speaking of a multiplication…. [points to: 

Proposition:  (A∩B) × C = (A×C) ∩ (B×C) ] here we started with a multiplication sign and we 

want to prove that you see this side here [points to: (A∩B) × C ] we’ve got an intersection and 

here we’ve got a multiplication sign.  And here we’ve got [points to:  (A×C) ∩ (B×C)] two 

multiplication signs.  So if we prove this [points to the lower part of the board] we must prove 

this also looking at this side that what this side contains [points to: (A×C) ∩ (B×C)] 

As seen in her explanation she seemed to be looking at the expressions on each side of 

the equality, and when seeing that they both had ‘multiplication signs’, she felt that she 

had to keep those signs so that the two ‘sides’ will contain the same signs.  Although 

she was able to use and apply the notion of the Cartesian product in the first component 

of the proof construction very well, she still had not grasped the correct use and 

application of this newly met mathematical object adequately.  Thus she exhibited 

pseudoconcept or complex thinking about the newly met term, the Cartesian product.   

Joseph taking on the role of more knowing other, now contributed in lines 22 and 24.  

Joseph’s able explanation was confirmed by the lecturer who also referred to the 

definition of the Cartesian product, and wrote it on the board again for easy reference.   

Mathematical definitions often pose a huge challenge to students who find them 

difficult to ‘unpack’ and correctly interpret.  In this sub-episode we saw that 

engagement with proof construction tasks while interacting with peers and the lecturer 

in the EZPD, allowed students to make functional use of mathematical objects and 

definitions and greatly helped them with this challenge.  

Sub-episode 4.3: Conclusion of the first component of the proof and attempt at 

proof construction of (A×C) ∩∩∩∩ (B×C) ⊆⊆⊆⊆ (A∩∩∩∩B) × C 

Joseph’s able guidance and explanation was a great help to Maria and in sub-episode 

4.3 it was clear that she had made progress in her understanding of the notions of the 

Cartesian product and the intersection.  In line 28 of sub-episode 4.3 Maria started and 
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completed the proof of the second component of the proof correctly giving detailed 

justification of each deduction and conclusion made.  She continued to show concept 

level thinking of the proof methodologies of equality and showing that one set was a 

subset of another.  She explained her thinking process carefully and emphasized where 

and why she was using the intersection symbol and the Cartesian product symbol.  She 

also referred to the definition of the Cartesian product and logically explained her 

deduction in terms of this definition.  It appeared that her thinking on these newly met 

terms had evolved and had now reached concept level as she now very ably explained 

exactly what these mathematical objects meant and was able to use them correctly and 

with ease (category L1).  This is a very good example that shows how scaffolding (by 

peers and the lecturer) in the EZPD allowed Maria (and hopefully all the other 

participants) to make functional use of the notion of the Cartesian product thereby 

enabling the evolution from complex or pseudoconcept level thinking to concept level 

thinking.  Her logical reasoning ability (category L2) as well as her ability to provide 

sound justification for each step in the proof construction process (category L3) had also 

been strengthened through her increased understanding of the definition of the notion of 

the Cartesian product.  She completed the proof successfully without any further 

interruptions. 

Summary of episode 4 

Maria’s proof construction attempt contained 64 steps or actions (highlighted in bold) 

which were all done correctly except for one response in sub-episode 4.2 where she was 

not able to correctly explain the use of the Cartesian product and its difference with the 

notion of intersection (see Table 7.3).  I have not taken into account simple writing 

errors or her repeated spoken misuse of the Cartesian product as ‘multiply’ or ‘times’ as 

I felt that this had not in any way hampered the written proof construction process and 

was a rather ‘normal’ misuse.   

In this episode Maria seemed to have concept level understanding in terms of her use 

and application of all the proof methods relevant to the proof construction (category 

L2c).  She also selected useful or appropriate deductions from definitions and 

assumptions, was able to explain her logical reasoning process as she proceeded with 

the proof and chose correct and appropriate statements which added logic to the proof 
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construction process (categories L2a and L2b).  She identified the basis for all 

deductions and conclusions made from previous steps carefully explaining and 

providing justification (category L3).  Her use and application of newly met terms, 

symbols and signs (category L1) also seemed to be at concept level, but was later 

revealed to be at complex or pseudoconcept level.  In sub-episode 4.3 however she 

correctly described her thinking process behind the use of the intersection and the 

Cartesian product emphasizing their meanings and the reasons why she was using each 

of these symbols.  This leads me to believe that, as a result of the scaffolding received 

from the lecturer and peers and her functional use of the notion of the Cartesian product, 

her understanding of this newly met term had evolved from complex or pseudoconcept 

level in sub-episodes 4.1 and 4.2 to concept level in sub-episode 4.3.  The participation 

from Maria’s peers came to a total of 10, 4 of which were correct and appropriate (see 

Table 7.3).  On the whole, Maria’s proof construction in episode 4 showed her great 

progress and development in all the categories of proof construction.  

7.2.2.3:  Overall discussion of Maria’s journey 

Maria’s proof construction attempt in Episode 4 was a giant leap from her previous 

proof construction attempt in the first session (Episode 2).  In the first session Maria’s 

grasp of the proof methodologies of the implication, equality and subset proofs were all 

at complex or even heap level.  She needed continuous guidance and assistance on how 

to proceed with the various proof components.  She was also challenged by the need for 

justification of deductions, bringing in as assumptions statements that she needed to 

prove, and making deductions and conclusions without any basis.   

Presumably her functional use (including the activity of imitation as seen in sub-episode 

2.9) of unfamiliar terms, symbols signs, definitions, proof methods as well as deductive 

reasoning processes and the practice of justification during the consultative group 

sessions, plus her interactions with peers and more knowing others and the scaffolding 

received, had enabled her to make rapid progress in her proof construction abilities. 

In the proof attempted in the second session (Episode 4), her grasp of the proof 

methodologies seemed to be at concept level.  She ably and thoroughly explained her 

reasoning and logic as she proceeded with each deduction and each conclusion made in 
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the course of proof construction.  She also appeared to have an excellent grasp of 

selecting correct and appropriate statements which added to the logic of the proof 

construction process, for example at the beginning and conclusion of each proof 

component as well as at the conclusion of the whole proof.  Her use of newly met terms, 

symbols and signs (category L1) seemed to be at concept level, except her interpretation 

of the newly met notion of the Cartesian product which was revealed to be at complex 

or pseudoconcept level in sub-episode 4.2.  In sub-episodes 4.2 and 4.3 we saw how 

Maria’s complex or pseudoconceptual application of the notion of the Cartesian Product 

was developed to concept level usage and application through functional use of the 

terms and symbols, her interaction with the other participants and the scaffolding 

received from more knowing peers.   

Maria’s proof construction attempt in Episode 4 demonstrated her great progress and 

improvement in terms of all proof construction abilities.  This was very striking and 

encouraging as it showed that even average students like Maria who had great difficulty 

with all aspects of proof construction could become capable of mastering these abilities 

in a very short time given the opportunity to attempt proof construction in an 

environment which encouraged interaction with peers and more knowing others. 

Table 7.3 summarizes Maria’s proof construction actions and the contributions from her 

peers and the lecturer.  Her progression in terms of her proof construction abilities from 

Episode 2 (in the first of the weekly sessions) to Episode 4 (in the second weekly 

session) was quite striking even though the two sessions were only one week apart.  In 

fact the change had already begun in sub-episode 2.11.  When we examine the 

participation from Maria’s peers in the second episode, which I surmise was largely 

responsible for this striking change, one sees a huge number of positive or helpful 

contributions in Episode 2 numbering 90.  There were also 38 facilitative utterances, 65 

transactive prompts and 5 directive/ didactive prompts from the lecturer in Episode 2.   
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Table 7.3: A summary of Maria’s journey in terms of proof construction actions and 

lecturer and peer’s actions and utterances 

Sub-

episode 

Proof construction actions and 

suggestions 

Lecturer Utterances 

Maria’s actions 

 

Other participants 

 

Facilita

tive 

Transactiv

e prompt 

Directive

/ 

Didactive Correct       Incorrect Correct       Incorrect 

2.1 5 11 0 0 0 0 0 

2.2- 2.7 13 20 37 14 9 37 0 

2.8 14 9 26 4 15 13 4 

2.9 16 13 19 0 7 3 1 

2.11 28 4 8 5 7 12 0 

Total: 76 57 90 23 38 65 5 

4.1-4.3 63 1 4 6 2 3 1 

Table 7.4 below shows Maria’s proof construction actions and contributions in each of 

Episodes 2 and 4 according to the various proof construction categories.  Since the two 

proofs attempted by Maria in the two sessions were not exactly the same in terms of 

their length and scope of proof methods and newly met mathematical objects, they 

necessarily required different proof construction abilities (in terms of number of actions 

and categories of proof construction).  I will not therefore compare the number of proof 

construction actions taken by Maria in the various categories across the two proof 

constructions, but rather compare categories which indicated a lack of ability in proof 

construction and comprehension.    

Focussing on the categories indicating lack of ability in the various proof construction 

actions, that is, those categories having an ‘x’ attached to them, we observe a huge 

improvement in all the categories.  In episode 4, difficulties in category L1 

encompassing the meaning of terms, symbols and signs (L1ax and L1bx) had largely 

been overcome, with the exception of the newly met notion, the Cartesian product.  

Similarly difficulties in category L2 encompassing logical status of statements and 

proof frameworks (L2ax, L2bx and L2cx) had been overcome.  We were able to see 

how Maria’s confidence grew in selecting appropriate statements, assumptions and 

aspects of definitions which added logic to the proof construction process as well as the 

proof methods relevant to the proof construction.  Maria showed similar improvement 

in the category L3 which encompasses justification of claims (L3ax, L3bx and L3cx).  

In Episode 4, she had a much greater appreciation of the need for justification of each 
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deduction and conclusion and provided the necessary reasoning at each step of the 

proof.  The number of incorrect actions in this category fell to zero.  Similarly in the 

category H1 difficulties regarding the identification of main ideas and correctly 

breaking down the proof into components (H1ax and H1bx) were overcome.  In the 

category H2, difficulties with the ability to transfer ideas and methods met in previous 

proof construction exercises to subsequent exercises (H2ax) were also resolved. 

Table 7.4: A summary of Maria’s proof constructions actions and contributions according 

to the various categories    

Maria’s proof 

construction 

contributions and actions 

Episode 2: Number of 

contributions 

Episode 4: Number of 

contributions 

Category L1 
L1a 14 19 
L1b 4 2 

L1ax 3 0 
L1bx 0 1 

Category L2   

L2a 14 6 
L2b 2 8 
L2c 13 6 

L2ax 8 0 
L2bx 11 0 
L2cx 17 0 

Category L3 

L3a 13 10 
L3b 1 0 
L3c 5 4 

L3ax 10 0 

L3bx 1 0 

L3cx 3 0 

Category H1 

H1a 7 2 

H1b 0 2 

H1c 0 1 

H1d 0 1 
H1ax 1 0 

H1bx 1 0 

Category H2 

H2a 1 2 

H2b 2 0 
H2ax 2 0 
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7.3 Concluding summary 

In Section 7.2 I Frank and Maria’s progress in all aspects of proof comprehension and 

construction was observed.  Frank made progress from complex thinking in the category 

of meanings of terms, symbols and signs (category L1) in Episode 1 to concept level in 

Episode 5.  He also made progress in the area of proof methods and logical reasoning 

and selection of statements and phrases which add to the logic of the proof construction 

(categories L2a and L2c) to concept level in Episode 5.  This was presumably a result of 

his functional use of the newly met terms, symbols, logical reasoning processes and 

proof methods while receiving scaffolding and guidance during his interactions with his 

peers and the lecturer.  His appreciation for the need of justification (category L3) of 

which he seemed to have some basic understanding in Episode 1 was strengthened in 

Episode 5.  The only area that that remained problematic was that of knowing how to 

use the assumptions, proof method and logical reasoning to proceed when the proof 

construction became a little more complicated (category L2b, also termed strategic 

knowledge).  At these times, the established habit of justification of statements and 

deductions also seemed to be abandoned as he desperately tried to find a way forward.  

The difficulty experienced with category L2b led him to make incorrect and 

inappropriate deductions.  The challenge of strategic knowledge appeared to be the most 

challenging of all the aspects of proof construction.  Much practice and time is needed 

to be spent on proof construction in order to strengthen and improve this aspect.  

Interestingly this aspect of proof construction was also the most challenging in Maria’s 

proof construction when she was attempting the final component of the proof in sub-

episode 2.11.  At this point all the other proof construction aspects seemed to have been 

well understood.  I suggest that this aspect of proof construction is optimally developed 

when students interact and engage with their peers and more knowing others in an 

environment which facilitates students’ access to their zones of proximal development 

(EZPD).  Students are empowered to make gains in this category because they are 

surrounded by peers and more knowing others from whose experience, creativity and 

knowledge they can benefit.   

Examining Maria’s journey, we observed her persistent difficulty with proof methods 

and logical reasoning (category L2) and the justification of deductions and conclusions 
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(category L3) in Episode 2.  She was also challenged in her inability to transfer the 

methods and ideas from previous proof components to subsequent components 

(category H2).  This might be due to the cognitive overload (cf. Moore, 1994) students 

experience as they face the combined challenge of new mathematical objects, unfamiliar 

proof methods and the challenge of logical reasoning and justification required in the 

proof construction process, all contained in one proof exercise.  These challenges place 

a heavy burden on the average student’s cognitive abilities and could hamper their 

ability to internalize all the myriad aspects of the learning taking place during the course 

of the proof construction efficiently.  This might be one reason that students battle to 

transfer methods and ideas from one proof or proof component to subsequent proof 

constructions.  Another possible reason for the frustration they experience in their 

struggles to improve their proof construction abilities could be that students often 

consult their peers, who have similar difficulties, and whose proof construction abilities 

in terms of the categories involved in the local and holistic aspects of proof construction 

are as undeveloped as their own.  For students to really be able to make strides in their 

development of these abilities, there has to be interaction and consultation with more 

knowing peers, lecturers and tutors (at least initially) in an environment where access to 

their ZPD is encouraged and facilitated.  This was shown to be possible in the small 

consultative groups.  The speed of Maria’s transformation was truly amazing, leading 

me to believe in the effectiveness of the process.  Her proof construction attempt in 

Episode 2 gave us a glimpse into how students really do battle with proof construction, 

and why it is so vital that they form working groups with other students with a range of 

capabilities.  Working with peers and more knowing others, students are able to make 

functional use of newly met terms, symbols and signs and proof techniques while being 

continuously prompted and questioned on clarification, reflection and justification.  I 

suggest that this accelerates their progress resulting in far less frustration.  

In Episode 4 we saw Maria’s vast improvement in her use and application of proof 

methods and reasoning processes as well as her appreciation of the need for justification 

of all statements and deductions.   Her use and application of terms and symbols in the 

proof construction process also appeared to be at concept level except for the newly met 

notion of the Cartesian product.  Her use and interpretation of this notion was quickly 

developed to concept level through her functional use of the notion of the Cartesian 
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product while interacting with all the participants and more knowing peers.  A vital 

factor promoting student’ development of proof construction is the opportunity offered 

to interact with one another while receiving scaffolding from peers and more knowing 

others in the EZPD.  In this interaction they develop their understanding of notions and 

definitions as well as logical reasoning processes and the ability to justify proof 

construction steps, through the functional use of terms, signs, symbols, definitions, 

proof methods and deductive reasoning processes and the practice of justification.    

Maria’s journey could be compared to children’s struggle when learning to walk for the 

first time (even though walking is not a cognitive ability).  The patient care and 

encouragement the child receives from parents and other adults can be likened to the 

support that students receive from peers and more knowing others in the consultative 

sessions.  The environment in the consultative sessions encouraged students to become 

active participants in the development of their proof construction abilities by facilitating 

access to their zones of proximal development and enabling the internalization of all the 

learning that is taking place with greater efficiency and speed.            

To conclude, in Chapter 7 we observed how the learning environment created in the 

consultative sessions enabled the two case study students’ development of proof 

construction abilities.  I propose that this was due to the facilitation of students’ access 

to their zones of proximal development and that this access allowed them to make 

functional use of newly met mathematical terms, symbols, signs and proof methods as 

well as deductive reasoning and justification processes.  It was this functional use which 

promoted their learning.         
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Chapter 8: Facilitating students’ construction of 

proof 

8.1 Introduction 
  

In this chapter I will present analysis and discussion aimed at addressing my third 

research question which is repeated below for ease of reference. 

Research Question 3 

Investigating the nature of the interactions in the consultative group to explore how 

students’ construction of proof may be facilitated: 

a) How can lecturers encourage and support students who are engaging with proof 

construction while participating in consultative group discussions, to become 

intellectually autonomous? 

b) What are the characteristics and modes of reasoning prevalent in students who seem 

to have the potential to become more knowing peers? 

To address these questions I will present an analysis and discussion of the nature of 

interactions taking place in the five episodes of consultative group sessions, in Section 

8.2.  The characteristics of the contributions and interactions of the lecturer and all 

participants have been analysed according to the categories (and their corresponding 

indicators) found in my analytical framework for analysis of student and teacher 

discourse found in Section 5.2.1.  This was done in order to allow the patterns which 

established the norms leading to the learning environment described in this study to be 

brought to light.  I searched for patterns of action by the lecturer as she encouraged and 

elicited students’ ideas and contributions and established the norms which supported 

students in developing their proof construction abilities and enabled them to become 

intellectually autonomous.  I have also tried to identify the characteristics and modes of 

reasoning of students who showed potential to become more knowing peers, and how 

these students could be empowered to develop this potential, through both their own 

endeavours and the opportunities available to them through the interaction with their 

peers and the lecturer in the consultative sessions.  I have also presented significant 
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examples (in episodes 1 to 5) of the actions and modes or patterns of reasoning of those 

students who have appeared to have developed the capacity to become intellectually 

autonomous and could be well be on their way to becoming more knowing peers.  

These findings are organized and summarized and presented in Section 8.3 as an overall 

discussion addressing my third research question.   

In the first session of the consultative group sessions (episodes 1 and 2) the lecturer 

played a leading role in prompting and eliciting students’ contributions and ideas 

towards the proof construction exercises attempted by the students on the board.  In the 

second session (episodes 3, 4 and 5) which occurred just a week after the first session, 

there was a marked decrease in the lecturer’s contributions, while those students who 

showed potential to become more knowing peers, assumed the roles of scaffolding and 

leading the mathematical discussions forward.  Table 8.1 below depicts the number of 

the lecturer’s transactive prompts, facilitative utterances and directive and didactive 

utterances in the 5 analysed episodes.  The table also shows the number of correct and 

incorrect contributions made by other students in their efforts to guide their peer who 

was attempting the proof construction exercise.  

As shown in Table 8.1 in episodes 1 and 2 which took place during the first of the 

consultative sessions, there were a large number of transactive prompts and facilitative 

utterances from the lecturer.  In episode 3 which took place in the second session we 

observe that the lecturer’s contributions dramatically dropped to zero.  Several more 

knowing peers adopted the transactive prompts and facilitative utterances which were 

previously contributed by the lecturer.  These students assumed the role and 

responsibilities of driving the proof construction sessions forward according to the 

norms and criteria established in the first session.  This pattern was repeated in episodes 

4 and 5 where there was a low incidence of lecturer contributions, other than the 

transactive prompts in Episode 5.   
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Table 8.1 The number of lecturer’s utterances and peer contributions in episodes in the 

first session and episodes in the second session  

Episode Lecturer’s utterances Other students’ contributions 

Transactive 

prompts 

Facilitative Directive/ 

Didactive 

Correct Incorrect 

First session 

1 18 5 6 32 8 

2 65 38 5 90 23 

Second session 

3 0 0 0 28 0 

4 3 2 1 4 6 

5 15 0 4 24 5 

8.2 Characteristics of interactions of lecturer and peers 

A brief analysis and description of the interactions of the lecturer and students in 

episodes 1 to 5 is given below.   

8.2.1 Characteristics of the interactions of lecturer and 

students in Episode 1 

Frank’s first attempt at proof construction occurred in episode 1, sub-episode 1.1.  In 

sub-episode 1.2 the lecturer made only one transactive request prompting reflection and 

critique.  This started a discussion where Frank’s incomplete interpretation and 

application of the notion of implication and the implication proof method as well as the 

newly met terms and symbols related to the proof construction was revealed.  Frank’s 

peers, Gary and Helen used simple every-day language to clarify the words ‘suppose’ 

and ‘imply’ and the implication symbol. 

Transactive requests from the lecturer occurred mostly in sub-episode 1.3, in which 

there was a total of 17.  Of these 8 were requests for clarification, 3 for strategy and 6 

for elaboration.  Requests for strategy prompted students’ thoughts and reasoning 

processes on the way forward in the proof construction process (for example lines 73 

and 75).  The lecturer asked for clarification and explanation of the meanings of newly 

met terms and clarification of definitions and proof methods such as those of the 
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implication and double implication.  These prompted students to offer their thoughts 

and ideas of these notions.  Whenever their contributions were helpful, transactive 

requests for clarification and elaboration prompted them to give further explanation (for 

example lines 69, 71 and 77).  In this manner, norms were established, encouraging 

students to reflect on strategy, and elaborate on those contributions which made sense 

and were logical.  Also by asking those students exhibiting pseudoconcept and concept 

level thought processes to elaborate and explain their reasoning, the lecturer encouraged 

the development of more knowing peers while the other students were made aware of 

these potential more knowing peers.  There were 5 facilitative utterances, in which the 

lecturer highlighted learning, encouraged helpful and appropriate contributions and 

confirmed and re-voiced correct contributions.  There were 4 directive utterances 

occurring towards the end of the proof construction attempt, where the lecturer gave 

corrective feedback on the proof construction (for example lines 80 and 84) and 2 

didactive utterances where the lecturer shared information on the definition of the 

implication and the proof method of the implication (for example lines 98 and 104).  

Whenever students made incorrect contributions which the lecturer felt would not lead 

to useful discussions, the lecturer used facilitative utterances to try to restructure the 

proof construction allowing and encouraging more correct ideas to emerge.  Directive 

contributions providing corrective feedback were made when incorrect ideas persisted 

(for example lines 80 and 84) or ideas that were totally incongruent with the meaning of 

mathematical objects were presented (for example lines 92 and 94).    

There were 32 correct contributions from students, most notable of which were from 

Helen, Joseph and Gary.  Helen (in lines 56 and 58) gave a correct interpretation of the 

notions of subset and set equality.  In lines 60, 62 and 64, Joseph confirmed this mode 

of thinking by giving a narrative example.  In lines 70, 72, 78 and 79, Gary gave his 

complex level/ pseudoconceptual understanding of the notions of the implication and 

double implication and when asked to elaborate, he explained well using an example to 

illustrate the distinction between the two mathematical objects.  It is interesting to 

observe that both Gary and Joseph who emerged as prominent more knowing peers in 

the group, used examples to illustrate mathematical objects and ideas such as the proof 

methods relevant to the proof construction. 
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Key contributions made by the lecturer in Episode 1   

The pattern of the lecturer’s contributions in Episode 1 is outlined below. 

• Transactive requests for strategy and clarification prompted students’ ideas and 

contributions for the way forward in the proof construction. 

• Transactive requests for clarification and elaboration prompted students who 

made helpful contributions that were at pseudoconcept or concept level to further 

explain their reasoning processes.  In this way the students were encouraged to 

elaborate on contributions which made sense and were logical.  This also 

encouraged the development and raised awareness of students who showed the 

potential to become more knowing peers. 

• Facilitative utterances highlighted learning and encouraged students’ proof 

construction attempts and confirmed correct and appropriate contributions. 

• Directive utterances providing corrective feedback were offered towards the end 

of the proof construction when incorrect ideas persisted or ideas which were 

incongruent with the correct meaning of mathematical objects were presented. 

• Didactive contributions offering clarification on the notion and proof method of 

the implication were presented towards the end of the proof construction after all 

participants had shared their views and contributions about these mathematical 

objects.  

  Key contributions made by students in Episode 1  

• Peers offered contributions to clarify proof methods and meanings of newly met 

terms and symbols using simple every-day language. 

• Peers offered contributions on strategy for the way forward in the proof 

construction process. 

• More knowing peers offered elaborations on the notions of subset, set equality, 

the implication and the double implication and made use of examples to 

illustrate these mathematical objects. 
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8.2.2 Characteristics of the interactions of lecturer and 

students in Episode 2 

A brief description and summary of the interactions in the sub-episodes of episode 2 is 

given below.  Sub-episodes 2.1 and 2.10 have been omitted.  Maria made her first proof 

construction attempt on her own in sub-episode 2.1.  In sub-episode 2.10 the lecturer 

clarified the notion of equivalence and explained in more detail that Maria now needed 

to prove the converse.  Sub-episodes 2.2 to 2.6 have been grouped together because 

various attempts were made to clarify and arrive at an understanding of the correct 

method for proving a theorem involving an implication in these five sub-episodes.  The 

lecturer’s contributions followed the same pattern in these sub-episodes: prompting 

students to give their ideas and contributions and reflect on and justify proof 

construction actions and eliciting elaboration and explanation from students who made 

correct or appropriate contributions while encouraging and confirming these 

contributions.  In sub-episode 2.7 Maria eventually arrived at the realization that she 

had to prove the equality of A and A∩B and here the method of proof of equality of sets 

was brought to light. 

Sub-episodes 2.2 to 2.6 

In the initial stages of episode 2, the lecturer prompted students to clarify and describe 

their reasoning processes on methods of proof and newly met mathematical objects by 

using transactive requests for clarification, reflection and justification (for example in 

lines 4, 12, 14, 34, 43, 45, 56, 58, 65 and 82).  In this way Maria’s peers were 

encouraged to offer their contributions.  The lecturer also made tranactive requests for 

reflection and strategy (for example in lines 17, 21, 37, 48 and 60) to Maria, confirming 

any correct ideas that she may have had and asking her to reflect on the way forward.  

As a result of these prompts Maria revealed her incorrect reasoning about the method of 

proof of an implication.  In sub-episodes 2.1 and 2.2 we observed that her method was 

similar to that of proving an identity or equality, and in sub-episode 2.4 her explanation 

of the proof method erroneously hinged on first proving the statement to the left of the 

implication was correct in order to claim that the statement to the right was true.  It was 

interesting to see that Joseph had the same incorrect idea of the method of proof of an 

implication.  In sub-episode 2.2 Christine questioned Maria prompting her to realize 
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that her reasoning and proof method might not be correct.  In sub-episode 2.3 Edgar 

offered contributions which were non-useful and trivial, de-railing the progress of proof 

construction until the lecturer made a transactive prompt requesting reflection and 

strategy for the way forward at the beginning of sub-episode 2.4.  

In sub-episode 2.4 Gary acted as a potential more knowing other giving the correct 

method of proof of an implication.  Transactive prompts and facilitative utterances from 

the lecturer encouraged him to elaborate on his ideas which he did in lines 61, 62 and 

67.  Initially even students such as Gary, who might have correct ideas about 

mathematical objects, definitions and proof methods were not very willing to elaborate 

on these.  The lecturer had to urge them to elaborate several times.  These students 

gradually became more confident in their own abilities and offered and elaborated on 

their contributions much more willingly.  In sub-episode 2.4 we observe the active 

participation of Maria, Edgar, Frank, Joseph, Gary (who made 9 correct contributions) 

and other students who were not identified.  This showed a very high level of 

participation by Maria’s peers who were all involved in giving their thoughts and 

reasoning processes of the implication proof method. 

Even after Gary’s thorough explanation which was highlighted and confirmed by the 

lecturer at the end of sub-episode 2.4, Maria, in sub-episode 2.5, was still unsure 

whether she should prove the statement on the left or on the right of the implication.  

Maria’s poor grasp of words such as ‘assume’ and ‘imply’ could be responsible for her 

continued misunderstanding of the proof method.  Helen (in line 78) told her in brief 

everyday language that she should prove “the second intersection b) part”.  The lecturer 

continued giving her transactive prompts asking for clarification, allowing the students 

to make their contributions and confirmed and encouraged correct ideas and 

contributions.  In this sub-episode students actively taking part in the discussions were 

Maria, Helen (making 2 correct contributions) and Edgar (making 1 incorrect 

contribution). 

In sub-episode 2.6 Laura raised a question on the notions of intersection and union and 

the majority of the students got involved in the ensuing discussion.  When Gary offered 

his complex level description of the notion of union, the lecturer asked him to illustrate 

the notion using an example of Venn diagrams on the board.  Other students such as 
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Christine and Edgar gave further examples on the clarification of these mathematical 

objects.  Edgar’s description and example showed concept level understanding of the 

notion of union.  The lecturer confirmed this mode of reasoning and highlighted the 

error of the other examples.  In sub-episode 2.6 the students actively involved in the 

discourse were: Laura, Edgar, Gary, Kenny, Helen, Christine, Maria, Joseph and 

Bonnie.  This shows the high level of student participation and was indicative that the 

attention of the majority of the students had been captured through the use of examples 

illustrating mathematical objects. 

Key contributions made by the lecturer in sub-episode 2.2 to 2.6 

The pattern of contributions from the lecturer from sub-episode 2.2 through to sub-

episode 2.6, is outlined below. 

• Transactive requests for clarification, explanation, reflection and illustration 

with examples prompted students to reflect and offer a strategy on the way 

forward.  This was repeated until one of the students made a contribution that 

could (when the idea was at concept level or at pseudoconcept level) lead the 

mathematical discussion forward.   

• Transactive requests for elaboration prompted students to pursue correct ideas 

(either pseudoconcept level or concept level) whenever these were offered.   

• Once the correct understanding of mathematical objects or definitions or proof 

methods (as the case might be) had been reached, the lecturer highlighted this 

understanding by using facilitative utterances confirming and re-voicing these 

contributions.  

• A potential more knowing peer was asked to present what had transpired in the 

proof construction thus far.  The presentation of a completed component of the 

proof or of the whole proof by one of the more knowing students seemed to be 

an effective means of ensuring that all students moved forward together in 

developing their proof construction abilities.   

Key contributions made by students in sub-episode 2.2 to 2.6 

• Peers questioned Maria’s reasoning and proof method. 
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• More knowing peers described and elaborated on the proof method of an 

implication. 

• More knowing peers used simple every-day language to clarify the proof method 

and which statement had to be proved. 

• Peers offered clarification of the notions of union and intersection using 

examples. 

Sub-episode 2.7 

In sub-episode 2.7 the lecturer continued with transactive prompts for clarification, 

reflection and strategy in an attempt to bring to light the correct proof method of 

showing equality of sets (lines 124, 126, 128,130, 134, 136, 138, 141, 143 and 145).  

She also referred to the definition of set equality implicitly guiding students to realize 

that a closer scrutiny of the definition would allow them to arrive at the correct method 

of proof.  After much prompting, the definition of set equality and the proof method 

were brought to light.  Facilitative contributions from the lecturer confirmed the 

definition and its importance in finding the proof method and highlighted all the 

learning that had taken place (149 and 151).  The students were then prompted (through 

the transactive prompts for clarification and strategy in line 156) to apply the proof 

method to the context of the problem on which they were working.  In this sub-episode 

the students actively engaged in the discourse were Joseph, Maria, Edgar, Helen and 

Gary who all showed a very high level of participation.  There were a total of 8 correct 

contributions and 3 incorrect contributions from these students.  

Key contributions made by the lecturer in sub-episode 2.7 

The lecturer makes the following contributions: 

• Transactive requests for reflection, strategy and reflection prompted students to 

work towards bringing to light the correct proof method of showing equality of 

sets. 

• References made to the definition of set equality and transactive prompts for 

reflection and strategy urged students to extract the correct proof method from 

the definition. 
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• Facilitative contributions confirmed the importance of definitions and 

highlighted all the learning that had taken place. 

• A transactive request for clarification and strategy prompted students to apply 

the proof method that has been brought to light to the context of the problem on 

which they were working. 

Key contributions made by students in sub-episode 2.7 

• Students engaged with the definition of the notion of set equality to arrive at the 

correct proof method and applied this method to the particular context. 

Sub-episode 2.8 

In this sub-episode the lecturer made a facilitative contribution (in line 163) 

encouraging and praising students for having been able to reach the proof method of 

showing equality of sets through their correct interpretation and use of the definition.   

Maria now continued with the proof.  After beginning the proof correctly, in line 177 

she assumed the statement that she needed to prove (line 177).  At this point the lecturer 

made a transactive prompt for critique and justification and repeated the question: “Is 

that true?” twice (line 178).  She also made a directive contribution (in line 178) trying 

to emphasize to Maria and the other students the importance of justifying the deductions 

that one has made.  When Maria again seemed to revert to complex level reasoning 

about the proof method she was using, the lecturer made facilitative contributions (lines 

188 and 194) and a transactive prompt requesting strategy (line 190) repeatedly drawing 

Maria’s attention to what she needed to prove.  The lecturer and other students such as 

Joseph now helped Maria to make the correct deductions at every step bringing one 

component of the proof to conclusion (lines 196 to 206).   

The lecturer then asked Christine as a potential more knowing other to go up to the 

board and go through the proof construction of the component that had just been 

completed clarifying each step and showing exactly how the conclusion had been 

attained.  Christine did this proof presentation very well (line 229).  She explained and 

used newly met mathematical objects with ease, identified what needed to be shown in 

the proof, established the connection between this and statements made in the proof and 

justified each deduction and conclusion.  She appeared to have reached concept level 
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use and interpretation of all the terms and proof methods relevant to the proof 

construction and communicated this to her peers in a very able manner.   

Contributions from the lecturer and other students reached their highest levels in this 

sub-episode, with 13 transactive prompts and 15 facilitative utterances from the lecturer 

and 26 correct and 4 incorrect contributions from students.     

Key contributions made by the lecturer in sub-episode 2.8 

The lecturer made the following significant contributions in sub-episode 2.8: 

• Facilitative contributions encouraged students to extract the proof method of 

showing equality of sets from the definition of set equality. 

• A transactive prompt for critique and justification repeating the question: “Is that 

true?” emphasized the importance of justifying the deductions that one made. 

• Facilitative contributions and transactive requests for strategy repeatedly drew 

Maria’s attention to what she needed to prove. 

• Transactive requests prompted a more knowing peer to go through the proof 

construction which had just been done to clarify each step and demonstrate in 

detail exactly how the conclusion had been attained.   

Key contributions made by students in sub-episode 2.8 

• More knowing peers (particularly Joseph) responded to the lecturer’s transactive 

requests for strategy, clarification and justification by offering contributions on 

the correct deductions for the way forward.  These students showed a good grasp 

of the proof method and the necessary strategic knowledge of how to use the 

assumption and the correct proof method to proceed with the proof construction. 

• Christine’s proof presentation delivered with conviction highlighted the 

assumption and the statement to be proved, explained the logical reasoning 

behind each step and clearly provided the necessary justification for each step in 

the proof construction. 

Sub-episode 2.9 

At the beginning of sub-episode 2.9 Maria identified the correct plan of action for the 

first time (line 245).  The lecturer made facilitative contributions encouraging and 
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confirming the plan (line 246).  Maria now revealed that she had not been able to 

transfer the method of proof of showing that one set is a subset of another set to this 

component of the proof (line 249).  Helen (in lines 250 and 252) quickly interjected 

giving Maria short simple advice in every-day language.  Maria showed that she had 

been unable to transfer the ideas discussed in the previous component to this component 

when she used the statement that she needed to prove as an assumption once again (line 

261).  The lecturer then made a directive contribution providing immediate feedback on 

this incorrect notion (line 262).  She prompted Maria to remember and use the 

assumption that had been made.  Through requests for reflection and strategy the 

lecturer (lines 262, 264, 266 and 268) and other students (in lines 269, 273, 275 and 

280) took Maria through to the completion of the next component of the proof.   

In this sub-episode Helen, Christine, Joseph and Frank actively participated in the 

discussions with Maria again indicating a very high level of continuous interaction and 

participation.  The lecturer contributed 3 transactive prompts, 7 facilitative utterances 

and 4 directive utterances and there were 19 correct contributions from Maria’s peers.   

Key contributions made by the lecturer in sub-episode 2.9 

The lecturer made the following significant contributions in this sub-episode: 

• Facilitative contributions encouraged students and confirmed the correct plan of 

action. 

• A directive contribution provided immediate feedback on the incorrect action of 

using the statement that one needed to prove as an assumption. 

• Transactive requests prompted Maria to use the assumption. 

• Transactive requests prompted Maria and other students to reflect on strategy for 

taking the proof forward. 

Key contributions made by students in sub-episode 2.9 

• Peers offered contributions in simple every-day language on the proof method of 

showing that one set is a subset of another. 
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• Peers offered suggestions on the correct strategy for the way forward in the 

proof construction and made contributions of correct deductions which helped 

Maria to make progress in the proof construction. 

Sub-episode 2.11 

In sub-episode 2.11 Maria showed a marked change in her confidence and ability.  She 

identified the correct plan of action for the final component of the proof (line 310) and 

showed a vastly improved ability to use the implication proof method.  After identifying 

the first correct step, she made an (unjustified) deduction which would lead to the 

desired conclusion of the proof in lines 324 and 326.  She mentioned an appropriate 

assumption (in line 326) but did not appear to know how to use this assumption to make 

the correct deductions.  The lecturer asked her through transactive prompts requesting 

clarification and explanation (lines 325, 327, 331, 333, 337 and 339) to reflect on her 

actions and follow logical reasoning (line 339, 343, 345, 347 and 350).  The lecturer 

also made facilitative contributions attempting to restructure proof writing and 

highlighting assumptions made at the beginning of the proof construction (line 335).  

Other students participated and came to Maria’s help in identifying the correct 

deduction to be made.  Once the correct deduction had been identified, the lecturer 

again requested the students to reflect on their reasoning (line 363) and made facilitative 

contributions confirming and highlighting what had been learned (lines 352, 357, 359, 

361, 365 and 367).  Maria then successfully brought the final component of the proof to 

conclusion.  The lecturer made a total of 12 transactive prompts and 7 facilitative 

contributions.  Contributions from other students totalled 8 correct contributions from 

Christine, Gary, Edgar and other unidentified students and 5 incorrect contributions 

from Frank.  This once again indicated a very high level of participation.  

Key contributions made by the lecturer in sub-episode 2.11 

The lecturer made the following significant contributions in this sub-episode: 

• Repeated transactive requests for clarification and explanation and reflection on 

her reasoning processes prompted Maria to reflect on her actions and follow 

logical reasoning. 
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• Facilitative contributions prompted students to restructure proof writing and 

highlight assumptions. 

• Transactive requests prompted all participants to reflect on their reasoning. 

• Facilitative contributions confirmed and highlighted what had been learned. 

Key contributions made by students in sub-episode 2.11 

• Peers helped identify the correct assumption to be used in the proof construction. 

• Peers helped provide the correct deductions to be made when Maria had 

difficulty proceeding with proof construction steps.  

Summary of lecturer’s contributions in episode 2 

As seen in table 8.1 there were a total of 65 transactive prompts and 38 facilitative 

utterances in episode 2.  Patterns of the lecturer’s contributions in episode 2 saw the 

lecturer initially drive discussions forward through transactive prompts to all the 

participants asking for clarification and explanation.  There were also continuous 

requests to the student constructing the proof to reflect on proof construction actions 

and offer a strategy for the way forward.  The lecturer did not at any stage provide the 

answers but continuously prompted all participants to offer their thoughts and 

reasoning.  The lecturer also encouraged the use of examples to clarify and illustrate 

notions related to the proof construction.  When pseudoconcept or concept level 

contributions which could take the proof construction forward were made, the lecturer 

pursued these with transactive prompts for elaboration and explanation.  Once correct 

understanding of mathematical objects, ideas or proof methods had been attained the 

lecturer solidified this understanding with facilitative utterances confirming, re-voicing 

and highlighting the learning in process.  Once a module or component of the proof 

construction was brought to a conclusion, the lecturer asked potential more knowing 

peers to go through the proof construction and elaborate on this in detail.   

Further on in the process of proof construction, reference was made to the definition of 

a mathematical object, and transactive prompts for reflection and strategy which guided 

and prompted students to use the definition to arrive at the correct method of proof.  The 

lecturer continued using transactive prompts for clarification and strategy to prompt 
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students to use and apply the definition and proof method discovered to the particular 

context of the problem.         

Once the proof methods relevant to the proof construction had been identified and 

clarified, then errors on the justification of deductions, and the logical reasoning process 

were increasingly evident.  The lecturer used transactive prompts requesting critique 

and justification.  She repeatedly asked the student doing the proof construction to 

reflect on the truth or correctness of deductions and drew attention to the assumptions 

and the goal of the proof construction.  High levels of peer participation guided the 

student doing the proof construction at every step, through to the conclusion of another 

component.  At the completion of the next component of the proof, the lecturer asked a 

more knowing peer to present the proof and this was done in a very capable manner.   

The error of assuming the statement that was supposed to be proved was repeated 

further in the proof construction process and the lecturer made directive contributions 

providing immediate feedback and reminding the students to make use of the 

assumption.   Transactive requests for reflection and strategy from the lecturer and step 

by step contributions from peers helped bring the next component of the proof to 

completion.   

Maria’s proof construction abilities improved greatly in the final component of the 

proof construction but even though Maria was following the correct proof method she 

still had difficulty in making the correct deduction which would drive the proof 

construction forward.  The lecturer urged Maria through transactive requests to reflect, 

clarify, explain and use logical reasoning and drew attention to the assumption made.  

Maria’s peers participated in guiding Maria to make the correct deductions and 

complete the proof.  

8.2.3 Characteristics of the interactions of lecturer and 

students in Episode 3 

In episode 3 Edgar attempted the proof of the proposition: (A∪∪∪∪B) × C = (A×C) ∪∪∪∪ 

(B×C).  A successful proof construction of this proposition required knowledge of the 

proof method of proving equality of sets as well as knowledge of the precise definitions 

of union, subset and the Cartesian product, and the ability to use these definitions in the 



235 

 

logical reasoning and justification of each step in the proof.  The method of proof of the 

equality of sets appeared to be well understood after all the practice in the first session 

and it was only the newly met notion of the Cartesian product of sets that posed a 

challenge to Edgar and hampered the proof construction.  

In this episode Gary and Joseph assumed the same transactive prompts and facilitative 

utterances which the lecturer had contributed to scaffold students’ thinking processes in 

the first session (in episodes 1 and 2).  They were instrumental in guiding Edgar to 

realize his incorrect ideas about the use of the notions of the Cartesian product and 

ordered pairs.  By using transactive prompts requesting reflection, clarification, logical 

reasoning and justification which now appeared to have become well established habits 

they took over the scaffolding altogether.  Gary (in lines 18 to 34 shown below) did this 

by repeatedly asking Edgar to reflect on and justify his actions, and by referring to the 

definition of the Cartesian product and elaborating on this to apply to the particular 

context.  Joseph (lines 39 to 47 shown below) on the other hand uncovered the root of 

the misconception and elaborated on this to enable Edgar to make the transition from 

complex level thinking toward concept level thinking.  

Illustrative pattern of Gary’s guidance and scaffolding 

Edgar started the proof correctly in line 3 of sub-episode 3.1 by taking this proof 

construction action: let (x, y) ∈ (A∪B) × C.  However he then made the incorrect 

deduction: ⇒ (x, y) ∈ (A∪B) and (x, y) ∈ C.  In lines 10 and 12 Gary suggested 

selecting a statement at the beginning of the proof which clarified which component of 

the proof construction Edgar would be attempting first which would add logic to the 

proof construction process.  He then continued in lines 18 to 34 shown below to help 

Edgar to realize the error of his deduction by asking him to reflect on and justify his 

actions.  Gary explicitly referred to the definition of the Cartesian product (lines 24, 26 

and 28) explaining it in simpler terms and tried to guide Edgar to apply this definition to 

the particular context (lines 32 and 34).   

[18] Gary:  Another thing.  You say let x and y be an element of that, right? 

[19] Edgar:  Yes 

[20] Gary:  Then after that you say it implies that x, y is an element of A union B? 

[21] Edgar:  Yes 
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[22] Gary:  Why do you say that? 

[23] Edgar: It’s an element of….  Oh, agiri if you look at this is an element of the whole of this, isn’t it?  

[points to  (A∪B) × C]  So now, um, this, it implies that this one [points to (x, y) ] is an element of this 

one [points to  (A∪B) ] and again is an element of C – both of them x and y. 

[24] Gary: Let’s go back to our actual definition [referring to(x , y)∊ (A×B)]. 

[25] Edgar: The definition, ja. 

[26] Gary: It says x is, x comes from A 

[27] Edgar: Mmm 

[28] Gary: And y will come from B 

[29] Edgar: Mmm 

[30] Gary: while working with Cartesian products, right? 

[31] Edgar: Mmm 

[32] Gary: So right now we’re working with Cartesian products you tell us that A union B, it means that x 

must come from A union B. 

[33] Edgar: x must come from x union B? 

[34] Gary:  x should come from A union B.  And then y comes from C. 

 

Illustrative pattern of Joseph’s guidance and scaffolding 

After Gary’s guidance, Edgar stubbornly held on to his erroneous reasoning as shown in 

line 35 below. 

[35] Edgar: Before, before you do that I think, I think according to my understanding I don’t know, 

according to my understanding I think I have to…  This one [points to:  let (x, y) ∈ (A∪B) × C ]  If the…  

this one  [points to (x, y) ] is an element of both these [underlines (A∪B) ×C ] isn’t it? 

Now Joseph (in lines 39 to 47) offered his insight (Edgar’s association of the notion of 

Cartesian product with the notion of intersection) on the cause of Edgar’s erroneous 

reasoning and elaborated on this, guiding Edgar to realize the correct deduction (in line 

48) as seen below. 

[39] Joseph: You can say it’s an element of both A∪B and C if we are talking of an intersection. 

[40] Edgar: If we are talking of an intersection? 

[41] Joseph: Ja.  And if that cross wasn’t there A union B intersection C 

[42] Edgar: Ok 

[43] Joseph: So in this case we are talking of cross product. 

[44] Edgar: Yes 

[45] Joseph: It means the element x belongs to the set that is before the cross. 
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[46] Edgar: Yes 

[47] Joseph: And then y belongs to the set that is after the cross.  So in this case he is right in saying x is 

an element of A union B. 

[48] Edgar: Ok.  I was confused.  Thanks a lot for that [erases :  ⇒ (x, y) ∈ (A∪B) and (x, y) ∈ C ] Ok 

[writes:   ⇒ x ∈ (A∪B) and y ∈ C ] Is that what you are saying? So this implies that x is an element of A 

or x is an element of B and y an element of C.  Ok [writes:  ⇒ x∈A or x∈B and y∈C ] 

As a result of all the scaffolding Edgar seemed to have an increased awareness and 

appeared to now “know” the correct usage of these terms, symbols and signs.  However 

as he continued the proof, he repeatedly made mistakes that showed his incorrect use 

and interpretation of the notion of the Cartesian product and its elements, the ordered 

pairs.  When his peers asked him to reflect on and justify his proof construction steps, 

he quickly corrected these mistakes indicating that he was developing an understanding 

of these notions and hopefully progressing from complex thinking towards concept 

level thinking.   

Once Edgar correctly concluded the proof construction in sub-episode 3.2, Joseph drew 

attention to other errors made (in proof construction steps leading to the conclusion) 

possibly as a result of Edgar’s association of the notion of the Cartesian product with 

the word ‘and’ contained in its definition.  Joseph did this by giving several other 

examples of similar errors made with other mathematical objects using the same mode 

of reasoning.  Joseph’s use of examples to illustrate mathematical objects and their 

correct usage in the course of proof construction was another of the characteristics of 

these valuable more knowing peers.  This is outlined below.   

Joseph’s use of examples to illustrate mathematical objects and their usage in 

proof construction 

After the deduction obtained in line 100: “⇒ x∈A or x∈B and y∈C”, Edgar made the 

following deduction in line 104: “⇒ x∈(A∪B)× y∈C”.  It was possible that Edgar was 

associating the notion of the Cartesian product (and its symbol) with the word ‘and’ 

contained in its definition and surmised that the two were interchangeable.  After Edgar 

had concluded the proof construction Joseph prompted Edgar through transactive 

requests for clarification and used examples to clarify misconceptions about the usage 
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of terms (lines 105 to 113).  In this way he drew attention to the root cause of the error 

(in line 104).   

[105] Joseph: I’ve got a question 

[106] Edgar: Yes 

[107] Joseph: Can you say suppose you have x is an element of A intersect B 

[108] Edgar: For example? 

[109] Joseph: For example, ja.  From there can you say x is an element of A, write the intersection sign x 

is an element of B? 

[110] Edgar: You come and… 

[111] Joseph: [goes to the board]  Suppose you have x is an element of A intersect B 

[writes:  x ∈ (A∩B) ]  You say it says to us that x is an element of A intersect x is an element of B [writes: 

⇒ x∈A ∩ x∈B  ]  Because I think this intersection [points to:  x ∈ (A∩B) ] tells us that we are thinking of 

one set 

[112] Edgar: Ok 

[113] Joseph: And can we say that?  Can we move from there to there?  [points to  x ∈ (A∩B)  ⇒ x∈A ∩ 

x∈B ]  Why I’m asking this, I see this here [underlines: ⇒ x∈ (A∪B) ×  y∈C ]  So I’m happy that we 

came across this because I’m also getting confused.  Can we say this? [points to x ∈ (A∩B)  ⇒ x∈A ∩ 

x∈B ] Or even can we say x being an element of A union B implies that x is an element of A or x is an 

element of B?  [writes:  x ∈ (A∪B)  ⇒ x∈A ∪ x∈B  ]  Can we say? 

The correction was then made: that is ⇒ x∈ (A∪B) × y∈C was changed to ⇒ x∈ 

(A∪B) and y∈C.   

 

Key contributions made by students in episode 3 

In episode 3 which occurred in the second consultative group session, the transactive 

prompts and facilitative utterances which previously characterized the lecturer’s 

contributions in the first session seemed to have now become well established habits 

especially in the more knowing students (possibly through the use of activities such as 

imitation).  They showed their ability to guide Edgar and provided the much needed 

scaffolding, successfully bringing the proof to completion without a single word from 

the lecturer.  It was interesting that Gary and Joseph assumed the responsibility of 

guiding Edgar and acted as more knowing others using two very different but 

complementary styles.   
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• Gary used transactive prompts that asked the student to think and reflect on his 

actions.  He also used the definition of the Cartesian product and elaborated on it 

and tried to show how one could apply the knowledge of the definition to the 

particular situation.  In this way he encouraged the student to arrive at the 

correct solution or make the required correction himself.   

• Joseph on the other hand, dug deeper to find the cause of the student’s difficulty 

or misconception and by making the reason for the student’s error apparent, tried 

to guide and ensure that the student really understood and would not make the 

same mistake again.  He also referred to the definition of the Cartesian product 

previously referred to by Gary and used every-day language to interpret this 

definition and show how it could be applied.   

Gary tried to drive the student to self-realization while Joseph revealed the essence of 

the student’s error, and guided the student’s development in this way.  Both methods 

have their merits but it appeared that Edgar responded more positively or was more 

affected by Joseph’s insight.  For example in line 48, Edgar seemed to realize his error 

at last, after Joseph’s explanations.  We cannot however really distinguish which 

method was better as all three students were learning from each other in the EZPD, so it 

was very possible that both Joseph’s explanation and Edgar’s realization were also the 

result of Gary’s earlier prompts for reflection and elaboration and his references to the 

definition and his explanation of the it.  

In the course of this proof construction process, Gary made 14 contributions in the form 

of transactive requests for reflection, clarification and justification as well as making 

reference to and explaining definitions.  Joseph also made 14 contributions in total and 

these included explaining definitions, pinpointing the cause of misconceptions and 

using examples to illustrate mathematical objects.  The lecturer’s role had receded so 

much into the background at this juncture that she did not make a single contribution.  

In fact, the other students (mostly Gary and Joseph in this case) seemed to have made 

the transactive prompts for reflection, justification and strategy their own.  This was a 

surprising and remarkably fast transition as this was only the second time that the 

students had been together and it was very encouraging to see them develop attitudes of 

questioning and making certain of the truth of statements and deductions, as well as 
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referring to the definition of the Cartesian Product and ensuring that it was used and 

applied correctly.  

8.2.4 Characteristics of the interactions of lecturer and 

students in Episode 4 

In episode 4 Maria showed vast improvement in the areas of proof construction with 

which she had significant difficulty in episode 2.  She showed great improvement 

particularly in her use and interpretation of proof methods and the logical reasoning 

processes relevant to the proof and in her appreciation of the need for justification of all 

assertions and deductions.  Initially (in sub-episode 4.1) she also applied the notion of 

the Cartesian product correctly and completed the first component of the proof with no 

errors.  In sub-episode 4.1 the only contributions from Maria’s peers were to point out 

writing errors.  However in sub-episode 4.2 when Christine questioned whether the 

Cartesian product symbol could be replaced by the intersection symbol, Maria displayed 

an incomplete understanding of the notion of the Cartesian product and was unable to 

explain the distinction between the notions of intersection and the Cartesian product.  

Joseph then contributed by giving his concept level reasoning of the distinction between 

the notions of the Cartesian product and intersection.  He explained the definition in 

simple every-day language.  The lecturer used facilitative contributions confirming and 

re-voicing Joseph’s contributions and transactive prompts requesting clarification and 

elaboration.  Presumably as a result of her functional use of the Cartesian product while 

she engaged in the proof construction, and the scaffolding from her peers, Maria’s 

interpretation of the mathematical object developed.  She then went on to complete the 

second component of the proof in sub-episode 4.3 showing concept level usage and 

interpretation of the Cartesian product as she now ably explained its use and meaning 

and even referred to the definition of the mathematical object in her explanation. 

The lecturer’s contributions in this episode were again minimal and served primarily to 

confirm appropriate contributions and request elaboration on these contributions from 

more knowing peers. 
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Key contributions by the lecturer in Episode 4 

• Transactive requests prompted clarification and elaboration from the student 

doing the proof construction and her peers. 

• Facilitative contributions confirmed correct ideas and highlighted 

misconceptions and the learning taking place. 

• Didactive contributions referred to the definition of the Cartesian product and 

confirmed Joseph’s interpretation of this notion and highlighted the distinction 

between the notions of the Cartesian product and the intersection. 

Key contributions by students in Episode 4 

• Joseph’s insightful contributions helped to clarify the interpretation of the 

definition of the Cartesian product and pinpointed distinctions between the 

notions of the Cartesian product and the intersection.  

8.2.5 Characteristics of the interactions of lecturer and 

students in Episode 5 

In the initial stages of Episode 5 while Frank was attempting the proof construction of 

the first component of the proof of the proposition: A ⊆ B ⇔ P(A) ⊆ P(B), his more 

knowing peers (Gary and Joseph) who had previously (in Episodes 3 and 4) taken over 

the responsibility of scaffolding and leading the mathematical discussions forward, 

seemed to be trying to build their own understanding of the newly met notion of the 

power set.  The main challenge the students had when working with power sets was that 

of realizing that the power set of A (for example) was a set containing all of the subsets 

of the set A which were themselves sets.  Thus contrary to elements of a simple set 

being single elements such as x, each element of a power set is a set.  Frank’s proof 

construction attempt in which he used and applied the notion of the power set correctly 

was a good opportunity for the other participants who might have been uncertain about 

the application of this mathematical object to build up their understanding and deepen 

it.     

Possibly through their earnest inquiry and reflection on the definition of the 

mathematical object as they made functional use of the power set and through their 
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interaction with their peers and the lecturer, they were able to make gains in their 

understanding and resume their roles as more knowing peers in sub-episode 5.3 when 

Frank struggled to complete the proof of the second component of the proof.  This is 

discussed in more detail below. 

Sub-episode 5.1 

In sub-episode 5.1 Frank started the first component of the proof construction and 

completed this proof construction without any errors.  He displayed concept level usage 

of the proof methods of the double implication, implication and showing that one set is 

a subset of another as well as the logical reasoning process involved in the proof 

construction and showed a good appreciation for the need of justification of each 

deduction.   His proof construction also showed correct interpretation and use of the 

notion of the power set and its definition.  There were just two transactive prompts from 

the lecturer in this sub-episode urging Frank (who was silent while writing on the board 

throughout the proof construction attempt) to elaborate, explain and clarify his 

reasoning in the proof construction process. 

In this sub-episode both Gary and Joseph who acted as more knowing others in episodes 

3 and 4 tried to come to grips with the newly met notion of the power set, building their 

understanding as they made functional use of the newly met term while interacting with 

their peers (requesting clarification and explanation) and reflecting (on Frank’s proof 

construction attempt) in the EZPD.  In lines 8, 10, 14, 16, 18, 21 and 23, we saw them 

questioning and reflecting on Frank’s responses and implicitly on the definition of the 

power set as they tried to develop their understanding.  Maria (line 24) was also 

participating in the EZPD and seemed to have a good understanding of the newly met 

mathematical object.      

Students reflecting on mathematical objects and definitions during the proof 

presentation   

In sub-episode 5.1, Frank’s peers including Gary and Joseph tried to build up their 

understanding of the notion of the power set by reflecting on Frank’s proof construction 

actions and requesting clarification and explanation.  I have included part of their 

interaction (from lines 8 to 21) which showed them using the same transactive prompts 

for clarification and explanation as the lecturer had used in earlier episodes, on aspects 
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of the power set and its elements and then making contributions of their own.   Their 

actions and contributions could also possibly be as a result of imitation of the modes of 

reasoning and questioning the lecturer had used previously.  

[8] Gary: So in your case X is an element? 

[9] Frank: Yes, it’s an element… in, of the power set, but it’s a subset of… 

[10] Gary: You create then your capital letter X – where is it? 

[11] Frank: Oh, my capital letter X? 

[12] Gary: Ja 

[13] Frank: This one? 

[14] Gary: What does it represent? 

[15] Frank: When you, when you… when you are talking in terms of power set we want to make a 

variable to be an element of a power set, we must make it in a capital letter.  You understand?  You must 

not make it a… 

[16] Joseph: You are saying X is a subset of A? 

[17] Frank: Yes 

[18] Joseph: Meaning that when you talk of power sets we say it consists of sets, a power set of A which 

means it consists of all possible sets of 

[19] Frank and Edgar: A 

[20] Frank: yes 

[21] Joseph: Now you can’t say X is in itself is an element of… you must say X is a subset since a power 

set consists of sets. 

[22] Frank: Oh, you want me to say that X is a subset of this?  [points to  let X ∈P(A) ⇒ X ⊆ A ]   

Oh, here we must change this element to a subset? 

[23] Joseph: Of course! Power sets consist of subsets. 

[24] Maria: I think since a power set consists of sets and then I can say that X is an element of the power 

set of A it means that X is contained in the power set of A, not X being a subset of the power set of A, I 

think. 

Gary and Joseph’s transactive questions seemed to have progressed to a higher level of 

sophistication and their yearning to reach better understanding was obvious.  I suggest 

that they themselves were now acting as their own guides, rather than relying on the 

lecturer or their peers.  They seemed to have assumed the responsibility for developing 

their own understanding by examining the definition of the power set and reflecting on 

it (for example in lines 8, 10, 14, 16, 18, 21 and 23).  They earnestly tried to reach a 

higher level of understanding while questioning and clarifying the mathematical object 

not only for themselves, but for the other students as well.  I believe that this was 
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another indication of students becoming ‘intellectually autonomous’ as referred to by 

Yackel and Cobb (1996). 

Sub-episode 5.2 

In sub-episode 5.2 Joseph’s quest for further clarification of the notion of the power set 

and its elements led him to illustrate this notion using an example (line 26).  Using 

examples to illustrate and clarify mathematical objects had become one of his well-

established habits.  As the notion of the power set was very new, Joseph did not have a 

large repertoire of useful examples to use or generate.  He drew the Venn diagram of the 

power set of a set A and tried to populate it without first depicting the set A and its 

elements.  The difficulty that Joseph had in generating a useful example which would 

help him and others to understand the notion of the power set more completely was one 

of the difficulties identified by Moore (1994).  He noted that although students valued 

using examples to help them understand mathematical objects and build their images of 

these objects, this was sometimes hindered by their limited experience in the particular 

mathematical field (cf. Section 2.2.1).   

Realising that the Joseph’s example was not that helpful and that the notion could be 

illustrated more clearly, the lecturer did another example (in line 41).  This very simple 

example depicted the set A (shown having two elements: 1 and 2) and its corresponding 

power set using Venn diagrams, in the hope that this would help the students to see the 

connection between the elements of a set and the elements of its power set, and further 

clarify the mathematical object.  The only contribution from the lecturer in this sub-

episode was this didactive one illustrating the notion of the power set with an example. 

Sub-episode 5.3 

In sub-episode 5.3 Frank began the proof of the second component of the proof 

construction: P(A) ⊆ P(B)⟹ A ⊆ B.  Following the correct method of proof of an 

implication, he (in line 47) chose an element in the set A: “let {x} ∈ A”.  However this 

choice was incorrect as this would be a subset, and not an element of the set A.  The 

lecturer tried to guide the proof construction through transcative prompts for reflection, 

strategy and justification (lines 48, 52, 56 and 59)  and directive contributions (line 50, 

54 and 57) reminding Frank that he was choosing an element in the set A which was 

simply a set.   
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Probably as a result of their functional use of the power set while reflecting on the 

correct proof construction of the first component of the proof attempted by Frank in 

sub-episode 5.1 and the interaction with their peers and the lecturer in the EZPD, Gary 

and Joseph’s understanding of the notion of the power set had advanced very swiftly.  

They now made constructive contributions towards the appropriate strategy for proof 

construction and determined the correct deductions and plan of action (lines 61, 62 and 

63).  They appeared to have reached concept level interpretation and use of the notion of 

the power set and resumed their roles as more knowing peers.  The lecturer asked Frank 

to re-do (on the board) the example which had previously been done in order to shed 

clarity on the suggestions made by Gary and Joseph (line 64).  She asked Frank to 

reflect on the example for inspiration on the way forward (lines 74 and 76).  When 

Frank still showed signs of uncertainty, Joseph went up and completed the second 

component of the proof construction on the board correctly (line 77).  Presumably in an 

attempt to remove Frank’s uncertainty and confusion, he also altered the example on the 

board slightly (line 81) improving it to clarify the proof construction steps of this 

component even further. 

It was very interesting to observe that although Gary and Joseph were not at concept 

level usage and interpretation of the notion of the power set in sub-episode 5.1, they 

succeeded in improving their understanding in a very short space of time and could help 

their peers with the proof construction in sub-episode 5.3.  They were able to do this 

presumably through their earnest engagement and reflection, making functional use of 

the mathematical object and its definition while engaging with their peers in the group 

discussion.  I argue that this shows the effectiveness of the EZPD in propelling the 

students’ understanding of the mathematical objects and processes involved in the proof 

construction forward and having a very positive impact on their abilities in proof 

construction.      

Key interactions of the lecturer in Episode 5 

• Transactive requests prompted students to reflect, offer proof construction 

strategy and provide justification for deductions.  

• Directive contributions provided guidance on the proof construction process.  
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• A didactive contribution offered a more helpful example to illustrate the newly 

met notion of the power set. 

Key interactions of students in Episode 5   

• More knowing peers (Joseph and Gary) initially built up their knowledge of the 

newly met mathematical object by reflecting on the proof construction done by 

their peer, and earnestly engaging with their peers and the lecturer, while making 

functional use of the object and its definition by enquiring about and examining 

the definition of the object.   

• Joseph tried to build up and strengthen understanding of the notion of the power 

set by drawing an example of a power set on the board. 

• Joseph and Gary contributed on the correct strategy for the way forward and 

suggested correct deductions to be made, and Joseph successfully completed the 

proof of the second component. 

• Joseph improved on the example of the power set previously given by the 

lecturer to further clarify proof construction steps. 

8.3 Overall Discussion  

In Section 8.2 the nature of lecturer and student interactions in each of the five episodes 

was explored and discussed.  Throughout these discussions it has been assumed that as 

students interacted with their peers and the lecturer in the consultative group sessions, 

they made functional use of newly met terms, symbols, signs, proof methods as well as 

logical and deductive reasoning processes and justification of each step in the proof 

construction process.  With the help of the guidance and scaffolding in these sessions, 

students were enabled to make progress in their proof construction abilities.  I have not 

highlighted students’ functional use of mathematical objects and processes in these 

discussions but have rather focussed on student and lecturer interactions which were 

significant and promoted such progress and development.   

In conclusion I summarize the lecturer’s significant actions in these episodes which in 

my understanding, contributed towards the development of students in their journey of 

becoming intellectually autonomous.  At the same time I will attempt to identify 

characteristics and modes of reasoning of students who showed potential to become 
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more knowing peers and observe how these students were empowered in the 

consultative sessions.  Thus I will be answering my third research question which is 

repeated below for ease of reference: 

a) How can lecturers encourage and support students who are engaging with proof 

construction while participating in consultative group discussions, to become 

intellectually autonomous? 

b) What are the characteristics and modes of reasoning prevalent in students who act as 

more knowing peers and how are they empowered as they participate in the consultative 

group sessions? 

8.3.1 Significant actions of the lecturer that may contribute to 

the development of intellectual autonomy in students 

A summary of the lecturer’s significant actions towards the development of students’ 

intellectual autonomy in each of the five episodes is given below. 

Episode 1 

In Episode 1 Frank’s proof construction attempt contained a few flaws; namely the use 

of the double implication symbol instead of the single implication symbol and the 

absence of statements or phrases at the beginning of the proof which would add to the 

logic of the proof construction.  However the lecturer did not offer corrections nor did 

she verify whether the attempt had been correct or incorrect.  Instead her actions elicited 

students’ contributions and ideas by repeatedly making transactive requests for 

reflection and clarification on proof construction strategy.  From the very beginning of 

the consultative sessions the lecturer transferred the responsibility for finding the correct 

way forward onto the students, and made it clear that by working and consulting 

together they would be able to reach their ultimate goal of a correct proof construction.  

She thus encouraged each student to develop his/her own capacity and take an active 

role in learning rather than relying on an external source such as the lecturer.  

Contributions from students which were pseudoconceptual or conceptual were 

encouraged using facilitative contributions confirming these ideas and the lecturer asked 

these students to further elaborate and explain their reasoning.  The lecturer’s actions 

implicitly made students realize that their ideas and contributions were valued and 
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respected.  During the course of the proof construction, the lecturer, through requests for 

clarification and explanation, prompted students to give their ideas about newly met 

terms and symbols which had been observed to be challenging.  Students offered further 

contributions clarifying the proof method and the meaning of newly met terms, symbols 

and signs using simple every-day language.  There were also contributions from peers 

towards proof construction strategy and clarification of the notions of the implication 

and double implication.  It was evident that students (such as Gary and Joseph) who 

showed great potential to become more knowing others, took their own initiative to use 

examples to illustrate newly met mathematical objects and proof methods.       

Towards the end of the proof construction in Episode 1, after all the students had had a 

chance to offer their ideas and contributions, the lecturer summed up all the learning 

that had been discussed.  This was to ensure that all the students were made aware of all 

the mathematical objects and processes such as proof methods discussed and that 

incorrect ideas or ideas incongruent with the true meaning of mathematical objects were 

addressed.  As discussed in Section 6.2.5 one of the drawbacks with learning 

environments encouraging active participation from all students is that wrong ideas and 

notions could easily be propagated.  The aim of the summary was to highlight incorrect 

ideas and provide the correct interpretation and application of the notions relevant to the 

proof construction hence preventing propagation of misconceptions to other students.   

Episode 2 

In this episode there was a similar pattern of lecturer contributions as in Episode 1.  

Using transactive requests for clarification, reflection and justification students were 

prompted to describe and clarify their reasoning processes about methods of proof and 

meanings of newly met terms and symbols.  When incorrect proof methods were used 

or incorrect ideas introduced such as the use of trivial and non-useful aspects of 

assumptions and definitions, transactive requests for reflection and strategy urged 

students to reflect and offer their contributions on the way forward.  This allowed 

students’ conceptions of proof methods and meanings of newly met terms and symbols 

to emerge so that misconceptions could be addressed and clarified.  I also suggest that 

in sharing these conceptions students were better able to engage with the mathematical 

objects and processes while their misconceptions were corrected and clarified.   
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When potentially more knowing peers offered contributions on the correct method of 

proof the lecturer’s transactive requests for elaboration encouraged further explanation.  

Initially these students would offer very brief and cryptic answers and had to be coaxed 

to give fuller and deeper explanations (for example Gary in sub-episode 2.4).  In this 

way students were made aware that those who had more understanding of the 

mathematical objects and proof methods involved in the proof construction would be 

responsible for clarifying and explaining these objects and methods to the whole group.  

This also seemed to contribute to the confidence of those students who displayed 

potential in their proof construction abilities.  Their contributions gradually became 

more forthcoming and their explanations were always given in depth (for example see 

Christine in sub-episode 2.8).  The lecturer confirmed and sometimes re-voiced these 

contributions using facilitative utterances.   

When students had questions about mathematical objects and processes related to the 

proof construction and the area of set theory in general the lecturer used transactive 

requests asking students to use examples to illustrate these notions to gain more clarity.  

Students’ participation was further encouraged in this way as they showed their 

eagerness to come up and do examples on the board depicting their conceptions of 

newly met terms and symbols.   

During the course of proof construction when the proof method for showing equality of 

sets was met, the lecturer asked students to refer to the definition of set equality several 

times and use this definition to arrive at the proof method.  In this way students were 

shown how the definition of a mathematical object could be examined and interpreted in 

order to extract the overall structure of the proof giving rise to the correct method of 

proof.  Once the general proof method had become apparent, the students were asked to 

apply the method to the particular proof construction with which they were engaged. 

Throughout the proof construction attempt in Episode 2, we saw Maria’s persistent 

difficulties with respect to incomplete understanding of proof methods involved in the 

proof construction.  She also lacked the ability to use deductive logical reasoning and 

justify her deductions and conclusions.  Interactions with peers and the lecturer 

repeatedly reminded her to ensure the truth of statements she made, and to be 

continually aware of assumptions and the statement to be proved.  When the first 
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component of the proof had been brought to conclusion with the continuous scaffolding 

received from lecturer and peers, the lecturer asked a more knowing peer (Christine in 

sub-episode 2.8) to go through the proof construction in detail to clarify and explain 

proof construction steps and show exactly how the conclusion was attained.   

It was clear as Maria struggled on to further components of proof construction, that she 

had not been able to transfer proof methods and ideas related to logical reasoning and 

justification from previous components to subsequent ones.  The lecturer again 

reminded students to be aware of assumptions and the statement to be proved, and urged 

them to use logical reasoning processes and justification.  Peers offered scaffolding 

using simple every-day language and high levels of participation and interaction drove 

the proof construction forward. 

Maria’s use and application of proof methods improved towards the end of the proof 

construction attempt but challenges with regards to logical reasoning processes and the 

practice of justification persisted.  The lecturer through transactive requests for 

clarification, explanation and justification, prompted reflection on proof construction 

steps and urged students to ensure the correctness or truth of each deduction in the proof 

construction process.  She also raised their awareness of implicit assumptions.  High 

levels of participation from her peers enabled Maria to conclude the proof construction. 

Episode 3 

In Episode 3 (taking place in the second session) the lecturer’s transactive requests and 

facilitative utterances were adopted and completely taken over by more knowing peers 

(possibly using imitation).  Requests for clarification, reflection and justification as well 

as reference to and elaboration of the definitions of the mathematical objects relevant to 

the proof construction had become well established habits in these more knowing peers 

who took over the responsibility of guiding their peers and bringing the proof to 

successful completion.   

Episode 4 

In Episode 4 the only contributions the lecturer made were facilitative utterances which 

confirmed and re-voiced concept level use and interpretation of the notion of the 
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Cartesian product (from more knowing peers) and transactive requests for clarification 

asking students to offer further elaboration on these mathematical objects. 

Episode 5 

Once Frank had completed the first component of the proof construction in Episode 5, 

the lecturer prompted him to clarify and explain the reasoning and logic behind his 

proof construction steps.  Gary and Joseph (prominent more knowing peers) in this 

episode tried to develop their own understanding of the power set through their 

interaction with their peers as they reflected on Frank’s proof construction steps of the 

first component of the proof.  They also reflected on the definition of the notion of the 

power set and questioned its usage and interpretation as they strove to reach concept 

level understanding.  They had clearly taken over the responsibility of developing their 

own understanding by earnestly engaging with the mathematical object through 

functional use while interacting and discussing the notion with their peers in the 

consultative sessions. 

Joseph took his own initiative to use an example to illustrate the notion of the power set 

for himself and his peers.  This was once more indicative that the use of examples to 

illustrate mathematical objects and ideas related to the proof construction has become a 

well-established habit for this more knowing peer.   

When Frank started the second component of the proof construction which was a little 

trickier than the first component, Gary and Joseph’s understanding of the notion of the 

power set had developed to such an extent that they were able to resume their roles as 

more knowing peers once again.  They offered contributions on the correct strategy for 

the way forward.  When Frank’s perplexity persisted, Joseph took over the proof 

construction bringing the proof to completion.  Realising Frank’s uncertainty about the 

proof construction steps just completed, Joseph cleverly altered the example given by 

the lecturer on the board depicting a set A and its power set, by replacing the elements in 

set A with variables, thus making the connections between the proof construction steps 

and the example more obvious.  Gary and Joseph had in a very short period of time 

been able to develop their own understanding to such a level that they were able to use 

and apply the mathematical object correctly in the proof construction of the second 

component.  They had developed the skills within themselves and were able to take the 
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responsibility of developing their own understanding through earnest engagement and 

enquiry while making functional use of the mathematical object in their interaction with 

all participants in the consultative group sessions.           

Summary of key actions and contributions 

To conclude, key actions and contributions of the lecturer which supported students in 

their journeys to become intellectually autonomous are given briefly in point form 

below. 

• The lecturer transferred the responsibility for finding correct strategies in proof 

construction to students themselves, by initially withholding giving direct 

corrective feedback on proof construction steps and instead eliciting students’ 

contributions using transactive prompts for reflection, clarification and strategy. 

• The lecturer encouraged and elicited in-depth explanation and elaboration from 

students who made positive contributions which indicated pseudoconcept/ 

concept level reasoning, nurturing these students to develop confidence in their 

own capabilities and at the same time making other students aware of these 

students’ abilities. 

• When incorrect methods or incorrect ideas were presented students were re-

directed using facilitative and transactive utterances to reflect on strategy and 

find the correct way forward. 

• The use of examples was greatly encouraged to illustrate newly met terms and 

symbols as well as proof construction steps, and students were made aware of 

the illuminating power of examples in this regard. 

• Students were prompted using transactive requests for reflection and strategy to 

examine the definitions of mathematical objects closely in order to extract the 

overall structure and method of proof. 

• There were continuous reminders throughout the proof construction process 

using transactive prompts to keep the students mindful of the assumptions and 

the statement to be proved. 

• There were continuous reminders using transactive prompts to ensure the truth 

of each statement and deduction. 



253 

 

• Towards the end of components of proof construction the learning that had taken 

place was summed up and elaborated on by more knowing peers who were 

called on to do proof presentations.  Initially when more knowing peers had not 

yet been identified, the lecturer discussed and summed up the ideas and proof 

methods which had been discussed during the course of proof construction in the 

hope that correct conceptions would be strengthened and incorrect or 

inappropriate notions would be addressed. 

Some of the lecturer’s key actions or contributions which appeared to empower more 

knowing peers to assume their roles are summarized in point form below.  These are in 

addition to the actions and contributions of the lecturer listed above. 

• The lecturer encouraged further elaboration from students showing the potential 

to become more knowing peers, nurturing them to gain confidence in their own 

capabilities and become responsible for clarifying the understanding of their 

peers.  These students seemed to gain confidence and offered in-depth 

explanations much more readily as the sessions progressed. 

• The lecturer encouraged the use of examples when more knowing others offered 

them to help clarify definitions of newly met terms and symbols and proof 

construction steps, and helped these students to select more illuminating 

examples when necessary. 

8.3.2 Characteristics and modes of reasoning prevalent in 

potential more knowing students 

Key findings regarding the characteristics and modes of reasoning prevalent in students 

who have the potential of acting as more knowing others are summarized in point form 

below.   

• These students readily engaged with the consultative practices of the group 

sessions and critiqued students’ actions, contributions and reasoning processes 

even though they themselves often had complex or pseudoconcept level 

knowledge of proof methods and reasoning processes (for example Christine 

in sub-episode 2.2).  They were also eager to ask questions about mathematical 

objects and processes troubling them in the proof construction. 
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• These students were able to communicate very ably and effectively, delivering 

presentations of completed components of the proof with conviction.  They 

could give a holistic picture of the completed proof (or component of proof) as 

they highlighted the assumptions and the statement to be proved while 

explaining in detail the logical reasoning behind each step of the proof and 

providing the necessary justification (for example Christine in sub-episode 

2.8). 

• These students often used their own initiative to offer examples to illustrate 

newly met terms, symbols and proof methods (for example Joseph and Gary in 

Episodes 1, 2, 3 and 5).  They instinctively turned to the illuminating power of 

examples when they were having difficulty in understanding or 

communicating their understanding of these mathematical objects and 

processes.  Their use of examples was strengthened by the encouragement and 

scaffolding received from the lecturer in the form of providing more helpful 

examples when needed. 

• When having difficulty with newly met mathematical objects in the proof 

construction, more knowing peers assumed the responsibility for developing 

their own understanding of these objects, rather than relying on others such as 

the lecturer.  Through earnest engagement with the mathematical objects 

related to the proof construction while interacting with their peers they were 

able to develop their own understanding as they made functional use of these 

objects (for example Gary and Joseph in sub-episode 5.2).   

• These students showed an appreciation of the importance and usefulness of 

definitions in suggesting the sequence of steps to be followed in the proof 

construction and in providing the justification for each step (for example Gary 

and Joseph in Episode 3).  When meeting newly met terms in the course of 

proof construction they strove to build their understanding of the mathematical 

object by examining and reflecting on the definition of the notion while 

interacting with their peers and the lecturer (for example Gary and Joseph in 

sub-episode 5.2). 

• These students seemed to appreciate the importance of using statements that 

added to the logic of the proof construction such as statements at the beginning 
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of the proof construction stating all the assumptions and the statement which 

had to be proved.  They never omitted such statements in their own proof 

constructions.  
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Chapter 9: Questions of Trustworthiness 

9.1 Introduction 

In this study I investigated difficulties and challenges that first year undergraduate 

students experienced as they engaged with proof construction tasks and explored how 

students’ proof construction abilities developed as they interacted with peers and the 

lecturer in the context of consultative group sessions.  In this chapter I address issues of 

trustworthiness in my methodology, methods and analysis to ensure the quality and 

credibility of my study. 

As discussed in Chapter 4, my ontological assumptions imply that each individual 

constructively develops his/her own conceptions of reality.  My interpretations of the 

world (and this study in particular) are shaped by my theoretical perspective which is 

Vygotsky’s socio-cultural framework.  In this chapter I will examine whether my use of 

analytical frameworks (which incorporate Vygotsky’s theory of concept formation and 

his notion of the zone of proximal development), validly and reliably interpreted 

students’ proof construction actions and their interactions within the consultative group 

sessions.  I also examine the validity and reliability of my data (which primarily consists 

of transcripts of the video recorded sessions) and data collection methods which include 

video recording, transcribing and coding of transcripts.       

9.2 Validity 

Several researchers have argued for alternative terms for the important notion of validity 

in qualitative research.  Lincoln and Guba (1985) have used the notion of authenticity.  

They put forward key criteria including credibility and transferability to be used to 

replace validity in qualitative research.  They propose that to ensure the validity of a 

study, the researcher needs to show that he/she has depicted an accurate and true 

description and that his/her interpretation and reconstruction of events is accurate.  The 

notion of credibility has, in particular, been suggested as a means of measuring the 

quality or goodness of case study research (Opie 2004, p.71).  Credibility is defined by 

McMillan (1996, p.250) to be “the extent to which the data, data analysis and 

conclusions are believable and trustworthy”.  Maxwell (1992, p.281) in agreement with 
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Wolcott (1990) puts forward the notion of understanding as a more suitable conception 

than validity in qualitative research.  Maxwell argues for five types of validity: 

descriptive validity, interpretive validity, theoretical validity, generalizability and 

evaluative validity.  He further proposes that external generalizability and evaluative 

validity are not as central to qualitative research as the other categories of validity 

(Maxwell 1992, p. 295).  I will be addressing descriptive validity, interpretive validity, 

theoretical validity and (internal) generalizability in this section.  

9.2.1 Descriptive Validity 

Descriptive validity is centred on the factual accuracy of the account and whether the 

researcher has reported on the events that ensued with complete honesty and integrity 

(Maxwell 1992, p. 285).  Maxwell emphasizes the primary importance of this aspect of 

validity arguing that all other validity criteria are dependent upon it (ibid. p.286). 

The notion of descriptive validity in my study primarily focusses on the accuracy of the 

transcripts of the video recorded sessions.  The accuracy of these transcripts was indeed 

extremely important to me as I would be basing my analysis and outcome of the study 

on these.  I do believe that the transcripts of the sessions reflect the actions, speech and 

writing of the participants of my study very accurately.  The video recorded sessions 

were originally transcribed by a professional transcriber to whom I had supplied a 

detailed information sheet containing all the mathematical terminology which might 

have been unfamiliar to her.  I then listened to the recordings and watched them in 

tandem with the transcriptions several times, correcting the transcripts whenever I 

detected incorrect mathematical terminology and language use (in students’ spoken and 

written work).  The transcripts went through several revisions until I could no longer 

detect any incongruence between what had transpired in the video recorded session and 

the transcript.  At this stage I invited four of the students who had participated in the 

study and were still continuing with their studies at the University, to a session where 

they were able to view excerpts of the video recorded sessions together with the 

transcripts of these sessions to get their feedback and see whether they agreed with these 

transcriptions.  These students viewed the video clips as they read through the 

transcripts.  Two of these were Gary and Joseph who were major contributors 
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throughout the sessions, and the other two were Kenny and Bonnie who did not play as 

dominant a role in the sessions.  These students agreed that the transcripts were accurate 

reflections of the video recorded sessions.   

I do not claim that the transcripts are perfect reflections of all the actions and events 

which occurred as there were many features which could have been observed but were 

omitted for the most part.  Non-verbal data was not recorded in the transcripts (as 

discussed in Section 4.5.2) such as the stress and pitch of students’ voices, how much 

time each student took to answer or make a particular contribution and the feelings of 

students such as their excitement when they eventually discovered the correct deduction 

or next step (although I periodically noted the general mood of students in my brief field 

notes).  Although these additional observations would have added to the overall quality 

of the transcripts providing a more holistic picture of students’ actions and reactions, I 

do not think that they would have affected my interpretations or analysis of transcripts. 

9.2.2 Interpretive Validity 

Interpretive validity refers to the researcher’s ability to interpret the meaning of the 

situations and events that participants are engaging in from the participants’ perspective 

correctly (Maxwell 1992, p.288).  In my study interpretive validity refers to how 

accurately my interpretations of what the participants are thinking reflected what was 

actually happening, based on my observations of the video recordings, transcripts and 

my own experiences while acting as a participant observer in the consultative sessions.  

Once the transcripts had gone through the rigorous iterative process of revision and 

correction (as described in Section 9.2.1) and were now data with which I could work, 

while coding and analysing students’ actions and contributions, I returned (to the video 

recordings) several times as my interpretations evolved, trying to ensure that these 

interpretations were accurate and viable representations of what had really occurred 

(Barron & Engle 2007, p.24).  I attempted to ensure that I had coded the transcripts 

strictly according to the indicators of the various categories of my analytical 

frameworks.    

Although I was guided by my research questions I remained open to observing new 

phenomena as I began to code and analyse the transcripts (Barron & Engle 2007, p.25).  
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For example I observed that the emerging more knowing students seemed to share 

certain characteristics in the ways they attempted to resolve difficulties they met when 

engaging with proof construction for themselves.  I therefore added this to my research 

questions.  I kept an open mind regarding the categories of my two analytical 

frameworks, adapting and extending these to include additional phenomena that were 

important to the research questions addressed in my study.   

While engaged with the analysis of my transcripts I tried to avoid statements such as: 

“Frank understood the notion of the power set and has reached concept level 

understanding”, as his usage and application of the mathematical object might have 

been correct while he might still have been confused about the object.  Instead I have 

made statements such as: “Frank used and applied the notion of the power set correctly 

and appeared to have concept level understanding” (in accordance to the indicators 

which relate to the categories in my analytical frameworks).  I acknowledge that my 

inference was based on his actions, words and writing.  I tried to be impartial while 

coding the transcripts of the video recorded sessions according to the indicators defined 

and discussed in Sections 5.2 and 5.3.  

My interpretations have obviously influenced my decisions on placing the actions and 

spoken and written contributions of students in the particular categories I have chosen.  

In this regard I approached one of my colleagues (who has a Master’s degree in 

mathematics) in the Mathematics department of the University of Limpopo, and has 

been teaching at this institution for over 37 years, to examine the coded transcripts 

together with a detailed description of my analytical frameworks including my 

categories and indicators.  She read through the transcripts of all five episodes twice and 

although she acknowledged having some difficulty with the terminology of the coding, 

particularly with the terms ‘complex’ and ‘concept’, she was in agreement with the 

coding.  As discussed in Section 9.2.1 four of the students who participated in the study 

were asked to view excerpts of the video recordings that I had selected for detailed 

coding and analysis, with the transcripts.  In addition to being asked about their views 

on the accuracy of the transcriptions, they were also asked to provide brief 

interpretations of what was happening during those particular events.  Their 

contributions confirmed my interpretations of the events in the consultative group 
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sessions.  This, of course, does not mean that I can claim that my study is totally free 

from all threats to interpretive validity as other researchers might have completely 

different views.  However I attempted to do my best in coding the transcripts as fairly as 

possible according to the indicators and categories of my analytical frameworks. 

9.2.3 Theoretical Validity 

Theoretical validity focusses on the theoretical constructions on which the researcher 

has based the study on and refers to the ability of the account to not only describe or 

interpret phenomena, but to offer an explanation for them (Maxwell 1992, p.291).  In 

my study theoretical validity refers to the validity of the conceptions which I have 

imposed on my transcripts; that is the categories and indicators originating from my 

theoretical framework contained within my two analytical frameworks.  The theoretical 

validity of my analysis therefore depends on how well the categories (with their 

indicators) reflect the events, activities, contributions and reasoning abilities of students 

as they engaged in proof construction exercises.  

My analytical framework for the analysis of teacher and student utterances was based 

on the framework developed by Blanton, Stylianou and David (2011) who in turn based 

their framework on the work of Kruger (1993) and Goos, Galbraith and Renshaw 

(2002).  The framework uses the term transactive reasoning to characterise clarification, 

elaboration, justification and critique of one’s own or another’s reasoning (Blanton, 

Stylianou & David, 2011, p.294).  This framework was extended by additional 

categories and indicators as I worked on the transcripts of the video recorded 

consultative sessions.  The framework was discussed in detail in Section 5.2.1.  By 

categorizing the actions and contributions of the lecturer and students according to 

various indicators, such as students’ requests for clarification and explanation of peers’ 

utterances and actions, this coding scheme highlighted evidence of student development 

within the zone of proximal development.  This has been done with the aim of 

addressing how students’ proof construction and reasoning abilities are scaffolded by 

the lecturer and peers.  The four broad categories for teacher’s utterances are transactive 

prompts (requests for reflection, critique, justification, clarification, elaboration, 

strategy and examples), facilitative utterances (re-voicing and confirming students’ 
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ideas, attempts to structure discussions and proof writing, highlighting learning and 

misconceptions and providing encouragement), didactive utterances (offering ideas on 

the nature of mathematics, axioms and historically developed ideas, making reference to 

and explaining definitions and illustrating mathematical objects using examples) and 

directive utterances (providing immediate corrective feedback or information).  

Transactive prompts transferred the responsibility of proof construction and verification 

to students themselves and built the practices of argumentation necessary for successful 

proof construction by prompting students’ transactive reasoning (ibid., p.295).  

Facilitative utterances supported students’ reasoning abilities by encouraging, repeating 

and rephrasing valid contributions and re-directing discussions to more correct avenues.  

Didactive utterances provided explanation of the notions that students needed to be 

aware of and were not expected to reinvent.  Directive utterances provided students with 

immediate or corrective feedback or information towards solving a problem.  The broad 

categories for students’ utterances were proposals of new ideas, proposals of a new plan 

or strategy, contributions to or development of an idea, transactive questions (for 

clarification, explanation, justification and so on), transactive responses, transactive 

arguments, taking on the role of a more knowing other and moments of realization.  I 

contend that the indicators for each of these categories are clear and unambiguous, and 

allowed the researcher to make correct judgements on the category to which the 

particular utterance belonged.          

My analytical framework of students’ proof construction and comprehension abilities 

was based on the assessment model developed by Meija-Ramos, Fuller, Weber, Rhoads 

and Samkoff (2012).  The framework considers two main aspects of students’ proof 

construction abilities: the local aspect (meaning of terms, symbols and signs, logical 

status of signs and proof framework and justification of claims) and a holistic aspect 

(main ideas or methods relevant to the proof, ability to transfer these to other proofs and 

illustrating mathematical objects and processes with examples).  I adapted the 

framework to facilitate its use in the analysis of students’ proof construction activities 

and contributions.  The various categories contained in the local and holistic aspects of 

proof comprehension and construction were assigned clearly defined indicators as 

described in Section 5.2.2.  The framework also expanded on the Vygotskian notion of 

the functional use of the sign to interpret students’ evolving understanding of the 
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meaning of newly met mathematical objects and processes.  My theoretical constructs 

attempted to categorize students’ usage and interpretation of newly met mathematical 

terms, symbols, signs and the proof methods relevant to the various proof construction 

exercises according to Vygotsky’s stages of concept formation adapted to the 

mathematical realm as discussed in Chapter 3.  These categories and their indicators 

have been described in detail in Section 5.2.2.  With regard to the theoretical validity of 

my account the link between the actions and contributions of students being accurately 

depicted as one of the phases of thinking (heap, complex, pseudoconcept or concept) is 

vital.  For example was Maria’s use and interpretation of the Cartesian product in sub-

episode 4.1 truly pseudoconceptual?  My justification for this categorization stemmed 

from the fact that in sub-episode 4.1 she seemed to use and apply the mathematical 

object correctly but when questioned about it in sub-episode 4.2, she offered an 

incorrect explanation and interpretation.  My lengthy deliberations on students’ actions 

and contributions and my elaborations justifying my categorizations of these actions and 

contributions have led me to believe that the categories and their indicators of my 

analytical frameworks are accurate reflections of the theoretical constructs underlying 

my frameworks.  

9.2.4 Generalizability 

Generalizability considers the extent to which one can relate the theory, findings and 

conclusions of the study to contexts other than the one directly studied (Maxwell 1992, 

p. 293).  Maxwell distinguishes between two aspects of generalizability.  The first is 

internal generalizability and refers to generalizing to other people, activities and settings 

within the community in which the study has taken place (first year mathematics classes 

at the University of Limpopo).  The second is external generalizability and refers to 

generalizing to other communities or institutions (other universities and educational 

institutions in my case). 

With regard to the findings and conclusions of the study, I believe my study will 

augment the existing literature on research in proof construction.  As my study took 

place at a previously disadvantaged university, it is not possible to generalize these 

findings and conclusions externally.  However I suggest (cf. Section 2.2.1 on students’ 
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difficulties as reported in the literature in other parts of the world) that other students at 

other universities both in South Africa and elsewhere might experience similar 

difficulties and challenges as those discussed in Chapter 6.  In addition the benefits 

experienced by the participants of my study while engaging with their peers and the 

lecturer in the consultative group sessions and the ways in which lecturers can support 

and empower students to become intellectually autonomous in the context of group 

consultative sessions as discussed in Chapters 7 and 8 would, I suggest, be similar to 

those experienced by students elsewhere (cf. Section 2.4.1 on studies where the socio-

cultural aspect of proof is taken into account). 

On the question of whether the theoretical framework supporting my study would be 

useful in making sense of students’ engagement in similar activities or situations, I 

believe that Vygotsky’s phases of concept development and their adaptations to the 

mathematical realm have widespread applicability to many other mathematical activities 

in which students engage.  The notion of the EZPD, an environment which encourages 

and facilitates students’ active participation, while promoting access to their zones of 

proximal development has widespread applicability to many other mathematical 

activities.  This assertion is based on similar studies in the literature (cf. Section 2.4.1), 

my own experience as a student and teacher in mathematics and my observations of my 

students’ development and progress during the course of my study.  As discussed in 

Section 4.5 the students who participated in the study were purposefully chosen to be 

representative of mathematical ability (according to their first semester exam results) 

and gender.  Students from all categories A, B and C were found to benefit from 

participation in the consultative sessions.   

9.3 Reliability 

According to Bell (2001, p.103) reliability is a measure of how well the procedures used 

yield similar results under the same conditions at all times.  In the interpretive or 

naturalistic paradigm however, the world is seen as socially constructed and the 

accounts collected are the subjective experiences of the participants of the study.  If a 

study were to be repeated with different participants, the conditions would no longer be 

the same.  In naturalistic research, the researcher is concerned rather more with the 
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accuracy of the observations made, and whether the analysis of these observations is an 

accurate reflection of the actual events.  Lincoln and Guba (1985) have introduced the 

criterion of dependability as an adaptation of the traditional concept of reliability.  The 

concept of dependability emphasises the necessity for the researcher to be aware that the 

context of the study is subject to change and instability (Creswell, 2007, p.204).   

Concerning the safe keeping and auditing of my enquiry process and to ensure 

dependability of data gathered for the study, all the raw data in the form of video 

recordings and the transcriptions of the video recordings was kept safely on my 

computer and on several backup hard drives.  The brief field notes of my observations 

during the consultative sessions, memos and my reflective journal were kept in a safe 

place under lock to ensure that the enquiry process was well audited.   

To establish the dependability of my study, my primary concern was whether the 

analysis of my data agreed well with what actually had occurred in the real life setting 

of my study (Cohen, Manion & Morrison 2011, p.202).  When coding and analysing 

students’ actions and contributions (written and spoken) with respect to proof 

construction, I categorized these according to the indicators and categories described in 

my analytical frameworks (cf. Sections 5.2.1 and 5.2.2).  The reliability of my study 

will be determined by how well I used these indicators of my analytical frameworks to 

categorize students’ proof construction actions and contributions and student and 

lecturer utterances.  I tried my utmost to be consistent and rigorous when coding and 

categorizing the transcripts.  On a practical level it was sometimes difficult to categorize 

actions and contributions when there was insufficient information, for example when 

the student gave no (oral) explanation on his/her (written) actions or contributions.  I 

have done my best however to provide thorough justifications and explanations for my 

categorizations.  In this way I hope I have greatly reduced the possibility of 

inconsistency in the analysis of the data.   

9.4 Enhancing credibility 

In this section I would like to discuss some of the ways in which the reliability and 

validity of my study could have been enhanced. 



265 

 

Firstly although I collected video records of all four consultative group sessions and 

these were transcribed, I carried out detailed coding and analysis of selected video clips 

of the first two sessions.  The reasons for this selection were discussed in Section 4.5.3, 

and included factors relating to how I could best address the research questions given all 

the time and space constraints.  I still believe that my selection was systematic and 

resulted in accurate representations of what had actually happened in the consultative 

sessions.  However the credibility of my study would obviously have been be enhanced 

if I had carried out detailed coding and analysis of all the transcribed video sessions.  As 

discussed in Section 4.5.2 the process of obtaining data from video records (the 

resources for developing data, and not data in themselves) has enormous time 

implications (Barron & Engle 2007, p.25).  Hence I felt justified in making the 

selections I used for detailed coding and analysis. 

Another way credibility could have been enhanced would have been by involving other 

mathematics educational researchers (other than my supervisor) to code and analyse 

selections of transcripts according to the indicators and categories contained in my 

analytical frameworks.  Although as discussed in Section 9.2.2 I did ask an experienced 

lecturer who had taught at the University of Limpopo for many years to go through the 

transcripts once they had been coded, it could have been more beneficial if I had 

approached other researchers earlier and asked them to code the transcripts 

independently after providing them with a detailed description of my theoretical and 

analytical frameworks.  One of the reasons that this did not happen was that the 

development of my analytical frameworks was a lengthy process involving several 

iterations of transcripts being coded and categories and indicators from the analytical 

frameworks being revised and extended.  For each iteration, the coding (and preliminary 

analysis) of the transcripts took a great deal of time and effort and once I was eventually 

satisfied with the analytical frameworks and the coding of the transcripts, I was also 

very aware of time constraints.  Fortunately I had opportunities to present my analytical 

frameworks, discuss my indicators and categories and apply these to an excerpt of 

transcript I had analysed, at PhD seminars at the University of the Witwatersrand.    
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9.5 Concluding summary 

This chapter has addressed issues regarding the validity and reliability of my study.  

Improvements could have been made regarding the interpretive validity and reliability 

of the study.  Regarding the issue of reliability, improvements could have been achieved 

by asking other mathematics education researchers to code excerpts of my transcripts 

using my analytic frameworks independently.  I could have then compared these to my 

own coded transcripts and reached consensus on the coding process through discussion 

and consultation.  Similarly with regard to interpretive validity, the study could have 

been improved by asking other mathematics education researchers to analyse the 

transcripts and develop codes (that is categories and indicators) within my analytic 

frameworks that they deemed appropriate and compared these to mine.  It is possible 

that other researchers might disagree with some aspects of my analysis and 

interpretation.  While acknowledging these limitations, my hope is that the study 

provides a coherent, believable and trustworthy account of an inquiry-based 

collaborative intervention in the context of proof construction in the area of elementary 

set theory.      
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Chapter 10: Conclusions 

10.1 Introduction 

In this study I have attempted to gain an understanding of first year mathematics 

students’ difficulties and the forms of guidance beneficial to them at the University of 

Limpopo in the area of elementary set theory (Research question 1), and explored how 

participation in consultative group sessions supported students’ development with 

regard to their proof construction abilities (Research question 2).  The nature of student 

and lecturer utterances was examined to gain insights on how lecturers could support 

students’ development and empower them to become intellectually autonomous 

(Research question 3).  I have also highlighted some of the characteristics of students 

who showed potential in becoming more knowing peers and have identified some of the 

ways in which these students might be empowered to develop their capabilities 

(Research question 3).   

In the consultative group sessions I hoped to create an environment which encouraged 

students’ participation and their interaction with their peers and the lecturer, while they 

worked on proof construction exercises.  In order to achieve a holistic picture of 

students’ development of proof construction abilities in these sessions, I used two 

complementary analytical frameworks to incorporate both the social and the cognitive 

aspects related to students’ development.  The first (incorporating the social aspect) 

focussed on analysing the nature of students and lecturer utterances as they interacted.  

The second (incorporating the cognitive aspect) focussed on analysing the proof 

construction abilities of students implicit in their written and spoken actions and 

contributions.  Vygotsky’s theories of learning and development were integrated in both 

of these frameworks.  In the first framework the analysis allowed the researcher a 

window into how the environment in the group sessions facilitated students’ access to 

their zones of proximal development.  The second framework incorporated Vygotsky’s 

phases of concept development to track students’ use and interpretation of newly met 

terms, symbols, signs, proof methods, deductive reasoning processes and the practice of 

justification as students made functional use of these during the sessions.  Functional 

use refers to students’ use of newly met (mathematical) objects and processes (in the 
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form of symbols and words) before they fully grasp the meaning of these objects and 

processes.  It includes such activities as imitation.  Imitation, as conceived by Vygotsky 

(1987, p.210) does not mean the mindless copying of actions, but pertains to an 

individual performing such activities mindfully, in cooperation with peers and more 

knowing others.  According to Vygotsky (1987, p.209) imitation can only occur of such 

activities that are within the individual’s range of potential intellectual attainment.     

10.2 Reflections on research questions 

In this chapter I reflect on the significant findings and discussion pertaining to my 

research questions.  This will be done in the following summaries. 

10.2.1 Students’ difficulties and challenges 

My first research question focussed on the challenges and difficulties that students 

experienced and the forms of guidance or scaffolding they received from their peers and 

the lecturer as they engaged with proof construction exercises.  Investigating students’ 

difficulties and challenges when introduced to formal proof construction and the forms 

of guidance helpful to them would, I hope enable mathematics teachers and lecturers to 

use this knowledge to address these challenges, and possibly adapt their modes of 

instruction.  I include highlights of significant findings discussed in detail in Chapter 6.  

I will be reporting on both the difficulties that students experience and the forms of 

guidance offered to them together under the various categories of students’ proof 

construction abilities, as described in my analytical framework (cf. Section 5.2.2).  

While highlighting these findings I have referred to similar or contrasting findings by 

other researchers.  Most of these findings were discussed in my Literature Review 

Chapter (particularly Section 2.2.1).   

The category L1 (meaning of terms, symbols and signs) encompasses using newly met 

terms, symbols and sign, use of mathematical definitions and using examples to 

illustrate mathematical terms, symbols and definitions.  Difficulties students 

experienced in this category included problems with the mathematical terminology and 

discourse peculiar to mathematical proof construction.  This was compounded by the 

fact that English was not the students’ first language.  Students used newly met terms, 
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symbols and signs incorrectly associating these with more familiar terms, symbols and 

signs.  Students revealed complex level usage of newly met mathematical objects and 

processes for example referring to the implication sign as an equals sign and attempting 

to apply the proof of an equality or identity when proving an implication.  These 

difficulties resonate closely with those reported by Moore (1994), Stylianou, Blanton 

and David (2011) and Dreyfus (1999).  Moore (1994) found that one of the major 

sources of students’ difficulty was that students were unable to use mathematical 

language and notation and this led to further difficulties in the area of mathematical 

object understanding. 

Forms of guidance included peers offering explanations using simpler every-day 

language and offering their pseudoconcept or concept level interpretations which 

conveyed a more correct use and application of these mathematical objects and 

processes. 

Students misinterpreted mathematical definitions.  There were instances when this 

misinterpretation caused them to follow an incorrect method of proof.  For example, the 

misinterpretation of the definition of the notion of implication led students to an 

incorrect proof method for proving an implication.  This will be further discussed under 

proof methods.  There were also times where students associated terms and symbols 

with a word contained in their definition, for example the notion of the union (⋃) was 

associated with the word ‘or’ and the notions of the intersection (⋂) and the Cartesian 

product (×) with the word ‘and’.  Students’ association of the notions of the intersection 

and the Cartesian product with the word ‘and’ and their subsequent tendency to want to 

interchange the symbol of the Cartesian product with the symbol of intersection, alerted 

me to the realisation of the great difficulty students have in understanding and 

interpreting the full mathematical definition.  Students instead seemed to focus on one 

word common to both definitions and based all their thinking on this limited 

understanding.  Difficulties that students have with interpretation and application of 

definitions have been reported extensively in the literature.  Stylianou et al. (2011) have 

noted that students’ difficulty in grasping mathematical language, signs and symbols 

hinders students’ understanding of definitions.  Similarly Weber (2001) found that 

students’ lacked real understanding of definitions and were thus unable to apply them 
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correctly.  He referred to the understanding of the necessary definitions and theorems 

related to the proof as syntactic knowledge.  Moore (1994) found that students’ inability 

to state and appropriate definitions was one of the causes of their failure to produce a 

proof.  He emphasized that definitions often predict the sequence of the steps in the 

proof construction, and provide the justification for each step.  Knapp (2006) suggests 

that in order for students to use definitions meaningfully to prove a statement, they need 

to know the definition (that is give examples and non-examples and define the 

mathematical object in their own words), determine which definition and which aspects 

of the definition would be useful and lastly know how to use the definition which is 

similar to the strategic knowledge referred to by Weber (2001). 

As a form of guidance, the lecturer encouraged the use of examples to clarify 

mathematical objects and their definitions.  Most students participated in this activity.  

In order to illuminate the link between the definition and the method of proof, the 

lecturer also prompted students to reflect on the definition (of set equality) and extract 

the overall structure of the proof framework.  It was generally observed that students’ 

use and interpretation of newly met terms, symbols and definitions were brought closer 

to concept level use through their functional use while interacting with their peers and 

the lecturer.   

Students sometimes struggled to generate helpful examples to illustrate mathematical 

objects and definitions because of their incomplete knowledge in that particular area of 

mathematics.  This was evident when Joseph tried to present an example of the newly 

met notion of the power set in Episode 5.  Similarly Moore (1994) found that students 

failed to generate and use their own examples, even though they appreciated the value 

of examples in helping them understand mathematical objects.  He proposed that a 

possible reason for this is that students have a ‘limited repertoire’ of knowledge in the 

required area of mathematics from which to draw such examples.  I suggest that the use 

of examples should be encouraged whenever possible, and that this form of scaffolding 

be provided when students are inexperienced in the particular knowledge area.  

The category L2 (Logical status of statements and proof framework) included the three 

aspects of selecting correct and appropriate statements which make sense and add to the 
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logic of the proof construction, selecting useful and appropriate aspects of definitions 

and assumptions and knowledge of correct proof methods.   

Including statements that would add to the logic of the proof construction such as 

stating the assumptions and the statement that had to be proved at the beginning of the 

proof construction was very helpful to the students, as it clarified their goal in proof 

construction and the assumptions at their disposal, both initially and throughout proof 

construction as they referred back to these statements.  

Peers offered guidance in this regard by critiquing other students’ proof construction 

actions and raising awareness of the need for sound logical reasoning while keeping in 

mind assumptions and the statement to be proved.   

One of the major challenges faced by students was selecting correct or appropriate 

aspects of definitions and appropriate assumptions in the process of proof construction.  

These difficulties included selection of non-useful or trivial aspects of definitions, 

treating statements which were supposed to be proved, as assumptions, and difficulties 

in using the relevant assumptions and definitions to start the proof or make progress in 

proof construction.  Students also had difficulty in starting the proof construction 

correctly (one of the difficulties identified by Moore (1994)) and continuing with the 

proof construction process.  This was the case even when they seemed to have grasped 

most proof construction requirements.  According to Weber (2001), this is as a result of 

a lack of strategic knowledge which he describes as a failure to use the syntactic 

knowledge (knowledge of all the facts and theorems) that students have at their 

disposal.  Difficulties in the area of logical reasoning in the proof construction process 

have also been reported by other researchers as discussed in Section 2.2.1.  Stylianou, 

Blanton and Knuth (2011) reported that students lacked logic and reasoning abilities 

involved in problem-solving or argument construction.  Similarly Kuchemann and 

Hoyles (2011) found that a major challenge for students was to develop mathematical 

reasoning and to make inferences and deductions on the basis of mathematical 

structures rather than empirical reasoning.             

Forms of guidance included peers offering critique on proof construction actions.  When 

difficulties persisted, the lecturer provided prompt corrective feedback.  The lecturer 



272 

 

highlighted the need for ensuring the truth of each statement and that each step had to be 

accompanied by logical reasoning.  The lecturer reminded students of assumptions, and 

urged them to reflect on proof construction actions.   

Proof methods which are indispensable for students’ smooth journey in proof 

construction posed a major challenge.  Students struggled with the proof methods of the 

implication, double implication, equality of sets and the proof of showing one set was a 

subset of another.  The proof methods of the implication and double implication in 

particular were very problematic.  Students’ complex level interpretation and 

association of the implication and double implication symbols with the symbol for 

equality led them to attempt to use the method for proving equality when attempting the 

proof of an implication.  Students’ misinterpretation of the definitions of the implication 

and double implication were also largely responsible for their challenges with these 

proof methods.  An example of this was observed in Episode 2 when Maria attempted to 

prove a) ⟹ b).  Many students interpreted the definition of the implication as: ‘if a) is 

true then we know b) is true’ or ‘if a) is true then b) will be true’.  This simple 

misunderstanding led to an incorrect strategy for proof construction: that is to first prove 

the truth of a) from which the truth of b) would follow.  There were also instances 

where students seemed to know the definition of a mathematical object, but were unable 

to extract the method of proof from this definition.  Moore (1994) notes that students’ 

inability to use definitions to provide the overall structure, logic and proof method 

suitable for a particular proof is another great hindrance to proof construction. Solow 

(1981) likens the students’ inadequacy of the knowledge and skills required in proof 

construction to them being asked to play a game where they do not know the rules.  He 

recommends that students be given a detailed explanation of methods they can use to 

unravel the strategies behind various proof techniques.  My study has highlighted the 

need for lecturers to focus on proof methods, and ensure that students have a good 

understanding of these before proceeding to more advanced proof construction 

exercises.   

Forms of guidance included peers offering critique of incorrect proof construction 

actions.  When prompted for clarification, peers offered pseudoconcept or concept level 

interpretations of proof methods and reasoning processes.  There were also 
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contributions which summarised the proof method into a short simple rule in every-day 

language.  The lecturer also often drew attention to the goal of the proof construction 

and the assumptions that had initially been made.  Another form of scaffolding was 

offered by the lecturer when she prompted students to arrive at the correct method of 

proof by examining and reflecting on the meaning of the definition, and extracting the 

method of proof in this way.  I suggest that this particular strategy is one that lecturers 

can emphasize in class as a very beneficial practice.  As students progressed through the 

proof construction exercises, they made functional use of the proof methods.  

Presumably it was this functional use including activities such as imitation which led to 

great improvement in their usage and application of these proof methods.  The lecturer 

also identified several more knowing peers who periodically came to the board and gave 

a detailed presentation as proofs or components of proofs were completed.  These 

students were able to clearly articulate and explain the link between the assumptions, 

the statement to be proved, the reasoning behind each step and the proof method, hence 

clarifying most aspects of the proof construction process and in particular, the proof 

methods.   

Regarding the category L3 (Justification of claims) many instances were observed when 

students did not provide justification for each deduction and conclusion.  This was not 

only confined to students’ initial experiences with proof construction.  Even students 

who had appeared to have gained an appreciation for justification but became stuck and 

were not able to continue with a particular proof construction, tried to make progress in 

the proof construction by making deductions without justification, thus abandoning this 

practise.   

Forms of scaffolding included peers questioning and critiquing reasoning processes.  

When unjustified deductions were made persistently, the lecturer reminded students to 

use logical reasoning and ensure the truth of each statement, always bearing in mind 

assumptions which would help with the proof construction.  Presentations by more 

knowing peers were also very useful in clarifying the deductive reasoning processes 

involved and the justification which had to be provided for each step.   

With regards to the holistic categories of proof construction, I focussed on the category 

H2: transferring general ideas and methods to other contexts.  Students had problems 
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with transferring the methods of proof of showing that one set is a subset of another and 

ideas regarding the need for justification of statements and using sound logical 

reasoning processes.  I suggest that students’ inability to transfer methods and ideas 

could be due to the cognitive overload (as referred to by Moore (1994)) students 

experience when introduced to formal proof construction.  Further practice and more 

time are needed for the newly met objects, proof methods, logical reasoning processes 

and practices of justification to become internalized and reach concept level realization. 

Challenges outside the categories of my analytical framework for proof construction fell 

into three broad categories. These were students’ lack of confidence and belief in their 

own abilities, the challenge of incorrect ideas which might be propagated in an 

environment where contributions from all students were welcome, and the challenges 

lecturers need to keep in mind when striving to make optimal use of consultative 

sessions.   

With regard to students’ lack of confidence in their own abilities, proof presentations by 

more knowing peers delivered with confidence and conviction were beneficial.  These 

portrayed to the others that students such as they themselves were comfortable about 

and could ably explain the reasoning processes and the justification involved in the 

proof construction process as well as the newly met terms, symbols and proof methods.  

These presentations not only helped to clarify the newly met objects and processes 

involved in proof construction in the every-day language which the students could relate 

to, but they were also a source of motivation to the others, encouraging them to try to 

reach that same level of understanding.  Kajander and Lovric (2005) have similarly 

identified the beneficial practice of using tutors, a little older than first year students 

who could empathise with these students’ experiences and assist them in a problem 

solving environment.  I also suggest that the encouragement offered by the lecturer 

during the consultative sessions along with the continuous help and scaffolding from 

their peers were important factors in nurturing students’ self-confidence.   

In striving to make optimal use of consultative sessions, it is important to realize that 

these sessions are quite different from traditional modes of instruction and therefore 

require a very different set of skills and competencies which lecturers might need to 

develop within themselves, no matter how experienced they might be in other teaching 
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modes.  The ultimate goal is to create an environment where students’ access to their 

zones of proximal development would be facilitated.  I suggest that this is best done by 

creating a warm and friendly atmosphere where all the students feel welcome and 

everyone’s contributions are valued.  Although lecturers should allow students to take 

responsibility for their own learning and development as much as possible by 

encouraging them to be the primary contributors in attempts of proof construction of the 

various exercises, they also need to clearly establish the norms pertaining to successful 

proof construction.  Most important of these norms were: nurturing of students’ abilities 

to examine each step in the proof construction process carefully and critically to ensure 

that each step is accompanied by logical reasoning and justification; raising students’ 

appreciation of definitions and their importance in both revealing the structure of the 

proof and in the justification of deductions and raising awareness of the importance of 

keeping in mind the assumptions and the statement to be proved.  Lecturers have to be 

alert and watchful in providing encouragement, confirmation and guidance whenever 

needed, thus driving mathematical discussions forward, and preventing the propagation 

of misconceptions.  Students are thus supported to become independent thinkers and 

potential more knowing peers are empowered to develop that potential and gradually 

take on the roles and the responsibilities of the lecturer.  In this regard, Mcclain (2011) 

proposed that teachers need to have a thorough understanding of the mathematics 

covered in discussion sessions in order to be able to raise students’ abilities in 

mathematical argumentation to higher levels.  She proposes that lecturers have to be 

able to make quick decisions regarding factors such as the speed, structure and the 

direction of the discussions, thus ensuring that the mathematical agenda moves ahead.   

10.2.2 Students’ evolving proof construction abilities 

Chapter 7 addressed my second research question which investigated the development 

of students’ proof construction abilities by following two of the participants of the 

consultative group sessions, Frank and Maria, who attempted proof construction tasks in 

the first and second sessions.  I explored how these students’ proof construction abilities 

evolved from one session to the next.   
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Frank made great progress in the categories of the meanings of terms, symbols and 

signs (L1 category) and logical status of statements and proof methods (L2 category).  I 

argue that this was a result of Frank’s functional use of newly met terms, symbols and 

proof methods as he engaged with proof construction exercises while receiving 

guidance and scaffolding from the lecturer and his peers.  The difficulty which remained 

was that of knowing how to use all the mathematical information at the student’s 

disposal (for example the assumptions, relevant definitions and proof methods) to 

proceed when the proof construction became challenging.  This was termed strategic 

knowledge by Weber (2001) and has also been discussed in Section 10.2.1. 

In the first session Maria had persistent difficulties with proof methods and logical 

reasoning (L2 category) and the need for justification of deductions (L3 category).  She 

needed repeated guidance from the lecturer and her peers on proof methods, logical 

reasoning processes and the justification of each statement and deduction.  It became 

clear that she had difficulty in transferring methods and ideas from one component of 

proof construction to the next.  She made functional use of newly met terms, symbols, 

definitions, proof methods, logical reasoning processes and the practice of justification 

as she received continuous scaffolding from the lecturer and her peers throughout the 

first session.  Maria used activities such as imitation as she interacted with her peers and 

the lecturer in the consultative session.  She showed vast improvement in these areas in 

the second session and was able to explain the reasoning and justification process 

behind the proof very well.  In the second session we also observed Maria’s 

pseudoconceptual use and interpretation of the newly met term, the Cartesian product in 

the first component of her attempted proof construction.  Possibly as a result of the 

scaffolding she received from a more knowing peer who explained and clarified the 

notions of the Cartesian product and the intersection, Maria appeared to reach concept 

level use and interpretation of the Cartesian product in the second component of the 

proof.  This demonstrated the effectiveness of two aspects: first the consultative session 

as an environment which facilitated students’ access to their zones of proximal 

development, and second, the effectiveness of the process of making functional use of 

the newly met term while interacting with the lecturer and peers.  The opportunity 

offered to students as they participated in the EZPD allowed them to interact with one 

another while receiving scaffolding from their peers and more knowing others.  Their 
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functional use of all of the various skills necessary for successful proof construction, 

such as the interpretation and application of mathematical objects and definitions, 

application of logical reasoning processes and the justification of proof construction 

steps enabled the accelerated development of these skills.  

On examining the journeys of these two participants we observed how the environment 

created in the consultative sessions effectively enabled students’ development of proof 

construction abilities.  During Maria’s struggle with the proof construction exercise in 

Episode 2, we perceived the serious burden students would have to shoulder when 

working on their own, or with other students having similar capabilities as their own.  

Students who are novices in formal proof construction face the combined challenge of 

many newly met terms, symbols and signs and unfamiliar proof methods plus the 

challenge of the logical reasoning and justification required in the proof construction 

process all within one proof construction exercise.  The environment created in the 

consultative sessions encouraged students’ active participation and interaction and 

facilitated access to their zones of proximal development and enabled their functional 

use (including activities such as imitation) of newly met terms, symbols, definitions, 

proof methods, deductive reasoning processes and practices of justification of 

deductions as they engaged with proof construction exercises. 

10.2.3 Supporting students in becoming intellectually 

autonomous 

In Chapter 8 which addressed my third research question, I examined the nature of the 

interactions in the consultative group sessions and addressed the question of how 

lecturers could support students in becoming intellectually autonomous.  I also 

attempted to identify the characteristics and modes of reasoning of students who 

showed potential in becoming more knowing peers, and explored how these students 

could be empowered to develop that potential in the consultative group sessions.   

By investigating the nature of student and lecturer utterances in each of the five 

episodes that were coded and analysed in detail, I tried to trace patterns in the discourse 

as the lecturer tried to establish the norms that were necessary in promoting successful 

proof construction.  These included encouraging students’ questioning and critiquing 
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the proof construction actions and contributions of one another and imparting the 

realization that students had to be responsible for ensuring that each step in the proof 

construction was accompanied by sound logical reasoning and justification. 

General patterns that emerged during the sessions were that as proofs were attempted on 

the board the lecturer would not comment on the correctness or validity of the proof but 

rather encouraged students to ask for explanation, offer critique, make contributions or 

suggestions for improvement or alternative proof construction actions.  From the very 

beginning of the sessions the lecturer transferred the responsibility for verifying the 

proof construction steps and finding the correct solution to the students themselves.  

The lecturer encouraged students’ critique when they questioned actions which were not 

justified and asked for elaboration of contributions that offered pseudoconcept or 

concept level usage, interpretation and application of newly met terms, symbols, 

definitions and proof methods relevant to the proof construction.  In this way the 

lecturer implicitly conveyed to students that their contributions were valued.  On 

realising that mathematical objects and processes such as newly met terms, symbols and 

proof methods had not been completely understood, the lecturer asked other students to 

offer their ideas and explanations of these objects and processes.  Students were 

encouraged to articulate their ideas by repeated transactive requests for reflection and 

strategy.  The lecturer discussed and addressed misconceptions by repeatedly asking for 

alternative ideas until more correct ideas were offered in the form of pseudoconcept or 

concept level interpretation of mathematical objects.  The students who made such 

contributions would then be prompted to elaborate and explain their ideas.  If, at the 

conclusion of the proof construction attempt, incorrect ideas still persisted, then the 

lecturer would offer explanations of meanings of definitions and mathematical objects 

and processes.  This only happened in Episode 1.  From Episode 2 onwards, more 

knowing peers whom the lecturer had identified such as Christine, Joseph and Gary 

came up to do proof presentations in which all aspects of the proof construction were 

clearly explained and clarified in simple every-day language.  They seemed to be highly 

effective in conveying the meanings of terms and symbols, the logical reasoning behind 

the proof framework, and explaining and clarifying why and how each step in the proof 

construction needed to be justified.  The identification of students with the ability to 

explain and clarify proof construction is I suggest one of the lecturer’s vital 
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responsibilities.  If correctly identified these students are ideal in explaining the 

characteristics of successful proof construction in simple every-day language that the 

other students can relate to and understand.  The lecturer would often confirm these 

contributions and encourage those who gave in-depth explanations.  These students 

grew in confidence and the other students realised that fellow students, just like them, 

were able to successfully comprehend and construct proofs.  This seemed to encourage 

them to press onwards in their efforts to better their understanding.   

An activity initiated by the lecturer which students seemed to find very helpful and in 

which they engaged very enthusiastically was that of using examples to clarify newly 

met terms and symbols.  Students’ interest was heightened when their peers went to do 

examples on the board to clarify mathematical objects which had not been completely 

understood.   

Another significant activity the lecturer used was that of prompting students to examine 

and reflect on the definition (of set equality) to extract the method of proof.  This was 

effective in alerting students to the link between the definition of a mathematical object 

and the proof method to be used and allowed students to realize how the overall 

structure of the proof was in fact apparent in the definition.  I believe that such an 

activity is important because proof methods are vital and can be likened to road maps in 

journeys in proof construction.  When students have an idea how to set about extracting 

the method of proof from the definition, then they are better able to make progress in 

the proof construction process.   

Some students had persistent difficulty with using logical reasoning, and showed a lack 

of appreciation that each step of proof construction had to be accompanied by the 

necessary justification.  These students were repeatedly reminded in discussions with 

the lecturer and their peers that they had to make certain of the truth of each statement 

and had at all times to be aware of assumptions and the goal of the proof construction, 

that is, the statement or proposition to be proved.  Presentations by more knowing peers 

were again very helpful in conveying the careful thinking, reasoning and justification 

behind each step in the proof construction.  Such presentations could be considered as 

effective learning opportunities and a means of unlocking students’ potential. 
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There were times that students still had difficulty in driving the proof construction 

forward even though they showed great improvement in most areas of proof 

construction, such as meanings of terms, symbols and signs, knowledge of the logical 

reasoning required in proof construction and proof methods and had gained an 

appreciation for the need for justification of deductions.  This was possibly due to the 

fact that proof construction is not a linear algorithmic process where knowledge of the 

mathematical objects and processes involved in the proof construction will guarantee 

one’s success.  According to Selden (2012, p.392) creativity and insight are two 

essential ingredients allowing individuals to use the knowledge at their disposal to make 

progress in the proof.  Weber (2001) refers to this ability as strategic knowledge.  I 

suggest that one of the best ways that this strategic knowledge might be developed is by 

students’ participation in collaborative inquiry-based discussions such as the 

consultative group sessions.  Students can develop their strategic knowledge by working 

on several proof construction exercises which require the same proof methods, while 

being introduced to an increasing array of new terms, symbols and definitions, with 

each exercise gradually growing in difficulty.  When students who had made gains in 

most aspects of proof construction skills, experienced difficulty in starting the proof or 

proceeding with the proof construction, they sometimes abandoned their practice of 

ensuring that each step in the proof construction was accompanied by logical reasoning 

and justification.  These students made deductions which would lead to the desired 

conclusion while omitting certain crucial steps.  Students received the necessary 

guidance and scaffolding from the lecturer and their peers in their interactions and 

discussion (where they were urged to reflect on their proof construction actions and 

strategy while highlighting the assumptions and the statement to be proved) enabling 

them to proceed and correct their actions.  They were thus supported to make gains in 

their strategic knowledge which would add to their competence in proof construction. 

In the second session several more knowing peers showed their readiness to assume the 

role and responsibilities of the lecturer by taking over the transactive prompts asking for 

clarification, explanation, reflection on proof construction actions, logical reasoning and 

justification, and providing scaffolding as needed.  It is interesting to note that these 

students had been able to ‘become’ more knowing peers in a very short space of time, 

leading me to believe in the effectiveness of the consultative group sessions in allowing 
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students who exhibited potential to realise that potential and mobilising them to help 

their peers with the difficult task of proof construction.  Characteristics of students who 

showed potential in becoming more knowing peers were identified.  These students 

earnestly engaged with the consultative practices of the group sessions; critiqued other 

students’ proof construction actions and reasoning processes and requested clarification 

of mathematical objects or processes which were a cause of confusion.  They 

communicated a holistic understanding of the proving process very effectively by 

explaining the logical reasoning and the justification behind each step and made regular 

use of examples to illustrate newly met terms, symbols and proof methods.   They 

showed an appreciation of the importance and usefulness of definitions in both 

suggesting the sequence of steps to be followed in proof construction and in providing 

the justification for each step and regularly used statements that added to the logic of the 

proof construction.  They demonstrated their apparent realization that they themselves 

were responsible for developing their own understanding of newly met mathematical 

objects by deeper examination of definitions and the use of examples to illustrate these, 

and through the process of interaction and enquiry with their peers and the lecturer.   

In the second session the lecturer receded into the background allowing these students 

to become active agents for the promotion of their own and their peers’ learning and 

development.  The few contributions made by the lecturer in these episodes included 

requests for clarification and elaboration of concept and pseudoconcept level 

contributions, facilitative utterances encouraging and confirming correct usage and 

interpretation of mathematical objects and proof construction processes and a few 

didactive contributions referring to definitions and clarifying mathematical objects by 

using examples. 

The atmosphere in the consultative sessions was generally buoyant with a great deal of 

laughter and joking between the serious tasks of proof construction.  Students were 

always welcome to offer their contributions as proof construction tasks were attempted 

on the board and all the participants were very tolerant of one other’s ideas and 

contributions.  Friendship and camaraderie developed very quickly between the 

participants of the group and this seemed to help students to tackle the sometimes 

frustrating and arduous task of proof construction.  Kolstoe (1995, p.8) puts forward the 
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view that when two or more people consult under suitable conditions a new “intellectual 

power and emotional balance” come to the fore.  Heinze and Reiss (2011) have argued 

that a positive attitude towards mathematical proof construction plays a significant role 

in the development of proof construction abilities.       

10.3 Contributions to Mathematics Education 

Scholarship and Mathematical Pedagogy 

By investigating challenges and difficulties of first year students at the University of 

Limpopo while engaged in proof construction exercises in the area of elementary set 

theory, the study contributes to the literature on undergraduate students’ difficulties.  It 

adds to this literature by considering the vantage point of students whose first language 

is not English and who have come from previously disadvantaged rural communities 

and schools.  Helpful forms of scaffolding offered by the lecturer and peers were 

pinpointed and reported in the hope that this will contribute to pedagogical practices in 

similar situations.  Interestingly many of the challenges and difficulties encountered by 

students at the University of Limpopo were very similar to the challenges and 

difficulties reported by researchers all over the world, as seen in Section 2.2.1.  I have 

also identified possible solutions towards enhancing students’ self confidence in their 

proof construction abilities.  In addition I point to the challenges lecturers might have to 

keep in mind when attempting to facilitate students’ proof construction abilities in 

collaborative environments.  It is hoped that these submissions might be useful to 

lecturers who are contemplating setting up collaborative modes of instruction as they 

strive to improve the proof construction abilities of their students. 

My study also contributes to the growing body of research on how proof construction 

abilities of students can be nurtured in collaborative inquiry-based classes.  First year 

students who are introduced to formal proof construction often find the challenges 

posed by the mathematical language and definitions, newly met mathematical objects in 

the particular area of mathematics, proof methods and the logical reasoning and 

justification processes overwhelming.  The consultative group sessions proved to be 

extremely effective in supporting students’ development in general, and empowering 

those showing potential to become more knowing peers to develop their potential and 
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capabilities.  This mode of instruction might be offered as an additional activity to the 

traditional modes of instruction currently in use.  It was observed that most of the 

participants made huge gains in their proof construction abilities in just one session, for 

example Frank and Maria who made tremendous progress from session 1 to session 2.  

Thus even in institutions where resources are limited and tutors and lecturers already 

overloaded, students’ participation in just one consultative group session could make a 

big difference.  Also by identifying the characteristics of those students who might have 

the potential to become more knowing peers, lecturers could be enabled to become 

aware of these students and take action to nurture their capabilities, thus empowering 

them to become active agents in the development of their own and their peers’ 

understanding and proof construction abilities.   

The study identified the ways in which lecturers could create an environment conducive 

to students’ development and empowerment by encouraging the establishment of norms 

pertaining to mathematical proof construction.  These include encouraging students’ 

engagement in the activities of consultation, justification, explanation and using sound 

logical reasoning.  I argue that the effectiveness of the consultative group sessions is 

due to their success in facilitating students’ access to their zones of proximal 

development (Vygotsky, 1978) where functions that have not yet matured can be 

developed in collaborative mathematical activity.  The notion of the EZPD, an 

environment where students’ access to their zones of proximal development is 

facilitated was introduced and elaborated on to elucidate the connection between the 

social (in the form of collaborative inquiry based modes of instruction) and the 

cognitive (in the form of promoting students’ access to their zones of proximal 

development).   

I contend that this study provides confirmation that higher mental functions such as 

proof construction abilities arise as a result of mediated processes and through co-

operative activity and that language and speech are the means by which these functions 

are mediated (Vygotsky, 1987, p.126).  The study seems to confirm Vygotsky’s key 

principle that the development of practical and abstract intelligence takes place when 

speech and practical activity (in the context of the consultative group sessions) are 

brought together (Vygotsky, 1978, p.7).  Vygotsky (1986) built on theories put forward 
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by Uznadze (1966) who conjectured that the development of objects and processes 

begins with a ‘functional equivalent’ of objects/processes which are similar to the 

mature concepts held by adults in functional use but differ in their structure and quality.  

Berger (2004a) argues that the functional use of a mathematical sign is necessary for 

and productive of meaning-making for a university mathematics student.  In this study I 

have argued that the rapid development of the proof construction capabilities of students 

participating in the consultative group sessions was a result of their functional use of 

newly met terms, symbols, logical reasoning processes and proof methods and the 

practice of justification as they interacted with their peers and the lecturer when 

engaging in proof construction exercises.     

I have shown that Vygotsky’s phases of concept development and their adaptation to the 

mathematical realm can be applied to students’ proof construction actions and 

contributions in the areas of meanings of newly met terms, symbols, signs and proof 

methods.  It was demonstrated that students’ use and interpretation of newly met terms, 

symbols, signs and proof methods could be described as evolving through complex, 

pseudoconcept and concept levels as students made progress in the sessions.  

Pseudoconcept level use and interpretation of newly met terms, symbols and proof 

methods presented interesting situations where students seemed to use and apply 

mathematical objects and processes correctly but subsequently revealed their 

incomplete understanding in later discussions.  Students whose use and interpretation of 

newly met terms, symbols and proof methods were at pseudoconcept level were 

sometimes observed to revert to complex level use.  It was argued that this was due to 

the fact that these ideas had not yet been sufficiently internalised and had not reached 

concept level usage and interpretation.     

The type of analysis I have used in this study is rather novel as it attempts to draw 

together social and cognitive aspects of the development of students’ reasoning and 

analytical abilities associated with proof comprehension and construction.  I have built 

on existing analytic frameworks in the literature to develop two complementary 

analytical frameworks that impart a holistic analysis of students’ evolving proof 

construction abilities and student and lecturer utterances as they participated in 

consultative group sessions.  This could be useful to other researchers who would like to 
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study students’ proof comprehension and construction abilities in the context of inquiry-

based modes of collaborative classes. 

10.4 Areas for future research 

One possible area for future research is for an exploration of the difficulties students 

experience and the development of their proof construction abilities in mathematical 

fields other than elementary set theory such as in the areas of real analysis or abstract 

algebra, to be carried out in the context of consultative group sessions.  Such research 

could enable us to establish whether the consultative group sessions which seemed to be 

very effective in the development of students’ proof construction abilities in the area of 

elementary set theory, empowering students to become intellectually autonomous, could 

be effective in other areas of mathematical proof construction.  This would also allow us 

to explore the usefulness and applicability of Vygotsky’s theory of concept formation 

and the expanded notion of the functional use of mathematical objects and processes 

involved in formal proof construction, to other mathematical areas. 

Moreover the investigation of undergraduate students being introduced to formal proof 

in the context of alternative topics to elementary set theory such as the topic of Boolean 

algebra which might be more meaningful to students as it has practical applications in 

real world contexts, could yield interesting research.  

Another possible avenue of interesting research would be to track the progress of 

students who had the opportunity of participating in the consultative group sessions in 

their first year of university, as they advance to higher level mathematics courses.  In 

this way one could explore whether the skills developed in the course of their 

participation were helpful as they progress further in their tertiary mathematics courses.  

Moreover the trialling and development of longer term interventions could demonstrate 

the optimum amount of time necessary for most students to become closer to being 

intellectually autonomous and hence make a significant impression on pass rates in 

higher level mathematics courses as well as make positive contributions to mathematics 

research.  
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10.5 Summarizing Conclusion 

To conclude I suggest that this study has highlighted the numerous challenges many 

first year undergraduate students experience when introduced to formal proof 

construction in the context of elementary set theory.  In particular it focussed on 

students whose first language was not English, and who commonly entered first year 

university with poor prior mathematics knowledge.  Nonetheless many of its findings 

resonate with those of researchers in the developed world such as Moore (1994); Solow 

(1981); Dreyfus (1999); Weber (2001) and Blanton, Stylianou and David (2011).  

To recap briefly, challenges were detected primarily with the meanings and 

interpretations of mathematical terms; symbols and definitions; the logical reasoning 

and proof methods relevant to the proof construction; the appreciation for the 

justification of deductions and conclusions and with the ability to transfer ideas and 

methods to subsequent proof constructions.  These were overcome as students 

interacted with one another and the lecturer as they engaged with proof construction 

exercises while making functional use of mathematical terms, symbols, definitions, 

logical reasoning processes and proof methods and practices of justification.   

I believe that the study has shown that the consultative group sessions provided an 

environment which was conducive to the development of participants’ proof 

construction abilities in general, and to the empowerment of those showing potential in 

becoming more knowing peers.  Those students who showed the potential in becoming 

more knowing peers emerged through discussions and consultation.  They were 

distinguished by their ability to critique reasoning processes that were not sound and 

logical, ask questions about mathematical objects which were a source of confusion, 

and offer pseudoconcept or concept level interpretations of newly met terms, symbols, 

proof methods and deductive reasoning processes.  They were able to communicate 

their understanding of terms, symbols and definitions with conviction, and explain the 

reasoning processes behind proof construction steps, and convey an appreciation of the 

need for justification of each step or deduction in the proof.  These more knowing peers 

also showed an understanding of the illuminating power of examples to illustrate 

mathematical objects and proof methods.  I suggest that the identification of such more 

knowing peers is one of the lecturer’s vital responsibilities as these students might be 
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able to convey an appreciation for all aspects of proof construction effectively and 

motivate other students.      

I suggest that the environment established in the consultative group sessions facilitated 

students’ access to their zones of proximal development and that these consultative 

sessions could be highly beneficial if used as an additional mode of instruction to the 

traditional modes currently in use.  My study has clearly shown that such an 

environment is conducive to interactions and discourse which could lead to students’ 

engagement with the construction of their own knowledge (with regard to proof 

construction abilities) as well as the transformation of their interpretive and analytical 

skills.  The responsibility for proof construction and verification was transferred to the 

participants by encouraging them to contribute towards the proof construction and to 

critique steps which did not make sense or did not follow logical reasoning.  Students 

were enabled to actively engage with their difficulties and challenges effectively and 

improve their proof construction abilities quickly and with far less frustration.  In 

making functional use of newly met terms, symbols, definitions, deductive reasoning 

processes and proof methods while receiving guidance and scaffolding from the lecturer 

and peers, students made large gains in all the aspects of proof construction ability, as 

well as making gains in their self-confidence.  After a number of such sessions, I 

envisage that students could, of their own accord, use the practices introduced in the 

sessions to consult on newly met terms and symbols, definitions and strategies and go 

on to make further gains in their proof comprehension and construction abilities.  This 

would naturally fuel their confidence and motivate them to pursue their mathematical 

studies with enthusiasm.  I conjecture that the camaraderie and friendship developed 

while students struggle to find the way forward in the proof construction tasks by 

consulting together, could turn the drudgery of engaging with mathematical proof into a 

more enjoyable and creative experience.  This sense of conviviality could help to unlock 

students' mathematical potential.  It is hoped that this method would also encourage 

students to feel that they are part of the community of mathematicians and help them 

appreciate the beauty and elegance of mathematical proof.       
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