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Practically everything that is useful in turbulence theory is a scaling law.

P G Saffman



Abstract

We investigate the two-dimensional turbulent wake and derive the governing equa-

tions for the mean velocity components using both the eddy viscosity and the Prandtl

mixing length closure models to complete the system of equations. Prandtl’s mixing

length model is a special case of the eddy viscosity closure model. We consider an

eddy viscosity as a function of the distance along the wake, the perpendicular dis-

tance from the axis of the wake and the mean velocity gradient perpendicular to the

axis of the wake. We calculate the conservation laws for the system of equations using

both closure models. Three main types of wakes arise from this study: the classical

wake, the wake of a self-propelled body and a new wake is discovered which we call

the combination wake. For the classical wake, we first consider the case where the

eddy viscosity depends solely on the distance along the wake. We then relax this con-

dition to include the dependence of the eddy viscosity on the perpendicular distance

from the axis of the wake. The Lie point symmetry associated with the elementary

conserved vector is used to generate the invariant solution. The profiles of the mean

velocity show that the role of the eddy viscosity is to increase the effective width of

the wake and decrease the magnitude of the maximum mean velocity deficit. An in-

finite wake boundary is predicted from this model. We then consider the application

of Prandtl’s mixing length closure model to the classical wake. Previous applications

of Prandtl’s mixing length model to turbulent wake flows, which neglected the kine-

matic viscosity of the fluid, have underestimated the width of the boundary layer. In

this model, a finite wake boundary is predicted. We propose a revised Prandtl mix-

ing length model by including the kinematic viscosity of the fluid. We show that this

model predicts a boundary that lies outside the one predicted by Prandtl. We also

prove that the results for the two models converge for very large Reynolds number

wake flows. We also investigate the turbulent wake of a self-propelled body. The eddy

viscosity closure model is used to complete the system of equations. The Lie point

symmetry associated with the conserved vector is derived in order to generate the

invariant solution. We consider the cases where the eddy viscosity depends only on

the distance along the wake in the form of a power law and when a modified version

of Prandtl’s hypothesis is satisfied. We examine the effect of neglecting the kinematic

viscosity. We then discuss the issues that arise when we consider the eddy viscosity to

also depend on the perpendicular distance from the axis of the wake. Mean velocity

profiles reveal that the eddy viscosity increases the boundary layer thickness of the

wake and decreases the magnitude of the maximum mean velocity. An infinite wake



boundary is predicted for this model. Lastly, we revisit the discovery of the combina-

tion wake. We show that for an eddy viscosity depending on only the distance along

the axis of the wake, a mathematical relationship exists between the classical wake,

the wake of a self-propelled body and the combination wake. We explain how the

solutions for the combination wake and the wake of a self-propelled body can be

generated directly from the solution to the classical wake.
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Chapter 1

Introduction to turbulent wake flows

1.1 Introduction to the wake

The problem of the wake is fascinating and of much practical interest. Wakes are

formed when a free flowing laminar fluid with a constant speed passes an obstruct-

ing body which is aligned with the mainstream flow. Turbulent wakes are formed

from mainstream flows characterised by a large Reynolds number. The presence of

the obstruction results in turbulent downstream flow. The symmetric wake can be

separated into two types: the ‘classical’ wake and the ‘momentumless’ wake. The

Reynolds averaged equations are used to determine the mean motion for turbulent

flows. A closure model is required to obtain a complete system of differential equa-

tions. Algebraic closure models implement the eddy viscosity formulation [1]. The

mixing length formulation [2] is a special case of the eddy viscosity model. Boussi-

nesq [3] introduced the concept of an eddy viscosity which unlike the dynamic vis-

cosity, is not a property of the fluid. The effect of the turbulence on the mean flow

manifests itself as an increase in the apparent viscosity of the fluid. In this thesis

we consider the equations describing the flow in a turbulent two-dimensional wake.

The system of equations is ultimately completed by using the eddy viscosity closure

model. The equations and boundary conditions are presented in terms of the x- and

y- mean velocity components and in terms of a stream function.

The two-dimensional steady flow of the laminar wake of an incompressible Newto-

nian fluid behind a thin symmetric fixed planar body aligned with the mainstream

flow, known as a classical wake, was first studied by Goldstein [4]. A study of the

momentumless laminar wake behind a thin symmetric self-propelled body was first

1



Chapter 1. Turbulent wake flows 2

undertaken by Birkhoff and Zorantello [5]. The two-fluid laminar classical wake and

wake of a self-propelled body was later investigated by Herczynski, Weidman and

Burde [6]. The partial differential equation (PDE) for the flow in the wake was de-

rived from the Navier-Stokes equation in the boundary layer approximation. This

equation was reduced to an ordinary differential equation (ODE) governing the sim-

ilarity flow.

The turbulent planar wake has been discussed by Tennekes and Lumley [7]. Equa-

tions for the mean velocities using the eddy viscosity closure model were formulated.

A constant eddy viscosity was chosen. A solution governing the similarity flow was

obtained and the results were compared with experimental observations. Existing

solutions for the turbulent planar wake are similarity solutions. Similarity solutions

can be obtained when the eddy viscosity is a power law of the distance along the

axis of the wake and when the kinematic viscosity is neglected. Similarity solutions

cannot be obtained for an effective viscosity which is the sum of the kinematic vis-

cosity and the eddy viscosity, and in general when the eddy viscosity depends on the

distance perpendicular to the axis of the wake.

In this thesis, the eddy viscosity closure model is used and the kinematic viscosity is

not neglected. An eddy viscosity is considered depending on the distance along the

axis of the wake; the distance perpendicular to the axis of the wake; and the mean

velocity gradient perpendicular to the axis of the wake. The fluid flow in the classi-

cal wake and the wake of a self-propelled body is described by the same governing

equations. For wakes with an infinite boundary such as those found for eddy viscosi-

ties depending on the spacial variables only, the boundary conditions are identical

for both the classical wake and the wake of a self-propelled body. The difference be-

tween the two problems lies within the conserved quantity. For the classical wake the

conserved quantity is the drag force [4] and for the wake of a self-propelled body the

drag is zero and the conserved quantity is the second moment of the axial momen-

tum deficit [5]. This work examines the equations for the two-dimensional turbulent

classical wake and the wake of a self-propelled body. An eddy viscosity depending

on the spacial variables only is first considered for wakes with infinite boundaries.

We then include the dependence of the eddy viscosity on the mean velocity gradient

perpendicular to the axis of the wake in order to investigate models that predict finite

wake boundaries.

Other types of wake flows, such as the two-dimensional laminar classical wake of a

shear thinning fluid [8] and the laminar axisymmetric classical wake for power-law
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fluids [9], have been considered. For shear thickening flows, the boundary of the

wake is finite. A finite wake boundary is obtained for the turbulent axisymmetric

wake in [10] which makes use of a closure model developed by Prandtl called the

mixing length model [2]. Part of this thesis will be devoted to the closure model de-

veloped by Prandtl [2]. The apparent stress is in the form of the product of a length

squared-called the ‘mixing’ length-and the square of the mean velocity gradient per-

pendicular to the axis of the wake. The kinematic viscosity of the fluid is neglected

because it is assumed that the turbulent viscosity is much greater than the kinematic

viscosity. This model predicts a finite boundary for the wake. Prandtl assumed large

Reynolds numbers and by neglecting the kinematic viscosity term, he subsequently

obtained a similarity solution. The mixing length was assumed to be proportional

to the width of the boundary layer. However, on comparison of the predicted results

with experimental observations, it was found that the predicted boundary calculated

from the model lay inside the actual boundary near to the obstructing object [2]. In

[10] a second approximation to the motion was implemented and the new model

predicted a boundary that lies outside of the boundary predicted by Prandtl. It will

be shown that Prandtl’s model can be modified by including the kinematic viscosity.

The boundary predicted by this new model also lies outside the boundary predicted

by Prandtl. Inclusion of the kinematic viscosity requires the use of Lie point symme-

try methods in order to obtain an analytical solution. Certain results that were previ-

ously assumed, such as the proportionality relationship between the mixing length

and width of the wake, can now be proven.

All of the wakes mentioned above are symmetric about the axis of the wake. Another

type of wake, called the ‘wall-wake’, was studied in [11] for laminar flows and in [12]

for turbulent flows. Wall-wake flows are formed due to the presence of a body that is

situated on the boundary wall. The wall occupies the entire lower half of the plane.

The fluid sticks to the boundary wall. Here the wake is situated within a boundary

layer. This problem is not symmetric about the axis of the wake as the fluid is con-

fined to the upper half of the plane. The governing equations for this problem differ

to that of the classical wake and the wake of a self-propelled body. We do not consider

this problem further.

Systematic methods have been formulated for solving problems in fluid mechanics

using a Lie symmetry approach. A number of the applications of symmetry methods

to problems in turbulence can be found in [13–15]. The problem of the wake is en-

capsulated in the class of problems in fluid mechanics with homogeneous boundary
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conditions for which a conserved quantity is required for their solution. Another im-

portant problem area which requires a conserved quantity to complete the solution

is jet flows. Mason [16] for a laminar two-dimensional jet and Ruscic and Mason [17]

for a laminar axisymmetric jet, applied symmetry methods and derived the group in-

variant solution using a linear combination of the Lie point symmetries of the equa-

tion governing the flow. The conserved quantity and the boundary conditions for

the jet were used to solve for the arbitrary constants in the linear combination of Lie

point symmetries. The turbulent two-dimensional jet, whose governing equations

were formulated using the eddy viscosity closure model, was investigated by Mason

and Hill [18]. Again, a linear combination of Lie point symmetries was used to gen-

erate the group invariant solution. It was found that the Lie point symmetries only

existed provided that the eddy viscosity satisfied a first order linear PDE. Higher order

symmetries have been considered in [19, 20] and applied to jet flows.

The conserved quantity for a jet plays a central role in the method of solution. The

same holds true for the wake. Conserved quantities can be difficult to derive. Much

progress has been made recently on deriving conserved quantities using conserva-

tion laws for the governing PDEs. A systematic approach has been developed to find

the conserved quantity for the jet [21]. The conservation laws are first derived and

the conserved quantity can then be determined by integrating one of the conserva-

tion laws across the jet, chosen to be compatible with the boundary conditions of the

problem.

Methods to calculate the conservation laws of a PDE can be found in [22–26]. A sum-

mary on the different approaches for calculating conservation laws is provided in

[27]. In this thesis we will derive the conservation laws for the PDEs for the two-

dimensional turbulent wake using the multiplier method developed by Steudel [28].

In [28], it is not shown how to construct the components of a conserved vector ex-

plicitly from a given multiplier. Further information on this approach can be found in

[27, 29]. In particular, it is shown in [27, 29] that the multiplier method yields all non-

trivial conservation laws of a PDE. An algorithmic approach to the multiplier method

is given in [23–25]. The purpose of this part of the study is to verify if the conserved

quantities of physical importance that are obtained belong only to the classical wake

and the wake of a self-propelled body. Indeed we discover that another conserved

quantity with potential physical significance exists. Not only could this conserved

quantity be of physical interest but we also show that a simple relationship between

the solutions of the three problems exists.
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A modification, due to Kara and Mahomed [30], of the Lie symmetry method was

introduced for problems with a conserved quantity. They first derived the condition

for a Lie point symmetry to be associated with a conserved vector [30, 31]. Instead

of using a linear combination of all the Lie point symmetries of the PDE to derive an

invariant solution, the Lie point symmetry associated with the conserved vector that

generates the conserved quantity was used. This method is more direct. It has been

applied to laminar jet flows by Naz and Naeem [32], to a turbulent jet by Mason and

Hill [33] and to turbulent flow of a compressible fluid in a tube by Anthonyrajah and

Mason [34]. Because a Lie point symmetry associated with a conserved vector of the

PDE is used to reduce the PDE to an ODE, the ODE can be integrated at least once

by the double reduction theorem of Sjöberg [35]. Further work on symmetries and

conservation laws for differential equations can be found in [23, 24, 27, 36, 37].

The momentum partial differential equation for the turbulent wake described by an

eddy viscosity depending on the spacial variables only, is a linear parabolic diffusion-

type equation. For an eddy viscosity depending on the distance along the axis of the

wake only, the momentum equation reduces to a linear heat equation. The conser-

vation laws for general linear parabolic partial differential equations are calculated

in [38]. The potential symmetries are also considered. A significant amount of re-

search has been conducted on diffusion equations. Steinberg and Wolf [39] studied

the connection between the moments of the diffusive equation and its symmetries.

They showed that the zeroth and first moments are conserved for the classical heat

equation. In [40] the partial Lagrangian approach was used to calculate the Noether-

type operators of the classical heat equation. Work on the classical symmetry groups

and the weak symmetry groups of the linear heat equation can be found in the texts

[41, 42] and [41, 43–45] respectively. Mansfield [46] studied a nonclassical group

analysis of the linear heat equation and nonclassical reductions are investigated in

[47].

A detailed study on the non-linear reaction-diffusion equation with variable coef-

ficients can be found in [48]. In [48], a group classification is performed and the

local conservation laws are obtained. Lie symmetry methods are also implemented

to obtain some exact solutions. A large number of studies on diffusion-convection

equations have also been undertaken. The conservation laws are discussed in [49],

and in [50] the conservation laws are used in order to construct the corresponding

potential systems. In [51], classical symmetry reductions are obtained and optimal
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systems are found. The invariants for each optimal system are derived. Group clas-

sifications are provided for the non-linear diffusion-convection equation in [52] and

the non-linear variable-coefficient diffusion-convection equation in [53, 54]. The in-

variant solutions of the non-linear heat equation with conduction and a source term

can be found in [55]. An interesting study by Bluman and Kumei [56] considered the

invariance properties of the heat equation with a conduction term. A particular form

for the conduction term was used. Oron [57] calculated some of the symmetries for

the non-linear heat equation. Although a general formula for conservation laws was

derived in [38] for linear parabolic equations, when we include the continuity equa-

tion in our analysis we obtain another non-trivial conservation law that cannot be

generated by this formula. Direct comparisons of the results obtained in this thesis

and the work done previously can be found in [58].

This thesis is outlined as follows:

• Chapter 2: the mathematical models for the turbulent classical wake and the

turbulent wake of a self-propelled body are presented. The Reynolds averaged

boundary layer equations for the turbulent wake using the eddy viscosity clo-

sure model are derived. The eddy viscosity in this case is a function of the spa-

cial variables and the mean velocity gradient perpendicular to the axis of the

wake. The general form chosen for the eddy viscosity can be applied to both

problems pertaining to an infinite wake boundary and a finite wake boundary.

The boundary conditions are derived.

• Chapter 3: a systematic method using a Lie symmetry approach is presented in

order to generate the conserved quantities for the turbulent wake equation de-

scribed by eddy viscosity. An eddy viscosity depending on the spacial variables

and the mean velocity gradient perpendicular to the axis of the wake is first

considered. The elementary conserved quantity is derived. This problem con-

cerns the application of Prandtl’s mixing length model and a revised version of

it to the turbulent classical wake. This approach is later shown to generate a fi-

nite boundary for the wake. We then consider an eddy viscosity depending on

the spacial variables only. The multiplier approach is used in order to derive a

basis of conservation laws for the governing equations expressed both in terms

of the velocity components and the stream function. The conserved quantities

for the classical wake and the wake of a self-propelled body are derived. A third

conserved quantity is obtained. This conserved quantity is generated using the



Chapter 1. Turbulent wake flows 7

same boundary conditions perpendicular to the axis of the wake at ±∞ as that

of the classical wake and the wake of a self-propelled body.

• Chapter 4: in this chapter the Lie point symmetry associated with the elemen-

tary conserved vector is determined for the turbulent classical wake with an

infinite boundary. We first consider the eddy viscosity to be a function of only

the distance along the axis of the wake and solve for the stream function. Mean

velocity profiles are plotted for an eddy viscosity in the form of a power law and

the results are compared for a range of power laws and with the laminar classi-

cal wake. We then take the eddy viscosity to be a function of the distance along

the axis of the wake and the perpendicular distance from the axis of the wake.

Various forms of the eddy viscosity are analysed and mean velocity profiles are

again compared with those obtained for the laminar wake. .

• Chapter 5: the purpose of this chapter is to apply Lie symmetry methods to

the turbulent wake of a symmetric self-propelled body. From the conserved

vector obtained in Chapter 3, we calculate the Lie point symmetry associated

with this conserved vector and derive the invariant solution. We consider an

eddy viscosity in the form of a power law of the distance along the axis of the

wake and plot the mean velocity profiles. We also examine the negative effects

of excluding the kinematic viscosity as opposed to including it. We include a

discussion on the anticipated difficulties that arise when we consider the eddy

viscosity to be a function of both the distance along the axis of the wake and

the perpendicular distance from the axis of the wake.

• Chapter 6: we consider the application of a revised Prandtl mixing length model

in which the kinematic viscosity is not neglected and solve for the stream func-

tion. Mean velocity profiles are plotted with the purpose of examining the im-

pact of the strength of the turbulence on the mean velocity and the width of the

wake. It is shown numerically that the width of the wake in the revised Prandtl

model is finite. We derive and discuss the results from implementing Prandtl’s

mixing length model to the turbulent classical wake. A detailed comparison of

the two models is provided. It is proved that the revised Prandtl model predicts

a boundary that lies outside the one predicted by Prandtl. We also show that

with the revised Prandtl model the mathematical form of the mixing length can

be derived and need not be assumed as it was with Prandtl’s model.

• Chapter 7: the conservation law obtained in Chapter 3 that does not belong to

any known wake problem is discussed. The Lie point symmetry corresponding
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to the conservation law is derived and the invariant solution is obtained. The

solution to this problem is shown to provide the link between the solutions to

the classical wake and the wake of a self-propelled body for an eddy viscos-

ity depending on the distance along the axis of the wake only. We deduce the

mathematical link between these solutions and discuss the significance of this

result.

• Chapter 8: conclusions are presented in this chapter.

A large portion of the research in Chapters 3 and 7 can be found in [58]. Chapters 4,

5 and 6 refer to work done in [59], [60] and [61] respectively.



Chapter 2

Derivation of the governing equations

2.1 Derivation

In this section we consider a two-dimensional turbulent wake of a symmetric body.

Cartesian coordinates (x, y) are used. The classical wake, shown in Figures 2.1 and

2.3, represents the flow past a slender symmetric body aligned with a uniform main-

stream flow. The obstructing body is stationary. The origin of the coordinate system

is defined to be at the trailing edge of the body. The velocity of the mainstream flow is

denoted by U and only consists of a component in the x-direction. In Figure 2.1 the

wake has an infinite boundary and in Figure 2.3 the wake has a finite boundary. This

is as a result of the closure model used to complete the system of equations. We will

consider both cases. The wake behind a self-propelled body is shown in Figure 2.2.

It differs from the classical wake in that the obstructing body propels itself in the x-

direction at a constant speed resulting in zero momentum deficit. The origin of this

coordinate system is chosen to be stationary with respect to the moving body at the

trailing edge. However, since this coordinate system is moving at a constant speed,

the mainstream velocity U here is defined as the relative velocity of the mainstream

flow. For high Reynolds number flows, the obstructing object causes instabilities re-

sulting in the presence of turbulence in the wake downstream of the body.

For the symmetric wakes above, namely, the classical wake and the wake of a self-

propelled body, the governing equations and boundary conditions are the same.

They differ in the conserved quantities that they satisfy. The position of the boundary

for the classical wake also differs depending on the closure model used.

9
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FIGURE 2.1: Two-dimensional classical wake behind a thin symmetric planar body.
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FIGURE 2.2: Two-dimensional wake behind a slender symmetric self-propelled
body. The mean velocity deficit is negative in a neighbourhood of the x-axis.
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FIGURE 2.3: Finite two-dimensional classical wake behind a thin symmetric planar
body aligned with a uniform flow.
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One way to model turbulence is to separate the flow into a mean flow component and

a fluctuation term which is imposed on the mean flow. The velocity components, vx

and vy , and the pressure p are written as

vx = v x + v ′
x , vy = v y + v ′

y , p = p +p ′, (2.1)

where the mean flow variables v x(x, y), v y (x, y) and p(x, y) are defined as time aver-

ages [62]:

v x(x, y) = 1

T

∫ t+T

t
vx(x, y, t )d t , v y (x, y) = 1

T

∫ t+T

t
vy (x, y, t )d t ,

p(x, y) = 1

T

∫ t+T

t
p(x, y, t )d t . (2.2)

The time interval T is sufficiently large to ensure that these time averages are inde-

pendent of time. The time averages of the fluctuations are zero. However, the same

is not true for squares and products of the fluctuations. We will see that these non-

zero terms can be expressed in terms of Reynolds stresses. Their presence affects the

mean flow by an apparent increase in the viscosity.

Since the fluid is incompressible,

∂v x

∂x
+ ∂v ′

x

∂x
+ ∂v y

∂y
+
∂v ′

y

∂y
= 0. (2.3)

Taking the time average of (2.3) gives

∂v x

∂x
+ ∂v y

∂y
= 0, (2.4)

and therefore from (2.3) and (2.4),

∂v ′
x

∂x
+
∂v ′

y

∂y
= 0. (2.5)

The mean fluid velocity and the fluctuations both satisfy the continuity equation.

The Navier-Stokes equation is written in terms of the mean flow components. By

using the continuity equation (2.5) for the fluctuation the x- and y- components of

the Reynolds averaged equation may be expressed respectively as

ρ

(
v x
∂v x

∂x
+ v y

∂v x

∂y

)
= ∂

∂x

(
−p −ρv ′

x v ′
x +µ

∂v x

∂x

)
+ ∂

∂y

(
−ρv ′

x v ′
y +µ

∂v x

∂y

)
, (2.6)
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ρ

(
v x
∂v y

∂x
+ v y

∂v y

∂y

)
= ∂

∂x

(
−ρv ′

x v ′
y +µ

∂v y

∂x

)
+ ∂

∂y

(
−p −ρv ′

y v ′
y +µ

∂v y

∂y

)
. (2.7)

The viscosity of the fluid µ and the density ρ are both constant. Furthermore, by

using the continuity equation (2.4) for the mean flow, (2.6) and (2.7) can be written

in the form

ρ

(
v x
∂v x

∂x
+ v y

∂v x

∂y

)
= ∂

∂x

(
−p −ρv ′

x v ′
x +2µ

∂v x

∂x

)
+

∂

∂y

(
−ρv ′

x v ′
y +µ

(
∂v x

∂y
+ ∂v y

∂x

))
, (2.8)

ρ

(
v x
∂v y

∂x
+ v y

∂v y

∂y

)
= ∂

∂x

(
−ρv ′

x v ′
y +µ

(
∂v y

∂x
+ ∂v x

∂y

))
+

∂

∂y

(
−p −ρv ′

y v ′
y +2µ

∂v y

∂y

)
. (2.9)

Hence,

ρ

(
v x
∂v x

∂x
+ v y

∂v x

∂y

)
= ∂

∂x
τxx + ∂

∂y
τy x , (2.10)

ρ

(
v x
∂v y

∂x
+ v y

∂v y

∂y

)
= ∂

∂x
τx y + ∂

∂y
τy y , (2.11)

where

τi k =−pδi k +2µD i k −ρv ′
i v ′

k , (2.12)

and D i k is the rate-of-strain tensor for the mean velocity field defined by

D i k = 1

2

(
∂v i

∂xk
+ ∂vk

∂xi

)
. (2.13)

In order to obtain a closed system of differential equations for the mean velocity,

Boussinesq [3] assumed that the Reynolds stress tensor −ρv ′
i v ′

k is related to the mean

rate-of-strain tensor D i k in the same way as the stress tensor τi k is related to the rate-

of-strain tensor Di k for the laminar flow of an incompressible Newtonian fluid. He

assumed that

−ρv ′
i v ′

k = 2µT D i k =µT

(
∂v i

∂xk
+ ∂vk

∂xi

)
, (2.14)

where µT is the eddy viscosity. Unlike the dynamic viscosity µ, the eddy viscosity

µT is not a property of the fluid. It is a property of the flow and can depend on the

spacial coordinates, x and y , as well as on the mean velocity components v x and

v y and the mean velocity gradients. An eddy viscosity depending on the coordinate

x and the velocity gradient
∂v x

∂y
can be used to generate the form of the Reynolds

stresses given by Prandtl’s model and the revised version of it. We will assume that
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µT =µT

(
x, y,

∂v x

∂y

)
only. Thus (2.12) becomes

τi k =−pδi k +2(µ+µT )D i k . (2.15)

For a laminar flow the constitutive equation (2.15) reduces to the Navier-Poisson law

for an incompressible Newtonian fluid. The effective kinematic viscosity is defined

as [64]

E = µ+µT

ρ
= ν+νT . (2.16)

Equations (2.10) and (2.11) become

v x
∂v x

∂x
+ v y

∂v x

∂y
=− 1

ρ

∂p

∂x
+ ∂

∂x

(
2E

(
x, y,

∂v x

∂y

)
∂v x

∂x

)
+

∂

∂y

(
E

(
x, y,

∂v x

∂y

)(
∂v x

∂y
+ ∂v y

∂x

))
, (2.17)

v x
∂v y

∂x
+ v y

∂v y

∂y
=− 1

ρ

∂p

∂y
+ ∂

∂x

(
E

(
x, y,

∂v x

∂y

)(
∂v x

∂y
+ ∂v y

∂x

))
+

∂

∂y

(
2E

(
x, y,

∂v x

∂y

)
∂v y

∂y

)
. (2.18)

We now impose the boundary layer approximation. Although there is no solid bound-

ary in the wake the boundary layer approximation can be applied because there is a

region of sharp change perpendicular to the axis of the wake. We first make equa-

tions (2.17) and (2.18) dimensionless. The characteristic speed in the x- direction is

U , where U is the speed of the uniform mainstream flow upstream of the body for

the classical wake and the relative mainstream flow for the wake of a self-propelled

body. The characteristic length in the x-direction is L, where L is an estimate of the

length downstream of the body over which the reduction of velocity in the wake is

not negligible.

For E = E(x, y) we let E0 = ν+νT0 , where νT0 is the characteristic turbulent viscosity,

be the characteristic effective kinematic viscosity. For E = E

(
x, y,

∂v x

∂y

)
we still define

the characteristic eddy viscosity to be νT0 but the characteristic effective viscosity EC

is now the sum νC +νTC , where νC and νTC denote the characteristic kinematic vis-

cosity and characteristic turbulent viscosity respectively. We define EC in this way
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in order to compare flows with different viscosities and to examine the effect of tur-

bulence. In particular, when we study Prandtl’s mixing length model we set ν = 0 in

equation (2.16).

From this we can obtain a characteristic length and speed in the y- direction. From

boundary layer theory [62] the characteristic width of the boundary layer isδ= L/
p

Re,

where we will define the Reynolds number for the mean flow for E = E(x, y) and

E = E

(
x, y,

∂v x

∂y

)
by respectively,

Re = U L

E0
, (2.19)

Re = U L

EC
. (2.20)

From the conservation of mass equation (2.4), which is not approximated, the char-

acteristic velocity in the y- direction, V , is

V = δU

L
= Up

Re
. (2.21)

The characteristic pressure is ρU 2. We define for E = E(x, y):

x∗ = x

L
, y∗ = y

δ
=

p
Re

L
y,

v x
∗ = v x

U
, v y

∗ = v y

p
Re

U
, p∗ = p

ρU 2
, E∗ (

x∗, y∗)= E
(
x, y

)
E0

, (2.22)

where the Reynolds number Re is given by equation (2.19). For E = E

(
x, y,

∂v x

∂y

)
we

use the same dimensionless variables as in (2.22) but with E∗ as the exception:

E∗
(

x∗, y∗,
∂v∗

x

∂y∗

)
=

E

(
x, y,

∂v x

∂y

)
EC

, (2.23)

and the Reynolds number Re is given by equation (2.20). Expressed in dimensionless

variables, equations (2.17) and (2.18) become

v x
∗∂v∗

x

∂x∗ + v∗
y
∂v∗

x

∂y∗ =−∂p∗

∂x∗+

2

Re

∂

∂x∗

(
E∗

(
x∗, y∗,

∂v∗
x

∂y∗

)
∂v∗

x

∂x∗

)
+ ∂

∂y∗

(
E∗

(
x∗, y∗,

∂v∗
x

∂y∗

)(
∂v∗

x

∂y∗ + 1

Re

∂v∗
y

∂x∗

))
, (2.24)
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1

Re
v∗

x

∂v∗
y

∂x∗ + 1

Re
v∗

y

∂v∗
y

∂y∗ =−∂p∗

∂y∗+

∂

∂x∗

(
E∗

(
x∗, y∗,

∂v∗
x

∂y∗

)(
1

Re

∂v∗
x

∂y∗ + 1

Re2

∂v∗
y

∂x∗

))
+ 2

Re

∂

∂y∗

(
E∗

(
x∗, y∗,

∂v∗
x

∂y∗

)
∂v∗

y

∂y∗

)
. (2.25)

The conservation of mass equation, (2.4), remains unchanged in the new variables.

Since δ = L/
p

Re, a boundary layer exists provided
p

Re À 1. Neglecting terms of

order 1/
p

Re and smaller, and suppressing the star to help keep the notation simple,

equations (2.24) and (2.25) reduce to

v x
∂v x

∂x
+ v y

∂v x

∂y
=−∂p

∂x
+ ∂

∂y

(
E

(
x, y,

∂v x

∂y

)
∂v x

∂y

)
, (2.26)

∂p

∂y
= 0. (2.27)

The remaining equation is the conservation of mass equation (2.4).

We now consider the spacial gradient of the mean pressure p. Since p does not de-

pend on y , by (2.27), its value at any position x is determined by the corresponding

mainstream conditions of the flow which are satisfied at y = ±yb(x), where yb(x) is

the boundary of the wake. If the boundary of the wake is infinite then yb(x) =∞. The

uniform flow in the mainstream is in the x - direction with constant speed U . It is

inviscid and satisfies Euler’s equation, the x- component of which gives

0 =−d p

d x
. (2.28)

Equation (2.26) therefore reduces to

v x
∂v x

∂x
+ v y

∂v x

∂y
= ∂

∂y

(
E

(
x, y,

∂v x

∂y

)
∂v x

∂y

)
. (2.29)

Equations (2.4) and (2.29) are the dimensionless equations for the mean velocity

components, v x and v y , in a two-dimensional turbulent wake.

In dimensionless form the mainstream velocity is unity in the x- direction and zero

in the y-direction. We write

v x(x, y) = 1−w(x, y), v(x, y) = 0+ v(x, y), (2.30)
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where w(x, y) is the mean velocity deficit in the wake in the x-direction and we have

replaced v y with v for simplicity. Substituting (2.30) into (2.4) and (2.29) gives

− ∂w

∂x
+ ∂v

∂y
= 0, (2.31)

∂w

∂x
−w

∂w

∂x
+ v

∂w

∂y
= ∂

∂y

(
E

(
x, y,

∂w

∂y

)
∂w

∂y

)
. (2.32)

Suppose now that we are sufficiently far downstream that w and v are small such

that products and powers of w and v can be neglected. Then (2.32) reduces to the

diffusion equation
∂w

∂x
= ∂

∂y

(
E

(
x, y,

∂w

∂y

)
∂w

∂y

)
. (2.33)

We now formulate the problem in terms of a stream function ψ(x, y) defined by

w(x, y) = ∂ψ

∂y
, v(x, y) = ∂ψ

∂x
. (2.34)

This formulation ensures that the continuity equation is identically satisfied and re-

duces the number of unknowns and equations from two to one. Equation (2.33) takes

the form
∂2ψ

∂x∂y
= ∂

∂y

(
E

(
x, y,

∂2ψ

∂y2

)
∂2ψ

∂y2

)
. (2.35)

In the next section the boundary conditions and conserved quantities are discussed.

2.1.1 Boundary conditions and conserved quantities

2.1.1.1 Classical wake and wake of a self-propelled body with E = E(x, y)

The boundary conditions on w and v are deduced as follows. As y tends to ±∞ the

mean velocity deficit in the x-direction tends very slowly to zero. We assume that, as

well as w , the first derivative of w with respect to y tends to zero:

w(x,±∞) = 0,
∂w

∂y
(x,±∞) = 0, x ≥ 0. (2.36)

Also, the x- axis is an axis of symmetry of the wake. The mean velocity deficit w(x, y)

is a maximum with respect to y at each point of the positive x - axis and therefore

∂w

∂y
(x,0) = 0, x ≥ 0. (2.37)
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Lastly, along the positive x-axis, the y- component of the mean velocity is zero:

v(x,0) = 0, x ≥ 0. (2.38)

In terms of the stream function the boundary conditions (2.36) to (2.38) become,

respectively, for x ≥ 0,

∂ψ

∂y
(x,±∞) = 0,

∂2ψ

∂y2
(x,±∞) = 0, (2.39)

∂2ψ

∂y2
(x,0) = 0,

∂ψ

∂x
(x,0) = 0. (2.40)

We will see later that not all the boundary conditions are independent of one another.

For the classical wake, the conserved quantity is obtained by integrating equation

(2.35) from y =−∞ to y =∞ at a fixed point x [4]. The conserved quantity is∫ ∞

−∞
∂ψ

∂y
d y = D, (2.41)

where D is proportional to the drag force. This method works for a constant eddy

viscosity and an effective viscosity of the form E(x, y).

In order to derive the conserved quantity for the wake behind a self-propelled body

we multiply equation (2.35) by y2 and then integrate across the wake from y =−∞ to

y =∞ at a fixed point x [5]. This method works for a constant eddy viscosity and for

an eddy viscosity depending on only the distance along the axis of the wake.

The conserved quantity for the wake of a self-propelled body is given by [5]∫ ∞

−∞
y2∂ψ

∂y
d y = K , (2.42)

and since the drag force is also zero∫ ∞

−∞
∂ψ

∂y
d y = 0. (2.43)

The constant K is proportional to the second moment of the axial momentum deficit.
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2.1.1.2 Classical wake with E = E

(
x, y,

∂w

∂y

)

The boundary conditions, in terms of the stream function ψ, are for x ≥ 0,

∂ψ

∂y
(x,±yb) = 0,

∂2ψ

∂y2
(x,±yb) = 0, (2.44)

∂2ψ

∂y2
(x,0) = 0,

∂ψ

∂x
(x,0) = 0, (2.45)

where the boundary y = ±yb(x) is unspecified. If the wake extends to infinity in the

y-direction then yb(x) =∞.

The conserved quantity for the wake is the drag force D [4]. Integrating (2.35) across

the wake from y =−yb(x) to y =+yb(x) at a fixed point x gives

∫ yb (x)

−yb (x)

∂2ψ

∂x∂y
(x, y)d y −E

(
x, y,

∂2ψ

∂y2

)
∂2ψ

∂y2

∣∣∣∣y=yb (x)

y=−yb (x)
= 0, (2.46)

which on imposing the second derivative boundary condition in (2.44) and the the-

orem for differentiation under an integral sign [63] reduces to

d

d x

∫ yb (x)

−yb (x)

∂ψ

∂y
(x, y)d y − y ′

b(x)
∂ψ

∂y
(x, yb(x))− y ′

b(x)
∂ψ

∂y
(x,−yb(x)) = 0. (2.47)

Hence, from the first derivative boundary condition in (2.44)

∫ yb (x)

−yb (x)

∂ψ

∂y
(x, y)d y = D, (2.48)

where D is a dimensionless constant proportional to the drag on the body [4]. Equa-

tion (2.48) is used to determine the position of the boundary y = ±yb(x). We note

that

E

(
x, y,

∂2ψ

∂y2

)
∂2ψ

∂y2

∣∣∣∣y=yb (x)

y=−yb (x)
= 0,

if
∂2ψ

∂y2
vanishes or if E

(
x, y, ∂

2ψ

∂y2

)
vanishes at y =±yb(x). We can thus also consider a

model that replaces the second derivative boundary condition in (2.44) with

E

(
x, y,

∂2ψ

∂y2

)∣∣∣∣
y=±yb (x)

= 0. (2.49)

We will not investigate this further.
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The right-hand side of all the boundary conditions is zero. The boundary condi-

tions can therefore be described as homogeneous boundary conditions. As in other

problems described by Prandtl’s boundary layer equations no condition is placed on

v y = ∂ψ

∂x
at the boundaries y =±∞ and y =±yb(x).



Chapter 3

Derivation of the conservation laws for

the two-dimensional turbulent wake

using operator methods

In this chapter we calculate the conservation laws for the turbulent wake. The rele-

vant theory is outlined in Section 3.1. In Section 3.2 we consider the turbulent clas-

sical wake with an eddy viscosity depending on the spacial variables and the velocity

gradient in the y- direction. This model describes a wake with a finite boundary

given by Prandtl’s model and a revised Prandtl model which is formulated in Chap-

ter 6. The elementary conserved vector is derived in terms of the stream function

and the velocity components. The conserved quantity is also obtained. In Section

3.3 we analyse wakes with infinite boundaries that are generated by eddy viscosities

depending on the spacial variables only. We calculate the conserved vectors in terms

of the velocity components and the stream function. In Section 3.4 the conserved

quantities for the classical wake for E = E(x, y) and the wake of a self-propelled body

for E = E(x) are derived. A third conserved quantity for E = E(x) is obtained. This

conserved quantity is generated using the same boundary conditions at y = ±∞ as

that of the classical wake and the wake of a self-propelled body. Conclusions for this

chapter are given in Section 3.5.

20
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3.1 Conservation law theory

In this section, the theory and techniques required for the remainder of this chapter

are provided. In particular, conservation law theory is discussed.

Consider a p-th order system of PDEs of n independent variables and m dependent

variables:

F j (x,ψ,ψ(1), ...,ψ(p)) = 0, j = 1, 2, ..., m, (3.1)

where x = (x1, x2, ..., xn) and ψ= (ψ1,ψ2, ...,ψm) denote the independent and depen-

dent variables respectively. The collection of i -th order partial derivatives of the de-

pendent variables is denoted by ψ(i ). System (3.1) is assumed to be of maximal rank

and is locally solvable.

The total derivative ofψ j with respect to xi is written asψ j
i = Di (ψ j ), ψ j

i k = Dk Di (ψ j )

, ..., where the total derivative operator with respect to xi is given by

Di = ∂

∂xi
+ψ j

i

∂

∂ψ j
+ψ j

i k

∂

∂ψ
j
k

+ ..., i = 1,2, ...,n. (3.2)

The Euler operator, which annihilates a differential function if and only if the differ-

ential function is a total divergence, is defined by

E∗
ψ j =

∂

∂ψ j
+ ∑

s≥1
(−1)sDi1 ...Dis

∂

∂ψ
j
i1...is

, j = 1,2, ...,m, i1 ≤ i2 ≤ ... ≤ is . (3.3)

The symmetry operator is

X = ξi ∂

∂xi
+η j ∂

∂ψ j
+ ∑

s≥1
ζ

j
i1...is

∂

∂ψ
j
i1...is

, i1 ≤ i2 ≤ ... ≤ is , (3.4)

where ζ j
i1...is

are given by

ζ
j
i = Di (η j )−ψ j

k Di (ξk ), (3.5)

ζ
j
i1,...is

= Dis (ζ j
i1...is−1

)−ψ j
ki1...is−1

Dis (ξk ), s > 1. (3.6)

A set of functions T 1, T 2, ..., T n consists of the components of a local conservation

law if and only if they satisfy

Di T i = 0, (3.7)

for all solutions of (3.1).



Chapter 3. Conservation laws 22

The characteristic or multiplier approach developed by Steudal [28], can be used to

generate conservation laws for systems of PDEs. The multiplier Λ has components

Λ1,Λ2, ...,Λn which can depend on the independent and dependent variables as well

as the partial derivatives of at most up to p-th order of the dependent variables. The

multiplierΛ for the system of PDES (3.1) has the property that

Λ j F j (x,ψ,ψ(1), ...,ψ(k)) = D j T j , (3.8)

for all functions ψ. The determining equations for the multiplier Λ are found by

applying the Euler operator to equation (3.8) which gives

E∗
ψ j

[
Λk Fk

]
= 0, j = 1,2, ...,m. (3.9)

The determining equations (3.9) are satisfied for all functionsψ= (ψ1,ψ2, ...,ψm) and

not only for solutions of the system (3.1). Since the partial derivatives ofψ j are there-

fore independent, the determining equations (3.9) are solved by separating by pow-

ers and products of the partial derivatives of ψ j . Once the multiplier Λ has been

determined we now consider for ψ solutions of the system of PDEs (3.1). The com-

ponents of the conserved vector T are calculated by performing elementary manip-

ulations on equation (3.8).

The conserved vector T = (T 1,T 2, ...,T n) is invariant under the action of the genera-

tor (3.4) provided [30, 31]

X (T i )+T i Dk (ξk )−T k Dk (ξi ) = 0, i = 1,2, ...,n, (3.10)

where X is prolongated to as high an order in the derivatives as required. Any gener-

ator (3.4) satisfying (3.10) is a Lie point symmetry of the system of PDES (3.1). Once

the Lie point symmetry X has been obtained the invariant solution corresponding to

this X can be derived.
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3.2 Elementary conserved quantity for the turbulent clas-

sical wake with E = E

(
x, y,

∂2ψ

∂y2

)
In this section we consider the elementary conserved vector for the turbulent clas-

sical wake with E = E

(
x, y,

∂2ψ

∂y2

)
. It is shown in Chapter 6 that this model predicts

a finite wake boundary. We first calculate the elementary conserved vector in terms

of the stream function. Since, for the elementary conserved vector the multiplier

Λ is simply equal to 1, once we have calculated the elementary conserved vector

in terms of the stream function we can use the definition of the stream function,

namely, w = ∂ψ

∂y
and v = ∂ψ

∂x
, in order to directly find the elementary conserved vec-

tor in terms of the velocity components. In this section we assume that
∂E

∂ψy y
6= 0.

3.2.1 Elementary conserved vector in terms of the stream function

In this section we derive the elementary conserved vector for the partial differential

equation (2.35). In [23, 24, 29] it is shown that there is a one-to-one correspondence

between non-trivial conserved vectors and non-zero multipliers. The suffix notation

ψx , ψy , ψx y , ... is used when x, y , ψ and the partial derivatives of ψ are regarded

as independent variables. The notation
∂ψ

∂x
,
∂ψ

∂y
,
∂2ψ

∂x∂y
, ... is used when ψ and the

partial derivatives of ψ are regarded as dependent variables which are functions of

the independent variables x and y .

In order to derive the elementary conserved vector we let x, y , ψ and all partial

derivatives of ψ be independent variables. We can write equation (2.35) as

ψx y − ∂E

∂y
(x, y,ψy y )ψy y − ∂E

∂ψy y
ψy y yψy y −E(x, y,ψy y )ψy y y = 0. (3.11)

A conservation law for the partial differential equation (2.35) satisfies

(
D1T 1 +D2T 2)∣∣

(3.11) = 0, (3.12)

where

D1 = Dx = ∂

∂x
+ψx

∂

∂ψ
+ψxx

∂

∂ψx
+ψy x

∂

∂ψy
+ ..., (3.13)
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D2 = D y = ∂

∂y
+ψy

∂

∂ψ
+ψx y

∂

∂ψx
+ψy y

∂

∂ψy
+ .... (3.14)

The components of the corresponding conserved vector T = (T 1,T 2) are

T 1 = T 1(x, y,ψ,ψx ,ψy , ...), T 2 = T 2(x, y,ψ,ψx ,ψy , ...). (3.15)

The elementary conserved vector for the partial differential equation (2.35) is

T 1(ψy ) =ψy , T 2(x, y,ψy y ) =−E(x, y,ψy y )ψy y , (3.16)

which can be verified directly by substituting (3.16) into (3.12).

3.2.2 Elementary conserved vector in terms of the velocity compo-

nents

Using the definition of the stream functionψ, the conserved vector in (3.16) in terms

of the velocity components is

T 1(w) = w , T 2(x, y, w y ) =−E(x, y, w y )w y . (3.17)

From the continuity equation (2.31) we also obtain another elementary conserved

vector, namely,

T 1 =−w , T 2 = v . (3.18)

3.2.3 Conserved quantity

On solutions ψ = ψ(x, y) of the governing partial differential equation (2.35), the

components T 1 and T 2 of the conserved vector can be regarded as functions of x

and y . Therefore, we have for the stream function

∂

∂x
T 1(x, y,ψ(x, y),ψx(x, y),ψy (x, y), ...) = DxT 1, (3.19)

∂

∂y
T 2(x, y,ψ(x, y),ψx(x, y),ψy (x, y), ...) = D y T 2, (3.20)
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and for the velocity components

∂

∂x
T 1(x, y, w , v , w x , w y , v x , v y , ...) = DxT 1, (3.21)

∂

∂y
T 2(x, y, w , v , w x , w y , v x , v y , ...) = D y T 2, (3.22)

and so

DxT 1 +D y T 2 = ∂

∂x
T 1 + ∂

∂y
T 2. (3.23)

For a conserved vector the left hand side of equation (3.23) vanishes and the conser-

vation law (3.23) can be written as

∂T 1

∂x
+ ∂T 2

∂y
= 0. (3.24)

The elementary conserved quantity for the classical wake with E = E

(
x, y,

∂2ψ

∂y2

)
can

be derived using both the velocity components and the stream function. In terms of

the velocity components, using T 1 and T 2 defined in (3.17), the conserved quantity

is found by integrating (3.24) across the wake from y =−yb(x) to y =+yb(x) at a fixed

point x. Integrating (3.24) across the wake gives

∫ yb (x)

−yb (x)

∂w

∂x
(x, y)d y −E

(
x, y,

∂w

∂y

)
∂w

∂y

∣∣∣∣y=yb (x)

y=−yb (x)
= 0. (3.25)

Since w = ∂ψ

∂y
we can use the second derivative boundary condition in (2.44) and the

theorem for differentiation under an integral sign [63] to obtain

d

d x

∫ yb (x)

−yb (x)
w(x, y)d y − y ′

b(x)w(x, yb(x))− y ′
b(x)w(x,−yb(x)) = 0, (3.26)

and from the first derivative boundary condition in (2.44)

∫ yb (x)

−yb (x)
w(x, y)d y = D, (3.27)

where D is a dimensionless constant proportional to the drag on the body [4]. Equa-

tion (3.27) is used to determine the position of the boundary y =±yb(x).
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Integrating equation (3.24) across the wake from y = −yb(x) to y = +yb(x) at a fixed

point x using the conserved vector given in (3.18) results in

∫ yb (x)

−yb (x)

(
−∂w

∂x
(x, y)+ ∂v

∂y
(x, y)

)
d y = 0, (3.28)

since the continuity equation is identically satisfied. The conserved vector in (3.18)

does not generate a conserved quantity.

In terms of the stream function, using T 1 and T 2 defined in (3.16), and integrating

(3.24) across the wake from y =−yb(x) to y =+yb(x) at a fixed point x results in

∫ yb (x)

−yb (x)

∂2ψ

∂x∂y
(x, y)d y −E

(
x, y,

∂2ψ

∂y2

)
∂2ψ

∂y2

∣∣∣∣y=yb (x)

y=−yb (x)
= 0, (3.29)

and by using the first and second derivative boundary conditions in (2.44) and the

theorem for differentiation under an integral sign [63] we obtain

∫ yb (x)

−yb (x)

∂ψ

∂y
(x, y)d y = D, (3.30)

which is equivalent to the expression in (3.27).

3.3 Conserved vectors for the turbulent wake with E =
E(x, y)

In this section, we consider wakes with infinite boundaries. These are described by

eddy viscosities depending on the spacial variables only. We are no longer restricted

to the elementary conserved vector. We first calculate the conserved vectors in terms

of the velocity components and then we consider the stream function. We then pro-

ceed to calculate the conserved quantities.
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3.3.1 Conserved vectors for the turbulent wake in terms of the ve-

locity components

In terms of the x- and y- mean velocity components v x and v the dimensionless

governing equations for the two-dimensional turbulent wake are

− ∂w

∂x
+ ∂v

∂y
= 0, (3.31)

∂w

∂x
= ∂

∂y

(
E(x, y)

∂w

∂y

)
, (3.32)

where the dimensionless mean velocity deficit w(x, y) is defined from (2.30)

v x(x, y) = 1−w(x, y). (3.33)

In this section we apply the multiplier method to equations (3.31) and (3.32). We use

the following notation: the suffix notation w x , w y , v x , v y , ... is used when x, y , w , v

and the partial derivatives of w and v are regarded as independent variables. The no-

tation
∂w

∂x
,
∂v

∂x
,
∂w

∂y
,
∂v

∂y
,
∂2w

∂x∂y
, ... is used when w and v and the partial derivatives of

w and v are regarded as dependent variables which are functions of the independent

variables x and y .

In order to derive the conserved vectors we let x, y , w , v and all partial derivatives of

w and v be independent variables. We can write (3.31) and (3.32) as

−w x + v y = 0, (3.34)

w x − ∂E

∂y
w y −E(x, y)w y y = 0. (3.35)

Given the multiplier Λ = (Λ1,Λ2), we have the property that the conserved form of

(3.34) and (3.35) is given by

Λ1

(
w x − ∂E

∂y
w y −E(x, y)w y y

)
+Λ2

(−w x + v y
)= D1T 1 +D2T 2, (3.36)

for all functions w(x, y) and v(x, y) where

D1 = Dx = ∂

∂x
+w x

∂

∂w
+v x

∂

∂v
+w xx

∂

∂w x
+v xx

∂

∂v x
+w x y

∂

∂w y
+v x y

∂

∂v y
+ ..., (3.37)
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D2 = D y = ∂

∂y
+w y

∂

∂w
+v y

∂

∂v
+w y y

∂

∂w y
+v y y

∂

∂v y
+w y x

∂

∂w x
+v y x

∂

∂v x
+ ..., (3.38)

and T 1 and T 2 are the components of the conserved vector T = (T 1,T 2). The deter-

mining equations for the multiplierΛ are given by

E∗
w

[
Λ1

(
w x − ∂E

∂y
(x, y)w y −E(x, y)w y y

)
+Λ2

(−w x + v y
)]= 0, (3.39)

E∗
v

[
Λ1

(
w x − ∂E

∂y
(x, y)w y −E(x, y)w y y

)
+Λ2

(−w x + v y
)]= 0, (3.40)

where the operators E∗
w and E∗

v are the standard Euler operators that annihilate di-

vergence expressions:

E∗
w = ∂

∂w
−Dx

∂

∂w x
−D y

∂

∂w y
+D2

x
∂

∂w xx
+DxD y

∂

∂w x y
+D2

y
∂

∂w y y
− ..., (3.41)

E∗
v = ∂

∂v
−Dx

∂

∂v x
−D y

∂

∂v y
+D2

x
∂

∂v xx
+DxD y

∂

∂v x y
+D2

y
∂

∂v y y
− .... (3.42)

For components of the multiplierΛ of the formΛ1 =Λ1(x, y) andΛ2 =Λ2(x, y), equa-

tions (3.39) and (3.40) become[
−Dx

∂

∂w x
−D y

∂

∂w y
+D2

y
∂

∂w y y

][
Λ1

(
w x − ∂E

∂y
(x, y)w y −E(x, y)w y y

)]
+

[
Dx

∂

∂w x

][
Λ2w x

]= 0, (3.43)

D yΛ2 = 0, (3.44)

which, after simplifying gives

∂Λ1

∂x
− ∂Λ2

∂x
+ ∂

∂y

(
∂Λ1

∂y
E(x, y)

)
= 0, (3.45)

Λ2 =Λ2(x). (3.46)

It is difficult to derive definite results when E(x, y) depends on y . Two cases will be

considered for which definite results can be derived.

3.3.1.1 Case (i): Λ1 = c1, E = E(x, y)

Equation (3.45) reduces to
∂Λ2

∂x
(x) = 0, (3.47)
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and therefore

Λ2 = c2, (3.48)

where c2 is a constant. This result holds for arbitrary E(x, y). The left-hand-side of

(3.36) with Λ1 = c1 and Λ2 = c2 can be written in divergence form because c1 and c2

are multipliers. Now by elementary manipulations,

c1

[
w x − ∂E

∂y
w y −E(x, y)w y y

]
+ c2

[−w x + v y
]=

Dx
[
c1w + c2(−w)

]+D y
[
c1(−E(x, y)w y + c2v

]
, (3.49)

for arbitrary functions w(x, y) and v(x, y). When w(x, y) and v(x, y) are solutions of

the system of PDEs, (3.31) and (3.32), (3.49) becomes

Dx
[
c1w + c2(−w)

]+D y
[
c1(−E(x, y)w y + c2v

]= 0. (3.50)

Two conserved vectors are obtained. Let c1 = 1 and c2 = 0. Then

T 1 = w , T 2 =−E(x, y)w y . (3.51)

Let c1 = 0 and c2 = 1. Then

T 1 =−w , T 2 = v . (3.52)

The conserved vectors (3.51) and (3.52) are the elementary conserved vectors for the

system (3.31) and (3.32).

3.3.1.2 Case (ii): Λ1 =Λ1(y), E = E(x)

Equation (3.45) reduces to

− dΛ2

d x
+E(x)

d 2Λ1

d y2
= 0. (3.53)

Differentiating equation (3.53) with respect to y gives

d 3Λ1

d y3
(y) = 0, (3.54)

and therefore

Λ1(y) = a1 y2 +a2 y +a3, (3.55)
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where a1, a2 and a3 are constants. Equation (3.53) becomes

dΛ2

d x
(x) = 2a1E(x), (3.56)

so that

Λ2(x) = 2a1

∫ x

0
E(α)dα+a4, (3.57)

where a4 is a constant. Equation (3.57) holds for arbitrary E(x). We have established

that the left-hand-side of (3.36) with E = E(x) and Λ1 and Λ2 given by (3.55) and

(3.57) can be written in divergence form. By elementary manipulations we find that

(
a1 y2 +a2 y +a3

)(
w x −E(x)w y y

)+(
2a1

∫ x

0
E(α)dα+a4

)(−w x + v y
)

= Dx

[
a1

(
y2 −2

∫ x

0
E(α)dα

)
w +a2

(
y w

)+a3
(
w

)+a4
(−w

)]+
D y

[
a1

(
−y2E(x)w y +2yE(x)w +2

∫ x

0
E(α)dαv

)
+

a2
(−yE(x)w y +E(x)w

)+a3
(−E(x)w y

)+a4
(
v
)]

, (3.58)

for arbitrary functions w(x, y) and v(x, y). When w(x, y) and v(x, y) are solutions of

the system (3.31) and (3.32) then equation (3.58) reduces to

Dx

[
a1

(
y2 −2

∫ x

0
E(α)dα

)
w +a2

(
y w

)+a3
(
w

)+a4
(−w

)]+
D y

[
a1

(
−y2E(x)w y +2yE(x)w +2

∫ x

0
E(α)dαv

)
+

a2
(−yE(x)w y +E(x)w

)+a3
(−E(x)w y

)+a4
(
v
)]= 0. (3.59)

Four conserved vectors are obtained by setting all except one of a1, a2, a3 and a4 to

zero in turn. For a1 = 1, a2 = a3 = a4 = 0 the conserved vector is

T 1 =
(

y2 −2
∫ x

0
E(α)dα

)
w , T 2 =−y2E(x)w y +2yE(x)w +2

∫ x

0
E(α)dαv . (3.60)

For a1 = 0, a2 = 1, a3 = a4 = 0 we have

T 1 = y w , T 2 =−yE(x)w y +E(x)w . (3.61)
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For a1 = 0, a2 = 0, a3 = 1, a4 = 0 the conserved vector is

T 1 = w , T 2 =−E(x)w y . (3.62)

Lastly, for a1 = a2 = a3 = 0, a4 = 1 we have for the conserved vector

T 1 =−w , T 2 = v . (3.63)

The conserved vectors (3.62) and (3.63) are the same as (3.51) with E = E(x) and

(3.52).

We have therefore established the following result for a multiplier with components

Λ1 =Λ1(y), Λ2 =Λ2(x, y), (3.64)

of the system of PDEs, (3.31) and (3.32). If
∂E

∂y
6= 0 then there are two conserved vec-

tors given by (3.51) and (3.52) and any conserved vector of the system with a multi-

plier of the form (3.64) is a linear combination of these two conserved vectors.

If E = E(x) there are two further conserved vectors given by (3.60) and (3.61) and any

conserved vector with a multiplier of the form (3.64) is a linear combination of the

four conserved vectors given by (3.60) to (3.63).

3.3.2 Conserved vectors for the turbulent wake in terms of the stream

function

When x, y , ψ and the partial derivatives of ψ are regarded as independent variables,

equation (2.35) with E = E(x, y) is written as

ψx y − ∂E

∂y
(x, y)ψy y −E(x, y)ψy y y = 0. (3.65)

Consider a multiplierΛ of the formΛ=Λ(x, y). The conserved form of (3.65) is given

by

Λ

(
ψx y − ∂E

∂y
(x, y)ψy y −E(x, y)ψy y y

)
= D1T 1 +D2T 2, (3.66)

for all functions ψ(x, y) where the total derivative operators Dx and D y are defined

by

D1 = Dx = ∂

∂x
+ψx

∂

∂ψ
+ψxx

∂

∂ψx
+ψy x

∂

∂ψy
+ ..., (3.67)
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D2 = D y = ∂

∂y
+ψy

∂

∂ψ
+ψx y

∂

∂ψx
+ψy y

∂

∂ψy
+ ..., (3.68)

and T 1 and T 2 are the components of the conserved vector T = (T 1,T 2). The deter-

mining equation for the multiplierΛ is given by

E∗
ψ

[
Λ

(
ψx y − ∂E

∂y
(x, y)ψy y −E(x, y)ψy y y

)]
= 0, (3.69)

where the operator E∗
ψ is the standard Euler operator that annihilates divergence ex-

pressions:

E∗
ψ = ∂

∂ψ
−Dx

∂

∂ψx
−D y

∂

∂ψy
+D2

x
∂

∂ψxx
+DxD y

∂

∂ψx y
+D2

y
∂

∂ψy y
− .... (3.70)

The determining equation forΛ becomes

DxD y (Λ)−D2
y

(
∂E

∂y
Λ

)
+D3

y (ΛE) = 0, (3.71)

which after simplifying gives

∂2Λ

∂x∂y
+ ∂2

∂y2

(
∂Λ

∂y
E

)
= 0. (3.72)

We will again consider the cases where E depends on y and when E is independent

of y in order to obtain conclusive results.

3.3.2.1 Case (i): Λ= c1, E = E(x, y)

For Λ = c1 where c1 is a constant, equation (3.72) is satisfied for arbitrary E(x, y).

Since Λ = c1 is a multiplier, we can write the left-hand-side of (3.66) in divergence

form:

c1

[
ψx y − ∂E

∂y
(x, y)ψy y −E(x, y)ψy y y

]
= Dx

[
c1ψy

]+D y
[
c1(−E(x, y)ψy y

]
, (3.73)

for arbitraryψ(x, y). Whenψ(x, y) is a solution of equation (3.65) then (3.73) reduces

to

Dx
[
c1ψy

]+D y
[
c1(−E(x, y)ψy y

]= 0. (3.74)
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By setting c1 = 1 a single conserved vector is obtained:

T 1 =ψy , T 2 =−E(x, y)ψy y , (3.75)

which is the elementary conserved vector for equation (3.65).

3.3.2.2 Case (ii): Λ=Λ(y), E = E(x)

Equation (3.72) reduces to
∂3Λ

∂y3
(y) = 0, (3.76)

which therefore gives a multiplier of the form

Λ(y) = a1 y2 +a2 y +a3, (3.77)

which is satisfied for arbitrary E(x) where a1, a2 and a3 are constants. In divergence

form, equation (3.65) is written as

(a1 y2 +a2 y +a3)(ψx y −E(x)ψy y y ) = Dx
[
(a1 y2 +a2 y +a3)ψy

]+
D y

[
a1

(−y2ψy y +2yψy −2ψ)E(x)+a2(−yψy y +ψy )E(x)+a3(−ψy y E(x)
)]

, (3.78)

for arbitrary ψ(x, y). When ψ(x, y) is a solution to equation (3.65) then equation

(3.78) becomes

Dx
[
(a1 y2 +a2 y +a3)ψy

]+
D y

[
a1

(−y2ψy y +2yψy −2ψ
)

E(x)+a2
(−yψy y +ψy

)
E(x)+a3

(−ψy y E(x)
)]= 0.

(3.79)

Three conserved vectors are obtained by setting all except one of a1, a2 and a3 to zero

in turn. For a1 = 1, a2 = a3 = 0 the conserved vector is

T 1 = y2ψy , T 2 = (−y2ψy y +2yψy −2ψ
)

E(x). (3.80)

For a1 = 0, a2 = 1, a3 = 0 we have

T 1 = yψy , T 2 =−yE(x)ψy y +E(x)ψy , (3.81)
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and finally for a1 = a2 = 0, a3 = 1 the conserved vector is

T 1 =ψy , T 2 =−E(x)ψy y . (3.82)

3.4 Conserved quantities for the two-dimensional wake

In this section we calculate the conserved quantities for the classical wake and the

wake of a self-propelled body. We also discuss a third conservation law belonging to

a wake which we call the combination wake. This wake is important since it has the

same boundary conditions at y =±∞ as that of the classical wake and the wake of a

self-propelled body.

On solutions ψ = ψ(x, y) of the governing partial differential equation (2.35), the

components T 1 and T 2 of the conserved vector can be regarded as functions of x

and y . Therefore, we have for the stream function

∂

∂x
T 1(x, y,ψ(x, y),ψx(x, y),ψy (x, y), ...) = DxT 1, (3.83)

∂

∂y
T 2(x, y,ψ(x, y),ψx(x, y),ψy (x, y), ...) = D y T 2, (3.84)

and for the velocity components

∂

∂x
T 1(x, y, w , v , w x , w y , v x , v y , ...) = DxT 1, (3.85)

∂

∂y
T 2(x, y, w , v , w x , w y , v x , v y , ...) = D y T 2, (3.86)

and therefore

DxT 1 +D y T 2 = ∂

∂x
T 1 + ∂

∂y
T 2. (3.87)

For a conserved vector the left hand side of equation (3.87) vanishes and the conser-

vation law (3.87) can be written as

∂T 1

∂x
+ ∂T 2

∂y
= 0. (3.88)
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A general form for the conserved vector components in terms of the stream function

for Case (ii) in Section 3.3.2.2 is given by

T 1 = (a1 y2 +a2 y +a3)ψy ,

T 2 = a1(−y2ψy y +2yψy −2ψ)E(x)+a2(−yψy y +ψy )E(x)+a3(−ψy y )E(x). (3.89)

Equation (3.89) also holds for Case (i) in Section 3.3.2.1 with a1 = a2 = 0 and E =
E(x, y).

Using (3.88) and T 1 and T 2 defined by (3.89), and integrating (3.88) across the wake

from y =−∞ to y =+∞ at a fixed point x gives

d

d x

∫ ∞

−∞

(
a1 y2 +a2 y +a3

) ∂ψ
∂y

(x, y)d y+

[
a1

(
−y2∂

2ψ

∂y2
+2y

∂ψ

∂y
−2ψ

)
E(x)+a2

(
−y

∂2ψ

∂y2
+ ∂ψ

∂y

)
E(x)+a3

(
−∂

2ψ

∂y2

)
E(x)

]∣∣∣∣y=∞

y=−∞

= 0, (3.90)

which on imposing the boundary conditions in (2.39) reduces to

d

d x

∫ ∞

−∞

(
a1 y2 +a2 y +a3

) ∂ψ
∂y

(x, y)d y − [
2a1ψ(x, y)E(x)

]∣∣∣y=∞
y=−∞ = 0. (3.91)

The conserved vector in terms of the velocity components can be written for Case (ii)

in Section 3.3.1.2 as the linear combination:

T 1 = a1

(
y2 −2

∫ x

0
E(α)dα

)
w +a2

(
y w

)+a3(w)+a4(−w),

T 2 = a1(−y2E(x)w y +2yE(x)w +2
∫ x

0
E(α)dαv)+

a2(−y w y +w)E(x)+a3(−E(x)w y )+a4(v). (3.92)

Equation (3.92) also holds for Case (i) in Section 3.3.1.1 with a1 = a2 = 0 and E =
E(x, y).

Integrating (3.88) across the wake from y = −∞ to y = +∞ at a fixed point x with

(T 1,T 2) given by (3.92) results in

d

d x

∫ ∞

−∞

[
a1

(
y2 −2

∫ x

0
E(α)dα

)
w +a2(y w)+a3(w)+a4(−w)

]
d y
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+
[

a1

(
−y2E(x)w y +2yE(x)w +2

∫ x

0
E(α)dαv

)

+a2(−y w y +w)E(x)+a3(−E(x)w y )+a4(v)

]∣∣∣∣y=∞

y=−∞
= 0, (3.93)

and using the boundary conditions in (2.36) we obtain

d

d x

∫ ∞

−∞

[
a1

(
y2 −2

∫ x

0
E(α)dα

)
w +a2(y w)+a3(w)+a4(−w)

]
d y+

[
2a1

∫ x

0
E(α)dαv +a4(v)

]∣∣∣∣y=∞

y=−∞
= 0. (3.94)

We now consider the conserved quantities for the classical wake and the wake of a

self-propelled body. They can be derived in terms of both the stream function and

the velocity components.

3.4.1 Classical wake

In terms of the stream function we consider equation (3.91). For the classical wake

a1 = a2 = 0 and a3 = 1. Thus we have

d

d x

∫ ∞

−∞
∂ψ

∂y
(x, y)d y = 0, (3.95)

and hence ∫ ∞

−∞
∂ψ

∂y
(x, y)d y = D, (3.96)

where D is a dimensionless constant proportional to the drag on the body [4, 6].

In terms of the velocity components, we have that a1 = a2 = a4 = 0 and a3 = 1. Equa-

tion (3.94) reduces to
d

d x

∫ ∞

−∞
w(x, y)d y = 0. (3.97)

Therefore, ∫ ∞

−∞
w(x, y)d y = D, (3.98)

which is equivalent to the expression obtained in (3.96).
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3.4.2 Wake of a self-propelled body

For the wake of a self-propelled body we set a2 = a3 = 0 and a1 = 1 in equation (3.91):

d

d x

∫ ∞

−∞
y2∂ψ

∂y
(x, y)d y −2E(x)

[
ψ(x, y)

]∣∣∣y=∞
y=−∞ = 0. (3.99)

But since the drag D on a self-propelled body is zero,

D =
∫ ∞

−∞
∂ψ

∂y
(x, y)d y = [

ψ(x, y)
]∣∣∣y=∞

y=−∞ = 0, (3.100)

and therefore gives the conserved quantity∫ ∞

−∞
y2∂ψ

∂y
(x, y)d y = K , (3.101)

where the constant K is proportional to the second moment of the axial momentum

deficit [5].

In equation (3.94) we set a2 = a3 = a4 = 0 and a1 = 1. We thus obtain

d

d x

∫ ∞

−∞

(
y2 −2

∫ x

0
E(α)dα

)
wd y +2

∫ x

0
E(α)dα

[
v(x, y)

]∣∣∣y=∞
y=−∞ = 0. (3.102)

We can rewrite equation (3.102) as

d

d x

∫ ∞

−∞
y2w(x, y)d y −2

d

d x

(
G(x)

∫ ∞

−∞
wd y

)
+2G(x)

[
v(x, y)

]∣∣∣y=∞
y=−∞ = 0, (3.103)

where

G(x) =
∫ x

0
E(α)dα. (3.104)

Thus

d

d x

∫ ∞

−∞
y2w(x, y)d y −2

dG

d x

∫ ∞

−∞
wd y −2G(x)

∫ ∞

−∞
∂w

∂x
d y +2G(x)

∫ ∞

−∞
∂v

∂y
d y = 0.

(3.105)

Since the drag on a self-propelled body is zero,

D =
∫ ∞

−∞
w(x, y)d y = 0, (3.106)

and therefore equation (3.105) reduces to

d

d x

∫ ∞

−∞
y2w(x, y)d y +2G(x)

∫ ∞

−∞

(
−∂w

∂x
+ ∂v

∂y

)
d y = 0. (3.107)
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But from the continuity equation

− ∂w

∂x
+ ∂v

∂y
= 0, (3.108)

and therefore
d

d x

∫ ∞

−∞
y2w(x, y)d y = 0. (3.109)

Hence ∫ ∞

−∞
y2w(x, y)d y = K , (3.110)

which is equivalent to (3.101).

We see from (3.101) and (3.110) that when the effective viscosity is of the form E =
E(x), the conserved quantity does not depend explicitly on the effective viscosity.

3.4.3 Combination wake

In terms of the stream function the combination wake arises from the case a1 = a3 =
0 and a2 = 1 in equation (3.91). Equation (3.91) becomes

d

d x

∫ ∞

−∞
y
∂ψ

∂y
(x, y)d y = 0, (3.111)

giving the conserved quantity ∫ ∞

−∞
y
∂ψ

∂y
(x, y)d y = S. (3.112)

We do not know the physical interpretation of the constant S.

In terms of the velocity components, using T 1 and T 2 defined in (3.92) and setting

a1 = a3 = a4 = 0 and a2 = 1, equation (3.94) becomes

d

d x

∫ ∞

−∞
y w(x, y)d y = 0, (3.113)

and therefore ∫ ∞

−∞
y w(x, y)d y = S, (3.114)

which is equivalent to expression (3.112) found for the stream function.
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3.4.4 Remaining case

In terms of the velocity components there is one remaining case, a1 = a2 = a3 = 0,

a4 = 1. It does not occur for the stream function formulation. Equation (3.94) be-

comes

− d

d x

∫ ∞

−∞
w(x, y)d y + [

(v(x, y))
]∣∣∣y=∞

y=−∞ = 0, (3.115)

which can be written as ∫ ∞

−∞

(
−∂w

∂x
+ ∂v

∂y

)
d y = 0. (3.116)

From the continuity equation, (3.108), equation (3.116) is identically satisfied and

does not lead to a conserved quantity.

3.5 Conclusions

In this chapter the conserved quantities were derived for the turbulent wake. The

conserved vectors were first obtained which were expressed in terms of the velocity

components and the stream function by using the multiplier method. We first con-

sidered the case where E = E

(
x, y,

∂2ψ

∂y2

)
which models wakes with finite boundaries.

For the governing equations in terms of the velocity components, two elementary

conserved vectors were found. One of the elementary conserved vectors was used

to generate the conserved quantity for the classical wake. The other did not gen-

erate a conserved quantity. In terms of the stream function, one conserved vector

was found. This conserved vector was equivalent to the elementary conserved vec-

tor in terms of the velocity components used to generate the conserved quantity for

the classical wake. We then considered an effective viscosity of the form E = E(x, y)

which predicts an infinite wake boundary. It is difficult to obtain conclusive results

when the eddy viscosity depends on the variable y . We therefore considered two

cases. For arbitrary E(x, y), finding the conserved vectors from the governing equa-

tions in terms of the velocity components lead to two elementary conserved vectors

as a result of assuming that the multipliers were constants. One was the elementary

conserved vector which generated the conserved quantity for the classical wake and

the other did not generate a conserved quantity. In terms of the velocity components,

for E = E(x), four conserved vectors were obtained. The first belonged to the wake

of a self-propelled body and generated its conserved quantity as given in [5]. The

second appeared to possibly correspond to a new type of wake which we called the
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combination wake. The third conserved vector was the conserved vector for the clas-

sical wake and the remaining conserved vector was an elementary conserved vector

which did not generate a conserved quantity. In terms of the stream function we

again considered two cases. For a constant multiplier and arbitrary E(x, y) one con-

served vector was obtained which was the elementary conserved vector. For E = E(x)

three conserved vectors were obtained. Two belonged to the classical wake and the

wake of a self-propelled body and the third belonged to the combination wake.

To conclude, the conserved quantities for the classical wake and the wake of a self-

propelled body could be obtained from the conserved vectors found in terms of the

velocity components and the stream function. Calculating the conserved vectors

lead to the discovery of a new wake which we called the combination wake.



Chapter 4

Solutions for the turbulent classical

wake using Lie symmetry methods

In this chapter we consider the turbulent classical wake as shown in Figure 2.1. We

examine the case for an eddy viscosity depending on the spacial variables x and y . An

outline of this chapter is as follows. In Section 4.1, the Lie point symmetry associated

with the elementary conserved vector is determined. In Section 4.2, we consider

the eddy viscosity to be a function of only the distance along the axis of the wake

and solve for the stream function for the turbulent classical wake. Mean velocity

profiles are plotted for an eddy viscosity in the form of a power law and the results are

compared for a range of power laws and with the laminar classical wake. In Section

4.3 we consider the eddy viscosity to be a function of the distance along the wake

and the perpendicular distance from the axis of the wake. Various forms of the eddy

viscosity are investigated and mean velocity profiles are again compared with those

obtained for the laminar wake. Finally, conclusions are presented in Section 4.4.

4.1 Elementary conserved vector and associated Lie point

symmetry

Recall that the governing equation for the turbulent classical wake in terms of the

stream function is given by

∂2ψ

∂x∂y
= ∂

∂y

(
E(x, y)

∂2ψ

∂y2

)
, (4.1)

41
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subject to
∂ψ

∂y
(x,±∞) = 0, (4.2)

∂2ψ

∂y2
(x,±∞) = 0, (4.3)

∂2ψ

∂y2
(x,0) = 0, (4.4)

∂ψ

∂x
(x,0) = 0. (4.5)

In terms of the stream function the conserved quantity for the turbulent classical

wake is ∫ ∞

−∞
∂ψ

∂y
d y = D. (4.6)

The elementary conserved vector for the turbulent classical wake with E = E(x, y)

was calculated in Chapter 3. It is given by

T 1(ψy ) =ψy , T 2(x, y,ψy y ) =−E(x, y)ψy y . (4.7)

The conserved vector T = (T 1,T 2) is invariant under the action of the Lie point sym-

metry

X = ξ1(x, y,ψ)
∂

∂x
+ξ2(x, y,ψ)

∂

∂y
+η(x, y,ψ)

∂

∂ψ
, (4.8)

of the PDE (4.1) provided [30, 31]

X (T i )+T i Dk (ξk )−T k Dk (ξi ) = 0, i = 1,2. (4.9)

Equation (4.9) consists of two components, namely,

X (T 1)+T 1D2(ξ2)−T 2D2(ξ1) = 0, (4.10)

X (T 2)+T 2D1(ξ1)−T 1D1(ξ2) = 0, (4.11)

where X is prolongated to as high an order in the derivatives as required. Since the

conserved vector (4.7) depends on ψy and ψy y we require the second prolongation

of X in the form

X [2] = X +ζ2
∂

∂ψy
+ζ22

∂

∂ψy y
, (4.12)

where [65]

ζ2 = D2(η)−ψk D2(ξk ), (4.13)
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ζ22 = D2(ζ2)−ψ2k D2(ξk ). (4.14)

Consider first the invariance condition (4.10). Now T 1 is given by (4.7) and

X (T 1) = ζ2 = ∂η

∂y
+ ∂η

∂ψ
ψy − ∂ξ1

∂y
ψx − ∂ξ1

∂ψ
ψxψy − ∂ξ2

∂y
ψy − ∂ξ2

∂ψ
ψ2

y . (4.15)

Condition (4.10) becomes

∂η

∂y
+ ∂η

∂ψ
ψy − ∂ξ1

∂y
ψx − ∂ξ1

∂ψ
ψxψy +E(x, y)

∂ξ1

∂y
ψy y +E(x, y)

∂ξ1

∂ψ
ψyψy y = 0, (4.16)

which does not depend on ξ2(x, y,ψ). Equating coefficients of derivatives ofψ to zero

we obtain

ξ1 = ξ1(x), ξ2 = ξ2(x, y,ψ), η= η(x). (4.17)

Consider next the second invariance condition (4.11). Using (4.17), ζ22 simplifies to

ζ22 =−∂
2ξ2

∂y2
ψy −2

∂2ξ2

∂y∂ψ
ψ2

y −
∂2ξ2

∂ψ2
ψ3

y −2
∂ξ2

∂y
ψy y −3

∂ξ2

∂ψ
ψyψy y , (4.18)

and (4.11) becomes

E(x, y)

(
∂2ξ2

∂y2
ψy +2

∂2ξ2

∂y∂ψ
ψ2

y +
∂2ξ2

∂ψ2
ψ3

y +
(
2
∂ξ2

∂y
− dξ1

d x

)
ψy y +3

∂ξ2

∂ψ
ψyψy y

)

−
(
ξ1∂E

∂x
+ξ2∂E

∂y

)
ψy y − ∂ξ2

∂x
ψy − ∂ξ2

∂ψ
ψxψy = 0. (4.19)

Now E(x, y) 6= 0. We separate (4.19) according to powers and products of the partial

derivatives of ψ. The coefficient of ψyψy y gives

∂ξ2

∂ψ
= 0, (4.20)

and therefore ξ2 = ξ2(x, y). Condition (4.19) simplifies and the coefficients of ψy and

ψy y give respectively

E(x, y)
∂2ξ2

∂y2
− ∂ξ2

∂x
= 0, (4.21)

ξ1(x)
∂E

∂x
+ξ2(x, y)

∂E

∂y
=

(
2
∂ξ2

∂y
− dξ1

d x

)
E(x, y). (4.22)
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The Lie point symmetry associated with the conserved vector (4.7) is

X = ξ1(x)
∂

∂x
+ξ2(x, y)

∂

∂y
+η(x)

∂

∂ψ
, (4.23)

provided that the effective viscosity E(x, y) satisfies equations (4.21) and (4.22).

The derivation of the associated Lie point symmetry is simpler than that of the Lie

point symmetries of the partial differential equation. Only the second prolongation

of X was required while the derivation of the Lie point symmetries of the partial dif-

ferential equation (4.1) would require the third prolongation of X which contains

many terms. The associated Lie point symmetry has to satisfy two invariance con-

ditions which are easier to solve than the one large invariance condition for the Lie

point symmetries of the partial differential equation. The results from the first con-

dition (4.10) greatly simplified the derivation and solution of the second invariance

condition (4.11).

In the sections that follow we will investigate the invariant solution when E = E(x)

and E = E(x, y).

4.2 Eddy viscosity a function only of x

We initially consider the eddy viscosity to be a function of x only. We then consider

an eddy viscosity which is a power law in x and then the approximation in which the

kinematic viscosity is neglected so that the effective viscosity is a power law in x.

4.2.1 General results for eddy viscosity a function of x only

When the eddy viscosity depends on x only equation (4.22) becomes

dξ1

d x
+ E ′(x)

E(x)
ξ1(x) = 2

∂ξ2

∂y
(x, y). (4.24)

Differentiating (4.24) with respect to y we have

∂2ξ2

∂y2
(x, y) = 0. (4.25)
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Equation (4.21) then reveals that

∂ξ2

∂x
(x, y) = 0, (4.26)

and therefore we can conclude that

ξ2(y) = a1 y +a2, (4.27)

where a1 and a2 are constants. Substituting (4.27) into (4.24) we obtain

dξ1

d x
+ E ′(x)

E(x)
ξ1(x) = 2a1, (4.28)

which is a linear first order ODE with integrating factor E(x). The solution is

ξ1(x) = 1

E(x)

[
a3 +2a1

∫ x

0
E(x ′)d x ′

]
, (4.29)

where

a3 = ξ1(0)E(0). (4.30)

The Lie point symmetry of (4.23) becomes

X = 1

E(x)

[
a3 +2a1

∫ x

0
E(x ′)d x ′

]
∂

∂x
+ (a1 y +a2)

∂

∂y
+η(x)

∂

∂ψ
. (4.31)

The constant a1 plays an important role in the Lie point symmetry (4.31). In the anal-

ysis that follows, we will assume that a1 6= 0 so that the invariant solution depends on

the effective viscosity. Let

X ∗ = X

a1
, a∗

3 = a3

a1
, a∗

2 = a2

a1
, η∗(x) = η(x)

a1
. (4.32)

Suppressing the star to help keep the notation simple the Lie point symmetry (4.31)

becomes

X = 1

E(x)

[
a3 +2

∫ x

0
E(x ′)d x ′

]
∂

∂x
+ (y +a2)

∂

∂y
+η(x)

∂

∂ψ
. (4.33)

Now ψ=Ψ(x, y) is an invariant solution of the PDE (4.1) with E = E(x) generated by

the Lie point symmetry associated with the elementary conserved vector provided

X (ψ−Ψ(x, y))
∣∣
ψ=Ψ = 0, (4.34)
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that is, provided

1

E(x)

(
a3 +2

∫ x

0
E(x ′)d x ′

)
∂Ψ

∂x
+ (

y +a2
) ∂Ψ
∂y

= η(x). (4.35)

The differential equations of the characteristic curves of (4.35) are

E(x)d x

a3 +2
∫ x

0 E(x ′)d x ′ =
d y

y +a2
= dΨ

η(x)
. (4.36)

The first pair of terms give

y +a2

(a3 +2
∫ x

0 E(x ′)d x ′)1/2
= b1, (4.37)

where b1 is a constant. The first and last terms in (4.36) give

Ψ−G(x) = b2, (4.38)

where b2 is a constant and

G(x) =
∫ x η(x ′)E(x ′)

a3 +2
∫ x ′

0 E(α)dα
d x ′. (4.39)

The general solution of the first order linear PDE (4.35) is

b2 = F (b1), (4.40)

where F is an arbitrary function. SinceΨ=ψ we have

ψ= F (ξ)+G(x), (4.41)

where

ξ= y +a2

(a3 +2
∫ x

0 E(x ′)d x ′)1/2
. (4.42)

We now express the conserved quantity (4.6) in terms of the similarity variables. Us-

ing (4.41) and (4.42) at a fixed point x on the axis of the wake, (4.6) becomes∫ ∞

−∞
dF

dξ
dξ= D. (4.43)

Equation (4.43) is independent of x unconditionally and does not give a relation

between the constants in the associated Lie point symmetry (4.33). When a linear
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combination of the Lie point symmetries is used a relation between the constants in

the linear combination is derived for the conserved quantity to be independent of x

when expressed in the similarity variables.

We now determine the constants a2, a3 and the function η(x) in the Lie point sym-

metry (4.33). Consider first a2. The boundary condition (4.4) imposes the following

restriction:

F ′′(ξ|y=0) = 0, (4.44)

and by differentiating (4.44) with respect to x we obtain

F ′′′(ξ|y=0)
a2

(a3 +2
∫ x

0 E(x ′)d x)3/2
E(x) = 0. (4.45)

However,
∂2w

∂y2
(x,0) = F ′′′(ξ|y=0)

1

(a3 +2
∫ x

0 E(x ′)d x ′)3/2
< 0, (4.46)

as y = 0 is a local maximum for w(x, y). Thus

F ′′′(ξ|y=0) 6= 0, (4.47)

and from (4.45) this forces us to set a2 = 0. Hence ξ = 0 when y = 0. Consider next

η(x). Now
∂ψ

∂x
=−ξdF

dξ

E(x)

(a3 +2
∫ x

0 E(x ′)d x ′)
+ dG

d x
. (4.48)

But

w(x, y) = ∂ψ

∂y
= dF

dξ

1

(a3 +2
∫ x

0 E(x ′)d x ′)
, (4.49)

and since w(x,0) is finite it follows that F ′(0) is finite. Hence from (4.48) the bound-

ary condition (4.5) gives that G ′(x) = 0. Therefore, from (4.39) we have the following

condition:
E(x)η(x)

a3 +2
∫ x

0 E(x ′)d x ′ = 0, (4.50)

and since E(x) is non-zero, we must have that η(x) = 0 giving that G(x) = 0. Finally

consider a3. The order of magnitude of the effective half-width of the wake, W (x)/2,

at position x is given by the value of y when ξ=O(1). Thus

W (x)

2
=O

([
a3 +2

∫ x

0
E(x ′)d x ′

]1/2
)

. (4.51)

If we assume that the effective width of the wake is valid for x → 0, then, as x → 0,
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we expect the effective width of the wake to also tend to zero. From this we obtain

a3 = 0.

Thus we have

ψ(x, y) = F (ξ), (4.52)

where

ξ= y

(2
∫ x

0 E(x ′)d x ′)1/2
, (4.53)

and the Lie point symmetry simplifies to

X = 2
∫ x

0 E(x ′)d x ′

E(x)

∂

∂x
+ y

∂

∂y
. (4.54)

The constants a2, a3 and η(x) in the Lie point symmetry were all obtained from phys-

ical considerations and cannot be specified arbitrarily.

Substituting (4.52) and (4.53) into the PDE (4.1) yields the ODE

d 3F

dξ3
+ξd 2F

dξ2
+ dF

dξ
= 0. (4.55)

The boundary conditions (4.2), (4.3) and (4.4) become

dF

dξ
(±∞) = 0,

d 2F

dξ2
(±∞) = 0,

d 2F

dξ2
(0) = 0. (4.56)

The boundary condition (4.5) is identically satisfied. The solution of (4.55) is also

subject to the conserved quantity (4.43) where the constant D is given. Once the

problem has been solved for F ′(ξ), w(x, y) and v y (x, y) are obtained from

w(x, y) = 1

(2
∫ x

0 E(x ′)d x ′)1/2

dF

dξ
, (4.57)

v y (x, y) =− E(x)

2
∫ x

0 E(x ′)d x ′ξ
dF

dξ
. (4.58)

The solution for F (ξ) need only be obtained if it is required to calculate ψ(x, y). Oth-

erwise it is sufficient to determine F ′(ξ).
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We can rearrange the ODE (4.55) as follows:

d 3F

dξ3
+ d

dξ

(
ξ

dF

dξ

)
= 0, (4.59)

which when integrated with respect to ξ yields

d 2F

dξ2
+ξdF

dξ
= c1. (4.60)

Using the boundary condition (4.56) at ξ= 0 and noting from (4.57) that F ′(0) is finite

since w(x,0) is finite we obtain c1 = 0. Therefore, we now need to solve

d 2F

dξ2
+ξdF

dξ
= 0, (4.61)

which is a first order ODE for F ′(ξ). From equation (4.61) it is noted that the boundary

conditions (4.2) and (4.3) are not independent of one another. The solution is

dF

dξ
= c2 exp

(
−ξ

2

2

)
, (4.62)

where the constant c2 is determined in terms of the drag force on the body by the

conserved quantity (4.43):

c2 = Dp
2π

, (4.63)

and thus
dF

dξ
= Dp

2π
exp

(
−ξ

2

2

)
. (4.64)

Integrating (4.64) with respect to ξ from 0 to ξ gives

F (ξ) = Dp
2π

∫ ξ

0
exp

(
−ξ

∗2

2

)
dξ∗+F (0). (4.65)

Since w(x, y) and v y (x, y), defined by (2.34), do not depend on an additive constant

in ψ(x, y) we choose F (0) = 0. Equation (4.65) with F (0) = 0 may be written in the

form

F (ξ) = D

2
erf

(
ξp
2

)
, (4.66)

where

erf(x) = 2p
π

∫ x

0
exp(−u2)du. (4.67)

Equation (4.66) determines the stream function by (4.52). The solution for F (ξ) has

the same form as that for a classical laminar wake [4, 6].
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The mean velocity deficit in the wake in the x-direction is

w(x, y) = D

2
p
π

exp

(
−ξ

2

2

)
1

(
∫ x

0 E(x ′)d x ′)
1
2

. (4.68)

The x- and y- components of the mean velocity are given by respectively,

v x(x, y) = 1−w(x, y) = 1− D

2
p
π

exp

(
−ξ

2

2

)
1

(
∫ x

0 E(x ′)d x ′)
1
2

, (4.69)

v y (x, y) =− D

2
p

2π

E(x)∫ x
0 E(x ′)d x ′ξexp

(
−ξ

2

2

)
, (4.70)

where ξ is given by (4.53).

Prandtl’s hypothesis [66] states that the eddy viscosity is constant across a bound-

ary layer and is proportional to the product of the maximum mean velocity and the

width of the layer. The eddy viscosity considered in this section is independent of

y and is therefore constant across the wake. The wake tends to infinity in the ± y-

directions but because the mean velocity deficit (4.68) falls off exponentially with y

an effective width can be defined as twice the value of y for which the argument of

the exponential is −1:

W (x) = 4

√∫ x

0
E(x ′)d x ′. (4.71)

Also from (4.68) the maximum value of the mean velocity deficit is

w(x,0) = D

2
p
π

1

(
∫ x

0 E(x ′)d x ′)
1
2

, (4.72)

and therefore

w(x,0)W (x) = 2Dp
π

, (4.73)

which is a consequence of the conserved quantity (4.6). If we can replace the max-

imum mean velocity by the maximum mean velocity deficit in Prandtl’s hypothesis

then for a classical wake it is satisfied if the eddy viscosity is constant independent of

x and y . We will not impose Prandtl’s hypothesis but we will include its predictions

in the comparison of results.
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4.2.2 Eddy viscosity a power law in x

Consider an eddy viscosity which is a power law in x. Then the dimensionless effec-

tive viscosity has the form

E(x) = ν

ν+νT0

+ νT0

ν+νT0

xβ, β>−1. (4.74)

By increasing νT0 continuously from zero the transition from a laminar wake to a

turbulent wake can be investigated. For well developed turbulence in the wake the

ratio νT0 /ν can equal 1000 or larger. By using (4.74),

∫ x

0
E(x ′)d x ′ = x(

1+ νT0

ν

) (
1+ νT0

ν(1+β)
xβ

)
, (4.75)

and the Lie point symmetry which generates the invariant solution for the turbulent

wake is from (4.54)

X = 2

1+ νT0

ν(1+β)
xβ

1+ νT0

ν
xβ

x
∂

∂x
+ y

∂

∂y
. (4.76)

The Lie point symmetry (4.76) is not a scaling symmetry. The invariant solution for

w(x, y) and v y (x, y) therefore cannot be derived using elementary scaling methods

to obtain similarity solutions.

The mean velocity deficit (4.68) is

w T (x, y) = D

2
p
πx

 1+ νT0

ν

1+ νT0

ν(1+β)
xβ


1
2

exp

− y2

4x

 1+ νT0

ν

1+ νT0

ν(1+β)
xβ


 . (4.77)

The maximum value for the mean velocity deficit occurs on the axis of the wake,

y = 0, and is

w T (x,0) = D

2
p
πx

 1+ νT0

ν

1+ νT0

ν(1+β)
xβ


1
2

. (4.78)
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An effective width WT (x) of the turbulent wake can be defined as twice the value of

y for which the argument in the exponential is −1:

WT (x) = 4
p

x

1+ νT0

ν(1+β)
xβ

1+ νT0

ν


1
2

. (4.79)

We observe that

w T (x,0)WT (x) = 2Dp
π

, (4.80)

which is a special case of (4.73) and is a consequence of the conserved quantity (4.6).

In order to determine the effect of the turbulence on the wake we compare with the

laminar wake. For the laminar wake

E = ν

ν+νT0

, (4.81)

where E has been scaled by ν+νT0 as in (4.74). Then∫ x

0
E(x ′)d x ′ = x

1+ νT0

ν

, (4.82)

and the Lie point symmetry (4.54) for the laminar wake is the scaling symmetry

X = 2x
∂

∂x
+ y

∂

∂y
. (4.83)

The turbulence alters only ξ1(x) in (4.76). From (4.68) the velocity deficit in the x-

direction is

wL(x, y) = D

2
p
πx

(
1+ νT0

ν

) 1
2

exp

[
− y2

4x

(
1+ νT0

ν

)]
. (4.84)

The maximum velocity deficit for the laminar wake is

wL(x,0) = D

2
p
πx

(
1+ νT0

ν

) 1
2

, (4.85)

while the effective width of the laminar wake is

WL(x) = 4
p

x(
1+ νT0

ν

) 1
2

. (4.86)
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We again have the product

wL(x,0)WL(x) = 2Dp
π

. (4.87)

From (4.85) and (4.78) the ratio of the maximum velocity deficit in the laminar and

turbulent wakes is
wL(x,0)

w T (x,0)
=

[
1+ νT0

ν(1+β)
xβ

] 1
2

. (4.88)

The maximum velocity deficit in the laminar wake is greater than that in the turbu-

lent wake and the ratio increases as νT0 increases and the wake becomes more tur-

bulent. From (4.79) and (4.86) the ratio of the effective width of the turbulent wake

to the effective width of the laminar wake is

WT (x)

WL(x)
=

[
1+ νT0

ν(1+β)
xβ

] 1
2

. (4.89)

The effective width of the turbulent wake is greater than that of the laminar wake

because of the increase in diffusion of vorticity due to the eddy viscosity.

In Figure 4.1 the dependence of the effective width and maximum mean velocity

deficit on the exponent β is investigated. The x- component of the velocity in a lam-

inar wake vL
x , where

vL
x = 1−wL(x, y) = 1− D

2
p
πx

(
1+ νT0

ν

) 1
2

exp

[
− y2

4x
(1+ νT0

ν
)

]
, (4.90)

is compared with the x- component of the mean velocity v x in a turbulent wake

v x = 1−w(x, y) = 1− D

2
p
πx

 1+ νT0

ν

1+ νT0

ν(1+β)
xβ


1
2

exp

− y2

4x

 1+ νT0

ν

1+ νT0

ν(1+β)
xβ


 , (4.91)

at x = 1/2 for a range of values of β. Since the velocity deficit is scaled by the magni-

tude of the uniform mainstream flow, to prevent the formation of a region of back-

flow at the axis of the wake, the maximum velocity deficit should not exceed unity.

Since the maximum velocity deficit in a laminar wake is greater than that in a turbu-

lent wake, it is sufficient to consider a laminar wake. The maximum velocity deficit

in a laminar wake is less than unity provided

D

2
p
πx

(
1+ νT0

ν

) 1
2 ≤ 1, (4.92)
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that is, provided

x ≥ xmi n = D2

4π

(
1+ νT0

ν

)
. (4.93)

In Figure 4.1, D = 0.1 and νT0 /ν = 500 so that xmi n = 0.399. When x = 1/2, the eddy

viscosity decreases as the exponent β increases, the diffusion of vorticity therefore

decreases as β increases and the width of the wake decreases and the maximum ve-

locity deficit increases (to satisfy (4.80)) as β increases. The curve β= 0 corresponds

to Prandtl’s hypothesis. From (4.78) the maximum mean velocity deficit for β > 0 is

greater than that of β= 0 provided

x < (
1+β)1/β , (4.94)

which is satisfied for x ≤ 1, in agreement with Figure 4.1. For x = 2, for instance, the

maximum mean velocity deficit for β= 1 is the same as that for β= 0 but for β= 2, 3

and 4 it is less than that for β = 0 and therefore from Figure 4.1 it will be small. For

x > 1 the order of the curves is reversed with greatest velocity deficit for β = 1 and

least for β= 4.

FIGURE 4.1: Velocity in a laminar wake vL
x (x, y) and the mean velocity in a turbu-

lent wake v x (x, y) plotted against y at x = 1/2 with D = 0.1 and νT0 /ν = 500 for
β= 0, 1, 2, 3 and 4.
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Consider next the dependence of the mean velocity deficit on the strength of the

turbulence. Since the characteristic effective viscosity in (4.74), νT0 +ν, depends on

νT0 it is replaced by ν+νTC where νTC is suitably chosen. It is readily verified that

w T (x, y) = D

2
p
πx

 1+ νTc

ν

1+ νT0

ν(1+β)
xβ


1
2

exp

− y2

4x

 1+ νTc

ν

1+ νT0

ν(1+β)
xβ


 , (4.95)

wL(x, y) = D

2
p
πx

(
1+ νTc

ν

) 1
2

exp

[
− y2

4x

(
1+ νTc

ν

)]
, (4.96)

and that (4.93) is replaced by

x ≥ xmi n = D2

4π

(
1+ νTc

ν

)
. (4.97)

In Figure 4.2 the x- component of the mean velocity for a laminar wake and the x-

component of the mean velocity for a turbulent wake are plotted against y for a range

of values of νT0 /ν and β = 2. As νT0 /ν increases the eddy viscosity increases and

therefore the diffusion of vorticity in the wake increases. The width of the wake there-

fore increases and, in order to satisfy (4.80), the maximum velocity deficit decreases.

4.2.3 Effective viscosity a power law in x

Consider now well developed turbulence in which

νT0

ν
À 1. (4.98)

The scaled effective viscosity (4.74) approximates to

E(x) = xβ, β>−1. (4.99)

The effective viscosity can therefore be approximated by a power law in x.

When (4.99) is satisfied the Lie point symmetry (4.76) reduces to the scaling symme-

try

X = 2

1+βx
∂

∂x
+ y

∂

∂y
. (4.100)
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FIGURE 4.2: Velocity in a laminar wake vL
x (x, y) and the mean velocity in a turbulent

wake v x (x, y) plotted against y at x = 1/2 with D = 0.1, νTc /ν = 250, β = 2 and for
νT0 /ν= 50, 100, 250 and 500. There is no backflow provided x ≥ xmi n = 0.197.

The mean velocity deficit (4.77) simplifies to

w T (x, y) = D

2

(
1+β
πx1+β

) 1
2

exp

[
− (1+β)

4

y2

x1+β

]
, (4.101)

and the velocity deficit in the laminar wake becomes

wL(x, y) = D

2
p
πx

(νT0

ν

) 1
2

exp

[
−νT0

4ν

y2

x

]
. (4.102)

The ratios (4.88) and (4.89) simplify to

wL(x,0)

w T (x,0)
= WT (x)

WL(x)
=

[
νT0

ν(1+β)
xβ

] 1
2

, (4.103)

and condition (4.93) on the model for no backflow along the axis of the wake be-

comes

x ≥ xmi n = D2

4π

νT0

ν
. (4.104)
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4.3 Eddy viscosity a function of x and y

A part of Prandtl’s hypothesis is that the eddy viscosity is constant across a boundary

layer [66]. In this section we will allow the eddy viscosity to depend on y as well as x

to investigate how the y dependence affects the wake.

We return to equations (4.21) and (4.22). When E = E(x, y) we were not able to find

the general solution for ξ2(x, y). When E = E(x) the general solution for ξ2(x, y) is a

linear function of y with constant coefficients given by (4.27). When E = E(x, y) we

looked for a special solution for ξ2(x, y) as a linear function of y of the form

ξ2(x, y) = a1(x)y +a2(x), (4.105)

where a1(x) and a2(x) are arbitrary functions of x. Substituting (4.105) into equation

(4.21) and separating by powers of y gives that a1 and a2 are constants and (4.27) is

re-derived. We consider a1 6= 0 and take a1 = 1 which is equivalent to making the

transformation (4.32). This gives

X = A(x)
∂

∂x
+ (

y +a2
) ∂

∂y
+η(x)

∂

∂ψ
, (4.106)

and (4.22) becomes

A(x)
∂E

∂x
+ (y +a2)

∂E

∂y
=

(
2− d A

d x

)
E(x, y), (4.107)

where we let ξ1(x) = A(x).

Nowψ=Ψ(x, y) is an invariant solution of the PDE (4.1) if (4.34) is satisfied, that is, if

A(x)
∂Ψ

∂x
+ (y +a2)

∂Ψ

∂y
= η(x). (4.108)

The differential equations of the characteristic curves of (4.108) are

d x

A(x)
= d y

y +a2
= dΨ

η(x)
. (4.109)

The first pair of terms give
y +a2

exp(B(x))
= d1, (4.110)

where d1 is a constant and

B(x) =
∫ x d x

A(x)
. (4.111)
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The first and last terms in (4.109) give

Ψ−G(x) = d2, (4.112)

where d2 is a constant and

G(x) =
∫ x η(x)

A(x)
d x. (4.113)

The general solution of (4.108) is

d2 = F (d1), (4.114)

where F is an arbitrary function. SinceΨ=ψ we obtain

ψ(x, y) = F (ξ)+G(x), (4.115)

where

ξ= y +a2

exp(B(x))
. (4.116)

From the boundary conditions (4.4) and (4.5) we can again deduce that a2 = 0 and

η(x) = 0. Thus

ψ(x, y) = F (ξ), ξ= y

exp(B(x))
, (4.117)

and the Lie point symmetry simplifies to

X = A(x)
∂

∂x
+ y

∂

∂y
. (4.118)

The effective viscosity E(x, y) satisfies equation (4.107) with a2 = 0. The differential

equations of the characteristic curves of (4.107) are

d x

A(x)
= d y

y
= dE(

2− d A

d x

)
E

. (4.119)

The first pair of terms give (4.110) with a2 = 0. The first and last terms give

E A(x)

exp(2B(x))
= d3, (4.120)

where d3 is a constant. The general solution of (4.107) is

d3 = S(d1), (4.121)
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where S is an arbitrary function. Thus

E(x, y) = exp(2B(x))

A(x)
S(ξ), (4.122)

where ξ is given by (4.117).

We introduce the notation

H(x) = exp(B(x)), (4.123)

and express the problem in terms of H(x). The stream function and effective viscosity

are

ψ(x, y) = F (ξ), (4.124)

E(x, y) = H(x)H ′(x)S(ξ), (4.125)

where

ξ= y

H(x)
. (4.126)

The Lie point symmetry is

X = H(x)

H ′(x)

∂

∂x
+ y

∂

∂y
. (4.127)

We define the effective width of the wake, W (x), to be twice the value of y when ξ= 1:

W (x) = 2H(x). (4.128)

Since the effective width of the wake vanishes at x = 0,

H(0) = 0. (4.129)

The PDE (4.1) reduces to the ODE

d

dξ

[
S(ξ)

d 2F

dξ2

]
+ d

dξ

(
ξ

dF

dξ

)
= 0, (4.130)

where F (ξ) is subject to the boundary conditions

d 2F

dξ2
(0) = 0,

dF

dξ
(±∞) = 0, (4.131)

and to the conserved quantity ∫ ∞

−∞
dF

dξ
dξ= D. (4.132)
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The boundary condition (4.5) is identically satisfied. Once the problem has been

solved for F ′(ξ), w(x, y) and v y (x, y) are obtained from

w(x, y) = 1

H(x)

dF

dξ
, (4.133)

v y (x, y) =−H ′(x)

H(x)
ξ

dF

dξ
. (4.134)

Consider now the solution of the ODE (4.130). Since the wake is symmetric about the

x-axis, S(ξ) is an even function of ξ. Also S(ξ) > 0 for −∞≤ ξ ≤∞, S(0) is finite and

S(±∞) is a positive constant since E(x, y) is finite and non-zero as y →±∞. Integrat-

ing (4.130) with respect to ξ, imposing the boundary condition (4.131) at ξ = 0 and

noting that F ′(0) is finite because w(x,0) is finite, we obtain

d 2F

dξ2
+ ξ

S(ξ)

dF

dξ
= 0. (4.135)

Equation (4.135) is a first order ODE for F ′(ξ). The solution is

dF

dξ
= b exp

[
−

∫ ξ

0

γ

S(γ)
dγ

]
, (4.136)

where b is a constant. Since S(γ) is an even function of γ and S(±∞) is a positive

constant the integral in (4.136) diverges to +∞ as ξ→±∞ and the boundary condi-

tion (4.131) at ξ = ±∞ is satisfied. By using the conserved quantity (4.132) it can be

verified that

b = D

2
∫ ∞

0 exp

[
−∫ ξ

0

γ

S(γ)
dγ

]
dξ

. (4.137)

Consider an effective viscosity of the form

E(x, y) = ν+νT0 K (ξ)

ν+νT0

, (4.138)

where K (ξ) has still to be specified. Then from (4.125),

ν+νT0 K (ξ)

(ν+νT0 )S(ξ)
= H(x)H ′(x). (4.139)
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It follows by the technique of separation of variables or by differentiating (4.139) with

respect to ξ that each side of (4.139) is a constant, λ. We take λ= 1. Thus

S(ξ) = 1+ νT0
ν K (ξ)

1+ νT0
ν

, H(x)H ′(x) = 1, (4.140)

and since H(0) = 0,

H(x) =p
2x, (4.141)

which gives

ξ= yp
2x

. (4.142)

The velocity deficit (4.133) can be expressed as

w(x, y) =
D exp

[
−

(
1+ νT0

ν

)
I (ξ)

]
2
p

2x
∫ ∞

0 exp
[
−

(
1+ νT0

ν

)
I (γ)

]
dγ

, (4.143)

where

I (ξ) =
∫ ξ

0

γ

1+ νT0
ν K (γ)

dγ. (4.144)

The x-component of the mean velocity v x is given by

v x(x, y) = 1−w(x, y) = 1−
D exp

[
−

(
1+ νT0

ν

)
I (ξ)

]
2
p

2x
∫ ∞

0 exp
[
−

(
1+ νT0

ν

)
I (γ)

]
dγ

. (4.145)

From (4.127) and (4.141) the Lie point symmetry is the scaling symmetry

X = 2x
∂

∂x
+ y

∂

∂y
. (4.146)

For K (ξ) we choose

K1(ξ) = 0, K2(ξ) = exp(−ξ2), K3(ξ) = 1

1+ξ2
, K4(ξ) = 1. (4.147)

Then

I1(ξ) = 1

2
ξ2, I4(ξ) = ξ2

2
(
1+ νT0

ν

) , (4.148)

where In is defined in terms of Kn(ξ). It can be verified that (4.143) reduces to (4.84)
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for a laminar wake for K1(ξ) = 0. Also K4(ξ) = 1 describes a turbulent wake with con-

stant eddy viscosity in agreement with Prandtl’s hypothesis. We have

w 4(x, y) = D

2
p
πx

exp

(
−1

2
ξ2

)
. (4.149)

Now

I1(ξ) > I2(ξ) > I3(ξ) > I4(ξ), (4.150)

and therefore the maximum velocity deficit satisfies

(
1+ νT0

ν

) 1
2 D

2
p
πx

= w 1(x,0) > w 2(x,0) > w 3(x,0) > w 4(x,0) = D

2
p
πx

. (4.151)

There will be no backflow in the wakes if (4.93) is satisfied. It follows from the con-

served quantity (4.132) that the effective widths of the wakes satisfy

4
p

x(
1+ νT0

ν

) 1
2

=W1(x) <W2(x) <W3(x) <W4(x) = 4
p

x. (4.152)

In Figure 4.3 the mean velocity (4.145) for the laminar wake and the three turbulent

wakes described by (4.147) are plotted against ξ. The graphs confirm the inequalities

(4.151) for the maximum velocity deficit and (4.152) for the effective width. The y-

dependence of the eddy viscosity can only enter through the similarity variable ξ.

The effect of the y-dependence of the eddy viscosity is to decrease the effective width

of the wake and increase the mean velocity deficit. The effect is greater when the

eddy viscosity decreases more rapidly with y .

4.4 Conclusions

The boundary layer approximation was imposed on the Reynolds averaged equa-

tions which were then formulated in terms of a stream function for the velocity deficit.

Unlike the boundary layer formulation for jet flow problems a further approximation

was made that the squares and products of the mean velocity deficit could be ne-

glected.

The conserved vector for the classical wake was the elementary conserved vector

which could be obtained directly by inspection from the PDE for the velocity deficit.
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(a) (d)

(b)

(c)
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FIGURE 4.3: Mean velocity v x (x, y) given by (4.145) plotted against ξ = y/
p

2x at
x = 1

2 for D = 0.1, νT0 /ν= 250 and (a) laminar wake with K (ξ) = 0, (b) turbulent wake
with K (ξ) = exp[−ξ2], (c) turbulent wake with K (ξ) = (1+ ξ2)−1 and (d) turbulent

wake with K (ξ) = 1 .

The two invariance conditions that had to be satisfied by the Lie point symmetry

associated with the elementary conserved vector depended on only the first and sec-

ond prolongations of the symmetry and were easier to work with than one large in-

variance condition for the full group of Lie point symmetries of the PDE which de-

pends on prolongations up to third order.

When the effective viscosity is a function of x only, that is E = E(x), the general solu-

tion for the Lie point symmetry could be derived. The ordinary differential equation

and boundary conditions were the same as for the laminar wake but the similarity

variable was different. When the eddy viscosity is a power law in x and the kine-

matic viscosity is not neglected, the Lie point symmetry is not a scaling symmetry.

The solution generated by this symmetry is important as it allowed the transition

from a laminar wake to a turbulent wake to be investigated by gradually increasing

the strength of the turbulence. The solution cannot be derived by using a scaling

transformation to find the similarity variable. A Lie point symmetry analysis was re-

quired. When the kinematic viscosity was neglected the Lie point symmetry reduced

to a scaling symmetry.

When E = E(x, y), that is, when the eddy viscosity is not constant across the wake,

the general solution for the associated Lie point symmetry could not be found. A

solution was derived for the special case in which ξ2(x, y) is a linear function of y
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which was shown to have constant coefficients as for the laminar wake. An analytical

solution for the effective viscosity and the mean velocity deficit was derived. This

compares with two-dimensional turbulent jet flow for which the general solution for

the Lie point symmetry could be derived [18].

The effect of the eddy viscosity was to increase the diffusion of vorticity across the

wake and therefore increase the effective width of the wake. Because of the con-

served quantity for the classical wake, (4.6), an increase in the effective width causes

a decrease in the maximum velocity deficit for the wake. The product of the effective

width of the wake with the maximum velocity deficit is approximately equal to the

dimensionless drag at all positions x on the axis of the wake. This result may be use-

ful in estimating the effective width of a classical turbulent wake because the maxi-

mum mean velocity deficit is readily obtained from the solution for the mean velocity

deficit. As the turbulent wake evolves from the laminar wake and the strength of the

turbulence increases, the effective width of the wake increases and its maximum ve-

locity deficit decreases at each point on its axis.

Prandtl’s hypothesis on the eddy viscosity has been applied successfully to free bound-

ary layer flows. It states that the eddy viscosity is constant across the layer and is pro-

portional to the product of the maximum mean velocity and the width of the layer. If

the maximum mean velocity can be replaced by the maximum mean velocity deficit

then Prandtl’s hypothesis applied to the classical wake would require the eddy vis-

cosity to be constant. This is a consequence of the conserved quantity for the clas-

sical wake. The mean velocity deficit can depend on y only through the similarity

variable. We found that, compared with a constant eddy viscosity, an eddy viscosity

that depended on y decreased the effective width and increased the maximum mean

velocity deficit of the wake. The stronger the dependence on y the greater the effect.



Chapter 5

Lie symmetry methods applied to the

turbulent wake of a symmetric

self-propelled body

In this chapter we consider the turbulent wake of a self-propelled body as shown in

Figure 2.2. We first examine the case for an eddy viscosity depending on the spacial

variable x only. An outline of this chapter is as follows. In Section 5.1 the Lie point

symmetry associated with the conserved vector that was obtained in Chapter 3 in

terms of the stream function is found. The invariant solution is derived in Section 5.2.

An eddy viscosity in the form of a power law of the distance along the axis of the wake

is considered and plots of the mean velocity profiles are provided. We also examine

the negative effects of excluding the kinematic viscosity as opposed to including it.

Section 5.3 contains a discussion on the anticipated difficulties that arise when we

consider the eddy viscosity to be a function of both the distance along the axis of

the wake and the perpendicular distance from the axis of the wake. Conclusions are

given in Section 5.4.

65
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5.1 Conserved vector and associated Lie point symme-

try

In terms of the stream functionψ(x, y) the governing equation for E = E(x, y) is given

by
∂2ψ

∂x∂y
= ∂

∂y

(
E(x, y)

∂2ψ

∂y2

)
. (5.1)

The boundary conditions, for x ≥ 0, are

∂ψ

∂y
(x,±∞) = 0,

∂2ψ

∂y2
(x,±∞) = 0, (5.2)

∂ψ

∂x
(x,0) = 0,

∂2ψ

∂y2
(x,0) = 0. (5.3)

The conserved quantity is obtained for the wake behind a self-propelled body by

multiplying equation (5.1) by y2 and then integrating across the wake from y = −∞
to y =∞ [5]. This method works for a constant eddy viscosity and for an eddy vis-

cosity depending on only the distance along the axis of the wake. We will see that

we cannot solve the equation when the eddy viscosity also depends on the distance

perpendicular to the axis of the wake. In this chapter we neglect the dependence of

the eddy viscosity on the distance perpendicular to the axis of the wake but we will

discuss it briefly in Section 5.3.

According to [5] the conserved quantity for the wake of a self-propelled body is given

by ∫ ∞

−∞
y2∂ψ

∂y
d y = K , (5.4)

and since the drag force is also zero∫ ∞

−∞
∂ψ

∂y
d y = 0. (5.5)

The conserved vector with E = E(x) was calculated in Chapter 3. It is given by

T 1 = y2ψy , (5.6)

T 2 =−E(x)y2ψy y +2E(x)yψy −2E(x)ψ, (5.7)
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which generates the conserved quantity given in equation (5.4). When E = E(x) the

conserved quantity for a wake of a self-propelled body has the same form as for a

laminar wake of a self-propelled body.

We now calculate the Lie point symmetry associated with the conserved vector with

components (5.6) and (5.7). The conserved vector T = (T 1,T 2) is invariant under the

action of the Lie point symmetry

X = ξ1(x, y,ψ)
∂

∂x
+ξ2(x, y,ψ)

∂

∂y
+η(x, y,ψ)

∂

∂ψ
, (5.8)

provided [30, 31]

X (T i )+T i Dk (ξk )−T k Dk (ξi ) = 0, i = 1,2, (5.9)

where X is prolongated to as high an order in the derivatives as required. Equation

(5.9) consists of two components, namely,

X (T 1)+T 1D2(ξ2)−T 2D2(ξ1) = 0, (5.10)

X (T 2)+T 2D1(ξ1)−T 1D1(ξ2) = 0. (5.11)

From (5.6) the highest derivative of ψ in T 1 is ψy and from (5.7) the highest deriva-

tive of ψ in T 2 is ψy y . Thus we require the second prolongation of X . The second

prolongation of X , denoted by X [2], is given as

X [2] = X +ζ2
∂

∂ψy
+ζ22

∂

∂ψy y
, (5.12)

where [65]

ζ2 = D2(η)−ψk D2(ξk ), (5.13)

ζ22 = D2(ζ2)−ψ2k D2(ξk ). (5.14)

Consider the first invariance condition (5.10). The expansion of ζ2 is

ζ2 = ∂η

∂y
+ ∂η

∂ψ
ψy −ψx

(
∂ξ1

∂y
+ ∂ξ1

∂ψ
ψy

)
−ψy

(
∂ξ2

∂y
+ ∂ξ2

∂ψ
ψy

)
. (5.15)

Equation (5.10) yields

2yξ2ψy + y2 ∂η

∂y
+ y2 ∂η

∂ψ
ψy − y2ψx

(
∂ξ1

∂y
+ ∂ξ1

∂ψ
ψy

)
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+ (
E(x)y2ψy y −2E(x)yψy +2E(x)ψ

)(∂ξ1

∂y
+ ∂ξ1

∂ψ
ψy

)
= 0. (5.16)

Equating the coefficients of the derivatives ψxψy to zero gives

ξ1 = B(x), (5.17)

and (5.16) simplifies to

2yξ2ψy + y2 ∂η

∂y
+ y2 ∂η

∂ψ
ψy = 0. (5.18)

Separating equation (5.18) by ψy we obtain

η= η(x,ψ), (5.19)

2ξ2 + y
∂η

∂ψ
= 0. (5.20)

The first invariance condition therefore gives

ξ1 = B(x), ξ2 =−1

2
y
∂η

∂ψ
(x,ψ), η= η(x,ψ). (5.21)

Consider next the second invariance condition (5.11). Equation (5.15) for ζ2 simpli-

fies to

ζ2 = ∂η

∂ψ
ψy −ψy

(
∂ξ2

∂y
+ ∂ξ2

∂ψ
ψy

)
. (5.22)

Since ξ1 does not depend on y and ψ, equation (5.14) for ζ22 becomes

ζ22 = D2(ζ2)−ψ22D2(ξ2). (5.23)

There is only one term in the second invariance condition (5.11) which depends on

ψx . It comes from T 1∂ξ
2

∂ψ
ψx . Separating (5.11) by the derivative productψxψy yields

∂ξ2

∂ψ
= 0. (5.24)

Differentiating equation (5.20) with respect to y and using (5.19), we obtain

∂η

∂ψ
=−2

∂ξ2

∂y
, (5.25)
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and therefore

ζ2 =−3ψy
∂ξ2

∂y
. (5.26)

From (5.25)
∂2ξ2

∂y2
= 0, (5.27)

and thus

ξ2(x, y) = a(x)y +b(x). (5.28)

Substituting (5.28) back into (5.20), separating by y and integrating the coefficient of

y with respect to ψ results in

η(x,ψ) =−2a(x)ψ+ c(x), b(x) = 0. (5.29)

From (5.26) and (5.28) we arrive at

ζ2 =−3a(x)ψy , (5.30)

and equation (5.14) reduces to

ζ22 =−4a(x)ψy y . (5.31)

The second invariance condition (5.11) becomes

2E(x)y2ψy y a(x)−4yE(x)a(x)ψy+

4a(x)ψE(x)−2c(x)E(x)+B(x)E ′(x)(−y2ψy y +2yψy −2ψ)+

(−E(x)y2ψy y +2yE(x)ψy −2ψE(x))B ′(x)− y2ψy a′(x)y = 0. (5.32)

Setting the coefficient of ψy y to zero gives

2E(x)a(x)−B(x)E ′(x)−E(x)B ′(x) = 0. (5.33)

Separating (5.32) by derivatives of ψy we obtain

−4a(x)yE +2yB(x)E ′(x)+2yB ′(x)E − y3a′(x) = 0. (5.34)

Separating (5.34) by powers of y we deduce that

a(x) = a1, (5.35)
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where a1 is a constant and equation (5.33) again. The remaining terms in (5.32) give

4a(x)Eψ−2c(x)E −2B(x)E ′(x)ψ−2EB ′(x)ψ= 0. (5.36)

Separating by powers of ψ we obtain

c(x) = 0, (5.37)

and (5.33) again. Thus we have found that

ξ1 = B(x), ξ2 = a1 y, η=−2a1ψ, (5.38)

subject to (5.33). Condition (5.33) can be written as the first order ODE for B(x),

dB

d x
+ 1

E(x)

dE

d x
B = 2a1. (5.39)

This is the same as the condition in a classical wake with E = E(x) for a Lie point

symmetry to exist associated with the elementary conserved vector of the PDE (5.1).

The solution of (5.39) is

B(x) = 1

E(x)

[
a2 +2a1

∫ x

0
E(α)dα

]
, (5.40)

where a2 = E(0)B(0) is a constant. The Lie point symmetry X associated with the

conserved vector with components (5.6) and (5.7) is

X = 1

E(x)

[
a2 +2a1

∫ x

0
E(α)dα

]
∂

∂x
+a1 y

∂

∂y
−2a1ψ

∂

∂ψ
. (5.41)

We consider the general case in which a1 6= 0. Without loss of generality we let a1 = 1

and denoting a2 by a we obtain

X = 1

E(x)

[
a +2

∫ x

0
E(α)dα

]
∂

∂x
+ y

∂

∂y
−2ψ

∂

∂ψ
. (5.42)

Unlike the classical wake the associated Lie point symmetry is determined once the

effective viscosity has been specified.
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5.2 Invariant solution

In this section we find the invariant solution generated by the Lie point symmetry

(5.42) associated with the conserved vector of the PDE (5.1) with components (5.6)

and (5.7).

Now, ψ=Ψ(x, y) is an invariant solution of the PDE (5.1) with E = E(x) generated by

the Lie point symmetry (5.42) provided

X (ψ−Ψ(x, y))
∣∣
ψ=Ψ = 0, (5.43)

that is, providedΨ(x, y) satisfies the first order PDE

1

E(x)

(
a +2

∫ x

0
E(α)dα

)
∂Ψ

∂x
+ y

∂Ψ

∂y
=−2Ψ. (5.44)

The differential equations of the characteristic curves of (5.44) are

E(x)d x

a +2
∫ x

0 E(α)dα
= d y

y
=−dΨ

2Ψ
. (5.45)

Solving the first pair of terms gives

y

(a +2
∫ x

0 E(α)dα)1/2
= c1, (5.46)

where c1 is a constant. The first and last terms in (5.45) give

Ψ

(
a +2

∫ x

0
E(α)dα

)
= c2, (5.47)

where c2 is a constant. The general solution of the first order linear PDE (5.44) is

c2 = F (c1), (5.48)

where F is an arbitrary function and sinceΨ=ψ we obtain

ψ(x, y) = F (ξ)

a +2
∫ x

0 E(α)dα
, (5.49)

where

ξ= y

(a +2
∫ x

0 E(α)dα)1/2
. (5.50)
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Substituting (5.49) and (5.50) into the PDE (5.1) reduces the PDE to an ODE for F (ξ):

d 3F

dξ3
+ξd 2F

dξ2
+3

dF

dξ
= 0. (5.51)

The mean velocity deficit w and the mean velocity components v x and v y are given

by

w(x, y) = ∂ψ

∂y
= 1(

a +2
∫ x

0 E(α)dα
)3/2

dF

dξ
, (5.52)

v x(x, y) = 1−w(x, y) = 1− 1(
a +2

∫ x
0 E(α)dα

)3/2

dF

dξ
, (5.53)

v y (x, y) = ∂ψ

∂x
=− E(x)(

a +2
∫ x

0 E(α)dα
)2

(
2F +ξdF

dξ

)
. (5.54)

Since the mean velocity deficit is finite it follows that F ′(0) is finite. In terms of the

function F (ξ), the boundary conditions (5.2) and (5.3) become

dF

dξ
(±∞) = 0,

d 2F

dξ2
(±∞) = 0, (5.55)

F (0) = 0,
d 2F

dξ2
(0) = 0. (5.56)

Consider now the solution of the ODE (5.51) subject to the boundary conditions

(5.55) and (5.56). We let

W (ξ) = dF

dξ
. (5.57)

Multiplying (5.51) by ξ2 −1 and grouping terms we obtain

d

dξ

(
ξ2 dW

dξ

)
− d 2W

dξ2
−3

d

dξ
(ξW )+ d

dξ

(
ξ3W

)= 0, (5.58)

and by integrating once with respect to ξ and using the second derivative boundary

condition in (5.56) at ξ= 0 we obtain the first order linear homogeneous ODE

dW

dξ
+ ξ(3−ξ2)

1−ξ2
W = 0. (5.59)

The solution to equation (5.59) is

W (ξ) = m(1−ξ2)exp[−ξ2/2], (5.60)
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where m is a constant. By integrating the first term in (5.60) by parts and imposing

the boundary condition F (0) = 0 it is readily shown that

F (ξ) = mξexp[−ξ2/2]. (5.61)

The constant m cannot be obtained from the boundary conditions (5.55) and (5.56)

which are identically satisfied. The constant m is determined by the conserved quan-

tity (5.4). Expressed in terms of W (ξ), the conserved quantity (5.4) becomes∫ ∞

−∞
ξ2W (ξ) = K . (5.62)

Using the properties of the Gamma function we find that

m =− K

2
p

2π
, (5.63)

and therefore

W (ξ) =− K

2
p

2π
(1−ξ2)exp[−ξ2/2], (5.64)

and

F (ξ) =− K

2
p

2π
ξexp[−ξ2/2]. (5.65)

From (5.52)-(5.54) the mean velocity deficit and the mean velocity components in

the x- and y- directions are

w(x, y) =− K

2
p

2π

1(
a +2

∫ x
0 E(α)dα

)3/2
(1−ξ2)exp[−ξ2/2], (5.66)

v x(x, y) = 1−w(x, y) = 1+ K

2
p

2π

1(
a +2

∫ x
0 E(α)dα

)3/2
(1−ξ2)exp[−ξ2/2], (5.67)

v y (x, y) = K

2
p

2π

E(x)(
a +2

∫ x
0 E(α)dα

)2 ξ(3−ξ2)exp[−ξ2/2]. (5.68)

Consider now the constant a. We would expect the effective width of the wake to

vanish as x → 0. The mean velocity deficit w tends exponentially to zero as y →±∞.

We define the effective half-width of the wake, H(x), to be the value of y for which

the argument of the exponential in (5.66) is −1. Then ξ=±p2 and

H(x) =p
2

(
a +2

∫ x

0
E(α)dα

)1/2

. (5.69)
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We assume that
∫ x

0 E(α)dα→ 0 as x → 0. Then H(x) → 0 as x → 0 provided a = 0.

Thus

H(x) = 2

(∫ x

0
E(α)dα

)1/2

, (5.70)

and the similarity variable ξ becomes

ξ(x, y) = y(
2
∫ x

0 E(α)dα
)1/2

. (5.71)

Equations (5.66)-(5.68) reduce to

w(x, y) =− K

2
p

2π

1(
2
∫ x

0 E(α)dα
)3/2

(1−ξ2)exp[−ξ2/2], (5.72)

v x(x, y) = 1−w(x, y) = 1+ K

2
p

2π

1(
2
∫ x

0 E(α)dα
)3/2

(1−ξ2)exp[−ξ2/2], (5.73)

v y (x, y) = K

2
p

2π

E(x)(
2
∫ x

0 E(α)dα
)2 ξ(3−ξ2)exp[−ξ2/2]. (5.74)

Finally we establish some general properties valid for all effective viscosities E(x).

The mean velocity deficit vanishes at ξ=±1, that is, at

y =±y1 =±
(
2
∫ x

0
E(α)dα

)1/2

= H(x)p
2

. (5.75)

Unlike the classical wake the mean velocity deficit on the x-axis is negative. The

turning points of the mean velocity deficit are at ξ= 0 and ξ=±p3 and occur at

y = 0, y =±y2 =±p3

(
2
∫ x

0
E(α)dα

)1/2

=
√

3

2
H(x). (5.76)

The extremum values are

w(x,0) =− K

2
p

2π

1(
2
∫ x

0 E(α)dα
)3/2

, (5.77)

w(x,±y2) = Kp
2π

1(
2
∫ x

0 E(α)dα
)3/2

exp[−3/2]. (5.78)

The ratio
w(x,±y2)

w(x,0)
=−2exp[−3/2], (5.79)

is satisfied for all effective viscosities E = E(x).
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As well as being turning points of w , the mean velocity component v y vanishes at

ξ=±p3. The velocity component v y therefore vanishes on the curves

y =±p3

(
2
∫ x

0
E(α)dα

)1/2

. (5.80)

For y2 < y <∞, v y < 0 while for 0 < y < y2, v y > 0 and similarly for the lower half of

the wake.

The estimate (5.70) of the effective half-width H(x) excludes the outer extrema of the

wake and the curve of zero v y . A useful alternative estimate of the effective half-width

could be

H(x) = y2 =
p

3

(
2
∫ x

0
E(α)dα

)1/2

. (5.81)

Since a = 0, the Lie point symmetry which generates the invariant solution when

E = E(x) is

X = 1

E(x)

[
2
∫ x

0
E(α)dα

]
∂

∂x
+ y

∂

∂y
−2ψ

∂

∂ψ
. (5.82)

The turbulence occurs only in the coefficient of
∂

∂x
.

Finally we derive the condition on the eddy viscosity for Prandtl’s hypothesis to be

satisfied [66]. For a turbulent boundary layer Prandtl’s hypothesis states that the eddy

viscosity is constant across the boundary layer and is proportional to the product of

the maximum mean velocity and the width of the layer. For a turbulent wake it was

proposed that Prandtl’s hypothesis applies with the mean velocity replaced by the

mean velocity deficit. Since ν¿ νT we will apply Prandtl’s hypothesis to the effective

viscosity E(x). Then if Prandtl’s hypothesis is satisfied

E(x) ∝ w(x,0)H(x), (5.83)

and by using equation (5.77) for w(x,0) and (5.70) for H(x) we find that Prandtl’s

hypothesis is satisfied for the wake behind a self-propelled body provided

E(x)
∫ x

0
E(α)dα=λ, (5.84)

where λ is independent of x. For the turbulent classical wake the corresponding

condition is that E(x) is a constant independent of x. Condition (5.84) will be used

in Section 5.2.1 to determine the exponent in the power law for E(x).
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5.2.1 Eddy viscosity as a power law in x

Consider a dimensionless effective viscosity of the form

E(x) = ν

ν+νT0

+ νT0

ν+νT0

xβ, β>−1. (5.85)

Then ∫ x

0
E(α)dα= x

ν+νT0

(
ν+νT0

xβ

(1+β)

)
, (5.86)

and the Lie point symmetry X from (5.82) becomes

X =
[

2x

ν+νT0 xβ

(
ν+νT0

xβ

(1+β)

)]
∂

∂x
+ y

∂

∂y
−2ψ

∂

∂ψ
, (5.87)

which is not a scaling symmetry hence justifying the need to use the Lie point sym-

metry approach instead of simply searching for a similarity solution. The effective

half-width of the wake is given by

H(x) = 2

 x

1+ νT0

ν

(
1+ νT0

ν

xβ

(1+β)

)
1/2

, (5.88)

and the similarity variable ξ becomes

ξ(x, y) =
(
1+ νT0

ν

)1/2 y[
2x

(
1+ νT0

ν

xβ

(1+β)

)]1/2
. (5.89)

Equations (5.72)-(5.74) become

w(x, y) =− K

8
p
π

(
1+ νT0

ν

)3/2 1[
x

(
1+ νT0

ν

xβ

(1+β)

)]3/2
(1−ξ2)exp[−ξ2/2], (5.90)

v x(x, y) = 1−w(x, y) = 1+ K

8
p
π

(
1+ νT0

ν

)3/2 1[
x

(
1+ νT0

ν

xβ

(1+β)

)]3/2
(1−ξ2)exp[−ξ2/2],

(5.91)

v y (x, y) = K

8
p

2π

(
1+ νT0

ν

) (
1+ νT0

ν
xβ

)
[

x

(
1+ νT0

ν

xβ

(1+β)

)]2 ξ(3−ξ2)exp[−ξ2/2]. (5.92)
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From (5.75) the mean velocity deficit vanishes at

y =±y1 =±

 2x

1+ νT0

ν

(
1+ νT0

ν

xβ

(1+β)

)
1/2

. (5.93)

From (5.76) and (5.77) the turning points of the mean velocity deficit are at ξ= 0 and

ξ=±p3 and occur at

y = 0, y =±y2 =±p3

 2x

1+ νT0

ν

(
1+ νT0

ν

xβ

(1+β)

)
1/2

. (5.94)

The extremum values are

w(x,0) =− K

8
p
π

(
1+ νT0

ν

)3/2 1[
x

(
1+ νT0

ν

xβ

(1+β)

)]3/2
, (5.95)

w(x,±y2) = K

4
p
π

(
1+ νT0

ν

)3/2 1[
x

(
1+ νT0

ν

xβ

(1+β)

)]3/2
exp[−3/2]. (5.96)

From (5.80) the velocity component v y vanishes on the curves

y =±p3

 2x

1+ νT0

ν

(
1+ νT0

ν

xβ

(1+β)

)
1/2

. (5.97)

We compare the turbulent wake of a self-propelled body with the laminar wake of a

self-propelled body. When performing the comparison suffices T and L will be used

where necessary to denote the turbulent and laminar flow quantities. For the laminar

wake of a self-propelled body we denote the half-width by HL(x), the velocity deficit

by wL and the x- and y- components of the velocities by vx and vy respectively. The

dimensionless kinematic viscosity of the laminar wake is

EL(x) = ν

ν+νT0

. (5.98)

The Lie point symmetry XL , from (5.82), becomes

XL = 2x
∂

∂x
+ y

∂

∂y
−2ψ

∂

∂ψ
. (5.99)
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The effective half-width of the wake is given by

HL(x) = 2

 x

1+ νT0

ν


1/2

, (5.100)

and the similarity variable ξ becomes

ξL(x, y) =
(
1+ νT0

ν

)1/2 yp
2x

. (5.101)

Equations (5.72)-(5.74) reduce to

w(x, y) =− K

8
p
π

(
1+ νT0

ν

)3/2 1

x3/2
(1−ξ2)exp[−ξ2/2], (5.102)

vx(x, y) = 1−w(x, y) = 1+ K

8
p
π

(
1+ νT0

ν

)3/2 1

x3/2
(1−ξ2)exp[−ξ2/2], (5.103)

vy (x, y) = K

8
p

2π

(
1+ νT0

ν

) 1

x2
ξ(3−ξ2)exp[−ξ2/2]. (5.104)

From (5.75) the velocity deficit vanishes at

y =±yL
1 =±

 2x

1+ νT0

ν


1/2

, (5.105)

and the turning points occur at

y = 0, y =±yL
2 =±p3

 2x

1+ νT0

ν


1/2

. (5.106)

The extremum values are

w(x,0) =− K

8
p
π

(
1+ νT0

ν

)3/2 1

x3/2
, (5.107)

w(x,±yL
2 ) = K

4
p
π

(
1+ νT0

ν

)3/2 1

x3/2
exp[−3/2]. (5.108)
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From (5.80) the velocity component v y vanishes on the curves

y =±p3

 2x

1+ νT0

ν


1/2

. (5.109)

The ratio of the half-widths of the turbulent to the laminar wake of a self-propelled

body is given by

HT (x)

HL(x)
=

[
1+ νT0

ν

xβ

(1+β)

]1/2

, (5.110)

which is the same expression found in Chapter 4 for the classical wake. An increase

in the strength of the turbulence, that is, an increase in the ratio νT0 /ν results in an

increase in the effective width of the wake. The eddy viscosity increases the diffusion

of the velocity deficit from the axis of the wake.

The ratios of the extremum values of the mean velocity deficit of the turbulent wake

of a self-propelled body to that of the laminar wake of a self-propelled body are

w(x,0)

wL(x,0)
= w(x,±y2)

wL(x,±yL
2 )

= 1[
1+ νT0

ν

xβ

(1+β)

]3/2
, (5.111)

which means that the magnitude of the mean velocity deficit in the x-direction de-

creases as the strength of the turbulence increases. We observe that

y1 = H(x)p
2

, y2 = H(x)

√
3

2
, (5.112)

and so the actual width of the wake does not increase uniformly as the strength of

the turbulence increases; the extremum point y2 increases slightly faster than y1.

The first part of Prandtl’s hypothesis, that the eddy viscosity is constant across the

wake, is satisfied because E(x) does not depend on y . The second part of Prandtl’s

hypothesis is satisfied provided (5.83) holds which with E(x) given by (5.84) becomes

x1+2β+ (2+β)
ν

νT0

x1+β+ (1+β)

(
ν

νT0

)2

x = (1+β)

(
1+ ν

νT0

)2

λ. (5.113)

For ν¿ νT0 , equation (5.113) reduces to

x1+2β = (1+β)λ, (5.114)
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which is satisfied provided β = −1/2. The turbulence decreases in the wake behind

a self-propelled body as we move further downstream. This compares for a classical

wake for whichβ= 0 and the eddy viscosity remains constant for Prandtl’s hypothesis

to be satisfied. We will not make the Prandtl hypothesis but we will include β=−1/2

in the analysis of the results.

We first consider the effect of β. Since the magnitudes of the mean velocity deficits

differ greatly for different β values, we separate the problem into three cases. In all

the cases we let νT0 /ν= 500 and x = 0.25. For β=−1/2, we consider K = 1 and in or-

der to compare the effect of negative βwe also consider β=−1/3, −1/4. For β= 0, 1,

we let K = 0.1. For β= 2, 3, 4, we let K = 0.0001 and compare these particular values

of β with the laminar wake of a self-propelled body. Plots of the velocity profiles are

presented in Figures 5.1, 5.2 and 5.3.

We see that for x < 1, as the exponent β increases, the maximum mean velocity of

the wake increases and the width of the wake decreases. The reverse situation is true

for x > 1. We omit the plots for x > 1 because the mean velocities are very small

and difficult to distinguish. From (5.111) we see that for small β, that is, −1 < β ≤ 1,

the maximum mean velocity in the turbulent wake is very small compared with the

laminar wake and is thus negligible.

Next we consider the effect of the strength of the turbulence on the x-component of

the mean velocity. We replace the characteristic effective viscosity by ν+νTC where

νTC is suitably chosen. This approach was also done in Chapter 4 for the classical

wake. We have that

v x(x, y) = 1+ K

8
p
π

(
1+ νTC

ν

)3/2 1[
x

(
1+ νT0

ν

xβ

(1+β)

)]3/2
(1−ξ2)exp[−ξ2/2], (5.115)

where

ξ=
(
1+ νTC

ν

)1/2 y[
2x

(
1+ νT0

ν

xβ

(1+β)

)]1/2
. (5.116)

In Figure 5.4 the x- component of the mean velocity for the turbulent wake is plotted

against y for a range of values of νT0 /νwith β= 4. As νT0 /ν increases the width of the

wake increases and the maximum velocity deficit decreases.
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FIGURE 5.1: Plots of the velocity profiles for the turbulent wake v x (x, y) against y at
x = 0.25 with K = 1 and νT0 /ν= 500 for β=−1/2, −1/3, −1/4.
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FIGURE 5.2: Plots of the velocity profiles for the turbulent wake v x (x, y) against y at
x = 0.25 with K = 0.1 and νT0 /ν= 500 for β= 0, 1.
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Β = 2

Β = 3

Β = 4

laminar

0.5 1.0 1.5
vx

-0.2

-0.1

0.1

0.2
y

FIGURE 5.3: Plots of the velocity profiles for the laminar wake vx (x, y) and the tur-
bulent wake v x (x, y) against y at x = 0.25 with K = 0.0001 and νT0 /ν = 500 for

β= 2, 3, 4.
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FIGURE 5.4: Mean velocity in a turbulent wake v x (x, y) plotted against y at x = 0.25
with K = 0.0001, νTc /ν= 500, β= 4 and for νT0 /ν= 50, 100, 250 and 500.



Chapter 5. Wake of a self-propelled body 83

5.2.2 Effective viscosity as a power of x

The ratio νT0 /ν can be 1000 or larger. We consider the approximation in which

νT0

ν
À 1. (5.117)

The eddy viscosity (5.85) reduces to

E(x) = xα, α>−1, (5.118)

which is a power law in x. This approximation in which the effective viscosity is con-

sidered as a power law in x was investigated for the classical wake in Chapter 4.

The Lie point symmetry is given by

X = 2

(1+α)
x
∂

∂x
+ y

∂

∂y
−2ψ

∂

∂ψ
, (5.119)

which is a scaling symmetry.

The mean velocity deficit is

w p (x, y) =− K

8
p
π

(1+α)3/2

x
3
2 (1+α)

(1−ξ2)exp[−ξ2/2], (5.120)

and the effective width is

Hp (x) = 2

[
x1+α

1+α
]1/2

. (5.121)

By comparing the effective widths and the maximum mean velocities of the cases

where the eddy viscosity is a power law in x and where the effective viscosity is a

power law in x we can examine the effect of neglecting the kinematic viscosity term

ν/(ν+νT0 ). We have that for α=β,

H(x)

Hp (x)
=

 β+1

(1+ νT0

ν
)xβ

+
νT0

ν

1+ νT0

ν


1/2

, (5.122)

and Hp (x) = H(x) if

xβ = 1+β. (5.123)
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The condition (5.123) is always true for β= 0. Since the mean velocity deficit is neg-

ligibly small for x ≥ 1, we only consider 0 < x < 1. We have that for β> 0

1+β> xβ, (5.124)

and for −1 <β< 0

1+β< xβ. (5.125)

We therefore obtain the following results:

H(x) = Hp (x), β= 0, (5.126)

H(x) > Hp (x), β> 0, (5.127)

Hp (x) > H(x), −1 <β< 0. (5.128)

We see that for very large νT0 /ν,

H(x)

Hp (x)
≈

 β+1(νT0

ν

)
xβ

+1


1/2

≈ 1, (5.129)

showing that the effect of neglecting the kinematic viscosity term is negligible when

considering very large values of the ratio νT0 /ν.

In general, it appears that the consequences of neglecting the kinematic viscosity

term in the effective viscosity manifests itself as an underestimation of the effective

width of the wake for β > 0 and an overestimation of the width of the wake for −1 <
β< 0.

5.3 Eddy viscosity a function of x and y

Recall from Chapter 3 that the components of the conserved vector (T 1,T 2) for the

turbulent wake are given by

T 1 =Λ(y)ψy , (5.130)

T 2 =−E(x, y)Λ(y)ψy y +E(x, y)
∂Λ

∂y
ψy − ∂

∂y

(
E(x, y)

∂Λ

∂y

)
ψ, (5.131)
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provided the equation
∂2

∂y2

(
E
∂Λ

∂y

)
= 0, (5.132)

is satisfied.

In order to generate the conserved quantity of Birkhoff and Zorantello [5],∫ ∞

−∞
y2∂ψ

∂y
(x, y)d y = 0, (5.133)

we must have thatΛ(y) = y2. Equation (5.132) becomes

∂2

∂y2

(
yE

)= 0, (5.134)

which gives that

E(x, y) = a(x)

y
+b(x). (5.135)

The form of the eddy viscosity given by (5.135) is not finite at y = 0 unless a(x) =
0 which reduces to E(x, y) = E(x). This result may indicate that the eddy viscosity

cannot depend on the variable y .

5.4 Conclusions

The PDE which describes the turbulent wake behind a thin two-dimensional body

expressed in terms of a stream function was investigated. The difference between

the classical wake and the wake of a self-propelled boundary lies within the con-

served quantity. The conserved vector for the wake behind a self-propelled body was

derived for an eddy viscosity depending on both the distance along the wake and the

distance perpendicular to the axis of the wake. In order to calculate the Lie point

symmetry associated with the conserved vector we first considered an eddy viscosity

depending on only the distance along the wake, E = E(x). The invariant solution was

then obtained.

An eddy viscosity as a power law in x was compared with the laminar wake behind a

self-propelled body. The power was denoted by β. The velocity profiles were plotted

for three separate cases due to the large variations in the mean velocity deficit for dif-

ferent values ofβ. A modified version of Prandtl’s hypothesis that stated that the eddy

viscosity is proportional to the product of the maximum mean velocity deficit and
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the effective width of the wake was implemented which derived the value β=−1/2.

This compares with a classical wake for which the modified Prandtl’s hypothesis gives

β= 0. This would imply that the turbulence in the wake behind a self-propelled body

decreases with distance downstream of the body while for a classical wake it remains

approximately constant. For an eddy viscosity as a power law in x, the Lie point sym-

metry is not a scaling symmetry when the kinematic viscosity is not neglected. The

velocity profiles showed that as the exponent β increases, the maximum mean ve-

locity of the wake increases and the effective width decreases. For −1 < β ≤ 1 the

maximum mean velocities were small compared with the laminar wake and were

thus not compared.

The effect of increasing the strength of the turbulence was also investigated. This

approach enabled us to study the transition for a laminar to a turbulent wake. As the

strength of the turbulence increases, the maximum mean velocity decreases and the

effective width increases.

We also considered the effect of neglecting the kinematic viscosity term in the effec-

tive viscosity. We found that the effective width was underestimated for β > 0 and

overestimated for −1 <β< 0.

When E = E(x, y), that is, when the eddy viscosity is not constant across the wake,

the only solution that could be obtained for E(x, y) that also generated the conserved

quantity of Birkhoff and Zorantello was not finite at y = 0.



Chapter 6

Revised Prandtl mixing length model

applied to the two-dimensional

turbulent classical wake

In this chapter we develop a revised Prandtl mixing length model by including the

kinematic viscosity of the fluid. We compare this new model to Prandtl’s mixing

length model. This chapter is outlined as follows. In Section 6.1, the Lie point sym-

metry associated with the elementary conserved vector of the partial differential equa-

tion is derived. In Section 6.2, we consider the application of the revised Prandtl

mixing length model and solve for the stream function. Mean velocity profiles are

plotted with the purpose of examining the impact of the strength of the turbulence

on the mean velocity and width of the wake. In Section 6.3 we derive and discuss the

results from implementing Prandtl’s mixing length model to the turbulent wake. In

Section 6.4, a detailed comparison of the two models is provided. It is shown that

the revised Prandtl model predicts a boundary that lies outside the one predicted by

Prandtl’s model. Finally, conclusions are presented in Section 6.4.

87
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6.1 Elementary conserved vector and associated Lie point

symmetry

In terms of the stream functionψ(x, y), the velocity components v x and v y are given

by

v x(x, y) = 1−w(x, y) = 1− ∂ψ

∂y
, v y (x, y) = ∂ψ

∂x
, (6.1)

which ensures that the continuity equation is identically satisfied. The stream func-

tion ψ satisfies the partial differential equation

∂2ψ

∂x∂y
= ∂

∂y

(
E

(
x, y,

∂2ψ

∂y2

)
∂2ψ

∂y2

)
. (6.2)

The boundary conditions are for x ≥ 0,

∂ψ

∂y
(x,±yb) = 0,

∂2ψ

∂y2
(x,±yb) = 0, (6.3)

∂2ψ

∂y2
(x,0) = 0,

∂ψ

∂x
(x,0) = 0, (6.4)

where the boundary y = ±yb(x) is unspecified. If the wake extends to infinity in the

y-direction then yb(x) =∞.

The conserved quantity for the wake is the drag force D [4]. In terms of the stream

function it is ∫ yb (x)

−yb (x)

∂ψ

∂y
(x, y)d y = D, (6.5)

where yb(x) = ∞ if the wake extends to infinity in the y-direction. The elementary

conserved vector (T 1,T 2) which generates the conserved quantity given in equation

(6.5) was calculated in Chapter 3. It is given by

T 1(ψy ) =ψy , T 2(x, y,ψy y ) =−E(x, y,ψy y )ψy y . (6.6)

In order to calculate the Lie point symmetry X where

X = ξ1(x, y,ψ)
∂

∂x
+ξ2(x, y,ψ)

∂

∂y
+η(x, y,ψ)

∂

∂ψ
, (6.7)
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that is associated with the elementary conserved vector (6.6), we require the second

prolongation of X which is of the form

X [2] = ξ1(x, y,ψ)
∂

∂x
+ξ2(x, y,ψ)

∂

∂y
+η(x, y,ψ)

∂

∂ψ
+ζ2

∂

∂ψy
+ζ22

∂

∂ψy y
, (6.8)

where [65]

ζ2 = D2(η)−ψk D2(ξk ), (6.9)

ζ22 = D2(ζ2)−ψ2k D2(ξk ). (6.10)

The conserved vector T = (T 1,T 2) is invariant under the action of the Lie point sym-

metry X if [30, 31]

X (T i )+T i Dk (ξk )−T k Dk (ξi ) = 0, i = 1,2, (6.11)

which, when decomposed into two components, gives

X (T 1)+T 1D2(ξ2)−T 2D2(ξ1) = 0, (6.12)

X (T 2)+T 2D1(ξ1)−T 1D1(ξ2) = 0. (6.13)

The conserved vector components T 1 and T 2 are given by (6.6). Equation (6.12) be-

comes

∂η

∂y
+ ∂η

∂ψ
ψy −ψx

(
∂ξ1

∂y
+ ∂ξ1

∂ψ
ψy

)
+E(x, y,ψy y )ψy y

(
∂ξ1

∂y
+ ∂ξ1

∂ψ
ψy

)
= 0. (6.14)

By separating equation (6.14) by ψx , ψxψy and ψy we obtain

ξ1 = A(x), ξ2 = ξ2(x, y,ψ), η= B(x). (6.15)

In the second invariance condition (6.13), there is only one term depending onψxψy .

By setting the coefficient of ψxψy to zero we obtain

∂ξ2

∂ψ
= 0. (6.16)

Using (6.16), ζ22 reduces to

ζ22 =−2ψy y
∂ξ2

∂y
−ψy

∂2ξ2

∂y2
. (6.17)
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The invariance condition (6.13) becomes(
E(x, y,ψy y )+ψy y

∂E

∂ψy y

)(
∂2ξ2

∂y2
ψy +2ψy y

∂ξ2

∂y

)

−
(
ξ1∂E

∂x
+ξ2∂E

∂y
+E(x, y,ψy y )

d A

d x

)
ψy y −ψyξ

2
x = 0. (6.18)

Now E(x, y,ψy y ) 6= 0. We separate (6.18) according to powers of ψy and we thus ob-

tain
∂2ξ2

∂y2
ψy y

∂E

∂ψy y
+ ∂2ξ2

∂y2
E = ∂ξ2

∂x
, (6.19)

A(x)
∂E

∂x
+ξ2(x, y)

∂E

∂y
−2

∂ξ2

∂y
ψy y

∂E

∂ψy y
=

(
2
∂ξ2

∂y
− d A

d x

)
E . (6.20)

The Lie point symmetry associated with the conserved vector (6.6) is

X = A(x)
∂

∂x
+ξ2(x, y)

∂

∂y
+B(x)

∂

∂ψ
, (6.21)

provided that the effective viscosity E(x, y,ψy y ) satisfies the pair of first order partial

differential equations (6.19) and (6.20).

Now E = E(x, y) has been considered in Chapter 4 for a classical wake with an in-

finite boundary. For a finite wake boundary the effective viscosity must be equal

to the mainstream kinematic viscosity on the boundary. For this reason, we cannot

consider an effective viscosity depending on x only as the condition for the effective

viscosity reducing to the kinematic viscosity on a finite boundary will not be satisfied.

In other words for a finite boundary we must have

∂E

∂ψy y
6= 0,

and/or
∂E

∂y
6= 0.

Since we are considering Prandtl’s model, we will suppose that

E = E(x,ψy y ). (6.22)

For fully developed turbulent flow, the kinematic viscosity is often neglected and thus

the eddy viscosity is approximately zero at the boundary. We will not neglect the

kinematic viscosity in the revised Prandtl model.
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6.2 Revised Prandtl mixing length model

When implementing Prandtl’s mixing length model [2], the turbulent viscosity νT is

written as

νT = l 2(x)

∣∣∣∣∂v x

∂y

∣∣∣∣ , (6.23)

where l (x) is called the mixing length. In terms of the dimensionless variables given

in (2.22) and (2.23), equation (6.23) becomes

ν∗T = 1

νC +νTC
l 2

0
U

δ
l∗2(x∗)

∣∣∣∣∂v∗
x∗

∂y∗

∣∣∣∣= 1

νC +νTC
νT0 l∗2(x∗)

∣∣∣∣∂v∗
x∗

∂y∗

∣∣∣∣ , (6.24)

where l0 is the characteristic mixing length. Thus the characteristic turbulent viscos-

ity is

νT0 = l 2
0

U

δ
=

(
l0

L

)2

Re3/2Ec , (6.25)

where Re is defined by (2.20). Omitting the ∗ notation for convenience, in terms of

the stream function defined in (6.1), the dimensionless effective viscosity E is written

as

E(x,ψy y ) = νT0

νC +νTC
l 2(x)

∣∣ψy y
∣∣ . (6.26)

The kinematic viscosity is neglected in approximation (6.26). At the boundary de-

fined by y = ±yb(x) the eddy viscosity is zero. Approximation (6.26) is suitable for

fully developed turbulent flows in regions where the turbulent viscosity is much greater

than the kinematic viscosity. Since the eddy viscosity is zero at the boundary y =
±yb(x), this model breaks down because it assumes that the kinematic viscosity ν of

the fluid can be approximated as zero everywhere. In our model, at the boundary

between the turbulent wake and the laminar flow the effective viscosity is equal to

the kinematic viscosity where ν 6= 0. We thus impose

E(x,ψy y ) = ν

νC +νT C
+ νT0

νC +νTC
l 2(x)

∣∣ψy y
∣∣ . (6.27)

Equation (6.27) reduces to equation (6.26) when ν = 0. From the second derivative

boundary condition in (6.3) the effective viscosity defined in (6.27) is equal to the

kinematic viscosity at the boundary.

The classical wake is symmetric about the x-axis. We consider the upper half of the

wake, 0 ≤ y < yb(x), in the analysis that follows. The mean velocity deficit w(x, y) is
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given by

w(x, y) = ∂ψ

∂y
. (6.28)

From the second derivative boundary condition in (6.4) the velocity deficit is a pos-

itive maximum along the x-axis and from the first derivative boundary condition in

(6.3) it is zero at y = yb(x). Thus the velocity deficit is a decreasing function of y and

therefore if we consider the upper half of the wake,

∂w

∂y
(x, y) = ∂2ψ

∂y2
≤ 0, 0 ≤ y ≤ yb(x). (6.29)

In the upper half of the wake we have that |ψy y | = −ψy y and therefore

E(x,ψy y ) = ν

νC +νTC
− νT0

νC +νTC
l 2(x)ψy y . (6.30)

Substituting (6.30) into (6.19) we obtain

∂2ξ2

∂y2

(
ν

νC +νTC
−2

νT0

νC +νTC
l 2(x)ψy y

)
− ∂ξ2

∂x
= 0. (6.31)

We separate (6.31) by powers of ψy y :

ψy y : l 2(x)
∂2ξ2

∂y2
= 0, (6.32)

remainder :
ν

νC +νTC

∂2ξ2

∂y2
− ∂ξ2

∂x
= 0. (6.33)

Since l (x) 6= 0 it follows that
∂2ξ2

∂y2
= 0, (6.34)

and therefore from (6.33), that ξ2 = ξ2(y). Hence from (6.34)

ξ2(x, y) = ay +b, (6.35)

where a and b are constants. We consider the general case in which a 6= 0 and by

dividing the Lie point symmetry (6.21) by a we can set a = 1 in (6.35). Substituting

(6.35) and (6.30) into equation (6.20) gives

2
νT0

νC +νTC

(
−A(x)l (x)

dl

d x
+ l 2(x)

)
ψy y =

(
2− d A

d x

)(
ν

νC +νTC
− νT0

νC +νT C
l 2(x)ψy y

)
.

(6.36)
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Separating by ψy y we have since ν 6= 0,

d A

d x
= 2, (6.37)

and using (6.37)

− A(x)
dl

d x
+ l (x) = 0. (6.38)

Solving for A(x) and l (x) we obtain

A(x) = 2x + A0, (6.39)

l (x) = l1

√
2x + A0, (6.40)

where A0 and l1 are constants.

The Lie point symmetry (6.21) becomes

X = (2x + A0)
∂

∂x
+ (y +b)

∂

∂y
+B(x)

∂

∂ψ
. (6.41)

Now, ψ = Ψ(x, y) is an invariant solution of the partial differential equation (6.2)

(with effective viscosity E given by (6.30)) generated by the Lie point symmetry (6.41)

provided

X (ψ−Ψ(x, y))
∣∣
ψ=Ψ = 0, (6.42)

that is, provided

(2x + A0)
∂Ψ

∂x
+ (y +b)

∂Ψ

∂y
= B(x). (6.43)

The differential equations of the characteristic curves of (6.43) are

d x

2x + A0
= d y

y +b
= dΨ

B(x)
. (6.44)

The constants of integration are

y +bp
2x + A0

= a1, Ψ−G(x) = a2, (6.45)

where

G(x) =
∫ x

0

B(α)

2α+ A0
dα, (6.46)

and hence sinceΨ=ψ the general invariant solution is

ψ(x, y) = F (ξ)+G(x), (6.47)
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where F is an arbitrary function and

ξ(x, y) = y +bp
2x + A0

. (6.48)

We now determine the constant b and the arbitrary function B(x). A similar argu-

ment was used in Chapter 4. The second derivative boundary condition in (6.4) is

d 2F

dξ2
(ξ|y=0) = 0. (6.49)

Differentiating (6.49) with respect to x gives

d 3F

dξ3
(ξ|y=0)

b

(2x + A0)3/2
= 0. (6.50)

But since w(x, y) has a local maximum at y = 0 we have

∂2w

∂y2
(x,0) = d 3F

dξ3
(ξ|y=0)

1

(2x + A0)3/2
< 0, (6.51)

giving that F ′′′(ξ|y=0) 6= 0. From (6.50) we must have b = 0.

Consider next B(x). Now

∂ψ

∂x
= 1

2x + A0

[
B(x)−ξdF

dξ

]
. (6.52)

But

w(x, y) = ∂ψ

∂y
= dF

dξ

1

(2x + A0)1/2
, (6.53)

and since w(x,0) is finite it must follow that F ′(0) is finite. From (6.52) the first deriva-

tive boundary condition in (6.4) therefore gives B(x) = 0. Thus we have

ψ(x, y) = F (ξ), (6.54)

where

ξ(x, y) = yp
2x + A0

. (6.55)

Consider now the conserved quantity (6.5). Since the wake is symmetric about the

x-axis, (6.5) can be written as ∫ yb (x)

0

∂ψ

∂y
(x, y)d y = D

2
. (6.56)
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Expressed in terms of the similarity variables, (6.56) becomes

∫ yb(x)p
2x + A0

0

dF

dξ
dξ= D

2
. (6.57)

Since D is a constant the upper limit in the integral (6.57) must be a constant which

we denote by ξb :
yb(x)p
2x + A0

= ξb . (6.58)

The half-width of the wake at position x on the axis of the wake is therefore

yb(x) = ξb

√
2x + A0. (6.59)

We consider an obstructing object that is slender and its thickness is essentially neg-

ligible. In addition, we also assume that s ¿ L where s is the length of the object

along the x− axis in order to avoid the possible development of turbulent boundary

layers on the obstructing body upstream of x = 0. We may use the approximation

that at x = 0 the boundary yb(x) is zero. For a general symmetric object with s ¿ L,

as x → 0, yb(0) = ξb
p

A0 and so we can relate the constant A0 to the thickness of the

object. For the remainder of this work we will assume the obstructing object is slen-

der and its length is small in comparison to the characteristic length scale L so that

we may set A0 = 0. Thus

yb(x) = ξb

p
2x. (6.60)

The Lie point symmetry X reduces to

X = 2x
∂

∂x
+ y

∂

∂y
, (6.61)

which is a scaling symmetry. The Lie point symmetry associated with the elementary

conserved vector is not in general a scaling symmetry for obstructing objects of a

finite thickness and a length comparable to the characteristic length L. The similarity

variable ξ becomes

ξ(x, y) = yp
2x

. (6.62)

The mixing length (6.40) reduces to

l (x) = l1
p

2x. (6.63)

The mixing length (6.63) is therefore proportional to the half-width of the wake (6.60).
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Prandtl assumed that the mixing length l (x) is approximately proportional to the

width of the boundary layer [2]. We have shown that by taking ν 6= 0 that this re-

sult can be proved for the classical wake and does not need to be assumed. Equa-

tion (6.40) which determines l (x) follows directly from the assumption ν 6= 0 in the

separation of (6.36). Hence, although ν is small compared with the eddy viscosity

it cannot be neglected everywhere. It must be taken as non-zero adjacent to an in-

terface between laminar and turbulent flows where the kinematic viscosity and the

eddy viscosity are the same order of magnitude.

The partial differential equation (6.2) with effective viscosity given by (6.30), when

expressed in terms of the similarity variables (6.54) and (6.62) reduces to

d

dξ

[(
ν

νC +νTC
− νT0

νC +νTC
l 2

1
d 2F

dξ2

)
d 2F

dξ2

]
+ d

dξ

(
ξ

dF

dξ

)
= 0, (6.64)

and the boundary conditions (6.3) and (6.4) become, for the upper half of the wake,

dF

dξ
(+ξb) = 0,

d 2F

dξ2
(+ξb) = 0, (6.65)

d 2F

dξ2
(0) = 0. (6.66)

By integrating (6.64) once and using the boundary condition (6.66) we obtain

(
ν

νC +νTC
− νT0

νC +νTC
l 2

1
d 2F

dξ2

)
d 2F

dξ2
+ξdF

dξ
= 0. (6.67)

The conserved quantity (6.57) is

∫ ξb

0

dF

dξ
dξ= D/2, (6.68)

where the constant ξb has still to be determined.

In order to calculate the velocity components, since the wake is symmetric about the

x-axis, we need only consider the upper half of the wake. In (6.67) we let W (ξ) = F ′(ξ)

and obtain (
ν

νC +νTC
− νT0

νC +νTC
l 2

1
dW

dξ

)
dW

dξ
+ξW = 0, (6.69)

subject to

W (ξb) = 0,
dW

dξ
(ξb) = 0, (6.70)
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and ∫ ξb

0
W (ξ)dξ= D/2. (6.71)

The boundary condition (6.66) has already been used to determine the constant of

integration in (6.67). We will see later that only one of the two boundary conditions

in (6.70) is independent. In terms of W the velocity components are given by

v x(x, y) = 1− 1p
2x

W (ξ), (6.72)

v y (x, y) =− ξ

2x
W (ξ). (6.73)

In order to remove the parameters from (6.69) we substitute the transformation

W =W ∗A, ξ= ξ∗B , (6.74)

where A and B are constants, into (6.69) which becomes(
ν

νC +νTC

1

B 2
− νT0

νC +νTC

A

B 3
l 2

1
dW ∗

dξ∗

)
dW ∗

dξ∗
+ξ∗W ∗ = 0. (6.75)

By letting

A = 1

l 2
1

[
ν

νC +νTC

]1/2 ν

νT0

, B =
[

ν

νC +νTC

]1/2

, (6.76)

we obtain (
1− dW ∗

dξ∗

)
dW ∗

dξ∗
+ξ∗W ∗ = 0, (6.77)

where

ξ∗(x, y) = yp
2x

[νC +νTC

ν

]1/2
. (6.78)

We keep the star notation for clarity. By solving the quadratic equation (6.77) for

W ∗′(ξ∗) we obtain
dW ∗

dξ∗
= 1± (1+4ξ∗W ∗)1/2

2
. (6.79)

We take the negative root because from (6.29),

dW ∗

dξ∗
= d 2F∗

dξ∗2 < 0. (6.80)

Thus
dW ∗

dξ∗
= 1− (1+4ξ∗W ∗)1/2

2
. (6.81)
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We see from (6.81) that when the boundary condition, W ∗(ξ∗b ) = 0, is satisfied the

boundary condition W ∗′(ξ∗b ) = 0 is automatically satisfied. Equation (6.70) therefore

consists of only one independent boundary condition. Physically this implies that

when v x(x, yb) = 0 then
∂v x

∂y
(x, yb) = 0 which confirms that the eddy viscosity van-

ishes on the boundary. We therefore need to solve the first order ordinary differential

equation (6.81) subject to the boundary condition

W ∗(ξ∗b ) = 0, (6.82)

and the conserved quantity

1

l 2
1

[
ν

νC +νTC

]
ν

νT0

∫ ξ∗b

0
W ∗(ξ∗)dξ∗ = D/2. (6.83)

The x- and y- velocity components (6.1) are given by

v x(x, y) = 1− 1

l 2
1

[
ν

νC +νTC

]1/2 ν

νT0

1p
2x

W ∗(ξ∗), (6.84)

v y (x, y) =− 1

l 2
1

[
ν

νC +νT C

]
ν

νT0

ξ∗

2x
W ∗(ξ∗). (6.85)

If we consider W ∗(ξ∗) on the entire domain from 0 to +∞ we see that W ∗ is a piece-

wise function defined by equation (6.81) for 0 < ξ∗ < ξ∗b and for ξ∗ ≥ ξ∗b , W ∗(ξ∗) = 0.

We now solve the differential equation (6.81) subject to (6.82) and (6.83). The nu-

merical solver, NDSolve, in Mathematica, is used which implements a Runge-Kutta

method for this problem. The value 1 is used as an initial guess for the boundary ξb .

In order to ensure that we do not obtain the trivial solution when NDSolve is imple-

mented to solve the ordinary differential equation, (6.81), we modify (6.82) to

W ∗(ξ∗b ) = ε, (6.86)

where we let ε = 1× 10−6. The conserved quantity is evaluated using the solution

obtained from NDSolve and the boundary value ξb is updated until the condition∣∣∣∣∣ 1

l 2
1

[
ν

νC +νT C

]
ν

νT0

∫ ξ∗b

0
W ∗(ξ∗)dξ∗−D/2

∣∣∣∣∣< 0.0001, (6.87)

is satisfied.
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Because ν 6= 0, we set the characteristic kinematic viscosity νC = ν. In the analysis

that follows we let D = 0.1 and consider the cases for which νT0 /ν= 50, 150, 250, 500,

1000. In order to analyse the dependence of the mean velocity deficit on the strength

of the turbulence we let νTC /ν = 250. As the constant l1 can only be determined

from experimental observations, we set it equal to 1 for simplicity. We consider a

fixed point x = 1/2. In Table 6.1 values are given, for the boundary ξb , of the integral

I =
∫ ξb

0
W (ξ)dξ, (6.88)

whose value must be close to D/2 from (6.87), and the maximum mean velocity

deficit w(1/2,0) which occurs at y = 0. In Figure 6.1, the mean velocity in the x-

direction v x(x, y) is plotted against ξ at a fixed point x = 1/2. This is equivalent to

plotting v x(1/2,B y∗) against B y∗.

The computational results show that the constant factor ξb in equation (6.60) for the

boundary is finite which gives a numerical proof that the wake is bounded in the

y-direction.

Ratio νT0 /ν ξb I w(1/2,0)

50 0.7476 0.0500 0.1634

100 0.8632 0.0500 0.1381

250 1.0555 0.0500 0.1104

500 1.2365 0.0500 0.0930

1000 1.4544 0.0500 0.0784

TABLE 6.1: Values for the boundary of the wake ξb , the conserved quantity I and the
maximum velocity deficit w(1/2,0) for different values of the turbulence ratio νT0 /ν.

From Table 6.1 and Figure 6.1 we see that as the ratio νT0 /ν increases the boundary

value ξb increases and the maximum mean velocity deficit decreases. The increase

in νT0 /ν means an increase in the eddy viscosity which causes an increase in the

diffusion of the mean flow. The increase in diffusion perpendicular to the axis of the

wake causes the width of the wake to increase and the maximum velocity deficit to

decrease.
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FIGURE 6.1: Velocity profiles for a two-dimensional classical wake with D = 0.1, l1 =
1, x = 1/2 and νTC /ν= 250 for νT0 /ν= 50, 100, 250, 500, 1000.

6.3 Prandtl’s mixing length model

Even if the kinematic viscosity, ν, is very small, setting ν = 0 can lead to significant

errors in fluid mechanics, for example, when calculating the drag on a body. In this

section we will investigate putting ν= 0 with Prandtl’s mixing length model for eddy

viscosity.

When ν= 0 the dimensionless effective viscosity (6.30) reduces to the dimensionless

eddy viscosity

E(x,ψy y ) =− νT0

νC +νT C
l 2(x)ψy y , 0 ≤ y ≤ yb(x). (6.89)

We keep νC + νTC as the characteristic effective viscosity for comparison with the

results for ν 6= 0. The stream function satisfies the partial differential equation (6.2)

with E(x,ψy y ) given by (6.89):

∂2ψ

∂x∂y
=− νT0

νC +νTC
l 2(x)

∂

∂y

[(
∂2ψ

∂y2

)2]
, 0 ≤ y ≤ yb(x). (6.90)

The elementary conserved vector is

T 1 =ψy , T 2 = νT0

νC +νTC
l 2(x)

(
∂2ψ

∂y2

)2

. (6.91)



Chapter 6. Revised Prandtl model 101

The first condition, (6.12), for a Lie point symmetry to be associated with the con-

served vector (6.91) gives again the Lie point symmetry (6.21) provided E(x,ψy y ) sat-

isfies (6.19) and (6.20). Substituting (6.89) into (6.19) gives

2
νT0

νC +νT C
l 2(x)

∂2ξ2

∂y2
ψy y + ∂ξ2

∂x
= 0, (6.92)

which by separating by ψy y gives again

ξ2 = ay +b, (6.93)

where a and b are constants. Without loss of generality we again take a = 1. Substi-

tuting (6.89) for E(x,ψy y ) and (6.93) for ξ2(y) into (6.20) gives

2
νT0

νC +νT C

(
−A(x)l (x)

dl

d x
+ l 2(x)

)
ψy y =− νT0

νC +νTC

(
2− d A

d x

)
l 2(x)ψy y , (6.94)

which is similar to (6.36) but with the important difference that the term proportional

to ν on the right hand side of (6.36) is absent from (6.94). Unlike (6.36), equation

(6.94) does not give two equations, one for A(x) and one for l (x), when separated by

ψy y . It yields only one equation which may be written as

d A

d x
+ 2

l (x)

dl

d x
A(x) = 4. (6.95)

The mixing length is not determined by the invariance condition but remains arbi-

trary. This compares with ν 6= 0 for which the mixing length is determined and given

by (6.40). From (6.95)

A(x) = 1

l 2(x)

(
4
∫ x

0
l 2(α)dα+ c

)
, (6.96)

where c is a constant. The Lie point symmetry (6.21) becomes

X = 1

l 2(x)

(
4
∫ x

0
l 2(α)dα+ c

)
∂

∂x
+ (y +b)

∂

∂y
+B(x)

∂

∂ψ
. (6.97)

Using an argument similar to that in Section 6.2 we again obtain b = 0, B(x) = 0 and

c = 0. The Lie point symmetry (6.97) reduces to

X = 1

l 2(x)

(
4
∫ x

0
l 2(α)dα

)
∂

∂x
+ y

∂

∂y
, (6.98)

which, in general, is not a scaling symmetry unless l (x) is in the form of a power law

in x.
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The kinematic viscosity, ν, no matter how small, is never zero. We have seen that

when determining the mixing length, ν cannot be neglected. The result obtained for

ν 6= 0, (6.40), does not depend on ν. It can be used for the mixing length when ν= 0.

After the mixing length has been found the kinematic viscosity can be set to zero to

obtain an approximate solution.

When ν 6= 0 and the obstacle is slender we found in Section 6.2 that

l (x) = l1
p

2x. (6.99)

We will use (6.99) for the mixing length when ν = 0. The Lie point symmetry (6.98)

becomes

X = 2x
∂

∂x
+ y

∂

∂y
. (6.100)

The invariant solution generated by (6.100) is

ψ(x, y) =G(ξ), (6.101)

where

ξ(x, y) = yp
2x

, (6.102)

which is the same as for ν 6= 0.

The partial differential equation (6.90) becomes

νT0

νC +νTC
l 2

1
d

dξ

[(
d 2G

dξ2

)2]
= d

dξ

(
ξ

dG

dξ

)
, (6.103)

subject to the boundary conditions

dG

dξ
(+ξb) = 0,

d 2G

dξ2
(+ξb) = 0, (6.104)

d 2G

dξ2
(0) = 0. (6.105)

Integrating once and using the second derivative boundary condition at ξ = 0 in

(6.105) we obtain
νT0

νC +νTC
l 2

1

(
dK

dξ

)2

= ξK (ξ), (6.106)

where

K (ξ) = dG

dξ
. (6.107)
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Thus
dK

dξ
=−

(
νC +νT C

νT0

)1/2 1

l1
(ξK (ξ))1/2, (6.108)

where the − sign is taken because in the upper half of the wake G ′′(ξ) < 0 by (6.29).

We use the characteristic viscosity EC = νC +νTC , which is the same for all turbulent

wakes, in order to investigate the effect of the strength of the turbulence on the wake.

We make the transformation

K = K ∗A, ξ= ξ∗B , (6.109)

where A and B are given by equation (6.76). The ordinary differential equation (6.103)

becomes
dK ∗

dξ∗
=−(

ξ∗K ∗(ξ∗)
)1/2 , (6.110)

where

ξ∗ =
[
νC +νTC

νC

]1/2 yp
2x

. (6.111)

The boundary condition is

K ∗(ξ∗b ) = 0, (6.112)

and the solution must satisfy the conserved quantity

1

l 2
1

[
νC

νC +νTC

]
νC

νT0

∫ ξ∗b

0
K ∗(α)dα= D/2. (6.113)

The velocity components v x(x, y) and v y (x, y) are given by (6.84) and (6.85) with

W ∗(ξ∗) replaced by K ∗(ξ∗)

v x(x, y) = 1− 1

l 2
1

[
νC

νC +νTC

]1/2 ν

νT0

1p
2x

K ∗(ξ∗), (6.114)

v y (x, y) =− 1

l 2
1

[
νC

νC +νTC

]
ν

νT0

ξ∗

2x
K ∗(ξ∗). (6.115)

Unlike the differential equation (6.81) for ν 6= 0, the differential equation (6.110) for

ν= 0 can be solved analytically. A separation of variables can be performed in (6.110)

and its solution subject to the boundary condition (6.112) is

K ∗(ξ∗) = 1

9

(
ξ∗b

3 −2ξ∗b
3/2
ξ∗3/2 +ξ∗3

)
, 0 ≤ ξ∗ ≤ ξ∗b . (6.116)
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For K ∗(ξ∗) to be finite (and therefore for v x(x, y) to be finite from (6.114)), ξ∗b must

be finite. Thus the boundary of the wake, y = yb(x), is finite. Substituting (6.116) into

the conserved quantity (6.113) gives

ξ∗b =
√

l1

[
νC +νT C

νC

]1/4 [
νT0

νC

]1/4

(10D)1/4, (6.117)

and therefore using (6.62) and (6.109),

ξb = yb(x)p
2x

=
√

l1

[
νT0

νC +νTC

]1/4

(10D)1/4. (6.118)

Hence, the upper half of the wake is 0 ≤ y ≤ yb(x) where

yb(x) =
√

l1

[
νT0

νC +νTC

]1/4

(10D)1/4
p

2x. (6.119)

The x- component of the mean velocity on the axis of the wake where the velocity

deficit is a maximum is

v x(x,0) = 1−w(x,0) = 1− (10D)1/4

9
√

l1

[
νC +νTC

νT0

]1/4 1p
2x

. (6.120)

We have used the mixing length derived for ν 6= 0 and the approximate partial dif-

ferential equation for ν= 0 to derive an approximate analytical result, (6.119), for the

half-width of the wake. This supports the conclusion from the numerical solution for

ν 6= 0 that the classical wake with Prandtl’s mixing length model for eddy viscosity is

bounded in the y-direction. We see that as the strength of the turbulence νT0 /νC in-

creases the half-width of the wake yb(x) increases and the maximum mean velocity

deficit decreases. These effects are due to the increase in the diffusion of the mean

flow due to an increase in the eddy viscosity.

6.4 Model comparison

In this section we compare the results obtained from Prandtl’s mixing length model

with ν= 0 and the revised Prandtl mixing length model with ν 6= 0.

In Figures 6.2 and 6.3, the mean velocity in the x-direction deduced from Prandtl’s

model with ν = 0 is plotted against ξ at x = 1/2 and compared with the results ob-

tained from the revised Prandtl model with ν 6= 0. We use the parameter values
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Revised Prandtl

Prandtl

0.85 0.90 0.95
vx

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ξ

FIGURE 6.2: Velocity profiles for a two-dimensional classical wake with D = 0.1, l1 =
1, x = 1/2 and νTC /νC = 250 for νT0 /νC = 50.

Revised Prandtl

Prandtl

0.86 0.88 0.90 0.92 0.94 0.96 0.98
vx

0.2

0.4

0.6

0.8

Ξ

FIGURE 6.3: Velocity profiles for a two-dimensional classical wake with D = 0.1, l1 =
1, x = 1/2 and νTC /ν= 250 for νT0 /ν= 100.

D = 0.1, l1 = 1 and νTC /νC = 250 for νT0 /νC = 50, 100. We choose the values 50 and

100 for the turbulence ratio νT0 /νC because at lower Reynolds number flows the dif-

ferences between the two models are most noticeable. Tables 6.2 and 6.3 summarize

the important features.

In Figures 6.2 and 6.3 the greatest difference in the velocity profiles for the two mod-

els occurs at y = 0 because on the axis v x(x, y) has a local maximum and
∂v x

∂y
= 0. The

eddy viscosity therefore vanishes and the difference between the effective viscosity

of the two models is greatest.

From Table 6.2 we conclude that the revised Prandtl model with ν 6= 0 predicts a

boundary value ξb that lies outside of the one predicted by Prandtl’s model with
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Ratio νT0 /ν Revised Prandtl: ξb Prandtl: ξb Percentage increase

50 0.7476 0.6681 11.90

100 0.8632 0.7945 8.65

250 1.0555 0.9990 5.66

500 1.2365 1.1880 4.08

1000 1.4544 1.4128 2.94

TABLE 6.2: Values for the boundary of the wake ξb computed from the revised
Prandtl model and compared with the results obtained from Prandtl’s model for dif-

ferent values of the turbulence ratio νT0 /νC . The percentage increase is shown.

Ratio νT0 /ν Revised Prandtl: w(1/2,0) Prandtl: w(1/2,0) Percentage decrease

50 0.1634 0.1663 1.74

100 0.1381 0.1399 1.29

250 0.1104 0.1112 0.72

500 0.0930 0.0935 0.53

1000 0.0784 0.0786 0.25

TABLE 6.3: Values for the maximum mean velocity deficit w(1/2,0) computed from
the revised Prandtl model and compared with the results obtained from Prandtl’s
model for different values of the turbulence ratio νT0 /νC . The percentage decrease

is shown.

ν = 0. A significant increase in the value of the boundary ξb occurs for smaller ra-

tios of νT0 /νC . As the ratio νT0 /νC increases the percentage difference between the

boundary values predicted by the two models decreases. Prandtl’s model was specifi-

cally used for very large Reynolds number flows and is shown to be more accurate for

these values. However, for smaller Reynolds number flows, an obvious underestima-

tion of the boundary value is observed and thus Prandtl’s model should be replaced

by its revised version presented in this chapter. In Table 6.3 it is shown that the dif-

ferences in the mean velocity deficits of the two models is not as significant as the

differences between the boundary values. As the turbulence ratio νT0 /νC increases,

the differences between the boundary values and mean velocity deficits obtained

from the two models decreases.

The two models, Prandtl’s mixing length model with ν = 0 and the revised Prandtl

mixing length model with ν 6= 0, contribute to the analysis of the wake in different

but complimenting ways.
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When ν 6= 0 a definite expression for the mixing length was derived from the Lie sym-

metry analysis. The result for the mixing length was independent of ν and therefore

independent of the physical properties of the fluid. However, the ordinary differ-

ential equation for the stream function could not be solved analytically. It was not

possible to show analytically that the boundary of the wake is finite. By assuming

that the boundary is finite, the equation of the boundary, except for a proportional-

ity constant, was obtained from the conserved quantity. The solution of the ordinary

differential equation for the stream function and the proportionality constant were

obtained numerically. The boundary of the wake lies outside the boundary obtained

with ν= 0.

When ν = 0, it was not possible to determine the mixing length. We choose for the

mixing length the expression for ν 6= 0 because the kinematic viscosity, although it

may be small, is never zero in a real fluid. This agrees with Prandtl’s assumption that

the mixing length is proportional to the half-width of the wake. The ordinary differ-

ential equation for the stream function was solved analytically. It was also proved

analytically that the boundary of the wake is finite and the proportionality constant

in the equation of the wake boundary was obtained analytically. The boundary of the

wake is underestimated. Prandtl’s mixing length model is obtained from the revised

model presented in Section 6.2 in the limiting case where the kinematic viscosity is

set to zero. It is for this reason that Prandtl’s model underestimates the width of the

wake.

6.5 Conclusions

Even although the kinematic viscosity, ν, is small compared with the eddy viscos-

ity it played an essential part in the modelling process of the turbulent wake. The

kinematic viscosity cannot be neglected in the Lie symmetry analysis of the partial

differential equation for the stream function because when ν = 0 Prandtl’s mixing

length cannot be determined. The ordinary differential equation obtained for ν 6= 0

could not be solved analytically, but once the mixing length had been found we could

set ν = 0 to obtain an approximate analytical solution. This analytical solution was

useful because it showed that the width of the wake is finite which was a guide for

the numerical solution when ν 6= 0.
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Prandtl [2] neglected the kinematic viscosity compared with the eddy viscosity and

therefore had to make an assumption about the mixing length. He assumed that the

mixing length was proportional to the half-width of the wake which agrees with the

mixing length obtained from the Lie symmetry analysis with ν 6= 0.

The finite boundary of the turbulent classical wake was a significant prediction of

Prandtl’s mixing length model of the wake. However, by neglecting the kinematic

viscosity the half-width of the wake was underestimated. The boundary of the wake

with ν 6= 0 lies outside the one predicted by Prandtl. This improvement was achieved

without going to a second approximation as was done by Swain [10].



Chapter 7

Mathematical relationship between

the different types of two-dimensional

turbulent wakes

In this chapter we consider the classical wake, the combination wake and the wake of

a self-propelled body. We present the solution to each problem in terms of the stream

function and derive the relationship between them. In Chapters 4 and 5 the Lie point

symmetry associated with the conserved vector was used to derive the invariant so-

lution for the classical wake with E = E(x, y) and the wake of a self-propelled body

with E = E(x). In the sections that follow, since E must be independent of y in order

to generate the conserved quantities for the wake of a self-propelled body and the

combination wake, we only consider E = E(x) for the classical wake in order to com-

pare the solutions obtained for the three problems. We will use the stream function

formulation.

This chapter is outlined as follows: in Section 7.1 the invariant solution correspond-

ing to the conserved vector for the combination wake is derived. In Section 7.2 the

results for the classical wake, the combination wake and the wake of a self-propelled

body are summarised. In Section 7.3, the mathematical relationship between the

three different wakes is investigated. Conclusions for this chapter are given in Sec-

tion 7.4.

109
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7.1 Combination wake

The combination wake provides the link between the solutions of the classical wake

and the wake of a self-propelled body with E = E(x). The same techniques and rea-

soning provided in the chapters on the classical wake and the wake of a self-propelled

body are used in order to obtain the arbitrary constants in the Lie point symmetry for

the combination wake. For example, we assume that the effective width of the com-

bination wake also tends to zero as x approaches zero. Since the solution to this

problem has not been derived, we include the calculations and a plot of the typical

mean velocity profile in this section.

Recall that the conserved vector T = (T 1,T 2) is invariant under the action of the Lie

point symmetry

X = ξ1(x, y,ψ)
∂

∂x
+ξ2(x, y,ψ)

∂

∂y
+η(x, y,ψ)

∂

∂ψ
, (7.1)

provided [30, 31]

X (T i )+T i Dk (ξk )−T k Dk (ξi ) = 0, i = 1,2, (7.2)

where X is prolongated to as high an order in the derivatives as required. Equation

(7.2) consists of two components, namely,

X (T 1)+T 1D2(ξ2)−T 2D2(ξ1) = 0, (7.3)

X (T 2)+T 2D1(ξ1)−T 1D1(ξ2) = 0. (7.4)

The components of the conserved vector T = (T 1,T 2) were calculated in Chapter 3.

In terms of the stream function they are given by (3.81),

T 1 = yψy , T 2 =−yE(x)ψy y +E(x)ψy . (7.5)

The second prolongation of X , denoted by X [2], is given as

X [2] = X +ζ2
∂

∂ψy
+ζ22

∂

∂ψy y
, (7.6)

where [65]

ζ2 = D2(η)−ψk D2(ξk ), (7.7)
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ζ22 = D2(ζ2)−ψ2k D2(ξk ). (7.8)

From (7.7) the expansion of ζ2 is

ζ2 = ∂η

∂y
+ ∂η

∂ψ
ψy −ψx

(
∂ξ1

∂y
+ ∂ξ1

∂ψ
ψy

)
−ψy

(
∂ξ2

∂y
+ ∂ξ2

∂ψ
ψy

)
. (7.9)

The first invariance condition (7.3) yields

ξ2ψy + y
∂η

∂y
+ y

∂η

∂ψ
ψy − yψx

(
∂ξ1

∂y
+ ∂ξ1

∂ψ
ψy

)

+ (
E(x)yψy y −E(x)ψy

)(∂ξ1

∂y
+ ∂ξ1

∂ψ
ψy

)
= 0. (7.10)

The coefficients of ψyψy y and ψy are set to zero giving

ξ1 = B(x). (7.11)

Equation (7.10) becomes

ξ2ψy + y
∂η

∂y
+ y

∂η

∂ψ
ψy = 0. (7.12)

Separating by the partial derivative ψy in equation (7.12) yields

ψy : ξ2 + y
∂η

∂ψ
= 0, (7.13)

remainder :
∂η

∂y
= 0. (7.14)

Therefore, from the first invariance condition, we have

ξ1 = B(x), ξ2 =−y
∂η

∂ψ
(x,ψ), η= η(x,ψ). (7.15)

Since there is only one term in the second invariance condition (7.4) which contains

ψx , we can set its coefficient to zero giving

∂ξ2

∂ψ
= 0. (7.16)
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From equations (7.13) and (7.16) we obtain

ξ2(x, y) = y a(x), η(x,ψ) =−a(x)ψ+b(x). (7.17)

The expressions (7.7) and (7.8) for ζ2 and ζ22 reduce to

ζ2 =−2a(x)ψy , ζ22 =−3a(x)ψy y . (7.18)

The second invariance condition (7.4) becomes

2yE(x)a(x)ψy y −2E(x)a(x)ψy − yB(x)
dE

d x
ψy y +B(x)

dE

d x
ψy+

dB

d x
E(x)(−yψy y +ψy )− y2 d a

d x
ψy = 0. (7.19)

Setting the coefficients of ψy y and ψy to zero gives, respectively,

ψy y : −2a(x)E(x)+ dB

d x
E(x)+B(x)

dE

d x
= 0, (7.20)

ψy : −2a(x)E(x)+ dB

d x
E(x)+B(x)

dE

d x
− y2 d a

d x
= 0. (7.21)

From equations (7.20) and (7.21) we obtain

a(x) = a1, (7.22)

dB

d x
+ 1

E(x)

dE

d x
B(x) = 2a1, (7.23)

where a1 is a constant.

We therefore have

ξ1 = B(x), ξ2 = a1 y, η=−a1ψ+b(x), (7.24)

subject to (7.23) and b(x) is an arbitrary function. Equation (7.23) is the same as

equations (4.28) and (5.39) obtained for the classical wake and the wake of a self-

propelled body with E = E(x). The solution of (7.23) is

B(x) = 1

E(x)

[
a2 +2a1

∫ x

0
E(α)dα

]
, (7.25)



Chapter 7. Relationship between the different types of two-dimensional wakes 113

where a2 = E(0)B(0) is a constant. The Lie point symmetry X associated with the

conserved vector is

X = 1

E(x)

[
a2 +2a1

∫ x

0
E(α)dα

]
∂

∂x
+a1 y

∂

∂y
+ (−a1ψ+b(x))

∂

∂ψ
. (7.26)

For the general case with a1 6= 0, without loss of generality we let a1 = 1. The Lie point

symmetry X reduces to

X = 1

E(x)

[
a2 +2

∫ x

0
E(α)dα

]
∂

∂x
+ y

∂

∂y
+ (−ψ+b(x))

∂

∂ψ
. (7.27)

We now calculate the invariant solution generated by the Lie point symmetry (7.27).

For E = E(x), ψ =Ψ(x, y) is an invariant solution of the PDE (2.35) generated by the

Lie point symmetry (7.27) provided

X (ψ−Ψ(x, y))
∣∣
ψ=Ψ = 0, (7.28)

that is, providedΨ(x, y) satisfies the first order PDE

1

E(x)

(
a2 +2

∫ x

0
E(α)dα

)
∂Ψ

∂x
+ y

∂Ψ

∂y
=−Ψ+b(x). (7.29)

The differential equations of the characteristic curves of (7.29) are given by

E(x)d x

a2 +2
∫ x

0 E(α)dα
= d y

y
= dΨ

b(x)−Ψ . (7.30)

Solving the first pair of terms and first and last terms gives, respectively,

y

(a2 +2
∫ x

0 E(α)dα)1/2
= c1, (7.31)

Ψ

(
a2 +2

∫ x

0
E(α)dα

)1/2

−G(x) = c2, (7.32)

where c1 and c2 are constants and

G(x) =
∫ x

0

E(α)b(α)[
a2 +2

∫ α
0 E(β)dβ

]1/2
dα. (7.33)

The general solution of (7.29) is

c2 = F (c1), (7.34)
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where F is an arbitrary function. SinceΨ=ψ we have that the solution is given by

ψ(x, y) = F (ξ)+G(x)(
a2 +2

∫ x
0 E(α)dα

)1/2
, (7.35)

where the similarity variable is defined by

ξ= y(
a2 +2

∫ x
0 E(α)dα

)1/2
. (7.36)

We use the following reasoning to determine b(x). Integrating the boundary condi-

tion

v y (x,0) = ∂ψ

∂x
(x,0) = 0, (7.37)

with respect to x gives

ψ(x,0) = k1, (7.38)

where k1 is a constant independent of x. We specify the arbitrary additive constant

k1 in the stream function by choosing

ψ(x,0) = 0. (7.39)

Then from (7.35),

F (0)+G(x) = 0. (7.40)

Hence,
dG

d x
= 0, (7.41)

and therefore from (7.33)

E(x)b(x)(
a2 +2

∫ x
0 E(α)dα

)1/2
= 0. (7.42)

Because E(x) 6= 0, we have b(x) = 0 and since G(x) = 0 it follows from (7.40) that

F (0) = 0. (7.43)

The Lie point symmetry (7.27) becomes

X = 1

E(x)

[
a2 +2

∫ x

0
E(α)dα

]
∂

∂x
+ y

∂

∂y
−ψ ∂

∂ψ
, (7.44)



Chapter 7. Relationship between the different types of two-dimensional wakes 115

and ψ(x, y) reduces to

ψ(x, y) = F (ξ)(
a2 +2

∫ x
0 E(α)dα

)1/2
, (7.45)

where ξ is given by equation (7.36).

Substituting (7.45) and (7.36) into the PDE (2.35) results in the ODE

d 3F

dξ3
+ξd 2F

dξ2
+2

dF

dξ
= 0. (7.46)

Also,

w(x, y) = ∂ψ

∂y
= 1[

a2 +2
∫ x

0 E(α)dα
] dF

dξ
, (7.47)

∂w

∂y
(x, y) = ∂2ψ

∂y2
= 1[

a2 +2
∫ x

0 E(α)dα
]3/2

d 2F

dξ2
, (7.48)

v(x, y) = ∂ψ

∂x
=− E(x)[

a2 +2
∫ x

0 E(α)dα
]3/2

[
F (ξ)+ξdF

dξ

]
. (7.49)

The boundary conditions are

w(x,±∞) = 0 :
dF

dξ
(±∞) = 0, (7.50)

∂w

∂y
(x,±∞) = 0 :

d 2F

dξ2
(±∞) = 0, (7.51)

v(x,0) = 0 : F (0) = 0, (7.52)

where we have used the reasoning that the mean velocity deficit is finite giving that

F ′(0) must be finite. We have seen that the boundary condition F (0) = 0 can also

be obtained from the definition of the stream function. We have not included the

boundary condition F ′′(0) = 0 because this condition applies to wakes that are sym-

metric about the x− axis and this wake is asymmetric about the x− axis. We will see

later that a property of this solution is F ′(0) = 0.

In order to solve ODE (7.46) we multiply through by ξ and group terms as follows:

d

dξ

(
ξ

d 2F

dξ2
+ξ2 dF

dξ

)
− d 2F

dξ2
= 0. (7.53)

Integrating with respect to ξ and using the boundary conditions in (7.50) and (7.51)

we obtain

ξ
d 2F

dξ2
+ξ2 dF

dξ
− dF

dξ
= 0. (7.54)
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When imposing the boundary conditions in (7.50) and (7.51) we assumed the stronger

conditions

ξ
d 2F

dξ2
→ 0 and ξ2 dF

dξ
→ 0 as ξ→±∞. (7.55)

Equation (7.54) is a first order ODE in F ′. The solution is

dF

dξ
= mξexp

[
−ξ

2

2

]
, (7.56)

where the constant m is determined from the conserved quantity (3.112) which in

terms of the new variables F and ξ is given by

m
∫ ∞

−∞
ξ2 exp

[
−ξ

2

2

]
dξ= S. (7.57)

Solving for m using elementary properties of the gamma function, we obtain

m = Sp
2π

, (7.58)

giving
dF

dξ
= Sp

2π
ξexp

[
−ξ

2

2

]
. (7.59)

The solution for F (ξ) is

F (ξ) = Sp
2π

(
1−exp

[
−ξ

2

2

])
, (7.60)

where the arbitrary constant of integration is calculated from the boundary condi-

tion F (0) = 0. We see from (7.59) that the condition F ′(0) = 0 is satisfied. In order

to obtain (7.54) we could have used the boundary condition F ′(0) = 0 to calculate a

value of zero for the constant of integration on the right-hand-side of the equation.

However, we were not initially aware that the condition F ′(0) = 0 might be physically

plausible.

We now determine the constant a2. The effective half-width of the wake, H(x), is

defined to be the value of y for which the argument of the exponential in (7.59) is

−1. The same definition was used for the classical wake and wake of a self-propelled

body. We have

H(x) =p
2

(
a2 +2

∫ x

0
E(α)dα

)1/2

. (7.61)

We use the reasoning that the effective half-width of the wake tends to zero as x → 0.

We assume that
∫ x

0 E(α)dα→ 0 as x → 0. Then H(x) → 0 as x → 0 provided a2 = 0.
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Thus

H(x) = 2

(∫ x

0
E(α)dα

)1/2

, (7.62)

and the similarity variable ξ becomes

ξ(x, y) = y(
2
∫ x

0 E(α)dα
)1/2

, (7.63)

which is the same expression as found for the classical wake and wake of a self-

propelled body.

The Lie point symmetry associated with the conserved vector is

X = 1

E(x)

[
2
∫ x

0
E(α)dα

]
∂

∂x
+ y

∂

∂y
−ψ ∂

∂ψ
, (7.64)

and the solution for ψ(x, y) is

ψ(x, y) = S

2
p
π

(∫ x
0 E(α)dα

)1/2

[
1−exp

(
−ξ

2

2

)]
. (7.65)

In Figure 7.1, the typical mean velocity profile of the combination wake is shown.

The velocity deficit is positive for y > 0 and negative for y < 0. The velocity deficit is

zero at y = 0.

vx

vx

w

w

y

xO

U

U

U

U

U

U

FIGURE 7.1: Two-dimensional combination wake behind a slender symmetric body.
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7.2 Comparison of the solutions

In this section we briefly review each type of wake. We use alternative notation to that

of Chapters 4 and 5 in order to distinguish between each solution. We will define the

solutions to the ODEs obtained from the first reduction as follows: for the classical

wake we denote the solution by F , for the combination wake the solution is denoted

by G and the wake of a self-propelled body is given by P .

7.2.1 Classical wake

The Lie point symmetry X associated with the elementary conserved vector for the

turbulent classical wake with E = E(x) is given by

X = 1

E(x)

[
2
∫ x

0
E(α)dα

]
∂

∂x
+ y

∂

∂y
. (7.66)

The stream function ψ is

ψ(x, y) = F (ξ), (7.67)

where

ξ= y(
2
∫ x

0 E(α)dα
)1/2

, (7.68)

and the function F (ξ) satisfies the ODE

d 3F

dξ3
+ξd 2F

dξ2
+ dF

dξ
= 0, (7.69)

subject to the boundary conditions

dF

dξ
(±∞) = 0,

d 2F

dξ2
(±∞) = 0, (7.70)

F (0) = 0,
d 2F

dξ2
(0) = 0, (7.71)

and the conserved quantity ∫ ∞

−∞
dF

dξ
dξ= D. (7.72)

When equation (7.69) is integrated with respect to ξ we obtain

d 2F

dξ2
+ξdF

dξ
= c1, (7.73)
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where c1 is an arbitrary constant of integration. In order to obtain the value c1 = 0 we

can use the second derivative boundary condition at ξ= 0 in (7.71) or the conditions

at ξ=±∞ in (7.70). The solution, therefore, to ODE (7.69) is completely specified by

the conditions
dF

dξ
(±∞) = 0,

d 2F

dξ2
(±∞) = 0, (7.74)

F (0) = 0, (7.75)

and the conserved quantity (7.72). It was discussed earlier in Chapter 4 that the

boundary conditions are not independent of one another. The solution to (7.69) sub-

ject to the boundary conditions (7.74), (7.75) and the conserved quantity (7.72) is

F (ξ) = Dp
2π

∫ ξ

0
exp

[
−ξ

∗2

2

]
dξ∗. (7.76)

7.2.2 Combination wake

The Lie point symmetry XC associated with the conserved vector for the turbulent

combination wake with E = E(x) is given by

XC = 1

E(x)

[
2
∫ x

0
E(α)dα

]
∂

∂x
+ y

∂

∂y
−ψ ∂

∂ψ
. (7.77)

The stream function ψ satisfies

ψ(x, y) = G(ξ)(
2
∫ x

0 E(α)dα
)1/2

, (7.78)

where ξ is given by equation (7.68) and the function G(ξ) is the solution of the ODE

d 3G

dξ3
+ξd 2G

dξ2
+2

dG

dξ
= 0, (7.79)

subject to the boundary conditions

dG

dξ
(±∞) = 0,

d 2G

dξ2
(±∞) = 0, (7.80)

G(0) = 0,
dG

dξ
(0) = 0, (7.81)

and the conserved quantity ∫ ∞

−∞
ξ

dG

dξ
dξ= S. (7.82)
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Integrating (7.79) once with respect to ξ gives

ξ
d 2G

dξ2
+ξ2 dG

dξ
− dG

dξ
= c1, (7.83)

where c1 is an arbitrary constant of integration. In order to obtain c1 = 0 we can use

the first derivative boundary condition at ξ= 0 in (7.81) or the conditions at ξ=±∞
in (7.80). The solution to ODE (7.79) is completely specified by the conditions

dG

dξ
(±∞) = 0,

d 2G

dξ2
(±∞) = 0, (7.84)

G(0) = 0, (7.85)

and the conserved quantity (7.82).

The solution to (7.79) subject to the boundary conditions (7.84), (7.85) and the con-

served quantity (7.82) is

G(ξ) = Sp
2π

(
1−exp

[
−ξ

2

2

])
. (7.86)

7.2.3 Wake of a self-propelled body

For the wake of a self-propelled body the Lie point symmetry XP associated with the

conserved vector for E = E(x) is

XP = 1

E(x)

[
2
∫ x

0
E(α)dα

]
∂

∂x
+ y

∂

∂y
−2ψ

∂

∂ψ
. (7.87)

The invariant solution is

ψ(x, y) = P (ξ)

2
∫ x

0 E(α)dα
, (7.88)

where ξ is given by (7.68) and P (ξ) must satisfy the ODE

d 3P

dξ3
+ξd 2P

dξ2
+3

dP

dξ
= 0, (7.89)

subject to the boundary conditions

dP

dξ
(±∞) = 0,

d 2P

dξ2
(±∞) = 0, (7.90)
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P (0) = 0,
d 2P

dξ2
(0) = 0, (7.91)

and the conserved quantity ∫ ∞

−∞
ξ2 dP

dξ
dξ= K . (7.92)

Integrating (7.89) once with respect to ξ gives by (5.58)

(
1−ξ2) d 2P

dξ2
+ξ(

3−ξ2) dP

dξ
= c1, (7.93)

where c1 is an arbitrary constant of integration. In order to obtain the value c1 = 0 we

can use the second boundary condition at ξ= 0 in (7.91) or the conditions at ξ=±∞
in (7.90). The solution is derived completely using the boundary conditions

dP

dξ
(±∞) = 0,

d 2P

dξ2
(±∞) = 0, (7.94)

P (0) = 0, (7.95)

and the conserved quantity (7.92). Equation (7.93) is independent of P (ξ) which is

required to be able to use the boundary conditions at ξ=±∞.

The solution to (7.89) subject to (7.94), (7.95) and (7.92) is

P (ξ) =− K

2
p

2π
ξexp

[
−ξ

2

2

]
. (7.96)

From the discussion above, the boundary condition ψ(x,0) = 0 is needed to obtain

the solution for the stream function ψ(x, y). It is not required to obtain the velocity

deficit. For each wake, the condition v y (x,0) = 0 was used. The condition that the ve-

locity deficit is an extremum on the axis of the wake was used for the classical wake

to obtain one of the arbitrary constants in the Lie point symmetry. We did not know

whether any condition at y = 0 on the velocity deficit was satisfied for the combina-

tion wake. However, once the solution for the combination wake is obtained, it can

be easily verified that the x-component of the velocity deficit is zero on the axis of

the wake. The same reasoning can be applied to the wake of a self-propelled body.

Once the solution to the problem of the wake behind a self-propelled body has been

derived, it is easily shown that the velocity deficit is a maximum on the axis of the

wake.

The classical wake appears to be the base problem to which the other two are linked.
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We note that the solution for the combination wake is linearly proportional to the

first derivative with respect to y of the classical wake solution. The solution for the

wake of a self-propelled body is proportional to the second derivative with respect to

y of the solution for the classical wake. We explore this relationship in detail in the

next section.

7.3 Mathematical relationship between the solutions

In this section we show that the solutions for the combination wake and the wake

of a self-propelled body can be generated directly from the solution for the classical

wake with E = E(x). Once the three conservation laws have been found, it is then

assumed that two other wakes, besides the classical wake, exist.

Recall that the PDE and boundary conditions for the infinite classical wake with E =
E(x) are

∂2ψ

∂x∂y
= E(x)

∂3ψ

∂y3
, (7.97)

subject to
∂ψ

∂y
(x,±∞) = 0, (7.98)

∂2ψ

∂y2
(x,±∞) = 0, (7.99)

∂2ψ

∂y2
(x,0) = 0, (7.100)

∂ψ

∂x
(x,0) = 0. (7.101)

In terms of the stream function the conserved quantity for the turbulent classical

wake is ∫ ∞

−∞
∂ψ

∂y
(x, y)d y = D. (7.102)

The stream function is

ψ(x, y) = F (ξ) = Dp
2π

∫ ξ

0
exp

[
−ξ

∗2

2

]
dξ∗, (7.103)

where

ξ= y(
2
∫ x

0 E(α)dα
)1/2

, (7.104)
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and we imposed the additional condition

ψ(x,0) = F (0) = 0. (7.105)

Equation (7.97) admits two other conserved quantities. We denote the solutions that

satisfy these conserved quantities by ρ(x, y) and φ(x, y). We then have that ρ and φ

satisfy equation (7.97) and the boundary conditions (7.98), (7.99) and (7.101). At this

stage we do not know if ρ and φ satisfy (7.100). In addition, we have∫ ∞

−∞
y
∂ρ

∂y
d y = S, (7.106)

∫ ∞

−∞
y2∂φ

∂y
d y = K . (7.107)

For each wake problem we will assume that the similarity variable ξ is the same. The

arbitrary constant in ξ was calculated to be zero in Chapters 4 and 5 for the classical

wake and the wake of a self-propelled body by assuming that the effective width of

the wake tends to zero as x → 0. In Section 7.1 we assumed that the effective width of

the combination wake tends to zero as x → 0. By using the same ξ, we are imposing

the condition that for each wake the effective width tends to zero as x → 0.

The effective viscosity E must be independent of y in order to calculate the conserved

quantities for the combination wake and the wake of a self-propelled body. Since

E = E(x) and (7.97) and the boundary conditions are linear, ifψ is a solution then the

n − th partial derivatives of ψ with respect to y , namely,

ψn(x, y) = ∂nψ

∂yn
, n ≥ 1, (7.108)

are also solutions. It is precisely this fact that allows us to determine the solutions for

the combination wake and the wake of a self-propelled body from the solution for

the classical wake.

In terms of the similarity variable ξ and the function F (ξ) given in (7.103), the solu-

tions ψn are

ψn(x, y) = F (n)(ξ)(
2
∫ x

0 E(α)dα
)n/2

. (7.109)

For n = 0 equation (7.109) reduces to the solution for the classical wake.
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The conserved quantities must be invariant in terms of the new variables F (ξ) and

ξ. The conserved quantities are related to the first derivative of the stream function

with respect to y which, for ψn , is

∂ψn

∂y
= F (n+1)(ξ)(

2
∫ x

0 E(α)dα
)(n+1)/2

. (7.110)

The conserved quantities can be expressed as

∫ ∞

−∞
yα
∂ψn

∂y
d y =

∫ ∞

−∞
yα

F (n+1)(ξ)(
2
∫ x

0 E(α)dα
)n/2

dξ, (7.111)

where α = 0, 1, 2. The function yα is the multiplier for the problem of interest. We

have shown that α can take the values 0, 1, 2. In order to express equation (7.111) in

terms of the variable ξ only, we must have

yα(
2
∫ x

0 E(α)dα
)n/2

= ξm , m ≥ 0. (7.112)

We want to find the values of n that generate the required conserved quantities. For

α = 0, n = 0 = m which corresponds to the problem of the classical wake. For α = 1,

n = 1 giving m = 1. The conserved quantity becomes∫ ∞

−∞
y
∂ψ1

∂y
d y =

∫ ∞

−∞
ξF ′′(ξ)dξ= S∗, (7.113)

where S∗ is not necessarily equal to S, but is is proportional to S. For α= 2, we must

have that n = 2 giving m = 2. The conserved quantity becomes∫ ∞

−∞
y2∂ψ2

∂y
d y =

∫ ∞

−∞
ξ2F ′′′(ξ)dξ= K ∗, (7.114)

where K ∗ is proportional to K . Using F (ξ) defined in (7.103) we have

S∗ =−D, (7.115)

K ∗ = 2D. (7.116)

If we consider a constant multiple of the functions ψ1 and ψ2, such as α1ψ1 and

β1ψ2, we can set

α1 =− S

D
, (7.117)
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β1 = K

2D
, (7.118)

which gives the required conserved quantities

− S

D

∫ ∞

−∞
y
∂ψ1

∂y
d y = S, (7.119)

K

2D

∫ ∞

−∞
y2∂ψ2

∂y
d y = K . (7.120)

The function F (ξ) defined in (7.103) has some very interesting properties:

F (n)(±∞) = 0, n ≥ 1, (7.121)

F (n)(0) = 0, n even, (7.122)

F (n)(0) = 1p
2π

(−1)F loor [n/2](n −2)(n −4)(n −6)...1, n odd, (7.123)

where the function Floor is defined as follows:

Floor
[n

2

]
= n

2
, n even, (7.124)

Floor
[n

2

]
= n −1

2
, n odd. (7.125)

From (7.121) we have

∂2ψn

∂y2
(x,±∞) = 0,

∂ψn

∂y
(x,±∞) = 0, (7.126)

and therefore the boundary conditions (7.98) and (7.99) are satisfied for all ψn . Now,

∂ψn

∂x
(x, y) =− E(x)(

2
∫ x

0 E(α)dα
)n/2+1

(
ξF (n+1)(ξ)+nF (n)(ξ)

)
, (7.127)

which from (7.121) gives
∂ψn

∂x
(x,±∞) = 0. (7.128)

From (7.122) we also have that

∂2ψn

∂y2
(x,0) = 0, n even, (7.129)

and
∂ψn

∂x
(x,0) = 0, n even. (7.130)
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Thus, for each functionψn , we have thatψn satisfies the PDE (7.97) and the boundary

conditions (7.98) and (7.99). For n even, the conditions in (7.100) and (7.101) are

also satisfied. Because the PDE in (7.97) is linear and the boundary conditions are

homogeneous, any constant multiple of ψn will also satisfy the PDE and boundary

conditions (7.98) and (7.99) and if n is even the conditions (7.100) and (7.101) will

also be satisfied.

Consider the function α1ψ1 where α1 is defined in (7.117). It satisfies the partial

differential equation (7.97) and the boundary conditions (7.98), (7.99) as well as the

conserved quantity (7.119). However, it does not satisfy (7.100) and (7.101) because

n is odd in (7.127). We therefore consider the stream function

ρ(x, y) =− S

D
ψ1(x, y)+α2(x) =− S

D

∂ψ

∂y
+α2(x), (7.131)

and choose α2(x) so that ρ(x, y) satisfies (7.101). The addition of α2(x) to ψ1(x, y)

does not alter the properties of ψ1(x, y) because α2(x) is a function of x only. The

stream function ρ(x, y) satisfies (7.101) provided ρ(x,0) is a constant independent of

x. The line y = 0 is a streamline and a stream function is constant along a streamline.

By using (7.103) for ψ(x, y), (7.131) becomes

ρ(x, y) =− Sp
2π

1

(2
∫ x

0 E(α)dα)1/2
exp[−ξ2/2]+α2(x). (7.132)

We choose ρ(x,0) = 0. Thus

α2(x) = Sp
2π

1

(2
∫ x

0 E(α)dα)1/2
, (7.133)

and therefore,

ρ(x, y) = Sp
2π

1

(2
∫ x

0 E(α)dα)1/2

(
1−exp

[
−ξ

2

2

])
, (7.134)

which corresponds to the solution given by (7.65) for the combination wake.

We now consider the function β1ψ2 where β1 is defined in (7.118). It also satisfies the

partial differential equation (7.97) and the boundary conditions (7.98), (7.99), (7.100)

and (7.101) as well as the conserved quantity in (7.120). Unlike ψ1, it satisfies (7.100)

and (7.101) because n is even in (7.127). Thus ψ2(x,0) is constant along the stream-

line y = 0 and takes the value ψ2(x,0) = 0. We let

φ(x, y) = K

2D
ψ2 = K

2D

∂2ψ

∂y2
. (7.135)
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Using (7.103) for ψ(x, y), we obtain

φ(x, y) = K

2D

F ′′(ξ)

(2
∫ x

0 E(α)dα)
, (7.136)

and is equivalent to

φ(x, y) =− K

2
p

2π

1(
2
∫ x

0 E(α)dα
)ξexp

[
−ξ

2

2

]
, (7.137)

which is the same as the solution found in Chapter 5 for the turbulent wake of a self-

propelled body with E = E(x).

We have shown that it is possible to generate the solution for the combination wake

and the wake of a self-propelled body from the solution to the classical wake with

E = E(x).

When obtaining the constants of integration in the solution of the ordinary differen-

tial equations for F (ξ), G(ξ) and P (ξ) and also when deriving the conserved quanti-

ties, stronger boundary conditions than (7.98)and (7.99) are required. These stronger

boundary conditions are of the form

ξm dF

dξ

∣∣∣∣
ξ=±∞

= 0, ξn d 2F

dξ2

∣∣∣∣
ξ=±∞

= 0, (7.138)

where m and n are positive integers. Since the solutions derived for F (ξ), G(ξ) and

P (ξ) all tend to zero exponentially like exp
[−ξ2/2

]
as ξ→±∞ it is readily verified that

the stronger boundary conditions are indeed satisfied by the solutions derived.

7.4 Conclusions

Three conservation laws for the partial differential equation for the two-dimensional

turbulent wake equation with E = E(x) were obtained. In order to generate two of the

conservation laws, the eddy viscosity had to be independent of the variable y . Two of

the conservation laws belong to the classical wake and the wake of a self-propelled

body. The other law appears to be a new wake problem, which we called the combi-

nation wake. Lie symmetry methods were applied to the combination wake in order

to obtain the invariant solution. It is not clear as to the physical significance of the

combination wake. This wake is asymmetric about the x- axis and has a zero mean
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velocity deficit on the axis of the wake. Although the physical importance of this

problem has yet to be established, the mathematical significance was immediately

clear. The combination wake was found to be the link between the classical wake

and the wake of a self-propelled body. If we differentiate the solution for the classical

wake with respect to y , we discover that the combination wake solution is the sum of

a term proportional to this derivative and a function of x. Furthermore, the deriva-

tive with respect to y for the solution to the combination wake is proportional to the

solution for the wake of a self-propelled body.

This discovery initiated the task of determining whether the solutions for the com-

bination wake and the wake of a self-propelled body can be directly obtained from

the solution for the classical wake. We had to assume that the similarity variable is

the same for each problem which meant that the effective width of each wake had

to tend to zero as x approached zero. When E = E(x) all y derivatives of the stream

function are also solutions to the equation. By enforcing the condition that the con-

served quantities must remain invariant under the change of variables that was used

for the classical wake in order to reduce the PDE to an ODE, it was found that the

first two y derivatives of the stream function satisfied the other two conserved quan-

tities. It was subsequently shown that the solutions for the combination wake and

the wake of a self-propelled body could indeed be generated directly from the clas-

sical wake solution without needing to calculate the Lie point symmetry associated

with the conserved vectors.

Further work will be conducted in this area. A systematic method needs to be devel-

oped in order to explain in detail the mathematical connection between the solutions

to problems with homogeneous boundary conditions that require a conservation law

to complete their solution. Possible links between the solutions for jet flow problems

will be investigated.



Chapter 8

Conclusions

The governing equations for the two-dimensional turbulent wake in terms of the

mean velocity components were derived by applying the boundary layer approxi-

mation to the Reynolds averaged equations. The system of equations was completed

by using the eddy viscosity and Prandtl mixing length closure models. The equations

were expressed in terms of the y-component of the mean velocity, v y , and the mean

velocity deficit in the x-direction, w . In addition, it was assumed that we were suf-

ficiently far downstream of the obstruction allowing for products and powers of v y

and w to be neglected. A stream function was introduced which reduced the system

of equations from two to one equation. We consider an eddy viscosity E which de-

pends on the distance along the wake, x, the perpendicular distance from the axis

of the wake, y , and the mean velocity deficit gradient,
∂w

∂y
. We first studied an eddy

viscosity as a function of the spacial variables x and y only. This particular form of

the eddy viscosity predicts an infinite wake boundary. For E = E(x, y), the resulting

diffusion equation, which was written in terms of a stream function, applied to both

the turbulent classical wake and the turbulent wake of a self-propelled body. The

turbulent classical wake and the turbulent wake of a self-propelled body were shown

to have identical boundary conditions at y = 0 and at y =±∞. The boundary condi-

tions are homogeneous and thus a conserved quantity is required. The two problems

differ in the conserved quantity that they satisfy. An eddy viscosity E = E

(
x,
∂w

∂y

)
can

be used to generate the form of the Reynolds stresses required for Prandtl’s model

and the revised version of it. For E = E

(
x,
∂w

∂y

)
, the boundary conditions at y = 0 do

not differ from the case where E = E(x, y). However, since a finite wake boundary is

predicted for this model, the mainstream matching conditions were imposed at the

129
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boundary of the wake at y = ±yb(x) and not at y = ±∞. In order to obtain the con-

served quantity for the wake of a self-propelled body, we had to assume that E = E(x)

only. Therefore, models that predict finite wake boundaries can only be applied to

the classical wake problem.

In Chapter 3 we calculated the conservation laws of the turbulent wake equation in

terms of the velocity components and the stream function. The elementary con-

served vector which was obtained directly from the governing equations generated

the conserved quantity, namely, the drag force, for the classical wake with E =
E

(
x, y,

∂w

∂y

)
. In order to generate the conserved quantity for the turbulent wake of a

self-propelled body as derived by Birkhoff and Zorantello [5], we had to neglect the

y-dependence of the eddy viscosity and simply let E = E(x). The multiplier method

was used to calculate the conserved vectors for the two-dimensional turbulent wake

equation with E = E(x). The governing equations expressed in terms of the velocity

components and the stream function were considered. Three physically significant

conservation laws were found. Two of the conservation laws belonged to the clas-

sical wake and the wake of a self-propelled body. The third one, did not pertain to

any known conservation law. As a result, another type of wake, which we called the

combination wake, was discovered.

In Chapters 4 and 5, the turbulent classical wake with E = E(x, y) and the turbulent

wake of a self-propelled body with E = E(x) were investigated further. Lie symmetry

methods were used in order to generate the invariant solution associated with the

conserved vector for each problem. Two invariance conditions had to be satisfied by

each Lie point symmetry associated with a conserved vector. These conditions de-

pended on only the first and second prolongations of the symmetry. This method is

easier than working with one large invariance condition for the full group of Lie point

symmetries of the partial differential equation which depends on prolongations up

to third order.

Previous studies of these problems considered similarity solutions that can be ob-

tained by neglecting the kinematic viscosity. Since we do not neglect the kinematic

viscosity, Lie symmetry methods were required for this study in order to produce an-

alytical solutions that were not similarity solutions. A modified version of Prandtl’s

hypothesis was also considered for both wake problems. The modified version stated

that the eddy viscosity is constant across the boundary layer and proportional to the

product of the maximum mean velocity deficit and the width of the layer and was

applied to both types of wakes. Mean velocity profiles were plotted for each type of
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wake. It was concluded that the role of the eddy viscosity was to increase the diffu-

sion of vorticity across the wake hence increasing the effective width of the wake.

In Chapter 6 an eddy viscosity of the form E = E

(
x,
∂w

∂y

)
was considered which pro-

duced the correct form of the Reynolds stresses as predicted by Prandtl’s mixing

length model. This model predicts a finite wake boundary. A revised Prandtl mixing

length model was developed. Unlike with Prandtl’s model, the kinematic viscosity

was included in the revised model. The elementary conserved vector was used to

generate the invariant solution for the problem. In Prandtl’s mixing length theory

there is only one length scale, namely, the mixing length. We considered a mixing

length l (x) as an arbitrary function of x. We then determined the forms that l (x) must

satisfy for an invariant solution to exist. The Lie point symmetry with the kinematic

viscosity included is a scaling symmetry. If the kinematic viscosity is neglected, Lie

symmetry methods showed that other analytical solutions that are not simply sim-

ilarity solutions can also be obtained. Inclusion of the kinematic viscosity lead to

better predictions of the behaviour of the wake.

In Chapter 7, we revisited the combination wake problem. Lie symmetry methods

were used to determine the invariant solution. With E = E(x) the governing equa-

tion reduced to a linear PDE when expressed in terms of the stream function. It was

due to this equation now being linear that we could determine the solutions for the

combination wake and the wake of a self-propelled body directly from the solution

for the classical wake. Once we assumed that the similarity variable is the same for

each wake problem, it was not difficult to produce a simple method of obtaining the

solutions for the combination wake and the wake of a self-propelled body from the

classical wake solution.

This research showed that Lie symmetry methods can be used as a means to further

our understanding of the problem of the two-dimensional turbulent wake described

by eddy viscosity. Not only were these methods used to produce the invariant solu-

tions, but they also lead to the discovery of the combination wake. The relationship

between mathematical modelling and symmetry methods is of great importance.

Physical arguments such as defining an effective width of a wake, were used to de-

termine the arbitrary constants in the Lie point symmetry. This proved that when

using Lie symmetry methods one should never lose sight of the physics of the prob-

lem. From a modelling perspective, the importance of including the kinematic vis-

cosity could not be overstated. The kinematic viscosity determined the equation of

the boundary of the wake. Even although the kinematic viscosity is much less than
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the eddy viscosity it could not be neglected. If it is neglected an additional assump-

tion is required to obtain the equation of the wake boundary [2, 10, 62]. Once the

wake boundary has been found the kinematic viscosity can be neglected although

it does lead to a small difference in the predictions. In the literature, the classical

wake and the wake of a self-propelled body are treated separately. The application of

the multiplier method to derive the conservation laws allowed the classical wake, the

combination wake and the wake of a self-propelled body to be analysed together and

the three conservation laws to be obtained in one calculation. This demonstrated

the relationship between the wakes and provided unification of the theory of two-

dimensional wakes. Lie symmetry methods were required in order to calculate an

analytical solution when the kinematic viscosity was included. The mathematical

relationship between the wake solutions indicates that we have not yet fully unrav-

elled and understood the link between Lie symmetry methods and the physics of a

model.
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