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ABSTRACT

Glutathione S-transferases are multifunctional intracellular proteins. They catalyse the
conjugation of glutathione to endogenous'or foreign electrophiles, and also bind non-substrate
ligands.
Class Pi glutathione S-~sferase (pGSTPl~l) was purified from porcine lung to a specific.
activity of 6.63p.ffiol/min/mg. The homodimeric protein has a molecular weight of about
4~.7kD and an isoelectric point of 8.6.
Anionic ligand-binding properties of this isoenzyme were investigated. Steady-state
fluorescence methods were used to determine ~ values for 8-anilino··l~naphtha1enesulphonic
acid (K, == 17.1p.M and 11.1J.tM using fluorescence enhancement techniques and quenching
techniques respectively), bromosulphophtbalein (Kcl=1.1p.M at pH 6.5 and 2.4/jM at pH
7.5) and glutathione {~=1201I.M). The affinity of bromosulphophthalein for the enzyme,
in the presence of 10mM glutathione was slightly enhanced (~=O.7.uM at pH 6.5). The
energy transfer betwecz the protein's tryptophan residues and 8-anUino-l-naphthalene
sulphonic acid was observed and found to be about 56% efficient. The impact of ligand
binding on both protein structure and catalytic activity were assessed. Kinetic studies show
that the active site of the enzyme is not the primary binding site for the non-substrate ligands,
but that the binding of bromosulphophthalein and to a lesser extent 8~ani1ino-l-!.~phtha1ene
sulphonic acid, does affect the active site of the enzyme, especially aner saturating
concentrations of the ligand. This may be the result of a small ligand-induced conformational
change. Fluorescence studies also indicate that the primary site for anionic ligand binding
is not in close proximity to either Trp28 or Trp38 in domain I, Competition studies indicated
that the two anionic ligands bind the Same site, < Prorein fluorescence, chemical modification

«

and size-exclusion HPLC data indicate that ligand binding does 110t induce gross
conformational changes in the protein.
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CHAPTER 1

1.1 INTRODUCTION

Glutathione Svtransferases (GSTs; Be 2.5.1.18) were first discovered in 1960 by Booth and!
co-workers who partially purified and assessed the rat liver enzyme which catalysed the
formation of glutathione derivatives from various compounds (Booth et al., 1961). GSTs are
a multigene family of isoenzymes found in most living aerobic organisms (Pemble and
Taylor, 1992; Persson et al., 1988) and are widely distributed among most mammalian
tissues (Mannervik and Danielson, 1988; Mannervik, 1985).

1.1.2 Glutathione S-transferases as detoxification enzymes
These intracellular proteins form part of a, specialized group of detoxification enzymes, the
phase I/phase II enzymes, which have been well adapted to eliminate both foreign as well
as endogenous toxic chemicals (Armstrong, 1987; Waxman, 1990; Hayes and Wolf, 1990;
Coles and Ketterer, 1990; Sheehan and Casey, 1993).
Unlike most enzymes which catalyse metabolic reactions between specific substrates,
detoxification enzymes have a broad substrate specifrcity. In addition, GST isoenzymes
provide protection against a broad spectrum of toxic chemicals because of their individual
and distinct structural, catalytic and non-catalytic properties.

Phase Xof chemical detoxification is catalysed by enzymes which activat€; the substrate by

hydrolysis, reduction or oxidation, exposing electrophilic or nucleophilic regions of the
substrate. An example of such enzymes is the microsomal cytochrome P-450 system. Phase
II enzymes catalyse the conjugation of xenobiotics to an endogenous substrate, like
glutathione (GSH) for example, which may then be easily excreted from the cell. The
products of phase 1 are often the substrates for phase II enzymes by which hydrophlllic
moieties such as glutathionyl-, glucoronyl-, or sulphuryl- groups are. appended. However,
not all xenobiotics pass through both phases, some only pass through phase I while others
are substrates for phase n enzymes (Sheehan and Casey, 1993). Figure 1 illustrates how
toxins are processed within a cell. Toxic chemicals may follow one of three pathways. If
reactive, they may act directly upon cellular targets, such as nucleic acids, causing cellular
damage, (Coles and Ketterer, 1990) cr they may be substrates for phase I or for phase II
detoxification enzymes. Subsequently, the highly reactive products of phase I, for example
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Figure 1. Detoxlflcatlon pathway of cytotoxic chemicals within a cell.

011 represents an activated and potentially harmful compound; X represents endogenous
substrates of phase U enzymes, eg. GSII.
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epoxides, which are often carcinogenic, may be the substrates of phase II enzymes Of may
also cause cellular damage.

,\

GSTs are phase II detoxification enzymes and their primary function is the catalysis of the
nucleophilic addition of glutathione to cleetrcphiles, most of which are very apolar. The polar
conjugated substrates are-then excreted from the cell. This release from the cell also marks
the first stage of GSH turnover. The released GSH-conjugate is transported by the blood
plasma to the kidney, Here the degradation of GSH begins by the removal of the ,,-glutamyl
moiety. The ,,-glutamyl moiety is transferred to an acceptor amino acid and relocated into
the cell where it is involved in the resynthesis of GSH. The cysteinyl-glycine, however, is
hydrolysed in a dipeptidase catalysed reaction. The remaining cysteine-conjugate i$

converted to amercapturic acid, an excretion product, upon acetylation with acetylcoenzyme-
A (Siegers and Younes, 1983; Mannervik, 1985) (see Figure 2).

1.2 STRUCTUIU~ OF CLASS PI GLUTA'I'HIONE S~TRANSFERASES

1.2.1 Domains and domaln interactions

Class Pi glutathione s-transferase from porcine lung, pGSTPINl, is a dimer of identical
subunits (Dirr 4U al., 1991). 'The tertiary structure of each subunit, determimd by means of
x-ray crystallography, is characterised by two different domains (Reinemer et al., ~991; Dirr
et al., 1994; Dirr et al., manuscript submitted). Domain 1 (residues 1-74)~ the N~terminal
domain, is composed of both CI! helices as well as of B ;trands (see Figure 3),

Its overall structure consists of a central four-stranded £, sheet, 3 a-helices, a 31O-helix, :3 8..
turns and a cis-Pro bend. Strand 82, which is located at the solvent exposed edge of the

molecule, is parallel to strand 131,whereas strands 131,133and 134run anti-parallel to each
other. Strands 61 and 132are connected to each other by a 13-turnand by helix aA which is
situated at the rear of the B-sheet, shielded from solvent. Strands 62 and 83 are connected
by helix aB which runs almost perpendicularly to the B-sheet, A hairpin bend connects
strands fl3 and 134,and helix aC extends from strand 84 at the solvent-shielded side of the
B-slieet.

Domain 2 (residues 81-207) is covalently connected to the first domain by a short peptide
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'Y...Glu
Cys-SII,
Gly

+ R-X

Glutathione electrophile

1
1'''"v1uCys-S..R

Gly

GSH -conjugate

~l'-Glu

~Gly

cysteine conjugate mercapturate

Fngurl~2. Mercapturlc acid formation pathway. Once the glutathicne-eleetrophde

conjugate has been excreted from the cell, it loses its 'Y-glutamyl and glycine portion to
become a cysteine conjugate. This conjugate b eonverted to a mereapturate upon

acetylation,
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Figure 3. Ribbon diagram showing a subunit of class Pi GST with glutathione

sulphonate (thick line)~ View is perpendleular to the molecular two-fold axis. Domain
1 is shown in green and domain 2 is shown in red, Co-ordinates obtained from

Relnemer et 0109 1991; Dlrr et al., manuscript submitted,
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segment. It. is composed of 5 o-helices, a 310-helix and 4 B-turns (Figure 3). Helices OlD,

OlE, c:vFare wound to form nearly one and a half turns of a right-handed superhelix. Helix
OlG which runs almost perpendicular to aF is connected to it by 2 .6~tums. These four
helices OlD, aE, exFand OIG form a closely packed elongatea structure. Helix otH however

il .

is slightly separated from this structure.
.'

Bach subunit has a total secondary structure content of about 54 % c-helix and 8% .6-strands
according to x-ray crystallography (Dirt et al., manuscript submitted). Circular dichroism
studies have, however, shown different values for a-helix and ~-sheet content. Nishihira er
al. (1992a, 1993) observed 25.2% e-helix and Jt% B-sheet for a rat class Pi GST .

When domain 1 and domain 2 associate, about 18% of the total solvent-accessible surface
area becomes buried. Interlace contacts are mediated by polar and hydrophobic elem,~nts.
In domain 1, the interacting regions are otA helix, the loop between strand .61 and helix otA

and OlC helix. The interacting regions of the second domain involve helices aD, aF and aH
and the C~termioal region of the domain. ,There are approximately 13 solvent molecules
hyarogen-bonded along the domain interface.

\

1.2.2 Subunit interactions

The association of the two subunits causes a decrease of about 14% in solvent-accessible
surfaoe area. There are 27 contacts at the subunit i1"terface, 14 of them apolar and 13 polar.
The interactions are mostly between the 6-tum of residues 45-48, strand .64and helix eC of
domain 1 in one of the subunits, and helices eD and OlE of domain 2 in the other subunit.
These interactions allow a V-shaped hydrophillic cleft to be created at the subunit interface
of the molecule (Figure 4b). There are about 51 water molecules located at the subunit
interface and in the hydrophillic cleft. Isothermal unfulding (Din and Reinemer, 1991;
Erhardt and Dirr, unpublished results) and radiation studies (Boyer and Kempner, 1992)
suggest that subunit interactions in the GSTs not only stabilize the association of subunits but
are also a si,gnificant source of stabilization for the tertiary structures of the individual
subunits.

J
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b

a

Figure 4. Ribbon drawing of the dimeric class Pi GST molecule with glutathione
sulphonate (a) Along tbe local 2-fold axis (domain 1 shown in green; domain .2 shown
in red) and (b) perpendicular to the local2-fold rods (different subunits shown in red or
blue). Co-ordinates obtained from Relnemer et al., 1991; Dirr fJt al., manuscript
submitted.
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1.2.3 Active site

The dimeric enzyme contains two kinetically independent active sites, one ip domain' 1 of
each subunit. Each site is composed of two regions, the G-site or glutathione-binding site,
and the H-site or hydrophobic eleetrophile-binding site (Figure 5).
The G-site extends from residues 8-10 which connects strand .81to helix OlA, to Ser63 at the
N~termina1 of helix Ole. One end of the site is open to the solvent while the N-termimil. end
of Ole helix .: situated near the cleft along the subunit interface. The side chains lining the
G-site includ~ those of Tyr7, Gly12, Arg13, Trp38, Lys42, 01n49 , Pro51, Gln62, 8er63,

I

01u95 and Asp96. Glutathione sulphonate (G~(}3·)~:~~~~a1ogl\e of glutathione, has bee»
chosen by a number of researchers (Relnemer ~/}tt1991;Dirr et al.,manuscript submitt&>
for determining the G-site interactions of pqf ,:tPl~l to the tripeptide, because of its high

f '1~C)

affinity for the enzyme's active site (Ki=4i/£M) (Dirr et al., 1991). GSOi differs from
glutathione by the replacement of the thiol moiety with a negatively charged sulphonate group
(Figure 6).

The 'Y-g1utamylarm of GSOi is orientated in the direction of the cleft along the subunit
interface, its sulphonate moiety points toward domain 2 and the glycine portion of the peptide
points away from domain 2 in the direction of the solvent (Figures 4 and 7).
The ":-glutarnyl arm of the peptide locates itself in a polar pocket formed by the side chains
of Arg13, 01n49 , 01n62, Ser63 and Asp96 (a residue from domain 2 b the neighbouring
subunit). 01n62 however has an unfavourable main-chain conformation. The necessity of
Asp96 from the adjacent subunit in the active site possibly explains the loss of activity in
isoenzyme monomers (Dirr and Reinemer, 1991). The sulphonate moiety interacts with the
side chain of Tyr1, a fully conserved residue in all classes of cytosolic mammalian GST as
well as in Schistosomajaponicum and in the maize GSTs. Gly12 which occurs in the vicinity
of Tyr7 possesses a backbone conformation that would be unfavourable for non-glycine
residues and which disallows the hydroxyl group of Tyr7 from hydrogen bonding to the
main-chain carbonyl oxygen of Gly12. Instead, the hydror '1 group of Tyr7 forms a
hydrogen bond with the sulphonate moiety of GS03•• Any other residue in the same position
would possibly cause a steric hinderance in the binding of glutathione.
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Figure 5. Schematic diagram ~!)fthedlmeric GSTP1-l isoenzyme showing the glutathione

binding site (G-site), oceupled by glutathione sulphonate (ball and stick model), and the

electrephlle bmding site (H-site), which is unoccupied. Barrels represent o-helices and

arrows 8-sb·811ds. Domain 1 is shown in green and domain 2 is shown in red.
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a H..~N~2 ~ q
HOOC/~)(~ ~HN~OOHo ~u'

'SH

Glutathione (GSH)
[ywGlu-Cys-Gly]

b H.•...;N~2 N ~ A
HOOC/VY \AH N eOOHo f"'~·

'50-3

fGjUta'thione sulphonate!
~?3-) _j

c

fS=hexylglutathione
LlS-hexGSH)

Figure o. A comparison between glutathione (a) and its analogues, ~hatm~bione
sulphonate (b) and §Nbexylglutathione (c).
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Flgure 7. Active-site interactions of class Pi GST with glutathione sulphonate (thick
Hoes). All residues represented are from domaln 1 of one subunit except for Asp 96
which is of domain 2 of the adjacent subunit. W24 BindW27 represent water molecules
24 and 27 respectively,
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The &-carboxyl group of the glycine portion of GSO; interacts with the side chains ofTrp38

and Lys42. The disruption of these interactions in Pi class GST by site-directed mutagenesis

(Kong et al., 1992a; Widersten et al., 1992) and chemical modification of the enzyme (Xia
et al., 1993) have shown a drastic decrease iii 'both the enzymes affinity for GSH and in its

catalytic activity. However, structure-activity studies with glycyl-modified aSH analogues,

suggest that the glycine moiety of the tripeptide is not absolutely essential for the binding of
the peptide (Adang et al., 1990). The principle binding determinant of glutathione, is the 'Y-

glutamyl arm.

Site-directed mutagenesis and chemical modiflcatlon studies have shown that Arg13, GIn 49,
Gln62 and Asp96 am all essential for the binding of GSH to GST from I the Pi class,

(Manoharan et al., 1992 a,b; Kong et al., 1992a; Xia ef al., 1993; Stenberg et al., 1991a;

Widcrsten et al., 1992; Kong et al., 1993; Wang et al., 19na) and that replacement or

chemical alteration of these residues also result in a significant loss of enzymatic activity.

The H-site of pGSTP1-1 is located in an equivalent position to that of the human class Pi

enzyme H-site (Reinemer et al., 1992) and occurs between the G-site and the loop between

strand 81 and <xAhelix. The side chains lining the site include Tyr7, Phe8, Pro9, VallO,

Met35, Trp38 of domain 1 and Tyr106, Gly203 C)f domain 2 (Reinerner et al., 1992; Dirr

et al. manuscript submitted).

The location of the H-site was first determined using glutathione analogues, s-
hexylglutathione and S-benzylglutathlOne in the cry • ...u structures of hGSTPl-l (Reinemer

et al., 1992) and hGSTA1-l (Sinning et al., 1993) respectively in which the H-sites were

occupied by the hydrophobic hexyl or benzyl moieties of the analogues. Overlayed models

of the bound inhibitors in each subunit showed superimposable peptide regions but different

orientations of the hexyl or benzyl groups. This was a clear indication of the greater

conformational freedom ~'lowed in the H-site.

1.2.4 Structural comparison wi'th other GS~ classes

Class Pi, class Alpha and class Mu are remarkably similar in their tertiary and quaternary

structures, even though the aligned amino acid sequences show very little identity between

the gene classes (Reinemer et al., 1991, 1992; Ji et al., 1992; Dirr et al., 1994; Dirr et al.,
manuscript submitted; Sinning et al., 1993). Sequence identities between classes are as

follows: Alpha-Pi 32%; Pi-Mu 30%; Alpha-Mu 20%. There are however structural features
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that are specifically characteristic of a gene class, The most prominent difference between

the Mu class and the other gene class tertiary structures is the presence of an extended and

mobile loop (the mu loop) between strand 62 and helix OlA which interacts with the C-

terminus of the enzyme forming part of the Hosite (Sinning et at. j J,993). The mu loop is

obviously a consequence of an insertion sequence and is necessary if the rest of the protein

is to fold correctly,

In class Alpha, helix a8 (or aH in the Pi class) is followed by an additional Ol helix, helix.

a9 which is created by the folding of the C-terminus region of the polypeptide chain and

forms a part of the Alpha class domain 1. Furthermore, helix a9 is an integral part of the

H~site and provides an additional hydrophobic wall, making the H-site less open ~osolvent.

The existence of different Hesite topologies in the various gene classes, as a result of

sequence differences, explains the relatively distinct specificity for substrates shown by the

various classes. However, because of the hydrophobicity of the site and the non-specific

binding of substrates a number of structurally different hydrophobic substrates can be

accommodated.

1,2.5 Catalytic f.unction of GST

The kinetic mechanism for the nucleophilic addition of electrophiles to glutathione catalysed

by GST is sequential, the enzyme binding either GSH or the electrophile and the conjugation

of the two substrates occurring within the tl~rnary complex (Armstrong, 1991) (Figure 8).

The enzymes have a reasonable binding affinity for aSH (Pi class: Kd ~ 120p.M (Bico and

Dirr, unpublished results); Mil class: Kd ~20p.M (Graminski et al., 1989; Ji et al., 1992).

./I;. ..' ,'siological conditions, GSH is present in 1-10mM concentrations and therefore the

f .~mechanism is likely to be ordered with aSH binding first (Armstrong, 1991). Upon

odH bitldin~.,the enzyme deprotonates the tripeptides thiol group resulting in the formation

of ;a highly reactive thiolate anion which readily attacks electrophilic substrates to forn

water ..soluble glutathione conjugates (Figure 9). The thiolate anion is up to 109 more reactive

than its conjugate add (Armstrong, 1991; Roberts et al. 1986).

The deprotonation of uSH by the enzyme, previously led many researchers to speculate the

occurrence of base catalysis in the enzyme, possibly involving the basic residue histidine in
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Figure 8. Schematic diagram of sequential kinetic mechanism for glutathione s-
transferase. E represents the enzyme GST, GS· represents the thlolate anion, RX
represents the electrophllic substrate where R is the electrophlllc moiety BInd X is the
leavlng group, GSR represents abe GSH"conjugate in the enzynnneand P is the product.
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Figure 9. Glutathione S-lrarmfcrase eetalysed reactlon. The electrophlle represented is

an epoxlde, The GSH conjugate is formed by the nucleephllic addition of the thlolate

anion to the electrophlle,
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the protein's Gssite. X-ray crystallography has shown, however; that histidine is not part of,
nor is it near the active site of GSTs. It is not conserved throughout the GST family and
site-directed mutagenesis has revealed a non-essential role for histidine in glutathione binding
as well as in the catalytic activity of the enzyme (Zhang et al., 1991; Vtang et 111., 1991;
Chang et al., 1993; Widersten and Mannervik, 1992). An unexpected structural feature that
was first observed at the active site of pGSTP1-1 is a conserved hydrogen bond interaction
between the thiol group of glutathione and the hydroxyl group of Tyr7 at the G-site.
Tyrosine 7 is a conserved residue in all classes of GST (equivalent residues in Mu:Tyr6j
Alpha:Tyr8). It is located in a hydrophobic environment at or near the C-tcuninus of strand
1ll in domain 1.

Replacement of Tyr7 with phenylalanine by site-directedmutagenesis 1*, tl!C "zymew ~vity
)

to less than 1% of the wild type, although little cll'wlg~is obsez " [1..< .i.'!.ity of the
• -. f

enzyme for glutathione {Wang et al., 1992a; Kolm et al•. 1~' ~ol1ge(! iJ;f., 1992b;
Manoharan et al., 1992b; Stenberg et at., 1991a,r: ~.•iu tt ai., 19!n; Meyer et I'~ p 1993;
Penington and Rule, 1992).
It has previously been shown that the pKa values for the thiol ~,:,oupof aSH bound to the
enzyme ':Pi: 6.3; Kong et al. , 1992c), (Mu: 5.7kc.9; Liu et al., 1992}. (Alpha: 6.7-7; Wang
et al., 1~'p2a)arc at least 2 pH units below the pKa for glutathione ill aqueous solution
(pKa~9; Graminski ct al., 1989; Liu et al., 1992). In the mutant enzyme, where Tyr7 is
replaced with phenylalanine, the pKa of the bound GSH in class Pi however, is no longer
6.3 as in the wild type, but increases to at least 8.7 which is close to the pKa of GSH in
aqueous solution. Tyrosine 7 is, therefore, definitely essential in enhancing the
nucleophiliclty of the GSH thiol group (Kong ei ,1/., 1992c; Lin et al., 1992; Manoharan et
al., 1992b). It seems to act as a hydrogen bond donor, promoting thiolate formation by

decreasing the pKa of GSH in the enzyme complex from pKa 9 to pKa 6.3 thereby also
stabilizing the thiolate anion (Kolm et al., 1992j Liu et al., 1992) (Figure 10).

An alternative mechanism for the role of'ryr"! has however been proposed more recently for
the class Pi enzyme (Meyer et al., '1993; Karshikoff et al., 1993), The chemical
modification of the enzyme by diethylpyrocarbonate (Meyer et al., 1993) suggests that a
significant amount of tyrosinate ion occurs in the enzyme which may function as a base or
proton donor. Furthermore, Karshikoff et al., (1993), by analysing the electrostatic potential
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Figure 10. A proposed catalytlc role for tyr~§hle7. Tyr7 hydrogen bonds to ae thlol

portion of GSH promotlng the formation of a highly reactive thlolate anlon in the GSH ..

enzyme complex by lowering the pKa of GSH from 9 in the aqueous solution to 6.2 in

the complexed form.
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in the active site of tre enzyme, proposed that the hydroxyl group of Tyr7 is deprotonated
"

by the influence of the charge at the active site, suggesting also that Tyr7 acts as a general

base, promoting proton removal from aSH creating a reactive thiolate anion (Figure 11).

1.2.6 Cy'S45 and glutathione binding

Class Pi OST has four cysteine residues in each subunit at positions 14, 45, 99 and 167.

Replacement of each of these residues with serine, by site-directed mutagenesis, have

indicated a non-essential role in the catalytic function of the enzyme (Kong et al., 1991).

All replaced cysteine residues except for Cys4S also showed no effect in the binQ~ng of

glutathione to the protein (Kong et al., 1991). Cys45 has a highly reactive thiol located

about 1.2nm from the glutathione's thiol group. In the uncomplexed enzyme, the Cys45

thiol group is exposed to the solvent, however it seems to become inaccessible upon

glutathione binding and hence unreactive in the complexed enzyme. Chemical modification
of the reactive thinl group of Cys45, by 5,5 '·dithiobis(2-nitrobenzoate) , spin-labelled

maleimide, 7-fluoro-4-sulfamoyl- 2,1 ,3-benzodiazole,N-etylmaJeimide, chloro-dinitrobenzene
or by mild oxidation resulted in an almost complete loss of glutathione binding and

subsequent loss of enzyme activity (Dirr et al., 1991; Desideri et al., 1991; Nishihlra et al.,

1992bj Tarnai et al., 1990; Caccurri et al., 1992a,b). X-ray crystallography and NMR

studies have shown that Cys45 is not in the active site (Reinerner et al., 1991; Nishlhira et
al., 1992b). The data from the chemical modification, mutagenesis and solvent-accessibility

studies have indicated a local structural change occuring at or near the G-site during GSH
binding (Dirr et a., 1994).

The G-sit!- of GSH-free enzyme does not seem to be in the ideal configuration for catalysis

and the binding of GSH seems to occur via an induced-fit mechanism in order to obtain the

catalytically functional conformation (Adang et al., 1989). The conformationall change

occurring upon aSH binding appears to conceal the reactive Cys45 thiol group in the protein
malting it inaccessible for modification (Lo Bello et al., 1993). Its chemical modification

in the free enzyme prevents the necessary structural change form occurring and consequently

the binding of GSH is prevented.
Cys45 is, however, not found in class Alpha and Mu and thus a similar structural change

upon GSH binding has not. yet been observed (Chen et al., 1992; Tamai et al., 1990; Wang

et al., 1992b; Widersten et al., 1991).
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Figure 111.Tyroslnate ion of GST as a general base in the formation of the thiolate
anion. EO· represents the tyroslnate ion, H§G represents the substrate, glutathione and
·SG represents tb':>thlolate anion.
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1.2. '1Nomenclature
The nomenclature for the isoenzymes belonging to the different gene classes has undergone

many changes. This has been a problem in the past since various authors referred to the

same enzyme by using different terminologies. A new nomenclature system for the human

glutathione S-transferases has been proposed by Mannervik (1992), and seems to be the most

suitable to this date (see Table 1). This system can also be extendedto include GSTs frum

other species.
In the new system, superscripts, SUbscripts and Greek letters are not acceptable, instead,
Arabic numerals are used to show the subunit composition, lower case Roman lettering is

used to designate the species from which the enzyme comes and upper case lettering (A, M,

P, T) indicates the gene class of the enzyme. Thus the acronym pGSTP1-1, is the new

i.omenclature for porcine GST from class Pi consisting of two identical type-I subunits. The

monomer would be represented as pGSTP1.

1.2.8 Export of glutathlone-conjugates

The export of aSH-conjugates from cells is not only essential for mercapturic acid formation,

but is also needed for the maintenance of GST efficiency. Recently, an ATP-dependent

glutathione S-conjugate export pump has been described (Ishikawa, 1993, 1990; LaBelle et

al., 1986a,b; Konr' et al., 1980). It appears to be a protein molecule of about 37kD

situated in the canalicular plasma membranes (Figure 12). The negative charge of GSH-

conjugates appears to be important for the functioning of this carrier protein.

The GSH~conjugate trans-membrane carrier has also been found. to be distinct from the

multiple drug resistance gene product (P~glycoprotein) which is also an ATP-dependent

export system found in plasma membranes (Ishikawa, 1993, 1990).

1.3 LIGAND-BINDING lFVNCTION OF CLASS PI GST

1.3.1 Llgaud-blndlng properties

In addition to their enzymatic function, GSTs also act as ligand binding proteins. They are

able to bind substrate as well as lipophilic non-substrate ligands such as haem, bilirubin,

hormones, bile acids, fatty acids, leukotrienes, drugs, dyes and other xenobiotics including
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TABL~ 1 Nomenclature examples of cytosolic glutathione S..tramfera<;Q!,'"',----
PrevioliJ.s nomenclature

,II c
New nomenclature

-----~--------------------------Class Pi

rGS1'Pl-1

Class Alpba

hOSTA!-l

Class Mu

GT-8.7, Cl-1, F3, Dl-1, MIll, Nl·l mGSTMl-1

Class Theta

GST9
-----,--------,--------------

\ I

II
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mutagens and carcinogens (Litwack et al., 1971; Listowsky, 1993b). The binding of the

non-substrate, ligands (end~Jc.lous and exogenous compounds) to GST, prevents the build

up of apolar molecules at lipophilic sites such as membranes, and directs the transport of

these compounds either for metabolism or to their target sites. GSTs, for example, rGSTA1-

1 and rGSTA1-t, have a greater binding affinity for organic anions such as bilirubin than

does the extracellular ligand-binding protein, albumin (Listowsky et al., 1978). It is
therefore possible that for this reason and because of the high GST concentrations within a

cell (about lO..(iM), GST could, to a certain extent, regulate the net flux of certain organic

anions from the plasma into the cells (Listowsky et al., 1978). Glutathione S-transferases,
have however been previously shown to have access only to substrates in the aqueous phase

and not the ability to bind the membrane bound substrates in Iiposornes (Boyer et at, 1983).

Substrates such as bromosulphophthalein (BSP) and l-chloro-2,4-dinitrobenzene (CDNB)

nevertheless, have rapid rates of release into the aqueous phase in which they can bind the

soluble GSTs (Boyer et al., 1983; Tipping et al., 1979 a.b). However, White and Plisher

(1983) did observe a calcium-dependent association of GST with the human erythrocyte

membrane. The calcium dependency of G5T was not tested by Boyer et al, (1983) in his

investigation of liposome-Gs'I' interactions.

Listowsky and co-workers have proposed a model accommodating the possible functions of

GST in the intracellular binding and transport of non-substrates (Listowsky et al., 1988,

Listowsky, 1993a,b).

On entering a cell, a ligand may assume one of two pathways. It may bind to its specific

receptor with high affinity and be transported to its target site, from which induction of the

phase I and/or phase II detoxification system, which include, GSTs could occur.

Alternatively, the ligands may bind to GST, when receptor levels are limited or absent. If

neither of these pathways are assumed, cytotoxicity within the cell may ensue.

GSTs may transport the bound ligand along several pathways; they may, for example,

transfer the hormones to their specific receptors, when and if these are available, or to phase

I enzymes for metabolic conversion. They may also catalyse the conjugation of the ligand
to glutathione.

Although the affinities of hgands for GST are low in comparison to the specific receptor (Kd
of 1O.6~1O.7Mcompared t() lO·9-1O·uM) (Listowsky et al., t988), GSTs are often present in
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Figure 12. Proposed sf-heme for ATP-dependent GSH-conjugate ~fnux system. C..

domain: aliphatic carbon chanIm domain; G-domaim recognizes GSH portion of G§H..

conjugates; P-domain undergoes phosphorylation (Ishikawa, 1990).
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abundance, up to 10% of the toW cellular protein, whereas receptor molecules are found in

the nanomolar concentration range (Listowsky, 1993a). As a result, it is possible for GSTs

to playa significant physiological role within the cell. The extent of a, ...sell's response to

thyroid or steroid hormones, for example, may depend on GST levels and high GST

concentrations could render cells insensitive to hormones (Listowsky et al., 1988; Listowsky,

1993 a.b).

1.3.2 GST and drug resistance
Over-expression of GSTs would also increase the resistance of a cell to cytotoxicity, not only
because of its catalytic function but also as a result of non-substrate binding (Morrow and

Cowan, 1990).

The expression of GSTs in a cell may be constitutive, in other words, various cells are

intrinsically resistant to cytotoxic drugs and their GST content.is sufficient to detoxify the

cell, or it may be induced (acquired), in other words, cells which are initially sensitive to

drugs but become resistant after prolonged exposure to the cytotoxins (Hayes and Wolf,

1988, 1990). This is seen often in human tumours which may initially be highly sensitive

to chemotherapy but after a short period of treatment become highly resistant due to

increased GST expression. The elevated levels of OST found in these tumours, serve as

tumour markers. Rat liver tumours for example have an over-expression of class. Pi GSTs

(Kitahara et al., 1983; Morrow and Cowan, 1990). This class of GS! is not usually

expressed in hepatocytes and thus serves as a tumour marker. Acquired drug resistance.

represents one of the major reasons why many tumours cannot be treated with success (Hayes

and Wolf, 1988). The resistance of a cell is often not only a. result of the increased

expression of phase II detoxification enzymes such as GSTs, but rather the combined effect

of other factors such as the reduced expression of phase I enzymes, causing a reduction in

the formation of activated and potentially carcinogenic compounds, and the increased

expression of drug efflux systems such as the P170-glycoprotein pump (Hayes and Wolf,

1990; Morrow and Cowan, 1990; ""nxman, 1990; Thorgeirsson et al., 1987; Batist et al.,
1986). If the catalytic and drug-binding properties were inhibited in some way, possibly by

substrate or non-substrate competitive inhibitors.. chemotherapeutic drugs may find an

opportunity to function in the cell. Unfortunately, the available three dimensional structure

for the GSTs do not enable us to identify those sites on the protein to which these non-
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substrate Iigands bind, because stable non-substrate ligand-Gs'I' crystal complexes have not

yet been developed.
Extensive research has been done on the ligand-binding properties of OS!'. 111~affinities

of various compounds for the different isoenzymes, their effect on the enzymes catalytic

efficiencies and the location of the primary binding sites for the non-substrates are but a few

areas under study.

1.1.3 Bremesulphophthalein, bilirubin, 3~allilino-l -naphthalene sulphonic acid and

haem as ligands for 9STs, ,
I'

Bromosulphophthaleiri (BSP) , is one of several anionic dyes whicn are used to test liver

function (Figure 13). Upon administration, it is eliminated from the blood and excreted in

the bile. Failure to enter the hepatocytes, is indicative of liver dysfunction (Schwenk et al. ,

1976). The binding of BSP to GST isoenzymes has been extensively studied (Table 2). In
rat class Alpha, the homodimer, rGSTA1-l, appears to have two high affinity binding sites,

whereas the heterodirner, rGSTA1-2, appears to have one high affinity binding site and one

low affinity binding site (Bhargava et at, 1980 a.b). This seems to sugg~~ that 6li~

monomer has a greater affinity for the ligand than does the other. Photoaffinity coupling of

[3SS]BSP to rGSrA 1-1, has revealed a region in domain 1, to be the primary binding site for

BSP (Bhargava and Dasgupta, 1988). The general region of nsp binding, ..extends from
amino acid residues 16-49 and includes helices c.d and 0:'2 and strand 82 (Sinning et al.,
1993). This area, is in .~..se proximity to both the G-site and Il-site of the molecule (Sinning

et al., 1993). Howeve,', the exact location of the binding site within these structures has not

been identified (Bl, ngava and asgupta, 1988). In the rat class Mu isoenzyme, rGSTMl-1 j

BSP appears to bind a h1gh affinity site on each monomer at low concentrations of the dye,

however at higher concentrations, a low affinity binding site appears to be present IJalmbson

et a1., 1979). Jakobsen et al, (1979) found that BSP was able to displace a GSH analogue,

S-(2-chloro-4-nitrqphenyl)GSH in rGSTM1-1~ indicating it bound at least partially to the

same site (G-site), however she also observed that this was not altogether reciprocal. This

suggested that BSP possibly also binds to other areas on the enzyme inaccessible to the (iSH

derivative. The different areas could account for the high or low affinity sites observec',

BSP has previously also been shown to be a substrate for GST isoenzymes (Satoh et al.,

1991; Kosower, 1976). The catalytic activity of the protein with BSP as a substrate is
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however very low in comparison to the activity using other substrates (Satoh et al., 1991)
(Figure 14).

Two high affinity sites are also observed in rGS1'Al-l for the endogenous compound

bilirubin, these sites are absent or undetected in rGSTA2-2 (Boyer, 1986; Kamisaka et a1.,
1975, Bhargava et at, 1981) a.b). The heterodimer, rGSTAl-2, appears to possess only one

high affc1ity site for bilirubin on monomer rGSTAl. Boyer (1986) labelled the heterodimer,

rGSTAl ..2, with a [14C]Bilirubin-Woodward's reagent K label, and observed that both

monomers were labelled equally under saturating conditions of the protein. He observed that

at low concentra.lons of bilirubin the high affinity site on monomer rGST A 1 was

preferentially occupied, but that monomer rGSTA2 also possessed a low affinity site.

Interestingly, Boyer also observed that the catalytic site was not blocked by the covalently

bound label, and that catalytic activH.' was retained. However, others have observed

inhibition of catalytic activity for the Alpha isoenzymes by bilirubin (Bhargava et al., 198Gb).

Covalent-labelling with bilirubin as well as competition studies, suggest that the organic

anions BSP and bilirubin share a common binding site (Bhargava, 1988; Boyer, 1986).

3-Ani1ino-l-naphthalene~sulphonic acid (ANS) , is another hydrophobic compound that

typically binds hydrophobic regions of proteins non-covalently (Lr'~owicz, 1983). ANS is

essentially non fluorescent in hydrophillic media, but becomes highly fluorescent when

dissolved in non-polar solvents or when bound to apolar regions on macromolecules

(Lakowicz, 1983). For this reason, it is a useful probe for detection of apolar regions on

GSTs. ANS has also been reported to bind to the same site as bilirubin and as fatty acids.

Nishihira and coworkers (1992a,c) suggested that GST has a nonsubstrate ligand binding site

in domain 2 which is a site for bilirubin, ANS and fatty acid binding.

The putative binding site for fatty acids was determined by the covalent labelling of a class
Pi enzyme with 12-(9wanthroyloxy} stearic acid conjugated with Woodward's reagent K

(Nishihira et al., 1992c). The thiol group of Cys169 of GST was suggested to react

covalently with the carboxyl group of the fatty add. This residue is located in a peptide loop

connecting helices 016 to 017 in domain 2 of the molecule. It is located in a hydrophobic

region which is about 10% exposed to solvent. The lipid conjugate bound to GST inhibited

the enzymatic activity in a non ..competitive manner as did ANS. Inhibition by ANS was
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Figure 13. Structures of anionic ligands for GST: (a)llrcm()suln)lllophtli~~ein,

(b)Bilirubiln', (c)3-AnUino-l ..naphthalene sulphonate, (d)Hae1!1il.
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TABLE 2 Dissociation Constants, Kd (~tM)?{OJ,' GSTs with Anionic Ligands
Isoen~)?.ne nSf' BUhllbu1lJl Haematln . ANS-
rGSTA1 ..1 O.79~'iO.23" O.42A,O,053b, 0.16° ,0.02"

0.3411 ,

rGSTAl ..2 1.2711,O.37b 1.4711,211,O.13b, O.60tl.,O.lh,
0.1 ',1 e, ISO 0.02°,0. 13c,0.68d 0.068b,0.03°

rGSTA2"2 3.76t. 0.9411,100\ O.49a,4h

-----------------------

I 700h

rGSTMl-1 O.63n,0.44tr,2Se O.22a,15h,O.69b,
0.9411 o.n-

rGSTMl-2 1.2111,0.83b 0.264.211,0.78b

0.41h

0.3511,1.111

0.12\211

O,2b~0.03c

O.83\7h

33()b

(

rGSTP1..1 1.191. 0.26'

hGSTPl-1 A 021,,.
. 1

---.-----------~------- -------------------------.-------
IlSatoh et al., 1991, bSugiyama, 1984; cYan der Jagt et al. ,1982; dBoyer et al. ,1983;

°Kamisaka et 01.,1975; (Tipping et al.,1976; I.lJakobson et al.,1979; bKetley et al.,1975,

'Caccuri et al., 1990; jNishihira et 01.,1992.
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Figure 14. Catalytic interaction of GSa and nsp (Kosower, 1976).
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proposed to be as a result of a massive structural change occurring in domain 1 due to the
disruption of most of the protein's B-sheet structure upon ligand binding. More recently,

Nishihira et al, (1993) has proposed the hydrophilllc/amphipathic V-shaped cavity formed

at the subunit interface to be the hydrophobic ligand primary binding site. Cys169, however,

does not occur in this cavity.
i \

GS1's are the proteins .mvolved in 'tne transport of haem from the mitochondria to the

acceptor apoproteln on the endoplasmic reticulum for the formation of cytochrome bs (SenjrJ

et al., 1985i,·Ketterer et al., 1976), Further it has been found that haemin and bilirubin

share a common binding site on class Pi GST (Caccuri et al., 1990). This class of GSTs are

homodimers, Caccuri and coworkers (1990) in fact noted the presence of two binding sites

on the enzyme by fluorescence spectroscopy. One being of high affinity and the other of low

affinity for haem. Interestingly, in the presence of GSH, the high affinity site increased its

affinity for haem, whereas the low affinity site reduced its affinity for haem. It is possible

that a conformational change upon GSH binding (Caccuri et al., 1990), changes the binding

affinities of the two sites for haem. GSH also interfered with the ability of haem to inhibit

the catalytic activity of the enzyme.

1.4 OUJECTIVES

This work involved investigating some aspects of the ligand-binding function of the porcine

class Pi enzyme, The non-substrate ligands used included bromosulphophthalein (BSP) and

8-anHino-l··naphthalene sulphonic acid (ANS). Certain aspects of the investigation also

included glutathione and its sulphonate analogue, GS03", Generally, the binding of the

ligands and thelr affinity for the enzyme were determined. This was accomplished using

fluorescence quenching and fluorescence enhancement.

It was of importance to observe whether or not the primary binding site for the non-substrate

ligands WaS the active site of the enzyme, Enzyme activity assays were performed in the

presence of the ligands and the displacement of the Meisenheimer complex by the non-

subst aU":; ligands as well as by OS03" were investigated. Competition studies between the

non-substrate ligands were performed using fluorescence spectroscopy to observe whether

or not these ligands bind the same primary site on the enzyme.
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To determine whether the overall conformation of the protein crystal structure differed much
from the active conformatlons in the aqueous solution; the formation and subsequent
disappearance of the Meisenheimer complex were investigated. As previously mentioned,
ANS has been thought to disrupt the overall conformation of the enzyme upon binding

,
(Nishihira et al., 1992a). Overall conformational changes in the protein, as a result of the
binding of either of the non-substrate ligands were investigated using size-exclusion HPLC,
chemical modification of the enzyme by Ellman's reagent and acrylamide quenching
techniques.

Ligand-Gs'I' interactions are very important in the medical field where inhibition of this
detoxification enzyme is essential for the optimization of chemotherapeutic drugs.

I.

\\
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CHAPTER 2 EXPERltMENTAL PROCEDURES

2.1 MATERIALS

Brcmosulphophthalein, 8··anilino~1-naphthalene sulphonic acid, and glutathione sulphonate

were obtained from Sigma Chemical company.

Reduced glutathione was obtained from Boehringer Mannheim.

l-chloro-2,4-dinitrobenzene was obtained from Merck. 1,3,5-Trinitrobenzene was obtained

from Tel.

S-hexylglutathione was prepared according to the method of Vince et al. (1971) and was

subsequently washed in ethanol.

All other chemicals used were of analytical reagent grade.

2.2 PURIFICATION OF PORCINE LUNG CLASS PI GST

The purification was performed according to the procedures described by Dirr et al. (1991).

Fresh nig lung was obtained from the slaughter house and frozen immediately at -20°C.

When .quired, about 300g of pig lung was cut into small pieces and thawed in a beaker kept

at 40-50°C. Two volumes of buffer A (20mM Tris, l00mM Nael, ImM EDTA, SmM

dithiothreitol, 0.02% sodium azide, pH 7.5) were added to the lung, and the mixture was

homogenised at 4°C in aWaring blender for 2 minutes at maximum setting. The homogenate

was then centrifuged at 17000JCg(9000rpm in a Sorvall superspeed RC2-BI GS3 rotor) for

60 minutes at 4YC. The supernatant was filtered through glass wool and subsequently

ultracentrifuged at 10S000xg, (35000rpm in a Beckman Preparative Ultracentrifuge L8~55,

45Ti rotor) for 60 minutes at 4°C. The supernatant was carefully removed and applied onto

a S-hexylglutathione Sepharose column equilibrated in buffer B without 1mM ~-hexylGSH

(20mM Tris, 200mM NaCl, ImM EDTA, 5mM dithiothreitol, 0.02% sodium azide, pH 7.8)

at a rate of about lOml/hour. The column had been prepared according to the method of

Mannervik and Guthenberg (1981), Once all the residual protein had been washed off the

column, the protein still remaining on the column, including glutathione S~transferase was

eluted off with buffer 13containing 1mM S·hexyl-Gxll. Protein fractions containing enzyme

activity were collected, pooled and concentrated by ultrafiltration through ill PMIO\43mm

membrane (Amicon), The concentrated protein was loaded onto a Sephadex G..25 column
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equilibrated with buffer C (20mM Tris/HCI, 5mM dithiothreltol, pH 7.8). The enzyme

containing fractions were pooled and subsequently loaded onto a DEAE cellulose (Whatman

DES2), anion exchange column equilibrated in buffer C. Glutathione Swtransferase, eluted

with the flow-through, was adjusted to pH 6.0-6.5 with 1M Mes. The GST fractions were

concentrated by ultrafiltration and passed through a Sephadex G-25 column equilibrated with
buffer E (20mM Mes/NaOH, O.1M NaCl, ImM EDTA, 0.02% sodium azide, pH 6.5).
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2.3 PROTEIN DETERMINATION
Protein determination assays were performed according to the semiquantitative method \S

Layne (1957). This method Is represented by the following equation:

Protein concentration (mg/ml) = 1.55 A2no - 0.76 A260

2.4 ENZYME ACTIVITY ASSAYS
The enzyme activity assays we) c performed according to the method of Habig and Jakoby

(1981). Q,02/tM pGSTP1~1 was added to each assay mixture. The final substrate

concentrations in the assay were ImM 1~chloro-2A-dinitrobenzene (CDNE) in ethanol and

ImM reduced glutathione. The ethanol concentration in the assay did not exceed 3%(v/v),

or inactivation of the protein would have occurred. The assay was performed in O.1M

potassium phosphate buffer, pH 6.5. The formation of S-(2,4-dinitrophenyl)glutathione was

monitored spectrophotometrically at a wavelength of 340nm (Figure 15). The extinction

coefficient of this conjugate is 9600M·tcm·t (Habig and Jakoby, 1981). All absorbance

readings were made on a Hewlett Packard Vectra CS model 8452A Diode array

spectrophotomeser at room temperature (20-24t'C).

2.4.1 Enzyme activlty assays in the presence of nSp
Enzyme activity assays were also np.normed in the presence of increasing amounts of BSP,

to a final concentration of lOO/-,M. These were performed at pH 6.5 or pH ".S in a O.1M

potassium phosphate buffet. Enzyme activity assays in the presence of ANS were not

performed because of the high absorbances of ANS at 340nm.
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~JSH+ l-chloro-La-dinitrobenzs It'· ..- >S-(2,41!dini.lrophenYl)glutathione -+Hel
i

qly
yysNSH

'Y- Glu
aci

, .. \

Figure 1.5.Conjugation reaction between I-chloro-z.s-dlnltrobenzene and glutathione

forming S...(2,4~dinitrophe!1lyl)glutathione in the enzyme activity assays.
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2.5 HOMOGENEiTY OF TIlE PROTEIN

The homogeneity of glutathione S-transferase was evaluated by 8DS-polyacrylamide gel

electrophoresis and isoelectric focusing. SDS~polyacrylamide separating gels of 15%

acrylamide and 0.4 % bisacrylamide and stacking gels of 3.75 % acrylamide and 0.1 %

bisacrylamide were prepared. The gel electrophoresis was performed according to the
method of'Laemmli (1970) as described by Robyt and White (1990). The molecular weight

markers used were egg albumin (Mr 45kD); glyceraldchyde-3-pbosphate dehydrogenase (Mr

36kD); carbonic annydzase (Mr 29kD); trypsinogen (Mr 24kD); trypsin inhibitor (Mr 20kD)

and a-lactalbumin (Mr 141d). All molecular weight markers were obtained from Sigma.

The gels were run at IS0-180V for about 21/2 hours. The gels were stained for at least 1

hour (0.25% Coomassie brilliant blue R250, 45.4% methanol and 9.2 % glacial acetic acid)

and destained for at least 2 hours (7% methanol and 7% glacial acetic acid).

Isoelectric focusing was performed according to the instruction's of the BioRad Model 111

Mini-IEF gel kit. The monomer concentrate consisted of 24"25% acrylamide and 0.75%

bisacrylamide. The monomer-ampholyte solution was prepared by mixing 2ml monomer

concentrate with O.5m13/10 ampholyte solution (BioRad) and 2m125% glycerol. This was

brought to 10mt with water and degassed for 5 minutes. The 3/10 ampholyte has a pH range

of 3.8 to 9.:Z. The catalyst solution was prepared by mixing 15,",1 10% ammonium
persulphate with 50ftl 0.1 % riboflavin and 3Jd TEMED. It was subsequently added to the

monomer-ampholyte mixture and swirled gently. The solution was pipetted between the glass

plate and the casting tray and allowed to photopolymerise for 45 minutes. Once removed

from the casting tray, the gel was irradiated with ligf • for a further 15 minutes. A template
for sample application was placed onto the gel and 2,",1of undiluted sample was loaded into

each groove. The samples were allowed to diffuse into the gel afterwhich the template was

removed and the gel placed directly onto the graphite electrodes of the cell.

The pl markers used were trypsinogen from bovine pancreas (pI 9.3); Ldactate

dehydrogenase from rabbit muscle (pl 8.6); myoglobin from horse heart (pI 7.2); carbonic

anhydrase I from human erythrocytes (PI 6.6); carbonic anhydrase II from bovine

erythrocytes (pI 5.9); B~lactoglobulin A from bovine milk (r ';5.1) and trypsin inhibitor from

soybean (PI 4.6). The pI markers were obtained from Sigma.

The gels were focused at l00V for 15 minutes after the samples had been applied to the gels.
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The gels, were subsequently run at 200V for 15 minutes and then at 450V for 1 hour. After
.(,

the run, the gel was placed ,;"'0 a fixative solution (4% sulphosalicyclic acid, 12.5%

trichloroacetic acid and 30% methanol) for 30 minutes. The gels were subsequently stained

and destained by the same procedure as described for the 8DS-polyacrylamide gels.

2.6 FLUORESCENCE SPECTROSCOPY

Fluorescence is a very useful technique in protein biochemistry because of its sensitivity and
because of the favourable lifetime of the fluorophore (about 1O,Os) which allows a range of

molecular processes to occur which can affect the spectral characteristics of the fluorophore

(Lakowicz, 1983),

The absorption and emission of light may be illustrated by the energy level in Figure 16.

The ground, first and second electronic states are depicted by SOl 81 and 82 respectively. At

each electronic level, the fluorophore can exist in different vibrational levels, shown as 0,

1, or 2. Following light absorption, a number of processes can occur. A fluorophore is

usually excited to a higher vibrational level of energy levels SI or S2' These rapidly relax

to the lowest vibrational level in the energy level (internal conversion), Fluorescence

emission therefore generally occurs only when the fluorophore is at a thermally equilibrated

excited state and emits the energy gained as light. The absorption spectrum of the molecules

reflects the vibrational levels of the electronically excited states and the emission spectrum

reflects the vibrational levels of the ground electronic state which occurs at the electronic

transition down to the lowest electronic level. The excitation wavelength absorbed by the

molecule possesses greater energy than does the emitted light, the latter thus having a longer

wavelength. Molecules that possess significant fluorescence properties, usually have

deloealised electrons formally present in conjugated double bonds.

To detect interactions between proteins and ligands, it is, therefore, possible to measure some

fluorescence parameter that changes upon the binding of the ligand. Either the fluorescence

of the intrinsic tryptophan fluorophores or that of an extrinsic fluorophore can be nI1.1,,;H\':t~(L

8-Anilino,·I-naphthalene sui phonic acid (ANS) is an extrinsic fluo"opho1'(~Which fl"orec:,:~s
strongly when in apolar surroundings. Its affinity for tile hydropsoblc Mte on ah(.,protein call

;II be measured by monitoring the enhanced fluorescence of ANS JpJn bhiding. However, the
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Figure 16. Energy level diagram showing absorption and emission of energy by

electrons, So; 8. and S1 represent the ground, first and second electronic states
respectively (adapted from Lakowlcz, 1983).
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'ecrease or quenching of the intrinsic protein fluorescence can also be measured upon ANS

;\

binding. Brcmosulphophthalein (BSP) dQ~S not fluoresce and hence: its interaction with the
') "

protein can only be monitored by observing the quenching of the protein's intrinsic

fluorescence (Lakowic't, 1983,:;Casey et al., 1981).
1/

All fluorescence mf'.asur-~rl\e~itswere performed u5il~g n Himchi model 850 Fluorescence
'; Ii ,

Spectrophotomeiea, Conditions for measurements were as follows: bandpass for excitation
wavelength, 5mn, and for emission wavelength, 15nm; Scan speed, 6Onm/min; response

time, 2 seconds; normal photomultiplier gain; performed at room temperature (20-24°C).

206.1 Ftuorescenee enhancement
\

The affinity of 8-anilino-l-11aphthalene sulphonic acid (ANS) for pGSTP1-l was determined

by measuring the fluorescence enhancement of ANS atan excitation wavelength of 400nm
and at an emission wavelength of 480nl11 as performed by Nishihira et at. (19Y2a). 10,uM

r
ANS was titrated with increasing amounts of pGSTPl~l to a final protein concentration of

2,uM in buffer E•. The dilution factor did not exceed 10% of the initial volume.

The dissociation constant was determined using the following procedures:

rn
"

where Lr is the free ligand, 4 is the total ligand and LP is the protein-bound llgand.,

For the bimolecular interaction:

Lr + P <--> LP (2)

The bound ligand, LP, is in equilibrium with free protein, I', and free ligand~ Lr•

3ubstituting equation 1 into equation 2

LP <--> P + (4 - LP) (3)
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From the law of mass action;
,')

.\
\(

Kd = r~l~:LPl
[LP]

I',

By rearranging equation 4 we obtain:

LJLP]=f.!:JOO..
[P]+ x,

where L, represents the J!~gnnd,ANS, and P represents the protein, OST.
'.'

The fluorescence intensity is proportional to the concentration of die ligand-protein complex
as shown: \

where c is a constant.

Therefore tho mrudmllm fluorescence observed can be represented by:

Fnlllx=lim F' c[LJ
Ii

The relative fluorescence intensity may be represented by:

(8)
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By substituting equations 6 and 7 into equation 8'~

V == ILPI
[LJ

Thus by substituting equation 5 into equation 9:

(9)

V == [P]/([P] + KJ ..(lO)

Equation 10 can be rearranged into:

Q1)

The slope obtained from the straight-llne graph of equation 9 is the dissociation constant, Kd•

2.6.2 Fluorescence quenching
The affinity of bromosulphophthalein (BSP), 8~ani1inO'-1-naphthalene sulphonic acid (ANS)

and glutathione (GSH) to pGSTPl-l was determined by measuring the quenching of the

intrinsic tryptophan fluorescence of the protein. The excitation wavelength was set at 295nm
and the emission wavelength at 335nm. A solution of Ip'Yl pGSTPl-l in buffer E was
titrated with increasing amounts of the ligand to final concentrations of lOp.M BSP, lOOj.tM

ANS 'or 5mM GSH. Controls were prepared in the same matinee but in the absence of

pGSTPl-l. The dilution factor did not exceed 10% of the initial volume.

The, "iissociation constants Wert' determined using the following procedures:

Pr == PI ~ LP (12)

where Pr is the free protein, PI is the total protein and LP is the protein complexed with

ligand.
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For the bimolecular interaction:

The complexed protein, LP, is in equilibrium with free ligand, L; and free protein, Pf.

Substituting equation 12 into equation 13:

LP <---> L + (P, - LP) (14)

From the law of mass action:

x, =.lL][B~LPl
(LP]

(15)

By rearranging equation 15 we obtain:

[LP] = fBJIIJ
LL]+Kd

Where L represents the ligand and P represents the protein, GST.

The enhanced fluorescence intensity is proportional to the concentration of the complexed

protein, as shown:

F=c[LP]

where. c is a constant.

Therefore the maximum fluorescence can be represented by:

FIltllX=1im F c[PJ
p··)ooo

(18)
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By dividing equation 17 by equation 18:

.E_= .ll_£]'
Fnux [PJ

(19)

Substituting equation 16 into equation 19:

_E_=-lL.L
Fmnx [L]+Kcl

Equation 20 can be rearranged into:

..L='~+ _j_

F FIIlAlt[L] Fmax

(21)

By plotting liP versus 1/[L], Ktt is determined directly by extrapolating the straight line
through the lI[L] axis where the intercept is equal to -1I~.

The concentration of the non-substrate ligands bound to pGSTPl-1 were determined,
according to Lee (1982), using:

4 :::(Kd+nP(+kL:l{i(~tnEt+b)2 - 4nP~
2

(22)

Where I"b is the ligand bound, ~ is the dissociation constant for the ligand, La is the total
ligand and n is the number of sites on the enzyme to which the ligand binds. One binding
site per monomer is assumed.

:t6.3 Competiticm be'ween BSP and ANS for the same binding site
To determine whether BSPand ANS compete for the same primary site on the protein, asP's
concentration was kept constant at either OJ.tM. 5J.tM~ lSJ(M· or 30J.'M while increasing
amounts of ANS were titrated into the solution tip to a final concentration of 20J(M in buffer
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E containing ljUM pGSTPl ..l. Controls were prepared in the same manner but in the

absence of the enzyme. The fluorescence enhancement of ANS was measured at an

excitation wavelength of 400nm and an emission wavelength of 480nm.

2.6.4 Effect of glutathlen« on nsp binding

To determine the effect of GSH binding on BSP's affinity for the protein, l~M GST in the

absence or presence of lOmM GSH were titrated with increasing amounts of nsp to a final

concentration of lOp.M. Controls were prepared in the Same manner but in the absence of

the protein. Fluorescence quenching of the protein was measured. at an excitation wavelength
of 295nm and an emission wavelength of 335nm.

I)
(.~

2.6.5 Ellergy transfer of ANS
In 1948, Forster described how electronic excitation energy can be efficiently transferred

between a fluorescent energy donor and a suitable energy acceptor (Stryer, 1978). He

postulated, that the rate for the dipole-dipole energy transfer depends on the inverse sixth

power of the distance between the donor and the acceptor:

E (energy transfer) oe lit (23)

where r is the distance between the donor and the acceptor.

This observation made it possible for energy transfer to be used as a spectroscopic ruler in

biological macromolecules.

Efficient energy transfer requires that the energy donor and acceptor be in resonance, in

other words, the fluorescence emission spectrum of the donor must overlap the absorption

spectrum of the acceptor. Furthermore, the spectral characterlstics of the donor and acceptor

III ist be sufficiently distinctive so that the number or photons released and absorbed can be

measured (Stryer, 1978).

The absorption spectrum of ANS overlaps the emission spectrum of the protein's intrinsic

fluorescence and re-emits this energy at 480nl11when bound to the protein (Figure 17),



44

r
Donor Trp Acceptor ANS

Emission Absorption
,.

;'
, ,.,

\,
\
\,
\
\

I •
/

I
• I

I
. I

\ • I
" ;'... \

\
\

\
\
\
\

300

\ /. , \ .
'" /(

400:;'" ' ...

Emission

-,
\/

/
/

\
\

\
)

-. ,I500_-L- ~ __~

Wavelength (nm)

Figure 17. Spectral properties of the energy donor tryptophan and the energy acceptor

ANS. Tryptophan bas an emission wavelength maximum of 33Snm. "The absorbance

spectrum of ANS overlaps the emission spectrum of tryptophan, ANS bas an emission
wavelength maximum of 480nm (Shepherd and Hammes, 1976).
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The efficiency of the energy transfer, E, can be determined, according to Strger <1978),
using:

(24)

'/

Where Q, is the relative fluorescence intensity 9f energy donor (pGSTPl-l) in the absence

of the energy acceptor (ANS) and Qt is the relative fluorescence in the presence of the

energy acceptor,

The quenched protein fluorescence (lflM pGSTPl-l) ',V, , -ieasured in the presence of

increasing amounts'of ANS to a final concentration of 50flM with an excitation wavelength

of 29511m and an emission wavelength of 335nm.

To determine the maximum efficiency of energy transfer {Emax)a double-reciprocal curve of

liE vs 1/[ANS] was plotted, where the y-intercept is 1/Emnx.

2.6.6 Corrections for Fluorescence measurements
A number of variables affect the accuracy of fluorescence measurements, of which the most

important in the context of equilibrium constant determlnations is the absorption of the

excitation beam, referred to as the primary absorption effect (Birdsall et al., 1983). If a

large part of the fluorescence is absorbed by the compound whose concentration is varied in

the course of the experiment, the primary absorption effect will alter the concentration

dependence of the fluorescence, recutting in incorrect dissociation constants (Birdsall et al, t
1983),

Corrections on fluorescence measurements were made as follows:

1) Corrections for protein controls: FI == FoI!a-Fc(l1\

2) Corrections for dilutions: Fa == Pi K V/Vj

3) Correction for primary absorption effect: Fact == F2xlO(Aex+Aem)/2

(Birdsall er al., 1983).

where F, and F2 represent fluorescence values after corrections 1 and 2 respectively, F~cl ==
actual fluorescence; Fobs::: observed fluorescence; F~1ll1= control fluorescence; VraJld VI are

the final and initial volumes respectively ~c:( ai!'.~ l:"lll .•. absorbances at excitation and
emission wavelengths.
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The correction for the primary absorption effect can only be used for sufficiently low
absorbances of the ligand, at the excitation and emission wavelengths (A < 0.2).

)!
;}

2.7 l\1EISENHEIl\1ER eOMftEx FORMATION

2.7.1 M~ist'lnhehner complex formation in aqueous solution
The formation of the Meisenheimer or e-complex intermediate, [1-(S-glutathionyl)-2A,6-

trinitrocyclohexadienate) between GSH and 1,3,5-trinitrobenzene (TNB) (Figure 18) occurs

in the active site of the protein (Graminski et al., 1989), TNB does not possess a good

leaving group and therefore the GSH conjugation reaction does not proceed to completion.

The Meisenheimer complex can be observed spectrephotometrically by measuring the
I ---"

absorption spectnjm of the complex from 400nm to 650nm. By observing the interaction of

the Meisenheimer complex with the active site spectrophotometrically, it is possible to also

observe whether or not other ligands displace the complex either by interaction with the

active site or by causing a conformational change in the protein. that would affect the active

site. In other words, the Meisenheimer complex may provide useful information regarding

the binding sites of the ligands.

An assay mixture of 4mM aSH in buffer E and lOjtM pGSTPl-l was titrated with 2111

increments of O.lM TNB in acetonitrile to a final concentration of O.99mM. ANS, BSP or
GS03" were added after e-complex formation, in increasing quantities to the assay mixture

to final concentrations of lOOp.M, tOOI'M or 500I'M, respectively. Controls were prepared

in the same manner but in the absence of the protein. The displacement of e-complex from

the active site of the enzyme by the ligands was monitored at 456nm.

The formation constant for the e-complex was determined according to Benesi and

Hildebrand (1949).

1= 1 x 1 + 1-_. ~-=-- (25)

r\mj Kt<![E.OS'] [TNB] erE.OS"]

Where A45G is the absorbance of the complex at 456nm, K, is the formation constant, e is the
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as os02NyN02~GS- 02N ';, N02 02N N02- ->< 1IDo-

N02 N02- N02

TNB o-complex

1Fn~'Ulre18. Formation of the Melseahelmer complex. The reaction between TNB and
gDumtMone (or rather thlolate anion GS·) does not proceed to completlou because TNB
does not possess a good Heavinggroup. The red-orange e-complex aceumulates in the
actlve site and inhibits the enzyme (Gramtnskl et al., 1989).
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extinction co-efficient, [TNB] is the concentration of TNB added and (E.OS-] is the

concentration of enzyme-thiolate anion in solution.

By plotting lIA4S6 versus 1I[TNB] , the y-intercept can be determined and subsequently

substituted into the slope equ~tion to obtain the formation constant (Graminski et al., 1989).

2. '1.2 Meisenheimer complex formatlon ill the protein cryste j

Orthorhombic crystals Which had been previously prepared as described by Dirr et al. (1991)

were placed in fresh harvesting solution (25% poly(ethylene glycol) 4000, lOOmM Mes,

0.02 % sodium azide, pH 6.5) and allowed to equilibrate for an hour in this solution. aSH
was subsequently added to the mixture to a final concentration of SmM. The solution was

allowed to reach equilibrium for 1 hour. TNB was then added to a final concentration of

ImM. Equilibrium was once again reached. The crystals were photographed after each step,

and any colour changes observed. Finally. GS03- was added to the mixture to a final

concentration of ImM and the solution allowed to equilibrate for a further hour. Controls

were performed in the same manner but in the absence of the enzyme crystal. All work was

viewed under an Olympus ~Z·40 stereo microscope.

2.8 SIZE-EXCLUSION HPLC

High performance liquid chromatography is a useful technique for monitoring gross changes
in the disruption of the protein's structure, such as the dissociation of the dirner upon ligand

binding. It is however, not sufficiently sensitive to monitor slight changes in the

conformation of the protein upon ligand binding. An isocratic HPLC system with a ~pectra

series UVIOO detector and an LKB mode12150 pump "vas used to determine whether or not

ligand binding to pGSTPlwl causes large conformational changes and the dissociation of the

dirner, It was also used to confirm the homogeneity of the purified protein.

10,uM pGSTPl-l was run through a Biosep SEC-S3000 column (Phenomenex) equilibrated

with O.02M sodium phosphate buffer pH 6.5 at a flow rate of O.5mllmii1. A lOJtM pGSTP1-

1, 50,uM asp mixture was subsequently run through the same column equilibrated in O.02M

sodium phosphate buffer pH 6.5 plus 50,uM BSP. Molecular weight standards used for

calibrating the column included: ferritin (Mr 450kD)j catalase (Mr 240kD); aldolase (Mr

158kD); bovine serum albunrin (Mr 68kD); haemoglobin (Mr 64.5kD); ovalbumin (Mr

45kD); carbonic anhydrase (Mr 28.8kD); chymotrypsinogen (Mr 25kD); myoglobin (Mr
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16.9kD); lysozyme (Mr 14.3kD) and cytochrome 'C (Mr 11. 7kD). All markers were

obtained from Boehringer Mannheim except for carbonic anhydrase and lysozyme which

were obtained from Sigma and haemoglobin and myoglobin which were obtained from Serva,

Proteins were detected at a wavelength of 28Qnm.
SEC-HPLC of the protein in the presence of ANS was not performed, because of the high

absorbance of ANS at 280nm.

2.9 REACTION WITH ELLMAJ~'S REAGENT
',\

5,5' ..Ditniobis(2wnitrobenzoic acid) , DTNB, is a sulphydryl reagent able to react with

aliphatic thiols by an exchange reaction to form a mixed disulphide of the protein and a
molecule of the yellow aromatic thiol, 2-nitro-5-thiobenzoate (NTB) per mole of protein

sulphydryl group (Habeeb, 1972; Creighton, 1993) (Figure 19),

It is possible to determine the protein sulphydryl groups accessible for reaction with DTNB

by monitoring the formation of the yellow NTB compound at a wavelength of 412nm.

The rate of the reaction of sulphydryl groups with v tNB can be used to detect

conformational changes in the protein upon ligand binding (Habeeb, 1972; Creighton, 1993).

Either SJ.tM ~SP, 100~M ANS or l00.uM GS03" were added to IttM pGSTP1~1 in O.lM

Tris~lmM EDTA buffer pH 7.5. D'I'NB was subsequently added to the mixture to a final

concentration of 150,uM. Controls were prepared in the same manner, but in the absence of

pGSTPl-l. The reaction was observed spectrophotometrically at 412nm for 2 minutes.

2.10 ACRYLAMIDE QUENCHING OF TRYPTOPHAN FLUORESCENCE

Acrylamide is an uncharged polar quencher that is very sensitive to the exposure of
tryptophans in proteins. It has been found to quench tryptophan fluorescence predominantly

hy a collisional process (Eftink and Ghiron, 1976 a.b),

The relationship often employed to describe the collisional (illenching process is the Stern-

Volmer equation (Lehrer, 1971).

(26)
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Figure 19. Reaction of ERtman's reagent with protein sulphydryl groups. P-SH
represents the thlol group f.)f the protein, P (Creighton, 1993).
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Where F 0 and F are the fluorescence intensities in the absence and presence of quencher

respectively; Knv is the collisional quenching constant; [Q] is the concentration of the

quencher, By plotting FJP vs [Q], Kav can be obtained from the slope.
When the plot observed is not linear but instead curves downwards or has a negative

deviation this suggests that tho fluorescence of certain tryptophans in the protein is selectively

quenched before other'), This can only be detected however if the quenching constants for

each tryptophan is quite different, If not, an apparently linear plot will be observed.

Not all the excited states are quenched by the collisional process, however, and some are

deactivated almost immediately after. becoming excited because a quencher molecule happens
to be present at the time of excitarl •.~n. This is referred to as static quenching (Eftink and

Ghiron, 1976a,b). Static quenching causes the plot to curve upwards and would oppose any
negative deviations due to selective quenching.

It is possible to loosely categorize multi-tryptophan proteins such as pGSTP1-1. An upward

curving plot would indicate that one fluorsohore dominates the fluorescence. A downward

curving plot would indicate that the fluorophores have very different ,." cesaibilities to the

quencher. A linear plot indicates that the tryptophans differ only slightly in accessibiF'y.
This quenching technique can detect very subtle 1,.. .. .iformational changes which m4~j

accompany the binding of ligands due to increased or decreased exposure of the tryptophans

(Eftink and Ghiron, 1976a,b).

A modified Stern-Volmer relationship has been described to include both the collisional nod

the static quenching processes as well as considering proteins with more thpj\ one fluorescing
tryptophanyl ~esidue (Lehrer, 1971).

Eo == .L, J_ + 1
AF fKay [Q] f

Where AF IS the fluorescence change observed and f is the fraction of accessible fluorescence

quenched. From the above equation, a plot of Fj AF vs 1/i:Q] will yield a straight line 01

slope 1/fKsy and intercept Ilf (Lehrer, 1971; Eftink and Ghiron, 1981).

The quenching of IJtM pGSTPl-l was observed by increasing amounts of xcrylamide (0·

O.6M) w buffer E at different concentrations of BSP (0, 2, 10, 20 or 50JtM) or AN ~..(0, 20

r.'I' 40.uM). Fluorescence measurements were made at an excitation waveleng" bf295nm and
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emission wavelength of 335nm. Contr~,s were performed in the same manner but in the
absence of the protein. PJLiF was plotted against l/[acrylamide] and the fraction of

fluorescence quenched observed under the increasing ligand concentrations.
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CHAPfEP.3 RESULTS ANDDISCUSSION

3.1 PURIFICATION OF PORCINE LUNG CLASS PITG!$T

The class Pi GST isolated from porcine lung was purified 643.2- fold to a specific activity

of 6.63jtmol/min/mg (Table 3). A 33% yield and-l l.Zmg pure enzyme was obtained from

about 250g wet tissue.

The homogeneity of the protein was confirmed using SDS-polyac~iamide gel electrophoresis

(Figure 20), isoelectric focusing (Figure 21) and size exclusion! HPLC (Figure 22). The

molecular weight of the dimer was found to be about 48700 by SEC"HPLC (Figure 22), each

monomer being about 24kD (SDS PAGE) (Figure 23). The molecular weight of the protein

is in accord with previously reported values (Dirr et al., 1991; Mannervik and Danielson,

1988). The pI of the protein was found to be 8.6 (Figure 21). Nishinaka et al. (1991) has

also purified pGSTP1-1 from pig lens, and found its pI to be 8.5 and Warholm a al. (1986)

reported a Pi Class isoenzyme from mouse liver, mGSTPl-1, with a pI value of 8.7. The

human class Pi enzyme, although sharing an 82% sequence identity with the class- Pi pig
enzyme (Dirr et al., 1991, Reinemer et al. t 1992» has an isoelectric point of 4.6 (Widersten

et al., 1992). The different isoelectric points for these isoenzymes are obviously as a result

of their different amino acid compositions.

3.2 GLUTATHIONE BINDING

The binding of glutathione (G5H) or S-analogues thereof to pGSTP 1"1, quenches about 20%

of the protein's tryptophan fluorescence. The dissociation constant for the binding or aSH

was found to be 120",M (Figure 23). Philips and Mantle (1991) determined a KIl value of

190J.tM for GSH when working with mGSTPl-l. These values are high In comparison to

the K, for glutathione sulphonate (Kd=4JtM) (Dirr et al., 1991) for example. This is

probably because glutathione sulphonate possesses a negative charge in its sulphonate moiety

which provides the ligand with additional binding strength. It is, however, undesirable for

glutathione to have such a strong affinity for the enzyme, as this could interfere with its

efficiency by lowering the turnover rate of GSH-conjugate formation. Ji et ul. (1992)

determined a tighter binding of GSH for the active site of a Mu class isoenzyme, rGSTM I-I,

(Kd=20jlM).



TabKe:; : Purification Table for pGSTPl-l from por-cine lung

Step Volume ToW Total activity Specific activity Yield Purification factor
(ml) Protem (mg) (pmollmfu) (pmoI7min1mg) (%) (x)

Extract 450 21825 225 0.010 100 1

Cytosol 335 13534 167.5 0.012 74 1.2

S-hexylGSH 16.5 22.1 106.2 4.81 47 467 Ul.;:..

DEAE I 16 11.2 74.2 6.63 33 643.2



55

a 1 2 3 4,-
I•••
I
L._ _"....,.._

5

IkD

" "
',45
i 36

Ir~,.,.,,29: 24
i

20'14
b

trypsin iI'lhibltol' -.

tt-lllOltllbU~~

4.0 '--_----.l__ --L ---L-__ .-l-,

o 2 3 4 6

distance travelled (em)

5

Figure 20. Molecular weight determination of the pGSTPl monomer, by SDS PAGE.

(a) 15% SDS gel showing the migration of the protein, Janes (1) cytosol; (2) S-hexyIGSH;

,3) and (4) purlfled pGSTP1-1 and of molecular weight markers (lane .5) (b) standard

curve for molect ',\1' weight markers of 80S gel, melecular weight for the ilGSTP1

polypeptide is about 24!tD (marked with an x),



56

a 1 2
~ ....)' ;.f?'

f~\ '-~

l.'·,~
f 'c.

l

f

5.9
5.1
4.6

b
9

carbonic enhylirase I

~bonic anhydrase II

~ctOglObulin A

rYPSln inhibitor

4/..-
3 "

6

5

2

1

o '--- __ ~.J..- __ -J..

o 1 2 3 4
distance from anode (em)

5

Figure 21. Determination of the lsoelectrlc point of pGSTPl-l. (a) Gel showing the

migration of the protein, lanes (1) and (2) purlfled pGSTP1-t; (3) cytosol and or pfl

markers (lane 4) (b) standard curve for pl markers, pl of pGSTPi ..I is 8.6 (marked

with an x),



a

57
I ~.'"". "'.- , ~.,.. .48kD ..
~:7:::~:7~.?: ~::~'i::7.: ~c •• :-r:; "~;~:~;'~~
I ",', ••• , ~ •.•. , < _ ., • •• • • •• *
I • ,_••• ' ._, _._;,,. " '" ._... • ••

: -_:':: ':'": ~- .. ""1 :-::::r~::::-::~:T:':'~7!'~:-'-:_ -_ .:: 0--: ':-"
I ·.. , ••• 1 ..~_ __ ,.,... _. ~.~.

~--------------------~retention time
6 ---------r---------~~

5
BSA lit • HAEMOGLOBIN

b

4

llGSfPl-i

to "OVAtBtJuta """,,",•CARBONIC ANHYDRAse

• LYSOZYME

•C'rroCHROr.rn C

3 -~----..,._j_ ~...L_ __,

10 15 20 25
retention time (min)

Figure 22. Molecular' weight determlnatlon of the native pGSTPI-l dlmer by SEC-

HPLC. (a) lE!ution proflle of pGSTPl-1, VI)indicates the void volume of the column
(b) standard curve for molecular weight markers eluted from the column molecular

weight of pG§TPl-l dlrner is about 48700 (marked with an x),



5M

0.2

0.1

0, 0 L..-...,,-_-,- __ ~,__.-L,__ J...., __ --'- __ """""' __ -'

--10 -5 0 5 10 15 2520

Figure 23. Determination of the dissoelathm constant, Kd, for glutathione using the

flu.mrescence:quenching method (section 2.6.2).



59
Fluorescence quenching by GSH occurs most likely as a consequence of a direct interaction

between GSH and the indole fluorophore of Trp38 which is located at the active site (see
Figure 7).

The absence of a stoke's shift in the maximum emission wavelength of the protein seems to
eliminate the possibility of any major conformational change in pGSTPl ..1 upon aSH

binding. However, as mentioned above in section 1.5, GSH binding does appear to induce

a local ccaformadonal change which is translated through the protein causing Cys45 to

become buried in the molecule.

3.3 BROMOSULPHOPHmALEIN AS A LIGAND FOR pGSTl?1-1

3.3.1 Bromosulphophthaleln binding

BSP binding to GSTs have been extensively studied (Satoh et al., 1991; Bhargava and

Dasgupta, 1985; Clark and Carrol, 1986; Jakobsen et al., 1979). It has been found to

behave as both a non-substrate as well as a substrate for certain isoenzymes (Kosower, 1976;

Habig et al., 1974; Satoh et al., 1991).

Do these ligands bind the active site of the protein as their primary site? Do they inhibit the
enzyme? Is there a common binding site for non-substrate ligands in pGSTPl-l? Does the
binding of this ligand affect the conformation of the protein in any manner? These are but

a few questions, concerning the binding of this ligand 1'0 GSTP 1-1, that remain unanswered.

BSP binds the protein rather tightly (~=1.1JtM at pH 6.5; Figure 24). Its binding to the

protein was monitored by observing the quenching of the intrinsic tryptophan fluorescence

of the protein upon addition of the ligand. It is interesting to note that at pH 7.5, BSP's

affinity for pGSTP1-1 decreases two-fold (Kd=2.4JtM at pH 7.5; Figure 24).

Satoh et al. (1991) azso reported a pH dependence of nsp in its inhibition of the rOSTPl~1.

3.3.2 Acry!amide quenching in the presence of .nSF

Acrylamide quenching studies show a very small decrease in the quenching constant for

pGSTP1-l with increasing concentrations of BSP (Figure 25). The fraction of tryptophan

fluorescence in the enzyme available for quenching by acrylamide is also not altered
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significantly upon addition of BSP. Each monomer has only tWo tryptophan residues, Trp38
at the active site and Trp28 close to the active site in domain 1. Therefore, the above results

indicate that BSP does not bind close enough to either of the tryptophan residues in order to

markedly reduce its accessibility to acrylamide.

Wang et al. (1992b) has also observed that the anionic non-substrate ligand, haem, which

may bind to the same primary site as BSP) bound to a mutant form of rGSTAl-l where

Trp21 had been replaced by phenylalanine. They concluded that the tryptophan residue was

thus not involved in the binding of haem. Bhargava and Das upta (1988) however, found

ilie primary binding site of rGSTAl-l to be in domain 1 in ~ region extending from residues
,

16-49. It is therefor, possible that the primary binding site for ESP to pGSTP1-1 may also

be in domain 1 but not in close proximity to either of the tryptophan residues.

3.3.3 Enzyme activity in the presence of nSF
The activity of the enzyme with GSH and CDNB as substrates, was assayed in the presence

of BSP at pH 6.5 and at pH 7.5 (Figure 26). Initially, BSP had no (pffect on the activity of

the enzyme, however, after about lO~M (at pH 6.5) or 20l'M ,(at pH 7.S) of BSP, the
enzymes activity decreased rapidly. At these concentrations of 13SP, the enzyme is about

88% saturated with ligand according to the dissociation constants of BSP at the different pH

values.

These studies show firstly that the active site of the enzyme is not the primary binding site

for BSP since only after a certain concentration of ligand is the activity of the enzyme

affected. They also confirm the previous finding in this study of decreased affinity of BSP
for pGSTP 1~1 at pH 7.5. Therefore, more ligand is required to inhibit the enzyme at pH 7.5

than at pH 6.5.

Finally, the results suggest that pGSTPl-l has more than one binding site for BSP and that

after saturation of the primary site, BSP binding partially interferes with the access of one

of the substrates to the active site or induces a conformational change at the active site of the

protein. As mentioned above in section 1.::i.3, Jakobsen et al. (1979) found that at low

concentrations of BSP, it bound to a high-affinity primary binding site on rGSTM1-1,

whereas at higher concentrations of the ligand a second low-affinity site appeared to be

present. Satoh et al. (1991) has also previously reported two anion binding sites per
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monomer of rGSTP1-1, one being of high affinity, and unrelated to the active site and the
other being of low affinity but having a close relatibo~hip with the active site. In addition,
he suggested, that the insensitivity of the enzyme to, yet high affinity for, various dye
inhibitors, such as BSP, bilirubin and haematin are the same properties responsible for
resistance in cancer cells. They provide for the s6avenging of non-substrate ligands
especially upon the administration of drugs and carcinogens. It is also possibly for this

reason that the Pi class is the isoenzyme form often selected for and found in elevated
quantities in tumours, serving as preneoplastic cell markers (Coles and Ketterer, 1990; Satoh
et at., 1991).

As mentioned above in section i.s.s :ESP not only behaves as a non-substrate ligand to
GST, but has also been used as a substrate fo~~class Pi and class Mu isoenzymes (Satoh et

al., 1991). Very low activity, however, was observed in these enzymes when using BSP as
a substrate whereas no detectable activity could be observed for the Alpha class isoenzymes.
This is possibly a result of the extra helix aI in the Alpha class enzymes which forms an
additional wall in the H~site of the t;A~,;.!.ynleand possibly becomes an obstacle to the biilding
of SSP to the H-site.

These results strorl~>:://suggest that the active site is indeed not the primary binding site, but
is possibly a second low affinity binding site. The latter has however not been
experimentally establishe].

3.3.4 Meisenheimer complex formation

The alteration of the Meisenheimer or e-complex levels upon ligand binding serves to show
whether or not a ligand affects the active site of the enzyme. The dissociation constant of the
e-complex for pGS1'Pl ~1 in the aqueous solution is about ~5471(M (reciprocal of the formation
constant (Figure 27). A decrease in the Meisenheimer complex, for example, would suggest
either that the ligand itself binds to the active site, displacing the e-complex, or induces some
sort of conformational change in the protein that would force the e-complex out of the active
she.
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Glutathione sulphonate, a GSH analogue, displaces the Meisenheimer complex because it

binds to the G~site on the enzyme.

The formation of the o-complex in the pGSTP 1~1 crystal was demonstrated when the colour
of a crystal, soaked with G.,H and TNB, changes from colourless to roo-orange (Figure 28a).

I.!

Upon the addition of ImM glutathione sulphonate to the crystal the e-complex was displaced

and the crystal once again became colourless. Previous researchers (Nishihira et al., 1992a)

have suggested that the conformation of the protein in solution and in the crystal may be

different. However, the. above results show that the crystallized form of the enzyme is

catalytically competent and, therefore, is highly likely to be in the same conformation as that

of the enzyme in the aqueous solution.
Figure 28b shows how increasing amounts glutathione sulphonate reduces the absorption

spectrum for the e-complex in aqueous solution. The addition of lOO!,M of GSH sulphonate

(96% saturation of the enzyme), displaced about 40% of the e-complex from the active site

(Figure 29).

3.3.4.1 e-eomplex and BSP

The interaction of lOO!,M BSP with the enzyme in solution (98-99% saturation of the

enzyme) resulted in a 35% decrease of the a-complex from the active site at pH 6.5 and z.
20% decrease at pH 7.5 (Figure 29). A surprising observation, is the steady decrease in the

e-complex which OCCUfS from the lowest ligand concentration.

If there were two unrelated sites on the enzyme for nsp, one would expect a decrease in the

Meisenheimer complex only after the primary site was saturated as observed in the activity

assays with aSH and CDNB in the presence of BSP. The conclusion that can be derived

from this study is that BSP does have an em",c\. on the active site of the enzyme using the C1~

complex as a probe, whether it be an induced conformational change or its secondary binding

site. It is also interesting to note that at pH 7.5 the effect of BSP on the active site is

reduced. This is in agreement with the ligands reduced binding affinity at this pH.

3.3.5 Size-exclusion HPLC

The elution profiles ofpGSTP1-l in the absence or presence ofBSP from the size-exclusion
column were identical (Figure 30).

This is a clear indication that a gross conformational change, such as the dissociation of the
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dimeric protein, did not occur when nSF bound to the protein.

Furthermore, the absence of a shift in the maximum emission wavelength of the protein's

fluorescence upon addition of saturating concentrations of BSP also suggests that no major

conformational change occurs when BSP binds the enzyme.

3.3.6 Cys45 modification by DTNB

As mentioned above in section 1.2.6, when GSH binds to pGSTP1-l it appears to induce a

small local conformational change which is translated through the protein and results in the

burial of Cys4S into the protein molecule. Cys4S is located in .domain 1 between helix 0:2
and strand 63. In the uncomplexed enzyme, the thiol group of Cys45, is exposed to the

solvent and is highly reactive. It can therefore be chemically modified by 5,5'-dithiobis(2-
nitrobenzoate) (DTNE) as shown in Figure 19. In the presence of GSH analogues (such as

0803"), however, J reaction with DTNB is retarded because of the burial of Cys45.

However, because the entire system is in a dynamic equilibrium with the GSH analogue,

Cys45 is continuously fluctuating between buried and exposed states. When it is exposed,

and is irreversibly chemically modified, the adduct becomes too large to be buried again and

the enzyme loses its activity because it loses its ability to change into ~heenzymatically active
conformation.

As shown in Figure 31, the presence of glutathione sulphonate (GS03") retards the reaction

between the thiol group of Cys45 and DTNB. This is to be expected assuming that OS03",
a competitive inhibitor', binds the protein molecule by a similar induced-fit mechanism as

does GSH.

In the presence of 5p.M BSP (76% saturation of the enzyme) however, the reaction rate for
the chemical modification of Cys45 remained unchanged (Figure 31). It is thus clear that

BSP binding to the protein does not have any influence on the exposure of Cys4S and does

not induce the same conformational change on the protein as does GSH.

3.3.7 BSP binding in the presence of GSH

It is interesting to note that in the presence of GSH1 the affinity of BSP for the protein

increases about two-fold (Figure 32), A similar observation was also made by Caccuri et al.
(1990) when they observed that the affinity of haem for the class Pi placental isoenzyme also
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increased in the presence of GSH. These results are in accord with the fact that the GSTs
are detoxification proteins with the ability to bind a wide range of non-substrate ligands and
yet are always saturated by GSH in the cell 'due to the high intracellular concentrations of
GSH (l-lOmM). It is possible that the induced-fit mechanism for GSH bindf.X\gwhich results
in the catalytically functional conformation of the protein is also the preferred conformation

for the binding of various non-substrate ligands.

3.4 8-ANILINO,.1-NAPHTHALENE SULPHONIC ACID AS A LIGAND FOR

pGSTPl-l

3.4.1 ANS binding

The binding of ANS to pGSTPl-l was observed by two different fluorescence methods.

Firstly, the enhanced fluorescence of ANS upon binding to the enzyme was monitored

(section 2.6.1) and secondly the quenching of the intrinsic tryptophan fluorescence of the
protein was monitored (section 2.6.2) upon ANS binding. The dissociation constants
obtained for the different methods were similar (i7.1I-'M for the fluorescence enhancement
procedure (Figure 33), and 11.1JtM for fluorescence quenching (Figure 34». Using the

fluorescence enhancement procedure, the ligand \Dtein ratio decreased progressively at
increasing concentrations of the protein. This procedure is therefore used in monitoring

ligand binding to the primary binding site of the enzyme exclusively. Nishihira et al.
(1992a) obtained a dissociation value of 15J.tM for a class Pi isoenzyme, also using
fluorescence enhancement of ANS as a technique.

ANS emits at a maximum wavelength of 550nm when it is not bound to GST. However,

when it does bind a hydrophobic region in the protein, a blue shift to 480nm is observed in
the maximum emission wavelecgth of ANS (Figure 35).

Quenching of tryptophan fluorescence by ANS occurs as a consequence of a transfer of

excitation energy from tryptophan to ANS. This is possible because of the overlap of the

emission spectrum of the protein's tryptophan residues (donor) and the absorption spectrum
of ANS (acceptor) (Figure 17). The efficiency of the energy transfer was estimated to be
about 56% (Figure 36). Should tryptophan be involved in the binding of ANS to its primary

site, then the energy transfer would be expected to) be much greater.
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Therefore, the decrease in the fluorescence of .;'le protein is not the result of a major
conformational change induced by the binding of ANS, as suggested by Nishihira et al.
(1993) and described below I but rather as a result of an energy transfer between the protein
and the ligand. Furthermore, the absence in a shift of the maximum em>";ion wavelength
of the protein in the presence of ANS also indicates that no gross conformational CklliuL;l,:;

occur when ANS binds the enzyme.

3.4.2 Acrylamide quenching in the presence of ANS
The quenching by acrylamide of the protein's tryptophan fluorescence was not affected by
the presence of ANS (Figure 37). The quenching constant as well as the fraction of
aecessib.e tryptophan fluorescence remained essentially unchanged in the presence of ANS.
This result suggests that ANS, like BSP, does not bind to a region in close proximity to
either of the tryptophan residues.

3.4.3 o..complex and ANS

The interaction of 100J,tM ANS with the enzyme complexed with the Meisenheimer complex
(85% saturation of the enzyme) resulted in less than a 10% decrease in the a-complex
(Figure 29). This result indicates that ANS has a very small effect on the displacement of
the o-complex and hence on the active site.

3.4.4 Cys45 modification by DTNn in the presence of ANS
The presence of 100J,tM ANt) (85% saturation of the enzyme) did not affect the rate of the
reaction between DTNB and Cys45 (Figure 31). ANS binding to the protein, therefore, does
not influence the exposure of Cys45 and does not induce the conformational changes on the
protein as does GSH or its analogues"

Nishihira et al, (1993) reported that upon the addition of ANS to a class Pi OST, rGSTP1~1,

the B-sheet content decreased from 34.0% to 5.2% and that the a-helix co-itent increased
from 25.2 % to 38.1%. If this were true, then a near-complete disruption of domain 1 would
OCCUi'. This would be observed in a shift in the maximum emission wavelength of the protein
upon binding to ANS. Addition of ANS would also result in an increased or decreased
exposure of the tryptophan residues found in domain )1 <1 which would be detected using
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acrylamide quenching. Furthermore, the a-complex: in the active site of the enzyme would
be completely displaced in the presence of AKa. ANS, however; was found to have very
little, if any,' effect on the protein's structure at saturating concentrations of the ligand.

3.4.5 ANS and liSP competition ft'orthe same pi'muley binding site

Fluorescence studies have shown that nsp and ANS share a common primary binding site
in pGST.Pl ..1 (Figure 38). Previous researchers have also shown a common site for BSP and
bilirubin in rGSTA1 ..2 (Bhargava and Dasgupta, 1983; Boyer, 1986), and for haem and
bilirubin in the class Pi placental enzyme (Caccuri et al., 1990). It is thus possible that
GSTs have a single site which accommodates a wide variety of anionic non-substrate ligands.

," .' 'I 'Nishihira et all (1992 a.c) determined the primary tinding: ~1' "4 "l't'Oe t11~'sameas that,
i

for fatty acids and bilirubin in a class Pi enzyzllc" They CI .. ,.~~,:, t~;'aiteis in domain
2 in the ~~gion 6£ Cys-169. They then proposed a diff(:d'Ii.. »~n f,,?W,e' primary binding
site for ANS ~~.the hydrophillic/amphipatl,' .. V~shap;:-rl;Cr'lV~.tyht the sub'.m interface of thf!

) .
protein molecule (N.isnihira e.' al., 1993).

However, the results found in this study, which seem 1(0 be in agreement with those of
.l~hargavaand Dasgupta (1988) in that primary blnding site shared by ANS and BSP, appears
\

t~~be in domain 1 of pGSTPl-l but not in the vicinity of either of the tryptophan residues.
\,
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3.5 CONCLUSIONS

According to the data described in this work, it can be concluded that neither nsp nor ANS

induce gross conformational changes in pGS'TPlwl upon binding to the protein. The two

anionic ligands share a common primary binding site which is not the active site, but is
probably also located in domain 1 of the protein. ANS does not appear to exert any

significant effect on the active site. On the other hand, BSP binding to the enzyme does have

an effect on the active site of the protein molecule, especially after saturating the primary site
';

for the ligand; ,It has not been established whether this effect is a resu't of a local

conformational change in the active site or whether this site is a secondary binding site for

BSP.
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