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Abstract

The Travelling Salesman Problem (TSP) is an important NP-hard combinatorial optimi-

sation problem that forms the foundation of many modern-day, practical problems such

as logistics or network route planning. It is often used to benchmark discrete optimisa-

tion algorithms since it is a fundamental problem that has been widely researched. The

Flower Pollination Algorithm (FPA) is a continuous optimisation algorithm that demon-

strates promising results in comparison to other well-known algorithms. This research

proposes the design, implementation and testing of two new algorithms based on the

FPA for solving discrete optimisation problems, more specifically the TSP, namely the

Discrete Flower Pollination Algorithm (DFPA) and the iterative Discrete Flower Pol-

lination Algorithm (iDFPA). The iDFPA uses two proposed update methods, namely

the Best Tour Update (BTU) and the Rejection Update (RU), to perform the iterative

update process. The two algorithms are compared to the Ant Colony Optimisation’s

(ACO) MAX−MIN Ant System (MMAS) as well as the Genetic Algorithm (GA)

since they are well studied and developed. The DFPA and iDFPA results are signifi-

cantly better than the GA and the iDFPA is able to outperform the ACO in all tested

instances. The iDFPA with 300 iterations was able to achieve the optimal solution in

the Berlin52 benchmark TSP problem as well as have improvements of up to 4.56% and

41.87% compared to the ACO and GA respectively. An analysis of how the RU and

the annealing schedule used in the RU impacts on the overall results of the iDFPA is

given. The RU analysis demonstrates how the annealing schedule can be manipulated

to achieve certain results from the iDFPA such as faster convergence or better overall

results. A parameter analysis is performed on both the DFPA and iDFPA for differ-

ent TSP problem sizes and the suggested initial parameters for these algorithms are

outlined.
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Chapter 1

Chapter 1: Introduction

The Travelling Salesman Problem (TSP) is a discrete combinatorial optimisation

problem that has been proven to be NP-hard meaning that it cannot be solved in poly-

nomial time. The TSP is significant as it is the fundamental underlying problem in

many real-life applications such as vehicle routing [1], logistics and planning [2] as well

as manufacturing of microchips and other circuitry [3]. Different variations of the basic

TSP constraints allow for a large variety of applications to be optimised. The TSP is

often used to benchmark new optimisation algorithms against other optimisation al-

gorithms [4] since it is a fundamental problem that has been widely researched. The

TSP is easily stated and understood which allows for the algorithm’s behaviour to be

observed without being obscured by too many technicalities [5]. The TSP is a standard

benchmark that allows for efficient algorithms to be developed and benchmarked for a

variety of other problems by altering and introducing new constraints to fit specific cri-

teria [4, 5]. It is widely studied and commonly used as a benchmark problem, therefore,

allowing for new algorithms to be comprehensively compared to existing, well-developed

algorithms.

There are two main types of optimisation algorithms namely optimal and heuristic

algorithms. Optimal algorithms find the best solution to a specific problem by ex-

ploring all the possible outcomes of the problem. Heuristic algorithms, unlike optimal

algorithms, find a solution amongst all possible solutions without the guarantee that

the optimal solution will be found. Nature-inspired algorithms mimic flexibility and ro-

bustness of the natural processes [6] in order to approach the optimal solutions. These

algorithms are beneficial as they are able to adapt to a variety of problem sets without

intervention. A variety of nature-inspired heuristic algorithms, including the Genetic

Algorithm (GA), Ant Colony Optimisation (ACO) and Simulated Annealing (SA), have

been successfully used to solve optimisation problems including the TSP.
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The Flower Pollination Algorithm (FPA) is a continuous optimisation heuristic al-

gorithm, implemented in 2012, that mimics the natural flower pollination process. It

has shown good results compared to existing algorithms such as the GA and Particle

Swarm Optimisation (PSO) [7] for a variety of continuous optimisation problems. The

FPA was able to achieve results 82% and 61% better than the GA and PSO respectively

for the Shubert test function with a 100% success rate on solving the function compared

to the 89% and 92% for the GA and PSO respectively [7]. Similar results were seen for

the nine other continuous test functions [7]. A few discrete versions of the FPA have

been proposed for specialised discrete optimisation problems and initial results have

supported the notion that the FPA, with the random nature of the underlying Levy

Flight Distribution, provides a good basis for optimisation problems.

1.1 Research Question

“Can the Flower Pollination Algorithm (FPA) be implemented to generally deter-

mine a sub-optimal solution for discrete optimisation problems, but more specifically the

Travelling Salesman Problem? If so, how does it perform compared to existing solutions

as well as to the optimal solution?”

1.2 Research Significance

The significance of being able to create new heuristic algorithms that can successfully

optimise combinatorial optimisation problems to a better degree of suboptimal solutions

with less computational complexity allows for real-world applications of these problems,

such as transportation and logistics systems, to be made more efficient. An example

would be for public transportation, by providing a bus driver with shorter routes not

only does the bus company save money through lower fuel consumption and shorter

travel times but the consumer will benefit from having shorter travel times. In the

manufacturing of circuit boards, by being able to program a machine to be milliseconds

faster on an individual board leads to significant time savings overall. These are two

real-world examples of the direct application of the TSP to demonstrate the significance

improved algorithms can have, however, the TSP is just a benchmark problem and

therefore applying the new algorithm to other discrete optimisation problems has the

potential to lead to further applications in real-world scenarios.

2
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1.3 Scope and Research Objectives

The main focus of this research is to develop a discrete version of the FPA to solve

the TSP and, more generally, discrete optimisation problems.

The first objective is to identify possible areas of the TSP and nature-inspired heuris-

tic algorithms that could be improved upon in order to create a new discrete optimisation

algorithm.

The second objective of the research is to design and implement a discrete version of

the FPA. This objective comprises of designing and implementing both a single iteration

discrete FPA (DFPA) as well as an iterative DFPA (iDFPA).

The final objective of the research is to compare the algorithms against popular,

well researched and benchmarked algorithms. This is done by running simulations of

both the DFPA and iDFPA as well as the Genetic Algorithm (GA) and Ant Colony

Optimisation (ACO)MAX−MIN Ant System (MMAS) algorithms on a variety of

TSP problem sets and performing a comparison. These problem sets are different in

size as well as node orientation in order to compare the performance of the two new

algorithms with the two well studied and developed algorithms for a variety of types of

TSPs.

Sufficient information is provided about the existing algorithms, implementation of

the new algorithms as well as the simulation process for a reader proficient in the field to

fully understand all components of the research. Results of the comparisons, analyses

of the results, general parameter selection for the new algorithms as well as possible

future work are presented.

1.4 Research Achievements

In the research two algorithms, namely the DFPA and iDFPA, are successfully de-

signed, implemented and benchmarked. The DFPA is able to indicate the best perfor-

mance that can be achieved for a single iteration. The iDFPA uses “knowledge” gained

from previous iterations to iteratively improve the results and converge on a sub-optimal

solution.

In order to evaluate the algorithms, they are compared to well-known and researched

algorithms, namely, the GA and ACO. The DFPA and iDFPA are significantly bet-

ter than the GA with respect to final sub-optimal TSP value as well as the speed of

3
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convergence. The iDFPA was also able to outperform the ACO in all tested instances.

The iDFPA consists of two iterative methods, namely, the Best Tour Update (BTU)

and Rejection Update (RU), an analysis of the RU’s acceptance ratio and how it affects

the overall result has been done and it was found that the annealing schedule can be

adjusted in order to manipulate the results of the iDFPA. For example, the annealing

schedule can be altered to give a faster-converging result with the trade-off being that

the result is not necessarily the best sub-optimal route.

A parameter analysis was done for the new algorithms and shows the suggested

initial parameter settings that should be used for various problem sizes in order to

achieve the decent results. These are just initial suggestions where specific optimisation

of parameters would need to be done for the specific problem.

1.5 Dissertation Organisation

The following section provides an overview of this masters dissertation in order to

outline to the reader the structure of the research and what can be expected.

Literature Review (Chapter 2)

This chapter provides a literature review for the TSP, the TSP variations and the

types of algorithms that can be used to solve these problems. Optimal and heuristic

algorithms are discussed with a special focus on nature-inspired algorithms. The FPA

continuous optimisation algorithm, as well as recent research into the extensions and

discrete applications, have also been investigated as it forms the basis for the rest of the

research.

Background (Chapter 3)

The chapter presents detailed information about some existing methods and algo-

rithms, and their implementations used to solve the TSP which were used to develop

the DFPA and iDFPA. The GA and ACO’s implementations that are used for the

comparison with the DFPA and iDFPA have also been discussed.

4
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Discrete Flower Pollination Algorithm for solving the Symmetric Travelling

Salesman Problem (Chapter 4)

This chapter is based on a paper which has been submitted to the IEEE Transactions

on Cybernetics is presented in this chapter. The paper details the full implementation

of the two proposed algorithms, namely the DFPA and iDFPA. The results of the

comparative study done on these two algorithms with the Genetic Algorithm and the

ACO’s MMAS through various simulations are also presented. Finally, the chapter

gives a generalised parameter selection for using the algorithm and an analysis of the

annealing schedule utilised for the iDFPA.

Conclusion (Chapter 5)

The final chapter provides a conclusion to the research which includes a summary of

the research, the achievements made as well as possible future work that is identified

for further research.
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Chapter 2: Literature Review

2.1 Travelling Salesman Problem

The TSP was first defined and studied by mathematician Karl Menger in Vienna in

1930 [2], earlier mentions of the problem had been made in the 1800s but no formal

mathematical definition had been formulated until Menger. Flood of Princeton Uni-

versity was the first mathematician to popularise the topic of TSP to his colleagues

at the RAND Corporation in the 1940s [8]. Solutions to the TSP appeared from the

1950s onwards and in 1972 Kamp proved that the TSP was an NP-Hard problem since

it could not be solved in polynomial time [8]. An NP-Hard or NP-Complete problem is

classified as a problem which cannot be solved in polynomial time, they usually consist

of combinatoric optimisation problems such as the TSP [9]. The TSP has become a

classic combinatorial optimisation problem [10] with modern researchers continuously

attempting to improve on existing results by creating new algorithms or modifying pre-

vious algorithms. The appeal of solving the TSP comes from the fact that the problem

is easily formulated and understood but a general solution has not been found and is

extremely difficult to obtain [2].

The Travelling Salesman Problem is a classic NP-Hard or NP-Complete problem [11]

which requires a minimum distance between nodes to be determined [9, 12, 13]. The

TSP consists of n nodes with a complete graph of distances between nodes, the objective

is to find the minimum distance route from any node through all other nodes and back

to the starting node where each node is visited exactly once. Fig. 2.1 shows a simple

TSP example as well as a valid route in the TSP [14].

The TSP has a variety of applications in a vast number of fields such as logistics [2]

and vehicle routing [1], network routing, manufacturing of microchips and circuitry [15]

as well as job scheduling [3]. It is a fundamental TSP problem and is seen as a sub-

problem in many other combinatorial optimisation problems, for example, genome se-
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Figure 2.1: Five-node TSP complete graph and an example of a valid path.

quencing [2], and therefore by being able to solve it, even sub-optimally, faster and to

better accuracy helps to improve the results of many real-life tasks.

There are several types of TSP problems including symmetric TSP, asymmetric TSP

and TSP with multiple visits (TSPM) [9, 14]. The TSPM is the same fundamental

problem except the salesman is not constrained into visiting each node only once but

merely has to visit each node at least once. Solving the TSP is useful because a number

of practically relevant problems can be shown to be equivalent to an altered version of

it. Some other variants of the TSP include the multiple Travelling Salesman Problem

(mTSP), the Colored Travelling Salesman Problem (CTSP), the Probabilistic Travelling

Salesman Problem (PTSP) and Dubins’ TSP. The mTSP assumes that there are several

salesmen that start at different nodes, have to complete a route and return to their

starting node with the requirement being that each node has to be travelled to exactly

7
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once and the overall combined route distance needs to be minimised [16]. The mTSP

has many real-life applications such as optimising school bus routes [16]. The CTSP is

an extension of the mTSP where the salesmen have both individual tasks but shared

tasks as well [17], this type of problem occurs when an overlap of the routes is required

for example in multi-machine engineering systems [17]. The PTSP has applications

in science and engineering when the performance is affected due to the uncertainty of

events [18]. The PTSP helps with modelling situations such as job sequencing when

there is changeover expense, e-commerce for home delivery and stochastic services that

involve demand pickup and delivery [18]. Dubins’ TSP is an extension of the TSP that is

used for real-time surveillance applications in order to map routes to avoid line-of-sight

surveillance (i.e. nodes with a radius) [4].

2.2 Types of Algorithms for TSP

There are two main types of algorithms that are used to solve the TSP, namely

optimal algorithms and heuristic algorithms. Optimal algorithms such as brute force [3],

branch-and-bound [3], dynamic programming method [19], cutting plane method [19]

and integer programming method [20] have been implemented to find the optimal tour

(solution) for the TSP.

The brute force method involves computing and evaluating all tour permutations

of the TSP and determining which tour has the minimum distance. This method is

guaranteed to give you the optimal solution but it is computationally expensive since

every tour in the problem domain needs to be evaluated in order to determine the

optimal solution. For example for a TSP with 10 nodes, there are 1
2
(10− 1)! = 181440

possible tours and all of these tours need to be evaluated in order to determine the

optimal solution.

The branch-and-bound method uses an estimated upper bound to determine which

branches of the problem solution can be ignored since the optimal solution is guaranteed

not to be included in those branches [12, 21]. The algorithm calculates the distance of

the branch as it descends and once the bound has been reached the algorithm stops on

the current branch at that point and then starts on a new branch [12]. The main issue

with this method is that the upper bound is difficult to estimate for the TSP and either

is too strict which results in the optimal solution being ignored or too lenient resulting in

8
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a similar issue as the brute force method where the method is computationally expensive

due to the number of solutions being computed.

All these optimal algorithms have a common downfall in that the increase in com-

putation time as the number of nodes increases make them impractical for real-life

applications. This downfall has led to an increase in the research into heuristic algo-

rithms which can solve the TSP sub-optimally within a reasonable amount of time, a

trade-off between computational expense and optimality of the result takes place when

considering these types of algorithms. Commonly used heuristic methods include nearest

insertion method, double minimum spanning tree [20] and nearest neighbour (greedy)

algorithms [22].

The simplest type of heuristic algorithm is the greedy or nearest neighbour algo-

rithm [22]. The algorithm determines a sub-optimal solution to the TSP problem by

randomly selecting a starting node and then developing a tour by selecting the next

node based on which of the remaining nodes is the closest to the current node, i.e.

which node has the shortest distance from the current node [13].

All of these common heuristic methods have, however, failed to achieve TSP solutions

that have a sufficient degree near to the optimal tour distance [20]. Therefore research

focus moved to nature-inspired algorithms in order to overcome this problem with the

common heuristics. They are of particular interest for optimisation problems, such as

the TSP, since these nature-inspired algorithms adapt to changes in the environment

automatically.

2.3 Nature-Inspired Heuristic Algorithms

Many modern heuristic algorithms have been inspired by natural processes or nat-

urally occurring phenomenon [23]. Nature-inspired algorithms are appealing since the

utilised processes have been optimised naturally through evolution which provides a

good starting platform for solving difficult problems. This section presents a variety

of nature-inspired algorithms and their benefits as well as the new Flower Pollination

Algorithm (FPA) that becomes the main focus of this research.

Swarm intelligence algorithms attempt to exploit the collective problem-solving abil-

ities exhibited in naturally occurring swarms [24], such as bees and ants, as an optimisa-

tion property. These algorithms mimic the self-organisation, flexibility and adaptability

9
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of the swarms in order to optimise the specified problem [6, 24]. Swarm intelligence

has led to the creation of algorithms such as the well-known Ant Colony Optimisa-

tion (ACO) [5] and Particle Swarm Optimisation (PSO) [23] to the lesser known Bee

Colony [4, 25], Firefly [26], Wasp [27], Fruit Fly [28], Wolfpack [29, 30] and African

Buffalo algorithms [31].

The ACO provides a common framework under which ant colony algorithms are able

to be developed [24]. The algorithms use the concept of pheromone trails as a form

of communication between ants to optimise the problems [32]. The optimisation occurs

based on the experience gained through the altering of the pheromone trail levels as the

life cycles progress [32].

The Bee Colony algorithms use behaviour of bees and their interactions in order to

solve combinatorial optimisation problems. Some algorithms use the identification of

nectar sources and the interactions of the bees and then the solution is obtained by

analysing the intensity of the bee interactions at nectar sources [33]. Others use the

reproduction process of the bees for the optimisation [33].

Other nature-inspired algorithms that have been developed for optimisation problems

include Neural Networks [34], Simulated Annealing (SA) [35, 36], Genetic Algorithms

(GA) [11, 37–39] and the River Formation Algorithm [23]. GA algorithms are one of the

most popular nature-inspired algorithms that use genetic science and natural selection

in order to simulate natural evolution in order to solve optimisation problems [38]. SA

algorithms mimic the annealing process of metal in order to optimise problems [35].

They have been shown to achieve good optimisation results in numerous optimisation

problems as they allow for a broad range of solutions to be explored before converging

on a solution.

Yang has taken a special focus in developing nature-inspired heuristic algorithms with

some notable ones including the firefly algorithm [26] as well as the cuckoo search [40].

In 2012, the FPA was developed for continuous optimisation problems [7], this algorithm

is described further in Section 3.2. Extensions of the FPA include applying the FPA to

multi-objective problems [41] as well as the Binary FPA which was applied to feature

selection on a binary lattice search space [42]. Many modifications have also been made

on the FPA such as adding chaos theory in the Improved FPA with Chaos algorithm

which was used to solve definite integrals to evaluate distribution functions [43]. Other

10
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modifications include multiple hybridisations with GA, PSO or K-Means versions of the

algorithms [44]. Some research into discrete FPA algorithms has been done specifically

for the Graph Coloring Problem [45] and Resource Constrained Problems [46]. In both

discrete cases, the results demonstrated that for their specific applications the discrete

algorithm was able to outperform the majority of comparison algorithms.
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Chapter 3: Preliminaries

3.1 Travelling Salesman Problem

The TSP is a combinatorial optimisation problem that is deceptively easy to state and

extremely difficult to solve. The TSP comprises of n nodes or cities where the objective

is to find the shortest tour distance for a “salesman” to travel from any starting node

through every other node exactly once and then return to the starting node. As the

number of nodes increases so the number of possible permutations increases factorially.

The problem has been proven to be an NP-Hard problem meaning that it cannot be

solved in polynomial time.

The TSP can be defined mathematically using graph theory as G = (V,E,D) where

V is the set of nodes, E is the set of edges and D is the weight of the edges [9]. For

the traditional TSP, all elements of E have a corresponding element in D since it is a

complete weighted undirected graph. The object of TSP is to find a solution from the

solution set such that the total cost is minimised as given in (1) [11, 14].

argmin[d(vn, v1) +
n−1∑
i=1

d(vi, vi+1)] (1)

Where:

n is the total number of nodes in the problem set;

vi is the specific node at i;

d(vi, vj) is the distance/weight from node i to j.

In the symmetric TSP, the distance from node X to Y is the same as from Y to X.

This is the most fundamental form of the TSP and has 1
2
(n− 1)! possible solutions. In

asymmetric TSP the distance from node X to Y is different to the distance from Y to

X, this therefore has (n−1)! possible solutions. In this research the symmetric TSP will

be focused on and all results will be based on symmetric problem sets. The asymmetric

12



Chapter 3

TSP will not be considered in this research and will be considered future work.

3.2 Flower Pollination Algorithm

The Flower Pollination Algorithm (FPA) is an optimisation heuristic algorithm de-

veloped by Yang in 2012 [7]. The FPA is designed for continuous optimisation problems

such as the Ackley, de Jong and Easom’s functions. The results presented by Yang

showed that the FPA is more efficient than the GA as well as the PSO algorithm for a

classic pressure vessel design problem [7].

The FPA is based on the natural process of flower pollination where there are biotic

pollination (cross-pollinators) and abiotic pollination (self-pollinators) [7]. Biotic polli-

nation is aided by pollinators such as bees and birds and can occur over long distances.

Abiotic pollination occurs either within the flower itself or in the direct vicinity of the

flower.

The following rules are applied in FPA in order to optimise the solution [7]:

1. Biotic pollination is a global process and therefore provides the possibility of the

solution jumping from a converging state to a less favourable one with the intention

of finding a better solution. This is done using the Levy Flight Distribution, as

shown in Fig. 3.1. The Levy distribution is used since it characterises the natural

flight of insects and birds. Close trips are therefore favoured but there is still a

possibility that a long distance flight could be made, this is because of the heavy

tailed nature of the distribution [47].

2. Abiotic pollination is the local process where the solution continues to converge

based on its current trajectory, this is done using a uniform distribution.

3. A switching probability, ρ ∈ (0, 1), controls the pollination process between global

and local pollination. Local pollination will make up the significant portion of the

pollination process because it naturally occurs more often.

For optimisation pollination, the process can simply be understood as two pollination

operations, local and global, that are performed interchangeably [48]. Each individual

flower is considered a solution to the problem. The constancy of each flower (solu-

tion), which is defined as the likelihood of a pollinator choosing the flower, is used as
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Figure 3.1: Probability Density Function of the Levy Flight Distribution where λ = 1.5.

the flower’s fitness. The global pollination operation allows pollinators to travel long

distances to pollinate flowers with higher constancies [41, 48]. The local pollination

operation constrains the pollination within a limited range [41, 48].

A significant assumption made in the FPA is that each plant can only have one flower

which simplifies the implementation. This assumption allows for a set of solutions,

{x1,x2, . . . ,xm}, where each solution xi = {x1
i , x

2
i , . . . , x

N
i } is a “plant” in the global

sense and represents a set of solutions to the problem for the N iterations [7]. The

solutions in xi are set to random initial solutions and the current best g∗ is identified.
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The switching probability, ρ, is defined from a uniform distribution (0,1). For each of

the solutions in the solution set a random real number, r ∼ U(0, 1), is generated. If

r > ρ the solution is updated according to

xt+1
i = xti + L(g∗ − xti), (2)

where xt+1
i and xti are the new and current solution in xi respectively. Here g∗ is the

current best solution. The pollination strength L, which is essentially a step size, is the

Levy Flight Distribution variable defined as:

L(s) ∼ λΓ(λ)sin(πλ
2

)

πs1+λ
,

where Γ is the standard Gamma function, s is a large step size such that s � s0 > 0,

and λ is a constant chosen to be 1.5 for the FPA [7]. The initial step size s0 = 0.1 as

specified in [41].

Otherwise, it is updated according to

xt+1
i = xti + ε(xtj − xtk), (3)

where ε is a random step size drawn from a uniform distribution and xtj and xtk are two

different solutions chosen at random from the current iteration’s solutions.

Once all the new solutions from the current iteration have been determined, each

solution xt+1
i is compared to the previous solution xti, if it is better then it is updated,

otherwise, it stays the same. The g∗ is updated to the new current best and the process

is repeated for a predefined number of iterations.

The combination of the local and global pollination with the random switching be-

tween the two allows for a wide variety of the problem space to be explored, increasing

the chance of achieving a good result and reducing the likelihood of falling into a local

optimum.

3.3 Genetic Algorithm

Genetic Algorithms (GAs) are the most commonly used optimisation algorithms.

They are based on the concept of natural evolution by employing a survival of the

fittest concept where only the stronger members of the population survive into a new
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generation [38]. Generally, GAs consist of the following steps in order to solve the

optimisation problems [37, 38]:

1. Encoding: The process of determining a method of encoding the population in

such a way as to represent the problem being solved. In the TSP, the “gene” of

an individual comprises of a sequence of numbers where each number represents

a node in the problem. The sequence, therefore, can only contain a number once

and must contain every number in order to meet the constraints of the TSP and

represent a valid solution. An example would be an individual with the gene

(1, 3, 5, 2, 4, 6) would mean that a solution to the TSP is to travel along the route:

1→ 3→ 5→ 2→ 4→ 6→ 1 .

2. Evaluation: An initial population, of size m, is selected by randomly generating

their starting city and using a greedy algorithm to determine a valid solution to

make up their gene. The fitness of each member of the population is then evaluated

according to (4). Once each member of the population has been evaluated, they

are ranked according to the fitness function from highest (shortest tour distance)

to lowest (longest tour distance).

fi =
1∑n

k=1 dk,k+1 + d1,k

(4)

Where:

fi is the fitness of the i’th member of the population (m);

n is the total number of nodes;

dk,k+1 is the distance from node k to k + 1.

3. Crossover is where strong members of the population are combined to create po-

tentially stronger new generations. Typically the two strongest members of the

current population are used to create two new members which will replace the two

weakest members of the same population. A variety of crossover methods which

have been designed for TSP are presented in [38]. The main issue with the GA

and TSP is that when the crossover is performed the new members have to be

valid solutions to the TSP problem which increases the complexity of generating

the new members.
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Partially matched crossover (PMX) is the most common crossover method for the

TSP which employs a two split method of creating the children. The parent genes

are divided into three parts by randomly generating two positions, the chromo-

somes in the middle section of the division represent the chromosomes which need

to be switched in order to create the children [49]. As shown in (5), the two posi-

tions are 2 and 5, the middle sections of the genes are swapped, as seen from the

parent to intermediate stage, after the swap the genes do not represent valid TSP

routes and therefore the duplicated nodes on the outside of the middle section are

swapped out with missing nodes, as seen from the intermediate to the child stage.

Parent 1 : (1, 3|5, 2, 4|6)

Parent 2 : (3, 6|4, 2, 1|5)

−−−−−−−−−−−

Intermediate 1 : (1, 3|4, 2, 1|6)

Intermediate 2 : (3, 6|5, 2, 4|5)

−−−−−−−−−−−

Child 1 : (5, 3, 4, 2, 1, 6)

Child 2 : (3, 6, 5, 2, 4, 1)

(5)

4. Mutation is where genes have a certain probability of being randomly altered to

provide an arbitrary path with the intention that premature convergence (local

optimum) is avoided.

Generally, in order to achieve decent results from the GA requires a large population

size and many generations are required. This requirement leads to a large simulation

which is typically computationally expensive and even then good results are not guar-

anteed.

3.4 Ant Colony Optimisation

The Ant Colony Optimisations (ACOs) are a set of algorithms which were proposed

by Dorigo and colleagues in the early 1990s [5]. The ACO is a type of Swarm algorithm

that is based on the pheromone based foraging of real ant colonies [50]. The ants

explore the search space for “food” and leave pheromones on the travelled path in
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order to indicate to other ants about the prospects of that path. As the “food” is

found and the ants return to the colony they update the pheromone level along their

path so that other ants can also find the “food”. As more ants follow the higher

pheromone level (shortest distance) paths, the evaporation of the pheromone on the

less travelled paths further emphasises the good route, allowing for the optimal path to

be explored further. It is through this process that the ACO algorithms can optimise

discrete optimisation problems by applying the finding technique of using pheromones

to determine the shortest path to the “food” source. This process is illustrated in

Figure 3.2.

The Ant System (AS) was the first proposed ACO algorithm. AS uses the process

of ants seeking the shortest path between the colony and a food source in order to solve

the optimisation problem [5].

The ants make decisions on which route to follow based on pheromone levels as well

as the distance of each connecting route between nodes. The probability of each route

is determined according to (6).

P k
ij =

[τij]
γ[ηij]

β∑
l∈Nk

i
[τil]γ[ηil]β

, if j ∈ Nk
i (6)

Where:

P k
ij is the probability of ant k choosing to take the route connecting nodes i and j;

Nk
i is the set of nodes not visited by ant k when at node i;

τij is the pheromone level of the route connecting nodes i and j;

ηij is the desirability level of the route connecting nodes i and j, typically 1
dij

where

dij is the distance or weight of the route;

γ, β are the parameters used to control the influence of τ and η respectively.

An initial population of ants, m, are created and randomly initialised to various start-

ing nodes in the TSP graph. Each ant chooses the next node to travel to using the

probability according to (6). This process continues until every ant has a complete tour

and then returns to its initial node [5]. The pheromone levels on the tour of each of

the m ants are updated according to (7). The pheromone update function includes an

evaporation factor which is used to decrease the level of the pheromone to discourage
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F
C

(a) Ants explore paths from the colony in order to locate food.

F
C

(b) Pheromone levels are updated along the individual paths taken from the colony to the
food.

F
C

(c) As the exploration continues, paths with higher pheromone levels (the thick dashed line)
are favoured by the majority of the ants but some of the lower pheromone paths (the dotted-
dashed lines) are still utilised infrequently.

Figure 3.2: A set of diagrams showing the process of ants exploring for food (F) and
updating pheromone levels along various paths until the shortest path is determined
between the colony (C) and the food source.

popular routes from being chosen in subsequent iterations [5].

τij → (1− α)τij +
m∑
k=1

∆τ kij, (7)

where α is the evaporation constant and ∆τij is the total distance of the ant’s path if

the arc(i, j) is included otherwise it is 0.

This select-and-update process is repeated either until the specified maximum num-
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ber of iterations is reached or the solution stagnates where there is no change in the

solution for a specified number of consecutive iterations [5].

Dorigo proposed other ACO algorithms that improve the results of AS as well as

the speed in which the solution is determined [5]. The Elitist Ant System places more

emphasis on the best-so-far solution by updating the pheromone levels using an extra

term e∆τ bsfij , where e is an arbitrary constant used to adjust the influence of the best-

so-far solution.

In the Rank Ant System algorithm, ants with better tours will have a greater influence

on the update process of the pheromone levels than those with worse solutions [5, 32].

The algorithm that was able to improve the most compared to the original AS was

theMAX−MIN Ant System (MMAS) which makes four main modifications to the

original AS algorithm in order to improve results which include [5, 32]:

1. Only the best-so-far route and the best current route are able to deposit pheromones.

2. To avoid stagnation from 1, the pheromone levels are bounded between a prede-

fined τmax and τmin.

3. The pheromone levels are initialised to τmax with a small evaporation constant to

promote the exploration rate initially.

4. The pheromone levels are reset to the initial values whenever the solution stag-

nates.

3.5 Simulated Annealing

Simulated annealing (SA) is an algorithm which is based on the physical process

of annealing which is used to find the low-temperature state of a material through

experiments [35, 36]. In 1983, Kirkpatrick, Gelatt and Vecchi formed the hypothesis

that large physical systems and combinatorial problems have similar behaviours and

therefore results from classical statistical mechanics could be applied to combinatorial

optimisation problems [36]. The Boltzmann distribution, P (∆E) = e−∆E/kbT , is used in

physical systems to describe the probability of configurations occurring. The Metropolis

Monte Carlo method is usually used to simulate the annealing process but Kirkpatrick,

Gelatt and Vecchi argued that since the temperature in the algorithm controls the

probability of accepting a longer tour length, the Boltzmann constant, kb, can, therefore,
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be ignored [35]. An annealing schedule is defined as a sequence of temperatures and

the corresponding times it takes for each temperature’s equilibrium to be reached, for

the TSP, the time is counted in iterations of the algorithm. There are several variations

which have been made to the SA algorithm for the TSP in terms of the search algorithms

used, but the fundamental concept remains the same.

The original SA Algorithm, as defined by Kirkpatrick, Gelatt and Vecchi, uses the

2-Opt search algorithm and follows the following steps [35]:

1. Randomly define a valid TSP route as well as the total route cost, define the

annealing schedule as S = {t1, . . . , tl} where t1 > t2 > . . . > tl, set i = 1.

2. One step of the 2-Opt algorithm is executed, as defined below, and the new route

cost, ∆C, is calculated. Determine P (∆C) ≡ e−∆C/ti and select a random real

number r ∼ U(0, 1).

3. If ∆C < 0 or r ≥ P (∆C) accept the 2-Opt new route and go to step 4, otherwise

reject the new route and go back to step 2.

4. If the equilibrium for ti has been reached, meaning that the maximum number

of iterations for the current temperature has been achieved, then increment i.

If i > l, end the algorithm.

The 2-Opt is a simple local search algorithm for TSP, proposed by Croes in 1958 [12],

which reorders a route so that the new route is still valid. The basic 2-Opt swap

algorithm is given in Algorithm 1 [13]. The route and two indices are given to the

2-Opt algorithm, the new route is comprised of the initial sequence (from the start to

the first index) of the original route. The middle Section (from the first index to the

second index) of the original route is then added to the new route in the reverse order

and finally, the end sequence of the route (from the second index to the end) is added

to the new route from the original route.
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Algorithm 1 2-Opt Search

Require:
s . A valid TSP tour.
i . The position of the first index.
j . The position of the second index.

1: function 2Opt(s, i, j)
2: st+1 = st[1]→ st[i− 1]
3: st+1 = st+1 + ReverseOrder(st[i]→ st[j − 1]) . Reverse the order of the nodes

between the two indices
4: st+1 = st+1 + st[j]→ st[end]
5: return st+1

6: end function
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Chapter 4: Discrete Flower Pollination Algorithm

for solving the Symmetric Travelling Salesman

Problem

The two algorithms, as well as the results and analysis, have been submitted as a

journal article to the IEEE Transactions on Cybernetics and this article is presented

in this chapter. The proposed Discrete Flower Pollination Algorithm (DFPA) and it-

erative Discrete Flower Pollination Algorithm (iDFPA) are described. The results and

analysis of the comparison between the DFPA, iDFPA, ACO and GA are done using

simulations on three problem sets. A single iteration in the form of the DFPA has

comparable results to the other multiple iteration algorithms and the iDFPA outper-

formed both the GA and ACO in terms of average minimum tour distance, best tour

distance and convergence speed. The reference to the paper is currently the following

until acceptance by the peer-review process:

R.D. Strange and L. Cheng, “Discrete Flower Pollination Algorithm for

solving the Symmetric Travelling Salesman Problem”, currently submit-

ted to the IEEE Transactions on Cybernetics for the peer-review process

as of 23/11/2016.

The main research idea was derived from a joint effort of R.D. Strange and Prof.

L. Cheng. The software implementation of the two new algorithms and the simulations

were fully coded by R.D. Strange. The journal article was written by R.D. Strange

under the supervision of Prof. L. Cheng throughout the research as well as with the

guidance through the journal article editing process.

23



Chapter 4

4.1 Discrete Flower Pollination Algorithm

The Discrete Flower Pollination Algorithm (DFPA) is a proposed algorithm based

on the natural pollination process as described in the FPA with the focus on discrete

optimisation problems such as the TSP. The algorithm is designed using the main

concept of a local and global search from the FPA with the multiple agent concept from

the ACO. The solutions are developed one node at a time, unlike the genetic algorithm

which determines a full solution and then attempts to improve the tour. The full DFPA

system flowchart including the improved iterative DFPA, as described in Section 4.2, is

given in Fig. 4.3.

Section 4.1.1 describes the full DFPA algorithm and Section 4.1.2 explains the im-

plementation of the local and global search algorithms utilised in the DFPA.

4.1.1 Algorithm Description

The algorithm requires an n×n distance matrix, D, to be developed for each problem

where n is the number of nodes in the problem. D has a diagonal of zeros and the

remaining elements, dij, representing the distance between the i’th and j’th nodes as

given in (8). For the symmetric TSP problem, the distance matrix will be symmetric

across the diagonal, dij = dji.

dij =

d(vi, vj) j 6= i,

0 j = i.
(8)

Similarly, an n × n cost matrix, C, is constructed using the inverse of the distance

matrix in order to calculate a path probability, where:

cij =


1
dij

j 6= i,

0 j = i.
(9)

There are m agents simultaneously developing independent solutions with the in-

tention of exploring all possible tours to determine the best tour. The algorithm uses

a switching probability, ρ ∈ (0, 1), to randomly switch between the local and global

search in order to determine which node to move to next. The algorithm builds the

tours using a Markov Chain like process, where the next node in a tour is globally or
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Figure 4.1: System flowchart of the DFPA algorithm.

locally attained using the probabilities from the current node.

Define a set of tours S = {s1, s2, . . . , sm} where si = (s1
i , s

2
i , . . . , s

n
i ) is an ordered

sequence (tour), appearing as a permutation of the set V = {v1, v2, . . . , vn}. First, let

V ′ = V where V ′ is a temporary set. s1
i is then randomly selected from V ′ as the initial

node for the solution and set the previous node vprev = s1
i and V ′ = V ′−{s1

i } as shown

in lines 4-9 of Algorithm 2.

To determine the rest of the elements in si, set j = 2, . . . , n, and for each j, a process

is used to determine the next node in the solution. Let |V ′| denote the cardinality of

set V ′. The normalisation constant A =
∑
∀vk∈V ′ cik, where vi is the previous node and

cik is determined from the remaining nodes in V ′. This process is shown in lines 11-12

of Algorithm 2. The probability of each node in V ′ is determined according to:

pij =
cij
A
. (10)

A random number r ∼ U(0, 1) is then generated. As can be seen in lines 15-22 of

Algorithm 2, if r is greater than ρ then the global search algorithm is used to determine

sji , otherwise, the local search algorithm is used, these algorithms are described in

Section 4.1.2. Finally, the temporary variables are updated according to V ′ = V ′−{sji}
and vprev = sji before incrementing j. Once all the solutions are determined for S, the

tour distance is evaluated for each of the elements of S and stored in a resulting set

d = {ds1 , ds2 , . . . , dsm}. The shortest tour distance ds∗ in d and the corresponding tour
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s∗ in S are chosen as the TSP solution for the algorithm. The complete algorithm is

given in Algorithm 2.

4.1.2 Local and Global Search Algorithms

Both the local and global search algorithms are based on the set V ′ introduced in

the last subsection. All the nodes in V ′ are re-ordered to generate a new set V̄ =

{v′1, v′2, . . . , v′|V ′|} such that p1 > p2 > . . . > p|V ′|, where pi is the probability of node vi.

Note it is assumed that pi 6= pj to avoid some technical ambiguities. The local search

uses a categorical distribution and the global search uses a discrete Levy distribution.

For the local search a subset, V ′′, of V̄ is obtained according to:

V ′′ = {v|d(v, vprev) ≤ rdist, v ∈ V̄ }. (11)

Then let V ′′ be the new V̄ . Note that the index system retains the features of the old

V̄ , in other words, the probability of nodes is still in descending order. Ordering V̄ is

also beneficial as it reduces the complexity of the multinomial distribution. Nodes that

are within the radial threshold distance rdist are considered “local” nodes and therefore

are viable for selection through the local search and the remaining nodes are excluded.

This selection process is demonstrated by Fig. 4.2. Once the remaining “local” nodes

are determined the remaining costs are renormalised in the same manner as described

by (10).

The selection of sji is then done explicitly using the categorical distribution:

l∗ = min{l ∈ {1, 2, . . . , |V̄ |} : (
l∑

i=1

pi)− r ≥ 0}, (12)

where sji is v′l∗ in V̄ and r ∼ U(0, 1) is a random variable. If there are no nodes remaining

after the radial clustering process then the global search method is used to determine

the next node, a procedure shown in lines 18-20 of Algorithm 2.

In order to formalise the global search algorithm, a definition for the discrete Levy

Distribution is defined. The probability mass function of the discrete Levy Distribution
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Algorithm 2 Discrete Flower Pollination Algorithm

Require:
n . Number of nodes
D . n× n distance map
m . Number of solving agents

1: function DFPA(n, D, m)
2: C = 1

D
. Initial cost map is inverse distance map

3: S← m× n empty array . Solutions Vector
4: S[1, :]← random number (0, 1) . Initialise starting position of each solution
5: ρ← random number (0, 1) . Switching probability
6: for i← 1,m do . O(m)
7: V ′ ← remaining nodes for ith solution
8: for j ← 2, n do . O(n)
9: vprev ← S(i, j − 1) . Current node
10: C ′ ← C(vprev, V

′) . The cost from vprev to each node in V ′

11: A =
∑
C ′ . Normalisation constant is the sum of costs in C ′

12: C ′(k)← C ′(k)/A . Normalise the remaining costs O(n)
13: C ′ ← sorted in descending order . O(nlog(n))
14: r ← random real number (0, 1)
15: if r ≥ ρ then
16: vcurr = GSearch(V ′,C ′) . O(n)
17: else
18: [success,vcurr] = LSearch(V ′,C ′) . O(n)
19: if success is false then
20: vcurr = GSearch(V ′,C ′) . O(n)
21: end if
22: end if
23: S(i, j)← vcurr
24: remove vcurr from V ′

25: vprev ← vcurr
26: end for
27: end for
28: d← Evaluate each tour in S . O(m(n + log(m)))
29: Determine ds∗ the minimum tour distance in d
30: return ds∗ and corresponding tour s∗ in S
31: end function
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rdist

Figure 4.2: Radial distance threshold clustering used in the local search: black node is
the previous node, shaded nodes are considered for the local search, others are excluded.

L(V̄ ) used in this paper is defined as:

f(vi; V̄ ) = Pr(vi node is chosen)

= FL(Φ
i∑

k=1

pk)− FL(Φ
i−1∑
k=1

pk),
(13)

where FL is the continuous Levy CDF and Φ is a constant. Since the continuous Levy

Distribution takes inputs from zero to infinity, a maximum value is chosen as a practical

consideration in order to limit the continuous distribution for the discretization process.

Let Φ denote the maximum input value. Φ is selected to be sufficiently large so as

to make L(x > Φ) tend to zero due to the discretization process. The discrete Levy

Distribution is applied to the node set L(V̄ ) using (13). The next node sji ∼ L(V̄ ) is

then generated explicitly using (12).

4.2 Iterative Discrete Flower Pollination Algorithm (iDFPA)

The multiple agent and random walk nature of the DFPA mean that the problem

space is thoroughly explored, however, this knowledge is lost at the end of the pro-

cess. The iterative Discrete Flower Pollination Algorithm (iDFPA) uses two update

processes, namely best tour update and rejection update, to take advantage of this sys-

temic knowledge that is developed through the DFPA process. A combination of these

processes is used to achieve the best, converged results for a variety of problem types.
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The system flowchart for the complete iDFPA is illustrated in Fig. 4.3.
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Figure 4.3: System flowchart for the iDFPA Algorithm.

The cost matrix Ct, where t represents the cost matrix of the t’th iteration, and ctij,

the cost from node vi to vj, is updated in order to reflect the new knowledge gained

about the system through the iterative process. After each of the N iterations, an

update process takes place which includes evaporation, best tour update and rejection

update subprocesses. The evaporation process is implemented as:

ct+1
ij = (1− α)ctij, (14)

where α is a control variable of the rate at which the cost is evaporated [5]. The

evaporation mechanism reduces the memory of the system so that the “bad” knowledge

is filtered out. The iDFPA then performs two update functions, namely, the Best Tour

Update (BTU) and the Rejection Update (RU).
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4.2.1 Best Tour Update

The Best Tour Update (BTU) process uses, as determined by the DFPA in Sec-

tion 4.1.1, the minimum tour distance ds∗ and the corresponding tour s∗ from the tour

distance set d = {ds1 , ds2 , . . . , dsm} and tour set S = {s1, s2, . . . , sm} respectively. ds∗

and s∗ are used to update Ct on nodes that make up the tour according to:

ct+1
ij =

c
t
ij + γ

dij
ds∗

if arc(i, j) is part of s∗;

ctij otherwise,
(15)

where the constant γ controls the influence the best tour has on the system. The

complexity of the BTU is O(n) since there is a single path to be updated.

4.2.2 Rejection Update

The Rejection Update (RU) process utilises the tour distance set d = {ds1 , ds2 , . . . , dsm}
from the DFPA evaluation process in order to reject results that are worse than the pre-

vious best, according to Algorithm 3, while still providing a small probability that they

are accepted in order to explore new search spaces. An exponential annealing schedule

is defined as:

Tcurr = e−w
1
q

Ncurr
N , (16)

where w is a constant that controls the utilised region of the exponential function, q

specifies the shape of the exponential function, Ncurr is the current iteration number,

and Tcurr is the annealing value for the current iteration. This exponential annealing

function is used to determine the probability for a solution.

If the tour distance dsj is less than the previous iteration’s best tour distance dprev

then the solution is automatically accepted. If dsj is greater than dprev then a probability

for dsj being accepted is determined according to:

p = e−∆dist/(Tk×dprev), (17)

where ∆dist = dsj − dprev. A random number r ∼ U(0, 1) is then generated and if

r < p the solution is accepted otherwise it is rejected. d′ = {d′1, d′2, . . .} denotes the
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subset of d that contains the distances of the accepted tours and the corresponding

tours S′ = {s′1, s′2, . . .} denotes the subset of S that contains the corresponding tour

paths for d′. The update function on Ct for the nodes in S′ is then performed as defined

by:

ct+1
ij = ctij + β

∑
∀s′k∈S

′

containing
arc(i,j)

1

d′k
, (18)

where d′k ∈ d′, and β is a control variable used to adjust the influence of the rejection

process on Ct. The RU has a complexity of O(mn).

Algorithm 3 Rejection Update: Annealing Rejection

Require:
dprev . previous iteration’s best distance
d . all current agents’ distances

1: function RU(dprev,d)
2: for each agent j in d do
3: ∆dist = dsj − dprev
4: if ∆dist < 0 then
5: jth agent’s distance is Accepted
6: else
7: p = e−∆dist/(Tcurrdprev) . probability of the distance being accepted
8: r = random real number (0,1)
9: if r < p then
10: jth agent’s distance is Accepted
11: else
12: jth agent’s distance is Rejected
13: end if
14: end if
15: end for
16: end function

A combination of the BTU and RU can be used by changing the β and γ constants.

The best iDFPA results can be obtained for a variety of TSP problem sets by changing
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the influence of the evaporation, BTU and RU processes on the iDFPA according to:

ct+1
ij =


ctij + β

∑
∀s′k∈S

′

containing
arc(i,j)

1
d′k

+ γ
dij
ds∗

if arc(i, j)

is part of s∗;

ctij + β
∑

∀s′k∈S
′

containing
arc(i,j)

1
d′k

otherwise.

(19)

4.3 Results

4.3.1 Experiment Setup

The DFPA and iDFPA algorithms were designed to be generic to the problem set size

(number of nodes) and the configuration of the problem (sparse, dense, etc). Simulation

experiments were therefore designed to encompass a variety of problem sets in order to

determine how well the algorithm performs. Benchmark problem sets from TSPLIB1

were used to perform a comparison of the DFPA, iDFPA, Ant Colony Optimisation’s

(ACO) MAX−MIN Ant System (MMAS)2 and Genetic Algorithm (GA)3. The

ACO and GA were chosen for the comparison since they are well studied and developed

algorithms that have been widely tested on the TSP.

Three Euclidean 2D symmetric TSP benchmark problem sets were selected, namely

Berlin52, EIL76 and PR264. Table 1 shows the properties of the three problem sets.

Small problem sizes (defined as problem sets with less than 30 nodes by the authors)

were not selected as they are trivial to solve and comparative results do not illustrate

the abilities of the algorithm. Medium and large sets, 30-100 nodes and 100+ nodes

respectively, as well as the node density which is the layout of the nodes and how

they are distributed (sparse or dense), were used as criteria to select the experimental

problem sets.

1TSPLIB is a benchmark library of Travelling Salesman Problems where the optimal paths have
been determined in order to compare algorithms http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/

2The ACO algorithm used for comparison was developed by H. Wang https://www.mathworks.

com/matlabcentral/fileexchange/14822-solve-tsp-by-mmas
3The TSP genetic algorithm used for comparison was developed by

Joseph Kirk https://www.mathworks.com/matlabcentral/fileexchange/

13680-traveling-salesman-problem-genetic-algorithm
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Table 1: Selected simulation problem sets’ properties.

Property Berlin52 Eil76 PR264

Size Medium Medium Large
Number of Nodes 52 76 264
Node Density Sparse Dense Mixed

4.3.2 DFPA Results

The DFPA is used to give an indication of the best performance that can be achieved

based on a single iteration. It can be used for a fast estimation of the initial result the

DFPA can achieve compared to other algorithms. The simulation was run using the

same parameters for each of the algorithms where the number of solving agents used

for the problem sets were set equal to the number of nodes in the problem set as

this provided the best results while keeping the computation time relatively low. The

simulation was run independently 100 times to observe the average behaviour for each

problem due to the random nature of the algorithm.

The DFPA, which is essentially a single iteration, significantly outperforms the GA in

all three problem sets as shown in Table 2. As illustrated by the percentage comparisons

in Tables 3, 4 and 5 the DFPA outperforms the GA but not the ACO in all the problem

sets. The DFPA results illustrate the ability of the algorithm to comparatively compete

with existing algorithms that run for multiple iterations.

4.3.3 iDFPA Results

The iDFPA outperforms the ACO and GA in both the 50 and 300 iteration simula-

tions, as shown in Table 2. Tables 3, 4 and 5 show the percentage comparison between

the DFPA, iDFPA 50 iteration and iDFPA 300 iteration algorithms with the optimal

distance, ACO and GA on the Berlin52, Eil76 and Pr264 problem sets respectively. The

tables illustrate how the iDFPA, in both the 50 and 300 iteration simulations, is able

to outperform the ACO and GA over 300 iterations. The iDFPA 300 iteration also

achieved the optimal distance for the Berlin52 problem set as shown in Table 3.

The iDFPA algorithm’s performance was tested using a variety of simulations, not

only to compare its performance against other algorithms but also to understand the

influence of the parameters and what parameter values give the best results for the

various problem sets. There are three main parameters for the iDFPA namely α, β and γ,
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Table 3: Berlin52 comparative percentage resultsa.

Optimal ACO (300 Itr.) GA (300 Itr.)

DFPA Avg(%) -9.01 -1.93 7.30
DFPA Best(%) -4.69 -2.93 7.75
iDFPA (50 Itr.) Avg(%) -4.99 2.40 12.04
iDFPA (50 Itr.) Best(%) -0.38 1.46 12.61
iDFPA (300 Itr.) Avg(%) -4.77 2.63 12.29
iDFPA (300 Itr.) Best(%) 0.00 1.85 13.05

Table 4: Eil76 comparative percentage resultsa.

Optimal ACO (300 Itr.) GA (300 Itr.)

DFPA Avg(%) -11.63 -2.97 34.32
DFPA Best(%) -5.11 1.06 35.1
iDFPA (50 Itr.) Avg(%) -6.66 2.49 41.87
iDFPA (50 Itr.) Best(%) -2.71 3.62 38.52
iDFPA (300 Itr.) Avg(%) -5.47 3.80 43.69
iDFPA (300 Itr.) Best(%) -1.82 4.56 39.78

which are used to adjust the influence of the evaporation, RU and BTU methods on the

iterative process. These three parameters are adjusted to determine which combination

gives the best results for the problem set. Other parameters such as the number of

iterations and number of solutions can be adjusted to get the best results for specific

circumstances such as within a small time frame or the best overall result.

The algorithm was run on the three problem sets by incrementally increasing the

values of α, β and γ independently in order to determine what combination of values

produced the best results for the different problem sets. The best parameter values,

as determined by this process, are shown in Table 6 along with the parameters used

for the comparative study presented in Section 4.3.3 B. Note that the ACO parameters

are selected in the same way as the iDFPA parameters to ensure that the algorithm is

optimised to each of the problem sets and the results are comparative. The ranges used

for tuning the parameters were determined from literature, each of the parameters in

Table 6 were iteratively increased or decrease from the recommended values given in

literature to determine the best for the tested problem sets. A comprehensive analysis

of the iterative process of the iDFPA has been done, as explained in Section 4.3.3 A.
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Table 5: Pr264 comparative percentage resultsa.

Optimal ACO (300 Itr.) GA (300 Itr.)

DFPA Avg(%) -17.06 -6.58 28.24
DFPA Best(%) -10.85 -2.59 28.42
iDFPA (50 Itr.) Avg(%) -10.23 1.11 38.79
iDFPA (50 Itr.) Best(%) -8.24 0.27 32.17
iDFPA (300 Itr.) Avg(%) -9.91 1.47 39.29
iDFPA (300 Itr.) Best(%) -8.14 0.37 32.32

aNegative percentages imply that row elements are worse than the column elements and vice versa
for the positive percentages.

Table 6: Parameters selected for iterative simulations.

Problem iDFPA ACO GA

Berlin52

m = 52

ρ = 0.1

α = 0.1

β = 0

γ = 0.1

m = 52

γ = 1

β = 5

α = 0.65

m = 52

Eil76

m = 76

ρ = 0.1

α = 0.2

β = 0.1

γ = 0.4

m = 76

γ = 1

β = 5

α = 0.65

m = 76

Pr264

m = 264

ρ = 0

α = 0.4

β = 0.5

γ = 0

m = 264

γ = 0.2

β = 9

α = 0.35

m = 264

A. Iterative Process Analysis

An analysis of the acceptance ratio provides insight into how the algorithm works

and how to manipulate the results according to what type of results are required for

the problem, i.e. the trade-off of getting a minimum tour distance result for a faster

convergence or having a slower convergence at a lower final result. By plotting the

acceptance ratio over the set of iterations, as shown in Fig. 4.4, it can be seen that there

are three main regions. The first is the initial decline, the second is the lower plateau
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in the middle and the last is the incline and upper plateau. By analysing these three

regions, how they change with parameter changes as well as how the overall result is

altered according to the change in the behaviour of the rejection update process can be

determined.

Fig. 4.4 shows the three phases of the acceptance ratio plot. The first region, known

as the “discovery phase”, is used to collect information about the problem and which

routes give good and bad results. The system begins with a high acceptance ratio

and decreases this ratio using the annealing schedule, as the acceptance ratio decreases

(until it is roughly zero), less “bad” information is added to the system and only “good”

information is accepted. The algorithm then moves into the second region, or “filtering

phase”, where minimal new information is added (usually only one or two paths per

iteration), but the evaporation still takes place while the few new solutions are used to

update the cost map. This stage acts to filter out bad information which the system

added during the discovery phase. Once the filtering stage is complete the final region,

or “convergence phase”, is entered into. This phase allows the algorithm to converge

to the best solution based on the filtered information from the preceding phase. This

final stage appears to defy the concept of a decreasing acceptance ratio as the annealing

process proceeds, however this is a characteristic due to the fact that after the filtering

phase the probability of the algorithm choosing a bad path is small since the bad paths’

costs have been depleted and the majority of the new solutions are either the best-so-far

solution or a better new solution.

During the testing phase of the algorithm, it was determined that the acceptance

ratio provided critical insight into the workings of the algorithm and its overall results.

The annealing schedule affects the discovery and filtering phases directly as it determines

the rate at which the discovery process occurs and how long the system stays in the

filtering phase. Fig. 4.5 shows results for multiple annealing schedules where the value

of (16) is changed in order to manipulate the three phases.

As shown in Fig. 4.5, if q is too large (q = 5 for example) the annealing schedule is slow

and, therefore, the discovery phase is slow, the solution reached a minimum quickly but

the filtering phase is also short. As a result, the overall result either bubbled and then

converged at a bad result or diverged because the process accepted too many bad results

in the initial phase. Conversely, if the annealing schedule is fast then the discovery phase
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Figure 4.4: Minimum tour distance vs. acceptance ratio plot with annotated phases.

is also fast and it takes longer to reach a minimum but the overall converging result

is the minimum converging value, for example, when q = 0.8 in Fig. 4.5. Therefore,

a balance needs to be determined depending on what is required from the algorithm.

If a fast minimum tour distance is required then a slow annealing schedule should be

implemented and if a minimum converging result is required then an annealing schedule

that drops to the converging minimum in the shortest number of iterations needs to be

determined.

By creating a hybrid annealing schedule it was determined that the acceptance ratio

behaviour can be tailored to have specific trends and get a result that is a combination of

38



Chapter 4

other annealing schedules. As shown in Fig. 4.5, the hybrid solution has characteristics

of the q = 5 result in terms of its initial discovery result (a fast fall) but then instead of

bubbling up, it appears to follow the q = 1 results for the remainder of the iterations.

This is a result of the value of q being made up of a piecewise function. The function is

created in order to have the discovery phase of the q = 5 schedule and the filtering and

convergence phases of the q = 1 schedule. The hybrid annealing schedule is described

by:

Tcurr =

e
−w 1

0.8
Ncurr

N Ncurr > 8,

e−w
1

−0.525Ncurr+5
Ncurr

N otherwise,
(20)

where −0.525Ncurr + 5 is a function that reduces q from 5 to 0.8 over the iteration

interval 0 to 8 after which it remains at 0.8 for the remaining iterations in order to get

the hybrid tour distance curve as seen in Fig. 4.5.

B. Comparative Results

In order to get comparative results between the iDFPA, ACO and GA algorithms,

the algorithms were run for the same number of iterations under the same situations.

50 and 300 iteration simulations on the three problem sets were used to compare the

algorithms. The two simulations were run on each problem set using the parameter

values defined in Table 6. These were each run independently and the results averaged

in order to remove the noise introduced by the random nature of the algorithm. The

comparative results are shown in Table 2.

The DFPA and iDFPA both have a complexity of O(mn2 log n) which is determined

by cascading the complexities of the individual components of the algorithms, as given in

the right-hand comments of Algorithm 2. Only the significant component complexities

have been included and the iDFPA has the same complexity as the DFPA since the

number of iterations is a multiplying factor of the DFPA complexity. The ACO and GA

both have a complexity of O(n3 log n) [51, 52] under the assumption that a sophisticated

parent selection is done for the GA. Since m and n have the same order of magnitude

this simplifies the overall complexity for the DFPA and iDFPA to O(n3 log n) which is

the same as the two comparative algorithms. The full complexity analysis for the DFPA

and iDFPA can be found in Appendix A.
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The aggregated results for the iDFPA 50 iteration simulations are shown in Fig. 4.6,

4.7 and 4.8. The iDFPA not only starts at a lower initial result but also converges to

a lower value at a faster rate than the ACO and GA while comparing the algorithms

iteration by iteration. The iDFPA 50 iteration results are below that of the ACO for

the entire duration of the simulation with the exception of the Pr264 where the ACO

has a lower tour distance between the tenth and twentieth iterations.

The box plots of the simulation results for the problem sets with the iDFPA and ACO

55000

56000

57000

58000

59000

0 10 20 30 40 50

Iteration Number

T
o
u
r
D
is
ta
n
ce

q = 1

q = 0.8

q = 5

q = hybrid

Figure 4.5: Tour distance of different values for the annealing schedule in rejection
update of iDFPA for 50 iterations on the Pr264 problem set.
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for 50 iterations as shown in Fig. 4.9-4.11 illustrate that there is a better convergence

and smaller variance of the 100 independent results for the iDFPA than the ACO.

Therefore not only does the iDFPA converge to a lower result on average but the tour

distances in the independent results have a closer correlation than the ACO. This trend

was seen in the other two problem sets as well.
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Figure 4.6: iDFPA vs ACO vs GA vs Optimal Solution average results for 50 iteration
simulation on the Berlin52 problem set.
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4.3.4 Parameter Selection

As with most nature-inspired heuristic algorithms, the performance of the iDFPA de-

pends on the values selected for the setup parameters. Intuitively it makes sense that, as

the number of agents increase, so does the time required to provide a sub-optimal solu-

tion. But with this, so does the computation time, therefore, for a problem with n nodes

the recommended minimum number of agents, m, is n as this produced good results

within a reasonable amount of computation time. Table 7 provides the recommended
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Figure 4.7: iDFPA vs ACO vs GA vs Optimal Solution average results for 50 iteration
simulation on the Eil76 problem set.
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Figure 4.8: iDFPA vs ACO vs GA vs Optimal Solution average results for 50 iteration
simulation on the Pr264 problem set.

initial parameters for different sized problems. The performance of the algorithm is cor-

related highly with a specific problem so users have to change the parameters in order

to get the best performance from the algorithm. It can be seen in Table 7 that in large

problem sets (where n > 100) the best results are achieved when ρ = 0 (the local search

is disabled) and γ = 0 (the best tour update has no influence). This is because on the

larger problem sets, the more freedom that the algorithm has for exploring all possibil-

ities without being forced into local regions and further emphasising the best solution,
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Figure 4.9: A Box Plot curve of the iDFPA vs ACO for a 50 iteration simulation on the
Berlin52 problem set.

allows for a better overall result. There is a possibility that a hybrid system could be

implemented that would allow for these 2 parameters to be activated at some point in

the iterative process in order to aid with converging but this is not included with the

current implementation. The smaller the problem set, the less influence α, β, γ have on

the results, and, therefore, it does not require much customisation on the user’s behalf

in order to achieve good results. However, as the problem size is increased, altering the

parameters becomes more important.
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Figure 4.10: A Box Plot curve of the iDFPA vs ACO for a 50 iteration simulation on
the Eil76 problem set

The annealing schedule and search radius (for the local search) are two parameters

which are set to default values within the algorithm as a more advanced understanding

of the algorithm and how these parameters affect the results is required before they

should be altered. The search radius is set to 1
2davg

where davg is the average distance

of all the arcs in the problem set, as this produced the best results in simulations. The

default annealing schedule is set as specified as q = 0.8, this schedule can be altered

and is described in Section 4.3.3 B.
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Figure 4.11: A Box Plot curve of the iDFPA vs ACO for a 50 iteration simulation on
the Pr264 problem set

Table 7: Generalised Parameter

Problem Size Small Medium Large

ρ 0.5 0.1 0
α 0.1 0.2 0.4
β 0 0.1 0.5
γ 0.1 0.4 0
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Chapter 5: Conclusion

5.1 Research Summary

The research presented here aims to answer the question “Can the Flower Pollina-

tion Algorithm (FPA) be implemented to generally solve for a sub-optimal solution for

discrete optimisation problems, but more specifically the Travelling Salesman Problem?

If so, how does it perform compared to existing solutions as well as to the optimal solu-

tion?”. A literature review examines the various components that make up the basis of

the research including the TSP, algorithms used to solve the TSP problems including

optimal and heuristic algorithms, and finally, existing nature-inspired algorithms are

presented. The modifications and extensions to the FPA as well as the few discrete im-

plementations of the FPA are also discussed. Chapter 3 provides a background to the

fundamental concepts and algorithms used in the formulation of the two new algorithms,

namely the DFPA and iDFPA. The TSP is explained in detail and the mathematical,

graph theory definition is given. The original FPA is discussed in detail to explain all

the vital concepts, such as the local and global searches, that were used in the creation

of the new discrete algorithms. Detailed explanations of the GA, ACO and SA algo-

rithms are discussed as well. Finally, Chapter 4 presents the two new algorithms and

their implementations along with the results and analysis of the comparative study as

submitted to the IEEE Transactions on Cybernetics.

5.2 Contributions

Listed below are the main contributions of the research:

• Two discrete optimisation algorithms, namely the DFPA and iDFPA, are designed,

implemented, and tested. The DFPA algorithm is a single iteration algorithm that

is used to give a sub-optimal TSP solution. iDFPA algorithm uses two iterative
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methods, namely BTU and RU, to improve on previous iteration’s results in order

to converge on a sub-optimal TSP solution.

• A comparison between the DFPA, iDFPA, ACO and GA is completed for 3 diverse

test TSPs. On all the test problem sets the DFPA is able to outperform the GA

with an improvement of up to 35.1%. The iDFPA is able to outperform both

the GA and ACO in all problem sets. In the Berlin52 problem, which is a TSP

benchmark problem set, the iDFPA with 300 iterations is able to achieve the

optimal solution. The iDFPA also achieved improvements of up to 4.56% and

41.87% compared to the ACO and GA respectively during the simulations.

• Suggested generalised parameters for various problems sizes for the two algorithms

are determined as an initial guide for achieving good results for the problem size

that the algorithm is being run on.

• A comprehensive analysis of the RU method’s annealing schedule and its rela-

tionship to the overall performance of the iDFPA is done. The acceptance ratio

from the annealing process and the overall results are analysed and the relation-

ship between the annealing schedule and the performance is determined. This

demonstrates how the annealing schedule can be selected depending on the type

of performance required, for example, an annealing schedule can be selected for a

faster convergence with a worse result or a slower convergence with a better result,

or a combination of the two.

5.3 Recommendations and Possible Future Work

The results and analysis of the DFPA and iDFPA open up areas for further inves-

tigation and expansion of this research. The search radius used in the local search of

both the DFPA and iDFPA could be investigated further to determine the optimal ra-

dius that should be used for various problem sizes so it is not a static value, half of

the average distance between nodes, as in the current implementation. The annealing

schedule used in the RU for the iDFPA could be investigated further to understand

more comprehensively how it affects the results obtained by the algorithm as well as the

relationship between the results and the schedule. The future analysis of the annealing

schedule could also be expanded to other types of functions and not just the exponen-
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tial functions currently implemented. Lastly, the algorithms should be implemented on

other TSPs, such as the asymmetric TSP, as well as discrete optimisation problems and

compared against the existing algorithms in order to validate the performance across a

variety of discrete optimisation problems.

5.4 Conclusion

The results confirm that yes, the FPA can be implemented for discrete optimisation

problems such as the TSP as developed in the DFPA and iDFPA algorithms. The new

algorithms utilise the local and global search concept from the original FPA with the

multiple agent concept of the ACO in order to find sub-optimal solutions to generic

TSPs. The iDFPA uses the BTU and RU methods as the base iterative update process,

in order to utilise knowledge gained from previous iterations, to achieve the best results.

A comparative study between the two algorithms, the ACO’s MMAS and the GA,

was performed over three TSP problem sets which encompass a variety of problem sizes

and orientations. The study shows that the iDFPA outperforms both the GA and ACO

across the board of the test cases run in the simulations of this research. An analysis of

the annealing function used in the RU method of the iDFPA demonstrates the function

settings that are used to achieve different results from the algorithm. The DFPA and

iDFPA control parameter suggestions, for various size TSPs, have been determined for

future use of the algorithms.
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Complexity Analysis

The complexity analysis of the DFPA and iDFPA algorithms is done by analysing

the individual components that make up the implementation of the algorithm. The

components with significant complexities are shown in Figure 0.1.

The complexity is determined by cascading the individual components’ complexities.

The complexity of the DFPA is therefore:

O(m(n(n+ n log n+ n+ n)) +mn+m logm) = O(mn2 log n). (A.1)

The difference between the DFPA and iDFPA complexities is that the iDFPA has

the two update functions as well as a number of iteration multiplier. Complexity of

iDFPA per iteration is:

O(m(n(n+ n log n+ n+ n)) +mn+m logm+mn+ n) = O(mn2 log n). (A.2)

As can be seen from the above equations, the DFPA and iDFPA algorithms have the

same complexities even though the iDFPA performs additional methods.

The complexity of both the DFPA and iDFPA is equivalent to O(n3 log n) since m

is in the same order as n.
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Normalise remaining node distance O(n)

Sort remaining nodes O(n logn)

Global Search O(n+ n) = O(n)

Local Search O(n)

for(number of nodes) O(n)

for(number of solutions) O(m)

Evaluate Solutions O(mn)

Sort Solutions O(m logm)

Best Tour Update O(n)

Rejection Update O(mn)
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Figure 0.1: Complexity of significant elements of DFPA and iDFPA algorithms
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