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 ABSTRACT  

 

Chronic pain poses a major concern to modern medicine and is frequently undertreated, causing suffering and 

disability. Transdermal delivery is the pivot to which analgesic research in drug delivery has centralized especially 

with the confines of needle phobias and associated pain related to traditional injections, and the existing 

limitations associated with oral drug delivery. Highlighted within this thesis is the possibility of further developing 

transdermal drug delivery for chronic pain treatment using an Electro-Modulated Hydrogel- Microneedle array 

(EMHM) prototype device for the delivery of analgesic medication.  

 

All available therapies designed for the treatment of chronic pain were critically reviewed. In addition, the drug 

delivery systems developed for this purpose and non-drug routes are elaborated on in a systematic manner. 

Recent developments and future goals in transdermal delivery as a means to overcome the individual limitations 

of the aforementioned delivery routes are also represented. Herein, this thesis highlights the application of 

hydrogels in electro-responsive drug delivery.  

 

The EMHMs were synthesized by combining a microneedle array with an EMH which was synthesized from 

interpenetrating networks of polyacrylic acid and poly(vinyl alcohol). The networks incorporated a 

poly(ethyleneimine) and 1-vinylimidazole polymer blend as the novel electro-active species and ultimately 

resulted in the invention of a Bipolymeric Interfacially Plasticized Electro-responsive Hydrogel (BiPERG). The 

construction of a Box–Behnken design model was employed for the systematic optimization of the EMH 

composition comprising of three variables, viz. poly(ethyleneimine); 1-vinylimidazole; and applied voltage, critical 

to the success of the formulation. Electro-modulated drug release was determined on formulations exposed to 

varying environments to ascertain the optimal environment for the said desired release. A comparison method of 

formulation water content and swelling through gravimetric analysis was also conducted. Matrix resilience profiles 

were obtained as an insight to the ability of the EMH to revert to its original structure following applied stress. 

Response surface and contour plots were constructed for various response variables, namely electro-modulated 

drug release, matrix resilience and degree of swelling. The outcomes of the study demonstrated the success of 

electro-modulated drug release and as a result of this novelty, a new theory, Pillay’s Electro-influenced 

Geometrical Organization-ReOrganization Theory (PEiGOR Theory) was developed and detailed herein. 

Volumes of poly(ethyleneimine) (>2.6 mL) and 1-vinylimidazole (>0.7 mL),resulted in ideal therapeutic electro-

modulated drug release (0.8 mg) for sodium indomethacin. Lower amounts of poly(ethyleneimine) and amounts 

of 1-vinylimidazole ranging from 0.2 to 0.74 mL is consistent with greater than 1.6 mg release per electro-

stimulation. Ex vivo results concluded that, in addition to the desired responsive nature of the EMHM device, the 

use of microneedles resulted in significantly less microbial permeation than their hypodermic counterpart. In vivo 

studies ultimately revealed a good preliminary indication of the of the EMHs electro-responsive capabilities with 

plasma sodium indomethacin levels differing by less than 6.76×10
-7

µg/mL than that obtained by the conventional 

IV administration.  

 

The approval of patch-like devices that contain both the microelectronic processing mechanism and the active 

medicament in a small portable device is still awaited by the pharmaceutical industry. This anticipated platform 

may prove transdermal electro-activated and modulated drug delivery systems an encouraging probability not 

only for the treatment of chronic pain but for other therapeutic treatments as well.  
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background to this Study 

 

Chronic pain management has proven to be challenging to both the clinician and patient, 

resulting in time-consuming and sometimes unsuccessful or inadequate treatment, though 

this silent epidemic has not attracted the attention that it deserves (O’Brien and Breivik, 

2012). More than 50 million people worldwide are affected by chronic pain, causing 

significant physical and emotional disability ultimately leading to substantial declines in many 

other areas of living (Lewandowski and Jacobson, 2011). Chronic pain poses a major 

societal problem with an urgent need for more advanced treatment options thereby offering a 

large and attractive market potential. Avoiding the emotional trauma and pain associated 

with injections, the risk of needle-stick injuries, increasing patient compliance, controlling 

plasma levels, improving bioavailability, and reducing overall doses have all made 

transdermal drug delivery systems an effective alternative to the available parenteral and 

oral routes. In addition, they offer the advantage of avoiding hepatic/gastrointestinal 

metabolism, hepatotoxicity, palatability issues and disease transmission (Langer et al., 2004; 

Prausnitz et al., 2004; Xie et al., 2005; Escobar-Chávez et al., 2011; Brogden et al., 2012). 

 

Although many methods such as the use of ultrasound, electric fields, chemical enhancers, 

and thermal methods have been used to successfully delivery active substances (Williams 

and Barry, 2004), the enhancement in the permeability of the delivered active across the 

skin has resulted in limited success, particularly in compounds with a high molecular weight. 

The past decade has seen exceptional progress in transdermal drug delivery device design 

and fabrication by both academic and industrial researchers alike, with some devices 

currently in clinical development and some awaiting US Food and Drug Administration (FDA) 

approval. In addition to device fabrication, integration and cost issues, many other issues are 

apparent from a pharmaceutical research point of view, such as optimal dose finding and 

minimizing adverse reactions.  

 

Advances in the field of transdermal delivery have led to the development of Microneedle 

array (MNA) technology. This evolving technique combines the ease of a transdermal patch 

and the effectiveness of hypodermic syringes through the use of multiple microscopic 

projections from a backing plate to facilitate penetration of actives into the skin, ultimately 

providing a unique methodology of painless drug transport (Chiarello, 2004; Prausnitz et al., 
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2009). Microneedles are developed as a solid, a dissolvable or as a microneedle device 

comprising of cannulae and are usually designed in arrays to improve the surface contact 

with the skin (Al-Qallaf and Das, 2009; Pattani et al., 2012; Gratieri et al., 2013). Even 

though great progress has been made over the years in the development of microneedles, 

the need for significant research and development efforts using them as delivery systems is 

still warranted (Arora et al., 2008). 

 

Professor Regina Lϋttge at the MESA+ Institute for Nanotechnology (The Netherlands), a 

pioneer in MNA technology, has developed a patented concept patch comprising of 64 

microneedles extending from a back plate (10.0mm diameter and 0.2mm thickness) in an 

arrayed fashion on an active area of 5x5mm. Each microneedle is between 200 to 500µm in 

length with shaft diameters ranging from 100 to 300µm with the internal volume of a single 

microneedle being about 1-10ηL. The placement of multiple microneedles in an array 

compensates for the small volume of the needles. 

 

In order to advance this MNA technology, a novel patented Electro-Modulated Hydrogel 

(EMH) was developed in this study and was combined with the MNA technology in order to 

produce a pharma-engineered Electro-Modulated Hydrogel-Microneedle array device, 

subsequently referred to as the EMHM device. Similar to an Electro-Conductive Hydrogel 

(ECH), the EMH consists of co-networks or polymeric blends that inherently combine 

Electro-Active Polymers (EAPs) with highly hydrated hydrogels, with the difference being 

that the drug release from the EMH is in a responsive manner as opposed to the ECH’s 

conductive manner (Guiseppi-Elie, 2010). In addition to developing the prototype device, this 

study has resulted in the identification and optimization of a novel EAP blend. 

 

Shen and co-workers (2009) confirm that poly(acrylic) acid (PAA) gels exhibit pH-responsive 

behavior and that PAA behaves as an electrolyte due to the protons originating from the 

many carboxylic acid groups present along the polymer molecules. It was found in the study 

that at higher pH concentrations, the PAA gels expand. Upon contact with the skin, the PAA-

EMH shall be exposed to a higher pH, resulting in the required pH-responsive and 

electrolytic behavior. To maintain its structural integrity after repeated exposure to electro-

stimuli, the EMH will be formulated as a semi-interpenetrating polymer network (semi-IPN). 

Poly (vinyl alcohol) (PVA) was instituted as the second component to the semi-IPN, primarily 

for containing a spatially extended π bonding system, which is the reason for its intrinsic 

semiconducting nature (Chen et al., 2012; Bajpai et al., 2008).  
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1.2. Rationale and Motivation for this Study 

A single assembled device responsive to a patient's individual therapeutic requirements and 

biological state may potentially advance the field of drug delivery. Such smart therapeutics 

possess one or more properties such as precise controlled release, local targeting, self-

regulated therapeutic action, proper drug protection, enzyme inhibiting, permeation 

enhancing, imaging, and reporting. The difficulty with such a device lies in the ability to 

incorporate all or the majority of these functions into a single device, this study aims to try to 

fulfill this highly challenging design predicament. 

 

MNA technology is currently at the forefront of ‘pain free’ delivery of drugs, as it merely 

pierces the epidermis. The unique ability of MNAs to release drug in a minimally invasive 

manner allows renders them an attractive candidate as a physical enhancer to administer 

drugs throughout the skin. In many studies, microneedle piercing has been shown to 

significantly increase skin permeability of a variety of drugs.  

 

Due to the electro-responsive release of the active agent, adverse effects will be avoided 

with the use of the EMHM device. Drug dosages may be modified electronically preventing 

over-doses and analgesic tolerance, and will have the ability to act rapidly. The device will 

be designed to allow for easy application and therefore will significantly desensitize the 

patient to chronic pain by providing immediate pain relief.  

 

1.3. The Implications of the Integumentary System in the Development of the 

Electro-Responsive Delivery Device  

The skin consists of three layers, i.e. epidermis, dermis and subcutaneous fat layer 

(subcutis), collectively serving as an external physical barrier (Figure 1.1), with the real 

barrier to transdermal diffusion being specifically the stratum corneum (SC) (Escobar-

Chávez et al., 2011). Delivery from hypodermal administration results in the compound 

being deposited either intramuscularly, subcutaneously or intradermally. The microscopic 

projections on the microneedle arrays allow for compounds to be delivered either 

precisely into or just beyond the epidermis without stimulating pain receptors (Hedge et 

al., 2011). 
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Figure 1.1: Classical and transdermal needle-driven delivery in relation to the anatomy of 
the skin (Hedge et al., 2011). 
 

1.4. The Mechanism by which Electro-Responsive Drug Delivery will be Achieved 

This invention encompasses the design of a drug delivery device that is capable of drug 

release via electro-stimulus activation.  The electrical stimulation of the hydrogel will allow for 

the formation of water channels in the hydrogel network facilitating the immediate release of 

the entrapped drug into the tissues. Under normal conditions the drug compound will stay 

entrapped in the hydrogel, but upon the actuation using the electro-stimulus, the drug will be 

released into the skin. When the external stimulus is removed, the change is reversed and 

thus drug release is ceased. The concept addressing this unique drug delivery phenomenon 

is shown below in Figure 1.2 and is detailed later in Chapter 5, Section 5.3.13 as a new 

theory, Pillay’s Electro-influenced Geometrical Organization-ReOrganization Theory 

(PEiGOR Theory). A patient with chronic pain can easily apply this device anywhere on the 

body at the site of the pain. The main advantage is that due to the controlled release, 

patients can wear the device for at least an entire day. 
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Figure 1.2: Schematic concept of the integration of the microneedle platform combined with 
Electro-Modulated Hydrogel technology.  
 

Indomethacin will be the first active candidate drug considered for the novel hydrogel. 

Although a potent anti-rheumatic used to relieve pain and inflammation, indomethacin is 

more inclined to cause gastrointestinal disturbances as well as Central Nervous System 

(CNS) effects. In addition to pain relief, the EMHM device will prohibit any unwanted adverse 

effects in chronic use patients. 

 

Following the successful electro-responsive delivery of indomethacin from the EMH, 

scheduled drugs with greater potency will be used to prove formulation versatility: morphine 

hydrochloride (HCL); fentanyl citrate; and celecoxib. Regular oral administration of morphine 

HCL is recommended for the management of severe chronic pain as well as cancer- related 

pain, requiring repeated doses of opioid analgesics when less effective drugs are no longer 

adequate (Morales et al., 2004).  

 

Fentanyl citrate is commonly indicated for post-operative surgical procedures and chronic 

pain management primarily for cancer patients (Almousa et al., 2011). The synthetic µ-opioid 

agonist is commonly subjected to misuse due to its high potency being illicitly used in 

The EMHM being applied to the skin. 

The microneedles do not penetrate below the 
epidermis, evading the sensation of pain. 

Electro-stimulation will allow for the controlled release of drug. 
Following cessation of the stimulus, drug release will cease. 
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combination with other drugs such as opioids, antidepressants, amphetamines and 

benzodiazepines, or alone (Woodall et al., 2008). 

 

Celecoxib, like indomethacin, is a Non-Steroidal Anti-Inflammatory (NSAID) and is indicated 

for the treatment of rheumatoid arthritis, sever pain and acute post-operative pain treatment. 

Celecoxib has been chosen as an additional drug candidate to prove versatility of the 

optimized EMH with drugs that belong in the same NSAID class but have different chemical 

structures. 

 

1.5. Novelty of this Study 

The consortium of MNA technology is a promising technique that has the ability to facilitate 

drug transport by combining the advantages of both transdermal patches and hypodermic 

syringes. The approval of patch-like devices that contains both the microelectronic 

processing mechanism and the active medicament, formulated as a Bipolymeric Interfacially 

Plasticized Electro-responsive Hydrogel (BiPERG) developed herein, in a small portable 

device is still awaited by the pharmaceutical industry. This anticipated platform will provide 

Transdermal Electro- Activated and Modulated (TEAM) drug delivery and is a feasible 

attempt in the search for ideal chronic pain treatment.  

 

1.6. Possible Therapeutic Applications of this Delivery System  

Approximately 3.0-4.5% of the 1.5 billion people suffering from chronic pain worldwide also 

suffer from neuropathic pain, with the incidence rate increasing complementary to age. Major 

adjustments that chronic pain patients usually make include changing of jobs or taking 

disability leave from work, moving to a more manageable home and getting assistance with 

daily living activities. Because numerous patients in routine practice settings feel they have 

some or no control over their pain or fail to achieve adequate pain relief, chronic pain is now 

considered to be a public health problem of major proportions. 

 

Although not a relatively new concept, drug delivery research has focused on the 

transdermal delivery route due to the limitations of oral drug delivery and the needle phobias, 

accidental needle-sticks and pain associated with conventional injections. In the past, the 

therapeutic application of transdermal delivery was restricted to the application of: creams; 

poultices; ointments; pastes; and gels; all of which are prone to messing and difficult to apply 

uniformly to ensure reproducible dosing. By pharma-engineering and prototyping such a 

device, chronic pain sufferers will receive controlled delivery of analgesics resulting in relief 

and a better quality of life. 
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1.7. Aim and Objectives of this Study 

This project’s principle aim is the pharma-engineering and prototyping of a versatile 

multifunctional EMHM device for the treatment of chronic pain. This aim will be achieved 

through the development of the novel EMH technology that will be combined with an MNA to 

produce an intelligent device for advanced pain-free administration of drugs through the skin. 

The aforementioned EMH will be formulated to meet the following design criteria:  

 

1. For the purposes of stability, the EMH will be designed to have adequate structural and 

mechanical stability.  

2. The EMH will allow for the efficient controlled release of the drugs once the MNA has 

been applied.  

3. The EMH technology consists of a hydrogel mixed with an EAP. 

4. The candidate drugs must remain entrapped in the EMH under normal conditions, and 

be released into the skin upon the actuation of an electrical stimulus. Drug release must 

cease when the external stimulus is removed, therefore facilitating electrically controlled 

release.  

 

For pragmatic fulfillment of the design strategy, the following objectives are apparent:  

 

i. To design and formulate a novel mechanically stable EMH semi-IPN through the 

process of solution polymerization which culminates in the controlled release of 

entrapped drugs via electrical stimulation of the array, and possesses appreciable 

adhesive characteristics.  

ii. To determine the swelling behavior of the EMH. 

iii. To characterize the EMH, the following tests will be conducted: Fourier Transform 

Infrared (FTIR) spectroscopy; Scanning Electron Microscopy (SEM) imaging; 

Differential Scanning Calorimetry (DSC) and cyclic voltammetry tests. 

iv. To conduct in vitro release studies from the EMH in the presence and absence of an 

electric current.   

v. To fabricate a MNA patch device through which drug release will be facilitated.  

vi. The clinical potential of the prototype EMHM, based on its ability to meet the design 

criteria in vitro, will be ascertained in the Sprague Dawley rat model terms of 

penetration, in vivo release kinetics, distribution, and biocompatibility. Subsequently 

the feasibility of the device in human patients will be corroborated. 
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1.8. Overview of this Thesis  

Chapter One provides an introduction and background to this study and highlights the 

rationale, aim, objectives and potential benefits of this study. 

 

Chapter Two critically reviews the available therapies designed for the treatment of chronic 

pain. The drug delivery systems developed for this purpose and non-drug routes are 

elaborated on, in a systematic manner. Recent developments and future goals in 

transdermal delivery as a means to overcome the individual limitations of the 

aforementioned delivery routes are represented as well. This chapter also reviews the use of 

hypodermic needles and their delivery limitations in comparison to that of microneedles, in 

addition to the various advances in fabrication techniques of microneedles, providing an 

update of pharmaceutical research in the field of microneedle-assisted transdermal drug 

delivery systems. 

 

Chapter Three describes the preliminary experimental laboratory formulation and 

development of a suitable EMH formulation, outlining the formulation parameters, 

physicochemical and physicomechanical characterization, and in vitro drug release 

analyses. This chapter also outlines the various therapeutic aspects considered for optimal 

formulation.  

 

Chapter Four highlights the investigation of the various attributes of the EMH, through 

institution of a statistical experimental Box-Behnken design model. Herein, the design, 

development and optimization of the EMH are detailed. In vitro release studies as well as 

extensive physicochemical and physicomechanical properties of the formulations of the 

experimental design was studied. 

 

Chapter Five exhibits physicochemical and physicomechanical testing conducted on the 

optimized EMH. In addition, simultaneous qualitative and quantitative analyses were 

conducted on the optimized EMH. 

 

Chapter Six evaluates the physicochemical properties of the MNA component of the drug 

delivery device. In addition, this chapter evaluates the device’s capability of electro-activated 

and modulated drug delivery. A microbiological assessment quantifying the permeation 

allowance of microneedles through the stratum corneum was also evaluated.  

 

Chapter Seven introduces ex vivo permeation studies on the EMHM device. Studies were 

conducted to ensure viability of the prototype device prior to in vivo studies. The permeation 
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experiments were performed on porcine skin tissue to ascertain the electro-responsive 

capabilities of the device in addition to determining the microbial penetration ability of the 

microneedles across the viable epidermis in microneedle-punctured skin as well as 

hypodermic needle-punctured skin.  

 

Chapter Eight details the in vivo evaluation of the electro-modulated delivery system in the 

Sprague Dawley rat model. Histopathological studies were conducted on skin samples to 

ensure proper device application. Pharmacokinetic modeling was conducted to determine in 

vitro-in vivo correlation (IVIVC) establishment 

 

Chapter Nine concludes this thesis, discussing the limitations and recommendations for 

future use of the device.  
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CHAPTER 2 

AN OVERVIEW OF SPECIALIZED TRANSDERMAL DRUG DELIVERY TECHNIQUES 

 

2.1. Introduction 

 

Although hailed as a medical breakthrough for pain treatment, the risks and limitations of 

Patient-Controlled Analgesia (PCA) outweigh the benefits associated with its use; the main 

risk being overdose and subsequent death and the main limitation being high costs. Many 

clinicians believe that analgesic doses need to be increased to provide adequate pain relief 

yet they fail to see the underlying problem related to drug delivery. Although numerous pain 

treatment therapies are available on the market, a point regarding drug delivery made by 

Stapleton and co-workers (1978) still holds true: 

 

“The plethora of new parenteral agents which the pharmaceutical companies have 

introduced over the past 20 years is not a reminder that we have not found the right drug but 

a reminder that we have not found the optimal mode of administration of perfectly adequate 

analgesic drugs.” 

 

Pain according to the International Association for the Study of Pain can be defined as “an 

unpleasant sensory and emotional experience associated with actual or potential tissue 

damage, or described in terms of such damage” (Merskey and Bogduk, 1994). Three 

classifications of Chronic Non-Cancer Pain (CNCP) are identified: nociceptive, neuropathic, 

and functional (Merskey and Bogduk, 1994). CNCP may result from numerous medical 

conditions and although there are corresponding large numbers of specific injections, 

rehabilitation programs, and pharmacological treatments available, many patients are still left 

with continued pain even after repeated treatment attempts, necessitating controlled delivery 

of analgesic drugs. 

 

Since CNCP causes sleeplessness and depression, and interferes with normal physical and 

social functioning (Becker et al., 1997), the impact and prevalence of chronic pain warrants 

serious attention as the condition may influence the overall quality of life (Lewandowski and 

Jacobson, 2011; O’Brien and Breivik, 2012). In America alone, chronic pain affects more 

than 50 million people (Lewandowski and Jacobson, 2011) causing significant physical and 

emotional disability, ultimately leading to substantial declines in many other areas of living. 

The economic consequences of long-term pain are thought to be vast, with the annual cost 

of chronic pain in the United States, including lost income, lost productivity and healthcare 

expenses, being estimated to be $100 billion (Institute of Medicine Report from the 
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Committee on Advancing Pain Research, Care, and Education, 2012) and the cost to the 

patient in terms of lost earnings, lost ambitions, lost potential, lost life-quality and lost 

relationships being immeasurable. CNCP thus poses a major societal problem with an 

urgent need for more advanced treatment options. 

 

The search for pain relief has taken on many variations through the ages resulting in some 

atypical methods and some worthy of further investigation. The last 40 years has seen 

numerous developments that have improved available medications, clinical understanding, 

and pain management related patient outcomes (Painter, 2005) with inherent advantages 

and disadvantages as highlighted in Table 2.1.  
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Table 2.1: Comparison of pain treatment interventions (Pain Research Center, 2012). 
 

Treatment Advantages Disadvantages 

Opioids (oral) • Treats both localized and generalized pain. 

• Multiple drugs are available. 

• Some inexpensive drugs are available. 

• Can be administered by a proxy. 

• Long acting, controlled-release forms available. 

• Sedative and anxiolytic properties useful. 

 

• Adverse effects may limit use. 

• Prescriptions of opioids are regulated. 

• Fear/stigma associated with use. 

Analgesics (oral)  • Some inexpensive drugs are available. 

• Can be administered by a proxy. 

• Widely available, some over-the-counter. 

• Can treat moderate to severe pain. 

• Additive analgesia possible when combined with opioids and 

other modalities. 

 

• Some expensive drugs are available. 

• Serious adverse effects possible. 

• Anti-coagulant risk. 

• Ceiling effect to analgesia. 

 

Epidural, intrathecal,  

and intracerebral ventricular 

routes 

• Local anesthetics may be added to spinal opioids and may 

produce additive analgesia. 

• Useful for pain that has not responded to less invasive 

measures. 

• May require expensive drug infusion pump, 

intervention fees, and recurring charges for 

disposables. 

• Contraindicated in presence of acute spinal cord 

compression. 

• Pruritus and urinary retention are more common 

than with oral or parenteral opioid administration. 

• Infection at catheter site can produce meningitis 

and/or epidural abscess. 

12 
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Treatment Advantages Disadvantages 

  • Requires careful monitoring, especially when 

therapy begins and when doses are increased. 

• Requires special expertise. 

• Tolerance may occur sooner than with oral or rectal 

administration. 

Intravenous (IV) infusion  • Rapid pain relief provided. 

• Many opioids given this route. 

• In PCA mode, allows for rapid individual dose titration and 

provides sense of control for patient. 

 

• Requires a healthcare profession to be 

administered. 

• Infection and infiltration of IV lines are potential 

complications. 

• Often requires expensive drug infusion pump and 

recurring charges for disposables. 

 

Patient education  • Promotes self-care in pain treatment and management of side 

effects. 

• Effective in improving ability to follow medical regimen and in 

decreasing pain. 

• Multiple teaching aids available. 

 

• Requires professional time to teach pain 

management regimens. 

Relaxation, imagery, 

biofeedback, distraction, and 

reframing 

• Most are inexpensive, require no special equipment, and are 

easily administered. 

• May increase patient's sense of control. 

• May be used as adjuvant therapy. 

• May decrease pain and anxiety without drug-related side effects 

• Requires professional time to teach interventions. 

 

13 
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Treatment Advantages Disadvantages 

Psychotherapy, structured 

support, and hypnosis 

• May increase patient's coping skills. 

• May decrease pain and anxiety for patients who have pain that 

is difficult to manage. 

 

• Requires skilled therapist. 

Pastoral counseling • May provide spiritual and emotional comfort. 

• May increase patient's coping skills. 

 

• None identified.  

Acupuncture • Can be used as adjuvant with most other therapies. 

 

• Requires skilled therapist. 

Peer support groups • Provides support for families and patients. 

• May increase patient's coping skills. 

• Increases sense of control. 

• None identified. 

14 



15 

 

2.2. Recent Approaches to Patient-Controlled Analgesia  

Traditional oral or parenteral drugs do not always provide adequate therapeutic effects to 

treat chronic pain and as a result, PCA has rapidly become a popular and effective means of 

providing analgesia to patients with various etiologies of pain. PCA is a welcomed 

advancement in the treatment of pain, for the first time, the actual patient is empowered to 

control their own pain relief treatment. Patients are no longer required to receive analgesics 

by intramuscular injection, often long after the healthcare professional had been beckoned 

for assistance. Nor are the patients subjected to the lengthy process of procuring and 

preparing the medication, which ultimately delays patient access to pain relief.  

 

2.2.1. Benefits and limitations associated with Patient-Controlled Analgesia infusion 

pumps 

Currently, PCA is mostly limited to infusion pumps as a mode of drug delivery (Grass, 2005). 

The concept of PCA presented further is not restricted to a single administration route or 

analgesic class but rather an overview on the concept of the PCA infusion pump device and 

its relevant aspects.  

 

PCA has been shown to improve pain management with less opioid consumption, potentially 

fewer adverse effects, such as respiratory complications and less sedation, in non-critically ill 

patients (Santell, 2005) being hailed as a major advancement both in the medical and 

pharmaceutical field alike with many different types of infusion pump devices being available 

today (Figure 2.1). The concept of PCA offers numerous benefits to patients which include: 

patient autonomy with safe individualized dosing, improved analgesia with less sedation and 

enhanced satisfaction; earlier mobilization and better respiratory function resulting in less 

risk of pneumonia and pulmonary emboli and, a reduced length of stay; which results in 

patients not being subjected to nosocomial infections. In addition, the pumps offer several 

safety features to prevent the administration of excessive amounts of analgesic medication.  
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Figure 2.1: Types of PCA devices available. (a) Medfusion 3500 Syringe Infusion Pump; (b) 
Syringe Pump with motor driven linear actuator; (c) Hospira PCA 3 Syringe Infusion Pump; 
and (d) Cane Crono Micropump. 
 

Although PCA has resulted in relief to many patients, it is not without shortcomings, which 

could be listed as: i) incorrect drug or drug concentration, ii) triggering in error by the proxy 

(i.e., family member, nurse), iii) false triggering (various reasons), iv) hardware or 

software/malfunction, v) drug accumulation, siphoning, or retrograde flow due to dead space 

or catheter blockage, vi) duplicate analgesic orders or poorly-written orders, vii) accidental 

mis-programming at the caregiver-pump interface, viii) anaphylaxis/countless drug 

interactions, ix) extraordinary drug sensitivity, x) reprogramming with criminal or “mercy” 

intent, xi) high cost implications, xii) overuse due to misunderstanding that PCA is a magic 

black box for pain relief.  

 

In addition to using many drugs for pain relief, it has become evident that continuous, 

demand-independent background infusions usually did not improve the quality of analgesia 

but increased overall opioid consumption with the risk of higher incidences of respiratory 

depression (Lehmann, 2005). Thus, newer, advanced systems need to be developed to 

prevent any unwanted adversities and provide rapid, effective pain relief. 
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2.2.2. Utilizing Patient-Controlled Analgesia as an effective pain treatment 

Since its introduction years ago, PCA has become the gold standard for severe pain 

management, the pioneering PCA technology has led to its routine use for post-surgical pain 

management today (Lehmann, 2005; Beresford, 2007). The concept of pain management 

using the notion of so-called “patient-controlled analgesia” or “on-demand analgesia” by IV 

administration of opioids was published in the late 1960s (Hamilton and Baskett, 2000) yet 

evidence suggests that PCA was first used experimentally by Philip H. Sechzer in 1965 

(Sechzer, 1971). Sechzer evaluated the analgesic response to small IV opioid doses given 

on patient demand first by a nurse and then by a machine, in 1968 and 1971 respectively 

(Sechzer, 1971). Further advances in PCA led to the development of electronic 

programmable pumps making the patient-controlled analgesia safe and efficient in clinical 

practice (O´Neil et al., 1997). 

 

The concept of obtaining analgesic from the infusion device is easily understood from the 

patient's perspective. When the patient is in pain, or foresees pain due to an activity like 

getting out of bed, the PCA infusion pump push-button is switched on. Without waiting for 

the nurses to answer a call button, analgesics can be conveniently delivered intravenously 

via a computerized pump. The computerized pump is capable of confirming, preparing, and 

administering the analgesic treatment depending on the patient‘s eligibility to receive the 

requested drug. The computer accepts the request provided enough elapsed time from the 

time of the last dose, e.g., the lockout period (Beresford, 2007). PCA does cause alarm for 

patient overdose (Lehmann, 2005; Beresford, 2007) whether it is accidental or intended. A 

basic safety measure of the PCA in overdose prevention is that when the opioid analgesic 

takes effect, it will start to make the patient drowsy; decreasing the possibility of the patient 

to continue pressing the button for another dose. If the button is pushed on the patient’s 

behalf out of a well-intentioned desire to prevent or minimize pain, the risk of overdose 

increases therefore the PCA must be patient-controlled (Beresford, 2007). 

 

Increasingly, PCA is also used for patients with cancer-related moderate to severe chronic 

pain or who are being followed by palliative care or hospice services (Beresford, 2007). 

Although first reports of a then new concept of pain management surfaced in the 1960s, it 

can be argued that people have always taken medications based on their needs using either 

sublingual or oral doses (Painter, 2005). 

  

Unfortunately, with the use of the devices comes the use of multiple drugs (Lehmann, 2005). 

The combination of IV morphine and dextromethorphan (Weinbroum et al., 2002); morphine 

and clonidine (Jeffs et al., 2002); morphine and ketamine (Murdoc et al., 1992); morphine 
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and diclofenac (Nagasaki et al., 2002); morphine, tramadol, and propacetamol 

(Dejonckheere et al., 2001);  morphine and ketorolac (Reuben et al., 1998); magnesium, 

tramadol, and ketamine (Ünlügenc et al., 2002); tramadol and metamizol (Stamer et al., 

2003); or oxycodone and diclofenac or oxycodone and ketoprofen (Silvanto et al., 2002) 

have all been used for postoperative pain management and often result in unnecessary 

adverse effects such as respiratory depression and reduced peristalsis. In addition, PCA 

medications may have anaphylactic implications (Beresford, 2007). Currently there are no 

transdermal systems available for the drugs in PCA research, as a future direction, looking 

into a single system that delivers the drug concurrently and/or concomitantly is warranted.  

 

2.2.3. Economic implications arising from Patient-Controlled Analgesia  

Only a few publications exist reflecting the economic aspects of PCA. Thus far, no 

agreement has been reached if total costs match the outcome of using PCA (Brodner, et al., 

2000). Although patients’ acceptance of PCA is overwhelming, it cannot be considered an 

entity by itself as there are too many application modes combined with too many drug 

interactions and numerous modifications in use, all of which in an individual setting, influence 

efficacy and efficiency (Lehmann, 2005). With this being said, the treatment of CNCP is still 

so valued that patients are willing to find any financial means necessary for pain relief 

(Savage et al., 2008). 

 

2.3. Drug Delivery Using the Transdermal Route 

Human civilizations have applied substances to the skin as cosmetic and medicinal agents 

for thousands of years paving the way to the discovery and utilization of medicaments used 

today (Arora et al., 2008). Since 1979, when the first transdermal drug delivery system, 

Transderm Scop® Patch, was approved by the FDA for the treatment of motion sickness, to 

the current transdermal delivery systems, a successful alternative to systemic drug delivery 

has evolved (Chiranjib et al., 2010). Transdermal delivery systems have also proven to be 

efficacious in managing both chronic non-malignant and malignant pain in the long term 

(Milligan et al., 2001) with various function-appropriate types available today (Figure 2.2a). 

Currently marketed and widely used patches available include Duragesic® for relief from 

moderate to severe pain, Ortho-Evra® for continuous delivery of estrogen and progestogen, 

Androderm® for continuous delivery of testosterone and Nicoderm CQ® used by smokers to 

reduce cigarette cravings. The patches facilitate other medicinal substances with dosing 

schedules that foster greater satisfaction and patient compliance to be administered (Kim 

and Simon, 2011). The principle delivery mechanism is dependent on the slow process of 

diffusion driven by the concentration gradient that exists between the zero concentration 

prevailing in the skin and the delivery system’s high drug concentration (Scheindlin, 2004; 
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Brown et al., 2006). The speed of drug release is determined by the complex relationships 

between the membrane permeability, the polymer matrix used, the layer thickness, and the 

content and concentration of drug. In certain cases, diffusion alone is an inadequate 

mechanism to penetrate the SC preventing optimal drug delivery. Numerous procedures 

have been developed to aid drug delivery in such instances, with most being in the electro-

chemical field. The chief pathways for the molecules to penetrate the SC is by intercellular, 

intracellular (transcellular) and follicular (appendage) pathways (Figure 2.2b; Alexander et 

al., 2012). 

 

 

Figure 2.2: (a) Components of various types of transdermal patches. (b) Anatomy of the 
skin showing the path of action for drugs and topical formulations (Brown et al., 2006). 
 

2.3.1. Types of transdermal delivery systems 

Transdermal drug delivery systems may be classified into two types, namely passive and 

active, each of the types depending on the principle of diffusion based on the concentration 

gradients (Joshi, 2008). In addition to being driven by diffusion, active transdermal drug 

delivery systems comprise of different penetration enhancing technologies ranging from 

electro-poration, microporation, electrical current, iontophoresis, mechanical arrays, radio 

frequency thermal/heat, ultrasound, and laser ablation. In the past, the therapeutic 

application of transdermal delivery was restricted to the application of: creams, poultices, 
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ointments, pastes, and gels, all of which are prone to be messy and difficult to apply 

uniformly to ensure reproducible dosing (Sivamani et al., 2008). In drug delivery, offering the 

possibility of controlled drug release over time across the skin using a patch is an approach 

that is presumably more attractive to patients (Bronaugh and Maibach, 1999; Touitou, 2002). 

When compared with oral drug delivery and more conventional methods the skin has both 

limitations and benefits, like many other alternative routes of delivery which are detailed in 

Table 2.2 (Brown et al., 2006). 
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Table 2.2: Benefits and limitations of transdermal delivery. 

Benefits Limitations 

• The simplified non-invasive medication regimen leads to convenient 

and painless administration resulting in leads to improved patient 

compliance and reduced inter & intra-patient variability (Rasheed et 

al., 2011). 

 

• A molecular weight less than 500 Da is essential to ensure ease of 

diffusion across the SC (Bos and Meinardi, 2000), since solute 

diffusivity is inversely related to its size. 

• It is an alternative in circumstances where oral dosing is not possible 

e.g.in unconscious or nauseated patients. 

• Sufficient aqueous and lipid solubility, a Log P (octanol/water) 

between 1-3 is required for the permeant to successfully traverse the 

SC and its underlying aqueous layers for systemic delivery to occur 

(Bos and Meinardi, 2000). 

 

• Ease of use may reduce overall health care treatment costs as well 

as medical waste (Wilson, 2011). 

 

• Pre systemic metabolism; the presence of enzymes in the skin such 

as peptidases and esterases might metabolize the drug into a form 

that is therapeutically inactive, thereby reducing the efficacy of the 

drug (Bos and Meinardi, 2000). 

 

• Rapid notification of medication in the event of emergency as well as 

ease of dose termination by flexibility of terminating the drug 

administration patch removal in the event of any adverse reactions 

either systemic or local (Alexander et al., Rasheed et al., 2011).  

• Skin irritation and sensitization; referred to as the “Achilles heel” of 

dermal and transdermal delivery. The skin as an immunological 

barrier may be provoked by exposure to certain stimuli, this may 

include drugs, excipients, or components of delivery devices resulting 

in erythema, edema, etc (Toole et al., 2002). 
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Benefits Limitations 

Improved patient acceptance as self-administration is possible with these 

systems as well as improved patient compliance and comfort via non-invasive, 

painless and simple application (Rasheed et al., 2011; Archer et al., 2004). 

 

The drug must have some desirable physicochemical properties for 

penetration through SC and if the drug dose required for therapeutic value is 

more than 10mg/day, the transdermal delivery will be very difficult (Rasheed 

et al., 2011). 

 

The avoidance of first pass metabolism and other variables associated with 

the GI tract such as pH, gastric emptying time (Rasheed et al., 2011; Kumar 

and Philip, 2007). 

Only relatively potent drugs are suitable candidates for transdermal drug 

delivery systems because of the natural limits of drug entry imposed by the 

skin’s impermeability (Rasheed et al., 2011). 

 

Due to the sustained and controlled delivery over a prolonged period of time, 

transdermal delivery is associated with a reduction in side effects associated 

with systemic toxicity i.e., minimization of peaks and troughs in blood-drug 

concentration. Adverse effects or therapeutic failures frequently associated 

with intermittent dosing can also be avoided (Rasheed et al., 2011). 

Some patients develop contact dermatitis and local irritation at the site of 

application for one or more of the system components, necessitating 

discontinuation. Erythema, itching, and local edema can be caused by the 

drug, the adhesive, or other excipients in the patch formulation (Rasheed et 

al., 2011). 

 

 

Utilization of drug candidates with short half-life and low therapeutic index 

(Barry, 2002). 

Clinical need is another area that has to be examined carefully before a 

decision is made to develop a transdermal product (Yadav, 2012).  

  

Transdermal delivery can increase the therapeutic value and bioavailability of 

many drugs by avoiding specific problems associated with the drug e.g., 

gastro-intestinal irritation, low absorption, decomposition due to hepatic “first-

pass” effect, formation of metabolites that cause side effects, short half-life 

necessitating frequent dosing etc (Rasheed et al., 2011). 

High cost of the product is also a major drawback for the wide acceptance of 

this product (Yadav, 2012).  
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2.3.2. Barriers to transdermal delivery 

Even though transdermal drug delivery systems have been found to be effective, success is 

controlled by the SC, the rate-limiting step in the penetration process, (Tadicherla and 

Berman, 2006) prohibiting the entry of most drugs into the skin at therapeutically useful rates 

(Prausnitz, 2004; Rasheed et al., 2011). Owing to the dead nature of the SC, solute 

transport across the SC is maintained principally by passive diffusion in accordance with 

Fick’s Law (Flynn et al., 1974). In addition, the SC has many unpopular properties, namely i) 

it is hygroscopic, yet impermeable to water, ii) layer thickness varies for different areas of the 

body, iii) it is a tough but flexible membrane, and iv) it is an intercellular space rich in lipids 

(Brown et al., 2006). Although it has these undesirable properties, the SC does however 

allow penetration of some chemicals to reach into the blood vessels and tissue underneath 

the skin, provided that these chemicals and drug candidates fulfill several requirements in 

terms of aqueous solubility, lipophilicity, molecular weight, melting point, pH of saturated 

aqueous solution and the dose deliverable (Naik et al., 2000; Joshi, 2008). Since 

transdermal drug delivery has been limited to low amounts of drug due to the extremely low 

rate of drug release from the matrix and the low permeability of drug through the skin, one of 

the primary challenges for transdermal drug delivery is to increase the permeation of drug 

through skin tissue by overcoming the barrier function from the SC (Zhang and Michniak-

Kohn, 2011). 

 

2.4. Transdermal Delivery Optimization Technologies 

The search for methods of improving delivery of drugs through the SC has been 

emphasized. The optimization of the drug therapy can be achieved if the drug carrier 

responds and activates in a predictable and reproducible fashion under an external or 

internal stimulus such as temperature (Xu et al., 2006), pH (Gudeman and Peppas, 1995) 

and electric field (Murdan, 2003). Many methods being either physical or chemical have 

been researched and investigated. Table 2.3 summarizes some ways in which the SC 

barrier may be eluded. While these methods of optimization were well accepted into the 

world of pharmaceutical research and development, they are not without their shortcomings. 

From the above mentioned techniques of enhancing transdermal delivery, microneedles and 

iontophoresis have the most favorable properties. In combination, the summative 

advantages are worth more than any single technique alone. 
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Table 2.3: Comparison of methods of enhancing transdermal delivery (Kumar and Philip, 
2007). 
 

Delivery method Low cost/ 

Complexity 

Increased 

transport 

Sustained 

delivery 

No pain/ 

irritation 

Thermal Poration + ++ +++ +++ 

Iontophoresis +++ + +++ +++ 

Ultrasound  + ++ +++ +++ 

Electroporation  + ++ +++ ++ 

Microneedles  + ++ +++ +++ 

Jet injection  + +++ + + 

Chemical enhancers + +++ ++ + 

*+ limited, ++ moderate, +++ good  

 

2.4.1. Iontophoresis: Mechanism and formulation considerations 

The experimental study of electro-transport or iontophoresis has a long history, and the 

technique has been applied in numerous clinical situations (Banga and Chien, 1993). Three 

types of iontophoresis units are commercially available (a) rechargeable power sources (b) 

line-operated units, and (c) simple battery-operated units. Iontophoresis being a non-

invasive technique uses a low current (0.5mA/cm2) to administer polar and charged species 

through the skin (Mudry et al., 2007; Sieg and Wascotte, 2009).This ultimately broadens the 

range of transdermal administration drug candidates. Iontophoresis acts on the molecule 

itself, unlike other techniques of transdermal delivery enhancement and thus allows for 

better control of the dose applied (Sieg and Wascotte, 2009). By the process of electro-

osmosis and electromigration, the permeation of neutral and charged compounds is 

increased by iontophoresis, offering a programmed drug delivery option. Although it has 

been most predominantly applied to the delivery of anti-inflammatory agents for local effects, 

iontophoretic methods are gaining attention in the area of pain relief for the systemic 

administration of minute amount of drugs in a non-invasive manner. This technique is one of 

the most evolved of these delivery optimization technologies and uses a small electrical 

current (<500 microamperes cm-2) to facilitate the transfer of drugs across the skin (Singh 

and Maibach, 1996; Naik et al., 2000). In order to facilitate drug transport through the 

advancement of iontophoretic systems, microneedle devices that use an array of micro 

needle-like structure to penetrate and thereby open pores in the SC may be used. These 

systems have been reported to greatly enhance the permeation of macromolecules through 

skin up to 100,000 fold (Chiranjib et al., 2010). A large volume of literature already exists on 

electrophoresis in the field of transdermal and dermal drug delivery with the safe range of 

electric field strengths for topical application already determined (Delgado-Charro and Guy, 
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2001). Electro-responsive drug delivery thus seems feasible option for drug delivery, albeit a 

difficult option. By controlling the electric current iontophoresis may lead to the development 

of a new era of PCA. 

 

Based on the principle that like charges repel and opposing charges attract drug is applied 

under an electrode having the same charge, and a return electrode opposite in charge to the 

drug is placed at a neutral site on the body surface (Banga and Chien, 1993; Sieg and 

Wascotte, 2009). In anodal iontophoresis, the positive active ion drug containing solution is 

placed under anode at the desired site while the receiving electrode, the cathode, is placed 

at another site. In cathodal iontophoresis, the electrodes are reversed (Sieg and Wascotte, 

2009). Anodal delivery is the preferred method of drug delivery as at physiological pH, the 

skin carries a net negative charge, rendering it, under the imposition of an electrical field, 

permselective to positively charged species (Naik et al., 2000). Through changes in 

formulation pH, alteration of the skin’s charge prospectively changes the balance of electro-

repulsive and electro-osmotic contributions to iontophoretic transport, which has been 

convincingly proven in in vitro systems (Merino et al., 1999). Transport is not limited to 

molecules having a charge as the transport of uncharged or neutral molecules can also be 

facilitated by iontophoresis. The iontophoretic theory (Figure 2.3a) is based on the general 

principle of electricity which involves passing a direct electrical current through a medicated 

solution to facilitate the delivery of selected ions into tissues (Sieg and Wascotte, 2009). The 

efficiency of this iontophoretic process is dependent on: the delivery formulation 

composition; the permeant’s valency, polarity, and ionic mobility; and the current profile 

(Naik et al., 2000). The principal transport mechanism during iontophoresis is 

electromigration: where the intensity of current applied (I) is linked to the transdermal flux of 

ion “i” (Ji) via Faraday’s law (Bajpai et al., 2009): 

 

�� =
�� .�

	� .

                              Equation 2.1 

 

Where ��  and �� are the valence and transport number, respectively, and   is Faraday’s 

constant. The transport number is defined as the fraction of the total charge transported by a 

specific ion during iontophoresis and is related to its effectiveness as a charge carrier, as 

well as the presence of competitor counter- and co-ions and their respective abilities to carry 

charge (Delgado-Charro and Guy,  2001; Kalia et al., 2004). 

 

Iontophoretic devices are generally designed to deliver therapeutically active materials in 

small amounts for a given time with the magnitude of current determining the number of ions 
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transported across the skin and thus the amount of charge generated in the circuit (Singh 

and Maibach, 1996; Naik et al., 2000). Controlling the current ensures an efficient and 

controlled drug delivery method with the amount of drug compound delivered being directly 

proportional to the applied charge. The pH of the formulation plays a critical role in 

iontophoretic delivery efficiency as it impacts both the permeant’s ionization state and the 

permselectivity of the skin which in turn determines its electrical mobility. 

 

Other properties that influence iontophoresis include: i) the degree of skin hydration, ii) 

presence of chemical additives (Allenby et al., 1969; Clar et al., 1982) iii) pH (Allenby et al., 

1969), iv) electrolyte concentration (Allenby et al., 1969; Clar et al., 1982), v) temperature, 

(Allenby et al., 1969; Oh et al., 1993) vi) thyroid activity (Edelberg, 1972), vii) perspiration 

(Oh et al., 1993),  viii) skin disease (Clar et al., 1982) , and ix) emotional state (Oh et al., 

1993). Decreased skin resistance often correlates with increased skin permeability (Lawler 

et al., 1960; Allenby et al., 1969; Burnette and Ongpipattanakul, 1988). 

 

To account for the resistance of the skin being treated, iontophoretic devices operate at a 

constant voltage in order to vary the current. The likelihood of electric shocks is thus reduced 

thereby increasing patient acceptability and compliance. The significant considerations for 

an iontophoretic device include convenience, cost, safety, portability and reliability. In order 

to succeed and compete with those novel delivery methods already available on the market, 

the prime issues that require consideration include device safety and design, cost-

effectiveness, efficacy, and ease of handling (Brown et al., 2006). Iontophoretic delivery 

seems a promising system for future developments as the systemic adverse effects of drugs 

are significantly reduced since only small amounts of drug are delivered; while locally, a 

relatively high concentration is administered, possibly achieving the maximum benefit. 

Patient acceptance is generally remarkable, and the phobia associated with injections is 

eliminated. The possibilities for the systemic control of transdermal drug delivery are greater 

with iontophoresis than with passive diffusion. Iontophoretic delivery does however have 

some disadvantages: only hydrophilic drugs (<10 000Mw) are amenable to deliver with 

some problems of burning, along with itching and redness at the administration site (Wang et 

al., 2003). 

 

The first iontophoretic system to be approved by the FDA as a physical medicine was the 

Phoresor™ device (Iomed Inc.) in the late 1970s (Fischer, 2005). As an external stimulus, 

the use of an electric field has been employed successfully to enhance the amount of drug 

released. To name a few drugs and analgesics: atenolol hydrochloride (Jacobsen, 2001), 

buprenorphine (Fang et al., 2002) and diclofenac (Hui et al., 2001) have been investigated 
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for iontophoretic delivery. E-trans® (Alza Corporation) is another electro-transport system 

that utilizes a low-power electric current to control drug administration of fentanyl through 

intact skin. These systems are currently being developed to provide patient-controlled 

pulsatile delivery and continuous drug delivery (Verma and Garg, 2001). Other iontophoretic 

technologies that have been marketed include Lectro Patch® (General Medical Company), 

Accuresis™ (Aciont Inc.), Phoresor® (Iomed Inc.), Lidosite ® (Vyteris Inc.), Acyclovir Direct® 

(BioPhoretic Systems),  Iontopatch ® (Birch Point Medical Inc.), Glucowatch® (Cygnus Inc.), 

Iontocaine® (Iomed  Inc.). Some of the current iontophoretic and sonophoretic devices under 

development are depicted in Figure 2.3 (b) in addition to a microneedle device. 

 

 

Figure 2.3: (a) Schematic of an iontophoretic device. (b) An iontophoresis device under 
development at Vyteris (Pty) Ltd. (New Jersey). 
 

2.4.2. Microneedle arrays: Methods of drug delivery and current challenges 

In order to provide optimal delivery of analgesic medication, the existing iontophoretic 

patches alone are insufficient. The use of MNAs in combination with such a patch will 

provide optimal delivery (Henry et al., 1998; Barry and Williams, 2003; Tao and Desai, 2003; 

Doukas, 2004). To date, no such device has been developed.  
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One of the earliest patents filed for a percutaneous drug delivery device was based on this 

method of microneedle arrays (Gerstel and Place, 1976). Since microneedles enable 

painless insertion, they allow for increased control over drug dosage, cause minimal tissue 

damage, and are independent of drug concentration and composition, they can be deemed 

as properties of significance when compared with commercially available hypodermic 

needles (Bronaugh and Maibach, 1999; Barry and Williams, 2003). It is thus not surprising 

that there is an extensive interest in microneedles, as indicated by the extensive patent 

activity and the literature available the in the field (Doukas, 2004; Langer, 2004; Verbaan et 

al., 2007; Vandervoort and Ludwig, 2008). 

 

Microneedles are an attractive candidate as a physical enhancer to administer drugs 

throughout the skin as a function of their inherently promising and unique release of drugs in 

a minimally invasive manner (Santell, 2005). Microfabrication techniques for the production 

of silicon, metal, glass and polymer MNAs with micrometer dimensions have been described 

in a plethora of geometries (Figure 2.4; McAllister et al., 2003; Teo et al., 2005) and in terms 

of processing, there are many advantages: thousands of needles can be fabricated on a 

single silicon substrate wafer due to their small size, leading to worthy reproducibility and 

high accuracy, and a modest production cost, which ultimately reduces costs to the patient.  

 

 

Figure 2.4: Scanning electron micrographs of various needle types (a) A 26-guage 
hypodermic needle (b) A silicon microneedle array at the same magnification as the 26-
guage hypodermic needle (c) A silicon microneedle array at a higher magnification (d) A 
hollow metal microneedle (e) A tip of a hollow metal microneedle penetrating through the 
human epidermis (Hui et al., 2001). 
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2.4.2.1. Comparison between microneedles and hypodermic needles as methods of 

delivery 

Even though hypodermic needles are the norm for parental delivery, there are several 

disadvantages relating to their use (Birchall, 2006; Giudice and Campbell, 2006; Prausnitz 

and Langer, 2008):  

 

• pain and needle phobia, leading to poor patient compliance  

• if re-used, possibility of disease transmission  

• administration requires trained personnel  

• erratic delivery 

• rapid degradation or poor absorption, leading to poor bioavailability and thus 

requiring a higher drug amount to achieve the therapeutic dose 

• the possibility of needle-stick injuries 

• potentially dangerous biological waste and sharps disposal hazard 

• possibility of hematoma formation or bleeding  

 

Besides the aspect of painless delivery, numerous other advantages of microneedles are 

presented in reference to the existing hypodermic injection in existing literature, including: 

minimal skin trauma following microneedle insertion (Bal et al., 2008); no bleeding or 

introduction of pathogens associated with microneedle use (Matriano et al., 2002; Martanto 

et al., 2006; Gill and Prausnitz, 2007; Prausnitz et al., 2009); appropriateness and a 

comparatively effortless application or ease of use for non-skilled and/or self-administration 

(Haq et al., 2009; Kim et al., 2009, Davidson et al., 2008); reduced risk of needle-stick injury 

and cross-contamination (Haq et al., 2009) as well as the increased ease in disposal 

(Prausnitz et al., 2009). 

 

Transdermal delivery facilitated by microneedles may be summarized into four methods. 

(Prausnitz, 2004; Gill and Prausnitz, 2007; Arora et al., 2008; Davidson et al., 2008; 

Sachdeva and  Banga, 2011; Bariya et al., 2012; Kuila et al., 2012; van der Maaden et al., 

2012). Hailed as a breakthrough in transdermal delivery, these four methods: the (i) poke 

and flow, (ii) poke and patch, (iii) poke and release, and (iv) coat and poke, have key 

features that may influence selection and suitable use (Table 2.4).
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Table 2.4: Features of microneedle facilitated transdermal delivery methods (Kuila et al., 2012). 
 

Transdermal 

Delivery Method 

Type of 

Microneedle Used 
Rate- Limiting Step Advantages Disadvantages 

Poke and flow Hollow  • Pressure resistance at 
high volumes  

• Solvent flow through 
bore  

• Allows for accurate dosing 
• Greater volumes may be delivered  
• Drug delivery may regulated 
• Drug reformulation limited/not 

needed 
 

• Bore may become blocked by 
tissue/drug resulting in leakage 

• Device design more complex 

Poke and patch Solid  • Diffusion  • Extended release 
• Simple process 
• No pump required 

• Administration requires 2 steps 
• Low amount of drug delivered 
• Drug reformulation may be 

required 
• Dosing is not precise 

 
Poke and release Solid • Rate of dissolution 

(dissolving 
microneedle)  

• Rate of diffusion 
(porous microneedle) 

• Allows for precise dosing  
• No pump/patch required 
• No waste produced 
• Small amount of drug may be lost 

during production 

• Drug reformulation may be 
required 

• Questionable strength  
• Reduced penetration ability 
• Low doses  
• Drug reformulation required 

 
Coat and poke Solid • Surface coating 

detachment possible 
• Dissolution rate for 

thicker coatings 

• No pump/patch required 
• Allows for precise dosing  
• Retained strength after coating  

• Low doses  
• Drug reformulation required 
• Reduced penetration ability 
• Efficient coating procedure 

required 

21 30 
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2.4.2.2. Microneedles: Advancing the hypodermic needle 

In certain cases, diffusion alone is an inadequate mechanism to penetrate the SC preventing 

optimal drug delivery and numerous procedures have been developed to aid drug delivery in 

such instances. It must be stated that diffusion is not the only factor controlling delivery 

through the SC: permeability; aqueous/lipid solubility ratio; and molecular size are critical as 

well in facilitating permeation (Raphael et al., 2013). Martanto and co-workers (2006) have 

tested the hypothesis of compressed dermal tissue trapped within a hollow microneedle after 

insertion offering resistance to flow through the microneedle and into the skin. Results have 

concluded that skin infusion can be increased by retracting the microneedle.  

 

Although for many years, hypodermic needles have been synonymous with the gold 

standard for drug delivery; recent biotechnological advances are making their limitations 

increasingly apparent (McAllister et al., 2003). As devices capable of transporting nano-sized 

molecules are available, the larger length scales of these needles are often unnecessary, 

causing pain and limit targeted delivery.  

 

The SC prevents the passage of micro-organisms through the skin, and although 

microneedle puncture breaches this epidermal layer, this technology causing skin or 

systemic infection has not been reported on (Prausnitz, 2004). Donnelly and co-workers 

(2009) have investigated the ability of Gram positive (S. epidermidis), Gram negative (P. 

aeruginosa) and fungi (C. albicans) to transverse the SC as mimicked by Silescol®. Results 

from the study have concluded that microneedles allow for significantly less microbial 

penetration as compared to the hypodermic syringe, resulting in an added advantage to the 

use of microneedles.  

 

Studies by Baek and co-workers (2011) and Donnelly and co-workers (2013) utilizing various 

micro-organisms to assess microneedle safety were conducted. The studies have concluded 

that skin treated with microneedles is not susceptible to micro-organisms penetration. A 

primary skin irritation test using the Draize dermal scoring criteria after microneedle 

penetration was conducted by Liu and co-workers (2014), the slight redness observed was 

attributed to physical compression of the microneedles and it was concluded that irritation 

and skin damage caused by microneedle were insignificant.   

 

Since transcutaneous immunization is limited by poor macromolecular skin permeation, as a 

vaccination tool, microneedle arrays could offer easier and painless administration, in 

addition to reducing vaccination costs (Bal et al., 2008; Ding et al., 2009; Matsuo et al., 

2012; Vrdoljak et al., 2012). In addition, vaccine delivery via the skin or via other mucosal 
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membranes may improve effectiveness and result in better cellular immunity by eliciting 

immune responses at the virus entry site. Research has suggested that the transport 

mechanism appears non-dependent on cellular uptake functions, allowing for physical 

methods to be applied to all cell types at all stages of the cell cycle, resulting in a biologically 

nontoxic and minimally invasive process (Chen et al., 2009).  

 

The perceived disadvantages that may occur with the use of microneedles include the 

possibility of inflammation in the surrounding tissues, and the fact that there is a certain 

likelihood of the microneedles to break off and be left under the skin. Due to the small size of 

microneedles the latter may occur unnoticed causing unforeseeable adverse reaction.  

 

2.4.2.3. Types of microneedles and their methods of use  

Microneedles differ in design and composition, currently, four distinct types of microneedles 

exist (Figure 2.5): solid microneedles often used to pretreat the skin prior to the 

administration of bioactives; drug-coated solid microneedles for drug dissolution in the skin; 

hollow microneedles for injections; and dissolving microneedles prepared from a polymer in 

which the drug or vaccine is embedded in the polymer matrix for the controlled or rapid 

release in the skin (Sivamani et al., 2007; Gratieri et al., 2013). 

 

 
Figure 2.5: (a) Types and (b) methods of drug delivery to the skin using microneedles (Kim 
et al., 2012). 
 

Since microneedles are specifically designed and developed according to their use and 

needs, these approaches have key features that may influence selection and suitable use. 

Although not exhaustive, Table 2.5 summarizes some of the research on microneedles 

comparing the results of the above delivery approaches to an appropriate control experiment 

utilizing the gold standard hypodermic needle. 

(a) 

(b) 
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Table 2.5: Recent research on microneedle-assisted vs. hypodermic needle delivery claiming improved delivery performance.  
Paper Research Area Drug/Compound Reference 

Drawing lithography for 
microneedles: A review of 
fundamentals and biomedical 
Applications 

A negative control of p2CMVmIL-12 V (20mg) was released 
into the skin using the dissolving microneedle without electric 
pulses. The same electric pulses were applied by electrode 
tweezers after intra-tumoral injection of p2CMVmIL-12 using a 
hypodermic needle (20mg/30mL in D.I.) and served as a 
positive control. Subcutaneous tumoral expression of IL-12 
was significantly greater in mice transferred with p2CMVmIL-12 
by the HEM and the positive control compared to the 2 
negative controls (cutaneous control pCI plasmid transfer by 
the HEM, and p2CMVmIL-12 release using a dissolving 
microneedle without electric pulses). 
 

• p2CMVmIL-12 • Lee and Jung, 
2012 

Separable arrowhead 
microneedles 

The sharp-tipped polymer arrowheads encapsulating drug 
separate from their metal shafts and remain embedded in the 
skin for subsequent dissolution and drug release. Arrowheads 
were shown to separate in skin within 1s and administer over 
80% of encapsulated compounds. Thus, the time required to 
administer drug using arrowhead microneedles can be 
comparable to hypodermic needles. 
 

• sulforhodamine B  
• inactivated 

influenza virus  

• Chu and 
Prausnitz,2011 

Effect of delivery 
parameters on immunization 
to ovalbumin following 
intracutaneous 
administration by a coated 
microneedle array patch 
system 
 

Different routes of administration were compared. As per the 
results, it was found that at low dose of antigen delivered 
(1µg), the immune response, as measured by specific antibody 
titers, was most efficient following microneedle and ID 
administration as compared to SC or IM administration. The 
immune response was more than one order of magnitude 
higher following microneedle-based administration versus SC 
delivery, and about two orders of magnitude greater as 
compared to IM delivery. 
 

• antigen OVA • Widera et al., 
2006 

• Matriano et al., 
2002 
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Paper Research Area Drug/Compound Reference 

Transdermal delivery of 
insulin using microneedles in 
vivo 

This pharmacodynamic response of the microneedles was 
similar to that seen following subcutaneous hypodermic 
injection of 50mU of insulin and less than that seen for injection 
of 500mU of insulin, which were used as positive controls. The 
study concluded that the solid metal microneedles are capable 
of increasing transdermal insulin delivery and lowering blood 
glucose levels by as much as 80% in diabetic hairless rats in 
vivo. 
 

• Insulin  • Martanto et al., 
2004 

Transdermal delivery of 
desmopressin using a coated 
microneedle array system 

Pharmacologically relevant amounts of desmopressin were 
delivered after 5min. bioavailibility (85%) showed acceptable 
variability (30%). Immunoreactive serum desmopressin 
reached peak levels after Tmax of 60 minutes. Elimination 
kinetics were similar to IV delivery, suggesting the absence of 
a skin depot. Additionally, the patches were well tolerated and 
are a safe and efficient alternative to current available 
administration routes.  
 

• Desmopressin  • Cormier et al., 
2004 

34 21 
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2.4.2.4. Advancing methods of delivery using microneedles  

The earlier produced microneedles used for drug delivery were made from silicon wafers 

through deep reactive ion etching and photolithography (Henry et al., 1998; Smart and 

Subramanian, 2000, Gardeniers et al., 2003). Microfabrication techniques for the production 

of silicon, metal, glass and polymer MNAs with micrometer dimensions have been described 

in a plethora of geometries as it provided unique new design opportunities to lithographically 

produced polymeric microneedles (McAllister et al., 2003; Teo et al., 2005; Davis et al., 

2005; Park et al., 2006, Lϋttge et al., 2007). By fabricating these needles on an industrial-

scale silicon substrate, it allows for thousands of needles to occupy on a single wafer, 

leading to good reproducibility, high accuracy, and a moderate fabrication cost, which in turn 

reduce costs to the patient. 

 

While the first microneedles were fabricated solely out of silicon by lithography followed by 

wet and dry etching (based on the utilization of an alkaline solution and reactive ion etching 

with some sort of mask, respectively), divergent technologies today employ various other 

materials including polymer, metal, ceramic and glass, providing microneedles of many 

shapes and sizes, according to various applications (Kim et al., 2012). Interestingly, Bal and 

co-workers (2010) have proved that microneedle shape and speed application both effect 

the depth and shape of formed conduits using fluorescein in human subjects. Materials used 

in the development of solid microneedles include next to silicon, titanium, stainless steel and 

nickel-iron, glass and ceramics (Martanto et al., 2004; Doddaballapur, 2009; Li et al., 2010, 

Bystrova and Lϋttge, 2011).  Water soluble polymers and engineering plastics such as 

carboxymethyl-cellulose, polylactic-coglycolic acid and polycarbonate respectively are used 

in the fabrication of polymeric needles (Arora et al., 2008).  

 

Lithography as well as wet and dry etching techniques are adapted from 

Microelectromechanical systems (MEMS) technology.  In addition to the on-going 

developments in microfabrication using silicon, glass and metal; also more advanced 

microscale polymeric drug delivery devices have become available (Ochoa et al., 2012). 

These techniques comprise of three categories divided by the manner in which the polymeric 

material is processed (Becker and Gärtner, 2008):  

 

• Photolithography: the polymerization of a substance constructs and defines the desired 

structures (Figure 2.6) 

• Replica moulding: a polymer is injected into or cast onto a hard or soft master mould 

which is fabricated using MEMS microfabrication techniques  
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• Polymer micromachining:  micromilling or ablation is used to modify a slab of the material 

to achieve the anticipated structure  

 

 

 

Figure 2.6: Schematic highlighting silicon wafer photolithographic processing. A ‘mask’ is a 
square glass plate with a patterned emulsion of metal film on one side. The mask is aligned 
with the wafer, so that the pattern can be transferred onto the wafer surface. Each mask 
must be aligned to the previous one. The photoresist is exposed through the pattern on the 
mask with a high intensity ultraviolet light. 
 

The most commonly used techniques in microneedle manufacture are: wet and dry etching 

(Jung et al., 2008), laser cutting (Aoyagi et al., 2007), micromoulding (Park et al., 2007) and 

lithography (Perennes et al., 2006).  

 

2.4.2.4.1. Separable arrowhead microneedles  

Chu and Prausnitz (2011) developed microneedles with a separable arrowhead (Figure 2.7). 

The associated disadvantages with biodegradable microneedle are overcome by the 

increased mechanical strength associated with metal microneedles. In addition, the issue of 

biohazardous sharp waste disposal is overcome by the microneedles’ dissolving component. 

Photolithography and moulding techniques was used to prepare a polydimethyl siloxane 

(PDMS) mould to generate a 10×10 array of pyramid-shaped microneedle cavities, which 
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were eventually utilized in the formation of the microneedle arrowheads (Choi et al., 2006). 

Dissolution and drug release was successful as the sharp-tipped polymer arrowheads 

remained embedded in the skin. Ex vivo testing employing human cadaver skin used to 

evaluate the effectiveness of the microneedles shows that cavities formed in shape similar to 

that of the arrowheads. Furthermore, local release of the desired therapeutic agent from the 

arrowheads was achieved.  

 

 
Figure 2.7: (a) Schematic diagram of separable arrowhead microneedle fabrication process. 
(A) A drug solution was applied to a polydimethyl siloxane micromould under vacuum. (B) 
Excess drug solution on the mould surface was removed and saved for re-use. (C) The drug 
solution loaded in the mould cavities was dried under centrifugation. (D) A polymer solution 
was cast into the mould under vacuum. (E) Excess polymer solution on the mould surface 
was spun off by centrifugation. (F) Blunt metal shafts prepared by laser-cutting were aligned 
to the mould cavities. (G) The whole device was air-dried at room temperature or freeze-
dried overnight. After drying, the dried, drug-filled polymer arrowheads connected to the 
metal shafts were removed from the mould. (H) Metal stoppers along the periphery of the 
patch were bent down. (b) Individual needles are shown from the front (i) and side (ii) (Chu 
and Prausnitz, 2011). 
 

2.4.2.4.2. Dissolvable microneedles by micromoulding 

In order to reduce biohazardous sharps waste, dissolvable microneedles have been 

developed. These microneedles undergo complete dissolution in the skin and are typically 

made primarily of water-soluble, inert, safe materials, such as sugars and polymers that 

dissolve once exposed to the skin (Kim et al., 2012). The application of hollow microneedles 

does provide the advantage of acting as a physical enhancer for transdermal drug delivery. 

Nonetheless, the application is limited as its associated risk is needle breakage for the 

injection of a drug solution (Lee et al., 2012). Thus, dissolving microneedles, intended for the 

painless transdermal release of encapsulated pharmaceutical agents after dermal insertion, 

were developed as a solution to the safety issue (Lee and Jung, 2012). 
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Dissolvable microneedles mainly deploy PDMS micromoulds similar as for the ceramic 

microneedles as previously mentioned, however they could be made from other materials or 

by other methods of manufacture as well, for example. The micromoulds are filled by solvent 

casting, where a liquefied polymer fills the mould and solidifies in the mould by solvent 

evaporation. In case where a liquid monomer is used, in-situ polymerization is used. Drawing 

methods of fabrication using polymer/sugar solutions and polymer/sugar melts have also 

been developed (Kim et al., 2012). Various materials including dextran (Fukushima et al., 

2011), carboxymethyl cellulose (Raphael et al., 2012), dextrin (Sullivan et al., 2008), 

polyvinyl pyrrolidine (Sullivan et al., 2008), chondroitin sulphate (Ito et al., 2010), polyvinyl 

alcohol (Wendorf et al., 2011), fibroin (You et al., 2011), poly(lactic-co-glycolic) acid (Park et 

al., 2006) and sugars (Martin et al., 2012) have been dissolved in water. If the solutions or in 

some specific cases melts are filled into the mould, the additional use of centrifugal force 

and/or vacuum is sometimes warranted before drying.  

 

Park and co-workers (2005) have fabricated biodegradable polymer microneedles based on 

micromoulding using polyurethane master structures or high aspect-ratio SU-8 epoxy 

photoresist to form PDMS moulds (Figure 2.8). To improve safety and manufacturability, the 

polymers used both had appreciable biocompatible and biodegradable properties. An 

advanced fabrication method was therefore developed using an in situ lens-based 

lithographic approach in which tapered-cone microneedle were produced in addition to the 

adaption of MEM masking and etching to produce bevelled- and chisel-tip microneedles. The 

permeability of human cadaver skin to bovine serum albumin and calcein were shown to 

increase up to three orders of magnitude. The geometry of the formulated microneedles has 

been shown by Park and co-workers (2005) to have an effect on the release kinetics of the 

compounds depending upon the geometry employed. By increasing skin permeability by at 

least two to three orders of magnitude, the polymer microneedles described therefore sought 

to overcome the current limitations associated with the use of silicon and metal.  
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Figure 2.8: Schematic of processes to fabricate (a) beveled-tip microneedles (b) chisel-tip 
microneedles (Park et al., 2005). 
 

(a) 

(b) 
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Lee and co-workers (2011) also used drawing lithography as the technique for the 

fabrication of dissolving microneedles containing maltose as the structural matrix (Figure 

2.9). Drawing lithography uses extensional deformation in which 2D viscous polymer 

materials are directly extended to a 3D polymer structure whilst utilizing the in the glass 

transition history of the material (Lee and Jung, 2012). Maltose was chosen as the triple-

state (in liquid, glassy, solid) as the viscosity was able to be easily regulated by temperature 

manipulation (Lee et al., 2011). Sulforhodamine B was encapsulated into the prepared 

dissolving microneedles and the patch was inserted into the shaved dorsal skin of brown 

guinea pigs. The cross-sectional image of the penetration site confirmed that no microneedle 

breakage occurred and that the prepared microneedles were successfully applied.  

 

 
 

Figure 2.9: (a) The dissolving microneedle as developed by Lee and co-workers (2008) (b) 
Sharp-conical cone shapes were fabricated by stepwise controlled drawing, primary drawing 
at drawing point b and main drawing of drawing point c (Lee et al., 2011). 
 

2.4.2.4.3. Hybrid electro-microneedles 

Lee and Jung (2012) discussed a specific drawing lithography as a unique additive process 

to fabricate microneedles (Figure 2.10) combining drawing lithography with a metal base 

plate. A noteworthy end-product by this type of fabrication is a hybrid electro-microneedle 

(HEM). Following insertion of the microneedle, the HEM’s electrode facilitates cutaneous 

release from the encapsulated reservoir by generating electric field pulses following a poke 

and controlled release approach to transdermal delivery. The Hybrid electro-microneedle is 

produced in a manner similar to that in Figure 2.9b, the only difference is that the needle is 

produced on top of an electrode. To date this type of microneedles have not been further 

developed.  

(a) (b) 
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Figure 2.10: Schematic of the monolithic hybrid assembly of a dissolving microneedle and 
an electrode to produce a hybrid electro-microneedle and the stepwise-aligned cutaneous 
permeation, cutaneous release, and intracellular transfection using the HEM (Lee and Jung, 
2012). 
 

Lee and co-workers (2008) purport that microneedles intended for dissolution and safe use 

in vivo should be guided by certain criteria:  

 

• Sufficient mechanical strength allowing for enhanced skin insertion  

• Controlled drug release profiles for bolus or sustained delivery 

• The use of gentle fabrication techniques to avoid damaging of sensitive biomolecules 

• Enhanced rapid dissolution of prepared microneedles formulated with the use of 

safe, non-toxic materials 

 

Further research conducted by Lee and co-workers (2008), describes a microneedle design 

consisting of encapsulated molecules within microneedle shafts which leave no sharp 

biohazardous medical waste upon exhaustion of drug release. Their fabrication process for 

the dissolving needles was developed by casting a viscous aqueous solution into a micro-

fabricated mould containing biocompatible amylopectin or carboxymethylcellulose 

formulations during centrifugation. Micromoulds were fabricated using moulding processes 

and photolithography using a master mould that was structured in SU-8 photoresist.  The 

microneedle matrix material was prepared from a viscous hydrogel solution comprising of 

amylopectin, bovine serum and ultra-low viscosity carboxymethylcellulose. The microneedle 

shafts were selectively loaded, providing bolus release of drug upon microneedle dissolution 

inside porcine cadaver skin. 
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2.4.2.4.4. Droplet-born air blowing  

A method of microneedle fabrication has been proposed by Kim and co-workers (2013) 

which has the added advantage of controlling the loaded drug amount without significant 

drug loss. Conventional methods of fabrication methods have led to inactivity of drug due to 

UV assisted fabrication and heat. The DAB method (Figure 2.11), in which the polymer 

droplet is shaped to the microneedle via air blowing, allows for gentle fabrication conditions 

without the use of UV irradiation or heat. In addition, by utilizing a single polymer drop per 

microneedle allows direct control over the droplet size and concentration and thus for drug 

loading without drug loss. The process takes approximately 10 minutes and has been used 

to fabricate insulin loaded dissolving microneedles which have successfully reduced blood 

glucose levels after application to diabetic mice (Kim et al., 2013). Liu and co-workers (2012) 

have further developed insulin delivery through the utilization of insulin-loaded microneedles 

fabricated from Hyaluronic acid. The microneedles were successful in systemic delivery 

avoiding serious skin damage. 

 

 
 

Figure 2.11: Schematic illustration of dissolving microneedle fabrication via droplet-born air 
blowing method. (A) Biopolymer dispensing on the flat surface for base structure fabrication. 
(B) Dispensing of drug-containing droplet over the base structure. (C) Contact of dispensed 
droplet by downward movement of upperplate. (D) Control of microneedle length. (E) Air 
blowing-mediated solidification of droplet to shape microneedle structure. (F) Separation of 
two plates producing dissolving microneedle arrays on upper and lower plates (Kim et al., 
2013). 
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2.4.2.4.5. Layer-by-layer assembly onto microneedles for vaccine delivery 

Recently, Layer-by-layer (LbL) assembly has been gaining interest in vaccine delivery. This 

highly versatile deposition process was first suggested by Iler (1966) and Kirkland (1956) 

and relies on the alternate deposition of interacting species on a substrate with an 

intervening rinsing step following each deposition (Ariga et al., 2014). DeMuth and co-

workers (2012) have proven the application of poly(lactide-co-glycolide) (PLGA) microneedle 

arrays on mice, coated with multilayer films via LbL assembly of a biodegradable cationic 

poly(β-amino ester) (PBAE) and negatively charged interbilayer-crosslinked multilamellar 

lipid vesicles (ICMV) loaded with the protein antigen ovalbumin (OVA) and the molecular 

adjuvant monophosphoryl lipid A, were shown to rapidly be transferred from microneedle 

surfaces into the tissue within 5 minutes. In addition, enhanced DNA vaccination using the 

LbL polymer multilayer method was achieved by DeMuth and co-workers (DeMuth et al., 

2013)], utilizing rapid implantation of vaccine-loaded polymer films carrying biodegradable 

polycations, immune-stimulatory RNA and DNA, and into the epidermis with microneedles 

coated with releasable polyelectrolyte LbL multilayers. The advantages of using such 

method to enhance vaccine delivery allows for less costly but more effective distribution and 

vaccine storage due to the fact that the multilayer stabilized formulations can be stored 

easily without refrigeration until rehydration upon microneedle insertion into the target tissue. 

 

2.4.2.5. Commercialization of microneedle transdermal delivery systems  

Due to the limitations of other transdermal systems, the search for novel, more effective 

ways to administer potentially significant therapeutic compounds has resulted in the rapid 

movement of microneedle applications to commercialization. While other active transdermal 

systems exist, the efficiency of biopharmaceutical delivery is compromised and delivery can 

be burdensome to the patient. In the scientific literature, generally, microneedles have 

proven to be an efficient delivery system both in the delivery of drugs and other hormones 

and compounds. Currently, several systems employing microneedles are under 

development at a variety of commercial players, such as Microstructured Transdermal 

System (3M), Microinfusor (BD), Macroflux® (Alza), Microneedle Therapy System (MTS 

Roller™; Clinical Resolution Lab) and, Micro-trans™ and h-patch™ (Valeritas) and already 

were included in clinical trial phase testing. The MicronJet, is the most advanced hollow 

microneedle device currently available, developed by NanoPass Technologies, studies have 

demonstrated equivalent or superior immunogenicity to standard delivery using only 20% of 

the flu vaccine dose. In addition, Intanza® was the first influenza vaccine administered 

intradermally by micro-injection and was produced by Sanofi Pasteur MSD Limited (Figure 

2.12). 
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The 3M MT system allows for the improved delivery efficiency of some drugs and vaccines 

thereby resulting in quicker onset of action, the system has the potential to generate a 

unique pharmacokinetic profile. Skin punch biopsies of porcine skin concluded that 3M’s 

MTS can be used to provide rapid delivery of lidocaine for up to 90 minutes (Zhang et al., 

2012). 

The Microinfusor, developed by Becton Dickinson (BD) Technologies is a micro-needle 

containing drug delivery device capable of facilitating intradermal injections. Having a 

capacity of 0.2 to 15 mL, a wide range of therapeutic drugs can be delivered subcutaneously 

in a time ranging from a few seconds to several minutes. The hands-free system is designed 

for the automated delivery of high volume and/or highly viscous biotech drugs in clinical 

settings or at home. Preclinical studies on the Microinfusor have exhibited the successful 

intradermal delivery of an influenza vaccine with the same effectiveness of a conventional 

intramuscular injection (Alarcon et al., 2007). 

 

Alza/Johnson & Johnson has developed Macroflux® for the enhanced delivery of 

biopharmaceuticals in a controlled, reproducible manner which ultimately improves 

bioavailability and efficacy without significant discomfort for the patient. Macroflux® 

technology involves use of a drug-coated titanium microprojection array covering an area of 

8 cm2 containing approximately 300 microprojections/cm2. The drug-coated microprojections 

were shown to penetrate through the SC releasing drug into the microcapillaries (Ameri et 

al., 2006). According to Matriano and co-workers (2002), studies demonstrated that the 

patch allows for reproducible control of skin penetration depth and penetrated uniformly 

across the entire treated skin surface area to an average depth of 100µm. Control of 

intracutaneous OVA delivery by the microprojection array was achieved by varying the 

coating solution concentration, wearing time, and system size. 

 

The patented MTS Roller™ is a FDA-approved supplemental medical tool. Developed for 

cosmetic purposes, the device is ideal for non-ablative and non-surgical treatment of various 

skin conditions such as hyperpigmentation, aging and scarring (acne, surgical). Clinical 

studies have shown the device to be more effective than ablative treatments like, 

dermabrasion laser resurfacing, and chemical peel and just as effective as non-ablative 

treatments in stimulating collagen and elastin production to smooth scars and erase 

wrinkles. 

 

Micro-Trans™ Microneedle Array Patch technology (Valeritas) enables drug delivery into the 

dermis without skin characteristics or drug kinetics effecting the delivery. The arrays are 
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optimized to penetrate only the shallow layers of the skin, allowing for painless delivery. 

The h-Patch™ is a fully disposable, simple to use, controlled delivery technology platform 

designed to subcutaneously deliver drugs and can accommodate point-of-care fill or pre-

filled liquid for lyophilized medications while leveraging standard filling processes.  

 

Clinical trials on the developed microneedle array devices have been conducted. Studies 

were conducted on the effects of using Macroflux® to administer teriparatide [human PTH 1-

34 (TPTD)] in comparison to Macroflux® placebo and injectable TPTD in postmenopausal 

osteoporotic women (Cosma et al., 2010). This study was performed in 13 centers in three 

countries and consisted of 165 postmenopausal women aged 50–81 whose last menstrual 

period was at least 1 year earlier. Results from the study concluded that the TPTD delivered 

by Macroflux® significantly increased bone mineral density against the placebo device in a 

dose-dependent manner. The Macroflux® device increased total hip bone mineral density 

compared to both the placebo device and the commercial injection. In addition, no prolonged 

hypercalcemia was observed and the treatments were well tolerated (Cosma et al., 2010). 

 

The h-Patch™ has also been tested as a means to compare patient preference against 

insulin needle and syringe or pen as an insulin administration device for the treatment of 

Type 1 or 2 diabetes. The endpoint of this study was no longer deemed significant and has 

thus been terminated (http://clinicaltrialsfeeds.org/clinical-trials/show/NCT00453934). The 

other previously mentioned devices have not yet reach the clinical trial phase.  

 

2.4.2.6. Future perspectives and recent advances in stimuli-responsive materials 

With the development of microneedles, comes the need for the safety. When fabricated from 

metals, there is a possibility of the microneedles leaving traces of metals beneath the skin 

which may lead to erythema, irritation and other adverse effects. The microchannels created 

by the microneedles may be prone to microbial infection or toxin entry even though the 

channels may heal in a shorter time period than hypodermic needles. In this aspect, the use 

of microneedles for ocular delivery maybe welcomed. Advancements in PCA device 

developmental strategies are underway. The following highlights some possibilities in which 

this may be achieved: 

 

2.4.2.6.1. Utilizing electrosensitive polymer materials for carbon nanotubes  

To date, there have been numerous developments in the field of electro-responsive delivery 

using electro-sensitive polymers. This development is a stepping stone to the development 

of PCA using electro-responsive delivery. Nevertheless, the application of transdermal drug 

delivery systems is limited due to the low electro-conductivity and -sensitivity of polymers 
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(Kuila et al., 2012) thus the incorporation of conducting materials, such as carbon based 

nanomaterials, in polymeric networks have been proposed as a strategy to enhance the 

electro-sensitivity of polymeric materials (Kuila et al., 2012).  Multi-Walled (MWNTs) or 

Single-Walled (SWNTs) Carbon Nanotubes (CNTs) not only reinforce hydrogels but also act 

as a means to increase the electric conductivity and thermal stability of the resulting 

composites (Yun et al., 2011).  Significant applications of CNTs as determined by Im and co-

workers (2010) and Giri and co-workers (2011) respectively are: (1) an electro-sensitive 

transdermal drug delivery system consisting of a semi-interpenetrating polymer network of 

MWNTs composed of pentaerythritol triacrylate and polyethylene oxide MWNTs have been 

used as a component of an electro-sensitive system. The candidate drug used was (S)-(+)-

ketoprofen, a NSAID with analgesic and antipyretic effects.  It was shown that drug release 

increased with enhanced applied potentials, which was attributed to the higher electrical 

conductivity of CNTs; (2) composites of carboxymethyl guar gum and Multi-Walled Carbon 

Nanotubes (MWCNTs) used as potential devices for sustained transdermal release of 

Diclofenac sodium salt.  

 

A study by Yun and co-workers (2011) investigated the use of electro-spun PVA/PAA 

hydrogel nanofibers containing MWCNTs as an electro-conducting component (Figure 

2.13a). MWCNTs are purported to improve both the hydrogel’s mechanical strength and 

electrical conductivity. Researchers concluded that the electro-responsive drug release from 

the nanofibers was a result of the variation of ionization of functional groups in the polymer 

matrices.  

 

In a study by Spizzirri and co-workers (2013) a composite electro-conductive hydrogel based 

on a natural protein containing MWNTs was developed (Figure 2.13b). The composite was 

aimed at modulating the electro-responsive release of diclofenac sodium salt Gelatin/CNT 

hybrid hydrogels were fabricated by a straight forward synthetic strategy based on modified 

grafting approach. Resultant successful nanosized and uniformly dispersed spherical hybrid 

hydrogels with enhanced electrical properties, thermal stability and biocompatibility are 

depicted in Figure 2.13c. 
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Figure 2.13: (a) SEM image of PVA/PAA nanofibers (1µm; Yun et al, 2011) (b) 
Transmission electron micrograph highlighting the presence of MWNTs into the polymeric 
network of the hydrogel. (c) DSS release as a function of time for differing microspheres in 
the absence (*) and in the presence of a 9-V direct current voltage (**) (0.1µm; Spizzirri et al, 
2013). 
 

2.4.2.6.2. Electric-field responsive microsystem applications  

Microfabrication techniques facilitate the production of miniaturized electro-mechanical and 

mechanical elements; it is from this that novel MEMS based drug delivery devices have 

been developed. Liu and co-workers (2011) presented a MEMS based drug delivery device, 

which consisted of a metallic contact array (Figure 2.14). The MEMS device was based on 

an electro-active hydrogel matrix that responds through the de-swelling of the matrix to an 

electrical stimulus, which ultimately enables the release of Hematoxylin- the hydrophilic 

model drug selected. This MEMS based drug delivery device has the potential to facilitate 

advancements in the fields of PCA. 
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Figure 2.14: Polymer de-swelling drug delivery device as developed by Liu and co-workers 
(2011). 
 

2.4.2.6.3. Electro-conductive hydrogels  

Hydrogels are a three-dimensional network composed of cross-linked hydrophilic polymers 

which swell yet remain insoluble in water and are thus able to imbibe large amounts of 

biological fluids or water (Rodriguez et al., 2003; Bhattarai et al., 2009). Owing to their open 

network structure, polymer hydrogels have the ability (i) to sequester nanoparticles and (ii) to 

dramatically change their dimensions or phase transitions under an assortment of 

environmental stimuli such as changes in pH, ionic strength or temperature (Tumarkin and 

Kumacheva, 2009). In addition to their role as a simple drug reservoir, they may be used as 

site-specific targeting agents for the delivery of a variety of therapeutic agents (Rodriguez et 

al., 2003; Bhattarai et al., 2009). 

 

Owing to their unique potentials, an electric current can also be used as an environmental 

signal to induce responses of hydrogels (Qiu and Park, 2001). ECHs are composed of 

polyelectrolytes or electro-active polymers (EAPs) such as polyaniline (PANi) and undergo 

shrinking or swelling in the presence of an applied electric potential (Qiu and Park, 2001; 

Bajpai et al., 2009; Guiseppi-Elie A. 2010). There are various EAPs, which may be used as 

conducting polymers, such as polypyrrole (Geetha et al., 2006; Chen et al., 2012) 

polythiophene (Chen et al., 2012), PDMS (Chen et al., 2012), poly(methyl methacrylate) 

(Small et al., 1997; Posadas and Florit, 2004), poly(3,4-ethylenedioxythiophene) (PEDOT) 

(Balci et al., 1995) and PVA (Chen et al., 2012). These single component polymers have 
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found a wide variety of applications in MEMS devices (Chen et al., 2012). Drug release 

mechanism from the ECH is responsive to the electric field, but is not modulated. Future 

development of an iontophoretic patch would thus remove the need for the conventional IV 

or epidural PCA resulting in lower cost implications and improved patient acceptability. 

 

Even though controlled drug delivery based on electro-sensitive hydrogels is still in its initial 

stages(Qiu and Park, 2001) a possible device consisting of a transdermal electro-responsive 

MNA patch promises to revolutionize the field of medicine, vaccination and disease 

treatment through an essentially pain-free, ultra-minimally invasive delivery mechanism. 

Hydrogel formulations will allow for daily or weekly dosage replacement using the same 

iontophoretic device as they can be designed as a unit dose-type drug-loaded hydrogel 

patch (Banga and Chien, 1993). The only way in which the hydrogel may be 

disadvantageous is that under long-term occlusion, the hydrogel can absorb sweat 

secretions which may become irritating (Banga and Chien, 1993). 

 

2.5. Concluding Remarks 

 

In pain management, the concept of patient-controlled analgesia was a remarkable 

development. In addition to providing better analgesic delivery, patient-controlled analgesia 

has improved our understanding of pain and suffering. As life expectancy increases, so does 

the incidence and morbidity of acute and chronic pain, ultimately placing a higher level of 

emphasis on pain management as an issue of patient’s quality of life. Responding to this 

trend, iontophoresis-based MNA patches as modified transdermal delivery methods should 

be exploited for the systemically indicated electro-activated and modulated controlled 

delivery of drugs. A proposed electro-activated and modulated patch device could potentially 

result in painless and more convenient drug administration and delivery. The device will offer 

an extensive range of biomedical applications such as targeted drug delivery, delivery to the 

eye and diabetes treatment.  

 

The future of drug delivery will be significantly influenced by microfabrication technologies 

with the optimization of drug delivery through human skin becoming more important in 

modern therapy. Even though transdermal micro-needle devices promise to revolutionize the 

field of medicine, vaccination and disease treatment, it is still a novel technology to be fully 

exploited. More research therefore needs to be conducted into the effectiveness and 

properties of microneedles as well as the polymer materials used in there fabrication to 

ensure their therapeutic safety for patients. Improvement into this technology will thus result 

in the evolution of new devices for the delivery of a wide range of biomedical compounds 
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presumably also reducing the amount of dosages and thus possible side effects of a drug. 

The use of microneedle systems especially in the administration of actives traditionally 

unattainable in conventional drug delivery techniques can therefore create a true paradigm 

shift the field of drug delivery. 
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CHAPTER 3  

IDENTIFICATION OF THE ELECTRO-ACTIVE SPECIES FOR INCORPORATION INTO 

THE ELECTRO-MODULATED HYDROGEL 

 

3.1. Introduction  

 

Controlled-release formulations of opioid analgesics are widely assumed to be less subject 

to abuse than their immediate-release counter-parts in their ability to provide better quality of 

pain relief (Fisher, 2004). Drug delivery has been defined by Flynn (1979) as ‘the use of 

whatever means possible, be it chemical, physicochemical or mechanical, to regulate a 

drug’s access rate to the body’s central compartment, or in some cases, directly to the 

involved tissues”. Accounting for the carrier, the target and the route of administration, drug 

delivery has advanced into a plethora of devices or processes that are designed to make 

therapeutic agents more efficacious through modified release, augmented therapeutic index 

and bioavailability, and enhanced patient acceptance and patient compliance. 

Advancements in drug delivery technology have thus proven to bring commercial and 

therapeutic value to drug delivery products.  

 

Due to their unique biocompatibility, amongst other advantages, hydrogels can provide 

similar properties to biological tissue constructs due to their scaffold-like structure and yet 

still maintain their structural integrity. When swollen, the flexibility capability provides a 

superior drug delivery vessel in some cases (Hamidi et al., 2008). In an EMH, the essential 

EAP is incorporated within a crosslinked tri-dimensional polymer-based hydrogel network. 

The electrically-tunable properties, the water insolubility and the shape stability of the 

hydrogel are determined by the EAP and the three-dimensional network structure (Percec 

and Bera, 2001; Lee and Mooney, 2001). 

 

Although controlled drug delivery systems focused on electro-responsive hydrogels is still in 

its infant stages, the combination of the hydrogel’s swelling capabilities and the EAP’s 

conductive properties, makes hydrogels versatile for various biomedical and therapeutic 

application, having the ability to permit delivery at a daily or weekly basis, allowing for 

patient-administered drug release into the target area (Qiu and Park, 2001; Rodriguez et al., 

2003; Luiz and de Torresi, 2005; Bhattarai et al., 2009). EAPs have been intensively 

researched for their unique electrical and/or optical and electrochemical properties as they 

undergo swelling or deswelling in the presence of an applied electric field (Qiu and Park, 

2001; Vanbever and Preat, 1999; Bajpai et al., 2008; Guiseppi-Elie, 2010).  
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In order to further advance the EAP, a polymer blend or electro-active species was identified 

in this chapter. The blending of polymers facilitates an attractive means to combine 

individual polymer component desired properties with a concomitant enhancement of 

selected properties. Preliminary studies were performed on formulations of various 

combinations of polymers, crosslinking agents and methods, as well as on the electro-

stimulus applied. These formulation variables, their respective quantities, and their 

formulation effects were subsequently tabulated to support the formulation variables chosen 

later in this chapter. Furthermore, all processing variables, successful and unsuccessful, 

required for the synthesis of the novel hydrogel formulation and a summary of the effects 

reflected in the preformulation studies are discussed in this chapter. Preliminary formulation 

studies involved, initially selecting and evaluating various monomers for their gel-forming 

properties, crosslinking agents for their coupling properties and polymers for their electro-

responsive properties. Subsequently, other additives and formulation modifications were 

included so as to result in the desired drug release from the formulation. This chapter 

concludes with the identification of the most significant variables with their respective 

maximum and minimum parameters for optimization of the EMH using a Box-Behnken 

design model.  

 

3.2. Materials and Methods 

 

3.2.1. Materials  

Hexamethylenediamine (Mw=116.2g/mol) and n-hexane were purchased form Merck 

Chemicals (Pty) Ltd. (Darmstadt, Germany), sebacoyl chloride (Mw=239.1g/mol), polyvinyl 

alcohol (PVA) (MW=89,000-98,000g/mol), polyaniline (PANi) (Mw=20,000g/mol), 

gluteraldehyde solution (grade I, 25%), indomethacin (≥99%), acrylic acid (anhydrous, 99%), 

N, N′-Methylenebisacrylamide (≥99.5%) and potassium persulfate (≥99.0%) were all 

purchased from Sigma-Aldrich® (St. Louis, MO, USA). Polystyrene sulfonate 

(Mw=70,000g/mol) was purchased from Scientific Polymer Products, Inc. (Ontario, New 

York). Diethyl acetamidomalonate (DAA) was purchased from Fluka Chemie AG, Buchs, 

Switzerland. De-ionized water was obtained from a Milli-Q water purification system (Milli-Q, 

Millipore, Billerica, MA, USA). All other reagents used were of analytical grade and were 

employed as purchased.  
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3.2.2. Preparation of the preliminary hydrogel formulation and evaluation of the 

electro-responsive behavior 

Many polymers such as polyamide 6,10 (PA 6,10), polystyrene sulfonate (PSS), polyaniline 

(PANi), poly (ethyleneimine) (PEI), and 1-vinylimidazole (VI) were employed in this study as 

candidate EAPs. For the synthesis of the hydrogel, acrylic acid (AA) and polyvinyl alcohol 

(PVA) were studied as monomers, N, N′-Methylenebisacrylamide, diethyl 

acetamidomalonate (DAA) and gluteraldehyde (GA) were employed as chemical crosslinking 

agents. N, N, N′, N′-Tetramethylethylenediamine (TEMED) and potassium persulfate (KPS) 

solution were employed as initiators in the crosslinking process of AA. The different 

combinations and quantities of these employed polymers are outlined later in Sections 3.2.5-

3.2.7. 

 

3.2.3. Preparation of polyamide 6,10  

The PA 6,10 utilized in this study is a novel polymer synthesized by Kolawole and co-

workers (2007). Briefly, hexamethylenediamine (1.75g) was dissolved in deionized water 

(100mL) i.e. the aqueous solution. The solution was neutralized by the addition of sodium 

hydroxide (NaOH; 0.1g). Separately, the non-aqueous solution comprising hexane (40mL), 

cyclohexane (40mL) and sebacoyl chloride (0.63g) was prepared. The non-aqueous solution 

was gradually added to the aqueous solution forming two immiscible phases that were 

stirred with a glass rod under a fume hood. Stirring continued until the formed white gel-like 

mass could no longer absorb solvent. The mass was then thoroughly rinsed with deionized 

water (100mL) 3 consecutive times and was then placed on filter paper to remove excess 

solvent. Following this, the mass was dried at 50°C±0.5 for 72 hours in an oven (Memmert 

854, Schwabach, Western Germany). The polymer was powdered for use using a laboratory 

blender (CG 100, Kenwood Ltd, Cambridge UK) and then passed through an automatic 

granulating sieve of 1mm aperture size (Erweka AR 400; Optolabor (Pty) Ltd.) to ensure size 

uniformity. 

 

3.2.3.1. Preparation of the polyamide 6,10 -polystyrene sulfonate polymer blend 

The polymer blend composite prepared as an EAP constituted of varying ratios of PA 6,10 

and PSS and was evaluated for electro-conductivity for institution into the electro-responsive 

drug delivery system. Each polymer was dissolved in 5%v/v H2SO4 solution to facilitate the 

dissolution of the water-soluble PSS and the non-water-soluble PA 6,10 polymer. The blend 

solutions were dialyzed for 48 hours. Films were produced by drying the blends at 40°C±0.5 

for 24 hours in an oven (Memmert 854, Schwabach, Western Germany). The polymer 

blends was powdered for further use. The blends were assessed for conductivity employing 
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a conductivity meter (TDSTestTM Kit Model WD-35661-70, Oakton® Instruments, Vernon 

Hills, IL, United States) and an average for each blend was recorded. 

 

3.2.4. Investigation of preformulation variables for incorporation into a Box-Behnken 

design  

 

3.2.4.1. Formulation and synthesis validation of sodium indomethacin  

Indomethacin is observed to be a hydrophobic drug resulting in solubility difficulties with 

common aqueous based solvents (Liu et al., 2013). In order for the solubility difficulties to be 

alleviated, the hydrophilic sodium salt of indomethacin was prepared. An appropriate solvent 

for indomethacin was determined using aqueous NaOH. Synthesis validation of sodium 

indomethacin was performed using Fourier Transform Infrared (FTIR) Spectroscopy. Briefly, 

500mg of indomethacin was dissolved in 1M NaOH (100mL). The drug solution was frozen 

at -75°C for 48 hours and subsequently lyophilized. A homogenous, pale yellow powder 

resulted which was then crushed to obtain a uniform particle size. FTIR spectra of both 

sodium indomethacin and indomethacin were collected using a PerkinElmer® Spectrum 100 

Series FT-IR Spectrometer fitted with a universal ATR Polarization Accessory (PerkinElmer 

Ltd., Beaconsfield, UK). The samples were placed on a diamond crystal and processed for 

the FTIR spectrum series at a resolution of 4cm−1. Samples were analyzed at wave numbers 

ranging from 650-4000cm−1.Further validation of the modified drug was determined using 

quantitative X-ray diffraction (XRD). Profiles were determined using an X-Ray Diffractometer 

(Rigaku Miniflex 600, Rigaku Corporation, Matsubara-cho, Akishima-shi, Tokyo, Japan) at 

room temperature. Integrated X-ray Powder Diffraction software (PDXL 2.1, Rigaku, Tokyo, 

Japan) was employed for sample analysis. The parameters employed are outlined in Table 

3.1. 
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Table 3.1: X-ray diffraction parameters employed.  
 

Parameter Settings 

Soller (inc.) 2.5° 

Incident Height Slit (IHS) 10mm 

Divergence Slit (DS) 1.25° 

Solar Slit (SS) 13mm 

Soller (rec.) 2.5° 

Receiving Slit (RS) 13mm 

Filter None 

Monochromater None 

Start 3° 

Stop 140° 

Step 0.1° 

Speed 30°/minute 

Scan axis Theta/2-Theta 

Scan mode Continuous 

 

3.2.4.2. Construction of calibration curve for the determination of sodium 

indomethacin release from the Electro-Modulated Hydrogel  

An Ultraviolet (UV) spectrophotometric scan was run to determine the maximum wavelength 

for sodium indomethacin absorption in phosphate buffered saline (PBS). Using UV 

spectroscopy and a series of known concentrations (0.2-1.0mg/mL) of sodium indomethacin 

in PBS (pH 7.4; 37°C), a calibration curve was constructed. The linear curve was plotted 

with the observed absorbance of sodium indomethacin as the dependent variable and the 

concentration of sodium indomethacin as the independent variable. A statistical 

representation of the degree at which the function correlates the set of values (R2 value) was 

computed for the curve.  

 

3.2.4.3. Identification of optimization variables through in vitro release studies  

The hydrogel formulations were synthesized using various polymer combinations and 

concentrations. The formulations were subsequently dried for 24 hours and were immersed 

in 20mL of PBS (pH 7.4; 37°C). The electro-stimulus was applied to the corresponding 

formulations using a potentiostat/galvanostat (PGSTAT302N, Autolab, Utrecht, 

Netherlands), where a platinum electrode (5mm) served as the cathode and a gold electrode 

(5mm) as the anode. PBS aliquots (0.1mL) were sampled at 30 minute time intervals before 

and after electro-stimulation over a 3 hour period. This was undertaken to determine the 
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effect of multiple electro-stimulations on sodium indomethacin release. The aliquots were 

removed and were replaced prior to and after the application of the electrical stimulation in 

order to maintain sink conditions. Filtered samples were diluted (1:19) and thereafter 

analyzed for sodium indomethacin content using UV spectroscopy (Implen 

NanophotmeterTM, Implen GmbH, München Germany) (Figure 3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3.1: Schematic of the in vitro release studies employed. 
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3.2.5. Selection of an appropriate monomer for incorporation into the Electro-

Modulated Hydrogel  

Hydrogel synthesis consisted of three fundamental components: the monomer; initiator; and 

crosslinking agent, all of which impart certain characteristics when the quantities were 

varied. Table 3.2 outlines the two types of monomers used in the synthesis of the hydrogel 

and the subsequent effects on the formulation following variations in quantity. 

 

Table 3.2: Monomer variables required for the Electro-Modulated Hydrogel synthesis and 
their formulation effects.  
 

Variable Variable Range Formulation Effect  

 

 PVA* 

 

0-600mg 

 

 

600-1000mg 

 

Poor viscosity 

No brittleness 

 

Appreciable viscosity 

Low brittleness 

 

 

AA** 

 

0-600mg 

 

 

600-1000mg 

 

Low viscosity  

No brittleness 

 

Appreciable viscosity 

Brittleness 

 

 

PVA:AA Combination 

 

0-600.0mg: 0.2mL 

 

Low strength and viscosity of gel 

composite 

 

 600-1200.0mg:0.6mL Appreciable strength and viscosity of gel 

composite 

 

*PVA- poly(vinyl alcohol) **AA - acrylic acid 
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3.2.6. Investigation of crosslinking agents to be employed in the synthesis of the 

Electro-Modulated Hydrogel 

In addition to preventing burst release tendencies of a formulation, crosslinking allows for the 

extended release of drug from the formulation (Tanaka et al., 2006). Table 3.3 outlines the 

crosslinking agents investigated for use in the synthesis of the hydrogel formulation.  

 

Gelation rate of the hydrogel formulations was characterized using gelation time in the 

search for an appropriate crosslinking agent. Gelation time was measured as the time at 

which the mixture no longer flowed when the vial was tilted at an angle (Patenaude et al., 

2014). A visual assessment of the monomer and crosslinking agent was conducted prior to 

the in vitro drug release studies. A gelation time that allows for the transfer of the hydrogel 

into a mold was preferred in terms of processing (Chapter 7). The prepared hydrogel 

formulations were allowed to equilibrate to the desired gelation temperature for 3 minutes.  

 

Table 3.3: Crosslinking agent variables and their formulation effects for the synthesis of the 
Electro-Modulated Hydrogel. 
 

Variable 

 

Variable 

Range 

Formulation Effect 

   

GA* 0-80mg Crosslinking occurred 

Suspension formed 

Poor electro-modulated drug release 

 

 

DAA** 

 

0-100mg 

 

Crosslinking occurred 

Robust gel composite formed 

Poor electro-modulated drug release 

 

 

N,N′-Methylenebisacrylamide 

 

 

0-100mg 

 

Appreciable viscosity 

Robust gel composite formed 

Appreciable electro-modulated drug release 

 

100-500mg High viscosity 

Brittle gel composite formed 

Poor electro-modulated drug release 

* GA – gluteraldehyde  **DAA - diethyl acetamidomalonate 
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3.2.7. Determination of the electro-active species for incorporation into the Electro-

Modulated Hydrogel 

In order to achieve electro-modulated drug release from the hydrogel formulation, polymers 

were investigated to identify their electro-responsive properties (if any). Table 3.4 

summarizes the various polymer combinations utilized in order to achieve an EAP blend that 

resulted in the electro-responsive release.  

 

Table 3.4: Electro-active polymer variables required for the Electro-Modulated Hydrogel 
synthesis and their formulation effects. 
 

Variable Variable 

Range 

Formulation Effects 

 

 PA 6,10a:PSSb 

 

10:90*** 

30:70*** 

50:50** 

70:30* 

90:10* 

 

Incorporated blends displayed varying degrees of 

electro-modulated drug release 

Precipitation/ poor solubilities with increasing 

amounts of PA 6,10 

 

 

PANic 

 

1-5%w/w 

 

Appreciable electro-modulated drug release 

Poor hydrophilicity 

 

PEId 

 

0-1mL 

 

Appreciable electro-modulated drug release 

Low viscosity of gel composite 

Appreciable mechanical strength 

 

>3mL Appreciable electro-modulated drug release 

High viscosity of gel composite 

Appreciable mechanical strength 

 
 

VIe 

 

<0.1 mL 

 

Poor electro-modulated drug release 

Appreciable solubility 

Appreciable mechanical strength  

 

>1mL Appreciable electro-modulated drug release 

Poor solubility 

Appreciable mechanical strength 
aPA 6,10- polyamide 6,10 bPSS- polystyrene sulfonate cPANi- polyaniline dPEI- poly (ethyleneimine) eVI- 1-

vinylimidazole ; ***good conductivity ; **appreciable conductivity; *poor conductivity 
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3.2.8. Investigation of the effects of the applied electro-stimulus for delivery of 

therapeutic levels of the active agent  

In order to attain electro-modulated delivery of therapeutic levels of drug, the stimuli-

responsive factors dictating the release requirements were determined through the variation 

in strength of the applied voltage to the hydrogel formulation (Table 3.5).  

 

Table 3.5: Variations in applied voltage required for modulated drug release from the 
Electro-Modulated Hydrogel. 
 

Variable Variable Range Formulation Effects 

 

Applied voltage 

 

0-5V 

 

Differing electro-modulated drug release 

dependent on EAP (blend) employed 

 

 

3.3. Results and Discussion 

 

3.3.1. Electro-active / responsive capabilities of hydrogels  

Stimuli-responsive hydrogels are described as intelligent or smart as they have the ability to 

dramatically modify their phase transitions or dimensions according to various environmental 

stimuli such as change in ionic strength, pH, or temperature (Chaterji et al., 2004; Tumarkin 

and Kumacheva, 2009; Jagur-Grodzinski, 2010) and may be classified based on the 

structural factors that affect their ‘‘smartness’’. The increase in ‘‘responsiveness’’ of these 

superporous smart hydrogels is achieved by the increase in the size and interconnectivity of 

the water-swollen pores at equilibrium swelling. In addition to their unique potential, the 

electric field can be used as an environmental signal in the induction of a required hydrogel 

response (Qiu and Park, 2001). Furthermore, to support this study, the exponential growth in 

the amount of literature available on the use of electric currents in vivo, in the form of 

electroporation and iontophoresis, in the field of dermal and transdermal drug delivery 

already exists (Delgado-Charro and Guy, 2001; Vanbever and Preat, 1999) with the safe 

limits of electric field strengths determined for topical application (Murdan, 2003). 

 

3.3.2. Synthesis validation of sodium indomethacin 

For both compounds (Figure 3.2a), FTIR spectra (Figure 3.2b) revealed, strong bands 

observed at 600-800cm-1, indicating the presence of the alkyl halide (C-Cl). Sodium 

indomethacin displays a defined peak at 3211cm-1 indicating Carboxyl OH stretching which 

is absent in the FTIR spectra of indomethacin. The presence of an O-H band at 1760-



 

1690cm-1 is also indicative of a carboxyl group

indomethacin at 1427cm-1 in this region is mainly 

carboxylate anion COO-. The symmetric stretching o

indomethacin. The absorption band at 1560cm

assigned to the asymmetric carboxylate stre

salt of benzoic acid (Silverstein 

peak intensities of sodium indomethacin in comparison to indomethacin. Contrary to the 

peaks concluding crystalline structure of indomethacin, unsymmetrical, broad peaks were 

observed in the XRD profile of sodium indomethacin indicating the amorphous nature of the 

modified drug. It can thus be concluded that the salt of the drug was formed

Zografi, 1999). 
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is also indicative of a carboxyl group. The strong absorbance for sodium 

in this region is mainly due to the asymmetric stretching of the 

. The symmetric stretching of the anion is observed at 1304

indomethacin. The absorption band at 1560cm−1 pertaining to sodium indomethacin 

assigned to the asymmetric carboxylate stretch by analogy to assignment for the ammonium 

Silverstein et al., 2005). XRD profiling (Figure 3.2c) revealed t

peak intensities of sodium indomethacin in comparison to indomethacin. Contrary to the 

crystalline structure of indomethacin, unsymmetrical, broad peaks were 

observed in the XRD profile of sodium indomethacin indicating the amorphous nature of the 

modified drug. It can thus be concluded that the salt of the drug was formed
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The strong absorbance for sodium 

due to the asymmetric stretching of the 

f the anion is observed at 1304cm-1 for 

pertaining to sodium indomethacin is 

tch by analogy to assignment for the ammonium 

) revealed the lower 

peak intensities of sodium indomethacin in comparison to indomethacin. Contrary to the 

crystalline structure of indomethacin, unsymmetrical, broad peaks were 

observed in the XRD profile of sodium indomethacin indicating the amorphous nature of the 

modified drug. It can thus be concluded that the salt of the drug was formed (Tong and 



 

(b) 

(c) 

 
Figure 3.2: (a) Chemical structure of (i) indomethacin
spectra of (i) indomethacin and (ii) sodium 
and (ii) sodium indomethacin.
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Chemical structure of (i) indomethacin and (ii) sodium indomethacin. (b) FTIR 
spectra of (i) indomethacin and (ii) sodium indomethacin. (c) XRD profile of (i) indomethacin 
and (ii) sodium indomethacin. 
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3.3.3. Construction of a calibration curve for the ultraviolet spectrophotometric 

determination of sodium indomethacin  

Figure 3.3a displays the spectrophotometric scan of sodium indomethacin in PBS (pH 7.4, 

37°C). Using UV spectroscopy, it was found that indomethacin exhibits a maximum 

wavelength at λ320, consistent with the literature published on indomethacin absorption peak 

of 318-321nm (Forster et al., 2001; Anoopkumar-Dukie, 2003; Kamal et al., 2008). Using a 

series of known concentrations (0.2-1mg/mL) of sodium indomethacin in PBS, a calibration 

curve at λ320 was constructed (Figure 3.3b). The linear curve was plotted with the observed 

absorbance of indomethacin as the dependent variable and the concentration of 

indomethacin as the independent variable (Figure 3.3b). The obtained R2 value of the 

calibration curve was 0.99 (Figure 3.3b), indicating a perfect correlation. 
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Figure 3.3: (a) UV Spectra of sodium indomethacin in PBS [WinASPECT, Version 1.6.13.0, 
2002, Analytik Jena AG, Germany] (b) Calibration curve of sodium indomethacin in PBS at 
λ320. 
 
3.3.4. Design criteria and therapeutic considerations for the Electro-Modulated 

Hydrogel in drug delivery  

As for any formulation, design criteria such as material selection, are crucial for both drug 

delivery and its mathematical modeling. These criteria are essential in governing the mode 

and rate of drug release from hydrogel matrices. Prior to hydrogel fabrication and drug-

loading, these criteria have to be evaluated. These criteria include transport properties such 

as physical properties and drug molecule diffusion as well as structural properties and 

stimuli-responsiveness, and biological properties such as biocompatibility (Lin et al., 2006). 

For a formulation comprising of an electro-responsive species within a hydrogel matrix, three 

design criteria are apparent: drug release; degree of matrix swelling; and matrix resilience. 

These criteria will be further elaborated on in Chapter 4. 

 

The EMHM device is designed for a once daily application requiring the hydrogel component 

to maintain therapeutic levels of indomethacin throughout the day in order to provide 

effective pain treatment. Literature states that indomethacin has a therapeutic window of 0.5-

5mg/mL in adult humans with lower amounts being sub-therapeutic and higher levels being 

toxic (Katzung, 2007). The apparent volume of distribution of indomethacin has been stated 

y=1.7074x + 0.0581 

R2=0.99 
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to be approximately 18L with a plasma half-life (��/�) of 2.4 hours, which when utilized to 

calculate the elimination constant (��) of indomethacin (Equation 3.1) gives a ���  value of 

0.28875. This value is of importance to accurately determine the plasma concentration levels 

of indomethacin at any point throughout the day to ensure therapeutic treatment for the 

patient. 

 

��/� =
�.���

���
                                                 Equation 3.1    

 

Where t1/2 is the plasma half- life of the drug and ���  is the elimination constant 

 

The calculated ���  value was subsequently used in Equation 3.2 to determine the decrease 

in plasma indomethacin levels per hour to calculate the required indomethacin release from 

the hydrogel to maintain therapeutic drug levels as well as the initial spike to allow for 

therapeutic effectiveness.  

 

��=��.�����                                                                          Equation 3.2    

 

Where �� is the plasma concentration at a specific time, ��is the plasma concentration at 

time 0, ��� is the elimination constant and � is the number of hours 

 

It was determined that an initial drug spike of 54mg and a maintenance dose of 13mg every 

hour will be required to maintain therapeutic effectiveness, ultimately requiring an 

approximately loading dose of 370mg to maintain therapeutic effectiveness. Whilst the 

human adult contains approximately 6L of blood, it was thus chosen that three hydrogels 

could be incorporated into a single device allowing for each hydrogel to dose 6L of volume 

with indomethacin that could be correlated with other drugs. As a result, this led to a revised 

initial spiking concentration of 18mg with a maintenance dose of 4mg each hour to cater for 

indomethacin elimination (Figure 3.4). Due to the each being changed every day, the 

maintenance dose would cease to occur at hour 18 to allow for a drop in plasma levels prior 

to the next initial spike which prevent toxic concentrations being reached. The loading dose 

of each hydrogel would therefore approximately 100mg indomethacin, in line with the 

preformulation studies conducted (Katzung, 2007). 



67 
 

Time (hours)

0 5 10 15 20

C
on

ce
nt

ra
tio

n 
(m

g/
L)

0

1

2

3

4

5

6

 

 

Figure 3.4: Theoretical therapeutic profile of sodium indomethacin. 

 

3.3.5. Analysis of electro-responsive capability of the hydrogel formulation using in 

vitro release studies  

 

3.3.5.1. Analysis of the polyamide 6,10 -polystyrene sulfonate blend as the electro-

responsive polymer blend  

When evaluated for conductivity, the polymer blends had lower conductivities than the 

individual polymers; with the conductivity measurement results proportional to the PSS 

concentration (Table 3.6). The lower conductivity of the blends as compared to their single 

polymer counterparts may be attributed to the formation of a neutralized polyelectrolyte 

complex, decreasing the availability of the sulphonate (SO3
-) and ammonium (NH3

+) to 

interact with charge.  This is accounted for the fact that PSS is an ionomer, constituting of a 

polymer backbone with a small mole fraction of ionic groups (O’Connell et al., 1996). The 

enhanced physical properties as compared to those of the unmodified parent polymer are 

because of the phase separation of the ionic groups into ionic microdomains. These 

aggregates, or ionic domains, act as reinforcing fillers and physical crosslinks (Galambos et 

al., 1987). 

 

Toxic Level 

Minimum 
Therapeutic                     
Level 
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Table 3.6: Formulation parameters of polyamide 6,10 -polystyrene sulfonate composites. 
 

Blend Formulation PA 6,10/PSS Ratio Conductivity (µS) 

PA 6,10* 100 383 

PSS** 100 394 

A 10:90 263 

B 30.70 265 

C 50:50 260 

D 70:30 255 

E 90:10 244 

*PA 6,10- polyamide 6,10 **PSS- polystyrene sulfonate 

 

Polymer Blend B, the most conductive blend was further evaluated against a control where 

no electro-stimulation was delivered to the hydrogel formulation (Figure 3.5). Polymer Blend 

B was also evaluated at voltages of 0.3, 1.5 and 5V to determine electro-responsive release 

(Figure 3.6). Conducting the release test with a control system verifies the ability of the blend 

to impart electro-responsive properties, as demonstrated by the substantial increase in drug 

release after electro-stimulation. In addition, the polymer blend does not impart electro-

responsive properties to the hydrogel system, but rather electro-conductive properties. 

Although conductive in nature, it cannot be ignored that the release in relation with respect to 

diffusion is greater than that after electro-stimulation. 
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Figure 3.5: Drug release profiles of electro-stimulated formulation at 1.5V in relation to the 
control formulation.  
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Figure 3.6: Drug release profile of polymer blend B at 0.3, 1.5 and 5V. 
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3.3.5.2. Incorporation of polyaniline as the electro-responsive polymer blend 

Based on the work of Tsai (2011) in the design and development of an electro-actuated 

device for prolonged therapeutic management of moderate to severe chronic pain, PANi was 

investigated as a possible electro-active polymer. The hydrogel formulation was structurally 

too robust and the PANi too large in terms of particle size to either coat or be delivered 

through a MNA. The formulation (Figure 3.7a) was also seen to dramatically alter its 

structural integrity upon electro-stimulation with a fragmented network seen (Figure 3.7b).  

 

  

 
Figure 3.7: Images of the polyaniline containing hydrogel (a) prior to electrical stimulation 
and (b) after 4 electro-stimulations.  
 

3.3.5.3. Analysis of the electro-responsive capability of poly(ethyleneimine)-1-

vinylimidazole polymer blend 

PEI and VI were incorporated as electro- responsive component in the hydrogel formulation. 

A preliminary investigation into their possible electro-responsive properties had indicated the 

required release response with release of 2.49-3.00% at each electro-stimulus spike (Figure 

3.8). This electro-responsive blend was further investigated for incorporation into the 

hydrogel (Chapter 4). 

(a) (b) 
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Figure 3.8: Drug release profile of the poly(ethyleneimine)-1-vinylimidazole containing 
hydrogel. 
 

3.3.6. Evaluation of crosslinking agents for incorporation into the Electro-Modulated 

Hydrogel using gelation kinetics 

The presence of crosslinks prevents dissolution of the polymer chains and thus 

segmentation of the hydrogel network. In addition, crosslinking maintains the structural 

integrity of the hydrogel through the formation of covalent bonds between the crosslinking 

agent and the polymeric chains. In theory, hydrogels that are highly cross-linked tend to 

swell less than hydrogels than their less-crosslinked counterparts. The solubility and mobility 

of the polymer network is reduced due to slower chain relaxation within the polymeric 

network upon hydration, hence retarding drug release (Hennink and van Nostrum, 2002). 

The hydrogel formulation was designed to be homogeneous and have quick gelling kinetics 

without premature gelling. Gelation kinetics is a fundamental parameter in designing 

homogeneous gels for effective drug loading prior the formation of the gel (Moreira et al., 

2014). As previously discussed, subsequent gelation after the comfortable transfer of the 

hydrogel into a mold was required. Gelation of PVA using GA resulted in a hydrogel with 

poor structural integrity and a very low viscosity even after a 24 hour period. Although a 

homogenous structure was formed, gelation was a slow process. Higher GA concentrations 

were not employed due to the crosslinker’s toxic nature (Hassan and Peppas, 2000). The 



72 
 

use of DAA resulted in almost immediate gelation, yet after subsequent drying of the gel; the 

hydrogel was rigid and did not conform to a uniform structure. It is evident from the results 

(Figure 3.9), that although DAA provided greater drug release, the release was not 

proportional to the applied voltage. The same was also seen using GA. This can be 

attributed to the crosslinking strength of the crosslinkers, with GA being relatively stronger in 

comparison to DAA. When N, N' methylenebisacrylamide was used to crosslink AA, an 

intermediate gelation time (±5 minutes) was observed. The resultant hydrogel was rigid 

having appreciable structural integrity. Heat was used as a catalyst in order to decrease the 

gelation time to ±3 minutes. PAA gelation was evident within seconds after using the N, N' 

methylenebisacrylamide and TEMED in conjugation with a thermal initiator. However, as a 

result, the gelation time decreased significantly making transfer into the MNA mold difficult. 

As result, TEMED was removed from the formulation process. Consequently, the PAA 

solution polymerized within a few minutes after being allowed to rest at ambient temperature. 

The PAA gel proved to be ideal gel as the solution has the ability to penetrate the molds and 

then undergo polymerization (Chapter 7).  
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Figure 3.9: Drug release profiles comparing gluteraldehyde and diethyl acetamidomalonate. 
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PVA is a simple structure containing a pendant hydroxyl group that can be crosslinked with 

difunctional crosslinking agents such as gluteraldehyde (Hassan and Peppas, 2000). Even 

though GA solutions are highly toxic to physiological tissues, they are commonly used to 

crosslink PVA (Figure 3.10) where detoxification and other post-treatment methods of are 

required to prevent the toxic effects of residual GA involving the chemical bonding of the 

hydroxyl groups present in PVA with the aldehyde groups of GA (Tang et al., 2010).  

 

 

Figure 3.10: Mechanism of polyvinyl alcohol and glutaraldehyde crosslinking (dos Reis et 
al., 2006). 
 
In the formulation of the hydrogel, PVA was crosslinked using GA with the resultant gel 

being of very low viscosity and poor mechanical strength thus, the PVA remains un-

crosslinked in the final delivery system. In order to produce the semi-IPN and thus requires 

no additional extraction of the toxic residues. 

 

Once acrylic acid was selected as the second component of the semi-IPN, N, N' 

methylenebisacrylamide was chosen as the crosslinking agent in order to facilitate vinyl 

addition polymerization with the polymer network structure being varied through the 

adjustment of the monomer and crosslinker concentrations. Acrylic acid is the deamidation 

product of acrylamide and will co-polymerize with acrylamide and N,N' 

methylenebisacrylamide conferring ion exchange properties to resultant gel formed. In the 

initial preformulation studies, TEMED and KPS solution were used to initiate the reaction. 

TEMED accelerates the formation of free radicals by KPS which catalyzes polymerization. 

The persulfate free radicals convert the acrylamide monomers into free radicals. These free 

radicals then react with unactivated monomers to begin the polymerization chain reaction 

(Shi and Jackowski, 1998). The elongating polymer chains are randomly crosslinked by N, 

N' methylenebisacrylamide, resulting in a gel (Figure 3.11).  
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Figure 3.11: Polyacrylamide gel polymerization (BioRad Electrophoresis tech note 1156). 
 

PVA is known for its robustness and AA for its conducting ability (Hassan and Peppas, 

2000), each initially as individual monomers chosen per its respective inherent qualities. 

When combined, so as to allow for synergy between both individual characteristics of the 

individual components, the hydrogel possessed the required mechanical strength and 

homogeneity. N, N' methylenebisacrylamide was used to polymerize AA and thus form a 

second hydrogel network within the pre-polymerized PVA, ultimately forming the SEMI-IPN  

(Hoare and Kohane, 2008). Semi-IPNs are advantageous in that they allow for relatively 

dense hydrogel matrices to be produced, allowing for controllable physical properties, 

strengthened mechanical properties, and more efficient drug loading in comparison to 

conventional hydrogels (Mohamadnia et al., 2007). A progressive increase in drug release 

from the hydrogel was observed as the applied potential difference increased even though 

the release at the spiking intervals was not consistent (Figure 3.12). The initial burst release 

observed in all the formulations is attributed to the weakly bound highly hydrophilic sodium 

indomethacin on the surface of the hydrogel. The changes in drug release entail that the 

controlled release of the therapeutic dose of sodium indomethacin at specific intervals is 

possible by selecting an optimal applied potential difference. Although the drug release from 

the hydrogel is small, the release is however electro-responsive and not solely dependent on 

diffusion alone. 

Acrylamide 

N, N' methylenebisacrylamide 

Polyacrylamide 
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Figure 3.12: Drug release profiles of sodium indomethacin from UV analysis showing the 
influence of various potential differences on the poly(ethyleneimine)-1-vinylimidazole 
containing hydrogel. 
 

3.3.7. Identification and selection of optimization variables for institution into a Box-

Behnken design  

The use of PVA and AA as individual monomers was proven to be too flaccid and rigid, 

respectively. Hence the combination resulted in a polymer network with appreciable 

mechanical strength. From the obtained results in this study, it can be concluded that a 

blend of PSS and PA 6,10 possess the property of enhanced conductive capabilities with the 

conductivity of the blend being proportional to the PSS concentration. The PEI-VI blend 

imparted the desired electro-responsive properties to the hydrogel. As per studies 

undertaken for the determination of the variables required for incorporation into the Box-

Behnken design, Table 3.7 outlines the selected variables and minimum and maximum 

parameters: 
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Table 3.7: Variables to be employed for incorporation into the Box-Behnken design. 
 

Variable Name Lower Limit Upper Limit 

Voltage 0V 5V 

1-Vinylimidazole 0.1mL 1mL 

Poly(ethylene)imine 1mL 3mL 

 

3.4. Concluding Remarks 

 

Preliminary studies have concluded the rational selection and identification of the formulation 

variables most suited for the development and further optimization of the EMH, namely: 

 

• Voltage level 

• 1-Vinylimidazole volume 

• Poly(ethylene)imine volume 

 

The hydrogel constituents and formulation technique were selected on the basis that the 

EMH could be formulated from a relatively simple process that ensures the possibility of 

scale-up and reproducibility. In addition, toxic solvents and materials were avoided. The 

primary outcome of identifying an electro-responsive species was obtained in the form of 

poly(ethyleneimine) and 1-vinylimidazole with a electro-responsive release of at least 2.49-

3.00%. The most significant variables of the candidate formulation along with their respective 

maximum and minimum parameters for optimization were identified. Chapter 4 details the 

Box-Behnken design for further optimization of the EMH. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DESIGN, DEVELOPMENT 

4.1. Introduction  

 

The design criteria required for the ideal EMH formulation 

as molecular diffusion, structural properties such as 

integrity, and biological properties such as biocompatibility 

a formulation comprised of an electro

design criteria are apparent: electro

resilience. The use of an electro

desired and useful properties exhibited by the individual native polymers in the EMH with a 

simultaneous enhancement of selected properties. As a result, an investigation of a new 

strategy for the preparation of an EM

experimental design is reported on in this chapter.
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CHAPTER 4 

DESIGN, DEVELOPMENT AND OPTIMIZATION OF THE ELECTRO

HYDROGEL 

 

The design criteria required for the ideal EMH formulation include transport 

as molecular diffusion, structural properties such as electro-responsiveness

, and biological properties such as biocompatibility (Figure 4.1; Lin 

a formulation comprised of an electro-responsive species within a hydrogel matrix, three 

electro-modulated drug release, degree of swelling

resilience. The use of an electro-responsive polymer blend offers a means to combine the 

desired and useful properties exhibited by the individual native polymers in the EMH with a 

simultaneous enhancement of selected properties. As a result, an investigation of a new 

strategy for the preparation of an EMH, with optimization through a Box

experimental design is reported on in this chapter. 
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THE ELECTRO-MODULATED 

include transport properties, such 

responsiveness and matrix 

Lin et al., 2006). For 

responsive species within a hydrogel matrix, three 

, degree of swelling, and matrix 

means to combine the 

desired and useful properties exhibited by the individual native polymers in the EMH with a 

simultaneous enhancement of selected properties. As a result, an investigation of a new 

H, with optimization through a Box-Behnken 
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Box and Behnken (1960) devised a statistical-based experimental design where multiple 

variables may be changed simultaneously whilst determining its influence on the outcome of 

a controlled experiment. The construction of a Box-Behnken design model was employed for 

the systematic optimization of the hydrogel composition and comprised of three variables, 

viz. PEI volume; VI volume; and applied voltage, critical to the success of the formulation. In 

vitro release studies as well as extensive physicochemical and physicomechanical 

properties of the formulations of the experimental design were also studied and are detailed 

herein. 

 

4.2. Materials and Methods 

 

4.2.1. Materials 

Poly(ethyleneimine) solution (Mw=750,000g/mol; 50%w/v) 1-vinylimidazole (≥99%), 

indomethacin (≥99%), poly(vinyl alcohol) (Mw=89,000-98,000g/mol, 99+% hydrolyzed), 

acrylic acid (anhydrous, 99%), N,N′-Methylenebisacrylamide (≥99.5%) and potassium 

persulfate (≥99.0%) were all purchased from Sigma-Aldrich® (St. Louis, MO, USA). All other 

ingredients were of analytic grade and were used as received. 

 

4.2.2. Preparation of the electro-modulated poly(ethyleneimine)-1-vinylimidazole- 

polyacrylic acid hydrogel formulations 

For the electro-responsive release hydrogel, a 6%w/v PVA-1M sodium hydroxide solution 

was prepared, to which the poly(ethyleneimine) solution and 1-vinylimidazole was added. 

Subsequently, sodium indomethacin was dissolved into the mixture. Acrylic acid was added. 

N, N′-Methylenebisacrylamide (100mg) was then added to facilitate the formation of the 

semi-IPN, instituting vinyl addition polymerization to increase the interconnectivity of the 

matrix.  

 

4.2.3. Synthesis validation of the Electro-Modulated Hydrogel using Fourier Transform 

Infrared Spectroscopy 

FTIR utilizing a Spectrum 100 FTIR Spectrometer (Perkin-Elmer, Beaconsfield, BUCKS, UK) 

was used to detect the vibration characteristics of chemical functional groups in the EMH 

samples. FTIR was performed on the native polymers involved in the blend as well as the 

hydrogel formulation as a means of validating the synthesis of the EMH. Samples were 

processed at a resolution of 4cm−1 and were analyzed at wave numbers ranging from 650-

4000cm−1. 
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4.2.4. Construction of calibration curve for the ultraviolet spectrophotometric 

determination of sodium indomethacin release from the Electro-Modulated Hydrogel 

A calibration curve for sodium indomethacin was constructed in PBS (pH 7.4; 37°C) using a 

known series of concentrations of sodium indomethacin as detailed in Chapter 3, Section 

3.2.4.2.  

 

4.2.5.1. Determination of the effect of an enhanced conductive environment on the 

drug release profiles of the Electro-Modulated Hydrogel 

The effect of aluminum foil as an enhanced electro-conductive environment was evaluated 

as part of the method modulation component of this study. This was due to aluminum foil 

being electro-sensitive thereby providing a constant surface area for an enhanced electro-

conductivity. This evaluation was undertaken through in vitro drug release studies on a 

hydrogel formulation as mentioned in Chapter 3, Section 3.2.4.3, both with and without the 

use of the aluminium foil.  

 

4.2.5.2. Determination of the effect of lyophilization on the electro-modulated drug 

release on the Electro-Modulated Hydrogel  

In vitro drug release studies on the hydrogel were performed using lyophilized and air-dried 

(for 24 hours) EMH samples to determine the effect of lyophilization on the electro-

modulated drug release profile of EMH. The release studies were carried out as detailed in 

Section 4.2.5.1 with aluminum foil covering the hydrogel samples on which the two 

electrodes were directly placed.  

 

4.2.6. Experimental design and constraint optimization of the Electro-Modulated 

Hydrogel 

A model-independent approach (Minitab® V15, Minitab Inc., PA, USA) was used to optimize 

the EMH. Statistical optimization using a Box-Behnken design model was employed to 

ascertain the ideal combination of electro-responsive polymeric species (X1+2), as well as the 

ideal voltage (X3) required capable of attaining desirable drug release, swelling and matrix 

resilience efficiencies. Table 4.1 summarizes the factor combinations of the fifteen 

experimental runs studied and their translation of the coded levels to the experimental units 

employed during the study.  
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Table 4.1: Statistically generated formulations obtained via the Box-Behnken design. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.6.1. Determination of the electro-responsive release per electro-stimulated spike 

interval using in vitro studies 

In order to optimize for therapeutic levels of sodium indomethacin, the average amount of 

drug released per electro-stimulation for each formulation was determined using in vitro 

release studies as detailed in Chapter 3, Section 3.2.4.3.  

 

4.2.6.2. Determination of the swelling capacity of the Electro-Modulated Hydrogel 

The hydrogel samples were analyzed using the Karl Fischer Titrator (Mettler Toledo V30 

Volumetric KF Titrator, Mettler Toledo Instruments Inc., Greifensee, Switzerland), where a 

methanol-water solution is used as the standard and water is quantified using electrical 

conductivity. The endpoint of the analysis is indicated by the conductivity difference of the 

solution when any unreacted Karl Fischer reagent. The employed parameters are detailed in 

Table 4.2.  

 
Table 4.2: Parameters employed in the quantification of water using Karl Fischer titrimetric 
methods. 
 

Parameter Setting 

Indication DM143-SC Electrode 

Temperature 25°C 

 

Formulation 
Voltage 

(V) 

1-Vinylimidazole 

(mL) 

Poly(ethyleneimine) 

(mL) 

1 1 1 2 
2 5 0.1 2 
3 3 0.55 2 
4 3 0.1 1 
5 3 1 3 
6 5 0.55 3 
7 5 1 2 
8 3 0.55 2 
9 3 0.55 2 
10 3 1 1 
11 1 0.55 1 
12 1 0.1 2 
13 1 0.55 3 
14 3 0.1 3 
15 5 0.55 1 
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The water content from the samples was determined at 0 and 24 hours after submersion in 

PBS (pH 7.4; 37°C). The hydrogel samples were removed from the PBS and the surface 

water removed with blotting paper. Gravimetric analysis, as a comparative method, was also 

used to determine the degree of swelling of the hydrogel and was also conducted, where: 

the gel sample was weighed before submersion into PBS and then again after 24 hours. The 

hydrogel was taken out and surface water removed followed by the determination of 

equilibrium swelling ratio. The equilibrium swelling ratio (ESR) was calculated using 

Equation 1: 

 

ESR =
("� – "$)

"$
× 100                                                                                           Equation 4.1 

 

Where W0 is the weight of the dried hydrogel and W1 is the weight of the superabsorbent 

hydrogel.  

 

4.2.6.3. Determination of the physicomechanical properties of the Electro-Modulated 

Hydrogel using textural analysis 

Matrix Resilience (MR) was determined from various textural profiles generated for each 

hydrogel formulation using a Texture Analyzer (TA.XT.plus Texture Analyser, Stable 

Microsystems®, Surrey, UK). Computations of MR for the samples were performed using 

Force-Time profiles (N=3) and was employed as a measure of the cohesiveness of the 

polyelectrolyte matrices and referred to the ability of the matrices to recover to their original 

dimensions after a compressive stress was applied by the textural probe. The MR (%) was 

assessed according to the PEI and VI content at 25°C. Typical textural parameters for 

determining the MR of the formulations of the experimental design are listed in Table 4.3.  

 
Table 4.3: Textural analysis parameter settings for determining the matrix resilience. 
 

Parameter Setting 

Test Mode Compression 

Pre-Test Speed 1.0mm/sec 

Test Speed 1.5mm/sec 

Post-Speed Speed 1.5mm/sec 

Target Mode Strain 

Strain 10% 

Trigger Type Force 

Trigger Force 0.05N 

Probe type 10mm cylinder 
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4.2.7. Response surface analysis of the responses employed 

Minitab® statistical software (V15, Minitab Inc., PA, USA) was employed to carried out the 

response surface analysis of the various response variables. The results were demonstrated 

using response surface and contour plots derived for the measured responses (electro-

modulated drug release, degree of swelling and matrix resilience), based on the 

experimental model. 

 

4.2.8. Evaluation of the surface morphology of the Electro-Modulated Hydrogel 

samples using Scanning Electron Microscopy  

In order to observe surface structures and morphology more accurately, SEM images of the 

EMH samples were taken using a FEI Phenom™ G2 Pro Desktop Scanning Electron 

Microscope SEM (Eindhoven, The Netherlands). SEM images of the EMH prior to and after 

electro-stimulation, in a buffer of pH 7.4, were taken for surface comparison. Prior to 

imaging, the samples were submerged into the buffer and the optimal voltage applied of 

3.63V. EMH samples were then submerged in liquid nitrogen to maintain the integrity of the 

matrix. 

 

4.3. Results and Discussion 

 

4.3.1. The selection of independent variables for incorporation into a Box-Behnken 

design 

 

4.3.1.1. Poly(ethyleneimine) as the electro-active species 

PEI characteristically is a highly branched aliphatic polyamine (Abu-Saied et al., 2013). The 

polycation is currently being used in various biochemical and biomolecular studies in 

addition to its polyelectrolyte properties such as electron transfer and redox reactions 

(Giménez-Martín et al., 2007; Lojou and Bianco, 2007). The polymer (Figure 4.2a) has a 

repeating C2H5N unit and with a branch for every 3-3.5 nitrogen atoms in a linear unit 

(Maketon and Ogden, 2009). The high amine content allows for the ability to chelate metal 

ions and donate electrons. 

 

4.3.1.2. 1-Vinylimidazole as the dual functioning plasticizer and electro-active species 

1-Vinylimidazole has advantageous complexing properties due to the electron donor 

nitrogen in the imidazole ring and is very active in donor-acceptor binding and hydrogen 

bonding (Figure 4.2b). This weak basic polyelectrolyte that has been already used as a 

model to be used in various studies (Annenkov et al., 2004). In addition to imparting 
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plasticizer-like properties, the polymer’s vinyl moieties have electro-active capabilities even 

though there is limited literature on the VI polymers. It is important to note that even the 

copolymerization of acrylic acid with vinylimidazoles was reported by Davies and co-workers 

(1973) to be complicated by side reactions. 

 

 

Figure 4.2: Chemical structure of (a) poly(ethyleneimine) and (b) 1-vinylimidazole. 
 

4.3.1.3. Externally applied electric current for stimuli-responsive release 

Electro-modulated drug release differentiates the EMH from other types of hydrogels, in 

order to attain electro-modulated therapeutically relevant levels of drug from the formulation, 

the stimuli-responsive factor dictating the release requirements were determined through the 

variation in strength of applied voltage to the hydrogel formulation. In vitro electro-stimulation 

was achieved using the potentiostat/galvanostat (PGSTAT302N, Autolab, Utrecht, 

Netherlands). 

 

4.3.2. Validation of the crosslinked Electro-Modulated Hydrogel formulation 

The shifts and changes in the peak intensity as indicated by the FTIR spectra (Figure 4.3) of 

the polymer blend in relation to the native polymers specified that chemical interactions 

and/or electrostatic interactions did occur in the polyelectrolyte matrices. The FTIR spectra 

of VI revealed the vibrations of imidazole cycles at 1543cm-1, 1420cm-1, 1279cm-1, and 

1232cm-1, bands of azole C–H at 1085cm-1, and deformational vibrations of the heterocycle 

at 923cm-1 and 827cm-1. The bands observed at 1638cm-1, 1011cm-1, 954cm-1 and 874cm-1 

are indicative of the presence of the vinyl group.  

 

(a) 

 

 

 

 

(b) 
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The basicity of polymeric imidazoles (pKb=5-6) lies between that of very weakly basic 

amides and ethers and that of stronger bases such as amines (Annenkov et al., 2004). 

Distinct from amines, imidazole units do not completely become protonated at low pH, but 

are very active in donor-acceptor and hydrogen binding (Pekel et al., 2002).  

 

The main functional groups of PEI are CH2, NH and NH3
+, the presence of protonable amino 

nitrogen at every third atom of the polymeric backbone imparts the highly positive charge to 

the polymer. The repeating ethylamine units of PEI confers its highly water-soluble property 

(Yang et al., 2006). The IR spectrum of PEI shows a peak at 1456cm−1 which corresponds to 

the in plane bending of CH2. The bending vibration of the NH group and the stretching 

vibration of the C–N groups of PEI can be seen at 1555cm−1 and 1119cm−1, respectively 

(Choosakoonkriang et al., 2003). Peaks indicated by 1638cm-1 and 1680cm-1 are attributed 

to a secondary amine group. An aromatic secondary amine (CN stretch) is seen at 1350–

1280cm-1.  

 

 

 

Figure 4.3: FTIR spectra of (a) the polymer blend (b) poly(ethyleneimine) and (c) 1-
vinylimidazole.  
 

From the FTIR spectra of the individual IPN components (Figure 4.4), the presence of amine 

groups was substantiated by a broad band from 2946.68 to 3327.16cm−1 and 2162.33 to 

3367.95cm−1 signifying NH2 stretching pertaining to PVA and the semi-IPN, respectively 

(Bawa et al., 2011). PVA is defined by bands located at wavenumbers larger than 3000cm–1 

belonging to the OH group (Arndt et al., 1999). The observed peak at 1535.06cm−1 was 

assigned to NH2 deformation. PVA lacks C=O stretching vibrations.The 1589.83cm−1 peak 
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observed in the FTIR spectra of the semi-IPN is also attributed to NH2 deformation. For PAA, 

the peaks around 1634.78cm−1 and 1616.81cm−1 can be assigned to the amide I and II 

bands, respectively (Kumar et al., 2012). It is clearly indicated that the anhydride formation 

occurs connected with the growth of the respective bands of the C-O-C stretching vibrations 

at 1032.19cm–1 and the C=O stretching vibrations, characteristic for the anhydride formation,  

at 1729.52cm–1. Simultaneously the C=O stretching vibration of the acid in the semi-IPN at 

1697.68cm–1 decreases. 

 

 
 
 
Figure 4.4: FTIR spectra of (a) polyacrylic acid (b) poly(vinyl alcohol) and the (c) semi-IPN.  
 

4.3.3. In vitro drug release analysis  

When the aluminum foil was placed above the electro-modulated formulation, enhanced 

electro-modulated drug release was seen in comparison to the formulation contacting a foil 

ring (Figure 4.5). This observed increase in electro-responsive release (≤1.5%) is possibly 

due to the foil acting as a conductor, resulting in a greater surface area exposed to electro-

stimulation. The hydrogel formulation was proven to be electro-responsive in comparison to 

the control, with electro-responsive releases of ≤0.6% and ≤1.5%, respectively.  
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Figure 4.5: Drug release profiles indicating the effect of aluminum foil on the Electro-
Modulated Hydrogel formulation (N=3; SD≤1.52 in all cases). 
 

The lyophilized formulation, although displaying a greater increase in drug release, is no 

longer electro-responsive from hour 3 (Figure 4.6) indicating possible conformational 

changes of the hydrogel matrix induced by the process of dehydration (Ru et al., 1998). The 

initial display of an increase in release is due to the osmotic effect of the liquid penetrating 

the hydrogel matrix due to the concentration gradient. The enhanced release seen with the 

lyophilized formulation is due to the larger diffusion gradient caused by lyophilization and 

subsequent rehydration in solution. Compared to the lyophilized formulation, the air-dried 

formulation does, however, display continuous electro-responsive ability, possibly as a result 

of the osmotic gradient created by the IPN’s semi-crosslinked nature, allowing for the 

crosslinked PAA to act as a membrane-like barrier. 
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Figure 4.6: Drug release profiles indicating the effect of lyophilization on the Electro-
Modulated Hydrogel formulation (N=3; SD≤0.34 in all cases). 
 

The drug release profiles from the in vitro studies on the design formulations are depicted in 

Figure 4.7. Notably composition of Formulations 5 and 6 as well as and Formulations 7 and 

8 are similar yet display different swelling abilities. This is attributed to the different voltages 

applied to the formulations, initiating structural changes accordingly. Average drug release 

values per electro-stimulation are given in Table 4.4. All formulations displayed electro-

responsive behavior. A further discussion is indicated in the surface plot analyses in Section 

4.3.6.  
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Figure 4.7: Drug release profiles of Box-Behnken design formulations (SD≤2.23 in all 
cases). 
 

The results indicated that formulations of an electro-responsive nature were produced. The 

formulations were more structurally stable, not being electro-sensitive and being unaffected 

by electro-stimulation as opposed to previous research in which a polymer that dissolved in 

the presence of electricity was utilized.  
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Table 4.4: Average drug release (per electro-stimulation; N=3) values obtained after electro-
stimulation as per Box-Behnken design.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.4. Influence of moisture content as determined by titrimetric studies 

Figure 4.8 indicates the water content of the hydrogel samples at 0 and 24 hours as well as 

the net change in water content. All design formulations displayed a net increase of ±1-24% 

in hydration with time. This can be as a result of the protonation of the PEI amine groups 

which results in an influx of counter-ions and a lowering of the osmotic potential ultimately 

facilitating osmotic swelling. Formulation 5 displayed a decrease in water content. If the 

volume of VI is increased in the hydrogels, the water sorption rate is decreased. This may be 

due to the partly hydrophobic characteristics of the VI polymer, which as a monomer is 

neutral. VI interaction with water molecules may also result, and water sorption may be slow. 

In the PAA/PVA EMH, PAA serves as the ionic polymer and PVA, the neutral polymer. As 

the voltage is applied, electrons repel the carboxylic anions in the gel, thus facilitating 

swelling. When ionized, the fixed carboxyl ions repel each other, leading to network swelling. 

The extent of swelling depends on the concentration of functional ionizable groups on the 

network. 

 

The formation of carboxylic anions in the semi-IPN may be another possible reason for this 

decrease in water content. Normally, strong electrostatic forces contribute to network 

expansion and develop as a result of the formation of these carboxylic anions (Elliott et al., 

2004). As a result of the attraction due to strong electrostatic forces, the ionic concentration 

Formulation No. 
Average Drug Release 

(mg) 

1 1.66 (±0.42) 
2 0.91 (±0.22) 
3 1.04 (±0.18) 
4 1.35 (±0.31) 
5 0.73 (±0.16) 
6 0.99 (±0.12) 
7 1.07 (±0.22) 
8 1.20 (±0.19) 
9 1.09 (±0.18) 

10 1.19 (±0.23) 
11 1.21 (±0.13) 
12 1.23 (±0.15) 
13 1.24 (±0.22) 
14 1.37 (±0.27) 
15 1.73 (±0.36) 
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inside the copolymer is greater than the concentration outside. This concentration difference 

results in an osmotic pressure gradient resulting in the influx of water. The water absorption 

properties are thought to result from osmotic pressure as well as due to the interaction 

through the hydrogen bonding of the water molecules and the carboxylic groups of the 

copolymer.  

 

Figure 4.9 displays the comparison between the degree of swelling using the KF Titrator 

method and gravimetrical analysis method displays. The correlation coefficients (R2) 

obtained for the KF Titrator method and gravimetrical method were 0.105 and 0.065 

respectively. The KF method provides a more accurate result as the gravimetric method is 

subject to variability in terms of weighing the sample on the scale and removing excess fluid. 
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Figure 4.8: Changes in water content as determined by Karl Fischer titrimetric methods.  
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Figure 4.9: Comparison between water content using the Karl Fischer titrimetric method and 
gravimetrical analysis method.  
 

4.3.5. Assessment of the physicomechanical properties of the Electro-Modulated 

Hydrogel formulation 

Matrix Resilience (MR) refers to the ability of the hydrogel to revert to its original structure 

after the application of a deforming force and is represented as a percentage of the ratio 

between the Area Under the Curve (AUC) of anchors 1 and 2 (AUC1-2), and 2 and 3 (AUC2-

3). A typical Force-Time profile generated for computation of the EMH MR is shown in Figure 

4.10. This figure pertains to F11 of the experimental design.  

 

The effect of polymer blend ratios cannot be ignored as they imparted various intricate 

physicomechanical characteristics. Textural profile analysis revealed that the PEI/VI blend 

did not have a significant impact on the robustness of the hydrogel formulations as the MR 

varied. MR increased with relatively harder matrices, invalidating matrix plastic deformation. 

The matrices absorbed less impacting energy with harder matrices and therefore the matrix 

resilience was high. 

 

Densely networked matrices have compact matrices that are resistant to applied mechanical 

stress. Compact matrices confer lower MR and have the ability, upon hydration, to 

encompass and retain a notable quantity of drug for longer durations (Choonara et al., 
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2008). Compact matrices are beneficial in applications where controlled release is desired. 

Porous matrix structures impart higher matrix resilience as they are less resistant to an 

applied stress. The porous structure allows for the entry of liquid media, resulting in 

subsequent rapid release and erosion. Porous matrix structures are thus not be suitable for 

entrapping lower molecular weight drugs. A relationship between matrix resilience and drug 

release properties was not clearly defined. 

 

 

 

Figure 4.10: Force-Time profile of an Electro-Modulated Hydrogel formulation.  

 

4.3.6. Response surface analysis of the Box-Behnken design 

In order to determine the relationship between the response variables and the predictor 

variables, a full ANOVA analysis was undertaken of the measured formulation responses 

(Figure 4.11, Table 4.5), electro-responsiveness drug release, swelling and matrix resilience. 

The suitability of the multiple regression models were assessed through residual analysis. 

Residual plots for electro-responsiveness drug release, swelling and matrix resilience are 

depicted in Figure 4.11. The assumptions of a multiple linear regression model is that the 

response variables are independent and normally distributed, random variables with 

constant variance and means depending linearly on the explanatory variables (Larsen and 

McCleary, 1972). Strong linear relationships were observed for all response variables as 

AUC1-2 AUC2-3 
2 3 
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indicated by the narrow clustering of the partial residuals. The scatter plot of the residual, 

where the residuals were plotted against the model predications, is fairly uniform and radiate 

around zero. They generally showed random scatter i.e. no trends, indicating none of the 

underlying assumptions of the multiple regression analysis were grossly violated; some 

outliers as well as some fanning was observed indicative of a degree of nonconstant 

variance (du Toit et al., 2013). The normal probability plots of the residuals fell on a straight 

line indicating the data to be normally distributed with no evidence of unidentified variables. 

Apparent patterning was not observed in any of the variable plots, indicating non-violation of 

the assumptions of zero means and constant variance of the regression model despite the 

presence of few outliers in these plots. Deviation could have resulted from experimental 

error. The obtained histograms for electro-responsive drug release and matrix resilience 

were generally symmetrical hence supporting the probability plots of uniform distribution. 

The obtained histogram for swelling displays a lack of symmetry indicative of a random error 

of the data set. The scatter plot, residual versus observation order, indicates the 

performance of the model. Scatter points remained in constant magnitude indicating non-

random error. A full ANOVA was carried out and is depicted in Table 4.5.  

 

Table 4.5: ANOVA analysis for the measured responses.  
 

 p-values 

Response variable EMDR Swelling 
Matrix  

Resilience 

Voltage 0.961 0.502 0.702 

1-Vinylimidazole 0.552 0.213 0.731 

Poly(ethylene)imine 0.949 0.472 0.778 

Voltage*voltage 0.481 0.681 0.147 

1-Vinylimidazole*1-Vinylimidazole 0.947 0.178 0.683 

Poly(ethylene)imine* Poly(ethylene)imine 0.707 0.679 0.924 

Voltage*1-Vinylimidazole 0.682 0.299 0.767 

Voltage* Poly(ethylene)imine 0.251 0.640 0.179 

1-Vinylimidazole* Poly(ethylene)imine 0.444 0.154 0.743 
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The complete regression equations generated for electro-modulated drug release (EMDR), 

swelling and matrix resilience are indicated below, where voltage is denoted by x1, 1-

vinylimidazole by x2 and poly(ethyleneimine)] by x3: 

 

EMDR = 1.057 + 0.015[x1] + 0.759[x2] + 0.046[x3] + 0.029[x1]
2 – 0.053[x2]

 2 + 0.061[x3]
 2 – 

0.071[x1* x2] – 0.096[x1* x3– 0.272[x2* x3] 

 

                  Equation 4.2 

 

Swelling = 17.454 – 6.236[x1] + 50.116[x2] + 15.714[x3] + 0.494[x1]
2 – 35.043[x2]

 2 – 1.989[x3]
 

2 + 5.593[x1 * x2] + 1.083[x1* x3– 16.223[x2* x3] 

 

                  Equation 4.3 

 

Matrix Resilience = 96.818+ 9.671[x1] + 35.332[x2] – 16.613[x3] – 5.353[x1]
 2 – 26.784[x2]

 2 + 

1.256[x3]
 2 – 4.178[x1* x2] + 9.383[x1* x3– 9.261[x2* x3] 

 

                  Equation 4.4 
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Figure 4.11: Residual plots for the responses (a) electro-modulated drug release (b) 
swelling and (c) matrix resilience. 
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Drug release, polymer swelling and matrix erosion are important factors impacting on the 

observed drug release profile from polymeric matrices. The synchronization between these 

erosion and diffusion fronts may produce the desired zero-order drug release kinetics. Plots 

were used to represent the functional relationship between the experimental variables and 

the responses achieved. The effects of the PEI and VI polymer blend on electro-modulated 

drug release (EMDR) are depicted in Figure 4.12. Increased volumes of PEI (>2.6mL) and 

VI (>0.7mL), resulted in ideal therapeutic electro-modulated drug release (0.8mg). 

Increasing the volume of the polymer results in an increase in the bulk volume of the 

hydrogel matrix thereby resulting in a decrease in drug release as drug is then required to 

release from a greater size of the EMH network. Lower amounts of PEI and amounts of VI 

ranging from 0.20-0.74mL result in a smaller volume of EMH produced and thus a smaller 

polymer network for drug to release and diffuse from and as a result, is consistent with 

greater than 1.6mg of drug release per stimulation, pertaining to a possible toxic dose in 

terms of the therapeutic window of indomethacin (Katzung, 2007).  
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Figure 4.12: Response surface and contour plots depicting the effects of 
poly(ethyleneimine) and 1-vinylimidazole on electro-modulated drug release. 
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Minimal swelling is seen with 1.0-1.6mL of PEI and less than 0.15mL of VI (Figure 4.13), 

attributed to the decrease in chain entanglements of the PEI and VI resulting in the rigidity of 

the PAA network. VI has added function of imparting plasticizer-like qualities to the EMH and 

thus reduces its swelling capabilities. Though minimal swelling is required, the obtained 

statistical values are inappropriate when compared to their corresponding electro-responsive 

release values. The obtained values for VI and PEI as per the Box-Behnken design, are 

0.55-1.00mL and 1.0-3.0mL, respectively, indicating swelling of <25-45%, which is 

consistent with swelling data.  
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Figure 4.13: Response surface and contour plots depicting the effects of 
poly(ethyleneimine),1-vinylimidazole and voltage on swelling. 
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In terms of resilience (Figure 4.14), moderate PEI ranges of 1.75-3.00mL and low VI ranges 

of 0.9-1.0mL are indicative of a high resilience capability. This is consistent with the 

plasticizer-like properties that VI imparts to the EMH formulation. Voltage ranges from 2.6-

3.5V display greater resilience allowing the formulation to revert to its initial form. 
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Figure 4.14: Response surface and contour plots depicting the effects of 
poly(ethyleneimine),1-vinylimidazole and voltage on matrix resilience. 
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4.3.7. Main and interaction effects on the formulation responses 

Interaction effects represent the combined effects of factors on the dependent measure. The 

impact of one factor depends on the level of the other factor when an interaction effect is 

present. The plot displays both the levels and mean of each level of one variable on the X 

axis, ultimately testing the moderation. A “main effect” is the effect of one the independent 

variables on the dependent variable, ignoring the effects of all other independent variables 

(Dawson, 2014). 

 

The main effects plots (Figures 4.18a, 4.19a and 4.20a) depict a horizontal line drawn at the 

grand mean. The effects of the variables on the formulation are represented by the 

differences between the mean and the reference line. PEI and to a lesser extent, voltage 

had a more definite effect on the electro-responsive capability of the hydrogel formulation 

(Figure 4.15a). This can be accounted for by the VI polymer having the dual feature of 

imparting electro-responsive capabilities and plasticizer–like effects to the formulation. In all 

interaction plots, disordinal interactions were observed, indicating that the interaction effect 

between the variables is significant. The greater deviations imply higher degrees of 

interaction. Electro-modulated drug release displays an interaction between PEI and VI at 

0.10-0.55mL of the imidazole polymer (Figure 4.15b). Interactions between PEI and the 

applied voltages occurred at 1V and 5V (Figure 4.15c). An interaction at 1V is seen with VI 

(Figure 4.15d).  
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Figure 4.15: (a) Main variable effects plot for electro-modulated drug release. Interaction 
plots of (b) poly(ethyleneimine) and 1-vinylimidazole (c) poly(ethyleneimine) and voltage (d) 
1-vinylimidazole and voltage on electro-modulated drug release. 
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Regarding the swelling ability of the EMH, the applied voltage and VI effects the fluid intake 

of the hydrogel to a greater extent than PEI (Figure 4.16a). An interaction between PEI and 

VI is seen at 0.55mL (Figure 4.16b). Applied voltages at 2V and 4V indicate interactions with 

PEI (Figure 4.16c). Figure 4.16d indicates interactions of VI at 3.5 and 4V.  
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Figure 4.16: (a) Main variable effects plot for swelling. Interaction plots of (b) 
poly(ethyleneimine) and 1-vinylimidazole (c) poly(ethyleneimine) and voltage (d) 1-
vinylimidazole and voltage on swelling. 

 

Voltage regulates the opening and closing of the polymer network thus facilitating the 

release of drug, this is detailed in Chapter 5, Section 5.3.13. VI maintains the network’s 

structural integrity-limiting network expansion and destruction of the formulation. Matrix 

resilience is mainly affected by the two electro-responsive polymers and to a lesser degree, 

the applied voltage (Figure 4.17a). The effect of the polymer blend imparts various intricate 

physicomechanical characteristics as determined by the textural profile analysis. Figure 

4.17b depicts interactions occurring with PEI and VI at 0.1, 0.55 and 1mL. PEI was shown to 

interact when exposed to voltages of 1V, 3V and 5V (Figure 4.17c). VI interacts with 

voltages of 1V and 3V (Figure 4.17d).  
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Figure 4.17: (a) Main variable effects plot for matrix resilience. Interaction plots of (b) 
poly(ethyleneimine) and 1-vinylimidazole
vinylimidazole and voltage on matrix 
 

4.3.8. Surface morphology of the Electro

Scanning electron micrographs of the 

4.18a. Pores in the EMH become noticeable after electro

(Figure 4.18b), indicating formulation stability and electro

polymer conformation. 

 

Figure 4.18: Scanning electron micrograph images of the surface morphologies of the 
Electro-Modulated Hydrogel (a) 
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(a) Main variable effects plot for matrix resilience. Interaction plots of (b) 
vinylimidazole (c) poly(ethyleneimine) and voltage 

vinylimidazole and voltage on matrix resilience. 

. Surface morphology of the Electro-Modulated Hydrogel 

Scanning electron micrographs of the EMH prior to electro-stimulation are depicted in Figure 
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4.3.9. Response optimization of the Electro-Modulated Hydrogel 

Response optimization procedure (MINITAB®, V15, Minitab, USA) was used to obtain the 

preferred levels of the selected formulatory components. An optimal formulation was 

developed following simultaneous constrained optimization of matrix resilience, swelling 

properties, and electro-modulated drug release. Maximization of matrix resilience, 

minimization of swelling properties and an electro-modulated drug release were used for 

response optimization. The optimized levels of the independent variables and their predicted 

responses were then determined. The optimal levels of the independent variables as well as 

the constraint settings utilized that would achieve the desired drug release, swelling and 

matrix resilience characteristics are listed in Table 4.6. The optimized levels of the 

independent variables, the goal for the response, the predicted response, y, at the current 

factor settings, as well as the individual and composite desirability scores are shown in 

Figure 4.19. Based on the statistical desirability function, it was found that the composite 

desirabilities for the formulation was 1.0.  

 

Table 4.6: Formulation constraints utilized for response optimization. 
 

Responses Parameters 

Drug Release 0.8mg/electro-stimulation 

Swelling Minimize 

Matrix Resilience Maximize 
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Figure 4.19: Desirability plots representing the levels of poly(ethyleneimine) , 1-
vinylimidazole and voltage required to synthesize the optimized formulation. 
 

4.4. Concluding Remarks 

 

This chapter described the utilization of a PEI and VI polymer blend to formulate an electro-

conductive hydrogel with electro-responsive release. The results were demonstrated using 

three variables, namely amount of PEI; amount of VI; and voltage, derived for the measured 

responses .i.e. electro-modulated drug release, degree of swelling and matrix resilience. 

Volumes of PEI (>2.6mL) and VI (>0.7mL), resulted in ideal therapeutic electro-modulated 

drug release of 0.8mg per electro-stimulation for sodium indomethacin. Lower amounts of 

PEI and amounts of VI ranging from 0.2-0.74mL are consistent with >1.6mg release per 

stimulation. Moreover, the relative ratios of PEI to VI polymer significantly influenced the 

degree of electro-modulated drug release and subsequently the matrix resilience of the 

hydrogels. Textural profile analysis of the various matrices revealed the crosslinked hydrogel 

matrices were notably resilient. Swelling and water content determination studies were 

consistent with the predicted results from the response surface analyses, indicating swelling 

of <25-45%, which is consistent with swelling data (R2=0.98).  

 

Following the formulation optimization described in this chapter, further characterization of 

the EMH through physicochemical and physicomechanical characterization is described in 

the following chapter as a step to determine the efficacy of the design and development of 

the EMH for eventual in vivo studies. 

VI 
1.0mL 

[0.9358mL] 
0.1mL 

PEI 
3.0mL 
[3.0mL] 
1.0mL 

Voltage 
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[3.6342V] 
1.0V 
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CHAPTER 5 

PHYSICOCHEMICAL AND PHYSICOMECHANICAL CHARACTERIZATION OF THE 

OPTIMIZED ELECTRO-MODULATED HYDROGEL  

 

5.1. Introduction  

 

The principal aim of pharmaceutical research is to ensure that effective, safe and 

reproducible drug delivery systems elicit the required therapeutic response both in vitro and 

in vivo. In order to fulfill these requirements, it is necessary prior to in vivo studies, to 

undertake extensive in vitro and ex vivo studies. Since the physicomechanical properties of 

a drug delivery system may have a significant effect on drug release behavior, the effects of 

such characteristics on physicochemical and drug release performance requires assessment 

(Tiwari and Rajabi-Siahboomi, 2008). Due to the intricacy and novelty of the EMH, the 

primary focus of this chapter was to assess the overall pertinent structural characteristics of 

the EMH formulation on the drug release potential in addition to the stability of the 

formulation. 

 

In order to gain an in-depth understanding of the electro-modulated function instigated to the 

hydrogel, a computational investigation of the molecular mechanical electrosimulations was 

undertaken generated by the standard bond lengths and angles of PAA, PEI and VI. Due to 

the complexity of a hydrogel of this nature, this chapter focuses on the affects of electro-

stimulation to assess the physicochemical and physicomechanical properties of the 

formulation. Swelling capabilities were assessed in buffers of different pH, thus determining 

the ionic properties related to swelling of the hydrogel matrix. Fourier Transform Infrared 

Spectroscopy and X-ray Diffraction analysis were undertaken for structural profiling, 

Differential Scanning Calorimetric studies for thermal properties, porosity analysis, Scanning 

Electron Microscopy and Magnetic Resonance Imaging for evaluation of the surface 

morphology and characteristics. In vitro pharmacokinetic analysis, the pertinent electrical 

properties pertaining to the EMH as well as the electroactive capabilities of the EMH 

employing cyclic voltammetry were also evaluated. 

 

Additionally, as part of this chapter, the versatility of the EMH is also investigated by 

incorporating various potent analgesics such as morphine HCL, fentanyl citrate and 

celecoxib. These formulations were also subjected to physicomechanical assessment and 

are detailed herein. This chapter therefore provide for the detailed in vitro characterization of 
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the optimized EMH as well as the versatility of the system prior to the conduction of ex vivo 

and in vivo studies. 

 

5.2. Materials and Methods 

 

5.2.1. Materials  

Poly(ethyleneimine) solution (Mw =750,000g/mol), 1-vinylimidazole (≥99%), indomethacin 

(≥99%), poly(vinyl alcohol) (Mw= 89,000-98,000g/mol, 99+% hydrolyzed), acrylic acid 

(anhydrous, 99%), N,N′-Methylenebisacrylamide (≥99.5%) and potassium persulfate 

(≥99.0%) were all purchased from Sigma-Aldrich® (St. Louis, MO, USA). All other ingredients 

were of analytic grade and were used as received. Morphine HCL, celecoxib, and fentanyl 

citrate were purchased from their respective manufacturers. 

 

5.2.2. Preparation of the optimized Electro-Modulated Hydrogel  

A three-factor, Box-Behnken design was employed for the optimization of the electro-

responsive formulation. Statistical optimization was employed using a model-independent 

approach (Minitab® V15, Minitab Inc., PA, USA) to ascertain the ideal polymeric and external 

stimulus combination with the desired physicochemical properties capable of attaining 

desirable electro-modulated drug release, swelling and matrix resilience efficiencies. 

Detailed analysis of the model is discussed in Chapter 4 of this thesis,  

 

As per the design, 6%w/v PVA-1M sodium hydroxide solution was prepared, to which the 

poly(ethyleneimine) solution (3mL) and 1-vinylimidazole (0.9358mL) was added. 

Subsequently, sodium indomethacin (100mg) was dissolved into the mixture. Acrylic acid 

was added (0.6g). N, N′-Methylenebisacrylamide (100mg) was then added to facilitate the 

formation of the semi-IPN.  

 

In addition, formulation multifunctionality was assessed through the substation of sodium 

indomethacin with morphine HCL, celecoxib, and fentanyl citrate, allowing for a variety of 

drugs to be incorporated into the EMH and subsequently the development of the drug 

delivery system as a platform.  

 

5.2.3. Construction of a calibration curve for quantification of the active agents 

employed in the electro-responsive release from the Electro-Modulated Hydrogel  

A calibration curve for sodium indomethacin was constructed as detailed in Chapter 3, 

Section 3.2.4.2. A UV spectrophotometric scan was run prior to in vitro drug release analysis 

to determine the maximum wavelength for morphine HCL, celecoxib, and fentanyl citrate 
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absorption in PBS (pH 7.4; 37°C). It was found that morphine HCL exhibits a maximum 

wavelength at λ278, celecoxib at λ208 and fentanyl citrate at λ203. Using a series of known 

concentrations (0.2-1.0mg/mL for morphine HCL and celecoxib, and 0.2-1.0µg/mL for 

fentanyl citrate) of drug in PBS, a calibration curve at the aforementioned wavelengths were 

constructed for morphine HCL (ε=3.020x), celecoxib (ε=1.678), and fentanyl citrate 

(ε=0.0984). The linear curves (R2=0.99) were plotted with the observed absorbance of drug 

as the dependent variable and the concentration of drug as the independent variable.  

 

5.2.4. Determination of the Drug Entrapment Efficiency of the Electro-Modulated 

Hydrogel  

In order to validate the drug content of the optimized formulation, the Drug Entrapment 

Efficiency (DEE) was determined. A hydrogel sample of a known weight of 22mg was 

immersed in PBS (pH 7.4; 37°C). The sample solutions were homogenized for a period of 10 

minutes followed by sonication (Vibra-CellTM, Sonics® Sonics & Material Inc., Newtown, CT, 

USA) at amplitude of 80% for 15 minutes. Sodium indomethacin content (mg) was assessed 

in triplicate and determined by UV spectroscopy (Implen NanophotometerTM, Implen GmbH, 

München, Germany) at λ320 against the calibration curves.  

 

5.2.5. Synthesis validation of the optimized Electro-Modulated Hydrogel using Fourier 

Transform Infrared Spectroscopy 

FTIR Spectroscopy was used to detect the vibration characteristics of chemical functional 

groups in the hydrogel samples and was carried out as detailed in Chapter 4, Section 4.2.3. 

 

5.2.6. Investigation of the electro-responsive drug delivery of the optimized 

formulation using in vitro drug release analysis 

 

5.2.6.1. Preparation of artificial sweat  

The composition of human sweat is shown in Table 5.1 (Shimamura et al., 2004). Artificial 

Sweat (AS 3) was prepared to simulate transdermal conditions where the concentration of 

the positive ions was the same as the median value of the cation concentrations in human 

sweat. NaOH (0.1M) was used to adjust the pH of the AS to the median value (5.4) of 

human sweat which ranges from pH 4.5 to 6.3.  
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Table 5.1: Composition of human sweat and artificial sweat. 
 

Human Sweat Artificial Sweat - AS (3)* 

Ion Concentration (mEq/L) Salt Concentration (g/L) 

Sodium 9.7-94.1 NaCl 2.92 

Calcium 0.2-6 CaCl2 0.166 

Magnesium 0.03-4 MgSO4 0.12 

Iron 0.022-0.068 KH2PO4 1.02 

Copper 0.002 pH 5.4 

Manganese 0.001-0.003   

Zinc 0.016-0.052   

Chloride 0-65.1   

Phosphorus 0.003-0.014   

Sulphur 0.022-0.231   

Bromide 0.002-0.006   

Fluoride 0.011-0.095   

Iodine 0.043-0.096   

Potassium 4.3-10.7   

*milliequivalents of calcium ion 

5.2.6.2. In vitro release studies conducted at pH 7.4 

In vitro drug release studies on the optimized hydrogel as well as the formulations containing 

morphine HCL, celecoxib, and fentanyl citrate were performed as mentioned in Chapter 3, 

Section 3.2.4.3.  

 

5.2.6.3. In vitro release studies using artificial sweat  

The release study was performed as described in Chapter 3, Section 3.2.4.3 to determine 

whether the electro-responsiveness of the hydrogel be affected should sweat enter the 

EMHM device. The study could not be undertaken under the ideal conditions pertaining to 

volume due to the volume of sweat being so small. In order to account for consistency, the 

volume used was 20mL. 

 

5.2.7. Determination of physicomechanical properties of the polymeric components of 

the Electro-Modulated Hydrogel and their synergistic effects 

Texture analysis involving gel strength, matrix resilience and hardness number analyses 

were performed to determine the effect of electro-stimulation on the physicomechanical 

behavior of the optimized hydrogel samples and those containing the potent, scheduled 

drugs. Indentation hardness was represented by the Brinell Hardness Number (BHN) 
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derived through the textural profiling analysis. Typical textural parameters for determining 

the physicomechanical behavior of the formulations are outlined in Table 5.2. 

 

Table 5.2: Textural analysis parameter settings employed. 
 

Parameter Matrix Resilience Matrix Hardness Gel Strength 

 

Pre-Test Speed 

 

1.0mm/sec 

 

1mm/sec 

 

1mm/sec 

Test Speed 1.5mm/sec 0.5mm/sec 1mm/sec 

Post-Speed Speed 1.5mm/sec 10mm/sec 10mm/sec 

Target Mode Strain Distance  Distance(5mm) 

Compression Strain  50% N/A N/A 

Compression Force N/A 40N N/A 

Strain 10% 50% N/A 

Trigger Type Auto Auto Auto 

Trigger Force 0.05N 0.05N 0.05N 

Probe type Delrin cylinder probe 

(10mm) 

Spherical   

(5mm) 

Radius cylinder 

(0.5”) 

 

5.2.7.1. Matrix resilience   

Matrix resilience (MR) was determined from various textural profiles generated for each 

hydrogel formulation using a Texture Analyzer (TA.XT.plus Texture Analyser, Stable 

Microsystems®, Surrey, UK) as detailed in Chapter 4, Section 4.2.6.3. 

 

5.2.7.2. Matrix hardness 

Matrix hardness (MH) was calculated in terms of the BHN (M/mm2) using a calibrated texture 

analyzer (TA.XT plus Stable Microsystems, Surrey. UK) fixed with a ball probe indenter of 

diameter 4.981mm. The indentation diameter was employed at 2.311mm with a 5kg load cell 

for all readings. The indentation hardness was represented by a conversion to the BHN 

(Equation 5.1). 

 

)*+ =
2+

-.(.−√.2− 1
2

)
                Equation 5.1 

 
Where, + =applied force (kgf), generated from indentation (N), . =diameter of indenter (mm) 

(4.981mm) and 1 = diameter of indentation depth (2.311mm). 
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5.2.7.3. Gel strength 

The gel strength (often expressed as Bloom) is the mass in grams necessary to depress a 

standard plunger of 4mm diameter into the gel at a gelatin concentration of 6.67% after 17 

hours at 10°C. A 0.5” radius cylinder probe was employed for the determination of gel 

strength. Typical Force-Time profiles were generated for computation of the gel strength 

using a Texture Analyzer (TA.XT.plus Texture Analyser, Stable Microsystems®, Surrey, UK).  

 

5.2.8. Characterization of thermal transitions using Differential Scanning Calorimetry  

In order to ascertained phase change temperatures, melting points, chemical reaction 

temperatures, and glass transitions (Tg) of the EMH, the EMH underwent DSC testing 

employing a Temperature Modulated or Advanced DSC (TMDSC/ ADSC) (Mettler Toledo 

DSC-1 STARe System, Schwerzenback, ZH, Switzerland) to further assess the thermal 

behavior of the constituents. 

 

Thermal transitions were assessed in terms of the Tg measured in response to variation in 

the magnitude of the crystallization temperature (Tc) and melting temperature (Tm) peaks 

corresponding to the total heat flow (∆H). Calibration of temperature and enthalpy on the 

instrument were undertaken using indium. The thermal transitions of native PEI and VI 

hydrogel films were compared to a physical mixture of PEI and VI as well as ground samples 

of the EMH. Samples (±10mg) were accurately weighed into standard 40µL aluminum open 

pans and hermetically sealed in perforated 40µL aluminum pans. Samples were then heated 

from -20-100°C and held at 100°C for 3 minutes so as to evaporate any moisture present in 

the sample, to eliminate any thermal history and to determine the Tg. The pans were then 

ramped at 10°C/minute between a temperature gradient of -20-400°C under a constant 

purge of an inert N2 atmosphere (100mL/minute) in order to diminish oxidation. The melting 

point (Tm) obtained from the melting point depression was determined according to the 

peaks generated on the experimental DSC curves. 

 

5.2.9. Porositometric analysis of the Electro-Modulated Hydrogel in the presence of 

buffers of differing pH 

Porosity analysis employing the BET isotherm of nitrogen was conducted as an investigation 

to determine the presence of pores and pore size within the optimized formulation prior to 

and after electro-stimulation as well as the optimized samples at pH 5.5 and 7.4 after 

electro-stimulation. An ASAP 2020 Porositometer (Micromeritics Instrument Company (Pty) 

Ltd., Norcross, GA, USA) equipped with research grade ASAP 2020 V3.01 software was 

employed to determine the quantifiable aspects of the hydrogel’s porous nature, such as 

surface area, pore diameter, total pore volume, and bulk and absolute densities. Briefly, the 
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pieces of the hydrogel (100mg) were evacuated with Nitrogen gas (N2) (hard-sphere 

diameter=3.860Å; molecular cross-section=0.162nm2) for the removal of surface moisture 

and gas particles prior to analysis. Table 5.3 lists the parameters and settings employed 

under standard conditions of temperature and pressure (STP: 0°C and 760torr). The 

samples were weighed (±100mg) and placed in a cylindrical sample tube. To reduce the 

total free space, increase the capacity of the vacuum pressure and thus allow for timely 

degassing, a glass filler rod was inserted with within the sample tube. The samples were 

covered in an isothermal jacket and were degassed for approximately 18 hours. The 

degassed samples were transferred to the analysis port and immersed in liquid nitrogen prior 

to analysis. The Barrett, Joyner and Halenda (BJH) and BET adsorption and desorption 

relationships were subsequently generated.  

 
Table 5.3: Parameters employed for the evacuation and heating phases during degassing of 
the Electro-Modulated Hydrogel samples. 
 

Parameter Rate/Target 

Evacuation Phase 

Temperature ramp rate 10°C/minute 

Target temperature 40°C 

Evacuation rate 50mmHg/second 

Unrestricted evacuation from 30mmHg 

Vacuum set point 500µmHg 

Evacuation time 60 minutes 

Heating Phase 

Temperature ramp rate 10°C/minute 

Hold temperature 30°C 

Hold time 1320 minutes 

 

5.2.10. Characterization of morphological transitions using Scanning Electron 

Microscopy  

SEM images of the EMH both before and after electro-stimulation, in buffers of pH 5.4 and 

7.4, were taken for surface comparison. Prior to imaging, the samples were submerged into 

their respective buffers and the optimal voltage (3.63V) applied. The samples were 

subsequently blot-dried and submerged in liquid nitrogen in order to maintain matrix integrity. 
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5.2.11. Qualitative characterization of the optimized Electro-Modulated Hydrogel 

formulation under different pH using Magnetic Resonance Imaging  

A Magnetic Resonance Imaging (MRI) system with digital MARAN-i System configured with 

a DRX2 HF Spectrometer console (Oxford Instruments Magnetic Resonance, Oxon, UK) 

was employed for the viewing of the mechanical behaviors of the hydrogel matrices. The 

MRI was equipped with a compact 0.5 Tesla permanent magnet stabilized at 37oC and a 

dissolution flow through cell. After duly configuring, optimizing the shims and probe tuning, 

the cone-like lower part of the cell was filled with glass beads to provide laminar flow at 

16mL/minute of the solvents employed. The hydrogel samples were placed in position each 

time within the cell which in turn was positioned in a magnetic bore of the system and 

magnetic resonance images were acquired every 3 minutes with MARAN-i version 1.0 

software  

 

The image was acquired after setting the frequency offset and testing gain employing 

RINMR version 5.7 under continuous solvent flow conditions. MARAN-i software comprises 

image acquisition software and image analysis software. The image acquisition parameters 

are depicted in Table 5.4. 

 

Table 5.4: Image acquisition parameters applied during magnetic resonance imaging using 
MARAN-i. 
 

Sample 

No. 
Parameter Value 

1. Imaging protocol FSHEF 

2. Requested gain (%) 4.17 

3. Signal strength 68.92 

4. Average 2 

5. Matrix size 128 

6. Repetition time (ms) 1000.00 

7. Spin Echo Tau (ms) 6.80 

8. Image acquired after 60 minutes 

9. Total scans 64 
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5.2.12. Determination of the degree of crystallinity employing X-Ray Diffraction 

analysis 

Quantitative X-ray diffraction patterns were performed for the determination of the crystalline 

or amorphous nature of the optimized EMH. The XRD profiles were recorded using an X-

Ray Diffractometer (Rigaku Miniflex 600, Rigaku Corporation, Matsubara-cho, Akishima-shi, 

Tokyo, Japan) at room temperature. Integrated X-ray Powder Diffraction software (PDXL 

2.1, Rigaku, Tokyo, Japan). The measurement conditions are outlined in Chapter 3, Section 

3.2.4.1, Table 3.1. 

 

The finely pulverized sample (±20mg) was loaded into a glass sample holder. The intensity 

values at the main interplanar distances (diffraction peak angles) were determined for the 

pure PEI and VI as well as the PEI: VI mixture. The diffractogram of pure indomethacin was 

instituted as a reference for qualitative representation of the degree of crystallinity. 

 

5.2.13. Assessment of the influence of electro-modulation on the swelling capabilities 

of the Electro-Modulated Hydrogel  

The EMH samples were analyzed for water content determination using the Karl Fischer 

Titrator (Mettler Toledo V30 Volumetric KF Titrator, Mettler Toledo Instruments Inc., 

Greifensee, Switzerland). The test was conducted on a control as well as an EMH sample to 

which the optimized electric field of 3.63V was applied. The hydrogel samples were removed 

from the PBS (37°C; pH 7.4) and the water content determined at 0, 0.5, 1, 1.5, 2, 2.5, 3 and 

24 hours.  

 

5.2.14. Pharmacokinetic analysis of in vitro drug release 

Quantitative evaluation of the drug transport process occurring across the skin necessitates 

selection of a suitable pharmacokinetic model for fitting of the concentration-time data. 

Appropriate model selection required the use of diagnostics such as the Akaike’s Information 

Criterion (AIC), Schwarz’s Bayesian Criterion (SBC) correlation coefficient, sum of squares 

of residuals (SS) and standard error of weighted residuals (SE). AIC and SBC hold the most 

significance (Zhang et al., 2010) as they are a measure of goodness of fit based on 

maximum likelihood and were conducted. 

 

Models employed include Zero order, Zero order with Tlag, First order, First order with Tlag, 

Higuchi, Hixson-Crowell, Makoid-Banakar, Korsmeyer-Peppas and the Quadratic model. 

The model associated with the smallest value of AIC or SBC in models of a given set of data 

is regarded as giving the best fit. Lower values are indicative of the preferred model, i.e., the 

one with the fewest parameters that still provides an adequate fit to the data, although it is 
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not the actual value but rather the difference between the values in a set. The value that is 

the lowest in the set represents the best fit. In this case each set is the different kinetic 

model. Thus the variation between the values among different sets is not a consideration (du 

Toit, 2013). 

 

5.2.15. Investigation of the electro-active capabilities of the Electro-Modulated 

Hydrogel using cyclic voltammetry  

Cyclic voltammetry was employed in order to assess the electroactive capabilities of the 

EMH using the three-electrode method as the electrical potential of a reference does not 

change easily during the measurement. Hydrogels containing the native PEI and VI as well 

as the optimized EMH was dissolved in PBS (pH 7.4) which served as the conducting 

solvent (Raoof et al., 2009). The sample solutions were homogenized for a period of 10 

minutes followed by sonication (Vibra-CellTM, SonicsR Sonics & Material Inc., Newtown, CT, 

USA) at amplitude of 80% for a period of 15 minutes. Prior to cyclic voltammetric 

assessment, the solutions were purged with nitrogen gas for 3 minutes. The conventional 

three-electrode system was used with a saturate Ag/AgCl (3.0M KCl) electrode serving as 

the reference electrode, a platinum auxiliary electrode and a glassy carbon electrode (5mm) 

as the working electrode. The vertex potential range used was -2V to +2V and -4V to +4V, 

the scan rate, 0.1V/second and the step potential, 0.00244V. 

 

5.2.16. Conductivity and resistance measurements of the Electro-Modulated Hydrogel  

A conductivity meter (SevenMulti™, Mettler-Toledo, Zurich, Switzerland) was employed to 

determine the ionic conductivity and resistance of hydrogels containing the native PEI and VI 

as well as the optimized EMH dissolved in PBS (pH 7.4). An average of 3 readings was 

recorded. 

 

5.2.17. Computational investigation of Molecular Mechanics Electrosimulations and 

Electromimetic modeling  

Molecular Mechanics (MM) Computations in vacuum and hydrated system were performed 

using the HyperChemTM 8.0.8 Molecular Modeling System (Hypercube Inc., Gainesville, 

Florida, USA) and ChemBio3D Ultra 11.0 (CambridgeSoft Corporation, Cambridge, UK). The 

PEI, PAA and VI was generated from standard bond lengths and angles employing polymer 

builder tools using ChemBio3D Ultra in their syndiotactic stereochemistry as 3D model. The 

individual polymer models were initially energy-minimized using MM+ force field and the 

resulting structures were again energy-minimized using the Amber 3 (Assisted Model 

Building and Energy Refinements) force field. 
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The conformer having the lowest energy was used to create the polymer-polymer and 

polymer-protein complexes. A complex of one polymer molecule with another was 

assembled by disposing the molecules in a parallel way, and the same procedure of energy-

minimization was repeated to generate the final models: PAA, PEI, PAA-PEI, and PAA-PEI-

VI (different ratios). Full geometry optimization was carried out in vacuum employing the 

Polak–Ribiere conjugate gradient algorithm until an RMS gradient of 0.001 kcal/mol was 

reached. For molecular mechanics calculations in vacuum, the force fields were utilized with 

a distance-dependent dielectric constant scaled by a factor of 1. The 1-4 scale factors were 

electrostatic 0.5 and van der Waals 0.5 (Kumar et al., 2011). 

 

To generate the final models in solvated system the MM simulations were performed for 

cubic periodic boxes with the polymer/polymer at the center of the cubic box and the 

remaining free space filled with water molecules and the same procedure of energy-

minimization was repeated to generate the solvated models except that the force fields were 

utilized with a distance-independent dielectric constant with no scaling (Table 5.5). The MM 

electrosimulations were performed under the influence of an external electric field along all 

the three coordinates x, y, and z at various filed strengths of 0.00 a.u., 0.1 a.u., 0.3 a.u., and 

0.5 a.u. to generate the final models listed later in Table 5.9. Full geometry optimizations 

were carried out in solvated system employing the Polak–Ribiere conjugate gradient method 

until an RMS gradient of 0.001 kcal/mol was reached. Additionally, the Force field options in 

the AMBER (with explicit solvent) were extended to incorporate cutoffs to Inner and Outer 

options with the nearest-image periodic boundary conditions and the outer and inner cutoffs 

were to ensure that there were no discontinuities in the potential surface (Table 5.5; 

Choonara et al., 2011).  

 
Table 5.5: Computational parameters used to construct aqueous-phase model building and 
simulations. 

Parameter Description 

Periodic box dimensions 20×15×25A°3 

Cut-offs Switched 

Dielectric (epsilon) Constant 

1-4 Scale factors 
Electrostatic: 0.5 

van der Walls: 0.5 

Outer radius 7.5 A° 

Inner radius 3.5 A° 

Water molecules 248 

Solvent/Polymer distance 2.3 A° 
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The molecular mechanics simulation was carried out in various consecutive steps to 

generate the final electrosimulation model as follows: 

 

Step 1:  Individual molecules viz PAA, PEI and VI were generated in vacuum followed 

  by geometrical stabilization. 

Step 2:  Molecular complexes such as PEI-PAA2 (two PAA molecules in complexation 

  with one PEI molecule) and PEI-PAA2-VI4 (PEI-PAA2 molecule in   

  complexation with four VI molecules) were generated in vacuum using  

  parallel disposition and were geometrically optimized. 

Step 3:  PEI-PAA2-VI4 was geometrically optimized under periodic boundary  

  conditions with water as the solvent phase. 

Step 4:  The solvated PEI-PAA2-VI4 was subjected to electric field in x, y, and z co-

  ordinate directions at electric field values of 0.1 a.u., 0.3 a.u., and 0.5 a.u. 

  Geometrical optimization was carried out under identical periodic boundary 

  conditions with water as the solvent phase. 

5.3. Results and Discussion 

 

5.3.1. Construction of calibration curves for the ultraviolet spectrophotometric 

determination of active agent release from the Electro-Modulated Hydrogel  

A calibration curve for sodium indomethacin was constructed in PBS (pH 7.4; 37°C) using a 

known series of concentrations of sodium indomethacin as detailed in Chapter 3, Section 

3.2.4.2. An ultraviolet spectrophotometric scan was run to determine the maximum 

wavelength for morphine HCL absorption in PBS. Using UV spectroscopy, it was found that 

morphine HCL exhibits a maximum wavelength at λ278 (Appendix 11.3.1) consistent with the 

literature published on the morphine HCL 285nm absorption peak (Morales et al., 2004; 

Morales et al., 2011). The linear curve was plotted with the observed absorbance of 

morphine HCL as the dependent variable and the concentration of morphine HCL the 

independent variable. A statistical representation of the degree at which the function 

correlates the set of values (R2 value) was computed for the curve (Appendix 11.3.1). 

 

Similarly, calibration curves (Appendices 11.3.2 and 11.3.3) for celecoxib and fentanyl citrate 

were carried out at λ208 (Frank et al., 2004) and λ203 (Almousa et al., 2011), respectively.  
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5.3.2. In vitro release studies   

The principle in the design of the electro-responsive polymeric matrix was to ensure that it 

responds by releasing the incorporated analgesic agent in a manner responsive to an 

electro-responsive stimulus. As depicted by Figure 5.1a, the EMH responded in the desired 

manner. At pH 7.4, the EMH displays more consistent electro-responsive release than at pH 

5.4, where the electro-responsive properties of the drug are greatly reduced. The moisture 

content is increased, resulting in increased swelling in the simulated sweat buffer (Section 

5.3.9). Exposing the EMH to different pH and electro-stimuli reiterates the fact that PAA’s 

large number of free carboxylic moieties increases sensitivity to pH and electrical stimuli (Cai 

and Gupta, 2012). 

 

Further in vitro studies were carried out on the optimized formulation containing morphine 

HCL, celecoxib and fentanyl citrate in order to determine the versatility of the formulation 

(Figure 5.1b-d). The drug release studies were carried out as previously mentioned. All EMH 

formulations displayed electro-responsive release with various spikes, possibly as a result of 

the different solubilities of the analgesic agents.  
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Figure 5.1: Drug release profiles of the optimized Electro-Modulated Hydrogel containing (a) 
sodium indomethacin at pH 5.4 and pH 7.4 (b) Morphine HCL (c) Celecoxib and (d) Fentanyl 
citrate. 

(a) (b) 

(c) (d) 



120 
 

In addition digital images of the EMH containing sodium indomethacin were taken at 

consecutive intervals following electro-stimulation so as to visually depict the loss of 

indomethacin from the EMH matrix. After stimulation, the EMH displayed a color change 

from a uniform dark yellow to lighter colors. In addition, the color change is more apparent at 

the outer rims of the EMH, which consecutively increase in accordance with electro-

stimulation (Figure 5.2).  

 

Figure 5.2: Digital images depicting the color change from the Electro-Modulated Hydrogel 
after electro-stimulations at pH 7.4. 
 

5.3.3. Synthesis validation of the optimized Electro-Modulated Hydrogel  

FTIR analysis of the optimized EMH revealed the omission of the VI peak at 2176.88cm-1 

(Figure 5.3). The, peak corresponding to presence of nitrogen is absent possibly as a result 

of crosslinking. All other observed peaks are as detailed in Chapter 4, Section 4.3.2. 

 

Figure 5.3: FT-IR spectrum of the (a) poly (ethyleneimine) and (b) 1-vinylimidazole-
containing Electro-Modulated Hydrogel. (c) The optimized Electro-Modulated Hydrogel. 
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5.3.4. Analysis of the physicomechanical behavior  

Textural profile analysis in terms of BHN and gel strength revealed that the integrity of the 

EMH samples declined after electro-stimulation. MR remained constant and was unaffected 

by the electro-stimulation. Figure 5.4a-c depicts the Force-Time and Force-Distance profiles 

of the EMH prior to and after electro-stimulation. In all cases, N=3. MR for the EMH 

containing sodium indomethacin was calculated to be 95.16% which correlates to that of the 

optimized EMH (±4.85). MR for the control EMHs containing morphine, fentanyl and 

celecoxib were calculated to be 87.62%, 96.73% and 92.46% respectively (±3.27). MR after 

electro-stimulation was calculated to be 90.23% for the optimized EMH containing sodium 

indomethacin (±5.38), and 84.21%, 89.13% and 87.96% for morphine, fentanyl and 

celecoxib respectively (±4.13). This decline in MR could be as a result of the notable 

formation of pores in the matrix as depicted in Figure 5.8b (ii). The BHN of the EMHs were 

also seen to decrease following electro-stimulation from 0.076 to 0.000 for sodium 

indomethacin, 0.091 to 0.008 for morphine, 0.156 to 0.004 for fentanyl and from 0.290 to 

0.008 for celecoxib (SD≤0.048 in all cases). Gel strength of the EMH decreased after 

electro-stimulation, the most common method to enhance the hydrogel strength is by 

increasing the crosslink density and the hydrophobic nature of the hydrogel. The monomer 

concentration and crosslink density has remained constant throughout the study. Gel 

strength ranged from 4.98N to 3.32N for sodium indomethacin, 3.14N to 0.35N for morphine, 

6.23N to 0.57N for fentanyl and from 13.98N to 2.13N for celecoxib, prior to after electro-

stimulation (SD≤1.92 in all cases). A significant reduction in gel strength was seen with 

morphine, reduced from 14.14N to 2.95N after electro-stimulation (SD≤0.87). If correlated 

with the respective drug release profiles (Figure 5.1) it can be seen that the release of drug 

is greater in gels having lower gel strength. The phenomenon can be explained by the fact 

that the incorporated drug contributed to the strength of the network and subsequent release 

weakened the EMH matrix (Choonara et al., 2008). Notably all textural profiles of the electro-

stimulated matrix display slightly increased results as compared to their control counterparts 

affected by the incorporated drug (Namdeo et al., 2010). 
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Sodium indomethacin-containing EMH

physicomechanical tests at pH 5.4 and 7.4 in order to determine pH

(Figure 5.5).  

 

Figure 5.5: Profiles depicting the 
profiles of the Electro-Modulated Hydrogel 
pH 7.4. 
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The calculated MR for the EMH at pH 5.4 and pH 7.4 were calculated to be 94.32% and 

98.54% respectively (SD≤1.40). BHN values were calculated to be 0.131 and 0.026 

respectively (SD≤0.50). Gel strength was determined to be 29.83N and 4.93N respectively 

(SD≤4.47). The increase in strength at a lower pH is due to the decrease in polymeric chain 

flexibility. Conversely, the strength at pH 7.4 is lower due to the chain becoming more 

flexible. 

 

5.3.5. Thermal profile analysis of the optimized Electro-Modulated Hydrogel 

formulation  

A single glass transition temperature (Tg) for the EMH semi-IPN was observed indicating that 

both parent semi-IPN polymer components (PAA/PVA) have excellent miscibility and that 

strong interactions due to hydrogen bonding exist between the two networks of this semi-IPN 

(Figure 5.6). Should the semi-IPN polymer components have been immiscible, two Tg peaks 

corresponding to the parent polymers would have been observed. When two networks of a 

semi-IPN are compatible, the semi-IPN possesses a single Tg (Zhang et al., 2004; Yue et al., 

2008).Exothermic peaks were displayed by all the EMH samples. Melting was observed at 

100-140°C. The EMH containing the blend and the hydrogel containing VI displayed 

oxidation peaks at 250-270°C and 190-210°C respectively. After characterizing the thermal 

properties of the native PEI and VI as well as the physical mixture it was found that the Tg of 

PEI, VI and the EMH occurred in the range of 30-50°C, 50-60°C and 30-40°C respectively, 

consistent with the fact that Tg generally increases according to increasing ionic group 

concentration (Weiss et al., 1985); this event is seen at 125°C for the EMH. For VI, an 

endothermic event, typically due to hydration, occurred in the range of 140-160°C and 200-

210°C. An exothermic event at 300-330°C for the EMH was seen.  
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Figure 5.6: Differential Scanning Calorimetry thermogram of (a) Electro-Modulated Hydrogel 
(b) poly (ethyleneimine) and (c) 1-vinylimidazole. 
 

5.3.6. Simultaneous qualitative and quantitative analysis of the Electro-Modulated 

Hydrogel surface morphology and porosity  

Porositometric analysis on the EMH samples were conducted as it facilitates drug release at 

rates determined by their diffusion coefficient through the EMH matrix (Jagur-Grodzinski, 

2010). The BJH and BET characteristics observed in the porositometric analysis of the EMH 

are outlined in Table 5.6. 
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Table 5.6: Surface area and porosity characteristics of the Electro-Modulated Hydrogel 
samples.  
 
Parameter Dry EMH pH 5.4 pH 7.4 

     

Surface area BET Surface Area 

 

5.0300m²/g -2.5076m²/g -2.3530m²/g 

 

 

 

 

 

Pore Volume 

BJH Adsorption 

average pore 

width (4V/A by 

BET)     

 

28.0128Å 

 

-19.0650Å -33.2319Å 

BJH Adsorption 

average pore 

diameter (4V/A) 

 

51.432Å 46.074Å 41.674Å 

BJH Desorption 

average pore 

diameter (4V/A) 

48.088Å 41.157Å 39.603Å 

 

The BET surface area plot and the isotherm log plot for the EMH prior to and after electro-

stimulation at pH 5.4 and 7.4 are depicted in Figure 5.7. The BET surface area of the EMH 

was calculated to be 5.0300m²/g, -2.5076m²/g and -2.3530m²/g respectively. The average 

pore width of the EMH prior to electro-stimulation was calculated to be 28.0128Å 

(2.80128nm) with the average adsorption and desorption pore diameters being 51.432Å 

(5.1432nm) and 48.088Å (4.8088nm) respectively. The average pore width of the EMH at pH 

5.4 was calculated to be -19.0650Å (1.90650nm) with the average adsorption and desorption 

pore diameters being 46.074Å (4.6074nm) and 41.647Å (4.1647nm) respectively. Type H3 

hysteresis was observed in all plots (Figure 5.7) and thus do not exhibit any limiting 

adsorption at high p/p0. This behavior can for instance be caused by the existence of non-

rigid aggregates of plate-like particles or assemblages of slit-shaped pores (Thommes, 

2010). 

 

The larger pore volume of the EMH at pH 5.4 after electro-stimulation accounts for the 

increase in drug diffusion from the EMH matrix (Figure 5.1a) resulting in inappropriate 

release. The average pore width of the EMH at pH 7.4 was calculated to be -33.2319Å 

(3.32319nm) with the average adsorption and desorption pore diameters being 41.674Å 
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(4.1674nm) and 39.603Å (3.9603nm) respectively. The pore volume of the EMH at pH 7.4 is 

smaller in comparison to the control EMH. However, does prove to be highly efficient in 

electro-responsive release. This is beneficial as the release of the therapeutic agent can be 

controlled over longer periods of time resulting in an extended duration of action, desirable 

patient compliance, a decreased burden of care and ultimately a positive therapeutic 

outcome.  

 

 
 

 

 

 

(a) 

(ii) 

(b) 

(i) 

(i) 
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Figure 5.7: (i) BET surface analysis plot and (ii) isotherm log plot of the (a) Electro-
Modulated Hydrogel control (b) Electro-Modulated Hydrogel at pH 5.4 (c) of the Electro-
Modulated Hydrogel at pH 7.4. 
 

Due to the high degree of entanglement and the shorter inter-gel strand lengths, in effect, 

equilibrium swelling decreases. In addition to the distribution of crosslinks, the chain length 

between crosslinks within a gel can be highly variable (Pakravan et al., 2011). At low 

concentrations of the monomer, a small number of longer strands poorly connect the gels 

(Pakravan et al., 2011). High monomer concentrations result in a greater number of shorter 

strands that are more extensively entangled than the inter-gel strands formed at low 

monomer concentrations (Pakravan et al., 2011).  
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revealed that with exposure to simulated transdermal conditions, alterations were 

observed in the surface morphology of the EMH (Figure 5.8). Pores were present in the 

EMH after stimulation at both pH values (Figure 5.8b). The pores were not present in the 

(Figure 5.8a(i)). Considering that electro-stimulation was the only 

change in the environment, it can be concluded that the pores were as a result of the 

polymer network opening in response to the applied field, proving the electro

The porosity data further validates this as the average pore width 

-stimulation was calculated to be 28.0128Å 

average pore width of the EMH after electro-stimulation

(3.32319nm). After allowing the sample to return to its native 

average pore width of the EMH was calculated to be 27.1218Å (2.71218nm)
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Figure 5.8: (a) SEM images of the surface
Hydrogel prior to electro-stimulation
images of the Electro-Modulated Hydrogel 

 

5.3.7. Analysis of the degree of crystallinity 

The X-ray diffractograms for sodium indomethacin, PEI, VI and the EMH

Figure 5.9a (i-v). Stereoregularity or symmetry as depicted by narrow and symmetrical 

indicates that the indomethacin is crystalline in structure

contrary the native polymers and the EMH are dominantly amorphous in nature due to the 

absence of this characteristic. Amorphous polymers contain a randomly or

chain that generally prevents crystallization

display slight symmetry (2ө=30

gel. An amorphous nature of molecular dispersal or dr

was indicated by the absence of complete crystallinity in the drug

peak observed indicates that the PVA/PAA 

crystalline phase is non-conducting, there st
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naphthalenedicarboxylate) (64%), which may contribute to the EMH’s electro

behavior due to the nitro moieties (Figure 

(b) (i) 

(a) SEM images of the surface morphologies of (i) the 
stimulation (ii) poly (ethyleneimine) (iii) 1-vinylimidazole.

Modulated Hydrogel after electro-stimulation at (i) pH 5.4 (ii) pH 7.4

. Analysis of the degree of crystallinity of the Electro-Modulated Hydrogel 

ray diffractograms for sodium indomethacin, PEI, VI and the EMH

. Stereoregularity or symmetry as depicted by narrow and symmetrical 

indicates that the indomethacin is crystalline in structure (du Toit et al.

contrary the native polymers and the EMH are dominantly amorphous in nature due to the 

. Amorphous polymers contain a randomly or

chain that generally prevents crystallization (Vassal et al., 2000). The EMH does however 

ө=30-40°) as a result of the incorporation of indomethacin into the 

gel. An amorphous nature of molecular dispersal or drug within the polymeric EMH matrix 

was indicated by the absence of complete crystallinity in the drug-loaded EMH. The broad 

peak observed indicates that the PVA/PAA semi-IPN is amorphous. Nonetheless, while the 

conducting, there still is significant polymer chain flexibility existing 

in the amorphous phase. This characteristic can greatly enhance ionic conductivity.

as a separate entity, using the Integrated X-ray Powder Diffraction software 

Japan), the polyelectrolytic EMH was found to contain N

1,4-diamine (36%) and poly(ethylene 2,6

naphthalenedicarboxylate) (64%), which may contribute to the EMH’s electro

the nitro moieties (Figure 5.9b). 
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Figure 5.9: (a) XRD diffractograms of (i) 
vinylimidazole (iv) the Electro
Modulated Hydrogel. 
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N-(3-Nitrobenzylidine)phenylene

(a) XRD diffractograms of (i) sodium indomethacin (ii) poly(ethyleneimine) 
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5.3.8. Assessment of the pH-responsive swelling properties through rheological 

analysis and Magnetic Resonance Imaging  

The EMH hydrogel when exposed to PBS (pH 7.4) displayed constantly defined increases in 

width (Figure 5.10a) caused by the high concentration of charged ionic groups due to the 

ionization of the carboxylic acid groups (Lin and Metters, 2006). The polymer chains thus 

extend more in the higher pH as the ionic groups repel each other. The consistency in 

swelling can be inferred to the consistency in the observed uniform drug release (Figure 

5.10b).  
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Figure 5.10: (a) Magnetic resonance images over a 24 hour period and the (b) drug release 
profile of the Electro-Modulated Hydrogel in PBS (pH 7.4). 
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The MRI images of the hydrogel in PBS (pH 5.4) displayed progressive increases in size 

over the 24 hour period (Figure 5.11a). It can be assumed that when exposed to PBS (pH 

5.4); the degree of ionization of hydrogel bound groups is limited, restricting swelling (Lin 

and Metters, 2006). Here it is important that the hydrogel matches the modulus of the 

surrounding environment so as to avoid further unwarranted drug release. The inconsistent 

swelling to the hydrogel formulation it can be extrapolated to the inconsistent drug release 

observed at pH 5.4 (Figure 5.11b). 
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Figure 5.11: (a) Magnetic resonance images over a 24 hour period and the (b) drug release 
profile of the Electro-Modulated Hydrogel in PBS (pH 5.4). 
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5.3.9. Assessment of the influence of electro-stimulation on swelling capability  

Hydrogels exhibit spatial gel inhomogeneity or an inhomogeneous cross-link density 

distribution (Okay et al., 1998). Inhomogeneity decreases with the ionization degree of gels 

as a result of the effects of the mobile counter ions and electrostatic repulsion (Okay et al., 

1998) facilitating the open structure allowing for electro-modulated drug release. Hydrogel 

swelling is dependent on both functional group hydrophilicity and network space (Lin and 

Metters, 2006). When containing ionic moieties, swelling depends on the pH of the 

surrounding medium (Okay et al., 1998; Lin and Metters, 2006). When the external pH is 

higher than the pKa of the ionizable groups bound to the polymer chains, anionic hydrogels 

tend to deprotonate and swell more. Cationic hydrogels tend to protonate and swell more 

when the external pH is lower than the pKb of the ionizable groups (Lin and Metters, 2006). 

The pH-dependent swelling curves exhibit one or more inflection points near the pKa/pKb of 

the ionizable groups, depending on the ionic monomers used to synthesize the gel, as 

shown in Figure 5.19 (Lin and Metters, 2006).  

 

 

Figure 5.12: Schematic of relative ionic hydrogel swelling as a function of pH (Lin and 
Metters, 2006). 
 

Hydrophilicity can be enhanced by the incorporation of ionizable functional groups, such as 

carboxyl groups. Acrylic acid is often a monomer employed in the fabrication of pH-sensitive 

hydrogels for their pH-sensitive -COOH group (Cai and Gupta, 2012).  

 

In the PAA/PVA EMH, PAA serves as the ionic polymer and PVA, the neutral polymer. As 

the voltage is applied, the fixed carboxylic anions become ionized; the electrons then repel 

the carboxylic anions in the gel, thus facilitating network swelling. This is noted by the 

difference in water content in the EMH samples as compared to the controls (Figure 5.13). 
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The extent of swelling depends on the concentration of functional ionizable groups on the 

network. 

 

The EMH shows less swelling when exposed to an applied electrical field at pH 7.4. The 

semi-IPN is a polyelectrolyte hydrogel comprising of ionizable weak acidic and weak basic 

groups, which can be ionized in basic and acidic environments respectively. Gels containing 

acidic moieties protonate in acidic conditions, leading to a decrease in the charge density 

and the content of mobile counterions which ultimately results in the shrinking of the gel. 

Polyelectrolyte gels generally deswell as water is syneresed from the gel when exposed to 

an electric field. The decrease in swelling at pH 7.4 may also be attributed to the formation of 

strong hydrogen bonds between the hydroxyl groups of PVA and water (Cai and Gupta, 

2012; Jianqi and Lixia, 2012). The magnitude of the gel response often decreases with time 

and with increasing number of on-off cycles as the gel fatigues.  

 

The observed increase in swelling at pH 5.4, denoted by the solid line, is as a result of ionic 

repulsion of carboxylic ions and the free water contents. As a result, there is dissociation of 

hydrogen bonds due to the decrease of bound water in the hydrogel. Complete ionization of 

almost all the carboxylic groups in the PAA backbone occurs at pH values lower than the 

pKa (approximately 4.28) of the PAA polymer (Jianqi and Lixia, 2012; Quintero, et al., 2010). 

As the pH decreases below that of the pKa, hydroxyl (H+) ionic strength increases, 

effectively suppressing polycarboxylic group ionization. Polymeric chain flexibility is low and 

the gel is neutral. Conversely, should the pH of the environmental solution rise above the 

pKa, the polycarboxylic groups within the network will undergo ionization thus replacing the 

H+ ions by attracting cations into the gel. The swelling pressure and swelling increases as 

the free ion concentration is thereby raised inside the gel. In order to maintain equilibrium, 

the gel expands to overcome the repulsion that exists between the ionized polycarboxylic 

groups. It has been found that the ionic strength of the swelling medium is inversely 

proportional to the equilibrium swelling of hydrogels that are capable of ionization. The 

successive pH increments ultimately lead to multiple acid–base equilibriums and thus the 

stepwise swelling of the polymer due to the –COOH/–COO- groups being progressively 

ionized and neutralized (Jianqi and Lixia, 2012). 
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Figure 5.13: Water content determination of Electro-Modulated Hydrogel at pH 5.4 and 7.4.  
 

Buffer solutions generally have low ionic strength; the absorption of few of the present 

mobile ions is required to balance the osmotic pressure and thus the swelling. Steric 

interactions among the charged polymer groups will occur inside the hydrogel due to the low 

ion concentration of the solution located inside the hydrogel, promoting increased hydrogel 

swelling. The osmotic gradient facilitates higher species diffusion into the hydrogel when 

exposed to solutions with higher ionic strength so as to balance the osmotic pressure and 

neutralize the carboxylate groups located on the PAA backbone. Subsequently, polymer 

network mobility is notably reduced due to the steric effects between the partially ionized 

carboxylic groups being shielded, due to the high content of electrolytes.  

 

In a swollen hydrogel, there is an increase in the repulsion between the negatively charged 

PAA carboxylate ions. The free volume and capability to imbibe water thus increases. There 

is still however the possibility of buffer solution hydroxide ions diffusing into the hydrogel and 

reacting with the dissociated protons from the PAA carboxyl groups to form water and cause 

swelling of the hydrogel. PAA carboxyl group dissociation is much more significant when the 

pH is higher than its pKa, 4.7 therefore the EMH showed a greater effect at pH 7.4. 

 

Interestingly, between hour 3 to 24, the EMH displays a retention of its swelling state (Figure 

5.13), possibly indicating a superabsorbent ability. In addition, the retention may result due 

to the polymer network being ‘closed’ as it was not exposed to an electro-stimulus. 
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5.3.10. Cyclic voltammetric assessment of the electro-active function  

Assessing cyclic voltammetry uses a reference electrode (RE), working electrode (WE), and 

counter electrode (CE), also called the secondary or auxiliary electrode (Figure 5.14a). In 

certain cases, potentiostats may also have a sense (S) electrode in addition to the WE. The 

applied potential is measured against the RE, while the CE closes the electrical circuit for the 

current to flow. The experiments are performed by a potentiostat that effectively controls the 

voltage between the WE and RE, while measuring the current through the CE, the WE is 

connected to the ground. Digital potentiostats cannot apply a true linear waveform due to the 

discrete nature of digital electronics thus, a scan is generated by a sequence of discrete 

steps, resulting in a staircase scan (Figure 5.14b). In the standard staircase method, the 

measurement time window is located at the very end of the interval time. The staircase scan 

is used as an approximation to a true linear scan. The staircase scan and thus the interval 

time  ��2� are defined by two parameters (Autolab Application Note EC07, 2011):  

��2�= 
345�6

7
→

                    Equation 5.2 

 

Where 
9
→ is the scan rate (V/s) and :;��<  is the step potential (V) and interval time, ��2� 

defined in seconds. 

 

Each potential step triggers the occurrence of a charging current or capacitive current, which 

decays exponentially, as: 

 

=>= 
345�6

?@
�?@ABC

�                   Equation 5.3 

 

Where DE is the uncompensated resistance and FGH is the double layer capacitance. These 

values are often combined to express a characteristic time, ԏ, given by: 

 

ԏ= DEIBC
                    Equation 5.4 

 

With typical values encountered in aqueous solutions, a characteristic time in the range of a 

few hundred µs is to be expected, implying that the charging current has all but decayed at 

the end of the interval time. Figure 5.14c shows an example of a waveform for a staircase 

potential scan. 
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Figure 5.14: (a) Set up of cyclic voltammetry apparatus (adapted from Autolab Application 
Note EC07, 2011). Typical (b) staircase scan (c) staircase waveform. 

Cyclic voltammetry was employed to assess the electroactive capabilities of the EMH. The 

resultant voltammograms (Figure 5.15a-d) depicts the presence of oxidation and reduction 

waves. Anodic (oxidation) peaks occurred in figures a-d at 0.7V, 0. 5V, 0.6V and 0.4V, 

respectively. Cathodic (reduction) peaks are observed in Figure 5.15d , at -2.8V and -1.3V. 
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Oxidation peaks in Figure 5.15a, b and d may be attributed to the oxidation of the imine 

moieties in PEI, and the peak in Figure 5.15c to the oxidation of the imidazole moieties. 

Reduction peaks may be attributed to the excess amino groups as well as the various ionic 

interactions occurring between the sample, electrode and electrolyte system interfaces. The 

bulk ionic conductivity of the EMH is lower in comparison to that of PBS resulting in a slower 

ion transfer rate. Polarization was observed when the ion transfer rate could not meet the 

reaction rate on the electrode-electrolyte interface and was revealed as a reduction of the 

distinct peaks and a small position shift against the potential axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5.15: Voltammogram showing the electro
Modulated Hydrogel (b) poly (ethyleneimine)
Electro-Modulated Hydrogel. 
 

5.3.11. Conductivity and Resistance Measurements

The samples were found to have varying conductivity and resistance measurements (Table 

5.7). Although the EMH had the lowest conductivity

the highest resistance was also observed. Cross

to the observed decrease in conductivity of the EMH.

 

 

 

(a) 

(c) 

Voltammogram showing the electro-activity from -2V to +2V of (a) Electro
oly (ethyleneimine) (c) 1-vinylimidazole and from 

 

. Conductivity and Resistance Measurements 

The samples were found to have varying conductivity and resistance measurements (Table 

). Although the EMH had the lowest conductivity in comparison to the native polymers, 

resistance was also observed. Cross-linking of the amino moieties may have led 

to the observed decrease in conductivity of the EMH. 

(b) 

(d) 
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The samples were found to have varying conductivity and resistance measurements (Table 
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Table 5.7: Conductivity and Resistance Measurements as per Electro-Modulated Hydrogel 
samples. 

Sample Conductivity (mS/cm) Resistance (Ω/cm) 

EMH  17.92 5.50 

PEI 18.33 5.13 

VI 18.02 5.29 

 

5.3.12. Kinetic analysis of drug release from the optimum formulation  

The kinetic models generated were in congruence with the electro-responsive capabilities of 

the device. The mechanistic models employed were the Highuchi, Hixson and Korsmeyer-

Peppas. The Makoid-Banakar model was employed as an empirical model. Table 5.8 

represents the degree to which each model describes the optimum formulation. All models 

displayed similar R2 values of ±0.96 and relatively low AICs with the exception of the Higuchi 

mode, having a R2 of 0.8345 and a high AIC of 20.8031. In terms of therapeutic treatment of 

diseases, zero order release is most desirable. The release kinetics of sodium indomethacin 

was best exemplified by the zero order model with a lag (Figure 5.16). A comparatively low 

AIC was obtained with a high R2 of 0.9676. The Korsemeyer-Peppas model was employed 

to provide a prediction of the drug release mechanism. The Korsemeyer- Peppas release 

exponent (n) was observed between 0.45 and 0.89, which is indicative of anomalous (non-

Fickian) diffusion (Ritger and Peppas, 1987).  

 

 

 

Figure 5.16: Results for extravascular pharmacokinetic analysis employing lag. 
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Table 5.8: Release parameters and statistical descriptors of the Electro-Modulated Hydrogel 
-Microneedle device. 
 
 Zero order  

k0 (h
-1

) AIC R
2 

  0.489 -3.5923 0.964 
 Zero order with Tlag  

k0 (h
-1

) AIC R
2 

 
0.474 

 
-2.1829 

 
0.9653 

 First order  
k1 (h

-1
) 

 
AIC  R

2 

0.005 -3.4272 0.9636 
 First order with Tlag  

k1 (h
-1

) AIC R
2 

 
0.005 

 
-1.8978 

 
0.9646 

 Higuchi  
kH (h

-1/2
) AIC R

2 
 

1.072 
 

20.8031 
 

0.8345 
 Hixson-Crowell  

HHC (h
-1/3

) AIC R
2 

 
0.002 

 
-3.4858 

 
0.9637 

 Makoid-Banakar  
kMB n 

 
k AIC R

2
 

0.555 0.563 -0.108 -1.3160 0.9676 
   Korsmeyer-Peppas  

kKP n AIC R
2 

 
0.470 

 
1.023 

 
-1.6712 

 
0.9641 

  Quadratic  
k1 (h

-1
) k2 (h

-1
) AIC R

2 
 

0.000 
 

0.005 
 

-1.8819 
 

0.9646 
k0 (h-1)-zero order rate constant ; k1 (h

-1)- first order rate constant; kH (h
-1/2)- Higuchi rate constant; HHC (h

-1/3)- 
Hixon-Crowell rate constant; kMB- Makoid-Banakar rate constant; n- empirical parameter; k- empirical parameter, 
kKP- Korsmeyer-Peppas rate constant; k2 (h

-1)- second order rate constant; AIC- Akaike’s Information Criterion;  
R2-correlation coefficient 

Even though similar high R2 values that were obtained, the models employed may not 

provide a definite correlation to the in vitro release kinetics as the models operate by 

determining the constants at each individual time point and subsequently determines the 

working regression of those points not necessarily catering for the pulsatile-like response of 

the electro-responsive system. Thus a new model may need to be introduced for future 

kinetic analysis of stimuli-responsive systems. 
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5.3.13. Electromimetic Modeling  

Firstly, considering the PEI-PAA2-VI4 molecular build-up in vacuum, the formation of PEI-

PAA2 complex accompanied with a stabilizing interaction of ≈-30kcal/mol (Table 5.9) wherein 

the van der Waals (vdW) forces played the major role in geometry stabilization with 

stabilization energy of ≈-30kcal/mol – meaning that the whole stabilization was brought up by 

hydrophobic forces in vacuum phase. Interestingly and more convincingly, the formation of 

PEI-PAA2-VI4 was companied with further stabilization of van der Waals component energy 

reaching to even negative values (≈-42kcal/mol) leading to a contribution of ≈88kcal/mol 

towards geometry optimization. In both the cases, the hydrophobic steric interactions (vdW) 

countered the torsional and stretching caused by the addition for vinyl imidazole leading to 

the formation of a well-fit geometrically-optimized energy-minimized BiPERG structure that 

acted as the template for further solvated studies under electric field. 

 

Table 5.9: Inherent energy attributes representing the molecular assemblies modeled using 
static lattice atomistic simulations in vacuum and solvated phase. 

Molecular complex E(V∑)
a 

E(Vb)
b 

E(Vθ)
c 

E(Vφ)
d 

E(Vij)
e 

E(Vhb)
f 

E(Vel)
g 

PAA 76.02 8.87 43.21 10.63 13.42 -0.12 0.00 

PEI 28.36 1.42 5.38 9.32 12.23 0.00 0.00 

VI 15.68 0.05 15.05 ~0.0 0.57 0.0 0.00 

PEI-PAA2 150.96 19.20 92.71 31.13 8.34 -0.41 0.00 

PEI-PAA2-VI4 155.81 16.58 147.04 34.16 -41.96 0.00 0.00 

PEI-PAA2-VI4-H2O (0.0) -2645.51 37.33 170.218 40.02 -67.58 -0.75 -2824.74 

PEI-PAA2-VI4-H2O (0.1x) 2250.91 336.831 975.802 47.44 9.30 -1.21 -2745.75 

PEI-PAA2-VI4-H2O (0.3x) 5051.92 1198.81 2788.45 41.58 94.02 -0.29 -3079.67 

PEI-PAA2-VI4-H2O (0.5x) 5766.877 5321.24 8349.21 44.18 151.34 -1.51 -4024.21 

PEI-PAA2-VI4-H2O (0.1y) 668.41 345.73 1010.36 41.68 3.09 -0.48 -2837.74 

PEI-PAA2-VI4-H2O (0.3y) 1853.85 1241.53 2900.71 44.19 49.79 -0.34 -3279.12 

PEI-PAA2-VI4-H2O (0.5y) 2956.49 5391.06 8426.01 49.36 159.74 -0.49 -4263.61 

PEI-PAA2-VI4-H2O (0.1z) 4141.08 348.47 1029.64 40.59 10.06 -0.59 -2922.53 

PEI-PAA2-VI4-H2O (0.3z) 8980.11 1232.85 2854.01 38.91 29.98 -0.41 -3231.63 

PEI-PAA2-VI4-H2O (0.5z) 45841.19 5409.57 8457.95 53.28 91.98 -0.44 -4233.49 
a
 total steric energy for an optimized structure 

b
 bond stretching contributions 

c bond angle contributions 
d torsional contribution arising from deviations from optimum dihedral angles 
e van der Waals interactions 
f hydrogen-bond energy function 
g electrostatic energy 

 

Furthering the study, presented are novel electrosimulations addressing a unique drug 

delivery phenomenon where the plasticized polymeric chains undergo intrinsic interactions 

as well as the electro-influenced adjustments as discussed below. Employing molecular 

mechanics simulations and subsequent energy/geometry minimizations, complex 

interactions and fascinating results were discovered between the polymeric molecules (PAA 
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and PEI) and between polymeric molecules and the plasticizer (PAA-PEI and VI) in 

presence of water molecules under the influence of electric field. To explain this complex 

behavior, a new theory, Pillay’s Electro-influenced Geometrical Organization-ReOrganization 

Theory (PEiGOR Theory), is presented based on following assumptions and observations 

(Figure 5.17): 

 

1. The Organization – Polymeric chains organize with respect to the direction and strength 

of electric field: Electric field application → polymer chains organization → increase in 

static energy due to electron transfer reaction → molecular alignment → planar structural 

conformation → reduced networking → electroresponsive drug release. 

2. The ReOrganization – Polymeric chains in assumptions 1 reorganize with respect to 

surrounding polymer molecules/plasticizer/solvent molecules via “local oriental 

correlations (LOCs)”: Intrinsic interactions → local oriental correlations → change in 

reaction co-ordinates → solvent relaxation → polymer chains reorganization → decrease 

in static energy values → increased networking → drug retention. 

 

 

 

 

 

Figure 5.17: Graphical representation of the PEiGOR Theory. Entrapped drug
Released drug PEI PAA Electro-stimulation  
 

The energy surfaces in Figures 5.18, 5.19, and 5.20 confirm the organization-reorganization 

theory to a great extent where the energy mapping generated for the directional optimization 

display the “fluctuation patterns” representative of the organization-reorganization pattern 

wherein organization caused a crest in the surface and reorganization resulted in trough 

formation. Additionally, it is clear from the energy maps shown in Figures 5.18, 5.19, and 

5.20 and Table 5.9 that there is a positive relation between the stabilization energy and the 

Pre-Electrostimulation 

Electrostimulation 

Post-Electrostimulation 



145 
 

applied electric strength wherein an increase in energy from 2250kcal/mol to 5766kcal/mol (x 

direction); 668kcal/mol to 2956kcal/mol (y direction); and 4141kcal/mol to 45841kcal/mol (z 

direction) was observed in case of energy field application at the strengths of 0.1a.u. to 

0.5a.u., respectively. As the electric potential increased; the stabilization energy also 

increased which may be due to increased alignment of the electric dipoles with a complete 

alignment resulting from the forces required to overcome the additional interfaces in the 

domain structure. With respect to the response of the bipolymeric interfacially plasticized 

EMH (a non-symmetrical structure) towards the direction of electric field application, the 

orientation of the approaching point charge with respect to the molecular complex played an 

important part. The shorter the distance between the point charge from the centre of the 

molecular complex, the stronger the interactions.  
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Figure 5.18: Visualization of geometrical preferences of (a) PEI-PAA2-VI4-H2O (0.1x); (b) 
PEI-PAA2-VI4-H2O (0.3x); and (c) PEI-PAA2-VI4-H2O (0.5x) after molecular simulation in a 
solvated system under external electric field and the corresponding energy plot showing the 
geometrical optimization mapping over the iteration cycles.  

(a) 

(b) 

(c) 
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Figure 5.19: Visualization of geometrical preferences of (a) PEI-PAA2-VI4-H2O (0.1y); (b) 
PEI-PAA2-VI4-H2O (0.3y); and (c) PEI-PAA2-VI4-H2O (0.5y) after molecular simulation in a 
solvated system under external electric field and the corresponding energy plot showing the 
geometrical optimization mapping over the iteration cycles.  

(a) 
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Figure 5.20: Visualization of geometrical preferences of (a) PEI-PAA2-VI4-H2O (0.1z); (b) 
PEI-PAA2-VI4-H2O (0.3z); and (c) PEI-PAA2-VI4-H2O (0.5z) after molecular simulation in a 
solvated system under external electric field and the corresponding energy plot showing the 
geometrical optimization mapping over the iteration cycles. 

(a) 

(b) 

(c) 
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The component energy terms additionally played a deciding role in the molecular simulation 

and modeling. The component energy values listed in Table 5.9 represent the average 

energy values of the fluctuation pattern and have no additive relation to the final optimized 

value. Considerable H-bonding interactions were observed during the vacuum phase 

stabilization of the PAA-PEI complex. As expected, the hydrogen bonding was not constant 

during the electrosimulation as it forms the part of environmental interaction through which 

the charge transfer occurs. However, it should be noted that the negative H-bonding values 

were retained throughout the electric direction and field options with values ranging from -

1.51 to -0.29kcal/mol. The electrostatic interaction played a major role in energy stabilization 

of the final molecular complex with values on higher side of stabilized negative energy scale. 

Among the destabilization energy terms, all except torsional contribution fluctuated 

throughout the direction and strength range. From Table 5.9 it is evident that the spatial 

Organization might have resulted from the drastic changes in bond stretching and bond 

angle contributions with small but significant changes in torsional contributions arising from 

optimum dihedral angles and hydrophobic van der Waals forces with the ReOrganization 

resulting from hydrogen bonding and electrostatic forces as explained above. 

 

The arrangement of plasticizer VI within polymer sheets resulted in the formation of an 

electroconductive imidazole ring network across the polymeric architecture of the 

bipolymeric interfacially plasticized EMHs. These plasticized microsites were balanced by 

torsional constraints within the intervening layer which attracted H2O molecules to hydrate 

the region, leading to swelling of the hydrogel structure. Although electroconductive 

hydrogels have been studied and reported for several years, however not much work had 

been reported with regard to the mechanisms involved in experimental hydration and 

molecular diffusion of a plasticizer within polymer chains. The present molecular simulation 

study thus might be adjunctive to experimental work concerning the molecular interplay. 

 

The molecular mechanics simulations under solvated phase displayed some basic 

similarities of molecular behavior in all nine cases. VI molecules appear not to rove around, 

but instead to tend to drift close to the hydrogen-bonding sites sunken inside the polymer 

structure. However, the molecules while moving, display a critical “jump diffusional behavior” 

- the polymer chains vibrate within a microenvironment for a short period, and then move to 

new micromolecular sites. These jump-motions are likely to be concentrated along varied 

locations in the vicinity of electrostatic charged spots attracting the water molecules. 

However, in contrast, the solvent molecules may exhibit incessant diffusion on the timescale 

of these simulations. While with no electric field in place; the molecular complex does not 

show the fluctuation flexibility wherein the molecular components demonstrate a differential 
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spatial variation leading to geometrically optimized and energetically minimized structures 

via two principle component interactions, one among the polymer/plasticizer molecules and 

the other among the complex and solvent molecules leading to a well organized and highly 

stable molecular architecture (Figure 5.21).  

 

  

 No. of Cycles

0 200 400 600 800 1000 1200

E
ne

rg
y 

(k
ca

l/m
ol

)

-3000

-2000

-1000

0

1000

2000

 

 

Figure 5.21: Visualization of geometrical preferences of (a) PEI-PAA2 after molecular 
simulation in vacuum; (b) PEI-PAA2-VI4 after molecular simulation in vacuum; (c) PEI-PAA2-
VI4-H2O after molecular simulation in a solvated system under no external electric field; and 
(d) the corresponding energy plot showing the geometrical optimization mapping over the 
iteration cycles.  
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5.4. Concluding Remarks  

 

A fast response of hydrogels to the external stimuli is also a requirement in many application 

areas of electro-responsive hydrogels. The PVA/PAA semi-IPN containing the PEI/VI blend 

has proven the electro-responsive capabilities. In addition, pH responsive behavior was 

observed as associated to the swelling capability of the EMH. Also observed, the EMH semi-

IPN serves as a high ionic conductivity polyelectrolyte EMH. This chapter concluded that due 

to the ionic nature the EMH, the semi-IPNs displayed greater swelling ratios at pH 5.4 in 

comparison to pH 7.4. PVA is a neutral polymer. The results indicate that swelling increased 

as the pH decreased due to the counter-acting swelling abilities of the PAA and PVA. At 

room temperature, the EMH shows ionic conductivity as high as 17.92S/cm. significant 

differences depending on the ionic strength of the solution used was observed in the 

morphologies and pore sizes were observed in both the swollen and unswollen EMH. As 

depicted by the XRD results, due to the amorphous structure of the EMH, the polymer chain 

becomes more flexible for ionic transport, suggesting that the formulated EMHs are 

promising in the field of pH/ electro-responsive drug delivery. In addition, the EMHs may be 

used for a variety of applications as they are capable of showing suitable responses to 

electro-stimulation even when incorporated with different therapeutic agents and display 

considerable swelling factors in the pH range investigated here. 
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CHAPTER 6 

DEVELOPMENT AND EVALUATION OF THE MICRONEEDLE ARRAY TO BE 

EMPLOYED IN THE ELECTRO-MODULATED HYDROGEL-MICRONEEDLE DEVICE 

 

6.1. Introduction 

 

The ceramic MNAs used as part of this device have been fabricated by a simple process in 

which alumina slurry is casted into a PDMS microneedle mold and is subsequently sintered. 

The simpler technique of ceramic micromoulding offers the advantage to ensure device 

production at low cost due to the potential of up-scaling the technology.  

 

The idea of a nanoporous MNA is that it holds a defined volume of active for controlled 

release in its open pore volume including the backing plate, functioning similarly to the 

reservoir in a patch but enhancing the compound’s permeability into the skin by 

mechanically breaching it. The nanoporous structure in the material seamlessly connects the 

viable epidermis via the microneedles with the main part of the drug-reservoir, the backing 

plate of the microneedles, atop of the skin (Figure 6.1). At the same time the slurry material 

maintains overall mechanical integrity of the microneedles during insertion into the skin and 

avoids the relatively complexity of manufacturing a cannulae through the microneedles, 

opting for flow-through of a compound injected from a reservoir into the skin.  

 

 

  

 

Figure 6.1: Overview of the sintered ceramic array also showing the (a) front and the (b) 
detailed view of the microneedle tips. 
 

 

 

 

(a) (b) 
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In addition to fabrication of the EMHM device, integration, dosing and many others issues 

are apparent from a pharmaceutical research point of view. To ensure the success of the 

device, this chapter thus illustrates the physicochemical testing of the MNAs for 

incorporation into the EMHM device for subsequent ex vivo and in vivo testing.  

 

6.2. Materials and Methods 

 

6.2.1. Materials 

The Sylgard® 184 Base silicone elastomer and the Sylgard® 184 Curing agent silicone 

elastomer were procured from Dow Corning (Seneffe, Belgium). All other reagents were of 

analytical grade and were procured from Merck (Schiphol-Rijk, Netherlands).  

 

6.2.2. Etching of the SU-8 master photoresist required for fabrication of the 

microneedle array 

A PDMS solution consisting of the base and curing agent was prepared (10:1) and was 

subsequently degassed in a vacuum chamber (RV3, Edwards, Munich, Germany).  

 

A low-pressure chemical vapor deposition (LPCVD) -silicon nitride covered 4-inch wafer of Si 

(silicon; 100) was patterned using photolithography techniques and CHF3+O2 plasma (Figure 

6.2). The Si wafer was further anisotropically etched using potassium hydroxide solution 

(KOH; 25%) through openings in the silicon nitride mask. Removal of the silicon nitride was 

facilitated by hydrogen fluoride (50%). As a result, an antireflective highly conformal titanium-

silicide layer was formed. The titanium-silicide layer functions to prevent exposure of the SU-

8 resist by the scattering of UV-light from the oblique faces of the Si-etched pyramids. 

Without the titanium-silicide layer, undesirable polymerization and thus defects in the 

microneedles tips would have resulted. This process resulted in the formation of the 1st 

PDMS mold. The length of the microneedles and the tips geometry were defined by 

patterning of the SU-8 thick layer (Bystrova and Lϋttge, 2011). 
 



 

Figure 6.2: Process sketch for producing a Si
wafer (b) Patterned silicon nitride (c) Anisotropically etched Si (d) Silicon nitride removed (e) 
Titanium silicide layer formed (f) SU
with permission from Elsevier Ltd:  
 

The SU-8 mask was cleaned with acetone and dried. Following the deposition of an anti

adhesion fluorocarbon layer onto the SU

released by placing the mask into an assembled casting tool (Figure 6.3). The PDMS 

solution was poured into the tool and subsequently degassed. The tool was cured at 80

for 24 hours after being degassed

Germany). The second replication was achieved by repeating the fluorocarbon deposition 

and releasing the 2nd PDMS mold (production mold). This 2

the ceramic slurry.  

Process sketch for producing a Si-master (a) Silicon nitride deposition on Si 
icon nitride (c) Anisotropically etched Si (d) Silicon nitride removed (e) 

Titanium silicide layer formed (f) SU-8 photoresist spinned on and patterned 
with permission from Elsevier Ltd:  Bystrova and Lϋttge, 2011). 

cleaned with acetone and dried. Following the deposition of an anti

adhesion fluorocarbon layer onto the SU-8/Si master the 1st PDMS mold was replicated and 

released by placing the mask into an assembled casting tool (Figure 6.3). The PDMS 

red into the tool and subsequently degassed. The tool was cured at 80

after being degassed using a vacuum pump (RV3, Edwards

The second replication was achieved by repeating the fluorocarbon deposition 

PDMS mold (production mold). This 2nd mold was used for casting of 
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master (a) Silicon nitride deposition on Si 
icon nitride (c) Anisotropically etched Si (d) Silicon nitride removed (e) 

8 photoresist spinned on and patterned (Figure adapted 

cleaned with acetone and dried. Following the deposition of an anti-

PDMS mold was replicated and 

released by placing the mask into an assembled casting tool (Figure 6.3). The PDMS 

red into the tool and subsequently degassed. The tool was cured at 80˚C 

using a vacuum pump (RV3, Edwards, Munich, 

The second replication was achieved by repeating the fluorocarbon deposition 

mold was used for casting of 



 

 

Figure 6.3: Process sketch for producing polydimethyl siloxane molds and ceramic 
microneedle arrays: (a) Fluorocarbon layer deposition, replication of the 1
siloxane mold; (b) Mold release; (c) Deposition of the fluorocarbon layer and replication of 
the 2nd polydimethyl siloxane mold; (d) The 2
with permission from Elsevier Ltd:  
 

The PDMS mold was placed into an ethanol solution and cleaned prior to casting using 

ultrasonication for a period of 1hr at amplitude of 80%. 

60°C for 1 hour. The mold was allowed to cool in a petri dish on a 

allows for good signal transmission into the slurry during ultrasonication.

 

6.2.3. Preparation of the ceramic slurry required for microneedle array fabrication 

For ceramic casting, a slurry made of 43%

46% w/v ethanol containing 6.4%

binder and 2.8%w/v butyl benzyl phthalate (S

1.0% w/v kaolin as sintering ag

Ltd.), was used as a dispersant (

 

PDMS molds were filled with the slurry

an ultrasonic bath. Following

ceramic green body was released from the PDMS mold and MNAs with a diameter of 4.5mm 

were cut out. The MNA green bodies were then sintered in a controlled manner utilizing a 

Process sketch for producing polydimethyl siloxane molds and ceramic 
luorocarbon layer deposition, replication of the 1

siloxane mold; (b) Mold release; (c) Deposition of the fluorocarbon layer and replication of 
polydimethyl siloxane mold; (d) The 2nd polydimethyl siloxane mold 

with permission from Elsevier Ltd:  Bystrova and Lϋttge, 2011). 

The PDMS mold was placed into an ethanol solution and cleaned prior to casting using 

for a period of 1hr at amplitude of 80%. After removal, the mold was dried at 

r. The mold was allowed to cool in a petri dish on a droplet of ethanol, which 

allows for good signal transmission into the slurry during ultrasonication. 

6.2.3. Preparation of the ceramic slurry required for microneedle array fabrication 

For ceramic casting, a slurry made of 43%w/v alumina (AKP 30, Sumitomo) suspended in 

ethanol containing 6.4% w/v poly(vinyl butyral) (B-98, Tape Casting Warehouse) as a 

butyl benzyl phthalate (S-160, Tape Casting Warehouse) as a plasticizer, 

kaolin as sintering agent and 0.8%w/v Solsperse 20000 (Noveon Division Lubrizol 

Ltd.), was used as a dispersant (Verhoeven et al., 2012). 

PDMS molds were filled with the slurry and the air bubbles removed by placing

Following removal, the slurry was allowed to air dry. After drying, the 

ceramic green body was released from the PDMS mold and MNAs with a diameter of 4.5mm 

were cut out. The MNA green bodies were then sintered in a controlled manner utilizing a 
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Process sketch for producing polydimethyl siloxane molds and ceramic 
luorocarbon layer deposition, replication of the 1st polydimethyl 

siloxane mold; (b) Mold release; (c) Deposition of the fluorocarbon layer and replication of 
polydimethyl siloxane mold (Figure adapted 

The PDMS mold was placed into an ethanol solution and cleaned prior to casting using 

After removal, the mold was dried at 

droplet of ethanol, which 

6.2.3. Preparation of the ceramic slurry required for microneedle array fabrication  

alumina (AKP 30, Sumitomo) suspended in 

98, Tape Casting Warehouse) as a 

160, Tape Casting Warehouse) as a plasticizer, 

Solsperse 20000 (Noveon Division Lubrizol 

placing the mold in 

was allowed to air dry. After drying, the 

ceramic green body was released from the PDMS mold and MNAs with a diameter of 4.5mm 

were cut out. The MNA green bodies were then sintered in a controlled manner utilizing a 



 

tube furnace at a maximum sinter temper

samples for the porosity measurements were prepared in the same way but molded on a flat 

piece of PDMS for reasons of convenience in the manufacture of test samples. 

 

6.2.4. Casting of the ceramic slurry fo

The ceramic slurry (15mL) was pipetted into the PDMS mold that was set in a petri dish. To 

further define the casting slurry volume, a PDMS ring with a height of ±7mm was set around 

the petri dish (Figure 6.4). The pe

evaporation as any air that is trapped in the slurry during the casting can cause 

microstructural defects. The casted slurry was then ultrasonicated for 30

the slurry while simultaneously allowing for thorough filling of the mold. 

 

 

Figure 6.4: Process sketch for producing 
microneedle arrays. (a) Casting of ceramic slurry; (b) Sintered microneedle array.
 

6.2.5. Porositometric analysis of 

microneedle arrays 

Porosity analysis employing the BET isotherm of nitrogen was conducted as a 

supplementary investigation to determine the presence of pores and pore size within the dry 

ceramic MNA as well as the ceramic MNA after being immersed in the drug solution for 

hours. Porositometric analysis was carried out using an ASAP 2020 Porositometer 

(Micromeritics Instrument Company (Pty) Ltd., Norcross, GA, USA) as detailed in 

Section 5.2.9. The conditions employed 

The BJH and BET adsorption and desorption relationships were subsequently generated.

 

 

tube furnace at a maximum sinter temperature of 1500°C (Verhoeven et al

samples for the porosity measurements were prepared in the same way but molded on a flat 

piece of PDMS for reasons of convenience in the manufacture of test samples. 

6.2.4. Casting of the ceramic slurry for production of the microneedle array 

The ceramic slurry (15mL) was pipetted into the PDMS mold that was set in a petri dish. To 

further define the casting slurry volume, a PDMS ring with a height of ±7mm was set around 

the petri dish (Figure 6.4). The petri dish was sealed using parafilm to prevent ethanol 

evaporation as any air that is trapped in the slurry during the casting can cause 

microstructural defects. The casted slurry was then ultrasonicated for 30

sly allowing for thorough filling of the mold.  

Process sketch for producing the polydimethyl siloxane molds and ceramic 
(a) Casting of ceramic slurry; (b) Sintered microneedle array.

. Porositometric analysis of the ceramic slurry used in the fabrication of the 

Porosity analysis employing the BET isotherm of nitrogen was conducted as a 

supplementary investigation to determine the presence of pores and pore size within the dry 

as the ceramic MNA after being immersed in the drug solution for 

. Porositometric analysis was carried out using an ASAP 2020 Porositometer 

(Micromeritics Instrument Company (Pty) Ltd., Norcross, GA, USA) as detailed in 

. The conditions employed were outlined in Chapter 5, Section 5.2.9, 

The BJH and BET adsorption and desorption relationships were subsequently generated.
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tri dish was sealed using parafilm to prevent ethanol 
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molds and ceramic 
(a) Casting of ceramic slurry; (b) Sintered microneedle array. 

the ceramic slurry used in the fabrication of the 

Porosity analysis employing the BET isotherm of nitrogen was conducted as a 

supplementary investigation to determine the presence of pores and pore size within the dry 

as the ceramic MNA after being immersed in the drug solution for 24 

. Porositometric analysis was carried out using an ASAP 2020 Porositometer 

(Micromeritics Instrument Company (Pty) Ltd., Norcross, GA, USA) as detailed in Chapter 5, 

Chapter 5, Section 5.2.9, Table 5.3. 

The BJH and BET adsorption and desorption relationships were subsequently generated.  
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6.2.6. Method modulation of drug permeability of the ceramic microneedle array 

utilizing an apple skin model 

A simulated study in order to determine the penetration and diffusion of a colored ink 

compound facilitated by MNA penetration through apple tissue was developed. The 

penetration through the apple skin under dry stagnant, moist and flow conditions were 

determined as outlined: the apple skin was cut into 1mm thick slices, and the array 

comprising of 16 microneedles was imprinted onto the apple skin. A drop of ink (1µL) was 

placed onto the microneedle imprint and the skin pieces were subsequently mounted onto 

inclined glass slides (Figure 6.5). Distilled water was used to simulate the moist and flowing 

conditions. The skins were exposed to their respective environments for 10 minutes before 

being viewed under a Leica DMI5000 M microscope (Wetzlar, Germany).  

 

        

 
Figure 6.5: The experimental set-up of the modulated drug permeability method.  
 

The above experiment was repeated using Hydro-Terephthalic Acid (HTA) as the fluorescent 

dye. A comparison study of the diffusion of the dye compound through the MNA and a 

hypodermic needle through the apple tissue at various time intervals was carried out. The 

dye (1µL) was injected into the apple tissue using the syringe. The MNA was pressed into 

the tissue and a drop of the dye (1µL) was placed onto the back plate of the array. The apple 

tissue samples were exposed to their respective environments for 20 minutes, 6 hours, 24 

hours and 72 hours before being analyzed using a preconfigured USB4000-FL fluorescence 

spectrometer (Ocean Optics, Germany). The calibration curve of intensity versus 

concentration was constructed for a 2mmol/L HTA solution at the 420nm absorption peak 

(Chai et al., 2009).  
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6.2.7. Synthesis of a microneedle array composed of the optimized Electro-Modulated 

Hydrogel 

The optimized EMH formulation was prepared and pipetted (150µL) into various PDMS 

moulds in order to synthesize a single MNA composed of the optimized EMH (Figure 6.6). 

The hydrogel-laden molds were left for 48 hours at 25°C to allow for hydrogel 

polymerization. Topographical visualization of the MNAs was achieved with a 

stereomicroscope (Leica MZ10 F) connected to a digital camera (DFC365Fx) and image 

analysis system (Leica Application Suite; Switzerland).  

 

 

 
 
 
 
 
 
 
 
 
Figure 6.6: Schematic of the fabrication process for the Electro-Modulated Hydrogel 
microneedle array.  
 
6.2.8. Formulation of microneedle array molds using an imprinting technique 

In addition to the utilization of the PDMS mold, various other materials were investigated as 

possible molds. As an alternative, a prototype PDMS MNA obtained from MESA+ was used 

to initiate the formation of a direct mold by compressing the MNA into a polystyrene base. 

Briefly, the master MNA was placed onto the material being investigated and slight pressure 

applied to produce the microneedle shaft channels. This process was carried out with the 

aim of manufacturing microneedle molds with quicker production time. The polystyrene base 

was subsequently filled with the EMH that was allowed to polymerize over 24 hours. The 

polystyrene base was broken around the hydrogel disc and the EMH viewed under a 

stereomicroscope (Olympus® Model SZX7) connected to a digital camera and image 

analysis system (analySIS® Soft Imaging System, Japan). 

 

6.3. Results and Discussion  

 

6.3.1. Porositometric analysis of the ceramic material employed 

The BET surface area plot and the isotherm log plot for the MNA prior to and after immersion 

in drug solution are depicted in Figure 6.7. The BET surface area of the MNA was calculated 

at 0 and 24 hours to be 10.4127m²/g and 9.0227m²/g, respectively (Table 6.1). The average 

pore width of the MNA prior to immersion was calculated to be 79.5676Å (7.95676 nm) with 

Preparation of the EMH EMH Pipetting of the EMH into the PDMS 
mould 

PEI VI 
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the average adsorption and desorption pore diameters being 125.839Å (12.5839nm) and 

129.612Å (12.9612nm), respectively. The average pore width of the MNA after immersion 

was calculated to be 87.139Å (8.7139nm) with the average adsorption and desorption pore 

diameters being 127.545Å (12.7545 nm) and 125.538Å (12.5538nm), respectively.  

 

Porous materials allow for a relatively large amount of drugs to be the introduced into the 

dosage form. The increase in pore width may be as result of drug deposition into and 

removal from the ceramic. The reduced surface area is as a result of deposited drug into the 

pores. This is beneficial as the release of the therapeutic agent can be controlled over longer 

periods of time resulting in an extended duration of action, desirable patient compliance, a 

decreased burden of care and ultimately a positive therapeutic outcome.  

 

(a) 

 

 

 

  

(ii) 

(i) 



160 
 

(b) 

 

 
Figure 6.7: Brunauer-Emmett-Teller surface analysis plot (a) and isotherm log plot (b) of the 
(i) MNA0 hours (ii) MNA24 hours. 
 

 

 

  

(i) 

(ii) 
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Table 6.1: Surface area and porosity characteristics of the microneedle samples.  
 

Parameter  MNA0 hours MNA24 hours 

Surface area BET Surface Area 

 

10.4127 m²/g 9.0227 m²/g 

 

 

 

 

 

Pore Volume 

BJH Adsorption 

average pore width 

(4V/A by BET) 

 

79.5676 Å 87.139 Å 

BJH Adsorption 

average pore diameter 

(4V/A) 

 

125.839 Å 127.545 Å 

BJH Desorption 

average pore diameter 

(4V/A) 

129.612 Å 125.538 Å 

 

6.3.2. Analysis of the modulated diffusion studies 

Distinct changes were observed depending on the exposed environment. As can be 

expected, when exposed to dry conditions there was no to little ink diffusion. When exposed 

to moist and flow conditions more ink was present in the apple tissue (Figure 6.8).  

 

  

 

Figure 6.8: Ventral images of the apple skin under (a) dry stagnant conditions (b) moist 
stagnant conditions (c) conditions employing flow. 

(b) (a) 

(c) 
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6.3.3. Construction of a calibration curve for the quantification of Hydro-Terephthalic 

Acid using fluorescence spectroscopy  

Figure 6.9 depicts the calibration curves obtained for HTA at λ420. HTA concentrations 

ranged from 0-2mmol/L, and a correlation co-efficient of R2=0.99 was computed for the 

curve. 
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Figure 6.9: Calibration curve of Hydro-Terephthalic Acid at λ420. 
 

From Figure 6.10a HTA was present in the greatest quantity using the MNA at 72 hours 

(1.61mmol/L), indicating appreciable diffusion through the nano-porous ceramic material. An 

absence of the HTA peak in Figure 6.10b possibly indicates the presence of fluorescing 

constituents of the apple tissue, accounting for the noise seen. 
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Figure 6.10: Fluorescence spectrum of the tissue permeation experiment using the (a) 
microneedle array (b) hypodermic needle. 
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6.3.4. Fabrication of a microneedle array composed of the optimized Electro-

Modulated Hydrogel 

Polystyrene was used as a material for microneedle mold manufacture. Although formation 

of micro-projections was facilitated, the projections were not of suitable size (Figure 6.11). 

The needles were unstable in terms of maintaining structural integrity and lacked proper 

formation. In addition, the microneedles melted when handled (37°C). A preliminary 

investigation had resulted in the polymerization of the hydrogel on the surface. 

 

 

 

Figure 6.11: (a) Side view of the polydimethyl siloxane microneedle array prototype used in 
the mold manufacture (b) Dorsal surface of microneedle array projection produced from 
polystyrene base (c) Side view of microneedle array produced from polystyrene base. 
 

The EMH, did however, polymerize when PDMS was sued as the material for the 

microneedle mold. Figure 6.12 depicts the chemical structure of PDMS. Due to its favorable 

physicochemical properties, PDMS is extensively used in the field of analytical chemistry 

(Seethapathy and Górecki, 2012). The translucent polymer is highly hydrophobic, non-toxic 

and does not bio-accumulate (Merkel et al., 2000). PDMS consists of a flexible (Si–O) 

backbone and a repeating (Si(CH3)2O) unit, the number of which generally defines the 

molecular weight, and consequently its  viscoelastic properties (Izuka et al., 1992). In 

addition, the inert polymer matrix tends to swell least when exposed to water (Lee et al., 

2003). 

 

 

 

Figure 6.12: Chemical structure of polydimethyl siloxane (Seethapathy and Górecki, 2012).  
 

(a) (b) (c) 
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Figure 6.13 depicts images of the top and side view of a MNA composed of pure EMH and is 

shown to have formed better in comparison to the other geometries.  

 

                                   

 

Figure 6.13: Microscope images of the (a) front and (b) side view of the microneedle 
composed of the Electro-Modulated Hydrogel. 
 

6.4. Concluding Remarks 

 

Evaluation of the ceramic MNAs revealed that the material was robust and porous in nature. 

Permeation studies using HTA proved the ability of the MNA to facilitate diffusion through the 

needles with the MNA, indicating appreciable diffusion through the nano-porous ceramic 

material. Whilst favorable results were achieved, testing specific to drug release kinetics can 

be undertaken for tailoring to specific therapeutic requirements. With the success of the 

formulated MNA, the MNA and the optimized EMH were incorporated into a single device 

that would allow for transdermal delivery. Ex vivo evaluation is undertaken in Chapter 7, 

where permeation and microbiological studies performed. 
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CHAPTER 7 

EX VIVO EVALUATION OF THE TRANSDERMAL ELECTRO-MODULATED HYDROGEL- 

MICRONEEDLE DEVICE 

 

7.1. Introduction 

 

In addition to protecting the body from the external environment, the SC prevents microbial 

access to the skin and thus pathogenic disease. Moreover, it is a very effective barrier to the 

permeation of drug substances. Depending on their physicochemical properties, certain drug 

substances achieve a therapeutic effect solely through passive diffusion while other 

substances require additional permeation enhancement methods such as the use of 

microneedles. Although studies have been conducted on the ability of microneedles to 

effectively breach the SC, few reports exist on the physical penetration enhancer causing 

any skin or systemic infection (Prausnitz, 2004; Donnelly et al., 2009) nor is there any 

available literature of such a device being developed. Thus, preliminary ex vivo tests were 

performed demonstrating the feasibility of the EMHM device for transdermal drug delivery in 

vivo. The studies allowed for the potential safety/toxicity profile to be determined and more 

importantly, an evaluation of the efficacy of the device prior to undertaking in vivo studies. In 

order to assess the microbial penetration through the skin after the application of a 

microneedle, three micro-organisms where selected correlating to the commensal 

inhabitants of human skin viz. Staphylococcus epidermidis, Pseudomonas aeruginosa and 

Candida albicans.  

 

7.2. Microbial flora of the skin 

The aerobic, Gram-positive cocci cluster of S. epidermidis is thought to comprise more than 

90% of the aerobic resident flora (Cogen et al., 2008). Often resistant to antibiotics, S. 

epidermidis has the ability to form biofilms on plastic devices which contributes towards the 

major virulence factor of the micro-organism. S. epidermidis is also one of the primary 

causes of implanted medical-device related infections (McCann et al., 2008). P. aeruginosa 

is a Gram-negative, rod shaped bacteria and is an opportunistic pathogen causing disease 

mainly in patients with poor immunity (Sharma et al., 2014). Commonly the cause of 

nosocomial infections, the pathogen is distinguished from other Gram-negative bacteria by 

its ability to produce fluorescent molecules such as pyoverdin or fluorescein, pyorubin and 

pyocyanin (Cogen et al., 2008). The commensal, C. albicans is found on the mucosal 

surfaces of the gastrointestinal and genitourinary tracts, becoming pathogenic only when the 

body is immunocompromised and can infect a broad range of body sites (Hube, 2004; 
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Kumamoto, 2011). It is possible for P. aeruginosa and C. albicans to co-exist in the host with 

the attenuation of P. aeruginosa resulting in the growth of C. albicans.  

 

7.3. Selection of appropriate animal model for ex vivo studies 

The most relevant membrane to be employed in ex vivo studies is human skin. However, 

due to ethical reasons, a number of animal models such as porcine, rat, mouse, primates, 

and guinea pig models, have been suggested as suitable replacements for the evaluation of 

percutaneous permeation studies (Godin and Touitou, 2007). The most relevant animal 

model for human skin is the pig as both its biochemical and histological properties have 

been shown to repeatedly be similar to that of human skin (Gray and Yardley, 1975; Dick 

and Scott, 1992; Jacobi et al., 2007). In addition, the follicular structure resembles that of 

humans, with hairs and infundibula extending deeply into the dermis (Godin and Touitou, 

2007) with averages of 20 hairs/cm2 present on porcine skin as compared to 14-32 hairs, 

except the forehead area, in humans (Jacobi et al., 2007). Pig skin and human skin share 

similar microbiological colonization (Baird-Parker, 1962). Furthermore, the dermal collagen 

fiber arrangement and vascular anatomy, as well as the contents of SC ceramides and 

glycosphingolipids are similar in the domestic pig and the human (Simon and Maibach, 

2000). Moreover skin resistance in the pig model is also similar (1.18kΩ/cm2) to that of 

humans (3.94kΩ/cm2) as compared to the rat (0.98 kΩ/cm2), rabbit (0.35 kΩ/cm2) and guinea 

pig (1.97 kΩ/cm2) (Davies et al., 2004). 

 

7.2. Materials and Methods 

 

7.2.1. Materials 

Poly(ethyleneimine) solution (Mw =750,000g/mol), 1-vinylimidazole (≥99%), indomethacin 

(≥99%), poly(vinyl alcohol) (Mw =89,000-98,000g/mol, 99+% hydrolyzed), acrylic acid 

(anhydrous, 99%), N,N′-Methylenebisacrylamide (≥99.5%) and potassium persulfate 

(≥99.0%) were all purchased from Sigma-Aldrich® (St. Louis, MO, USA). All other ingredients 

were of analytic grade and were used as received. Stock cultures of S. epidermis (ATCC 

2223), C. albicans (ATCC 10231) and P. aeruginosa (ATCC 27853), were obtained from 

Davies Diagnostics, Randburg, South Africa.  

 

7.2.2. Preparation of the Electro-Modulated Hydrogel- Microneedle device 

The optimized EMH was prepared as per the requirements detailed in Chapter 5, Section 

5.2.2. The EMH was placed onto an MNA (Figure 7.1) containing a droplet of deionized 

water on its back plate which was allowed to dry for 24 hours to ensure adhesivity with 

minimal resistance to drug movement from the EMH through the MNA.  
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Figure 7.1: Image depicting the array containing microneedles. 
 

7.2.3. Preparation of porcine tissue samples 

Porcine skin tissue from the abdominal region was washed and the hair removed. The 

exogenous tissues and subcutaneous layers were carefully removed resulting in skin 

thickness of 400µm. The skin was stored at -80°C for a maximum of 2 weeks for future use. 

Frozen skin was thawed at room temperature for 3 hours prior to use.  

 

7.2.4. Determination of porcine skin integrity  

Confirmation of skin membrane integrity is an essential component for ex vivo analysis, as 

compromised skin membrane integrity during any preliminary tissue handling may falsify 

permeability results (Scott et al., 1991). Skin membrane integrity was checked through ionic 

conductivity using a SevenMulti S40 pH/electrical conductivity meter (Mettler-Toledo, Zurich, 

Switzerland) prior to and after experimental procedures. 

 

7.2.4.1. Ionic conductivity measurements  

Ionic conductivity as a function of skin integrity was determined using a SevenMulti S40 

pH/electrical conductivity meter (Mettler-Toledo, Zurich, Switzerland) prior to and after the 

experimental procedure. 

 

7.2.4.2. Resistance reduction factor and permeation enhancement ratio 

The Resistance Reduction Factor, RF, or the damage ratio, was calculated (Heylings et al., 

2001; Rachakonda et al., 2008). It is defined as the ratio of the initial resistance value at time 

0 to the resistance value of the sample obtained at time �, or: 
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D =
J�

JK
                 Equation 7.1 

 

The permeability enhancement ratio, taken as the ratio of the permeability coefficient 

experimentally obtained to that of the control, was calculated as follows: 

 

 

Permeation Enhancement =
WKXYZKY[ \]^_ 

W` a_KXYZKY[ \]^_
             Equation 7.2 

 

 

7.2.4.3. Determination of skin tissue structural integrity using Fourier Transform 

Infrared Spectroscopy  

FTIR Spectroscopy was used to detect the vibration characteristics of chemical functional 

groups in lyophilized porcine skin tissue samples and was carried out as detailed in Chapter 

4, Section 4.2.3.  

 

7.2.5. Isolation and stock maintenance of Candida albicans, Pseudomonas aeruginosa 

and Staphylococcus epidermidis cultures 

All cultures were obtained from lyophilized bacterial stocks (Davies Diagnostics, Randburg, 

South Africa) and inoculated into 50mL sterile Tryptone Soya broth (TSB) and incubated at 

37°C for 48 hours. TSB was prepared as per manufacturer specifications by adding 30g to 

1L of distilled water and autoclaving at 121°C for 20 minutes. Purity studies were conducted 

by placing the autoclaved TSB at room temperature for 48 hours and purity determined 

through lack of microbial growth. 

 

7.2.6. Determination of total viable colony count 

Prior to the microbial ex vivo testing, the total viable colony count was determined for quality 

assurance by evaluating the total count of viable colonies in standardized inoculated carriers 

(Figure 7.2). In addition, determination of the colony count allowed for inspection and 

positive identification of the counted organism. Each of the three cultures was made to 20mL 

spore suspensions using sterile saline. Aliquots of the stock cultures (100µL) were made up 

to 20mL using sterile saline. The stock cultures were vortexed to ensure complete mixing. 

Aliquots (100µL) were further diluted in sterile saline using serial dilution (1:100) and were 

pipetted (100µL) onto Tryptone Soya agar (TSA) plates. The TSA plates were prepared 

using the spread technique and were incubated at 37°C for 24 hours for S. epidermis and P. 

aeruginosa and at 25°C 48 hours for C. albicans. Resulting microbial growth after incubation 
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was assessed by counting the number of viable colonies and extrapolating the number of 

colony forming units (CFU) found in the original suspension.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Schematic illustrating the serial dilution process. 
 

7.2.7. Determination of the electro-modulated drug delivery using ex vivo studies 

Ex vivo studies were conducted to ascertain the effectiveness of the EMHM device as well 

as the permeability of skin tissue to sodium indomethacin. The studies were carried out 

utilizing a Franz Diffusion Cell (FDC) apparatus (PermeGear Inc., Bethlehem, PA, USA) 

equipped with a 12mL receptor compartment, clamp, stirrer-bar and a thermostat controlled 

water jacket (Figure 7.3a). Excised porcine skin stored at -80°C was thawed prior to use. 

Porcine skin samples with a thickness of 3.5±0.5mm were placed between the donor and 

receptor compartments of the FDC. The indomethacin permeated the skin into the simulated 

plasma in the receptor compartment (PBS; 12mL; pH 7.4; 37°C). Samples (100µL) were 

withdrawn from the receptor compartment, at 30minute time intervals over a period of 3 

hours. 

 

Drug concentrations were determined using UV spectrophotometric analysis (IMPLEN 

NanophotmeterTM, Implen GmbH, München Germany).  

 

100µL transfer 

20mL saline 

9.9mL saline 
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Figure 7.3: Digital image depicting the (a) Franz diffusion cell apparatus used (b) Electro-
modulated hydrogel-microneedle device on the porcine tissue sample (c) Aluminum foil 
placed on the device and (d) Electro-stimulation of the device at 3.63V. 
 

Initial analyses (Test A) were conducted to ascertain the permeability of sodium 

indomethacin through the excised porcine skin. This was done as to determine the 

effectiveness of the developed MNA against topically applied sodium indomethacin. This 

analysis was repeated using the ceramic MNA dummy (Test B) as a correlation against the 

topical administration of sodium indomethacin and the MNAs as well as a correlation with the 

results determined during in vitro drug release analysis and DEE tests. Once determined, 

the formulated EMH was analyzed without and with electro-stimulation (Test C and D 

respectively). Test D utilized aluminum foil, as per in vitro studies, which covered the EMH 

on which a current was applied. Results of this analysis would determine permeability of 

sodium indomethacin upon electro-stimulation with a control of no electro-stimulation added. 

Once completed, the EMHM device was analyzed with and without electro-stimulation (Test 

Donor compartment 

Receiver compartment 

Heat circulator 

Sampling port 

Skin tissue 

Clamp (a) 

(b) (c) 

(d) 
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E and F) to ascertain the effectiveness of the formulated system for a more complete 

comparison prior to possible future in vivo studies. Test G was carried out as a means of 

comparison between a MNA that was fully saturated with drug solution with Tests A and B. 

The various tests conducted are summarized in Table 7.1.  

 

Table 7.1: Testing parameters employed in the ex vivo studies. 
 

Test Method of Delivery  Substrate Electro-Stimulation 

A Indomethacin solution (20mg/mL) Skin No 

B Indomethacin solution (20mg/mL) MNA dummy-skin No 

C EMH Skin No 

D EMH Skin Yes 

E EMH MNA-skin No 

F EMH MNA-skin Yes 

G Saturated MNA Skin No 

 

7.2.7.1. Determination of penetration ability using fluorescence 

To visually assess the working ability of the EMH in conjugation with the MNA, an EMH was 

formulated using fluorescein dye coupled to the sodium indomethacin drug. Briefly, 

indomethacin and fluorescein were dissolved in a 1M NaOH solution. The solution was 

frozen at -75°C for 48 hours and lyophilized to form a free-flowing powder. The powdered 

compound was incorporated into the optimized hydrogel as the active agent. The EMH was 

placed onto an agarose (1%w/v) plate and was subjected to electro-stimulation. The EMH 

was subjected to electro-stimulation both in the presence and absence of the MNA in order 

to prove device effectiveness. Digital images were taken of the experiments when exposed 

to UV- light. 

 

7.2.7.2. Evaluation of drug permeability  

The cumulative sodium indomethacin diffusion per unit area of skin tissue was ascertained in 

terms of drug permeability. The drug permeability coefficient (cm.h-1) of drug across the skin 

tissue was calculated per unit area using Equation 7.3. (Lavon et al., 2005): 

 

b =
Ic × d

e×K×I�
                   Equation 7.3 

 

Where: P [cm.h-1]-permeability coefficient; f  [ml]-volume of the receiver compartment 

(12mL); �  [cm2]-effective permeation area (1.767cm2); �  [h]-time interval; F�  [mg.mL-1]-

concentration in donor compartment; F�  [mg.mL-1]-concentration in receiver compartment. 
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The permeation enhancement is the ratio of permeability coefficient of treated skin to 

permeability coefficient of untreated skin. 

 

7.2.8. Ex vivo microbial evaluation of the Electro-Modulated Hydrogel-Microneedle 

device  

Using the sterilized FDC apparatus, various microbial penetration assays were carried out 

using aliquots of microbial suspension containing 1.2×106 Colony Forming Units (CFU)/mL, 

1×109 CFU/mL and 1.8×105 CFU/mL of S. epidermis, P. aeruginosa and C. albicans 

respectively. Sterilized porcine tissue that was not punctured (control) or punctured (test) 

were included in the study in one of three different ways: (i) punctured with a microneedle 

which was left in place for 24 hours for determination of complete penetration with a MNA 

interface (ii) punctured with a microneedle which was removed for determination of 

penetration through the MNA puncture sites (iii) punctured with a hypodermic needle (24G) 

which was removed for comparison against penetration through the MNA puncture sites. 

Aliquots (100µL) of the microbial suspension were placed into the donor compartment of the 

FDC cell and the assay was run using the conditions previously described. Sterilized lids 

were used to cover the donor compartments and prevent evaporation of the buffer. Samples 

(100µL) were withdrawn from the receptor compartment, at various time intervals over a 

period of 24 hours. The samples were plated onto TSA and were incubated at 37°C for 24 

hours for S. epidermis and P. aeruginosa and at 25°C 48 hours for C. albicans. After 24 

hours, the tissue was removed from the donor compartment and the remaining microbial 

content quantified from the samples and the tissue. 

 
 

7.2.8.1. Assessment of microbial load on the needles employed in the ex vivo 

microbial tests 

The microbial load from the hypodermic needle and microneedle after the application of the 

known concentration of microbial suspension onto the tissue was quantified. Both types of 

needles were placed into sterile PBS (10 mL) and vortexed for 2 minutes. Subsequently, 

serial dilutions (1:100) were performed, and the resulting suspensions plated and incubated 

as described in Section 7.2.6. 

 

7.2.8.2. Determination of remaining load on the porcine skin tissue 

Since bacteria have the ability to adhere to the skin, it was important to determine any 

adherence to the porcine tissue to validate the microbial permeation results. The porcine 

skin samples were removed immediately after the ex vivo studies. Using a surgical blade, 

both the layers containing the epidermis and SC was gently scraped (Figure 7.4). The load 
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was placed into 20mL saline, vortexed, diluted (1:100) and plated out. The samples were 

subsequently incubated as previously described in Section 7.2.6. 

 

 

 
Figure 7.4: Image depicting the adherence test. 
 

7.3. Results and Discussion 

 

7.3.1. Assessment of the electro-modulated delivery as per ex vivo studies 

Prior to assessing the permeation of sodium indomethacin through the porcine skin tissue, it 

is important to define the theoretical release from the EMH using a FDC (Figure 7.5). The 

entrapped lining against the inside wall of the EMH is released following electro-stimulation, 

in which the hydrogel polymer network opens. The drug molecules undergo subsequent 

diffusion through the both the network and the MNA and subsequently pass into the skin. Cp 

is the solubility of the drug in the EMH and Cm is the concentration at the skin-solution 

interface. Cs is the concentration of the drug in the solution at the polymer-solution interface, 

and is generally below the solubility of drug in polymer at the interface. There is a real 

difference between the solubility of the drug in the polymer and in the solution, although both 

exist at the interface. Finally, Cb is the concentration of the drug in the buffer solution in the 

receptor cell (Sinko et al., 2010).  
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Figure 7.5: Diffusion of sodium indomethacin through the Electro-Modulated Hydrogel. Drug 
was contained in the hydrogel matrix and subsequently released following electro-
stimulation. Drug diffusion through the Electro-Modulated Hydrogel and stagnant aqueous 
diffusion layer and into the receptor compartment at sink conditions (adapted from Sinko et 
al., 2010 and Chen et al., 2013).  
 

Figure 7.6a clearly demonstrates the pronounced, yet erratic, enhancement of skin 

permeability to the sodium indomethacin solution (Test A and B). In addition, both tests 

revealed a plateau at 1.5 hours due to saturation of the skin tissue. A decrease in 

permeation (±3mg) was observed through the utilization of the MNA dummy (test B), 

indicating absorption of the drug solution into the ceramic material. Test G revealed lower 

drug permeation even though a saturated MNA was used. Permeation of less than 2mg can 

be accounted for by a lower surface area exposed to the skin tissue.  

 

Application of the EMH onto the skin (Test C and D) have demonstrated more controlled 

release, with greater drug release (±0.24mg) after electro-stimulation of the EMH. The 

undertakings of Tests C and D with Tests E and F using MNAs has resulted in more 

favorable release. Test E demonstrated that without electro-stimulation, significantly less 

drug release is obtained (±0.45mg) as compared to Test F with electro-stimulation 

(±2.93mg). In addition, results from Test F revealed controlled release of the sodium 

indomethacin through the skin as compared to that of Test A using the drug solution (3% to 

21%). 

 

Permeation enhancement results from Figure 7.5b depicts that the control procedures has 

significantly lower permeation capabilities as compared to the corresponding experimental 

procedures. RF values from the Franz Diffusion studies showed similar behavior. Samples 
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with an initial resistivity of or above 20KΩ/cm2 with PBS (pH 7.4) were used (Mitragotri et al., 

2000; Karande and Mitragotri, 2003; Lee et al., 2006). The increased rigidity of the lipid 

bilayers accounts for higher skin resistance (Rachakonda et al., 2008). Lower RFs are seen 

for tests A, B and D which may be as a result of the individual lipid molecules in the skin 

having a higher vibrational energy, making the lipid bilayers more fluidic.  

(a) 

Time (hours)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

S
od

iu
m

 In
do

m
et

ha
ci

n 
R

el
ea

se
 (%

)

0

5

10

15

20

25
Test A 
Test B 
Test G 

Time (hours)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

S
od

iu
m

 In
do

m
et

ha
ci

n 
R

el
ea

se
 (%

)

0.0

0.5

1.0

1.5

2.0

2.5
Test C 
Test D 

 

 

Time (hours)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

S
od

iu
m

 In
do

m
et

ha
ci

n 
R

el
ea

se
 (%

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Test E 
Test F 

 

(b) 

Test

A B C D E F G

R
at

io

0.0

0.5

1.0

1.5

2.0
P/Po 
RF 

 

Figure 7.6: (a) Drug release profiles, (b) permeation enhancement and RF profiles as per ex 
vivo studies (N=3; SD≤0.34 in all cases) 
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Results from the fluorescence studies indicated that the hydrogel is stimuli-responsive, and 

releases the active agent after electro-stimulation (Figure 7.7a). Figure 7.7b depicts that 

greater permeation is achieved when using the microneedle, and hence demonstrates the 

success of the device.  

 

(a) 

 

(b) 

 

 
Figure 7.7: Digital images of the (a) Electro-Modulated Hydrogel (i) prior to and (ii) after 
electro-stimulation. (b) Effectiveness of the EMHM device in the permeation of fluorescent 
sodium indomethacin.  
 

7.3.2. Influence of the ex vivo evaluation on skin integrity 

FTIR characterization determined asymmetric and symmetric C-H vibrations obtained at 

2920 and 2850cm-1, respectively which have been ascribed to hydrocarbon lipid chains of 

the SC with the CH2-scissoring bands providing information on the lateral packing of the lipid 

chains in the horny layer (Knutson et al., 1985, Golden et al., 1986; Babita et al, 2006; He et 

al., 2009; Schwarz et al., 2012). The obtained FTIR spectrum (Figure 7.8) displays peaks at 

2922.76 and 2852.75cm-1, demonstrating the presence of the intact SC in all samples, also 

(i) (ii) 

EMHM device EMH 
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peaks around 1742.86cm-1 were present illustrating the C=O stretching vibration of lipid polar 

head groups (Babita et al, 2006). Strong water absorbance and amide bands are found in 

the region of 1500-1700 and 3000-3600cm-1, respectively (Babita et al, 2006). The bands at 

1639.77 and 1550.89cm-1 of the SC proteins have been suggested to arise from amide I and 

II stretching vibrations, respectively (Babita et al, 2006). The bands have been attributed to 

characterizing the secondary structure of keratin (He et al., 2009). The amide I band is due 

to C=O stretching vibration, while the amide II band is due to C-N stretching and N-H 

bending vibration of the amide group present in proteins (Babita et al, 2006). Both bands 

owe their origin primarily to proteins. A shift of the amide II vibration is often ascribed to 

permeation enhancing effects (He et al., 2009). In the study, slight shifts in the band to 

1553.98cm-1 could be detected in regard to this absorption band. 
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Figure 7.8: Infrared spectra of the porcine skin samples utilized in the ex vivo studies.  
 

The 1460-1462cm-1 vibration could correspond to the CH3 bending which originated mostly 

from the skin keratins (Rodriguez et al., 2009), as well as the CH2 scissoring mode 

(Ongpipattanakul et al., 1994; He et al., 2009). 
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The symmetric stretching band is particularly susceptible to changes and was therefore 

employed for classification of the lipid matrix as a means to determine changes correlated to 

permeation. The CH2 symmetric and asymmetric absorbance peak positions shift by 2cm−1 

indicating increased lipid fluidity which is in turn representative of a decrease in diffusional 

resistance to drug permeation. It should be noted that the FTIR spectra display an absence 

of peaks pertaining to sodium indomethacin, consequently it can be assumed that the drug 

did not stay entrapped in the skin and either may have diffused through or did not have 

sufficient penetration ability. 

 

7.3.3. Quantification of microbial skin load as per ex vivo studies 

The SC is vital in protecting against microbial entry. In the pharmaceutical industry, safety is 

as important as product efficacy, thus the study determining microbial penetration of a 

microneedle array in comparison to a hypodermic needle is well motivated for. The plates 

were inoculated with 100µL of the respective solutions as any volume greater than this may 

not penetrate and soak in the agar, thus skewing results and making accurate counting 

difficult.  

 

The present study, utilizing the representative micro-organisms: Gram-positive (S. 

epidermidis), Gram-negative (P. aeruginosa) and yeast (C. albicans) have indicated that 

microneedles do allow for microbial permeation but to a lesser extent when compared with 

permeation across a skin surface treated with the gold standard hypodermic needle (Table 

7.2). In the various test models employed in this study, the microbial agent permeation 

across the porcine tissue was far less significant when microneedles were used.  

 
Table 7.2: Representative results of microbial studies. 
 

Test Micro-organism Microbial 

load 

(CFU) 

Control 

Cumulative 

microbial 

permeation 

after 24 hours 

(CFU) 

Microbial load 

counts after 

permeation 

(CFU) 

Microbial 

adherence to skin on 

removal (CFU) 

Epidermis Stratum 

corneum 

Hypodermic 

needle 

S. epidermidis 2.1×108 2×107 70 1.8×107 4×106 

P. aeruginosa 1.6×109 8.7×107 547 6×107 1×107 

C. albicans 1.8×108 1.92×107 432 2.2×108 1.4×108 

Microneedle 

puncture & 

removal 

S. epidermidis 2.1×108 2.56×106 - - 1×107 

P. aeruginosa 1.6×109 2.2×107 - - 6×106 

C. albicans 1.8×108 3.5×106 - - 1.7×107 

Microneedle 

puncture 

S. epidermidis 2.1×108 1.03×106 50 4×103 6×106 

P. aeruginosa 1.6×109 5.1×106 210 1.1×103 9×106 

C. albicans 1.8×108 1.06×106 324 1.2×103 8×107 

(-) no colonies detected 
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Assessment of adherence to the skin tissue in the hypodermic needle tests revealed that 

significantly more ≈107CFU of the microbial solution remained on the epidermis, while this 

amount decreased ≈101CFU at the level of the SC. More noticeably is the decline in 

adherence of S. epidermidis which could be as result of its nature as a facultative anaerobe 

(Figure 7.9). Microbial permeation continued over the 24hour period indicating no active 

means of permeation. After 24 hours, the microbial permeation from using the microneedle 

was lower in comparison to that of the hypodermic needle. The inherent elasticity of the 

porcine tissue could have allowed for the individual microneedle-induced holes to seal to a 

greater extent than the much larger single hole created by hypodermic needle puncture 

(Donnelly et al., 2009). 

 

(a)       (b) 

   

 

Figure 7.9: Agar plates of S. epidermidis after (a) hypodermic needle and (b) microneedle 
array adherence studies. All results for other test organisms presented in a similar fashion.  
 

7.3.4. Quantification and comparative analysis of microbial adherence of the 

microneedle array and the hypodermic needle 

Microbial permeation in each case was greater than 106CFU when hypodermic needles 

were employed. The permeation when utilizing microneedle, however, was significantly less, 

with microbial permeations of less than 102CFU observed (Figure 7.10). According to Seal 

and co-workers (2000), depending on the type of pathogen and dose response factors, an 

estimation of the number of invading micro-organisms required to cause an infection is 

104CFU.  
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Figure 7.10: Microbial permeation results as per ex vivo studies using (a) S. epidermidis (b) 
P. aeruginosa (c) C. albicans (N=3; SD≤2.26×106 in all cases). 
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7.4. Concluding remarks 

 

This investigation has proven the efficacy of the EMH capable of attaining electro-modulated 

drug release in the ex vivo porcine model. Furthermore, the results have concluded that, in 

addition to the responsive nature of the EMHM device, the use of microneedles resulted in 

significantly less microbial permeation than their hypodermic counterpart. Even though 

microbial permeation was present with the use of the MNAs, it must be noted that its 

significance was far to less to cause infection of any type. Due to the skin’s antimicrobial 

properties it is thus unlikely that the MNA application would cause local or systemic infection 

in immune-competent patients under normal circumstances even though microbial 

adherence to the MNAs was clearly shown. This investigation has lead to the conclusion that 

safety in patients may be enhanced should the MNAs be aseptically manufactured and not 

be re-used without cleaning.  
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CHAPTER 8 

IN VIVO EVALUATION OF THE TRANSDERMAL ELECTRO-MODULATED HYDROGEL- 
MICRONEEDLE DEVICE IN THE SPRAGUE DAWLEY RAT MODEL 

 

 

8.1. Introduction 

 

*Ethics clearance for this in vivo investigation was obtained from the Animal Ethics 

Screening Committee (AESC) of the University of the Witwatersrand (No. 2013/13/04; 

Appendix 11.4). 

 

The past century has seen many medical scientific and advances in the field of both science 

and medicine, in which in vivo release studies have played a vital role (Quimby, 2002; 

Festing and Wilkinson, 2007; Stokes and Marsman, 2014). Therapeutic efficacy studies 

were conducted using a Sprague Dawley rat model so as to evaluate the pharmacokinetic 

properties of the EMHM device in vivo, with the plasma release profile being compared to 

that of the in vitro release profile to foster and in vitro-in vivo correlation (IVIVC) for the 

provision of a more realistic clinical extrapolation.  

 

The development of an IVIVC is essential in establishing the predictive mathematical 

relationship between the in vitro and the in vivo performance. In addition the IVIVC 

determines the efficacy of the formulation or delivery system (Van Buskirk et al., 2012; 

Sjögren, 2014). Historically, IVIVC has been applied to extended release from oral solid 

dosage forms but it has also been used to correlate in vitro skin permeation data to the in 

vivo drug profiles in transdermal delivery research (Emami, 2006; Van Buskirk et al., 2012). 

FDA guideline defines rules and reliability criteria of IVIVC for extended release forms, 

exemplifying the following levels of correlations (Ostrowski and Baczek, 2010): 

 

Level A   Directly associated with linear, superimposable relationship

    between the rate of absorption in vivo and dissolution rate in

    vitro through all available time points. In some cases non-linear

    relationship may be also appropriate. 

 

Level B   Based on statistical moment analysis, where mean residence 

   time in vivo is compared to mean dissolution time in vitro.  

   Because a number of in vivo  curves could result in similar  

   residence time values, the obtained relationship is not direct. 
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Level C (single point)  Represents a single point relationship between one  

    pharmacokinetic parameter (e.g. AUC) and one dissolution 

    parameter (e.g. amount of substance released at a certain time 

    point).  

 

Level C (multiple point) A relationship exists between one or more pharmacokinetic

    parameters and dissolution at several in vitro time points  

    should be represented by early, middle and late stage of  

    dissolution profile. 

 

Level D   Represents a semi-quantitative rank order correlation not 

    useful for regulatory purposes. 

 

Level A correlation is generally the most desirable form and represents the highest order as 

the in vitro method allows for predictability of the in vivo results, and a direct correspondence 

exists at each time point (Emami, 2006). The ability of the in vitro methods to completely 

mimic the in vivo methods confers confidence in the method’s capability to act as a 

surrogate for in vivo studies. In addition, it is only level A correlations that are accepted by 

regulatory agencies as a basis for replacing in vivo bioequivalence studies with in vitro 

dissolution tests (Ostrowski and Baczek, 2010). Predicted error (%PE) criteria is used to 

evaluate a Level A IVIVC as per FDA guidelines. A reliable predicted level A correlation 

exists, when an average absolute PE for AUC and Cmax is below 10 % and PE for individual 

formulation does not exceed 15 %. An average absolute %PE of 10-20 % requires additional 

in vivo and in vitro data sets as the predictability is inconclusive. In addition to the PE, the 

correlation co-efficient (R2) may be used to evaluate a level A correlation with R2>0.9 

indicating and existing IVIVC (% in vivo absorbed vs. % in vitro dissolved; El-Yazigi and 

Sawchuk, 1985).  

 

In Chapter 7, porcine skin tissue was used to conduct the ex vivo studies. Van Ravenzwaay 

and Leibold (2004) evaluated transport of compounds with various lipophilicities across rat 

and human skins in vitro and in vivo in rats. In all cases the in vitro dermal penetration 

through rat skin was higher than in vivo and rat skin was approximately 11-fold more 

permeable than human skin. To prevent false positive results and to more closely simulate 

human permeation, porcine tissue was thus used. Although porcine skin, when compared to 

rat skin, has a closer permeability character to that of a human, many studies have been 
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conducted on rats with transdermal devices (Durrheim et al., 1980; Bond and Barry 1988; 

Hinz et al., 1989; Roy et al., 1994; Godin and Touitou, 2007). The pig model would not be 

feasible for the in vivo studies due to the difficulty of extracting the minute drug amounts 

from the plasma. Due to their low blood volumes, mice were not used in this study as blood 

collection size and frequency of collections would be limited.  

 

Rat skin and human skin are similar with respect to their permeation by narcotic drugs and 

skin characteristics (Roy et al., 1994; Table 8.1). Studies have found that hairless rat skin 

has provided a highly representative view of permeability (Durrheim et al., 1980; Bond and 

Barry 1988; Hinz et al., 1989). Regarding the rat skin, permeation kinetic parameters are 

frequently comparable with human skin (Godin and Touitou, 2007). In addition, the rat is 

particularly docile and its size allows for manipulation, easy handling and is relatively low 

cost (Suckow et al., 2006; Godin and Touitou, 2007). These findings have ultimately led to 

the selection of the Sprague Dawley rat as the test model. 

 

Table 8.1: Comparative thickness and electrical resistance of skin strata in rat, mice and 

humans (Wester and Maibach, 1989; Davies et al., 2004). 

 
 Stratum Corneum 

(µm) 

Epidermis  

(µm) 

Whole skin  

(mm) 

Electrical 

Resistance 

(kΩ/cm2) 

Human 17  47 2.97 3.94 

Rat 18 32 2.09 0.98 

Mouse 9 29 0.70 6.33 

 

Dosing of sodium indomethacin in humans requires multiple dosing throughout the day due 

to the rapid elimination of the drug (Chapter 3, Section 3.3.4). Multiple daily dosing is not 

possible in the rat due to its slow metabolism. Thus to avoid toxicity, dosing was done at 

weekly intervals as opposed to dosing at 30 minute intervals detailed in Chapter 3 and 

subsequently required an additional in vitro release study to determine the drug release over 

a period of 35 days. In addition, key parameters such as the in vivo release rate of sodium 

indomethacin into the blood plasma, as well as the biocompatibility of the device in terms of 

histopathological studies were evaluated and subsequently detailed herein.  
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8.2. Materials and Methods 

 

8.2.1. Materials  

The Sprague Dawley rats utilized in this study were obtained as per the Central Animal 

Services (CAS) protocols at the University of the Witwatersrand. Indomethacin was 

purchased from Sigma Aldrich (St. Louis, MO, USA). Double de-ionized water was obtained 

from a Milli-Q system, (Milli- Q, Millipore, Johannesburg). All solvents utilized for UPLC-UV 

detection were of UPLC grade and all other reagents were of analytical grade. The 

preparation of the optimized EMHM device has been discussed earlier in this thesis as per 

the requirements found in Chapter 5, Section 5.2.2. 

 

8.2.2. In vitro drug release analysis 

Due to the requirements of dosing on a weekly basis, drug release analysis was repeated 

using the method detailed in Chapter 3 Section 3.2.4.3, with electro-stimulation and 

sampling undertaken on days 0, 7,14,21,28. 

 

8.2.3. Design and construction of a portable electro-stimulating device 

In order to attain electro-responsive drug delivery, a portable electro-stimulating device 

capable of delivering an optimized voltage of 3.63V was constructed consisting of four 1.5V 

battery cells connected in series to a low-resistance light bulb and a resistor of variable 

resistance. Iron electrodes were used to deliver the required voltage to the EMHM device. A 

multi-meter was connected in series to the circuit to assess the amount of current passing 

through it at any given time (Figure 8.1). 

 



188 
 

 

 

Figure 8.1: Schematic representation of the portable electro-stimulating device on the 
Electro-Modulated Hydrogel- Microneedle array device. 
 

8.2.4. Sterilization of the Electro-Modulated Hydrogel Microneedle device 

Prior to transdermal application, the EMHM device was subjected to gamma (γ) irradiation 

sterilization. γ-Radiation is mainly used for the sterilization of pharmaceuticals as the 

procedure leaves no residual radioactivity within the material or device and is a common 

means of microbial control as well as sterilization procedure for medical devices, implants 

and single-use devices (da Silva Aquino, 2012; Magda et al., 2014). The application of 

electromagnetic radiation emitted from the isotopes of the radionuclide, Cobalt 60 (60Co), 

damages the nucleic acids of micro-organisms at the molecular level, ultimately providing its 

bactericidal or bacteriostatic function (da Silva Aquino, 2012). A routine minimum dose of 

25kGy is applied for many pharmaceutical products, biological tissues and medical devices 

and was thus chosen as the dose to provide effective antimicrobial sterilization of the EMHM 

device (da Silva Aquino, 2012; Appendix 11.5).  

 

γ-Sterilization employing a 60Co source at 25kGy of the batches of the EMHM device 

(~75mg) was undertaken at Synergy Sterilization SA (Pty) Ltd., Isando, Johannesburg, 

South Africa). The CAS of the University of the Witwatersrand, Johannesburg, South Africa 

supplied the anesthetic agent Isofor® (isoflurane), and euthanasia agents (sodium 
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phenobarbitone) for administration to the rats. Their respective dosages are provided in 

Table 8.2. All other reagents used were of standard analytical grade of the highest purity.  

 

Table 8.2: Drugs and recommended dosages as administered to rats. 

 
Drug Route Dose Frequency 

Isofor® Inhalation  5% initial  

2% maintenance 

  

As required 

Sodium Indomethacin Intravenous injection 0.8mg/100g body 

weight 

 

Once off 

Sodium phenobarbitone Intraperitoneal injection 200mg/kg On euthanasia 

 

8.2.5. Structural analysis of the Electro-Modulated Hydrogel post-sterilization 

FTIR was performed as detailed in Chapter 4, Section 4.2.3 to assess the possibility of any 

deformation or degradation that may have occurred in the EMHM device due to the γ-

irradiation process at the 25kGy dose.  

 

8.2.6. Sterility analysis of the Electro-Modulated Hydrogel- Microneedle device using 

agar diffusion studies 

Sterility of injectable formulations is vital to ensure protection of patients or animal models 

against the possibility of infection. To ensure sterility of the EMHM devices after γ-radiation 

sterilization, microbial analyses were conducted to determine the presence of any existing 

contamination.  

 

For this, the EMHM devices were placed into sterile water (10mL) and vortex mixed. The 

resultant solution was inoculated (100µL) onto TSA plates using the spread plate technique 

and incubated at 37°C for 24 hours. Samples of the EMHs and MNAs were transferred onto 

the solidified agar using sterile forceps to ensure accuracy of results. As a control, 

Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were inoculated onto the 

TSA to ensure the ability of TSA to allow growth for these organisms. A further control of 

uninoculated agar was added to ensure sterility of the TSA prior to analysis. All control 

plates were incubated to the conditions outlined. The sterility analyses were repeated using 

Thioglycolate to account for the growth of anaerobes.  
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8.2.7. Animal husbandry  

Non-fasted rats were housed in single cages with a 12hour light/dark cycle. The rats were 

individually housed and were provided with a standard rat diet and water ad libitum under a 

controlled temperature (±25°C). The rats were acclimatized to the laboratory for 7 days prior 

to in vivo experimentation. Their state of well-being was ascertained by weighing them 

weekly. Housing conditions were according to the SOPs of the CAS which follow the South 

African Standard for the care and use of animals for scientific purposes.  

 

8.2.8. Design of the in vivo experimental study 

A total of 18 Sprague-Dawley rats with an initial weight of ~225-350g were used in the study. 

The rats were randomly assigned to 3 groups (N=6 and N=3 per sub-group). The 

experimental procedures for each of the groups were as follows (Figure 8.2): 

 

 

 

Figure 8.2: Schematic of the design of the in vivo study. 

 

Group 1: Control study 

The rats in this group received IV administration of sodium indomethacin (0.8mg/100g body 

weight) 15 minutes prior to blood sampling (Lacroix and Rivest, 1996). 
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Group 2: Experimental study 

The rats in this group received the drug-loaded EMHM device placed on the thoracic region. 

The device was subjected to electro-stimulation of 3.63V at the required time intervals. 

According to Mohr and co-workers (1987), rats can withstand voltages of up to 20V before 

strong muscular contraction and high blood flow velocity occurs. 

 

Group 3: Placebo study 

The rats were assessed for any signs of discomfort or behavioral changes and received the 

EMHM device without electro-stimulation. 

 

All 6 rats in a study group (3 rats in sub-group [a] and 3 rats in sub-group [b]) were 

administered with the respective delivery system at Day 4 for all study groups. In study 

group 1, the blood sampling time points for sub-group (1a) were prior to and 15 minutes after 

intravenous administration of sodium indomethacin with blood samples in the remaining 3 

rats (sub-group 1b) taken 2 days later. In study group 2, all rats were administered with the 

EMHM device with electro-stimulation on Day 4. Blood sampling of sub-group 2a was 

undertaken prior to and 15 minutes after electro-stimulation. Blood sampling for sub-group 

2b was undertaken 2 days after electro-stimulation. Sampling at these time points were 

taken to prove the presence of sodium indomethacin in the rat’s cardio-vascular system after 

2 days (t1/2 ~7-10 hours), which would not be present at the next weekly electro-stimulation 

(Elahi et al., 2009). Furthermore, the reason for staggering the sampling points as well as 

using the 3 rats in sub-group 2b is due to the inability of rats to provide more than 1mL of 

blood per week excluding use of the rats in sub-group 2a. The total number of blood 

samples, per rat was limited to 10 samples during the period of the study. The timeline 

detailing the in vivo study with respect to study group 2 can be found in Figure 8.3.The 

EMHM device was maintained on the skin surface throughout the study. The above electro-

stimulation procedure was repeated on all rats on days 11, 18, 25 and 32 with blood 

sampling of sub-group 2a taken on days 11, 18, 25 and 32 prior to and 15 minutes after 

electro-stimulation. Blood sampling of the remaining 3 rats in sub-group 2b was undertaken 

2 days after electro-stimulation on Days 6, 13, 20, 27 and 34. The blood sampling procedure 

undertaken for group 2 was repeated for study group 3 without electro-stimulation of the 

device which was administered on Day 4 and maintained on the skin surface throughout the 

period of the study. 
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Figure 8.3: Schematic showing the design of the in vivo studies model. 

Euthanization: 
Tissue harvesting for pathohistological analysis and implant 
degradation: Euthanization by overdosing with 200mg/kg of sodium 
pentabarbitone via IV injection. 

Day 11 
Group 2a and 2b electro-stimulation and 
sampling of Group 2a 

Day 4 
Group 2a and 2b administered with the EMHM 
device. Electro-stimulation will occur 15 
minutes prior to blood sampling (Group 2a only) 
 

Day 6 
Group 2b –Blood samples were taken 
 

Day 13 
Group 2b – Blood samples were taken 

Day 25 
Group 2a and 2b electro-stimulation and 
sampling of Group 2a 

Day 18 
Group 2a and 2b electro-stimulation and 
sampling of Group 2a 

Day 20 
Group 2b – Blood samples were taken 

Day 32 
Group 2a and 2b electro-stimulation and 
sampling of Group 2a 

Day 34 
Group 2b – Blood samples were taken 

18 Rats arrive at Central Animal Services 

6 rats 

Group 1- Control Group separated into: 
- Group 1a (3 rats) 
- Group 1b (3 rats) 
 

6 rats 
Group 3- Placebo Group separated into: 
- Group 3a (3 rats) 
- Group 3b (3 rats) 
 

6 rats 
Group 2- Experimental Group separated into: 
- Group 2a (3 rats) 
- Group 2b (3 rats) 
 

Day 27 
Group 2b – Blood samples were taken 
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8.2.8.1. Procedure for the application of the Electro-Modulated Hydrogel-Microneedle 

device  

Prior to the application of the EMHM device, the dorsal surface of the rats were shaved 

whilst they were under anesthetic so as to prevent any undue distress. It should be noted 

that the absence of a hair coat mimics the human skin better than hairy skin as evident by 

the numerous studies using hairless species, such as nude mice and hairless rats (Simon 

and Maibach, 1998). The EMHM device was placed onto the thoracic region between the 

shoulder blades and was secured through the use of a plaster. The rat was bandaged 

around the torso in order to prevent removal of the device as a result of scratching. The 

EMH was hydrated using double de-ionized water (1µL). Aluminum foil, serving as the 

conducting interface, was placed onto the EMH prior to electro-stimulation (Figure 8.4a).The 

voltage was applied using the portable electro-stimulating device as per Section 8.2.3. The 

voltage of 3.63V was applied onto the aluminum foil for a period of 1 minute. Figure 8.4b 

outlines the gross clinical presentation of the rats following transdermal application. 

 

 

(a) 
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Figure 8.4: (a) Schematic of the Electro-Modulated Hydrogel-Microneedle device (b) 
Sampling procedure of the Electro-Modulated Hydrogel-Microneedle device (i) The rat 
placed into the anaesthetizing chamber (ii) Bandage and plaster removal (iii) The Electro-
Modulated Hydrogel-Microneedle device in contact with the skin. (iv) The application of the 
electro-stimulus to the device.  
 

8.2.8.2. Procedure for blood collection, sampling and treatment  

A plastic restraint device was used to allow for easy blood collection, allowing minimal 

movement and thus preventing any undue pain through self-inflicted injury. Animal restraint 

time was reduced to an absolute minimum on welfare grounds. The blood collection 

technique employed use of the tail vein (Hoff, 2000). Prior to blood collection, the tail was 

warmed by dipping it into slightly heated water to induce vessel dilation and subsequently, 

easy blood collection. Blood samples (0.5mL) were collected using a 1mL syringe pre-

flushed with heparin.  

 

(i) (ii) 

(iii) (iv) 

(b) 
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After withdrawal, blood samples were placed into 2mL polypropylene tubes that were also 

pre-flushed with heparin. Blank blood for base-line data was withdrawn 1 week prior to 

application of the device.  

 

After collection, the blood samples were centrifuged at 12000 RCF (TG16-WS, Nison 

Instrument Limited, Shanghai, China) for 10 minutes. The supernatant, containing the 

plasma, was carefully aspirated and transferred into a clean collection tube and frozen at -

80°C immediately until further analysis. The conventional group received 0.4mL sodium 

indomethacin through the tail vein. At 15 minutes and 48 hours, blood was withdrawn and 

treated as described. 

 

8.2.8.3. Postoperative monitoring of the rats 

Postoperative care included monitoring the rats for the duration of the study to ensure that 

the anesthesia had worn off and that the rats maintained good health. The rats that received 

the EMHM device were examined twice a day to insure that the bandages remained intact 

and so that the device was in continuous contact with the skin, and that no complications 

have occurred since application. Any signs of severe undue distress, such as hyperactivity 

or restlessness, hypersensitivity and sedation, would have constituted removal from the 

study. These points also constituted useful data in ascertaining the biosafety of the delivery 

system. The rats that received IV administration of sodium indomethacin were evaluated for 

signs of anorexia, dehydration and weakness (Taiwo and Conteh, 2008).  

 

8.2.9. Quantification of the in vivo release of the anti-inflammatory agent using Ultra-

Performance Liquid Chromatography analysis  

An UltraPerformance Liquid Chromatographic (UPLC) method was developed employing a 

Waters® ACQUITY™LC system (Waters®, Milford, MA, USA) coupled with a photodiode 

array detector (PDA), and Empower® Pro Software (Waters®, Milford, MA, USA). The UPLC 

was fitted with an Aquity UPLC® High Strength Silica (HSS) RP18 column, with a particle 

size of 1.8µm and pore size of 100Å. An isocratic method with a run time of 7 minutes was 

developed using acetonitrile and 0.1%v/v formic acid in double deionized water as the mobile 

phase in a 50:50 ratio. The flow rate was 0.25mL/minute with an injection volume of 10µL. 

The PDA detector was set at 254nm. Naproxen sodium was used as the internal standard 

(IS). The assay procedure was performed at room temperature (21±0.5ºC). 
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8.2.9.1. Preparation of calibration standards  

The standard stock solutions of sodium indomethacin and the naproxen sodium, the internal 

standard, were prepared in ultra-pure double de-ionized water (Milli-Q, Millipore, 

Johannesburg). A working standard solution (5mg/100mL) was used to prepare the 

calibration standards of concentrations ranging from 0.2-1µg/mL by diluting suitable amounts 

of the solution with deionized water before injection.  

 

8.2.9.2. Sample preparation of plasma samples utilizing liquid-liquid extraction  

Indomethacin is highly protein bound (Raveendran et al., 1992) thus a liquid-liquid plasma 

extraction procedure was applied to the rat plasma containing sodium indomethacin. The 

simple technique is both rapid and relatively cost effective per sample as compared to other 

techniques and near quantitative recoveries (90%) of most drugs can be obtained (Prabu 

and Suriyaprakash, 2012). Stored and frozen study samples were allowed to 

environmentally equilibrate at room temperature (25±0.5°C). Aliquots of plasma (500µL) 

were transferred into polypropylene tubes. Acetonitrile (500µL) was added to the tubes and 

the plasma solution vortexed for 2 minutes for precipitation of the plasma proteins. The 

mixture was then centrifuged at 12000RCF (Nison Instrument Limited, Shanghai, China) for 

10 minutes. The supernatant was subsequently removed and filtered through 0.22µm 

Cameo Acetate membrane filters. To an aliquot of 100µL plasma, the internal standard 

solution (5mg/100mL) was added and vortexed for 2 minutes. The final solution was 

transferred into Waters® certified UPLC vials for analysis. Measurements were conducted on 

each three samples in triplicate. 

 

8.2.9.3. Validation of liquid-liquid extraction procedure 

The precision and accuracy of the extraction process was determined by repeating the 

extraction procedure mentioned in Chapter 8, Section 8.2.8.2 on 3 consecutive days to allow 

for the determination of inter-day precision and accuracy, (N=3 for each day) and intra-day 

variability consisting of multiple injections of samples during a 24 hour period (N=3). 

Accuracy was estimated using the mean percentage error, based upon differences between 

actual and predicted concentrations. The precision, expressed as a percentage, was 

evaluated by calculating the intra- and inter-day variability coefficients of variation (Boon et 

al., 2006). The extraction process was further validated by the use of the IS, naproxen 

sodium as theoretically, the peak area of the naproxen sodium should always be similar in 

every sample as a constant quantity is always utilized. The extraction yield percentage was 

calculated by comparing the peak areas obtained from the extracted sodium indomethacin in 

the plasma (AUCplasma) to the peak areas obtained from sodium indomethacin extraction from 

standard solutions (AUCstandard) of the same concentration using Equation 8.1: 



197 
 

% yield =
klI6Cm4nm

klI45moBmpB
× 100                      Equation 8.1 

 

 

8.2.9.4. Construction of a calibration curve for the quantification of sodium 

indomethacin release from the Electro-Modulated Hydrogel Microneedle device  

Blank plasma samples were thawed to room temperature. Aliquots (100µL) of the plasma 

samples were transferred to polypropylene tubes and were subsequently spiked with 

standard solutions of sodium indomethacin and the IS at differing concentrations (N=5), 

vortexed for 2 minutes, and subjected to the extraction procedure detailed in Chapter 8, 

Section 8.2.9.2 of this chapter. The sodium indomethacin/naproxen sodium peak area ratios 

were plotted against the corresponding sodium indomethacin concentrations (µg/mL) and a 

statistical representation of the degree at which the function fits the set of values (R2 value) 

was computed for the curve.  

 

8.2.10. Histomorphological determination of stratum corneum penetration  

Histomorphological analysis, post-euthanasia, was performed to ascertain the 

biocompatibility and tolerance to the EMHM device through the localized inflammatory 

response of the rats. Excised skin samples of the EMHM device application site, hypodermic 

needle puncture site and a control skin sample (fixed in 10%v/v neutral buffered formalin) 

were sent to IDEXX laboratories (Pretoria, South Africa). Following the routine histological 

processing, the inflammatory response was analyzed by preparation of histological slides for 

determining development of inflammatory cell infiltrates. Cells analyzed as indicators for 

inflammation included macrophages, dendritic cells, histiocytes, Kuppfer cells and 

mastocytes (Hemmati et al., 2010).  

 

8.2.11. Pharmacokinetic modeling employing noncompartmental and compartmental 

algorithms 

Based on the in vitro and in vivo release dynamics of sodium indomethacin from the EMHM 

device, compartmental analysis was undertaken using pharmacokinetic data analysis and 

was achieved using PKSolver, a menu-driven add-in program for Microsoft Excel written in 

Visual Basic for Applications (VBA). Polynomial regression analysis was used for the 

correlation between the observed and predicted values. The developed mathematical 

framework (Figure 8.5) represents the phenomena of transdermal drug delivery across skin 

using the EMHM device. 
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Figure 8.5: Schematic for microneedle array transdermal drug delivery. 

 

The rate-limiting barrier of skin is the viable skin and the insertion of the MNA overcomes the 

resistance of the SC. The concentration of sodium indomethacin at the interface between the 

skin tissue and needle edge is defined to be the same as the concentration of sodium 

indomethacin in the EMH component of the delivery device. The back diffusion from the 

MNA edge towards the SC is ignored because their diffusion coefficient in the SC is 

estimated to be too small (i.e. 3.08×10-7 cm2 h-1; Ogiso et al., 1993). Sodium indomethacin 

diffuses across the skin obeying Fick’s second law until it reaches blood vessels. This 

transport behavior is controlled by different parameters such as the diffusion coefficient, 

thickness of viable epidermis and length of microneedle (Al-Qallaf et al., 2007).  The drug 

permeated through the skin is absorbed into the blood and the body pharmacokinetics 

follows a one-compartment model which depicts the body as a simple homogeneous 

compartment (Xu and Weisel, 2005). The one-compartment model was used because it is 

assumed that the drugs distribute rapidly between blood and tissue (Shiflet and Shiflet, 

2006). 

 

Compartmental analysis was instituted to quantitatively evaluate and predict the in vivo fate 

of indomethacin from the EMHM device by modeling the concentration-time data. Data 

analysis was carried out by segmenting the combined in vivo release profile into 

individualistic profiles prior to analysis. Pharmacokinetic considerations led to tentative 
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consideration of three pharmacokinetic models: one compartment model; one compartment 

model with Tlag; and two compartment model). The EMHM device was considered as a 

single extravascular dose with transdermal application as it is intended for systemic action 

and is thus administered extravascularly. It is important to note that when drugs are 

administered extravascularly, systemic delivery is not instantaneous. For this reason, 

absorption is a prerequisite for pharmacological effects. When the extravascular route is 

used, the following assumptions are made when determining the pharmacokinetic 

parameters (Jambhekar and Breen, 2009): 

 

• the characteristics of one compartment model is exhibited  

• absorption and elimination follow the first-order process and passive diffusion is 

operative at all the time 

• the drug is eliminated in the unchanged form (i.e. no metabolism occurs) 

•  the drug is monitored in the blood 

 

In Chapter 5, Section 5.3.13, although the kinetic models were generated for the electro-

responsive capabilities of the device in vitro, the same models when applied to drug release 

in vivo resulted in similar R2, AIC and SBC values, and thus were not employed for in vivo 

release kinetics as the models do not necessarily cater for the pulsatile-like behavior of the 

electro-responsive system.  

 

8.2.11.1. Pharmacokinetic analysis for in vitro-in vivo correlation establishment 

WinNonLin® software (V5.3 with IVIVC Toolkit Build 20091211139, Pharsight Software, 

Statistical Consultants Inc., Apex, NC, USA) was employed for establishing a Level A IVIVC 

where the input data comprised in vitro sodium indomethacin release data, as well as in vivo 

plasma data. Development and validation are essential components in evaluating an IVIVC 

model with the development of Level A IVIVC model following a two-stage process:  

 

1. Deconvolution: Used to estimate the time course of drug input using a mathematical 

model based on the convolution integral i.e. the amount of overlap of one function (Levin, 

2006). The observed fraction of the drug absorbed is estimated based on the Wagner-

Nelson method (Wang and Nedelman, 2002). Following estimation of pharmacokinetic 

parameters, the IVIVC model is developed using the observed fraction of the drug absorbed 

and the amount of the drug dissolved. Based on the IVIVC model, the predicted fraction of 

the drug absorbed is calculated from the observed fraction of the drug dissolved.  
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2. Convolution: a model independent method based on the superposition principle where the 

predicted fraction of in vivo drug concentrations is convolved to the predicted plasma 

concentrations (or other relevant body fluid concentration in the case of this investigation). 

Thereafter, determination of the predictability of a level A correlation focuses on estimating 

the percent prediction error (%PE) between the observed and predicted plasma 

concentration profiles, such as the difference in pharmacokinetic parameters (Cmax, and the 

area under the curve from time zero to infinity, AUC0-∞). 

 

Advantages of the convolution approach relative to deconvolution-based IVIVC approaches 

include the following (Emami, 2006):  

 

• The relationship between the plasma drug concentrations and the in vitro release is 

modeled directly in a single stage as opposed to an indirect two stage approach.  

• The model directly predicts the plasma concentration time course. As a result the 

modeling focuses on the ability to predict measured quantities (not indirectly calculated 

quantities such as the cumulative amount absorbed).  

• The results are more readily interpreted in terms of the effect of in vitro release on 

conventional bioequivalence metrics such as maximum drug concentration. 

 

The proposed evaluation approach focuses on the determination of the predictability of a 

level A correlation focusing on estimating the %PE between the observed and predicted 

plasma concentration profiles, such as the difference in pharmacokinetic parameters (Cmax), 

and the area under the curve from time zero to infinity (AUC0-∞). The %PE was calculated at 

each time point (Equation 8.2) and was used as a criterion for the assessment of the internal 

and external predictability of the IVIVC. 

 

 

%b: =
q�;�rs�G�<r�G�>��G

q�;�rs�G
× 100                       Equation 8.2 
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8.3. Results and Discussion 

 

8.3.1. Fourier Transform Infrared analysis of the Electro-Modulated Hydrogel-

Microneedle device post-gamma irradiation  

Chemical bonds are broken when materials are exposed to radiation (da Silva Aquino, 

2012), thus FTIR analysis was used to detect chemical changes (if any) on the treated 

samples. The FTIR spectra of the untreated and γ-irradiated EMH were different in the 

intensity of representative signals (Figure 8.6). No other chemical modifications of 

significance were displayed on the FTIR spectra. A detailed discussion on the FTIR spectra 

of the EMH can be found in Chapter 4, Section 4.3.2. 

 

 

 

Figure 8.6: Fourier Transform Infrared spectra of the Electro-Modulated Hydrogel (a) prior to 
and (b) post γ-irradiation at 25kGy. 
 

8.3.2. Validation of the sterilization procedure using microbiological assays 

The incubated TSA plates inoculated with washes from the sterilized devices revealed no 

microbial growth, indicating that the devices were sterile prior to in vivo studies (Figure 8.7). 

The control plates displayed growth of E. coli and S. aureus assuring the ability of TSA to 

allow growth of these organisms. Similar results were obtained using Thioglycolate. 
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Figure 8.7: Digital images of (a) the E.coli control and sterility test and the (b) S. aureus 
control and sterility test. 
 

8.3.3. Application procedure of the Electro-Modulated Hydrogel -Microneedle device 

The EMHM device was well tolerated and its efficacy successfully demonstrated in the 

Sprague Dawley rat model. The fact that the application was well tolerated was affirmed via 

histopathology in Section 8.3.6.  

 

8.3.4. Validation of the extraction procedure 

The mean coefficient of variation in the intra-day and inter-day precision studies was 

determined to be 0.21% and 0.17%, respectively. Mean extraction of sodium indomethacin 

from the plasma was determined to be 91.12% (SD≤5.56).The liquid-liquid extraction method 

was determined to be the optimum condition that provided both high recovery and purity of 

sodium indomethacin from the plasma proteins. 

 

 

 

 

(a) 

(b) 
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8.3.5. In vivo release of sodium indomethacin in the rat model from the Electro-

Modulated Hydrogel- Microneedle device  

The UPLC calibration curve for plasma sodium indomethacin is depicted in Figure 8.8 (a). 

The typical chromatogram (Figure 8.9b) displays retention times of 3.49 and 5.65 minutes for 

sodium indomethacin and the IS, respectively, with a total run time of 7 minutes. The 

concentration of sodium indomethacin calculated from the integration area under the peaks 

was linearly related to the internal standard over the concentration range of 0.2-1µg/mL 

based on calibration curves, with a R2 of 0.99. Particle retention observed at 1-2.5 minutes is 

negligible (Boon et al., 2006). 
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Figure 8.8: (a) Calibration curve of sodium indomethacin at 254nm (b) Typical 
chromatogram of sodium indomethacin in plasma. 
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The in vivo release profiles (Figure 8.9) of sodium indomethacin from the EMHM device as 

well as from the control group display results where the transdermal device displayed lower 

levels of release (due to transdermal vs. intravenous administration) in the plasma as 

compared to that of the control. Peak levels of 1.04×10-6 µg/mL of sodium indomethacin 

were reached after the initial electro-stimulation. Furthermore, drug was released in desired 

electro-responsive manner with the release profiles depicting no irregularities or fluctuations. 

No visible signs of discomfort or abnormal behavior were observed in the study suggesting 

that the doses entering the systemic circulation and thus reiterate the success of the drug 

delivery system. 
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Figure 8.9: In vivo drug concentrations attained for the control and experimental groups 
(SD≤ 2.55×10-6; n=6). 
 

8.3.6. Histomorphological analysis of the excised skin tissue 

Histomorphological evaluation was undertaken on all the samples from each study group 

and was stained with hematoxylin and eosin (H&E). Sections from the control skin tissue in 

which no microneedle or hypodermic needle punctured the skin are provided for comparison 

and showed normal morphology without the presence of inflammation or signs of any visible 

damage (Figure 8.10). 
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Figure 8.10: Light microscopy images of the H&E stained slides of the region of the control 
skin sample showing (a) normal skin from the thoracic shoulder region (b) dermis and hair 
follicles (c) Fat and muscle. 
 

Histological evaluation of the control skin section indicates normal epidermis, dermis and 

hair follicles as well as glands with no specific lesions present in the skin and underlying 

dermal stroma. Microchannels were effectively created as indicated by methylene blue 

staining and histological sectioning (Figure 8.11a). Minor pathological changes were 

recorded in the epidermis of the samples that were exposed to application of the EMHM 

device proving shallow penetration of the MNAs. Histological evaluation of the adnexal 

glands, muscle layer as well as the hair follicles with sweat glands and sebaceous glands 

and surrounding dermal stroma do not reveal any histological changes, indicative of the 

MNA’s non-invasive nature (Chen et al., 2013; Figure 8.11b). 

 

      

Figure 8.11: Light microscopy images of the H&E stained slides showing (a) the region of 
the Electro-Modulated Hydrogel-Microneedle Device puncture site and (b) the underlying 
subcutis and muscle. 
 
 

(a) (b) (c) 

(b) (a) 
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Microscopical evaluation of the hypodermic needle puncture site depicts a greater disruption 

of the epidermal layer as opposed to the microneedle device (Figure 8.12a). Mild 

perivascular cuffing was confirmed by the presence few mononuclear cells around some of 

the deeper capillaries translating into epidermal injury. Minimal lymphocytic perivascular 

infiltrates were present with perivascular distribution in the deep dermis and necrosis (Figure 

8.12b). Similar results were observed by Juul and co-workers (Juul et al., 2012). 

 

       

Figure 8.12: Light microscopy images of the H&E stained slides showing (a) the region of 
the hypodermic needle puncture site and (b) focal hemorrhage in the underlying dermis. 
 

8.3.7. Interpretation of the extravascular noncompartmental and compartmental 

pharmacokinetic model analysis  

The extravascular pharmacokinetic analysis results of the compartmental analysis for 

sodium indomethacin are presented in Figure 8.13 and Table 8.3. In this study it is assumed 

that tissue distribution is governed by dissolution and lipid partitioning. The most favorable 

AIC and SBC values were generated by a one compartment model without lag (AIC= -

135.912 and SBC= -136.334) and thus best described the release of sodium indomethacin. 

R2 allowed to further validate the differentiation between the models (0.999 without lag and 

0.984 with lag). Furthermore, the standard error (SE) and the sum of squares of residuals 

(SS) determined an overall lower variability in the data pertaining to the model without lag 

(5.364×10-7, 6.05×10-13) than that with lag (7.599×10-7, 6.07×10-13). The regression residual 

(r obs-pre) of the observed versus predicted values was inconclusive in determining the 

most appropriate model, differing by 0.001.  

 

 

 

(b) (a) 
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Figure 8.13: Results for extravascular pharmacokinetic analysis employing (a) no lag and 
(b) lag (c) extension of pharmacokinetic analysis employing lag over a 7 day period. 

 

0

0.0000002

0.0000004

0.0000006

0.0000008

0.000001

0.0000012

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

g
/m

L
)

Time (Days)

Series1

Series2

0

0.0000002

0.0000004

0.0000006

0.0000008

0.000001

0.0000012

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

g
/m

L
)

Time (Days)

Series1

Series2

0

0.0000002

0.0000004

0.0000006

0.0000008

0.000001

0.0000012

0 0.001 1 2 7

C
o

n
c
e
n

tr
a
ti

o
n

 (
µ

g
/m

L
)

Time (Days)

Series1

Series2

Predicted 
Observed 

Predicted 
Observed 

Predicted 
Observed 

(a) 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

(c) 

 

 



208 
 

Table 8.3: Compartmental analysis of plasma data after extravascular input without and with 
lag. 
 

Parameter Unit  Average Value Diagnostics Value 

Extravascular model without Tlag 

A µg/mL 1.008×10-6 r obs-pre -0.18 
ka 1/d 3.184 SS 6.05×10-13 
k10 1/d 0.318 R2 0.999 

t1/2ka D 0.240 SE 5.364×10-7 
t1/2k10 D 2.4047 AIC -135.9121 
V/F (mg)/(µg/mL) 2.758×107 SBC -136.334 

CL/F (mg)/(µg/mL)/d 8.77×106   
Tmax D 0.887   
Cmax µg/mL 7.021×10-7   

AUC0-t µg/mL*d 2.225×10-6   
AUC0-inf µg/mL*d 3.142×10-6   
AUMC µg/mL*d2 1.346×10-5   
MRT D 3.185   

Extravascular model with Tlag 

A µg/mL 5.038×10-6 r obs-pre -0.181 
ka 1/d 15.919 SS 6.07×10-13 
k10 1/d 1.592 R2 0.984 
Tlag D 0.003 SE 7.599×10-7 
t1/2ka D 1.202 AIC -132.144 
t1/2k10 D 12.019 SBC -134.707 
V/F (mg)/(µg/mL) 1.379×108   

CL/F (mg)/(µg/mL)/d 4.389×107   
Tmax D 4.437   
Cmax µg/mL 3.51×10-6   

AUC0-t µg/mL*d 1.113×10-5   
AUC0-inf µg/mL*d 1.571×10-5   
AUMC µg/mL*d2 6.730×10-5   
MRT D 19.073   

 

A: the zero time intercept associated with the Alpha phase (an initial phase of rapid decrease in 

plasma concentration due distribution) 

ka:  1
st
  order absorption rate constant 

k10:  Elimination rate constant 

Tlag:   Finite time taken for a drug to appear in systemic circulation following    

  extravascular administration 

t1/2ka:  Absorption half-life rate constant 

t1/2k10:  Elimination half-life rate constants  

V/F:   The volume of distribution of the absorbed fraction 

CL/F:  The observed total body clearance for extravascular administration 

Tmax:   Time at which the maximum concentration (Cmax) is observed 

Cmax:   Maximum observed concentration occurring at Tmax 

AUC0-t:  Area Under the Curve (AUC) from the dosing time to the last measurable concentration 

AUC0-inf:   AUC from dosing time extrapolated to infinity  

AUMC:   Area Under the Moment Curve  

MRT:   Mean Residence Time is the average amount of time the drug remains in a 

compartment or system 
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The first order absorption rate constant (ka) obtained was 3.184/day, accounted for by the 

ionized form of the basic drug electrostatically interacting with acidic phospholipids (Rodgers 

et al., 2005 a). In addition to electrostatic interactions with acidic phospholipids, the basic 

drug is also soluble in tissue water, allowing for the partition into neutral lipids and neutral 

phospholipids (Rodgers et al., 2005 a) resulting in a t1/2k10 of 2.4047 days. The obtained 

elimination rate constant (k10) was 0.318 days (approximately 7.2 hours), consistent with the 

k10 as indicated by Gurnasinghani and co-workers (1989) of 2.6-11.2 hours.  

 

In contrast to unionized molecules, ionized drug species do not partition into tissue lipids, 

and hence have a low t1/2ka (Rodgers et al., 2005 a; Li et al., 2007) of 0.240 days for 

transdermal administration and 2.976 days for intravenous administration. The EMHM drug 

delivery device resulted in a lower AUC0-t of 2.225×10-6 µg/mL per day as compared to an 

AUC0-t of 0.066µg/mL per day when sodium indomethacin was delivered intravenously 

(Table 8.4), this result lies in a difference in plasma protein binding rather than tissue binding 

as described earlier (Rodgers et al., 2005b). The pharmacokinetic data obtained 

demonstrate that, compared with intravenous administration, the Cmax (7.021×10-7µg/mL for 

the EMHM device and 0.0172µg/mL for intravenous administration), AUC0-t (2.225×10-

6µg/mL per day for the EMHM device and 0.066µg/mL per day for intravenous 

administration) and MRT values (3.185 days for the EMHM device and 4.584 days for 

intravenous administration) of sodium indomethacin after transdermal administration are 

significantly reduced. This may be caused by the longer period of absorption of sodium 

indomethacin when given as a transdermally, and most likely reflects the change in the drug 

over the entire disposition phase rather than the elimination during the terminal phase (Li et 

al., 2008). The decreased AUC0-t and MRT values suggest that the potential side effects 

from indomethacin may be diminished due to increased peak concentrations, allowing the 

pharmacological effects to be relatively low and delayed (Li et al., 2008). It should be noted, 

however, that plasma concentrations are more likely to stay elevated for longer in patients 

than in rats under similar experimental conditions due to different pharmacokinetic 

parameters .i.e. human versus rat volume of distribution (Vd ; 18 versus 1L volume), longer 

human versus rat distribution half-life (t1/2ka 29.208 versus 0.240 days; Ogiso et al.,1993), 

and longer human versus rat elimination half-life (t1/2k10 5.448 versus 2.405 days; Ogiso et 

al.,1993). In contrast to intravenous administration, the transdermal EMHM device enables 

sodium indomethacin levels to be maintained and also provides the possibility of 

administering the drug as and when required. The time to reach the maximum concentration 

(Cmax) was 0.89 days or 21.29 hours for the transdermal route and was instantaneous for the 

intravenous route. This is a key factor in determining the usefulness of transdermal 

application as a therapeutic system. The low Cmax and prolonged Tmax after transdermal 
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administration were due to the barrier properties of the skin which lead to an early 

accumulation of the drug in the skin followed by a sustained release into the systemic 

circulation. The reservoir effect after removal of the electro-stimulus might be due to the slow 

elimination (2.4047 days) of the drug which had accumulated in skin tissues indicating that 

the therapeutic levels of sodium indomethacin for the Sprague Dawley rat (0.8mg/kg) were 

attained and maintained, ultimately proving the therapeutic ability of the electro-responsive 

drug delivery system.  

 

Table 8.4: Results of noncompartmental analysis of plasma data after extravascular input. 

 
Parameter Unit  Value 

λz 1/d 0.233 
t1/2 d 2.976 

Tmax d 0.000 
Cmax µg/mL 0.017 
Tlag d 0.000 

Clast obs/Cmax  0.333 
AUC0-t µg/mL*d 0.066 

AUC0-inf obs µg/mL*d 0.091 
AUC0-t/0-inf obs  0.729 
AUMC0-inf obs µg/mL*d2 0.416 
MRT0-inf obs d 4.584 

 

λz:  1st order rate constant of the terminal (log-linear) portion of the curve terminal elimination rate 

constant 

t1/2: Terminal phase half-life. The time it takes for the concentration levels to fall to 50% of their 

value. 

Clast:   The last quantifiable concentration following dosing  

AUC0-inf obs:  AUC from dosing time extrapolated to infinity based on the last observed  concentration 

AUMC0-inf obs:  AUMC extrapolated to infinity based on the last observed concentration 

MRT0-inf obs:  MRT extrapolated to infinity 

 

8.3.8. Establishment of an in vitro-in vivo correlation  

The IVIVC regarding a transdermal drug delivery system of this nature has not been 

examined apparent by the lack of available literature. An extravascular single-dose, first-

order absorption one compartment model without lag was selected for sodium indomethacin 

for development of the IVIVC model, being the best fit as predicted by initial pharmacokinetic 

analysis. As described in Chapter 5, Section 5.3.12, in terms of the R2 and AIC, dissolution 

data was best described in terms of the Makoid-Banaker model (a multiple linear regression 

method). 

 

A Level A correlation was developed by calculating the amount of sodium indomethacin 

absorbed employing the Wagner Nelson method using the linear trapezoidal rule. To 
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ascertain that a level A IVIVC was obtained, the percentage of drug absorbed up to time t 

was plotted versus the amount of drug released in vitro (Figure 8.14).  
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Figure 8.14: (a) Drug release profiles of the in vitro release and the observed mean in vivo 
release profile extracted using deconvolution analysis of sodium indomethacin from the 
device (b) Regression plot showing the relationship between the fraction of indomethacin 
absorbed in vivo and the fraction released in vitro.  
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The initial release of ±10% observed after electro-stimulation has allowed for the drug to be 

maintained within the rat’s therapeutic levels. Level A analysis yielded an R2 value of 0.8834 

indicating that the in vitro data was predictive of in vivo data with 88.34% accuracy. 

However, the imperfect superimposability observed in the in vitro/in vivo plot may result from 

residual release from the hydrogel matrix, accounting for the increase in drug release after 

electro-stimulation on day 0 to day 7. In addition, the model dependent Wagner-Nelson 

method is used for a one-compartment model, and hence, does not take into account the 

multi-compartmental transdermal system nor does it account for the pulsatile (electro- 

responsive) release (Emami, 2006). However, misinterpretation on the terminal phase of the 

plasma profile may be possible in the occurrence of a flip-flop phenomenon in which the rate 

of absorption is slower than the rate of elimination The initial spike in vivo release of sodium 

indomethacin from the EMHM device can be accounted for by the size of the rats as they 

generally have a higher metabolism compared to humans (Sjögren et al., 2014).  

 

Evidence exists of altered topical absorption due to changing blood flow as a consequence 

of elevated temperature (Singh and Roberts, 1994). Consequently, the non-superimposable 

plots may result due to epidermal clearance, an important determinant of topical absorption 

influencing the therapeutic activity in transdermal therapy (Dancik et al., 2008). Five 

scenarios of topical absorption have been identified by Reddy and co-workers (1998):  

 

(i) Finite exposure time in which the vehicle containing the absorbing chemical is removed. 

Chemical in the SC reservoir continues diffusing into the systemic compartment (i.e. the 

body) after the exposure ends.  

 

(ii) Decreasing the vehicle concentration where the vehicle volume is small enough that 

dermal penetration causes the vehicle concentration to decrease significantly enough to 

affect the rate of dermal absorption. 

 

(iii) Limited blood flow rate where represented by the situation where chemical penetrates 

through the SC faster than the reduced blood flow rate can remove it. 

(iv) Increasing the blood concentration where there is sufficient blood flow but the blood 

concentration builds enough to reduce the skin penetration rate. 

 

(v) Absorption onto the skin from the blood in which the direction of dermal absorption is 

reversed. That is, chemical absorbs into the skin from the blood, to which chemical has been 

abruptly added (e.g., by IV bolus). The penetrating chemical is then released into a vehicle, 

such as water during a shower or bath. 
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Equation 8.3 relates the steady-state ratio of the concentrations of drug in the epidermis 

(Cepidermis) and in the applied vehicle (Cv) (Roberts, 1991) as:  
 

 
I�6�B�pn�4

It
 =

�6

�6u  IvB�pn�4∗
                  Equation 8.3 

 

Where kp is the permeability coefficient of the drug and CLdermis* is the clearance into the 

dermis per unit area of application. Equation 8.3 shows that the epidermal concentration 

Cepidermis depends on the relative magnitude of dermal clearance, which is determined mainly 

by blood flow, and the permeability coefficient kp. Situations in which kp is of a similar order 

of magnitude to clearance, such as disruption of the barrier or vasoconstriction, enable blood 

flow to play a greater role in determining topical absorption. When blood flow is much higher 

than kp, epidermal clearance will be the determinant of epidermal concentration (Walters and 

Brain, 2009). In this situation, Equation 8.3 can be reduced to Equation 8.4: 
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                Equation 8.4 

 

Also of importance in establishing the release kinetics of sodium indomethacin from a 

transdermal system, is metabolism occurring in the skin. Even though the nature of skin 

enzymes differs qualitatively and quantitatively from those in the liver (Walters and Brain, 

2009), there is still potential for molecular biotransformation within the skin (Wilkinson and 

Williams, 2008). While the activities of many metabolic processes are much lower in skin 

than in liver, certain enzymes, such as N-acetyltransferases and those involved in reductive 

processes have demonstrated fairly high activity (Table 8.5; Hotchkiss, 1998).  
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Table 8.5: Comparison between specific activities of cutaneous enzymes compared with 
hepatic enzymes (Hotchkiss, 1998). 
 

Enzymatic System Substrate 
Cutaneous-specific Activity  

(% hepatic) 

Sulfotransferases 1-Naphthol 10 
 

Acetyltransferases p-Aminobenzoic acid 
2-Aminofluorene 

18 
15 

 
Glucuronosyl transferases Bilirubin 

1-Naphthol 
3 

2-50 
 

Glutathione transferases cis-Stilbene oxide 
Styrene oxide 

49 
14 

 
Epoxide hydrolases cis-Stilbene oxide 

trans-Stilbene oxide 
Styrene oxide 

9-11 
24-25 

6 
 

Cytochrome P-450s Aldrin 
Aminopyrine 

Diphenyloxazole 
Ethylmorphine 

7-Pentoxyresorufin 

0.4-2.0 
1 

2-3 
0.5 

20-27 

 

A challenge faced by transdermal drug delivery methods is irritation and permeation of 

hydrophilic agents due to the lipophilic nature of the skin. Determining the bioequivalence of 

topically applied dosage forms presents difficulties as very low blood levels of a specific drug 

following transdermal application has proven to be particularly difficult. To properly 

determine the dermatopharmacokinetics, the tape-stripping method can be employed as a 

future output (Chapter 9). 

 

8.4. Concluding Remarks 

 

In vivo studies revealed a good preliminary indication of the of the EMH system’s electro-

responsive capabilities, ultimately facilitating the immediate release of the entrapped drug 

into the tissues and could significantly desensitize the patient to chronic pain whilst 

prohibiting any adverse effects. Sodium indomethacin levels in the plasma were 6.29×10-9 to 

6.76×10-7µg/mL, less than that obtained by the conventional IV administration, but well 

within the therapeutic range. In addition, the drug delivery system was well tolerated, 

showing no signs of inflammation.  A Level A correlation as determined by IVIVC correlation 

further provided evidence on the feasibility of the EMHM device. However, it should be noted 

that a direct comparison between devices of this nature were not possible as such similar 

devices do not exist. Ultimately, the study served as determining the feasibility of such a 

prototype device for expanding it to human trials. Future studies should focus on 



215 
 

ascertaining the comprehensive pharmacokinetics of the device as an ideal opportunity for 

investigating dose proportionality. 

 

 

 

 

 

  



 

CONCLUSION AND RECOMMENDATION

 

9.1. Conclusions 

 

Numerous transdermal delivery systems currently exist on the market 

in the 1970’s (Paudel et al., 2010)

drugs. Throughout this thesis, the EMHM device has proven its success as a prototype 

device pharma-engineered for the treatment of chronic pain. 

permeation challenges through the use of microneedles serves as a stepping

development of transdermal delivery. 

 

Thus in order to take this present study to final development and marketing, modifications to 

the device are necessary so that the it’s made portable and convenient with the size and 

number of the microneedles relative to i

apparent includes a housing whereby the electrical component may be housed (Figure 9.1).

 

 

Figure 9.1: (a) Schematic of the components of the proposed prototype (b) Top view of the 
drug delivery device. 
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pment of transdermal delivery.  

Thus in order to take this present study to final development and marketing, modifications to 

the device are necessary so that the it’s made portable and convenient with the size and 

number of the microneedles relative to its function and placement. A modification that is 

apparent includes a housing whereby the electrical component may be housed (Figure 9.1).
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9.2. Future Recommendations 

The need for tailored therapeutics has become more apparent and imperative with time. 

Combining pharmaceutical technology with that of mechanical has the potential to advance 

the field of advanced drug delivery and chronic care. Outlined are few of the many aspects 

that such a (modified) device developed in this research may therapeutically assist.  

 

9.2.1. Diseases pertaining to the inner ear  

Treatment relating to diseases of the inner ear has proven to be ineffective mainly due to the 

blood-cochlear barrier preventing the transfer of most compounds from the bloodstream to 

the inner ear. As a result, the inner ear poses on the most technologically challenging areas 

for targeted drug delivery. Treatment of auditory diseases, tinnitus, balance disorders and 

sensorineural hearing loss necessitates advanced systems capable of both targeted and 

sustained drug delivery, rapidly increasing its clinical significance (Pararas et al., 2012). The 

delicate structures of the inner ear together with the relative inaccessibility of the cochlea 

necessitate the need of miniaturized delivery systems capable of a time sequenced fashion 

over an extended duration.  

 

9.2.2. Treatment of autoimmune skin disorders 

Cyclosporin is clinically used for the treatment of autoimmune diseases, including skin 

disorders like psoriasis, and inflammatory diseases (Lallemand et al., 2003). Topical delivery 

of the immunosuppressant is a promising strategy to treat skin disorders, as systemic 

delivery side effects are avoided. However inadequate drug penetration in the skin is 

attributed to its ineffectiveness. Though chemical methods are more accepted and clinically 

viable, the vast majority of formulations tested to date were aimed at increasing the 

transdermal delivery, to which the uses of such a microneedle device may greatly assist. 

 

9.2.3. Intravaginal drug delivery  

Vaginal administration of drugs, specifically used for the treatment of female-related 

conditions such as hormone replacement therapy, contraception, osteoporosis, infections, 

breast or cervical cancer, infertility, is a feasible alternative to parenteral or oral delivery 

methods (Bernkop-Schnurch and Hornof, 2003). However, novel high performance 

intravaginal drug delivery systems for female health are still needed as it is challenging to 

provide prolonged high drug concentrations in the vagina. Although cohesive polymers exist 

to ensure a prolonged residence time in the vagina, non-toxic permeation enhancers are 

needed. Modifications to the developed system may be able to combat the afore-mentioned 

challenges by developing a possible MNA-based osmotic pump device containing an 

encapsulated medicament. The device can be applied through existing applicators to the 
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fornix region whereby swelling provide the osmotic pressure gradient to enable drug release. 

In such a delivery device, the MNAs will serve as a dual-functioning adherence and 

penetration enhancer without causing pronounced irritation  

 

9.2.4. Ocular drug delivery 

In ocular pharmacokinetics, bioavailability in the eye can be as low as 5% or perhaps less 

(Urtti and Salminen, 1993). The complicated anatomy and physiology of the eye makes it a 

highly protected organ with its unique structure restricting entry of drug molecules to the site 

of action, especially to the posterior segment of the eye (Figure 9.2). Ocular iontophoresis, in 

which a mild electric current is applied to enhance ionized drug penetration in to the ocular 

tissue, has recently gained interest due to its non-invasive ability delivery (Gaudana et al., 

2008). Complications such as endophthalmitis, retinal detachment and intravitreal 

hemorrhages associated with intraocular injections can be overcome with the iontophoretic 

method. Drug delivery to the posterior segment of the eye has recently employed the use of 

microneedles showing excellent in vitro scleral penetration and rapid dissolution of coating 

solution after insertion when coated solid metal microneedles were used. Employing the 

current developed drug delivery device that is pre-loaded with ocular drugs may prove to 

enhance the already successful results.  

 

 
Figure 9.2: Vertical sagittal section of the adult human eye. 
 

9.2.5. Dermatopharmacokinetic studies  

To further build on in vivo studies conducted in Chapter 8 of this thesis, the 

dermatopharmacokinetics may be determined by the FDA-approved tape-stripping or 

dermatopharmacokinetic method. This method is based on the dermal reservoir principle; 

consisting of a standardized protocol whereby consecutive layers of SC cells are sampled 
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through repeated applications and removal of adhesive tape on the skin surface (Shah et al., 

1998). A hypothesis exists that if a compound is applied to the skin for a short duration of 

time such as 30 minutes, and is subsequently removed, the amount of drug in the upper 

layers of the SC will be predictive of the overall bioavailability of the compound.  

 

Using analysis of each tape strip, it has been shown that the concentration of drug in the SC 

decreases in a log linear fashion, and that about 90% of the concentration is found in the first 

10 strips, the following 10 strips contribute less than 5% to the concentration (Caron et al., 

1990). Quantification of the mass of SC cells removed by the tape-stripping method can be 

determined as an auxiliary test to further validate the sampling methodology by analyzing the 

protein content of the strips (Weigmann, et al., 1999; Dreher et al., 2005). Evaluating the SC 

thickness could be undertaken prior to or preferably during the dermatopharmacokinetic 

experiment (Kalia et al., 2001). 

 

9.3. Future Outlook 

An optimized electro-responsive prototype device with potential for commercialization has 

been developed in this study. Results obtained from the in vivo study are promising and 

show excellent biocompatibility, however, there is a need for developing a novel 

pharmacokinetic model for such novel responsive systems.  

 

Furthermore, the novel drug delivery device developed herein has the ability to broaden the 

transdermal market for conventional drugs for new therapeutic indications and could find 

application in the site-specific therapeutic management of various states throughout the 

body.  The development of such a device has emerged as a significant alternative to other 

delivery platforms and has thus challenged the preconceived notions on what the 

transdermal market has to offer. In the addition, the research process governing the 

development of such drug delivery devices has the potential for the discovery and synthesis 

of novel polymer materials. 

 

Attainment of the research objectives will, and has, permitted the presentation of the 

obtained results at conferences as well as and publication in peer-reviewed journals. With 

the potential for commercialization, the EMHM device can be patented. Innovative research 

into novel drug delivery systems forms a pivotal thrust of South Africa’s research goals, 

through enhancement of the technological platform. 
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11.1.3. Research Paper 1 

 

 



258 
 

11.2. Research Presentations  

School of Therapeutic Sciences Research Day 

Sunaina Indermun, Yahya E. Choonara, Pradeep Kumar, Lisa C. Du Toit, Girish Modi, 

Regina Lϋttge and Viness Pillay. 

Design, Development and Optimization of a Bipolymeric Interfacially Plasticized 

Electroresponsive Hydrogel (BiPErG) for Transdermal Electro-Activated and 

Modulated (TEAM) Drug Delivery  

Chronic pain affects more than 50 million people causing significant physical and emotional 

disability ultimately leading to substantial declines in many other areas of living. Transdermal 

Delivery Systems (TDSs) is the pivot to which research in drug delivery has centralized 

especially with the confines of needle phobias and associated pain related to traditional 

injections, and the existing limitations such as hepatic/ gastrointestinal metabolism, 

palatability issues and hepatotoxicity associated with oral drug delivery. Highlighted in this 

study is the development of a Transdermal Electro-Activated and Modulated (TEAM) drug 

delivery device for chronic pain treatment using transdermal Bipolymeric Interfacially 

Plasticized Electroresponsive Hydrogel (BiPErG) that involves the combination of an Electro-

Conductive Hydrogel (ECH) and a microneedle array (MNA) patch. MNA technology has 

been proposed as a hybrid to overcome the individual limitations of both injections and 

patches through an ultra-minimally invasive, virtually pain-free delivery mechanism. The 

system has been designed and proved to maintain therapeutic drug plasma levels. Design of 

experiments (DOE) was implemented for the prediction of an optimized formulation by 

constrained optimization. Evaluation of the design formulations by in vitro studies has 

indicated that the formulations meet the desired pharmaceutical requirements in terms of 

matrix resilience, swellability and electro-modulated drug release both with the candidate 

drug, indomethacin, and other potent drugs such as morphine hydrochloride, fentanyl citrate 

and celecoxib. Results from the ex vivo evaluation across porcine skin of the optimized 

formulation had also demonstrated that the device has achieved the aim of electro-activated 

and modulated drug delivery.  
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Faculty Research Day and Postgraduate Expo 2014 

 

Sunaina Indermun, Yahya E. Choonara, Pradeep Kumar, Lisa C. Du Toit, Girish Modi, 

Regina Lϋttge and Viness Pillay. 

An Electro- Modulated Transdermal Drug Delivery System for the Treatment of 

Chronic Pain 

The development of a Transdermal Electro-Activated and Modulated (TEAM) drug delivery 

device for the treatment of chronic pain using a Bipolymeric Interfacially Plasticized Electro-

responsive Hydrogel (BiPErG) which is a combination of an Electro-Modulated Hydrogel 

(EMH) and a microneedle array (MNA). MNA technology has been opted to construct an 

ultra-minimally invasive, virtually pain-free delivery mechanism to overcome the individual 

limitations of both injections and patches. Design of experiments using a Box-Behnken 

design model was implemented for the optimization of predetermined therapeutic and 

pharmaceutical parameters. In vitro evaluation indicated that the formulations meet the 

desired pharmaceutical requirements in terms of matrix resilience, swellability and electro-

responsive drug release both with the candidate drug, indomethacin, and other potent drugs 

such as morphine hydrochloride, fentanyl citrate and celecoxib. Ex vivo evaluation of the 

optimal formulation across porcine skin demonstrated that without electro-stimulation, 

significantly less drug release was obtained (±0.4540mg) as compared to electro-stimulation 

(±2.93mg). In vivo release studies were conducted to foster an in vitro/in vivo correlation, 

providing a more realistic clinical extrapolation of the therapeutic ability of the delivery 

system. In this study, therapeutic efficacy of the EMH-MNA device was evaluated following 

transdermal application to the Sprague Dawley rat model. In vivo profiles displayed 

contrasting results where the transdermal device displayed significantly higher levels of drug 

release in the plasma (5.71×10-7 µg/mL) as compared to conventional intravenous delivery 

(2.894×10-7 µg/mL) proving the developed system as an efficient electro-modulated delivery 

device for bioactives through the skin. 
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11.3. Calibration Curves 

11.3.1. Morphine HCL 
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Figure 11.3.1: (a) UV Spectra of morphine HCL in PBS (WinASPECT, Version 1.6.13.0, 
2002, Analytik Jena AG, Germany) and (b) Calibration curve of morphine HCL in PBS at 
278nm.  
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11.3.2. Celecoxib 

  

Concentration (mg/mL)

0.0 0.2 0.4 0.6 0.8 1.0

A
bs

or
ba

nc
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 Celecoxib linear regression curve
95% Confidence Band 
95% Prediction Band 

 

Figure 11.3.2: (a) UV Spectra of celecoxib in PBS (WinASPECT, Version 1.6.13.0, 2002, 
Analytik Jena AG, Germany) and (b) Calibration curve of celecoxib in PBS at 208nm.  
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11.3.3. Fentanyl citrate 
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Figure 11.3.3: (a) UV Spectra of fentanyl citrate in PBS (WinASPECT, Version 1.6.13.0, 
2002, Analytik Jena AG, Germany) and (b) Calibration curve of fentanyl citrate in PBS at 
203nm. 
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11.4. Animal Ethics Clearance Certificate 
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11.5. Sterilization Certificate 

 


