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Abstract
Faculty of Science

Doctor of Philosophy

Computational Methods in String and Field Theory

by Luca Pontiggia

Like any field or topic of research, significant advancements can be made with increasing computational
power - string theory is no exception. In this thesis, an analysis is performed within three areas: Calabi–Yau
manifolds, cosmological inflation and application of conformal field theory. Critical superstring theory is a ten
dimensional theory. Four of the dimensions refer to the spacetime dimensions we see in nature. To account
for the remaining six, Calabi-Yau manifolds are used. Knowing how the space of Calabi-Yau manifolds
is distributed gives valuable insight into the compactification process. Using computational modeling and
statistical analysis, previously unseen patterns of the distribution of the Hodge numbers are found. In
particular, patterns in frequencies exhibit striking new patterns - pseudo-Voigt and Planckian distributions
with high confidence and exact fits for many substructures. The patterns indicate typicality within the
landscape of Calabi–Yau manifolds of various dimensions. Inflation describes the exponential expansion of
the universe after the Big Bang. Finding a successful theory of inflation centres around building a potential
of the inflationary field, such that it satisfies the slow-roll conditions. The numerous ways this can be done,
coupled with the fact that each model is highly sensitive to initial conditions, means an analytic approach
is often not feasible. To bypass this, a statistical analysis of a landscape of thousands of random single and
multifield polynomial potentials is performed. Investigation of the single field case illustrates a window in
which the potentials satisfy the slow-roll conditions. When there are two scalar fields, it is found that the
probability depends on the choice of distribution for the coefficients. A uniform distribution yields a 0.05%
probability of finding a suitable minimum in the random potential whereas a maximum entropy distribution
yields a 0.1% probability. The benefit of developing computational tools extends into the interdisciplinary
study between conformal field theory and the theory of how wildfires propagate. Using the two dimensional
Ising model as a basis of inspiration, computational methods of analyzing how fires propagate provide a new
tool set which aids in the process of both modeling large scale wildfires as well as describing the emergent
scale invariant structure of these fires. By computing the two point and three point correlations of fire
occurrences in particular regions within Botswana and Kazakhstan, it is shown that this proposed model
gives excellent fits, with the model amplitude being directly proportional to the total burn area of a particular
year.
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Chapter 1

Introduction

The laws of electricity and magnetism were once regarded as separate. Faraday observed that changing mag-
netic fields produce electric fields. Maxwell then proved that magnetic and electric fields are intrinsically
linked to one another. Maxwell’s equations provided a unified theory of electricity, magnetism, and light,
as well as all other types of electromagnetic radiation. The term unification implies that the different forces
must obey the same set of equations. The pursuit to unify more and more fields of physics under a single
system of equations has continued ever since.

With the unification of time and space, Einstein’s theory of general relativity - describing gravity - began
to deviate away from any kind of unification attempt with quantum mechanics - itself a well-established field
of subatomic particles. The development of quantum field theory gave a relativistic quantum mechanical
field description of electromagnetism and the weak and strong nuclear forces. As an example, the photon
is an excitation of the electromagnetic field and the Higgs boson is an excitation of the Higgs field. This
field excitation description of particles, also known as particle physics, is what led to the standard model -
thus far, one of the most complete descriptions of nature. The standard model contains a classification of all
elementary particles, divided into two main categories - fermions (quarks, antiquarks, leptons, antileptons)
and bosons (gauge and scalar bosons).

Various attempts at unification of general relativity with the particle physics were unsuccessful. Resul-
tant theories of such unification attempts typically all suffered the same problem of non-renormalizablity[1].
At loop level amplitudes involving gravitons - the force carrier for the gravitational interaction - become
divergent. String theory, which is constructed by studying the dynamical behaviour of open or closed vi-
brating strings, says that particles arise as excitations of different modes of these strings. Because of this,
the graviton arises naturally also as a closed string. The extended nature of strings mean string collisions no
longer occur at a single point, but over a small, yet finite, distance. The combining of quantum mechanics
and gravity thus becomes a viable one in the string theory framework. This allows a sensible argument for a
particle which carries the gravitational force - something which cannot be done in quantum field theory. If
string theory is to be a theory of quantum gravity, then the average size of a string should be somewhere near



2 Chapter 1. Introduction

the length scale of quantum gravity, called the Planck length, which is about 10−33 centimeters. Initially,
string theory only included the description of bosons. However, since a true description of matter includes
both bosons and fermions, fermionic string theory or superstring theory was developed [2, 3, 4, 5] . Super-
string theory requires supersymmetry; meaning that every boson has a corresponding fermion partner. And
so, supersymmetry relates the particles that transmit forces to the particles that make up matter. Through
superstring theory, one gains an immediate and natural connection to particle physics - due to the presence
of the same supersymmetry in the aforementioned Grand Unified Theories (GUTs) of the standard model.
This provides compelling theoretical evidence that superstring theory could be a good mathematical model
of nature at extremely small distances.

In its development through the years, string theory has found use in numerous settings: inflationary
cosmology, standard model physics, black hole physics, and; due to its heavy mathematical formalism, even
fields like number theory and group theory. Most recently, it has become a major field of interest due to a
particular duality known as the anti-de Sitter/conformal field theory (AdS/CFT) correspondence proposed
by Maldacena [6], through which solutions to previously intractable problems can now be calculated. At one
time, it was believed there were five distinct superstring theories: type I, types IIA and IIB, and the two
heterotic string theories. Only one of these theories, whose ten dimensional existence when compactified to
four dimensions would match known physics, could be correct. It turns out that instead, all these theories are
dual1 to one another under certain conditions. The usefulness of certain dualities is that they link important
physical concepts which were once thought to be completely separate and distinct, such as: strong/weak
couplings or small/large distance scales [7, 8]. T-duality, for example, arises from the compactification of
extra space dimensions in a ten dimensional superstring theory. The compactification process is used to
reduce the 9 + 1 dimensional (nine spatial, one temporal) space into a 3 + 1 dimensional space. This com-
pactification occurs when one of the nine spatial dimensions is compactifed into a circle of radius R, in such
a way that traveling a distance L = 2pR, in the direction of compatification, results in the end point being
the same as the starting point. Any particle which travels around this circle obtains a quantized momentum
contributing to the total energy of that particle. A string, however, can wrap around the circle a number of
times - this is known as the winding number, which is itself quantized. Interchaging the radius R of the circle
with the the quantity l2st/R, where lst is the string length, creates an interchangeability between particle
momentum modes and string winding modes. Naturally making R much smaller than the string length, the
quantity l2st/R will become extremely large. The important aspect is realizing that the interchange between
momentum and winding modes means one is exchanging large distance scales with small distance ones. This
kind of duality is unique to string theory as of course particles can not wrap themselves around a circle, and
thus - if true, large and small distance scales in physics are not separated in a fixed manner, but rather, by
the type of probe we use to measure distances, as well how we count the states of this probe.2.

Ultimately, understanding the real world requires two pieces of data: cosmology and particle physics.
It is known that cosmology invokes gravity, whereas, as we have seen, particle physics does not. This is
where string theory attempts to unite these two theories into a unified framework. As mentioned previously,
string theory is a ten dimensional theory - to describe the real world, we need to go from 9 + 1 dimensions

1The dualties here are different in nature to the dualities mentioned by the AdS/CFT correspondence. They should not be
thought of as related

2For a more in depth discussion see [9, 10, 11]
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to 3 + 1 dimensions. The mathematical setting in which we do the compactification of these dimensions
is that of Calabi-Yau geometries [12, 13] . Compactification on a Calabi–Yau preserves four dimensional
supersymmetry - an important requirement for superstring theory and particle physics, since it is believed to
solve certain problems in particle physics, such as the hierarchy problem. Thus, the motivation in studying
the structure of Calabi-Yau manifolds lies in the search for how to go from ten to four dimensions. On
certain Calabi-Yaus, we can build supersymmetric standard models of particle physics. This gives us a nice
framework where particle physics emerges from a string construction. In fact, the problem is that we can
do this in so many ways that there is no unique path from Calabi-Yau manifolds to the real world - under-
standing the structure of Calabi-Yau geometries is a first step in solving this problem. There are certain
properties of these manifolds which are of particular interest, one such being the Euler character χ. In
heterotic compactification, this tells, for example, the number of generations in the low energy spectrum.By
looking at the distribution of Calabi-Yaus within these potential models, which can be constructed from
string theory, something more can be learned about particle physics.

The premise of trying to compactify the extra dimensions within string theory, is to realise our current
"real world physics" from the added dimensions, as we live in a 3 + 1 dimensional world. Settings like in-
flation allow for the exploration of how we can reconcile string theory with the real world. Inflation, on a
classical level, was originally developed to address several issues in cosmology, the most important of which
is the relative homogeneity of the observed universe and the evenness of the CMB temperature (horizon
problem). Special relativity teaches us that the speed of light is the maximum velocity at which information
can be conveyed. If we look at distant patches of the sky, the cosmic microwave background has the same
temperature up to one part in 100000 - this despite the fact that light from one patch of the Universe could
not have reached the other in the time elapsed since the Big Bang. In inflation, the Universe underwent a
period of exponential expansion during the first 10−33 seconds of existence. Prior to inflation, the different
patches of the sky were in causal contact with each other, and quantum fluctuations during the inflationary
epoch are responsible for the existence of large scale structure in the Universe today.

Despite the speculation of whether string theory is a true theory of nature or not, it has undoubtedly
broadened the solution space of opportunities within high energy physics, and for that matter, also math-
ematics. As the investigation of string theory expands into different sub-fields, so does the opportunity for
new methods of analysis - borrowed from within these fields - become available, to enrich how we study string
and, in general, field theories. In turn, analytic tools in field theories such as, conformal field theory, can
have reach in other disciplines. Earth system scientists, who look to understand a the interaction between
climate, vegetation and fire require complex models. Models such as that of Rothermal [14], can often be
incredibly sophisticated and too computationally expensive. Instead of trying to describe the exact path of
how a fire will spread, to some scientists it is more important to understand how fires burn over large areas
across the world. One, common, emergent feature arising from studying extensive burn patterns of wildfires,
is the presence of scale invariant structure. In the context of fire behaviour, tests for scale invariance require
showing log behaviour in the number of fires versus size of these fires [15]. In physics, however, tools to study
and describe scale invariant features in a theory are abundant. Conformal field theory (CFT) serves this
purpose well as, in two dimensions, scale invariance of the CFT automatically fixes correlation functions.
By computing correlation functions of the burn areas within a region and testing the behaviour of the data
against an expected model, provided by CFT, one obtains a quantitative method to study scale invariant
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features in the burning of wild fires.

In this thesis, I study the space of Calabi–Yau compactifications, parameters of multifield inflationary
potentials, and the application of CFT methods to the propagation of fire within regions of ecological
importance. My thesis is divided into five Chapters; Chapter 1 is an introduction to the motivation behind
string theory as well as a minimal supplementation of body of knowledge for the topics explored in the
thesis, mainly Calabi-Yau manifolds as well as cosmological inflation and applied conformal field theory.
Since the aim is ease of legibility as well as the introduction of relevant topics, which create a minimal
self-consistent reference of information presented in further Chapters, the overview is written in an informal
lecture note style. Thus keeping away from extreme mathematical rigor - if required, the reader has relevant
starting points where they can look for more in depth explanations. Chapters 2, 3 and 4 respectively contain
research papers and work covered over the course of my Ph.D. Chapter 2 discusses how one obtains a new
set of patterns within the distribution of Hodge numbers relating indirectly to the distribution of Calabi-Yau
manifolds - something of high importance. Chapter 3 looks at the computation and statistical exploration
of random polynomial potential inflationary models and their validity of true slow-roll inflationary models.
Lastly, Chapter 4 uses techniques in conformal field theory to analyze data representing the spread of fire
occurrences within the regions of Botswana and Kazakhstan, in the attempt to find a more realistic model
of fire propagation.
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1.1 Background - Calabi–Yau Manifolds

In 2012, the standard model was spectacularly vindicated through the discovery of the Higgs at the Large
Hadron Collider [16]. The mass of the Higgs is 125 GeV. Because of the existence of gravity, the natural state
of the ultraviolet cutoff is the Planck mass and the Higgs mass ought to acquire radiative corrections and be
1017 orders of magnitude more massive. The gauge hierarchy problem attempts to explain why the Higgs is
light - see [17] for a review of the gauge hierarchy problem. One theoretical explanation is supersymmetry,
which invokes the largest possible symmetries of a quantum field theory. Supersymmetry predicts that every
particle in Nature has a superpartner. The effects of a particle and its superpartner in quantum field theory
almost exactly cancel, which explains the lightness of the Higgs compared to the Planck scale. In order to
realize supersymmetry in four dimensions in a heterotic string compactification, we need a R3,1 Minkowski
space and some compact manifold. We know that Minkowski space is flat, and thus preserving SUSY in
d = 4 means that the compact manifolds needs to be Ricci flat. The simplest manifolds which admit the
desired properties to preserve SUSY in four dimensions are called Calabi–Yau manifolds, and the term for
reducing these six extra dimensions is compactification. Additionally, the fact that we have particle physics
in four dimensions, places constrains on the type of scenarios we consider. In particular, because there are
three generations of light particles in the standard model, the Calabi–Yau used for a natural compactification
should have Euler character χ = ±6, where χ = 2h1,1 − h1,2. Since 1/2 of the Euler character is the number
of light generations we require, it is the index for the Dirac operator. So far, precision measurements of the
1/r2 force of gravity have been made to an accuracy of tens of microns[18]. Thus, at least at these scales, we
know for sure that the Universe is 3 + 1 dimensional. Below this scale, however - say, less than a nanometer
- a Calabi–Yau geometry is not necessarily excluded. Even more so, Calabi–Yau geometries at string scale
are most certainly allowed.

Figure 1.1: A representation of a complex four dimensional Calabi-Yau manifold [19].

One major problem, is that there are an extraordinarily large number of possible Calabi-Yau manifolds
which satisfy the needed requirements. Thus, going about finding which are the “correct” manifolds to
choose is a difficult task, and has thus far not been done. In such situations, classification methods can be
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of extreme importance. This is the characterization of one particular class of Calabi-Yau manifolds whereby
compactifications are done by characterization of reflexive polytopes. This is because reflexive polytopes are
used to obtain Calabi-Yau geometries[20]. To do this, we can look at how many Calabi-Yau geometries have
a given set of Hodge numbers h1,1 and h1,2. The weighting of the number of reflexive polytopes for different
values of h1,1(number of Kähler moduli which indicate the volume parameters of the of the Calabi–Yau)
and h1,2(number of complex moduli which indicate shape parameters of the Calabi-Yau) is given by the
Kreuzer-Skarke data base. It is from this database where we can study the distribution of h1,1 and h1,2.

Although supersymmetry is a major part of string theory, for the scope of the thesis, the details are
not too relevant. Much more important is the mathematics underlying Calabi-Yau manifolds as well as
reflexive polytopes, which is quite extensive. What follows is a minimal introduction to a few concepts
within differential geometry which are required to give a flavour of how we construct Calabi-Yau manifolds.
We make use of the following sections to introduce certain key concepts which are then used as a tool in
further sections. Material written in the following section was compiled from various lectures, online videos
and text books on differentiable geometry. For more in depth discussion on related sections see [21, 22, 23,
24]

1.1.1 Complex Manifolds

In a 2d complex plane, we have that z = x + iy and z̄ = x − iy, where x and iy are the real and
imaginary coordinates respectively. Of particular interest, is a class of functions within the space of all
smooth functions, which are dependent only on z. This then naturally gives us the differential equation:

∂

∂z̄
f(z) = 0.

Rewriting

∂

∂z
= 1

2

(
∂

∂x
− i ∂

∂y

)
, (1.1.1)

∂

∂z̄
= 1

2

(
∂

∂x
+ i

∂

∂y

)
, (1.1.2)

we are able to solve the differential equation to get what is called the Cauchy-Riemann relation. In particular
if f is a holomorphic, then what we get is a harmonic function:

∇2f = 0. (1.1.3)

Conversely, we can prove that a solution to the Laplace equation is a sum of a holomorphic function and
its complex conjugate. Introducing complex coordinates on a manifold allows us to extend this notion to
manifolds.

If the dimension of the manifold is odd, the generalization of the above is difficult as one cannot pair sets
of real coordinates into a single complex coordinate. This gives us the requirement that dimM = 2m. One
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might think the coordinate patches Ui onM get mapped to euclidean space with coordinates (x1, . . . x2m),
such that we can pair 2m real coordinates into m complex coordinates :

z1 = x1 + ix2 (1.1.4)

z2 = x3 + ix4 (1.1.5)
... (1.1.6)

zm = x2m−1 + ix2m, (1.1.7)

but this would be incorrect. Suppose we take another coordinate patch Uj , which maps its region to a region
of the euclidean space with coordinates y1, . . . , y2m. Then, in the overlapping region Ui ∩ Uj , there must
exist a smooth transition function which takes the set of coordinates (x1, . . . , x2m) to (y1, . . . , y2m). There
is however, no guarantee that such a transition function is holomorphic. What we do then, is to introduce
another set of coordinates

w1 = y1 + iy2 (1.1.8)

w2 = y3 + iy4 (1.1.9)
... (1.1.10)

wm = y2m−1 + iy2m. (1.1.11)

From the initial transformation, we get a set of smoth functions yi = yi(xi), therefore wi = wi(x1, x2, . . . , x2m).
In order for all coordinate transformations to be done holomorphically, we require that wi = wi(z1, z2, . . . , z2m)
not just be a smooth coordinate change, but also a holomorphic one. That is, the coordinate change does not
depend on z̄, but only on m z coordinates. From the initial discussion, we see that each transition functions
satisfies some differential equation:

∂

∂z̄i
wj = 0 ; i, j = 1, 2, . . . ,m. (1.1.12)

Similarly to defining a Riemannian manifold, having smooth transition functions is not good enough, one
also needs to define a Riemannian structure - the addition of a metric tensor on the manifold. This added
structure to the manifold then ensures we have a Riemannian manifold. Similarly then, since again there
is no guarantee that, for an arbitrary given choice of coordinates, the transition functions will always be
holomorphic. We need to add "complex structure" on the manifold. This will allow us to choose coordinates
consistently such that the transition functions are always holomorphic.

1.1.1.1 Complex Structure

Just as a rank 2 metric tensor gµν(x) is used to impose Riemannian structure on a manifold, we can introduce
a rank 2 tensor with mixed indices J ν

µ (x) ; µ, ν = 1, . . . , 2m. Moreover we require the following

J ν
µ (x)J ρ

ν (x) = −δ ρ
µ (x), (1.1.13)
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simply put J2 = −1. It is important to note that such a structure is not always possible - for example on a
4 dimensional sphere. However, a motivation for such a choice comes from the idea that in order to define
a complex structure, one needs to introduce i whereby i2 = −1, so that the tensor J mimics this property.

The tensor J ν
µ (x) is a 2m× 2m matrix which gives a linear map on the tangent space TpM:

J : TpM 7−→ TpM, (1.1.14)

such that

vµ 7−→ J ν
µ vν . (1.1.15)

A question we may ask is: can this transformation on the tangent space be diagonalized? If J is indeed
diagonalizable, then the eigenvalues should satisfy the same identity J2 = −1, implying it has eigenvalues
i and −i. However, if the tangent space has real coefficients, i.e vµ ∈ R and the components of J are also
real, then we cannot solve the equations:

Jv = iv (1.1.16)

Jv′ = −iv′. (1.1.17)

Hence, we need to perform a complexification of the tangent space such that vµ can take on complex numbers
as well - doing so will allow us to solve the above equations. We denote the complexified tangent space as
TpMC. This complex tangent space can be decomposed into an m dimensional space with eigenvalue i and
an m dimensional space with eigenvalue −i:

TpMC = TpM+ ⊕ TpM−.

We want to use this decomposition to guide us to a way of defining complex coordinates zi = (z1 . . . , zm),
allowing the associations :

TpM+ ← { ∂
∂zi
}, (1.1.18)

TpM− ← {
∂

∂z̄i
}, (1.1.19)

(1.1.20)

however this is not always possible. Only with certain conditions on J can the above be realised. J as it is
defined, only gives us an "almost complex structure," it is necessary, but not complete. To obtain a complete
complex structure on the manifold, we require J ν

µ to satisfy the following integrability condition:

0 = J ν
µ ∂ρJ

µ
σ − J ν

µ ∂σJ
µ
ρ − J µ

σ ∂µJ
ν
ρ + J µ

σ ∂ρJ
ν

µ . (1.1.21)
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It turns out if J ν
µ indeed satisfies the above differential equation, we can choose complex coordinates zi

such that:

J

(
∂

∂z

)
= i

(
∂

∂z

)
, (1.1.22)

J

(
∂

∂z̄

)
= −i

(
∂

∂z̄

)
. (1.1.23)

Writing J ν
µ in terms of these complex coordinates, we obtain:

J j
i = i δ ji , J j̄

ī
= −i δ ji (1.1.24)

J j̄
i = 0 , J j

ī
= 0, (1.1.25)

where the indices with and without the bars refer to the holomorphic and anti-holomorphic components.
From this, we can now change from coordinates (x1, .., x2m) to complex coordinates zi = zi(z1, . . . , z2m); i :
1, . . . ,m using:

J ν
µ

∂zi

∂xν
∂xmu

∂zj
= i δ i

j , (1.1.26)

J ν
µ

∂z̄i

∂xν
∂xmu

∂z̄j
= −i δ i

j , (1.1.27)

J ν
µ

∂zi

∂xν
∂xmu

∂z̄j
= 0, (1.1.28)

J ν
µ

∂z̄i

∂xν
∂xmu

∂z̄j
= 0. (1.1.29)

Solutions to these equations, which can only exist if J ν
µ satisfies (1.1.24), allow us to find complex coordinates

which satisfy eqns. (1.1.22) and (1.1.23).

1.1.1.2 Kähler Manifolds

Typically in physics we deal with manifolds with both

1) J ν
µ : Complex structure,

2) gµν : Riemannian metric.

Manifolds which possess a compatibility condition between both their complex and Riemannian structure
are called Kähler Manifolds. Essentially, Kähler Manifolds are just a special case of Hermitian manifolds.
The compatibility conditions are as follows:

∇µJ ν
ρ = 0 (1.1.30)

gµνJ
µ
ρJ

ν
σ = gρσ (1.1.31)

Assuming J satisfies the integrability condition given by eqn (1.1.21), we can write the compatibility condi-
tions in terms of complex coordinates zi ; i− 1, ..,m. The metric ds2 = gµνdx

µdxν now looks like

ds2 = 2gij̄dzidzj̄ , (1.1.32)
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with only mixed components being non zero, gij = gīj̄ = 0. It is convenient to introduce a 2-form, known as
the Kähler form :

k = 1
2gµνJ

µ
ρdx

ρ ∧ dxν (1.1.33)

= igij̄dz
i ∧ dzj̄ . (1.1.34)

It turns out this 2-form plays a central role in understanding properties of Kähler manifolds, hence its name.
Using this Kähler form, we can rewrite the first compatibility condition as

dk = 0. (1.1.35)

In component form this would be equivalent to

∂igjk̄ = ∂jgik̄ , ∂j̄gik̄ = ∂k̄gij̄ (1.1.36)

With these equations, we are able to obtain a very simple form of the metric which in turn simplifies many
other formulas, like that of Riemann curvature. To understand what these equations mean. Consider a
vector Aµ satisfying

∂µAν − ∂νAµ = 0. (1.1.37)

We know that for a general manifold we can write Aµ = ∂µφ, such that it satisfies (1.1.37) above. However,
the converse is only true on a local coordinate patch, but not globally. The form of (1.1.36) is equivalent to
that of (1.1.37), and so, locally one should be able to find some function fk̄, such that

gik̄ = ∂ifk̄. (1.1.38)

Because this holds for the complex conjugate case as well, we get that in each coordinate patch we can write

gij̄ = ∂i∂j̄K, (1.1.39)

where K is called the Kähler potential. It is worthy to note that the Kähler potential is not actually
a function on the manifold, otherwise the Kähler form would be exact implying that the Kähler form is
actually trivial.

1.1.2 Cohomology

To start off the discussion, let’s consider Maxwell’s equations:
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∇ · E = ρ

ε0
(1.1.40)

∇ ·B = 0, (1.1.41)

∇× E = −∂B
dt
, (1.1.42)

∇×B = µ0

(
J + ∂E

dt

)
. (1.1.43)

By introducing the antisymmetric four tensor, these can be written in a much more compact way:

Fµν =


0 E1 E2 E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 (1.1.44)

with
Fµν = −Fνµ, (1.1.45)

where µ, ν = 0, 1, 2, 3. Using this antisymmetric tensor, we can combine all the equations into two:

∂µFνρ − ∂νFµρ = 0, (1.1.46)

∂µFµν = 4πjv. (1.1.47)

In the language of differential forms, we can write Maxwell’s equations in an even more compact way. Let
us introduce the current J = Jµdx

µ and the 2-form F , which will be associated to the antisymmetric tensor
in a natural way:

F = 1
2Fµνdx

µ ∧ dxν , (1.1.48)

then we can rewrite eqn (1.1.46) and eqn (1.1.47) as

dF = 0, (1.1.49)

δF = 4πJ. (1.1.50)

We get dF = 0 since if we compute dF

dF = ∂µFνρdx
µ ∧ dxν ∧ dxρ, (1.1.51)

the three wedge symbols guarantee that the three indices µ, ν, ρ are totally antisymmetrized and hence by
virtue of (1.1.46) it vanishes.

From differential forms, we know that d2 = 0, and so taking advantage of this, if F = dA, then of course
dF = 0. This is similar to saying that since ~∇ · ~B = 0, we can have that B = ~∇ × ~A, where ~A is a vector



12 Chapter 1. Introduction

potential. In fact, by defining the 1- form

A = φdt+Aidx
i , i = 1, 2, 3, (1.1.52)

we get that Ai is precisely this vector potential. Finally, we can then rewrite Maxwell’s equations as

F = dA (1.1.53)

δdA = 4πJ. (1.1.54)

There is however one redundancy in Maxwell’s theory when using the vector potential as seen in (1.1.53);
for a given A, we can always compute F , but for some F there is no unique A. To see this, just let

Ã = A+ dλ (1.1.55)

then dÃ = A since d2λ = 0 - this redundancy is known as a gauge symmetry of the theory.

It is important to note that only in Minkowski space do we have that F = dA. In general this is not
true. How does one know when F = dA holds on some general manifold? This is a question in cohomology.
As the name suggests, cohomology is the dual to homology, which is in itself a more abstract concept better
explained in the section following this one.

In summary, from the above, we learned that the first set of Maxwell’s equations can be rewritten in
the form given in eqn. (1.1.49) and (1.1.50). Furthermore, locally, these can always be solved by (1.1.53).
Using differential forms, we can generalize the above. Suppose the following :
ω is a closed k-form satisfying:

dω = 0.

From this, we can ask the question: if ω is a closed from, is it also an exact from? That is, can we write
ω = dλ, with λ being a k − 1-form? Of course, if ω is already exact, then since d2 = 0, ω is also closed.
The converse question is, however not immediately as obvious. According to Poincare’s Lemma, it turns out
that on Rn a closed form is always exact. This also holds true on any manifold that can be continuously
deformed to a point. For example, if we have a manifold, which we know to be covered by a family of Ui
coordinates charts, then the image of each Ui being mapped into some subspace of Rn is always contractible.
From this, with dω being the differential form, it is always true that if we have a closed form, dω = 0 on a
coordinate patch U1 then it is also exact, ω = dλ. Of course, some different coordinate patch U2, ω = dλ̃,
where λ and λ̃ are not guaranteed to be the same on the overlapping region.
Ultimately, it is of great interest to know when a closed from is exact, and if it is not exact, to what degree
of "non-exactness" it is. Cohomology thus enables us to distinguish which closed forms are not exact.

Let us introduce the space of closed forms Zk as :

Zk(M) = {ω ∈ Ck(M) : dω = 0}. (1.1.56)
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as well as

Bk(M) = {dλ : λ ∈ Ck−1(M)}. (1.1.57)

these are both infinitely dimensional spaces, and for compact manifolds without a boundary, one finds that
the difference of the two spaces is finite. So a definition of cohomology can be given as:

Hk(M) = Zk(M)
/
Bk(M) . (1.1.58)

Here, Hk(M) consists of a closed differential form ω, however we can also have two differential forms ω,
ω̃ which are equivalent if ω = ω̃ + dλ. In flat Minkowski space, such cohomology is trivial by Poincare’s
Lemma. Since Hk(M) is a linear vector space, we can ask about its dimension bk:

bk = dimHk(M). (1.1.59)

These are also known as the Betti numbers. Under continuous deformations of a manifold M, the Betti
numbers remain topological invariants. In particular, the alternative sum of Betti numbers is called the
Euler Characteristic:

χ = b0 − b1 + b2 − b3 + ... (1.1.60)

1.1.2.1 Representatives

Since cohomology can be considered as a set of equivalence classes, it is often useful to consider representatives
of the class. By taking the quotient in (1.1.59) we divide Zk(M) into a set of subspaces. Each subspace
consists of elements of Zk which are related by Bk. Thus, we can consider equivalence classes of the
differential form ω which are a subset of Zk and are related to ω by the exact form:

[ω] = {ω̃ : ω̃ = ω + dλ}.

The question we can ask is: what is the representative of ω that represents all the k-forms which belong to
equivalence class? It turns out, we can always choose a representative of the cohomology as a harmonic form.

Using the notation:
∆ = dδ + δd : Ck → Ck,

if ω is closed, it is not necessarily true that ∆(dω) = 0. However, we can always choose ω̃ = ω + dλ such
that ω̃ is harmonic, i.e. ∆ω̃ = 0. In other words if ω is closed then there exists an appropriate exact form
such that we obtain an harmonic form. Conversely, if we require the harmonic condition, we find that we
can fix the gauge degrees of freedom completely. That is, if ω + dλ and ω are both harmonic forms, we can
show that the degrees of freedom become fixed by requiring dλ = 03.

Suppose we have compact and orientable manifold M, a positive definite metric gµν ; then any ω ∈ CkM
3Since this construction of harmonic forms requires a metric structure, in a Lorentzian space, such a construction would be

very different.
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can be written as:

ω = dλ+ δλ̃+ ω0, (1.1.61)

where dλ represents the closed form, δλ̃ represents a co-closed form and ω0 is just the harmonic form ∆ω0 = 0.
This decomposition of any form is known as the Hodge decomposition.

1.1.2.2 Hodge-de Rham cohomology

In de Rham cohomology we have that ω being a k-form is defined as:

Ck(M) 3 ω = 1
k!ωµ1,...µkdx

µ1 ∧ . . . ∧ dxµk . (1.1.62)

One can then consider space of closed forms modulo exact forms. In Hodge-de Rham cohomology we do
a refinement of this structure. Where the basis dxµ1 ∧ . . . ∧ dxµk would be used to generate differential
forms, now we have a basis made of complex coordinates dzi and dz ī. Important to note is that these
coordinates do not mix under coordinate transformations. In other words, under a holomorphic coordinate
transformation, a differential form widz

i will never mix with another differential from ωīdz
ī. This means

that we can decompose k = p+ q, thus redefining Ck as:

Cp,q(M). (1.1.63)

Such a space will be generated by the basis dzi1 ∧ . . .∧ dzip ∧ dzj̄1 ∧ . . .∧ dzj̄q . This creates what are called
(p, q)-forms:

ω = 1
p!q!ωµi1...ipj̄1...j̄q dz

i1 ∧ . . . ∧ dzip ∧ dzj̄1 ∧ . . . ∧ dzj̄q . (1.1.64)

The important concept in cohomology is the exterior derivative operator

d = dxν
∂

∂xµ
, (1.1.65)

where together with it’s conjugate the Hodge star ∗ and coderivative δ, we can map k-forms to either
(k + 1)-form, (n − k)-form or (k − 1)-form respectively. In the context of complex manifolds, the natural
decomposition of the two spaces extends to this definition of the exterior derivative

d = dzi
∂

∂zi
+ dz ī

∂

∂z ī
, (1.1.66)

d = ∂ + ∂̄. (1.1.67)

With the mappings

∂ : Cp,q 7−→ Cp+1,q, (1.1.68)

∂̄ : Cp,q 7−→ Cp,q+1 (1.1.69)

(1.1.70)
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and

∂† = − ∗ ∂∗ : Cp,q 7−→ Cp−1,q, (1.1.71)

∂̄† = − ∗ ∂̄∗ : Cp,q 7−→ Cp,q−1. (1.1.72)

(1.1.73)

The Laplace operator, previously defined as

∇ = dδ + δd (1.1.74)

now becomes

∇ = 2(∂∂† + ∂†∂), (1.1.75)

or (1.1.76)

∇ = 2(∂̄∂̄† + ∂̄†∂̄). (1.1.77)

With this Laplace operator on complex manifolds, we are able to find the representatives of the Hodge-de
Rahm cohomology. Recall that in Section 1.1.2, the cohomology Hk(M) was obtained by considering the
space of solutions to dω = 0, where ω is a k-form, modulo ω ∼ ω + dλ. In just the same manner, but using
the new definition of d, we refine Hk(M) to what is know as the Hodge-de Rahm cohomology

⊕
p+q=k

Hp,q(M). (1.1.78)

An example of a Hodge-de Rham cohomology element is an element of C1,1(M), say ω = ωij̄dz
i ∧ dzj .

Then to get H1,1(M), all we look at is dω = 0. Such an example of ω is the Kähler form k as seen in eqn
(1.1.34):

k = igij̄dz
i ∧ dzj , (1.1.79)

since k cannot be written as k = dΛ - if the space is compact and without boundary then the volume form
km of the space would be zero which is contradictory - we find that k has a non trivial element for H1,1(M).

1.1.3 Homology

Introducing an equivalence relation in the space of closed forms, namely the modulo exact form, allowed
us to define a finite dimensional space Hk(M) called cohomology. We will see that homologies are spaces
which become dual to cohomology spaces.

Let K be a simplicial complex, where we can have simplexes σ of various dimensions. We want to
decompose K into a p-simplex with p = 1, ..., n = dim(M). Each simplex can be introduced with some
orientation and a given certain ordering - which for the examples below we assume clockwise. We can
then denote σ = 〈v0, v1, ..., vp〉. Putting a negative sign in front of σ switches the position of two vertices
σ = −〈v1, v0, ..., vp〉. By considering all possible simplexes we obtain the space Cp, the vector space generated
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by these simplexes. On the simplicial complex, the analogue of the exterior derivative is

∂ : boundary opperator, (1.1.80)

defined when operating on p-simplex as

∂ 〈v0, v1, ..., vp〉 =
p∑
i=0

(−1)i 〈v0, ..v̂i...vp〉 , (1.1.81)

where the notation v̂i indicated we remove the ith vertex. This means

Cp 7→ Cp−1. (1.1.82)

To make this less abstract, consider first a single edge with two vertices

What we obtain from taking the boundary derivative of it is two points. They are however non zero, they
are zero simplexes. Next, consider a triangle with some face:

taking the boundary derivative of σ1

∂σ1 = 〈v1v2〉 − 〈v0v2〉+ 〈v0v1〉 (1.1.83)
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which leaves us with the boundary of the triangle only. Thus we see why ∂ in this context is called the
boundary operator. A more complicated example is given by two of such triangles glued together, which
diagrammatically looks like:

Since the two glued edges have opposing orientation, they cancel out, and we are left with a square boundary.
One can show, that by acting on 〈v0, v1, . . . , vp〉 with ∂ twice and using it as defined in eqn. (1.1.81) the the
boundary operator is nil-potent

∂2 = 0. (1.1.84)

One can have edges with no face, and just a boundary. Such objects vanish with the boundary operator.
We introduce the following

Zp(K) = {c ∈ Cp(K) : ∂c = 0}, (1.1.85)

which is a simplicial complex with no boundary - c vanishes when acting on it with ∂. Elements of Zp(K)
are called cycles

We have

∂σ2 = 〈v1〉 − 〈v0〉+ 〈v2〉 − 〈v1〉+ 〈v0〉 − 〈v2〉 (1.1.86)

= 0. (1.1.87)
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Here, all the end points cancel with each other resulting in the above cycle to have no boundary. There are
some obvious cycles that one can think of, the space of such cycles is given by

Bp(K) = {∂C : C ∈ Cp+1}. (1.1.88)

This is obvious to some extent as when taking the boundary derivative of something with a boundary
automatically results in something with no boundary. Here, Bp(K) is a subspace of Zp(K). This is analogous
to the discussion of de Rham Cohomology in section 1.1.2 where, there, we considered exact form and closed
form and here, we consider cycles and boundaries. The homology is then defined to be

Hp(K) = Zp(K) \Bp(K). (1.1.89)

One can then use triangulations of any topological space to find its homology. Sometimes, the distinction
between homology with integer coefficients Hp(M,Z) or real coefficients Hp(M,R) is important as the former
is better at "picking out topologies". Consider the group SO(3), for example, which can also be thought of
a S3 sphere with the antipodal point identified. This means that as we pick a point in one hemisphere we
automatically pick its antipodal point on the other hemisphere. Implying that only one of the hemispheres
really needs to be considered. Such a space has the homology

H1(SO(3),Z) = Z2, (1.1.90)

where Z2 = {0, 1} is known as the torsion. It is the element of homology which corresponds to some finite
group which, when looking looking at the real coefficient case, we get

H1(SO(3),R) = 0. (1.1.91)

The non trivial element Z2 can only be seen with integer coefficients. By contrast, for H0 one finds that

H0(SO(3),Z) = Z (1.1.92)

H1(SO(3),R) = R. (1.1.93)

1.1.4 Vector Bundles

One can define the tangent vector space as a space of vectors vµ ∂
∂xµ which lie tangent to a point p on

the manifold. One can take this idea further by considering a collection of points pi on the manifold. The
group of all such tangent spaces will form what is called a vector bundle. Formally, this is written as

TM = ∪
p∈M

TpM. (1.1.94)

We can obtain a better understanding of the tangent bundle by introducing coordinates. To specify a point
in the tangent bundle, we need a coordinate pair (xµ, vµ), where xµ determines the location of point p,
and the vµ characterizes the vector in Tp(M). In this construction, one sees that the tangent bundle is
itself a special kind of manifold - with coordinates, (xµ, vν). When specifying coordinates, one also specifies
how coordinates transform from one patch to another. The coordinates on the tangent bundle are inherited
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from coordinates on the base manifold. Suppose on this base manifoldM two coordinate patches, Ui with
coordinates x and Uj with coordinates x̃, have an overlapping region. The transition functions then would
be

x̃µ = x̃µ(x). (1.1.95)

Since the tangent vector depends on the coordinate xµ we have:

ṽµ
∂

∂x̃µ
= vν

∂

∂xν
. (1.1.96)

From this follows that:

ṽµ = ∂x̃µ

∂xν
vν . (1.1.97)

Thus, overlapping regions on the base manifold results in a pair of coordinates (xµ, vµ) and (x̃µ, ṽµ) which
themselves are overlapping - their tangent spaces are overlapping. We now have a well defined transition
between these coordinates, namely eqns: (1.1.95) and (1.1.97). This notion can be generalized for not only
tangent spaces, but also vector spaces. The resultant of such a generalization gives us the vector bundle E.

At each point p of the manifoldM we have a vector space. Where in the case of tangent space, we have
locally a direct product over each coordinate patch of the coordinate x of the base manifold and tangent
space:

Ui × Rn. (1.1.98)

Similarly, suppose we have coordinate patch Ui ofM, then the vector bundle E looks like:

Ui × V, (1.1.99)

where V is some vector space. In order to clearly express the notion of having a vector space at each point
p we make use of the following definition:

E is a vector bundle if it satisfies the following;

• There is a projection map, π : E → M, so that for each point p ∈ M the inverse map π−1(p) is
isomorphic to a vector space V

• We can choose an atlas of E so that for each local coordinate chart U , the coordinates of E is given
by the pair (x, v) - where x are coordinates over U and v ∈ V .

Over each point p we have a vector space which is isomorphic to V , p = π−1(p). This vector space is called
a fiber over p. The vector space can have either real coefficients - real vector bundle - or complex coeffi-
cients - complex vector bundle. In particular, a one-dimensional complex fiber is referred to as a line bundle.

In the case of the tangent bundle, the way the coordinates on the base manifold transform, tells us
how the coordinates on the tangent bundle transform. On the vector bundle, such information needs to be
specified independently. Suppose we have a manifold M, with coordinates (x, v) on Ui and (x̃, ṽ) on Uj .
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Just as before x̃µ = x̃µ(x)4, however now we have to specify how the fiber coordinates transform. We do so
by stipulating that it should depend on some linear transformation of v

ṽ = g(x)v, (1.1.100)

where, in the case of a real vector bundle, g(x) ∈ GL(N,R) with N = dimV . In the case of tangent bundles,
the linear transformation g(x) was just g = ∂x̃µ

∂xν . For vector bundles g(x) will be something else in general.
One needs to be careful however, as it is not always possible to choose a g(x) in an arbitrary manner. To
define a vector bundle consistently, it is necessary and sufficient to satisfy the following condition.

• Choose three overlapping coordinate patches Ui, Uj , Uk as seen below

Then we have two different ways of comparing coordinates from say Ui with Uk. Either we go from Ui

to Uk directly which results in

vk = gk,i(x)vi (1.1.101)

or we can go via Uj giving:
vk = gk,j(x)vj = gk,jgj,i(x)(x)vi.

All of these transformations have to be compatible in order to have a consistent coordinate system.
This gives us the following consistency condition, or what is known as the co-cycle condition

gk,i = gk,jgj,i. (1.1.102)

For tangent bundles, we can easily check, for example, that indeed the transition function g = ∂x̃µ

∂xν obeys
the co-cycle condition. In a more general vector bundle, there is no guarantee that this condition is always
satisfied. Thus, the existence of a transition function g(x) which satisfies the co-cycle condition defines a
unique vector bundle on the manifold. We can go a step further in the generalization process and define a
fiber bundle. Some common examples, which are important in the study of Calabi–Yaus are holomorphic

4If we are dealing with a differentiable manifold the transformation is a smooth function, for a complex manifold it is a
holomorphic function.
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vector bundles and holomorphic line bundles. If the total space E has the structure of a complex manifold,
the projection map which we called π is a holomorphic map of complex manifolds and the map

φU : π−1(U)→ U × C, (1.1.103)

is biholomorphic, then E can be considered to be a holomorphic vector bundles. An example of such is the
trivial bundle, written as in eqn (1.1.98),

M× Ck, (1.1.104)

but with manifold M. A holomorphic line bundle exists instead when the fiber of the holomorphic vector
bundle is C with rank one. An important example is the canonical bundle.

More specifically it is the complex vector bundle KM = Λm,0M, that is, its sections are (m, 0)-forms on
a complex manifold which is called the canonical bundle, or also the holomorphic line bundle. We can also
say that the canonical bundle is the determinant line bundle of the holomorphic cotangent bundle, in other
words, it is the highest antisymmetric tensor product of the holomorphic cotangent bundle. See [21] for a
more in depth review of holomorphic fiber bundles as well as other definitions.

1.1.5 Calabi–Yau manifolds

A Calabi-Yau manifold,MCY , is a manifold with a specific set of properties associated with it. Simply
put, one can build a Calabi-Yau manifold by imposing certain restrictions:

1 It is complex -
With complex manifolds, by choosing holomorphic numbers as the coordinates, {Cn(z1, . . . , zn)|zi ∈ C},
the coordinate transformations can be carried out in a holomorphic fashion.

2 It is Kähler -
The Kähler part is (1), compatible with the aforementioned complex structure and (2), the holomorphic-
holomorphic components of the metric vanish

gij = gīj̄ = 0, (1.1.105)

where the bar represents the anti-holomorphic components. As a result all that remains are the mixed
components of the metric gij̄ such that:

gij̄ = ∂i∂̄jK. (1.1.106)

Where K is called the Kähler potential5

3 It has vanishing Ricci curvature -
We can think of the zero Ricci curvature condition,

Rij̄ = 0, (1.1.107)
5In this definition, it is not globally defined. If it were, the volume of the compact manifold would become zero, rendering

the manifold incompatible with the requirement that the Riemannian metric be positive definite. Due to this, the Kähler
potential is only defined on coordinate patches.
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as a sort of vacuum Einstein equation, with the Calabi-Yau manifold behaving like the solution to the
Einstein vacuum equation, whereby the solution must adhere to the condition that the manifold be
Kähler.

A result ofM being Kähler is that the Ricci tensor has the form

Rij̄ = ∂i∂j̄ log(detg), (1.1.108)

hence, if we further add thatM is Calabi-Yau, then from condition 3:

∂i∂j̄ log(detg) = 0. (1.1.109)

Whenever we have a function of the above structure - two derivatives equaling zero for any combination
of coordinates - we are able to express the function as a sum of a holomorphic function and its complex
conjugate

log(detg) = f(x) + f̄(x̄), (1.1.110)

detg = Ω(x)Ω̄(x̄), (1.1.111)

where Ω is a locally defined function. The left hand side of equation (1.1.111) transforms like a determinate
of a metric, and so a (n, n)-form - n - totally symmetric holomorphic indices and n totally antisymmetric
anti-holomorphic indices. Under a coordinate transformation, if we have an n-form, it should transform
properly - n holomorphic indices transform holomorphically and n anti-holomorphic indices transform anti-
holomorphically. This implies Ω(x) should be holomorphic and Ω̄(x̄) should be anti-holomorphic. If we
require, for any coordinate patch, the holomorphic and anti-holomorphic properties be compatible with
coordinate transformations, the holomorphic part of the transition functions must belong to the holomorphic
part Ω(x). Likewise the anti-holomorphic part of the transition functions must belong to the anti-holomorphic
part Ω̄(x̄), otherwise, as stated above, Ω(x)Ω̄(x̄) will be incompatible with the coordinate transformations.
This means that

Ω(x) is a (n, 0)-form, (1.1.112)

Ω̄(x̄) is a (0, n)-form, (1.1.113)

(1.1.114)

furthermore, since it is equal to the determinate of the metric which is positive, Ω cannot be zero anywhere
on the manifoldM. In summary, if Rij̄ = 0⇒ ∃ Ω an (n, 0)-form which satisfies two conditions:

• It is holomorphic, ∂̄Ω = 0 ,

• Ω 6= 0 anywhere.

This then gives us another yet equivalent restriction:

4 The first Chern class of a Calabi-Yau manifold M must vanish. It was conjectured by Calabi
and later proven by Yau, that the converse of the above result is also true, that is, if there exists a
globally defined holomorphic (n, 0)-form which is everywhere non-zero, then there exists a Ricci flat
Kähler metric.
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The Chern class is defined as

det
(

1 + i

2πF
)
, (1.1.115)

where F = dA+A∧A. When X is a matrix one can use the relation detX = etr(logX), to expand (1.1.115)
as

e(tr(log(1+ i
2πF)F) = c0 + c1 + c2 + ... (1.1.116)

where here, ci ∈ H2i(M). These are called the Chern classes. More explicitly:

c0 = 1 (1.1.117)

c1 = i

2π trF (1.1.118)

c2 = 1
2

(
i

2π

)2
(trF ∧ trF − tr(F ∧ F )) (1.1.119)

...

By requiring c1 = 0, we require the vanishing of the first Chern class.

One more requirement, using the language of bundles is that

5 The complex manifold M has a trivial canonical bundle - The presence of a globally defined
non-vanishing holomorphic (n, 0)-form Ω as seen in (1.1.112) means triviality of the canonical bundle
is automatically satisfied.

And so, manifolds which satisfy all the above properties are called Calabi-Yau manifolds. In searching for
Calabi-Yau manifolds, what we look for are solutions to the kinds of non-linear partial differential equations
given by inserting gij̄ = ∂i∂̄jK into equation (1.1.111). Yau showed that integrability of such differential
equations and uniqueness of such solutions is guaranteed.

1.1.5.1 Complex 1 dimensional manifolds

To gain an intuitive understanding of these objects as well as to cover a few more concepts, we look at a few
examples of Calabi-Yau manifolds.

1D Complex Torus
We begin by looking at a complex one dimensional - real two dimensional - torus parametrized by:

T 2 = C�Z+ τZ (1.1.120)
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Figure 1.2: Consider the coordinates (x1, x2) in the complex x plane, we can periodically
identify them by allowing them to shift by some integer m and k, such that (x1, x2) ∼
(x1 + m,x2 + k) where m, k ∈ Z The coordinates x1, x2 are real, and so we can consider
some complex combination x = x1 + τx2. This periodic identification turns out to be tangent

to the periodic identification of (1.1.120) by shift of Z and by a shift of τZ.

From Figure 1.2, τ parametrizes the shape of torus, τ is called the complex structure modulus. In
the context of Calabi–Yau manifolds, this complex structure moduli must have a holomorphic (n, 0)-form.
In this case with n = 1, the holomorphic (1, 0) - form Ω is dx:

Ω = dx1 + τdx2. (1.1.121)

It turns out we can extract the complex structure moduli by integrating dx over the homology cycles (Figure
1.3) of the Calabi–Yau manifold - in this case again, the torus.

∫
α

Ω = 1 ,

∫
β

Ω = τ. (1.1.122)

Figure 1.3: We see the two positive homology cycles α and β. Integrating the holomorphic
(1, 0)-form Ω over these two cycles, along the torus, enables us to find the complex structure

moduli τ .

Although, in this example it may seem trivial, extracting the complex structure moduli in this manner it is
a general feature which can be applied to higher dimensional Calabi-Yau manifolds.



1.1. Background - Calabi–Yau Manifolds 25

Since we are dealing with complex manifolds, one can make use of the Hodge-de Rham cohomology

Hp,q = {w ∈ Ωp,q : dw = 0}�dλ, (1.1.123)

where the dimension of the Hodge-de Rham cohomology Hp,q is given by the Hodge number hp,q. In
our complex 1 dimensional torus example, there are only four Hodge numbers, as we are dealing with a
(1, 0)-form. Since for a torus, Hp,q is spanned by dxi1 ∧ · · · ∧ dxip ∧ dx̄j1 ∧ · · · ∧ dx̄jq

hp,q =
(
n

p

)(
n

q

)
, (1.1.124)

so that, we have

h0,0 =
(

1
0

)(
1
0

)
= 1 (1.1.125)

h1,0 =
(

1
1

)(
1
0

)
= dx = 1 (1.1.126)

h0,1 =
(

1
1

)(
1
0

)
= dx̄ = 1 (1.1.127)

h1,1 =
(

1
1

)(
1
1

)
= dx ∧ dx̄ = 1 this is the volume of the one form (1.1.128)

(1.1.129)

Typically the Hodge numbers are displayed simultaneously in what is called the Hodge diamond.

h0,0

h1,0 h0,1

h1,1

=
1

1 1
1

(1.1.130)

To paramterize the torus, in addition to the complex structure moduli τ , we need the area of the torus.
Suppose we try a metric on the space

gij̄ = dxidxj̄ = dxdx̄ (1.1.131)

= dx1dx1 + 2Re(τdx1dx2) + |τ |2dx2dx2, (1.1.132)

where x = x1 +τx2. Next, one can rescale the metric by normalizing the area to one. To do this we multiply
the metric by r

Im(τ) :

gij̄ = r

Im(τ)
(
dx1dx1 + 2Re(τdx1dx2) + |τ |2dx2dx2) , (1.1.133)

where r is now an additional parameter to measure the size of the manifold - here the torus. Substituting
the form of the metric in (1.1.133) into the standard form of the Kähler form:

k = i

2gij̄dx
idxj̄ , (1.1.134)

= rdx1 ∧ dx2, (1.1.135)

we see that r parametrizes the Kähler form. In general the Kähler form is a a linear combination of elements



26 Chapter 1. Introduction

of h1,1. Here however, h1,1 is one dimensional - another reason for the presence of only one parameter. And
so, the parameter r is called the Kähler class.

We see that the geometry of the torus is thus parametrized by two parameters, the complex structure
τ and the Kähler class r. This is not a unique feature of this one dimensional complex torus. In general,
Calabi-Yau manifolds are parametrized by a complex structure and Kähler form. In fact, part of Yau’s
theorem says that if we specify complex structure moduli and Kähler class, then there is one and only one
metric that is Kähler and satisfies the Ricci flatness condition. The moduli space of Calabi-Yau manifolds
is thus referring to the various Kähler class and complex structure of Calabi-Yau manifolds.

It turns out that the torus has this moduli property that transforming τ by the following

τ → aτ + b

cτ + d
;

 a b

c d

 ∈ SL(2,Z), (1.1.136)

we get the same complex structure. In particular the SL(2,Z) structure is generated from two transforma-
tions

τ → τ + 1, (1.1.137)

τ → −1
τ

(1.1.138)

The first one means we can restrict between a band such that any τ outside the band can be translated back
into it.

The second transformation means that any τ inside the semicircle of radius 1 can be moved outside.
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The combined effect of these transformations allows us to restrict τ to what is called a fundamental
domain.

We can use the combination of SL(2,Z) transformation to map points in the band, to any other point in the
upper half complex plain - we can also show that this is a minimum space for which such transformations
can be done, hence the term fundamental domain. The space of the complex structure moduli is given by the
upper half complex plane (H), which one denotes as H

/
SL(2,Z) . What about the space of Kähler moduli?

It turns out that if we consider string theory, then the Kähler class is naturally complexified by introducing
natural real parameters t, θ such that

t = ir + θ. (1.1.139)

The moduli space of r has exactly the same structure of that of the original τ , i.e. H
/
SL(2,Z) . The total

moduli space can thus be written as the tensor product between the two moduli spaces. in order to specify
the geometry of the complex one dimensional torus, we have to specify τ and r.

H
/
SL(2,Z) ⊗ H

/
SL(2,Z) , (1.1.140)

where, H is the same as the group SL(2,R)
/
U(1) . As a group manifold, SL(2,R) does not have a positive

metric. It is an indefinite metric space with one negative direction and two positive directions. By taking
taking the quotient of SL(2,R) with the action of U(1), we achieve a positive definite space, thus making it
equivalent to the upper half plane. Another observation to make is that SL(2,R)⊗ SL(2,R) = O(2, 2). O(4)
is the group of linear transformations which preserves the 4d euclidean space with euclidean signature flat
metric

O(4)⇐= (dx1)2 + (dx2)2) + (dx3)2 + (dx4)2. (1.1.141)

O(2, 2) is similar, but with two negative signs

O(2, 2)⇐= (dx1)2 + (dx2)2)− (dx3)2 − (dx4)2. (1.1.142)

Hence, O(2, 2) is the orthogonal group acting on the space with signature (2,2). Combining all the above,
and noting that U(1) is the same as O(2), the total moduli space can be expressed as

H
/
SL(2,Z) ⊗ H

/
SL(2,Z) = O(2, 2 : Z)

∖
O(2, 2 : R)

/
O(2)×O(2) .
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What is interesting, is that this kind of structure actually persists for higher dimensional torus’ as well
as complex two dimensional Calabi-Yau manifolds.

1.1.5.2 Complex 2 dimensional manifolds

In the case of compact Calabi-Yau manifolds there are only two classes:

1. Two complex (4 real) dimensional torus T 4. In this case the Hodge diamond looks like

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1
2 2

1 4 1
2 2

1

(1.1.143)

One can also check that the Euler characteristic is zero as

χ =
∑

(1)p−qhp,q = 0. (1.1.144)

With regards to the moduli space, the Hodge number h1,1 is of most interest as, in the complex 2d
case, it gives both the number of complex and Kähler moduli parameters. For the T 4 there are thus
in total 8 complex dimension moduli spaces parametrizing the size and shape of the torus. This forms
the coset

O(4, 4 : Z)
∖
O(4, 4 : R)

/
O(4)×O(4) . (1.1.145)

In general for a D-dimensional torus TD then the moduli space is

O(D,D : Z)
∖
O(D,D : R)

/
O(D)×O(D) . (1.1.146)

2. The more interesting case comes from the non-flat Calabi-Yau manifold known as the K3 surface. This
is in fact the only non-flat compact Calabi-Yau manifold in the 2 complex dimensional case. For the
K3 surface the Hodge diamond is given by

hp,q =

1
0 0

1 20 1
0 0

1

(1.1.147)

From this we see that χ = 24. Topologically all K3 surfaces belong to the same moduli space (mapable
to each other via certain deformations of the Kähler class), this is why we say there is only one such
case. Since h1,0 = 0, we say that it contains no isometries. In a classic mathematical context, we can
consider the moduli space of K3 to be real, however with string theory, where we want to complexify
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the moduli space, one then obtains the space of complex moduli together with the space of complexified
Kähler moduli given by

O(20, 4 : Z)
∖
O(20, 4 : R)

/
O(20)×O(4) .

Here the dimension of the moduli space is (20 × 2) + (20 × 2) = 80. One example of a K3 surface is
to look at a polynomial equation on a generalized projective space - this reduces its dimension. CP 3

is one such example. This is just the space of four complex numbers (z1, z2, z3, z4) then rescaled with
λ ∈ C such that the quotient space is the same as CP 3. Next, consider a homogeneous polynomial,
P (z) of degree d, i.e

P (λz) = zdP (z). (1.1.148)

We require homogeneity since we want to impose the condition that

P (z) = 0, (1.1.149)

irrespective of the scaling λ. One can show that the first Chern class is given by:

C1 ∼ (d− 4)C1(CP 3). (1.1.150)

In fact, for the space described by P (z) = 0 to be Calabi-Yau, the first Chern class has to vanish, and
thus d = 4. Take as a simple example

P (z) = (z1)4 + (z2)4 + (z3)4 + (z4)4. (1.1.151)

The resultant space of solutions can be shown to be Ricci flat and Kähler. Of course, this is just one
example, but as stated previously all other examples of K3 surfaces share the exact same moduli space.

1.1.5.3 Complex 3 dimensional manifolds

Of bigger interest, is the three complex dimensional example, or the Calabi-Yau three fold. In string theory
one compactifies 10 dimensions to 4, thus requiring 6 real dimensions, or 3 complex dimensions. In such a
case, the Hodge diamond is

hp,q =

1
0 0

0 h1,1 0
1 h2,1 h1,2 1

0 h2,2 0
0 0

1

(1.1.152)
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The zeros are there to ensure one is not dealing with a torus, or a product of torus with K3. From the
Poincare duality, we also have

h1,1 = h2,2, (1.1.153)

h1,2 = h2,1. (1.1.154)

This gives only two independent Hodge numbers, h1,1 and h1,2. The Euler characteristic is given by

χ = 2(h1,1 − h1,2). (1.1.155)

In general for Calabi-Yau n fold, CYn, hn−1,1 gives the complex structure and h1,1 gives the Kähler class.

1.1.5.4 Complex Structure Moduli Space

In the same way as the CY1, where we were used a (1, 0)-form to describe the complex structure moduli
spaceMC , we can use a holomorphic (3, 0)-form Ω for the CY3, with

∂̄Ω = 0.

This holomorphic (3, 0)-form is not unique. Multiplication of Ω by any complex number gives another
holomorphic (3, 0)-form which is also just as good a candidate to describe the complex structure moduli
space. This means that for each point on a Calabi-Yau manifold, there exists a family of parameters of
holomorphic (3, 0)-forms. Thus, for each point in the moduli space of a specific Calabi-Yau manifold we
have one complex parameter space. It is as if we have a complex line bundle. This gives a natural notion of
metric on the line bundle

‖Ω‖2 = i

∫
MCY

Ω ∧ Ω̄. (1.1.156)

From (1.1.111) we saw that the above is just equal to the determinate of the metric - volume of the
Calabi-Yau space. This allows us to define

K = log‖Ω‖2. (1.1.157)

It turns out this complex moduli space is itself a Kähler manifold, with the K above being its Kähler
potential. This i,MCY has a metric

Gab = ∂a∂b̄K , a, b = 1, ..., h1,2. (1.1.158)

To paramaterize the complex structure moduli space, we use flat coordinates onMCY . We choose the basis
{αI , βI}I=0,1,...,h1,2 of the homology 3-cycle, H3(MCY ), with dimension

dimH3 = h3,0 + h2,1 + h1,2 + h3,0, (1.1.159)

= 2(1 + h2,1), (1.1.160)

since h3,0 = h0,3 = 1 and h2,1 = h1,2. We choose the basis such that αI ∩ αJ = 0 and βI ∩ βJ = 0 but
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αI ∩ βJ = δ J
I . This is just a higher dimensional realization done in the complex 1 dimensional torus, where

we can see the α and β cycles over the torus with α and β intersecting only once. These are known as a
symplectic basis. We can now compute

XI =
∫
α

Ω, (1.1.161)

F I =
∫
β

Ω. (1.1.162)

However, this gives us a redundant amount complex moduli. It should just be given by h2,1 from 2(1+h2,1).
To reduce this, we introduce

ta = Xa

X0 , a = 1, .., h2,1, (1.1.163)

where h0 is just one of the directions of αI and the ratio is to remove an ambiguity when rescaling Ω. It is
these choice of ta which are called flat coordinates. FI is now also determined by XI or these flat coordinates,
in other words it is a homogeneous function of X:

FI = FI(X). (1.1.164)

It can be shown that

FI = ∂

∂XI
F (X). (1.1.165)

This single function F (X) is one of the most important functions when understanding the structure of the
complex moduli space of a Calabi–Yau space. If we know F (X), not only will the relation between XI and
FI be known, but also the metric can be computed. Typically, F (X) is called the pre-potential. The exact
relation between F (X) and the metric Gab can be seen by the following

‖Ω‖2 = i

∫
MCY

Ω ∧ Ω̄ (1.1.166)

=
∑
I

∫
αI

Ω
∫
βI

Ω̄−
∫
βI

Ω
∫
αI

Ω̄ (1.1.167)

=
∑
I

XI F̄I − X̄IFI , (1.1.168)

(1.1.169)

where the decomposition is given by the Riemann bi-linear identities. Since

Gab = ∂a∂b̄log‖Ω‖2, (1.1.170)

we see how F (X) can be used to determine the metric.
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1.1.6 Reflexive Polytopes

When studying Calabi-Yau manifolds, there is a particular interest at looking at the complex and Kähler
moduli of the Calabi–Yau manifold which is denoted X6. Reason being, there exists Calabi-Yau manifolds
which arise in paired or mirror families with dual geometric properties to some other set of Calabi-Yau mani-
folds [25]. How complex structure is varied in one family should compare to how Kähler structure is varied in
the other family. The concept of mirror symmetry stems from the fact that the geometrical properties of two
families X6 and X o6 yield two equivalent physical theories[26]. The study of the mathematical consequences
of such a duality, is what we refer to as mirror symmetry. Consider a complex one dimensional torus (see
Section 1.1.5.1), the geometry of the torus is parametrized by two parameters, the complex structure τ and
the Kähler class r. This is not a unique feature of a one dimensional complex torus. As was shown, in
general, Calabi-Yau manifolds are parametrized by a complex structure and Kähler form. The moduli space
of Calabi-Yau manifolds is thus referring to the various Kähler class and complex structure of Calabi-Yau
manifolds.

An insight by Baytrev was that mirror families of Calabi-Yau manifolds can be described using combi-
natorial objects called reflexive polytopes [20]. Consider a lattice polygon:

Figure 1.4: We call the collection of integer coordinate points in the plane a lattice N . A
lattice polygon is a polygon with vertices on these integer coordinate points.

A polygon is reflexive if it contains if the single lattice point in its interior is the origin. We can describe
a reflexive polygon by listing the vertices and equations of each edge line. Let M be another copy of the
integer lattice. The dot product allows the pairing of points in N with points in M :

(n1 · n2) · (m1 ·m2) = n1m2 + n2m2. (1.1.171)

If we call the lattice polygon in N which contains the point (0, 0) ∆, then the polar polygon ∆o, is the
polygon in M that is given by:

{(m1,m2) : (n1 · n2) · (m1 ·m2) ≥ −1 ∀ (n1, n2) ∈ ∆}. (1.1.172)

For example, consider Figure 1.5 below:
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Figure 1.5: Lattice polygon ∆ with 3 lattice points on the boundary.

by first finding the vertex coordinates, the equations of the edges become:

−x− y = −1, (1.1.173)

2x− y = −1, (1.1.174)

−x+ 2y = −1. (1.1.175)

To find the polar lattice polygon, we use (1.1.172). This then gives us:

(x · y) · (−1,−1) = −1, (1.1.176)

(x · y) · (2,−1) = −1, (1.1.177)

(x · y) · (−1, 2) = −1, (1.1.178)

who’s edge equations describe the new polar lattice polygon ∆o in Figure 1.6 below

Figure 1.6: Polar lattice polygon ∆0 with 9 lattice points on the boundary.

This is to show that if ∆ is a reflexive polygon, then ∆o is also reflexive,

(∆o)o = ∆, (1.1.179)

so ∆ and ∆o are said to be a mirror pair.
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Extending this concept to higher dimensions, if we have a vector {~v1, ~v2, . . . , ~vq} be a set of points in Rk,
the polytope with vertices {~v1, ~v2, . . . , ~vq} is the convex hull of these points. If we let N be the lattice of
points with integer coordinates in Rk, a lattice polytope has vertices in N . Similarly, if we have the dual
lattice M and a dot product

(n1, . . . , nk) · (m1, . . . ,mk) = n1m2 + . . .+ nkmk, (1.1.180)

then we can define the polar polytope ∆o as:

{(m1, . . . ,mk) : (n1, . . . , nk) · (m1, . . . ,mk) ≥ −1 ∀ (n1, . . . , nk) ∈ ∆}. (1.1.181)

This lattice polytope is said to be reflexive if ∆o is also reflexive, in which case, ∆ and ∆o are mirror pairs.

It turns out that polytopes can be translated to polynomials [20, 27]. This can be done in the following
manner:

• Associate the zthi complex variable with the ith standard basis vector in the lattice N ;

(1, 0, . . . , 0)↔ z1 (1.1.182)

(0, 1, . . . , 0)↔ z2 (1.1.183)
...

(0, 0, . . . , 1)↔ zn. (1.1.184)

• For each lattice point within the polar polytope ∆o, one can define a monomial using

(m1, . . . ,mk)↔ Z1(1, 0, . . . , 0) · (m1, . . . ,mk)Z2(0, 1, . . . , 0) · (m1, . . . ,mk) . . . Zk(0, 0, . . . , 1) · (m1, . . . ,mk).
(1.1.185)

• Multiply each monomial by a complex parameter αj , and add up the monomials. This gives us a
family of polynomials parametrized by the αj .

For continuation of the examples, the Laurent polynomials for the polygon shapes in Figure 1.6 are of the
form given by:

α1z
−1
1 z2

2 + α2z
−1
1 z2 + α3z2 + α4z

−1
1 + α5 + α6z1 + α7z

−1
1 z−1

2 + α8z
−1
2 + α9z1z

−2
2 α1 + z2

1z
−1
2 ,

and for Figure 1.5

β1w
−1
1 w−1

2 + β2w2 + β3 + β4w1.

Notice the number of terms are related to the number of lattice points in the polygons.
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Solutions to the Laurent polynomials pα constitute a geometric space. These geometric spaces, when
compactified by using techniques from algebraic geometry, form spaces Xα which are exactly the Calabi-Yau
varieties of of dimension d = k − 1. For k ≥ 4, the possible deformations of complex structure of Xα for a
complex vector space of dimension hd−1,1(Xα) are given by

h1,1(Xα) = l(∆)− k − 1−
∑

Γ
l∗(Γo) +

∑
Θ
l∗(Θo)l∗(Θ̂o), (1.1.186)

hd−1,1(Xα) = l(∆o)− k − 1−
∑
Γo

l∗(Γo) +
∑
Θo

l∗(Θo)l∗(Θ̂o), (1.1.187)

where

• l() = the number of lattice points.

• l∗() = the number of lattice points in the relative interior of a polytope or face.

• Γo are the codimension 1 of faces of ∆o.

• Θo are the codimensions 2 of faces of Θo.

• Θ̂o is the face of ∆ the dual to Θo.

When comparing this to the expressions for X oα one finds the following relations

h1,1(Xα) = hd−1,1(X oα), (1.1.188)

hd−1,1(Xα) = h1,1(X oα). (1.1.189)

This represents the mirror families of Calabi-Yau varieties Xα and X oα of dimension d = k − 1. The classifi-
cation of these Calabi–Yau manifolds thus amounts to that of reflexive polytopes in various dimensions, and
the intense computer work of Kreuzer and Skarke was to combinatorially find such polytopes. For n = 1,
there are 16 such polytopes in R2, and we have Calabi–Yau onefolds, or elliptic curves. For n = 2, there
are 4319 such polytopes in R3, and we have Calabi–Yau twofolds, or K3 surfaces. For n = 3, there are
473, 800, 776 such polytopes, and we have the Calabi–Yau threefolds. In principle, the same Calabi–Yau
geometry can arise from different reflexive polytopes or triangulations of a given reflexive polytope. For the
Calabi–Yau threefolds the Hodge number pairs h1,1 and h1,2 have become a topic of large interest, mainly
as by looking at their distribution, "experimental evidence" of mirror symmetry was seen for the first time.
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1.2 Background - Cosmological Inflation

The current observable Universe is in the order of 91 billion light years in diameter. On such scales,
although one observes a definite structure - stars, moons and planets all clustered together within galaxies
- they are spread throughout the Universe with no particular preference in direction. To all non-inertial
observers, the observable Universe, on scales larger than 300 million light years, is thus said to be isotropic
as well as homogeneous. Observations like these gave rise to important questions in cosmology, of which
are detailed in the section below. Such properties can also be seen in the cosmic microwave background
(up to one part in 10−5). A natural question to ask is: how did the Universe come to this form? Working
backwards through all the various phases of the Universe, one ultimately arrives at the Big Bang - an event6

which occurred 13.7 billion years ago. From this, all matter, known and unknown, formed and interacted to
create the Universe as it is.

Cosmology is thus the study of these interactions, of all matter in our Universe and how we got to where
we are, as well as where we will eventually end up. According to Wilkinson Microwave Anisotropy Probe
(WMAP) and Planck Satellite [28], our Universe is said to be composed of 71.4% dark energy, 24% dark
matter, and a mere 4.6% ordinary matter. This large scale structure, which is responsible for the expansion
of the Universe and for the formation of galaxies, was formed from gravitational instabilities of primodial
density fluctuations originating from the smallest of quantum vacuum fluctuations, the description of which
require tools in string theory and quantum field theory, but made significant due to an exponential expansion
of the Universe known as inflation.

Inflation is thus a branch of cosmology which deals with the Universe at the earliest of times. There are
aspects to inflation which are difficult to study in a purely analytic manner - it is thus our attempt to look
at inflation, or more so the model generation problems for an inflationary theory, from a more statistical
approach. Section 1.2.1 looks at explaining what inflation, in particular slow-roll inflation, actually is. This
then leads us to random inflation in Section 1.2.2 where we discuss random potential models, both for single
field and multi field cases. This gives us the set up for the work in Chapter 3 where we do an entire analysis
on random polynomial potentials.

1.2.1 Inflation

Questioning why the Universe looks the way it does, has highlighted a few important problems. These
are the horizon problem, flatness problem and monopole problem. Why these are of particular interest is
because they give the necessary inspiration to the theory of inflation, even without the precise mechanism
of how it occurred - which is the topic of current research. Firstly, when looking at the Universe from
the perspective of the Cosmic Microwave Background (CMB), Figure 1.7 - we observes an homogeneous
distribution of the background photon temperature.

6The term ‘event’ here is used somewhat loosely as in reality the Big Bang was more of the creation of time and space itself,
in which events themselves can occur
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Figure 1.7: Image [28] from the PLANCK satellite showing the temperature of the latest
remnants of photons after the big bang. This shows the homogeneity of the photon tempera-
ture. Such a picture does not make sense as opposite points of the Universe are not causally

connected.

Photons, released after a phase of the Universe called recombination, were suddenly allowed to spread through
the Universe, cooling down (wavelengths expanding) as the Universe itself expanded. This process of cooling
has continued until current day, where the photon’s wavelengths are now in the microwave region. How then,
are two opposing sides of the Universe so uniform? It’s as if two perfectly isolated systems of gases have the
same temperature and are in equilibrium without having ever been in contact - in order to have equilibrium
of two systems, there needs to be contact for heat transfer to occur. How could the CMB temperature across
different sides of the Universe be the same if they were never causally connected? This is the horizon problem.

The flatness problem, which can also be stated as a ‘fine tuning’ problem, has to do with the very geome-
try of the Universe - it’s just that, flat. This is a rather special geometric configuration of the Universe, with
no apparent reason why it should have positive (spherical shape) or negative (saddle shape) curvature. The
matter density Ω0 of the Universe is what determines the curvature of the Universe. For a flat Universe, one
requires Ω0 = 1. In fact, it has been calculated that the matter density of the Universe is indeed extremely
close to critical density [29]. Moreover, for this to hold after billions of years of expansion, Ω0 must have
been to within 1 part in 1064 of the critical density. In other words, we require such a precise value, as, if
it were even slightly outside that bound, the Universe would either have rapidly contracted again into a big
crunch, or it would have expanded so much that we would not be able to see other galaxies. It indicates
that we do not have a complete model and that something else is required to give us the initial conditions.

Lastly, the monopole problem arises as an anomalous problem of the Big Bang. Since at early times,
the Universe can be described entirely in terms of particle physics, one deals with phase transition defects
within the particles. Because the expansion of the Universe means the temperature of the Universe con-
sequently decreases, these phase transitions arise naturally from particle models with symmetry breaking.
Point defects are regarded as monopoles when they have a particular mass, and they cause fields to point
radially away from them. It is the magnetic field configuration that these phase transition defects exhibit at
infinity that makes them analogous to magnetic monopoles. Calculating the number of monopoles produced
in events, such as electroweak symmetry breaking, reveals that magnetic monopoles should dominate the
matter content within the Universe; this creates a contradiction, as we have never directly, or indirectly,
observed monopoles in the Universe7.

7The presence of monopoles would have a measurable effect on the curvature of the Universe and thus the Hubble parameter.
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Inflationary scenarios dictate an extremely rapid expansion of the Universe. Such an expanding Universe
introduces what is referred to as a scale factor a(t) ∼ expHt, where for inflation, n > 1 indicating a faster
than light expansion of the Universe. Often assosciated with the scale factor is the Hubble parameter H
which is a value that is time dependent and which can be expressed as

H ≡ dta(t)
a(t) . (1.2.1)

The fundamental difference of inflation, as opposed to another contrasting model known as the DeSitter
model, is to limit the amount of time that this rapid expansion occurs. Desitters model, based purely on
solutions to Einsteins equations, failed to produce a Universe which looked like ours. Instead, it predicted
an empty Universe with almost no radiation or matter. Guth, the pioneer of modern inflationary models,
suggested that inflation was related to particle physics [30]. This suggested how cosmology could be united
with particle physics in a phenomenological manner. By consequence of this, models for inflation suffer
from the fact that they are essentially phenomenological. The potentials for the quantum fields that are
responsible for inflation are generally introduced by hand. There are a lot of inflationary models currently
circulating, from single field inflation to multifield inflation to large field inflation. Some models employ
simple polynomial potentials for their fields, other models such as assisted inflation, consists of a series of ex-
ponential terms. The issue is that, there is no agreed method of looking for and studying certain inflationary
potentials, and so a lot of the time studies are done ad-hoc. Any kind of potential can only be considered as a
candidate for inflation if; it satisfies a certain set of slow-roll conditions, and the proposed inflation ends once
those conditions are violated. Instead of scanning through particular kinds of potentials or models, there is
something to be said about the general solution space of potentials which satisfy slow-roll conditions. By
adopting some techniques and results from random algebraic geometry, one can then generate potentials for
single scalar fields (inflatons) or even multifields, whose coefficients are randomly distributed and are of the
order of the GUT scale. One can then ask something about the distribution of these potentials which satisfy
slow-rolling. This then may elucidate the problem of which kind of potentials are preferred for inflation and
if they are at all realistic.

How does string theory come into contact with cosmological inflation? The notion of what constitutes
a natural inflationary model can be seen when generating effective theories in string theory. The moduli of
compactifications is one geometric construction which involves the presence of many light scalar fields [31,
32, 33, 34]. It is these moduli which play a central role in the theory of inflation as they affect both the back
evolution and perturbations. Of course from a pure inflation perspective the multitude of fields can seem
unnecessary, however they are very common in string theory. Ultimately, inflation is the study of scalar
fields. The most famous example of a scalar field with spontaneous symmetry breaking is that of Higgs field
which breaks the electro-weak symmetry. The Higgs field was discovered, and verified, at the Large Hadron
Collider at CERN. The association that scalar fields have with symmetry breaking is not limited to the
Higgs fields, but also extends to GUT symmetries and supersymmetry.

Due to the phenomenological nature of inflation, it is not straight forward in choosing a suitable potential
for the relevant scalar field. Fundamentally, inflation is characterized by a period of rapid expansion in the
Universe for a certain period of time. This idea can be expressed in the following way. Consider the Friedman
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equation in a flat Universe, written as

ȧ =
√

8πG
3 aρ1/2, (1.2.2)

here, ρ is the cosmological density which obeys the conservation equation

ρ̇ = −3 ȧ
a

(ρ+ p), (1.2.3)

where p is the pressure. Now, taking the time derivative eqn (1.2.2), and making use of the conservation
equation, we have

ä = −8πG
3

ȧ

2ρ1/2 (ρ+ 3p). (1.2.4)

For as long as the Universe is expanding, ȧ remains positive. Because of this, the condition for accelerated
expansion is simply

ρ+ 3p < 0. (1.2.5)

One could state that a cosmological constant Λ with p = − 1
3ρ could allow for the above condition to hold.

However, Λ does not decay and thus one would be left with an everlasting accelerating Universe. Requiring
an end to inflation, implies "something must happen". By virtue of this statement we are able to postulate
the existence of an "arrow of time". Therefore, the type of matter responsible for inflation cannot be exactly
in equilibrium. To fix this, we introduce a scalar field (called the inflaton) which is slowly rolling down the
valley of some potential. The length, number of e-folds, at which this rolling stage lasts is what determines
if one has successful inflation - we are able to solve the various problems such as the flatness and horizon
problems. It turns out that the number of e-folds required for successful inflation is between 60 and 100
e-folds. We can "test" for successful inflation by studying what are called slow-roll conditions. The simplest
way of describing what these slow-roll conditions are, is by looking at a single scalar field.

The general action for a scalar field in curved space-time is

S = −
∫
d4x
√
|g|(Lg + Lϕ), (1.2.6)

where typically, L = R
16πG . For the scalar field

Lϕ = 1
2g

µν∂µϕ∂νϕ− V (ϕ). (1.2.7)

It turns out that the energy momentum density and pressure of such a homogeneous scalar field is

ρϕ = 1
2 ϕ̇

2 + V (ϕ), (1.2.8)

pϕ = 1
2 ϕ̇

2 − V (ϕ). (1.2.9)
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Taking 1
2 ϕ̇

2 � V (ϕ), ρϕ ∼ −Pϕ, the energy conservation then becomes

ϕ̈+ 3Hϕ̇+ ∂V (ϕ)
∂ϕ

= 0, (1.2.10)

which, together with Friedman equation, fully specifies the system. By taking the time derivative and
squaring of

H =
√

8πG
3 (1

2 ϕ̇
2 + V (ϕ)), (1.2.11)

one derives another useful formula

2HḢ = 8πG
3

(
ϕ̇ϕ̈+ ∂V (ϕ)

∂ϕ
ϕ̇

)
, (1.2.12)

= 8πGϕ̇2, (1.2.13)

Ḣ = −4πGϕ̇2. (1.2.14)

Using the slow-roll approximations

1
2 ϕ̇

2 � V, (1.2.15)

ϕ̈� 3Hϕ̇ ∼ |V ′|, (1.2.16)

one obtains the slow-roll parameters

ε = 1
16πG

(
∂V/∂ϕ

V

)2
; η = 1

8πG
∂2V/∂ϕ2

V
(1.2.17)

such that the slow-roll conditions will read

ε� 1 ; η � 1. (1.2.18)

Unfortunately, although these are necessary conditions for the slow-roll approximation to hold, they are
not sufficient, since even if the potential is very flat, it may be that the scalar field has a large velocity.
Typically when choosing a potential, one checks to see if the slow-roll conditions are satisfied, in other
words, one makes sure that the shape of the potential is flat enough such that the inflaton rolls down slowly
enough. Once the rolling stops, inflation has ended, thus the potential needs to sustain slow-rolling long
enough such that the slow-roll conditions are satisfied for approximately 60 e-folds. For a review of inflation
as well as summary of observational results see [35, 36].

1.2.2 Random Slow-Roll Inflation - A Computational Approach

In the presence of a well-established and fundamental theory of inflation, there would exist a specific
form of a potential V (φ), from which we could measure certain physical parameters. With the absence of
such a theory, we settle with the task of choosing arbitrary forms of the inflationary potential, and work
towards building a variety of models - all of which generate a multitude of possible inflationary theories.
The ability to arbitrarily choose potentials for various models has brought with it a sense of disorder and
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obscurity. How does one systematically explore different models and classify their relevance, when already
a multitude of models have been presented? By constraining the inflationary scenario at a level matching
the accuracy all current and new data, [37] presents a sort of encyclopedia of such models, presenting 74
different ones. It is in this context that random inflation can help out. In general, studying random inflation
can have several meanings. For single field or a small number of fields, random inflation may imply scanning
through randomly generated potentials and looking at how many satisfy the conditions for slow-roll inflation
presented in the previous section. Alternatively we can study a specific potential, and randomly generate
the initial conditions of the inflation, thereafter; within the random distribution of initial conditions, we
study the landscape of initial conditions and study which ones favour inflation for a particular model. Such
models are expanded in more detail in Section 1.2.2.1.

With multifield inflation, the need for random inflation is almost necessary. Considerable interest exists
in fundamental particle physics theories, like supersymmetry or string theory often containing hundreds of
scalar fields, which become relevant at energy scales near to that of the inflationary energy scale. Frazer
and Liddle [38] mention that although it would be nice to understand what observables are specific to what
models, in reality, due to the contrived nature of these models, this task is rather difficult. By introducing
randomness to models and applying Monte Carlo techniques, it may be possible to understand the general
features of such models. Another issue raised by them, is that multifield models have an almost infinite
number of ways to inflate, the task of understanding how the potential energy driving inflation is distributed
among all these fields becomes an incredibly difficult one. This problem is often referred to as the measure
problem, and it deals with attempting to handle the infinite choices of initial conditions [38, 39, 40, 41].

In general, the approach that random multifield inflation adopts, is to study the dynamics of inflation
in multifield models by creating an ensemble of random potentials - where the "randomness" is usually
contained in the ability to construct such potentials8. Then, through a statistical analysis, one can make
some comments on the inflationary landscape produced by their respective models.

1.2.2.1 Single Field inflation

There is no real pedagogical structure to random inflationary models - a consequence of the obscurity sur-
rounding this particular sector of the field. And as mentioned earlier, such models are generally ruled out
as real world inflationary theories. Thus, pedagogical explanations of how these models work cannot be
separated by who developed the models. Some models are a lot more standard, and rely on mathematical
distributions to determine their randomness, other models are more sophisticated or specialized as to suit
their authors’ task. What follows is a succinct recount of, what we may refer to as, "basis models". Many
other models are, or have been, developed using these basis models as inspiration, as a point of reference or
as reconfirmation of results obtained.

The work done in [43] constructs a large ensemble of potentials for single field inflation and looks at the
dynamics statistically. In their Monte Carlo analysis, they looks closely at how the cosmological parame-
ter probability distribution fp(p), predicted by inflation, depends on the inflation potential V (φ) and the

8The study of random potentials is not only limited to inflation. It is often useful to borrow techniques for the random
generation of potentials from other aspects in physics, particular string theory and quantum field theory [42], and then adapt
them to inflation.
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measure. These potentials have the form:

V (φ) = m4
vf

(
φ

mh

)
, (1.2.19)

where, mv and mh are constants which absorb the characteristic energy scales of V (φ), and f is a one
dimensional Gaussian random field with unit variance, that is:

f(x) = a0√
2

+
n∑
k=1

ak cos
(
kx√
n

)
+ a−k sin

(
kx√
n

)
, (1.2.20)

and the (2n+1) Fourier coefficients a−n, . . . , an are independent real-valued Gaussian random variables with
zero mean and variance

〈a2
k〉 = A

∑
qγe−

q2
2 , (1.2.21)

with q ≡ k/
√
n, and the normalization constant A is chosen such that 〈f(x)2〉 = 1

2
∑n
k=−n〈a2

k〉2 = 1 . By
choosing a variety of options for n and γ, they find that resulting parameter probability distribution fp(p)
is rather insensitive to the detailed shape of f , but depends strongly on the energy scales mh and mv.

Slow-roll inflationary potentials, irrespective of their construction, fundamentally require that the infla-
ton "roll" down the potential towards a minimum, slowly enough such that the slow-roll conditions are met.
Polynomial inflation models have the advantage of being able to include an arbitrary number of fields in the
potential. These potentials will inherently contain many minima - one just needs to look for them.

Figure 1.8: An illustration of different first order polynomial functions of degree 3, 4, 5.
which could all be used as example forms of a scalar field potential.

The 1 dimensional polynomial function of various orders showcases this point - see Figure 1.8 above.
The higher the order, the more one can fiddle with this polynomial function to achieve various shapes. This
"fiddling" relates to the adjusting of the polynomial coefficients. Given a polynomial of a single variable with
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various orders:

y1(x1) = a1 + b1x1 + c1x
2
1 + d1x

3
1, (1.2.22)

y2(x2) = a2 + b2x2 + c2x
2
2 + d2x

3
2 + e2x

4
2, (1.2.23)

y3(x3) = a3 + b3x3 + c3x
2
3 + d3x

3
3 + e3x

4
3 + f3x

5
3, (1.2.24)

one can construct polynomials of different shapes depending purely on the coefficients. There is only one
constraint on the coefficients, they need to give a function with minima. Since there are infinite ways of
choosing the coefficients, and each choice leads to a potential which may have minima satisfying the slow-roll
conditions, studying them all is not a simple task. The approach here is a random polynomial construction
of a fixed order and field number. Thereafter, randomly choosing coefficients according to some distribution,
we test each function looking for minima then testing the slow-roll conditions.

1.2.2.2 Multifield Inflation

Extending to multifields becomes more difficult. Increasing the dimensions to two introduces a problem not
present in the D = 1 case. For D = 1, there are only two directions one needs to look. If one continuous
along the curve, assuming all the polynomial coefficients obey minima conditions, one will eventually reach
a minima. How do you choose this direction in multifield function? For example, consider the third order
polynomial of degree 2, given by the form below:

f1(x1, z1) = a0 + a1x1 + a2z1 + a3x
2
1 + a4z

2
1 + a5x

3
1 + a6z

3
1 + a7x1z1 + a8x1z

2
1 + a9x

2
1z1 (1.2.25)

Figure 1.9: An illustration of a third order multivariate polynomial functions. There are
various directions in which an inflation may roll - each potentially satisfying the slow-roll

conditions.

Again, the choice of coefficients will determine the shape and the presence of minima. To find these
one has to begin by first choosing a point on the surface, and then choose to move in some direction. On
top of this, it is not so straight-forward to determine what relationship between coefficients will guarantee
minima. This problem just intensifies with the number degree of the polynomial function. Although a
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simple approach, due to computational speed restrictions, random polynomial potentials are limited to a
small number of fields. It is however unknown how polynomial inflation depends on the choice of coefficients.
And so, we can perform relevant computations to determine the inflationary landscape of such potentials
determined by the random choosing of the coefficients. See Chapter 3 for a more detailed analysis of single
and multifield polynomial potential models.

Typically, most random potentials are derived from a Fourier series expansion creating a global potential.
How the models differ depend on the statistical distribution of coefficients, and other slight modification to
the expansions. The standard approach is looking at a truncated Fourier series:

V =
n∑

J1,...,JD=1

(
aJ1...JD cos

D∑
i=1

Jixi + bJ1...JD sin
D∑
i=1

Jixi

)
, (1.2.26)

or in terms of wave vectors one could have a multifield generalization of eqn (1.2.20). One can apply different
statistical constraints on the random potential and the distribution of the coefficients to obtain a model that
will respect certain desired properties.

In slow-roll inflation, one of the requirements is that inflation needs to end close to a minima. Thus
by scanning the potential for minimas, one can say something on the likelihood of inflation occurring. Of
course, no minima signifies no inflation. However just the presence of a minima is not good enough. Further
slow-roll conditions need to be satisfied in order to have successful inflation. The task of generating random
potentials moves then to understanding the resultant structure of the Hessian matrix H which classifies the
extrema. When V is a random potential, H becomes a random matrix9(see [44, 45] for text on random
matrices). This problem has been done in [46, 47] and extended in [48].

An issue surrounding the "static"10 models mentioned previously, is the computational complexity of
statistically analyzing large ensembles. One way to address this is by generating random potentials using
Dyson Brownian motion [49]. More specifically, one requires that the Hessian matrix (H) at some point in
field space undergoes Dyson Brownian motion. Consider some arbitrary path in field space Γ, at some point
p0 along the path, the potential Vp0 , the derivative V ′p0

and the second derivative V ′′p0
can all be defined. By

requiring that

H(p1) = H(p0) + δH. (1.2.27)

We can, in theory, specify the Hessian matrix at point p1. Performing such a process iteratively along Γ
will build the potential along that path. The potential here is only defined locally, thus we cannot ask
questions about the potential globally. According to [49], the perturbation matrix δH is constrained by
certain symmetry arguments, such as statistical rotational invariance and statistical independence of the
entries of the H. The evolution process of δH is obtained by stipulating that each matrix element of H
undergoes an independent Brownian motion between the nearby points p0 and p1. At the point p0 where
all the parameters are specified, the equations of motion will determine the inflationary trajectory for some

9Although H is random, what ever structure and constraints was imposed on the potential, will be manifest in the Hessian
matrix.

10By static, one refers to the fact that the potential is defined everywhere globally, and does not change.
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distance δ, at which point the Hessian undergoes Dyson Brownian motion. From this, the new potential is
found at point p1 = p0 +δ. This process then repeats itself until a metastable vacuum is met, which however,
does not always happen.

This technique greatly benefits computing times. The authors in [49] claim that the number of terms
required to study a given path in Dyson Brownian motion is some polynomial order in N , and the number of
term required to define the potential - up to a second order expansion in some local charts - is at most O(N3).
Using this as a comparison to other constructions of random potentials, for example, using a super-position
of a number of Fourier modes in a truncated Fourier series, where the coefficients belong to a statistical
ensemble ( for examples of such potentials see [43, 50, 38]), it turns out that at large N , the number of terms
required for the potential in this basis, is of the order of the number of N -dimensional wavevectors, ~k. After
applying some UV and IR cut off limits, the total number of terms scales exponentially with the number of
fields.
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1.3 Background - Applied Conformal Field Theory

Advancement within the field of physics itself is ripe with situations where techniques borrowed from
other fields have contributed to breakthroughs. Physics and mathematics have, in particular, a history of
mutual information exchange. Advancements of topics within differential geometry and algebraic geometry,
translate to advancements in general relativity and quantum field theory. Vice versa, advancements in parti-
cle physics and string theory enable breakthroughs in group theory etc. With physics, one develops problem
solving tools, some more advanced than others, some less applicable than others. All of which, when used
or adapted in the correct context can shed light, irrespective of the field.

Conformal field theory is one such topic in physics which makes use of very useful tools. Quantum field
theory, at fixed points of renormalization group flows at second order phase transitions, is scale invariant [51,
52, 53]. Simply put, scale invariance implies "self-similarity" - zooming into an object which is scale invariant
does not change the features of that object. Within physics, the interpretation of this invariance changes
depending on the theory, for example in classical field theory, scale invariance means the theory does not
depend on the length scale [54], whereas in quantum field theory, it implies particle strength interaction
is not dependent on the energy of the particles [55]. From the perspective of statistical physics, it implies
fluctuations of a phase transition at a critical point occur at all length scales [55]. At the critical point within
a system, it is said that the Hamiltonian flows under the renormalization group into a critical fixed point.
Thus, under such a flow, the coordinates of the system transform according to:

r− −→ b−1r, (1.3.1)

where b is a constant rescaling factor. Such a transformation is called a scale transformation. Once the
Hamiltonian flows to the fixed point, its parameters no longer change, and it is said to be scale invariant.
At this fixed point, invariances within the system, like rotational lattice invariance, have a Hamiltonian that
will share the same rotational invariance. Under a general element of of the group formed by translation,
rotation and dilatation, an arbitrary correlation function of scaling operators transforms as:

〈φ1(r1)φ2(r2) . . .〉 =
∏
j

b−xj 〈φ1(r′1)φ2(r′2) . . .〉 , (1.3.2)

with xj being the scaling dimension of φj . It turns out that in quantum field theory scale invariance is just
a subset of the larger group of symmetries that is conformal symmetry. A powerful feature of conformal
field theory, is that the symmetries which are often very restrictive problems can be solved for what would
otherwise be intractable. As an example, conformal invariance fixes 2- and 3-point functions entirely. In
an ordinary quantum field theory, especially one at strong coupling, these would be hard or impossible to
calculate at all without making use of these methods.

Conformal field theories, are theories which admit a symmetry group larger than just the Poincaré
spacetime, and Galilean symmetries. The added symmetries comes from the addition of invariance under
scale transformations. In 2-dimensions, this symmetry is particularly powerful as it is infinitely dimensional -
putting a powerful constraint on the structure of the Hilbert space as well as the operator algebra. Essentially,
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it is the symmetries of these conformal transformations within a conformal field theory which make it so
powerful and interesting. Conformal transformations are ones which preserve angles between vectors, but not
necessarily distances. Thus a conformal transformation locally corresponds to the same group of translation,
rotation and dilatation transformations.

1.3.1 Correlation functions

Since conformal field theory is incredibly vast, it is relevant to focus on correlations functions and how we
can calculate them in 2D. This forms the basis of inspiration of how research in Chapter 4 was conducted.
One simpler and perhaps more illuminating way of introducing correlations function in a sufficient manner,
is by using a toy model known as the Ising model.

To describe physical systems, one needs the laws governing the fundamental properties of that system.
Take the expansion of a solid for example; by knowing certain macroscopic properties of the solid one can
describe its compressive/expansive behaviour. Such behaviour should be independent of the microscopic
behaviour of the individual atoms and molecules which together comprise the solid. That is, you don’t
expect the macroscopic behaviour to change even if you halve the size of the object, while still maintaining
all other variables constant of course. However, there is a limit to this argument. Eventually, if you continue
to decrease the length scales of the macroscopic sample, we will encounter a situation where the microscopic
properties will differ significantly from one sample to the next. The length scale at which this begins to
happen is called the correlation length. This is the length over which degrees of freedom of an atom(in
the case of materials) is correlated to another. Two collections of atoms in a particular sample separated
by lengths longer than the correlations length are effectively disconnected, and so there is no appreciable
difference in the macroscopic properties if the two samples are severed from each other. Typically what
determines the correlation length are the external properties set by the state of the material. Points at
which the macroscopic behviour changes abruptly is known as a critical point. Consider water at the critical
point, where all three phases of matter exist simultaneously - properties of the material change in all the
various phases, of which all coexist together at the same point. For certain systems whose phase transitions
are continuous (Curie temperature in a ferromagnet, or liquid-gas critical point) have a correlation length
which is effectively infinite - fluctuations in the material affect the material over all length scales. The 2D
Ising model is a useful model to describe quantitatively this critical point behaviour.

The Ising model represents the magnetic dipole moments of atomic spins. Atomic spins σi can be in
either one of two states +1 or −1 - often denoted with an arrow up or down respectively. These atomic spins
are arranged in a 2D lattice structure. Variables such as external magnetic field β and temperature T affect
the spin of each lattice site.

1.3.1.1 Two point functions

In an Ising model, one studies the spin-spin correlation functions. This tells us the ‘amount of correlation‘
we expect between two spins for a given distance apart. Since each the spin at each lattice site affects it’s
nearest neighbour, the Ising model is said to have nearest neighbour interactions. The extent over which a
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single lattice site can affect other lattice sites, depends on the correlation length. The correlation function
can be calculated using the following:

f(r) = 〈σiσj〉 − 〈σi〉 〈σj〉
〈σi〉 〈σj〉

, (1.3.3)

where σi and σj are the spins sitting at different lattice sites separated by a distance r. The way we calculate
〈σiσj〉 is by simply multiplying the spin value of the two sites together. This means if σi = σj , σiσj = 1 else
σiσj = −1. We sum these values over all possible pairings of two lattice site points which are all exactly the
same distance r apart and take the average. This gives us a value between 0 (no information exchange) and
1 (maximal information exchange). 〈σi〉 〈σj〉 is just the average value of all the spins across all lattice sites.
The resulting behavior of f(r) has the following form:

f(r) ∼ 1
rα

exp
[
−r
ξ

]
. (1.3.4)

Here, ξ is the correlation length of the system. It typically varies with the temperature and indicates the
distance over which spins will respond to one another. Both at high and low temperatures, you have a very
small correlation lengths - at high T , spins will fluctuate rapidly and independently of each other, whereas
at low T , although the spins are mostly aligned, flipping σi will have hardly any effect another spin site σj .
There is a critical point however, whereby the correlation length becomes infinite. This, as mentioned above,
is signaling a phase transition. At the critical point you have that χ→∞, thus exp

[
−r
ξ

]
→ 1 and

f(r) ∼ 1
rα
, (1.3.5)

with α = 0.25 for the Ising model.

1.3.1.2 Three point functions

There is also a three point correlation function which takes into account three spin sites σi, σj , σk, not two.
Similar to above, it is defined as:

f(R) = 〈σiσjσk〉 − 〈σi〉 〈σj〉 〈σk〉
〈σi〉 〈σj〉 〈σk〉

. (1.3.6)

We obtain correlations in very much a similar manner. The resultant behaviour of the average correlation
also follows a power law:

f(R) ∼ 1
Rη

exp
[
−R
χ

]
, (1.3.7)

where R = rijrikrjk.

1.3.1.3 Understanding what correlations show

By construction, n-point correlations give us an indication of how related points are to each other. Knowing
information about the state of one point gives us a probabilistic description of states of the other points in
the correlation. Typically there is an underlying mechanism which gives rise to these relations. If we are
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dealing with points in space, the distance between points, at which these relations break down, is associated
with the range of influence points have with one another. In the context of physical systems this has direct
consequences to the properties of matter. This behavior between points, can be studied just by analyzing
these n-point correlations.

Consider a 2D grid whereby every element has two possible states, either 1/0 or 1/ − 1. To get an
intuitive feel for what these correlation functions show, consider just the two points correlation function on
the following three 2D grid setup:

(a) Random distribution (b) Checkered distribution

(c) Inverse distribution

Figure 1.10: 500× 500 grids of points with different distributions. White and black blocks
are represented by 1 and -1 respectively. For the purposes of clarity of illustration, the

checkered grid is shown using an 80× 80 grid.

In this setup, the two point correlation function is the sum of all products of two element entries separated
by a distance r and averaged over that particular distance. In other words, if say points p1 = −1 which is
2 units away from p2 = 1 then the correlation is −1 × 1 = −1. Clearly, only when two elements are equal
is the correlation 1 and when they are opposite the correlation is -1. Thus, in this particular setup, when
considering many points, the closer the average correlation is to 1, for a given separation, the more likely
that all those points are correlated to one another, or in other words, the more likely that the state of one
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element will affect the state of another element. Similarly, the closer the correlation is to −1, the more likely
points are anti-correlated - in of itself a form of correlation. Points that have an average correlation of −1
mean that you if a point is one of the two states, there is a strong likelihood that the other point is the other
of the two states. The average correlations for the distributions can be seen in Fig. 1.11

(a) Correlation of random distribution. (b) Correlation of checkered distribution.

(c) Correlation of Inverse distribution.

Figure 1.11: The plots of average correlation for a given separation distance r. The large
variation that occurs in (A) at r = 500 are artifacts given by the dimension of the grid.
Over these distance, the correlations are biased as only certain diagonal directions can be

considered, thus they are never considered in the analysis.

As expected, for a random distribution, the average correlation is zero, since there is no relationship
between states of each element. For the checkered distribution, each alternating distance has a correlation
of exactly 1 or −1, this is due to the geometry of the setup. For a given white block, each block exactly
one unit away is always black, and two units is always white again. Consider the first few entries in the
correlation list:

(r, correlation) =
(
(1,−1), (

√
2, 1), (2,−1), (

√
5, 1), (

√
8,−1), (3, 1), (

√
10,−1)...)

)
. (1.3.8)

The two point correlations encode, that every alternating element is opposite to it’s nearest neighbour.
Lastly, the inverse distribution was generated by randomizing with a weighted condition:

P (1,−1) =
(

500
500− i+ 1 ,

500
500− i+ 1 − 1

)
, (1.3.9)

where, i = 1, 2, ...500 indicates the row number. As we see at small i. the probability that an element has the
state of 1 is much higher than that of −1, then as i increases, this gets less and less. The average correlation
plots shows this by having a positive average correlation at small r which then decreases as r increases -
points become more and more anti-correlated at larger distances.

For certain systems, the correlation function - which generates the plots - has specific forms. These forms
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are an indicator of how elements in the system communicate which each other, as well as how strongly they
communicate with each other.
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Patterns in Calabi–Yau Distributions
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2.1 Introduction

A Calabi–Yau n-fold is a Kähler manifold of n complex dimensions with a trivial canonical bundle. In
superstring theory, it serves as a compactification manifold wherein a ten dimensional theory at high energies
reduces to an effective theory in four spacetime dimensions. In particular, global SU(n) holonomy ensures
that 21−n of the original supersymmetry is preserved. Thus, confronted by the vacuum selection problem,
Calabi–Yau compactifications present an avenue for Standard Model building especially in the context of
the heterotic string [56, 57, 58, 59]. Indeed, the basis of the landscape is to consider flux compactifications
on these geometries [60, 61].

To facilitate this approach to a low-energy phenomenology derived from string theory, mathematicians
and physicists have constructed large datasets of Calabi–Yau threefolds [62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75] as well as various refined analyses of properties thereof [76, 77, 78, 79, 80, 81, 82, 83].
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By far the largest database was constructed in a tour de force of algebraic geometry, combinatorics, physics,
and computer algorithms by Kreuzer and Skarke based on the theorems of Batyrev and Borisov [63, 64,
65, 73, 74, 75, 84, 85]. In short, these Calabi–Yau n-manifolds Xn are realized as a smooth hypersurface
embedded in a toric variety An+1 of complex dimension n + 1; the Calabi–Yau condition simply translates
to the requirement that the polytope defining An+1 be reflexive. We will henceforth consider only such
Calabi–Yau manifolds, of which there are a plethora.

Let us briefly recollect what all this means. The (possibly singular) toric variety An+1 is specified by an
integer polytope ∆ in Rn+1, which is a collection of vertices (dimension 0) each of which is an (n+ 1)-vector
with integer entries and such that each pair of neighboring vertices defines an edge (dimension 1), each pair
of edges defines a face (dimension 2), etc., all the way up to a facet (dimension n). Alternatively, ∆ can be
defined by a set of integer linear inequalities, each of which slices a facet. The polytope is then the convex
body in Rn+1 enclosed by these facets. We will always include the origin as being contained in ∆. Using the
usual dot product 〈 , 〉 inherited from Rn+1, the dual polytope is defined by

∆◦ :=
{
v ∈ Rn+1|〈m, v〉 ≥ −1,∀ m ∈ ∆

}
. (2.1.1)

The polytope ∆ is reflexive if all the vertices of ∆◦ are integer vectors. In this case, we can define the
Calabi–Yau hypersurface Xn explicitly as the polynomial equation

∑
m∈∆

cm

k∏
r=1

x〈m,vr〉+1
r = 0 , (2.1.2)

where vr=1,...,k are the vertices of ∆◦ with k being the number of vertices of ∆◦ (or equivalently the number
of facets of ∆), xr are the coordinates of An+1, and cm are numerical coefficients parameterizing the complex
structure of Xn. Indeed, the reflexivity of ∆ ensures that the exponents are integral whereby making the
hypersurface polynomial as required.

The classification of these Calabi–Yau manifolds thus amounts to that of reflexive polytopes in various
dimensions, and the intense computer work of Kreuzer and Skarke was to combinatorially find such polytopes.
For n = 1, there are 16 such polytopes in R2, and we have Calabi–Yau onefolds, or elliptic curves. For n = 2,
there are 4319 such polytopes in R3, and we have Calabi–Yau twofolds, or K3 surfaces. For n = 3, there
are 473, 800, 776 such polytopes (which was a formidable computer task!), and we have the Calabi–Yau
threefolds. This sequence

{1, 16, 4319, 473800776, . . .} (2.1.3)

of remarkable growth rate, can be found in the Online Encyclopedia of Integer Sequences [86]. The numbers
in higher dimension are still not known, nor has there been an asymptotic analysis of their growth. It
should be emphasized that generically a reflexive polytope corresponds to a singular toric variety even
though the hypersurface is chosen (by generic coefficients cm) to miss the singularities and hence ensuring
the smoothness of the Calabi–Yau Xn. For example, of the some half-billion reflexive polytopes in R4, only
136 A4 are in fact smooth [87]. As we desingularize the toric variety by various star-triangulations of ∆,
we are led to potentially inequivalent Calabi–Yau manifolds. In principle, the same Calabi–Yau geometry
can arise from different reflexive polytopes or triangulations of a given reflexive polytope. Whereas K3
is essentially unique, we do not know how many Calabi–Yau threefolds there are. A systematic study
to classify the desingularizations, to compute the necessary topological data, and to build an interactive
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Figure 2.1: (a) The cumulative plot of χ = 2(h1,1−h1,2) on the abscissa versus h1,1 +h1,2

on the ordinate for Calabi–Yau threefolds as hypersurfaces in toric fourfolds; (b) marking
also the natural logarithm of the multiplicity of the Hodge pair with a color grading.

online database [66] is under way. The moral is that there are almost certainly far more than half a billion
Calabi–Yau threefolds!

Luckily, the Hodge numbers depend only on the polytope and not on the choice of desingularization.
(The intersection numbers, however, do depend on the choice.) For Calabi–Yau threefolds, the pair of
Hodge numbers (h1,1, h1,2) is a famous quantity. Indeed, the plot in Part (a) of Figure 2.1 has become
iconic. Here, the sum h1,1 + h1,2 is plotted against the Euler number χ = 2(h1,1 − h1,2), and the left-right
symmetry supplies “experimental evidence” for mirror symmetry. There is enormous redundancy in this
data: of the some half a billion reflexive polytopes, there are only 30, 108 distinct pairs of Hodge numbers
and the pair (27, 27) dominates the multiplicity, totaling almost one million. In Part (b) of Figure 2.1 we
have attempted to visualize the distribution of the multiplicity by having a color density plot of the logarithm
of the number over each Hodge pair.

Understanding this multiplicity forms the inspiration for the present work. While there have been analyses
on the shape of the funnel-like plot [83, 81, 76], there has not been much work on its density, i.e., the
distribution of the multiplicity of Hodge data for the Calabi–Yau manifolds of various dimension. Of course,
fundamentally, this is entirely due to the combinatorics of reflexive polytopes and might in principle be
analytically determined. However, given the complexity of the problem it is expedient to analyze the available
data which have been compiled over the years, observe intriguing patterns, and draw statistical inferences
before turning to analytic treatments. This is what we achieve in this work.

The organization of the paper is as follows. We perform a detailed analysis on the structure and behavior
of the threefold data in Section 2.2. This is motivated by looking for an exact function describing the
relationship of the distribution of the Hodge pairs (h1,1, h1,2) with frequency.

In Section 2.2.1, we study the distribution of (h1,1 − h1,2, f). We find that this distribution is composed
of a family of curves, for which each curve can be described using a modified pseudo-Voigt model. Although
an approximation, the model is able to describe the general trend of the data, as well as some additional fine
structure within each individual data point. Performing an analysis on the parameter relationships shows
that three out of the five parameters can be expressed as a single variable, but conclude that additional
modifications need to be introduced in the model to overcome certain shortfalls.

Subsequently, Section 2.2.2 performs an analysis on the structure of (h1,1 + h1,2, f). Similarly, this
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distribution is composed of a family of curves for which each curve can be described using a Planckian
profile. Combining the regression analysis for each curve within the distribution, we construct a single
function able to approximately model the entire distribution of (h1,1 + h1,2, f) with only two variables.
Section 2.2.3 uses the model developed in Section 2.2.1 to describe the distribution of the Euler number χ.

Section 2.2.4 is dedicated to the description of model validation in our context, as the usual statistical tests
are inadequate. Section 2.2.5 discusses possible implications to physics by referencing recent advancements
in F theory and further investigations of structures within the Kreuzer–Skarke database. In Section 2.3
and Section 2.4, we perform primary analyses of Calabi–Yau twofolds (Picard number and multiplicity) and
Calabi–Yau fourfolds. Due to the lack of a complete data set, we are unable to provide a thorough analysis
of the fourfolds as with threefolds. Finally the Appendix presents many supplementary plots and figures for
the various sections. We conclude with a summary and outlook in Section 2.5.

2.2 Calabi–Yau Threefolds

As advertised in the Introduction, we will begin with the analysis of threefolds and identify patterns
within this rich distribution of Hodge numbers and their frequency as plotted in Figure 2.1. It turns out
striking patterns do exist, pointing to a definite structure within the threefold data, which consists of the
triple (h1,1, h1,2, f) , where f is the number of reflexive polytopes in the Kreuzer–Skarke database with the
given Hodge pair. Here, h1,1 and h1,2 respectively count the Kähler and complex structure moduli of the
Calabi–Yau obtained from the reflexive polytope. More precisely [88], we have that

h1,1(X) = `(∆∗)−
∑

codimθ∗=1
`∗(θ∗) +

∑
codimθ∗=2

`∗(θ∗)`∗(θ)− 5;

h1,2(X) = `(∆)−
∑

codimθ=1
`∗(θ) +

∑
codimθ=2

`∗(θ)`∗(θ∗)− 5 . (2.2.1)

In the above, ∆ is the defining polytope for the Calabi–Yau threefold X and ∆∗ is its dual. Moreover, θ and
θ∗ are the faces of specified codimension of these polytopes respectively; `( ) is the number of integer points
of the polytope while `∗( ) is the number of interior integer points. Indeed, our analysis of the distribution
of Hodge numbers ultimately reduces to counting these integer points.

To facilitate the analysis, we plot (h1,1−h1,2, f) and (h1,1 +h1,2, f) as shown in (a) and (b) of Figure 2.2,
respectively. Recall that the Euler number χ = 2(h1,1 − h1,2). We will use the difference h1,1 − h1,2 rather
than the Euler number. In the simplest heterotic constructions, |h1,1− h1,2| corresponds to the index of the
Dirac operator and gives the number of generations of particles in the low-energy spectrum [56].
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Figure 2.2: (a) Frequency f plotted against 1
2χ = h1,1 − h1,2; (b) Frequency f plotted

against the sum of Hodge numbers h1,1 + h1,2.

By inspection, these plots already exhibit two patterns. Firstly, in both the h1,1 − h1,2 and h1,1 + h1,2

plots, there appears to be an inner distribution contained within the outer distribution. We find that these
inner and outer distributions are related to the parity of h1,1 ± h1,2. Figure 2.3 elucidates this point by
having the odd and even values in different colors. Though this parity structure may be a result of the
Kreuzer–Skarke algorithm, its consistent appearance means we need to treat the distributions of even and
odd distinctly for now.

The second evident structure which can been seen by inspection, is that the outer edge of the distribution
of h1,1 − h1,2 (Figure 2.3(a)) appears to follow a normal like curve, whereas the edge of h1,1 + h1,2 (Fig-
ure 2.3(b)) follows a Planck like curve. It is through the analysis of these distributions that we deduce their
characteristic behavior and underlying structure. In the main body of this paper, we outline the results and
analysis of only the even distributions for h1,1−h1,2 and h1,1 +h1,2, except where it is important to present
both. It turns out that any structure and patterns which are found in the even distributions for h1,1 − h1,2

and h1,1 + h1,2 are found identically in the odd distribution (see Appendix for various plots).

2.2.1 Analysis of h1,1 − h1,2

Before we can present the results, it is important to explain some notation. When working with the
distribution of h1,1 − h1,2, we find that it is composed of many curves, whose individual structure is the
same as the “edge” or boundary of the distribution mentioned earlier. As a consequence of this, we refer to
h1,1 − h1,2 as being composed of a “family of curves.” Each curve is then classified by its r-value, where
r = h1,1 + h1,2. It is important to be clear that in this analysis, although h1,1 − h1,2 is just half the Euler
number, we are not summing over all the possible values of h1,1 +h1,2. We are keeping these values distinct:
hence, the r-curves we obtain. Later on in Section 2.2.3 we sum over all possible values of h1,1 + h1,2 to get
two plots representing the full Euler number distribution.

Consider the example in Figure 2.4(a). By ordering the data in terms of h1,1 + h1,2, one can classify
data sets within h1,1− h1,2 by an r-value. Holding r fixed, we can plot the frequency f versus the difference
h1,1 − h1,2. We call each value of r a curve, which we can overlay on the same plot. In this example, we
tabulate data for curves identified by r = 28 and r = 29. As a further illustration, we show explicitly the
curves of the even distribution within h1,1 − h1,2 for r = 42, 54, 66 in Figure 2.4(b). By mirror symmetry,
the curve is symmetric about the vertical axis, where h1,1 − h1,2 = 0.
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(a)

(b)

Figure 2.3: (a) The h1,1 − h1,2 distribution for threefolds, highlighting the two sub-
distributions, where red and blue data points correspond to even and odd values of h1,1−h1,2,

respectively; (b) The same, but for h1,1 + h1,2.

(a) (b)

Figure 2.4: (a) Example of repeated values of the sum h1,1 + h1,2 being 28 and 29; (b)
Three highlighted curves (r = 42, 54, 66) within the even h1,1 − h1,2 distribution. The trans-
parent grey data dots are all the data plots for the distribution. Refer to Figure 2.24 for the

corresponding odd plot.
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We can now perform a regression analysis for each individual curve, in the quest of obtaining a function
describing the distribution. In the analysis, we indeed find an approximate function predicting the fine
structure of the data. We operate with one caveat: we ignore data points which have a frequency lower
than 2000. At large r, the data, whose frequency is below 2000, begins to deviate from our model. The
reason for such deviations, comes down to the fact that our model, though remarkably accurate, is still an
approximation. We suspect that with further modifications, such deviations can be accounted for and that
consequently, it may be possible to find an exact function to map the frequency distribution of h1,1 − h1,2.
Such statements also apply to the distribution of h1,1 + h1,2.

2.2.1.1 A Pseudo-Voigt Fit

Due to the normally-distributed, peak-like nature of these curves, we performed a regression analysis using
the following models: Gaussian; Cauchy (Lorenztian); Pearson7; Breit–Wigner; Voigt; and Pseudo-Voigt. In
the Appendix 2.6.2.2, we perform a side by side comparison. It turns out that both the Voigt model (2.26e)
as well as the pseudo-Voigt model (2.26f) give excellent fits.

We focus on the pseudo-Voigt model as it gives the best fits. This is a linear combination of a Gaussian
and Lorentzian (Cauchy) distribution:

f(x,A, µ, σ, α) = (1− α) A

σ
√

2π
e

−(x−µ)2

2σ2 + α
A

π

[
σ2

(x− µ)2 + σ2

]
, (2.2.2)

with amplitude (A), center (µ), Gaussian width (σ), and fractional parameter alpha (α). However, we
can modify the above distribution slightly so that the amplitude A of the distribution has an oscillating
component

A(x,A0, a, b) = A0 + a cos(2πb · x) , (2.2.3)

where A0 is the original amplitude of a particular curve described by the pseudo-Voigt distribution, a is the
amplitude of oscillations, and b represents the period. By doing a regression analysis one curve at a time
using this modified pseudo-Voigt model, we are almost able to replicate not just the basic structure of each
curve, but even the individual behavior of each data point in the entire distribution. (See Appendix 2.6.2.3
for a comparative plot of the all the regression curves using the standard, unmodified, pseudo-Voigt model.)

We plot the frequency against h1,1 − h1,2 for various values of r (odd and even). Figures 2.5 and 2.6 are
striking in their accuracy.
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(a) Regression lines for all odd r valued curves, with r ∈ [35, 51].

(b) Regression lines for few select odd r values, with r > 51.

Figure 2.5: Plots of frequency against h1,1 − h1,2 for various odd values of r. Each line
represent a modified pseudo-Voigt profile based on the regression analysis for each curve. See

2.29a and for a plot of all even curves.
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(a) Regression lines for few select even r values, with r ≤ 54.

(b) Regression lines for few select even r values, with r > 54.

Figure 2.6: Plots of frequency against h1,1 − h1,2 for various even values of r. Each line
represent a modified pseudo-Voigt profile based on the regression analysis for each curve. See

2.29b for a plot of all odd curves.

As these figures illustrate, each curve follows a pseudo-Voigt profile, however the individual data points
seem to “jump” up and down, as if oscillating. It is this behavior of the data points which can be accounted
for by the modified pseudo-Voigt model. To do the regression analysis, we used Python lmfit with a custom
model which is just the modified pseudo-Voigt model. The parameters that were fitted are (A0, a, b, σ, α).
Due to mirror symmetry, µ = 0. In Appendix 2.6.2.4, one can find a table with the value of every parameter
for every curve as well as their reduced χ2 values.

A few comments explicate the regression lines and the behavior of the distributions.
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Figure 2.7: These two plots serve two purposes. The first is to show how the modeled data
should really look by using data points (red points) instead of the (perhaps misleading) lines
(refer to Comment 1 below). The second purpose is to illustrate that as r becomes large
(left plot has r = 99, right plot has r = 118), the actual data points deviate more and more
from the modeled data, implying that there is a missing function in the modified pseudo-Voigt

model which would allow one to describe the data at much lower frequencies.

1. When we refer to the model as being an “excellent fit,” it is principally a statement made by inspection
of the curves and the data. If one inspects the reduced χ2 values (Figure 2.30), the numbers are large,
which statistically does not refer to a good fit. This is misleading however. Firstly, we need to consider
that the number of parameters used in the model is five. This allows for a larger χ2

R value. Secondly,
the distribution is based on a discrete set of data. When doing a regression analysis using the modified
pseudo-Voigt model, one obtains an equation which describes a continuous curve. Lastly, the frequency
values span over several orders of magnitude. The tiniest deviation from a parametric model — in this
case, the modified pseudo-Voigt profile — will be detected in cases where there is such a huge sample
size. Typically the predicted model gives data points which are in the range of 0.02% to 3% accuracy
from the actual data point. The tail behavior of the model is less accurate however, here the predicted
values can be off from between 60% and 80%. For cases with a very poor fit, the last data point (large
value of h1,1 − h1,2) can have an error of up to 300% — this is another example of the model being
less accurate at lower frequency. When one is dealing with such sample sizes, even a 1% error can
give a difference of up to a couple of thousand. This difference summed over all the data points for
a particular curve result in a large χ2

R value. Due to the discussion in Section 2.2.4 we from now on
ignore the χ2

R as a test for model validation. Instead we opt for probability plots — which can also be
seen in Section 2.2.4.

2. One obtains a continuous model to describe the discrete data, in reality, we should not be plotting
fitted curves, but rather fitted data points — as can be seen in Figure 2.7. It is just illustratively more
clear to display the curves. One could in principal work out out what the discrete approximation is to
our continuous model.
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Figure 2.8: By considering the entire frequency range, the model is not able to adequately
describe the tail behavior. The model goes into the negative frequency range instead of taper-

ing off to 0.

3. Although the modified pseudo-Voigt distribution does a good job to model the behavior of the data,
one still needs to address the problems experienced with our model at low frequency. A problem which
is hidden, by virtue of our cut-off frequency, is that the tail of our models predicts negative values,
Figure 2.8. There is a possibility that by having different variances σg, σc for the mixing of the two
distributions (Gaussian, Cauchy), one could adjust the tail behavior. Introducing more and more
parameters however does not always resolve the problem, as it is possible to over-fit the data. Yes, the
model may be more accurate, but one loses physical significance. In a situation like ours, where one
does not have any physical backing for choice in models, this line between fitting and over fitting is
not so clear.

4. The odd distribution’s behavior is more regular. In comparison to the even distribution, as one increases
in r value, the behavior of the individual data points remain somewhat constant relative to the fitted
curve. The even distribution becomes more and more irregular as one increases the r value. This
suggests that there is an added parameter which seems as if it should be function of r. By regular and
irregular we are referring to how well the data point is described by the model.

5. Both distributions become very irregular as the value of r becomes large (r > 100 and r > 120 for
odd and even distributions respectively — see Figure 2.7). A large r value refers to curves which have
a relatively low frequency. Again this suggests that the pseudo-Voigt model needs to some how have
some function of r which “distorts” the behavior of the curves as r increases (by the looks of how
the real data deviates from the modeled one, it seems that the missing functions is also oscillating in
nature).

There exist, however, certain cases where the model is exact. In other words predicted values are the
same as the actual values. This happens when one adjusts the frequency cutoff for each r curve individually.
That is to say, we only examine data points with at least f0 reflexive polytopes with a given value of r and
h1,1 − h1,2. If there are fewer than f0 cases, the data is ignored.
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Figure 2.9: Left plot shows the modeled line according to the modified pseudo-Voigt distri-
bution with no cutoff frequency. We obtain a good fit to the data. The right plot has a cutoff
frequency of 460, which is equivalent to a percentage cut off of 9.68% (calculated relative to

the peak frequency for that r-curve). This curve is exact.

This trend persists for all values of r, however what becomes apparent is that it’s not the percentage
cutoff frequency that determines whether or not one gets an exact fit, but rather, the number of data points
that remains after the percentage cut of has been effected. Figure 2.31 gives a table of how many data
points remain after an appropriate cut off percentage has been chosen to achieve a perfect fit. From this
table we see that for even curves, one almost always requires 7 data points to achieve a perfect fit; for the
odd curves, the number of data points is 10. The reason for this constant number throughout all the curves
is that the centers of all the distributions for the various curves are all similar. As soon as one includes a
larger number of data points we cannot achieve exact fits, and the model becomes approximate. At very low
r values the number of data points remaining after cutoff are not too different to the total number of points.
As r increase, the total number of points increase — the fact that we can achieve exact fits becomes less
meaningful. The other models — even when including an oscillatory component were unable to give exact
fits.

The model is thus much more accurate at low r values, and as r increases the actual data deviates more
and more from the fit. This reinforces the statements from the comments that the pseudo-Voigt model can
be modified further with some function f(r, x) such that it will greatly improve the accuracy of the fit, and
perhaps even become exact.

After the above analysis, we return to our goal of finding a single function describing the distributions.
It is clear from the above that the function has to be a function of at least two variable, f = f(x, r). We
thus continue the analysis by plotting all the parameters vs r, in search for any relationships. We find that
three parameters σ,b and α can be expressed in terms of r, the other parameters, while they show trends,
do not give a precise relationship with r. For the even distribution of h1,1 − h1,2, the r values range from
36 to 110, whereas for the odd distribution (see Figures 2.25a, 2.25b) the r values range from 37 to 99. By
looking at Figure 2.10(a), it turns out that:

α(r) = cα , b(r) = cb , σ(r) = cσ1r + cσ2 . (2.2.4)
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Our model of h1,1 − h1,2 now looks as follows:

f(x, r,A0, a) = (1− cα)A0(r) + a(r) cos(2πcb · x)√
2π(cσ1r + cσ2)

e
−(x)2

2(cσ1r+cσ2 )2 +

cα
A0(r) + a(r) cos(2πcb · x)

π

[
(cσ1r + cσ2)2

x2 + (cσ1r + cσ2)2

]
, (2.2.5)

where A0(r) and a(r) are two unknown functions yet to be determined (see Figure 2.10(b) for relationship
plots). For replicating the plots as precisely as possible, one would need to keep the parameters, as they
are, up to their 17 decimal values, without excluding terms as we have done. If one wants to reproduce
the data from the model, one has to use the exact expressions. Making an approximation from an already
approximate model leads to large errors.
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(a)

(b)

Figure 2.10: For the even distribution of h1,1−h1,2. (a)The width parameter σ has a linear
relationship with r such that σ(r) = 0.5097r − 12.7142. The amplitude period parameter, b,
also has a linear relationship, however, since r is at most order 3 in magnitude, we can
regard it as a constant such that b(r) = 0.6629 ∼ 2/3. The same goes for the fraction
parameter,α; we can regard it as a constant such that α(r) = −0.0345. For odd parameter
fit statistics see Figure 2.25a; (b) Plots of A0 vs r (left) and a vs r (right). Both exhibit a
similar pattern, however it is difficult to discern any nice relationships. For odd parameter

plots see Figure 2.25b.

The first plot in Figure 2.10.(a) in particular evinces a sinusoidal fluctuation about the mean. This again
indicates the possibility of refining the plots by adding an extra function.
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2.2.2 Analysis of h1,1 + h1,2

Figure 2.11:
Three curves (q = 0, 18, 30) within the even h1,1 + h1,2 distribution. The transparent grey data dots are all
the data plots for the distribution. Refer to Figure 2.32 to see the same example for the classification of odd
curves within the odd distribution.

We begin by classifying the curves within the h1,1 + h1,2 distribution (Figure 2.2) in an analogous way
to how it was explained before. This time, we order the data by h1,1 − h1,2 such that a single curve within
h1,1 + h1,2 can be identified by its q-value, where q = h1,1 − h1,2. Due to mirror symmetry, the curve
for q = −a is the same curve as q = a, thus within our two-dimensional plots will only have q > 0. In
continuation to the analysis on h1,1 − h1,2, we use a cutoff frequency of 2000 and only present results from
the even distribution within h1,1 +h1,2, unless stated otherwise. As an example, illustrating the classification
of curves within h1,1 + h1,2, consider the curves q = 0, 18, 30 in Figure 2.11.

2.2.2.1 A Planckian Fit

Each curve within the h1,1 + h1,2 distribution behaves the same. Just like in the h1,1 − h1,2 distribution, we
do a regression analysis for each curve within the distribution independently, in the quest to describe the
entire h1,1 + h1,2 with a single function. The model we chose to describe h1,1 + h1,2 is the simplest possible
Planckian model

f(x,A, n, b) = A

xn
1

eb/(x−22) − 1
(2.2.6)

The parameter names in the fit results are the amplitude A, the power n, and some real constant b. The shift
in x-axis is so that the distribution begins at 0 as the smallest h1,1 +h1,2 above the cutoff is 22. The choice of
a Planckian model in the above form is greatly motivated by the blackbody distribution f(T, λ). The q curves
within h1,1 +h1,2 appear to behave in a manner analogous to the curves of constant T within the blackbody
distribution. This is an initial trial. Later, we will discover additional structure in the distribution by trying
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to mimic the blackbody distribution exactly. It turns out that the general behavior of the distribution is
modeled very well, cf. Figure 2.12a.

Consider the maximum of each of the curves. As indicated in Figure 2.12a, we can fit the maxima to a
curve as indicated using the data plotted for the given values of q. From the above analysis, the h1,1 + h1,2

distribution behaves analogously to a blackbody spectrum — except for one small subtlety. It is in this
subtlety that the added structure within h1,1 + h1,2 is observed.

(a) Lines of best fit from a regression analysis for a few select curves. The black data points represent the
maximum frequency for that particular q-curve. the Black line is a line of best fit to describe the points of
maximum frequency — this is analogous to a blackbody spectrum. See Figure 2.33a for the curves within

the odd distribution.

(b) The curves segregate into three classes determined by the value of the even integer modulo 6. A similar
pattern occurs in the odd distribution; see Figure 2.33b.

Figure 2.12: In the attempt to describe the data analogously to a blackbody distribution (a),
we discover some subtle structure (b).

Just as was seen in Figure 2.2, h1,1 + h1,2 appears to split up into two smaller distributions based on the
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parity of h1,1 + h1,2. One can then further break up both the even and odd distributions into three further
sets. The manner we observed this added fine structure is again motivated by a blackbody spectrum. In a
true blackbody distribution, the curves of constant T never overlap. However, if you consider the lines of
best fit only, when looking at our distribution one sees an overlap of certain curves. For example, observe
the following plot of curves which clearly cross in Figure 2.12b.

It turns out that this overlapping occurs consistently to the point where one can classify the curves
(defined by their q value) into residue classes qn distinguished by n mod 6. On the left hand side of the
h1,1 + h1,2 axis, the curves are ordered with red (residue class q2) above yellow (residue class q4) above
blue (residue class q0), whereas on the right hand side of the axis, the order is reversed. Similar behavior
is observed in the odd distribution of h1,1 + h1,2 with the curves in the residue classes q1, q3, and q5 (see
Figure 2.33b).

The clusters of curves constitute an entire set of mod 6 residue classes. These classes now define a
set of curves which belong to very “nice” distributions that behave exactly like a blackbody distribution.1

Compare, for example, a plot of the all the curves for even distribution of h1,1 + h1,2, separated into their
residue classes, Figure 2.13

1 Of course h1,1 + h1,2 is not continuous. It is discrete. However, the structure of the best fit curve to the data points
appears very similar to that of a continuous blackbody distribution.
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(a) All the curves color coded according to what residue class their curves qn belongs to.

(b) Family of curves all belonging to q0. (c) Family of curves all belonging to q2.

(d) Family of curves all belonging to q4.

Figure 2.13: We illustrate the added structure for even h1,1 + h1,2 data, by displaying how
the regression curves can be divided into residue classes. For the list of odd curves, refer to

Figure 2.34.

As a first approximation we have successfully modeled the general trend of the data. There is, however,
a fine structure to the individual data points that we would like to model. Introducing an oscillating term
in the amplitude, as seen in the analysis of h1,1 − h1,2, unfortunately did not seem to improve the fits.
Again, it appears that the least number of variables our functions can have is two, f = f(x, q). This function
will be slightly different in the values of coefficients, depending on which residue class one is modeling.
Just as for h1,1 − h1,2, we wish to express the parameters for the h1,1 + h1,2 model (2.2.6) in terms of q. We
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therefore write A = A(q), b = b(q), n = n(q) and seek to find expressions for the coefficients.
While the x-axis of h1,1 + h1,2 has only positive q values — due to the fact the data points will overlap

— when plotting them against the parameter values, we also have to consider the negative values of q.
We present the various relationships (see Figure 2.35 for the plots for the odd distribution of h1,1 + h1,2

analogous to Figure 2.14).

(a) Plotting the q- value parameter vs the log(A) parameter.
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(b) Plotting the q- value parameter vs the b parameter.

(c) Plotting the q- value parameter vs the power n parameter.

Figure 2.14: The parameter plots are color coded according to what residue class their q
value belong to.

Each distribution has an equation with different parameter values. However, the fact that we can express
all the parameters in terms of q means we are able to get a generalized formula to describe the entire
h1,1 + h1,2 distribution — as long as the frequency is above 2000. For succinctness we use the following
notation for the coefficients

Ak,i, nk,i, bk,i , (2.2.7)
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where the subscript k = 0, 1, 2, 3, 4, 5 refers to residue class qk, and i = 0, 1, 2, 3, 4 refers to the coefficient of
the ith power of q. Thus, we have:

Ak(q) = exp(
4∑
i=0

Ak,iq
i) , nk(q) =

4∑
i=0

nk,iq
i , bk(q) =

4∑
i=0

bk,iq
i , (2.2.8)

where the matrix of coefficient values for Ak,i, nk,i and bk,i can be found in Appendix 2.6.3.2.2 Our function
(2.2.6) now is able to approximately describe the entire h1,1 + h1,2 distribution:

fk(x, q) = e
∑4

i=0
Ak,iq

i

x
∑4

i=0
nk,iqi

1(
e

∑4
i=0

bk,iq
i

(x−22) − 1
) , (2.2.9)

Of course there are certain constraints on the values of q. For a given k, q has to be an integer which falls
within the residue class qk. For even values of k, x = 2m, and for odd k, x = 2m+ 1. We have m > 12.

A few comments about the analysis on the h1,1 + h1,2 distribution are in order.

1. The Planckian model used in (2.2.6) could be modified in some manner such that there is some os-
cillating behavior in the amplitude. Any kind of oscillatory term we introduce, only has a mild effect
on the model’s behavior. As the q values exceed 100, the model is not able to describe the data very well.

2. Assuming one adds an oscillatory component to the model, the module used in python to do the
regression analysis called lmfit is sensitive to the initial conditions set by the user. Since the model is
a custom model, it is difficult to find the correct initial conditions such that the best fit line oscillates
close to every point (as with h1,1 − h1,2).

3. It is possible that the model used does not have the features required to describe the oscillatory “up and
down" behavior of the data points. The Planckian model was chosen in that the h1,1 +h1,2 distribution
resembled a blackbody distribution.

4. In choosing a polynomial model for Figures 2.14a,2.14b,2.14c, we picked the lowest order polynomial
that gave the best fit. Choosing the order to be four for all the plots appeared to be convenient.
However, it is apparent that the parameter relationship plot in Figure 2.14b would be better described
by a polynomial of order 6. One could use an order 6 polynomial for all the other relationships plots
too, but doing so might not have any physical significance. One can achieve an arbitrarily good fit the
larger the order of the polynomial used, but that does not necessarily mean the chosen model is the
correct model.

2.2.3 The Distribution of the Euler Number

The Euler number for Calabi–Yau threefolds is

χ = 2(h1,1 − h1,2) . (2.2.10)

2Perhaps it is important to state explicitly — due to potential confusion — that the coefficients Ak,i refers to the natural
logarithm of the amplitude values while Ak is the actual amplitude seen in the model.
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Figure 2.15: Left figure is the fitted model(blue line) for a q value of 100 and right has a
q value of 150. As the q-value increases, the scattering of the data points within h1,1 + h1,2

increases to the point where the model works no longer. For an example of how the model
begins to break down at large q, see Figure 2.36.

As mentioned previously, we are summing over all the various r-curves to obtained the full-Euler number
distribution. A plot of χ versus frequency yields the pseudo-Voigt distribution. In particular, we can model
the behavior of the distribution almost perfectly using the modified pseudo-Voigt curve (2.2.5) and (2.2.3),
which is repeated here for convenience:

f(x,A, σ, α) = (1− α) A

σ
√

2π
e

−(x)2

2σ2 + α
A

π

[
σ2

x2 + σ2

]
, (2.2.11)

where

A(x,A0, a, b) = A0 + a cos(2πb · x) . (2.2.12)

The results of the regression analysis for the Euler number distribution is presented in Figure 2.16a.
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(a) The distribution of Euler numbers fitted to a modified pseudo-Voigt curve. The blue curve f(χ)E

represents even values of χ/2. The red curve f(χ)O represents odd values.

(b) Probability plot for the even values of χ/2. The model fits the data with R2 = 0.99944.
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(c) Probability plot for the odd values of χ/2. The model fits the data with R2 = 0.99965.

Figure 2.16: Various plots illustrating the actual fit of the modified pseudo-Voigt model. We
can tell we have a good fit by looking at the probability plots for the quantiles of the standard
pseudo-Voigt distribution vs quantiles for the actual data. The. The R2 values in (b) and

(c) are given relative to the line y = x.

The fitted parameter values for f(χ)E corresponding to even values of h1,1 − h1,2 are:

(A0, σ, α, b, a) = (1.9032× 109, 75.8305889, 0.00718459, 0.58347826, 8.7427× 107) . (2.2.13)

Likewise, the fitted parameter values for f(χ)O corresponding to odd values of h1,1 − h1,2 are:

(A0, σ, α, b, a) = (7.6043× 108, 64.9735680, 0.00549425, 0.83357720, 3.6881× 107) . (2.2.14)

Although χ is only even, the two curves originate from the fact that if you take χ/2 you get even and odd
values. The two curves arise from the parity of χ/2 and are presented in Figures 2.16a.

2.2.4 Goodness-of-fit

A goodness-of-fit test is implemented as a means of testing how well a given model describes some given
data. Typically the model validation process consists of only quoting a single statistically generated number
like the R2, χ2 or p values. Based on the size of this number, one then makes inferences on how well the
chosen model fits the observation. One needs to be careful however of misusing such indicators as an absolute
measure for assessing goodness-of-fit.

For a structural equation model (SEM) — in our case, the modified pseudo-Voigt and Planckian models
— this assessment is not so straight forward as it would be for a simple regression analysis. To quantify
the predictive power of an SEM, a single statistical test does not suffice - in fact, there is no single test.
According to [89], the best one can do is assess three different aspects of what it means to have a good fit,
these are: overall fit, comparative fits to a test model and model parsimony.3 The only real test available

3Parsimony refers to the ability of a model to give a certain degree of fit whilst having the least required number of predictor
variables.
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is the chi-squared (χ2) test, when it comes to overall fit, this χ2 statistic is the most popular test. The χ2

test compares observed and predicted correlation matrices with each other, and so, statistical significance is
evaluated based on the value of χ2. A large χ2 value signifies a considerable difference between the correlation
matrices. A low value indicates there is little statistical difference between matrices. Since the χ2 test is
between actual and predicted matrices only, when looking for overall fit, one searches for non-significant
differences between the correlation matrices. Often, rather than presenting the χ2 or χ2

R (the chi-squared
value relative to the degrees of freedom for the model) value, a p value is given instead. The p value, in a way,
informs us whether one should reject a null hypothesis or not. A small p-value suggests that the differences
in observed vs. predicted are too large to be consistent with the null-hypothesised model i.e. assuming the
null-hypothesised model, the probability of observing what we did is relatively small, suggesting either an
absolutely fluke experimental outcome or an incorrect model null-hypothesis. The p-values can be determined
by a p-value calculator by inputting the χ2

R value. There is no standard way of choosing a significance level
for the p-value, but typically p < 0.05 is considered statistically significant.

In general, statistical non-significance given by appropriate values of the χ2 fit statistics is adequate.
However, one must be careful of drawing similar conclusions for structural equation modeling. The fit
statistic makes a statement of the correlation matrices only, not about whether or not the correct model is
identified. This is largely due to the sensitivity to sample size of the χ2 test. In our analysis, the sample size
(number of reflexive polytopes) is enormous — almost one billion! For large samples (> 200) the χ2 test will
give significant differences for any model used. This sensitivity to a sample size, together with an effect size
and alpha value, is related to what one calls the power of a test - the probability of not incorrectly accepting
a null hypothesis that is actually false.

Without worrying too much about what an effect size and alpha value is; for any alpha value, the greater
the sample size, the greater the power of the statistical test. However, increasing the sample size beyond a
certain amount, can result in the test having “too much" power4. Perceived effects in very large sample sizes,
will always become significant5. Observe how in tables 2.30 and 2.37 the χ2

R values for all the different curves
is extremely large, naively indicating that we have a horrible fit — which would be an incorrect conclusion.

It is clear from the above discussion that we cannot use the χ2 or p values in validating our choice in
model. What is not so clear, is the additional subtlety in using purely statistical means to asses goodness-
of-fit for our data. This subtlety lies at the heart of almost all statistical tests — the construction of a null
hypothesis. The term frequency, as used in the statistical sense, refers to the number of outcomes for a
certain event. The measurement of this outcome will often have certain known or unknown factors affecting
it. These tests check for the probability that the errors found are too significant to be solely do to random
variations in the data. For example, assume that statistical tests give non-significant results. If the residuals
are small enough to be considered random errors in the measurement of the frequency, we could say that
the model is appropriate. If however, the residuals are too large or present additional structure, we could
say the model is good, but not quite the correct one as the residual errors are not “random enough". In our
case, there is no notion of measured frequency and error in measurement of frequencies. Our frequencies
are generated as a result of a combinatoric calculation. Statistical tests assume that the input is from
measurement and observations (obeying some null-hypothesis), thus they are inherently constructed with
this notion in mind. By inputting our data, the tests are trying to calculate something from a data set which

4Power is the probability that you do detect deviations from your null-hypothesised model, when the null-hypothesised
model is, in fact, incorrect

5Conversely is also true, for extremely small sample sizes, any effect which should be significant, becomes insignificant
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does not obey the very assumption they use in their calculations. We are not exactly clear how much this
affects statistical outcomes, but it is important to keep in mind.

How do we validate then, that our chosen models are a good fit, or that our model is the best one at
describing the data? We implement graphical methods. The first graphical method is obviously through pure
inspection — this is not quite statistically quantifiable. There is a statistically based graphical method to
asses goodness-of-fit called probability plots, Q-Q plots or P-P6 plots. These plots were initially constructed
to test the “normality" of a data set when the sample size is too large too depend on the χ2 and p values. In
principle, a standard probability plot tells you the likelihood that the a sample’s distribution of data obeys a
normal distribution — hence checking for normality. The answer to the question is not given by a statistical
value, but rather by a graphical representation — from which one can extract statistical numbers. If the
plotted data on this probability plot is a straight line, then we can determine that the sample set is normally
distributed.

We can extend this concept further: we can take two different samples, and take a probability plot to
determine if two data sets come from populations with a common distribution. Such a probability plot is
referred to as a Q-Q (quantile-quantile) plot. Extending this concept one more time — as for our use —
we will take the quantiles of our theoretical distribution (the modified pseudo-Voigt and Planckian profiles)
as our “first sample" and plot them against the quantiles of our data as our “second sample", this will give
us our probability plot. In all the probability plots, it is the quantiles of the respective data sets which are
plotted against each other.

Quantiles are basically just a generalization of quartiles. For example, the kth percentile of a set of values
divides them, such that the number of values which lie below is k%, and the number of values which lie
above is (100 − k)%. The 25th percentile is the lower quartile or the 1

4 quantile. Quantiles are the same
as percentiles, but indexed by sample fractions rather than by sample percentages. Suppose that p ∈ [0, 1],
the aim is to find the value that is the fraction p of the way through the ordered data set. As an example,
if p = 1

2 = 0.5, we want to know what is the value that sits at p = 0.5 of the way through i.e. half
way. The value that sits there (this value may have to be interpolated) will be called the quantile for the
fraction p = 0.5. There are many different algorithms for generating the quantiles for a given data set,
we use python to generate the quantiles in a manner similar to that discussed above. For an ordered data
set, x1 ≤ x2 ≤ x1 . . . ≤ xn−1 ≤ xn, the most common way of calculating quantiles is to first compute the
empirical distribution function:

F (x) = 1
n

n∑
i=1

= 1(xi ≤ x), x ∈ R, (2.2.15)

and then define the quantile function to be the inverse of F (x):

F−1(p) = min{x ∈ R : F (x) ≥ p, p ∈ (0, 1)}. (2.2.16)

By generating the quantiles of some theoretical model and comparing them to the quantiles of a given data
set of equal length, one can determine if the data set belongs to the same distribution as the data set
belonging to the theoretical model — i.e., does the data fit the model. If the quantiles are roughly equal
the plots will all be more or less on a straight line.

6A P-P plot is the plot of the cumulative distribution frequency of the one data set against the CDF of the other. P-P plots
are not as useful as Q-Q plots, thus are seldom used.
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In probability plots :

1. The length of data set needs to be equal. For unequal lengths, one must perform an interpolation of
data.

2. If two identical data sets were compared to one another, the points would lie exactly on a 45 degree
line. Thus, for two different data sets, the deviation from this reference line determines the likelihood
that the sets belong to similar distributions. To quantify this likelihood, one can calculate the R2-value
of the data, relative to the y = x reference line.

3. Q-Q plots are not only limited to determining similarity in data sets. By analyzing the deviations
which occur, one can determine how the scale and location of the data is shifted - the data would
follow some line y = mx + c, where m, c would be the estimates of these shifts in scale and location.
Also, from the distribution of points above or below the reference line, one can infer aspects of the
tails and skewness in the data.

Consider the following curves for the h1,1 − h1,2 distribution with r = 60 in Figures 2.17a and 2.17b.
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(a) Best fit curve for r = 60 based on the left: Gaussian model, right: modified pseudo-Voigt model.

(b) Probability plot for Figure 2.17a. The x-axis represents the quantiles for the actual data, the y-axis
represents the theoretically predicted quantiles — dependent on the model chosen (red: modified pseudo-
Voigt model (R2 = 0.99974); blue: Gaussian model (R2 = 0.99334). The R2 values are not relative to the
best fit lines, but are relative to the 45◦ reference line y = x. The closer the R2 value is to 1, the more

similar the predicted quantiles are to the actual ones, thus, the better the model describes the data.

Figure 2.17: Using probability plots, we are able to statistically see which model provides
the better fit. We employ such graphical methods as standard goodness-of-fit tests such as the

χ2 fail to give meaningful results.

For the h1,1 +h1,2 distribution we just plot the data of q = 2 together with the corresponding probability
plot in Figure 2.18.



2.2. Calabi–Yau Threefolds 81

Figure 2.18: Left: best fit curve of h1,1 − h1,2 distribution for curve q = 2 based on the
Planckian model. Right: probability plots of our fitted theoretical Planck model vs the q = 2,

h1,1 − h1,2 distribution.

In its current form, the probability plots do not allow us to calculate p-values of the various models.
This due to the same issue encountered previously. If one however standardizes the data according to the
Z-standardization:

Z = X − µ
σ

, (2.2.17)

where µ and σ are the mean and standard deviation, it is possible to calculate the p- values since the
magnitude of each sample gets rescaled. The probability plot of all the models is displayed in the Appendix,
with the relative p-values for each model — Figure 2.26g and Figure 2.26h. What we see is that the modified
pseudo-Voigt is statistically the model which provides the best fit.

2.2.5 Implications for Physics

Calabi–Yau threefold compactifications of string theory have been the traditional approach to obtaining
interesting phenomenological models. The plethora of geometries and configurations, ranging from heterotic
strings on Calabi–Yau threefolds endowed with stable bundles, to D-brane probes on local Calabi–Yau
varieties, to F-theory compactification on elliptic fibrations, has over the years justified the landscape and
inspired various statistical analyses of the space of vacua.

Of particular interest have been the investigation of further structures in the Kreuzer–Skarke database,
including identification of “the tip” where Hodge numbers are small [83, 71, 90], the top bounding curves
where Hodge numbers are large [91], identifying elliptically fibered threefolds [92, 76, 77, 93], finding further
fibrations such as K3-fibers [81, 94], or a step-by-step construction of all possible smooth Calabi–Yau hyper-
surfaces from the reflexive polytope data [66], etc. Now, it should be emphasized that each of the some 473
million reflexive polytopes admits, as an ambient toric variety, many7 so-called maximal projective crepant

7 The actual numbers are not yet known, but even up to h1,1 = 7, we already see from tens to thousands and with the
number increasing potentially exponentially as we go up in Hodge number [66].
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partial (MPCP) desingularization, each of which gives rise to a different Calabi–Yau threefold. Therefore,
the actually number of Calabi–Yau threefolds from the Kreuzer–Skarke database is many orders of magni-
tude larger than 1010. While manifolds coming from the same reflexive polytope have different geometrical
data such as triple intersection numbers, which in the standard embedding in heterotic compactification
correspond to Yukawa couplings, they do share the same Hodge numbers because these, by virtue of (2.2.1),
depend only on the combinatorics of the polytope. We need to wait for significant theoretical and/or compu-
tational advances to have the full data of the Hodge pairs in view of the Calabi–Yau manifolds themselves,
which might give new statistics. It would be perhaps even more interesting if the statistic remain largely
the same, thereby hinting at some universality in the distribution of such topological data.

In the context of the recent works on F-theory, it is an important fact the vast majority of the Kreuzer–
Skarke threefolds are elliptic fibrations over some complex surface, and in fact birational to [92, 93, 94] a
Weierstrass model. For example, some 106 alone [92] come from elliptic fibrations over P2. Therefore the
Kreuzer–Skarke dataset is directly relevant to F-theory. In the more classical context of heterotic strings, the
Hodge numbers dictate the number of (anti-)generations in the standard embedding. In our above plots, the
Euler number ±6 indicate the three generation models. The generic paucity of χ = ±6 manifolds led to the
industry of non-standard embedding where extra vector bundle and Wilson line information is needed. The
advantage of F-theory models is that the compactification data comes only from the Calabi–Yau manifold.
In particular, the intersection theory of the cycles and fiber-degeneration structure determine the gauge
group, anomaly cancellation, matter content, and Yukawa couplings. Much of this can be extracted from
the polytope data.

F-theory compactifications on threefolds, resulting in six dimensional gauge theories have been considered
from the point of view of systematically classifying the base complex surfaces [93] and the statistics have
been performed therein. Non-toric bases were considered and a number of Calabi–Yau threefolds beyond the
Kreuzer–Skarke data were found. It is remarkable that the overall distribution of Hodge numbers remains
largely unchanged. Indeed, in unpublished work of Kreuzer–Skarke, where they extended the hypersurface
in toric fourfolds to double hypersurfaces in fivefolds, obtaining some 1010 more manifolds and the shape of
Figure 2.1 persists. All these point to the Kreuzer–Skarke data being a robust representative in the space
of Calabi–Yau threefolds. Our distribution subsequently seems a representative a sample, and we speculate
that analyses of string vacua, in any context, should be thus weighted. For example, in study of the “typical”
number of generations in four dimensional heterotic compatification, or of charged matter in six dimensional
F-theory compactification, one should superpose our pseudo-Voigt profile.

2.3 Calabi–Yau Twofolds: K3 Surfaces

As noted in the Introduction, there are 4319 data points, corresponding to hypersurfaces as Calabi–Yau
twofolds, i.e., K3 surfaces, in reflexive three dimensional polytopes. Being algebraic K3 surfaces, there is
only one relevant topological invariant, the Hodge number, h1,1 = 19. However, there is a further refined
algebraic quantity for the K3 surface X, the rank of the Neron–Severi lattice H2(X;Z) ∩ H1,1(X), which
is the Picard Number ρ(X) and which enumerates the number of divisors on the surface up to algebraic
equivalence. The Picard numbers of the 4319 K3 surfaces were computed in [74]. We present the distribution
thereof in Figure 2.19a.
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(a) For K3 surfaces, the multiplicity is plotted against Picard number with a pseudo-
Voigt fit.

(b) Probability plot for the multiplicity quantiles vs the fitted standard pseudo-Voigt
quantiles. The R2 value is 0.99908.

Figure 2.19: Using probability plots, we are able to statistically see which model provides
the better fit. We employ such graphical methods as standard goodness-of-fit tests, such as

the χ2 test, fail to give meaningful results.

We only used the standard pseudo-Voigt profile as the modified one did not change the fit significantly.
Here are the fit statistics for best fit curve: (A,µ, σ, α) = (4517.45, 10.76, 2.97,−0.031), as shown in Figure
2.19.

What is interesting about Figure 2.19a is that the “oscillations" of the actual data points above and below
the modeled curve is very apparent, yet modifying the pseudo-Voigt profile is unable to give any significant
improvement. This leads to two potential conclusions: (a) The pseudo-Voigt profile is not the best profile to
use in combination with an oscillatory component; (b) The manner in which the oscillations occur is not so
straight forward as introducing simple cosine function. An interesting exercise would be to superimpose a
cosine function along the distribution, by rotating it as one traverses the profile. As long as the wavelength,
amplitude and angle of rotation are all small enough, the continuously rotated cosine function should remain
a function everywhere along the profile.
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2.4 Calabi–Yau Fourfolds

The analysis of the four fold data is performed in the same spirit as the threefold data. We aim to look
for patterns in the frequency plots. Due to complex conjugation and Poincaré duality, the only topological
invariants of fourfolds that vary are h1,1, h1,2, h1,3, and h2,2. Three of these are independent [68]:

h2,2 = 44 + 4h1,1 − 2h1,2 + 4h1,3 . (2.4.1)

We compiled a database for the frequency of the triplets (h1,1, h1,2, h1,3) to then obtain the following
data structure

(h1,1, h1,2, h1,3, f) .

Since one expects mirror symmetry within the invariants (h1,1 ± h1,3) [95], a plot of h1,1 − h1,3 against
h1,1 + h1,3 (Figure 2.20) should be symmetric about the line h1,1 − h1,3 = 0.

Figure 2.20: The blue points correspond to manifolds with a mirror symmetric counterpart
in the data set.

Doing a quick analysis of the data yields the following observations: only partial mirror symmetry
is found. For 69.77% of data points, the point (h1,1 − h1,3, h1,1 + h1,3) is accompanied by the point
(−h1,1 + h1,3, h1,1 + h1,3). Taking frequency into account, the percentage drops to 27.35% — see Fig-
ure 2.38 in the Appendix. This is most likely due to an incomplete data base.

For now, we have performed a primary analysis on the Euler distribution only. The Euler number for
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fourfolds is [68]:

χ = 6(8 + h1,1 − h1,2 + h1,3) . (2.4.2)

Interestingly enough, the distinction between even and odd distributions persist in the fourfold data base.
For illustrative purposes, we show the distribution of χ/6 against frequency.

Figure 2.21: Frequency of Calabi–Yau fourfolds with a given Euler number.

It is not immediately clear what is the reason for the gap, presumably it could be a cluster of data points
which is missing from the data base. Until one obtains the complete fourfold data base of Hodge numbers,
one can’t say much else. We also preset plots of the individual Hodge numbers hi,j vs. frequency.

(a) h1,1 vs. frequency. (b) h1,2 vs. frequency.
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(c) h1,3 vs. frequency. (d) h2,2 vs. frequency.

Figure 2.22: The frequency for all the Hodge hi,j numbers. Red points and blue are odd
and even points respectively for the various Hodge numbers. The data points are very dense
close to the origin making it difficult to properly illustrate the mixing of odd and even Hodge

numbers. Only h2,2 (c) has a clear separation between of an even values.

2.5 Conclusions and Outlook

By examining the distribution of Hodge numbers of Calabi–Yau manifolds of complex dimension two,
three and four, realized as hypersurfaces in toric varieties of one higher dimension as constructed by Kreuzer
and Skarke based on the results of Batyrev and Borisov, we have found many hithertofore undiscovered
patterns. We summarize our key points as follows.

• For threefolds, there are 30108 distinct pairs of Hodge numbers (h1,1, h1,2) from 473800776 reflexive
polytopes, the frequency of both the half-Euler number h1,1−h1,2 and the sum h1,1+h1,2 are distributed
according to whether the value is odd or even;

– The half-Euler number h1,1 − h1,2 follows a modified pseudo-Voigt distribution

f(x) = (1− α) A′

σ
√

2π
e

−(x)2

2σ2 + α
A′

π

[
σ2

x2 + σ2

]
.

where the modification is made in the amplitude A of the distribution, such that

A′ = A0 + b cos(2π · b) .

There is fine periodic substructure in terms of curves indexed by an integer r. Our model is
accurate for low r-values (r ∈ [36, 110] and r ∈ [37, 99]); using probability plots as test for
goodness of fit, this modified pseudo-Voigt model is indeed the best one out of several standard
candidates (cf. Figure 2.30 for all the R2 and p values).
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Among A, σ, α, b, a, the parameters σ, b, α have a strong linear relationship with r:

Even r Odd r

σ(r) = 0.5097r − 12.7142 0.51379r − 13.2494
α(r) = 2× 10−4r − 0.0345 2.25× 10−4r − 0.0388,
b(r) = 3.7299× 10−5r + 0.6629 7.9101× 10−5r + 0.65956

For a small subset of curves with a low r-value and an appropriate cut-off frequency, it is extraor-
dinary that the model exactly fits the data. That is, it appears that the number of data points for
each curve required, such that the model will result in a perfect fit is: 7 for even r-valued curves
and 10 for the odd valued r-curves, see Figure 2.31.

– The quantity h1,1 + h1,2 follows a Planckian distribution

f(x) = A

xn
1

eb/(x−22) − 1

There is a substructure of curves, indexed by an integer q, each Planckian and with some periodic
behavior. The curves qn appear clustered into groups of residue classes distinguished by n mod
6, and the parameters log(A), n, b all have extremely strong relationships with the q value.

By substituting this relationship into the model, we have a function fk(x, q) that approximately
describes the entire h1,1 + h1,2 distribution up to a q value of 69, 100:

fk(x, q) = e
∑4

i=0
Ak,iq

i

x
∑4

i=0
nk,iqi

1(
e

∑4
i=0

bk,iq
i

(x−22) − 1
) , (2.5.1)

with k = 0, 1, . . . 5 and the coefficients given in (2.6.9),(2.6.10),(2.6.11).

– The Euler number χ = 2(h1,1 − h1,2) follows the modified pseudo-Voigt distribution composed
with a sinusoidal A+A0 +a cos(2πb ·x) which is almost an exact fit, with the coefficients given by
(A0, σ, α, b, a) = (1.9032×109, 75.8305889, 0.00718459, 0.58347826, 8.7427×107), at R2 = 0.99944
for even χ and
(1.9032× 109, 75.8305889, 0.00718459, 0.58347826, 8.7427× 107) at R2 = 0.99965 for odd χ,

The modified pseudo-Voigt distribution is remarkably accurate in predicting the overall and fine
sub-structure of the Euler number distribution.

• For K3 surfaces, we have looked at the distribution of the multiplicity with Picard number. We
find that this distribution follows a standard pseudo-Voigt profile. Adding in the sinusoidal mod-
ification does not significantly increase the overall fit. The parameters are given by (a, µ, σ, α) =
(4517.45, 10.76, 2.97,−0.031) with R2 = 0.99908.

• For Calabi–Yau fourfolds, there is no exact mirror symmetry, due to incompleteness of available data.
Nevertheless, by breaking up the data into three groups, we have

– Mirror symmetric partners with the same frequency: 27.35%

– Mirror symmetric partners without the same frequency: 42.22%
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– Non mirror symmetric partners: 30.33%

By plotting the various hi,j vs frequency we see there is no distinction between even and odd data
values for hi,j , expect for h2,2/2. This distinction is carried out further in the Euler number distribution
where odd points are clustered on a band with much lower frequencies. The even values of χ/6 appear
to be distributed along to separate bands.

It is remarkable how well the pseudo-Voigt distribution, modified with a sinusoidal component, fits the
distribution of topological numbers of toric Calabi–Yau manifolds, often giving an exact fit. Of course, what
we are studying at heart is the number of integer points inside (cf. (2.2.1)) reflexive polytopes. This is a highly
non-trivial counting problem whose answer will ultimately give full analytic results for our distributions and
we suspect that the answer should be some generalized pseudo-Voigt function.

Now, in addition of Calabi–Yau manifolds, stable vector bundles over various such manifolds in a variety
of construction beyond Kreuzer–Skarke have also been studied algorithmically over the years in the context
of heterotic compactification (cf. e.g., [96, 97, 98, 99]). One can see a somewhat pseudo-Voigt profile in
these as well, even though there is no underlying polytope and the counting problem is dictated by certain
Diophantine system. It would be interesting to see why this shape is universal in such classifications.

Here we include all additional plots to supplement the main body. This includes the relevant plots for
the odd distributions — since in the main text we only presented the plots for even distributions — as well
as the regression analysis statistics and parameter values for both distributions.

2.6 Appendix

2.6.1 Gamma distribution

The following page is added after the publication of this paper. We decided to investigate the Gamma
distribution as a viable model for the h1,1 + h1,2 data as an alternative to the Planck distribution, which
was already studied.

The three variable Gamma probability density function is given by

Γ(A, k, θ) = Axk−1

θkΓ(k)e
−x
θ , (2.6.1)

where k is the shape parameter, θ is the scale parameter and A is the amplitude. The gamma function is
important in maths and physics as it is a extension to the factorial function. Where the factorial function is
defined for non-negative integers, the gamma function is defined for all positive real numbers. By choosing
suitable values of k and θ one is able to find a shape that resembles the data of the h1,1 +h1,2. It is of interest
to then do a regression fit of the data using the gamma function as our model. The fact that the gamma
function is the canonical distributions of positive numbers could potentially give a stronger interpretation
to why such a distribution can be used to mode data, as the data is generated by a counting procedure of
positive numbers. Below is a plot of the fit statistics for q0 = 0:
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(a) Sample fit using the already tested distribution as a reference distribution

(b) Sample fit using the Gamma density distribution

Figure 2.23: A comparison of the new Gamma distribution with the previous Planck dis-
tribution

Without needing to give further examples, we immediately see that the gamma distribution, although
able to describe the general shape, is much worse than the Planck distribution. This is the same for all values
even and odd values of q0. It appears that the Planck distribution is still the best suited for the description
of the data within the h1,1 + h1,2 distribution.
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2.6.2 Supplementary plots for the h1,1 − h1,2 distribution

All even plot counterparts will be referenced in the figures. The plots appear in the same order as in the
main body, with descriptions only if necessary.

2.6.2.1 Plots for the odd distribution as counterparts to the even ones

Figure 2.24: Three highlighted curves (r = 41, 51, 67) within the odd h1,1−h1,2 distribution.
The transparent grey data dots is the rest of the distribution. Refer to Figure 2.4 for the

even plot.
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(a) The width parameter σ has a linear relationship with r such that σ(r) = 0.51379r − 13.2494. The
amplitude period parameter,b, also has a linear relationship, however, since r is at most order 3 in mag-
nitude, we can regard it approximately as a constant such that b(r) = 0.65956 ∼ 2/3. The same goes for
the fraction parameter,α, we can regard it as a constant such that α(r) = −0.0388. For even parameter

fit statistics see Figure 2.10.

(b) Plots of A0 vs r (left) and a vs r (right). Both exhibit a similar pattern, however it is difficult to find
any nice relationships. For even parameter plots see Figure 2.10.

Figure 2.25: The plots of the various parameters A, σ, α, b, a versus r for odd values of r.

2.6.2.2 Comparative plots

Here we present a comparison of various models we used, by plotting them side by side with the relevant
fit-statistics. We choose a single even curve, r = 54, and odd curve, r = 51, to illustrate the difference
between models.
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Gaussian Model

f(x,A, µ, σ) = A

σ
√

2π
e−(x−µ)2/2σ2

(2.6.2)

(a) Gaussian model.

Lorentzian Model

f(x,A, µ, σ) = A

π

[
σ

(x− µ)2 + σ2

]
(2.6.3)

(b) Lorentzian (Cauchy) model.

Pearson7 Model

f(x,A, µ, σ,m) = A

σβ(m− 1
2 ,

1
2 )

[
1 + (x− µ)2

σ2

]−m
, (2.6.4)

where β is the Beta function.
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(c) Pearson7 model.

Breit-Wigner Model

This model is based on the Breit-Wigner function.

f(x,A, µ, σ, t) = A(tσ/2 + x− µ)2

(σ/2)2 + (x− µ)2 (2.6.5)

(d) Breit–Wigner model.

Voigt Model
f(x,A, µ, σ, γ) = aRe[(z)]

σ
√

2π
(2.6.6)

where
z = x− µ+ iγ

σ
√

2
, w(z) = e−z

2
erfc(−iz) (2.6.7)

The Voigt model is a convolution of the Gaussian and Lorentzian models.
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(e) Voigt model.

pseudo-Voigt Model

f(x,A, µ, σ, α) = (1− α) A

σ
√

2π
e

−(x−µ)2

2σ2 + α
A

π

[
σ2

(x− µ)2 + σ2
]

(2.6.8)

(f) Pseudo-Voigt model.

We present the standardized and shifted probability plots for the above comparisons:

(g) The probability plot for r = 51.



2.6. Appendix 95

(h) The probability plot for r = 54.

Figure 2.26: For all models, the left hand graph is for r = 54 and the right is for r = 51.
The probability plot presents all the models together. All the above mentioned modeled are
included to compare their resemblance with the actual data. The larger the p value the better

the line y = x fits the data, implying the better the model is at describing the data.

2.6.2.3 A first approximation to the data

The overall behavior of the data across each curve is modeled extremely well using the pseudo-Voigt model.
Here we present a few plots illustrating a first approximation to the data. A second approximation can be
made by introducing an oscillating amplitude as described in Section 2.2.1
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(a) Regression lines for few select odd r values, with r ∈ [35, 51].

(b) Regression lines for few select even r values, with r > 51.

Figure 2.27: Best fit curve based on the pseudo-Voigt model for the same sets of curves as
seen in Figure 2.5.
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(a) Regression lines for few select even r values, with r ≤ 54.

(b) Regression lines for few select even r values, with r > 54.

Figure 2.28: Best fit curve based on the pseudo-Voigt model for the same sets of curves as
seen in Figure 2.6.

2.6.2.4 Table of parameter values and statistics

Here we present the parameter values as well as the reduced χ value, χR, in a tabular format for all even r
curves — r ∈ [34, 120] — and for all odd r curves — r ∈ [35, 99].
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(a) Every fitted even curve from r = 34 until r = 120.

(b) Every fitted even odd from r = 35 until r = 99.

Figure 2.29: This is what the entire distribution looks like using our modified pseudo-Voigt
model. See Figure 2.30 for the fitted coefficients as well as the fits for every curve given by

the probability plots.
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Figure 2.30: Left : list of best fit coefficients for all even curves r ∈ [34, 120]. Right: List
of best fit coefficients for all odd curves r ∈ [35, 99]. In both tables, the last two columns
represent the R2 and p values for the probability plot for each curve. The p-values were

obtained by first performing a Z-Standardization on the data.
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Figure 2.31: A list showing the number of data points left after increasing the cut off
frequency to achieve a perfect fit. Conversely, one may state is as, the number of data points

for each curve required such that the model will result in a perfect fit.

2.6.3 Supplementary plots for the h1,1 + h1,2 distribution

2.6.3.1 Plots for the odd distribution as counterparts to the even ones

All even plot counterparts will be referenced in the figures. The plots appear in the same order as in the
main body, with descriptions only if necessary.
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Figure 2.32: Three highlighted curves (q = 3, 19, 31) within the odd h1,1 +h1,2 distribution.
The transparent grey data dots are all the data plots for the distribution. Refer to Figure 2.11

for the even plot.

(a) Lines of best fit from a regression analysis for a few select curves. The black data points represent the
maximum frequency for that particular q−curve. the black line is a line of best fit to describe the points of
maximum frequency — this is analogous to a blackbody spectrum. See Figure 2.12a for the curves within

the even distribution.
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(b) The curves segregate into three classes determined by the value of the even integer modulo 6. A similar
pattern occurs in the even distribution; see Figure 2.12b.

Figure 2.33: In the attempt to describe the data analogously to a blackbody distribution (a),
we discover some subtle structure, (b). These are the odd counterparts to Figure 2.12.

(a) All the curves color coded according to what residue class their curves qn belongs to.
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(b) Family of curves all belonging to q1. (c) Family of curves all belonging to q3.

(d) Family of curves all belonging to q5.

Figure 2.34: We illustrate the added structure for odd h1,1 + h1,2 data, by displaying how
the regression curves can be divided into residue classes. For the list of even curves, refer to

Figure 2.13.
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(a) Plotting the q- value parameter vs the log(A) parameter.

(b) Plotting the q- value parameter vs the b parameter.
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(c) Plotting the q- value parameter vs the power n parameter.

Figure 2.35: The parameter plots are color coded according to what residue class their q
value belong to. For the relationships in the even distribution, see Figure 2.14.

Figure 2.36: Left figure is the fitted model(blue line) for a q value of 71 and right has a q
value of 121. As the q-value increases, the scattering of the data points within h1,1 + h1,2

increases to the point where the model works no longer. For an example of how the model
begins to break down at large q, see Figure 2.15.
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2.6.3.2 Table of parameter values, coefficient values and statistics

Figure 2.37: Left : list of best fit coefficients for all even curves q ∈ [0, 100]. Right: List of
best fit coefficients for all odd curves q ∈ [1, 65].

Coefficient values for the description of the entire h1,1 + h1,2 distribution

Ak,i =



54.2664195 2.9066× 10−16 0.02414823 −5.4137× 10−20 −7.2635× 10−7

65.0676835 −2.0296× 10−16 0.03354614 3.7552× 10−19 −3.1443× 10−7

54.8909275 −2.0323× 10−16 0.02753302 −2.7091× 10−20 −9.1972× 10−7

62.6423777 1.2736× 10−16 0.03020535 −1.1234× 10−19 −8.6929× 10−7

54.5840853 2.9011× 10−16 0.02748121 −9.4235× 10−20 −9.3840× 10−7

64.2001359 −1.3980× 10−16 0.03700128 8.3795× 10−20 −1.3712× 10−7


(2.6.9)
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bk,i =



132.357878 3.3411× 10−15 0.32753297 −8.6619× 10−19 4.5825× 10−6

184.853063 −5.7999× 10−17 0.31981034 1.0014× 10−18 3.9052× 10−5

117.228782 −1.2791× 10−15 0.36989364 −8.5325× 10−20 2.9743× 10−6

173.033950 −1.1829× 10−15 0.31584408 8.9872× 10−19 2.5454× 10−5

105.298297 5.7916× 10−15 0.37843953 −1.5078× 10−18 1.3974× 10−6

171.521189 1.5811× 10−15 0.36410293 −2.5726× 10−19 2.5139× 10−5


(2.6.10)

nk,i =



8.98205242 2.9066× 10−17 0.00434183 −6.7671× 10−21 −1.5512× 10−7

11.6018246 5.1148× 10−17 0.00644305 0 −1.7241× 10−7

9.19515076 4.3161× 10−17 0.00496066 −1.3763× 10−20 −1.9163× 10−7

11.0620173 −1.1446× 10−18 0.00570064 2.8085× 10−20 −2.4813× 10−7

9.15798913 5.0109× 10−17 0.00493009 −2.3559× 10−20 −1.9210× 10−7

11.4578629 −6.0813× 10−18 0.00705818 9.2055× 10−21 −3.5862× 10−7


(2.6.11)

2.6.4 Supplementary plots for the fourfold data.

When looking for mirror symmetry in the fourfold data, we only observed partial mirror symmetry. Below
is the full break down of the data set.

Figure 2.38: Mirror symmetry is incomplete in the fourfold data set.
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3.1 Introduction

In order to solve the well known horizon and flatness problems, cosmological inflation [100, 30, 101, 102]
posits that the Universe underwent a period of exponential expansion early in its history. To date, there
is no uniquely compelling realization of how inflation transpired. The literature abounds with numerous
and varied proposed mechanisms [103, 37]. Paradigmatic models involve scalar fields which dynamically roll
until arriving at the (relative) minimum of some potential.

While a model of physics that purports to approximate our world must correctly trace out the cosmological
history of the Universe, these are not the only considerations in selecting a theory. The Standard Model
of particle physics establishes that at low energies the particles in Nature organize themselves into three
generations of chiral fields that transform in representations of the SU(3) × SU(2)L × U(1)Y gauge group.
Top down realizations of low energy gauge theories from a fundamental theory such as string theory typically
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augment the symmetries of the S-matrix with supersymmetry. The simplest scenario for preserving N = 1
supersymmetry in four dimensions involves the compactification of the heterotic string in ten dimensions
on a Calabi–Yau threefold [56]. This effort has led to a number of constructions that reproduce the matter
spectrum and Yukawa interactions observed in the Standard Model [99, 104, 105, 106, 107, 108, 109, 110,
111, 112, 113]. Again, we have an abundance of models that are a priori indistinguishable on the basis of
experiments.

As we do not have a sui generis path to the real world, we propose to study a large class of models at once
and incorporate inputs of both cosmology and particle physics. The most important characterization of a
Calabi–Yau threefold is a pair of topological invariants h1,1 and h2,1. There are h1,1 Kähler and h2,1 complex
structure parameters that describe the size and the shape of the geometry. In the most naïve setup, these
deformation parameters supply candidates for the scalar fields in inflation. The largest available catalog
of Calabi–Yau threefolds is derived from the Kreuzer–Skarke database of reflexive polytopes [63]. Using
the methods of Batyrev and Borisov [88, 63], each consistent triangulation of a reflexive polytope yields a
toric Calabi–Yau manifold. In [66, 114], topological and geometric data are tabulated for the Calabi–Yau
threefolds thus obtained for low values of h1,1. Heterotic Standard Model constructions in string theory
typically employ Calabi–Yau geometries with small values of the Hodge numbers. For example, [104] uses
a manifold with (h1,1, h2,1) = (3, 3). Where there are explicit candidates for particle physics from string
theory, we expect only a small number of moduli to appear in the low energy effective action. Motivated by
this fact, these are the models that we investigate in this article.

We aim to provide statistics for how many (possibly metastable) vacua support slow-roll constraints on
inflation. Working in effective field theory, we examine random polynomial potentials for inflation with a
small number of scalar fields. The justification for examining these models derives from string constructions
of de Sitter like metastable vacua, e.g., the KKLT [115] and Large Volume Scenarios [116]. In the latter
class of models, the number of flat directions in the low energy effective potential is given by the number of
parametrically large four cycles. (In fact, the number of flat directions is one less than the number of large
cycles [116].) There are 69 explicit Calabi–Yau geometries with two large cycles and one known Calabi–Yau
geometry with three large cycles [117]. These are candidate manifolds for bona fide cosmological model
building in string theory that correspond to one field and two field inflation. In light of this, we study
random potentials relevant to these cases in particular.

The potentials we study are sums of monomials in the scalar fields. We truncate the expansion to focus
on the interactions that are relevant or marginal from the perspective of a four dimensional low energy
effective action. As higher order monomials in the fields are irrelevant operators, we expect these to be
mass suppressed and neglect them for the purposes of our investigations. We will study models where
the time scale for inflation if tGUT. Correspondingly, the energy scale in the problem is MGUT. Invoking
naturalness [118], we choose coefficients in the potential to be order one with respect to this scale. (It is not
always required that we choose tGUT as the natural time scale in the problem; in fact, certain models [103,
37] employ energy scales which are lower than MGUT.) In discussing single field models with order one
coefficients, our work is analytic. In multi-field models, we construct random potentials whose coefficients
are selected from distributions.

At the outset, we should note that the cases we analyze where there are few moduli may well repre-
sent an atypical class of string compactifications. While there are 473 800 776 reflexive polyhedra in four
dimensions, there are only 30 108 pairs of Hodge numbers that appear in the threefold dataset. The num-
ber of reflexive polytopes in the Kreuzer–Skarke list peaks at the Hodge numbers (h1,1, h2,1) = (27, 27).
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There are 910 113 such polytopes. Indeed, there are significant and surprising patterns in the distribution
of Calabi–Yau geometries close to this maximum [119]. Reflexive polytopes with low Hodge numbers are
sparse in the Kreuzer–Skarke database. Flux compactifications on Calabi–Yau threefolds yield, in principle,
an enormously large number of potential vacua for string theory [120, 121]. There are, however, to date no
explicit constructions of the Standard Model on a geometry with Hodge numbers that correspond to those of
a typical Calabi–Yau manifold. As there are good reasons to be skeptical about anthropic resolutions to the
cosmological constant problem and there are potential issues regarding the stability of the flux vacua [122,
123, 124], we adopt an agnostic attitude. We simply note that if a construction is stable in this context, a
generic compactification on a typical Calabi–Yau manifold will most likely involve a large number of moduli
fields. As we review below, the large-N limit of inflaton fields is studied in complementary work.

The organization of the paper is as follows. In Section 3.2, we discuss the setup for random inflation. In
Section 3.3, we investigate the case of single field inflation with O(1) coefficients. This analysis is a completely
analytic study of polynomial equations. In Section 3.4, we examine the case of two scalar fields with couplings
up to quartic order. Again, the coefficients are O(1). We choose coefficients using a uniform distribution
and a Gaussian distributions for coefficients of indefinite sign and a gamma distribution for coefficients that
are positive. In Section 3.5, we remark on future investigations in the context of semi-realistic string models.

3.2 Random potentials for inflation

The action we consider assumes the form

I = −
∫
d4x
√
−g

(
R

16πG + 1
2g

µν∂µφ · ∂νφ− V (φ)
)
, (3.2.1)

where the Einstein–Hilbert term is supplemented by a matter sector that consists of k scalar fields,

φ = (φ1, φ2, · · · , φk) . (3.2.2)

For simplicity, we assume that the metric in field space is the identity matrix, i.e.,

∂µφ · ∂νφ = δij∂µφ
i∂νφ

j . (3.2.3)

The scalar potential V (φ) determines the model and can be expanded as a polynomial in the fields φi.
This setup lets us examine cosmological inflation. Deducing the form of the potential is a long standing

problem; many scenarios present attractive phenomenological features, and to date observation has provided
only limited guidance in selecting V (φ). In models with a single inflation field, famously the WMAP [125] and
Planck [126] observations disfavor the simplest quadratic potential. Other scenarios are variously consistent
with the data. See, for example, [127] for a recent review.

One of the simplest multi-field models, hybrid inflation [128], involves coupling two fields according to
the potential

V (φ, ψ) = 1
4λ (λψ2 −M2)2 + 1

2m
2φ2 + λ′

2 φ
2ψ2 . (3.2.4)
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Here, λ and λ′ are couplings and M and m are the masses of ψ and φ, respectively. We require that
V (φ) = 1

2m
2φ2 � M4

4λ . This guarantees that the inflationary energy density of the false vacuum associated
to the symmetry breaking potential V (ψ) = λ

4 (ψ2 −M2)2 dominates. The effective mass for the ψ field is
M2

eff = −M2 + λ′φ2, which vanishes at φ2
∗ = M2/λ′. Starting from φ2 � M2, the minimum is at ψ = 0.

This is morally a single field model with an effective potential of the form

Veff = λ

4M
4 + 1

2m
2φ2 . (3.2.5)

The field rolls until it reaches φ∗. The ψ = 0 locus is then unstable, and the field rolls again into the true
minima at φ = 0, ψ = ±M . Interest in the model stems from its versatility and success in predicting certain
features of inflation, such as the power law behavior of the perturbation spectrum. By tweaking the model
in various ways, one can deal with inflation with or without first order phase transitions. While this is a
prototype multi-field model, there is a built-in hierarchy to the coefficients. (See also [129].)

By constraining the inflationary scenario at a level matching the accuracy of current experimental
data, [37] presents an encyclopedia of 74 satisfactory models. In our work, we adopt a slightly different
approach and address the question of how generic or specific the models should be in order to satisfy ex-
perimental constraints. For this purpose, we consider randomly generated multi-field models (with the
inflationary potential being given by polynomials with random coefficients) and verify whether the models
can satisfy a certain set of conditions. In particular, we demand that the scalar potential has a parameter
window such that slow-roll conditions are satisfied.

Suppose there are some minima that satisfy the slow-roll conditions. What are the global features of
the potentials that accommodate this? Turning the question around, given a large set of potentials (which
may have some distribution in the function space), how likely is it that the potential has regions that satisfy
slow-roll conditions? How often can slow-roll inflation be accommodated with O(1) coefficients? These are
the issues we aim to address below.

In an analysis of multi-field inflation, the need to establish the behavior of random potentials is almost
compulsory. Generic compacticiations, can have hundreds of scalar fields [61, 130, 131, 132]. Since these
theories describe physics at energy scales close to the inflationary scale, there is considerable interest in
analyzing their dynamics. Considering random potentials with large-N fields has a considerable history [46,
133, 134, 50, 135, 48, 35, 36, 136, 49, 137, 138, 139]. As multi-field models have an almost infinite number of
ways to inflate, the task of understanding how the potential energy driving inflation is distributed among all
these fields becomes an incredibly difficult one. This problem is often referred to as the measure problem, and
it deals with attempting to handle the possible initial conditions [41, 38, 40, 39]. Multidimensional landscapes
may also be afflicted by instabilities [140, 141, 142]. In general, the approach that random multi-field inflation
adopts, is to study the dynamics of inflation by creating an ensemble of random potentials. Then, through
a statistical analysis, one can comment on the inflationary landscape produced by the respective models.
Related studies have recently appeared in the context of Gaussian models [143, 144] and non-minimal kinetic
terms [145].1 The study of random potentials is of course not limited to inflation. It is useful to borrow
techniques for the generation of random potentials from other fields in physics, in particular string theory
and quantum field theory [147, 148], and adapt these ideas to the cosmological context.

1 As we were completing this work, a similarly themed investigation appeared in [146]. This work examines inflationary
landscapes corresponding to one dimensional potentials.
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In Section 3.3, we analyze the single field case analytically. In Section 3.4, we investigate the statistics of
random inflation by examining a large set of sample potentials for two field inflation. In each potential, the
coefficients are random numbers that fall within a particular range. For each sample potential, we examine
whether it has slow-roll regions. We calculate the fraction of potentials that do have slow-roll regions and
examine what features they have in common. For succinctness, in the following we will use the term “slow-
roll potentials” to refer to those potentials that satisfy the slow-roll conditions in some region of the field
space. We assume the potential term V (φ) is a polynomial in φi up to degree four and is bounded below. In
this paper, we only consider single field and two field inflation models. In the former case, we shall denote
φ = ϕ̃, and in the latter, φ = (ϕ̃, ψ̃). Both cases are developed in the following sections.

3.3 Single field models

The polynomial potential up to degree four for single field inflationary models has the form

Va,b(ϕ̃) = ϕ̃2

2 (M2 − aMϕ̃+ bϕ̃2) , (3.3.1)

where M . 1016 GeV is the mass of the inflaton ϕ̃, and a and b are two dimensionless random numbers.
Note that in order for the potential to be bounded from below, the quartic term must be positive, which
means we presume b is positive. Another feature about this potential is the symmetry

V−a,b(ϕ̃) = Va,b(−ϕ̃) , (3.3.2)

which indicates if Va,b is a slow-roll potential, V−a,b must also be slow-roll. So again we only need to assume
that a is positive.

Now, to factor out the parameterM , we perform a rescaling, ϕ̃ = Mϕ, which also makes ϕ dimensionless.
Then the potential can be recast as

V (ϕ) = M4

2 ϕ2(1− aϕ+ bϕ2) , (3.3.3)

where we have omitted the two subscripts a and b on V .2 Consequently, the two slow-roll parameters are

ε = M2
Pl

2

(
V ′(ϕ̃)
V (ϕ̃)

)2
= 1

2µ

(
V ′(ϕ)
V (ϕ)

)2
,

η = M2
Pl
V ′′(ϕ̃)
V (ϕ̃) = 1

µ

V ′′(ϕ)
V (ϕ) , (3.3.4)

where MPl is the Planck mass and µ = M2/M2
Pl is the square of the ratio between the mass of the inflaton

and the Planck mass. The Planck 2015 [127] data tells us that the scalar spectral index is measured to be
ns = 0.9655± 0.0062 and the slow-roll parameters are deduced to satisfy

ε < 0.012 , η = −0.0080+0.0088
−0.0146 . (3.3.5)

2 Adding a zeroth order term to the potential will shift the energy of the relative minimum. Though the potential appears
in the denominator of the slow-roll conditions, we assume constant terms in the potential do not greatly affect flatness and
therefore neglect such a term in writing the potential.
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Noting that ns − 1 = 2η − 6ε, in our analysis we demand that the slow-roll parameters are O(10−2):

ε < 0.01 , |η| < 0.01 . (3.3.6)

Given the definition of µ, the two slow-roll parameters are actually independent of the specific value of
inflaton mass M because the M4 term in (3.3.3) appears in both the numerator and denominator of (3.3.4)
and therefore cancels.

If we define a new variable y = aϕ, the whole analysis will only depend on the ratio of b to a2, which
shall be dubbed β, instead of the explicit values of a and b. So we can define an auxiliary potential,

v(y) = 2a2

M4V (ϕ) = y2(1− y + βy2) , β = b

a2 > 0 , (3.3.7)

and two new slow-roll parameters which only depend on one parameter β,

ε̄ = 1
2

(
v′

v

)2
= ν

0.01ε , η̄ = v′′

v
= ν

0.01η , (3.3.8)

where

v′ ≡ dv

dy
, v′′ ≡ d2v

dy2 , ν ≡ 0.01µ
a2 = 0.01

a2
M2

M2
Pl
. (3.3.9)

The slow-roll conditions become

ε̄ < ν , |η̄| < ν . (3.3.10)

Of course, we have assumed a 6= 0 in (3.3.7) and (3.3.10), and the special a = 0 case can be approximated
by setting a to be an extremely small nonzero number, then a → 0 corresponds to the β → ∞ case, which
is a special situation that will be discussed in Section 3.3.1.1.

From (3.3.7) one can see that as y → ±∞, v ∼ y4 while v′ ∼ y3 and v′′ ∼ y2, so (3.3.6) is always satisfied.
That means, there exists a y0 > 0 and a y′0 < 0 such that (3.3.6) holds true for all y > y0 or all y < y′0.
In other words, in any cases there are always at least two trivial slow-roll regions, (−∞, y′0) and (y0,∞).
Our search for an inflationary scenario excludes these regions where the (3.3.6) is satisfied simply due to
the largeness of the potential v.3 We aim to isolate other, perhaps more realistic scenarios which satisfy the
slow-roll conditions with a flat v (i.e., small v′ and v′′) region of finite length.

From (3.3.8) we have

dε̄

dy
= v′

v3 (v′′v − v′2) = −y
2

v3 v
′[2− 4y + (3 + 2β)y2 − 6by3 + 4β2y4]. (3.3.11)

For y < 0, we have v > 0, v′ < 0, and the expression within the brackets is positive, so dε̄
dy > 0. This means,

if we find a y′0 < 0 such that ε̄(y′0) = 0.01, then (−∞, y′0) is a trivial slow-roll region and (y′0, 0) does not
contain a non-trivial slow-roll region. Hereafter, we are only interested in the region with y > 0.

In deducing the regions that satisfy the slow-roll conditions in single field inflation, we do not need to
perform a Monte Carlo analysis or scan over potentials with random coefficients. It suffices to analytically
examine a system of polynomial equations. We look for the true minimum of the potential. Complementary

3 This is not to say that regions where inflation transpires by virtue of a large denominator v must always be disregarded.
Models such as chaotic inflation can use these trivial regions of the potential.
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investigations (see, for example, [146]) examines relative minima in random landscapes. In the following
subsection, we will see that different intervals for β exhibit characteristic behavior.

3.3.1 Behavior of slow-roll parameters

Graphically, we can draw the slow-roll parameters, which are functions of y given a specific value of β,
on the plane and use the horizontal lines ε̄ = ν and η̄ = ±ν to intercept curves of the slow-roll parameters ε̄
and η̄ respectively, then from the interception one can easily read off whether there are slow-roll regions for
the corresponding potential. The classification of different behaviors of ε̄ and η̄ will be represented below.

To determine the behavior of slow-roll parameters ε̄ and η̄, we compute their partial derivatives with
respect to y,

∂ε̄

∂y
= y2v′

v3 f(y, β) , ∂η̄

∂y
= 2y
v2 g(y, β), (3.3.12)

where

v′ := 2y − 3y2 + 4βy3,

f(y, β) := −2 + 4y − (3 + 2β)y2 + 6βy3 − 4β2y4,

g(y, β) := −2 + 6y − (6 + 4β)y2 + 15βy3 − 12β2y4. (3.3.13)

For β > 9/32 we have v > 0 and v′ > 0, so the signature of ∂ε̄
∂y or ∂η̄

∂y depends on the signature of f(y, β)
or g(y, β). In order to determine the signature of f and g, we differentiate them with respect to y,

∂f

∂y
= 4− 2(3 + 2β)y + 18βy2 − 16β2y3,

∂2f

∂y2 = −48(βy − 3/8)2 − (4β − 3/4) < 0,

∂g

∂y
= 6− 2(6 + 4β)y + 45βy2 − 48β2y3,

∂2g

∂y2 = −144(βy − 5/6)2 − (8β − 33/16) < 0. (3.3.14)

Since ∂2f
∂y2 < 0 and ∂2g

∂y2 < 0, ∂f
∂y and ∂g

∂y are monotonically decreasing functions of y. In addition, ∂f
∂y (y =

0) > 0 and ∂f
∂y (y = ∞) < 0, so ∂f

∂y has one root in (0,∞). By the same token, ∂g
∂y also has one root in

(0,∞). We illustrate the previous analysis in Figure 3.1. From Figure 3.1 we can see that both functions
f and g have one and only one maximum which is ȳ (respectively ȳ′) in (0,∞). As f(0, β) = g(0, β) = −2
and f(∞, β) or g(∞, β) < 0, we conclude, (1) if f(ȳ, β) < 0 (respectively, g(ȳ′, β) < 0), ε̄ (respectively, η̄) is
monotonically decreasing in (0,∞); (2) if f(ȳ, β) > 0 (respectively, g(ȳ′, β) > 0), ε̄ (respectively, η̄) has one
local minimum and one local maximum in (0,∞). Between these two cases, there is an intermediate stage
which is f(ȳ, β) = 0 or g(ȳ′, β) = 0. As a result, we need to solve following two sets of equations, f(y, β) = 0

∂
∂yf(y, β) = 0

and

 g(y, β) = 0
∂
∂y g(y, β) = 0

. (3.3.15)
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Figure 3.1: Roots of ∂f
∂y

and ∂g
∂y

.

The two sets of equations are reduced, by a Groebner basis elimination, to

(784β3 − 846β2 + 270β − 27)(4β − 1) = 0 (3.3.16)

and

(8192β3 − 10368β2 + 3591β − 378)(25β − 6) = 0 (3.3.17)

respectively. Eq. (3.3.17) gives β = 0.778890, which supplies the bounds for the interval in Section 3.3.1.1,
and (3.3.16) gives β = 0.602103, which then supplies the bounds for the interval in Section 3.3.1.2.

3.3.1.1 β ≥ 0.7789

For β ≥ 0.7789, both ε̄ and η̄ are monotonically decreasing for y ∈ (0,∞), which is shown in Figure 3.2.
From this graph it can be readily seen that given any ν there is only one trivial slow-roll region for y > 0

Figure 3.2: Shapes of ε̄ and η̄ for β ≥ 0.7789.

which in this graph is (y0,∞).

3.3.1.2 0.6021 ≤ β < 0.7789

For β in this region, ε̄ is still a monotonically decreasing function for y ∈ (0,∞) while η̄ is not any longer.
The shape of these two slow-roll parameters are shown in Figure 3.3. From this graph one can easily read
off, given that νmin < ν < νmax, the two slow-roll regions, one of which is (y0,∞) which is trivial, and
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Figure 3.3: Shapes of ε̄ and η̄ for 0.6021 ≤ β < 0.7789.

the other is (y1, y2) which has finite length and is thus the kind of slow-roll region we are searching for.
From this graph we can also see that there are an upper bound and a lower bound for ν beyond which
there is still only one trivial slow-roll region. In fact, this is a common feature, which will be justified in
Sections 3.3.1.3, 3.3.1.4, and 3.3.1.5. Therefore, all these bounds of ν corresponding to different β render a
window opening to non-trivial slow-roll regions, which shall be plotted in Section 3.3.2.

3.3.1.3 9/32 ≤ β < 0.6021

For β < 0.6021, both ε̄ and η̄ are not monotone functions of y in (0,∞), thus we should expect, on the
whole, a wider range of ν that opens to non-trivial slow-roll regions. In particular, for β ∈ [9/32, 0.6021), the
potential v is still a monotonically increasing function for y > 0, which means there is no local minimum of
v in y ∈ (0,∞) (the cases that v has a local minimum in y ∈ (0,∞) shall be dealt with in the following two
subsections). The typical shapes of ε̄ and η̄ are presented in Figure 3.4. From this figure, we can see that
given ν ∈ (νmin, νmax), there is a non-trivial slow-roll region, (y1, y2), apart from the trivial one, (y0,∞).

Figure 3.4: Shapes of ε̄ and η̄ for 9/32 ≤ β < 0.6021.

3.3.1.4 1/4 < β < 9/32

In this interval, v > 0 still holds, but v′ is not positive definite any longer. So ∂ε̄
∂y has two more roots which

are the roots of v′. When β < 9/32, the potential v(y) has a minimum on the right half y − v plane. In
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particular, for β > 1/4 this minimum is a local minimum (see the first graph of Figure 3.5). Physically, we

Figure 3.5: The first graph shows the potential v has a local minimum at ymin > 0. The
second illustrates typical shapes of ε̄ and η̄ for 1/4 < β < 9/32.

prefer the Universe to not being inflating at the minimum of the potential; the Universe should be reheating
and the field should be oscillating. To ensure this, we look for |η̄(ymin)| > ν, where ymin is the local minimum
point of v. Because of this extra filter, the upper bound of ν (viz., νmax) is not necessarily equal to the
local maximum of η̄ (viz., η̄max), which is illustrated in the second graph of Figure 3.5. In that graph, the
lower bound of ν, namely νmin, is also not at the minimum of ε̄ which is 0. This is the consequence of the
restriction η̄ > −ν.

3.3.1.5 0 < β ≤ 1/4

Finally, when β < 1/4, v in the denominator of (3.3.12). This contributes two extra singularities. The
potential v has a true vacuum in the right half y − v plane, which is shown in the first graph of Figure 3.6.
At this true vacuum, the potential is negative (or zero for β = 1/4) and thus potential v(y) has two (or one

Figure 3.6: The first graph shows the potential v has a global minimum at ymin. The second
illustrates typical shapes of ε̄ and η̄ for 0 < β < 1/4. The β = 1/4 case is a special case in

which y′ and y′′ coincide.

when β = 1/4) roots, dubbed y′ and y′′ respectively.
As a result, the slow-roll parameters ε̄ and η̄ are singular at these two roots of v, which can be seen from

the second graph of Figure 3.6. The bounds of ν, namely νmin and νmax are also denoted in that graph.
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3.3.2 The window

Now that we have worked out all possible combinations of β and ν that opens a window to non-trivial
slow-roll potentials whose procedure can be algorithmized by computer programs, we plot the numerical
results in Figure 3.7. There are two salient features in this figure. First, at β = 1/4, the upper bound

Figure 3.7: The window that opens to non-trivial slow-roll potentials.

of ν blows up, which means for any large enough ν the potential always has a non-trivial slow-roll region.
Second, at β = 9/32, there is a discontinuity (jump) in the upper bound of ν. This is because, from β > 9/32
to β < 9/32, a local minimum ymin appears suddenly in the potential, and the subsequent introduction of
the extra constraint |η̄(ymin)| > ν which ensures that the Universe does not inflate at the minimum of the
potential makes the bound for ν discontinuous.

3.4 Multi-field models

In this section, we investigate which potentials accommodate the slow-roll conditions for inflation with
two fields. The form of the potentials we have is

V (ϕ̃, χ̃) = µ2

2 M2ϕ̃2 + ρ2

2 M
2χ̃2 + a1Mϕ̃3 + a2Mϕ̃2χ̃+ a3Mϕ̃χ̃2 + a4Mχ̃3

+b1ϕ̃4 + b2ϕ̃
2ψ̃2 + b3χ̃

4 , (3.4.1)

where the masses µM and ρM for the fields φ̃ and χ̃ are defined in terms of M , the GUT mass, the aiM
are cubic couplings, and the bi are quartic couplings. We will assume that the masses are around the GUT
scale (∼ 1016 GeV). We motivate the quartic potential from a Wilsonian perspective wherein higher order
terms are suppressed by the energy scale at which new physics enters. We assume this is the string scale or
Planck scale (∼ 1019 GeV). Terms higher than quartic order, as they are suppressed by this higher energy
scale, are neglected in the analysis. The coefficients ai and bi are order one numbers. The terms that appear
in (3.4.1) are dictated by the fact that we demand all slow-roll potentials to be bounded from below. With
this in mind, the ai can be positive or negative and the bi are positive. When both fields tend to −∞, the
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quartic terms should have no odd powers in any of the two variables. We can rescale (3.4.1) similarly to
what we did in the single field case. With ϕ̃ = Mϕ and χ̃ = Mχ, we have

v(ϕ, χ) = µ2

2 ϕ2 + ρ2

2 χ
2 + a1ϕ

3 + a2ϕ
2χ+ a3ϕχ

2 + a4χ
3

+b1ϕ4 + b2ϕ
2χ2 + b3χ

4. (3.4.2)

Now all parameters and variables in potential v are dimensionless and it is sensible to talk about the
magnitude of parameters. Note that V = M4v. These methods can readily be generalized to having more
scalar fields. We simply require that the superpotential is renormalizable and bounded from below. As
adding more scalars and studying the potentials explicitly in the finite field case is computationally more
intensive, we do not extend the analysis beyond the two field level in this work. When searching for minima
in the potential one will encounter both false and true vacua. We allow for slow-roll regions around false
vacua (local minima) and not only the true vacua (global minima). The reason that we allow for both false
and true vacua for slow-roll in two field case is based on computational and physical grounds. If we only
look for global minima to test our slow-roll constraints, we firstly need to find global minima using methods
such as steepest gradient descent subject to some arbitrary initial conditions. This will greatly increase
the computational time and render the numerical test impossible in a reasonable time frame. Moreover, on
physical grounds as long as the false vacuum is sufficiently long lived, the Universe may be in a metastable
state. We do not analyze the lifetime to exclude short lived false vacua as this analysis depends on details
of, say, particle physics and the presence of other nearby minima.

3.4.1 Slow-roll conditions for multi-field inflation

It is important to discuss the slow-roll conditions for multi-field inflation models as they are fundamentally
different from those of single field case. The conditions are discussed in detail in [149]. We shall demand the
following:

ε ≡ − Ḣ

H2 = 3
(
φ̇i

2

V

)
= M2

Pl(∂iV )2

2V 2 � 1 ,

ξ ≡
√
V̂1 ·
←→
V2 ·
←→
V2 · V̂1 � 1 , (3.4.3)

with

V̂1 ≡
∂iV

|∂iV |
,
←→
V2 ≡

M2
Pl(∂i∂jV )
V

, (3.4.4)

for fields φ = (ϕ, χ). Here the conditions are derived from the approximation 3Hφ̇i ≈ −∂iV , which is
essentially the consistent second slow-roll condition. This comes down to neglecting φ̈i compared to ∂iV .
But when comparing two vectors, it is sensible only to compare their norms. Therefore we have the strong
second slow-roll condition |φ̈i| � |∂iV |. The reason it is called the strong second slow-roll condition is
because its smallness implies

η ≡ V̂1 ·
←→
V2 · V̂1 � 1 , (3.4.5)
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where η is defined to be
1
εH

dε

dt
= 4ε− 2V̂1 ·

←→
V2 · V̂1 = 4ε− 2η � 1 . (3.4.6)

Therefore the slow gradient flow by the fields defined in (3.4.3) is not the only way to get a slowly-varying
quasi-de Sitter expanding phase.

3.4.2 Numerical tests

In this section, we numerically determine whether a potential of the form (3.4.4) satisfies the slow gradient
flow condition in (3.4.3). Because we now have the free parameters ~a and ~b, we will adopt the Monte Carlo
paradigm to characterize the shapes of potentials and quantify the rate of success.

3.4.2.1 Setup for numerics

The experiment is set up as follows.

1. The coefficients ~a and ~b in cubic and quartic terms in (3.4.2) are first sampled from a uniform distri-
bution within range [−3, 3] and [0, 5] respectively. In addition, we also sampled the ~a coefficients from
a Gaussian distribution with mean 0 and variance 1, and ~b coefficients from a exponential distribution
with λ = 1.

Let us briefly justify these choices of parameters. The experiments with the uniform distribution are
performed in the spirit of Monte Carlo simulations, where parameters are chosen essentially at random.
The choice of the uniform distribution is further justified by the fact that we do not know the region
where slow-roll solutions reside in the seven dimensional parameter space of the potential coefficients.
On the other hand, the choice of normal distribution with particular mean and variance will center
our data around that mean and therefore may miss possible slow-roll regions. The choice of uniform
distribution reflects the fact that we have no knowledge on the region of slow-roll samples within the
parameter space a priori. In addition, the parameters are chosen to be of O(1) with respect to GUT
scale. This comes from the fact that the higher order terms of the potential do not get corrections from
quantum gravity effects, thereby, the potential is written in this particular quartic form. Note that
this polynomial potential allows vertices that mix the two inflatons. This rules out the models such as
assisted inflation where potential takes steep exponential [150] due to the fact that our potentials are
polynomials.

In the second set of experiments, the Gaussian distribution for ~a is motivated by the Central Limit
Theorem. If we suppose our coefficients can be observed, the averages of n measurements of each
coefficient then approach Gaussian distribution when n→∞. Meanwhile, the mean and variance are
chosen on the grounds of naturalness. A priori, the coefficients should be order one numbers at the
scale determined by the masses of the inflatons, which we set to GUT scale. Therefore, our choice of
Gaussian distribution for ~a can be seen from previous arguments. On the other hand, we have ~b follow
a Gamma distribution. We demand each of the elements of ~b to be positive in order to ensure that the
potential is bounded from below. Just as the Gaussian distribution is a maximum entropy probability
distribution for positive and negative real numbers, the Gamma distribution is the maximum entropy
probability distribution for positive real numbers. The Gamma distribution therefore becomes the
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natural candidate for selecting coefficients. In particular, we use an exponential distribution with
λ = 1, which is a Gamma distribution with shape parameter k = 1 and scale parameter θ = λ. Again,
the choice of 1 is motivated on the grounds of naturalness. The Central Limit Theorem requires large
n. It is not clear that this applies when only a small number of scalar fields participate in inflation, so
the comparison between the two possibilities is useful.

2. For each set of random coeffcients ~a and ~b, we search for a point that satisfies conditions (3.4.3) within
a particular range for fields φi by using the Mathematicafunction4

FindInstance[<slow-roll conditions>, {ϕ, χ}]. (3.4.7)

The search region within field space is rectangular with origin in the middle. The size of both sides of
this region is twice the maximum of distances between origin and any stationary points of the potential.
5 This is justified because we want a slow-roll region that is near a stationary point and the potential
becomes steep far out from the origin in our potentials that are bounded from below. We do not
want to falsely classify solutions as slow-roll simply by virtue of the fact the denominator, which is
determined by the value of the potential, is large near infinity in field space.

3. For particular conditions in (3.4.3), we have observational constraints of

ε < 0.01 and ξ < 0.01 (3.4.8)

from measurements of scalar spectral index ns that directly restricts slow-roll parameters. We also
note that since the ξ condition implies η, the results from imposing ξ should be smaller than those
from η.

4. The inflaton mass parameters are defined as µ = mϕ/MGUT and ρ = mψ/MGUT, wheremϕ andmψ are
the inflaton masses. Here, we set them both to be of GUT scale, so µ and ρ are of order O(1). With
the mass parameters fixed, we take N = 314000 uniformly distributed random coefficient samples,
(~a1,~b1), . . . , (~aN ,~bN ). To be precise, we first of all generate 157000 samples using the Mathematica
function RandomReal[{-3, 3}, 4] for ~a and RandomReal[{0, 5}, 3] for ~b. Then we apply the
slow-roll conditions in (3.4.3) to these coefficients using the approach and constraint described in (3.4.7)
and (3.4.8) to obtain instances6 of relative minima that satisfy the necessary conditions. By noticing
that the potential (3.4.2) is symmetric under the following transformation for µ = ρ,

ϕ↔ χ, a1 ↔ a4, a2 ↔ a3, b1 ↔ b3, (3.4.9)

we apply this symmetry to the slow-roll coefficients found previously in the 157000 samples. That is
equivalently getting all slow-roll coefficients in 314000 random samples. In addition, this is also done

4Of course, we wrote more code than just this one line function.
5To be precise, we used GroebnerBasis[] to solve for zeros of the gradients of the potentials to find the extrema. However,

this method actually turns the cubic polynomials into higher power polynomials (sometimes as high as 9-th order) thus making
numerical solution highly sensitive to small change of gradient. For future work, we suggest to use NSolve[] directly instead
and this might change the results slightly.

6The FindInstance function in Mathematica is not capable of finding all desired slow-roll instances due to the math-
ematical complications of the slow-roll conditions and the internal algorithms designed for this task in Mathematica. Our
experimental comparison of FindInstance with the more comprehensive but slower NSolve function indicate that results
from using the two options are similar.
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Figure 3.8: Two of the 76 slow-roll potentials for the uniform distribution
in Table 3.1. They have coefficients a = (1.85634,−2.75233, 0.59967, 0.655031),
b = (4.61147, 3.281, 0.00123865) and a = (0.675461,−0.286123, 2.6534, 1.6393), b =
(0.294909, 4.25653, 0.00658533) respectively. The point instances found in their slow-roll
regions are at (−46745.5,−426) and (−64074.,−193.667), and the potential values there
are around 2.2 × 1019 and 5 × 1018. However, the farthest stationary points are at

(−0.091192,−396.138) and (−0.311574,−186.663).

for 145000, or equivalently, 290000 samples drawn from Gaussian/Gamma distributions with means
and shape parameters chosen as unity.

3.4.2.2 Numerical results

Of all the slow-roll potentials we obtained from choosing coefficients using both the uniform and Gaussian
distributions, all of the slow-roll points found with function FindInstance have their distances from the
origin greater than 30,000. The absolute values of potentials corresponding to these point instances have
order of magnitude above O(1016). Figure 3.8 depicts two typical slow-roll potentials we have found for the
uniform distribution.

v(ϕ, χ) = ϕ2

2 + χ2

2 + 1.85634ϕ3 − 2.75233ϕ2χ+ 0.59967ϕχ2 + 0.655031χ3

+4.61147ϕ4 + 3.281ϕ2χ2 + 0.00123865χ4, (3.4.10)
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Distribution Range of a Range of b Samples Slow-Roll Percentage
Uniform [−3, 3] [0, 5] 157,000 76 0.05%

Gaussian Gamma [−∞,∞] [0,∞] 145,000 131 0.1%

Table 3.1: Slow-roll potentials found in random sample potentials of chosen distributions

has three real stationary points,

(−0.091192,−396.138), (−0.028419,−0.497133) and (0, 0), (3.4.11)

the furthest of which is around 400 units of distance away from the origin. However, the slow-roll point we
found is at (−46745.5,−426), which is far beyond the region we expected. The potential at the slow-roll
point is 2.2× 1019, and the gradient is −1.9× 1015 and −6.1× 1012 in ϕ and χ directions respectively. One
can check that, the two slow-roll parameters,

ε = 0.0037 and ξ = 0.0055, (3.4.12)

satisfy the constraints in (3.4.8). However, from the careful inspection of this specific example, we can see
that the slow-roll (and its adjacent region) satisfy the ε� 1 and η � 1 conditions because the potential at
this distance from the origin is large and the two slow-roll parameters are both roughly inversely proportional
to some power of the potential. All the other slow-roll instances we found in our random samples are similar
to this specific example. We stated in Section 3.3 that we wanted to exclude those regions where (3.3.6) was
satisfied simply due to the largeness of the potential. However, now that these are the only slow-roll regions
we have found for the two-field case, the best statistics we can get is from this kind of slow-roll potential.

To get a better idea about the slow-roll potential, we stack all the successful potentials in a single plot in
Figure 3.9. As the figure shows, all the slow-roll potentials have a steep and a flat direction. This qualitative
shape of the potentials recalls those found in models of hybrid inflation type [hi]. Generic initial conditions
in the neighborhood of a minimum would first fix the field in the direction perpendicular to the valley (the
steep direction), and then the field would roll along the valley to the minimum at the bottom. Unlike the
potential for hybrid inflation discussed in the introduction, informed by our choices of random coefficients,
the parameters that appear in the potentials here are all typically of order one with respect to the GUT
scale.

The statistics of slow-roll potentials we found in potentials from the uniform and Gaussian/Gamma
distribution are listed in Table 3.1. From Table 3.1, we can see that in all randomly generated coefficients,
around 0.05% of them correspond to slow-roll potentials and 0.1% for Gaussian/Gamma distribution. This
supplies a lower bound for the percentage of relative minima that accommodate the slow-roll conditions for
inflation with two scalar fields.

We also draw distributions of values of coefficients (~a,~b) that correspond to slow-roll potentials in Fig-
ure 3.10. These figures show that in spite of the uniform distribution that we presume as priors for ai and
bi, the slow-roll conditions pick the coefficients according to the mass distributions in these histograms. The
distributions of all components of ~a and ~b deviate noticeably from the uniform distribution. This indicates
that the slow-roll conditions set some constraints on the values of coefficients in a probabilistic sense. Devi-
ations may also be a product of having a low number of slow-roll regions, only around 70, despite starting
with a minimum of 150000 samples. A greater computational analysis would be required to obtain more
concrete statistics for the distribution of slow-roll regions.
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Figure 3.9: The top figure gives the stack of all found potentials for uniform distribution
and the bottom one gives that for Gaussian distribution.
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Figure 3.10: Distribution histogram for ~a and ~b coefficients drawn from uniform distribu-
tion. The x-axes are values for ~a and ~b and the y-axes are for probabilities for those values

to occur.

In addition to the results from uniform distribution, we also present the histogram plots for coefficients
of slow-roll potentials for Gaussian/Gamma distribution in Figure 3.11. We can see from the plot that the
Gaussian nature of the plot still is still present. This shows that the slow-roll conditions we choose respects
the Gaussianity of initial samples.

Preliminary experiments with varying the mass parameters for the scalar fields over several orders of
magnitude do not significantly change the percentages of slow-roll solutions.

3.5 Discussion and outlook

With the advent of Big Data in theoretical physics and ever-increasing computational power, we are
gaining further glimpses into the various landscapes of theories ranging from string vacua to cosmological
scenarios. In this paper, we have been motivated by the question of the probability of having slow-roll
inflation within the landscape of effective potentials for inflatons.

We started with the case of a single field with the most generic form of the potential up to degree four,
subject to the constraints of slow-roll. Here, there are only two parameters, which we have dubbed β and
ν, and which can be expressed in terms of the couplings. We can solve the problem numerically to arrive at
Figure 3.7. The figure depicts a non-trivial region of parameter values which satisfy the slow-roll conditions.

With two inflatons, the situation is understandably more intricate. Here, up to degree four, there are
seven parameters. The slow-roll conditions then translate to a polynomial system in the fields and in the
parameters. This is then a problem in a potential landscape sculpted by these parameters. We find that
the slow-roll conditions for multi-field are insensitive to the distribution we used, i.e., we find that they
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Figure 3.11: Distribution histogram for ~a and ~b coefficients drawn from Gaussian/Gamma
distribution. The x-axes are values for ~a and ~b and the y-axes are for probabilities for those

values to occur.

give the same percentage of slow-roll instances. Moreover, initial experiments that change the mass scale
yield similar results. The inflatons for slow-roll inflation traverse far into field space so that the slow-roll
conditions are satisfied in part due to the largeness of V . The potential has a characteristic shape in which
the fields would roll first down a steep direction and then follow a valley to the minimum.

In the single field case, the condition V ′ V ′′′ � V 2M−4
P accounts for constraints on the running of the

spectral index. It would be reasonable to develop the equivalent third derivative condition for multi-field case
and include this within the framework of random potentials. In addition, in this work we do not explicitly
compute the number of e-foldings for each of the potentials that support slow-roll inflation. While we can
exclude certain minima as being unable to support the necessary number of e-foldings, the suitability of other
minima for this purpose depends critically on the choice of initial conditions for the inflaton fields. There
is no obvious a priori selection criteria for this informed by realistic string constructions of the Standard
Model. We defer a systematic analysis on this point for future work.

In general, with an arbitrary number of inflatons and a potential up to a specified degree, the slow-roll
constraints will produce a large polynomial system with still larger number of parameters. For example,
in the heterotic string Standard Models to which we alluded in the introduction, the contribution to the
number of moduli fields come from the geometry — roughly the sum of the Hodge numbers — and from the
bundle — roughly the number of endomorphisms [151]. For the (3, 3) Calabi–Yau threefold studied in [104,
105] the total number of moduli is 6 + 19 = 25.

The usual Groebner basis [152] approach to analyzing such systems will soon become rather prohibitive
and even numerical algebraic geometry [147] will find this challenge daunting. Our approach of randomization
over parameters is thus the standard technique, and the statistics over the landscape is an enlightening
overview of how special or generic our universe is. Aided by work done in [153, 154], one could find a
relationship between the general statistics of successful inflation in random polynomial potentials with the
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general statistics of stationary points in the same potentials. They note that the variance of positive real
roots both increases with the degree of the polynomial and converges with sample size. Knowing this may
give, for example, a convenient saturation limit of test samples, shifting a greater proportion of computational
resource to just the search for relationships between minima and slow roll regions. Finding this would allow
us to derive properties of the inflationary landscape from the statistics of the minima themselves. More work
is needed hover in developing actual “search and test" techniques for inflation within these minima.

One should mention also that there is a branch of mathematics known as random algebraic geometry
where the usual quantities such topological invariants and cohomology, which govern the physics, have their
analogues in the stochastic sense. It will certainly be interesting to study polynomial systems arising from
the potential landscape under this light.
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Chapter 4

New Tools in the Analysis of Large Scale

Wildfires

This chapter is work done in collaboration with Sally Archibald, Kevin Goldstein and Vishnu Jejjala. It is
written with the intention to publish after the submission of this Ph.D.

4.1 Introduction

Global fire occurrences are of interest to scientists who study earth system modeling. Fires have crucial
impact on vegetation and animal habitat. They burn down forests, but also enrich the soil with nutrients
allowing for regrowth of plants and grass. Furthermore, as climates change, so do probabilities of fires
increase or decrease - hot arid weather generates more bio fuel. Under specific conditions fires can grow
incredibly big posing safety hazards to human, plant and animal populations. With the interplay between
climate, fire and vegetation, the problem of distinguishing clear cause and effect relationships between these
factors can be difficult. System modeling enables scientists to deal with the large space of self interacting
variables, however, they suffer from generality or too high a specificity. The former doesn’t possess any real
world predictive power, and the latter becomes computationally unfeasible due to the number of required
parameters.

The evolution of fire can be separated into three stages: the ignition occurrence of a fire, the spread dy-
namics and the stopping conditions. An important aspect in modeling these stages involves understanding
the spatial distribution of vegetation in a particular landscape. Of course, knowing the population spread
is also important as humans have direct impact on how and where vegetation grows. This however, only
sets some initial conditions on the landscape, dictating how the fire will then evolve. Spatially representing
the vegetation in computer models can be a tricky task as knowing the percentage distribution of certain
fuel is not a representation of the complex landscapes that actually exist. Complex process simulations of
how fire works do exist, such as the model from Rothermal[14] which take into consideration variables such
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as fire height, convection currents and heat radiation effects. Although a very useful model to people like
firefighters, on top of the extreme computational complexity it introduces when applying it at a global level,
it fails to explain the last stage in the evolution of fires - their natural end. In most simulations the wildfires
are put out artificially, they are not allowed to continue endlessly as they have no indication of when the
fire will stop. This then limits the accurate simulation of fire spread over large distances, whereby in real
life global fire spreads can span several thousand kilometers, simulations only show around tens of kilometers.

Percolation models offer a new angle to explain how fires can come to an end [155, 156]. This is be-
cause these models focus on threshold behaviour. Such behaviour exists in various fields such as infection
theory - how infectious must a disease be before the entire population contracts it, or things like viralness
of videos or posts in social media. They introduce a criticality condition; stating when a particular process
will affect an entire population, or vice versa, at what point will a certain process cease to spread. Such
epidemiological models have use in understanding the last stage in fires. In particular, they give a critical
value for the percentage of flammable landscape [157, 158]. In other words, if a landscape contains more
than 59.28% vegetation which is flammable, the fire will spread, if it is lower, the fire will self extinguish.
In addition to this threshold value is also the probability of spread - for a fire in a given cell, what is the
likelihood of it spreading to a neighboring cell. The question of thresholds can also be asking in the context
of fire spread; is there a threshold of how far a fire will spread? Take for example a situation where there is a
fire in a landscape that has a fuel above the percolation threshold, but now weather conditions change, such
that temperatures decreases, dew on vegetation thus increases. What happens is that the spread probability
of the fire dramatically decreases and this then also causes self extinguishing conditions for the fire.

What results from the models based on percolation threshold behaviour is an emergent property in fire
simulations called scale invariance. Interstingly, the fractal pattern which is formed can be seen in both
real world examples of fires which self extinguish and simulations. Scale invariance refers to a sense of self-
similarity - structural patterns on large scales look the same as structural patterns when zoomed in. Scale
invariance is studied further when looking at self-organized critical behaviour(SOC) [15, 159, 160], where it
is suggested that fire size distributions follow power-laws (i.e. show scale invariance) but our ability to accu-
rately quantify this, as well as what this means mechanistically for fire propagation in different ecosystems
have not yet satisfactorily been resolved. There are at least three mechanisms by which power-law behavior
might emerge in fire size distribution: a) self-organized criticality (intrinsic drivers), b) power-law behavior
in the weather drivers of fire (extrinsic drivers), and c) scale invariance in the landscapes in which fires are
spreading.

In physics, scale invariance is a property which is very well studied. Systems which exhibit scale invari-
ance possess a particular type of symmetry which aids in solving equations or making assumptions about
that system. Thus, the interpretation of scale invariance changes depending on the theory. For example,
in classical field theory, scale invariance means the theory does not depend on the length scale, whereas in
quantum field theory, it implies particle strength interaction is not dependent on the energy of the particles.
There is a theorem, called Polchinski’s theorem [161, 162], stating that a Lorentz invariant theory in two
dimensions is also conformal invariant. Theories which have conformal invariance are very interesting as they
fix what are called correlation functions. By fixing, we mean that we know what the function describing the
correlations look like. The fixing of these correlations, allows a more rigorous way of quantifying to what
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degree a system is scale invariant. Furthermore, they can provide tools of directional analysis, meaning one
can, in the context of fires, quantifiably differentiate fire distribution in particular directions. This opens up
the potential of investigating the affect of wind vs fuel in creating fire patches.

For our analysis, we use MODIS burned area data from two different regions globally which we expect
to show variation in fire size distribution due to differences in their fire ecology. We chose homogeneous
areas where the influence of landscape-features should be minimized so as to assess the role of weather and
internal dynamics in driving the behaviour of the system. Over a 12 year period from 2002 to 2014, we
investigated the variability between years and looked to relate this to changes in the drivers of large fires
in these ecosystems, as well as quantify the transnational invariance and compare this to information on
wind fields for the areas studied. Section 4.2 is used to introduce relevant concepts in conformal field theory,
as well as expand on the tools we used for the analysis and how they work. In Section 4.3 we present a
sample of a few plots highlighting the fitting procedure as well as a few tables showing all fitted variables. In
addition we show possible relations of our modeled variables to variables like average temperature, rainfall
and average wind speed. In Section 4.3.4 we discuss potential issues with regards to both the model as well
as the data used in the model, which itself is often a limiting factor in the viability of a given model. Finally
we summarize the efficacy in our proposed tools and discuss future work.

4.2 Conformal field theory basics

4.2.1 Two dimensional CFTs

Quantum field theories that are invariant under angle preserving transformations enjoy conformal invari-
ance. Statistical systems acquire this symmetry near quantum critical points. In particular, at a conformal
fixed point, the beta functions vanish and correlations extend to all scales. In two dimensions, conformal
symmetry yields an infinite dimensional algebra of local conformal transformations. Under a conformal
transformation, a quasi-primary field transforms as follows:

x → x′

Φ(x) 7→ Φ′(x′) =
∣∣∣∣∂x′

∂x

∣∣∣∣−∆/2
Φ(x) , (4.2.1)

where ∆ is the conformal dimension of the field φ(x). The two point and three point correlation functions
of quasi-primary fields are as follows:

〈Φ1(x1)Φ2(x2)〉 =


C12

x
2∆1
12

if ∆1 = ∆2

0 if ∆1 6= ∆2

, (4.2.2)

〈Φ1(x1)Φ2(x2)Φ3(x3)〉 = C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
13

, (4.2.3)
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where xij = |xi − xj | and ∆i is the conformal dimension of Φi(x). In particular, when Φi(x) = Φ(x), we
have

〈Φ(x1)Φ(x2)〉 = A

x2∆
12

, 〈Φ(x1)Φ(x2)Φ(x3)〉 = B

(x12x23x13)∆ . (4.2.4)

See [163] for a review.

For unitary local quantum field theories, scale invariance in combination with Lorentz invariance implies
conformal invariance [164]. In essence, this conclusion arises from showing that the trace of the stress tensor
may be written as

T µ
µ = ∂µ∂

µL(x) , (4.2.5)

where L(x) is a local operator. The argument is extremely general and counterexamples such as elasticity
involve circumventing axioms like reflection positivity [165]. In our current setting, we do not have a priori
knowledge of the Lagrangian and therefore cannot define the stress tensor from variation of the action with
respect to the metric:

δS = −1
2

∫
d2x Tµνδgµν . (4.2.6)

Moreover, the systems we examine are classical. Because the relationship between the log of the number
of fires of a given size versus the log of the size of the fire is linear, the systems exhibit approximate scale
invariance. We adopt the techniques of conformal field theory to interrogate this behavior.

4.2.1.0.1 Fire propagation: To study fire propagation, we define a field

ψ(x, t) =

 1 if x on fire in year t
0 if x not on fire in year t

. (4.2.7)

The one point function E[ψ(x, t)] tells us the density of fire in a year t. The expectation value denotes an
average over the grid. We then compute two point functions and three point functions. Fixing t, these are,
respectively,

f(x12, t) := 〈ψ(x1, t)ψ(x2, t)〉 = E[ψ(x1, t)ψ(x2, t)]− E[ψ(x, t)]2 , (4.2.8)

g(x123, t) := 〈ψ(x1, t)ψ(x2, t)φ(x3, t)〉 = E[ψ(x1, t)ψ(x2, t)ψ(x3, t)]− E[ψ(x, t)]3 , (4.2.9)

where x123 = (x12x23x13) 1
3 .

4.2.1.0.2 Fire geography: To study the geography of fire propagation, let us also define

ϕ(x, t) = 2
(
ψ(x, t)− 1

2
)

=⇒ ϕ(x, t) =

 +1 if x on fire in year t
−1 if x not on fire in year t

. (4.2.10)

It is convenient to introduce an additional shift

φ(x, t) = ϕ(x, t)− ϕ(t) , ϕ(t) := E[ϕ(x, t)] , (4.2.11)
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so that, by construction, E[φ(x, t)] = 0. The two point function and three point function are, respectively,

f(x12, t) := 〈φ(x1, t)φ(x2, t)〉 = E[φ(x1, t)φ(x2, t)] , (4.2.12)

g(x123, t) := 〈φ(x1, t)φ(x2, t)φ(x3, t)〉 = E[φ(x1, t)φ(x2, t)φ(x3, t)] . (4.2.13)

4.2.1.0.3 Fits: The two point function and three point function are fitted as follows:

f(x12, t) = Ae−x12/ξ

xα12
, (4.2.14)

g(x123, t) = Be−x123/ζ

xη123
. (4.2.15)

In (4.2.14) and (4.2.15), the parameters ξ and ζ are correlation lengths. In a conformal field theory, due to
scale invariance, the correlation lengths go to infinity and, from comparison to (4.2.4),

∆ = 1
2α = 1

3η , (4.2.16)

so the exponents in the denominators of the two and three point functions are not independent. The code for
the analysis is checked against the Ising model, a well known two dimensional CFT. The failure of conformal
invariance in fire arises as a consequence of the violation of transnational and rotational symmetry due to
features such as wind and weather and the lack of unitarity as this is not an isolated quantum system and
one cannot “unburn” a patch of land.

4.2.2 Correlation of Fire Occurrences

(a) Fire occurrences in Botswana in the year 2011.
(b) Ising model near critical

temperature.

Figure 4.1: Grid (A) is a representation of fire occurrences (black points) in a particular
region near the river Delta in Botswana. Grid (B) represents the spins of an Ising model near
the critical temperature. Black points indicate arrow/spin down and white points indicate

arrow/spin up.

Satellites allow the monitoring of regions by spatially mapping out fire occurrences. If, in a given year,
a certain patch within the region catches fire, a data point is captured by assigning the value of 1 to that
patch of land. By gridding the region, one obtains a map of data points - each signaling whether or not a
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fire has occurred in that year. A data point of 1, as mentioned, indicates fire, and 0 indicated no fire. Since
fire spreads, due to various factors such as weather, fuel and geography, neighbouring patches of land are
inevitably affected. At the end of each year, one then has a 2D grid of data, structured in such a way that it
lends itself to a correlation analysis as outlined above. Merging the language of correlation function analysis
and fire propagation, given a fire in one patch, what is the likelihood of that particular patch of fire having
a causal influence to a different patch separated some distance away? There is a caveat here, and that is
that all the gathered data of fire occurrences is averaged over a particular year. So our analysis would be
insensitive to direct causal relations of a single fire event. It is difficult thus to say exactly over what time
scale communication between fire patches occur, but by doing the correlation analysis, one can definitely say
that there is some property within the overall mechanism of fire propagation which gives rise to a particular
kind of "burning pattern" within these regions. Consider figure 4.1; the Ising model (B), a 2 dimensional
toy model in conformal field theory, is used to describe the critical point behaviour of spin lattice sites in a
background magnetic field. Whereas (A) is a map of Botswana indicating all fire occurrences in 2011. The
two point and three point function comparisons strongly suggest the same model using in the Ising model is
suitable for wild fire occurrences

(a) Two point correlation plot of fire occur-
rences.

(b) Two point correlation plot of the Ising
model.

Figure 4.2: The major difference between these two is that the Ising model is modeled over
a torus, and thus requires periodic boundary conditions, whereas the analysis of the Botswana
data was done on a flat grid. The presence of a correlation length for the Ising model is due
to the fact that it is very difficult to generate an Ising model map at the critical temperature.

Thus, we say “close to the critical temperature"

(a) Three point correlation plot of fire occurrences.
(b) Three point correlation plot of the Ising

model.

Figure 4.3: The three point correlations for the Ising model obey the expected relationship
between η = 0.3314 and α = 0.2452 given in eqn (4.2.16), that is 0.3314/3 ' 0.2452/2. For
the fire in Botswana, there is no relationship between exponents, which is not too surprising

since, as mentioned, we do not have a unitary system.
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The shape and parameters are remarkably similar - this gives weight to the motivation for performing a
correlation analysis. The three point functions are not as clean as the two point functions, this is due to the
random sampling approach used. Year by year, the parameters change, however they all fit very well every
year as will be seen in the next section.

4.2.3 Directional Correlations

In addition to the standard average correlation analysis, for the two point functions, one can become
more specific in the analysis and focus on correlations in particular directions. Consider the example grid
below:

Figure 4.4: Left: All possible lines joining two points separated by r2 = 8. Right: All
possible lines joining two points separated by r2 = 26.

Associated with all the lines are their respective angles. In reality, we only need to consider the thick lines,
as the dashed lines are just translations of the solid lines. If we calculate the average correlation - distinct to
points joined by a line of length r and a given angle, then we can calculate a directional correlation. If one
direction has a stronger correlation than another, or there is a different type of correlation, the directional
correlations will pick this up. Consider the same inverse random distribution from Figure 1.11c from Section
1.3, below is the result of doing a directional correlation analysis of two particular directions

Figure 4.5: Directional correlations highlight the different behaviours of the data at different
angles.
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From this, we see that it is indeed the correlations along the vertical directions (90o) which reflect the
underlying distribution of the data - points become more and more anti-correlated as distances increase.
However, along directions parallel to the horizontal we see a constant correlation of just below 0.4, Since the
"spreading" of the data does not exist in this direction, the correlations of points that lie along lines at 0o

remain constant.

This is a very useful tool, as it allows a finer analysis in correlations of fire occurrences. Say for example
there is a particular direction for which the wind over a certain region blows over a year. If this wind causes
fires to spread in the same wind direction, then points along those directions should have a correlation which
is different to directions perpendicular. By scanning every angle as well as its complement from 0o to 89o,
one can identify which correlations differ the most. There are several ways one can use as the "identifier"
which quantitatively says one correlation is different to the other. For our analysis, we opt to look at the
area between the best-fit curves. The angle which has the largest area between two angles will be deemed
the angles with the largest difference in correlation. For illustration, consider the Botswana data over the
year 2004:

(a) Correlations along angular directions of 0o and 90o.
(b) Correlations along angular directions of 55o and

145o.

Figure 4.6: There is a larger difference in correlations along directions parallel and perpen-
dicular to 0o than there is along directions parallel and perpendicular to 55o.

This method of using the area subtended between two best fit curves gives a quantitative description
for the difference between correlations at various angles. By then plotting the area difference across all
angles, one can see the variation in correlations with direction. If there is indeed directional preference in
the occurrences of fire, this analysis will pick it up. Before this, it is also helpful to gain an understanding
on how the function describing the model actually works, in terms of how each parameter affects the shape
of the graph.

In the correlation function
f(r) = A

rα
e−

−r
ξ (4.2.17)

the three parameters affect the shape of the graph in the following ways:
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Figure 4.7: Shape dependence on correlation function variables. In each different scenario,
the other variables are kept constant.

1. Amplitude, A : The amplitude affects the scaling. Although in the plots above, it appears that a
lower amplitude pulls the curve towards the center, this is just an illusion given by the fact that the
scale on the axis remains unchanged. Were we to zoom in say for the blue graph to a scale which goes
from 0 - 0.1 instead of 0 - 0.5 on the y axis, the shape would look exactly the same.

2. Exponent, α: The exponent has the effect of making the curve steeper by symmetrically pulling
in the inflection point towards the center (larger values of α) or further away (smaller values of α).
Of course making α smaller means that the correlation falls off to zero slower and slower, implying
the "correlation mechanism" of the system is stronger. In the case of fire, a lower α implies greater
correlation from one point to another; in other words, if we have a fire at A, then there is a higher
probability that it will have caused the fire at B (assuming the distance between A and B is within the
correlation length). If the exponent was larger, than even if A and B are still separated by a distance
within the correlation length, a fire at A will have had a much smaller role in causing a fire at B.

3. Correlation Length, ξ: The correlation length tells us what the maximum distance is that we can
relate the cause of a fire at location B to a fire at location A. A larger correlation has the effect of lifting
the bottom part of the graph. As ξ gets bigger and bigger, it converges since the factor exp (−r/ξ)→ 1
as ξ →∞.

With this in mind, the results of the two point function, three point function and directional correlation
analysis can be presented. Since we want to investigate two different setups of the grid by using a 1/0, 1/−1
for fire/no fire representation, we will first present the entire results for the 1/− 1 system and thereafter for
the 0/1 system. This will be done first for the region of Botswana, and then of Kazakhstan.
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4.3 Results

Since there are quite a few plots as well as quite a few years, it is more instructive to illustrate a few cases
detailing relevant details. Thereafter, a table detailing values for fitted variables are presented together with
additional exploratory plots. Some plots do not fit as well as other, especially in the zones of Botswana.
Reasons for these are explored in Section 4.3.4, while also discussing other shortfalls/strong points of the
methodology applied.

4.3.1 Sample Plots

The original region studied is that of the greater Botswana[166] and Kazakhstan[167] and some sur-
rounding areas. This is the rectangular region as shown in Figures 4.8 and 4.9 below. These smaller regions
were chosen as to be as homogeneous of vegetation as possible so to highlight effects of external natural
phenomena. Each grid point represents a plot of land which is 50m× 50m.

Botswana

Figure 4.8: Large region has dimensions of 2048 × 2048 units, with the smaller region
having dimensions of 1470× 836 resulting in a 73km×41km region.

Kazakhstan
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Figure 4.9: Large region has dimensions of 6827× 1820 units, with the smaller region have
dimensions of 2961× 1025 resulting in a 148km×51.25km region.

Since Botswana has a few interesting features, we illustrate two different years: 2002 and 2008. Whereas
for Kazakhstan which is a lot more regular we show the year 2003. In each year we show a plot of the
two-point correlations, three-point correlation and direction correlation analysis. We illustrate two formats:

1. Format of 1/-1: If fire is represented by 1 and no fire by −1, then there are four permutations
regarding to how the correlation is calculated. The case where two points both have fire or both have
no fire is registered as 1. Of course positive values add to the average correlation, so when summing
over all possible points, geographical areas which have not been burnt, in a particular year, will add
the correlation just as much as points which have been. All plots and analysis have been done using a
format of 1/− 1.

2. Format of 1/0: If we are interested in purely the correlation between fire occurrences, then the format
of 1/− 1 does not quite work since this considers also two patches of no fire as a positive correlation.
By using the format of 1 for a fire and 0 for no fire only points that have had a fire in a particular year
will contribute to the correlation. Hence we are looking strictly at the correlation of fire occurrences.

It is worthwhile to note, that correlations in one format are not derivable from the other for as long as
one does not use periodic boundary conditions. With periodic boundary conditions, since the the 1/ − 1
format is just a rescaling of the 0/1 format, correlations are related by :

4f(x12, t)1/0 − f(x12, t)1/−1 = 0. (4.3.1)
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We show this by substituting (4.2.10) into (4.2.8). To see why this does not work for non-periodic boundary
conditions, consider the following example of a 3× 3 grid:

0 0 1
0 1 0
1 1 1

(4.3.2)

The first two correlations are as follows:

f(r)1/0 =
[(

1,− 19
324

)
,

(√
2, 43

648

)]
, (4.3.3)

fp(r)1/0 =
[(

1,− 5
162

)
,

(√
2,− 5

162

)]
, (4.3.4)

where fp and f denote correlations using periodic and non periodic boundary conditions respectively, In the
1/− 1 format, the correlations become:

f(r)1/−1 =
[(

1,− 29
162

)
,

(√
2, 77

324

)]
(4.3.5)

fp(r)1/−1 =
[(

1,−10
81

)
,

(√
2,−10

81

)]
(4.3.6)

We see that:

4fp(r)1/0 − fp(r)1/−1 = (0, 0) (4.3.7)

4f(r)1/0 − f(r)1/−1 = (− 1
18 ,

1
36) 6= (0, 0) (4.3.8)

This relation can be shown for all distances and for any size grid. For a landscape such as Botswana
and Kazakhstan, we implement non-periodic boundary conditions when calculating correlation functions, as
periodic boundaries have no physical meaning. The non-derivability of these two formats is the reason we
have to keep the two formats separate in the analysis.



4.3. Results 141

4.3.1.1 Botswana - 2002

Figure 4.10: Overlay of region with fire occurrences for the year 2002.

(a) Two point correlation using 1/− 1 format. (b) Two point correlation using 1/0 format.

Figure 4.11: Two point correlation function analysis for 2002 using both formats in
Botswana.

(a) Three point correlations using 1/− 1 format. (b) Three point correlations using 1/0 format.

Figure 4.12: Three point correlation function analysis for 2002 using both formats in
Botswana.
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(a) Directional correlations using 1/− 1 format. (b) Directional correlations using 1/0 format.

Figure 4.13: Directional correlation analysis for 2002 using both formats in Botswana.

1. Two-point correlation Figure -4.11 : This year was chosen to represent the general standard of
all other plots. The fit-statistics indicate the model fit remarkably well. The correlation length for
both formats fall between 89 and 99 units, with each unit being equivalent to a 50m × 50m cell, the
correlation length is around 4.75 km. What can be seen is the more fires there are, the greater the
amplitude A. In this year the amplitude is moderately low.

2. Three-point correlation Figure - 4.12 : The three point correlation is a lot more noisy, this is due
to the random sampling approach that is adopted. The correlation length quoted needs to be cube
rooted since the r-axis is in units of r3. Most other plots tend to be a lot more noisy, especially at
large values of r. It becomes expensive computationally to do a complete sampling of all three points.

3. Directional correlations Figure - 4.13 : In both formats the angle of greatest difference between
correlation graphs occurs at roughly 55o − 65o and 125o − 145o. This graph was produced using a
moving average to reduce noise in the plots. A difference of the area in the order of 1 is above the the
other years. The higher this value the more the more transnational invariance was broken. Indicating
that there was an external driver in the spreading of the fire.
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4.3.1.2 Botswana - 2008

Figure 4.14: Overlay of region with fire occurrences for the year 2008.

(a) Two point correlation using 1/− 1 format. (b) Two point correlation using 1/0 format.

Figure 4.15: Two point correlation function analysis for 2008 using both formats in
Botswana.

(a) Three point correlations using 1/− 1 format. (b) Three point correlations using 1/0 format.

Figure 4.16: Three point correlation function analysis for 2008 using both formats in
Botswana.
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(a) Directional correlations using 1/− 1 format. (b) Directional correlations using 1/0 format.

Figure 4.17: Directional correlation analysis for 2008 using both formats in Botswana.

1. Two-point correlation Figure -4.15 : This year was chosen to represent the worst fit scenario. In
the two point function data, there appears to be a flat section between r = 20 and r = 120. This
flatness means the model struggles to fit to the curve. It is curious that only this particular region of
Botswana exhibits such behaviour and it is also only for the years 2006, 2008, 2010, 2014. Possible
indication is that fires were perhaps put out, or patches purposely burnt, thus resulting in non-typical
spread behaviour resulting in correlations that don’t follow the model. The average correlation scale
is larger than compared to 2002. It is a common feature that the greater, or closer to 1 this scale is,
the more burnt patches one finds.

2. Three-point correlation Fig - 4.16 : The three point correlation is a lot more noisy compared to
2002. In addition we find this sort of double line behaviour. Due to lack of data, it is hard to say if
there are two distinct lines, or if there is just data missing and it is in fact just one thick band.

3. Directional correlations Fig - 4.17 : The peak differences in directions occur at 15o − 30o and
105o − 120o. The second peak in (b) is not as pronounced as in (a). This could mean that the
directional correlation effect was more pronounced in the geographical setting since the 1/− 1 format
shows a greater distinction between peaks.
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4.3.1.3 Kazakhstan - 2003

Figure 4.18: Overlay of region with fire occurrences for the year 2003.

(a) Two point correlation using 1/− 1 format. (b) Two point correlation using 1/0 format.

Figure 4.19: Two point correlation function analysis for 2003 using both formats in Kaza-
khstan.

(a) Three point correlations using 1/− 1 format. (b) Three point correlations using 1/0 format.

Figure 4.20: Three point correlation function analysis for 2003 using both formats in Kaza-
khstan.
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(a) Directional correlations using 1/− 1 format. (b) Directional correlations using 1/0 format.

Figure 4.21: Directional correlation analysis for 2003 using both formats in Kazakhstan.

1. Two-point correlation Figure -4.19: Over all the years, the modeled two point function fits all the
years very well. The correlation length of 205 units, or 10km is larger than that over the Botswana
region. The burn areas are also not as big as in Botswana.

2. Three-point correlation Figure - 4.20b: Over all years the three point function results also behave
regularly. With the same amount of noise, once again a result of the sampling method.

3. Directional correlations Figure - 4.21: The directional correlations here are interesting as one can
see even in the actual layout of the fires there seems to be some directional preference. This is shown
where the peak differences in direction are at 0o − 15o and 90o − 105o. This is matched by Fig 4.18
which shows that the burning pattern is more dominant horizontally than it is vertically.

4.3.2 Error Estimates

Due to the lack of error thresholds in the analysed data, it is difficult to come up with an error analysis
in developing the models. One can obtain a error estimate in the fitting procedure of the variables, but this
is related more to the statistical error in how the program performs the regression analysis, rather than error
in data itself. As a way to account for this, we performed a random sampling of the data. We then looked
at the statistics of how the variables are fitted over 100 different sampling iterations. There are 3 180 000
possible pairs of points with length between the r = 1 and r = 450. For our random sampling, we randomly
choose 7 000 possible pairs, and for each pair we sampled 1 000 00 locations on the grid. This is repeated
100 times, each time choosing new points and each time fitting the resultant sampling. By then looking at
the mean, variance and standard deviation we can get a sense of the error in fitting of the data. This then
can be applied to all future obtained fitted variables.

For the purpose of the sampling, we chose to use the region of Botswana for the year 2002. Below is an
example of the sampling:
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Figure 4.22: Amplitude sampling statistics for both formats

The R2 value is not very high, and this is of course attributed by virtue of doing such a random sampling
- increasing the number of samples increases the R2 value. Comparing the obtained values to an exact
sampling in Figure 4.11, the random sampled variables are all bigger. Below is a summary of the random
sampling statistics in which we used the standard deviation as an error estimate in determining the values
of A,α, χ for the two point functions and A, η, ζ for the three point function.

Figure 4.23: Amplitude sampling statistics for both formats.

Figure 4.24: Exponent sampling statistics for both formats.
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Figure 4.25: Correlation length sampling statistics for both formats.

4.3.3 All variable values

The following are two tables showing the results of the entire analysis across all 12 years with both
formats and both regions:

Figure 4.26: All fitted values for the region of Botswana. Cells with years coloured in
orange are those with fits which don’t follow our model very well - see Figure -4.15 for a

detailed example.
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Figure 4.27: Table summarizing all fitted variables relating to Kazakhstan.
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Figure 4.28: Plots of amplitude with mean values - Botswana.

Figure 4.29: Plots of amplitude with mean values - Kazakhstan.
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Figure 4.30: Plots of exponents with mean values - Botswana.

Figure 4.31: Plots of exponents with mean values - Kazakhstan.
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Figure 4.32: Plots of correlation lengths with mean values - Botswana.

Figure 4.33: Plots of correlation lengths with mean values - Kazakhstan.
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4.3.4 Comparison of Variables with Meteorological Data

It is known that weather variables such as rainfall, temperature, humidity and wind all have effects
on how a fire will move, grow and self extinguish. The only data that we were able to get hold of was
that of average rain fall(mm) and average temperature (oC)[168]. Due to the lack of wind data, we have
included the area difference. This is an indication of directional differences in the correlations - a small
area difference indicates no directional preferences in burning patterns whereas a large difference indicates a
directional preference. It can be speculated that if wind were to mainly blow in a particular direction, then
the directional correlations will pick this up. No humidity, or terrain data was obtained and thus could not
be included in the analysis. The goal of comparing variables is to find potential correlations between our
models fitted variables and meteorological variables. In order to plot values on the same axis, all variables
found in tables 4.26 and 4.27 were normalized according to a 1-0 normalization:

x′i = xi − xmin

xmax − xmin
. (4.3.9)

Because data has a time scale of one year, we also included a comparison by offsetting the variable values
with the weather data by one year. For example, the data point for the amplitude for year 2003 was com-
pared with the rainfall, temperature, and area difference for 2002. The logic behind this, is that rainfall and
temperature have a delayed effect on distribution and quality of fuel. These comparisons are displayed in
plots which are shown displayed “One Year Offset”.

Lastly, we included a moving average comparison as moving averages allow one to clear out any noise
in the data and highlight general trends. A correlation in the general trend between model variables and
weather variables are of definite interest. The moving average is calculated using a two year scale:

x′i = xi + xi+1

2 . (4.3.10)

The analysis is performed for both Botswana and Kazakhstan and for both formats of 1/0 and 1/− 1
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4.3.4.1 Botswana

Figure 4.34: Weather comparison using the 1/0 format for Botswana.
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Figure 4.35: Weather comparison using the 1/− 1 format for Botswana.
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Figure 4.36: Moving average weather comparison of both formats for Botswana.



4.3. Results 157

4.3.4.2 Kazakhstan

Figure 4.37: Weather comparison using the 1/0 format for Kazakhstan.
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Figure 4.38: Weather comparison using the 1/− 1 format for Kazakhstan.
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Figure 4.39: Moving average weather comparison of both formats for Kazakhstan.

Out of all the relationships, the one which exhibited strongest correlations is that of of the burn percentage
of land and the amplitude of our model. This is shown for both Botswana and Kazakhstan, thus indicating
that this is a feature of our descriptive nature of the model and not something specific about either area in
particular. The simplest function to describe the realtionship is that of a straight line starting at the origin.

4.3.5 Comments

From the analysis above, we found the following relationships:
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(a) Plot illustrating the relationship of amplitude with total burn area of Botswana.

(b) Plot illustrating the relationship of amplitude with total burn area of Kazakhstan.

Figure 4.40: The amplitudes across both the two point and three point functions show linear
relationships to the percentage of the total landscape within this particular region of Botswana

and Kazakhstan that are burnt.

• All variables in both regions of the 1/0 format were closely related with the respective variables of the
1/− 1 format. All showed linear relationships.

• When using a moving average of the data in tables 4.26 we observed a strong linear relationship
between the correlation lengths of the two point and three point functions for the 1/− 1 format in the
region of Botswana. Testing of the other variables, showed some relationship, but nothing statistically
significant enough.

• Initially, a comparison between our wind speed and our directional correlations was supposed to be
done, however, the lack of decent wind data over the same set of years, made the comparison difficult.
In all years there was a maximum and minimum difference between angles. However, for years 2003,
2004 and 2009 for Botswana, and 2010, 2014 for Kazakhstan, these differences were relatively very
small. This suggests that there were no real external influences on how the fire would propagate. The
years in Kazakhstan where significant difference in directions occurs, can actually be seen visually in
Figure: 4.18 that the preference in particular directions exist. With the directional correlation tools,
we are able to quantify this.

• Deciding the range r over which the analysis would be performed was not a straight forward task. In
the testing phase of the model, it appeared that roughly 10% of the grid size should be used. However,
since that was tested using the Ising model, we knew exactly what to look for. In this case, there was
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no strong reason to choose our value of r = 450, other than it appeared that the fitting procedure was
stable at this range. By stable we mean fitted parameter values didn’t change a lot as we changed the
sampling range r. Around this range most of these changes are very small. There are however, certain
sampling values of 200r < 600 that change parameter values significantly.

• The two point function was done exactly - we took every possible combination of pairs of points and
moved that pair at every possible location on the grid. This was done using a combination of inbuilt
Mathematica functions as well as a written code. Due to computational efficiency, this "exact" sampling
was not possible for the three point functions. Reason being is that there are orders of magnitude more
ways of choosing three points and moving them on all possible locations on the grid than there are
for two points. For this reason, we opted to do a random sampling for the three point functions, as
to get a large enough sample pool, is still computationally expensive. With more time and greater
coding efficiency, an exact sampling can be achieved. Where this exact sampling will come useful in
determining if results like that in Figure :4.16 are just artifacts of the random sampling, or there is
actual structure.

• A strong relationship between all the amplitudes and the percentage of total landscape burnt was found.
For Botswana, this linear relationship is given by a gradient of mB = 36.518 and for Kazakhstan,
mK = 25.119 (see Figures 4.21a and 4.21b). The best fit line was set to have intercept zero, as there
is no physical sense to have a non-zero, or even negative, amplitude for a region which has not had
any fires. The difference in areas showed some power law relationship with the amplitudes with ab R2

value between 70 and 80.

4.4 Conclusion

Firstly, it needs to be emphasized that the data given is sensitive only to changes over an entire year. We
cannot differentiate between patches that have been burnt multiple times. This means that the correlations
are not related to fires that occur at a single event in time. Rather, they show correlations between different
fires at different times in a year. It would be interesting to apply our analysis on a single burning event and
observe how well the proposed model stands. We suspect that it should indeed still work. Moreover, such
experiments may shed more light on what relation the variables σ, η, ξ, ζ have with the external environment.
Indeed, if there is true scale invariance, then the emergent patterns at a shorter temporal scale should still
exhibit scale invariance, thus our model here will still be valid.

The odd results obtained in the region of Botswana need to be noted. It appears that the four years,
whereby the central Kalahari game reserve shares a large percentage of the total burnt area, are the same
four years that the data does not fit the model. What occurs in the data is a small region where the curve
straightens out (see Figure 4.15). This straightening of the data signifies perhaps something special occurred
that forced the fire to burn in a particular way - being a game reserve it could have been something like
intended burning of land. The fact that this only happens for these few years, signifies that the model
successfully describes how fire propagates over the timescale of one year. It would be worth performing the
analysis over different landscapes. The distinction between the two formats did not show any significantly
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different behaviour. Because the 1/−1 contains geographical information, one would need more geographical
data to really investigate how the two formats differ.

Before the smaller regions were chosen, a full analysis was performed on the larger landscapes. The
results in these initial tests showed similar behaviour. Our model fit the data very well - in fact, Figure 4.2
(a) is the plot of the original larger Botswana region. What we noticed in the first trial was that these odd
effects (Botswana 2002, 2006, 2008, 2014) were not nearly as apparent. Moreover, the directional correlations
were a lot smoother. As the spatial scale becomes smaller, the data is more susceptible to changes in the
environment. It is unfortunately not yet clear what how exactly factors like vegetation growth rate, rain and
temperature have on the model. In other words, it is not clear how we can relate the fitted variables in the
functions 4.2.14 and 4.2.15 with real external variables. Thus, due to a lack of additional data, as of now,
we cannot conclusively relate weather variables to our model variables.

However, we have successfully shown the following:

• For a given landscape the amplitude in our two point and three point functions directly correlate to
the extent of burning. Since amplitudes behave as a sort of burning probability, it would be interesting
to compare the fuel percentage within the landscape. This may enable us to define the percolation
threshold using our model, whereby the critical value is given by some amplitude.

• With the tools of correlation function analysis, we have shown a stronger test for scale invariance. The
test can scale up or down to any grid size. Using the implementation of our Mathematica code, we can
perform the two point function within minutes. Although the variables do not demonstrate consistent
behaviour throughout the year, with the average values, we can then perform simulations of a how
a fire would propagate in a given year. With the acquisition of more data over diverse regions and
different time-scales, the model can become more robust yielding greater predictive power.

From this initial analysis, simulations need to be created to to see how effectively our model can simulate
realistic fire patterns by considering wind speed, topography, vegetation distribution, rain, temperature and
other important factors. Recreating such real life fire scenarios that also exhibit self extinguishing behaviour
would be a good test for our model. Performing this kind of analysis on bigger data sets, and comparing
our future simulations with existing models will be the task of future work.
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