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                                           ABSTRACT 

Background 

Abnormalities of mineral bone disease have been consistently associated with adverse 

clinical outcomes in patients with chronic kidney disease (CKD). The consequences of these 

changes have also been shown to differ across races. However, in Africa the impact of 

derangements of CKD -mineral and bone disorder (CKD-MBD) on patients with CKD is 

largely unknown. In addition, studies from the USA have reported racial variations in 

markers of CKD and it remains unclear whether genetic factors may explain this discrepancy 

in the levels of biochemical markers of CKD-MBD across ethnic groups. Therefore, this 

study has been conducted to determine the existence of racial differences in the levels of 

fibroblast growth factor 23(FGF23) and traditional markers of mineral bone metabolism in a 

heterogeneous African CKD population, and to provide important insights into the pattern 

and genetic variability of CKD-MBD in sub-Saharan Africa. 

Methods 

This was a cross sectional multicenter study carried out from April 2015 to May 2016, 

involving two hundred and ninety three CKD patients from three renal units in Johannesburg, 

South Africa. The retrospective arm of this study involved two hundred and thirteen patients 

undergoing maintenance haemodialysis (MHD) from two dialysis centers in Johannesburg 

between January 2009 and March 2016. The first part of this study described the pattern of 

CKD-MBD in MHD patients using traditional markers of CKD-MBD. The second part of the 

study looked into the spectrum of CKD-MBD and racial variations in markers of CKD-MBD 

in pre dialysis and dialysis patients. This was followed by the genetic aspect of the study that 

examined the influence of vitamin D receptor polymorphisms on biochemical markers of 

mineral bone disorders. Lastly, the study also evaluated the association between markers of 

CKD-MBD and mortality in MHD patients. 
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Results 

The prevalence of hyperparathyroidism (iPTH>150 pg/mL), hyperphosphataemia, 

hypocalcaemia and 25-hydroxyvitamin D deficiency (<30 ng/mL) was 73.4%, 57.0%, 20.3% 

and 80.7 % respectively in our MHD patients. The combination of markers of bone turnover 

(iPTH>150 pg/mL and total alkaline phosphatase > 112 U/L) suggestive of high turnover 

bone disease, was present in 47.3 % of the study population. The odds ratios for developing 

secondary hyperparathyroidism with hypocalcaemia and hyperphosphataemia were 5.32 

(95% CI 1.10 - 25.9, P =0.03) and 3.06 (95 % CI 1.15 - 8.10, P =0.02) respectively. 

The 293 CKD patients (208 blacks, 85 whites) had an overall mean age of 51.1±13.6 years, 

and black patients were significantly younger than the white patients (48.4 ±.13.6 versus 

57.1±15.5 years; p<0.001). In comparison to whites, blacks had higher median iPTH (498 

[37-1084] versus 274[131-595] pg/ml; P=0.03), alkaline phosphatase (122[89-192] versus 

103[74-144] U/L; P=0.03) and mean 25- hydroxyvitamin D (26.8±12.7 versus 22.7 ±12.2 

ng/ml, P=0.01) levels, while their median FGF23 (100 [34-639] versus 233[80-1370] pg/ml; 

P=0.002) and  mean serum phosphate (1.3±0.5 versus 1.5±0.5, P =0.001)  levels were 

significantly lower. 

With the exception of vitamin D receptor (VDR) Taq I polymorphism, the distribution of the 

VDR polymorphisms differs significantly between blacks and whites. In hemodialysis 

patients, the BsmI Bb genotype was significantly associated with moderate secondary 

hyperparathyroidism (OR, 3.88; 95 CI 1.13-13.25, P=0.03)   and severe hyperparathyroidism 

(OR, 2.54; 95 CI 1.08-5.96, P=0.03).  

Patients with high total alkaline phosphatase (TAP) had significantly higher risk of death 

compared to patients with TAP <112 U/L (hazard ratio, 2.50; 95% CI 1.24–5.01, P = 0.01). 

Similarly, serum calcium >2.75 mmol/L was associated with increased risk of death 

compared to patients within levels of 2.10–2.37 mmol/L (HR 6.34, 95% CI 1.40–28.76; P = 

0.02). The HR for death in white patients compared to black patients was 6.88; 95% CI 1.82–

25.88; P = 0.004. 

Conclusions 

Secondary hyperparathyroidism and 25–hydroxyvitamin D deficiency were common in our 

haemodialysis patients. The study also highlighted the existence of racial differences in the 

circulating markers of mineral bone disorders in our African CKD population. In addition, 

the study showed that both moderate and severe secondary hyperparathyroidism are predicted 
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by the BsmI Bb genotype, and the over expression of this genotype in black patients may 

partly explain the ethnic variations in the severity of secondary hyperparathyroidism in the 

CKD population. High levels of serum alkaline phosphatase, hypercalcaemia, and white race 

are associated with increased risk of death in MHD patients. 
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                                                PREFACE 

Despite the existence of regional and global guidelines to curtail the adverse clinical 

outcomes associated with CKD-MBD, the majority of CKD patients are still affected by the 

consequences of abnormalities of CKD-MBD. In Africa, the spectrum and burden of CKD-

MBD is largely unknown. In addition, studies from the USA have shown racial variations in 

markers of CKD-MBD, and survival advantage associated with black patients on 

haemodialysis. However, due to variations in practice pattern, geographic location, and 

genetic factors between Africa and the USA, it remains unclear if data obtained from the 

USA CKD population could be extrapolated to African CKD patients.  Furthermore, in 2013 

the KDIGO working group highlighted the existence of large gaps in knowledge in the field 

of CKD-MBD and thus recommended the need for further studies to assist in updating the 

2009 KDIGO clinical practice guidelines on the diagnosis and treatment of CKD-MBD. 

Therefore, based on the above aforementioned reasons, this study was undertaken to 

determine the spectrum and burden of CKD-MBD in South African patients with CKD, the 

existence of ethnic variations in markers of CKD-MBD in a heterogeneous African CKD 

population, and the influence of VDR polymorphisms on secondary hyperparathyroidism. 

Information obtained from this study will assist us in better understanding of factors 

associated with mortality and with improving patients’ outcomes. It will also provide an 

insight on candidate genes associated with secondary hyperparathyroidism and likely provide 

an additional target for the treatment of secondary hyperparathyroidism. 

This thesis is presented in an integrated format consisting of seven chapters:  

Chapter 1: Literature review 

Chapter 2: Overall Methodology 

Chapter 3: Manuscript on biochemical markers of mineral bone disorder in South African 

patients on maintenance haemodialysis. (Published in the African Health Sciences Journal 

July, 2017).  
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Chapter 4: Manuscript on high serum alkaline phosphatase, hypercalcaemia, race and 

mortality in South African maintenance haemodialysis patients. (Published in the 

International Journal of Nephrology, 12
th 

January, 2017) 

Chapter 5: Manuscript on racial variations in the markers of mineral bone disorders in 

chronic kidney disease patients in South Africa. Undergoing peer review by the Kidney 

International Reports. 

Chapter 6: Manuscript on influence of vitamin D receptor polymorphisms on biochemical 

markers of mineral bone disorders in South African patients with chronic kidney disease. 

Accepted for publication in BMC Nephrology. October, 2017. 

Chapter 7: Consists of an integrated summary of the study findings, limitations, 

recommendations and conclusions 

Candidate’s contributions 

I was responsible for the conceptualization of this project, writing up the protocol and 

collection of data. All the manuscripts were drafted by me. I conducted all the statistical 

analysis. The laboratory work was carried out by me under the supervision of my laboratory 

collaborators.  
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                           CHAPTER 1: LITERATURE REVIEW 

1.1 Introduction 

Chronic kidney disease (CKD) is a worldwide health problem affecting 5–10% of the world’s 

population (1, 2) and the majority of these patients are at an increased risk of developing 

disturbances of bone and mineral metabolism. These disturbances lead to a constellation of 

bone lesions which was previously referred to as renal osteodystrophy (ROD), with affected 

patients manifesting with symptoms such as bone pain, muscle tendon rupture, pruritus and 

high incidence of fractures (3, 4). Subsequently, evidence has shown that patients with ROD 

are also predisposed to cardiovascular calcification with associated high morbidity and 

mortality rates (5, 6). Unfortunately, the term ROD does not encompass this important extra 

skeletal manifestation. Therefore, to address these drawbacks and accommodate the extra 

skeletal manifestations, the Kidney Disease-Improving Global Outcomes (KDIGO) 

Foundation initiated a controversies conference with the aim of providing a globally 

acceptable definition and classification system for renal osteodystrophy. The KDIGO work 

group recommended a broader term, CKD-mineral and bone disorder  (CKD-MBD) for a 

systemic disorder of mineral and bone metabolism due to CKD and that the term renal 

osteodystrophy should exclusively be used to describe disorders in bone morphology 

associated with CKD (6). However, in clinical settings, a bone biopsy is less frequently 

utilized because it is an invasive and cumbersome procedure and requires highly skilled 

personnel to interpret the obtained tissue samples. For these reasons, clinicians largely 

depend on trends in the levels of parathyroid hormone in conjunction with levels of serum 

phosphate, calcium and alkaline phosphatase as markers of bone turnover which are used to 

guide the treatment of mineral bone disorder (4). However, the practice of utilizing one 

biomarker to predict the complex dynamic bone remodelling process has been questioned (6, 

7). Therefore, one of the objectives of this study is to further assess other biochemical 

markers of bone turnover (FGF23, total alkaline phosphatase) and correlate them with 

parathyroid hormone (PTH).  

Furthermore, several studies have shown race to be an important factor that may influence 

PTH, serum phosphate and vitamin D levels (8-10). These studies showed that compared 
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with whites, blacks have higher PTH and lower 25-hydroxyvitamin D [25 (OH) D] levels. 

These comparative studies were largely carried out between Caucasians and Black Americans 

and little is known about the association in African CKD patients. In addition, the impact of 

these biochemical abnormalities have been shown to differ across race and thus the need for 

race-specific target values for these markers of mineral bone disorder (11). This study also 

seeks to examine the impact of these markers in a heterogeneous African CKD population. 

Although the mechanism behind racial variation in the levels of biochemical markers of 

chronic kidney disease mineral and bone disorders (CKD-MBD) remains unclear, it may be 

explained partly by genetic factors.  Hence, one of the objectives of this study was to examine 

the influence of VDR polymorphisms on secondary hyperparathyroidism and its association 

with vitamin D levels in black and white South African study participants. 

1.2 Historical perspectives 

The association between kidney diseases and bone abnormalities dates back to 1883, when 

Lucas suggested the term “ renal rickets”  in patients with albuminuria and bone deformities 

(12). In 1930, Bauer et al (13) established an association between bone lesions (osteitis 

fibrosacystica) and the parathyroid gland following a review of 88 patients with endocrine 

bone disorders. Seven years later, Albright and colleagues postulated that CKD patients with 

phosphate retention and low levels of calcium are prone to parathyroid gland hyperplasia and 

renal osteitis fibrosa. Subsequently, in 1940s, the term renal osteodystrophy was coined and 

used interchangeably with renal rickets (14). 

The emergence of the “trade off hypothesis” by Bricker and Slatopolsky (15, 16) provided an 

insight into the pathogenesis of renal osteodystrophy. The theory states that progressive 

nephron loss in CKD patients leads to a number of compensatory mechanisms such as 

elevated PTH in response to retained phosphate.  

In the 1960s and 1970s, the two predominant forms of renal osteodystrophy in patients with 

end stage kidney disease (ESKD) were osteitis fibrosa and mixed uraemic osteodystrophy 

with a minority of patients presenting with osteomalacia prior to dialysis (17). However, 

osteomalacia became a major problem following initiation of dialysis secondary to aluminum 

intoxication in some centers; the two most affected dialysis centers (Ottawa and Newcastle) 
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had high concentrations of aluminum and fluoride in their tap water. This entity of renal 

osteodystrophy (osteomalacia) was characterized by microcytic anaemia and encephalopathy 

(18).  However, adynamic  bone disease was not only peculiar to aluminum contamination of 

tap water used for dialysis but also associated with the use of large amounts of aluminum  

containing phosphate binders and active vitamin D therapy (19). Subsequently, there was a 

rapid decline in the occurrence of this disease entity with improvement in water purification 

systems and reduced prescription of aluminum-containing phosphate binders. 

1. 3 Definitions and Guidelines 

  1.3.1 Definitions 

In 2003, the National Kidney Foundation proposed that renal osteodystrophy  should be 

defined as a  constellation of bone disorders present or exacerbated by CKD that lead to bone 

fragility and fractures, abnormal mineral metabolism, and extra skeletal manifestations (20). 

Despite incorporating a triad of abnormal mineral metabolism, skeletal and extra skeletal 

manifestations this definition failed to be acceptable globally. Therefore, to ensure a widely 

acceptable definition, the second KDIGO controversies conference in 2005 came up with a 

broader term CKD-MBD. The conference participants agreed that CKD-MBD should be 

defined “as a systemic disorder of mineral and bone metabolism due to CKD manifested by 

either one or a combination of the following: (i) abnormalities of calcium, phosphorus, 

parathyroid hormone (PTH), or vitamin D metabolism; (ii) abnormalities in bone turnover, 

mineralization, volume, linear growth, or strength; or (iii) vascular or other soft tissue 

calcification” (6). This internationally acceptable definition has led to ease of valid 

comparison of studies in the field of CKD-MBD. 

1.3.2 Guidelines 

In an ongoing effort to reduce the adverse clinical events associated with CKD-MBD, several 

global and regional guidelines were proposed to assist clinicians in the management of 

patients with CKD-MBD. These guidelines provided recommended target reference values 

for intact PTH, alkaline phosphatase and serum calcium. However, comparison of these 

guidelines has shown lack of harmonization with the existence of relevant clinical differences 

in the target values (21). For example in 2003, the Kidney Disease Outcomes Quality 
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Initiative (K/DOQI) clinical practice guidelines recommended  maintaining  serum phosphate 

between 3.5 and 5.5mg/dL (1.13–1.78 mmol/L) for CKD stage 5D, serum parathyroid 

hormone (PTH) between 150 and 300 pg/mL(16.5–33.0 pmol/L) and corrected serum 

calcium in the range of  8.4 and 9.5 mg/dL (2.10–2.37 mmol/L) (20), while in 2009, the 

KDIGO clinical practice guidelines recommended  maintaining  serum  calcium and 

phosphate   within the normal range and plasma PTH in the range of two to nine times the 

upper normal limit of the assay (22). One of the major drawbacks of the KDIGO guideline, 

which has drawn criticism, is the vagueness of some of the non-numerically defined 

recommendations. Despite these drawbacks, it is still preferred to the narrow target levels of 

calcium, PTH and phosphorous, as recommended by the 2003 KDOQI guidelines. 

Table 1. 1: Recommended guidelines by different professional groups 

     Group Year Recommended levels 

Corrected 

calcium (mg/dl) 

Phosphorous 

(mg/dl) 

PTH (pg/ml) 

UK Renal 

Association (23) 

2002 8.8-10.4 < 5.6 < 4× upper normal 

range 

K/DOQI  (20) 2003 8.4-9.5 3.5-5.5 150-300 

Canadian Society of 

Nephrology  (24) 

2006 Within normal 

range 

Within normal 

range 

100-500 

Japanese Society for 

Dialysis Therapy  

(25)  

2008 8.4-10.0 3.5-6.0 60-240 

KDIGO (22) 2009 Within normal 

range 

Within normal 

range 

2- 9× upper limit of 

normal 

KDIGO= Kidney Disease -Improving Global Outcomes, K/DOQI= Kidney Disease Outcomes Quality Initiative, UK= United Kingdom, 

PTH= Parathyroid hormone. 

 

1.3 Pathogenesis of CKD-MBD 

Classically, prior to the discovery of Fibroblast Growth Factor 23 (FGF23), phosphate 

retention due to a decline in renal function had been considered as the main trigger of 

secondary hyperparathyroidism (26). The retained phosphate leads to a triad  of 

hyperphosphataemia, low 1,25(OH)2D3 and hypocalcaemia which are well-known stimuli 

for  PTH secretion that in turn enhances phosphate excretion and development of  secondary 

hyperparathyroidism in advanced CKD. However, what mitigates this process in the early 
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stages of CKD continued to be a point of discussion. Some authors have observed that 

calcitriol deficiency occurred earlier than hyperphosphatemia and hypocalcemia suggesting 

that it may be the main initiator of secondary hyperparathyroidism. Therefore, the 

pathophysiology of secondary hyperparathyroidism is a complex process that involves an 

interaction between several factors. In the classic hypothesis, the trade-off of PTH for 

normalization of calcium and phosphate levels is the development of secondary 

hyperparathyroidism (15, 27). The role of phosphate in the pathogenesis of secondary 

hyperparathyroidism was further supported by studies that demonstrated an association 

between high phosphate diets and parathyroid hyperplasia (28, 29). However, the 

pathophysiology of secondary hyperparathyroidism has evolved with new discoveries (4). 

For example, the emergence of FGF23 has revolutionized the understanding of the 

mechanisms underlying the development of secondary hyperparathyroidism, leading to an 

updated trade-off hypothesis.  Plasma FGF23 levels become elevated with progressively 

worsening renal function, likely to occur before observed changes in the levels of phosphate 

and PTH (30). 
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Figure 1. 1: Classic versus updated hypothesis for the evolution of CKD MBD ( 27)  

 

1.4.1 Role of FGF23 in the pathogenesis of secondary hyperparathyroidism 

Fibroblast growth factor 23 (FGF23) is derived from osteocytes and plays a vital role in 

vitamin D and phosphate metabolism. It requires Klotho (a transmembrane protein) to enable 

it to bind to the FGF receptor (FGFR) in classic target organs such as kidneys and parathyroid 

glands (31). Klotho is a transmembrane protein that confers tissue specificity to FGF23. The 

importance of this co-receptor was demonstrated in klotho null mice showing a phenotype 

similar to that of FGF23 null mice, with features of premature aging, vascular calcification, 

altered calcium/phosphate metabolism with hyperphosphataemia, and shortened lifespan (32, 

33).  Fibroblast growth factor 23 enhances phosphate excretion in the proximal renal tubule 

by decreasing the expression of luminal sodium-dependent phosphate transporters, and may 

also decrease intestinal phosphate absorption by inhibiting NaPi cotransporter activity (34).  

In addition, it reduces synthesis of 1, 25-dihydroxyvitamin D [1, 25(OH) 2D3] by down-
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regulating the activity of 1α-hydroxylase and accentuating the activity of 24-hydroxylase (35, 

36). In early stages of CKD, high levels of FGF23 attenuate hyperphosphataemia at the 

expense of 1, 25(OH) 2 vitamin D suppression, thus initiating the development of secondary 

hyperparathyroidism (36). The decrease in serum 1, 25 (OH) 2D3 leads to decreased intestinal 

calcium absorption. The triad of low levels of calcium, calcitriol and hyperphosphataemia 

further enhances excessive PTH secretion. This excess PTH leads to mobilization of calcium 

from the bone and osteitis fibrosa. Other consequences of progressive worsening of kidney 

function include hypo responsiveness of the vitamin D receptor (VDR) on the parathyroid 

gland with further enhancement of PTH production and reduced expression of the calcium 

sensing receptor on the parathyroid gland leading to parathyroid gland hyperplasia. In some 

subset of patients, the parathyroid gland undergoes hypertrophy and becomes autonomous 

(37).   

1.5   Diagnosis of CKD-MBD 

In 1983, Sherald et al. (38) proposed a classification for renal oesteodystrophy based on bone 

histomorphometry findings namely: high turnover disease, low turnover and mixed uraemic 

osteodystrophy. The emphasis on this classification was on bone turnover; however, since 

bone biopsy is not routinely used for monitoring patients there is a need for reliable 

biomarkers for assessing and monitoring patients with CKD-MBD.  Therefore, the KDIGO 

guidelines recommended the use of serum PTH in conjunction with total or bone specific 

alkaline phosphatase (b-ALP) since high or low levels of these markers correlate with 

underlying bone turnover. In addition, due to the dynamic nature and complexity of bone 

homeostasis, it is difficult to rely on one biochemical marker as a surrogate test of bone 

formation (39). Therefore, utilizing both PTH and b-ALP as recommended by the KDIGO 

group may be necessary. Furthermore, in an attempt to address the diagnostic utility of 

various biochemical markers of mineral bone disorders, the KDIGO group conducted one of 

the largest bone biopsy studies involving 492 dialysis patients. In their multivariate analysis, 

both intact PTH and whole PTH were found to remain significantly predictive in 

differentiating high from non-high bone turnover. In addition to PTH, they also assessed the 

additive value of bone- specific alkaline phosphatase and the amino – terminal propeptide of 

type 1 procollagen (PINP) in providing diagnostic accuracy. Surprisingly, the inclusion of 

specific b-ALP level added only non-statistically significant value to PTH while PINP did not 
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(40). However, due to limited serum samples they could not assess the diagnostic utility of 

FGF23, 25 (OH) D and other newer biomarkers of CKD-MBD. 

1.5.1 Parathyroid hormone 

The parathyroid gland plays a vital role in the regulation of mineral bone homeostasis 

through a complex interaction with the bone and kidney. Alterations in extracellular levels of 

calcium ion are perceived by the parathyroid calcium sensing receptors (CaSRs) which 

further regulate the production and secretion of PTH (41). Parathyroid hormone exerts its 

effects on the bone to enhance mobilization of calcium and phosphate, while on the kidneys it 

inhibits urinary excretion of calcium and phosphate reabsorption. It also enhances the 

synthesis of 1, 25(OH) 2D3.  The first generation PTH assays were the radioimmunoassays 

(RIAs) that utilized an antibody to locate an epitope in the c-terminal or mid portions of the 

PTH molecule. The first generation assays were later found to be associated with some 

drawbacks such as cross reactivity with other fragments of PTH (mid and carboxyl terminal). 

These fragments are produced by the liver and excreted by the kidneys. Therefore, as a result 

of cross reactivity, levels of PTH measured in CKD patients by these assays will be markedly 

elevated (42).  Subsequently, in the 1980s, the two site immunoradiometric assays were 

launched to address the inadequacies associated with the first generation assays (43). The 

second generation assay which is being used in our study specifically measures the full length 

PTH (Intact PTH). Although, more recently, it was believed that the second generation assays 

may also recognize other fragments such as PTH (7-84) (44), it still remains the most widely 

used assay. The third generation assays which are now believed to be specific for PTH (1-84) 

are also available (45). However, the improved diagnostic value of the third generation as 

compared to second generation assays has not been established (46). In 2001, Monier et al. 

(47) assessed whether the use of the plasma PTH (1-84)/C-PTH fragment ratio could predict 

bone turnover better than individual PTH levels measured with second or third generation 

assays. Their results showed that the  PTH-(1-84)/C-PTH fragment ratio was the best 

predictor of bone turnover, with  a ratio> 1 predicting  high or normal bone turnover 

(sensitivity 100%),  while a ratio <1 indicated a high probability (sensitivity 87.5%) of  low 

bone turnover.  However, subsequent studies did not find any advantage in assessment of 

bone turnover with this ratio compared to a single value of PTH. Therefore, the KDIGO 

group is of the opinion that both second and third generation assays are comparable, with not 
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enough evidence to recommend switching to the third generation assay. Similarly, the use of 

both assays to arrive at a ratio will lead to a considerable increase in costs of evaluating 

CKD-MBD.  Despite the limitations associated with PTH measurement, it still remains the 

recommended marker for monitoring CKD-MBD. The choice of PTH as a marker for 

monitoring secondary hyperparathyroidism has been supported by studies that correlated 

elevated levels of these hormones with poor clinical outcomes. The US Renal Data System 

revealed reduction in fracture risk by 32 % post parathyroidectomy after adjusting for 

confounding variables (48). In another study, independent of age and diabetes status, elevated 

levels of PTH were associated with a history of heart failure and myocardial infarction (49).  

Additionally, in a large randomized trial, decreased levels of PTH with paricalcitol therapy 

was significantly associated with decreased cardiovascular hospitalization (50). Furthermore, 

bone remodeling is a dynamic process with an average remodeling cycle of 3-6 months for an 

area of bone. Therefore, the use of multiple bone biopsies as a gold standard for diagnosing 

and monitoring renal osteodystrophy is impracticable. In clinical settings, an ideal biomarker 

for monitoring the management of CKD-MBD should be noninvasive and can be repeatedly 

measured 

1.6   Classification of markers of bone turnover 

The complex and dynamic processes of bone remodeling are under the influence of 

osteoclasts (bone resorption), osteoblasts (bone formation) and osteocytes (bone 

maintenance) (51).  In healthy individuals, these complex interactions ensure that the amount 

of bone removed is replaced with newly formed bone (51). In CKD patients, there is 

dysregulation of this balance which is reflected by abnormal levels of markers of bone 

turnover. These markers can broadly be categorized into markers of bone formation and bone 

resorption as shown in Table 1.2. 

1.6.1 Total alkaline phosphatase (TAP) 

Prior to the availability of commercial intact parathyroid hormone (PTH) assays, serum total 

alkaline phosphatase (TAP) measurements were used as one of the surrogate markers of high 

bone turnover that was utilized in the management of CKD-MBD (52). Alkaline 

phosphatases are membrane-bound tetrameric enzymes that extract phosphate from proteins 

and nucleotides at alkaline PH (4, 53). TAP is produced by various organs such as intestine, 
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liver, kidney, and bone. However, in healthy adults, the TAP activity in serum is derived 

mainly from the bone and the liver (51). They are involved in osteoid formation and 

mineralization. Although not as specific as bone specific alkaline phosphatase, serum TAP is 

the most widely utilized marker of bone formation because it is readily available and 

inexpensive. In addition, studies have reported a good correlation between bone specific 

alkaline phosphatase and TAP (51). 

1.6.2 Specific bone alkaline phosphatase (b-ALP) 

Specific b-ALP originates from osteoblasts and is involved in osteoid formation and 

mineralization. Studies have revealed a significant correlation between bone formation rate 

and bone specific alkaline phosphatase (54, 55). Studies relating to its superiority to PTH in 

identifying low versus high bone turnover have been inconsistent. For example, Couttenye  et 

al. (56) showed that bone specific b-ALP has a better positive predictive value than PTH in 

identifying adynamic bone disease in haemodialysis patients, while Lehmann et al. (57) 

demonstrated that the  predictive ability  for high versus low bone turnover status was similar 

for TAP, b-ALP,  tartrate resistant acid phosphatase (TRAP 5b) and parathyroid hormone in 

CKD Stage 5 patients.  

1.6.3 Osteocalcin (OC)   

Osteocalcin (OC) which is also called bone-Gla protein, is exclusively produced by 

osteoblasts, odontoblasts and chondrocytes and thus considered a marker osteoblast function 

(51). A histomorphometry study has reported a good correlation between serum levels of OC 

and  bone formation rate (58). Osteocalcin is unstable in serum and rapidly degrades into OC 

fragments and intact peptide. The various assays used to measure serum OC have been shown 

to detect fragments of various sizes, thus limiting their application in clinical practice (51). 

1.6.4 Procollagen Type I Propeptides 

The procollagen type I propeptides are synthesized from collagen type I, which is the 

predominant form of collagen found in bone (51). Type I collagen could also be found in 

other tissues such as skin, cornea, blood vessels, tendons and cartilages. This collagen is 

produced mainly by osteoblasts in the form of a procollagen molecule during bone formation. 

This procollagen molecule consists of short terminal peptides namely the carboxy (C-) 
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terminal propeptide (PICP) and the amino (N-) terminal propeptide (PINP (59). In 2011, the 

International Osteoporosis Foundation (IOF) and the International Federation of Clinical 

Chemistry and Laboratory Medicine (IFCC) made a recommendation that a marker of bone 

formation (serum procollagen type I N propeptide, s-PINP) and a marker of bone resorption 

(serum C-terminal telopeptide of type I collagen, s-CTX) should be used as reference 

analytes for bone turnover markers in clinical studies, particularly for monitoring 

osteoporosis (59). However, it is noteworthy that the KDIGO guidelines did not recommend 

routine measurements of markers of collagen synthesis such as CTX in patients with CKD 

stages 3-5D. The reason for this recommendation was based on the evidence that the levels of 

these markers did not appear to be more superior at predicting bone histology than serum 

PTH or specific bone alkaline phosphatase (22).  

1.6.5 Tartrate – resistant acid phosphatase (TRAP-5B)  

This is another marker of bone resorption which is produced by osteoclasts (60). Compared 

to PTH and PINP, TRAP- 5B has been shown to correlate more strongly with histological 

indices of osteoclasts, and found to be very stable and not affected by kidney function or 

fasting status of the patients (61, 62).  

Other markers of bone turnover are summarized in Table 1.2. 
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Table 1. 2: Markers of bone turnover (51) 

Marker Tissue of origin Specimen Comments 

Bone formation    

Specific bone alkaline 

phosphatase (b-ALP) 

Bone Serum Originate from osteoblasts 

Osteocalcin (OC) Bone, Platelets Serum Predominantly from osteoblasts 

C-terminal propeptide 

of type I procollagen 

(PICP) 

Bone, soft tissue, 

skin 

Serum  Arises from proliferating osteoblasts and 

fibroblasts 

N-terminal propeptide 

of type I procollagen 

(PINP) 

Bone, soft tissue, 

skin 

Serum Arises from  proliferating osteoblast and 

fibroblasts 

Bone resorption    

Hydroxyproline 

 

Bone, cartilage, 

soft tissue, skin 

Urine Present in both the newly synthesized and 

the mature collagen.  

 

Hydroxylysine 

glycosides 

Bone, soft tissue, 

skin, serum & 

complement  

Urine 

serum 

Hydroxylysine in collagen is glycosylated 

to varying degrees, depending on tissue 

type 

Carboxyterminal 

crosslinked 

telopeptide of type I 

collagen (CTX-I) 

All tissues 

containing type I 

collagen 

Urine (a-/ 

s) Serum (s 

only) 

Collagen type I, predominantly from the 

bone.  Isomerisation of aspartyl to s-

aspartyl occurs with ageing of collagen 

molecule. 

Aminoterminal 

crosslinked 

telopeptide of type I 

collagen (NTX-I) 

All tissues 

containing type I 

collagen 

Urine 

Serum 

Collagen type I, predominantly from the 

bone. 

Bone Sialoprotein 

(BSP) 

Bone, Dentin, 

hypertrophic 

cartilage 

Serum Synthesized by osteoblasts and osteoclastic 

cells. 

Tartrate-resistant acid 

phosphatase 

Bone Blood Plasma 

Serum 

Six isoenzymes are present in the human 

tissues and b and 5b predominates in the 

bone (Osteoclasts). 

Cathepsins (K,L)  Osteoclasts  

Macrophage, 

Osteoclasts 

 

Plasma, 

Serum 

Cathepsin K plays an essential role in 

osteoclast-mediated bone matrix  

 

Dual-energy X-ray absorptiometry (DXA) is a non invasive radiological technique used in  

the assessment of mineral bone density, although largely utilized in predicting bone fracture 

in healthy population,  the findings in  evaluating risk fracture using DXA in patients with 

CKD 3-5D  have been inconsistent and limited by cross sectional study design (63). 



13 

 

Furthermore, the use DXA to identify osteoporosis in the healthy population which is 

characterized by low bone mineral density may be inappropriate in patients with advanced 

CKD, since abnormal markers of CKD-MBD will lead to poor bone quality even in the 

setting of normal mineral or high mineral bone content (22, 63). Thus the 2009 KIDIGO 

guidelines made no recommendations for the routine use of DXA in patients with CKD 3-5D 

(22).  However, four recent prospective studies consistently reported that hip BMD predicted 

bone fractures in CKD patients and based on these findings, the recently 2017 updated 

guidelines recommended assessment of BMD using DXA in high risk patients (64). 

1.7 Prevalence of secondary hyperparathyroidism 

The pattern of CKD-MBD has evolved over time due to various factors such as change in 

practice patterns, underlying aetiology of CKD and duration on dialysis (65). For example, in 

1996, Coen et al. (66) reported the following biopsy findings in 76 Italian CKD patients not 

on bone-related medications:  adyanamic bone disease in 9 patients, mixed osteodystrophy in 

26, advanced mixed osteodystrophy in 22, predominant hyperparathyroidism in 2, 

predominant osteomalacia in 7 and normal features in 10. Two other studies were 

contradictory in relation to the prevalence of adyanamic bone disease in predialysis CKD 

patients.  Dhal et al. (67) reported that osteomalacia was rare in predialysis CKD, while Mora 

Palma et al. (68) reported that osteomalacia was a common finding in predialysis CKD 

patients with chronic tubulointerstitial nephritis. However, comparison of the prevalence of 

adyanamic bone disease across studies is difficult due to a lack of standardized definition. 

In a review of 1209 bone biopsies for patients on dialysis in several Latin American 

countries, Jorgetti et al. (69) reported  that osteomalacia and mixed forms of bone disease due 

to aluminum deposition were more prevalent in Brazil, Argentina and Uruguay, while in 

Portugal and Spain, high bone turnover due to  secondary hyperparathyroidism were the 

predominant forms. 

Subsequently in the late 1990s to date, most studies on the spectrum of CKD-MBD were 

based on biochemical parameters of bone turnover, likely due to ease of measurement, 

minimally invasive and significant association between levels of these markers and adverse 

clinical outcomes (70). In addition, the availability of global guidelines has allowed 

comparisons of biochemical parameters across studies.  
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Data from the Dialysis Outcomes and Practice Patterns (DOPPS) study revealed a wide 

variation in the abnormal markers of bone disease across different countries. Based on 

KDOQI recommended PTH values (150 to 300pg/ml), the proportion of patients with PTH > 

300 pg/ml were 30.3 % for the United States, 26.9 % for European countries, and 19.0 % for 

Japan. The factors positively associated with hyperparathyroidism (>300 pg/dL) were black 

race, duration of ESKD and vitamin D therapy (71). 

 In the CORES study involving six Latin American countries, the proportion of patients with 

PTH levels above 300 pg/ml was 30.9 %; 26.2 % were within the KDOQI recommended 

targets, and 42.8 % were below 150 pg/ml (72). 

Studies from India have reported a high prevalence of secondary hyperparathyroidism in 

haemodialysis populations. In a cross sectional study involving 150 predialysis and dialysis 

patients, high prevalence of secondary hyperparathyroidism was reported in both CKD stage 

4 and CKD stage 5D (84.62% versus 88.29%) (73). The use of a PTH cut off value of 69 

pg/mL for the advanced stages of CKD might have contributed to the high prevalence. 

However, in another study from India,  a similar trend was reported with higher cut off 

values, 50 (72%) patients had PTH levels greater than twice the upper range of normal and 45 

(61%) patients had PTH >300 pg/ml (74).  

In Africa, few studies have described the pattern of CKD-MBD based on biochemical 

parameters. 

In a cross sectional study involving 103 MHD patients from Libya, patients were categorized 

according to PTH into three categories: hyperparathyroid bone disease (iPTH> 450 pg/ml), 

adynamic bone disease (iPTH< 60 pg/ml), normal bone (iPTH 60 to 450 pg/ml). Based on 

this categorization, 29 of the patients (28.1%) had biochemical evidence of hyperparathyroid 

bone disease (iPTH>450 pg/ml) and 28 patients (27%) had low turnover adynamic bone 

disease (iPTH<60 pg/ml) and overall prevalence of ROD was 55.3% (75).  Another study 

from Senegal reported a very high prevalence of secondary hyperparathyroidism in 57 of the 

118 patients (76). These studies were limited by smaller sample sizes and non-availability of 

data on vitamin D status. In addition, the exact cut off value of PTH used in the Senegal study 

was not stated.  The present study aimed to improve on these limitations by enrolling larger 

number of patients, assessing vitamin D and FGF23 levels.  
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Patterns of CKD-MBD in Diabetes Mellitus 

Diabetes mellitus (DM) has been shown to alter bone modelling by modulating the functions 

of both osteoblasts and osteoclasts (77, 78). Type 2 Diabetes mellitus is associated with 

decreased bone remodeling. Type 2 diabetic patients were reported to have 20-50% lower 

PTH levels than the controls, despite reduced GFR, which is indicative of reduced PTH 

secretion in diabetic patients (79). Similarly, other bone markers of bone turnover such as 

osteocalcin, PINP and β-C-terminal telopeptide of type collagen (β-CTX) were lower in 

patients with type 2 DM as compared to non-diabetic patients (80). These findings were 

further supported by studies that utilized bone biopsy that reported low bone formation with 

reduced mineralization in diabetic patients (81, 82).The mechanism behind this low bone 

formation is largely attributed to increased accumulation of advanced glycation end products 

(AGEs) in bone matrix (83). The accumulated AGES in the bone matrix ultimately distort the 

activity of both osteoclasts and osteoblasts leading low bone formation in this group of 

patients. 

1.8 Clinical impact of CKD-MBD 

Several observational studies have shown an association between deranged markers of MBD 

and poor clinical outcomes in both predialysis and dialysis patients. For example, elevated 

levels of phosphate, calcium and PTH have been shown to be associated with cardiovascular-

specific mortality in patients with CKD. In a large, prospective, multicenter, cohort study 

(Netherlands Cooperative Study on the Adequacy of Dialysis) involving 1,629 haemodialysis 

and  peritoneal dialysis patients, a significant increase in hazard ratio (HR) of 1.57 (1.07–

2.30) in patients with the highest quartile of phosphate using both baseline and time-

dependent values was reported (84). Similarly, Block et al. (85) reported  an increased risk  of 

death with  increasing levels of phosphate, RR  1.07, 1.25, 1.43, 1.67, and 2.02 for serum 

phosphorus levels of 5.0 to 6.0, 6.0 to 7.0, 7.0 to 8.0, 8.0 to 9.0, and >9.0 mg/dL respectively 

in 40,538 patients on maintenance haemodialysis. The consistent association of 

hyperphosphataemia with increased mortality has been linked to its direct calcifying effect on 

coronary vessels and cardiac valves. 

Studies relating to PTH have shown a “U” shaped association with increased risk of death at 

extreme values of PTH.  The highest value of PTH that is associated with increased risk of 
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death varies across studies from >400 pg/mL (86) to >500 pg/mL (87) and >600 pg/mL (85). 

On the lower end of PTH, some studies have associated PTH below the K/DOQI 

recommended lower threshold (<150 pg/mL) with increased death risk (86, 88). 

Despite the differences in the cut-off points utilized by various studies, hypercalcaemia has 

been consistently associated with increased risk of mortality in MHD patients (89, 90).  In the 

three phases of the dialysis outcomes and practice patterns study (DOPPSI, II and III) with 

25,588 HD patients, calcium levels greater than 10.0 mg/dL (>2.5 mmol/L) were significantly 

associated with greater risk of all cause and cardiovascular mortality in both baseline and 

time dependent  models (90). The reasons for this consistent association could be linked to 

acceleration of arterial calcification by hypercalcaemia (91, 92). 

 A triad of high calcium, elevated phosphate levels and high or low PTH levels was 

associated with increased mortality in MHD patients (93). Alkaline phosphatase which is one 

of the markers of high bone turnover was recommended to be measured annually by the 

KDIGO. This relatively cheap diagnostic test has been consistently associated with increased 

mortality in both predialysis and dialysis populations (94-96).  For example, a USA 

multicenter observational study of haemodialysis patients reported that higher levels of 

alkaline phosphatase were associated with increased risk of hospitalization and death (94). 

Bhedu et al. (96) reported a similar association with higher levels of alkaline phosphatase in 

patients with CKD stages 3 and 4. Their findings suggested that independent of confounding 

variables such as liver function, serum phosphate and calcium, serum alkaline phosphatase 

was associated with increased risk of death in predialysis CKD patients. The role of high 

levels of alkaline phosphatase in the pathogenesis of vascular calcification was supported by 

a longitudinal study involving 134 stage 4 and 5 CKD patients (88). This 2 year prospective 

study revealed that higher levels of serum alkaline phosphatase were significantly associated 

with progressive vascular calcification (97). This relationship was independent of levels of 

serum fetuin –A, calcium, C – reactive protein and PTH. 

1.8.1 FGF23 and CKD progression 

Studies have shown a strong correlation between serum FGF23 levels and eGFR.  As renal 

function declines FGF23 levels increase. In end-stage renal disease, FGF23 levels can be up 

to 1000-fold above the normal range, likely due to retained phosphate or decreased renal 



17 

 

clearance (98). In a prospective study involving 177 non-diabetic patients with CKD stages 1-

5, with a median follow up period of 53 months, both serum intact FGF23 (iFGF23) and c-

terminal FGF23 levels (cFGF) above optimal cut-off levels predicted a doubling of serum 

creatinine and/or the need for renal replacement therapy, independent of eGFR, proteinuria, 

and other indices of mineral metabolism, such as calcium, phosphate and parathyroid 

hormone (99). 

Similarly, in a Brazilian prospective study comprising type 2 diabetes mellitus patients with 

macroalbuminuric nephropathy, iFGF23 was an independent predictor of the composite 

primary outcome defined as death, doubling of baseline serum creatinine and/or need for 

dialysis, even after adjustment for creatinine clearance and intact parathyroid hormone (100). 

One of the limitations of the two aforementioned studies was the relatively small sample size. 

However, this finding was confirmed in a large multicenter prospective study CRIC (Chronic 

Renal Insufficiency Cohort) involving 3879 CKD stages 2–4 patients with a median follow-

up of 3.5 years, high cFGF23 levels were independently associated with poor renal outcome 

(101). These studies were largely carried out in Caucasians or African Americans. Few if any 

studies have investigated the role of FGF23 in African CKD patients. 

1.8.2 FGF23 and cardiovascular outcome 

In the HOST (Homocysteine study), compared to patients with the lowest FGF-23 levels, 

patients in the highest quartile of baseline FGF23 had a hazard ratio of 2.58 for future 

cardiovascular events in univariate analysis. High levels of FGF23 remained a significant 

predictor of cardiovascular outcome, while vitamin D, calcitriol and PTH did not. Regarding 

the composite cardiovascular endpoint, elevated FGF23 was an independent predictor of 

myocardial infarction and lower extremity amputation (102). These studies have also shown 

an association between elevated levels of FGF23 in CKD and left ventricular hypertrophy, 

vascular calcification and mortality (101, 102). 

1.9 Vitamin D and CKD 

Vitamin D is mainly derived from dietary sources or synthesized by the skin from UVB light. 

It is first converted to 25(OH) D in the liver and subsequently activated to its active form 

known as 1, 25(OH) 2D3 (103).  Until recently, the final step of activation, 1α-hydroxylation 
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was thought to occur primarily in the kidney (104). However, emerging evidence continued 

to reveal that in addition to the kidney pathway for activation of 25 (OH) D, a peripheral 

autocrine (non-renal) pathway is also involved in calcitriol synthesis (105).  In fact, the 

hypothesis of extra renal 1α-hydroxylase had been proposed several years before the 

availability of calcitriol and its analogues. For example, studies have demonstrated that there 

were occasional anephric patients who had measurable blood levels of vitamin D metabolites 

(1α, 25-dihydroxyvitamin D3) following administration of vitamin D or 25 (OH) D3 (106, 

107).  Furthermore, recent epidemiological data and studies of the vitamin D receptor (VDR) 

knockout mouse have shown that the role of vitamin D is not solely restricted to its classical 

function of regulating calcium and phosphate homeostasis (108). Vitamin D, in the form of 

calcitriol, mediates a wide variety of cell differentiation around the body. The non-classical 

role of vitamin D includes regulation of the renin angiotensin system and the nuclear factor -

kappa B pathway which are commonly implicated in various disease pathological processes 

(109, 110). Furthermore, the emergence of the non-classical pathway has also given insights 

into the mechanisms behind the significant association between vitamin D deficiency and 

multiple chronic disease conditions such as cardiovascular disease, diabetes, malignancies 

and CKD (111). This has led to a special interest in the importance of addressing vitamin D 

deficiency particularly in CKD patients who are more susceptible to vitamin D deficiency.   

Therefore, it now advocated that having corrected the abnormal calcium/phosphate axis of 

the CKD patient that the nephrologist should also mitigate the wider effects of vitamin D 

insufficiency (105). 

1.9.1 Prevalence of vitamin D deficiency 

The comparison of epidemiological data on the prevalence of vitamin D deficiency is 

somewhat hampered by the lack of consensus on how to define vitamin D deficiency (112). 

However, the most widely acceptable cut off value for defining vitamin D deficiency is 

serum 25 (OH) vitamin D levels below 20 ng/ml, while patients with 25 (OH) D levels 

between 20 and 30 ng/ml are considered to be vitamin D insufficient (113).  Based on these 

cut off values vitamin D deficiency or insufficiency has been considered a global health 

problem affecting approximately 1 billion people worldwide (114). Studies have reported that 

40 -100 % of USA and European elderly men and women living in the community are 

deficient in vitamin D (111). Vitamin D deficiency is also common in countries with 
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abundant sunshine, when there is limited skin exposure to UVB sunlight. For example, 

studies from Saudi Arabia, India, and Lebanon, have reported that 30 to 50% of children and 

adults had 25 (OH) D levels under 20 ng/ml (115-117).  In Africa, although nationally 

representative data are sparse, a systematic review by Prentice et al. (118) revealed a 

collective prevalence of 25 (OH) D <25 nmol/l (10 ng/ml) between 5–20%.  Most of the 

African studies were conducted on healthy children and children with Ricketts, while a few 

were on healthy adults, pregnant and lactating women (119-121). In addition, various test 

methodologies were used in these studies and only three papers reported the use of the 

Vitamin D External Quality Assessment Scheme (DEQAS) which monitors 25 (OH) D assay 

performance. (118).  

Patients with CKD are more likely to have 25 (OH) D deficiency due to a reduction in the 

level of 1-α-hydroxylase available for the conversion of 25 (OH) D to active vitamin D. 

Other causes of vitamin D deficiency in CKD patients include urinary loss of vitamin D 

binding protein, reduced dietary intake due to uraemia, and increased levels of FGF23. 

Several studies have shown high prevalence of vitamin D deficiency ranging from 60- 80 % 

in patients with CKD. In a cross sectional study from the US involving patients with CKD 

stages 3 and 4, La Clair et al (122) reported that only 29 and 17% of patients with CKD stage 

3 and 4 respectively had adequate vitamin D status. They used much lower 25 (OH) D levels 

of < 10 ng/ml to define vitamin D deficiency and levels of 10-30 ng/ml as insufficiency. In 

another multicenter  cross sectional study from the United States, Wolf et al reported that 78 

%  of the study cohort had vitamin D deficiency defined as  serum 25 (OH) D  <30 ng ml−1 

and  18 %  of the study population was severely deficient  (serum 25 (OH) D  <10 ng ml−1) 

(123). The reported high prevalence of 25 (OH) D deficiency in these studies is in contrast 

with the Canadian study to evaluate early kidney disease (SEEK) which found that only 12 % 

of the participants with estimated GFR <20ml/min/1.73 m2 had vitamin D deficiency. The 

reason for this lower prevalence rate may be attributable to dietary habits in Canada and 

vitamin D supplementation of food. Furthermore, the high variations in the proportion of 

vitamin D deficiency across studies may be due to differences in ethnic distribution, degree 

of sun exposure, and utilization of different cut off values. In addition, differences in test 

methodologies may have also accounted for the observed variations.  For  example, 

significant 25 (OH) D intra and inter  variations have been reported with different auto 
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analyzers (124).  In our study HPLC, which is considered to be the gold standard for vitamin 

D measurement (125), was used to specifically measure 25 (OH) D3, and is less affected by 

vitamin D supplementation.  

In Africa, data on prevalence of vitamin D status in CKD population is sparse. In a recent 

cross sectional study from Senegal involving 46 haemodialysis patients, Seck et al. (126) 

reported that prevalence of vitamin D deficiency was 32.6% and 28 patients (60.8%) had 

vitamin D levels between 15 μg/l and 30 μg/l. This study was limited by small sample size 

which reduced the significance of their conclusion. 

1.9.2 Vitamin D levels and patients outcome in CKD 

In the Third National Health and Nutrition Examination Survey (NHANES III) involving 

15,068  participants,  de Boer et al. (127) reported a stepwise increase in the prevalence of 

albuminuria (8.9%, 11.5%, 13.7%, and 15.8%; P < 0.001) with decreasing quartiles of 

25(OH)D .  

In another prospective study involving clinically stable patients with stages 2–5 CKD, 25 

(OH) D independently predicted both time to death and progression to ESKD (128). Other 

well established clinical correlates of vitamin D deficiency are insulin resistance, 

cardiomyopathy and dysregulation of the immune system (128-131).  Therefore, co-existence 

of these conditions in patients with CKD who are already at risk of cardiovascular events is 

monumental. 

The relationship between vitamin D deficiency and increased mortality in ESKD was further 

supported by several observational studies that implicated the use of paracalcitol and 1, 25 D 

and 1α-hydroxylated-VD with better survival in CKD patients (132-134).  These studies were 

limited by the observational study design and thus the need for randomized controlled trials 

(RCTs) to further clarify the survival benefit from active and/or pre-active vitamin D.  

Interestingly, an association has also been established between active vitamin D analogues 

and reduction in proteinuria, likely through an interaction with the renin angiotensin 

aldosterone system (135). 

However, despite all the above aforementioned associated adverse clinical outcomes with 

vitamin D deficiency, little is known on vitamin D status in African CKD populations. 
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Therefore, one of our study objectives was to determine the vitamin D status in our patients 

and further explore its relationship with secondary hyperparathyroidism. 

1.10 Ethnic variations in biochemical markers of CKD-MBD 

The mechanism behind the existence of racial differences in the regulation calcium/ PTH/ 

calcitriol axis is largely unknown. However, it was proposed that blacks are susceptible to 

lower levels of 25 (OH) D, leading to increased parathyroid gland mass and secondary 

hyperparathyroidism. In addition, despite lower levels of 25 (OH) D, blacks have higher 

levels of 1, 25(OH) 2D3 and lower urinary calcium than whites. In a retrospective study 

involving 1367 haemodialysis patients, black race was independently associated with severe 

hyperparathyroidism. This study was limited by non-availability of data on vitamin D levels. 

Subsequently, other studies have consistently reported higher levels of PTH and lower levels 

of 25 (OH) D in blacks than whites.  The consequences of these abnormal markers of CKD 

have also been shown to differ across races and thus the need for race specific target values 

for these markers of MBD (11). For example, in a multi ethnic study of atherosclerosis 

(MESA) involving 6436 participants, 25 (OH) D deficiency was associated with increased 

risk of coronary heart disease in white but not in black Americans (136). A similar trend was 

found in the National Health and Nutrition Examination Survey (NHANES III), where  low 

25 (OH) D was associated with a higher risk of all-cause mortality in white compared to 

black  participants (137).  Furthermore, FGF23, which is now being considered as the 

principal mediator of secondary hyperparathyroidism, has also been shown to differ across 

races (8, 138). 

While there are considerable number of studies from developed countries that have looked at 

ethnic variations in markers of CKD-MBD among healthy population, there are only few 

studies from South Africa that have conducted a head to head comparison between White and 

Black populations. A previous study that dates back to 1997 reported no ethnic differences in 

serum intact PTH and calcitonin levels; however, Black women had lower serum 25 (OH)D 

compared to White women (19.3 vs 26.3 ng/ml, p = 0.0001)(139).  

The unestablished molecular basis for these racial variations in the markers of CKD-MBD 

highlighted a gap in knowledge and the need for further research in this field. Therefore, the 
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current study was embarked on, with the aim of exploring the extent of these differences in 

our patients and to assess whether genetic factors could partly explain these differences. 

1.11 Genetic basis for CKD-MBD 

1.11.1 VDR polymorphisms 

The VDR gene that encodes VDR is found on chromosome 12q12.14 and is made up of eight 

protein-coding exons (exons 2–9) and six untranslated exons (1a–1f). Single nucleotide 

polymorphisms (SNPs) and point mutations occur in the introns or the 3′ untranslated region 

(UTR) of the VDR gene (140). Alterations in these regions would lead to abnormal 

production of VDR.  The four common forms of VDR polymorphisms are (ApaI G>T 

[rs7975232], TaqI C>T [rs731236] and BsmI A>G [rs1544410]) which reside within an area 

between exons 8 and 9 with unknown function and in a unique linkage disequilibrium (LD)  

block spanning the VDR exons 3–9, while FokI T>C (rs10735810) resides in the non-coding 

exon (140). 

The VDR plays a vital role in mediating the effects of the biological active form of vitamin D 

(1, 25(OH) 2D3, therefore it is biologically plausible that variations in these receptors will 

modulate the consequences associated with vitamin D deficiency (141).  In 1994, Morrison et 

al. (142) were the first to report an association between VDR polymorphisms and bone 

metabolism. This report showed that the common allelic variants in the VDR encoding genes 

can predict differences in bone density in healthy individuals (142). Subsequently, several 

researchers have explored this relationship in CKD populations with emphasis on the 

calcium/ PTH/ calcitriol axis (143, 144). The BsmI polymorphism (BB genotype) has been 

associated with slower progression of secondary hyperparathyroidism and normal levels of 

calcitriol in predialysis CKD patients, and  lower levels of PTH in haemodialysis, and a better 

reduction in PTH levels in response to a single bolus of calcitriol therapy compared  to 

patients with bb genotype (144, 145).  However, contrary to earlier studies, findings from 

subsequent studies on the associations between VDR polymorphisms and markers of mineral 

bone disease have been inconsistent.  For instance, some studies reported no difference in 

PTH levels between the various BsmI genotypes (146, 147), while Chudek et al. revealed 

significantly lower levels of calcitriol in patients with the BB genotype (148). Similarly, 

some studies have linked other VDR polymorphisms to mineral bone metabolism in 
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haemodialysis patients. The VDR FokI polymorphism (FF genotype) was reported to be 

associated with higher PTH levels (149).  

Furthermore, the existence of racial disparities in abnormal markers of CKD-MBD and the 

better survival paradox in African Americans compared to white dialysis patients may be 

explained partly by the racial differences in the distribution of VDR polymorphisms and 

VDR receptor activation therapy.  Most of these studies were conducted on European, Asian 

and American CKD populations, while studies from Africa were largely on non-CKD 

populations. Therefore, in line with ongoing efforts to better understand the mechanisms 

behind racial disparities in markers of CKD-MBD, we aimed to explore the variations in the 

VDR polymorphisms between black and white African CKD patients and its relationship 

with biochemical markers of mineral bone disorders. 

1.12 Aims 

1. To determine the spectrum of CKD-MBD in South African CKD patients. 

2. To determine the association between biochemical markers of CKD-MBD and 

mortality in maintenance haemodialysis patients. 

3. To compare markers of mineral bone disease between black and white South African 

patients with CKD. 

4. To compare the association between FGF23 and traditional markers of CKD-MBD. 

5. To evaluate the relationship between VDR polymorphisms and biochemical markers of 

CKD-MBD. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Study design, population and sites 

This was a cross -sectional multicenter study carried out from April 2015 to May 2016, 

involving two hundred and ninety three CKD patients from three renal units in Johannesburg, 

South Africa. The retrospective arm of this study involved two hundred and thirteen patients 

undergoing MHD from two dialysis centers in Johannesburg between January 2009 and 

March 2016.  Patients on maintenance haemodialysis were contacted on the days of their 

dialysis and, when confirmed eligible for enrolment, were given study information sheets and 

consent forms before recruitment. The pre dialysis patients were contacted on their clinic 

days. A comparative control arm of the study involved ninety apparently healthy participants 

without kidney disease.  

2.1.1   Sample size estimation 

Minimal sample size was determined using Fisher’s statistical formula.  

 Sample size (N) = Z
2
PQ  

                                 D
2
  

Z     =     1.96, that is normal standard deviation at 95% confidence interval 

P     =     Prevalence rate of CKD Mineral bone disorder  

Q     =     1-P                                     D = 0.05 Precision 

The prevalence (P) of CKD Mineral bone disease is 88.29%   based on the findings of Gosh 

B et al(1) . Hence, a prevalence of 88.29 % was used to calculate the sample size.
 
                               

  N   =   (1.96)
2 

x 0.883 x 0.117   = 158 

                         (0.05)
2
  

Therefore, a minimum of 158 patients with CKD will be enrolled. The ratio of study 

population to control was 2: 1. Thus a total of 80 healthy controls will be required for 

comparison. 
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2.1.2 Study sites 

Charlotte Maxeke Johannesburg Academic Hospital (CMJAH), Wits Donald Gordon Medical 

Center and Glynwood Hospital, South Africa 

2.1.3 Inclusion Criteria  

Patients with established CKD stages 3-5D, aged ≥ 18 years who gave informed consent were 

enrolled. 

2.1.4 Exclusion Criteria   

Patients with active or chronic liver disease, on treatment with steroids or bisphosphonates, 

and having malignancies were excluded. In addition, we excluded Indian and mixed races to 

allow for a proper comparison between black and white patients. 

2.1.5 Ethical consideration 

 The research protocol was approved by the Health Research and Ethics committee (HREC) 

of the University of the Witwatersrand; clearance certificate number M141016. Written 

informed consent was obtained from each patient before enrolment into the study. 

2.2 Screening and evaluation protocol 

2.2.1 A structured questionnaire was used to obtain patients’ demographic characteristics, 

blood pressure measurements, co-morbid disease, underlying aetiology of CKD and 

medication history related to CKD-MBD. Determination of race was based on self-report by 

the participants. 

2.2.1 Blood collection and preparation 

Whole blood samples were collected into plain separator vacutainer tubes (for serum), and 

ethylene diamine tetra acetic tubes (for plasma). Samples were left to clot and then 

centrifuged at 5000 rpm at 4
 o

C
 
  for 10 minutes. Both serum and plasma were aliquoted into 

1.5ml micro centrifuge tubes and stored at -80 
o
C.  Whole blood collected for VDR 

genotyping was stored at −20 
o
C. 
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2.3 Laboratory measurements 

 2.3.1 Plasma intact PTH  

Plasma intact PTH was measured by an electrochemiluminescence immunoassay (ECLIA) 

run on a Cobas 6000 auto analyzer (Roche Diagnostics, Mannheim, Germany). The test 

methodology entails adding 50 µL of sample to a biotinylated monoclonal PTH-specific 

antibody, and monoclonal PTH-specific antibody labeled with a ruthenium. Addition of 

streptavidin-coated micro particles enhance the complex bound to the solid phase, and the 

unbound substances are washed off. A voltage is then applied to the electrode to generate 

chemiluminescent emission. There is a direct relationship between the amount of PTH in the 

sample and the generated chemiluminescent emission which is measured by a 

photomultiplier.  

2.3.2 Fibroblast growth factor 23 

 Fibroblast growth factor 23 was measured using a sandwich based enzyme-linked 

immunosorbent assay kit from EMD Millipore Corporation (Billerica, MA, USA); assay 

lower limit of detection was 3.2 pg/ml. 50 µL of plasma samples were added to the 

appropriate wells in addition to 100 µL of conjugate antibody. The plate was covered with a 

sealer and allowed to incubate for 2 hours on a microliter plate shaker. The solutions were 

then decanted from the wells and washed three times with a diluted wash buffer.  100 µL of 

detection antibody was then added to all wells and further incubated for 1 hour on a plate 

shaker. The solutions were decanted from the wells and washed three times with a diluted 

wash buffer. The washing step was repeated after adding 100 µL of enzyme solution with 30 

minutes incubation period. Finally, 100 µL of substrate solution was added to each well to 

stop the reaction. Optical density at 450 nm was measured on an ELx800 microplate reader 

(BioTek, Winooski, VT, USA). 

2.3.3 Plasma 25 (OH) vitamin D 

Plasma 25(OH) D was measured using the high performance liquid chromatography (HPLC) 

kit (Recipe, Munich, Germany).  HPLC was used to selectively measure 25-(OH) vitamin D2 

and 25-(OH) vitamin D3 at a wave length of 264nm. The intra and inter assay coefficients of 
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variation (CVs) were < 5%.  Our institutional laboratory is a participating member in the 

vitamin D external quality assurance scheme (DEQAS). In this study, 25(OH) D3 was used 

as a marker of vitamin D status to avoid confounding of the results from exogenous vitamin 

D supplementation.  

2.3.4 Determination of serum calcium, phosphate and alkaline phosphatase 

Serum calcium, phosphate and alkaline phosphatase were measured using the ADVIA 1800 

centaur auto analyzer (Siemens Diagnostics, Tarrytown, USA), and their test principles were 

as follows: 

In alkaline medium calcium ions reacts with 0-cresolpthalein complex one to form a violet 

colour that is measured at 545/658nm. 

In an acidic medium created by sulphuric acid, inorganic phosphate reacts with ammonium 

molybdate to form phosphomolybdate complex which is measured at 340/658nm. 

2.3.5 Determination of serum creatinine and glomerular filtration rate 

Creatinine was measured by a modified Jaffe reaction method which is based on a colour 

formation from a reaction of creatinine with picric acid alkaline medium. The creatinine 

assay is traceable to isotope dilution mass spectrometry (IDMS).  The glomerular filtration 

rate (GFR) was estimated using the four- variable Modified Diet Renal Disease (MDRD) 

equation(2) : GFR (in mL/min per 1.73 m
2
) = 175 × SCr (exp[−1.154]) × Age (exp[−0.203]) 

× (0.742 if female) × (1.21 if black).  

The rationale behind the use of MDRD in this study is based on the fact that our study 

population are patients with already established CKD with GFR < 60mls/min per 1.73 m
2
, 

and  MDRD  study equation is  appropriate  for patients with CKD stages 3 and 4(3). One of 

the limitations of MDRD is in underestimation of GFR in early stages of CKD. Although the 

proposed CKD- Epidemiology Collaboration (CKD- EPI) equation accounts for this 

limitation, it performs better in healthy population (3). Therefore, the  MDRD and CKD-EPI 

equations perform equivalently in CKD stages 3-5. 
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2.4 Genotyping 

DNA was extracted from whole blood using the Maxwell DNA purification kit (Promega 

AS1010, USA). The DNA concentrations and purity were determined using NanoDropTM 

2000 spectrophotometer (Thermo Scientific, USA) at A260 and A260/A280 ratios. Salting 

out method was used to re extract DNA from samples with low yield (<10 ng/ul). 

Briefly, the salting out method involved suspending buffy coats of nucleated cells in 15 mls  

polypropylene tubes containing  3mls of nucleic lysis buffer (1% SDS; 2 mM EDTA) and 2 

mg/ml proteinase K. The cell lysate was treated overnight with proteinase K at 37
0
C.  The 

tubes were vigorously shaken following addition of sodium chloride and subsequently 

incubated on ice for five minutes. The pellets were washed with 70 % cold ethanol  and spun  

at 800 rpm for 20 minutes  to remove the excess salt used in precipitating the DNA. The 

DNA pellets were  finally,  dissolved in 100 mL of 10 mM TrisHCl, pH 8 prior to 

quantification. 

The thermocycling condition involved initial denaturation step at 95 °C for 3minutes, 

followed by 40 cycles of denaturation at 95 °C for 15 seconds ,  annealing at 65°C (67  °C  

for Apa I)  for 20 seconds and a final extension at 72  °C for 1 minute. 

  DNA products were amplified using appropriate primers as shown  in Table 2.1. 
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Table2. 1: Primers, restriction enzymes and annealing temperatures 

Gene Primer Enzymes Allele  Annealing 

temperature  

ApaI F:5CAGAGCATGGACAGGGAGCAA

G 3’  

R:5’GCAACTCCTCATGGCTGAGGT

CTCA 3’ 

Apa I  (New 

England 

Biolabs) 

AA(TT): 740 

bp.  Aa(TG):740 

bp, 520bp and  

220bp 

aa(GG) 520bp, 

220bp. 

65 
0
C 

BsmI F:5’CAACCAAGACTACAAGTACCG

CGTCAGTGA 3’   

R:5’AACCAGCGGGAAGAGGTCAA

GGG 3 ‘ 

BsmI  (New 

England 

Biolabs) 

BB (AA): 

825bp. Bb 

(AG):825bp, 

650 bp and 175 

bp. 

bb(GG):650 bp, 

175bp 

65 
0
C 

FokI F:5’AGCTGGCCCTGGCACTGACTC

TTGCTCT 3’  

R:5’ATGGAAACACCTTGCTTCTTC

TCCCTC 3’ 

FokI ( New 

England 

Biolabs) 

FF(CC): 265 bp 

Ff(CT) 265bp, 

196 bp and 69 

bp. 

ff(TT):196bp,69

bp 

67 
0
C 

TaqI F:5’CAGAGCATGGACAGGGAGCA

AG 3’  

 

R:5’GCAACTCCTCATGGCTGAGGT

CTCA 3’ 

TaqI ( New 

England 

Biolabs 

TT(TT): 495bp, 

245bp 

Tt(TC): 495bp, 

290bp,245bp, 

and 205 bp. 

Tt(CC):290bp,2

45bp, and 205 

bp 

65 
0
C 

 

 The PCR products were then digested with enzymes ApaI, BsmI, FokI, and TaqI (New 

England Biolabs, Beverly, MA, USA) according to the supplier’s protocol. Digestions for   

BsmI and TaqI were at 65 
0
C left overnight, and 3hrs at 25 

0
C for ApaI, while FokI was 

incubated at 37 
0
C for 3 hrs. Restricted products were electrophoresed on either 10% 

polyacrylamide or 1.5% agarose gels and then visualized by the Gel Doc TM EZ imager 

(Bio-Rad systems, USA). Genotypes were scored based on the presence or absence of a 

restriction site for the enzymes BsmI, ApaI, and TaqI at the 3′ untranslated region and FokI at 

the N-terminal region of the gene. 
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2.5 Statistical analysis 

Detailed description of statistical methods are provided in the in the methods section of each 

manuscript. 

References 

1. Ghosh B, Brojen T, Banerjee S, Singh N, Singh S, Sharma OP, et al. The high prevalence 

of chronic kidney disease-mineral bone disorders: A hospital-based cross-sectional study. 

Indian J Nephrol. 2012;22(4):285-91. 

2. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using 

standardized serum creatinine values in the modification of diet in renal disease study 

equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247-54. 

 

3. Murata K, Baumann NA, Saenger AK, Larson TS, Rule AD, Lieske JC. Relative 

performance of the MDRD and CKD-EPI equations for estimating glomerular filtration rate 

among patients with varied clinical presentations. Clin J Am Soc Nephrol. 2011;6(8):1963-

72. 

 



47 

 

                                     CHAPTER 3: MANUSCRIPT 1 

Biochemical markers of mineral bone disorder in South African patients on 

maintenance haemodialysis 

ABSTRACT 

Background: Despite the high mortality and morbidity associated with abnormalities in 

mineral and bone metabolism in haemodialysis patients, there are limited data on the pattern 

of mineral bone disorder in African CKD populations. Therefore, the purpose of this study 

was to describe the pattern of mineral bone disease by evaluating biochemical parameters in 

patients on maintenance haemodialysis (MHD). 

Methods: We evaluated the serum/plasma intact parathyroid hormone (iPTH), corrected 

calcium, phosphate, total alkaline phosphatase (TAP) and 25 (OH) D levels of two hundred 

and seven patients undergoing MHD at two dialysis centers in Johannesburg. 

Results: The MHD patients (133 men, 74 women) had a mean age of 54.5±15.6 years with a 

median dialysis vintage of 24 months (IQR, 12-48) and a mean kt/V of 1.45±0.28. The 

prevalence of hyperparathyroidism (iPTH>150 pg/mL),hyperphosphataemia, hypocalcaemia 

and 25(OH) D deficiency (<30 ng/mL) was 73.4%, 57.0%, 20.3% and 80.7 % respectively. 

The combination of markers of bone turnover (iPTH>150pg/mL and TAP> 112 U/L) 

suggestive of high turnover bone disease, was present in 47.3 % of the study population. In 

multiple regression analysis, the odds ratio for developing secondary hyperparathyroidism 

with hypocalcaemia and hyperphosphataemia were 5.32 (95% CI 1.10 - 25.9, P <0.05) and 

3.06 (95 % CI 1.15 - 8.10, P <0.05) respectively. 47.3 % of MHD patients had iPTH within 

the recommended KDIGO guidelines.  

Conclusion: Secondary hyperparathyroidism and 25 (OH) D deficiency were common in our 

haemodialysis patients. Hypocalcaemia and hyperphosphataemia were strong predictors for 

developing secondary hyperparathyroidism. 

Keywords: Biochemical markers, guide lines, mineral bone disorder, haemodialysis 
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3.1 Introduction 

Chronic kidney disease-mineral bone disorder (CKD-MBD) is now defined as a “systemic 

disorder of mineral and bone metabolism due to CKD manifested by either one or a 

combination of the following: (i) abnormalities of calcium, phosphorus, parathyroid hormone 

(PTH), or vitamin D metabolism; (ii) abnormalities in bone turnover, mineralization, volume, 

linear growth, or strength; or (iii) vascular or other soft tissue calcification and that the term 

renal osteodystrophy should exclusively be used to describe disorders in bone morphology 

associated with CKD”(1, 2). Although bone biopsy is the gold standard for adequately 

describing the spectrum of CKD-MBD, it is less frequently utilized in clinical settings 

because of associated constraints. It is an invasive and cumbersome procedure that requires 

highly skilled personnel to interpret the obtained tissue samples. Therefore, clinicians largely 

depend on the biochemical parameters for monitoring and management of this important 

clinical entity that is associated with adverse clinical outcomes in CKD patients. In addition, 

the above aforementioned internationally acceptable definition has led to the ease of 

diagnosing CKD-MBD and allows valid comparison of studies in this field. 

 In 2009, through extensive review of the literature the KDIGO (Kidney Disease Improving 

Global Outcomes) guideline work group came up with guidelines to assist clinicians in the 

management of patients with CKD-MBD(2). The guidelines were largely based on studies 

conducted on Asian, European and American populations. These guidelines were adopted by 

many African countries despite existence of racial differences in PTH, vitamin D and 

phosphorus as demonstrated by several studies (3-5). The lack of use of literature from Africa 

is likely due non availability of robust data from these regions. Therefore, information 

obtained from this present study will add to the existing paucity of data on African patients 

with CKD-MBD. 
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3.2 Materials and Methods 

3.2.1 Participants and study design 

This was a cross sectional descriptive study involving two hundred and seven patients 

undergoing MHD (from June 2009 to April 2016) at two dialysis centers in Johannesburg, 

aged ≥ 18 years with complete data for analysis. Exclusion criteria included patients with 

active malignancy, active liver disease, and patients on medications such as bisphosphonates 

or warfarin. Demographic and clinical data collected were age, gender, history of 

medications, underlying aetiology of CKD, duration of haemodialysis and blood pressure 

measurements. The research protocol was approved by the Health Research and Ethics 

committee (HREC) of the University of the Witwatersrand. 

3.2.2 Laboratory measurements  

Plasma intact PTH was measured by an electrochemiluminescence immunoassay (ECLIA) 

run on a Cobas 6000auto analyzer (Roche Diagnostics, Mannheim, Germany; reference range 

10-65 pg/mL). 

Serum 25 (OH) D was measured by a chemiluminescentmicro particleimmunoassay (CMIA) 

technique (Abbott Laboratories, Abbott Park, Illinois, US). Reference ranges: < 10 ng/mL as 

severe deficiency, 10-29 ng/mL as  moderate deficiency, 30-100 ng/ mL as sufficiency and > 

100 ng/ mL as toxic(6). 

Calcium, Phosphate and Alkaline phosphatase were measured using the ARCHITECT C8000 

auto analyzer (Abbot Laboratories, Abbott Park, Illinois, US). Other biochemical parameters 

were determined using routine laboratory techniques. 

Laboratory reference range for calcium and phosphate were as follows: 

Calcium (2.12-2.50 mmol/L) 

Phosphate (0.79-1.45mmol/L). 

Based on the above reference values and KDIGO recommendations the following definitions 

were employed in this study:  
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Hyperparathyroidism and hypoparathyroidism were defined as intact PTH >150 pg/ml and 

PTH < 15 pg/ml respectively. 

Hyperphosphataemia and hypophosphataemia were defined as phosphate levels >1.45 

mmol/L and <0.80mmol/L respectively. 

Hypercalcaemia and hypocalcaemia were defined as calcium levels >2.50mmol/l and 

<2.12mmol/l respectively. 

3.2. 3 Statistical analysis 

Patients’ demographic and baseline characteristics are presented as means and standard 

deviations (SD) or medians (Interquartile ranges) depending on the distribution of the 

variable, while categorical data were presented as proportions or percentages. The means of 

biochemical parameters were compared between diabetic and non-diabetic patients using an 

independent t–test and Pearson’s or Fisher’s exact test was utilized for proportion 

comparisons. Associations between log transformed PTH and other biochemical parameters 

were assessed by multiple linear regression analyses following significant associations 

obtained from univariate regression analyses. A logistic regression model was used to 

evaluate the effect of other biochemical parameters on the odds of developing secondary 

hyperparathyroidism. A p-value of less than 0.05 was considered statistically significant at 

the 95% confidence interval. All analyses were performed using STATA version 12 (STATA 

Corp., TX, and USA).  

3.3 Results  

Two hundred and seven MHD patients (133 men, 74 women) were enrolled. Their mean age 

was 54.5±15.6 years with a median dialysis vintage of 24months (IQR, 12-48) and a mean 

Kt/V of1.45±0.28.  Fifty six (27.1%) of the study population were diabetic. Medications 

received included calcium carbonate 154 (74.4%), alfacalcidol 132 (63.8%), cholecalciferol 

45(21.7%) and 12 (5.8%) were on cinacalcet (Table 1). The majority of the patients were on 

three times weekly 4 hr sessions of haemodialysis. 

Table 3.2 shows a comparison of biochemical parameters and distribution of CKD-MBD 

abnormalities between diabetic (n=56) and non-diabetic (n=151) patients. Diabetic patients 
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had significantly lower mean 25(OH) D as compared to non-diabetic patients. Other 

biochemical parameters were comparable between the groups. 

The overall prevalence of hyperparathyroidism (iPTH>150pg/mL), hyperphosphataemia, 

hypocalcaemia and 25 (OH) D deficiency (<30 ng/mL) was 73.4%, 57.0%, 20.3% and 80.7 

% respectively. The combination of markers of bone turnover (iPTH>150pg/mL and TAP > 

112 IU/L) suggestive of high turnover bone disease, was present in 47.3 % of the study 

population (Table 3.2).  

Patients within KDIGO-recommended targets for calcium, phosphate and PTH were 63.8%, 

37.7 %, and 47.3% respectively (Table 3.3). 

In logistic regression analysis, hypocalcaemia and hyperphosphatasemia were identified as 

predictors of hyperparathyroidism (p <0.05) (Table 3.4).  

Univariate linear regression revealed a significant association between log transformed PTH 

and phosphate (r
2
=0.03, p=0.007), calcium (r

2
=0.02, p=0.03), TAP (r

2
=0.05, p=0.006), 25 –

OH vitamin D (r
2
=0.05, p=0.005). When including all these parameters in a multiple 

regression analysis, only phosphate and 25 (OH) D remained significantly correlated with log 

PTH; p= 0.02 and 0.04 respectively. 

3.4 Discussion 

In agreement with previous studies from Africa and developed countries (7-9), this study has 

revealed a high prevalence of derangements of biochemical markers of mineral bone 

disorder. Based on the cut-off values utilized by this study, hyperparathyroidism (PTH>150) 

was present in 73.4% of the patients and 37% with a stricter cut-off value of 585 ng/ml (9 

times the upper normal of our laboratory assay). However, because of the dynamic nature and 

complexity of bone homeostasis it is difficult to rely on one biochemical marker as a 

surrogate test of bone formation (10). Therefore, utilizing both PTH and TAP, though not as 

specific as bone specific alkaline phosphatase, almost half of our study population was 

identified as having high bone turn over. In addition, the 2009 Kidney Disease Improving 

Global Outcomes (KDIGO) guidelines recommended  measurement of TAP every 12 months 
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in CKD 4-5D (2), and the additional cost in routinely  utilizing bone specific alkaline 

phosphatase to monitor the management of CKD-MBD has not been justified. 

Comparison of epidemiological data on prevalence of vitamin D deficiency is being 

hampered by lack of consensus on how to define this deficiency. However, the widely 

accepted definition includes serum 25 (OH)  D level below 20 ng/ml while patients with 25 

(OH) D levels between 20 and 30 ng/ml are considered to be vitamin D insufficient(6).  One 

of the striking results of our study was the high prevalence (80.7%, N=161) of inadequate 

vitamin D status in our study population and of which 29.2 % were severely vitamin D 

deficient (<15 ng/m/). These findings are consistent with previous cross sectional studies in 

Americans (11-13). In contrast to our finding regarding severe deficiency,  Jabbar et al(14) 

reported vitamin D deficiency  (<15ng/ml) in 90 % of the patients and attributed it to the low 

vitamin D content in the  traditional (vegetarian) Indian diet. Diabetic patients had 

significantly lower mean levels of 25(OH) D and inadequate vitamin D compared to non-

diabetic patients. This finding is in line with previous studies from Europe and Asia (15, 16) 

in which a high prevalence of vitamin D deficiency was demonstrated in > 90% of the 

diabetic patients. This remarkably high prevalence could have been due to proteinuria, which 

is more common in diabetic nephropathy and is associated with heavy urinary loss of vitamin 

D binding protein, as proposed by previous studies (16, 17).  However, in general, factors that 

could account for vitamin D deficiency in patients with CKD include reduced dietary intake, 

loss of vitamin D binding protein in urine and increased levels of FGF23 in CKD (16). 

In an attempt to reduce the adverse clinical outcomes associated with CKD-MBD several 

guidelines were proposed by various regional and global bodies (2, 18, 19). Based on the 

recommended target ranges by the widely adopted KDIGO guidelines,(2) more than half of 

our study population had serum phosphate levels above the target level (Phosphate 

>1.45mmol/L). This is similar to other large observational multicenter studies [Dialysis 

outcomes and practice patterns (DOPPS I) (20)and a study from Italy (21)] that both reported  

serum phosphate of >5.5mg/dL(1.78mmol/L) in 51.6% of the patients. Despite the advances 

in haemodialysis, with the invention of more effective dialysis membranes and the use of 

ultrapure dialysate, the removal of phosphate is still inadequate. The conventional HD (3 

times per week, 4 h session) removes approximately 2.3-2.6g/wk compared to 4.5-4.9g by the 

nocturnal HD (8hrs/day) (22). The majority of our patients are on conventional HD with a 
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very few of them (9.2%) on nocturnal dialysis. Therefore, one of the reasons that could have 

accounted for the high prevalence of hyperphosphataemia is the ineffective removal of 

phosphate by conventional haemodialysis. In addition, calcium carbonate which is used as 

phosphate binder in most of our patients has lower phosphate binding capacity compared to 

non-calcium based phosphate binders. Other notable patient factors are the adherence to both 

medications and dietary restriction. 

In this study, according to the KDIGO recommendation that PTH should be maintained 

between 2-9 times the upper limit of normal range (i.e 130-585 pg/ml), the proportion of 

patients within the target guideline level was higher than that reported by previous studies (7, 

20, 23). Their reported lower values were likely due to utilization of KDOQI guidelines with 

narrower recommended ranges of PTH (150-300pg/ml).  

Interestingly, a significant percentage of our patients had their corrected calcium within the 

KDIGO recommended guidelines which is higher than the report from DOPPS II 42.5 % 

(20). Re analyzing our data based on KDOQI the number still remains slightly higher 

(54.1%). Overall, the discrepancy between the current study and other previous studies may 

likely be due to differences in the use of phosphate binders, dialysate calcium concentration 

and dietary phosphate intake.  

In keeping with previous studies (24), logistic regression analysis revealed hypocalcaemia 

and hyperphosphateamia as predictors of hyperparathyroidism. This further supports the 

classical role of hyperphospataemia and hypocalcaemia in the pathogenesis of CKD-MBD. In 

addition, we found phosphataemia to have remained closely related to log-transformed PTH 

in multivariate linear regression. 

The strength of our study is the larger sample size compared to other previous studies from 

Africa (7, 9, 25). 

The limitations of our study include: first, the lack of bone biopsy to definitively describe the 

patterns of CKD-MBD in our patients. However, studies have shown a good association 

between biochemical markers and histological findings (26, 27). Second, this was a cross 

sectional study so we could not establish the temporal relationships between the biochemical 

markers and phosphate binders. Thus there is a need for a longitudinal study to assess these 
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relationships. Nonetheless, findings from this study have provided us with important insights 

on the spectrum of CKD-MBD in African MHD patients. 

In conclusion, abnormalities of biochemical markers of mineral bone disorder were common 

in our MHD patients and moderately large proportion of the patients was outside the KDIGO 

recommended target levels. However, due to the existence of racial differences in PTH, 

25(OH) D and phosphorus levels it is unclear whether these guidelines could be extrapolated 

to African MHD patients.  Therefore, there is a need for large multicenter studies in Africa to 

support management of CKD-MBD in African patients with CKD. 

Conflict of interest:  The authors declare they have no conflict of interest. 
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Table 3. 1: Study population characteristics 

Parameters Results 

Age (years) 54.5± 15.6 

Gender, n (%)  

Male 133(64.23%) 

Female 74(35.75%) 

Diabetes, n (%) 56(27.1%) 

Race, n (%)  

Black 121(58.5%) 

Non Black 86(41.5%) 

Serum creatinine(µmmol/L) 695.48± 278.61 

Serum calcium(mmol/L) 2.28±0.22 

Serum phosphate(mmo/L) 1.59±0.56 

Intact PTH(pg/ mL) 451.85±430.38 

Plasma 25 -OH vitamin D(ng/ml) 21.16±10.71 

Haemoglobin(g/dL) 10.26± 2.0 

Albumin(g/L) 31.91± 6.12 

Systolic BP(mmHg) 134.18±21.81 

Diastolic BP(mmHg) 72.03±13.74 

Alkaline phosphatase(UI/L) 143.21± 115.26 

Kt/V 1.45±0.28 

Dialysate Calcium(mmol/L)  2.22±0.09 

Dialysis vintage(months) 24(12-48) 

Calcium carbonate use n (%) 154(74.4%) 

Cinacalcet n (%) 12(5.8%) 

Alfacalcidol n (%) 132(63.8%) 

Cholecalciferol n (%)  45(21.7%) 

Continuous variables are presented as mean± standard deviation and categorical data as frequencies (percentages). BP= blood pressure 
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Table 3. 2: Comparison of parameters/distribution of mineral bone disorder between 

diabetic and non – diabetic patients 

Variables ALL(N=207) DM(n=56) Non 

DM(n=151) 

P 

Intact PTH 451.9±430.4 439.1±489.5 454.70±413.1 0.83 

 Corrected Calcium(mmol/L) 2.28±0.22 2.30±0.21 2.275±0.22 0.41 

Phosphate(mmol/L) 1.59±0.56 1.52±0.51 1.61±0.58 0.25 

Alkaline phosphatase(IU/L) 143.21± 115.26 155.77±131.72 139.15±109.41 0.41 

Hyperparathyroidism (>150 pg/ml) 152 (73.4%) 38 (67.9%) 114 (75.5%) 0.84 

Hypoparathyroidism (<10 pg/ml) 2 (9.7%) 1(1.79%) 1 (6.6%) 0.44 

Hyperphosphataemia(>1.45mmol/l) 118(57.0%) 27 (48.2%) 91 (60.3%) 0.19 

Hypophosphataemia(<0.80mmol/L) 11(5.3%) 4 (7.1%) 7 (4.6%) 0.44 

Hypercalcaemia (>2.50mmol/L) 26(12.6%) 8(14.3%) 18 (11.9%) 0.53 

Hypocalcaemia(<2.12mmol/L) 42 (20.3%) 10 (17.9%) 32 (21.2%) 0.91 

ALP (>112IU/L) 103 (49.8%) 33 (58.9%) 70 (46.4%) 0.76 

25-Hydroxyvitamin D (N=161)     

25 ( OH) D(ng/ml) 21.16±10.71 18.12±12.77 22.21±9.82 0.04 

(<30 ng/ml) 130 (80.7%) 35 (92.1%) 95 (77.2%) 0.04 

(<15ng/ml) 47 (29.2%) 16 (42.1%) 31 (25.2%) 0.03 

PTH>150 & TAP>112 98 (47.3%) 24 (42.7%) 74 (49.0%) 0.58 

Continuous variables are presented as mean± standard deviation and categorical data as frequencies (percentages). PTH= Parathyroid hormone, TAP= total alkaline 

phosphatase, 
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Table 3. 3: Distribution of patients achieving recommended guideline targets 

Guidelines Below target Within target Above target 

KDIGO    

PTH(2-9× upper normal range ) 44(21.3%) 98(47.3%) 65(31.4%) 

Calcium(within normal range) 48(23.1) 132(63.8%) 27(13.0%) 

Phosphate(within normal range) 11(5.3%) 78(37.7%) 118(57.0%) 

NKF KDOQI    

PTH(150-300 pg/mL) 51(24.6%) 54(26.1%) 102(49.3%) 

 corrected calcium(8.9-9.5 mg/d L) 32(14.5%) 112(54.1%) 63(30.4%) 

Phosphate(3.5-5.5mg/dL)) 35(16.9%) 104(50.2%) 65(31.4%) 

KDIGO, Kidney Disease Improving Global Outcomes; NKF KDOQI, National Kidney Foundation Kidney Disease Outcome Quality 

Initiative. 

 

Table 3. 4: Logistic regression analysis for predictors of hyperparathyroidism 

Variables Odds ratio 95 CI P-values 

Phosphate 3.06 1.15-8.10 0.02 

Calcium 5.32 1.10-25.9 0.03 

Alkaline phosphatise 1.67 0.66-4.29 0.28 

Diabetes mellitus 0.60 0.19-1.84 0.37 

Age 0.76 0.25-2.33 0.64 

25(OH)  D 0.39 0.10-1.60 0.20 

CI, confidence interval; covariates were by categories, Age≥ 65 years versus<65 years, phosphate >1.45 mmol/l versus≤1.45mmol/l, 

calcium<2.12mmol/l versus≥2.12mmol/l, Alkaline phosphatase>112 UI/L versus ≤112 UI/L, 25 (OH) D <30ng/ml versus≥ 30ng/ml,  

Diabetes mellitus versus No diabetes. 
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                                           CHAPTER 4: MANUSCRIPT 2 

High serum alkaline phosphatase, hypercalcaemia, race and mortality in South 

African maintenance haemodialysis patients. 

ABSTRACT 

Background 

Studies relating to associations between high alkaline phosphatase, altered markers of mineral 

bone disorder and increased mortality in maintenance haemodialysis patients (MHD) patients 

are mainly from Europe, America and Asia. However, little is known on the existence of this 

association in African MHD patients. Therefore, the aim of this study was to determine the 

relationship between serum total alkaline phosphatase (TAP) and mortality in African MHD 

patients.  

Patients and Methods  

The study enrolled a total of 213 patients on MHD from two dialysis centers in Johannesburg 

between January 2009 and March 2016. Patients were categorized into a low TAP group 

(≤112 U/L) versus a high TAP group (>112 U/L) based on median TAP of 112 U/L. Using 

multivariate Cox regression analysis the impact of serum TAP on the primary outcome 

(death) was assessed.  

Results  

The MHD patients (136 men, 76 women) had a mean age of 54.5±15.6 years with a median 

dialysis vintage of 24 months (IQR, 12-48) and a mean Kt/V (single pool) of 1.44±0.3.  

During the follow up period of 7 years, there were 55 (25.8%) deaths. After adjusting for 

cofounders  such as age, other markers of bone disorder and co morbidity (diabetes mellitus), 

patients in the high TAP group had significantly higher risk of death compared to patients in 

the low TAP group (hazard ratio, 2.50; 95% CI 1.24-5.01, p=0.01). Similarly, serum calcium 

>2.75 mmol/L was associated with increased risk of death compared to patients within levels 
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of 2.10-2.37 mmol/L (HR 6.34, 95% CI 1.40-28.76; P=0.02). The HR for death in white 

patients compared to black patients was 6.88; 95% CI 1.82-25.88; p=0.004.  

Conclusion 

High levels of serum alkaline phosphatase, hypercalcaemia and white race are associated 

with increased risk of death in MHD patients. 

Key words: Alkaline phosphatase, calcium, death, maintenance haemodialysis, race. 

 

4.1 Introduction 

Prior to the availability of commercial intact parathyroid hormone (PTH) assays, serum total 

alkaline phosphatase (TAP) measurements were used as one of the surrogate markers of high 

bone turnover that was utilized in the management of chronic kidney disease mineral and 

bone disorder (CKD-MBD) (1). Subsequently, in 2003 the Kidney Disease Outcome Quality 

Initiative (KDOQI) guidelines on CKD-MBD made no recommendations regarding the use of 

alkaline phosphatase and this has made it a less preferred marker to PTH. However, in 2009 

the Kidney Disease Improving Global Outcomes (KDIGO) guidelines recommended 

measurement of TAP every 12 months in CKD 4-5D(2) and more recently evidence 

continued to emerge on the importance of higher levels alkaline phosphastase in the 

pathogenesis of vascular calcification via hydrolysis of pyrophosphate which is a potent 

inhibitor of vascular calcification (3-5). This was further supported by a study that showed 

elevated levels of alkaline phosphatase, independent of PTH, calcium or phosphorus as 

predictor of coronary artery calcification in haemodialysis patients (6). Interestingly, in a 

recent secondary analysis of the handling erythropoietin resistance with oxypentifylline 

(HERO) trial, high levels of alkaline phosphatase were also associated with erythropoietin 

stimulating agent hypo responsiveness (7). These findings may likely explain the unclear 

pathophysiologic link between high serum alkaline phosphatase and mortality in 

haemodialysis patients (6). 

Although the role of racial disparities in adverse clinical outcomes remains controversial and 

inconclusive, some studies have demonstrated survival benefits attributable to race in patients 
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undergoing MHD (8, 9). In addition, the impact of these biochemical abnormalities have been 

shown to differ across race and thus the need for race specific target values for these markers 

of mineral bone disorder (10, 11). 

Therefore, the aim of this study is to determine if there is a link between high serum alkaline 

phosphatase and mortality in African MHD patients.  

4.2 Patients and Methods 

This study was a retrospective review of patients undergoing MHD from two dialysis centers 

in Johannesburg between January 2009 and March 2016. A total of 213 patients aged ≥ 18 

years with available baseline line variables of interest were included. Exclusion criteria 

included patients with missing important data for analysis, being on dialysis for less than 

three months, having active or chronic liver disease and having malignancies. In addition, we 

excluded Indian and mixed races to allow for a proper comparison between black and white 

patients. Retrieved data included patients’ demographic characteristics, blood pressure 

measurements, duration on haemodialysis, co-morbid disease and medication history related 

to CKD-MBD. Determination of race was based on self-report by the participants. 

Patients were categorized into the low TAP group (≤112 U/L) versus the high TAP group 

(>112 U/L) based on median TAP level of 112 U/L. Secondary analysis involved exploring 

the relationship between race, other markers of mineral bone disorder, and primary outcome. 

In line with a previous study (12) total calcium levels were categorized into four categories 

with the KDOQI target range as the reference category. Based on the KDIGO CKD-MBD 

guidelines, PTH was divided into three categories. 

The primary outcome of this study was death and events other than death were censored and 

this included kidney transplantation, loss to follow–up, or still undergoing haemodialysis at 

the end of the study. 

Laboratory measurements 

Patients’ baseline biochemical parameters (within the first three months of initiating dialysis) 

were assessed.  Most of the biochemical markers were measured monthly except for quarterly 

PTH. Plasma intact PTH was measured by an electrochemiluminescence immunoassay 
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(ECLIA) run on a Cobas 6000 auto analyzer (Roche Diagnostics, Mannheim, Germany; 

reference range is 10-65 pg/mL). Serum 25 (OH) D was measured by a chemiluminescent 

micro particle immunoassay (CMIA) technique run on the ARCHITECT C8000 auto 

analyzer (Abbott Laboratories, Abbott Park, Illinois, US). Reference ranges: < 10 ng/mL  as 

severe deficiency, 10-29 ng/mL as  moderate deficiency, 30-100 ng/ mL as sufficiency and > 

100 ng/ mL as toxic. 

Serum calcium, phosphate and alkaline phosphatase were measured using the ARCHITECT 

C8000 auto analyzer (Abbot Laboratories, Abbott Park, Illinois, US).  The corrected calcium 

was determined using the formula: corrected calcium (mmol/L) = calcium measured ( 

mmol/L) + 0.02 [40-albumin (g/L)]. Total alkaline phosphatase reference range is 53-128 

U/L. 

Plasma albumin was measured by colorimetric (bromocresol green) method on a Cobas 6000 

auto analyzer (Roche Diagnostics, Mannheim, Germany; reference range 35-52 g/L). 

 Other biochemical parameters were determined using routine laboratory techniques. 

Blood samples were generally collected predialysis at midweek with the exception of the post 

dialysis serum urea for kinetic modeling.  

Calculation of normalized protein catabolic rate was based on the formula (13), nPCR= 

(0.136 × F) + 0.251. Where F = Kt/V × ([pre dialysis BUN + post dialysis BUN] ÷ 2).  

Statistical analysis 

Pearson’s or Fisher’s exact test was utilized for proportion comparisons. Continuous 

variables are presented as means± standard deviations or medians and inter quartile ranges 

(IQR) as appropriate.  Associations between serum alkaline phosphatase and other 

biochemical parameters were assessed by multiple linear regression analyses. Cox 

proportional model was used to determine the crude and adjusted hazard ratios of death for 

different categories of serum alkaline phosphatase, calcium, PTH, phosphate, 25 (OH) D and 

white versus black patients. Patients’ demographic and baseline characteristics were 

compared between the low and high total alkaline phophatase groups as well as white versus 

black patients, using an independent t – test and Mann- Whitney-U test for normally 
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distributed and non-normally distributed  variables respectively. One way ANOVA and 

Kruskal-Wallis tests were used to compare normally and non- normally distributed 

continuous variables across categories of serum calcium. 

 A P value of less 0.05 was considered statistically significant at the 95% confidence interval.  

All analyses were performed using STATA version 12 (STATA Corp., TX, and USA). 

 

4.3 Results 

The study included two hundred and thirteen patients (137 men, 76 women) undergoing 

MHD. The mean (±SD) of age, median dialysis vintage and mean Kt/V were 54.5±15.6 

years, 24 months (IQR, 12-48) and 1.44±0.3 respectively.  The majority of the patients were 

on three times weekly, 4 hr sessions of haemodialysis. Most of the patients were dialyzed 

with a dialysate calcium concentration of 1.50 mmol/L, which is usually modified based on 

serum levels of calcium. The blood and dialysis flow rates are generally 300-400mls/min and 

500 mls/min respectively. However, these values varied according to patient’s blood pressure 

and haemodynamic state.  A native arteriovenous fistula was used in more than half of the 

study population (60.6%). Almost all patients (93.0 %) were on erythropoiesis-stimulating 

agents (ESAs). 

Table 4.1 shows the comparisons of baseline clinical characteristics between patients in high 

TAP and low TAP groups. The low alkaline phosphatase group had significantly higher mean 

age than the high TAP group. Other parameters were comparable between the groups. For the 

management of CKD-MBD, 76.9 % of the patients were on calcium carbonate and 64.3% on 

alfacalcidol with a similar distribution of drug usage across the groups. The study population 

included 120 (56.3%) black and 93(43.7%) white patients. The mean age, hemoglobin 

concentration, albumin and phosphate were significantly higher in white compared to black 

patients.  Fifty six (26.3%) of the study population had diabetes and the proportion was 

higher in black patients (30.0% versus 21.5 %, P=0.02) (Table 4.2).  

The characteristics of the patients across different categories of serum calcium levels are 

shown in Table 4.3. Patients in the highest category of calcium levels had significantly lower 
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mean serum creatinine, and a fewer of them were on calcium carbonate and alfacalcidol. No 

significant differences were found in other parameters of the patients across the serum 

calcium categories. The overall mean dialysate calcium was 1.65±0.24 mmol/l and patients 

with higher levels of calcium are more likely to be dialyzed with lower dialysate calcium 

concentration. To further explore our practice pattern regarding treatment of hypecalcaemia, 

available data revealed that only 5 patients in the highest category of calcium had 

parathyroidectomy while the majority of them were dialyzed with 1.25 mmol/l of dialysate 

calcium concentration and had their calcium carbonate and alfacalcidol discontinued. 

During a follow up period of 7 years there were 57 (26.8%) deaths. After adjusting for 

cofounders such as age, other markers of bone disorder (calcium, phosphate, and PTH), 

serum alanine transaminase, 25 (OH) D and co-morbidity (diabetes mellitus), patients in the 

high TAP group had significantly higher risk of death compared to patients in the low TAP 

group (hazard ratio, 2.5; 95% CI 1.24-5.01, log rank P=0.01).  

Patients in the highest category of corrected calcium (>2.75 mmol/L) had more than a six 

fold increased risk of death compared to patients with normal calcium (HR 6.34, 95% CI 

1.40-28.76; P=0.02). Similarly, we found a significant association between race and 

mortality, in which white patients had an accentuated six fold increase in  adjusted hazard 

ratio for  death compared to black patients (HR 6.88,95% CI 1.82-25.88; P=0.004) (Table4). 

Figures 4.1, 4.2, and 4. 3 show Kaplan Meier Survival curves for TAP, race and calcium 

levels respectively. 

Univariate linear regression analysis revealed a significant association between TAP and age 

(r
2
 = 0.04, P=0.008), corrected calcium (r

2
=0.03, P=0.04), and PTH (r

2
=0.04, P=0.006). In 

multivariate regression analyses PTH and calcium remained significantly correlated with 

TAP, P=0.006 and 0.04 respectively. 

 

4.4 Discussion 

Several studies from Europe, America and Asia have consistently shown a linear relationship 

between high serum alkaline phosphate and   mortality in the haemodialysis population (14-
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17),  while results relating to other markers of mineral metabolism revealed  non- linear ( U 

or J patterns) associations (12, 18, 19).  Such data relating to the impact of markers of CKD-

MBD on mortality in African MHD patients are lacking. In this present study, higher levels 

of TAP, hypercalcaemia and white race were associated with increased risk of death. These 

findings are consistent with other large studies where higher levels of TAP were 

independently associated with higher risk of mortality (14, 17). 

Interestingly, this association was also reported in CKD patients as well as in the general 

population (20, 21). The National Health and Nutrition Examination Survey (NHANES) data  

revealed an independent association between elevated levels of TAP and mortality in the 

general population (21). This further supports the notion that TAP is more than a marker of 

high bone turnover and may be a reliable predictor of mortality.  

The mechanisms for this association have been linked to enhanced   vascular calcification by 

high levels of serum TAP through hydrolysis of pyrophosphate or activation of apatite crystal 

formation (22). In addition to vascular calcification, elevated levels of TAP have been 

associated with high C reactive protein, insulin resistance and 25 (OH) D deficie (23-26).  In 

contrast to our study, we found no significant difference in the mean levels of 25(OH) D 

between patients with high TAP and low TAP.   

Despite the variations in the cut-off points for defining hypercalcaemia by various studies, 

hypercalcaemia has been consistently associated with increased risk for mortality in 

haemodialysis patients (12, 18, 27). Consistent with our finding, a linear relationship was 

observed between higher calcium categories and increased risk of death (12, 18).  In a large 

global  representation of HD patients including the three phases of  the dialysis  outcomes and 

practice patterns study (DOPPSI,II and III)  with 25,588 HD patients, calcium levels greater 

than 10.0 mg/dl (>2.5mmol/l) were significantly  associated with greater risk of  all cause and 

cardiovascular mortality in both baseline and time dependent models (27). The reasons for 

this consistent association could be linked to acceleration of arterial calcification by 

hypercalcaemia (28, 29). Besides vascular calcification, high levels of calcium, but not high 

PTH have been associated with poor mental health in MHD patients (30).  In contrast, studies 

relating to hypocalcaemia and risk of death have yielded contradictory reports. Lowrie and 

Lew (31) were the first to establish the association of increased mortality with calcium levels 

<9.0 mg in over 12,000 HD patients, while in another large  study from the US involving 40, 
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538 HD patients, the mortality risk with low serum calcium levels  was attenuated after 

adjusting for confounding variables (18). In the dialysis outcomes and practice patterns study 

(32), serum calcium levels < 7.8 were associated with lower mortality risk. In agreement with 

DOPPS, we found a similar trend, though not statistical significant, with serum calcium 

levels below 2.12 mmol/L.  

Hypercalcemia is an undesirable effect associated with the use of   calcium based phosphate 

binders and vitamin D analogues in controlling secondary hyperparathyroidism. This may 

likely have accounted for the lower levels of PTH seen in our category of patients with 

calcium levels above 2.75 mmol/L.  Although cinacalcet which is one of the   newer drugs 

that effectively lowers PTH without raising serum calcium levels recently became available 

in South Africa,  it is quite expensive, thus limiting its use to  a few of our patients. In 

addition, the higher mean phosphate level in this group of patients is likely due to the 

concomitant use of alfacalcidol that enhances intestinal absorption of calcium and phosphate. 

A notable finding in the current study is that white patients have poor survival compared to 

black patients. This finding is consistent with recent emerging data from the USA that 

reported better survival in black patients compared with white patients on MHD (10). The 

reasons underlying this racial survival benefit remain unclear, and several studies have 

proposed explanations for the better survival of black MHD patients compared to whites. A 

large USA  observational study  reported that  the widely perceived  survival advantage for 

black dialysis patients applies only to older adults,  with a reversal of the higher risk of  death 

in the younger age group (<50 years) (33). This is contrary to several studies including the 

current study, where the risk persisted after adjusting for the significantly higher mean age in 

the white patients (34, 35).  Indeed, the better survival in black patients persisted in a study 

that comprehensively adjusted   for demographics   and dialysis modality among several other 

cofounding variables (34).    

Another important observation we made in this study was that white patients had 

significantly higher levels of serum albumin. We expected this to give white patients a 

survival benefit. However, the reason for this reversal could likely be explained by a finding 

from a previous study where markers of  worse nutritional status (hypoalbuminemia), or 

smaller muscle mass and increased body fat  in African American patients correlated less 

strongly with mortality than in whites (36). Additionally, studies have criticized the use of 
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serum albumin in CKD   patients as a marker of nutritional status as inappropriate (37, 38). In 

fact, the hazard ratio becomes accentuated after adjusting for serum albumin suggesting that 

the effect of race on mortality is likely to be through other mechanisms besides nutritional 

status. 

In line with previous studies (33, 39), black patients had higher median intact PTH though 

this was not statistically significant. Some studies have reported survival benefit with active 

D therapy and that black patients are more likely to receive active vitamin agents due to 

higher PTH compared to white patients (40, 41).  However, it is unlikely that treatment with 

vitamin D alone may explain the racial survival paradox that has existed for several years.  

Additionally, reports relating to PTH levels have been controversial and studies are divided 

on which levels are associated with increased mortality. Similar to earlier (17, 18, 42) and 

more recent studies (10, 43), we did not find significant association of mortality with severe 

hyperparathyroidism. On the other hand, studies that have shown significant associations are 

not unified on what levels of PTH are associated with increased mortality. Therefore, 

randomized control trials are needed to show the effect of treatment on PTH levels that are 

associated with favorable clinical outcomes.  

Our findings should be considered in the context of the following limitations. Firstly, the 

retrospective nature of this study could not allow us to make causal associations between 

markers of mineral bone disease and study outcome (death).  In addition, the use of a single 

baseline laboratory measurement precludes the performance of time dependent Cox analysis 

to account for variations in the biochemical markers on the impact of death over a period of 

time.  However, few studies have shown no significant difference between the baseline and 

time dependent Cox analysis (12). 

Secondly, the relatively small sample size precludes generalizability of our findings to 

African HD patients. Thus, there is a need for multicenter studies in Africa, to provide robust 

data on this important clinical entity (CKD-MBD) in African HD patients. 

Thirdly, similar to several observational studies we could not account for residual 

confounding variables. For instance, aside from diabetes mellitus, other co morbid conditions 

could not be ascertained.  However, part of the exclusion criteria was to avoid patients with 

some co-existing conditions that are known as potential confounders.   
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The strengths of this study lie in the heterogeneous nature of our study population (black and 

white patients) in an African setting which  has allowed comparisons of data not only for 

Black Africans with Black Americans, but also between whites in Africa and USA/Europe. 

To our knowledge, this the first study in sub Saharan Africa that has given important insights 

regarding   the impact of alkaline phosphatase, calcium and race on mortality in African 

MHD patients. 

In summary, high TAP, hypercalcaemia and white race are associated with increased risk of 

death in MHD patients, thus, reaffirming the need to pay more attention to the two modifiable 

risk factors (calcium and TAP) in the management of CKD-MBD. 
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Table 4. 1: Comparisons of baseline characteristics between patients in high TAP and 

low TAP groups 

Characteristic All(N=213) TAP≤112(n=98) TAP>112(n=115) P value 

Age(years) 54.53±15.62 57.3±15.5 51.1±15.1 0.008 

Female, n (%) 76(35.7%) 35(35.7%) 41(35.7%) 0.25 

Diabetes, n (%) 56(26.3%) 27(27.6%) 29(25.2%) 0.76 

Weight (Kg) 71±9.6 70±9.5 69±9.6 0.53 

BMI (Kg/m
2 
) 24.7±0.9 24.9±1.0 24.5±1.6 0.83 

Dialysis vintage (months) 24(12-48) 36(12-60) 36(12-48) 0.55 

Systolic BP(mmHg) 134±21.8 135.5±19.6 133.5±24.4 0.38 

Diastolic BP (mmHg) 72.0±13.73 70.7±12.0 74.1±13.8 0.86 

Haemoglobin(g/dl) 10.3±2.0 10.2±1.9 9.9±2.1 0.10 

Potassium(mmol/l) 4.62±0.8 4.6±0.9 4.6±0.8 0.55 

Calcium (mmol/l) 2.25±0.14 2.32±0.30 2.34±0.29 0.58 

Corrected calcium(mmol/l) 2.40 ±0.25 2.50±0.22 2.50±0.21 0.42 

iPTH(pg/ml) 307(148-656) 246(137-527) 325(152-693) 0.09 

Phosphate(mmol/l) 1.59±0.6 1.60±0.6 1.40±0.6 0.07 

25-OH vitamin D(ng/ml) 21.16±10.71 20.4±8.8 22.2±12.9 0.83 

Alkaline phosphatase(U/L) 112(74-163) 74(62-96) 163(130-223) <0.001 

Albumin(g/L)  31.9±6.0 32.6±5.4 30.3±6.5 0.98 

Type of vascular access      

Arteriovenous fistula 129 (60.6%) 65 (66.3%) 64 (55.7%) 0.23 

Graft                                              39 (18.3%) 23 (23.5%) 26 (22.6%) 0.88 

Catheter 45 (21.1%) 21(21.4%) 24(20.9%) 0.97 

Alanine transaminase (U/L) 21.1±8.9 17.6±8.7 22.9±8.8 0.20 

Kt/V 1.44±0.28 1.4±0.3 1.4±0.2 0.72 

 n PCR (g/kg/day) 1.10±0.24 1.02±0.30 1.08±0.27 0.56 

T.cholesterol (mmol/l) 4.18±0.91 4.3±0.9 4.1±0.9 0.14 

 Medications     

Calcium carbonate, n(%) 163(76.5%) 77(78.6%) 86(74.7%) 0.74 

Alfacalcidol, n (%) 137(64.3%) 61(62.2%) 76(66.1%) 0.55 

ESA n (%) 198 (93.0%)  94(95.9) 104 (90.4%) 0.50 

ESA dose (U/week)  13373±4205 13714±4768 12957±3457 0.53 

Continuous variables are presented as means± standard deviations or median (interquartile range) and categorical data as 

frequencies(percentages) , BP= blood pressure , i PTH= intact parathyroid hormone, TAP= total alkaline phosphatase., ESA=erythropoietin 
stimulating agent, n PCR= normalized protein catabolic rate, BMI= body mass index. 
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Table 4. 2: Baseline characteristics of study population by race 

Parameters All (n=213) Black (n=120) White (n=93) P value 

Age (years) 54.53±15.62 51.0±14.6 58.7±15.9 <0.001 

Haemoglobin (g/dl) 10.3±2.00 9.9±1.98 10.7±1.94 0.004 

Systolic Bp (mmHg) 134±21.8 130±20.3 139±22.8 0.98 

PTH (pg/ml) 307(148-656) 327(137-658) 290(149-618) 0.97 

Calcium (mmol/l) 2.28±0.22 2.26±0.22 2.30±0.21 0.94 

Phosphate (mmol/l) 1.59±0.56 1.49±0.57 1.71±0.53 0.004 

Albumin (g/l) 31.9±6.0 30.8±6.5 33.04±5.5 0.03 

25(OH) vitamin D 

D(ng/ml) 

21.16±10.71 20.57±9.79 21.80±11.67 0.77 

TAP (U/L) 112 (74-163) 110 (75-151) 115(71-164) 0.33 

T.cholesterol (mmol/l) 4.2±0.8 4.0±0.9 4.1±0.9 0.05 

Diabetes, n (%) 56(26.3%) 36(30.0%) 20(21.5%) 0.02 

Male, n (%) 137(64.3%) 72(60.0%) 65(69.9%) 0.07 

Kt/V 1.44±0.3 1.41±0.3 1.46±0.30 0.40 

Continuous variables are presented as means± standard deviations or median (interquartile range) and categorical data as frequencies 

(percentages). BP= blood pressure, TAP=total alkaline phosphatase, PTH = parathyroid hormone 
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Table 4. 3: Patient characteristics by serum calcium categories 

Parameters <2.10mmol/l 

 (n=31) 

2.10-2.37mmol/l 

(n=92) 

2.38-2.75mmol/l  

(n=57) 

>2.75mmol/l 

(n=33) 

P-value 

Age (years) 50.9±15.0 52.9±15.0 58.3±16.4 56.5±26.1 0.09 

Systolic Bp  (mmHg) 130.9±18.6 138.8±21.5 139.8±30.7 138.9±21.5 0.18 

Diastolic Bp (mmHg) 71.2±15.3 71.7±11.2 76.4±18.9 71.2±11.1 0.38 

Haemoglobin (g/dl) 10.8±2.4 10.2±1.9 10.1±1.9 8.15±1.9 0.20 

Albumin g/L 32.0±5.2 32.7±6.0 30.5±6.6 29.5±5.0 0.26 

T.chol (mmol/l) 4.3±1.0 4.2±0.9 4.2±0.9 4.1±0.9 0.97 

25(OH) D ( ng/ml) 22.8±9.1 22.0±10.4 18.1±8.1 15.8±3.5 0.11 

PTH (pg/ml) 568.8±334.8 458.64±424.4 366.2±405.1 254.0±103.2 0.01 

Phosphate (mmol/l) 1.5±0.6 1.6±0.6 1.5±0.5 1.6±0.5 0.66 

Creatinine(µmol/l) 822.5±261.0 734.4±283.2 592.5±245.5 489.5±355.7 0.002 

Kt/V  1.4±0.2 1.5±0.3 1.4±0.3 1.4±0.4 0.33 

Vintage (months) 31.3±23.0 34.2±23.0 30.9±21.1 30.0±8.9 0.80 

Dialysate Ca (mmol/l) 1.65±0.24 1.63±0.14 1.63±0.14 1.54±0.24 0.50 

DM, n 13  15  17 11 0.40 

Medications      

Calcium carbonate n 

(%) 

30 (96.8%) 79(85.7%) 41(71.9%) 13(39.4%) <0.001 

Alfacalcidol n (%) 28 (90.3%) 63 (68.4%) 35 (61.4%) 11(33.3%) <0.001 

Continuous variables are presented as means± standard deviations or median (interquartile range) and categorical data as frequencies 

(percentages). BP= blood pressure, PTH= parathyroid hormone,  P values derived by one way ANOVA and  Kruskal –Wallis tests for 

continuous  variables and Chi squared for categorical variables. Serum categories based on KDOQI reference range.Ca= Calcium 
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Table 4. 4: Crude and adjusted hazard ratio (95%CI) of primary outcome by baseline 

characteristics 

Parameter Crude HR 95%CI P Adjusted 

HR 

95%CI P 

TAP >112 U/L 2.20 1.12-4.32 0.02 2.50 1.24-5.01 0.01 

Calcium (mmol/l)       

<2.10 0.66 0.32-1.35 0.26 0.97 0.22-4.26 0.97 

≥2.10-≤2.37 1.00 Reference     

>2.37-≤2.75 2.31 1.20-4.44 0.02 1.54 0.57-4.18 0.39 

>2.75 6.82 1.55-30.1 0.01 6.34 1.40-28.76 0.02 

PTH(pg/ml)       

<130 1.00 Reference     

≥130-≤585 1.26 0.57-2.79 0.56 2.77 0.61-12.58 0.19 

≥585 1.05 0.44-2.49 0.92 2.22 0.42-11.65 0.35 

Phosphate >1.50mmol/l 1.09 0.61-1.95 0.77 1.43 0.47-4.40 0.53 

25 OH vitamin D ≤30 

ng/ml 

2.21 0.66-7.35 0.19 1.07 0.23-4.79 0.92 

White race 1.69 0.95-3.04 0.08 6.88 1.82-25.88 0.004 

HR=hazard ratio, CI=confidence interval, TAP= total alkaline phosphate, PTH intact parathyroid hormone. Adjusted for  age, phosphate, 

calcium, PTH, TAP, diabetes, Systolic BP, 25-OH vitamin D, alanine transaminase and albumin, serum calcium categories based on 

KDOQI reference range . 
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Figure 4. 1: Kaplan Meier curve comparing patients in the high alkaline phosphatase to 

low alkaline phosphatase group 
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Figure 4. 2: Kaplan Meier survival curve between black and white 
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Figure 4. 3: Kaplan Meier survival curves for different categories of calcium  
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CHAPTER 5: MANUSCRIPT 3 

Racial variations in the markers of mineral bone disorders in chronic kidney 

disease patients in South Africa 

ABSTRACT 

Introduction 

Several studies have shown that serum intact parathyroid hormone (PTH), phosphate and 

vitamin D levels differ across races. These comparative studies were largely carried out 

between Caucasians and Black Americans. However, little is known of the existence of this 

association in an African chronic kidney disease (CKD) population.  

Patients and Methods 

A cross –sectional multicenter study involving two hundred and ninety three CKD patients 

from three renal units in Johannesburg, South Africa.  

Results 

The 293 CKD patients (208 blacks, 85 whites) had an overall mean age of 51.1±13.6 years, 

and black patients were significantly younger than the white patients (48.4 ±.13.6 versus 

57.1±15.5 years; p<0.001). Compared to whites, blacks had higher median intact PTH (498 

[37-1084] versus 274[131-595] pg/ml; p=0.03), alkaline phosphatase (122[89-192] versus 

103[74-144] U/L; p=0.03) and mean 25 OH vitamin D3 (26.8±12.7 versus 22.7 ±12.2 ng/ml, 

p=0.01) levels ,  while their median FGF23 (100 [34-639] versus 233[80-1370] pg/ml; 

p=0.002) and  mean serum phosphate (1.3±0.5 versus 1.5±0.5, p=0.001)  levels were 

significantly lower. In multivariable analyses, black race was independently associated with 

increased log PTH (β =0.488, p=0.01) and decreased   log FGF23(β=-0.636, p= 0.02). 

Similarly, blacks had a 3.08 times higher likelihood (95 % CI, 1.51-6.30, p =0.002) of 

developing severe hyperparathyroidism than whites.  
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Conclusion 

This study highlighted the existence of racial differences in the circulating markers of mineral 

bone disorders in an African CKD population. 

Keywords: Race, Fibroblast growth factor- 23, Chronic Kidney Disease, Mineral Bone 

Disorder. 

5.1 Introduction 

Modifiable abnormalities of markers of mineral bone disease (MBD) have been consistently 

associated with adverse clinical outcomes in patients with chronic kidney disease (CKD) (1-

3). Addressing these adverse outcomes has led to recommendations by various global and 

regional societies to assist physicians in the management of CKD-MBD (4-6). However, the 

consequences of these biochemical abnormalities have been shown to differ across different 

races and thus there is the need to establish race specific target values for these markers of 

MBD (7). For example, in the multi ethnic study of atherosclerosis (MESA) involving 6436 

participants, 25-hydroxyvitamin D (25-(OH) vitamin D) deficiency was associated with 

increased risk of coronary heart disease in white but not in black Americans (8). A similar 

trend was found in the National Health and Nutrition Examination Survey (NHANES III) ,  

where  low 25 (OH) vitamin  D was associated with a higher risk of all-cause mortality 

compared to  black  participants (9).  Furthermore, fibroblast growth factor (FGF) 23, which 

is now being considered as the principal mediator of secondary hyperparathyroidism has also 

been shown to differ across races (10, 11). In general, these comparative studies, largely from 

American populations reported  that compared to whites, blacks have lower levels of 25 (OH) 

vitamin D and FGF23 with higher parathyroid hormone (PTH) and alkaline phosphate levels, 

while results relating to phosphate levels are inconsistent (7, 10-12).  

The existence of these differences in a heterogeneous African CKD population is largely 

unknown. Therefore, the aim of this study was to examine   racial differences in the levels of 

FGF23 and traditional markers of mineral bone metabolism in a South African CKD 

population. 
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5.2 Materials and Methods 

This was a cross sectional multicenter study involving two hundred and ninety three CKD 

patients from three renal units in Johannesburg, South Africa.  Patients enrolled were aged ≥ 

18 years with established CKD. We excluded patients with active malignancy, acute kidney 

injury and a history of parathyroidectomy. In addition, we excluded patients of Indian and 

mixed race origin due to their negligible numbers. A structured questionnaire was used to 

obtain patients’ demographic characteristics, blood pressure measurements, co-morbid 

disease and medication history related to CKD-MBD. Determination of race was based on 

self-report by the participants. 

Laboratory measurements 

Plasma intact PTH was measured by an electrochemiluminescence immunoassay (ECLIA) 

run on a Cobas 6000 auto analyzer (Roche Diagnostics, Mannheim, Germany). 

FGF23 was measured using a sandwich based enzyme-linked immunosorbent assay kit from 

EMD Millipore Corporation (Billerica, MA, USA); assay lower limit of detection was 3.2 

pg/mL. Plasma 25(OH) D was measured using the high performance liquid chromatography 

(HPLC) kit (Recipe, Munich, Germany).  HPLC was used to selectively measure 25-(OH) D2 

and 25-(OH) D3 at a wave length of 264nm. The intra and inter assay coefficients of 

variation (CVs)   were < 5%.  Our institutional laboratory is a participating member in the 

vitamin D external quality assurance scheme (DEQAS). In this study, 25-(OH) D3 was used 

as a marker of vitamin D status to avoid confounding of the results from exogenous vitamin 

D supplementation. Serum calcium, phosphate and alkaline phosphatase were measured using 

the ADVIA 1800 centaur auto analyzer (Siemens Diagnostics, Tarrytown, USA).   

Creatinine was measured by a modified Jaffe reaction and glomerular filtration rate ( GFR) 

estimated using the four- variable Modified Diet Renal Disease (MDRD) equation (13): GFR 

(in mL/min per 1.73 m
2
) = 175 × SCr (exp[−1.154]) × Age (exp [−0.203]) × (0.742 if female) 

× (1.21 if black).  

Other biochemical parameters were determined as part of standard of care using routine 

laboratory techniques. 
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Operative definitions and laboratory reference values 

The reference ranges were 2.12- 2.50 mmol/l for calcium, 0.79-1.45 mmol/l for phosphate, 

53-128 U/L for total alkaline phosphatase and 10-65 pg/mL for intact PTH. 

25-(OH)vitamin D reference ranges: < 10 ng/mL  as severe deficiency, 10-29 ng/mL as  

moderate deficiency, 30-100 ng/ mL as sufficiency and > 100 ng/ mL as toxic.  

Based on the above reference values and KDIGO recommendations (5), hyperparathyroidism 

was defined as PTH> 130 pg/ml (2 times the upper limit of normal) and severe 

hyperparathyroidism as PTH > 585pg/ml (9 times the upper limit of normal). 

Hyperphosphataemia and hypocalcaemia were defined as serum phosphate > 1.45mmol/l and 

calcium < 2.12 mmol/l respectively.   

Ethical approval: All procedures performed in this study were in accordance with the ethical 

standards of the institutional research committee and with the 1964 Helsinki declaration and 

its later amendments or comparable ethical standards. The research protocol was approved by 

the Health Research and Ethics committee (HREC) of the University of the Witwatersrand; 

clearance certificate number M141016.  Written informed consent was obtained from each 

patient before enrolment into the study. 

Statistical analysis 

Continuous variables are presented as means± standard deviations or as medians and inter 

quartile ranges (IQR) as appropriate, while categorical data are reported as a percentage. An 

independent t-test or Wilcoxon rank -sum test compared continuous variables between blacks 

and whites while the Pearson’s or Fisher’s exact test was utilized for proportion comparisons.  

 PTH and FGF23 data were log transformed due to the skewed nature of these variables. 

Multiple linear regression models were employed to determine the effect of independent 

predictors on log transformed PTH and FGF23. 

Logistic regression analysis was used to determine the predictors of severity of 

hyperparathyroidism. Variables with p <0.10 on univariate analyses were eligible for 



88 

 

inclusion in the multivariate analysis. Spearman correlations were used to determine the 

correlation between FGF23, phosphate, PTH, 25-(OH) vitamin D3 and estimated GFR. 

A p-value of less 0.05 was considered statistically significant at the 95% confidence interval.  

All analyses were performed using STATA version 12 (STATA Corp., TX, and USA). 

5.3 Results 

Patient characteristics 

The 293 CKD patients comprised 208 black and 85 white patients with overall mean age of 

51.1±13.6 years. The clinical characteristics of the patients by race are summarized in table 5. 

1. Blacks were significantly younger, had higher blood pressure, median iPTH, alkaline 

phosphatase and mean 25 (OH) D3, but lower levels of median FGF23 and serum phosphate 

than white patients. Diabetes mellitus was significantly more prevalent in whites. The use of 

CKD-MBD related medications did not differ by race. 

Comparison of markers of CKD -MBD between black and white patients 

Racial variations in the levels of PTH, calcium, phosphate and 25-(OH) D3 according to 

stages of CKD are shown in Table 5.2. Median PTH and mean 25-(OH) D3 were 

significantly higher in blacks than whites in CKD stage 5. Blacks had higher levels of total 

alkaline phosphatase (TAP) than whites in stage 4 CKD. Median FGF23 and mean serum 

phosphate levels increased progressively across stages of CKD and became significantly 

higher in whites than blacks in CKD stage 5. 

Table 5.3 shows comparisons of markers of CKD-MBD between black and white patients 

with predialysis CKD and End stage renal disease.  In predialysis CKD patients, whites had 

significantly higher levels of FGF23 than blacks (55ng/ml [31-81] versus 32[22-57], p=0.01), 

and higher levels of calcium (2.33±0.11 versus 2.24±0.14, p=0.005). Other parameters were 

comparable between the two groups.  In patients with ESRD, levels of FGF23 and phosphate 

were significantly higher in whites than blacks (881[187-3634] versus (329[105-2557], 

p=0.03) and (1.70±0.48 versus 1.44±0.56, p=0.004) respectively.  Compared to whites, 

blacks had higher levels of PTH (758[360-1350] versus 358[179-814], p=0.0004) and 25-OH 

D (28.1±13.8 versus 22.0±12.2, p=0.004). 
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Comparisons between blacks and whites in the prevalence of abnormal levels of calcium, 

PTH, phosphate and 25-(OH) D3 across stages of CKD are shown in Figure 5.1, 5.2, 5.3 & 

5.4. The proportion of patients with hyperphosphataemia (72.7% versus 42.9 %; p<0.001) 

and vitamin D deficiency (76.7 % versus 57.5 %; p = 0.01) was higher in whites than blacks 

in CKD stage 5. The prevalence of abnormal levels of other markers of CKD-MBD was 

similar across the study populations. 

Associations between race, clinical characteristics and markers of CKD–MBD 

In line with a previous study (14), in a  multiple regression analysis adjusted for age, diabetes 

status, GFR, serum calcium, phosphate and alkaline phosphate levels; black race  remained 

significantly associated with increased log PTH(β =0.488, p=0.01) and decreased log FGF23 

(β=-0.636, p= 0.02); Table 5. 4. Similarly, we found a persistent significant association 

between log FGF23, calcium, phosphate and GFR. In an unadjusted univariate analysis, white 

race was significantly associated with decreased 25-(OH) D3; however, this was attenuated 

after adjusting for age, diabetes status, calcium and GFR. 

Further exploration of the association between FGF23 and other markers of CKD-MBD, 

showed FGF23 correlates positively with serum phosphate( r= 0.55, p < 0.001), and  PTH (r= 

0.40 p <0.001), and inversely with eGFR (r = -0.61, p < 0.001) (Figures 5.5 and 5. 6). 

Determinants of secondary hyperparathyroidism 

In logistic regression analysis, the independent predictors of severe hyperparathyroidism 

were black race (OR 3.08; 95% CI: 1.51-6.30, P=0.002) and GFR < 15 mls/min (OR 10.07; 

95 % CI: 4.70-21.56, P <0.0001). 

5.4 Discussion 

The racial disparities in markers of CKD-MBD have been documented in CKD populations 

in previous studies from America and Europe (14, 15).  A few studies from Africa have 

documented similar findings in healthy populations but not in CKD patients (16, 17). In this 

present study, with the exception of 25-(OH) vitamin D3 levels, our findings are consistent 

with those of previous studies (12, 14); we found that PTH and alkaline phosphatase are  

higher in black than white patients in CKD stage 5 and CKD stage 4 respectively. After 
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adjusting for the inconsistency between the two groups regarding diabetic status and age, 

black race still remained significantly associated with increased PTH.  Although the 

mechanisms behind these discrepancies remain largely unclear, several reasons proposed by 

prior studies included  racial differences in skeletal responsiveness to PTH levels, racial 

variations  in sensitivity to the phosphaturic effect of PTH and FGF23 , dietary intake of food 

rich in phosphate, and underlying genetic differences in bone mineral metabolism (14, 18, 

19).   

An interesting and unexpected finding was the significantly higher levels of 25(OH) D3  in 

CKD  stage 5 in blacks compared to whites; this was contrary  to most previous studies that 

reported lower levels of 25-(OH)vitamin D,  which was attributed  to skin pigmentation (14). 

It is anticipated that increased skin pigmentation in blacks will lead to decreased synthesis 

of25-(OH) vitamin D   from 7 dehydrocholesterol through exposure to sunlight. One of the 

limitations of our study was the non-availability of information relating to sun exposure 

which could have accounted for these differences; it is possible that our black patients with 

CKD stage 5 spent more time outdoors (outdoor occupations in a sunny climate) leading to 

more sun exposure compared to white patients. However, some studies have shown that 

blacks and whites have equal capacities to synthesize vitamin D  post exposure to repeated 

high doses of ultraviolet B light(20, 21).  Brazerol et al (21), comparing skin capacity for 

blacks and whites exposed to similar doses of ultraviolet B rays (280-315nm) twice a week 

for six weeks, reported similar response to vitamin D synthesis despite the fact that blacks 

had lower baseline 25 –OH D levels than the white participants.  A prior study from South 

Africa with the aim of assessing vascular calcification in haemodialysis patients found no 

difference in 25 (OH) vitamin D levels between black and white patients (22). In addition, the 

inconsistencies that exist in the relationship between vitamin D levels and clinical outcomes 

in blacks suggest that the mechanism behind the racial disparities is complex and multi-

factorial. For example, despite lower levels of 25-(OH) vitamin D demonstrated by some 

studies, blacks have lower rates of osteoporosis and bone fractures than age and gender 

matched white participants (23, 24).  

Studies relating to the prevalence of 25 (OH) D across stages of CKD revealed conflicting 

results. Consistent with prior studies, we found no association between vitamin D status and 

stages of CKD (12). In contrast to our study, the prevalence of 25 deficiency/insufficiency 
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rose slightly across the stages of CKD in the Nephro Test study (25). However, it is 

noteworthy that comparisons of vitamin D status across the studies are somewhat hampered 

by differences in the participants skin pigmentation, latitude, cut off values and assay 

methods employed between the studies. Additionally, it is suggested that vitamin D 

deficiency is more profound in diabetic patients likely due to heavy urinary loss of vitamin D 

binding protein (25, 26). Therefore, the higher prevalence of diabetes in our white 

participants could have accounted for the racial discrepancy in the levels of 25-(OH) vitamin 

D. This was further supported by the attenuation of the significant association between white 

race and 25-(OH)vitamin D3 after adjustment for diabetes status in the linear regression 

model with 25-(OH)vitamin D3 as the dependent variable. 

Consistent with previous studies, phosphate levels increase with worsening of kidney 

function and the increase was significantly higher in whites than blacks at CKD stage 5. It is 

possible that white patients are more likely to consume dairy products accounting for the 

higher phosphate levels; this could not to be ascertained in this study due to the non-

availability of dietary history. However, large studies from the US have reported that African 

Americans had lower consumption of dairy products than whites (27, 28).  However, 

understanding racial differences in serum phosphate levels is intriguing and other factors 

besides dietary phosphate need to be considered. For example, contrary to our findings some 

studies have shown surprisingly increased serum phosphate levels in blacks compared to 

whites despite increased levels of parathyroid hormone and thus attributing these differences 

to reduced urinary phosphate excretion and lower FGF23 in blacks (10, 11).  In line with 

these studies, our black patients had lower levels of FGF23 compared to whites. It is possible 

that higher phosphate levels in our white participants could have accounted for the 

differential levels in FGF23 as a compensatory mechanism.  Although this is contrary to the 

explanation offered by a prior study, that the lower levels of FGF23 in their black participants 

despite higher levels of phosphate could be as a result of decreased FGF23 expression(10). 

The complexity in racial disparities with phosphate and FGF23 levels is further compounded 

by variations in the use of phosphate binders and alfacalcidol.  In this study there are no 

differences between blacks and whites in the use of calcium carbonate and alfacalcidol.  

Consistent with previous studies (11, 29), FGF23 correlated positively with phosphate, PTH 

and inversely with GFR. The directions of these associations are physiologically plausible, 
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with FGF23 attempting to mitigate the effect of excess phosphate with worsening renal 

function. It is also noteworthy that significant positive association with white race persisted 

after adjusting for other confounding variables. In addition, the significant positive 

association with white race persisted after adjusting for other confounding variables. 

The limitations of our study included the cross-sectional study design; therefore we could not 

determine the longitudinal changes in markers of CKD-MBD, as well as seasonal variation in 

25 (OH) vitamin D levels. Information relating to UVB exposure and dietary phosphate are 

lacking. 

 The strengths of this study lie in the heterogeneous nature of our study population (black and 

white patients) in an African setting which  has allowed comparisons of data not only for 

Black Africans with Black Americans, but also between whites in Africa and USA/Europe.  

To our knowledge, few studies have compared FGF23 levels across races in developed 

countries and no such studies have been reported from Africa.  Therefore, this is the first 

study in Africa that has given important insights regarding the associations between FGF23, 

traditional markers of CKD-MBD and race in an African CKD population. Finally, in this 

study HPLC which is considered to be the gold standard for vitamin D measurement  (30)  

was used to specifically measure 25-(OH)vitamin D3 that is less affected by vitamin D 

supplementation. In addition, with the exception of HPLC several test methodologies were 

shown to demonstrate a considerable variation of individual 25-(OH) vitamin D values as 

compared with LC-MS/MS defined target concentrations (31).   

Conclusion. There was a racial difference in the markers of CKD-MBD; compared with 

whites, African blacks had higher levels of PTH, alkaline phosphatase and lower levels of 

FGF23 and serum phosphate. It remains unclear whether the present CKD-MBD 

management guidelines are appropriate for all races.  

DISCLOSURE 

SN received research grant support from MRC (SA) and NRF (SA). The remaining authors 

declared no competing interests. 

 



93 

 

Table 5. 1: Characteristics of the study population 

Parameters All (n=293) Black (n=208) White(n=85) P 

Age(years) 51.1±13.6 48.4±13.6 57.9±15.5 P<0.001 

Gender n (%)     

Male 166 (56.7%) 114 (54.8%) 52 (61.2 %) 0.32 

Female 127 (43.3 %) 94 (45.2 %) 33(38.8 %) 

Systolic 

BP(mmHg) 

143±25 146±26 135±19 0.007 

Diastolic 

BP(mmHg) 

84±20 89±21 71±11 P<0.001 

Hb (g/dl) 11.3±2.4 11.3±2.5 11.4±2.2 0.83 

Albumin(g/dl) 37.0±7.0 37.0±6.9 37.0±6.7 0.55 

Calcium(mmol/l) 2.22±0.24 2.20±0.27 2.30±0.19 0.01 

iPTH (pg/ml) 353(133-914) 498(137-1084) 274(131-595) 0.03 

FGF23(pg/ml) 130(42-970) 100(34-639) 233(80-1370) 0.002 

Phosphate(mmol/l) 1.4±0.5 1.3±0.5 1.5±0.5 0.001 

TAP (U/L) 116(83-162) 122(89-192) 103(74-144) 0.03 

25-OHD (ng/ml) 25.6±12.7 26.8±12.7 22.7±12.2 0.01 

<30 ng/ml 191(91.8%) 128(61.5%) 63 (74.1%) 0.04 

<10ng/ml 18(6.1%) 8(3.8%) 10(11.8%) 0.01 

Causes of renal 

disease n(%) 

    

HTN  188(64.2%) 141(67.8%) 47(55.3%) 0.002 

DM  52(17.7%) 25 (12.0%) 27(31.8%) P<0.001 

ADPKD 11(3.8%) 5(2.4%) 6(7.1%) 0.06 

Obstructive 

uropathy 

6(2.0%) 3(1.4%) 3(3.5%) 0.50 

Unknown 36(12.3%) 34(16.3%) 2(2.4%) 0.05 

Medications     

Calcium carbonate 120(41.0%) 85(40.9%) 35(41.2%) 0.77 

Alfacalcidol 111(37.9%) 78(37.5%) 33(38.8%) 0.68 

Calcium carbonate 

(mg/day) 

3429±694 3375±678 3500±750 0.69 

Alfacalcidol (µg/ 

week) 

1.63±0.38 1.86±1.09 1.48±0.87 0.43 

Continuous variables are presented as means± standard deviations or median (interquartile range) and categorical data as frequencies 

(percentages), BP= blood pressure , i PTH= intact parathyroid hormone, TAP= total alkaline phosphatase, DM= diabetes mellitus, FGF = 

fibroblast growth factor , HTN=hypertension, ADPKD=autosomal dominant polycystic kidney disease 
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Table 5. 2: Markers of mineral bone metabolism by race and stages of CKD 

 Variable                 CKD stage 3 P                CKD stage 4 P                        CKD stage 5 P 

 Black(n=34) White(n=11)  Black(n=40) White(n=14)  Black(n=134) White(n=60)  

IPTH(pg/ml) 120(92-218) 86(76-166) 0.21 193(73-373 228(175-329) 0.54 758(360-1350) 358(179-814) 0.0004 

FGF23(pg/ml) 30(22-44) 42(31-134) 0.07 35(22-64) 63(34-81) 0.07 329(105-2557) 881(187-3634) 0.03 

Calcium(mmol/l) 2.25±0.15 2.31±0.10 0.22 2.23±0.15 2.34±0.13 0.009 2.18±0.31 2.26±0.21 0.08 

Phos (mmol/l) 1.04±0.23 1.05±0.14 0.75 1.13±0.25 1.27 0.10 1.44±0.56 1.70±0.48 0.004 

25-OHD3 (ng/ml) 24.3±9.3 24.7±11.9 0.91 24.6±11.1 24.3±12.80 0.94 28.1±13.8 22.0±12.2 0.004 

TAP (U/L) 98(77-138) 102(78-123) 0.76 114(97-166) 88(74-111) 0.03 123(88-209) 128(73-226) 0.14 

Continuous variables are presented as means± standard deviations or median (interquartile range) and categorical data as frequencies (percentages) ,  IPTH = intact parathyroid hormone , FGF = fibroblast growth factor  

, i PTH= intact parathyroid hormone, TAP= total alkaline phosphatase, Phos= phosphate 
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Table 5. 3: Markers of CKD-MBD by race in pre dialysis and ESKD 

Variable                        Pre dialysis     P   End Stage Kidney  Disease P 

 Black (n=74) White (n=25)  Black (n=134) White(n=60)  

iPTH(pg/ml) 160(84-280) 174(94-253) 0.81 758 (360-1350) 358 (179-814) 0.0004 

FGF23 (pg/ml) 32(22-57) 55(31-81) 0.01 329(105-2557) 881(187-3634) 0.03 

Calcium(mmol/l) 2.24±0.14 2.33±0.11 0.005 2.18±0.31 2.26±0.21 0.08 

Phos (mmol/l) 1.09±0.24 1.18±0.27 0.12 1.44±0.56 1.70±0.48 0.004 

25-OHD3 (ng/ml) 24.4±10.3 24.5±12.1 0.99 28.1±13.8 22.0±12.2 0.004 

TAP (U/L) 111(89-141) 74(74-114) 0.09 123(88-209) 128(73-226) 0.14 

GFR(mls/min /1.73m
2
) 30.9±12.7 30.1±12.5 0.77 N/A N/A  

Kt/V N/A N/A  1.41±0.30 1.46±0.30 0.40 

Continuous variables are presented as means± standard deviations or median(interquartile range) and categorical data as frequencies(percentages) , BP= blood pressure , i PTH= intact parathyroid hormone, TAP= total 

alkaline phosphatase,, FGF = fibroblast growth factor, GFR= Glomerular filtration rate, N/A= not applicable 
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Table 5. 4: Multivariable analysis of determinant of PTH, FGF23 and 25-(OH) D3 

GFR= Glomerular filtration rate, PTH= Parathyroid hormone 

 

 

 

 

 

 

Dependent variable (Log PTH) βcoefficient P βCoefficient p 

Independent variable Unadjusted Adjusted 

Age -0.010 0.03 0.013 0.02 

Diabetes -0.390 0.02 -0.112 0.61 

Female gender 0.236 0.09 0.247 0.12 

Black race 0.413 0.007 0.488 0.01 

Calcium -1.248 <0.001 -1.038 0.001 

Phosphate 0.541 <0.001 0.179 0.26 

25-(OH) vitamin D3 -0.005 0.35 -0.002 0.77 

Alkaline phosphatase 0.002 <0.001 0.002 0.001 

GFR  -0.040 <0.001 -0.030 P<0.001 

     

Dependent variable(Log FGF23)     

Independent variable     

Age -0.033 <0.001 -0.013 0.26 

Diabetes -0.763 0.01 -0.318 0.31 

black race  -0.765 0.003 -0.636 0.02 

PTH 0.622 <0.001 0.171 0.09 

Calcium 0.921 0.05 1.239 0.004 

Phosphate 2.077 <0.001 1.041 <0.001 

25-(OH) vitamin D3 0.019 0.04 0.009 0.31 

Alkaline phosphatase 0.002 0.02 0.001 0.20 

GFR  -1.329 <0.001 -0.752 P<0.001 

     

25 (OH)D (Dependent variable)     

Independent variable     

Age -0.215 <0.001 -0.207 <0.001 

Diabetes -8.745 <0.001 -4.610 0.03 

white race  -4.063 0.01 -1.471 0.41 

Albumin 0.385 0.001 0.267 0.02 

Calcium 9.214 0.002 11.461 <0.001 



97 

 

Table5. 5: Predictors of severe hyperparathyroidism (PTH>585 ng/ml) 

Variable OR 95% (CI) p 

Age < 65 years 0.77 0.32-1.84 0.56 

Black race  3.08 1.51-6.30) 0.002 

Diabetes 0.57 0.25-1.31 0.19 

25 (OH) D (<30ng/ml) 1.68 0.90-3.13 0.10 

GFR<15mls/min 10.07 4.70-21.56 P<0.001 

Female gender 0.82 0.47-1.43 0.48 

Hyperphosphataemia(>1.45mmol/l) 1.39 0.75-2.58 0.29 

Hypocalcaemia(<2.10mmol/l 1.46 0.74-2.92 0.28 

GFR= Glomerular filtration rate 
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Figure 5. 1: Prevalence of 25 (OH) D3 deficiency by race and stages of CKD 
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Figure 5. 2: Prevalence of hyperphosphataemia by race and stages of CKD. 
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Figure 5. 3: Prevalence of hyperparathyroidism  by race and stages of CKD 
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Figure 5. 4: Prevalence of hypocalcaemia by race and stages of CKD. 
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Figure 5. 5: Correlation between Log FGF23 and Phosphate 
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Figure 5. 6: Correlation between Log FGF23 and GFR 
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CHAPTER 6: MANUSCRIPT 4 

Influence of vitamin D receptor polymorphisms on biochemical markers of 

mineral bone disorders in South African patients with chronic kidney disease. 

ABSTRACT 

Background 

It remains unclear whether genetic factors may explain the reported variation in the levels of 

biochemical markers of chronic kidney disease mineral and bone disorders (CKD-MBD) 

across ethnic groups. Therefore, the aim of this study was to examine the influence of VDR 

polymorphisms on secondary hyperparathyroidism and its association with vitamin D levels 

in black and white South African study participants.  

Patients and Methods  

This was a cross sectional study involving 272 CKD stage 3- 5D patients and 90 healthy 

controls. The four major VDR polymorphisms (Bsm 1, Fok 1, Apa1, and Taq 1) were 

genotyped using the polymerase chain reaction- restriction fragment length polymorphism 

(PCR –RFLP) method. In addition, the biochemical markers of CKD-MBD were measured to 

determine their associations with the four VDR polymorphisms.   

Results 

With the exception of Taq I polymorphism, the distribution of the VDR polymorphisms 

differed significantly between blacks and whites. In hemodialysis patients, the Bb genotype 

was significantly associated with moderate secondary hyperparathyroidism (OR, 3.88; 95 CI 

1.13-13.25, p=0.03) and severe hyperparathyroidism (OR, 2.54; 95 CI 1.08-5.96, p=0.03). 

This was consistent with the observed higher levels of median PTH and mean phosphate in 

patients with Bb genotype. This candidate risk genotype (Bb) was over represented in blacks 

compared to whites (71.0 % versus 55.6 %, p <0.0001).  In an unadjusted regression model, 

FokI Ff genotype was found to be significantly  associated with the risk of developing severe 

vitamin D deficiency < 15ng/ml  (OR, 1.89; 95 CI 1.17-3.07, p=0.01 ).  
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Conclusion.  

The VDR Bb genotype is an independent predictor of developing secondary 

hyperparathyroidism in patients with end stage kidney disease. In addition, study participants 

with the FokI Ff genotype are at increased of developing severe 25(OH) D deficiency 

6.1 Introduction 

Vitamin D deficiency has been linked to various disease conditions and poor clinical 

outcomes (1-3). The widespread consequences of   vitamin D deficiency have been partly 

attributed to the ubiquitous distribution of the vitamin D receptor (4).  The vitamin D receptor 

(VDR) plays a vital role in mediating the effects of the biologically active form of vitamin D 

(1, 25, OH-D); therefore it is plausible that variations in these receptors will modulate the 

consequences associated with vitamin D deficiency (5).  In 1994, Morrison et al. (6) were the 

first to report an association between VDR polymorphisms and bone metabolism, showing 

that the common allelic variants in the VDR encoding genes can predict differences in bone 

density in healthy individuals (6). Subsequently, several researchers have explored this 

relationship in CKD populations with emphasis on the calcium/ PTH/ calcitriol axis (7, 8). 

The  BsmI polymorphism (BB genotype) has been associated with slower progression of 

secondary hyperparathyroidism and normal levels of calcitriol in pre dialysis CKD patients, 

and lower levels of parathyroid hormone (PTH) in hemodialysis, and a greater reduction in 

PTH levels in response to a single bolus of calcitriol therapy compared   to patients with the 

bb genotype (8, 9).  However, contrary to earlier studies, findings from subsequent studies on 

the associations between VDR polymorphisms and markers of mineral bone disease have 

been inconsistent.  For instance, some studies reported no difference in PTH levels between 

the various Bsm I genotypes (10, 11), while Chudek et al. reported significantly lower levels 

of calcitriol in patients with BB genotype (12). Similarly, some studies have linked other 

VDR polymorphisms to mineral bone metabolism in hemodialysis patients. The VDR Fok I 

polymorphism (FF genotype) was reported to be associated with higher PTH levels (13).  

Furthermore, the existence of racial disparities in abnormal markers of CKD-MBD and the 

better survival paradox in African Americans compared to white dialysis patients may be 

explained partly by the racial differences in the distribution of VDR polymorphisms and 

VDR receptor activation therapy.  Most of these studies were conducted on European, Asian 

and American CKD populations, while studies from Africa were largely on non CKD 
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populations. Therefore, in line with ongoing efforts to greater understanding of the 

mechanisms behind racial disparities in markers of CKD-MBD, we aimed to explore the 

variations in the VDR polymorphisms between black and white African CKD patients and 

their relationship with markers of mineral bone disorders.  

 

6.2 Patients and Methods 

This was a cross- sectional study involving 272 CKD stage 3- 5D patients and 90 healthy 

controls. The study protocol was approved by the Health Research and Ethics committee 

(HREC) of the University of the Witwatersrand; clearance certificate number M141016. All 

participants gave written informed consent prior to enrolment. Exclusion criteria included 

active malignancies, aged < 18 years, and patients who withheld consent. Information on 

participants’ demographic characteristics, duration on dialysis and use of medications related 

to CKD-MBD were obtained. Determination of race was based on self-reporting by the 

participants.  

Laboratory measurements 

Plasma intact PTH was measured by an electrochemiluminescence immunoassay (ECLIA) 

run on a Cobas 6000 auto analyzer (Roche Diagnostics, Mannheim, Germany). 

FGF-23 was measured using an enzyme-linked immunosorbent assay kit from EMD 

Millipore Corporation (Billerica, MA, USA). Assay lower detect limit was 3.2 pg/ml.  Plasma 

25(OH) D was measured using the high performance liquid chromatography (HPLC) kit 

(Recipe, Munich, Germany). HPLC was used to selectively measure 25(OH) D2 and 25 (OH) 

D3 at a wave length of 264nm. The intra and inter assay coefficients of variation (CVs)   were 

< 5%.  Our institutional laboratory is a participating member in the vitamin D external quality 

assurance scheme (DEQAS). In this study, 25 (OH) D3 was used as a marker of vitamin D 

status to avoid confounding of our results by exogenous vitamin D supplementations.  Serum 

calcium, phosphate and alkaline phosphatase were measured using the ADVIA 1800 centaur 

auto analyzer (Siemens Diagnostics, Tarrytown, USA).  
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Creatinine was measured by a modified Jaffe reaction and  GFR was estimated using the 

four- variable Modified Diet Renal Disease (MDRD) equation (14): GFR (in mL/min per 

1.73 m
2
) = 175 × SCr (exp[−1.154]) × Age (exp[−0.203]) × (0.742 if female) × (1.21 if 

Other biochemical parameters were determined using routine laboratory techniques. 

Genotyping 

DNA was extracted from whole blood using the Maxwell DNA purification kit (Promega 

AS1010, USA). Using appropriate primers  and 50 ng of  DNA polymerase chain reaction 

(PCR)  products were amplified  for ApaI (Forward: 5’CAGAGCATGGACAGGGAGCAAG 

3’ and Reverse: 5’ GCAACTCCTCATGGCTGAGGTCTCA 3’ with 65 
0
C as annealing 

temperature), BsmI  (Forward : 5’ CAACCAAGACTACAAGTACCGCGTCAGTGA 3’ and 

Reverse: 5’ AACCAGCGGGAAGAGGTCAAGGG 3 ‘  with 65 
0
C as annealing 

temperature),  FokI ( Forward: 5’ AGCTGGCCCTGGCACTGACTCTTGCTCT 3’ and 

Reverse:  5’ ATGGAAACACCTTGCTTCTTCTCCCTC 3’ with 67 
0
C annealing 

temperature), and TaqI ( Forward:5’CAGAGCATGGACAGGGAGCAAG3’ and Reverse 

:5’GCAACTCCTCATGGCTGAGGTCTCA 3’ at an annealing temperature  of 65 
0
C )  VDR 

polymorphisms. The PCR products were then digested with enzymes ApaI, BsmI, FokI, and 

TaqI (New England Biolabs, Beverly, MA, USA) according to the supplier’s protocol. 

Digestions for   BsmI and TaqI were at 65 
0
C overnight, and 3hrs at 25 

0
C for ApaI, while 

FokI  was incubated at  37 
0
C for 3 hrs.  Restricted products were electrophoresed on either 

10% polyacrylamide or 1.5% agarose gels and then visualized by the Gel Doc TM EZ imager 

(Bio-Rad systems, USA). Genotypes were scored based on the presence or absence of a 

restriction site for the enzymes BsmI, ApaI, and TaqI at the 3′ untranslated region and FokI at 

the N-terminal region of the gene. 

Statistical analysis  

The Fisher’s exact test was utilized to compare differences in the frequency of genotypic 

distribution between groups. Based on the distribution of data, an independent t– test or 

Wilcoxon rank –sum test were used to compare continuous variables between two groups, 

while one- way ANOVA or Kruskal –Wallis tests were used for more than two groups. Both 

univariate and multivariable logistic regression models were used to determine the 

association between VDR genotypes, secondary hyperparathyroidism and vitamin D 
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deficiency. In the comparisons of the means and medians of the  circulating markers of CKD-

MBD across the genotypes, the P values for distribution between homozygous dominant and 

heterozygous genotypes were further  determined separately due to the smaller numbers of 

the homozygous  recessive. A backward selection procedure was used to fit the multiple 

regression model, which started with all potential predictor variables and subsequently 

removed the variables that had p values above the specified P=0.20.However, variables that 

are known to be biologically plausibly associated with secondary hyperparathyroidism were 

forced into the model despite not meeting inclusion criteria based on the stepwise approach. 

A post estimation test for Goodness of Fit of the models was carried out using Hosmer -

Lemeshow goodness of fit test. 

A p-value of less 0.05 was considered statistically significant at the 95% confidence interval.  

All analyses were performed using STATA version 12 (STATA Corp., TX, and USA). 

6.3 Results  

Description of the study population. 

A total of 362 participants (272 CKD patients and 90 controls) were recruited for this study. 

The CKD group comprised of 156 CKD stage 5D and 116 CKD stages 3-5 patients.  In the 

control group, 39 participants were self-identified as Whites, 60 as Blacks, and one Indian.  

The CKD group comprised of 73 Whites, 175 Blacks and 21 Indians. Fifteen patients were 

excluded from the genetic analysis due to failed genotyping (Figure1). Patients on 

haemodialysis were on three times weekly, 4 hr sessions of  haemodialysis using 

polysulphone membranes and bicarbonate dialysate. Most of the patients were dialyzed with 

a dialysate calcium concentration of 1.50 mmol/L, which is usually modified based on serum 

levels of calcium. The blood and dialysis flow rates are generally 300–400 mls/min and 

500 mls/min, 

Table 6.1 shows the ethnic distribution of the VDR polymorphisms (Bsm I, FokI, ApaI and 

Taq I). In the VDR polymorphisms, blacks had significantly higher proportion of Bb 

genotype than whites (71.0 % versus 55.6 %), and lower frequency of BB genotype (24.1 % 

versus 44.4 %). Overall, the most common genotype was Bb (65.4%). Similarly, the 

distribution of Fok I and Taq I genotypes differed significantly between the groups; FF was 
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more frequent in blacks, while the Ff genotype was the most prevalent in whites. There was 

no significant ethnic variation in the distribution of the ApaI genotype. 

Table 6.2 shows the distribution of the four VDR polymorphisms (Bsm I, FokI, ApaI and Taq 

I) between CKD patients and healthy controls, and the odds ratio of developing severe 

25(OH) D severe deficiency (< 15ng/ml). The frequencies of these genotypes did not differ 

significantly between the CKD and control groups. Ff genotype showed a significant increase 

in odds of developing severe 25 (OH) D deficiency (OR, 1.89; 95 CI 1.17-3.07, P=0.01); a 

similar trend was found with combined Ff + ff genotypes (OR, 1.91; 95 CI 1.18-3.08, 

P=0.008). The remaining genotypes were not significantly associated with severe 25(OH) D 

deficiency. 

The biochemical markers of CKD-MBD in the various genotypes are shown in Table 6.3.  

Median PTH and mean phosphate levels were significantly higher in patients with Bb 

genotype. In a restricted comparison between homozygous dominant genotype and 

heterozygous genotype due to smaller numbers of homozygous recessive genotype, the P 

values did not change significantly.    

In a restricted analysis involving hemodialysis patients, the univariate and multivariate 

analyses for the odds of developing moderate and severe secondary hyperparathyroidism are 

shown in Table 6. 4 Moderate secondary hyperparathyroidism was defined as PTH >130 

pg/ml (2 times the upper limit of normal) and severe secondary hyperparathyroidism as PTH 

> 585 pg/ml (9 times the upper limit of normal).  After adjusting for  serum calcium, 

phosphate, fibroblast growth factor 23, and use of  alfacalcidol, the Bb genotype was a 

significant predictor of developing both moderate (OR,3.88; 95 CI 1.13-13.25, p=0.03) and 

severe hyperparathyroidism(OR, 2.54; 95 CI 1.08-5.96, p=0.03).  The use of alfacalcidol was 

not eligible for inclusion into the final model, but was forced into the model due to a 

biologically plausible association between secondary hyperparathyroidism and the use of 

alfacalcidol. The post estimation test shows no lack of fit with the final models (p>0.05). 

6.4 Discussion  

In an attempt to unravel the complexity behind the pathophysiologic mechanisms of CKD -

MBD, several investigators have looked at the relationship between VDR polymorphisms and 

the calcium/PTH/calcitriol axis with inconsistent findings (5, 12). In this present study, 
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consistent with some previous reports, we found a significant difference in PTH levels across 

Bsm I genotypes, patients with Bb genotype had a higher median PTH level compared to 

patients with BB and bb genotypes.  In addition, the Bb genotype was independently 

associated with the risk of developing moderate and severe secondary hyperparathyroidism in 

patients with ESKD. The influence of BsmI on parathyroid function was also observed in pre 

dialysis CKD and transplant patients. Marco et al. (15) reported a slower progression of 

secondary hyperparathyroidism in pre dialysis CKD patients with BB genotype, while Messa 

et al. (16) reported lower PTH levels in transplant patients with BB genotypes.  On the other 

hand, contrary to our findings, some studies have reported non-significant differences in PTH 

levels across Bsm I genotypes. However, it is noteworthy that the Bsm I genotype distribution 

varies greatly across ethnic groups, hampering comparisons of studies.  

The molecular mechanisms by which BsmI VDR polymorphisms influence 

hyperparathyroidism have been linked to presence of b alleles. Previous studies have reported 

a strong association between b alleles and decreased VDR gene transcription and/or m RNA 

stability, hence, affecting the regulatory actions of calcitriol on parathyroid glands (6, 16). 

For example, patients with the BB genotypes are less susceptible to having reduced 1α-

hydroxylase levels compared to patients with bb genotypes. Therefore, patients with b alleles 

are less likely to have optimal levels of calcitriol required to inhibit PTH secretion and 

parathyroid cell proliferation. 

A few studies have also investigated the associations between FokI, ApaI and secondary 

hyperparathyroidism in patients with CKD.  Consistent with a prior study (13), although not 

statistically significant, patients with FF genotype had lower levels of PTH than patients with 

Ff in our study.   

In addition to the complexity of CKD -MBD is the existence of the ethnic variability in the 

development and severity of secondary hyperparathyroidism among CKD patients. Several 

previous studies consistently showed that black patients have higher PTH levels and lower 25 

(OH) D levels (17, 18). The mechanisms behind these dissimilarities may partly be explained 

by genetic factors. For example, some polymorphisms may be over represented in certain 

races and therefore alter their risk.  In this present study, there was a statistically significant 

difference between black and white participants in the   distribution of the VDR 

polymorphisms. The Bb genotype which is an independent predictor of hyperparathyroidism 

is over represented in black populations (71.0% versus 56.4 %, p<0.0001).  In line with our 
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findings, previous studies have also reported ethnic variations in the distribution of VDR 

polymorphisms (19, 20). Uitterlinden et al. (20) reported that the frequency of the f allele of 

Fok1 was lower in Africans as compared to Caucasians (Caucasians 34% versus Africans 

24%); similarly  a significant  difference was found in  the frequency of the Bsm1,  B allele 

was  lower in the Asian population compared to other populations (Asians 7 %, Africans 

36%, and 42 % in Caucasians). These observed ethnic variations in the frequency of the VDR 

polymorphisms may help in explaining the racial discrepancy in the markers of CKD-MBD. 

Several studies have consistently associated vitamin D insufficiency to various skeletal and 

extra skeletal clinical end points, leading to a special interest in the determinants of vitamin D 

metabolites (20, 21).  Thus far, well-established determinants of 25(OH) D levels include 

dietary sources and sun exposure (21).  However, a genetic factor has been shown to play a 

vital role in the inter individual variation in circulating vitamin D levels.  For example, in the  

classical twin study, Hunter  et al. reported that  the calcium/PTH/calcitriol axis  is under 

strong genetic influence, accounting for 52% of calcium excretion, 74% of bone formation, 

58% of bone resorption, 60% of PTH, and  65% of vitamin D variance (22).  Similarly, a 

more recent large GWAS study has revealed a significant association with some genetic 

variants with 25(OH) D levels (21). These important findings were restricted to Caucasians, 

limiting their results to other ethnic groups. However, a few studies that explored these 

associations across races yielded similar results (23). In agreement with these studies, we 

found an increased risk of developing severe vitamin D deficiency with FokI Ff genotype and 

combined Ff+ff genotypes. In contrast, we did not find a significant difference in vitamin D 

levels across the various VDR genotypes.  

The limitations of our study include the following:  Firstly, the influence of some wild type 

genotype (homozygous minor) on the calcium/PTH/calcitriol axis could not be adequately 

determined due to their smaller numbers. Thus, a larger sample will be required to detect 

their associations with markers of CKD-MBD. Secondly, this was a cross-sectional study 

design; therefore we could not determine the longitudinal changes in markers of CKD-MBD, 

as well as seasonal variation in 25 (OH) D levels. Thirdly, information relating to UVB 

exposure and vitamin D dietary history are lacking. 

The strength of this study lies in the heterogeneous nature of our study population (black and 

white patients) in an African setting which has allowed comparisons of data not only for 

Black Africans with Black Americans, but also between whites in Africa and USA/Europe.  
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6.5 Conclusion  

We have demonstrated that both moderate and severe secondary hyperparathyroidism are 

predicted by BsmI Bb genotype, and the over expression of this genotype in black patients 

may partly explain the ethnic variations in the severity of secondary hyperparathyroidism in 

CKD population. In addition, the Fok I  Ff genotype might be an important determinant of an 

individual’s susceptibility to 25 (OH) D deficiency.  
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Figure 6. 1: Participant disposition and recruitment flow chart  
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Table 6. 1: Participants’ characteristics and genotype frequencies by race 

Parameters Black(n=224)      White(n=110)     P 

Age(years) 46.5±12.9 54.4±17.5  <0.0001 

Gender n (%)    

Male  111(49.6%) 60(54.5%) 0.74 

Female 113(50.4%) 50(45.5%) 

25(O H)D(ng/ml) 25.8±12.1 23.1±11.9  0.048 

PTH(pg/ml) 214(61-872) 112(30-364)  0.001 

Calcium (mmol/l) 2.22±0.25 2.29±0.18 0.06 

TAP(U/L) 120(88-190) 110(74-145) 0.14 

Phosphate (mmol/l) 1.29±0.47 1.48±0.49 0.003 

FGF23(ng/ml) 59(23-307) 80(28-521) 0.20 

VDR genotypes    

Bsm I    

BB 54(24.1%) 48(43.6%)  

P<0.0001 

Bb 159(71.0%) 62(56.4%) 

bb 11(4.9%) 0(0.00%) 

    

Fok I    

FF 151(67.4%) 38(34.6%)  

P<0.0001 

Ff 71(31.7%) 69(62.7%) 

ff 2(0.89%) 3(2.73%) 

    

Apa I    

AA 94(42.0%) 40(36.4%)  

0.61 

Aa 127(56.7%) 69(62.7%) 

aa 3(1.34%) 1(0.91%) 

    

Taq I    

TT 128(57.1%) 44(40.0%)  

0.01 

Tt 80(35.7%) 52(47.3%) 

tt 16(7.1%) 14(12.7%) 
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Table6. 2: Distribution of VDR polymorphisms among CKD and control groups and the 

odds ratios for developing severe 25 -hydroxyvitamin D severe deficiency (< 15ng/ml) 

VDR genotypes Controls  CKD  p
a
 OR (95%CI) P 

Bsm I N= 84 N=268    

BB 23(27.4%) 87(32.5%) 0.05 1.00(reference)  

Bb 55(65.5%) 176(65.7%)  0.85(0.51-1.42) 0.55 

bb 6(7.14%) 5(1.87%)  0.28(0.03-2.32) 0.24 

Dominant model      

BB 23(27.4%) 87(32.5%)    

Bb +bb 61(72.6%) 181(67.5%) 0.38 0.83(0.50-1.37) 0.46 

Fok I N=86 N=266    

FF 45(52.3%) 152(57.1%) 0.47 1.00(reference)  

Ff 39(45.4%) 111(41.7%)  1.89 (1.17-3.07) 0.01 

ff 2 (2.3%) 3 (1.1%)  2.52 (0.41-15.59) 0.32 

Dominant model      

FF 45(52.3%) 152(57.1%) 0.43 1.00 (reference)  

Ff+ ff 41(47.7%) 114(42.9%)  1.91(1.18-3.08) 0.008 

Apa I N=83 N=269    

AA 32(38.6%) 112(41.6%) 0.50 1.00(reference)  

Aa 51(61.4%) 152(56.5%)  1.44(0.88-2.37) 0.15 

aa 0(0.0%) 5(1.86%)  2.33(0.37-14.57) 0.37 

Dominant model      

AA 32(38.6%) 112(41.6%) 0.70 1.00(reference  

Aa +aa 51(61.4%) 157(59.0%)  1.46(0.89-2.40) 0.13 

Taq I N=84 N=268    

TT 37(44.1%) 146(54.5%) 0.05 1.00(reference)  

Tt 42(50.0%) 95(35.5%)  1.00(0.61-1.65) 0.99 

tt 5(6.0%) 27(10.1%)  0.76(0.31-1.87) 0.60 

Dominant model      

TT 37(44.1%) 146(54.5%) 0.06   

Tt +tt 47(56.0%) 122 (45.5%)  0.96(0.59-1.53) 0.85 

      

OR= odds ratio, CI= confidence interval, CKD= chronic kidney disease, Pa  value for comparison of genotype frequencies between control and CKD groups, VDR= vitamin 

D receptor. 
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Table 6. 3: Levels of markers of CKD-MBD across various VDR genotypes 

Variable                 Genotypes p P
c
 

Bsm I BB(n=87) Bb(n=176) bb(n=5)   

25(OH) D(ng/ml) 21(14-33) 25(16-34) 27(19-31) 0.30 0.14 

PTH(pg/ml) 231(111-593) 553(197-1230) 169(134-214) <0.001 <0.001 

Calcium (mmol/l) 2.20±0.75 2.21±0.64 2.20±0.10 0.99 0.98 

Phosphate(mmol/l) 1.27±0.49 1.43±0.49 1.0±0.33 0.002 0.01 

TAP(U/L) 121(83-153) 113(88-173) 80(57-141) 0.373 0.91 

Medications n (%)      

Calcium carbonate 37(42.5) 89(50.6) 2(40.0) 0.19 0.07 

Alfacalcidol 28(32.2) 80(45.5) 1(20.0) 0.09 0.047 

      

Fok I FF(n=152) Ff(n=111) ff(n=3)   

25(OH) D(ng/ml) 24(14-34) 22(14-33) 15(11-29) 0.31 0.30 

PTH(pg/ml) 327(121-975) 360(166-735) 61(28-94) 0.12 0.86 

Calcium (mmol/l) 2.21±0.61 2.19±0.76 2.17±0.27 0.97 0.83 

Phosphate(mmol/l) 1.35±0.51 1.38±0.48 1.61±0.51 0.64 0.64 

TAP(U/L) 123(91-160) 103(79-167) 258(69-312) 0.47 0.35 

Medications n (%)      

Calcium carbonate 65(42.8) 59(44.1) 1(33.3) 0.23 0.11 

Alfacalcidol 60(39.5) 45(40.5) 1(33.3) 0.91 0.74 

Taq I TT(n=146) Tt (n=95) tt (n=27)   

25(OH)D(ng/ml) 23(15-32) 25(16-36) 21(15-32) 0.31 0.23 

PTH(pg/ml) 363(174-926) 327(109-913) 672(121-

1314) 

0.24 0.17 

Calcium 2.21±0.61 2.17±0.82 2.36±0.31 0.47 0.71 

Phosphate(ng/ml) 1.31±0.45 1.38±0.56 1.52±0.47 0.13 0.36 

TAP(U/L) 110(82-154) 123(93-192) 121(75-167) 0.39 0.17 

Medications n (%)      

Calcium carbonate 61(41.8) 52(54.7) 14(51.9) 0.41 0.18 

Alfacalcidol 54(37.0) 43(45.3) 11(40.7) 0.50 0.24 

      

Apa I AA (n=112) Aa(n=152) aa (n=5)   

25 (OH)D(ng/ml) 24(17-37) 22(15-32) 19(15-28) 0.22  

PTH(pg/ml) 329(137-957) 383(99-814) 1889(1359-

1889) 

0.04 0.63 

Phosphate(mmol/l) 1.34±0.52 1.37±0.48 1.63±0.47 0.46 0.52 

Calcium(mmol/l) 2.22±0.66 2.19±0.68 2.41±0.16 0.79 0.76 

TAP(U/L) 123(82-190) 115(88-149 160(91-440) 0.51 0.91 

Medications n (%)      

Calcium carbonate 49(43.8) 74(48.7) 5(100.0) 0.04 0.23 

Alfacalcidol 41(36.6) 64(42.1) 4(80.0) 0.29 0.33 

Variables are presented as means± standard deviations or median(interquartile range), TAP= serum total alkaline phosphate, PTH= parathyroid hormone,25 (OH)D=25 

hydroxyvitamin D 3, pc  value: comparison between Homozygous dominant and heterozygous genotypes 
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Table 6. 4: Odds ratios for association between VDR polymorphisms and secondary 

hyperparathyroidism in haemodialysis patients 

Polymorphisms Crude OR 95%(CI) P Adjusted*OR  

95%(CI) 

P 

Moderate secondary hyperparathyroidism (PTH>130 ng/ml) 

Bsm I     

BB 1.00(reference)  1.00(reference)  

Bb 3.12 (1.11-8.83) 0.03 3.88(1.13-13.25) 0.03 

bb N/A N/A N/A  

     

FokI     

FF 1.00(reference)  1.00(reference)  

Ff 0.87(0.31-2.39) 0.78 0.65(0.20-2.10) 0.47 

ff N/A N/A N/A  

     

Taq I     

TT 1.00(reference)  1.00(reference)  

Tt 0.27(0.09-0.84) 0.02 0.43(0.12-1.52) 0.19 

tt 0.53(0.09-2.96) 0.47 0.76(0.11-5.19) 0.78 

     

Apa I     

AA 1.00(reference)  1.00(reference)  

Aa 0.42(0.13-1.36) 0.15 0.25(0.06-1.01) 0.052 

aa 0.28(0.3-3.14) 0.30 0.25(0.01-3.10) 0.25 

     

Severe hyperparathyroidism (PTH>585 pg/ml) 

Bsm I     

BB 1.00(reference)  1.00(reference)  

Bb 2.55(1.19-5.47) 0.02 2.54(1.08-5.96) 0.032 

bb N/A N/A N/A N/A 

     

Fok I     

FF 1.00(reference)  1.00(reference)  

Ff 0.42(0.21-0.82) 0.01 0.37(0.17-0.81) 0.01 

ff N/A N/A N/A  

     

Taq I     

TT 1.00(reference)  1.00(reference)  

Tt 0.64(0.31-1.32) 0.23 0.71(0.32-1.59) 0.41 

tt 1.37(0.44-4.24) 0.58 1.39(0.41-4.73) 0.39 

     

Apa I     

AA 1.00(reference)  1.00(reference)  

Aa 0.85(0.43-1.69) 0.65 0.74(0.35-1.57) 0.43 

aa 2.26(0.24-21.47) 0.48 2.84(0.27-30.22) 0.86 

OR= Odds ratio, CI= confidence interval,  N\A -= not applicable, *Adjusted Odd ratio= adjusted for Age, calcium,  phosphate, 25 hydroxyvitamin D 3, 

Fibroblast growth factor 23 and  use of alfacalcidol,  
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Figure 6. 2: Restriction Endonuclease digestion for FokI polymorphism 

 

 

Figure 6. 3: Restriction Endonuclease digestion for ApaI polymorphism 
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Figure 6. 4: Restriction Endonuclease digestion for Bsm I polymorphism 

 

 

 

Figure 6. 5: Restriction Endonuclease digestion for TaqI polymorphism 

 

 

 

 

 



124 

 

References  

1. Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, et al. Vitamin D 

deficiency and risk of cardiovascular disease. Circulation. 2008; 117(4):503-11. 

2. Scragg R, Sowers M, Bell C. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the 

Third National Health and Nutrition Examination Survey. Diabetes Care. 2004; 27(12):2813-

8. 

3. John EM, Schwartz GG, Dreon DM, Koo J. Vitamin D and breast cancer risk: the 

NHANES I Epidemiologic follow-up study, 1971-1975 to 1992. National Health and 

Nutrition Examination Survey. Cancer Epidemiol Biomarkers Prev. 1999; 8(5):399-406. 

4. Messa P, Alfieri C, Rastaldi MP. Recent insights into vitamin D and its receptor. J 

Nephrol. 2011; 24(18). 

5. Erturk S. Gene polymorphism association studies in dialysis: bone and mineral 

metabolism. Semin Dial. 2006; 19(3):232-7. 

6. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, et al. Prediction of bone 

density from vitamin D receptor alleles. Nature. 1994; 367(6460):284-7. 

7. Fernandez E, Fibla J, Betriu A, Piulats JM, Almirall J, Montoliu J. Association between 

vitamin D receptor gene polymorphism and relative hypoparathyroidism in patients with 

chronic renal failure. J Am Soc Nephrol. 1997;8(10):1546-52. 

8. Marco MP, Martinez I, Betriu A, Craver L, Fibla MJ, Fernandez E. Influence of Bsml 

vitamin D receptor gene polymorphism on the response to a single bolus of calcitriol in 

hemodialysis patients. Clin Nephrol. 2001; 56(2):111-6. 

9. Nagaba Y, Heishi M, Tazawa H, Tsukamoto Y, Kobayashi Y. Vitamin D receptor gene 

polymorphisms affect secondary hyperparathyroidism in hemodialyzed patients. Am J 

Kidney Dis. 1998; 32(3):464-9. 

10. Yokoyama K, Shigematsu T, Tsukada T, Ogura Y, Takemoto F, Hara S, et al. Apa I 

polymorphism in the vitamin D receptor gene may affect the parathyroid response in 

Japanese with end-stage renal disease. Kidney Int. 1998; 53(2):454-8. 



125 

 

11. Marco MP, Craver L, Betriu A, Fibla J, Fernandez E. Influence of vitamin D receptor 

gene polymorphisms on mortality risk in hemodialysis patients. Am J Kidney Dis. 2001; 

38(5):965-74. 

12. Chudek J, Karkoszka H, Schmidt-Gayk H, Ritz E, Kokot F. Plasma parathyroid 

hormone, phosphatemia and vitamin D receptor genotype: are they interrelated? J Nephrol. 

2000; 13(1):54-8. 

13. Vigo Gago E, Cadarso-Suarez C, Perez-Fernandez R, Romero Burgos R, Devesa 

Mugica J, Segura Iglesias C. Association between vitamin D receptor FokI. Polymorphism 

and serum parathyroid hormone level in patients with chronic renal failure. J Endocrinol 

Invest. 2005; 28(2):117-21. 

14. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using 

standardized serum creatinine values in the modification of diet in renal disease study 

equation for estimating glomerular filtration rate. Ann Intern Med. 2006; 145(4):247-54. 

15. Marco MP, Martinez I, Amoedo ML, Borras M, Saracho R, Almirall J, et al. Vitamin D 

receptor genotype influences parathyroid hormone and calcitriol levels in predialysis patients. 

Kidney Int. 1999; 56(4):1349-53. 

16. Messa P, Sindici C, Cannella G, Miotti V, Risaliti A, Gropuzzo M, et al. Persistent 

secondary hyperparathyroidism after renal transplantation. Kidney Int. 1998;54(5):1704-13. 

17. Jovanovich A, Chonchol M, Cheung AK, Kaufman JS, Greene T, Roberts WL, et al. 

Racial differences in markers of mineral metabolism in advanced chronic kidney disease. 

Clin J Am Soc Nephrol. 2012; 7(4):640-7. 

18. Jorgetti V, dos Reis LM, Ott SM. Ethnic differences in bone and mineral metabolism in 

healthy people and patients with CKD. Kidney Int. 2014; 85(6):1283-9. 

19. Zmuda JM, Cauley JA, Ferrell RE. Molecular epidemiology of vitamin D receptor gene 

variants. Epidemiol Rev. 2000;22(2):203-17. 

20. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP. Genetics and 

biology of vitamin D receptor polymorphisms. Gene. 2004; 338(2):143-56. 



126 

 

21. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. 

Common genetic determinants of vitamin D insufficiency: a genome-wide association study. 

Lancet. 2010; 376(9736):180-8. 

22. Hunter D, De Lange M, Snieder H, MacGregor AJ, Swaminathan R, Thakker RV, et al. 

Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid 

hormone regulation. J Bone Miner Res. 2001; 16(2):371-8. 

23. Sarkissyan M, Wu Y, Chen Z, Mishra DK, Sarkissyan S, Giannikopoulos I, et al. 

Vitamin D receptor FokI gene polymorphisms may be associated with colorectal cancer 

among African American and Hispanic participants. Cancer. 2014; 120(9):1387-93. 



127 

 

CHAPTER 7: DISCUSSION 

7.1 Introduction 

Although CKD-MBD has been extensively studied, surprisingly large gaps of knowledge still 

exist in this field of nephrology as highlighted by the KDIGO group in 2013(1).  

 In addition, the group agreed that further studies are needed to assist in updating some of the 

2009 KDIGO clinical practice guidelines on the diagnosis and treatment of CKD-MBD. 

Therefore, in line with the KDIGO recommendations, we have conducted this study to assist 

in bridging the gaps in knowledge in the field of CKD-MBD. 

This chapter highlights our relevant findings; followed by comparisons of our findings with 

the existing literature; recommendations and clinical implications; study limitations and 

conclusions. 

7.2 The summary of our main findings are as follows: 

7.2.1. Spectrum of CKD –MBD 

The prevalence of hyperparathyroidism (iPTH>150 pg/mL), hyperphosphataemia, 

hypocalcaemia and 25-OH vitamin D deficiency (<30 ng/mL) was 73.4%, 57.0%, 20.3% and 

80.7 % respectively in our MHD patients 

7.2.2. Association between markers of CKD -MBD and mortality 

 Patients with high TAP had significantly higher risk of death compared to patients with TAP 

<112 U/L (hazard ratio, 2.50; 95% CI 1.24–5.01, P = 0.01). Similarly, serum calcium 

>2.75 mmol/L was associated with increased risk of death compared to patients within levels 

of 2.10–2.37 mmol/L (HR 6.34, 95% CI 1.40–28.76; P = 0.02). The HR for death in white 

patients compared to black patients was 6.88; 95% CI 1.82–25.88; P = 0.004. 
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7.2.3. Racial variations in markers of CKD-MBD 

Our study highlighted the existence of racial differences in the circulating markers of mineral 

bone disorders in an African CKD population. Compared to whites, blacks had higher median 

intact PTH (498 [37-1084] versus 274[131-595] pg/ml; p=0.03), alkaline phosphatase 

(122[89-192] versus 103[74-144] U/L; p=0.03) and mean 25 OH vitamin D3 (26.8±12.7 

versus 22.7 ±12.2 ng/ml, p=0.01) levels, while their median FGF23 (100 [34-639] versus 

233[80-1370] pg/ml; p=0.002) and  mean serum phosphate (1.3±0.5 versus 1.5±0.5, p=0.001)  

levels were significantly lower 

 

7.2.4. VDR polymorphisms and its association with markers of CKD –MBD 

There was a significant difference in the distribution of VDR polymorphisms between black 

and white patients; blacks had significantly higher proportions of Bb genotype than whites 

(71.0 % versus 55.6 %), and lower frequency of BB genotype (24.1 % versus 44.4 %).  The 

VDR Bb genotype was significantly associated with moderate secondary 

hyperparathyroidism (OR, 0.3.12; 95 CI 1.11-8.83, p=0.03) and severe hyperparathyroidism 

(OR, 2.55; 95 CI 1.19-5.47, P=0.02). 

7.3 Comparisons with the existing literature 

In Africa, data on the prevalence of secondary hyperparathyroidism and vitamin D status in 

the CKD population is sparse and limited by small sample size. In our study, the prevalence 

of secondary hyperparathyroidism (iPTH >150pg/mL) in maintenance haemodialysis patients 

was 73.4%.  This high prevalence is consistent with previous studies from Africa (2, 3), 

despite utilizing different cut-off values. The strength of our study is the larger sample size 

compared to other previous studies from Africa, in addition to providing data on 25-(OH) 

vitamin D status in our patients. 

In spite of the geographical location with high levels of vitamin D from sunlight, the majority 

of our MHD patients had 25 - (OH) vitamin D insufficiency. Inadequate vitamin D status 

defined as 25 - (OH) vitamin D level < 30 ng/ml was found in 80.7% of our study population. 

Similarly studies from countries with abundant sunlight have reported high prevalence of 
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vitamin D deficiency in healthy children and adults (4, 5). In fact, vitamin D deficiency has 

been termed a global health problem affecting over 1 billion of the world’s population (6).  

The consequences of deranged markers of CKD-MBD have been documented by studies 

mainly from American and Europe with few or no data from Africa. In our study we have 

highlighted that high levels of alkaline phosphatase, hypercalcaemia and white race are 

associated with increased risk of mortality. Our finding of hypercalcaemia and increased 

mortality is consistent with the three phases of the dialysis outcomes and practice patterns 

study (DOPPSI, II and III) with 25,588 HD patients, which showed that calcium levels 

greater than 10.0 mg/dL (>2.5 mmol/L) were significantly associated with greater risk of all 

cause and cardiovascular mortality in both baseline and time dependent models(7). 

The reawakened interest in alkaline phosphatase, which is one of the pioneer markers of bone 

turnover, is due to emerging evidence that has consistently associated high levels of alkaline 

phosphatase with increased risk of mortality (8, 9). These studies have indicated that alkaline 

phosphatase is not just a marker of bone turnover but could also serve as a predictor of 

mortality. In line with previous studies, we have shown an association between high levels of 

alkaline phosphatase and mortality in South Africa MHD patients. The mechanisms for the 

association between high TAP and increased mortality have been linked to enhanced vascular 

calcification by high levels of serum TAP through hydrolysis of pyrophosphate or activation 

of apatite crystal formation (10). In addition to vascular calcification, elevated levels of TAP 

have been associated with high C reactive protein, insulin resistance, and 25-OH vitamin D 

deficiency   

Despite racial disparity in access to health care and associated poor predictors of adverse 

outcome with black race in the general population, several studies from the USA have shown 

that black patients on haemodialysis have better survival than whites MHD patients (11, 12). 

This is the first study in Africa to highlight the existence of this association in African MHD 

patients. The mechanisms behind this survival paradox remain unclear; however, several 

reasons have been reported by some studies.  For example, a large USA observational study  

involving 1,330,007 incident end-stage renal disease  reported that the widely perceived 

survival advantage for black dialysis patients applies only to older adults, with a reversal of 

the higher risk of death in the younger age group (<50 years) (13). This is contrary to several 

studies including the current study, where the risk persisted after adjusting for the 

significantly higher mean age in the white patients (11, 12). Another reported explanation 
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was that racial variations in markers of nutritional status and response to inflammation may 

account for the survival paradox in MHD patients (11, 12). For example, Streja et al. (11) 

reported that markers of worse nutritional status and increased body fat in African American 

patients correlated less strongly with mortality than in whites. Additionally, psychosocial and 

coping mechanisms with disease conditions may vary across race. 

In an attempt to reduce adverse clinical outcomes associated with CKD-MBD, guidelines 

were proposed by various global and regional societies to assist physicians in the 

management of CKD -MBD. However, biochemical markers of CKD-MBD have been 

shown to differ across different races and thus there is the need to establish race specific 

target values for these markers of CKD-MBD.  For example, in this present study, with the 

exception of 25-(OH) vitamin D3 levels, our findings which are consistent with those of 

previous studies, showed that PTH and alkaline phosphatase are higher in black than white 

patients in CKD stage 5 and CKD stage 4 respectively. The mechanisms behind this 

discrepancy remain largely unclear.  Therefore, in line with ongoing efforts to gain greater 

understanding of the mechanisms behind racial disparities in markers of CKD-MBD, we also 

explored the variations in VDR polymorphisms between black and white African CKD 

patients and its relationship with markers of mineral bone disorders.  The influence of genetic 

factors on the inter-individual variation in circulating markers of CKD-MBD was first 

reported by Hunter  et al.(12) who reported  that the calcium/PTH/calcitriol axis  is under 

strong genetic influence, accounting for 52% of calcium excretion, 74% of bone formation, 

58% of bone resorption, 60% of PTH, and  65% of vitamin D variance.  In our study, there 

was a statistically significant difference between black and white participants in the 

distribution of the VDR polymorphisms. The Bb genotype which is an independent predictor 

of hyperparathyroidism is overexpressed in the black populations (71.0% versus 56.4 %, 

p<0.0001).  In line with our findings, some previous studies have also reported ethnic 

variations in the distribution of VDR polymorphisms. Uitterlinden et al. (14) reported that the 

frequency of the f allele of Fok1 was lower in Africans as compared to Caucasians 

(Caucasians 34% versus Africans 24%); similarly,  a significant  difference was found in  the 

frequency of the Bsm1 B allele which was  lower in the Asian population compared to other 

populations (Asians  7 %, Africans 36%, and 42 % in Caucasians). Therefore, these observed 

ethnic variations in the frequency of the VDR polymorphism may help in explaining the 

racial discrepancy in the markers of CKD -MBD.   
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7.4 Clinical implications of our findings and recommendations 

Surprisingly, despite the strong association between abnormal markers of CKD-MBD, there 

is a paucity of data on the prevalence of secondary hyperparathyroidism in African MHD 

patients. Therefore, the findings from this study have provided us with important insights on 

the spectrum of CKD-MBD in African MHD patients. The highlighted high prevalence of 

secondary hyperparathyroidism and vitamin D deficiency in MHD patients has drawn our 

attention to the need to aggressively manage secondary hyperparathyroidism in our MHD 

patients. In addition, emphasis should be placed on mitigating the wider effects of vitamin D 

insufficiency through vitamin D supplementation.  

The consistent linear association between alkaline phosphatase and mortality as demonstrated 

in this study and several other studies has further emphasized the role of total alkaline 

phosphatase in the management of CKD-MBD. This cheap and readily available test could be 

utilized in resource poor countries as a surrogate marker for monitoring CKD-MBD. 

Although the association between hypercalcaemia and increased mortality has been 

established by previous studies, our study reaffirms the need to pay more attention to 

prevention and correction of hypercalcemia. The majority of our patients are on a calcium-

based phosphate binder which is cheap and effective in controlling serum phosphate. 

However, use of calcium based phosphate binders has been associated with progression of 

vascular calcification (15, 16). Therefore, it is recommended that calcium-based phosphate 

binders should be avoided in patients with adynamic bone disease, hypercalcemia, and 

vascular calcification. On the other hand, cinacalcet which is one of the newer drugs that 

effectively lowers PTH without raising serum calcium levels recently became available in 

South Africa; however, it is quite expensive, thus limiting its use to a few of the patients who 

are able to access it.   

The finding of the existence of racial variations in makers of CKD-MBD in our CKD patients 

further supports the notion that the present guidelines may not to be appropriate for all races 

and thus the need for race-specific target values. 

The observed association between VDR Bb genotype with severity of secondary 

hyperparathyroidism may assist in identifying individuals at an increased risk of developing 

moderate to severe secondary hyperparathyroidism who may require more aggressive 
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management to prevent its development. In addition, genetic factors should be considered 

when designing intervention strategies for secondary hyperparathyroidism. 

7.5 Study limitations 

Our findings should be considered in the context of the following limitations. Firstly, due to 

the cross-sectional study design, we could not determine the longitudinal changes in markers 

of CKD-MBD, as well as seasonal variations in 25 (OH) D levels.  

Secondly, information relating to UVB exposure and dietary phosphate are lacking. Thirdly, 

there is the lack of bone biopsies to definitively describe the pattern of MBD in our patients. 

However, studies have shown a good association between PTH and histological findings. 

Finally, the influence of some wild type genotype (homozygous minor) on the 

calcium/PTH/calcitriol axis could not be adequately determined due to their small numbers. 

Thus, a larger sample will be required to detect their associations with markers of CKD-

MBD.  

However, despite the highlighted limitations, our study has assisted in bridging  the  

knowledge gaps  in the field of CKD-MBD by providing findings that has allowed 

comparisons of data not only for Black Africans with Black Americans, but also between 

whites in Africa and USA/Europe.  

7.6 Conclusions  

Our study showed that the abnormalities of biochemical markers of mineral bone disorder 

were common in our MHD patients and a moderately large proportion of the patients was 

outside the KDIGO recommended target levels. Our study also revealed a significant 

association between high levels of total alkaline phosphatase, hypercalcaemia, and white race 

with death in MHD patients, reaffirming the need to pay more attention to the two modifiable 

risk factors (calcium and TAP) in the management of CKD-MBD. Furthermore, we have also 

demonstrated the existence of racial variations in the markers of CKD- MBD. Finally, we 

have also demonstrated that both moderate and severe secondary hyperparathyroidism were 

predicted by the Bsm I Bb genotype, and the over expression of this genotype in black 

patients may partly explain the ethnic variations in the severity of secondary 

hyperparathyroidism in our CKD population.
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Appendix B : Consent form 

 

UNIVERSITY OF THE WITWATERSRAND  

Participant information and consent form (patient) 

Section A 

STUDY TITLE: Biochemical and Genetic Markers of Mineral Bone Disease in  South 

African patients  with Chronic Kidney Disease. 

INVESTIGATOR: Dr Bala Waziri 

SITE: Charlotte Maxeke Johannesburg Academic Hospital 

TELEPHONE: Cell: 0848329071 

   Land line (Department): 011-488-3672 

Section B 

Introduction 

Good day, my name is Bala Waziri. I am a PhD student doing research at the University of 

the Witwatersrand. Research is an act of investigation or study in order to establish facts and 

reach new conclusions. I am conducting a study on “Biochemical and Genetic Markers of 

Mineral Bone Disease in South Africans with Chronic Kidney Disease”. 

The information that I will collect from this research project will be kept confidential. You 

are hereby invited to take part in the study and your participation in this research is entirely 

voluntary. It is your choice whether to participate or not. Whether you choose to participate 

or not, all the services you receive at this hospital will continue and nothing will change. You 

may change your mind later and stop participating even if you agreed earlier. 

If you have any questions you may ask them now or later, even after the study has started.  
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 It is important that you read and fully understand information on this leaflet as it will help 

you in making the decision. If unable to read or understand English, an interpreter will be 

provided for you. 

Purpose of the study 

I am conducting a study to look at people with chronic kidney disease and why they develop 

bone disease which is one of the complications of chronic kidney disease. The human body 

has two kidneys, which are bean shaped and perform different functions; such as the removal 

of waste products and forming urine. One of the objectives of this study is to determine the 

frequency of bone disease in people with chronic kidney disease. I will also look for 

inheritable factors called genes that regulate the development of bone disease.. 

Genes are basically a collection of information or instructions that form the makeup of a 

human being and decide how he/she behaves.  

I will assess fibroblast growth factor 23 and vitamin D levels and look for the relationship 

between their genes. Fibroblast growth factor 23 and vitamin D are responsible for 

controlling bone disease in people with chronic kidney disease. 

Some people with genetic changes have high risk of developing bone disease compared to 

those with normal genes. One way to demonstrate this relationship is though DNA testing. 

DNA is the chemical compound which genes are made of and is often referred to as the 

building blocks of life. Genetic testing may help in the diagnosis of a disorder.  Genetic 

testing can also be performed for research.  When a gene has changes it is called a mutation. 

 DNA testing is optional and should you agree to participate, a separate DNA consent form 

will be given to read and sign. 

Procedures of the study 

If you agree to participate in the study, your medical records will be reviewed. You will be 

examined by a medical doctor and also interviewed to collect information regarding bone 
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disease. Blood and urine samples will be collected. A total of 10mls (2 teaspoons of blood) 

will be drawn to measure the markers of bone disease and analyze for the genetic changes.  

The blood will be spun very quickly and the serum separated out. The serum which appears 

as a clear fluid will be kept frozen in a small test-tube. Your coded blood samples will be sent 

to Department of Internal Medicine research laboratory for the above mentioned tests. The 

remaining samples will be frozen and stored in a designated freezer for an unlimited period of 

time for future use in research related to diseases. However, if you decide later that you do 

not want the specimens collected from you to be used for future research, please notify the 

principal investigator in writing and the sample will be discarded in an appropriate and timely 

manner. 

Benefits of the study 

The benefits of participating in this study are that we will be able to identify the magnitude of 

bone disease in people with chronic kidney disease. Bone disease is associated with an 

increase in death and this study will assist in picking up bone disease early in people with 

kidney disease. Information that will be obtained from this study will guide our decision in 

prompt management of bone disease which will subsequently reduce the high rate of deaths 

in this group of people.  

Possible risks 

Possible side effects from drawing the blood sample include mild pain, bleeding, and bruising 

at the site of the needle insertion. Qualified personnel will collect the blood samples to 

prevent such complications. 

Financial arrangements 

You will not be paid for participating in the study. However, there will be no costs to you for 

any related study visits and procedures, as any costs incurred will be compensated by 

research funds. 
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Confidentiality 

All information obtained during the course of this study will be kept strictly confidential. 

Your records will be given unique identification numbers and the initial identification details 

won’t be used. All physical records will be kept in a locked locker with access limited to the 

research team. Electronic data will be password protected. 

Source of information 

If you have any questions, queries and clarifications, please contact the following; Dr Bala 

Waziri will be reachable 24 hours every day on the number, 0848329071. 

Additional information can be obtained from the chairperson of Witwatersrand University 

Human Research Ethics Committee, Professor Cleaton Jones on 011-717-2301 

 

Section C 

Informed Consent Form: General (patient) 

I confirm that I have been informed about the study by Dr Bala Waziri. I understand that my 

personal details will be kept strictly confidential and that I may at any stage withdraw my 

consent and participation in the study and continue to receive the appropriate treatment. I 

have also received, read and understood the study as explained in the participant information 

sheet and consent to taking part in this research study. 

 

PARTICIPANT (name)……………………………………………………………….. 

 

Signature or thumb print ……………………………… Date 

……………………………….. 
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Witness (printed 

name)………………………………………………………………………… 

Signature……………………………………………...Date…………………………………

….  

 

I, Dr Bala Waziri confirm that the participant has been fully informed about the nature 

of the above study. 

STUDY INVESTIGATOR  

…………………………………….. Signature……………Date……………….. 

Printed Name  

  

Section D 

Informed consent form: DNA Storage (Patient) 

I hereby confirm that I have been informed about the study by Dr. Bala Waziri about the 

nature, benefits and risks of the genes study.   

I understand that my blood sample will be stored for future testing. 

I understand that my personal details (any identifying data) will be kept strictly confidential. 

 I have had the opportunity to ask questions and I have also received, read and understood the 

study as explained in the participant information sheet and consent to taking part in this 

research study. 

 

PARTICIPANT (name)……………………………………………………………….. 

 



141 

 

Signature or thumb print ……………………………… Date 

……………………………….. 

  

Witness (printed 

name)………………………………………………………………………… 

Signature……………………………………………...Date…………………………………

….  

 

I, Dr Bala Waziri confirm that the participant has been fully informed about the nature 

of the above study. 

STUDY INVESTIGATOR  

 

Name ………………………….. Signature……………Date………………… 

Section E 

Informed consent form: DNA testing (patient) 

I hereby confirm that I have been informed about the study by Dr. Bala Waziri about the 

nature, benefits and risks of the genes study. I understand that my personal details (any 

identifying data) will be kept strictly confidential. I have had the opportunity to ask questions 

and I have also received, read and understood the study as explained in the participant 

information sheet and consent to taking part in this research study. 

 

PARTICIPANT (name)……………………………………………………………….. 
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Signature or thumb print ……………………………… Date 

……………………………….. 

  

Witness (printed 

name)………………………………………………………………………… 

Signature……………………………………………...Date…………………………………

….  

 

I, Dr Bala Waziri confirm that the participant has been fully informed about the nature 

of the above study. 

STUDY INVESTIGATOR  

 

Name ………………………….. Signature……………Date………………… 
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Appendix D:  Data sheet 

Study: Biochemical and Genetic Markers of Mineral Bone Disease in Black South 

Africans with Chronic Kidney Disease. 

 Patients Data Sheet  

Serial Number: ____         Hospital No:  ________   Phone No.____________ 

1.  Age at last Birthday (Years) ____________ 

2.  Sex: Male (   )  Female (   ) 

3.  Ethnicity ______________________ Black (    ) White (   ) 

4.  Marital status: Single (     ) Married ( ) Widow/Widower ( )                              

Separated/Divorced (      ) 

5.  Occupation ___________________ 

6.  History of bone pain in the last one month (a) Yes (b) No 

7.  Presence of Hypertension:  (a) Yes (b) No  

8. Do you have diabetes mellitus? (a) Yes (b) No 

9. Drug history : (a) Calcium supplement ________    і.Duration (months)._____Dose____ 

                            (b) Vitamin D supplement _______і.Duration ( months) ._____Dose____ 

                            (c) Others____________ 
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10. Aetiology of CKD_________________ 

11. Do you smoke cigarette? (a) Yes (b) No  

12. Are you on dialysis (a) Yes (b) No 

13. If answer to 12) is yes what type (a) Peritoneal (a.і) duration (months)____________ 

                                                             (b) Haemodialysis (b. і) duration (months)  _______ 

 Clinical Parameters 

1) Weight (Kg) ______________ 

2) Height (m) _______________ 

3) BMI (Kg/m
2
) _______________ 

4) Blood Pressure (mmHg)  _____________ 

Investigations.  

Parathyroid hormone (PTH)______________  

Fibroblast growth factor 23 (FGF23)  ______________     

Albumin  ______________        Calcium  ______________   

 Phosphate   ______________     Ca× PO4 ______________ 

Total alkaline phosphate (TAP)  _____________  

25-OH vitaminD______________ Serum Creatinine (µmol/L)  ______________    

Urea (mmol/L) ______________          Total Cholesterol______________   
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LDL    _____________ HDL______________ TG ______________         

 Estimated GFR:     _____________ 

Genetic analysis 

VDR genotypes:  
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Appendix F: Pdf for manuscript 2 
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