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Abstract

Control of systems are important in most industrial sectors, they find applications
in electronics, machine design and navigation. These control systems often use
sensors to work effectively. One such sensor is an accelerometer, which is used to
measure acceleration with one or more degrees of freedom. This research report
investigates the modelling, system identification and controller design for an ac-
celerometer, a Fibre Optic Accelerometer (FOA). Such a device may be applied
in many applications such as anti-skid control, structural failure in buildings and
bridges, as well as strategic missile guidance. This report presents a model of a
FOA demonstrator which crudely models an industrially developed accelerometer,
the demonstrator is made of a jig consisting of a guitar string and electromag-
nets. Such a model needs to account for a distributed parameter beam combined
with a permanent magnet and four electromagnets. The guitar string is modelled
using three beam models, namely a spring/damper model, an Assumed Modes
Model (ASM) and a Transfer Function Model (TFM). The parameters for these
beam models are identified using the Nelder-Mead simplex algorithm and the least
squares method. The electromagnets within the jig, are modelled using a math-
ematical model obtained through curve fitting of experimental data. The overall
FOA sensor is optimised using a lead-lag controller. Five cost functions where
investigated, these cost functions are H∞, Integral Square Error (ISE), Integral
Absolute Error (IAE), Integral Time Square Error (ITSE) and Integral Absolute
Time Error (IATE). It was found that the guitar string may be modelled using a
single degree of freedom beam model. This is based on a number of reasons, such
as the aperture size - through which the tip Light Emitting Diode (LED) projects,
the tip mass (permanent magnet) - acting as a natural damper and the fact that
Position Sensing Device (PSD) only measures the tip position. It was found that
a single degree of freedom model in two orthogonal axes, with a single link beam
spring/damper model was the most suitable representation of the guitar string.
And the IAE lead-lag controller was found to be the most effective in controlling
a guitar string, this effectiveness was due to least settling time.
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Chapter 1

Introduction

There are a vast array of accelerometers and gyroscopes available for guidance,

navigation and control system applications, the most common application being

the INS/GPS system which currently has a worldwide navigation accuracy of a

meter [1]. This system uses accelerometers and gyroscopes in conjunction to deter-

mine position. These two devices differ in their ability to sense rotation. However,

there are many applications that use accelerometers and gyroscopes independently

from one another. Examples of applications that use accelerometers include struc-

tural failure of buildings and bridges, the expulsion of air-bags in a vehicle collision

and anti-skid control in vehicles [1, 2, 3]. Further examples of accelerometer ap-

plications are documented in Barbour and Schmidt [1].

Figure 1.1: Crude accelerometer
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The most basic accelerometer may be thought of as a proof mass, spring and

damper housed in a sensor case. The proof mass, spring and damper are attached

in some way to the housing and as a result, the acceleration of the housing is deter-

mined using the relative motion between itself and the mass [4]. Figure 1.1 shows

the basic operation of an accelerometer. The housing accelerates to the right, here,

the acceleration is denoted by a and the reactive force is denoted by F . This causes

the mass M to move to the left, the displacement of the mass is then used to infer

the acceleration. In figure 1.1 the mass M , spring K and damper B configuration

is shown to be lumped. However, the mass, spring and damper may be distributed.

(a) MEMS accelerometer (b) Accelerometer, 25 PIGA, TITAN 2

Figure 1.2: Accelerometers

Variations of the accelerometer depicted in figure 1.1, include the Micro Electri-

cal Mechanical Systems (MEMS) and Pendulous accelerometers. MEMS may be

used to measure static acceleration or dynamic acceleration. Dynamic acceler-

ation is usually measured using MEMS based on the piezoelectric effect, while

slow changing accelerations are determined using MEMS based on capacitive and

piezoresistive effects [5]. A MEMS accelerometers is shown in figure 1.2 (a), here

the accelerometer enables the user of a smart phone to play games. A pendulum

based accelerometer called Pendulous Integrating Gyro Accelerometer (PIGA) is

shown in figure 1.2 (b), it is the pre-eminent accelerometer available. PIGA is

used in applications such as strategic missile guidance and submarine launched

strategic missiles. PIGA is a very stable linear device with very high resolution
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and dynamic range. It’s currently the only accelerometer that can handle strategic

thrust axis requirements [6].

The accelerometer presented in this research report is also a pendulum type ac-

celerometer. It consists of guitar string, a proof mass(permanent magnet), elec-

tromagnets and a housing called a jig. The guitar string, suspends a proof mass

in a magnetic field. This proof mass is attached to the tip of the guitar string.

A Light Emitting Diode (LED) is fixed to the proof mass and located directly

above a Position Sensing Device (PSD). When the housing is accelerated, the gui-

tar string is bent, resulting in a X and a Y axes deflection. The position of the

LED is detected by the PSD and corrective measures are taken in both axes via

electromagnets to bring the guitar string back to its rest position (center position).

The actuation mechanism by which the proof mass position is corrected is based

on the application of control currents to the electromagnets.

1.1 Problem Statement

This research report investigates the modelling, system identification and con-

trol design of a FOA analogue called a jig. The jig consists of an aluminium

frame, a permanent magnet, four electromagnets, a PSD, a LED and

a guitar string. The modelling has to account for a distributed parameter

beam combined with the permanent magnet and electromagnets. Addition-

ally, several controllers are designed to control the guitar string.

1.2 Aim of the Study

The main objective of this research report is to determine the jig’s acceleration in

its X and Y axes, the jig is shown in figures A.5, A.6 and A.7. The jig’s second

level is shown in figure 1.3, here a top and side view is depicted. It is a variation of

the FOA system constructed at the Council for Scientific and Industrial Research

( CSIR ). The CSIR FOA system was unavailable for testing, hence an alternative

testing platform was developed. The testing platform shown in figure 1.3 consists
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Figure 1.3: Accelerometer top and side view

of a flexible fibre, a guitar string, with a permanent magnet attached to the free

end. The system also consists of four electromagnets, two on each axis. The guitar

string deflects under acceleration, this deflection is controlled by the interaction

between the magnetic fields of the electromagnets and the permanent magnet at

the tip of the guitar string.

The position of the guitar string tip at any given moment is determined using a

PSD and a LED. The LED is fixed directly beneath the permanent magnet and

has radiation pattern which projects downwards in the direction of the PSD.

Minimisation of the error between the tip displacement (measured position) and

the desired position (center position) is achieved via a controller, this is seen in

figure 1.4. This figure shows several blocks in the closed loop path; a controller

block, an electromagnet block consisting of two electromagnets, a guitar string

block consisting of a beam and a permanent magnet model and a PSD. The guitar

string models to follow will be derived in a single dimension. However, since

displacement of the guitar string occurs in two dimensions, two decoupled, one

dimension guitar string models will be used as the plant model. Acceleration

of the jig is then determined using the fact that the necessary control force is
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proportional to the square of the current which drives the electromagnets. The

proportionality relationship is given as

Fc = Kpi
2
c , (1.1)

where ic [A] is the control current, Fc [N ] is the control force and Kp [ N
A2 ] is the

proportionality constant. Hence, the acceleration of the system is determined

using the control force, proportionality constant and Newton’s second law. The

acceleration of the jig is given as

a =
Kpi

2
c

M
, (1.2)

where a [m.s−2] is acceleration, Kp [ N
A2 ] is the proportionality constant and M [kg]

is the mass of the magnet. Equation 1.2 is valid for a rigid body but may be

extended to a flexible body, here, equation 1.2 has a matrix equivalent and relies

on the problem being linear.

Figure 1.4: Closed loop
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1.3 Organisation of the Research Report

The organisation of the research report will now be presented. This report con-

sists of a Literature survey, three core chapters, a Concluding chapter and three

supporting appendices. The core chapters are a Modelling chapter, a System iden-

tification, Decoupling and Control chapter and a Results chapters. These chapters

contain the author’s contribution to the body of knowledge.

1.3.1 Literature Survey

This chapter discuss the various beam and electromagnetic models documented

in the literature. It also presents an overview of the various controller algorithms

used to control beams.

The available beam models include the Euler-Bernoulli beam model, an Assumed

Modes Model (ASM) model, a Transfer Function Model (TFM) and a spring-

damper model.

Electromagnetic models are generally modelled using circuit theory. However,

there are cases where they are modelled using lookup tables and Finite Element

Method (FEM).

Various control techniques have been used to control a beam such as fuzzy logic,

sliding mode control and Quantitative Feedback Theory (QFT). The merit of these

control techniques and others are discussed. This chapter will also discuss various

cost functions and give a brief overview of robust control.

1.3.2 Modelling

The modelling chapter consists of two subsections that describe subsystems of an

accelerometer, a beam and an electromagnetic subsystem. A guitar string may be

approximated as a beam, furthermore, a guitar string may be approximated using

one or more interconnected links with a proof mass(permanent magnet) attached
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to its tip. The displacement of the guitar string takes place via the electromagnetic

interaction between the permanent magnet and electromagnetic subsystem.

Beam Subsystem

A beam is characterized by its slender ratio λ. The λ is a dimensionless quantity

defined as

λ =
∅
L
, (1.3)

where ∅ [m] is the fibre diameter and L [m] is the beam length. Beams with a large

slenderness ratio for a given length L are classified as being rigid, while beams with

a small slenderness ratio for the same length are considered as being flexible.

The dynamics of a flexible beam is determined using many degrees of freedom,

while the dynamics of a rigid beam is determined using fewer degrees of freedom.

Here, degrees of freedom refers to the various allowable deflections of finite ele-

ments of a beam. An example of a rigid beam is a pendulum which is confined to

swing in a single plane. The pendulum is modelled as a rigid body called a link,

with a single degree of freedom. An example of a flexible beam is one which is

modelled using the Euler-Bernoulli Partial Differential Equation (PDE).

The research report will therefore proceeds by developing three engineering models

which will be employed to model the guitar string: The first model will attempt

to model the guitar string using coupled links, the equations of motion are derived

using the Euler-Lagrange equation. The second model will approximate an Euler-

Bernoulli beam using the mode summation method called ASM; and the third

model is based on Laplace transform of the Euler-Bernoulli beam PDE.

Electromagnetic Subsystem

The top and side view of the electromagnetic system is shown in figure 1.5. It con-

sists of four U-shaped electromagnets and a permanent magnet. The permanent
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Figure 1.5: Top and side view, depicting electromagnets and permanent magnet

magnet is located off center due to acceleration, while the cores are placed around

the permanent magnet, orthogonal to each other on the X and Y axes. The cores

are displaced from the center by the distances g1, g2, g3 and g4. At the tip of the

permanent magnet is a LED, the LED projects downward through the aperture.

The permanent magnet experiences a force when its flux interacts with the chang-

ing flux produced by the electromagnets. An increase in magnetic flux density,

due to the current flowing in the coil, results in the attraction of the permanent

magnet by the electromagnet. In addition, the residual magnetism associated with

ferromagnetic electromagnets is also present but will be assumed to be negligible.

In addition, the flux path is not uniform. This is attributed to a number of fac-

tors. These factors are core dimensions, permanent magnet dimensions and the

guitar string’s ability to swing. As the guitar string swings, the effective flux path

length on one side of the permanent magnet increases as it moves away from an
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electromagnet and decreases on the other side as it moves towards the opposing

electromagnet.

The electromagnetic model that will be presented in the Modelling section in this

research report is based on experiment. It effectively maps the applied current to

the experimentally determined electromagnetic force , using curve fitting.

1.3.3 System Identification, Decoupling and Control

System Identification

Each of the beam models that will be presented in the chapter on Modelling have

unknown parameters. The goal of system identification is to quantify these pa-

rameters using measured data and the least squares method. In this chapter the

experimental set-up is described as well as the least squares method.

Decoupling Control

Figure 1.6: Decoupling beam’s axes

The dynamics of the guitar string will be modelled in a single plane, either on the

X or Y axes as depicted by figure 1.5. Ideally, an input current UX(s) along the

X-axis results in a displacement output WX(s) along the X-axis only.
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However, most physical systems are non ideal and exhibit a cross coupling. That

is for an input current UX(s) in the X-axis there is an output displacement WX(s)

and WY (s) along the X and Y axes. It is therefore necessary to decouple the

two axes. An advantage of this is decentralized control. Figure 1.6 shows the

decoupling process, here the decoupler allows the beam to respond along the axis

to which the control input is applied i.e a input along the X-axis in figure 1.5

results only in a response along the X-axis.

Control

Several cost functions are investigated, these cost functions are minimised using a

direct search algorithm. The algorithm finds an optimal controller for a specific

cost function. The search makes use of a predefined control structure, this was

chosen to be a lead-lag controller. The cost functions are Integral Square Error

(ISE), Integral Absolute Error (IAE), Integral Time Square Error (ITSE), Integral

Time Absolute Error (ITAE) and the H∞ norm.

1.3.4 Results

In this chapter the system identification and decoupling results are presented.

The chapter also compares the five controllers obtained from the cost function

minimisation. The performance of the controllers are determined by their settling

time and therefore implicitly by their damping.

1.3.5 Conclusion

This chapter will summarise the principle findings found in each chapter. It will

also list a number of improvements and suggestions. Finally, the chapter will end

with concluding remarks.

1.4 Methodology

The methodology used to model, identify and control the guitar string is shown

in figure 1.7. The methodology begins by: formulating three beam models, ob-

27



taining several step responses from the jig. This data consists of the guitar string

displacement and was used to identify the beam parameters and to develop an

electromagnetic model.

The beam models are a spring/damper model, a TFM and an ASM. The spring/damper

model was derived using the Euler-Lagrange equation, the TFM was obtained using

Laplace transform techniques for PDEs and the ASM uses selected mode shapes.

Figure 1.7: Accelerometer design methodology
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The data consisted of guitar string responses for various step input currents. This

data resulted in a set of identified parameters for each model. Statistical mea-

sures such as mean and standard deviation of identified parameters were then

determined for each beam. Additionally, the mean error between the data and

simulated responses is determined. The standard deviation and mean error were

then used to justify the use of a beam model. Ideally, a model with the least stan-

dard deviation in identified parameters and least mean error is chosen as the plant.

This is required to ensure that the model is valid for the full range of current inputs.

The model with the least standard deviation is then linearised. The process of lin-

earisation will only be applied to the spring/damper model, since the result of the

Euler-Lagrange equation is N coupled non-linear Ordinary Differential Equations

(ODE). The other two models are inherently linear, since the Euler-Bernoulli PDE

is a linear PDE. Finally, the electromagnetic model, the linear model and a direct

search method is used to design the controllers. The controllers are based on five

cost functions, the cost functions are ISE, IAE, ITSE, ITAE and the H∞ norm.
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Chapter 2

Literature Survey

In the previous chapter the problem statement, aim of the study, organisation of

the research report and the research methodology was presented. The focus of this

chapter is a literature survey. This survey will cover the following topics:

1. beam models,

2. electromagnetic models and

3. direct search algorithm, decoupling and control techniques.

2.1 Beam Models

This section will begin with a discussion on beam modes and present two dis-

tributed beam models. A distributed beam model is described by PDE/s [7], as

opposed to a lumped parameter model which is described by an ODE/s. An ex-

ample of a lumped parameter model that approximates a beam is a single link

pendulum. The disadvantages of a lumped parameter model is that it entails

increased mass, increased energy usage and higher inertial forces. These charac-

teristics cause inaccurate positioning and tracking of a pendulum [8].
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2.1.1 Modes

Figure 2.1: Mode shapes

Modes are the allowable shapes that a beam may take while bending. Each mode

shape has an unique spatial frequency and amplitude associated with it [9, 7]. A

one link pendulum model of the a beam is capable of modelling the first mode

shape which is depicted in figure 2.1 a). A two link pendulum model is capable of

modelling the first two mode shapes. This is depicted in figure 2.1 b). A three, four

and N link pendulum model may be used to approximate the first three, four and

N mode shapes. A N link model of a beam consisting of infinitely many modes is

shown in figure 2.1 c) and fully describes the beam dynamics.

These infinite number of modes may be categorized into two groups (they are

categorized based on the stiffness between the links), namely, modes due to rigid

and flexible body motion [10]. The rigid modes (which are associated with a low

number of links) have low frequencies and large amplitudes [11]. Flexible modes

(which are associated with high number of links) have high frequencies and small

amplitudes [11]. Vibrations that result from flexible fast modes need to be sup-

pressed as soon as possible. Suppression of these fast modes is possible using the

control Lagrangian method. This method uses two control inputs to control both

the slow modes and the fast modes [11]. However, if the flexible modes are seen to

contribute negligibly (a stiff beam) to the combined amplitude, then the flexible

modes may be ignored.
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When designing a controller the high frequency modes are neglected in the model in

order to reduce the model order [7, 10]. However, using a reduced order model may

lead to modelling errors and parameter identification errors. On occasion many of

the vibrational modes are excited in a beam, which causes instability if a controller

is designed for a reduced order model. This problem is known as control spillover

and occurs when the controller tries to control the real system. In this process

higher order modes (called residual modes) get into output called observation

spillover and are fed back into the controller resulting in control spillover [10].

The instability that results is predominately caused by the observation spillover

[10]. There are three ways to avoid this problem:

1. use a filter to eliminate high modes,

2. use a higher order model and

3. use control law which guarantees stability [10].

2.1.2 Beam models based on PDEs

The literature documents various transversely vibrating uniform beam models.

Four of these models were documented by Han and Benroya, the beam models

are the Euler-Bernoulli, Rayleigh, Shear and Timoshenko beam models. Each of

these models are described by a PDE/s, boundary conditions and initial condi-

tions. Table 2.1 shows the various models and the modelling assumptions made

when deriving the PDE/s [12].

Models tabulated in 2.1 contain infinitely many modes, they are called distributed

parameter models. These models are mathematically modelled using PDE/s and

are used to describe the transversal displacement. Two of the most widely used

theories are the Euler-Bernoulli PDE and Timoshenko beam PDEs [12]. The

Timoshenko beam model has been applied to the modelling process of the NASA

mini-mast truss [8]. The Euler-Bernoulli beam equation has found many applica-

tions [13, 14].
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Table 2.1: Four beam models and their deriving assumptions

Beam Model Bending Lateral Shear Rotary
moment Displacement Deformation Inertia

Euler-Bernoulli Yes Yes No No
Rayleigh Yes Yes No Yes

Shear Yes Yes Yes No
Timoshenko Yes Yes Yes Yes

The slenderness ratio λ is the benchmark when deciding which of these beam

models to use. As λ increases the four beam models predict the same transversal

displacement. Euler-Bernoulli model is suitable for analysing beams where λ is

greater than 100 [15]. The Euler-Bernoulli beam model is stated mathematical as

ρA
∂2w(x, t)

∂t2
+ EI

∂4w(x, t)

∂x4
= f(x, t), (2.1)

where ρ [kg/m−3] is the density of the beam, E [GPa] is Young’s Modulus, A [m2]

is the cross sectional area, w(x, t) is the transversal displacement, f(x, t) is the

distributed force and I [kg m2 rad2] is the area moment of inertia. There is no

closed form solution to equation 2.1. However, other analytical techniques exist

which may be used to solve equation 2.1 such as FEM or the Finite Difference

Method (FDM).

One of the objects of interest to this research report is a cantilever beam this due

to the fact that it is clamped at one end. This beam may be characterised using

the Euler-Bernoulli PDE and boundary conditions. The boundary conditions for a

cantilever beam are given by equation 2.2. These boundary conditions are justified

as follows:

• the beam cannot have any transversal displacement w(0, t) at the point where

it is clamped x = 0,

• at the clamped point the beam is assumed to be horizontal,
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• the bending moment at x = L must be zero and

• the shearing force at x = L is zero.

w(x, t)|x=0 = 0

∂w(x, t)

∂x
|x=0 = 0

∂2w(x, t)

∂x2
|x=L = 0

∂3w(x, t)

∂x3
|x=L = 0. (2.2)

Assuming that the distributed force f(x, t) in equation 2.1 is zero and applying the

boundary conditions given in equation 2.2 results in the following characteristic

equation (see appendix B.1 for the derivation)

1 + cosh (βL) cos (βL) = 0. (2.3)

The roots of equation 2.3 determine the spatial frequencies of each mode. The

frequencies are given as

f =
1

2π

√
β4EI

ρA
. (2.4)

The analysis performed above may be performed on all four of the beam models

presented in table 2.1. The exclusion of either or all of the assumptions detailed in

Table 2.1, results in overestimation of the spatial frequencies of a beam. This effect

then becomes more prevalent when trying to estimate higher frequencies. Both

Euler-Bernoulli beam model and Rayleigh beam model overestimate the spatial

frequencies while the shear model predicts the spatial frequencies more precisely.
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The Timoshenko beam model provides the most accurate estimate [12].

Additionally, equation 2.1 contains no damping term i.e all the poles sit on the

imaginary axis in the s−plane. A damping term is an essential part of the physics,

it prevents a beam from oscillating indefinitely. Two forms of damping are consid-

ered in the literature these are viscous damping which is also known as Rayleigh

damping and Kelvin-Voight damping. Viscous damping causes the poles and the

zeros to be shifted from the the imaginary axis into the left half of the s− plane.

This damping also reduces the undamped natural frequency. Voight damping

causes the poles and zeros to be shifted onto an unit circle in the left half of the

s− plane. Voight damping is also non-uniform for all modes, higher modes are

dampened more highly than lower ones [16].

2.1.3 N-link Pendulum

Many researchers have modelled robotic arms, gymnasts, single, double and triple

link pendulums. The most frequently used methodology is Lagrangian dynamics.

Lagrangian dynamics is easy to apply and is capable of handling complex prob-

lems. Other methods for modelling flexible structures exist such as Hamilton’s

principle and D’Alembert principle [10].

In the literature very few researchers have considered modelling a multi-link pen-

dulum using Lagrangian dynamics and in most cases Lagrangian dynamics is used

to model the inverted pendulum scenario. One such researcher who has consid-

ered this is Franklin et al. [9]. Other researches have gone further and they have

tried to automate the process of finding an inverted multi-link pendulum model

[17, 18, 19]. One such model was produced by Grossman et al [17]. His model does

not include a damper or a spring and therefore certain information in the joint is

lost. In addition, the model does not take into account the translation of latter

links [17].

Issues pertaining to a N -link pendulum model include: the instability due to con-

trol spillover which is highly dependent on sensor location (instability occurs for a
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sensor located at the tip but may be stabilized for a sensor at the root of arm and

joint) [10] and the radius of stability which reduces tremendously as the number

of links are increased [20].

For the radius of stability the controllability and observability matrices indicate

that there is no practical controller which is capable of controlling a model with

high number of modes with an input at the tip [20]. Possible reasons for experi-

mental instability are initial conditions, disturbances and parametric uncertainty

[20]. In contrast, if N control inputs are considered then no such problem exists

[20]. However, for the system being modelled i.e a guitar string, there is only one

control input located at the tip of guitar string and hence the radius of stability

applies. Therefore, the system may also be classified as under-actuated, that being

more degrees of freedom than available actuators [18]. Thus the modelling process

is trade off between accuracy and stability.

Lagrangian Dynamics

In mechanics Newton’s second law of motion may be used to determine the dy-

namics of a system. However, the dynamics of a system is derivable using differ-

ent formulations. These formulations are D’Alembert principle, Euler-Lagrange

equation, Hamilton’s equations and Hamilton’s principle [21]. These formulations

consider different quantities, for instance Newton’s law considers force whereas

Lagrange and Hamilton consider energy [22]. Lagrange equation is given as

∂

∂t
(
∂L
∂q̇n

) +
∂L
∂qn

+
∂Ed
∂q̇n

= 0, (2.5)

where n = 1, 2, 3, ..., N and

L [J ] is defined as the Lagrangian energy function given by L = T − V ,

T [J ] is the kinetic energy of the system,

V [J ] is the potential energy of the system,

Ed [J ] is the dissipative energy function of the system,
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qn [m] is the generalized coordinate and

q̇n [m.s−1] is the generalized velocity.

Generalized coordinates are those coordinates that fully describe the motion of a

body/bodies. The number of generalized coordinates are equal to the number of

degrees of freedom. If a body’s motion is described by N generalized coordinates,

then it is seen to plot out a trajectory in a N dimensional space called a phase

plane. This is difficult to visualize, but may be visualized using a Poincare section

[22].

2.2 Electromagnetic Models

Electromagnets are used in various applications such as those used in consumer

electronics, CAT scan machines, surgical operating theatres and junk yards. They

also find applications in control where they are used as actuators to control posi-

tion. Two such applications documented in the literature are magnetic levitation

control systems and pendulum control systems.

Levitation type systems are used in frictionless bearing damping systems, suspen-

sion of prototypes in wind tunnels and high speed trains [23]. They categorized as

those using a repulsive and those using an attractive force.

An attractive type model is documented in [23], here, an electromagnet is used

to levitate a steel ball, where the force relationship is based on an incremental

inductance model. Another electromagnetic suspension system was modelled in

[24], here a 2D lookup table is used to determine the electromagnetic force, the

table mapped current and inductance [24].

Pendulum type systems include both hanging and inverted type pendulums. Where

control may be applied by electromagnet/s adjacent to the pendulum or an elec-

tromagnet positioned below the pivoting point.
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A simplistic pendulum model which is controlled via a permanent magnet and

electromagnet is presented in [25], the permanent magnet is placed at the tip of

the beam and the electromagnet is placed directly below the pivoting point. The

model treats the magnet as a point source which obeys an inverse squared depen-

dence on the distance [25].

An inverted pendulum controlled using on-off action via two electromagnets is

presented in [26]. The system consisted of an inverted pendulum with a two

electromagnets near a fulcrum. In this model the force relationship was of an

exponential form and was dependent on a number of constants and the distance

between the electromagnets and the pendulum [26].

Yet another pendulum control system using a mass with an embedded magnet was

modelled in [27]. A Hall optical sensor and coil actuator was positioned directly

beneath the pivoting point. The force generated in this model was determined

using FEM simulations for various displacement configurations [27]. Results from

such a model were stored in a lookup table.

A mass pendulum combination, consisting of a damper and spring attached be-

tween a boundary and the mass was modelled in [28], this system was actuated by

a spherical electromagnet. The electromagnetic model consisted of modelling each

element as a reluctance i.e. core, air-gap and load. Since the pendulum swings

through an angle, the displacement of the tip mass from the electromagnet varies.

The model accounted for this variation by determining the hypotenuse length [28].

2.3 System Identification, Decoupling and Con-

trol

2.3.1 System Identification

The system identification of the beam uses the Nelder-Mead simplex method to

minimise the least squares objective function. The method is applicable to both
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linear and non-linear least squares system identification. However, the latter is very

sensitive to initial parameter estimates. Alternative algorithms for least squares

minimisation are discussed by Donald W. Marquardt, such as the Gauss-Newton

Method and Gradient decent method. Both of which have limitations i.e. di-

vergence of successive Taylor corrections for the estimated parameters and the

slow convergence of the gradient decent [29]. This section will now proceed by

describing this direct search method.

Nelder-Mead Simplex method

There exists various optimization algorithms apart from those mentioned above,

such as Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO),

Artificial Neural Networks (ANN) and Genetic Algorithms (GA) [30]. The ef-

fectiveness of each algorithm depends on their ability to find a global minimum.

Therefore, certain algorithms are more suited for global optimization, while others

are more suited for local optimization.

An example of such a case is document by Lasheen et al, in his paper titled “Using

hybrid genetic and Nelder-Mead algorithm for decoupling of MIMO systems with

application on two coupled distillation columns process” [2]. The paper discusses

the use of a Hybrid Genetic Nelder Mead Algorithm (HGNMA) to determine the

optimal steady state values of a decoupling matrix. It uses the GA to find the

global optimum area and the Nelder-Meads local optimization capabilities to fine

tune this result. The latter algorithm, the Nelder-Mead simplex method is a direct

search method for multi-dimensional unconstrained minimization problems. The

method attempts to minimize a scalar valued non-linear function of n variables

f(x) for x ∈ Rn, using only function values and no derivative information.

The Nelder-Mead algorithm at each iteration of the algorithm performs geometric

transformations on a non degenerative simplex. A simplex is a geometric figure in

n-dimensional space of non-zero volume, that is the convex hull of n+ 1 vertices.

In two dimensions, a simplex is a triangle and three dimensions a simplex is a

pyramid. The algorithm performs these geometric transformation using four scalar
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parameters. These are reflection ρ, expansion χ, contraction Υ and shrinkage σ

[31]. These parameters satisfy the following inequalities.

ρ > 0, χ > 1, χ > ρ, 0 < Υ < 1 and 0 < σ < 1 (2.6)

Equation 2.6 is sufficient for convergence in one dimension. However, the most

frequent choice of scalar parameters are

ρ = 1 χ = 2, Υ =
1

2
and σ =

1

2
(2.7)

The algorithm at the beginning of each i iteration starts with a simplex containing

n+ 1 vertices and the function f(x) which is to be minimized. It then orders the

simplex vertices x1, x2, ......., xn+1 such that

f1(x1) ≤ f2(x2), ..........,≤ fn+1(xn+1). (2.8)

At the end of each iteration one of two things happen: the least performing vertex

is eliminated using either the reflection, expansion or contraction transformation

or the entire simplex is replaced using shrinkage transformation. The worst vertex

is xn+1 and it’s associated function value is f(xn+1). In effect, the transformed sim-

plex is used in the next iteration. This iterative process of simplex transformations

in n dimensional space results in the minimization of the function f(x).

2.3.2 Decoupling Control

Many a plant is characterised as being a Single Input Single Output (SISO) model

and consists of a single control loop [32]. However, many plants do not have such

a simple structure e.g. in the process industry plants have more that one control

loop and variable (e.g. product rate and product quality) [32]. The increase in

the number of control loops introduces a loop interaction, it is therefore imper-

ative that each loop know what the other is doing in order to avoid instability

[32]. This complex structure applies to a two axis accelerometer which does not

conform to such a simple control structure and therefore consists of two control

loops, this is due to the none ideal physical plant which result in cross coupling [33].
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The term cross coupling as applied to the accelerometer refers to the accelerom-

eters response along an axis as a result of a step applied along another axis [33].

Identification of cross coupling models may be obtained using system identification

process. Here, a step is applied to one axis while the data is recorded in the other

axis [33].

Control of a two loop plant may be achieved using either centralised or decen-

tralised control. Centralized control is characterised as having to perform complex

calculations, having high maintenance and increased failure due to size. On the

other hand decentralised control is characterised as being analytically flexible and

scalable. Decentralised control, also allows each control loop to be independently

controlled [34]. That is, it allows a Multi Input Multi Output (MIMO) system to

be controlled as though they where independent SISO systems [35]. Decentralized

control involves decoupling the plant, that is, the controllers are made to think

that they are independently controlling a single loop [35]. It therefore eliminates

complicated loop interactions and reduces MIMO system into single loop systems

[34, 35]. It is recommended that the decouplers be designed before the controllers

[33].

Decoupling is realized using either P-conical (feed-forward decoupling) form or

V-conical (feed-back Decoupling) form, shown in figure 2.2. The P-conical form

has the advantage that it is implicitly controllable and observable [32]. While the

V-canonical form is more difficult to obtain since the inputs are dependent on the

outputs [32].

Decoupling design normally includes the following steps

• Determine optimum pairing of inputs and outputs and

• determine the entries in the decoupling matrix [35].

Various methods are available for determining the input/output dependencies and

developing a decoupling matrix. The literature documents the use of Relative

Gain Array (RGA) to determine the dependencies and HGNMA to determine the
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decoupling entries at steady state [35]. Other methods include calculating the

steady state gains [35] and using system identification on a given decoupler struc-

ture consisting of a gain, dead time and transient time [35, 36].

Figure 2.2: P-canonical and V-canonical forms

In order to apply either form it is necessary to obtain linear models of the plant,

any errors in the plant will effect the controller and decoupler performance [32]
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[36]. The decoupling matrix is placed before the process i.e electromagnets and

guitar string model [36].

Decoupling forms

Figure 2.3: Decoupler and plant

Decoupling is achieved by cascading the decoupler and plant, the choice of decou-

pling results in a diagonal matrix T .

T = DG =

[
TXX(s) 0

0 TY Y (s)

]
(2.9)

The decoupling process is shown in figure 2.3, where UCX(s) and UCY (s) are the

outputs of the controllers, UX(s) and UY (s) are the outputs of the decoupler and

WX(s) and WY (s) are the the outputs of the plant. The simplest decoupling

scheme is called simple decoupling [34]. It assumes that the diagonal entries TXX

and TY Y in equation 2.9 are equal to 1 with the off diagonal having steady state

entries. The resulting decoupling matrix D is then given by
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D =

[
1 −GXY (s=0)

GXX(s=0)

−GY X(s=0)
GY Y (s=0)

1

]
, (2.10)

where Gi,j(s = 0) indicates steady state response for a step input. Equation

2.10 was proposed by Zalkind, in fact, variations of equation 2.10 are allowable

[34, 35, 36]. Thus the decouplers

D =

[
1 1

−GY X(s=0)
GY Y (s=0)

−GXX(s=0)
GXY (s=0)

]

and

D =

[
−GY Y (s=0)
GY X(s=0)

−GXY (s=0)
GXX(s=0)

1 1

]
,

are all valid decoupling forms. These decouplers are advantageous, if for example
GY X

GY Y
is to difficult to realise but GY Y

GY X
is not. A better choice for dynamic systems

is to choose TXX = GXX and TY Y = GY Y . This form of decoupling is called

ideal, the disadvantage of this decoupling scheme is the improper entries [34, 36].

Yet another decoupling mechanism is documented in [33]. This decoupling relies

cascading decoupling matrix with the plant matrix and yet again requiring that

the result to be diagonal. In this case the decoupling matrix is given by

D =
1

GXXGY Y −GXYGY X

[
GXXGY Y −GXYGY Y

−GXXGY X GXXGY Y

]
. (2.11)
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2.3.3 Control

Robust Control

The robust control problem is concerned with the design of accurate control sys-

tems, even though there are plant uncertainties. The controller is required to

control a nominal plant in addition to perturbations of the nominal plant. These

perturbations are seen as a family or a band of plants in the Nyquist or Bode

plot. Major contributions of modern robust control include synthesis techniques

for robust stabilization using H2 and H∞ sensitivity optimization [37]. Table 2.2,

shows the historical overview of robust control.

Table 2.2: Development of Robust Control
Period Major contribution Focus
Classical Nyquist Frequency domain Loop shaping of SISO

Sensitivity stability criterion and systems for stability,
Design Period Black’s concept of sensitivity reduction
(1927-1960) loop gain and noise suppression

State Variable R.E Kalman introduces Problem of plant
Period number of state variable uncertainty was largely

(1960-1975) concepts: controllability, ignored
observability and optimal
state estimation Kalman
filter and Cruz introduces

sensitivity comparison
matrix

Modern Robust Zames introduces the Applying SISO techniques
Control Period small gain principle to MIMO, this introduced

(1975-) and Kalman shows that LQG/LTR and the use of
state feedback has of structured singular
strong robustness values. Period also

properties concerned with robust
control synthesis

Other approaches that are available to deal with uncertainties in the plant are

stochastic variation of plant uncertainties, where variations in the model is repre-

sented as state dependent noise. Another approach is game theoretic or minmax

approach, here the uncertainty in parameters are viewed as antagonists. Other ap-
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proaches include guaranteed cost control, Lyapunov function theory and QFT [37].

At present, the most commonly used technique for robust design of MIMO sys-

tems is the Linear Quadratic Regulator (LQR) technique which is equivalent to H2

optimization. The main advantage of LQR is its ability to handle MIMO systems

and its ability to handle disturbances when modelled as random white noise. The

disadvantages are: the method cannot handle model uncertainties and assumes

that all noise is Gaussian white noise [38].

QFT generally achieves robust performance for minimum phase, stable and unsta-

ble plants but has limited response for non-minimum phase systems. However, H∞

which predominately deals with linear plants is capable of handling stable, unstable

and non-minimum phase plants [39]. The disadvantage of the H∞ technique is the

high order of controllers that are often obtained as compared to traditional control

techniques which results in low order controllers [40]. Minimum phase refers to

a Linear Time Invariant (LTI) system which along with its inverse is causal and

stable. Therefore, H∞ optimization is the most viable, since it overcomes the short

comings of both LQR and QFT.

Alternative Control Techniques

There are a wide variety of other controllers that may be used to control a beam.

The optimum response controller proposed by Kalman is one such control method.

It designs a controller such that the system becomes critically damped within two

time periods.

Another method used to control the dynamics of cranes is discussed in [41], the

method used is Hierarchical Artificial Neural Network Fuzzy Logic (HANNFL).

The method does not use a mathematical model but instead uses data to train

the neural network. Such a controller reduces computation time significantly.

HANNFL also has the advantage that it reduces the rule set [41].
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Chapter 3

Modelling

The previous chapter presented a literature survey. The survey consisted of a

discussion on beam modes, beam models, electromagnetic models, system iden-

tification, decoupling control and various control techniques that may be used

to control a beam. This chapter will focus on the modelling of the beam and

electromagnetic subsystems. The chapter consists of the following topics:

• a N−link pendulum model,

• a TFM of the Euler-Bernoulli PDE and

• an electromagnetic model.

3.1 N-Link Pendulum

3.1.1 Modelling Assumptions

The boundary conditions for the beam are clamped-free. Here, the one end of the

beam is clamped to the jig ceiling while at the other end the beam is free. In

addition, the free end has a tip mass attached to it. An example of a four link

pendulum model used to model a clamped-free beam is depicted in figure 3.1.
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Figure 3.1: Four link pendulum

Below are a list of assumptions used to derive a many pendulum link model. These

assumptions along with with Lagrangian dynamics is used to derive such a beam

model. The assumptions are

• pendulums are constrained to move in R2 plane,

• first pendulum is stationary and clamped to ceiling of the jig,

• each pendulum has the same mass m, moment of inertia J and length l,

• center of gravity are treated as point masses,

• dampers and springs are assumed to have the same coefficients K,B along

the length of string,

• the control torque τc is applied to the last link,

• inertial acceleration is applied to the jig and

• the pendulums translate and rotate.
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This section will proceeds as follows, firstly the compact matrix form is introduced

thereafter a discussion on linear systems theory is presented. A non-linear two link

model will be derived using the Lagrangian dynamics equation 2.5, it is then shown

how this model is placed into compact matrix form and the linear form. Finally,

the result is generalized for a N -link model.

The dynamics of a three link pendulum model is also derived using Lagrangian

dynamics; this appears in appendix B.2.1. The dynamics of all these models are

then verified using an additional method, namely Newton’s second law, this also

appears in appendix B.2.1. In addition, the dynamics is verified using a symbolic

language called WxMaxima and MATLAB. Once the dynamical equations have

been verified a generalized kinetic, potential and dissipative function is found.

This is done in order to automate the derivation for higher number of link models,

see appendix B.2.2.

3.1.2 Compact matrix form

Given the non-linear ODEs it is possible to place the system in compact matrix

form [18, 42, 19]. The compact matrix form given as

M(q) q̈ +B(q, q̇) q̇ +K(q) = Qτc, (3.1)

where q denotes the degrees of freedom, q̇ denotes the generalized velocities and q̈

denotes acceleration. Q is a generalized vector of forces and τc is the control input.

The matrix M(q) is a positive definite symmetric mass matrix [43, 19]. The term

K(q) is a matrix containing the gravitational forces and the term B(q, q̇) contains

the centrifugal and Coriolis forces [19]. If the system of non-linear equations is

linearised then this results in a set of linear ODEs, that may be placed in the

linear form given by

M q̈ +B q̇ +Kq = Qτc. (3.2)
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Using equation 3.2 the linear state-space form is obtained by pre-multiplying

throughout by the inverse of the mass matrix M and signing states. This is

detailed in the next section on linear systems theory.

3.1.3 Linear system theory

The compact matrix form in equation 3.2 may be placed in the conical state space

model form given by

ẋ = Ax+ B u (3.3)

and

y = C x+D u, (3.4)

where x is the state, u is the input and y is the output. Additionally, A is a n×n
matrix, B is a n × 1 vector, C is a 1 × n vector and D is a 1 × 1 vector. The

matrices A, B, C and D are given as

A =

[
0 I

−M−1K −M−1D

]
,

B =

[
0

M−1Q

]
,

C =
[
I 0

]
,

and
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D = 0.

Given the linear state-space forms in equations 2.3 and 2.4, the system control-

lability and observability may be evaluated. The controllability matrix Co and

observability matrix Ob are given by

Co =
[
B : AB : ... An−1B

]
(3.5)

and

Ob =
[
C> : A>C> : ... (An−1)>C>

]
. (3.6)

For the system to be totally observable and controllable the matrices 2.8 and 2.7

need to be of full rank.

3.1.4 Two Link Pendulum

A two link pendulum is shown in figure 3.2. Each pendulum link of length l is

seen to have a center of mass located a distance p from a joint. The joint between

the stationary first link and movable second link contains a damper and a spring.

In addition, a tip-mass mt is attached to the end of the second link. The position

vectors of the first center of mass m0 and second center of mass m1 are ~r0 and

~r1. The position vector of the tip mass is denoted as ~rt. The position vector and

velocity vector of the clamped mass m0 are

~r0 = [0, h− p]

and
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Figure 3.2: Two link pendulum

~̇r0 = [0, 0],

where h is the height of the jig and p is the distance from the joint to the center

of mass. The second link rotates about the joint between the two links and its

position and velocity vector are

~r1 = [p sin θ, h− l − p cos θ]

and

~̇r1 = [θ̇p cos θ, θ̇p sin θ].

The tip mass located at the end of the second link, is positioned at ~rt and has a
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velocity ~̇rt, mathematically these vectors are

~rt = [l sin θ, h− l − l cos θ]

and

~̇rt = [θ̇l cos θ, θ̇l sin θ].

The kinetic energy of the two link pendulum is

T =
1

2
m~̇r0.~̇r0 +

1

2
m~̇r1.~̇r1 +

1

2
mt~̇rt.~̇rt +

1

2
Jθ̇2

=
1

2
m[(θ̇p cos θ)2 + (θ̇p sin θ)2]+

1

2
mt[(θ̇l cos θ)2 + (θ̇l sin θ)2] +

1

2
Jθ̇2

=
1

2
mθ̇2p2 +

1

2
mtθ̇

2l2 +
1

2
Jθ̇2. (3.7)

Equation 3.7, is seen to include the energy due to the second link rotating as well

as translating. The equation 3.7 also accounts for the translational motion of the

permanent magnet. The potential energy for the two link pendulum is

V =
1

2
Kθ2 +mgh0 +mgh1 +mtgh2 − τθ

=
1

2
Kθ2 +mg[h− l − p cos θ] +mtg[h− l − l cos θ]− τcθ, (3.8)

where τc θ is the potential energy due to the control torque τc. Equation 3.8

assumes that the potential energy is stored in the spring, located between two

adjacent links. It also assumes that the center of masses have potential energy
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due to their displacement above ground. Now given equations 3.7 and 3.8, the

Lagrangian energy function may be determined. The Lagrangian energy function

is given as

L = T − V

=
1

2
mθ̇2p2 +

1

2
mtθ̇

2l2 +
1

2
Jθ̇2 − 1

2
Kθ2 −mg[h− l − p cos θ]−

mtg[h− l − l cos θ] + τcθ, (3.9)

where J = 1
3
ml2, see appendix B.2.1. The two link pendulum consisting of an

energy function L in equation 3.9 is said to be a conservative system since the sys-

tem conserves energy and contains no dissipation. Such a system when perturbed

will oscillate continuously. This does not resemble a beam, therefore, damping is

included in the model. The damping model considered here is the linear viscous

model [43]. The damping energy function is given as

Ed =
1

2
Bθ̇2. (3.10)

The equation of motion is then found using the Euler-Lagrange equation, equation

2.5. This is done by evaluating the partials in equation 2.5 with respect to the

single degree of freedom θ. Hence, the equation of motion is given as

θ̈ =
−Kθ −Bθ̇ + τc −mgp sin θ −mtipgl sin θ

J +mp2 +mtl2
. (3.11)

Equation 3.11 in compact matrix form is

[mp2 +mtl
2 + J ]θ̈ +Bθ̇ + [Kθ +mgp sin θ +mtgl sin θ] = τc. (3.12)
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The compact matrix form given in equation 3.11 may be linearised about the

equilibrium point (0, 0) using the small angle approximation. The small angle

approximation approximates cos θ ≈ 1 and sin θ ≈ θ . The compact matrix form

becomes

[mp2 +mtl
2 + J ]θ̈ +Bθ̇ + [K +mgp+mtgl]θ = τc. (3.13)

Controllability and Observability matrices are then given as

Co =

[
0 1

J+mp2+4mtp2

1
J+mp2+4mtp2

−B
(J+mp2+4mtp2)2

]
(3.14)

and

Ob =

[
1 0

0 1

]
. (3.15)

These matrices are of full rank. Alternatively, the determinants of these matrices

are seen to be non-zero.

3.1.5 A multi-link pendulum model

In the previous section a two link pendulum model was developed, the model con-

tained two states. However, actual beams are described by an infinite dimensional

state-space i.e. infinitely many states. It is therefore necessary to increase the

order of the pendulum model for two reasons. Firstly, increasing the order of the

model allows one to accurately determine the dynamics along the total length of

the beam. This improved accuracy is in fact due to the beam being a continuous

object and discretising it into finer elements implies a smaller variation of param-

eters over each discrete segment. Secondly, it reduces the effect of control spillover.

For these two reasons, this section describes a N -link representation of the pen-
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dulum. Such a model is derived using Lagrangian dynamics. The model requires

the formulation of a general Lagrangian and dissipative energy functions. These

functions in sigma notation are given by equations B.77 and B.73 in appendix

B.2.2. The Euler-Lagrange equation 2.5 results in

∂

∂t
(∇θ̇T )−∇θL+∇θ̇Ed = 0. (3.16)

Equation 3.16, results in N coupled non-linear ODEs. Here, ∇θ and ∇θ̇ indicate

partials derivatives with respect to a vector of degrees of freedom θ and a vector

of angular velocities θ̇. These equations may be placed in a non-linear state space

form ẋ = f(x), where x is a vector of states. Alternatively, the equations may be

linearised using the Taylor approximations cos (qi+1 − qi) ≈ 1 and sin (qi+1 − qi) ≈
0 to obtain a mass, spring and damping matrix which may be used in conjunction

with equations 3.3 and 3.4 to obtain an infinite dimensional state space.

3.2 Transfer function

This section describes a transfer function of a Kelvin-Voight damped Euler-Bernoulli

beam. The Euler-Bernoulli beam is a distributed parameter model, transfer func-

tions of distributed parameter models are irrational. From a state-space point of

view, lumped parameter models are described by a finite dimensional state space,

whereas distributed parameter models are described by an infinite dimensional

state space models, this infinite dimensional space is usually a Hilbert space [44].

Kelvin-Voight damping

The Euler-Bernoulli PDE 2.1 with Kelvin-Voight damping and no distributed load

f(x, t) is

EI
∂4w(x, t)

∂x4
+ CdI

∂5w(x, t)

∂x4∂t
+ ρA

∂2w(x, t)

∂t2
= 0, (3.17)

where Cd denotes the Kelvin-Voight damping coefficient. The boundary equations
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for a clamped-free beam are

w(x, t)|x=0 = 0

∂w(x, t)

∂x
|x=0 = 0

EI
∂2w(x, t)

∂x2
|x=L − Jt

∂3w(x, t)

∂t2∂x
|x=L + CdI

∂3w(x, t)

∂x2∂t
|x=L = τc

EI
∂3w(x, t)

∂x3
|x=L −mt

∂2w(x, t)

∂t2
|x=L + CdI

∂4w(x, t)

∂x3∂t
|x=L = 0, (3.18)

where E [GPa] is Young’s modulus, I [kg m2 rad2] is the area moment of inertia,

Jt [kg.m2] is moment of inertia of tip mass and mt [kg] is the tip mass. The

transversal displacement w(x, t) and the slope ∂w(x,t)
∂x

are assumed to be zero at

the clamped location. Bending moment equation includes the beam moment,

Kelvin-Voight damping, a mass moment of inertia and a control torque τc. The

shear deformation equation, which is the last boundary equation, includes the

beam shear force, shear force due to tip mass and the shear force due to the

damping. The derivation of the Euler-Bernoulli beam equation and boundary

equations appears in appendix B.5. In this derivation damping was placed into

the beam and boundary equations at the end, while ensuring that each term due

to damping was dimensionally consistent with quantities of the relevant boundary

equation i.e. moment equation and shear deformation equation. Now, taking the

Laplace transform of equation 3.18 with respect to time t, results in

[EI + sCdI]
∂4W (x, s)

∂x4
+ ρAs2W (x, s) = 0. (3.19)

Now, if zero initial conditions are assumed, equation 3.19 becomes

∂4W (x, s)

∂x4
+

ρAs2

[EI + sCdI]
W (x, s) = 0, (3.20)
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placing β4 = − ρAs2

[EI+sCdI]
into equation 3.20, results in

∂4W (x, s)

∂x4
− β4W (x, s) = 0. (3.21)

Now the values of β are the roots of the characteristic equation 2.3. There are in-

finitely many β values. Poles of the transfer function are found using the quadratic

formula, the poles are

sk, s−k =
−(CdIβ

4

ρA
)±

√
(CdIβ4

ρA
)2 − 4EIβ

4

ρA

2
(3.22)

Equation 3.22 shows that the poles have both a negative real and an imaginary

part as long as 4EIβ
4

ρA
> (CdIβ

4

ρA
)2. This results in a decaying beam oscillations. The

beam transfer function is

G(s) =
sinh βL sin βL

β2[EI + sCdI][cosh βL cos βL+ 1]
(3.23)

The transfer function given by equation 3.23 is irrational and it is approximated

using the infinite partial fraction expansion given by

G(s) =
∞∑
k=1

Res(sk)

(s− sk)
+
Res(s−k)

(s− s−k)
. (3.24)

In equation 3.24 the residues are seen to be the coefficients of 1
s−sk

and 1
s−s−k

.

These residues are numerically determined using L’Hopital’s rule.

3.3 Electromagnetic Subsystem

The electromagnets are modelled using a circuit model and a force versus current

relationship. These models are cascaded to produce a voltage versus force model

of the electromagnets.
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3.3.1 Circuit Model

Figure 3.3: RL circuit

The windings of each electromagnet is modelled as an inductance Le in series with

winding resistance R this is depicted in figure 3.3. Such a model is required, since

any controller request for a control current will be delayed due to the inertia of

the circuit. Applying Kirchoff’s Voltage Law (KVL) results in

V = iR + Ve

= iR +Ne
∂φ

∂t
, (3.25)

where the term Ve [V ] is the induced voltage using Faraday’s law, V is the voltage,

i [A] is the current, Le [H] is the inductance, R [Ω] is the resistance and Ne is the

number of turns. Now, if it is assumed that the reluctance of the air gap far

exceeds that of the core then the flux linkage φ may be written as

φ =
Lei

Ne

. (3.26)

This assumption is only valid if the electromagnet operates in the linear region,

which is the case. Since the reluctance is dominated by the air-gap and B-H curve
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of the air-gap is linear. Subsisting equation 3.26 into equation 3.25 and applying

the chain rule

V = iR +
∂Lei

∂t

= iR + i
∂Le
∂t

+ Le
∂i

∂t
(3.27)

Now, equation 3.27 contains a non-linearity and that may be simplified if it is

assumed that the inductance does not vary with time. The reluctance of the

air gap is considerably larger than the reluctance of the core. Therefore, the

inductance is determined solely by the core reluctance. Then equation 3.27 then

becomes

V = iR + Le
∂i

∂t
. (3.28)

Measurements of coil resistances and inductances where taken with with a Tecpel

LCR-612 at a f = 120Hz. The measurements appear in Table 3.1, these measure-

ments were taken with the electromagnetic system configured as shown in figure

1.5. Here, the subscripts given in Table 3.1 are the same as those given in figure

1.5.

Table 3.1: Electromagnet: Average Properties

Electromagnet R [Ω] Le [mH]

E1 9.7033 29.6825

E2 9.6263 28.0850

E3 9.6263 28.0850

E4 9.5437 28.1375
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3.3.2 Force versus Current relationship

In this section the force required to keep a beam in static equilibrium is mapped

to a measured current. The current is determined by placing a current meter in

series with the electromagnet windings. Shear force required to keep a beam in

static equilibrium is determined with the use of the shear force beam equation.

Shear Force

The shear force beam equation is given by

EI
∂3w(x)

∂x3
= −f(x), (3.29)

where E [GPa] is Young’s Modulus, I [kg m2 rad2] is the area moment of inertia,

f(x) [N ] a constant force applied at position x along the beam and w(x) [m] is the

static beam deflection. The solution to equation 3.29 is given by

w(x) =
f(x)

EI

(
Lx2

2
− x3

6

)
. (3.30)

Equation 3.30 may be verified as being the solution to equation 3.29 by substitu-

tion and evaluating the partials. However, equation 3.30 applies to a beam with

no tip mass.

Therefore, the force exerted by the electromagnets may be determined using equa-

tion 3.30 if the tip mass has no affect for small deflections. This is true, since

for small deflections the gravitational force experienced by the mass has a large

vertical component and a negligible horizontal component.

Equation 3.30 may be simplified to give the beam deflection at the tip location

x = L. Hence, the tip force is given by
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f(L) =
3EIw(L)

L3
. (3.31)
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Figure 3.4: Beam step response

Figure 3.4 shows the step response of a beam. The oscillation depicted is the result

of a non-uniform field . Here, the beam deflects when step is applied and then

finally reaches static equilibrium, thereafter, the step is removed and beam damps

to zero.

Equation 3.31 gives the force generated by the electromagnets at the location

x = L to keep the beam in static equilibrium. This force in-turn is generated

by a current which is applied to the electromagnet windings. Therefore, a single

shear force which generates a single static equilibrium point is mapped to a single

applied step current.
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Now, if several experiments are conducted, in which several step currents are

applied to the electromagnet windings. Then several static equilibrium points are

determined, each with an unique shear force. This one to one relationship between

shear force and current is used to determine an empirical relationship based on

curve fitting.

63



Chapter 4

System Identification, Decoupling

and Control

In the forgoing chapter two models of a beam and an electromagnetic model were

presented. The two beam models were a N -Link pendulum model and a transfer

function of the Euler-Bernoulli PDE. The electromagnetic model was an analytical

model based on curve fitting. This chapter focuses on the system identification,

decoupling and control of a guitar string. The chapter will cover the following

topics:

• system identification of a guitar string,

• decoupling of the guitar string axes and

• two control algorithms, namely, H∞ control and several other cost functions.

4.1 System Identification

Here, a step current is applied to the electromagnets. The interaction between

two opposing electromagnets and the permanent magnet at the end of the guitar

string causes it to swing. After a while the guitar string settles at a location off

center. The step current is then removed and guitar string once again swings but

in addition damps to the center location. During this entire time the guitar string’s
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displacement is recorded with a Wii-mote.

This measured data in addition to one of three beam models were a N -link pendu-

lum model, a transfer function of Euler-Bernoulli PDE or an ASM are used in the

system identification process. Here, the model is constructed in either MATLAB

or SIMULINK, the response of the model is made to match the measured data

using the least squares objective function. This is achieved by minimising the error

between the responses using a direct search algorithm called Nelder-Mead Simplex

method, otherwise known in MATLAB as fminsearch.

The method is applicable to both linear and non-linear least squares system iden-

tification. However, the latter is very sensitive to initial parameter estimates and

might have local minima complicating the task of finding the (perhaps non-unique)

global minimum.

An alternative method exits for on-line system identification, called a Kalman

filter. This method results in estimates of the guitar string parameters and also

produces the uncertainties in these estimates. However, this is method is not

utilised because it did not form part of the research scope.

Least Squares

The method of least squares system identification finds many applications such as

pendulum, flexible arm and even chemical engineering parameter estimation. In

chemical engineering it finds application in co-polymerization modelling [45, 46,

47]. Given a linear or non-linear model

E[W ] = f(x1, x2, ..., xm, β1, β2, ..., βk)

= f(~x, ~β) (4.1)

where x1, x2, .., xm are the independent variables, β1, β2, ...., βk are the parameter

values and E[W ] is the expected value of the dependent variable W . Let the
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measured data be denoted by

Ŵi = (Ŵ1, Ŵ2, ..., Ŵn) i = 1, 2, ..., n. (4.2)

Then the problem of trying to compute those estimates of the parameters β that

will minimise the following residual

Φ =
n∑
i=1

[Wi − Ŵi]
2

=‖ W − Ŵ ‖22 (4.3)

is called the least squares problem.

This method of parameter estimation depends highly on whether the model is lin-

ear or non-linear. In the paper titled “An Algorithm for Least-Squares Estimation

of Non-linear Parameters”, Donald W. Marquardt states “It is well known that

when f is linear in the β’s, the contours Φ are ellipsoids, while if f is non-linear,

the contours are distorted, according to the severity of the non-linearity...” [29].

It is therefore necessary that suitable initial parameter values are used to initialize

the algorithm, since pendulum type problems are non-linear [45]. Alternatively

the model may be linearised and system identification may be performed along

with the suitable initial parameters about the linearised point.

4.2 Decoupling

A guitar string axes exhibit cross coupling, which occurs when an input along one

axes causes an output along another axis. This effect is negated by including a

decoupler before the plant, the effect of the decoupling is shown in figure 1.6.

The decoupling form that will be used to decouple the guitar string’s axes is

simple decoupling. This form of decoupling is given in equation 2.10 and relies on
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the system identification of four transfer functions. These transfer functions are

GXX(s), GXY (s), GY X(s) and GY Y (s), this is shown in figure 2.3. The transfer

function GXX(s) relates an input along the X-axis to an output along the X-

axis, while the transfer function GXY (s) relates an input along the X-axis to an

output along the Y -axis. Similarly, the transfer functions GY Y (s) and GY X(s)

relate an input along the Y -axis to an output along the Y and X axes. Finally,

the decoupling matrix D is found by evaluating the off diagonal entries given in

equation 2.10 at steady-state.

4.3 Control

In this section several cost functions are minimised using a direct search algorithm,

fminsearch. The cost functions are H∞, ISE, IAE, ITSE and ITAE. The

method makes use of a MIMO guitar string model, an electromagnetic model,

a decoupling matrix, a disturbance, a cost function and a controller structure

to find the optimal controller coefficients. A representation of the closed loop

system is shown in figure 4.1. Here, G contains the cascaded guitar string and

the electromagnetic models, r is the reference signal, e is the error signal, u is the

control signal, d is the disturbance, y is the output and C is the controller. The

controller structure was chosen be of a lead-lag form, it is given by

C(s) =
s2 + α1s+ α2

s2 + α3s+ α4

. (4.4)

Minimisation of the error e is required in order to cater for the load disturbance

d, this disturbance is a result of a force being applied to the jig and therefore

manifests itself in figure 4.1 as input to G and not EG. This minimization results

in four optimal controller coefficients α1, α2, α3 and α4. This section will now

discuss the investigated controller algorithms and the control strategy.
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Figure 4.1: Closed loop with disturbance input

4.3.1 H∞ Control design

H∞ derives its name from the problem setting, the Hardy space. This space con-

sists of all bounded functions that are analytic in the right-half of the complex

plane. The advantage of H∞ control is it ability to achieve control of MIMO sys-

tems. Figure 4.2 illustrates the standard compensation configuration of a plant G

and a controller C. Here, W is a vector of inputs consisting of the load distur-

bance d, measurement noise n and reference signal r. And Z is a vector of outputs

consisting of error signals e, outputs y and states x. The control input is indicated

by u and the output is indicated by y.

For the control of a SISO guitar string in a single axis; W is a vector consisting

of a step disturbance d due to the jig’s acceleration, no measurement noise and a

reference signal r which is assumed to be the Null position seen in figure 1.5. Z
is vector; consisting of a error signal e which is the difference between measured

displacement y and the Null position r, an output y which is the transversal dis-

placement and x which consists of the guitar string’s angular position θ, angular

velocity θ̇ and the electromagnet’s current i. However, it is required that the guitar

string be controlled in two axes i.e. MIMO system.

Application of H∞ control to MIMO systems occurs in the frequency domain.

Here, either the Nyquist or Bode plot of the Linear Fractional Transformation

(LFT ) is used to shape the frequency response such that the system is stable and
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Figure 4.2: Standard compensation configuration

design specifications are met. The LFT is given by

LFT (P,C) = P11 + P12C(I − P22C)−1P21, (4.5)

where P is given as

P =

A B1 B2
C1 D11 D12

C2 D21 D22

 =

[
P11 P12

P21 P22.

]
(4.6)

Here, I is the identity matrix, A is the state matrix of the plant EG, Bi is the

input matrix, Ci is the output matrix and D is the feed-through matrix. The form

shown above is obtained from the state equations of the plant EG and are given

by

ẋz
y

 =

A B1 B2
C1 D11 D12

C2 D21 D22


xw
u

 , (4.7)

where x is the states, w is noise and u is the input. The method obtains a controller

C by minimising the H∞ norm of the LFT (P,C), this effectively reduces the
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maximum singular value of LFT (P,C). The optimization problem is given by

min
C
‖ LFT (P,C) ‖∞= min

C
sup

ω∈L2[0,+∞)

‖ e ‖, (4.8)

where ‖ e ‖L2= (
∫∞
0
‖ e ‖2 dt) 1

2 and does not include any weights. Equation 4.8,

indicates that the minimisation of the ‖ . ‖∞ is equivalent to the minimisation of

the supreme of the error.

4.3.2 ISE, IAE, ITSE and ITAE performance measures

In this section several additional cost functions are discussed. The cost functions

are ISE, IAE, ITSE and ITAE. These cost functions given by

ISE =

∫ ∞
0

e2(t) dt, (4.9)

IAE =

∫ ∞
0

|e(t)| dt, (4.10)

ITSE =

∫ ∞
0

t e2(t) dt, (4.11)

and

ITAE =

∫ ∞
0

t |e(t)| dt, (4.12)

where the error e(t) = r(t)−y(t), see figure 4.1. ISE leads to a Linear Time Invari-

ant (LTI) controller and hence it is the most widely used performance measure. It

is used in LQR type problems and even finds use in model order reduction [48].

ITAE and ITSE cost functions have an additional scaling factor, t time. These
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cost functions penalize against long duration errors and are used when settling

time is of utmost importance. Application of the above mentioned cost functions

with regard to the control of the guitar string results in a displacement error e(t),

this error is primarily due to disturbances.

4.3.3 Control Strategy

Figure 4.3: Control scheme using a bias and control current

It is desired that tip mass (located at the end of the guitar string) location be con-

trolled. This is achieved using an attractive force for two opposing electromagnets,

this is depicted in figure 4.3. The second pair of electromagnets is used to control

the motion in the orthogonal plane. Here the force of attraction is obtained by

applying a bias current ib and superimposing a control current ic [33]. Hence, for

single pair of electromagnets E1 and E2, sitting directly opposite each other, the

applied currents are

iE1 = ib + ic

iE2 = ib − ic (4.13)
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Chapter 5

Results

The previous chapter described the system identification and decoupling process

of a guitar string, as-well as two control algorithms that were investigated for

the purpose of controlling the guitar string. This chapter will present the results

pertaining to the following topics

• guitar string system identification,

• a comparison of the different beam models and their parameters,

• the electromagnetic model,

• the guitar string decoupling and

• the control of the guitar string.

5.1 Guitar string system Identification

This section starts-off by justifying a single mode model. This is done using a step

and an impulse response as well as the guitar string’s maximum deflection. The

section then follows with a comparison of the identified beam model parameters.

This comparison is used to justify a beam model. The guitar string properties

that are used in the system identification process are given in Table 5.1, these

properties determine the guitar string’s mass and stiffness.
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Table 5.1: Beam Properties

Property Value
Material Steel

Young’s Modulus 200× 109 [Pa]
Diameter 0.8 [mm]
Length 0.120 [m]
Density 7750[kg m−3]

Tip mass 4 [g]

5.1.1 Step and Impulse Response

The Fast Fourier Transform (FFT) of the guitar string’s step response is shown

in figure 5.3(a), this result was obtained by applying a step current to two oppos-

ing electromagnets, resulting in the permanent magnet being attracted by each

electromagnet. This step current lasted for a duration of 30 [s], at which time

it reached static equilibrium, the step current was then removed and the guitar

string’s damped oscillatory displacement was recorded with a PSD.

This figure indicates a natural frequency of 2.06 [Hz] i.e. a single mode. However,

the accelerometer is required to measure acceleration given an arbitrary distur-

bance i.e. the excitation of higher modes, therefore the impulse response was

investigated.

The FFT of a beam’s impulse response is shown in figure 5.3(b), this result ex-

cludes a tip-mass. Here, a step current was applied to two opposing electromagnets

for a duration of 0.1 s. Thereafter, the step current was removed and the displace-

ment was recorded. This was done in order to approximate an impulse function.

This figure indicates that two additional modes are excited, these modes lie within

the frequency response of the least required sampling rate for the PSD 100 [Hz]

i.e. Shannon sampling theorem. The additional modes occur at the frequencies

12.57 [Hz] and 34.72 [Hz].
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However, the inclusion of a tip mass suppresses these higher modes due to increased

damping. This increased damping is given by

|2ζωnM −B| = 0, (5.1)

where M indicates the mass matrix, B indicates the damping matrix, ωn indicates

the natural frequencies and ζ indicates the damping ratio. Here, the increased

inertia is seen to affect higher frequencies by increasing the damping. Therefore,

due to suppression of high modes due to increased mass, only a single mode is

required to model the guitar string.
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Figure 5.1: Guitar string FFT responses
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5.1.2 Tip Location

Figure 5.2: Tip location

A two link pendulum is shown in figure 5.2. Here, the LED projects a ray onto

the PSD indicted by the dotted line to the location labelled LED projection(W
′
).

However, the actual tip location sits at the position labelled tip location(W ). It is

therefore apparent that for large deflections of the guitar string there is an error

between the measured position and the actual tip position.

This error is valid for large deflections. However, the aperture through which

LED projects is 40mm in diameter and the length of the guitar string is 0.150m.

Therefore, the maximum angle to which the guitar string may be deflected is 7.66◦.
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If the guitar string is deflected further, this angle will increase and will result in the

tip position being unmeasurable due to aperture diameter. Therefore, the small

angle approximation applies.

5.1.3 Comparing beam models

The previous section showed that a linear guitar string model consisting of a single

mode is sufficient to describe the tip displacement. Such a model given an initial

displacement W (0) [m] and zero input disturbance has the following solution given

by

W (t) = W (0)e(−ωnζt) cos (ωdt), (5.2)

where W (t) [m] is the displacement, ωn [Hz] is the natural frequency, ζ is the

damping ratio, t [s] is time and ωd [Hz] is the damped natural frequency. The

deviation of equation 5.2 is found using perturbation theory, see appendix B.4.

Now, equation 5.2, the recorded data and the fminsearch algorithm were used

to find the parameters ωn and ζ. These parameter were then used to determine

estimates for the spring K and damping B coefficients, the damping coefficient is

given by equation 5.1. The spring coefficient is given by

|ω2
nM −K| = 0, (5.3)

where M [kg] is the mass. These parameter estimates were then used to initialise

the fminsearch algorithm in order to fine tune the result given by equation 3.13.

Two figures depicting the system identification results are shown in figure 5.3.

Here, the tip displacement W (L) [m] is replicated over 10 [s]. Figure 5.3 (a) shows

the XX response, this is seen to be stable. Figure 5.3(b) shows the XY response,

this is seen to be unstable. This instability is attributed the guitar string growth

in displacement when falling from a static equilibrium point.
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Figure 5.3: Guitar string responses

Several response similar to figure 5.3, were obtained by applying several step in-

put currents and recording the tip displacement. This was done in order to verify

the estimated parameters over the full range of step input currents. These step

responses were then used to identify the parameters found in the three beam mod-

els. The beam models are a two link pendulum model given by equation 3.13,

a single mode transfer function given by equation 3.24 and a single mode ASM

model given by equation B.80, see appendix B.3.

The standard deviation σ of the estimated beam parameters and the error between

the simulated and measured response was calculated. The error between responses

is given by

e =‖ W − Ŵ ‖2, (5.4)

77



where ‖ . ‖2 is the 2−norm, W is the measured tip displacement and Ŵ is the

simulated tip displacement. Calculated standard deviations σ and errors e were

used to justify the use of a beam model, see the research methodology shown in

figure 1.7. A model with the least standard deviation in estimated parameters

and response error should be used to represent the guitar string. The results of

a two link pendulum, an ASM model and a transfer function model are shown

in tables 5.2, 5.3 and 5.4, these results obtained using the beam models, system

identification and the properties shown in Table 5.1.

Table 5.2: N-Link System Identification
N K̄ σ (K) B̄ σ (B) e Eigen

(× 10−4) (× 10−6) value
[N.m/rad] [N.m.s/rad]

1 9.6476 0.0053 1.4998 0.0111 0.0076 −0.2451
± 13.08 j

Table 5.3: ASM with polynomial type modes

N Type d σ(d) e Eigen

[N.m.s/rad] value

1 Polynomial 0.0290 0.0095 0.0048 −0.1312

± 12.5657 j

1 Eigen 0.0360 0.0118 0.0048 −0.1312

± 12.5657 j

Table 5.4: Transfer function system identification in one dimension

N Cd (×109) σ(Cd) e Eigen

[N.m.s/rad] value

1 5.601 0.0123 0.0157 −0.6219

± 1.11951× 108 j

A comparison of the σ and e given in these tables show that the two link pendulum

model has the least standard deviation and error. Therefore, it is this model that
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will be used to represent the guitar string. These tables also show the Eigen-values,

the Eigen-value for the TFM model is seen to be considerably different from that

of the N -Link and ASM models. This is due to the fact that the TFM model used

Kelvin-Voight damping while the N -Link and ASM models used viscous damping.

The transfer functions for a two link pendulum model are given by

GXX(s) =
3197

s2 + 0.4902s+ 171.2
, (5.5)

GXY (s) =
3197

s2 + 0.327s+ 236.8
, (5.6)

GY X(s) =
3197

s2 + 0.4552s+ 382.4
, (5.7)

and

GY Y (s) =
3197

s2 + 0.4552s+ 382.4
. (5.8)

These transfer functions differ in their frequency of oscillation, this could be at-

tributed to the fact that the guitar string’s movement was to an extent obstructed

by the LED power supply cord.

5.1.4 Electromagnetic model

In this section, three electromagnetic models are compared. The models are a

FEM, a theoretical and an analytical model of the electromagnets. A FEM pack-

age was used to determine the FEM model, while magnetic circuit theory was used

to determine the theoretic model. Finally, curve fitting was used to determine an

analytical model.

The analytical model is more advantageous than the FEM and magnetic circuit

79



model since it allows for a simplistic model which accounts for both the residual

flux as well as the permanent magnet MMF.

Each electromagnet consists of a laminated U-shaped core made out of Alnico-5,

a bobbin and copper windings wrapped around the legs of the core. The electro-

magnet as well as the air-gap properties are shown Table 5.5.

Table 5.5: Electromagnetic properties

Parameter Value

µ0 4π × 10−7 [H.m−1]

Ne 750

Ac 10× 10−6 [m2]

lc 0.090 [m]

lp 0.020 [m]

µc 2000µ0

Br 0.45 [T ]

Bp 12.5 [T ]

Ap 5.02× 10−5 [m2]

Ag 2.0779× 10−5 [m2]

µp 1.2181× 10−5 [H.m−1]

5.1.5 FEM model

An electromagnetic system consisting of two electromagnets in a single plane was

simulated using the FEMM finite element package. The geometry is seen in figure

5.4. Here, the two electromagnets were made of laminated steel, the permanent

magnet material was Alnico 5 and copper windings of diameter 0.17mm were used.

The force data was recorded for various currents, this was achieved by applying

current to both windings and calculating the force via the weighted stress tensor.

figure 5.4, shows four electromagnetic configurations. The first configuration (a)
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applies a bias current of 0.2A to both electromagnets, configuration (b) applies

an additional 0.2A to one electromagnet and subtracts the same value from the

opposing electromagnet. The third and fourth configurations (c) and (d) add and

subtract 0.6A and 0.8A.

Figure 5.4: FEM simulations

The FEM simulations show a steady increase in flux density as the current is in-

creased in one electromagnet and decreased in the opposing electromagnet. The

resulting force is positive and results in a net resultant force to the right.

81



The simulation data obtained from the FEMM package is a result of a two dimen-

sional model. Such a model only approximates its three dimensional counter part.

Any error, would be the result of varying thickness in the geometry.

5.1.6 Theoretic Force Model

The derivation of a magnetic circuit appears in appendix C.1. The model contains

a reluctance for each core, air gap as well as a MMF for the windings. The MMF

due to the permanent magnet is assumed to be negligible. The linear model for

two opposing electromagnets generating the forces F1(i1) and F2(i2) are given by

F1(i1) =
2Ni1(AcBr − ApBr)

µ0Ag[
3

50Agµ0
+ lc

µcAc
+ lp

µpAp
]
− (AcBr)

2

2µ0Ag
(5.9)

and

F2(i2) =
−2Ni2(AcBr − ApBr)

µ0Ag[
3

50Agµ0
+ lc

µcAc
+ lp

µpAp
]

+
(AcBr)

2

2µ0Ag
, (5.10)

where µ0 [H.m] is the permeability of free space, Ac [m2] is the area of the core,

lc [m] is the length of the core, µc is the permittivity of the core, Br [T ] is the

residual magnetism, Ag [m2] is the area of air-gap and N is the number of windings.

These expressions for force are simplified using the fringing effect and the electro-

magnetic properties shown in Table 5.5 to obtain force versus current relationships.

The air-gap area relies on the fringing effect, here, Ag and µp were determined us-

ing the fminsearch algorithm i.e. the theoretic model was fitted to a data obtained

from N static configurations.

Empirical Curve fit

The force versus displacement for each electromagnet is shown in figure 5.5 (a).

Each point is the result of nine experiments and each experiment corresponds to
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Figure 5.5: Electromagnetic responses

a step current. Therefore, a total of 36 experiments where performed i.e. nine for

each electromagnet. The electromagnet force was calculated using equation 3.31

and the static displacement, the force was calculated for a Young’s modulus of

E = 200× 109 [Pa]. Each experiment was conducted for a pair of electromagnets

positioned in the location E2 and E1, depicted in figure 1.5.

In addition, a current meter was placed in series with the electromagnet windings.

The Tektronix DMM405061/2 Digit Precision Multimeter was used to measure

the current. Current readings were taken for each step response i.e. a total of

36 readings. The average force and average current was determined by averaging

over the number of electromagnets. The measured force Fmeas [mN ] versus current

data is shown in figure 5.5 (b).

Figure 5.5 (b), also shows the three models that were investigated. It is seen
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that the empirical model, denoted by Femipirical, and the electromagnetic circuit

model , denoted by Fphysics, approximate the measured data well. The normalized

2−norm is used to determine the suitability of each model. The definition of a

norm is given in [49] and is stated in appendix B.3. Here, the error between each

force model and measured force versus current relationship is calculated using

e =
d(F, F̂ )

‖ F̂ ‖2
=
‖ F − F̂ ‖2
‖ F̂ ‖2

, (5.11)

where F̂ is the meassured force and F is the model force. This analysis resulted in

the circuit based model having a 0.00139 % error, while the mathematical model

had a 0.64217 % error compared the to measured data and the FEM model had

a 81.54230 % error compared to the measured data. However, the circuit based

model does not truly represent the physics. Since, the fminsearch algorithm was

used to estimate parameters based on a physics model structure, which neglected

the permanent magnet MMF. Therefore, since the mathematical model has a

relatively high accuracy, an implicitly accounts for permanent magnet MMF and

provides abstraction from the physics, it is this model that will be used to represent

the electromagnets. The mathematical model is given as

F1 = −0.023 i1 + 0.0046

F2 = 0.023 i2 − 0.0046, (5.12)

where F1 and F2 are the inputs to the guitar string model. These inputs are

determined by the control voltages UCX(s) and UCY (s) which applied to the elec-

tromagnet, producing currents using equation 3.28.

5.2 Decoupling

The decoupling mechanism used to decouple the guitar string axes is simple de-

coupling, this form of decoupling is given by matrix D in equation 2.10. This form
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effectively allows outputs on the X axis for input on the X axis, while negating an

output along the Y axis. This decoupling matrix is found by evaluating equations

5.5, 5.6, 5.7 and 5.8 at steady state for a step input. A steady state decoupler

is sufficient since it is assumed that the disturbance input is an accelerated step

which is applied for an extended period.

Therefore, the decoupling mechanism which will be used for the decoupling of the

guitar string axes is given by the P-conical configuration. This is shown in figure

2.3. The decoupling matrix is given by

D11 = 1

D12 = −0.7002

D21 = −1.005

D22 = 1. (5.13)

5.3 Control

The purpose of the controller is to decrease the settling/response time of the ac-

celerometer. A guitar string on it’s own may be used to measure acceleration,

however, it has a poor frequency response. The frequency response is improved by

including a controller and actuators.

Sections 4.3 presented five cost functions. These cost functions where: H∞ cost

function in section 4.3.1 and ISE, IAE, ITSE and ITAE cost functions in sec-

tion 4.3.2. In addition, section 4.3 presented a lead-lag controller structure given

by equation 4.4. Now, the lead-lag controller structure is optimised using each

of these cost functions and the fminsearch algorithm. The optimisation of this

controller structure relies on finding the optimal control coefficients α1, α2, α3 and

α4 such that the guitar string comes to rest within 10 s.
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This settling time is a considerable improvement over the guitar string’s original

response, the guitar string’s uncompensated response took more than 70 s to come

to rest, this is illustrated in figures 3.4 and 5.3. In addition the settling time was

chosen because of the poor ability of the electromagnets to generate a damping

forces, at most, the voltage to current converters could source 1A. This limited

the maximum force which the electromagnets could generate.

This section will start off by presenting a guitar string Bode plot. It will then

move onto the controller results.

5.4 Guitar string open loop and control
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Figure 5.6: Open loop Bode diagram

5.4.1 Guitar string open loop

The Bode plot for the guitar string transfer function GXX is shown in Figure 5.6.

Here, a resonant peak is seen to occur at a frequency of 2.06Hz, the first mode
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of the guitar string with tip mass. In addition the system is controllable and

observable. The gain margin is infinite and the phase margin is 0.343 deg. The

infinite gain margin indicates that the guitar string is inherently stable. However,

the guitar string has a poor frequency response, this shortcoming will be addressed

with use of controllers and actuators.

5.4.2 H∞ control results

In this section the lead-lag controller structure given in equation 4.4 is optimised

using the H∞ cost function given by equation 4.8. Here, a MIMO SIMULINK

model using negative feedback is built consisting of two controllers C(s) (one for

each axis) cascaded with a decoupler D(s) and a MIMO plant. The MIMO plant

contains the electromagnetic model E(s) cascaded with the two link guitar string

model G(s). The MIMO system is shown in figure 5.7.

Half of the electromagnetic system E(s) is shown in figure 5.7. In this subsystem

a control voltage V generates two attractive forces to control the movement of

the guitar string in a single axis. Each half consists of electric circuit model and

an empirical magnetic model. These models where implemented using equations

3.28, 4.13 and 5.12.

Figure 5.7 also shows the P-conical decoupler and the four guitar string transfer

functions. The implementation of the decoupler and plant was shown in figure 2.3.

Decoupling coefficients are given in equations 5.13. Plant transfer functions are

given by equations 5.5, 5.6, 5.7 and 5.8. The electromagnets where implemented

with equations 3.28, 4.13 and 5.12. The input into this system is disturbance forces

d. These disturbances are allowed to act along the X and Y axes. Therefore, the

objective of control design is disturbance rejection while maintaining stability.

Figure 5.8 (a), shows the H∞ controller response along with the open loop guitar

string response Wol for a step input of 0.03N . The H∞ controller coefficients are

α1 = −179.7883, α2 = −1389.2, α3 = 5.6299 and α4 = 0.5125. These coeffi-

cients lead to two control poles which sit in the negative half of the s−plane i.e.
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Figure 5.7: Guitar string MIMO control
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s = −0.0929 and s = −5.507. The closed loop system is stable and has a settling

time for the H∞ controller of 3.9235 s, which meets the settling time design spec-

ification set out above. The closed loop settling time is seen to be on the order of

seconds, this is a result of the electromagnets/voltage to current converters poor

ability to generate a damping force. A maximum deflection of 0.025m is also seen

in figure 5.8 (a). This results in an overshoot of 125 %, this clearly indicates that

the tip position will overshoot the aperture diameter. Overshoot of the aperture

diameter may lead to instability due to the aluminium i.e. the PSD will not be

able to locate the LED. This is due to the fact that the output of the sensor is

constrained to the dimensions of the aperture in its aluminium plate.
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Figure 5.8: H∞ cost function

In addition, figure 5.8 shows that the H∞ controller has a steady state error. This

steady state error is the result of a simple closed loop pole and may be verified

using the final value theorem.

The phase portrait for the H∞ controller and open loop response is shown in figure
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5.8 (b). Here, the figure depicts a stable spiral with the a stability point occurring

at (0, 0) i.e. null point. In this figure the open loop guitar string response Wol

is seen to have uniform damping while the controlled guitar string string is seen

to experience an increased velocity when disturbed, this is attributed to a large

negative closed loop pole i.e. large damping.

5.4.3 ISE, IAE, ITSE and ITAE control results

In this section four cost functions are investigated, the purpose of this investiga-

tion is to find an optimal controller given a controller structure. The controller

structure is of the lead-lag form given in equation 4.4. The coefficients of this con-

troller is found using Nelder-Mead direct search method and the respective cost

function. The cost functions are an indication of the error between the desired

output and the actual output. An optimal control strategy is therefore found to

minimize these four measures. The cost functions are ISE, IAE, ITSE and ITAE

given by equations 4.9, 4.10, 4.11 and 4.12.
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Figure 5.9: Four cost functions

The time response for the four cost functions is shown in figure 5.9 (a). The cor-
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responding phase portrait for the IAE controller is seen in figure 5.9 (b). The per-

formance measure that performs optimally is IAE, with a settling time of 1.9604 s

for a step disturbance of 0.03N . This controller also has zero steady state error.

All the controller coefficients and settling times are recorded in Table 5.6 and rep-

resent the values for a step input. The maximum deflection and overshoot for the

IAE controller is seen to be i.e. 140 % and 0.028m. This deflection still indicates

that the guitar string LED will be obstructed by the aluminium.

Table 5.6: Controller coefficients for various performance measures

Cost function α1 α2 α3 α4 ts

ISE −145.0307 1333.8766 6.7962 7.6070 3.9235

IAE −534.0980 952.1692 16.1885 5.2866 1.9604

ITSE −171.5447 1099.6842 9.3915 5.9650 4.0124

IATE −235.0936 620.5162 17.9969 3.4022 3.5826

H∞ −179.7883 −1389.2 5.6299 0.5125 3.9235

Figure 5.10: Bode plot closed loop using IAE controller

Figure 5.10, shows the Bode plot for closed loop system using the IAE controller.
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Compared to figure 5.6, the resonant peak occurring at 2Hz has damped. In

addition the frequency response of the system has increased.
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Chapter 6

Conclusion

The objective of this research report was to model, identify and control a fibre

optic accelerometer analogue. This fibre optic analogue is shown in appendix A.8

and consists of an aluminium housing, a guitar string, four electromagnets , a

Nintendo wiimote and a permanent magnet.

The guitar string was modelled using three beam model. It was found that a single

degree of freedom was sufficient to model guitar string due to the tip mass acting as

a natural damper, aperture diameter and light source location. Of the three mod-

els considered here the spring/damper model was found to have the least standard

deviation in identified parameters. The simulated error for the spring/damper

model was also shown to be negligible.

An electromagnetic model based on a reluctance circuit and FEM simulations was

investigated. The result was a quasi static electromagnetic model and a RL circuit

model. The quasi static model is a mathematical model found through curve fit-

ting and accurately describes the force versus current relationship. The RL circuit

model is used to describe the voltage versus current relationship.

Five control measures were investigated and controllers were synthesised by the

minimization of several cost functions with help of fminsearch’s visualisation func-

tionality. The result was a controller based on the IAE cost. This cost function
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resulted in a stable closed loop system with a least settling time. Additionally,

a decoupler was developed, this catered for the cross coupling of the axes. This

chapter will know present improvements and suggestions.

6.1 Improvements and Suggestions

Possible improvements and suggestions are listed below in point form.

1. The system’s frequency response may be improved by improving the PSD.

The Nintendo wiimote sampled at a frequency of 100Hz, this limited the

detection of higher order modes.

2. The electromagnets were able to generate a maximum of 0.03N . This limited

the system’s ability to control large disturbances. Here, the driving circuit

may be improved as well as electromagnets.

3. Reducing the gap length between the electromagnets and tip magnet. This

in effect will negate the effects of fringing and non-uniform field.

4. An alternative tip mass, such as iron could be used. This will negate the

permanent magnet/electromagnet interaction.

5. Shortening the guitar string, in effect reduces the problem from being flexible

to being rigid.

6. Alternative driving circuit for the electromagnets may also be investigated.

A possible circuit is a pulse-width modulated H-bridge.

7. Additional, electromagnets may be placed around the guitar string to sup-

press any diagonal force which may push the electromagnet between the two

axis. Alternatively, a different core shape may be utilized as an actuator.

8. An alternative clamping mechanism as well as a fibre optic analogue should

be investigated while maintaining dynamic singularity. This will reduce the

need for a decoupler. Alternatively, the control of an actual fibre optical

cable should be investigated.
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9. The dynamic similarity with an existing accelerometer should also be con-

sidered.

10. It is recommended that the pole and zero locations for the transfer functions

GXX , GXY , GY X and GY Y be investigated. Such an investigation could

give insight into whether a reduced model may be found using pole-zero

cancellation.
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Appendix A

Hardware

In this chapter a hardware prototype is presented, this prototype represents an

accelerometer. The prototype is used to investigate the modelling and system

identification. The prototype consists of the following components

• an aluminium frame called a Jig,

• a guitar string,

• a permanent magnet,

• a Light Emitting Diode (LED),

• a Position Sensing Device (PSD),

• four electromagnets and

• four voltage to current converters.

The entire system was interfaced using dSPACE Digital Signal Process (DSP).

The experimentation was performed using a DSP and the SIMULINK real time

toolbox. The toolbox compiles the SIMULINK blocks into C code which is then

executed. A MLIB dSPACE library interfaces the DSP to the MATLAB workspace

and allows the hardware to be placed within the experimental loop.

This chapter will therefore proceed by describing each of the components listed

above. Finally, the chapter concludes with an overview of the prototype.
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A.1 Aluminium Frame

The housing of the accelerometer is constructed out of aluminium, this housing is

called a Jig. The Jig consists of three levels: a bottom level, a middle level and a

top level.

The Jig’s bottom level is mounted on ball bearings, above this level is a Nintendo

wiimote (PSD). The second level supports four electromagnets and has a hole of

diameter 40mm at it’s center. This level also has spirit level mounted on it to en-

sure that its is always level. The third aluminium level has a guitar string hanging

from beneath it.

The design is advantageous since it reduces electromagnetic interference and allows

the aluminium levels to be adjusted.

A.2 Guitar string

The fibre optic analogue was chosen to be a guitar string. The string has a length

of 120mm and a diameter of 0.8mm and it is clamped to the center of the Jig’s

top level from which it hangs.

A.3 Permanent Magnet

The permanent magnet is constructed from a metal alloy called Alnico. Alnico is

a mixture of aluminium, nickel and copper and has a field strength of 0.12T . The

mass of the permanent magnet is 4 g. This item is fixed to the free end of the

guitar string.

A.4 Light Emitting Diode

A LED is fixed to the bottom of the permanent magnet is supplied via two copper

leads. The copper leads are small in mass. Therefore, the string/copper lead

interaction is negligible.

105



A.5 PSD

Figure A.1: PSD and aperture diameter

The PSD analogue was chosen to be a Nintendo wiimote. The wiimote has a

sampling frequency of approximately a 100Hz and a resolution of 1024 × 768.

Each projected LED location is returned as a 10 bit number to MATLAB via

bluetooth. The Nintendo wiimote interfaces with MATLAB making use of the

wiilab library. The library maps the location of the LED into a number in the

range 0 to 1, were 0.5 is the center location, this is shown in figure A.1. Multiplying

this number by two gives the guitar string’s tip displacement in centimetres.

A.6 Electromagnets

The electromagnets are U-shaped cores made of grain oriented steel laminations.

This material was chosen due to it’s high permeability. The electromagnets are
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placed on the middle level of the Jig around the hole through which the LED

projects. The location of the cores may be adjusted using velcro strips that are

attached to their bases.

A.7 Voltage to Current Converters

Figure A.2: Voltage to current converter

The DSP outputs a voltage in the range [−10V, 10V ] with a maximum current

of 5mA. This current is not sufficient to drive the electromagnets. Hence, the

voltage to current converter shown in figure A.2 were implemented. The circuit

consists of a non-inverting buffer and non-inverting amplifier.

The non-inverting buffer was included to prevent the loading of the DSP. The

electromagnets are placed in the return path of the non-inverting amplifier and

are driven by a current IL. Due to the virtual earth principle the current I1 ≈ IL.

Therefore, the current in the load RL is

IL =
V

RL

. (A.1)

The schematic and electronic circuit of four of these voltage to current converters

are shown in figure A.3 and figure A.4.
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Figure A.3: Voltage to current converter schematic

In the schematic the operational amplifiers are supplied via Vcc = 15V and −Vcc =

−15V sources. The inputs to the voltage to current converters are the voltages

Vin1, Vin2, Vin3 and Vin4. The output of the converters are the currents IL1, IL2,

IL3 and IL4.
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Figure A.4: Electronics

The electronic circuit was constructed on veroboard. The inputs are shown to

enter the terminal blocks on the left of the figure and outputs are shown to exit

the terminal blocks on the right of the figure. The buffers are shown on the left

and the inverters are shown on the right. They are are separated by four 10W ,

10 Ω resistors. The operational amplifiers used in the electronic circuit are Sanyo

LA6500. All LA6500 are able to supply a maximum current of 1A and they operate

with a heat sinks. Additionally, a fan is connected to provide extra cooling.
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A.8 dSPACE

The DSP has a processor speed of 250 MHz and a precision of 64 bit. It connects

to a host computer using a Personnel Component Interface (PCI) bus. The out-

put of the DSP consists of eight Digital to Analogue (DAC) converters. Four of

these DACs are used to output a voltage signal to each of the voltage to current

converters.

Figure A.5: Hardware model

The combined system is shown in figure A.5. The main apparatus are identified

with arrows and consist of a Jig, guitar string, four electromagnets, a Nintendo

wiimote, a power supply, dSPACE development board and four voltage to current

converters.
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Figure A.6: A closer look at the hardware model

A close-up of the permanent magnet and electromagnets is shown in figure A.6,

the placement of the electromagnets around the tip magnet is clearly seen in this

illustration. In addition, an isometric drawing of the Jig is shown in figure A.7.
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Figure A.7: Jig isometric views
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A.9 Conclusion

This chapter presented a prototype called a Jig. The prototype was shown to

consist of an aluminium frame, a guitar string, a permanent magnet, a LED, a

PSD (Nintendo wiimote), four electromagnets, voltage to current converters and

a dSPACE development board.

This prototype will only be used for the purpose of system identification and there-

fore no control will be applied to the prototype.

113



Appendix B

Beam Modelling

B.1 Eigenfunction

Figure B.1: Clamped-free cantilever beam

A cantilever beam is shown in figure B.1, the Euler-Bernoulli equation describes

the transversal deflection of such a beam. The Euler-Bernoulli equation is

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
= f(x, t), (B.1)

where E [GPa] is Young’s modulus, I [kgm2rad2] is area moment of inertia, ρ [kg/m−3]

is the density, A [m2] is the area and w(x, t) is the transversal displacement. Equa-
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tion B.1 takes into account the bending moment and neglects the rotary inertia

and shear deformation. The corresponding boundary conditions for a clamped-free

beam with no tip-mass are

w(x, t)|x=0 = 0

∂w(x, t)

∂x
|x=0 = 0

∂2w(x, t)

∂x2
|x=L = 0

∂3w(x, t)

∂x3
|x=L = 0. (B.2)

These boundary conditions are justified by the fact that:

• the beam cannot have any transversal displacement at the clamped point,

• at the clamped point the beam is assumed to be horizontal,

• the bending moment at x = L must be zero and

• the shearing force at x = L is zero.

Now, assuming that f(x, t) = 0, allows one to solve the eigenvalue and eigenvector

problem, the Euler-Bernoulli equation is

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
= 0. (B.3)

Now, dividing throughout by the Young’s modulus E and area moment of inertia

I, the following equation is obtained

∂4w(x, t)

∂x4
+
ρA

EI

∂2w(x, t)

∂t2
= 0. (B.4)
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Now, if it is assumed that the transversal displacement solution is separable i.e. a

mode shape φ(x) and a generalized coordinate q(t), w(x, t) = φ(x)q(t). Then the

solution is found by assuming simple harmonic motion of angular frequency ω i.e.

w(x, t) = φ(x)e(jωt) [8]. Then equation B.4 becomes

e(jωt)
∂φ(x)

∂x4
+
ρA

EI
(jω)2e(jωt)φ(x) = 0, (B.5)

which results in

∂4φ(x)

∂x4
− ω2ρA

EI
φ(x) = 0. (B.6)

Substituting β4 = ω2ρA
EI

into equation B.6, results in

∂4φ(x)

∂x4
− β4φ(x) = 0. (B.7)

Equation B.7 is then written in D operator form

(D4 − β4)φ(x) = 0. (B.8)

The solution of equation B.8 is given by

φ(x) = C1 sin (βx) + C2 cos (βx) + C3 sinh (βx) + C4 cosh (βx), (B.9)

where C1, C2, C3 and C4 are constants, x is the beam displacement and β is

given by ω2ρA
EI

. Now, the boundary conditions given in equation B.2 are rewritten

in terms of a mode using the mode assumption w(x, t) = φ(x) q(t). Here, the

boundary conditions are applied only to the mode shape φ(x) since it depends on

the variable x and the boundary conditions are given in terms of the displacement

x.
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Theses boundary conditions are

φ(x)|x=0 = 0

dφ(x)

dx
|x=0 = 0

d2φ(x)

dx2
|x=L = 0

d3φ(x)

dx3
|x=L = 0. (B.10)

Applying the boundary conditions given in equation B.10 to equation B.9. The

following four boundary equations are obtained:

C2 + C4 = 0

C1 + C3 = 0

−C1 sin (βL)− C2 cos (βL) + C3 sinh (βL) + C4 cosh (βL) = 0

−C1 cos (βL) + C2 sin (βL) + C3 cosh (βL) + C4 sinh (βL) = 0. (B.11)

These equations are placed in Ax = b matrix form. The matrices are

A =


0 1 0 1

1 0 1 0

− sin (βL) − cos (βL) sinh (βL) cosh (βL)

− cos (βL) sin (βL) cosh (βL) sinh (βL)

 , (B.12)
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x =


C1

C2

C3

C4

 , (B.13)

and

b =


0

0

0

0

 . (B.14)

The determinant of the matrix A is set equal to zero i.e. singular solution. The

determinant is given as

det(A) = −1

 1 1 0

− sin (βL) sinh (βL) cosh (βL)

− cos (βL) cosh (βL) sinh (βL)



−

 1 0 1

− sin (βL) − cos (βL) sinh (βL)

− cos (βL) sin (βL) cosh (βL)


= −1[−1 + sin (βL) sinh (βL)− cos (βL) cosh (βL)]

− [− cos (βL) cosh (βL)− sin (βL) sinh (βL)− 1]

= 2[1 + cos (βL) cosh (βL)]. (B.15)

118



Therefore, the characteristic equation is given by

1 + cosh (βL) cos (βL) = 0, (B.16)

solving this equation for β gives the beam eigenvalues from which corresponding

eigen-frequencies may be obtained. The eigen-frequencies are

f =
1

2π

√
β4EI

ρA
. (B.17)

Now setting C4 = −C2 and C3 = −C1 and placing it into the boundary conditions,

the following equation is obtained

−C1 cos βL+ C2 sin βL− C1 cosh βL− C2 sinh βL = 0.. (B.18)

Rearranging equation B.18, results in

C2 = −C1[
sin (βL) + sinh (βL)

cos (βL) + cosh (βL)
]. (B.19)

Placing C4 = −C2, C3 = −C1 and equation B.19 into equation B.9. The following

solution is obtained

φ(x) = C1[W [cos (βx)− cosh (βx)] + sin (βx)− sinh (βx)], (B.20)

where

W = −[
sin (βL) + sinh (βL)

cos (βL) + cosh (βL)
]. (B.21)

These functions are known as eigenfunctions and they are orthogonal functions.
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The factor C1 may be found by noting that the inner-product of an eigenfunction

with itself is equal to one i.e. Kronecker delta function

〈φr(x), φs(x)〉 =

∫ L

0

φr(x)φs(x)dx = δrs. (B.22)

B.2 Pendulum Models

B.2.1 Alternative Pendulum Derivation

In this section the spring/damper model for a double and triple link pendulum are

verified using an additional method, namely Newton’s second law. Other methods

such as Hamilton-Jacobi equations are also applicable but or more tedious. How-

ever, they are advantageous in certain branches of physics such as Transformation

theory, Celestial mechanics, Statistical mechanics and Quantum mechanics [21].

Newtons Second Law

Newton’s second law when applied to translational motion assumes the form given

by

∑
F = m~a, (B.23)

where m [kg] is the mass of the body and ~a [ms−2] is the acceleration. Newton’s

second law for rotation is

∑
τ = Jα, (B.24)

where
∑
τ is the sum of all the external torques, α [rad s−2] is the angular accel-

eration of the body and J [kg m2] is the moment of inertia of the body. Equation

B.24 determines the torque experienced by a rigid body with an angular acceler-

ation α, where the angular acceleration is determined from the position vector of
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the center of mass ~r from some reference point. The direction of the torque vector

is given by the right hand rule, that is the torque vector sits at a right angle to

the plane of rotation [50].

The method relies on the use of free-body diagrams, a diagram is drawn for each

body. The diagram is used to identify all external torques. Therefore, for a double

link only one free-body diagram is necessary, since the first link does not move.

However, for a triple link pendulum, two free-body diagram are required, one for

the second link and one for the third link.

Newton’s Second Law for a two-link pendulum

Figure B.2: Double link pendulum

A double link pendulum with a stationary first link and pivoting second link is

shown in figure B.2. The second link’s center of mass has a position, velocity and

acceleration vectors are given by
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~r = [ p sin θ,−p cos θ ]

~̇r = [ pθ̇ cos θ, pθ̇ sin θ ]

~̈r = [ pθ̈ cos θ − pθ̇2 sin θ , pθ̈ sin θ + pθ̇2 cos θ ].

The position, velocity and acceleration vectors of the tip-mass mt are

~rt = [ l sin θ,−l sin θ ]

~̇rt = [ lθ̇ cos θ, lθ̇ sin θ ]

~̈rt = [ lθ̈ cos θ − lθ̇2 sin θ, lθ̈ sin θ + lθ̇2 cos θ ],

where the position vectors are determined from the reference point, chosen to be

the joint between the first and second link. This joint will be identified with the

position vector ~r1j = [0, 0].

Figure B.3: Freebody diagram for single link

The second link free body diagram is shown in figure B.3. Now, given the ~r and ~̈r
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the torque due to rotational inertia of second link is determined. This torque sits

at a right angle to the plane of motion. The torque due to the second link’s center

of mass is given by

m~̈r × ~r = det

[
p sin θ −p cos θ

mpθ̈ cos θ −mpθ̇2 sin θ mpθ̈ sin θ +mpθ̇2 cos θ

]

= mp2θ̈ cos2 θ +mp2θ̇2 cos θ sin θ+

mp2θ̈ sin2 θ −mp2θ̇2 cos θ sin θ

= mp2θ̈. (B.25)

The torque due to rotational motion of the tip mass mt is also determined and

given by

mt
~̈rt × ~rt = det

[
l sin θ −l cos θ

mtlθ̈ cos θ −mtlθ̇
2 sin θ mtlθ̈ sin θ +mtlθ̇

2 cos θ

]

= mtl
2[θ̈ cos2 θ + θ̇2 cos θ sin θ + θ̈ sin2 θ − θ̇2 cos θ sin θ]

= mtl
2θ̈. (B.26)

Summing the torques presented in the free-body diagram, figure B.3. Results in

[mp2 +mtl
2 + J ]θ̈ = −Bθ̇ −Kθ −mgp sin θ −mgl sin θ + τc (B.27)

Equation B.27 is the dynamic equation for a two-link pendulum. Equation B.27

verifies the equation of motion obtained by the Euler-Lagrange equation in section

3.1.4.
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Lagrangian Dynamics for a three link pendulum

Figure B.4: Three link pendulum

A three link model of the guitar string is shown in figure B.4. Each link has a

length l and a center of mass m located a distance p from the joint. Between

adjacent links are springs and dampers, and these are assumed to be similar. In

addition, a tip mass is located at the tip of the third link. The position vectors of

the center of masses m0, m1 and m2 are ~r0, ~r1 and ~r2. The position vector of the

tip mass is denoted as ~rt. The position vector and velocity vector of the clamped

mass m0 are the same as that of the double link model given in 3.14.. The position

vector and velocity vector of the second links center of mass is also given as before.

The location and velocity of third links center of mass are

~r2 = [l sin θ1 + p sin θ2, h− l − l cos θ1 − p cos θ2]

~̇r2 = [lθ̇1 cos θ1 + pθ̇2 cos θ2, lθ̇1 sin θ1 + pθ̇2 sin θ2].
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The tip masses location and velocity are

~rt = [l sin θ1 + l sin θ2, h− l − l cos θ1 − l cos θ2]

~̇rt = [lθ̇1 cos θ1 + lθ̇2 cos θ2, lθ̇1 sin θ1 + lθ̇2 sin θ2].

As before, the kinetic energy may be determined by applying the dot product to

the velocity vectors. The kinetic energy is

T =
1

2
m~̇r0.~̇r0 +

1

2
m~̇r1.~̇r1 +

1

2
m~̇r2.~̇r2 +

1

2
mt~̇rt.~̇rt +

1

2
J(θ̇21 + θ̇22)

=
1

2
mθ̇1

2
p2 +

1

2
m[l2θ̇1

2
+ p2θ̇2

2
+ 2lpθ̇1θ̇2 cos (θ1 − θ2)] +

1

2
mt[l

2θ̇1
2

+ l2θ̇2
2

+ 2l2θ̇1θ̇2 cos (θ1 − θ2)] +
1

2
J(θ̇1

2
+ θ̇2

2
) (B.28)

The potential energy has an additional spring term, this occurs since there is a

spring interaction between the second and the third link. The potential energy

also includes the displacement above ground for both links and the permanent

magnet. The potential energy function is

V =
1

2
Kθ21 +

1

2
K(θ2 − θ1)2 +mgh0 +mgh1 +mgh2 +mtipghm − τcθ2

=
1

2
Kθ21 +

1

2
K(θ2 − θ1)2 +mg[h− l − p cos θ1]+

mg[h− l − l cos θ1 − p cos θ2]+

mtg[h− l − l cos θ1 − l cos θ2]− τcθ2. (B.29)

Dissipative energy for the system contains the damping interaction between first

and the second link as well as the interaction between the third and second link.
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These interactions are characterized using the same damping coefficient B. Energy

lost in the system is given as

Ed =
1

2
Bθ̇21 +

1

2
B(θ̇2 − θ̇1)2. (B.30)

Lagrangian energy function for the three link model is given as

L = T − V

=
1

2
mθ̇1

2
p2 +

1

2
m[l2θ̇1

2
+ p2θ̇2

2
+ 2lpθ̇1θ̇2 cos (θ1 − θ2)] +

1

2
mt[l

2θ̇1
2

+ l2θ̇2
2

+ 2l2θ̇1θ̇2 cos (θ1 − θ2)] +
1

2
J(θ̇1

2
+ θ̇2

2
)−

1

2
Kθ21 −

1

2
K(θ2 − θ1)2 −mg[h− l − p cos θ1]−

mg[h− l − l cos θ1 − p cos θ2]−

mtg[h− l − l cos θ1 − l cos θ2] + τcθ2. (B.31)

Two degrees of freedom exist, namely θ1 and θ2. Evaluating equation 2.2 with

respect to these two degrees of freedom results in two equations of motion. The

equations of motion are derived using the following identities

∂

∂t
[cos (θ2 − θ1)] = (θ̇1 − θ̇2) sin (θ2 − θ1),

∂

∂θ1
[cos (θ2 − θ1)] = sin (θ2 − θ1)

and
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∂

∂θ2
[cos (θ2 − θ1)] = − sin (θ2 − θ1).

The first equation of motion is

[mp2 +ml2 +mtl
2 + J ]θ̈1 = [mlp+mtl

2]θ̇22 sin (θ2 − θ1)−

[mlp+mtl
2]θ̈2 cos (θ2 − θ1)−

Kθ1 +K(θ2 − θ1) +Bθ̇1−

B(θ̇2 − θ̇1)−mgp sin θ1−

mgl sin θ1 −mtgl sin θ1 (B.32)

and the second equation of motion is

[mp2 +mtl
2 + J ]θ̈2 = −[mlp+mtl

2]θ̇21 sin (θ2 − θ1)−

[mlp+mtl
2]θ̈1 cos (θ2 − θ1)−

K(θ2 − θ1)−B(θ̇2 − θ̇1)−

mgp sin θ2 −mtgl sin θ2 +

τcθ2 (B.33)

Equation B.32 and B.33 may be written in compact matrix given by

M(θ1, θ2)

[
θ̈1

θ̈2

]
+D(θ1, θ2, θ̇1, θ̇2)

[
θ̇1

θ̇2

]
+K(θ1, θ2) = Qτc, (B.34)

where the mass, damping and spring matrix are
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M(θ1, θ2) =

[
[mp2 +ml2 +mtl

2 + J ] [mlp+mtl
2] cos (θ2 − θ1)

[mlp+mtl
2] cos (θ2 − θ1) [mp2 +mtl

2 + J ]

]
,

D(θ1, θ2, θ̇1, θ̇2) =

[
2B −[mlp+mtl

2] sin (θ2 − θ1)θ̇2 −B
[mlp+mtl

2] sin (θ2 − θ1)θ̇1 −B B

]
,

and

K(θ1, θ2) =

[
Kθ1 − (Kθ2 −Kθ1) + gl[m+mt] sin θ1 +mgp sin θ1

K(θ2 − θ1 + [mpg +mtgl] sin θ2

]
.

The force vector is given by

Q =

[
0

1

]
.

Choosing the following states q1 = θ1, q2 = θ2, q3 = θ̇1 and q4 = θ̇2 and linearising

using the identities

cos (q2 − q1) = cos q2 cos q1 + sin q1 sin q2

≈ 1 + q1q2

≈ 1

and

sin (q2 − q1) = sin q2 cos q1 − cos q1 sin q2

≈ q1 − q3

≈ 0.
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The Mass, Damping and Spring matrix become

M =

[
[mp2 +ml2 +mtipl

2 + J ] [mlp+mtl
2]

[mlp+mtl
2] [mp2 +mtl

2 + J ]

]
,

D =

[
2B −B
−B B

]

and

K =

[
2K + gl[m+mt] +mgp −K

−K K +mpg +mtgl

]

Given the M mass matrix ,D damping matrix , K spring matrix and Q matrix,

the system is placed in linear state space form, given by equations 3.3 and 3.4.

However, they are easily obtained numerically in MATLAB given parameter values.

The controllability matrix is given as

Ob =
[
B : AB : A2B A3B

]
(B.35)

and the observability matrix is given as

Co =
[
C> : A>C> : (A2)>C> (A3)>C>

]
(B.36)

Both the controllability and observability matrices given by equations B.35 and

equations B.36 were determined using MATLAB and are of full rank.

Newtons Second Law for a three link pendulum

The equations of motion for a three link pendulum are now verified using Newton’s

Second law. A three link pendulum consists of a stationary link to which a second
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Figure B.5: Triple link pendulum

link is attached. The third link is then allowed to swing about the tip of the second

link. A triple link pendulum is shown in figure B.5. The position, velocity and

acceleration vectors for the first link and second link are

~r1 = [p sin θ1,−p cos θ1]

~̇r1 = [pθ̇1 cos θ1, pθ̇1 sin θ1]

~̈r1 = [pθ̈1 cos θ1 − pθ̇1
2

sin θ1, pθ̈1 sin θ1 + pθ̇1
2

cos θ1]

and
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~r2 = [l sin θ1 + p sin θ2,−l cos θ1 − p cos θ2]

~̇r2 = [lθ̇1 cos θ1 + pθ̇2 cos θ2, lθ̇1 sin θ1 + pθ̇2 sin θ2]

~̈r2 = [lθ̈1 cos θ1 − lθ̇1
2

sin θ1 + pθ̈2 cos θ2 − pθ̇2
2

sin θ2,

lθ̈1 sin θ1 + lθ̇1
2

cos θ1 + pθ̈2 sin θ2 + pθ̇2
2

cos θ2].

The position, velocity and acceleration vectors for the tip-mass mt are

~rt = [l sin θ1 + l sin θ2,−l cos θ1 − l cos θ2]

~̇rt = [lθ̇1 cos θ1 + lθ̇2 cos θ2, lθ̇1 sin θ1 + lθ̇2 sin θ2]

~̈rt = [lθ̈1 cos θ1 − lθ̇1
2

sin θ1 + lθ̈2 cos θ2 − lθ̇2
2

sin θ2,

lθ̈1 sin θ1 + lθ̇1
2

cos θ1 + lθ̈2 sin θ2 + lθ̇2
2

cos θ2].

The position vector of the first joint is ~r1j, which occurs between the first link and

second link. The position vector of the second joint is ~r2j and occurs between the

third and second link. The joint position vectors are

~r1j = [0, 0]

and

~r2j = [l sin θ1,−l cos θ1].
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First Link

Figure B.6: Triple link, first link freebody diagram

The free-body diagram for the first link is shown in figure B.6. The torque due to

second links mass is determined using the cross product between the force vector

m~r1 and position vector (~r1−~r1j). This position vector is coplanar with the second

link. This torque is given by

m~̈r1 × (~r1 − ~r1j) = det

[
p sin θ1 −l cos θ1

mpθ̈1 cos θ1 −mpθ̇21 sin θ1 mpθ̈1 sin θ1 +mpθ̇21 cos θ1

]

= mp2θ̈1. (B.37)

The torque due to third links mass is determined using the cross product between

the force vector m~r2 and position vector (~r2−~r2j). This position vector is coplanar

with the second link. This torque is given by
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m~̈r2 × (~r2j − ~r1j) = det

 l sin θ1 −l cos θ1

lθ̈1 cos θ1 − lθ̇21 sin θ1+ lθ̈1 sin θ1 + lθ̇21 cos θ1+

pθ̈2 cos θ2 − pθ̇22 sin θ2 pθ̈2 sin θ2 + pθ̇22 sin θ1


= ml2θ̈1 −mplθ̈2 cos (θ2 − θ1) +

mlpθ̇2
2

sin (θ2 − θ1). (B.38)

The torque on the first link due to tip-mass mt is determined using the cross

product between the force vector mt ~rt and position vector (~r2j−~r1j). This position

vector is coplanar with the second link. The torque is

mt~̈rt × (~r2j − ~r1j) = det

 l sin θ1 −l cos θ1

lθ̈1 cos θ1 − lθ̇21 sin θ1+ lθ̈1 sin θ1 + lθ̇21 cos θ1+

lθ̈2 cos θ2 − lθ̇22 sin θ2 lθ̈2 sin θ2 + lθ̇22 sin θ1


= mtl

2θ̈1 +mtl
2θ̈2 cos (θ2 − θ1)−

mtl
2θ̇2

2
sin (θ2 − θ1) (B.39)

Now summing the torques appearing in figure B.6 results in

[mp2 +ml2 +mtl
2 + J ]θ̈1 = [mlp+mtl

2]θ̇22 sin (θ2 − θ1)−

[mlp+mtl
2]θ̈2 cos (θ2 − θ1)−

Kθ1 +K(θ2 − θ1) +Bθ̇1−

B(θ̇2 − θ̇1)−mgp sin θ1−

mgl sin θ1 −mtgl sin θ1. (B.40)
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Equation B.40 verifies the first equations of motion obtained by the Euler-Lagrange

equation.

Second Link

Figure B.7: Triple link, second link freebody diagram

The free-body diagram for the first link is shown in figure B.7. The torque on the

third links due to its mass is determined using the cross product between the force

vector m~r2 and position vector (r2 − r2j). This position vector is coplanar with

the third link. The torque is therefore

m~̈r2 × (~r2 − ~r2j) = det

 p sin θ2 −p cos θ2

lθ̈1 cos θ1 − lθ̇21 sin θ1+ lθ̈1 sin θ1 + lθ̇21 cos θ1+

pθ̈2 cos θ2 − pθ̇22 sin θ2 pθ̈2 sin θ2 + pθ̇22 sin θ1


= mp2θ̈2 +mlpθ̈1 cos (θ2 − θ1) +

mlpθ̇1
2

sin (θ2 − θ1). (B.41)
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The torque due to tip mass mt is determined using the cross product between the

force vector m ~rm and position vector (rm − r2j). This position vector is coplanar

with the second link. The torque is therefore

mt~̈rt × (~rt − ~r2j) = det

 l sin θ2 −l cos θ2

lθ̈1 cos θ1 − lθ̇21 sin θ1+ lθ̈1 sin θ1 + lθ̇21 cos θ1+

lθ̈2 cos θ2 − lθ̇22 sin θ2 lθ̈2 sin θ2 + lθ̇22 sin θ1


= mtl

2θ̈2 +mtl
2θ̈1 cos (θ2 − θ1) +

mtl
2θ̇1

2
sin (θ2 − θ1). (B.42)

Now summing the torques appearing in figure B.7 , results in

[mp2 +mtl
2 + J ]θ̈2 = −[mlp+mtl

2]θ̇21 sin (θ2 − θ1)−

[mlp+mtl
2]θ̈1 cos (θ2 − θ1)−

K(θ2 − θ1)−B(θ̇2 − θ̇1)−

mgp sin θ2 −mtgl sin θ2 + τc (B.43)

Equation B.43 verifies the equations of motion obtained by the Euler-Lagrange

equation. The equations of motion for a four link pendulum are also verified

using Newton’s second law but aren’t presented here, due to the complexity of the

problem.

B.2.2 Generalizing N-Link Model

Since the guitar string is considered to be flexible in nature, it may be modelled

using infinitely many coupled pendulum links. Where each link has the same mass,

moment of inertia and length. Therefore, the total kinetic energy is a contribution

of each link’s kinetic energy and the tip mass kinetic energy.
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Kinetic Energy for the Tip mass

The tip mass is situated at the tip of the guitar string and its coordinates are

specified in terms of full link lengths l. The x and y coordinate of the tip mass are

x(n) = l
n∑
j=1

sin θj (B.44)

and

y(n) = h− l − l
n∑
j=1

cos θj, (B.45)

where h height of the Jig, l is the link length, θj is the angle through which the

link swings and n is the number of links. The time derivative of equations B.44

and B.45 are

ẋ(n) = l
n∑
j=1

θ̇j cos θj (B.46)

and

ẏ(n) = l
n∑
j=1

θ̇j sin θj. (B.47)

Equations B.46 and B.47 are used to obtain the velocity ẋ2(n)+ ẏ2(n), this results

in
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ẋ2(n) + ẏ2(n) = l2
n∑
j=1

n∑
k=1

θ̇j θ̇k cos θj cos θk+

l2
n∑
j=1

n∑
k=1

θ̇j θ̇k sin θj sin θk

= l2
n∑
j=1

n∑
k=1

θ̇j θ̇k cos (θk − θj). (B.48)

Therefore, the tip kinetic energy is

Tt(n) =
1

2
mtl

2[
n∑
j=1

n∑
k=1

θ̇j θ̇k cos (θk − θj)]. (B.49)

Kinetic Energy for the Links

In this section the kinetic energy for the links is determined. The x-coordinates

for the the first, second and third link are

x(1) = p sin θ1

x(2) = l sin θ1 + p sin θ2

x(3) = l sin θ1 + l sin θ2 + p sin θ3, (B.50)

these displacements are generalized to obtain an expression for many more links.

The x-coordinate for many more links is given by

x(n) = l

n−1∑
j=1

sin θj + p sin θn, (B.51)
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where p is the distance to the center of mass. The y-coordinate of the first, second

and third link are given by

y(1) = h− l − p cos θ1

y(2) = h− l − l cos θ1 − p cos θ2

y(3) = h− l − l cos θ1 − l cos θ2 − p cos θ3, (B.52)

once again these displacements may be generalized to obtain many more links.

The y-coordinate for many more links is

y(n) = h− l − l
n−1∑
j=1

cos θj − p cos θn. (B.53)

The time derivative of equations B.51 and B.53 are

ẋ(n) = l
n−1∑
j=1

θ̇j cos θj + pθ̇n cos θn (B.54)

and

ẏ(n) = l
n−1∑
j=1

θ̇j sin θj + pθ̇n sin θn. (B.55)

Now, the translational kinetic energy is 1
2
m(ẋ2(n) + ẏ2(n)), where
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ẋ(n)2 = [l
n−1∑
j=1

θ̇j cos θj + pθ̇n cos θn][l
n−1∑
j=1

θ̇j cos θj + pθ̇n cos θn]

= l2
n−1∑
j=1

n−1∑
k=1

θ̇j θ̇k cos θk cos θj + p2θ̇n
2

cos2 θn +

lp
n−1∑
j=1

θ̇j θ̇n cos θj cos θn + lp
n−1∑
k=1

θ̇kθ̇n cos θk cos θn (B.56)

and

ẏ2(n) = [
n−1∑
j=1

θ̇j sin θj + pθ̇n sin θn][
n−1∑
j=1

θ̇j sin θj + pθ̇n sin θn]

= l2
n−1∑
j=1

n−1∑
k=1

θ̇j θ̇k sin θk sin θj + p2θ̇n
2

sin2 θn +

lp
n−1∑
j=1

θ̇j θ̇n sin θj sin θn + lp
n−1∑
k=1

θ̇kθ̇n sin θk sin θn. (B.57)

Therefore, combining the time derivative squares of each component i.e. ẋ2(n) and

ẏ2(n). The following expression is obtained

ẋ2(n) + ẏ2(n) = l2
n−1∑
j=1

n−1∑
k=1

θ̇j θ̇k cos (θk − θj) + p2θ̇n
2
+

2lp
n−1∑
j=1

θ̇nθ̇j cos (θn − θj). (B.58)

However, the total kinetic energy of guitar string consists of translational and

rotational kinetic energy. Therefore, the total kinetic energy is
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T (n) =
1

2
m[l2

n−1∑
j=1

n−1∑
k=1

θ̇j θ̇k cos (θk − θj) + p2θ̇n
2
+

2lp
n−1∑
j=1

θ̇nθ̇j cos (θn − θj)] +
1

2
Jθ̇n

2
, (B.59)

where each link is assumed to have the same moment of inertia J . Now equation

B.59 may be used to obtain the kinetic energy for a single link, given the index

i. That is the kinetic energy of any link in a n link pendulum model. Therefore,

the total kinetic energy may be determined by summing the kinetic energy over

all link elements i.

T (n) =
1

2
m

n∑
i=1

[l2
i−1∑
j=1

i−1∑
k=1

θ̇j θ̇k cos (θk − θj)

2lp
i−1∑
j=1

θ̇iθ̇j cos (θi − θj) + p2θ̇i
2
] +

1

2

n∑
i=1

Jθ̇i
2
. (B.60)

Total Kinetic Energy

The previous two sections determined the link kinetic energy for a n link pendulum,

equation B.59 and the tip mass kinetic energy, equation B.49. However, as stated

before equation B.60 applies to a single link situated anywhere along the length of

the guitar string. The total kinetic energy for all links may be found by summing

equation B.60 over all i and including the tip mass mt kinetic energy. The total

kinetic energy is
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T (n) =
1

2
m

n∑
i=1

[l2
i−1∑
j=1

i−1∑
k=1

θ̇j θ̇k cos (θk − θj)+

2lp
i−1∑
j=1

θ̇iθ̇j cos (θi − θj) + p2θ̇i
2
] +

1

2
J

n∑
j=1

θ̇j
2

+

1

2
mt[l

2

n∑
j=1

n∑
k=1

θ̇j θ̇k cos (θk − θj)]. (B.61)

Potential Energy

The general potential energy is also derived by expressing the the first three po-

tential energy functions for a single, double and triple link pendulum. The energy

functions are

V(1) =
1

2
Kθ21 +mg[h− l − p cos θ1] +

mtg[h− l − l cos θ1]− τθ1, (B.62)

V(2) =
1

2
Kθ21 +

1

2
K(θ2 − θ1)2+

mg[h− l − p cos θ1] +mg[h− l − l cos θ1 − p cos θ2] +

mtg[h− l − l cos θ1 − l cos θ2]− τθ2, (B.63)

and
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V(3) =
1

2
Kθ21 +

1

2
K(θ2 − θ1)2 +

1

2
K(θ3 − θ2)2 +

mg[h− l − p cos θ1] +mg[h− l − l cos θ1 − p cos θ2] +

mg[h− l − l cos θ1 − l cos θ2 − p cos θ3] +

mtg[h− l − l cos θ1 − l cos θ2 − l cos θ3]− τθ3. (B.64)

Two patterns emerge: the first pattern allows the potential due to the springs to

be written as a summation and the second pattern allows the potential energy due

to the displacement above ground to also be written as a summation. The control

torque appears as DC term in the general expression. The general potential energy

is

V(n) =
1

2
K

n∑
j=1

(θj − θj−1)2 +

gm
n∑
i=1

[h− l − l
i−1∑
j=1

cos θj − p cos θi] +

mtg[h− l − l
n∑
j=1

cos θj]− τ θn, (B.65)

where θ0 = 0.

Now, the potential energy contains terms involving angles only. The potential

energy may therefore be placed in the Euler-Lagrange equation by evaluating the

partial derivative ∂V(n)
∂θ

. The partial derivative for the a double, triple and quadru-

ple pendulum are
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∂V1
∂θ1

= Kθ1 +mgp sin θ1 +mtgl sin θ1 − τ θ1, (B.66)

∂V2
∂θ1

= Kθ1 −K(θ2 − θ1) +mgp sin θ1 +mgl sin θ1 +mtgl sin θ1

∂V2
∂θ2

= K(θ2 − θ1) +mgp sin θ2 +mtgl sin θ2 − τ θ2 (B.67)

and

∂V3
∂θ1

= Kθ1 −K(θ2 − θ1) +mgp sin θ1 + 2mgl sin θ1 +mtgl sin θ1

∂V3
∂θ1

= K(θ2 − θ1)−K(θ3 − θ2) +mgp sin θ2 +mgl sin θ2 +mtgl sin θ2

∂V3
∂θ1

= K(θ3 − θ2) +mgp sin θ3 +mtgl sin θ3 − τc θ3. (B.68)

Therefore, from the above partial derivatives it is seen that the ∂V (n)
∂θi

may be

written as

∂V(n)

∂θ
= ∇θV(n), (B.69)

where i = 1, .., n and ∇θ = [ ∂
∂θ1
, ∂
∂θ2
, ..., ∂

∂θn
].

General Dissipative Energy

The dissipative energy may be written as a series if the first three dissipative

functions. These dissipative functions are for a two, three and four link pendulum

models. The first three terms are
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Ed(1) =
1

2
Bθ̇21, (B.70)

Ed(2) =
1

2
Bθ̇21 +

1

2
B(θ̇2 − θ̇1)2 (B.71)

and

Ed(3) =
1

2
Bθ̇21 +

1

2
B(θ̇2 − θ̇1)2 +

1

2
B(θ̇3 − θ̇2)2. (B.72)

Therefore, the general dissipative energy function is

Ed(n) =
1

2
B

n∑
j=1

(θ̇j − θ̇j−1)2, (B.73)

where θ̇0 = 0.

The torque for Ed = 1
2
Bθ̇1

2
is Bθ̇1. The torque for Ed = 1

2
Bθ̇21 + 1

2
(θ̇2 − θ̇1)2 and

Ed = 1
2
Bθ̇21 + 1

2
(θ̇2 − θ̇1)2 + 1

2
(θ̇3 − θ̇2)2 are

∂Ed

∂θ̇1
= Bθ̇1 −B(θ̇2 − θ̇1)

∂Ed

∂θ̇2
= B(θ̇2 − θ̇1) (B.74)

and
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∂Ed

∂θ̇1
= Bθ̇1 −B(θ̇2 − θ̇1)

∂Ed

∂θ̇2
= B(θ̇2 − θ̇1)−B(θ̇3 − θ̇2)

∂Ed

∂θ̇3
= B(θ̇3 − θ̇2). (B.75)

Continuing this process for many more links, it is found that the torque due to the

dissipation may be evaluated using the gradient of the dissipative function with

respect to the angular velocities i.e. ∇θ̇ = [ ∂
∂θ̇1
, ∂
∂θ̇1
, ..., ∂

∂θ̇n
]. Hence, the dissipative

force is

∂Ed

∂θ̇
= ∇θ̇Ed(n). (B.76)

Generalized Lagrangian

The total Lagrangian energy function may therefore be found using equations B.61,

B.65 and L = T − V . Therefore, the Lagrangian is

L(n) =
1

2
m

n∑
i=1

[l2
i−1∑
j=1

i−1∑
k=1

θ̇j θ̇k cos (θk − θj) + 2lp
i−1∑
j=1

θ̇iθ̇j cos (θi − θj) + p2θ̇i
2
] +

1

2
J

n∑
j=1

θ̇j
2

+
1

2
mt[l

2

n∑
j=1

n∑
k=1

θ̇j θ̇k cos (θk − θj)]−

1

2
K

n∑
j=1

(θj − θj−1)2 − gm
n∑
j=1

[h− l − l
i−1∑
j=1

cos θj − p cos θi]−

mtg[h− l − l
n∑
j=1

cos θj]− τθn. (B.77)
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The Euler-Lagrange equation is

∂

∂t
(
∂T
∂θ̇

) +
∂T
∂θ

+
∂V
∂θ

+
∂Ed

∂θ̇
= 0, (B.78)

which becomes

∂

∂t
(∇θ̇T )−∇θL+∇θ̇Ed = 0. (B.79)

Therefore, given the number n, which signifies the number of links, n coupled

non-linear ODEs may be generated using equations B.77, B.73 and B.79. These

coupled equations have solutions which are non-trivial for many more than one

link, hence a symbolic language such as Wxmaxima is used to obtain an analytical

solution. Equation B.79 was used to verify the equations of motion for a double

link and triple link pendulums.
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B.3 Assumed Modes Model

Structural bodies are very frequently modelled as rigid bodies. A rigid body model,

is characterized as one which reduces vibration and increases stiffness, these char-

acteristics are due to the model being composed of a heavier material. This al-

lows for good positional tracking and simple control designs. However, rigid body

models are at a disadvantages, they have limited response, increased energy con-

sumption and require an increase in actuator size. They are also non-linear and

non-minimum phase [51]. Non-minimum phase response occurs when a delay in

actuator response causes an opposing response for a given control input. This

phenomena is also known as a phase shift or transport lag, it is characterized by

a pole in the right half plane of the s-plane [51]. However, many structural bodies

such as aircraft wings, spacecraft antenna, helicopter blades and robotic arms [52]

are described more accurately using a flexible model of the body.

Flexible structures are characterised by fast response, reduced assembly expen-

diture, reduced energy consumption, high load to weight ratio and their ability

to be portable [53]. Flexible structures are more difficult to control due to their

distributed nature. A beam may be characterised as being flexible if the length

of the beam far exceeds that of the cross-sectional area of the beam, this assump-

tion is validated if the effects of rotary inertia and shear deformation are ignored.

Flexible beams are described by PDE. Their exists several methods of solving a

PDE, namely FDM and FEM. The FEM method is considered to be superior to

FDM, since this method requires less computation and results in increased model

accuracy. The FEM is also able to handle complex geometries.

A third method exits known as the ASM i.e. separation of variable. This method

may be used to approximate the deflection of a beam, when used in conjunction

with Euler-Bernoulli PDE. Equation 2.1 describes the lateral vibration of a can-

tilever beam and assumes that transversal deflection is due to bending moments

only. Equation 2.1 is derived using hooks law [54].

An alternative method exists, for determining the deformation of a beam which
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closely resembles ASM, this method is Galerkin method. The deflection is ex-

panded into a linear combination of eigenfunctions, where each eigenfunction is

scaled by a coefficient. The method also closely resembles the Fourier series and

may improve deflection convergence and convergence with higher natural frequen-

cies [55]. However, Galerkin’s solution contains functions that are infinitely differ-

entiable, thus the solution cannot converge in point-wise fashion. The conclusion

may be drawn that using functions that are infinitely differentiable results in poor

convergence, this is because the exact solution is only continuous through its sec-

ond derivatives [55].

ASM models the beam deflection using a finite number of modes (beam shapes)

[56]. A Single Degree Of Freedom (SDOF) model contains a single mode, as op-

pose to a Multiple Degree Of Freedom (MDOF) model which contains many modes

[57]. Equation 2.1 has infinity many degrees of freedom and ASM method at most

approximates the beam deflection using a finite number of modes. Therefore their

is a need to determine minimum number of modes that accurately describe the dy-

namics of the beam [54]. The ASM method effectively reduces the PDE described

by equation 2.1 into a set of 2n coupled ODEs.

The ASM method has found use in modelling of fractures in structures. Frac-

ture occurs where the stress in the structure is the greatest. This increased stress

results in a decrease in bending stiffness [55]. Fractures are generally modelled

as a division of the original beam into two sub-beams. Using this assumption

the fracture may be modelled using two or more Euler-Bernoulli beams. Such an

analysis of fractures is necessary in order to quantify the effect of the fracture

on eigen-frequencies, such that the beam does not run into resonance [58]. In

addition, beam modes of the vibration of damaged beam are also useful in deter-

mining the size and location of the fracture [55]. An additional application of the

method is found in analysis of smart structures, a smart structures are those that

can sense their environment and adapt to any changes. They mainly consist of a

structure, actuators and sensors. These structures are important in the aerospace

industry, where sensors tell the pilot when structural damage has reached critical

levels and corrects the pilot input in order to account for these damages [59]. Such
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a controlled structure could lead to improved aerodynamics and aero-elasticity [59].

Further discussion of the ASM requires a number of definitions. These definitions

are needed in order to understand how the mode functions are chosen and utilized

within the method.

Continuous System

A continuous system is one in which some quantity is described by a function

of one or more spatial variables, displacement and time. An example of such a

quantity is the deformation of a cantilever beam, where deflection is described by

the function w(x, t) [57].

Boundary Conditions

A boundary condition is a constrain that is placed on the displacement, velocity

and acceleration of system. These constraints occur at the boundary of a body

[57]. The boundary conditions for a clamped-free beam with no tip-mass are

Natural Conditions

A natural boundary condition constrains the moments and forces at the boundary

of a body. An example of such a condition is the vanishing of the moment at

boundary in a clamped-free cantilever beam equation B.2 [58].

Mode

An assumed-mode or shape function is an admissible function or comparison func-

tion that is used to approximate the deformation of continuous system [57]. They

are the allowable shapes that the beam may take while vibrating. Generally, ad-

missible functions are used and are specified by the user of the method. These

functions form the basis functions for the ASM [51]. The most appropriate choice

of modes are the eigen-functions of the system, since they satisfy both the bound-

ary conditions and the PDE. These are obtained by solving the Euler-Bernoulli

equation under free vibration and applying the boundary conditions [52]. The
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resulting PDE under free vibration is a homogeneous equation and its solution

is defined by a set of eigenvalues and eigen-functions. The eigenvalues determine

the system natural frequencies and the eigen-functions determine the mode ampli-

tudes [53]. However, the eigen-functions may be difficult to obtain for complicated

structures, since this requires the solution to the PDE .

Admissible Functions

These are spatial functions chosen to form a linearly independent set. They satisfy

the geometrical boundary conditions. In addition these functions must be differ-

entiable upto the half the order of the system under consideration [60]. That is

the admissible functions should have derivatives upto the order appearing in the

strain energy of the system [57].

Comparison Functions

These are spatial functions chosen to form a linearly independent set that satisfy

both boundary and natural conditions. In addition these functions are differen-

tiable upto the order of the system [60]. This set of functions forms a subset

of the set of admissible functions [60]. And allow for efficient convergence and

dynamic approximation of the ASM method, as oppose to that of admissible func-

tions. However, varied load applications may not converge for a set of comparison

functions. In these cases, a well chosen set of admissible functions may better

approximate the deflection of a beam [60].

Assumed Modes Method by separation of variable

ASM models the transversal displacement of a beam in a plane using a set of N

modes functions φ(x) and generalized coordinate functions q(t). The modes func-

tions are space dependent i.e. they depend on x and the generalized coordinate

functions are time dependent. The main feature of the method, is the assump-

tion that the transversal displacement w(x, t) may be separable into these spatial

components and temporal components [60]. The total transversal displacement

of the beam is then described by a linear combination of N spatial and temporal

components [59]. These N modes results in N degrees of freedom [60]. Controller
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design may be simplified by truncating the modes, such that the relevant modes

lie within the bandwidth of interest. Truncating the number of modes can alter

zero locations of the system while maintaining the pole locations. But since closed

loop performance is highly dependent on open loop zeros, there exists a trade-off

between the right number of modes and the model accuracy. The assumed modes

linear combination is

w(x, t) =
N∑
i=0

φi(x)qi(t) = φ>(x)q(t). (B.80)

where φi(x) denotes the i−th mode, qi(t) denotes the i−th generalized coordinate

and N denotes the number of terms in the linear combination. Equation B.80 is

used to obtain a finite set of ODEs. The ODEs describe the time evolution of the

generalized coordinate q(t) [60].

The method consists of substituting ASM approximation into kinetic energy T ,

potential energy V . The Euler-Lagrange equation is then applied to derive the

equations of motion for a N degree of freedom model [57]. The Euler-Lagrange

equation is

∂

∂
(
∂T
∂q̇

)− ∂T
∂qr

+
∂V
∂q

= Q. (B.81)

This version of the Euler-Lagrange equation differs from equation 2.5 in that T

does not depend on q(t) and V does not depend on q̇(t). Thus only the kinetic

energy and potential energy are required i.e. there is no need for the Lagrangian.

The kinetic energy of an Euler-Bernoulli beam is

T =
1

2

∫ L

0

ρ(x)[ẇ(x, t)]2dx. (B.82)

Placing the ASM approximation equation B.80 into Equation B.82 results in
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T =
1

2

∫ L

0

ρ[
N∑
i=1

φi(x)q̇i(t)][
N∑
i=1

φj(x)q̇j(t)]dx

=
1

2

N∑
i=1

N∑
j=1

q̇i(t)q̇j(t)[

∫ L

0

ρφi(x)φj(x)dx]

=
1

2

N∑
i=1

N∑
j=1

Mij q̇iq̇j =
1

2
q̇>Mq̇, (B.83)

where Mij denotes the i, j element of a symmetric mass matrix. The mass matrix

depends on mass distribution of system and mode shapes. The mass matrix M is

given as

Mij =

∫ L

0

ρ(x)φi(x)φj(x)dx. (B.84)

The potential energy of the Euler-Bernoulli beam is given by

V =
1

2

∫ L

0

EI[w
′′
(x, t)]2dx. (B.85)

Placing the ASM approximation in equation B.80 into Equation B.85 results in

V =
1

2

∫ L

0

EI[
N∑
i=1

φ
′′

i qi(t)][
N∑
j=1

φ
′′

j qj(t)]dx

=
1

2

N∑
i=1

N∑
j=1

qi(t)qj(t)[

∫ L

0

EIφ
′′

i (x)φ
′′

j (x)dx]

=
1

2

N∑
i=1

N∑
j=1

Kij q̇iq̇j =
1

2
q̇>Kq̇, (B.86)

where Kij denotes the i, j element of a symmetric stiffness matrix K, which
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depends on stiffness distribution and second derivative of the mode shapes with

respect to x [60]. The spring matrix K is given as

Kij =

∫ L

0

EI(x)φ
′′

i (x)φ
′′

j (x)dx. (B.87)

Thus the kinetic energy and potential energy of a continuous system contains

spatial integral expressions depending on both space and time. Equation B.81

includes a generalized force term Q, which is also determined using a point force

and the mode functions [61]. This is done by determining the virtual work done

by a point force in moving through virtual displacement dq [61]. This work is

δw =

∫ L

0

p(x, t)[
N∑
0

φi(x)δqi]dx

=
N∑
0

δqi

∫ L

0

p(x, t)φi(x)dx. (B.88)

Therefore, the generalised force is given as

Qi =

∫ L

0

p(x, t)φi(x)dx. (B.89)

Placing equations B.83, B.86 and B.89 in the Euler-Lagrange equation B.81 and

evaluating the partial derivatives results in a second order system containing

derivatives of the generalised coordinate q(t). The second order equation is

Mq̈ +Kq = Q. (B.90)

Now, equation B.90 may be placed in state space form. This form closely resembles

the linear state space form given in equations 3.3 and 3.4, where the A and B are

given as
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A =

[
0 I

−M−1K 0

]

and

B =

[
0

M−1Q

]
.

Here I is the identity matrix. The outputs of the linear model are the generalised

coordinates q(t), since these along with the chosen modes shapes φ(x) determine

the beam deflection, equation B.90. Therefore, the output of the system is

y = C x,

where C is given as

C =
[
φ(x) 0

]
The state-space realization of the generalized coordinate in the s− domain results

in

Q(s) = C [sI −A]−1Bu(s). (B.91)

The roots of the characteristic equation then determine the eigenvalues and eigen-

frequencies of beam. However, since equation B.90 contains no damping, the

eigenvalues all sit on the imaginary axis and hence the beam never damps.
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Types of Modes

The mode shapes is are a set of functions specified by the user of the method.

Therefore, there are no set functions that apply to all applications. The modes are

application specific and must adhere to the boundary conditions. For a clamped-

free guitar string the modes must adhere to the boundary equations specified in

equation B.2. Below are a list of constraints that modes must adhere to before

being considered as admissible functions or comparison functions

• modes need to form a linearly independent set,

• modes need to have derivatives upto the order appearing in the strain energy,

• they need to satisfy all geometric boundary conditions and

• they need to be continuous and their derivatives need to also be continuous.

The chosen modes must be linearly independent, this may be achieved by choos-

ing a basis form such as polynomial or eigenfunction and orthogonalizing these

set of basis functions. Orthogonalization is performed using the Gram-Schmidt

orthonormalization process [62].

Theorem B.3.1. Let V be an inner product space, and let S = y1, y2, ...., yn be a

linearly independent subset of V , Define S
′
= x1, x2, ..., xn, where x1 = y1, and

xk = yk −
k−1∑
j=1

〈yk, xj〉
‖xj‖2

xj 2 ≤ k ≤ n (B.92)

Then S
′

is an orthogonal set of non zero vectors with span(S
′
) = span(S).

where the definition of a norm is given as

Definition A norm space X is a vector space with a norm defined on it. A Banach

space is a complete normed space. Here a norm on a real-valued function on X

whose value at an x ∈ X is denoted by
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‖ x ‖ (B.93)

and which has the properties

‖ x ‖> 0

‖ x ‖= 0⇐⇒ x = 0

‖ αx ‖= |x| ‖ x ‖

‖ x+ y ‖6‖ x ‖ + ‖ y ‖ (B.94)

here x and y are arbitrary vectors in X and α is any scalar. A norm on X defines

a metric d on X which is given by

d(x, y) =‖ x− y ‖ (B.95)

and is called the metric induced by the norm. The norm space is defined by

(X, ‖ . ‖) or simply by X.

The definition of an inner product is given in [49] and is stated below

Theorem B.3.2. An inner product space is a vector space X with an inner product

defined on X. A Hilbert space is a complete inner product space. Here, an inner

product on X is a mapping of X × X into the scalar field K of X; that is, with

every pair of vectors x and y there is associated a scalar which is written

< x, y > (B.96)

and is called the inner product of x and y, such that for all vectors x,y,z and

scalars α we have
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< x+ y > =< x, z > + < y, z >

< αx, y > = α < x, y >

< x, y > = ¯< y, x >

< x, x > > 0

< x, x > = 0⇐⇒ x = 0 (B.97)

An inner product on X defines a norm on X given by

‖ x ‖=
√
< x, x > (B.98)

and a metric on X given by

d(x, y) =‖ x− y ‖=
√
< x− y, x− y > (B.99)

Hence inner product spaces are normed spaces, and Hilbert spaces are Banach

spaces.

However, if the bases functions are chosen to be the eigenfunctions, there is no

need to orthogonalise the set using the Gram-Schmidt orthonormalization process.

Since eigenfunctions are orthogonal functions themselves. The orthogonality of

polynomials functions may be checked using the inner product. Orthogonality is

determined using the following theorem
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Theorem B.3.3. A set of functions φr = φ1, φ2, ..., φr are an orthogonal set of

functions on [0, L] if

∫ L

0

φi(x)φj(x)dx = δrs (r, s = 1, 2, 3, ...) (B.100)

where δrs is the Kronecker delta symbol defined by

δrs =

0 r 6= s

1 r = s
(B.101)

Two types of modes that will be used to approximate the beams deflection are

polynomials and eigen-functions.

Polynomials

The polynomial modes where chosen to have the following form

φi(x) = (
x

L
)i, (B.102)

where i = 1, 2, ....n represents the 1, 2, ...., n modes. The modes where orthonor-

malized using the Gram-Schmidt orthonormalization process. The first four or-

thonormal modes are shown below

φ1(x) = 69.4x2

φ2(x) = 578.7x3 − 57.9x2

φ3(x) = 4822.5x4 − 868.1x3 + 37.2x2

φ4(x) = 40187.8x5 − 10127.3x4 + 810.2x3 − 20.3x2.

These modes are orthogonal, this is may be verified by applying the inner-product
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Figure B.8: Characteristic equation of the beam

to any pair of modes.

Eigen-functions

The eigenvalues of the beam under free vibration are the roots of the characteristic

equation. The characteristic equation is

cosh (βnL) cos (βn) + 1 = 0. (B.103)

The roots of equation B.103 may be be obtained graphically using the ezplot com-
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mand in MATLAB or numerically using the fzero command. A plot of the charac-

teristic equation over the range [−250, 250] is seen in figure B.8. The approximate

roots are obtained using

βnL ≈ (i− 1

2
)π i = 1, ...., n, (B.104)

where L is the length of the beam [51].

Table B.1: Beam natural frequencies

Roots β f [Hz]

n = 1 15.6259 2.07

n = 2 39.1174 12.9725

n = 3 65.4563 36.3233

n = 4 91.6295 71.1791

The roots of characteristic equation are given in Table B.1. These eigen-frequencies

β, determine the eigenfunctions. The eigenfunctions are the minimum energy

solution to the free vibration eigenvector eigenvalue problem [59]. The eigen-

functions are given as

φn(x) = cosh (βnx)− cos (βnx)−W (sinh (βnx)− sin (βnx)). (B.105)

The factor W is scalar given by

W =
sinh (βnL)− sin (βnL)

cosh (βnL) + cos (βnL)
. (B.106)

The first four eigenfunctions for a length L = 120mm are
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φ1(x) = 2.887 cosh (15.6259x)− 2.887 cos (15.6259x) + 2.119 sin (15.6259x)−

2.119 sinh (15.6259x)

φ2(x) = 2.887 cosh (39.1174x)− 2.887 cos (39.1174x) + 2.94 sin (39.1174x)−

2.94 sinh (39.1174x)

φ3(x) = 2.887 cosh (65.4563x)− 2.887 cos (65.4563x) + 2.88451 sin (65.4563x)−

2.88451 sinh (65.4563x)

φ4(x) = 2.887 cosh (91.6296x)− 2.887 cos (91.6296x) + 2.88685 sin (91.6296x)−

2.88585 sinh (91.6296x)

Table B.1, indicates that only the first three modes are detectable with the Nin-

tendo wiimote. Since the wiimote has a sample frequency of 100Hz i.e. Shannon

sampling theorem.

Damping

The Euler-Bernoulli beam PDE described in equation 2.1, does not contain damp-

ing [62]. If this beam is disturbed, it will continue to oscillate. Therefore, equation

2.1 does not truly reflect an actual beam. Since in actual beams oscillations die as

time progresses. Hence, a damping term is required. The simplest form of damping

is Rayleigh damping, where the damping matrix is considered to be proportional

to stiffness matrix and mass matrix [57]. Rayleigh damping is given as

B = α1M + α2K, (B.107)

where α1 and α2 are proportionality constants. The damping matrix B is diagonal,
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since the matrices M and K are diagonal [57]. Another type of damping called

viscous damping may also be included in the Euler-Bernoulli PDE. If it is as-

sumed that the damping force is proportional to time derivative of the transversal

displacement [62]. This new type of damping force is given as

fd(t) = −d∂w(x, t)

∂t
, (B.108)

where the damping coefficient d is assumed to be uniform along the length of the

beam. Using the damping force fd(t) and the virtual work principal, an expression

for the damping matrix in terms of the modes may be found. Virtual work due to

force fd is

δWd =

∫ L

0

φ(x)fd(x, t)dx

= −d
∫ L

0

φ(x)
∂z(x, t)

∂t
dx

= −d
∫ L

0

φ(x)
∂

∂t
(φ(x)q(t))dx

= −d
∫ L

0

φ(x)φ(x)dx
∂q(t)

∂t

= −Bdq(t)
dt

. (B.109)

Therefore, the damping matrix B is a diagonal matrix since the modes where

chosen to be orthogonal [62]. The damping matrix is given as

Bij = d

∫ L

0

φ(x)iφ(x)jdx. (B.110)

The second order system given in equation B.90, may now be altered to include a
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damping term. The new second order system is then given as

Mq̈(t) +Bq̇(t) +Kq(t) = Q. (B.111)

Manipulating equation B.111 using the matrix inverse of the mass matrix results

in

Mq̈(t) = −Bq̇(t)−Kq(t) +Q

q̈(t) = −M−1Bq̇(t)−M−1Kq(t) +M−1Q. (B.112)

Choosing the same states as those chosen for the un-damped case results in the

following A, B, C and D matrices

A =

[
0 I

−M−1K −M−1D

]
,

B =

[
0

M−1F (t)

]
,

C =
[
φ(x) 0

]
.

and

D = 0.

Using linear state-space equation 3.3, the time evolution of the generalized co-

ordinate may be determined. This is then used in conjunction with the modes

equation B.80 to solve for the deflection of the beam w(x, t).
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Constrained Structure

The term constrained structure refers to a structure being constrained by a mass

or spring. Adding a mass to the structure reduces the natural frequency, where

as the inclusion of a spring increases the natural frequency. The guitar string,

however is constrained by a tip mass, that being a permanent magnet. The forces

that act on the beam are the inertial force of the beam, inertial force of the tip

mass and applied control. These forces, however are distributive forces and need

to be converted to equivalent point forces using the virtual work principle [54, 62].

The generalized force for the tip-mass and control torque are

ft(t) =

∫ L

0

fm(x, t)φ(x)dx = mtZ̈b(t)φ(L)

and

fc(t) =

∫ L

0

fc(x, t)φ(x)dx = fc(t)φ(L).

The mass matrix including the effect of the tip mass is then given as

M = ρA

∫ L

0

φ(x)φ>(x)dx+mtφ(L)φ>(L) (B.113)

Therefore, equation B.111 with the inclusion of the tip-mass and control force

becomes

Mq̈(t) +Bq̇(t) +Kq(t) = fc(t). (B.114)

Assume modes Algorithm

The listed points describes the algorithm used to implement the damped ASM

in MATLAB. The following steps where used to approximate the transversal dis-

placement w(x, t) [57].
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1. Choose a set of N admissible functions,

2. obtain the mass matrix M using equation B.113,

3. obtain the stiffness matrix K using equation B.87,

4. obtain the damping matrix B using equation B.110,

5. obtain the generalized forces corresponding to the control force,

6. solve the 2N ODEs describing the time evolution of the generalized coordi-

nate q(t) and

7. use the assumed modes approximation, equation B.80 to determine the

transversal displacement w(x, t).
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B.4 Perturbation Solution

In this section the dynamic equation of a two-link pendulum is approximated using

perturbation theory. The dynamics equation assumes the first link is stationary

and second link rotates about the tip of the first link. The two-link dynamic

equation is

θ̈ +
B

[J +mp2 +mtl2]
θ̇ +

K

[J +mp2 +mtl2]
θ+

[mp+mtl]g

[J +mp2 +mtl2]
sin θ = 0, (B.115)

where J is the moment of inertia, m is the link mass, mt is the tip mass, K is

the spring coefficient, B is the damping coefficient, p is the distance to the center

of mass, l is the length of link and g is gravity. Equation B.115 resembles the

standard second order Ordinary Homogeneous Differential Equation (OHDE)

ẍ+ 2ζωnẋ+ ω2
nx = 0, (B.116)

where ζ is the damping ratio, ωn is the natural frequency of the pendulum and x

is either a length or angle. Now, substituting the Taylor approximation sin θ ≈
θ − θ3

6
+ ... into equation, results in

θ̈ +
B

[J +mp2 +mtl2]
θ̇ +

K

[J +mp2 +mtl2]
θ+

[mp+mtl]g

[J +mp2 +mtl2]
[θ − θ3

6
] = 0, (B.117)

Now, comparing equations B.116 and B.117. It is apparent that ω2
n = [mp+mtl]g

[J+mp2+mtl2]

and 2ζωn = B
[J+mp2+mtl2]

. Equation B.117 then becomes
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θ̈ + 2ζωnθ̇ + ω2
n −

[mp+mtl]g

[J +mp2 +mtl2]

θ3

6
= 0. (B.118)

Now, making the substitution ε = [mp+mtl]g
6[J+mp2+mtl2]

results in

θ̈ + 2ζωnθ̇ + ω2
n − εθ3 = 0. (B.119)

The solution to equation B.119 is then approximated using the perturbation step

θ(ε, τ) = θ0(τ) + εθ1(τ) + ..... (B.120)

which results in

[θ̈0 + εθ̈1] + 2ζωn[θ̇0 + εθ̇1] + ω2
n[θ0 + εθ1]− ε[θ0 + εθ1]

3 = 0. (B.121)

Equation B.121 is separable into two equations involving θ1 and θ0. They are

θ̈0 + 2ζωn + θ̇0 + ω2
n = 0

θ̈0 + 2ζωn + θ̇0 + ω2
n = θ30. (B.122)

Equation B.122 contains two equations, θ0 is obtained from the solution of first

equation using D-operator techniques. The second equation is seen to depend on

the solution of the first equation. The solution to second equation is also obtained

using D-operator techniques. In this case, the solution consists of a complementary

function and particular integral. The particular integral is the forced response due

to the input θ0.
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Solving for θ0 in equation B.122 results in

[D2 + 2ζωD + ω2
n]θ0 = 0 (B.123)

and

D = −ζωn ± ωn
√
ζ2 − 1

= −ζωn ± iω
√

1− ζ2

= −ζωn ± iωd, (B.124)

where ωd is called the damped natural frequency. The solution to θ0 is

θ0 = C1e
(−ζωn−iωd)t + C2e

(−ζωn+iωd)t

= e−ζωt[C1e
−iωdt + C2e

iωdt]. (B.125)

Now, if the beam is assumed to be initially at an angle with zero angular velocity

then the coefficients C1 and C2 may be determined. The angular velocity is

θ̇0 = C1[−ζωn − iωd]e(−ζωn−iωd)t + C2[−ζωn + iωd]e
(−ζωn+iωd)t. (B.126)

Now, using θ̇ = 0 results in

i[C1ωd − C2ωd]− 2ζωn = 0, (B.127)

which results in C1 = C2, since the imaginary part must be zero. Therefore, the

solution is
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θ0 = Ce−ζωnt cosωdt. (B.128)

Now, the complimentary function solution for θ1 is the solution to

θ̈1 + 2ζωnθ̇1 + ω2
n = 0, (B.129)

which results in

θ1 = Ce−ζωnt cosωdt. (B.130)

Now, the particular solution for θ1 is obtained using D-operator techniques,

[D2 + 2ζωD + ω2
n]θ0 = (Ce−ζωnt cosωdt)

3 (B.131)

and the identity

cos3 (ωt) =
3 cosωt+ cos 3ωt

4
. (B.132)

This results in

[D2 + 2ζωD + ω2
n]θ1 = C3e−3ζωnt(

3 cosωt+ cos 3ωt

4
). (B.133)

Dividing throughout by [D2 + 2ζωD + ω2
n], results in

θ1 =
C3e−3ζωnt(3 cosωt+cos 3ωt

4
)

ω2
n[1 + D1

ω2
n

+ 2ζωnD
ω2
n

]
. (B.134)

Equation B.134 is approximated using the Taylor approximation 1
1+x
≈ 1 − x +
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x2 − ..... Therefore, the approximate solution is

θ1 =
C3e−3ζωnt(3 cosωt+cos 3ωt

4
)

ω2
n

[1 + (
D2

ω2
n

+
2ζωnD

ω2
n

) +

D2

ω2
n

+
2ζωnD

ω2
n

)2 − ...]. (B.135)

Therefore, θ1 upto the first time derivative D is

θ1 =
C3e−3ζωnt(3 cosωt+cos 3ωt

4
)

ω2
n

−

2C3ζωn
ω4
n

[−3ζωne
−3ζωnt

(−3 cosωdt+ cos3ωdt)

4
+

e−3ζωnt(
−3ωd sinωdt− 3ωd sin 3ωdt

4
)] + ... (B.136)

The solution due to the complimentary function and particular integral equation

is

θ1 = Ce−ζωnt cosωdt+
C3e−3ζωnt(3 cosωt+cos 3ωt

4
)

ω2
n

−

2C3ζωn
ω4
n

[−3ζωne
−3ζωnt

(−3 cosωdt+ cos3ωdt)

4
+

e−3ζωnt(
−3ωd sinωdt− 3ωd sin 3ωdt

4
)] + ... (B.137)
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Therefore, the total solution is

θ1 = Ce−ζωnt cosωdt+

ε [Ce−ζωnt cosωdt+
C3e−3ζωnt(3 cosωt+cos 3ωt

4
)

ω2
n

−

2C3ζωn
ω4
n

[−3ζωne
−3ζωnt

(−3 cosωdt+ cos3ωdt)

4
+

e−3ζωnt(
−3ωd sinωdt− 3ωd sin 3ωdt

4
)] + ....]. (B.138)

Equation B.138 is further simplified if the amplitude A is assumed to be small and

ε is assumed to be small (large inertia). Then the terms involving A3 and ε are

negligible and total solution becomes

θ = Ae−ζωn cosωdt. (B.139)
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B.5 Variational derivation of Euler-Bernoulli equa-

tion with boundary equations

Figure B.9: Beam in an inertial reference frame

Figure B.9 depicts a bent beam with a tip mass mt, whose moment of inertia about

the origin is Jt. The beam moves in the horizontal plane and it’s displacement

from the x axis is w(x, t). An arbitrary point P is shown in figure B.9, whose

projection onto the x axis is X
′
. The point P also has a position vector ~r. The

control input is τc which is applied to the tip mass mt via electromagnets. The

beam rotates through an angle ϕ(x, t) given by

ϕ(x, t) = arctan
w(x, t)

X ′
≈ arctan

w(x, t)

X
≈ w(x, t)

X
. (B.140)

Equation B.140 assumes that the beam experiences small deflections, hence the

small angle approximation is used. This assumption results in

∂w(x, t)

∂x
=
w(x, t)

X
. (B.141)
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B.5.1 Kinetic Energy

Now, the position vector ~r of the point P in figure B.9 may be found using P ’s

projection onto the x and y axes. The position vector is given as

~r =

[
xr

yr

]
=

[
|r| cosϕ

|r| sinϕ

]
. (B.142)

Now, applying the small angle approximation results in |r| = x, therefore equation

B.142 becomes

~r =

[
xr

yr

]
=

[
x cosϕ

x sinϕ

]
. (B.143)

The velocity vector ~̇r is found by taking the derivative of ~r with respect to time t

this results in

~̇r =

[
ẋr

ẏr

]
=

[
−xϕ̇ sinϕ

xϕ̇ cosϕ

]
=

[
−ẇ(t, x) sinϕ(x, t)

ẇ(t, x) cosϕ(x, t)

]
. (B.144)

The Kinetic energy of both the beam and tip mass may be found using the follow-

ing expression for the kinetic energy. The expression is given as

T =
1

2
ρA

∫ L

0

~̇r>(t, x)~̇r(t, x) dx. (B.145)

Now evaluating the ~̇r>(t, x)~̇r(t, x) expression in equation B.145 where ϕ̇(x, t) =
ẇ(x,t)
x

results in
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~̇r>~̇r =

[
−ẇ(x, t) sinϕ(x, t)

ẇ(x, t) cosϕ(x, t)

] [
−ẇ(x, t) sinϕ(x, t) ẇ(x, t) cosϕ(x, t)

]

= ẇ2(x, t) sin2 ϕ(x, t) + ẇ2(x, t) cos2 ϕ(x, t)

= ẇ2(x, t). (B.146)

Using equations B.145 and B.146, the kinetic energy of the beam is found to be

T =
1

2
ρA

∫ L

0

ẇ2(t, x)d x (B.147)

and the Kinetic energy of the Tip mass mt is found to be

Tt =
1

2
mtẇ

2(t, L)) dx+
1

2
Jt[
∂2w(L, t)

∂x∂t
]2. (B.148)

B.5.2 Potential Energy

The potential energy due to elastic deformation is given as

V =
1

2
EI

∫ L

0

[
∂2w(t, x)

∂x2
]2dx. (B.149)

Equation B.149 is the standard equation for the potential energy of a beam.

B.5.3 Work done by control torque

The beam deflection is controlled via the torque τc applied to tip-mass mt, this

torque is non-conservative. Letting δϕ(t) indicate a virtual displacement due to

the control torque τc, then the virtual work is δWc = τc(t)δϕ(t) [63]. Then by
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D’Alembert’s principle we have

Wc = τc(t)ϕ(t)

= τc
∂w(x, t)

∂x
. (B.150)

B.5.4 Lagrangian

The Lagrangian energy function which depends on w(x, t), ẇ(x, t), τc and t is given

as

L = Tbeam + Tt − V +Wc

= ρA

∫ L

0

ẇ2(t, x) dx+
1

2
mtẇ

2(t, L) +
1

2
Jt(

∂2w(L, t)

∂x∂t
)2−

1

2
EI

∫ L

0

(
∂2w(t, x)

∂x2
)2 dx+ τc(t)ϕ(t). (B.151)

Using the Lagrangian energy function given in equation B.151. The cost may be

defined, this functional is also called an action integral and is given as

S =

∫ b

a

L(w(x, t), ẇ(x, t), t)dt. (B.152)

Minimization of the functional in equation B.152, over all possible trajectories is

called Hamilton’s principle. Now the first variation of the functional may be found,

where ∆S(w) denotes this first variation of the functional. This gives
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∆S(w) = S(w + δw)− S(w)

= ∆

∫ b

a

Tbeamdt+ ∆

∫ b

a

Ttdt+ ∆

∫ b

a

Vdt+

∆

∫ b

a

Wcdt+ ∆

∫ b

a

Wddt

= ∆beam + ∆t + ∆V + ∆Wc . (B.153)

The derivation now proceeds by evaluating each of the terms in equation B.153.

Determining ∆Wc

∆Wc =

∫ b

a

τc(t)
∂ (w + δw)(L, t)

∂x
dt−

∫ b

a

∂w(L, t)

∂x
τc(t) dt

=

∫ b

a

τc(t)
∂δw(L, t)

∂x
dt (B.154)

176



Determining ∆V

∆V =

∫ b

a

1

2
EI[

∫ L

0

(
∂2(w(x, t) + δw(x, t))

∂x2
)2 − (

∂2w(x, t)

∂x2
)2dx)]dt

=

∫ b

a

1

2
EI[

∫ L

0

(
∂2w(x, t)

∂x2
)2 + 2(

∂2w(x, t)

∂x2
)(
∂2δw(x, t)

∂x2
) + (

∂2δw(x, t)

∂x2
)2dx]dt−

∫ b

a

1

2
EI[

∫ L

0

(
∂2w(x, t)

∂x2
)2dx]dt

=

∫ b

a

∫ L

0

EI(
∂2w(x, t)

∂x2
)(
∂2δw(x, t)

∂x2
)dx dt+

1

2
EI

∫ b

a

∫ L

0

(
∂2δw(x, t)

∂x2
)2dx dt (B.155)

Integrating the linear part of equation B.155 twice with respect to x by parts,

results in

EI

∫ L

0

(
∂2w(x, t)

∂x2
)(
∂2δw(x, t)

∂x2
)dx = EI(

∂2w(x, t)

∂x2
)(
∂δw(x, t)

∂x
)|L0 −

[EI
∂3w(x, t)

∂x3
)δw(x, t)|L0 −

EI

∫ L

0

(
∂4w(x, t)

∂x4
δw(x, t)dx)]. (B.156)

Equation B.155 with the non-linear terms in δw and equation B.156 becomes
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∆V =

∫ b

a

[EI
∂2w(x, t)

∂x2
∂δw(x, t)

∂x
− EI ∂

3w(x, t)

∂x3
δw(x, t)|L0 ] dt+

EI

∫ b

a

∫ L

0

(
∂4w(x, t)

∂x4
δw(x, t)dx)] dt+

nonlinear terms. (B.157)

Determining ∆Tbeam

∆Tbeam =
1

2

∫ b

a

∫ L

0

ρA(ẇ + ˙δw)2(x, t) dx dt− 1

2

∫ b

a

∫ L

0

ρAẇ2(x, t) dx dt

=
1

2

∫ b

a

∫ L

0

ρA(ẇ2 + 2ẇ ˙δw + ˙δw
2
)(x, t) dx dt−

1

2

∫ b

a

∫ L

0

ρAẇ2(x, t) dx dt

=
1

2

∫ b

a

∫ L

0

ρA(2ẇ ˙δw + ˙δw
2
)(x, t) dx dt (B.158)

Equation B.158 is now integrated by parts with respect to t, results in

∆Tbeam =

∫ b

a

∫ L

0

2ρAẇ(x, t) ˙δw(x, t) dx dt +

∫ b

a

∫ L

0

ρA ˙δw(x, t) ˙δw(x, t) dx dt

=

∫ L

0

2ρAẇ(x, t)δw(x, t) dx|ba −
∫ b

a

∫ L

0

2ρAẅ(x, t)δw(x, t) dx dt+

∫ L

0

ρA ˙δw(x, t)δw(x, t) dx|ba −
∫ b

a

∫ L

0

ρAδ̈w(x, t)δw(x, t) dx dt. (B.159)

Equation B.159 with the non-linear parts is
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∆Tbeam =

∫ L

0

ρAẇ(x, t)δw(x, t) dx|ba −
∫ b

a

∫ L

0

ρAẅ(x, t)δw(x, t) dx dt+

nonlinear terms. (B.160)

Determining ∆Tt

∆Ttip =

∫ b

a

1

2
mt(ẇ + ˙δw)2(L, t) +

1

2
Jt(

∂2[w + δw](L, t)

∂x∂t
)2 dt−

∫ b

a

1

2
mtẇ

2(L, t) +
1

2
Jt(

∂w(L, t)

∂t
)2

=

∫ b

a

1

2
mt[ẇ + 2ẇ ˙δw + ˙δw

2
](L, t) +

1

2
Jt[(

∂w(L, t)

∂x∂t
)2 +

2(
∂w(L, t)

∂x∂t
)(
∂δw(L, t)

∂x∂t
) + (

∂δw(L, t)

∂x∂t)
] dt−

∫ b

a

1

2
mtẇ

2(L, t) +
1

2
Jt
∂w(L, t)

∂x∂t
)2 dt

=

∫ b

a

1

2
mt[2ẇ ˙δw + ˙δw

2
](L, t) +

1

2
Jt[2(

∂w(L, t)

∂x∂t
)(
∂δw(L, t)

∂x∂t
) + (

∂δw(L, t)

∂x∂t
)2] dt (B.161)

Now integrating the linear parts with respect to t. Results in

∫ b

a

mtẇ(L, t) ˙δw(L, t) dt = mtδw(L, t)ẇ(L, t)|ba−

∫ b

a

mtδw(L, t)ẅ(L, t) dt (B.162)
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and

∫ b

a

Jt(
∂w(L, t)

∂x∂t
)(
∂δw(L, t)

∂x∂t
) dt =

∂δw(L, t)

∂x
Jt
∂ẇ(L, t)

∂x
−

∫ b

a

Jt
∂δw(L, t)

∂x

∂ẅ

∂x
dt. (B.163)

Therefore, the variation at tip is

∆Tt = mtδw(L, t)ẇ(L, t)|ba −
∫ b

a

mtδw(L, t)ẅ(L, t) dt+

∂δw(L, t)

∂x
Jtip

∂ẇ(L, t)

∂x
−
∫ b

a

Jtip
∂δw(L, t)

∂x

∂ẅ

∂x
dt+

nonlinear terms. (B.164)

Now the total variation is found by evaluating equation B.152 and gathering the

terms similar in δw and ∂δw
∂x

. The variation of the action integral corresponds to

the Frechet derivative, which is the linear part of the variation ∆S(w) [63]. The

Frechet derivative is denoted as DA(δw) and given as
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DA(δw) =

∫ b

a

[

∫ L

0

−ρAẅ(x, t)− EI ∂
4w(x, t)

∂x4
]δw(x, t) dx dt+

∫ b

a

[−mtẅ(L, t) + EI
∂3w(L, t)

∂x3
]δw(L, t) dt+

∫ b

a

[−EI ∂
2w(L, t)

∂x2
− Jt

∂3w(L, t)

∂t2∂x
+ τc]

∂δw(L, t)

∂x
dt+

∫ L

0

ρAẇ(x, t)δw|ba dx+mtẇ(L, t)δw(L, t)|ba +

Jt
∂ẇ(L, t)

∂x

∂δw(L, t)

∂x
|ba. (B.165)

Now, using Hamilton principle, the most likely trajectory of w(x, t), forces the

Frechet derivative to be stationary DA(δw) = 0. Now let the variation δw vary

such that δw(L, t) = ∂δw(L,t)
∂x

= 0 and for a ≤ t ≤ b and δw(a, x) = δw(b, x) = 0

for 0 ≤ x ≤ L [63]. Then equation B.165 becomes

∫ b

a

[

∫ L

0

−ρAẅ(x, t)− EI ∂
4w(x, t)

∂x4
]δw dx dt = 0, (B.166)

therefore the integrand becomes

ρAẅ(x, t) + EI
∂4w(x, t)

∂x4
= 0. (B.167)

Now, allow δw(L, t) and ∂δw
∂x

to be non-zero for the interval a < t < b and since

equation B.167 must hold for all variations [63].
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∫ b

a

[−mtẅ(L, t) + EI
∂3w(L, t)

∂x3
]δw(L, t) dt+

∫ b

a

[−EI ∂
2w(L, t)

∂x2
− Jt[

∂3w(L, t)

∂t2∂x
+ τc]

∂δw(L, t)

∂x
dt = 0. (B.168)

The integrands result in

−mtẅ(L, t) + EI
∂3w(L, t)

∂x3
= 0 (B.169)

and

EI
∂2w(L, t)

∂x2
+ Jt

∂3w(L, t)

∂t2∂x
= τc. (B.170)

Now, since we are considering a clamped-free beam the boundary conditions at

the clamped point are w(t, 0) = 0 and the slope of the beam near the clamped

point has to be zero, therefore ∂w(t,0)
∂x

= 0. Hence the boundary conditions for a

clamped-free beam with a tip-mass is

w(x, t)|x=L = 0

∂w(x, t)

∂x
|x=L = 0

EI
∂2w(L, t)

∂x2
+ Jt

∂3w(L, t)

∂t2∂x
= τc

−mtẅ(L, t) + EI
∂3w(L, t)

∂x3
= 0. (B.171)
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B.6 Kelvin-Voight damping

Equation 2.1 contains no damping term and does not resemble the physics of an

actual beam. Therefore, Kelvin-Voight damping is included. The damping force

due to Kelvin-Voight damping is

fd = CdI
∂5w(x, t)

∂x4∂t
. (B.172)

The dimensions of the coefficient Cd is found using dimensional analysis. The

dimensions of the damping coefficient Cd are

Cd = [ML1T−1]. (B.173)

It is assumed that the bending moment due to Kelvin-Voight damping is CdI
∂3w(x,t)
∂x2∂t

,

which needs to have the units of a moment [ML2T−2]. The dimensions are

CdI
∂3w(x, t)

∂x2∂t
= [ML1T−1][L4][LL−2T−1] = [ML−2T−2], (B.174)

which is dimensionally constant with the moment dimensions. The units of the

proposed shear force is

CdI
∂4w(x, t)

∂x3∂t
= [ML−1T−1][L4][LL−3T−1] = [MLT−2]. (B.175)

These dimensions are constant with the shear force equation. Therefore, the Euler-

Bernoulli PDE with Kelvin-Voight damping is

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
+ CdI

∂5w(x, t)

∂x4∂ t
= 0. (B.176)

Including equation B.174 into the moment equation and Equation B.175 into the

shear force equation, results in the following boundary equations
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w(x, t)|x=L = 0

∂w(x, t)

∂x
|x=L = 0

EI
∂2w(L, t)

∂x2
+ Jt

∂3w(L, t)

∂t2∂x
+ CdI

∂3w(L, t)

∂x2∂t2
= τc

−mtẅ(L, t) + EI
∂3w(L, t)

∂x3
+ CdI

∂4w(L, t)

∂3∂t
= 0. (B.177)

The boundary conditions depend on w(x, t) and derivatives of w(x, t) with re-

spect to x and t. They are said to be Dirichlet, Neumann and Cauchy boundary

conditions [64].

B.7 Transfer Function Derivation using Laplace

The Euler-Bernoulli PDE is linear equation with constant coefficients for an uni-

form beam. The PDE may be solved using a separation of variable i.e. the ASM.

However, since this is a linear equation Laplace transform techniques may be used

to solve the PDE for w(x, t), where x is the independent variable displacement

and t is independent variable time and w(x, t) is the transversal displacement.

The method proceeds by taking the Laplace transform with respect to one of the

independent variables. The variable most suited for this is t, since it is defined

over an infinite range. This then leads to an OHDE. Such an equation has a gen-

eral solution in terms of unknown coefficients [64]. These coefficients are obtained

through the application of the boundary equations. The number of boundary

equations are equal to the number of unknown coefficients. The coefficient are

then substituted into the general solution to obtain a transfer function.

All most all control techniques assume a linear plant and therefore controllers are

designed in the in the s-domain. It is therefore sufficient to stop the analysis at
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the transfer function model i.e. no a time solution model. However, a time domain

solution may be obtained using inverse Laplace transform techniques. An alterna-

tive approach involves finding a Green’s function. A Green’s function determines

the solution to a point force along the beam. The total displacement of the beam

may then be found by applying point forces to various points along the beam and

summing up the individual solutions [64]. However, only a transfer function model

of a Kelvin-Voight beam is of interest here.

B.7.1 Transfer Function Kelvin-Voight damping

The Euler-Bernoulli PDE given in equation 2.1, does not include damping. Damp-

ing is an essential requirement if the beam dynamics are to resemble that of an

actual beam. Therefore, a damping term is included in equation 2.1, called Kelvin

Voight damping. This is shown in equation B.176. The Euler-Bernoulli PDE with

Kelvin-Voight damping is

EI
∂4w(x, t)

∂x4
+ CdI

∂5w(x, t)

∂4x∂t
+ ρA

∂2w(x, t)

∂t2
= 0. (B.178)

Taking the Laplace transform of equation B.178 with respect to t results in the

following equation

EI
∂4W (x, s)

∂x4
+ ρA[s2W (x, s)− sw(x, 0)− ∂w(x, 0)

∂t
] +

CdI
∂4

∂x4
[sW (x, s)− w(x, 0)] = 0, (B.179)

which includes the initial conditions w(x, 0) and ∂w(x,0)
∂t

. Now, if the beam is

assumed to be initially at rest, as is the case of an unperturbed beam. Then

w(x, 0) = 0 and ∂w(x,0)
∂t

= 0 and equation B.179 may be simplified to

[EI + sCdI]
∂4W (x, s)

∂x4
+ ρAs2W (x, s) = 0. (B.180)
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Manipulating this equation B.180 results in

∂4W (x, s)

∂x4
+

ρAs2

[EI + sCdI]
W (x, s) = 0. (B.181)

The coefficient of W (x, s) is set equal to β4. This results in

β4 = − ρAs2

[EI + sCdI]
, (B.182)

placing equation B.182 into equation B.181 results in

∂4W (x, s)

∂x4
− β4W (x, s) = 0. (B.183)

The OHDE in equation B.183 has the general solution

W (x, s) = C1 sin (βx) + C2 cos (βx) + C3 sinh (βx) + C4 cosh (βx). (B.184)

The coefficients C1, C2, C3 and C4 are found by applying the boundary conditions

in equation B.177. The Laplace transform of the boundary conditions equation

B.177 are

W (x, s)|x=0 = 0

∂W (x, s)

∂x
|x=0 = 0

EI
∂2W (x, s)

∂x2
+ CdIs

∂2W (x, s)

∂x2
+ Jts

∂2W (x, s)

∂x2
|x=L = τc

EI
∂3W (x, s)

∂x3
+ CdIs

∂3W (x, s)

∂x3
−mts

2W (x, s)|x=L = 0. (B.185)
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Now, application of the first boundary condition results in

C2 + C4 = 0. (B.186)

Application of the second boundary equation results in

C1 + C3 = 0. (B.187)

The third and fourth boundary equation are

[EI + sCdI][
∂2W (L, s)

∂x2
+ Jts

∂W (L, s)

∂x
= τc (B.188)

and

[EI + sCdI][
∂3W (L, s)

∂x3
−mts

2W (L, s)] = 0. (B.189)

Equations B.186, B.187, B.188 and B.189 are a set of linear equations that are

used to solve for the coefficients C1, C2, C3 and C4. These coefficients are found

using the symbolic language called WxMaxima. They are

C1 =
[cosh (βL)− cos (βL)]s2mt − β3(E − sCd)I[sinh (βL)− sin (βL)]

D(x, s, β, L)
,

C2 =
−([sinh (βL)− sin (βL)]s2mt − β3(E − sCd)I[cosh (βL) + cos (βL)])

D(x, s, β, L)
,

C3 =
−([cosh (βL)− cos (βL)]s2mt − β3(E − sCd)I[sinh (βL)− sin (βL)])

D(x, s, β, L)
,
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and

C4 =
[sinh (βL)− sin (βL)]s2mt − β3(E − sCd)I[cosh (βL) + cos (βL)]

D(x, s, β, L)
.

The denominator D(x, s, β, L) is given as

D(x, s, β, L) = [[E + sCd]2β
2s2I[cos (βL) sinh (βL)− cosh (βL) sin (βL)]−

[E2 + 2CdsE + C2
ds

2]2β5I2[cos (βL) cosh (βL) + 1]−

[E + sCd]2sβ
4IJt[cos (βL) sinh (βL) + cosh (βL) sin (βL)] +

2βs3Jt[cos (βL) cosh (βL)− 1]mt (B.190)

These coefficients are then placed into the general solution, equation B.190 and

the transfer function is determined. The numerator of the transfer function is
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N(x, s, β, L) = [[cosh (βx)− cos (βx)]s2 sinh (βL) +

[cos (βx)− cosh (βx)]s2 sin (βL) +

[sin(βx)− sinh(βx)]s2 cosh(βL) +

[sinh(βx)− sin (βx)]s2 cos (βL)]mt +

[(sinh (βx)− sin (βx))E + sCd sinh (βx)−

sCd sin (βx)]Iβ3 sinh (βL) +

[(sin (βx)− sinh (βx))E − sCd sinh (βx) +

sCd sin (βx)]Iβ3 sin βL+

[(cos (βx)− cosh (βx))E−

sCd cosh (βx) + sCd cos (βx)]Iβ3 cosh (βL) +

[(cos (βx)− cosh (βx))E−

sCd cosh (βx) + sCd cos (βx)]Iβ3 sinh (βL) (B.191)

and denominator of the transfer function is D(x, s, β, L). The transfer function

maps the control input τc to the output W (x, s). The transfer functions is therefore

given by

G(x, s, β, L) =
N(x, s, β, L)

D(x, s, β, L)
. (B.192)

The tip masses moment of inertia Jt and mass mt are negligible compared to that

of the beam moment and mass. They are therefore neglected from the transfer
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function model. The transfer function therefore becomes

G(x, s, β, L) =
N(x, s, β, L)

(E + sCd)2β2I[cos (βL) cosh (βL) + 1]
(B.193)

where

N(x, s, β, L) = [sinh (βx)− sin (βx)] sinh (βL) +

[sin (βx)− sinh (βx)] sin (βL) +

[cos (βx)− cosh (βx)] cosh (βL) +

[cos (βx)− cosh (βx)] cos (βL)). (B.194)

The transfer function evaluated at x = L becomes

G(s) =
sinh (βL) sin (βL)

β2[EI + sCdI][cosh (βL) cos (βL) + 1]
. (B.195)

Equation B.195 is approximated using an infinite partial fraction expansion. The

infinite partial fraction expansion in sigma notation is

G(s) =
∞∑
k=1

Res(sk)

s− sk
+
Res(s−k)

s− s−k
. (B.196)

The residues are given by the residue theorem stated below

Theorem B.7.1. If G has a simple pole s = s0, then

Res(Gbeam(s), s0) = lim
s→s0

(s− s0)Gbeam(s) (B.197)
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B.8 Conclusion

In this section three models of beam were presented. The models are a spring/damper,

ASM and a transfer function model. A two and three link version of a spring/damper

model was derived using both Newton’s second law and the Euler-Lagrange equa-

tion. The ASM model was derived using the Euler-Lagrange equation and the

types of modes were discussed. The transfer function model was derived using a

modified version of the Euler-Bernoulli equation with boundary conditions. The

modified Euler-Bernoulli and boundary conditions were derived using a variational

approach.
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Appendix C

Electromagnetic Model

C.1 Electromagnetic circuit model

Figure C.1: Electromagnetic configuration in a plane

This section presents an electromagnetic model for two obverse electromagnets.
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The electromagnetic configuration in a plane is shown in figure C.1. The figure

shows two electromagnets sitting directly opposite each other separated by two air

gaps and an Alnico 5 permanent magnet. The permanent magnet is allowed to

swing via a guitar string. The distance of each electromagnet from the center of the

aperture is 30mm. The figure also indicates the displacement of the permanent

magnet from the center of the aperture as x. The electromagnetic circuit model is

shown in figure C.2 and is modelled using the following assumptions:

• the permanent magnet moves in a single plane,

• the effective area between the permanent magnet and electromagnet does

not change and

• the permanent magnet does not rotate about the point to which it is attached

to the guitar string.

Figure C.2: Magnetic circuit

Here, the electromagnets are used to control the position of the permanent magnet

in the plane of motion. The electromagnetic circuit consists of four core reluctances

Rc, four air-gap reluctances Rg1, Rg2, Rg3 and Rg4, and an Alnico 5 reluctance RT .

The circuit model accounts for constant core reluctances, while the air gap reluc-

tances are assumed to change with the guitar string displacement. The circuit also

consists of two MMF sources which are the result of the two control currents and
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bias current ib.

The electromagnetic model will now be derived using electromagnetic circuit the-

ory, superposition and the Taylor series. Applying superposition i.e. assuming

i2 = 0, results in figures C.3.

Figure C.3: Magnetic circuit with one source open circuited

The equivalent reluctance of this magnetic circuit is given by

R1(x) = 2Rc + 2Rg1 +Rp

=
2 lc

µ0µcAc
+

2 (0.030 + x)

µ0Ag
+

lp
µ0µpAp

, (C.1)

where lc [m] is the core length, µ0 [H.m−1] is the permeability of free space, µr [H.m−1]

is the relative permeability of core, Ag [m2] is the effective area of the air-gap, lp [m]

is the length of the permanent magnet, µp [H.m−1] is the relative permeability of

the permanent magnet and Ap [m2] is the area of the permanent magnet. Now,

assuming i1 = 0 results in a magnetic circuit similar to one shown in figure C.3.

However, the MMF in this circuit is the result of the current i1. The equivalent

reluctance is given by
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R2(x) = 2Rc + 2Rg2 +Rp

=
2 lc

µ0µcAc
+

2 (0.030− x)

µ0Ag
+

lp
µ0µpAp

. (C.2)

The change in reluctances R1 and R2 with respect to permanent magnet displace-

ment x is given by

∂R1(x)

∂x
=

2

µ0Ag
(C.3)

and

∂R2(x)

∂x
=
−2

µ0Ag
. (C.4)

Therefore, the force generated by the MMF source Ni1 is

F1 =
1

2
φ2
T1

∂R1(x)

∂x

=
1

2
{φ1 + φr}2

2

µ0Ag

=
1

2

{
Ni1
R1(x)

+BrAc

}2
2

µ0Ag
(C.5)

and force generated by the MMF source Ni2 is
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F2 =
1

2
φ2
T2

∂R2(x)

∂x

=
1

2
{φ2 + φr}2

−2

µ0Ag

=
1

2

{
Ni2
R2(x)

+BrAc

}2 −2

µ0Ag
, (C.6)

where φr [Wb] is the residual flux of electromagnet and φ1 [Wb] and φ2 [Wb] is the

flux generated by the MMF sources. Equation C.5 and C.6 are non-linear in x

and i. These equations are linearised to obtain a linear expression for each pair of

electromagnets. Now, using the Taylor expansion for two variables about the point

i0 = 0 and x0 = 0.020m. The first approximation using the Taylor expansion for

two variables is

f(i, x) ≈ f(i0, x0) +
∂f(i0, x0)

∂i
(i− i0) +

∂f(i0, x0)

∂x
(x− x0) + ... (C.7)

Therefore, linear forces generated by each electromagnet are

F1 =
2Ni1AcBr

µ0Ag

{
3

50Agµ0
+ 2lc

µcAc
+ lp

µpAp

} − {AcBr}2

2µ0Ag
(C.8)

and

F2 =
−2Ni2AcBr

µ0Ag

{
3

50Agµ0
+ 2lc

µcAc
+ lp

µpAp

} +
{AcBr}2

2µ0Ag
. (C.9)

Equations C.8 and C.9, along with circuit model of the electromagnet determine

the control force produced by the electromagnets given a voltage input and a force

output. This model is also applicable to the electromagnets sitting in the opposing

plane, see figure 1.5 in chapter one.
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C.2 Conclusion

This section present an electromagnetic circuit model of two obverse electromag-

nets separated by two air-gaps and a permanent magnet. The permanent magnet

is attached to the tip of a guitar string, which is allowed to swing. The circuit

model contained multiple core and air-gap reluctances as well as a permanent mag-

net reluctance. The air-gap reluctances were assumed to be the only reluctances

that varied with displacement. This modelling technique resulted in a non-linear

model which was linearised using the Taylor expansion for two variables to obtain

a linear force versus current model.
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