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Abstract

According to the standard model of cosmology, the Universe has evolved from a thermal bath

of elementary particles and photons towards one comprising of collapsed structures such as

stars, galaxies and clusters of galaxies. The Cosmic Microwave Background (CMB) spectrum

and its angular anisotropy across the sky contain information on the physical processes,

matter distribution and evolution of the Universe across cosmic time. Primordial spectral

distortions of the CMB and its anisotropy can be studied through the inverse comptonization

process occuring in cosmic structures, known as the Sunyaev-Zel’dovich effect (SZE). This

present study demonstrates how the SZE can be used to obtain information on the 21

cm background produced between the Dark Ages (DA) and the Epoch of Reionization

(EoR), on Non-Planckian (NP) modifications of the CMB due to plasma frequency at the

recombination epoch, and on the anisotropy of the CMB at cluster locations, through the

study of the polarization of the SZE. To these aims, a full relativistic approach is employed,

that allows us to calculate the spectra of the SZE and its polarization component with high

precision, and allows to calculate it for any kind of electron population (thermal or non-

thermal plasma), and for an input spectrum that can deviate from the standard black-body

spectrum.

The SZE-21cm, which is the comptonized spectrum of the modified CMB due to physical

processes occuring during the DA and the EoR, is calculated for four models of the 21-cm

background. A full spectral analysis of the signal is performed and the importance of

relativistic effects are highlighted. The results demonstrate that relativistic effects are non-

zero over the entire frequency spectrum and hence cannot be ignored, particularly for hot

clusters. It is found that the amplitude of the SZE-21cm signal is of the order of µJy and

is within the reach of the SKA instrument. Clusters with high temperature and optical

depth are optimal targets to search for the SZE-21cm signal. The SKA can measure the

signal in the frequency interval 75-90 MHz for clusters with temperature higher than 5 keV.

Discerning the SZE-21cm from the standard SZE can be achieved using the SKA depending

on the 21-cm background model for temperatures > 10 keV.

Using CMB spectral data at both low and high frequencies, upper limits (206, 346 and

418 MHz at 1, 2, 3 σ confidence level) are placed on NP effects associated with a non-zero
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plasma frequency at the recombination epoch. The SZENP is derived for a CMB spectrum

modified due to plasma effects using these upperlimits and a unique spectral feature is

obtained. A peak occures at the plasma frequency in the SZENP independent of cluster

parameters and the possibility of measuring the plasma frequency with the SKA and eVLA

is shown. Plasma effects are also investigated on the spectrum of the cosmological 21-cm

background and it is found that such an effect is important to consider when recovering the

history of the Universe during these epochs.

Polarization is a natural outcome of inverse Compton (IC) scattering and the anisotropy

of the CMB plays a big role in the production of polarization in Comptonization process.

The SZE polarization associated with the anisotropy of the CMB is derived in the full rel-

ativistic regime for any general electron distribution. The spectral shapes of the Stokes

parameters induced by the IC scattering of the multipoles of the CMB for thermal and

non-thermal electrons are derived, focusing mainly on the quadrupole and octupole which

provide the largest possible detectable signals in cosmic structures. Our results demon-

strate the implication of relativistic effects, which become important for high temperature

or non-thermal cluster environments. When relativistic effects are accounted for, all the

multipoles of the CMB are involved in the production of polarization. The octupole induced

polarization spectrum reveals the existence of a cross-over frequency which is dependent

on cluster parameters such as temperature, minimum momentum and spectral index. The

possibilities to disentangle the quadrupole spectrum from the octupole one are discussed,

which would allow the measurments of these multipoles at cluster locations. The generality

of our approach allows us to calculate the SZE polarization spectra of the Bullet cluster

using multifrequency SZE data in intensity and compare the results with the sensitivities of

the SKA, ALMA, Millimetron and CORE++ instruments.

Although the effects that we studied here are small, however, they are still within the

detection limits of the SKA, due to its very high sensitivity. Therefore, the SKA will play

a big role in the study of cosmological radio backgrounds by providing high precision SZE

data.
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Chapter 1

Introduction

Astronomy, which is the study of the Universe and its constituents, dates back to the

dawn of humanity and is without a doubt one of the oldest if not the oldest among the

natural sciences. At a very young stage during early civilizations (Babylonians, Greeks etc),

astronomy was practiced only with the naked eyes, observing and predicting the positions

of objects in the sky without any understanding of the processes involved. Since then, the

human race has always been fascinated with the sky and a lot of questions regarding the

Universe have always been asked, ranging from rather simple questions such as ”what is the

Sun?” up to ”How did the Universe begin, what is it made up of and why does it look the

way it is”. However most of the questions regarding the Universe and its constituents require

modern observational instruments and strong understanding of physical laws in order to be

answered.

Within the last hundred years, we have seen an exponential improvement in the sensitiv-

ities and angular resolutions of telescopes. Furthermore, we have also been able to extend

the spectral region over which we observe the sky. In this time and age, astronomical obser-

vations are done over the whole electromagnetic spectrum, ranging from radiowave (MHz)

up to Gamma rays (TeV). These observations together with our increased understandings of

physical laws throughout the years, have allowed us to probe the constituents, phenomenae

and evolution of the Universe.

Thanks to modern observational techniques, we currently know that the Universe struc-

tures itself on different scales from small systems such as the Solar system, up to bigger ones

such as galaxies which are accumulations of billions of stars and farther up to giant systems

such as clusters of galaxies containing from hundreds up to thousands of galaxies. The

structure and evolution of the Universe can be understood using a theoretical framework,

known as the standard model of concordance cosmology, steming from Einstein theory of

general relativity and the Cosmological principle. The former is a theory of the force of grav-

ity, which on cosmological scales rules over other forces such as electromagnetic, weak and

16
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strong nuclear forces. The second, which is the cosmological principle, is a statement that

the Universe is isotropic and homogeneous over large scales (& 100 Mpc scales). Deeper ob-

servations have suggested that the Universe consists mainly of two exotic components, dark

matter and dark energy and this have lead to further parameterization of our cosmological

model. The standard model of cosmology has been the most successful model in allowing

us to give a physical explanation to cosmological data.

Measurements of the Cosmic Microwave Background (CMB) spectrum by COBE-FIRAS

(Fixen et al. 1996) and its fluctuations across the sky by WMAP (Bennett et al. 2003, Ben-

nett et al. 2013, Hinshaw et al. 2013) and Planck (Ade et al. 2016a, 2016d), has put the

standard model of cosmology on a firm observational basis. The isotropy and the blackbody

spectral shape of this radiation is a direct natural consequence of an earlier, denser and

hotter phase of the Universe (Smoot 1997, Padmanabhan 2002, Dodelson 2003). Within the

standard model of cosmology, the Universe started ≈ 14 billions years ago from a singularity

popularly known as the Big Bang. Since then, the Universe has been expanding and has

evolved through several stages until today. The observed CMB anisotropy is an indica-

tion that formation of structures started as tiny inhomogeneities in the primordial matter

distribution. The spectrum and the angular distribution of the CMB encode important in-

formation regarding the energetics and matter distribution since the recombination epoch,

when the Universe was ≈ 400000 years old (Peebles 1993, Padmanabhan 2002, Dodelson

2003, Ade et al. 2016b). The CMB spectrum is sensitive to various physical processes

(Furlanetto et al. 2006, Chluba & Sunyaev 2012, Chluba 2014) that occured during the

evolution of the Universe. An important phase in the history of the Universe is its evolution

from the recombination epoch (redshift zrec ≈ 1100) through the Dark Ages (DA) (z ≈ 1100

to 20) down to the epoch of reionization (EoR) (z ≈ 20 to 6) (see e.g. Peebles 1993, Pad-

manabhan 2002, Furlanetto et al. 2006, Pritchard & Loeb 2012) . Many physical processes

during these epochs can leave an imprint on the CMB radiation and thus allowing us to

access these epochs.

The CMB also interacts with the plasmas hosted by large-scale structures such as galaxy

clusters and lobes of radio-galaxies. This interaction, known as the Sunyaev-Zel’dovich

effect (SZE), causes a spectral distortion to the CMB radiation (Sunayaev & Zel’dovich

1970, Sunayaev & Zel’dovich 1972, Birkinshaw 1999, Ensslin & Kaiser 2000, Colafrancesco

et al. 2003). Polarization is also an eventual outcome of this process, which can be induced

by different mechanisms (Sazonov & Sunayaev 1999, Challinor et al. 2000, Lavaux et al.

2004, Portsmouth & Bertschinger 2004a, 2004b, Emritte et al. 2016). The SZE and its

polarization can be used to study the atmosphere of large-scale structures and also as a

probe to investigate various aspects of cosmology (Carlstrom et al. 2002, Colafrancesco

2009).
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One interesting realization is that any spectral distortions of the CMB due to various

physical processes in the early Universe will also be present in the SZE spectrum (Cooray

2006, Colafrancesco et al. 2015a, Colafrancesco et al. 2016b). Therefore, this presents

us with the possibility of using the SZE as a probe of primoridial physical processes using

nearby large scale structures. Adding on that, the polarization component of the SZE gives

an idea on the anisotropy of the CMB other than our loaction (Kamionkowski & Loeb 1997,

Challinor et al. 2000, Lavaux 2004, Portsmouth 2004, Yasini & Pierpaoli 2016), where

cosmic structures reside. Therefore the SZE and its polarization present themselves as a

nearly complete package for testing many aspects of the cosmos.

In this present work, we look first in chapter 2, at the possibility of probing the EoR

using the SZE produced by large scale structures such as galaxy clusters or the lobes of

radio-galaxies. We perform our calculation in the full relativistic limit and in a way that

incorporates any electron distribution. Secondly in chapter 2, we investigate on the possibil-

ity of non-Planckian (NP) effects on the CMB spectrum associated with a non-zero plasma

frequency at the recombination epoch and thirdly in chapter 4, we perform a detailed study

of the SZE polarization induced by the CMB anisotropy.

Throughout this work, we use a flat, vacuum–dominated cosmological model with Ωm =

0.308, ΩΛ = 0.692 and H0 = 67.8 km s−1 Mpc−1 (Ade et al. 2016b).

1.1 The Standard Model of Cosmology

The Standard Model of Concordance Cosmology is based on the metric solutions to the

Einstein field equations (see e.g. Carroll 1997, Padmanabhan 2000, Padmanabhan 2002,

Dodelson 2003). The latter governs the dynamic of spacetime whereby matter and radiation

act as gravitational sources . The equation can be written as follows

Gµν = Rµν − (R/2)gµν =
8πG

c4
Tµν − Λgµν , (1.1)

where c is the speed of light, Rµν is the Ricci tensor, gµν is the metric, Tµν is the mat-

ter/radiation energy-stress tensor, G is the Newton’s gravitational constant and Λ is the

cosmological constant. The solution that satisfies the above equation is the Friedmann-

Lemaitre-Robertson-Walker (FLRW) metric:

ds2 = c2dt2 − a(t)2

[
dr2

1−Kr
+ r2

(
dθ2 + sin2 θdφ2

)]
, (1.2)

where a(t) is the scale factor and K is the curvature which can take values, 1, -1 and 0.

This metric is obtained by enforcing the Cosmological principle, that is the isotropy and

homogeneity of the Universe. Inserting this metric into eq 1.1, one obtains the Friedmann
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equations which govern the evolution of the scale factor a(t) as follows

( ȧ
a

)2
=

8πG

3
ρ− Kc2

a2
+

Λc2

3
ä

a
= −4

3
πG

(
ρ+

3p

c2

)
+

Λc2

3
, (1.3)

where ρ = ρr+ρm is the energy density (sum of matter and radiation) and p is the pressure.

Combining the Friedmann equations results in an energy conservation equation

d

dt

[
a3ρc2

]
+ p

d

dt

[
a3

]
= 0, (1.4)

which is a relation between the scale factor a and the energy densities. The Hubble parameter

H(t), which is measure of the expansion rate of the Universe, is defined as

H(t) =
ȧ

a
, (1.5)

and the Hubble parameter at our present epoch, is denoted as H0 which has been measured

recently by PLANCK to be 67.8 km s−1 Mpc−1 (Ade et al. 2016b). The critical density of

the Universe is defined by

ρcrit =
3H2

8πG
, (1.6)

with its present value, ρcrit,0 = 3H2
0/8πG = 8.63× 10−27 kg m−3. The Hubble parameter is

related to the energy densities through the first Friedman equation. In order to show this,

we first define the dimensionless densities, which are also known as cosmological parameters,

as follows

Ωr = ρr/ρc (1.7)

Ωm = ρm/ρc (1.8)

ΩΛ = ρΛ/ρc (1.9)

ΩK = ρK/ρc, (1.10)

where ρr is the radiation energy density, ρm is the matter energy density, ρΛ = Λc2/(8πG)

and ρK = −3Kc2/(a28πG).

Using the energy conservation equation, eq 1.4, one can obtain equations that describe

the evolution of matter (ρm ∝ 1/a3) and radiation (ρr ∝ 1/a4) with time. Then using

these equations and the definition of the cosmological parameters, we can write the first

Friedmann equation as follows

H(t) = H0

√
Ωm,0
a3

+
Ωr,0
a4

+ ΩΛ +
ΩK,0
a2

, (1.11)

where Ωm,0, Ωr,0, ΩΛ,0 and ΩK,0 are values of the cosmological parameters at our current

epoch. Eq 1.11 can be used to show that the standard model of concordance cosmology

implies a Universe which is expanding adiabatically.
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Figure 1.1: The recessional velocities of galaxies against their distances showing the direct

proportionality between the two quantities (Figure from Turner & Tyson 1999).

1.1.1 Observational Evidence

The FLRW metric predicts that the Universe must have originated from a classical singu-

larity, which is known as the Big Bang and has been expanding since then. One of the first

evidence supporting the expansion of the Universe was discovered around the 1920s. The

observed spectra of far away galaxies are found to be shifted towards the red portion of

the electromagnetic spectrum. This shift, known as the cosmological redshift, implies that

these celestial objects are moving away from our location point. With a detailed analysis of

the observations, a relation between the recessional velocities Vrec of these objects and their

distances D from us, was formulated and is known as the Hubble’s law written as follows

(Peebles 1993)

Vrec = H0D, (1.12)

This relation (which is valid for z << 1) is in direct agreement with the suggestion that the

Universe is expanding.

A second evidence pointing towards the standard model of cosmology lies in the obser-

vation of light elements in the Universe (Padmanabhan 2002). By a few seconds after the

Universe had emerged from its singularity, the temperature dropped down to ≈ few MeV

due to cosmological expansion. It is predicted in theory that light elements would have

started to be produced by that time (see Sarkar 1996, Steignman 2003). Collision between

proton and neutron would lead to the formation of deuterium. Further collisions of deu-

terium with protons and neutrons would lead to helium, some tritium and lithium. The

Big Bang nucleosynthesis (BBN) theory predicts that 25 % of the baryonic matter in the

Universe would be in the form of helium, 0.001 % in deuterium and smaller quantities of
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Figure 1.2: The abundances of deuterium, helium-3, lithium-7 and helium-4 Y as a function

of the photon to baryon ratio, η. The measured abundances of the respective elements and

the photon to baryon ratio by WMAP are shown by the horizontal lines and the vertical

line respectively (Figure from Garett & Duda 2011).

lithium. The BBN prediction (see Fig 1.2) is in agreement with observations (Sarkar 1996,

Steignman 2003, Garett & Duda 2011).

Another pillar evidence supporting our current cosmological model is the discovery of the

Cosmic Microwave Background (CMB) radiation (Penzias & Wilson 1965). The measured

blackbody spectral shape of the radiation by COBE-FIRAS (see Fig 1.3) (Fixen et al. 1996)

implies that matter and radiation were in thermal equilibrium at earlier times and this

radiation is a snapshot of the early Universe around z ≈ 1100 when radiation decoupled

from matter (Dodelson 2003). That moment is known as the recombination epoch and the

temperature of the CMB, TCMB(z), at that redshift (zrec = 1100) was ≈ 3000 K. By the time

this radiation reaches us, its temperature has cooled down due to cosmological expansion.

The temperature of the CMB is measured today as, TCMB(z = 0) = T0 = 2.725± 0.001 K,

and the radiation is found to be very near to isotropic with small anisotropy on the level

of δT/T0 ≈ 10−5 (Mather et al. 1990, Smoot et al. 1994, Smoot 1997). This is evidence

supporting the idea that the Universe is largely isotropic, which supports the cosmological

principle and hence favors the FLRW metric.
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Figure 1.3: The blackbody spectrum of the CMB mesured by COBE-FIRAS with error bars

enlarged 400 times (Figure from Mather et al. 1994).

1.1.2 Dark Matter

In order to account for many observations that could not be explained with the standard

model of cosmology, ingredients had to be added to the model. One of those ingredients is

dark matter (see e.g. Einasto 2009, Garett & Duda 2011), an exotic form of matter that

permeates the whole Universe. It makes up ≈ 84 % of the matter content of the Universe

as measured by Planck (Ade et al. 2016b). It is found that Dark matter does not interact

with normal matter except via the force of gravity and this is the main suggestion of its

non-baryonic nature.

One of the first pieces of evidence of dark matter lies in the study of the Coma cluster of

galaxies and the high observed velocity dispersion of the galaxies (Zwicky 1933). Applying

the virial theorem to the cluster, the visible matter cannot account for the high velocity

of the galaxies (Trimble 1987), which suggest that more matter has to be present. Similar

scenarios have also been observed in galaxies where the observed rotational curves could not

be explained by the presence of only baryonic masses.

The existence of dark matter can also be inferred from the CMB temperature flunc-

tuations (Hu & Dodelson 2002, Einasto 2009, Garett & Duda 2011), the latter which is

interpreted as the imprints of tiny variations in the density of matter around the recombi-

nation epoch. Before recombination, ordinary matter were tightly coupled to the photons

and they behaved as single entity known as the photon-baryon fluid. Fractional overden-

sities in ordinary matter distribution around this time couldn’t grow because they were

tightly coupled to the photons of the CMB. After recombination, overdensities were then
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able to grow through gravitational attraction leading to the structures we observed today.

However, the observed CMB temperature fluctuation is around the order of ≈ 10−5 which

would not have enough time to grow and produce the structures that we observed today.

On the other hand, dark matter overdensities can grow independently since it is not coupled

to the photons and baryons and were able to start the structure formation process much

earlier. What we observed as variation in the CMB temperature ≈ 10−5 is the imprint of

the photon-baryon oscillation in the potential well of dark matter (see Zackrisson 2005).

Gravitational lensing of far away galaxies also indicates the presence of dark mass in

clusters of galaxies. The images of these background galaxies are seen to be distorted and

the amount of mass suggested by gravitational lensing measurements are more than what is

visible in the clusters (Blandford & Narayan 1992, Bradac et al. 2006, Clowe 2006) .

The nature of dark matter is still unknown till today, however many candidate particles

have been proposed such as the WIMPs (weakly interacting massive particles) and axions

(Bertone et al 2005, Abazajian et al. 2007, Skivie 2009). A favorite candidate among

the WIMPS is the neutralino, which through mutual pair annihilation produces standard

model particles which emit radiation over various frequencies from radio up to gamma-rays

(Colafrancesco et al. 2015b, Colafrancesco et al. 2016b). Dark matter induced emissions

from large scale structures are expected to be measured with the Square Kilometer Array

(SKA) (Colafrancesco et al. 2015b).

1.1.3 Dark Energy

Observations of Type-Ia supernovae, which are high redshift distance indicators, suggest

that the Universe is in a state of acceleration (Riess et al. 1998, Perlmutter 1999). In

order to account for this acceleration, the standard model of cosmology requires a non-

zero value of the cosmological constant (≈ 0.69). This implies that space is filled with

an unknown form of energy which has an anti-gravity effect responsible for the observed

accelerated expansion. This hypothesized form of energy is called dark energy. Further

evidence of dark energy comes from cosmological parameters derived from measurements of

CMB temperature anisotropies (Spergel et al. 2003, 2007, Komatsu et al. 2009, 2011, Ade

et al. 2016b, Ade et al. 2016d) and baryon acoustic oscillations in large samples of galaxies

(Eisenstein et al. 2005, Beutler et al. 2011, Ding et al. 2015). These observations indicate

that dark energy is the dominant form of energy in the cosmos with ΩΛ,0 = 0.692± 0.012.

The nature of dark energy is still unknown, but nevertheless, quintessence models (whereby

dark energy is in the form of a time-varying scaler field) have been put in place to explain

its nature (Yoo & Watanabe 2012). These models are characterized by an equation of state

which in the general form can be written as

pQ = wQρQ (1.13)
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where pQ and ρQ are the pressure and energy density respectively, associated with the

dark energy. The parameter wQ takes different values depending on the dark energy model

employed. For quintessence models, WQ is always greater than -1 and for WQ approaching

−1 the cosmological constant is retrieved.

Alternative models, other than dark energy models, has also been put foward to explain

the accelerated expansion of the Universe. These models are based on modified gravity

theories (see Yoo & Watanabe 2012), whereby the accelerated expansion is due to some

form of modification to gravity (Yoo & Watanabe 2012).

1.1.4 Inflation

Cosmological parameters measurement, orignally by WMAP (Bennett et al. 2003, Bennett

et al. 2013, Hinshaw et al. 2013) and later by Planck (Ade et al. 2016b), have shown that

the Universe at present has a flat geometry (|ΩK,0| < 0.005) or very close to flat. This means

that the density of the present Universe is very close to its critical density and therefore is

in a well balanced state between a positively and negatively curved one. At early times near

the Big Bang, the density would have had to be even closer to the critical density as any

deviation would have been magnified over time. This imply that the initial conditions of the

early Universe must have been finely tuned and this have lead to the fine tuning problem.

Another problem within the model is the horizon paradox, that is opposite patches of CMB

are observed to be in thermal equilibrium although these two patches appear to be causally

disconnected.

In order to solve these inadequacies, a mechanism called inflation had to be invoked which

says that Universe underwent through a period of accelerated exponential expansion from

10−35 to 10−33 s after its emergence from the Big Bang singularity. This rapid expansion

would erase any curvature present and keeps the geometry of the Universe flat. Inflation

also solves the horizon paradox because the disconnected patches were in thermal contact

prior to inflation and were later driven apart by the extremely rapid expansion (see e.g.

Senatore 2016).

With the addition of dark matter, dark energy and inflation to the standard model of

cosmology, the standard model of cosmology is referred to as the ΛCDM model.

1.1.5 Structure Formation within the ΛCDM Model

Large scale surveys such as Sloan Digital Sky Survey (SDSS) (Eisenstein et al. 2011) and

2dF Galaxy Redshift Surveys (2dFGRS) (Colless et al. 2001) over a large portion of the sky,

have successfully produced 3D maps of the structure of the Universe (see Fig 1.4). These

surveys show us that the Universe is very close to homogeneous over scales & 100 Mpc. On

the other hand, for scales . 100 Mpc, the Universe looks inhomogeneous with structures
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Figure 1.4: Bright galaxies used in the SDSS as tracers to produce 3D maps of the Universe

(Eisenstein et al. 2011). Each dot represents a galaxy.

ranging in sizes from our solar system up to large superclusters of galaxies consisting of up

to 1000 galaxies.

The formation of structures such as stars, galaxies and clusters of galaxies can be ex-

plained within the ΛCDM model by overdensities in the matter distribution around the

recombination epoch. These overdensities are then amplified by the force of gravity which

then lead to the clustering of matter at regions in space. These regions grow with cosmic

time until structures such as galaxies and clusters of galaxies are eventually formed (see

e.g. Padmanabhan 2002). Dark matter played an important role in the structure formation

process since it was able to collapse before recombination (Primack 2015).

The formation of structures as a result of primordial inhomogeneities in matter dis-

tribution involving cold dark matter, imply that structures are formed in a hierarchical

”bottom-up” scenario. Smaller structures are formed first, which then later grow due to

gravitational forces until large scale structures such as galaxies, groups and galaxy clusters

are formed (Kolb & Turner 1990, Yoshida 2009).

The seeds of these inhomogeneities in the matter distribution originated around the in-

flationary epoch. Inflation tends to drive the Universe towards a simple state, smoothing

any curvature, anisotropies and inhomogeneities, but quantum fluctuations in the infla-

tionary field lead to tiny inhomogeneities which are later amplified by the force of gravity.

Over super-Hubble scales, these fluctuations can be described by a Gaussian random field,
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Figure 1.5: The galaxy cluster Abell 1989 observed by the Hubble space telescope (Figure

from Kravtsov & Borgani 2012).

P (k) ∝ Akn with n ≈ 1 (Baumann 2009).

1.2 Galaxy Clusters

Galaxy clusters are large gravitationally bound cosmic structures, which consist of around

100 to 1000 galaxies distributed spatially over a volume of ≈ 1 Mpc3. The masses of these

objects are ≈ 1014 M� and lies at the top of the hierarchy in the current structure formation

paradigm. These objects were first identified via visual inspection and with further optical

observations, the Abell catalogue containing many clusters were made. This catalogue

provided the first statistical sample of clusters which has subsequently led to the systematic

studies and morphological classification of these structures. It is found that these systems

can be classified based on their shapes. Some are very irregular with strong subclustering, no

central concentration and mainly consisting of spiral galaxies while others are very regular,

displaying a smooth centrally condensed galaxy distribution with only few spiral galaxies

(see e.g. Sarazin 1986). Fig 1.5 shows the optical image of the cluster Abell 1989 observed

by the Hubble space telescope.

According to our current structure formation paradigm, galaxy clusters are formed by a

hierarchical process whereby matter is accumulated over cosmic time by the action of gravity.

According to this process, smaller units such as galaxies, groups and smaller clusters are

built first and with the continous gravitational pull, galaxy clusters comprising of hundreds

to thousands of galaxies are finally formed. This assembling process is known as merger
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and these merging events are very energetic events, involving kinetic energies ≈ 1064 ergs

(Govoni & Feretti 2004, Kravtsov & Borgani 2012, Feretti 2012).

Although at optical wavelength, galaxy clusters appear to be just a collection of galaxies

over large cosmological distances, modern observations have shown that this is not the case.

Actually it has been observed that the galaxies make up only a few percent (≈ 3 %) of

the matter content of galaxy clusters. Gravitational lensing measurements (Blandford &

Narayan 1992, Bradac et al. 2006, Clowe 2006) have demonstrated that the main matter

content in galaxy clusters is in the form of dark matter, which comprises around 85 % of the

mass of the structure. Observations in X-rays (see e.g. Sarazin 1986, Bohringer & Werner

2009, Arnaud et al. 2010) have shown that the space in between galaxies is not empty but

is filled with a hot gas called the intracluster medium (ICM), which is the main baryonic

component in clusters (comprising ≈ 12 % of the matter content). X-rays together with

gravitational lensing measurements of the Bullet cluster have provided empirical evidence

on the nature of dark matter.

1.2.1 Intracluster medium

Galaxy clusters were first recognized as X-ray sources around the 1970s when emission was

first detected in the Virgo cluster (see e.g Sarazin 1986 for complete historical review).

Subsequently, more and more clusters were identified in the X-ray band such as the Coma

cluster and Perseus cluster (Kravtsov & Borgani 2012, Sarazin 1986). The X-ray emission

regions of clusters are extended and therefore cannot be attributed to any specific galaxies.

This revealed the existence of the ICM and modern observations by current instruments such

as Chandra and XMM-Newton have firmly established that the ICM is the main baryonic

component of clusters (≈ 12 %). Currently, the ICM has been extensively observed and

studied for many clusters of galaxies ( see e.g. Ota & Mitsuda 2004, Arnaud et al. 2010,

Reichert et al. 2011). Fig 1.6 shows the Coma cluster of galaxies in the X-ray region of the

electromagnetic spectrum.

The ICM is a hot plasma whose electron temperature, Te, can range from around ≈ 1

keV up to ≈ 17 keV (Sanderson & Ponman 2010, Reichert et al. 2011, Wik et al. 2014) and

the electron number density ranges from 10−4 up to 10−2 cm−3 (Sarazin 1986). Although

many mechanisms have been suspected for the X-ray production at this temperature, ther-

mal bremsstrahlung (Rybicki & Lightman 1979) is the one that is most consistent with the

spectra of observed clusters in the X-ray band (see Bohringer & Werner 2009). The bolo-

metric X-ray luminosity, LX ∝ ne,thT
1/2
e of the ICM where ne,th is the thermal electron

number density, is around ≈ 1044 up to ≈ 1046 erg/s.

Galaxy clusters are treated as self-similar objects, which means that a cluster of higher

mass is a scaled-up version of one with lower mass. This relies on the assumption that
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Figure 1.6: The Coma galaxy cluster in the X-ray band showing the existence of a hot ICM

gas (Figure from Bohringer & Werner 2009).

galaxy clusters are formed from gravitational collapse of matter in the Universe and that

the sole input of energy into the ICM comes from the gravitational potential energy. This

eventually establishes an equilibrium configuration after the collapse and the virial theorem

(Ek = −1/2Ep) can be applied to clusters. Based on that, the temperature measured from

X-ray emission is a direct measure of the mass of the cluster (including dark matter) and

indirectly the gravitational potential. Assuming the ICM is an ideal gas, the temperature-

mass relation would follow, T ∝M2/3. From this onwards, other physical quantities can be

derived (see e.g. Arnaud 2010).

X-ray observations have shown that the spatial variation of the ICM density follows

the so-called Beta profile where the electron number density ne(r) at radius r (Cavaliere &

Fusco-Femiano 1976) from the cluster center is given by

ne(r) = n0

(
1 +

(
r/rc

)2)−3β/2

, (1.14)

where n0 is the central number density, rc is the core radius and β is a parameter which can

take values between 0.5 and 1. Using this model, the projected X-ray surface brightness at

projected angular distance θ from the center is given by

SX(θ) = SX,0

(
1 +

(
θ/θc

)2) 1
2−

3
2β

, (1.15)

where, θc = rc/DA, is the projected angular distance of the core with DA the angular

diameter distance to the cluster. The ICM can also be characterized by an optical depth
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which can be defined as

τ =

∫
neσTdl, (1.16)

where σT is the Thomson’s cross-section and the intergration is performed along the line of

sight. Subsequently one can use eq. 1.14 to calculate the optical depth (see Colafrancesco

et al. 2003) at a projected distance from the center of the cluster and this can be achieved

as follows

τθ(θ) = τ0

(
1 +

(
θ/θc

)2) 1
2−

3
2β

, (1.17)

where τ0 is given by

τ0 =
√
πne0σTrc

Γ(3β/2− 1/2)

Γ(3β/2)
. (1.18)

Typical values of average optical depth associated with the thermal gas usually range be-

tween 10−3 to 10−2.

1.2.2 Cosmic rays and non-thermal emissions

In addition to X-rays and gravitational lensing measurements, galaxy clusters have also been

observed at radio frequencies (e.g. Giovannini 2004, Govoni & Feretti 2004, Feretti 2012).

Some of the radio signals are attributed to individual radio galaxies within the cluster and

the emission region can extend beyond the optical boundaries of the galaxy. These types

of signals have been extensively observed in isolated radio galaxies that are not attributed

to any cluster. However, a more puzzling fact is that some galaxy clusters show diffuse

emission regions that cannot be attributed to any specific galaxy or galaxies (Feretti 2005,

Ferrari et al. 2008). Therefore, these emissions are attributed to non-thermal activities

within the ICM and this has been observed in around ≈ 10 % of all the galaxy clusters

known today (Feretti 2012). These facts show that the ICM is much more complex than

just an accumulation of hot gas.

Depending on the morphologies and location of these diffuse radio emission regions,

galaxy clusters are classified as having radio halos or relics or both (see Fig 1.7). Typically

speaking radio halos are usually located around the center whereas relics are usually found

on the outskirts. Whether there is a relation between the halos and the relics is still unknown

(see Feretti 2012 for a review).

The radio luminosity coming from the ICM is of power law shape, Pν ∝ ν−(q−1) where

ν is the frequency and q is the power law index (Shimwell et al. 2014). Therefore the

plausible mechanism responsible for this emission is the synchrotron mechanism, whereby

relativistic electrons are interacting with the large scale magnetic fields. The power law

shape of the radio luminosity implies that the electrons also follow a power law distribution

with spectral index α ( q = (α − 1)/2). These magnetic fields could have originated before

or after the recombination epoch. The energy of the relativistic electrons is dependent on
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Figure 1.7: Radio emission for several galaxy clusters illustrating the diffuse emission loca-

tion and morphology (Figure from Feretti 2012).

the strength of the magnetic fields, e.g. higher magnetic fields would imply lower energetic

electrons for synchrotron emission observed at a fixed frequency. Magnetic fields of clusters

derived from synchrotron emission usually rely on the equipartition distribution of energies

among the fields and particles. From this, magnetic fields from around a few µG have been

estimated. This would relate to a possible electron lorentz factor γe in the range 103 − 106.

On the other hand, magnetic field values derived from Faraday rotation measurements are

higher, ≈ 10 to 50 µG. Despite all these estimations, cosmic magnetic fields and their origins

remain a challenge for cosmologists (see e.g. Govoni & Feretti 2004, Bonafede et al. 2011,

Colafrancesco et al. 2011, Feretti 2012) .

Finally, non-thermal emissions from clusters have also been attributed to dark matter

annihilation. If dark matter is really made up of WIMPS, the decay of these particles

will result in standard model particles among which are relativistic electrons and gamma-

rays. These can be detected by multifrequency observations (Colafrancesco et al. 2015a,

Colafrancesco et al. 2016a, Marchegiani & Colafrancesco 2015, Marchegiani & Colafrancesco

2016).

1.3 The Sunyaev-Zel’dovich effect (SZE)

The Sunyaev-Zel’dovich effect (SZE), as we have mentioned before, is a spectral distortion

of the CMB spectrum as a result of photons being inverse Compton (IC) scattered by the

electrons found in the atmosphere of cosmic structures ( see e.g. Birkinshaw 1999, Ensslin
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Figure 1.8: The electron Lorentz factor plotted against the observed/critical frequency for

different magnetic fields. It is clearly noticed for the radio bands and for magnetic field

around the µG, this would roughly correspond to Lorentz factors within 103 to 106 (Govoni

& Feretti 2004).

& Kaiser 2000, Colafrancesco 2003). As a result of this comptonization process, observation

of the CMB along the line of sight of a cosmic structure will show a decrease in intensity in

the Rayleigh-Jean frequency interval and an increase in the Wien frequency interval. This

effect was theorized around the 1970s but at that time, radio/microwave instrumentation

was still at its infancy and therefore the SZE could not be observed. Nowadays the SZE has

been observed in many clusters of galaxies and the biggest sample up to date comes from

the Planck instrument (Ade et al. 2011, 2014b, 2016c), whereby many clusters have been

able to be identified using SZE observations. The SZE is usually expected within 1 GHz up

to 1000 GHz and is becoming very relevant due to current and upcoming instruments such

as the SKA, CORE++, Millimetron and ALMA.

CMB photons can also be comptonized by electrons during the primordial time (Zel’dovich

& Sunayaev 1969) and this will also result in a distortion in the spectrum of the CMB. How-

ever, this source of scattering can easily be differentiated from the SZE, as the latter is

localized, meaning the distortion is seen towards a cluster which is visible in the optical and

X-ray bands. Therefore, the SZE signals will not be confused with componization emissions

of the early Universe (Birkinshaw 1999).
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1.3.1 The SZE spectrum

The SZE is a photon-electron interaction whereby the frequency of the photon is altered

due to the motion of the electron. Since the CMB consists mostly of low energy photons,

quantum effects and energy transfers can be neglected, and therefore the scattering process

in the rest frame of the electron can be described in the Thomson limit, mec
2 >> γehν,

where h is the Planck constant, γe and me are the respective Lorentz factor and mass of the

electron (Birkinshaw 1999, Ensslin & Kaiser 2000). Within this limit, the spectrum of the

SZE is usually computed for thin plasmas (low optical depth) by solving the Kompaneets

equation (Kompaneets 1956) for a thermal electron distribution and is valid only when the

speed of the electron is non-relativistic, hence this method is also termed the non-relativistic

approach.

The SZE can be described as a change in intensity, ∆I(x), which upon solving the

Kompaneets equation yields the expression as follows

∆I(x) = 2
(kBT0)3

(hc)2
ythg(x), (1.19)

where x = hν/kBT0 is the a-dimensional frequency, kB is the Boltzmann constant. The

quantity y is the Compton parameter for a thermal electron distribution and is given by

y = τ
kBTe

mec2
(1.20)

where me is the mass of the electron and Te is the electron temperature. The spectral

function g(x) is given by

g(x) =
x4ex

ex − 1

[
x
ex + 1

ex − 1
− 4

]
, (1.21)

in the non-relativistic limit. The Kompaneets approximation is valid as long as y remains

small, which means that it is only appropriate for cosmic structures of low temperatures

and low optical depths. Note that the spectral function g(x) is independent of the cluster

temperature, which means that the spectral shape of the SZE in the Kompaneets limit is

insensitive to the plasma temperature.

Although the Kompaneets solution is useful, it is very limited. The first limitation is

the reliance on the non-relativistic limit, which makes it adequate only for low temperature

cosmic structures, up to Te ≈ 2 keV. As a matter of fact, it has been observed that galaxy

clusters can have temperatures around 10 keV or even higher (see e.g. Reichert et al. 2011,

Wik et al. 2014). This will make this approximation inadequate to compute the SZE

spectrum for hot clusters. Secondly, the Kompaneets equation is only valid for a thermal

electron distribution and therefore cannot be applied to a general electron distribution.

The atmospheres of galaxy clusters do contain non-thermal electrons (relativistic or power

law distribution of electrons) which will also scatter the CMB photons and therefore will

produce a non-thermal SZE effect (Birkinshaw 1999, Ensslin & Kaiser 2000, Colafrancesco
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et al. 2003). Therefore it is important to address this issue and compute the SZE in a

full relativistic approach which is valid for any general electron distribution. Furthermore,

the non-thermal emission regions can co-spatially exist with the X-ray emitting regions

(Colafrancesco & Marchegiani 2008), hence the Comptonization process would involve two

electron distributions silmultaneously (Colafrancesco et al. 2003, 2011). Also, it is possible

to have two thermal electron distributions of different temperatures and optical depths co-

spatially existing together in a given cosmic structure. These situations have been shown

in the case of the Bullet cluster, whereby the SZE spectral data is best described using

two electron distributions (Colafranceco et al. 2011, Marchegiani & Colafrancesco 2015).

In addition to that, the Kompaneets solution is only valid for thin plasmas (τ << 1) and

therefore is not valid for thick atmospheres whereby multiple scatterings become substantial.

These above considerations demand a full relativistic approach for computing the SZE,

which is valid for any general or combination of electron distributions.

1.3.2 The relativistic SZE spectrum

In order to compute the relativistic SZE spectrum, one has to solve the relativistic Boltzmann

equation (Nozawa & Kohyama 2009) in the Thomson limit approximation, mec
2 >> γehν.

The change in intensity is then given to first order in optical depth, τ , by

∆I(x) = τ

[ ∫ ∞
−∞

dsP1(s)I0(xe−s)− I0(x)

]
, (1.22)

where I0(x) is the incident CMB radiation spectrum which is given by

I0(x) = 2
(kBT0)3

(hc)2

x3

ex − 1
, (1.23)

and P1(s) is the photon redistribution function with s = ln ν′/ν, where ν′ and ν are the initial

and final frequency of the photon after scattering with an electron (see Birkinshaw 1999,

Ensslin & Kaiser 2000). This function is computed by convolving the electron distribution

function, fe(pe), with another function P (s, pe) which represents the redistribution function

for a single electron, where pe = βeγe is the normalized momentum. Therefore we write as

follows;

P1(s) =

∫ ∞
pmin

P (s, pe)fe(pe)dpe, (1.24)

where pmin is the minimum momentum of the electron required to cause a shift s (see e.g.

Birkinshaw 1999, Ensslin & Kaiser 2000, Colafrancesco et al. 2003). This pmin depends on

the electron distribution. The function P (s, pe) is given by

P
(
s, pe

)
=

3(1 + es)es

8p5
e

[
3 + 3p2

e + p4
e√

1 + p2
e

− 3 + 2p2
e

2pe

(
2 sinh−1 pe −

∣∣s∣∣)]+

−
3
∣∣1− es∣∣
32p6

e

[
1 +

(
10 + 8p2

e + 4p4
e

)
es + e2s

]
. (1.25)
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Notice that this approach allows the SZE to be computed for any generic electron distribution

and therefore can safely be applied to compute the spectrum for thermal or non-thermal

electron distributions. It also allow the computation of the SZE spectrum for a combination

of electron populations. It is important to stress that fe(pe) is always normalized such that∫
fe(pe)dpe = 1. This relativistic approach is valid for electron lorentz factor γe < 108 so

that the Thomson approximation is not violated.

For a thermal electron distribution (like those responsible for the X-ray emission in galaxy

clusters), a relativistic Maxwellian distribution is used (Birkinshaw 1999, Ensslin & Kaiser

2000, Colafrancesco et al. 2003) and fe(pe) is written as

fe(pe) =
βth

K2(βth)
p2

ee
−βth

√
1+p2e , (1.26)

where βth = mec
2/kBTe and K2(βth) is the modified Bessel function of the second kind. In

this case, the minimum momentum pmin is given by pmin = sinh(
∣∣s∣∣/2). We show in Fig 1.9

the SZE spectrum using eq.1.22 for this distribution of electron for different values of the

electron temperature Te. We also superimposed the non-relativistic description (solid) and

we clearly see that the relativistic approach boils down to the Kompaneets approach in the

limit of low temperature. The spectral shape of the SZE, contrary to the one calculated

using the Kompaneets equation, is sensitive to the temperature of the electron. This is so,

because the spectrum of the SZE is dependent on fe(pe) and for thermal electrons, fe(pe)

depends on temperature. A relativistic analogue to the spectral function g(x) can be defined

as ḡ(x) = ∆I(x)/y (see Ensslin & Kaiser 2000, Colafrancesco et al. 2003).

The Kompaneets solution can also be written similar to eq. 1.22 by using the redistri-

bution kernel as follows

PK(s) =
1√
4πy

e
−
(
s+ 3y

)2
4y . (1.27)

Using the above kernel, PK(s), the solution to the Kompaneets equation can be written

similiar to eq. 1.22 as follows

∆I(x) =

[ ∫ ∞
−∞

dsPK(s)I0(xe−s)− I0(x)

]
. (1.28)

On the other hand, for non-thermal electrons (like those responsible for non-thermal

emission in radio-halos/relics and lobes of radio-galaxies), we usually use a power law electron

distribution. This is given by

fe(pe) = A(p1, p2, α)p−αe , (1.29)

and the normalization A(p1, p2, α) is given by:

A(p1, p2, α) =
α− 1

p1−α
1 − p1−α

2

. (1.30)
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Figure 1.9: The spectral distortion of the SZE computed for a thermal electron distribution

of optical depth τ = 10−3 for different temperatures Te = 1 (red), 7 (purple), 15 (blue) keV

in the relativistic (dotted) and non-relativistic case (solid).

The maximum momentum p2 is usually taken as infinity and α is the spectral index. The

momentum p1 is usually treated as a free parameter. This is the simplest electron distribu-

tion that is consistent with the spectra of radio-halos and radio-galaxies observed (Ensslin

& Kaiser 2000, Feretti 2001, Colafrancesco et al. 2011, Feretti 2012, Colafrancesco et al.

2013, Marchegiani & Colafrancesco 2015). Quantities such as pressure and temperature

can be calculated for this type of electron distribution as well (see Ensslin & Kaiser 2000,

Colafrancesco et al. 2003). We show the SZE spectrum in the case of a non-thermal elec-

tron distribution for different values of p1 in Fig 1.10. One can clearly see that the spectral

feature of the non-thermal SZE is completely different from that of the thermal one.

We clearly see that if relativistic effects are taken into account, the SZE spectrum be-

comes different from the usual non-relativistic one. In addition to that, non-thermal electrons

that are present in cosmic structures will also produce a non-thermal SZE effect in addition

to the thermal one.

By following the same approach, the SZE coming simultaneously from two electron dis-

tributions that exist within the same region can be calculated. If we assume that the two

electron distributions are independent and there is no interaction between them, then one

can write in this case the distribution function

fe(pe) = CAfe,A(pe) + CBfe,B(pe), (1.31)

where fe,A and fe,B are the electron distributions for population A and B respectively. The
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Figure 1.10: The SZE spectrum of a non-thermal plasma of spectral index α = 2.5 for p1 =

0.5 (red), 1 (purple), 3 (blue). We use an optical depth τ = 10−4.

values CA and CB are related to the optical depths of each electron population. Given that

fe(pe) is normalized, the constants CA and CB are related through CA + CB = 1. One can

write CA = τA/τ and CB = τB/τ , where τA and τB correspond to the optical depth of each

electron population and τ = τA + τB. The scattering kernel P1(s) is then given by

P1(s) = CAP1,A(s) + CBP1,B(s), (1.32)

whereby P1,A(s) and P1,B(s) are the redistribution functions corresponding to each electron

population. Then inserting P1(s) into eq 1.22, one can obtain the SZE spectrum resulting

from two electron distributions that exist co-spatially within a region (Colafrancesco et al.

2003).

The above approach is valid for thin optical depth whereby a photon is scattered only

once, but it can be extended to include the effect of multiple sccattering which is more ap-

propriate in describing thick plasmas (see e.g. Colafrancesco et al. 2003). However, the low

optical depth approximation is still valid for describing plasmas found in the atmosphere of

clusters and radio-galaxies (τ ≈ 10−6 to 10−2). Also, multiple scattering will induce SZE

distortions of the order of τn, which can be neglected given the order of magnitude of the

optical depth (≈ 10−6 − 10−2) of clusters or radio-galaxy atmospheres. It is also worth

mentioning here that the approach above does not take into consideration the anisotropy

of the CMB and therefore neglect higher order terms that could be present. Higher order

multipoles-induced effects, rather than just the monopole, can also be present in SZE in-

tensity (Chluba & Dai 2014) but this will not be the main focus in this present work. This
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effect can also be reduced if the SZE observation is done symmetrically around the center

of the structure.

1.3.3 Relevance of the SZE

The SZE is a powerful astrophysical probe that can be used to put constraints on various

phenomena that happen in the atmosphere of cosmic structures. Strong constraints on the

spatial distribution of the thermal gas that are present in galaxy clusters can be obtained

by using the SZE together with X-ray measurements (Carlstrom et al. 2002, Arnaud et al.

2010). In addition to that, the SZE can provide information on the non-thermal particles

that are found in cluster cavities, radio-halos and relics. Every astrophysical model used

to explain these non-thermal activities relies on the existence of non-thermal electrons.

The non-thermal SZE would allow one to constrain these models since the SZE spectrum

is sensitive to the electron distribution (Colafrancesco 2005, Colafrancesco et al. 2011,

Prokhorov et al. 2011, Marchegiani & Colafrancesco 2015). This can also be applied to

the lobes of radio-galaxies, whereby these extended structures also host a population of

relativistic particles (Colafrancesco et al. 2013).

Furthermore, the spectral distortion associated with the SZE has important cosmological

relevance (see e.g. Birkinshaw 1999, Carlstrom et al. 2002, Colafrancesco 2009 for a full

review). Cluster identification is one of the first anticipated use of the SZE since it is a mea-

sure of the pressure of the ICM along the line sight, allowing us to identify cosmic structures

at any location. Among other interesting aspects of the SZE is its redshift independence,

which would allow high redshift clusters to be detected, e.g. the cluster CL0016+16 which

has a redshift of z ≈ 0.5 was observed via SZE (Birkinshaw 1999). This means that the

SZE is ideal as a tracer of cosmic structures up to high redshift, allowing the study of the

evolution of large scale structures across cosmic time. Since the evolution of cluster density

is highly dependent on the underlying cosmological model, the equation of dark energy can

be determined (Weller et al. 2002). Additionally, coupled with X-ray observations, the SZE

can be used to measure cluster distances (Cavaliere et al. 1977, Birkinshaw 1979, Silk &

White 1978) which would allow the Hubble constant to be determined. In a similar fashion,

SZE together with X-ray measurements can also be used to put constraints on the gas mass

fraction in clusters and hence estimate ΩM at cluster locations (Arnaud et al. 2010). Since

galaxy clusters are large scale structures, the value of ΩM derived from these measurements

would be expected to reflect its universal value. Another cosmological use of the SZE is

in revealing the nature of dark matter. If dark matter particles are made up of WIMPS,

then relativistic electrons will be produced as a product of annihilation. These electrons

will produce an SZE and with very sensitive measurements, the spectrum can be identified

(Colafrancesco 2004).
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1.4 Polarization of the SZE

Polarization is a natural outcome of IC scattering and therefore the SZE is expected to have

a polarized component in addition to an intensity spectral distortion (Sazonov & Sunayaev

1999, Challinor et al. 2000, Lavaux et al. 2004, Portsmouth & Bertschinger 2004a, 2004b,

Emritte et al. 2016). The intrinsic multipoles of the CMB, which originate from the small

temperature variations created from spatial fluctuations of energy densities, bulk velocities

and gravitational potentials at the surface of last scattering, are mainly responsible for

the induced polarization in the SZE (Sazonov & Sunayaev 1999). The CMB then appears

anisotropic and upon IC scattering by the electrons that are present in cosmic structures,

result in polarization. Without taking into consideration relativistic corrections, attempts

in calculating the polarization associated with the SZE have shown that the polarization is

proportional to the quadrupole of the CMB at the cluster location and is of the order of

τa2,2, where a2,2 is the quadrupole of the CMB (Sazonov & Sunayaev 1999, Lavaux et al.

2004).

1.4.1 Non-relativistic SZE polarization

Preliminary calculations of the SZE polarization relied on the assumption that the electrons

involved in the scattering process are not moving at relativistic speeds (βe = ve/c << 1).

Assuming the Thomson approximation and that the incident radiation is not polarized but

anisotropic, the outgoing radiation will have a degree of linear polarization proportional

to the CMB quadrupole moment in the angular distribution of the incident radiation. If

the frame of reference is chosen such that the z-axis coincides with the line of sight of the

scattered radiation at first scattering, the Stokes parameters Q and U can be written follows

(Chandrasekhar 1960):

∂Q

∂τ
(x) =

3

16π

∫
sin2(θ) cos(2φ)I(x, θ, φ)dΩ (1.33)

∂U

∂τ
(x) =

3

16π

∫
sin2(θ) sin(2φ)I(x, θ, φ)dΩ . (1.34)

The angle θ is the polar angle measured with respect to the z-axis whereas φ is the azimuth

angle. The intrinsic temperature anisotropy of the CMB can be described using a unit vector

n̂(θ, φ). Hence, the intensity I(x, θ, φ), in a given direction written using spherical harmonic

expansion is given as follows

I(x, θ, φ) = 2

(
kBT0

)3(
hc
)2 x3

exp
[

hν
kT (θ,φ)

]
− 1

=

∞∑
l,m

Il,m(x)Yl,m(θ, φ) , (1.35)

where T (n̂) is given by

T (θ, φ) = T0[1 + δ(θ, φ)] (1.36)
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and

δ(θ, φ) =

∞∑
l,m

al,mYl,m(θ, φ) . (1.37)

By inserting eq. 1.37 into eq. 1.36 and then substituting into eq. 1.35, the intensity of the

incident radiation can be written as an expansion in terms of spherical harmonics, given

that the variations in the temperature of the CMB are generally small:

I(x, θ, φ) =
2(kBT0)3

(hc)2

[
x3

ex − 1
+

exx4

(ex − 1)2

∞∑
l,m

al,mYl,m(θ, φ)

]
+O(δ2) =

∞∑
l,m

Il,m(x)Yl,m(θ, φ) .

(1.38)

After inserting this into eq. 1.33 and eq. 1.34 and integrating over the solid angle, we are

left with only two terms, namely l = 2,m = ±2. The solution can be written as

∂Q

∂τ
(x) =

√
3

10π

I2,2 + I2,−2

4
=

1

2

√
3

10π
Re[I2,2(x)] , (1.39)

and
∂U

∂τ
(x) =

√
3

10π

I2,−2 + I2,−2

4i
= −1

2

√
3

10π
Im[I2,2(x)] . (1.40)

The multipoles of the intensity can be obtained directly from eq. 1.38 and the relevant ones

up to the octupole are

I0,0(x) =
√

4π 2
(kBT0)3

(hc)2

x3

ex − 1
=
√

4π 2
(kT0)3

(hc)2
F0(x)

I2,2(x) = a2,2 2
(kBT0)3

(hc)2

exx4

(ex − 1)2
= a2,2 2

(kT0)3

(hc)2
F1(x)

I3,2(x) = a3,2 2
(kBT0)3

(hc)2

exx4

(ex − 1)2
= a3,2 2

(kT0)3

(hc)2
F1(x) , (1.41)

where we have defined the functions F0(x) = x3/(ex− 1) and F1(x) = (exx4)/(ex− 1)2. We

have also used here the fact that I∗l,m = (−1)mIl,−m. Then we obtain the Stokes parameters

Q and U as follows:

∂Q

∂τ
(x) =

1

2

√
3

10π
2

(kBT0)3

(hc)2
Re[a2,2]F1(x) , (1.42)

and
∂U

∂τ
(x) = −1

2

√
3

10π
2

(kBT0)3

(hc)2
Im[a2,2]F1(x) . (1.43)

The Stokes parameters can be obtained in terms of the optical depth of the electron distri-

bution in the single scattering approximation by just multiplying by τ as follows

Q(x) =
τ

2

√
3

10π
2

(kBT0)3

(hc)2
Re[a2,2]F1(x) , (1.44)

and

U(x) = −τ
2

√
3

10π
2

(kBT0)3

(hc)2
Im[a2,2]F1(x) . (1.45)
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Figure 1.11: The Stokes parameter Q computed in the non-relativistic approach for a value

|a2,2| = 1.3× 10−5 and τ = 0.01.

The basis used to describe the Stokes parameters can always be rotated in such a way that

Re[a2,2] = |a2,2| and Re[a3,2] = |a3,2|. Hence we speak only of Q as U will be zero using

such a basis (we will keep using this basis in chapter 4). The values of |al,m| are related to

the coefficients Cl of the angular power spectrum of the CMB temperature anisotropy (Ade

et al., 2014a, 2016b, 2016d) as follows

Cl =
1

2l + 1

l∑
m=−l

〈|al,m|2〉. (1.46)

Assuming that |al,−2|2 ≈ |al,−1|2 ≈ |al,0|2 ≈ |al,1|2 ≈ |al,2|2 , the values of |a2,2| and |a3,2|

are then obtained as

|a2,2| ≈
√
C2 (1.47)

|a3,2| ≈
√
C3 . (1.48)

We obtained values of |a2,2| = 1.3× 10−5 and |a3,2| = 8.7× 10−6. We show in Fig. 1.11 the

spectrum of the Stokes parameter Q for the CMB quadrupole computed using eq. 1.44. We

finally define the degree of polarization as

Π =
√
Q2 + U2/I . (1.49)

It can be clearly seen that in this non-relativistic approach, the Stokes parameters are

directly proportional to the quadrupole of the CMB at the location of the electron, which

makes the SZE polarization of great use for cosmological application.



CHAPTER 1. INTRODUCTION 41

1.4.2 Relevance of the SZE polarization

Cosmological applications of the SZE polarization induced by the anisotropy of the CMB

have been envisaged. Cosmic variance poses a serious issue for the measurement of the

CMB quadrupole from only our location. On the other hand, the SZE polarization allows

the quadrupole at a cosmic structure location to be measured and if this is carried out

for several cosmic structures, the cosmic variance can be reduced (Kamionkowski & Loeb

1997, Portsmouth 2004, Yasini & Pierpaoli 2016). Additionally, this will also allow the

reconstruction of local CMB temperature anisotropies (Liu et al. 2016). Measuring the

quadrupole at a cosmic structure location is meaningful as it will reveal the level of anisotropy

in the CMB seen by the structure at that particular location. Eventually, this will allow

the homogeneity assumption of the Universe to be tested observationally (Maartens 2011).

Since we can only measure down the past light cone and not on spatial surfaces intersecting

that light cone, homogeneity cannot be measured or tested directly. However, one can link

it to isotropy by using the Copernican principle (CP), i.e. there is no special position in

the Universe, and test whether the principle still holds at other locations in the cosmos.

Furthermore, SZE polarization data for a large sample of clusters spanning over a wide

redshift interval would provide statistical inference of the integrated Sachs-Wolfe (ISW)

effect (Sache & Wolfe 1967) and the latter’s contribution to the r.m.s quadrupole can be

determined. The ISW effect is strongly dependent on the background cosmology, therefore,

SZE polarization can be used as a probe of dark energy (Berera & Gordon 2001).

Furthermore, in addition to the quadrupole, it has been demonstrated that under certain

circumstances, higher order multipoles of the CMB can also contribute to the SZE polariza-

tion (Challinor et al. 2000, Yasini & Pierpaoli 2016). This means that the other multipoles

of the CMB at the cluster location are also accessible through the SZE polarization. As a

matter of fact, it has been demonstrated that for region to follow a FLRW geometry, the

vanishing of the CMB dipole, quadrupole and octupole is a sufficient condition (Ellis et al.

1983, Maartens 2011).

For a rich galaxy cluster with optical depth, τ ≈ 0.02, the polarization signal is expected

to be ' 0.1µK in the Rayleigh-Jeans frequencies and lies below the detection limit of current

observational instruments (Sazonov & Sunyaev 1999, Lavaux et al. 2004, Yasini & Pierpaoli

2016). However, an r.m.s value of the quadrupole can still be retrieved if the signal is

searched in large number of cosmic structures.

In addition to the polarization induced from the anisotropy of the CMB, SZE polarization

can also be produced as a result of the other physical mechanisms (Sazonov & Sunyaev 1999,

Lavaux et al. 2004, Yasini & Pierpaoli 2016). The transverse velocity component of a cosmic

structure will produce a kinetic SZE polarization which is of the order of (Vc/c)
2τ , where Vc

is the peculiar velocity of the cosmic structure with respect to the CMB (Sazonov & Sunyaev
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1999, Lavaux et al. 2004, Yasini & Pierpaoli 2016). Another source of polarization is that

of multiple scatterings of the CMB within the cluster and is of the order of τ2 (Sazonov &

Sunyaev 1999, Lavaux et al. 2004). These secondary effects will be neglected in this present

work, but will be discussed whereever necessary.

1.5 Objectives of this Thesis

In the next three chapters, we will look at some new cosmological applications of the SZE.

In fact, we will demonstrate that the SZE can be used as a probe of cosmological radio

backgrounds, allowing new information to be derived regarding the cosmos.

Chapter 2 presents the use of the SZE, computed in a fully relativistic manner, as a probe

for the epoch of reionization. This is possible because any distortion produced in the CMB

during this primordial epoch will be reflected in the SZE spectrum as well. We compute

the SZE-21cm (SZE associated with 21-cm background) and analyse the spectrum for four

different background models. We discuss the advantage of the SZE-21cm over traditional

ways of observing the 21-cm background. In additon to that, we also look at the possibility

of its measurement with the SKA telescope.

Secondly, in chapter 3, we look at the possibility of a Non-Planckian (NP) effect induced

in the CMB spectrum due to a non-zero value of the plasma frequency around the recom-

bination epoch. By an extensive analysis of the current available CMB data, we investigate

this possibility by placing upper limits on the value of the plasma frequency allowed by the

set of data. Furthermore, we investigate the impact of a non-zero plasma frequency on two

other observables; the SZE effect and the cosmological 21-cm background.

In Chapter 4, we look at the SZE polarization computed in the full relativistic regime

and compute the Stokes parameters in a way that can incorporate any generic electron dis-

tribution and also combination of electron populations. We show the polarization spectrum

for thermal and non-thermal electron populations and we provide an extensive discussion on

their spectra. Then, we apply our techniques to the Bullet cluster for which the SZE mea-

surements are available and investigate the possibility of its detection over a wide range of

frequencies with currently and upcoming instruments such as the SKA, CORE++, ALMA

and Millimetron. We also discuss sources of contaminations such as velocity effects, multiple

scattering and the E-mode polarization of the CMB.

Finally in Chapter 5, we will summarize and discuss our results together with some

suggestions regarding future works.



Chapter 2

The EoR and the SZE-21cm

At redshift z = 1100 (the Recombination Epoch), the temperature of the Universe was low

enough for protons and electrons to combine to form hydrogen and the ionization fraction

of the Universe decreased significantly. By the end of recombination, the baryonic matter

content of the Universe was mainly in the form of hydrogen atoms and some helium. The

Universe proceeded towards the dark ages (DA) (z ≈ 1400 to 20), which is a time period

before the formation of any early cosmic structures such as stars and galaxies (Peebles1993).

The transition from a homogeneous Universe towards one composed of collapsed structures

occured during this period of time. Following the DA marks the epoch of reionization (EoR),

during which the intergalactic medium became ionized again. This happened through the

gravitational collapse of the hydrogen gas, hence forming the earliest stars, and through this

process the release of electromagnetic radiation ionized the intergalactic medium. Studying

the DA and EoR is vital for the understanding of the evolution of the Universe (see, e.g.,

Barkana & Loeb 2001, Loeb & Barkana 2001, Bromm & Larson 2004, Ciardi & Ferrara

2005, Choudhury & Ferrara 2006, Furlanetto et al. 2006, Morales & Wyithe 2010).

2.1 The Cosmological 21-cm background

The theoretical picture of how the Universe evolved through the DA down to the EoR is well

established within the ΛCDM model but is not well tested observationally (Zaroubi 2013).

There are actually two observational strategies to constrain these epochs. The first one is

to search for individual galaxies around redshift z ≈ 10 and higher. This would require

very sensitive multifrequency observations and efforts are underway to achieve this, with

telescopes working in different frequency ranges such as GMT, TMT, E- ELT, JWST and

ALMA (see Pritchard & Loeb 2012) . Although these instruments will be able to observe

an individual galaxy at z > 10, only the brightest ones will be seen.

The second strategy is to focus on the signals coming from the neutral hydrogen atoms

43
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that are ubiquitous in the Universe, accounting for ≈ 75 % of all atomic species in the

intergalactic medium (see e.g., Loeb & Zaldarriaga 2004, Cooray 2004; Bharadwaj & Ali

2004; Carilli et al. 2004, Furlanetto & Briggs 2004, Furlanetto et al. 2006, Pritchard & Loeb

2010, Pritchard & Loeb 2012, Liu et al. 2013). These signals are emitted at wavelength

21 cm (1420 MHz) due to the hyperfine splitting of energy levels (∆E = 5.9× 10−6 eV) in

hydrogen atoms through the interaction of magnetic moments between the proton and the

electron and is redshift dependent (the observed frequency, ν = 1420/(1 + z) MHz). The

background created by these emissions, is called the cosmological 21-cm background and

its measurement would act as a tracer of hydrogen atoms at different redshifts, giving us a

direct clue on the possible physical processes during the DA and the EoR.

2.2 Physics of the 21-cm radiation

For redshift z & 6, a primary source of background for measurement of the cosmological 21-

cm is the CMB. The brightness temperature of an object is related to its spectral emission

I(ν) as follows (Rybicki & Lightman 1979),

T (ν) = I(ν)
c2

2kBν2
. (2.1)

For the CMB, T (ν) is constant in the Rayleigh-Jeans frequency band.

The 21-cm emission will appear as a spectral distortion to the CMB background and the

contrast is denoted δT (ν). The observed differential brightness, δT (ν), can be calculated

against the CMB background as follows

δT (ν) = 9xHI(1 + δ)(1 + z)1/2

(
TS − TCMB(z)

TS

)
mK (2.2)

where xHI is the ionization fraction of hydrogen, δ is the local overdensity, TCMB(z) is the

CMB temperature and TS is the spin temperature, both at redshift z (Furlanetto et al.

2006). The variation of the CMB temperature with redshift is given by TCMB(z) = T0(1+z)

K, where T0 is the CMB temperature at z = 0, while the spin temperature TS will depend

on three physical processes. These processes are: 1) the absorption/emission of 21-cm

photon from/to the CMB background; 2) collision with hydrogen atoms and electrons; and

3) the scattering of Ly-α photons (see Barkana & Loeb 2005b, Furlanetto 2006), which are

photons emitted by the first galaxies. A Ly-alpha photon is emitted when the electron of

hydrogen transit from the n = 2 orbital to the n = 1 orbital (where n is the principal

quantum number). Therefore the cosmological 21-cm signal relies on the behaviour of the

spin temperature TS during the evolution of the Universe (Furlanetto 2006, Pritchard & loeb

2012). The predicted 21-cm radiation from the DA down to the EoR is shown in Fig 2.1.



CHAPTER 2. THE EOR AND THE SZE-21CM 45

Figure 2.1: The cosmological 21-cm brightness signal emitted by hydrogen starting from the

DA (z ≈ 200) down to the reionization (z ≈ 6) (Furlanetto 2006, Pritchard & Loeb 2012).

2.3 Measurement of the 21-cm background

Using the CMB as background, the 21-cm emission of hydrogen gas will appear as a faint dif-

fuse background across the whole sky and can be studied similar to the way CMB anisotropies

are studied. However there are still some observational challenges that will be faced by fu-

ture observations of these signals. Firstly, the 21-cm radiation is faint, of the order of tens

of mK (Pritchard & Loeb 2012) and until now, only upper-limits have been obtained (see

e.g., Paciga et al. 2013, Dillon et al. 2014, Parsons et al. 2014). Secondly, in the relevant

frequency range, 30 < ν < 200 MHz, where the 21-cm is expected is vulnerable to galactic

and extragalactic foregrounds together with various experimental systematics and biases

(see e.g., de Oliveira-Costa et al. 2008). Therefore knowledge of the foregrounds and precise

calibrations would be crucial in separating the relevant signals from the irrelevant ones.

Several methods have been envisaged to overcome these limitations. One method is to

extract the mean 21-cm signal through redshift-anisotropies by studying its fluctuations

(Barkana & Loeb 2005a). This is possible with the next generation of instruments such as

SKA (McQuinn et al. 2006). A second method is to use the contrast between the bubbles of

ionized plasmas (ionized regions) present during the EoR and the 21-cm signal to measure

the mean amount of neutral gas (see Furlanetto et al. 2006, Datta et al. 2007).

In this work, we look at an alternative way of measuring the 21-cm emission, by using

the SZE produced in large scale cosmic structures. Since the 21-cm emission appears as a

distortion to the CMB and in addition to the fact that the SZE is an interaction in which
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the CMB photons are involved, the 21-cm will eventually be present in the SZE spectrum

as well. Consequently, this means that one can use cosmic structures in our local Universe

to probe the DA and the EoR, a method which we denote the SZE-21cm.

2.4 The SZE of the 21-cm

A preliminary result of the SZE-21 cm has been produced in a previous work (Cooray

2006). However, it is noticed that many cosmological and astrophysical aspects have not

been accounted for in the calculation and if one wants to use the SZE-21 cm as a probe,

it is important to address these aspects and refine the calculation. The aspects which the

previous work did not address are:

i) the cosmological 21-cm background model used to describe the DA and the EoR was

unphysical due to the presence of many artificial discontinuities, e.g. ν ≈ 70, the spectral

feature of the model is not well resolved, with a lot of numerical discontinuities (Cooray

2006). The description of the EoR through this model is unphysical, producing substantial

21-cm emission down to redshift z ≈ 2 (ν ≈ 300 MHz);

ii) Only one model of the 21-cm background is used in the calculation of the SZE-21cm.

The spectral feature of the 21-cm background can be altered by certain physical processes

that could occur during the DA and EoR and one of these physical processes is heating

through dark matter annihilation. This has a cosmological implication since the energy

release via the annihilation process would be absorbed by the intergalactic medium, hence

will have an implication on the thermal and ionization history of the Universe.

iii) The SZE-21cm spectrum was calculated in the non-relativistic limit, which makes

the result applicable only to low temperature plasmas. Since many high temperature galaxy

clusters have been observed, non-relativistic approximations are inappropriate. In addition

to that, they considered only thermal electrons when actually non-thermal electrons are also

present in galaxy clusters (e.g. radio halos) and in lobes of radio galaxies. Therefore, it is

important to use a full relativistic formalism which can also incorporate electron distributions

other than just thermal electron distributions in calculating the SZE-21cm.

iv) Although the SZE-21cm was calculated, but there is no comparison of the signal with

the sensitivities of relevant telescopes such as the SKA.

In this work we address these missing aspects by first, using a set of models that contain

physical effects that are realistic and also include additional mechanisms such as heating

from dark matter annihilation (Valdes et al. 2013, Evoli et al. 2014). Secondly, we perform

the calculation of the SZE-21cm using a full relativistic approach which is also valid for any

distribution of electrons. Furthermore, we also compare our results with the sensitivity of

the SKA instrument.
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Figure 2.2: The frequency dependence of the cosmological 21-cm brightness signal relative

to the CMB, δT , calculated using the 21cmFAST code for four models: a fiducial model

without dark matter (solid line, benchmark model), an extreme model without dark matter

(dashed line) and two fiducial models with dark matter with Mmin = 10−3M� (dot-dashed

line) and Mmin = 10−6M� (three dot-dashed line), where Mmin is the mass of the smallest

DM halo (Colafrancesco et al. 2016b, Evoli priv.comm).

2.5 The 21-cm background models

In order to compute the SZE-21cm spectrum, we consider four different models to represent

the physical processes occuring during the EoR to describe the 21-cm background and whose

spectral brightness temperature change, δT (ν), has been calculated using the 21cmFAST

code (Mesinger et al. 2011). In Fig 2.2, we show the four different models that we consider

here for the calculation of the SZE-21cm.

The first model (solid line) is a fiducial model without dark matter in which standard

assumptions on the properties of the heating by cosmic structures are used. However, this

model neglects collisional effect of the gas that can be observed at ν < 30 and cannot be

observed with a ground based telescope such as SKA. The Ly-α radiation field presented at

redshift z ≈ 30 − 20 together with the effects of UV ionization and heating due to X-ray

photons at redshifts z ≈ 20 − 6 (Chen & Miralda-Escude 2004) are taken into account in

this model. This first model will be referred to as the benchmark model to discuss certain

relevant features of the SZE-21cm.

The second model that we consider, is also one where dark matter is neglected but

extreme values for the heating caused by cosmic structures are assumed. In this case, the
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coupling between the spin temperature of the intergalactic medium and the Ly-α photons

is damped resulting in a deep brightness decrease in the frequency interval, ν ≈ 50-70 MHz,

and an eventual increase at higher frequencies (ν > 70 MHz).

Lastly, we consider two models which, in addition to standard physical processes, also

involve dark matter annihilation as a source of heating. Dark matter halos with small mass

produce the strongest effects, and therefore we consider two minimum halo masses of 10−3

M� and 10−6 M�. Regarding the nature of dark matter here, we assume a WIMP with

mass 10 GeV with annihilation chanel e+/e− and cross-section< σV >= 10−26 cm3/s.

2.6 Derivation of the SZE-21cm

The SZE-21cm can easily be computed given that the SZE is an interaction between the

photons of the CMB and that of the electrons of cosmic structures. Therefore any energy-

injecting process that occurs during the EoR or the DA, will modify the CMB spectrum and

subsequently will also modify the SZE. Therefore we denote the modified CMB radiation by

I0,mod(ν) which can be written as

I0,mod(ν) = I0(ν) + δI(ν) (2.3)

where δI(ν) is the perturbation of the CMB radiation due to processes that occur during

the EoR and the DA. This is related to δT (ν) by δT (ν) = δI(ν)c2/2kBν
2.

The SZE-21cm at first order in τ , denoted as ∆Imod(ν), can be written using eq 1.22 as

follows

∆Imod(ν) = τ

[ ∫
dsP1(s)I0,mod(νe−s)− I0,mod(ν)

]
. (2.4)

This equation can then be transformed into temperature brightness, ∆Tmod, by the rela-

tion, ∆Tmod(ν) = ∆Imod(ν)c2/2kBν
2. Hence eq 2.4 can be written in terms of brightness

temperature as follows,

∆Tmod(ν) = τ

[ ∫
dsP1(s)e−2sT0,mod(νe−s)− T0,mod(ν)

]
. (2.5)

We denote in this particular chapter the standard SZE as ∆Ist(ν) or ∆Tst(ν) in order to

avoid confusion. Using the relation T0,mod(ν) = T0 + δT (ν), one can express eq.2.5 in terms

of T0 and δT (ν) as follows

∆Tmod(ν) = τT0

[ ∫
dsP1(s)e−2s − 1

]
+ τ

[ ∫
dsP1(s)e−2sδT (νe−s)− δT (ν)

]
. (2.6)

Although eq 2.4 and eq 2.6 are essentially the same, however, the second one is more in-

teresting for a couple of reasons. Firstly it is already in the units of brightness temper-

ature and more importantly, it shows that the SZE-21cm is a standard SZE (∆Tst(ν) =

τT0

[ ∫
dsP1(s)e−2s−1

]
) plus an additional component, τ

[ ∫
dsP1(s)e−2sδT (νe−s)−δT (ν)

]
,

corresponding to the modified portion of the CMB.
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2.6.1 The SZE-21 cm spectrum

We show in Fig 2.3 the SZE-21cm calculated for a galaxy cluster with intracluster tempera-

ture of 7 keV and optical depth 5× 10−3 using the benchmark model (solid line in Fig 2.2).

Displayed also on the same figure is the standard SZE for the same cluster parameters. It

is clearly seen from the plot,that in the absence of δT (ν) in the input spectrum, then the

SZE-21cm is essentially the standard SZE.

A spectral feature associated with the SZE-21cm is that in some frequency intervals, it

is stronger or weaker than the standard SZE. It is noticed that the curvature of the input

spectrum δT (ν) plays a determining factor to this behaviour. In the frequency intervals,

ν < 55 MHz and 90 < ν < 140 MHz, the input spectrum has a negative curvature and

the SZE-21cm is less than the standard one (∆Tmod < ∆Tst). On the other hand, in

the frequency intervals where the curvature of the input spectrum is positive, 55 < ν <

90 MHz and ν > 140 MHz, the SZE-21 cm is greater that the standard one (∆Tmod >

∆Tst). An explanation of this spectral feature associated with the SZE-21cm is that IC

scattering produces a frequency shift of the photons involved, which consequently makes the

amplitude of the SZE at a certain frequency depends on the distribution of photons at that

frequency (e.g. the redistribution function P1(s)). At the frequency where the curvature

of the input spectrum is negative, a smaller number of photons are present around that

frequency with respect to the case of the standard CMB spectrum (where the spectral

curvature, in brightness temperature units, is zero), and as a result of that, the SZE-21cm is

smaller than the standard one. On the other hand, where the curvature is positive a larger

number of photons is present and the SZE-21cm is higher than the standard one.

We also find that the minimum point in the input radiation spectrum (ν ≈ 70 MHz)

corresponds to a maximum point in the SZE-21cm; this is due to the fact that a minimum

point in the input spectrum means a smaller number of photons with respect to the standard

CMB: as a consequence, when subtracting the input spectrum to calculate the SZE-21cm,

the resulting emission is stronger than for the standard SZE. The opposite behaviour is

observed at the frequencies where the input radiation spectrum has its maximum points

(ν ≈ 45 and 120 MHz), that are close to the minimum points of the SZE-21cm; in this

case, the correspondence is less precise (the minimum points of the SZE-21cm do not occur

exactly at the maximum points of the input radiation spectrum) with respect to the previous

case because the maximum points in the input spectrum are less sharp than the minimum

one, and the convolution of photons with those at surrounding frequencies produces a slight

shift in the frequency of the minimum points in the SZE-21cm (whereas in previous case of

a minimum in the input radiation spectrum the convolution does not produce a shift in the

frequency of the maximum points of the SZE-21cm).

Next, we focus on the SZE-21 cm spectrum produced in two specific cases. The first
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Figure 2.3: The SZE-21cm (solid line) calculated using the benchmark model (solid line in

Fig 2.2) assuming an intracluster temperature of 7 keV and optical depth τ = 5 × 10−3.

The dashed line shows the standard SZE effect in the absence of the 21-cm perturbations

(Colafrancesco et al. 2016b).

Figure 2.4: The standard SZE with no perturbation from the 21-cm for the case of a thermal

electron gas of temperature 5 keV and optical depth τ = 5 × 10−3 (solid line) and for the

case of a non-thermal gas following a power-law distribution with minimmum momentum

p1 = 10, α = 3.5 and τ = 1× 10−4 (dashed line) (Colafrancesco et al. 2016b).
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Figure 2.5: The SZE-21cm in the case of a thermal electron distribution illustrated for four

different temperatures: 5 (solid), 10 (dashed), 15 (dot-dashed) and 20 (dash three dots)

keV. A constant value of the optical depth, τ = 5 × 10−3, is adopted (Colafrancesco et al.

2016b).

one is the SZE-21cm produced by the thermal electrons present in the atmosphere of galaxy

clusters, and the second one is from non-thermal electrons that are present in cosmic struc-

tures where non-thermal activities are taking place, e.g. galaxy clusters with radio-halos

and lobes of radio-galaxies.

2.6.2 Spectral Analysis

To start our discussion on the SZE-21cm produced in cosmic structures, we present, for

the sake of clarity, the standard SZE whose input radiation spectrum is that of the usual

CMB. This is shown in Fig 2.4 in units of brightness temperature mK, which illustrates

the standard SZE (solid line) in the case of a thermal electron distribution of temperature

5 keV and optical depth τ = 5 × 10−3. We also show the standard SZE for the case of

a non-thermal electron distribution with optical depth τ = 1 × 10−4 (dashed line), that

follows a power-law shape with minimum momentum p1 = 10 and spectral index α = 3.5.

As expected, in both cases, the SZE is constant in the frequency interval 30 < ν < 200 MHz,

which falls in the Rayleigh-Jeans limit of the electromagnetic spectrum.

In Fig 2.5, we show the SZE-21cm for four different temperatures (5, 10, 15, 20 keV) of

a thermal electron distribution with optical depth τ = 5× 10−3. The spectral shape of the

SZE-21cm is dependent on the temperature of the plasma producing the IC scattering and

the amplitude increases with temperature. This is in fact expected, since for the standard
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Figure 2.6: The fractional error between the relativistic and the non-relativistic approach

plotted against frequency for thermal plasmas present in galaxy clusters with temperatures,

20 (solid line), 15 (dashed line) and 7 (dot-dashed line) keV (Colafrancesco et al. 2016b).

SZE, the spectral shape and the amplitude depend on the temperature, hence the SZE-

21cm will also have a spectrum whose spectral feature and amplitude will be sensitive to

temperature of the plasma.

To investigate the impact of relativistic effects on the SZE-21cm, we plot the fractional

error produced when using the non-relativistic approach (as in Cooray 2006) over the correct

relativistic one. We show our result for temperatures: 20 (solid line), 15 (dashed line) and 7

keV (dot-dashed line) in Fig 2.6. This shows that the fractional error is non-zero over almost

the entire frequency interval. It is noticed that the local maxima of the percentage error

is located at frequencies (ν ≈ 50, 60, 77, 95 MHz) where maxima and minima of the input

spectrum occurs. This correspondence between the second derivative of the input spectrum

and the fractional error is detailed in the Appendix. This is related, as discussed for the

shape of the SZE-21cm, to the fact that the SZE is produced by a convolution of the input

photon spectrum with photons at surrounding frequencies. The non-relativistic calculation

(Birkinshaw 1999) considers a shape of the function PK(s) (see eq 1.27) which is narrower

than the one in the relativistically correct calculation, P1(s) (see eq 1.24). Therefore, when

the curvature (positive or negative) of the input radiation spectrum is maximum, the error

produced by convolving the input spectrum with a function P (s) narrower than the correct

one is larger, because it implies to lose the contribution from the photons from more distant

frequencies. As a consequence, the more the input spectrum is different from a straight line,

the larger is the error produced by using the non-relativistic calculation. In the Appendix
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Figure 2.7: The difference, ∆Tmod − ∆Tst, between the SZE-21cm and standard SZE for

galaxy clusters of temperatures 5 (solid), 10 (dashed), 15 (dot-dashed) and 20 (dash-three

dots). The optical depth used is 5× 10−3 (Colafrancesco et al. 2016b).

we expand these considerations by discussing also the other three input models considered

for the input radiation spectrum.

For the case of a cluster with a temperature of 20 keV, the percentage difference reaches

its local maxima/minima values of the order of ≈ 65%, ≈ 60%, ≈ 100% and ≈ 50% at

frequencies ν ≈ 50, 60, 77, 95 MHz, respectively. Therefore, relativistic effects introduce

substantial modifications to the SZE-21cm spectrum in comparison to its non-relativistic

counterpart. For the other temperatures, the percentage error is smaller, but still of the

order of at least 30% at the previous frequencies, and at ≈ 77 MHz the percentage error

is ≈ 100% independent of the cluster temperature. For this reason, it is very important to

account for relativistic effects when computing the SZE-21cm, otherwise the correct shape

of the spectrum will not be obtained.

Additionally, we compute the difference between the SZE-21cm and the standard SZE,

∆Tmod−∆Tst and the result is shown in Fig 2.7 for galaxy clusters hosting thermal plasmas

of temperatures, 5 (solid), 10 (dashed), 15 (dot-dashed) and 20 (dash- three dots) keV. We

notice that the main spectral differences occur around ν ≈ 50 MHz and in the interval 60 <

ν < 80 MHz which reflects the Ly-α spin coupling, and also in the interval 100 < ν < 150

MHz which reflects the the UV ionization occuring during the EoR.

Furthermore, we compute the SZE-21cm for the case of non-thermal electrons that reside

in galaxy clusters hosting radio-halos/relics and in the lobes of radio-galaxies. To do so, we

use a single power-law distribution for various values of the minimum momentum p1 and
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Figure 2.8: The SZE-21cm computed in the case of non-thermal electrons following a single

power-law for values of the minimum momentum p1 = 0.1 (solid line), 1 (dashed), 5 (dot-

dashed), 10 (dash-three dots) and spectral index α = 3.5. A value of τ = 1× 10−4 has been

used (Colafrancesco et al. 2016b).

Figure 2.9: The difference between the SZE-21cm and the standard SZE, computed in

the case of non-thermal electrons following a single power-law for values of the minimum

momentum p1 = 0.1 (solid line), 1 (dashed), 5 (dot-dashed), 10 (dash-three dots) and

spectral index α = 3.5. A value of τ = 1 × 10−4 has been adopted (Colafrancesco et al.

2016b).
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Figure 2.10: We show the SZE-21cm for a thermal plasma of temperature 7 keV and op-

tical depth τ = 5 × 10−3 in the standard benchmark model and for the case in which the

background 21-cm is shifted by a factor of 3 in the frequency domain (Colafrancesco et al.

2016b).

constant spectral index, α = 3.5 to describe the electrons. Fig 2.8 shows, for a constant value

of τ = 1×10−4, the result for p1 = 0.1 (solid line), 1 (dashed), 5 (dot-dashed), 10 (dash-three

dots). The amplitude of the non-thermal SZE-21cm is considerably small compared to the

thermal one and this is particularly because the optical depth of non-thermal electrons is

small (≈ 10−5−10−4) compared to thermal ones (≈ 10−3−10−2). However, notice that the

amplitude increases with increasing values of p1. We also show the difference between the

SZE-21cm and the standard SZE in this case, and the main differences occur in the same

frequency intervals as in the thermal case. The result is shown in Fig 2.9 and again, the

amplitudes are small compared to thermal ones because the optical depth of non-thermal

electrons are small.

As a check, we also look at the SZE-21cm spectrum when the 21-cm background radiation

is shifted in redshift (which will result in a shift in the observed frequency). This means that

we are looking at the possibility that the redshifts of the various mechanisms in operation

during the DA and the EoR (e.g. collisions, Ly-α interactions, UV ionization) can be

different from the ones assumed in the benchmark model. As an illustrative example, we

assume that the background 21-cm is shifted in the frequency domain by a global factor of 3

(which is equivalent to a shift in the redshift domain). We show our result in Fig 2.10 for the

case of a thermal electron distribution of temperature 7 keV and optical depth τ = 5×10−3.

Thus, from the frequency at which the different effects in the SZE-21cm are observed, it is
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Figure 2.11: We show the SZE-21cm for a thermal electron distribution of temperature 5

(left) and 20 keV (right) for each model as the background radiation; fiduical model without

dark matter (solid), extreme model without dark matter (dashed line), two fiducial models

with dark matter with Mmin = 10−3 M� (dot-dashed line) and Mmin = 10−6 M� (three

dot-dashed line). A constant optical depth value of 5 × 10−3 is used (Colafrancesco et al.

2016b).

possible to derive the redshift (ν = 1420/(1 + z) MHz) at which these effects took place,

and in principle determine the full cosmic history of the DA and EoR.

Finally we compute the SZE-21cm spectrum for the other three models and the results

are shown in Fig 2.11 for a thermal electron distribution of temperature 5 and 20 keV.

Additionally, we repeat the computation for the non-thermal case with spectral index α = 3.5

for minimum momentum p1 = 0.1 and p1 = 10. We show the results in Fig 2.12. As we can

see, while the spectral shape of the non-thermal SZE-21 cm is very similar to the thermal

one for p1 = 0.1, for high values of p1 the main difference is the damping of the features

produced by the Ly-α spin coupling effect at ≈ 60 and 100 MHz. The effect of considering a

higher heating rate, both from usual astrophysical sources and from DM, is to increase the

temperature of the IGM, to which the spin temperature is linked by the Ly-α coupling, and

as a result the peak in the SZE-21cm in the 60-80 MHz frequency range is damped, with

different spectral shapes depending on the dark matter properties.

2.7 Discussion

Using a full relativistic approach in calculating the SZE-21cm shows us the following impor-

tant properties:

i) The non-relativistic approach produces substantial errors over almost the entire fre-

quency interval over which the signal is expected. This is clearly shown in Fig 2.6 which
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Figure 2.12: We show the SZE-21cm for non-thermal electron distributions of minimum

momentum p1 = 0.1 (left) and p1 = 10 (right) for each model as the background radiation;

fiducial model without dark matter (solid), extreme model without dark matter (dashed

line), two fiducial models with dark matter with Mmin = 10−3 M� (dot-dashed line) and

Mmin = 10−6 M� (three dot-dashed line). A constant optical depth value of 1× 10−4 and

spectral index α = 3.5 are used (Colafrancesco et al. 2016b).

shows that relativistic effects are consequential if one wants to use the SZE-21cm to probe

the DA and the EoR.

ii) Our approach allows us to calculate the SZE-21cm for any general electron distribution

and we have shown our results for the case of thermal and non-thermal electrons. The

amplitude of the SZE-21cm increases with temperature in the thermal case and the minimum

momentum p1 in the non-thermal case. The non-thermal SZE-21cm will allow the use of

SZE to probe the DA and EoR using galaxy clusters hosting radio-halos/relics and also the

lobes of radio-galaxies. Using radio-galaxies together with galaxy clusters will extend the

sample of cosmic structures in which the SZE-21cm is being searched.

iii) The spectral feature of the SZE-21cm would allow the possibility of deriving important

information on physical mechanisms presented during the DA and EoR. It will also allow to

put constraints on the nature of dark matter due to the fact that dark matter annihilation

have an impact on the background 21-cm spectrum as shown in Fig 2.2. This is subsequently

present in the SZE-21cm spectra shown in Fig 2.11 and Fig 2.12.

iv) Finally we also saw that the SZE-21cm spectrum is sensitive to the electron distri-

bution involved in the comptonization process. This means SZE-21cm can also be used to

constrain the properties of electron populations that are hosted by atmosphere of cosmic

structures at very low frequencies. This will be complementary to the use of high frequency

SZE measurements to derive information on non-thermal properties of cosmic structures

(Colafrancesco et al. 2011).
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2.7.1 Differential analysis techniques and foreground contamina-

tion

Measurements of SZE-21cm can be carried out using radio interferometers by differential

observations towards and away from galaxy clusters or other cosmic structures hosting dif-

fuse thermal and non-thermal plasmas. The direct establishment of the 21-cm background

by measuring the total intensity of the sky will require an exact calibration using an ex-

ternal source and the measurement will suffer from galactic foregrounds which are uniform

over angular scales larger than a cluster, such as the galactic synchroton background at low

frequencies. Being a differential measurement, the SZE-21cm will not have these compli-

cations. In addition, the SZE-21cm benefits from its redshift independence, which would

allow measurements to be carried out up to high redshifts, hence reducing contamination

from radio emissions coming from point or diffuse sources. This will allow the signal to be

searched in a large number of sources, hence increasing the precision of the measurement.

The resulting modification to the 21-cm spectrum due to the thermal SZE-21cm is ex-

pected at the level of a few tenths mK brightness temperature relative to the CMB. There-

fore, such a small modification is challenging to detect, but for upcoming radio interferome-

ters (like the SKA), the specific spectral signatures would allow a relatively clean detection.

In addition, multi-object SZE-21cm observations could be facilitated by the fact that the

instantaneous field-of-view of upcoming interferometers is expected to be more than 100

square degrees and one expects to detect simultaneously hundreds or more cosmic struc-

tures in such wide fields.

The SZE-21cm is an effective tool in establishing the global features of the 21-cm spec-

trum produced during the DA and the EoR. Additionally, cluster population studies , e.g.,

cluster counts and redshift distribution, can also be carried out using the SZE-21cm which

can be used as cosmological probes. To achieve these goals would require observational

techniques which would allow the study of a large number of objects and also those at high

redshifts.

Although differential measurements would avoid contamination from galactic foregrounds

and background emissions on angular scales bigger than typical galaxies or lobes of radio-

galaxies, synchrotron emission within the cosmic structure could be a source of contami-

nation. However this contamination varies with luminosity distance as D−2
L , which means

that it will be less of a problem for structures at high redshift, given that the SZE-21cm

is redshift-independent. For cosmic structures that are nearby, the radio emission from the

structure will be much higher than the SZE-21cm signal. Therefore we show in Fig 2.13, for

the case of the Coma cluster with redshift zComa = 0.02, the synchrotron emission compare

with the SZE-21cm for a thermal electron distributions of temperature 5 and 20 keV. We

also show on the same figure the synchrotron emission for a Coma-like cluster situated at
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Figure 2.13: The SZE-21cm for thermal plasmas at 5 (short dashed line) and 20 (solid

line) keV compared to the sychrotron emission for the Coma cluster with redshift zComa =

0.02 (Long dashed line) and for a Coma-like cluster at redshift z = 1 (dashed-three dots)

(Colafrancesco et al. 2016b).

redshift z = 1.

2.7.2 Detectability with the SKA

In this section we investigate the possibility of measuring the SZE-21cm with sensitivity of

the SKA instrument (Dewdney et al. 2012).

We first investigate the loss of signal due to the finite extent of the interferometer. To

this aim, we calculate the SZE-21cm flux a for typical cluster hosting an isothermal gas

whose electron density follows that of a β-profile as in eq 1.14. The optical depth at an

angular distance from the center will be given by eq 1.17. We then assume τ0 = 5 × 10−3,

β = 0.75, θc = 300 arcseconds and calculate the flux up to θmax = 10 θc.

At 110 MHz, the reference spatial resolution of SKA1-low which corresponds to a min-

imum baseline of 50 km is θmin = 11 arcseconds. The SZE-21cm to first order in optical

depth τ is proportional to the product of the spectral part and the optical depth which

allows us to estimate the lack of sensitivity on angular scales less than θmin. This is given

by the loss of flux within the angular range θ < θmin and is given by the ratio∫ θmin

0
2πθτ(θ)dθ∫ θmax

0
2πθτ(θ)dθ

≈ 1.1× 10−4. (2.7)

In Fig 2.14, we show the standard SZE surface brightness profile at 110 MHz for a cluster

at temperatures 20, 15, 10, 5 keV. Within a radius of 20 arcmin from the center of the galaxy
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Figure 2.14: The surface brightness of the standard SZE calculated for a galaxy cluster at

temperatures: 20 (solid line), 15 (dashed), 10 (dot-dashed) and 5 (three dots-dashed) keV

assuming a value of τ0 = 5×10−3, θc = 300 arcsec, β = 0.75 and θmax = 10θc (Colafrancesco

et al. 2016b).

cluster, the SZE signal would be around ≈ 10 µJy and this is way above the loss of signal

due to the finite baseline configuration of SKA1 which would be around 10 nJy.

To study the detectability of the SZE-21 cm signal, we compare the flux calculated for

the SZE-21cm and the one calculated for standard SZE with the sensitivities of SKA-50%,

SKA1, and SKA2 for 100 kHz bandwith, 1000 hrs of integration, 2 polarizations, no taper,

no weight. We show the results in Fig 2.15, 2.16, 2.17 and 2.18 for the different radiation

background models we use in this work.

In Fig 2.15, for 1000 hours of integration time of a single cluster, we see that SKA-50 %

will detect the SZE-21cm at frequecies > 80 MHz for clusters with high temperatures (20

keV) and for low temperature clusters at frequencies > 100 MHz. In the case of SKA-1 with

1000 hrs of integration, the SZE-21cm can be measured for frequencies > 75 MHz and > 90

MHz for high and low temperature clusters. Finally for the case of SKA-2, the signal can be

measured as from 50 MHz for high temperatures and 80 MHz for low temperatures. This

shows that the SKA will definitely be able to detect the SZE-21cm, hence shedding light on

the DA and the EoR.

Measurements of the difference between the SZE-21cm and the standard SZE is a bit

more challenging since the signal is only of a few µJy. Therefore measurements have to

be done very precisely and in a strategic way by focusing on frequencies where the signal

is at maximum, e.g ≈ 75 MHz at low frequencies and at higher frequencies, ≈ 115 MHz.
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Figure 2.15: Left panel: The SZE-21cm (solid lines), ∆Imod, and the standard SZE (dashed

lines), ∆Ist, fluxes in µJy units. Right Panel: The absolute difference, ∆Imod−∆Ist, fluxes in

the units of µJy. In both panels we are using the benchmark model, which is the one without

extreme heating and in the absence of dark matter. The results are for thermal plasmas of

temperature, 5 (cyan), 10 (red), 15 (black), 20 (green) keV computed for τ0 = 5 × 10−3,

θc = 300 arcsec, β = 0.75, θmax = 10θc (Colafrancesco et al. 2016b).

SKA-50 % at 1000 hrs of integration cannot measure this signal but for SKA-1, due to its

high sensitivity at higher frequencies (around 110 MHz and above), measurement is possible

for high temperature clusters (greater than 10 KeV). Although the signal is around only

few µJy, the chance of detection can be enhanced if clusters are selected appropriately by

focusing on those with high optical depths and temperatures. For the case of SKA-2, the

signal can be measured for 1000 hrs of integretion, right from ≈ 60 MHz for clusters with

temperatures > 15 keV and at > 65 MHz for temperatures > 10 keV.

Regarding the other background models, at 1000 hrs of integration, SKA-1 and SKA-50%

are not sensitive enough to detect the difference between the SZE-21cm and the standard

SZE. On the other hand SKA-2 has a bigger chance of detecting the signal for these models.

For the extreme model without dark matter, SKA-2 can detect the difference between the

SZE-21cm and the standard SZE at frequencies ≈ 85-110 MHz and at frequencies > 145

MHz for clusters with temperature & 10 keV. For the dark matter model with Mmin = 10−3

M�, the signal can be detected in 75-80 MHz (for 20 keV) and 95-145 MHz (for temperatures

greater than 5 keV) frequency intervals. For the one with Mmin = 10−6 M�, detection is

possible at frequencies & 150 MHz (for temperatures greater than 10 keV).

The SZE-21cm relies on the properties of the ICM; however, information regarding this

can be obtained from standard SZE measurments at high frequencies (& 200 MHz) or X-ray

measurements (Arnaud et al. 2010). At high frequencies, the SZE of galaxy clusters are

unperturbed by the 21-cm signal and therefore parameters such as optical depth and tem-
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Figure 2.16: Same as Fig 2.15 but for the model without dark matter but with extreme

heating (Colafrancesco et al. 2016b).

Figure 2.17: Same as Fig 2.15 but for the model with dark matter for Mmin = 10−3 M�

(Colafrancesco et al. 2016b).

perature can be derived. These parameters of the ICM from these measurements can then

be used in deriving the SZE-21cm. Precise derivation of the optical depth and temperature

is important since the SZE-21cm is sensitive to both parameters.
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Figure 2.18: Same as Fig 2.15 but for the model with dark matter for Mmin = 10−6 M�

(Colafrancesco et al. 2016b).

2.8 Conclusion

We have been able to derive and use a full relativistic approach which can also incorporate

any electron distribution to describe the SZE-21cm. Our results show that accounting for

relativistic effects is mandatory for describing the SZE-21cm, in particular for clusters at

high temperatures and also for cosmic structures (galaxy clusters with radio-halos and radio-

galaxies) in which non-thermal activities are taking place. We have been able to use 21-cm

models that have realistic physical processes. Extreme heating mechanisms as well as the

presence of dark matter annihilation, and the spectral features of the SZE-21cm associated

with each one of them have been highlighted and discussed. This has shown that SZE-21cm

is definitely an effective tool in our arsenal for probing the Universe around the DA and the

EoR together with the potential in setting constraints on the nature of dark matter and its

impact in the early Universe.

The SZE-21cm is a weak signal on the order of µJy, however, with good observational

and theoretical strategies, the measurement is possible with the SKA. A good line of attack

would be to search for the signal in cosmic structures with high temperatures and optical

depth in order to maximize the signal. In addition to that, selecting appropriately the

frequency intervals over which the signal is expected to be high would also optimize the

chance of detection, e.g. within 90 and 120 MHz. We have seen that SKA-1 is good enough

in terms of observational sensitivities to set constraints on the benchmark model at 1000

hrs of integration. For the other models, only SKA-2 will be able to differentiate between

the SZE-21cm and the standard SZE, hence constraining extreme conditions and the role of

dark matter during the DA and EoR.

We have also addressed the possible contaminations that SZE-21cm measurements in
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cosmic structures can suffer from. Within the angular scale of the cosmic structure, syn-

chrotron emission from radio sources can contaminate the wanted signal. However these

radio emission signals decrease with luminosity distance as 1/D2
L and the SZE-21cm is red-

shift independent. Therefore searching for SZE-21cm in high redshift objects can alleviate

this problem hence providing cleaner measurements.

Detection of SZE-21cm signal from non-thermal sources is very challenging due the fact

that it is a factor of 100 fainter than the thermal one. However, the different spectral features

can allow, in principle, a detection of this signal and hence an estimate of non-thermal cluster

properties independently of measurements in other spectral bands. We note here that it is

possible to strategize the search of this signal in objects where the non-thermal components

are dominant, such as in the case of radio galaxy lobes. In this case, objects with more

energetic electrons (i.e. with harder radio spectra), large optical depth (for which a good

indication could be a strong radio luminosity) and high redshift are preferable.

The redshift-independent properties of the SZE-21cm would allow the signal to be

searched in a large number of cosmic structures spanning over large cosmological distances.

Statistical studies aimed at maximizing the detection can be performed to detect the 21-cm

background which would allow us to understand the evolution of the cosmos during the DA

down to the EoR and also the role of dark matter and its properties.



Chapter 3

Non-Planckian effects

The Planck spectrum of blackbody (BB) radiation is the spectral energy shape of photons

that are in thermodynamic equilibrium with matter. Such a spectrum is possible if inter-

action between the photons and matter are small enough to avoid substantial absorption

and irreversible atttenuation of electromagnetic radiation (Landau & Lifshitz 1980). The

CMB satisfies this requirement and shows the spectral shape of a Planck distribution when

it decoupled from matter at the recombination epoch (zrec ≈ 1400). This is expected theo-

reticallly and has been verified by observations that the spectrum of the CMB is very close

to the shape of a Planck BB distribution (Fixen et al. 1996).

For non-ionized media, such as e.g. neutral gases , the dispersion relation for electro-

magnetic radiation is given by

ω = ck, (3.1)

where k is the wavenumber and ω is the angular frequency of the photon. On the other

hand for media that are ionized, such as e.g. an ionized plasma, the dispersion relation is

modified and is given by (Triger & Khomkin 2010)

ω2 = c2k2 + Ω2
p (3.2)

where Ωp = 2πνp is the angular plasma frequency associated with a plasma frequency given

by, νp =
∑N
i=1 nie

2/(4πmiε), where ε is the permittivity of free space and the sum is carried

out over all charged species. This disperson relation takes into account the coupling between

the electromagnetic radiation and the collective behaviour of the plasma (Kittel 1986).

Consequently, there are no photons with frequencies less than νp in the final distribution of

photons. The absence of photons at frequencies less than the plasma frequency, xp (which

is written in terms of dimensionless frequency xp = hνp/kBT0) will alter the spectral shape

of the final equilibrium radiation spectrum. Therefore, for systems with the presence of

ionized matter, the equilibrium spectrum will no longer be the usual Planckian spectrum,

but a modified one in which the non-zero value of the plasma frequency is taken into account.

65
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A general form of photon distribution subjected to NP effects related to the non-zero

value of the plasma frequency has been derived for astrophysical systems such as the CMB

(Triger & Khomkin 2010) and the atmosphere of γ-ray bursts (Medvedev 1999) . The

relation, νp =
∑N
i=1 nie

2/(4πmiε), implies that the number density of charged particles

in the plasma determines the plasma frequency. Consequently, NP effects associated with

plasma frequency will also depend on this number density.

The dependence of the plasma frequency on the number density of charged particles

implies that cosmological recombination history can be used, in principle, to calculate the

plasma frequency. Based on that, a simple calculation of the plasma frequency at the re-

combination epoch using a number density of 300 electrons/cm3 yields a value ≈ 0.2 MHz

(Triger & Khomkin 2010). The implies that for frequencies < 0.2 MHz, the intensity of

the CMB would be zero. However, additional effects can impact this value and make it

larger. The production of electrons and positrons via dark matter annihilation will intro-

duce perturbations on the ionization fraction (Chen & Kamionkowski 2004, Dvorkin et al.

2013, Galli et al. 2009, Huetsi et al. 2009, Padmanabhan & Finkbeiner 2005). It has been

demonstrated that the ionization fraction can increase by an order of magnitude leading to

a plasma frequency of ≈ 1.5 MHz (Dvorkin et al. 2013). Another source of perturbation

of the ionization fraction would be from hadronic collisions (Dermer 1986), which will also

produce electrons and positrons and hence increase the number density of charged parti-

cles, consequently increasing the plasma frequency. The variation of the plasma frequency

with redshift is given by νp ∝ (1 + z)3/2, which means that plasma effects create spectral

distortions to the CMB well before the recombination epoch.

Other than spectral modifications related to the non-zero value of the plasma frequency,

the CMB spectrum is also vulnerable to other sources of distortions such as the µ and y

type distortions that are related to the frequency dependent chemical potential and Compton

scattering respectively (Chluba & Sunyaev 2012). In addition that, small residual spectral

distortion other than from the µ and y-type can be produced in the early Universe, such as

Silk damping of small scale perturbations, the cooling of photons by electrons and baryons,

the decay and annihilation of relic particles, primordial magnetic fields and evaporating

primordial black holes (see e.g. Chluba & Sunyaev 2012, Chluba 2014). The plasma fre-

quency would be another possible source of spectral distortions that could modify the CMB

spectrum.

Spectral distortions associated to the µ and y type is expected at low redshift (z < 106)

due to the fact that the three mechanisms responsible for thermalization in the early Universe

become inefficient (see e.g. Procopio & Burigana 2009, Chluba 2014, Tashiro 2014). These

three mechanisms are Compton scattering, double Compton scattering and bremsstrahlung.

These physical processes were very efficient at redshift z > 106 and any other sources of
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spectral distortions (see e.g. Chluba 2014) were erased by them. However for distortions

created by the plasma frequency, the time scale of these processes exceeds the plasma time-

scale, hence still allowing the possibility for the CMB spectrum to be vulnerable to plasma

effects. The time scales, tcomp = 1.23×1029/(1+z)4 s, tdouble = 1.34×1040[x3/(ex−1)]/(1+

z)5 s and tfree = 8.59 × 1026[x3/(ex − 1)]/(1 + z)2.5 s (Tashiro 2014), are larger than the

plasma time scale defined by tp = 1/νp (Padmanabhan 2000). As an example, at redshift

z = 1100 and for a plasma frequency of 0.2 MHz which corresponds to xp = 2.5× 10−9, one

obtains the values of tcomp = 3.2×1016 s, tdouble = 1.5×107 s, tfree = 72 s and tp = 6.4×10−6

s; at z = 106 and a plasma frequency of 3 GHz corresponding to xp = 6.64×10−8, we obtain

tcomp = 1.2 × 105 s, tdouble = 5.9 × 10−5 s, tfree = 3.8 × 10−5 s and tp = 3.4 × 10−10 s.

Therefore these processes will eliminate effects due to other sources of spectral distortions

and the eventual CMB spectrum will be a blackbody radiation spectrum modified by the

plasma frequency. Measuring this spectrum will allow one to derive results regarding the

plasma frequency.

3.1 Observables

So far, only theoretical arguments (Triger & Khomkin 2010) have been put forward regarding

spectral modifications associated with plasma effects on the CMB and no observational

strategies have been proposed. Taking into considerations that the time scale of plasma

effects is smaller than thermalization processes as well as the possiblility that the plasma

frequency could be altered by some possible mechanisms occuring around the recombination

epoch, it is desirable to devise some possible observational strategies. Therefore we look at

the various observables that allow one to constrain possible NP effects on the CMB resulting

from a non-zero plasma frequency around the recombination epoch.

In this section we look at the different CMB related observables through which NP

effects can manifest. The first observable is CMB measurements, and to derive spectral

constraints on NP effects, we use current observational data of the CMB, both at low and

high frequencies, to investigate whether the uncertainties in the data can allow the possibility

of a modified CMB spectrum with non-zero plasma frequency. The CMB spectrum is very

well constrained at high frequencies by observations carried out by COBE-FIRAS instrument

(Fixen et al. 1996), however, at low frequencies (Howell & Shakeshaft 1967, Sironi et al.

1990, 1991), below 1 GHz, uncertainties in measurements are large and this where the NP

effects are expected.

Since NP effects will manifest themselves on the CMB, they will also be present in any

observables that involve the CMB, such as the SZE and the cosmological 21-cm background.

Therefore we also study the imprint of NP effects on the spectra of these observables.



CHAPTER 3. NON-PLANCKIAN EFFECTS 68

3.2 Spectral modification of the CMB spectrum

The Planck spectrum is the spectral distribution of a photon gas that is in thermal equi-

librium with neutral matter at temperature T . This is given, in terms of a-dimensional

frequency x, in eq 1.23. In the case of the CMB, T = T0 = 2.725 ± 0.001 K. On the other

hand, for matter that is ionized such as e.g. a plasma, with electron plasma frequency of

xp, photons are suppressed at frequencies below xp and therefore the equilibrium distribu-

tion will be altered. Taking into consideration this effect, a generalized Planck distribution

(Triger & Khomkin 2010) can be written as follows

Ĩ0(x;xp) = 2
(kBT )3

(hc)2

x2

ex − 1

√
x2 − x2

p H(x− xp), (3.3)

where H(x− xp) is the Heaviside step function (with values 1 for x > xp and 0 for x ≤ xp).

The step-function H(x − xp) takes into account the fact that photons are suppressed at

frequencies below xp. The first noticeable feature of this distribution in comparison to the

usual Planck one, is the existence of a cut-off frequency at the x = xp and below which, the

intensity is zero. Large constrasts between the two spectra can be seen for xp > 1, however,

appreciable differences can still be seen for xp < 1, in particular at low frequencies around

x = xp.

In order to carry out the investigation of NP effects associated with plasma frequency,

we use CMB measurements carried out by COBE-FIRAS at high frequencies and those

obtained in the range ≈ 1.3-50 GHz by other experiments. We fit the CMB data with the

generalized Planck spectrum of eq 3.3 and minimize the χ2 with respect to the parameter

xp. The CMB temperature is kept fixed to the measured value of COBE-FIRAS although

it can be treated as a free parameter. This is reasonable given that the measurements of

the CMB spectrum from which the temperature is derived in the COBE-FIRAS mission

has been performed at high frequencies, where NP effects can be neglected. We found that

the χ2 = 1 for a value of xp = 0 which implies that the standard Planck spectrum is the

best fit curve to the data. However, measurement uncertainties at low frequencies allow

us to set upper limits on the value of xp which are xp . (3.63, 6.10, 7.36) × 10−3 for 1σ,

2σ and 3σ confidence level (c.l.), corresponding to frequencies of 206, 346 and 418 MHz,

respectively. The results obtained are shown in Fig 3.1 where the NP effect is shown over

the entire frequency interval, indicating that at 3σ, it is not possible to distinguish between

the standard Planck spectrum and the generalized one.

We show in Fig 3.2, zooming around the low frequencies, ν < 1 GHz, the CMB spectrum

together with measurement uncertainties and also the modified CMB spectrum for upper-

limits on xp at 1σ, 2σ and 3σ. The result shows that the intensity of the CMB goes to zero

below ≈ 206 MHz, i.e. for the value of xp = 3.63× 10−3 at 1σ c.l., or below ≈ 418 MHz, i.e.

for the value of xp = 7.36×10−3 at 3σ c.l. Another noticeable feature that one actually sees
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Figure 3.1: The non-Planckian spectral distribution of the CMB for different values

of the plasma frequency νp as derived from the fit to the data. The experimental

data are shown for both low (Howell & Shakeshaft 1967, Sironi et al. 1990, 1991)

and high frequencies (Fixen et al. 1996). Other data in the range ∼ 1.3 − 50

GHz obtained from ground-based, ballon-borne and from the COBE-DR experiment (see

http://asd.gsfc.nasa.gov/archive/arcade/cmb spectrum.html) are not shown here but they

lie almost exactly along the curves of the CMB spectrum shown in the plot.
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Figure 3.2: The non-Planckian effects due to a finite value of the plasma frequency νp on

the CMB spectrum at ν < 1 GHz for different values of the upper limit on νp as obtained

from the fit to the CMB spectrum data (Colafrancesco et al. 2015a). Experimental data

are from Howell & Shakeshaft 1967, Sironi et al. 1990, 1991.
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in the modified CMB spectrum is that for increasing values of xp, the spectrum decreases

and the corresponding frequency at which the maximum occurs increases (see Fig 3.3). The

amplitude of the CMB intensity variation due to NP effects is of order of ≈ mJy/arcmin2 at

low-ν while it is of order of ≈ 0.1 mJy/arcmin2 at high-ν. Therefore, the best frequency re-

gion to look experimentally for these effects is at low radio frequencies, ν < 1000 GHz. Our

result presented here demonstrate that low frequency CMB measurements (< 1000 GHz)

would allow constraints to be put on spectral modifications of the CMB spectrum associated

with plasma effects around the recombination epoch. For future upcoming low-frequency

instruments such as SKA (Dewdney et al. 2012) and HERA (Backer et al. 2010), low

frequency measurements could be a good observational strategy to search for NP effects on

the CMB spectrum.

Although we have demonstrated that CMB measurements, in particular at low frequen-

cies, can be used as a direct probe of the possible NP effects, there are many considerations

that have to be taken into account. Measurements at low frequencies are very challenging

and susceptible to various experimental and systematic biases. In addition to that, galactic

radio foregrounds (de Oliveira-Costa et al. 2008) would pose a nuisance to the measurement

and therefore have to be subtracted carefully. Although the SKA will have very good ob-

servational capacities, the foreground contamination and the component seperation of the

such a diffiuse signal will still be present. In regard to these issues, it is wise to explore

other observables that are dependent on the CMB to explore the existence of NP effects.

Therefore the next observable that we explore is the SZE. This observable is directly related

to the CMB, which consequently means that any NP distortions present in the CMB will

also be reflected in the SZE.

3.3 The SZENP

In order to calculate the SZE for the case of a NP distribution, we use eq 3.3 as the input

spectrum in eq 1.22. This is very similar to the calculation of the SZE-21cm in Chapter 2,

whereby the input spectrum was that of a modified CMB due to processes involved around

the EoR. Therefore to compute the SZE for a modified CMB due to NP effects associated

with a non-zero plasma frequency, we insert the generalized Planck distribution (eq. 3.3) as

the input radiation into eq. 1.22, which is done as follows:

∆Ĩ(x;xp) = τ

[ ∫
dsP1(s)Ĩ0(xe−s;xp)− Ĩ0(x;xp)

]
. (3.4)

where Ĩ0(x;xp) is generalized Planck distribution (eq. 3.3).

We compute the modified SZE effect (SZENP ) for the case of a thermal electron gas of

optical depth τ = 10−3 for different temperatures: 5, 10, 15 ,20 keV. We show the result in

Fig 3.4 for the different upper limit values of xp derived from the CMB spectrum.
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Figure 3.3: The effect of a non-Planckian distribution on the CMB spectrum in frequency

range 143 GHz to 191 GHz is shown for different values of the plasma frequency xp (Co-

lafrancesco et al. 2015a). Experimental data are from COBE-FIRAS (Fixen et al. 1996).
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The first spectral feature that is noticed in the SZENP is a peak that occurs exactly at

the plasma frequency xp and is independent of cluster temperature. This provides us with

a direct observational probe to measure the plasma effect imprinted on the CMB around

recombination by making use of local galaxy clusters. The SZENP opens a door that give

us access to the physics of the early Universe using the local one.

The amplitude of the peak increases with increasing temperature and density of the

electron gas. The spectral shape of the thermal SZENP is very peculiar and it is peaked

in a quite narrow frequency range of the order of ∆ν ≈ 20 MHz for kT = 5 keV and

∆ν ≈ 50 MHz for kT = 20 keV, reflecting the relativistic effects of the electron distribution

in the photon re-distribution function P1(s). At frequencies larger than 1 GHz, the SZENP

becomes close to the standard Planckian one, i.e. the standard SZE calculated using the

usual CMB Planck spectrum.

In addition to a thermal gas, we also look at the spectral shape of the SZENP when the

electrons involved in the IC scattering process are of non-thermal origins, which typically

happens in galaxy clusters hosting radio-halos and radio galaxies (see e.g. Ensslin & Kaiser

2000, Colafrancesco et al. 2003). Hence, for completeness, we compute the SZENP for the

case of a single power law distribution of electrons with spectral index α = 2.5 for different

minimum momentum p1 and the result is shown in Fig 3.5. In the non-thermal case, the

peak of the SZENP decreases with increasing value of p1 because the high-energy electrons

tend to scatter the photons to high frequencies. However, just like in the thermal case, the

peak occurs at corresponding value of xp, independent of the electron distribution parameter

p1. The width of the SZENP spectrum (see Fig.3.5) is larger due to the enhanced impact of

the relativistic effects of the high-E electron population and its shape reflects therefore the

different nature of the scattering plasma. Possible observations of the SZENP can therefore

address the question of the intrinsic nature of the plasma in the target cosmic structure

(e.g., galaxy clusters vs. radio galaxies).

In order to address the issue of detectability, we calculate the SZENP spectrum integrated

over an area of 5 arcmin radius using parameters of the Bullet cluster, kTe = 15 keV. Fig 3.6

shows the difference between the SZE spectrum ∆Ĩ and ∆I compared to the sensitivity of

the SKA1 and SKA50% for 1000 hrs of observations and to the eVLA sensitivity for 12 hrs

of observation. We found that the values for the plasma frequency νp = 206, 346 and 418

MHz at 1, 2 and 3 σ C.I, derived from the analysis of the CMB spectrum, can be detected

with both SKA-LOW and SKA-MID band1 (350-1050 MHz).

3.4 Modification to the 21-cm background

The frequency interval over which NP effects are expected coincides with the one over which

the cosmological 21-cm background (see e.g. Pritchard & Loeb 2012) is expected. In regard
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Figure 3.4: The thermal SZ effect spectral distortions computed for galaxy clusters with

increasing plasma temperature (see various panels) for a standard Planck distribution (solid

line) and including the effect of non-Planckian distribution of photons for the values of the

plasma frequency xp derived at 1σ, 2σ and 3σ level. The cluster plasma optical depth is

fixed to the value τ = 0.001 (Colafrancesco et al. 2015a).
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Figure 3.5: The non-thermal SZE spectral distortion for the case of non-thermal plasmas

with increasing electron minimum momentum p1 (see various panels) for a usual Planck

distribution (solid line) of photons and the effect of non-Planckian distribution at 1σ, 2σ

and 3σ level computed in the case of a single power law for different minimum momentum

p1. We use here an optical depth of τ = 0.001 (Colafrancesco et al. 2015a).
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Figure 3.6: The difference between the SZENP and the Planck SZE for a Bullet-like cluster

with temperature of 15 keV (see Markevitch et al. 2002) subtending an angle of 5′ to

its R500. An optical depth of τ = 0.001 is assumed. The SKA1 (red) and SKA-50%

(orange) sensitivity is calculated for 1000 hrs integration while the eVLA sensitivity (green)

is calculated for 12 hrs integration (Colafrancesco et al. 2015a).

to this, it becomes desirable to analyze the NP effect related to the plasma frequency on

the spectral shape of the cosmological 21-cm background. To make this investigation, we

perform our spectral analysis in terms of brightness temperature δT (ν), which is given by

eq 2.1.

For a Planck spectrum, the 21-cm emission appears as a perturbation on the CMB which

therefore we can write as

δT (ν) = T21(ν)− T0(ν), (3.5)

where T21 is the brightness temperature associated with the 21-cm background and T0 is

that of the CMB. A generalization of the previous relation which takes into account NP

effects is given by

δT̃ (ν; νp) = T̃21(ν; νp)− T̃0(ν; νp). (3.6)

The plasma frequency xp is fixed and therefore two frequency regimes are distinguished

i) ν < νp: in this case T̃0 = 0, and therefore δT̃ = T̃21. If we assume that T̃21 ≈ T21, i.e.

the 21-cm background is not sensibly changed by the NP spectral distortion, as is expected

because the main physical processes affecting the 21-cm background depend on the global

temperature of the system which is not heavily affected by a distortion at small frequencies,

then we can write:

δT̃ = δT + T0, (3.7)



CHAPTER 3. NON-PLANCKIAN EFFECTS 77

so the frequency change of the brightness temperature is the same as in the Planckian case,

but its amplitude is shifted by a value T0 (that in the RJ region has a constant value equal

to the CMB temperature);

ii) ν > νp: in this case we can write the NP modified spectrum in the RJ region as:

Ĩ0 ∝ x
√
x2 − x2

p = x2

√
1−

x2
p

x2
, (3.8)

and the corresponding brightness temperature is:

T̃0 = T0

√
1−

x2
p

x2
. (3.9)

By assuming again T̃21 ≈ T21, the change in the temperature brightness is given by:

δT̃ = δT + T0 − T̃0 = δT + T0

(
1−

√
1−

x2
p

x2

)
. (3.10)

In Fig 3.7, we show the spectrum of δT̃ for different values of the plasma frequency νp

from 0.2 to 100 MHz by assuming the standard benchmark model (see Cooray 2006). For

ν < νp, the change of δT̃ is the same as δT obtained using the usual Planck spectrum, but

its amplitude is increased by the value T0; for ν > νp the quantity δT̃ decreases very rapidly

with increasing frequency, and for ν � νp it then becomes equal to the standard value δT

for the usual Planck spectrum. Fig 3.7 shows that even for small NP effects, νp < 206 MHz,

the spectral feature of the cosmological 21-cm background is altered. However, the physical

processes taking place during these epochs will remain unaltered in the presence of NP effects

on the CMB, but these effects have to be taken into account when recovering the history of

the Universe during the DA and the EoR. Surprisingly, the 21-cm brightness temperature is

increased for a CMB background modified by NP effects compared to the unmodified one.

Consequently, this makes it relatively easier to detect the 21-cm emission, which allows the

possibility to set constaints on both NP effects and on processes occuring during the EoR and

the DA. Available limits from the PAPER experiment (Parsons et al. 2014) in the 100–200

MHz provide limits only on the average temperature brightness of 〈Tb〉 < 275 and 291 mK

for values of the ionization fraction xi = 0.5 and xi = 0.75 of the ionization power spectra

respectively, which cannot be unfortunately directly compared to the predictions for the

quantity δT used here. The next generation SKA and HERA low-frequency interferometers

will have the possibility to improve the knowledge of the brightness temperature contrast

δT down to levels of ∼ 3 mK (∼ 0.3 mK) with SKA-1 (SKA-2) at 3σ c.l. in about 1000 hrs

at 150 MHz (Kopmans 2010) and possibly cover a wider frequency range, thus allowing us

to set much stronger limits on νp from the spectrum of δT (ν).
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Figure 3.7: The change in brigthness temperature δT̃ for νp = 0 (solid line), νp = 0.2

(dotted), 1 (dashed), 10 (dot-dashed), 20 (three dots-dashed) and 100 MHz (long dashed)

as a function of the frequency (Colafrancesco et al. 2015a).

3.5 Discussions and conclusions

We have been able to perform a deep analysis of the influence of NP effects associated with

a non-zero plasma frequency on cosmological radio backgrounds and we have been able show

the possible strategies that can be followed in order to put observational constraints on the

effect. Upper limits of νp were derived from current available CMB measurements and the

spectral impact of a non-zero plasma frequency has been demonstrated on three different

observables: the CMB spectrum, the SZE and the cosmological 21-cm background.

The presence of NP effects will result in an intensity cut-off on the CMB spectrum at

ν < 400 MHz. Using current CMB data from COBE-FIRAS together with lower frequency

measurements, we have been able to set upper limits on the plasma frequency νp = 206, 346

and 418 MHz at 1, 2, 3 σ c.l., respectively. The difference between the pure Planck spectrum

and the one modified by NP effects at low frequencies is of the order of mJy/arcmin2 and

this difference becomes less prominent at higher frequencies (ν ≈ 150 GHz) where it is of

the order of 0.1 mJy/arcmin2. These results indicate that the experimental route to probe

NP effects in the early universe is to observe the cosmological radio background at very low

frequencies.

In addition to that, we have also computed the spectrum of the SZE modified by NP

effects, which demonstrates that in the presence such effects, the spectrum of the SZE

is altered and shows interesting features at low frequencies < 1 GHz. The spectrum of
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SZENP has a peak that occurs at the plasma frequency which is independent of cluster

parameters such as temperature, optical depth, minimum momentum p1 and spectral index

α. Therefore the SZENP provides us with a direct and unambigous way of determining the

plasma frequency by using large scale structures of the local Universe, which opens a new

window for the exploration of plasma effects in the early universe. We have shown that the

SKA-LOW and SKA-MID have the potential to observe such a signal integrating over the

central regions (≈ 5′ radius) of high-temperature (kBT ∼ 15 keV) clusters.

Observing the SZENP also benefits from its differential nature thus being less affected by

the large impact of large-scale foreground emission that is one of the main systematic biases

that limits the study of the intensity spectrum of the cosmological background radiation.

The SZENP has also the appealing property that we can study the presence of NP effects

in the early universe by looking at very local cosmic structures for which the structural

parameters are known with high accuracy. Finally, we mention that studies of NP effects

through the SZENP can be done by intensive observations of only one galaxy cluster, or with

a stacked spectrum of a few well known clusters, thus avoiding the need for large statistical

studies of source populations or wide area surveys.

Finally, we have shown that future low-frequency observations of the cosmological 21-cm

brightness temperature spectral change have the possibility to set global constraints on NP

effects by constraining the spectral variations of δT̃ induced by the plasma frequency value

at the epoch of recombination.

We discussed, in this context, that even moderate limits on the average brightness tem-

perature of the 21-cm background obtained with SKA precursors, like e.g. the PAPER

experiment, are able to start limiting the possible values of νp in its high-frequency domain

(of order of 100 to a few hundreds MHz).

In conclusion, we have demonstrated that the study of the low-frequency cosmological

radio background has a strong and unique potential for probing the physics of the early

universe. This demonstration aligns such the idea of proving NP effects with previous

studies of the photon decay effects in the early universe and on the study of the DA and

EoR through the SZE-21cm, and indicates that this area of investigation of the fundamental

physics of the universe will receive a boost with the next generation high-sensitivity radio

telescopes like the SKA.



Chapter 4

Relativistic SZE polarization in

cosmic structures

Great experimental opportunities are foreseen with upcoming instruments such as the SKA

(Carilli 2008, Dewney 2012), which will be in operation in the frequency range 0.03 GHz up

to 40 GHz and whose sensitivities are around nK level, the ground-based ALMA experiment

(Carilli 2008), the space-borne Millimetron experiment (Rudnitskiy 2015), operating in the

millimeter frequency range of 84-720 GHz and 100-1900 GHz respectively and the CORE++

space-borne survey experiment 1; the combination of these experiments will provide a mul-

tifrequency spectral approach for detecting the SZE polarization signal. Given the coming

experimental opportunities, it has become relevant to study the SZE polarization in depth,

analyzing the possible astrophysical and cosmological aspects and their exploitation in the

light of the achievable experimental sensitivities.

From a theoretical perspective, the calculation of SZE polarization in most previous

works (Sazonov & Sunyaev 1999, Lavaux et al. 2004, Hall & Challinor 2014, Yasini &

Pierpaoli 2016, Liu et al. 2016) have relied heavily on non-relativistic approximations and

therefore, the results are only valid for thermal electrons of low temperature. Since obser-

vations of clusters have revealed that the temperature ICM of these structures can be up to

≈ 14 keV on average (up to 20 keV in some cluster regions) (Gomez et al. 2004, Reichert

et al 2011, Wik et al. 2014), the results of these previous works are incomplete and give an

incorrect spectral feature of the polarization spectrum of the SZE.

Furthermore, the detection of non-thermal emission (like, e.g., radio-halos) from galaxy

clusters (Ferrari et al. 2008, Feretti 2012) and lobes of radio-galaxies also motivates for a full

relativistic study of polarization in IC scattering processes. It is widely accepted that this

non-thermal emission originates from a relativistic population of electrons spiraling around

1http://www.core-mission.org/documents/CoreProposal Final.pdf
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magnetic field lines (Govoni & Ferretti 2004). These non-thermal electrons also contribute

to the Comptonization of the CMB and hence an SZE polarization is also expected from

them. Interestingly, one wants to know whether the SZE polarization is coming from the

thermal or the non-thermal electrons and evaluate the non-thermal effect in comparison with

the thermal one. The SZE spectrum in intensity produced by non-thermal electrons (shown

in chapter 1) has been shown to extend from low to high frequencies (see e.g. Colafrancesco

et al 2003, 2013), ≈ 1000 GHz. Evidently, it can be anticipated that the spectrum of

the polarized component will also extend over a wide range of frequencies. Hence, this

consequently presents an opportunity to search for the SZE polarization at frequencies 100

GHz up to 1000 GHz.

Matters become more complicated given that, occasionally, the non-thermal emission

regions of galaxy clusters coincide with the X-ray emitting counterparts (Colafrancesco et

al. 2003, 2011, Marchegiani & Colafrancesco 2015). In addition, it is also possible to have

two or more thermal electron distributions, with different optical depth and temperature,

co-existing together. In chapter 1, we have demonstrated how to compute the SZE intensity

spectrum for a general combination of various electron populations. Application of this

technique to the Bullet cluster have shown that the fit to the SZE data over a wide frequency

range is better described by a combination of electron populations (Colafrancesco et al.

2011).

Although there are previous derivations of the SZE in a full relativistic way, they have

been done for thermal electron distributions only and the solutions are presented as an

expansion in terms of the temperature parameter, θe = kTe/mec
2 << 1 (Itoh et al. 1998,

Challinor et al. 2000). Therefore, the restriction to thermal electrons is somehow incomplete

and cannot be applied to general electron populations. A more complete treatment is needed

which can describe any general electron population that is found in cosmic systems, and in

particular the non-thermal ones that are present in the atmosphere of galaxy clusters and

lobes/jets of radio-galaxies.

As mentioned previously, other multipoles of the CMB can induce polarization in addition

to the quadrupole. By restricting to the non-relativistic limit, it has been shown that,

for moving clusters (non-zero peculiar velocities), kinematic effects will induce dipole and

octupole contributions to the SZE polarization (Yasini & Pierpaoli 2016). For non-moving

clusters, the result shows that only the quadrupole contributes, which is expected when

relativistic effects are absent. On the other hand, it has been shown that relativistic effects

can be induce polarization in the SZE from higher order CMB multipoles (e.g. octupole)

even if the cosmic structure is not moving with respect to the CMB frame (Challinor et al.

2000). However, the results are again restricted only to thermal electrons and are written

in expanding terms of θe.
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In this present work, we demonstrate explicitly, for non-moving structures, that when

relativistic effects are accounted for, the SZE polarization shows contributions from the

higher order multipoles of the CMB and that our results are applicable to any distribution

of electrons, whether thermal or non-thermal.

To describe relativistic polarization in SZE, several authors (Itoh et al. 1998, Hansen

& Lilje 1999, Challinor et al. 2000, Hall & Challinor 2014) have approached the problem

using the Stokes parameters directly, by specifying a set of basis for each photon direction.

Since SZE involves Comptonization, this method becomes very tedious and cumbersome

(Portsmouth & Bertschinger 2004a). In this present work, we have opted for a simpler

approach (Portsmouth & Bertschinger 2004a, 2004b) to describe polarization in SZE. It is

actually based on an extension of a covariant formalism (Nozawa & Kohyama 2009, Nozawa

et al. 2009) for computing the SZE by solving the relativistic Boltzmann equation, but this

time written to accommodate polarization. This method allows the Stokes parameters to

transformed easily between frames of references and also allow the result to be written in a

more elegant way (similar to Ensslin & Kaiser 2000, Colafrancesco et a. 2003, Nozawa & Ko-

hyama 2009, Nozawa et al. 2009) and valid for any distribution of electrons. The anisotropy

of the CMB is easily taken into account, thus allowing us to compute the contribution of

the multpoles of the CMB in SZE polarization. Additionally, no extensive comparison with

sensitivities of current or future instruments has been made so far while this is a relevant

issue for the observability of this effect.

In this present work we compute the SZE polarization by solving the relativistic polarized

Boltzmann equation (Portsmouth & Bertschinger 2004a, 2004b, Emritte et al. 2016) in the

Thomson’s limit. We extract the Stokes parameters and compute their spectrum for the

quadrupole and the octupole of the CMB in the case of both thermal and non-thermal

population of electrons. This approach also allows us to compute the polarization signal

arising from a general combination of various electron populations. In order to assess the

detectability of the signal, we also compute the expected signals for a real cluster like the

Bullet cluster and compare it with the sensitivity of various instruments operating in different

frequency bands.

4.1 The polarized Boltzmann equation

From now onwards we use the unit convention c = 1 and h = 1 except where otherwise

specified.

Without accounting for polarization, the Compton scattering process of a photon and an

electron, γ(~p1)+e−(~q1) −→ γ(~p2)+e−(~q2), can be described in a full relativistic way through

the covariant Boltzmann equation. In a given lab-frame, V µL = [1, 0, 0, 0], this equation is

given (Itoh et al. 1998, Nozawa et al. 2009) by:
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df(~p1)

dt
= 2

∫
d3q1d

3q2d
3p2W

[
f(~p2)ge(~q2)− f(~p1)ge(~q1)

]
, (4.1)

where the functions f and ge are general functions describing the momentum distribution

of the photons and electrons respectively, and W is written as

W =
3σT
32π

m2
e

X

E1E2p1p2
δ4
(
pµ1 + qµ1 − p

µ
2 − q

µ
2

)
(4.2)

X = m2
e

(
1
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− 1

k1

)2

+ 2me

(
1

k1
− 1

k2

)
+

1

2

(
k1

k2
+
k2

k1

)
, (4.3)

and k1 and k2 are defined as follows:

k1 = −pµ1V2µ (4.4)

k2 = −pµ2V2µ . (4.5)

The quantity V2µ is the four-velocity of the electron after collision. In the rest-frame VL,

~p1 and ~p2 represent the momentum of the photon before and after collision and ~q1 and

~q2 represent the momentum of the electron before and after collision, respectively. The

4-vectors in the delta function are represented as pµ1 =
(
p1, ~p1

)
, qµ1 =

(
E1, ~q1

)
, pµ2 =

(
p2, ~p2

)
and qµ2 =

(
E2, ~q2

)
. The quantity ki represents the magnitude of the momentum of the

photon with 4-momentum pµi in the rest frame of V2 where i = 1, 2. The derivative d/dt is

d

dt
=

1

p1
pα1 ∂α . (4.6)

For convenient reasons, the Boltzmann equation are often broken into two terms, i.e. ”scat-

tering in” and ”scattering out” of the momentum element d3p1, which can be written as

follows:

df

dt
=

(
df

dt

)
in

−
(
df

dt

)
out

. (4.7)

The first term in this equation describes the rate of scattering of photons with momentum

~p2 off electrons with momentum ~q2 into d3p1 around ~p1, while the second term represents

the rate of scattering of photons with momentum ~p1 off electrons ~q1 into d3p2 around ~p2.

We should also point out that this equation neglects stimulated emission as well as Pauli

blocking but is still valid outside the Thomson’s regime where quantum effects are not

negligible. Eq 4.1 neglects Fermi blocking and stimulated emission which is justified since

the temperatures of the plasmas in cosmic structures are much less than the electron mass

energy, kTe << mec
2.

For polarization description in Compton scattering process, one uses the relativistic

polarized Boltzmann equation which is a tensor generalization of eq. 4.1, where the cross-

section and the distribution functions become tensor quantities (see Portsmouth & Bertschinger
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2004a, 2004b). Neglecting Fermi blocking and stimulated emission, the equation (see Portsmouth

& Bertschinger 2004a, 2004b) be written as follows:

p1
df

dt

µν

(pm1 , V
m
L ) = m2

eσT

∫
d3q1

E1

d3q2

E2

d3p2

p2
δ4
(
pµ1 + qµ1 − p

µ
2 − q

µ
2

)
×Pµναβ (pm1 , V

m
L )

[
Φαβρσ (pm1 , p

m
2 , V

m
2 )fρσ(pm2 , V

m
L )ge(~q2)

−φαβ(pm1 , V
m
L )gγδΦ

γδ
ρ,σ(pm2 , p

m
1 , V

m
1 )fρσ(pm1 , V

m
L )ge(~q1)

]
,

(4.8)

where gγδ = (−1, 1, 1, 1) is the metric tensor. Eq 4.8 is valid even outside the Thomson

regime. In the lab frame, V µL = [1, 0, 0, 0], an observer sees the velocity of the electrons

to be V m1 (before collision) and V m2 (after collision). The polarization tensor for photons

with momentum pµ1 for this observer is denoted by fµν(pm1 , V
m
L ). The quantities V m1 and

V m2 denote the 4-velocity of the electron before and after collision whose momentum is qm1

and qm2 , respectively, whereas pm1 and pm2 represent that of the photon before and after the

interaction.

We clarify that writing the distribution function fµν(pm, V m) does not mean that f is a

function of V m, but is only a notation used to denote that f is the distribution function of

the observer traveling with velocity V m; it also does not mean that we are evaluating fµν

in his rest-frame. If one wants to obtain the distribution function in the rest-frame of the

observer, one has to Lorentz-transform to the V frame in order to do so. So the function

fµν(pm, V m) −→ fµν(p0, ~p, V m) −→ fµν(~p, V m) can be also written as fµν(~p, V m). Also

for the scalar function the following relationship f(pµ) −→ f(p0, ~p) −→ f(~p) holds. The

reason why we can write it in terms of only 3-vectors is because p0 = |p| for the photon

but it is also true for massive particles because p0 =
√
p2 +m2. Eq. 4.8 can also be used

to calculate the SZE polarization resulting from kinematic effects as well as from multiple

scatterings effects. These two cases will be treated specifically in a forthcoming work.

The cross-section here becomes a tensor, as we mentioned previously, and is written as

follows

Φµνmn
[
pm1 , p

m
2 , V

m
2

]
−→ is the scattering cross-section for (pm2 , V

m
2 ) → pm1

Φµνmn
[
pm2 , p

m
1 , V

m
1

]
−→ is the scattering cross-section for (pm1 , V

m
1 ) → pm2 .

(4.9)

The term Φµνmn is an analogue of X for the polarized case and is constructed out of pro-

jection tensors (Portsmouth & Bertschinger 2004a, 2004b). The tensor φµν represents the

normalized polarization tensor written as fµν/f . Finally we have Pµναβ which is constructed

out of the projection tensors as follows:

Pµναβ (pm, V m) = Pµα (pm, V m)P νβ (pm, V m) . (4.10)
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These terms Pµναβ (pm1 , V
m
L ) are projection tensors and project the terms in the right hand

side of the polarized Boltzmann equation into the plane perpendicular to the photon with

momentum pm1 and 4-velocity of the observer V mL . In the rest frame of the observer V mL the

projection tensor has only spatial components (see an illustrative example in Portsmouth &

Bertschinger 2004a, 2004b).

The cross-section term is written in terms of the projection tensors in the Thomson

approximation as

Φµνγδ (pm2 , p
m
1 , V

m
1 ) =

3

8π
Pµναβ (pm2 , V

m
1 )Pαβγδ (pm1 , V

m
1 ) . (4.11)

The δ4(pµ1 + qµ1 − p
µ
2 − q

µ
2 ) can be integrated out by using the following relation:

d3q1

E1
= d4qµ1 δ

[1
2

(qµ1 q1µ +m2
e)
]
. (4.12)

We also write the electron distribution function as ge(~q) = nefe(~q) where ne is the electron

number density. We can also use the definition of optical depth, dτe = neσTdt, to get rid of

the Thomson total cross-section.

The conservation of four-momentum equation is written as

qm1 = qm2 + pm2 − pm1 . (4.13)

This acts as a constraint on qm1 , and the delta function in eq. 4.12 can be simplified to

δ
[1
2

(qm1 q1m +m2
e)
]

= δ
[
me

(
k1 − (k2 +R12)

)]
. (4.14)

We have also introduced a new variable, R12 = pµ1p2µ/me, which will be very useful for our

following calculations.

Using all these simplifications we can now cast the Boltzmann polarized equation as

follows

p1
∂

∂τ
fµν(pm1 , V

m
L ) = m2

e

∫
d3q2

E2

d3p2

p2
δ
[
me

(
k1 − (k2 +R12)

)]
×Pµναβ (pm1 , V

m
L )

[
Φαβρσ (pm1 , p

m
2 , V

m
2 )fρσ(pm2 , V

m
L )fe(~q2)

−φαβ(pm1 , V
m
L )gγδΦ

γδ
ρσ(pm2 , p

m
1 , V

m
1 )fρσ(pm1 , V

m
L )fe(~q1)

]
.

(4.15)

4.1.1 The distribution function in the Thomson approximation

Starting from eq. 4.15, we will derive the Stokes parameters of the scattered CMB radiation

by an electron gas. In order to reach this goal, we will rely on three important assump-

tions which are completely valid to describe the interaction between photons and electrons

producing the SZE. These assumptions are:
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1) Single Scattering approximation: this means that we assume that each photon is

scattered once by the electrons. This is valid in the optically thin regime for the study of

galaxy clusters (e.g τ ≈ 0.01) and radio-galaxies (e.g τ ≈ 1× 10−4).

2) Thomson cross-section: this assumption means that energy transfers and quantum

effects are neglected, and in this way the scattering in the electron rest-frame can easily

be described by Thomson scattering, which in turn simplifies the cross-section term. This

is valid because the CMB photons are mostly found in the low frequency range of the

electromagnetic spectrum, meaning that they are less energetic than the electrons residing

in the cosmic structures we are interested in. This approximation is valid for electrons with

Lorentz factor less than γ ∼ 107 (see, e.g. Fargion & Salis 1998, Birkinshaw 1999).

3) Unpolarized incident CMB: what we mean by this assumption is that before scattering

the CMB is completely unpolarized; even though this is not completely true, for most of our

calculations it is a quite reasonable simplification because the degree of polarization of the

CMB before collision is very small (Hu 2003, Kovac et al. 2002, Page et al. 2007).

Under these assumptions, the polarized Boltzman equation can be simplified extensively.

In addition to these assumptions we also make a small change in our notation, mainly

q2 −→ qe and also V2 −→ Ve.

For single scattering between CMB photons and electrons, the equation becomes

p1
∂

∂τ
fµν(pm1 , V

m
L ) = me

∫
d3qe

γe

d3p2

p2
δ
[
me

(
k1 − (k2 +R12)

)]
×Pµναβ (pm1 , V

m
L )

[
Φαβρσ (pm1 , p

m
2 , V

m
e )fρσ(pm2 , V

m
L )fe(~qe)

−φαβ(pm1 , V
m
L )gγδΦ

γδ
ρσ(pm2 , p

m
1 , V

m
1 )fρσ(pm1 , V

m
L )fe(~q1)

]
.

(4.16)

Now we make use of our second assumption, i.e. the Thomson limit,

γeα2 << 1

α2 =
p2

me
. (4.17)

We also use the cross-section that we introduced in the previous section written as

Φµνγδ (pmk , p
m
i , V

m
i ) =

3

8π
Pµναβ (pmk , V

m
i )Pαβγδ (pmi , V

m
i ) . (4.18)

Note that the projection tensors which project the distribution function perpendicular to

V mi and pmi (where k, i = 1, 2) are included in this cross-section term. Then we define the
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following useful variables

n12 =
k1

p1
= γe

(
1− ~βe · n̂1

)
n22 =

k2

p2
= γe

(
1− ~βe · n̂2

)
r12 =

pµ1p1µ

p1p2
= meR12 = n̂1 · n̂2 − 1

αj =
pj
me

(4.19)

where n̂1 and n̂2 are unit vectors in the direction of ~p1 and ~p2 and ~βe is the electron velocity.

The delta function δ
[
me

(
k1 − (k2 +R12)

)]
can be further simplified by using the Thomson

limit as follows:

me

[
k1 − (k2 +R12)

]
= −m2

en22

[
α2 − α1

n12

n22
(1− α2

r12

n12
)
]

= −m2
en22

[
α2 − α1

n12

n22
(1−O(α2γe)]

= −m2
en22

[
α2 − α1

n12

n22

]
. (4.20)

In order to arrive at the previous approximation we made use of the following inequality:

α2|
r12

n12
| ≤ 2α2

γe(1− βe)
= 2α2(1 + βe)γe ≤ 4γeα2 = O(γeα2) . (4.21)

In the Thomson limit, and in the rest frame of the electrons, the magnitude of the momentum

of the photon before and after collision is the same, hence k1 ≈ k2, and therefore the variable

p2 is restricted by the following condition:

p2 =
n12

n22
p1 . (4.22)

Another simplification can be made by noticing that

γ1 = γe

[
1 +O(α2γe)

]
. (4.23)

This can be achieved by putting m = 0 in the equation qm1 = qm2 + pm2 − pm1 . Using

α1 =
(
n22/n12

)
α2 we obtain

γ1 = γe + α2

[
1− n22

n12

]
. (4.24)

Then one can show that:

γ1 = γe

(
1 +

α2

γe

(
1− n22

n12

))
≤

≤ γe

(
1 +

α2

γe

∣∣∣∣1− n22

n12

∣∣∣∣) =

= γe

[
1 + 2βeα2

(
1 + βe

)
γe

]
≤

≤ γe

[
1 + 4α2γe

]
=

= γe

[
1 +O(α2γe)

]
. (4.25)
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To arrive at the result we use the following inequalities:

∣∣∣∣α2

(
1− n22

n12

)∣∣∣∣ ≤ ∣∣∣∣α2

[
1− 1 + βe

1− βe

]∣∣∣∣ =

= α2

∣∣∣∣ −2βe

1− βe

∣∣∣∣ =

= 2βeα2

(
1 + βe

)
γ2

e ≤

≤ 4α2γ
2
e . (4.26)

From eq. 4.25, the energy of the electrons is unaltered during the Thomson scattering, hence

also the distribution function

fe(~q1) ≈ fe(~qe) . (4.27)

Using these simplifications we arrive at the following expression:

∂

∂τ
fµν(pm1 , V

m
L ) =

3

8π

∫
d3qe

γe

∫
dΩ2

n12

n2
22

fe(~qe)

×
[
Jµα(pm1 , V

m
e , V mL )Jνβ (pm1 , V

m
e , V mL )fαβ(pm2 , V

m
e )

−φµν(pm1 , V
m
L )Pαβ(pm2 , V

m
1 )fαβ(pm1 , V

m
1 )

]
, (4.28)

with

Jµα(pm1 , V
m
e , V mL ) = Pµβ (pm1 , V

m
L )P βα (pm1 , V

m
e ) . (4.29)

Now we make use of the third assumption which is that the CMB is unpolarized prior to the

scattering by the electrons. With this assumption one can make the following replacements

fµν(pm, V m) =
1

2
f(pm)Pµν(pm, V m) (4.30)

φµν(pm, V m) =
1

2
Pµν(pm, V m) . (4.31)

Finally eq. 4.28 can be written as follows:

∂

∂τ
fµν(pm1 , V

m
L ) =

3

16π

∫
d3qe

γe

∫
dΩ2

n12

n2
22

fe(~qe)

×

[[
Pµν(pm1 , V

m
L )− LµLν(pm1 , p

m
2 , V

m
e )

]
f(pm2 )

−Pµν(pm1 , V
m
L )

[
1 + η12

(
1 +

1

2
η12

)]
f(pm1 )

]
, (4.32)
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where we define

Lµ(pm1 , p
m
2 , V

m
e ) =

1

n22

[
pµ2
p2
−
(

1 + γe
r12

n12

)
pµ1
p1

+
r12

n12
V µe

]
η12 =

r12

n12n22

LµLµ = −2η12

(
1 +

1

2
η12

)
. (4.33)

In these last equations we recall that pµ1 or pµ2 is the momentum in the frame V µL =
[
1, 0, 0, 0

]
and from this position we can write that pk = −pµkVLµ. Since we are using c = 1 and h = 1,

then p1 and ν1 can be interchanged at will.

4.1.2 Stokes parameters

In this section, we demonstrate here how the Stokes parameters are derived from the tensor

fµν(pm1 , V
m
L ). We first derive the first Stokes parameter I which is given by:

∂

∂τ
I(~p1) = p3

1

d

dτ
fµµ (~p1) =

3p3
1

8π

∫
d3qe

γe

∫
dΩ2

n12

n2
22

fe(~qe)

×
[
1 + η12

(
1 +

η12

2

)][
f(~p2)− f(~p1)

]
,

(4.34)

where we have used the notation f(pµ) = f(~p) as discussed above, and the fact that I = p3f

which is the relation between the distribution function of photons to the intensity. In order

to determine the other Stokes parameters, namely Q and U , the choice of basis matters here,

and depending on how the basis is chosen, will determine the simplicity of the calculation

(Portsmouth & Bertschinger 2004a, 2004b).

In our case we choose a system of basis perpendicular to the observed radiation by fixing

our Z-axis to be along the direction of the observed radiation. In this way the tensor fµν(~p1)

can be written as follows:

fµν(~p1) =
1

2p3
1


0 0 0 0

0 I(~p1) +Q(~p1) U(~p1) + iV (~p1) 0

0 U(~p1)− iV (~p1) I(~p1)−Q(~p1) 0

0 0 0 0

 . (4.35)

We then extract the Stokes parameters from this matrix as follows:

d

dτ
Q(ν1) = ν3

1

d

dτ

[
f11(ν1)− f22(ν1)

]
(4.36)

d

dτ
U(ν1) = ν3

1

d

dτ

[
f12(ν1) + f21(ν1)

]
. (4.37)
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In this coordinate system, the following variables take the form:

pµ1 = p1

(
1, 0, 0, 1

)
(4.38)

r12 = cos θ2 − 1 (4.39)

n12 = γe

[
1− βe cos θe

]
(4.40)

n22 = γe

[
1− βe

[
cos θ2 cos θe + sin θ2 sin θe cos(φ2 − φe)

]]
, (4.41)

and also

V µe = γe

[
1, βe cosφe sin θe, βe sinφe sin θe, βe cos θe

]
(4.42)

pµ2 = p2

[
1, cosφ2 sin θ2, sinφ2 sin θ2, cos θ2

]
. (4.43)

The Stokes parameters Q and U are then written as follows:

∂Q

∂τ
(ν1) = − 3

16π

∫
d3qe

γe

∫
dΩ2

I(ν2, n̂2)

n4
12n22

fe(~qe)

×
[

cos 2φ2 sin2 θ2n
2
12 + 2 cos(φ2 + φe) sin θ2 sin θen12r12γeβe

+ cos 2φe sin2 θer
2
12β

2
eγ

2
e

]
(4.44)

∂U

∂τ
(ν1) = − 3

16π

∫
d3qe

γe

∫
dΩ2

I(ν2, n̂2)

n4
12n22

fe(~qe)

×
[

sin 2φ2 sin2 θ2n
2
12 + 2 sin(φ2 + φe) sin θ2 sin θen12r12γeβe

+ sin 2φe sin2 θer
2
12β

2
eγ

2
e

]
. (4.45)

These 5-dimensional integrals can be evaluated by breaking them into five 1-dimensional

integrals. We will compute them first for the intensity, and this will demonstrate the consis-

tency of our results with the usual approach of computing the unpolarized SZE spectrum.

4.1.3 The Stokes parameter I

We derive here the Stokes parameter, I, for an isotropic CMB to show the consistency of

our approach.

We define the variables, µe = cos θe, µ2 = cos θ2 and φ0 = φ2 − φe. With these new

variables eq. 4.34 takes the following form:

∂f

∂τ
(ν1) =

3

32π2

∫ 1

0

dβe

∫ 1

−1

dµe

∫ 2π

0

dφe

∫ 1

−1

dµ2

∫ 2π

0

dφ0
n12 fe(βe)

γen2
22

×
[
1 + η12

(
1 +

η12

2

)][
f(ν2)− f(ν1)

]
. (4.46)

In order to evaluate the integrals above, we assume that in the lab frame, the electron plasma

appears isotropic and hence the distribution function of the electrons becomes independent

of direction and can be written in terms of βe as follows

1

4π
fe(βe)dβe = fe(~qe)q2

edqe , (4.47)
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and use the fact that for a generic function Ψ(φe, φ2 − φe),∫ 2π

0

∫ 2π

0

Ψ(φe, φ2 − φe) dφ2 dφe =

∫ 2π

0

∫ 2π

0

Ψ(φe, φ0) dφ0 dφe . (4.48)

In order to further simplify eq. 4.46 we also introduce another variable:

χ0 = cosφ0 , (4.49)

and if we consider a general function F (cosφ0, sinφ0) which has trigonometric functions as

its argument, then we can write∫ 2π

0

F (cosφ0, sinφ0)dφ0 =

∫ 1

−1

[
F (cosφ0 → χ0, sinφ0 →

√
1− χ2

0)

+F (cosφ0 → χ0, sinφ0 → −
√

1− χ2
0)

]
dχ0√
1− χ2

0

.

(4.50)

By using the simplifications of eq. 4.48 and 4.50 and integrating eq 4.46 over φe we obtain:

∂f

∂τ
(ν1) =

3

16π

∫ 1

0

dβe

∫ 1

−1

dµe

∫ 1

−1

dµ2

∫ 1

−1

dχ0 fe(βe)

×2n2
12n

2
22 + 2n12n22(µ2 − 1) + (µ2 − 1)

2

n12n4
22γe

√
1− χ2

0

[
f(ν2)− f(ν1)

]
.

(4.51)

At this stage we can perform a check that the Stokes parameter, I, derived from the polarized

covariant Boltzmannn equation gives the same result as that of the SZE intensity ( eq 1.22)

by making a transformation into the electron frame (Nozawa & Kohyama 2009) using the

following variables:

µ0 =
µ2 − 1

n12n22
+ 1

µ =
γen12 − 1

n12γeβe
(4.52)

µ′ =
γen22 − 1

n22γeβe
.

By doing that, we obtain an equation in terms of the new variables of the following form:

∂f

∂τ
(ν1) =

3

16π

∫
dβe

∫
dµ

∫
dµ′
∫
dµ0

[
f
(
ν2

)
− f

(
ν1

)]
fe(βe)

× 1 + µ2
0

γ4
e (1− βeµ)3

√
1− µ2

0 − µ2 − µ′ 2 + 2µ0µµ′
, (4.53)

with

µ0,min = µµ′ −
√

(1− µ2)(1− µ′ 2) (4.54)

µ0,max = µµ′ +
√

(1− µ2)(1− µ′ 2).
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The integration over µ0 can be done easily and then introducing a last variable, which is

related to the frequency shift

es =
1− βeµ

′

1− βeµ
(4.55)

s = ln(ν2/ν1).

Eq. 4.53 can be casted into the usual form as in eq 1.22 as follows

∂f

∂τ
(ν1) =

∫ ∞
−∞

P1(s)
[
f(esν1)− f(ν1)

]
ds , (4.56)

where

P1(s) =

∫ 1

sinh
|s|
2

fe(pe) P (s, pe) dpe (4.57)

P (s, βe) =
3 es

32

∫ µmax

µmin

(3− µ2)β2
e − (1− 3µ2)

[
1− es(1− µβe)

]
β3

eγ
4
e (1− βeµ)2

dµ .

The electron distribution function has been written in terms of the electron momentum pe

and the function P (s, pe) is just the function P (s, βe) with the βe and γe substituted in

terms of pe. This is given by

γe =
√

1 + p2
e

βe =
pe√

1 + p2
e

. (4.58)

This demonstrates, comfortably, that our derivation is consistent with the usual computation

of the SZE in intensity (same as in eq. 1.22). Now, we can derive the Stokes parameters for

the case where the CMB is anisotropic.

4.1.4 Anisotropic incident CMB radiation

The rate of change of the distribution function can be broken down into two terms

∂f

∂τ
(ν1, ẑ) =

∂f

∂τ

∣∣∣∣
in

(ν1, ẑ)−
∂f

∂τ

∣∣∣∣
out

(ν1, ẑ) . (4.59)

The rate of ”scattering out” can easily be integrated (right-hand side of eq. 4.51 given the

fact that P1(s) is normalized to one) and the result is:

∂f

∂τ
(ν1, ẑ) =

3

16π

∫ 1

0

dβe

∫ 1

−1

dµe

∫ 1

−1

dµ2

∫ 1

−1

dχ0 fe(βe)

×2n2
12n

2
22 + 2n12n22(µ2 − 1) + (µ2 − 1)

2

n12n4
22γe

√
1− χ2

0

f(ν1, ẑ)

=

∫ ∞
−∞

P1(s)f(ν1, ẑ) ds = 1 (4.60)
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To determine the ”scattering in” we expand the distribution function in a spherical harmonic

series as follows:

f(ν1, n̂) =

∞∑
l=0

l∑
m=−l

fl,m(ν)Yl,m(cos θ, φ) (4.61)

Yl,m(cos θ, φ) =

√
2l + 1

4π

(l − 1)!

(l +m)!
Pml (cos θ)eimφ . (4.62)

Inserting the expanded distribution function into eq. 4.51 and for the ”scattering in” term

we obtain:

∂f

∂τ
(ν1, ẑ)

∣∣∣∣
in

=
3

32π2

∞∑
l=0

l∑
m=−l

∫
dβedµedφe

∫
dµ2dφ0

n12fe(βe)

n2
22γe

×
[
1 + η12

(
1 +

η12

2

)]
fl,m(ν2)

√
2l + 1

4π

× (l −m)!

(l +m)!
Pml (µ2)eim(φ0+φe)

=
3

16π

∞∑
l=0

√
2l + 1

4π

∫
dβedµe

∫
dµ2dχ0fe(βe)

×2n2
12n

2
22 + 2n12n22(µ2 + 1) + (µ2 + 1)

2

n12n4
22γe

√
1− χ2

0

fl,0(ν2)P 0
l (µ2) .

(4.63)

The integration over φe eliminates all the terms in m 6= 0. One can adopt an approach

similar to the previous one by using the variables introduced in eq. 4.53, but we will use

another set of variables introduced as follows:

s = ln

(
n12

n22

)
t = ln

(
n12n22

)
(4.64)

µ0 =
µ2 − 1

n12n22
+ 1 .

Substituting these variables into eq. 4.63 and subtracting the ”scattering out” term (see eq.

4.60), we obtain a set of equations similar to eq. 4.56

∂f

∂τ
(ν1, ẑ) =

l=∞∑
l=0

∫ ∞
−∞

Pl,0(s)fl,0(esν1) ds− f(ν1, ẑ)

Pl,0(s) =

∫ 1

sinh
|s|
2

fe(pe) Pl,0(s, pe) dpe (4.65)

Pl,0(s, βe) = − 3

64π

√
2l + 1

π

e
3s
2

γ3
eβ

2
e

∫ t0

−t0
e

t
2 dt

∫ A+B

A−B

1 + µ2
0√

B2 −
(
A− µ0

)2
×P 0

l

(
et(µ0 − 1) + 1

)
dµ0 ,
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where

t0 = |s| − ln

(
1 + βe

1− βe

)
A =

e−t

γ2
eβ

2
e

[
1 + γ2

e e
t − 2γee

t
2 cosh

s

2

]
(4.66)

B = 2
e

t
2

γ2
eβ

2
e

√[
cosh

(
s− t

2

)
− γe

][
cosh

(
s+ t

2

)
− γe

]
.

The function Pl,0(s, pe) is just the function Pl,0(s, βe) with the βe substituted in terms of pe

as well as γe. One can see here that to each value of l one can associate a scattering kernel or

a redistribution function Pl,0(s). The scattering kernel associated with the monopole term

is actually related to the scattering kernel for the isotropic case as follows:

P0,0(s) =
1√
4π
P1(s) . (4.67)

The scattering kernels for each l value conserve the property written as follows:

Pl,0(−s) = e−3sPl,0(s) . (4.68)

The change in the intensity for each value of l can then be computed as follows:

∂I

∂τ
(x, ẑ) =

∞∑
l=0

∫ ∞
−∞

Pl,0(s)Il,0(e−sx)ds− I(x, ẑ)

=

∞∑
l=0

[ ∫ ∞
−∞

Pl,0(s)Il,0(e−sx)ds−
√

2l + 1

4π
Il,0(x)

]
, (4.69)

where

I(x, θ, φ) =

∞∑
l=0

l∑
m=−l

Il,m(x)Yl,m(θ, φ)

= 2(kT0)3

[
x3

ex − 1
+

exx4

(ex − 1)2

∞∑
l=2

l∑
m=−l

al,mYl,m(θ, φ)

]
. (4.70)

In eq. 4.69 we have used the relation

P 0
l (1) = 1. (4.71)

We point out here that the function Pl,0(s) is the same function obtained in a previous work

(Chluba & Dai 2014). Note that eq. 4.69 describes the unpolarized SZE for the case of

an anisotropic incident CMB and therefore implies that higher order multipoles can also

contribute to the SZE intensity spectral distortion.If one adopts the variables in eq 4.55

instead of 4.65, the function Pl,0(s, pe) shows the same form as derived in the previous work

when integrated over µ0.

Fig. 4.1 shows the scattering kernel, Pl,m(s), for a thermal electron distribution for

different temperatures. Our result is the same as the one obtained in Chluba & Dai 2014,
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Figure 4.1: The redistribution function Pl,m(s), for l = 0, 1, 2, 3 and m = 0, 2, for thermal

electrons at different temperatures as indicated (Emritte et al. 2016).

meaning that our result is consistent with them. In Fig. 4.2 we show the function Pl,m(s) for

a non-thermal electron distribution for different minimum momentum p1 following a power

law with index α = 2.5.
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Figure 4.2: The redistribution function Pl,m(s), for l = 0, 1, 2, 3 and m = 0, 2, for a sin-

gle power law distribution of electrons with spectral index α = 2.5 for different minimum

momenta p1 (Emritte et al. 2016).
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Figure 4.3: The spectrum of the Stokes parameter Q for different temperatures of a thermal

electron distribution arising from the quadrupole (left) and octupole (right) of the CMB,

assumed here to be a2,2 = 1.3 × 10−5 and a3,2 = 8.7 × 10−6, respectively. The red curve

represents the non-relativistic Q. The optical depth value is τ = 0.001 (Emritte et al. 2016).

4.1.5 CMB multipoles and polarization of the SZE

Now we proceed to derive the Stokes parameters Q and U for an anisotropic incident radi-

ation. The Stokes parameter Q can be written as follows:

1

ν3
1

∂Q

∂τ
(ν1) = − 3

64π2

∞∑
l=0

l∑
m=−l

∫
dβedµedφe

fe(βe)

γe

∫
dµ2dφ0

n12n4
22

×
[

cos(2φ0 + 2φe) sin2(θ2)n2
12 + 2 cos(φ0 + 2φe)

× sin(θ2) sin(θe)n12r12γeβe + cos(2φe) sin2(θe)r2
12β

2
eγ

2
e

]
×

√
2l + 1

4π

(l −m)!

(l +m)!
eim(φ0+φe)Pml (µ2)fl,m

(
n12

n22
ν1

)
. (4.72)

Upon integration with respect to φe, only the terms with m = ±2 survive and we make use

of the following property of the associated Legendre Polynomials

P−ml (µ) = (−1)m
(l −m)!

(l +m)!
Pml (µ) , (4.73)

and we also impose the following condition on the photon redistribution function

f∗l,m(ν) = (−1)mfl,−m(ν) . (4.74)

The Stokes parameter Q then is written as follows:
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Figure 4.4: The spectrum of the Stokes parameter Q for the quadrupole (left) and octupole

(right) in the case of a single power law distribution of electrons of spectral index α = 2.5.

The quadrupole of the CMB is assumed here to be a2,2 = 1.3×10−5 and that of the octupole

to be a3,2 = 8.7× 10−6. The optical depth value is τ = 1× 10−5 (Emritte et al. 2016).

Figure 4.5: The spectrum of the Stokes parameter Q for the superposition of the CMB

quadrupole and octupole for a thermal electron distribution (dashed curves in left panel) and

for a non-thermal electron distribution (dashed curves in right panel). Optical depth values

of 10−3 and 10−5 have been used for the thermal and non-thermal distributions, respectively.

The spectral index of the power-law distribution is α = 2.5. The straight curves represent

the spectrum of Q where the contribution of only the quadrupole is considered (Emritte et

al. 2016).
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1

ν3
1

∂Q

∂τ
(ν1) = − 3

16π

∞∑
l=2

√
2l + 1

4π

(l − 2)!

(l + 2)!

∫
dβedµe

fe(βe)

γe

×
∫

dµ2dχ0

n12n4
22

√
1− χ2

0

[
(1− µ2

2)n2
12 + 2n12βeγe(µ2 − 1)

×χ0

√
(1− µ2

2)(1− µ2
e) + β2

eγ
2
e (µ2 − 1)2(1− µ2

e)(2χ2
0 − 1)

]
×Re

[
fl,2

(
n12

n22
ν1

)]
P 2
l (µ2) . (4.75)

Similarly the Stokes parameter U can be written like the previous one

1

ν3
1

∂U

∂τ
(ν1) =

3

16π

∞∑
l=2

√
2l + 1

4π

(l − 2)!

(l + 2)!

∫
dβedµe

fe(βe)

γe

∫
dµ2dχ0

n12n4
22

√
1− χ2

0

×
[
(1− µ2

2)n2
12 + 2n12βeγe(µ2 − 1)χ0

√
(1− µ2

2)(1− µ2
e)

+β2
eγ

2
e (µ2 − 1)2(1− µ2

e)(2χ2
0 − 1)

]
×Im

[
fl,2

(
n12

n22
ν1

)]
P 2
l (µ2) . (4.76)

These expressions can actually be simplified further into the following equations similar to

those used to compute the intensity I

1

ν3
1

∂Q

∂τ
(ν1) =

∞∑
l=0

∫ ∞
−∞

Pl,2(s)Re
[
fl,2(esν1)

]
ds

1

ν3
1

∂U

∂τ
(ν1) = −

∞∑
l=0

∫ ∞
−∞

Pl,2(s)Im
[
fl,2(esν1)

]
ds , (4.77)

where

Pl,2(s) =

∫ ∞
sinh(|s|/2)

Pl,2(s, pe)fe(pe)dpe

Pl,2(s, βe) = − 3

32π

√
2l + 1

4π

(l − 2)!

(l + 2)!

e
3
2 s

γ2
eβ

2
e

∫ t0

−t0
e

t
2 dt

×
∫ A+B

A−B
dµ0

P 2
l (1 + et(µ0 − 1))√
B2 − (A− µ0)2

µ0 − 1

2 + et(µ0 − 1)

×
[
(µ0 − 1)

[
2− et

(
γ2

e (µ0 − 1)(1 + β2
e )− 2

)]
−8γe(µ0 − 1)et/2 cosh(

s

2
)− 4 cosh s

]
. (4.78)

The variables A,B and t are given in eq.4.66. The redistribution kernel Pl,2(s) follows a

similar kind of relationship to that of Pl,0(s) written as follows

Pl,2(−s) = e−3sPl,2(s) . (4.79)
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Figure 4.6: The spectrum of the Stokes parameter Q for the CMB quadrupole and octupole

computed for different spectral index α of a single power-law distribution of electrons. The

values of the minimum momentum and optical depth here are p1 = 1 and 1× 10−5, respec-

tively (Emritte et al. 2016).

This allows us to cast the Stokes parameters Q and U in terms of the incident radiation

intensity, and for completeness we also include the intensity Stokes parameter I

∂I

∂τ
(x, ẑ) =

∞∑
l=0

[ ∫ ∞
−∞

Pl,0(s)Il,0(e−sx)ds−
√

2l + 1

4π
Il,0(x)

]
,

∂Q

∂τ
(x) =

∞∑
l=2

∫ ∞
−∞

Pl,2(s)Re
[
Il,2(e−sx)

]
ds,

∂U

∂τ
(x) = −

∞∑
l=2

∫ ∞
−∞

Pl,2(s)Im
[
Il,2(e−sx)

]
ds . (4.80)

Furthermore, eq. 4.80 can also be extended to accommodate a combination of electron

populations. This can be done by writing the functions Pl,m(s) as follows

Pl,m(s) =

∫
fe(pe) Pl,m(s, pe) dpe

=

∫
CAfe,A(pe)Pl,m(s, pe) + CBfe,B(pe)Pl,m(s, pe) dpe

= CAPl,m,A(s) + CBPl,m,B(s), (4.81)

where Pl,m,A(s) and Pl,m,B(s) are the Pl,m(s) function for each electron distribution. The
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Figure 4.7: The spectrum of the Stokes parameter Q for the quadrupole (left panel) and

the octupole (right panel) computed for a combination of two thermal electron populations

(blue curves): a thermal electron population with kT = 10 keV and τ = 0.001 (red curves)

and another thermal electron population with kT = 20 keV and τ = 0.002 (green curves)

(Emritte et al. 2016).

Stokes parameters can then be written as follows,

∂I

∂τ
(x, ẑ) =

τA
τ

∞∑
l=0

∫ ∞
−∞

Pl,0,A(s)Il,0(e−sx)ds+

+
τB
τ

∞∑
l=0

∫ ∞
−∞

Pl,0,B(s)Il,0(e−sx)ds−
√

2l + 1

4π
I(x, ẑ),

∂Q

∂τ
(x, ẑ) =

τA
τ

∞∑
l=0

∫ ∞
−∞

Pl,2,A(s)Re[Il,2(e−sx)]ds+

+
τB
τ

∞∑
l=0

∫ ∞
−∞

Pl,2,B(s)Re[Il,2(e−sx)]ds

∂U

∂τ
(x, ẑ) = −τA

τ

∞∑
l=0

∫ ∞
−∞

Pl,2,A(s)Im[Il,2(e−sx)]ds+

−τB
τ

∞∑
l=0

∫ ∞
−∞

Pl,2,B(s)Im[Il,2(e−sx)]ds,

(4.82)

where τA and τB are the optical depths of electron population A and B, respectively.

4.2 Polarization spectra

The Stokes parameters, Q and U , can be computed using eq. 4.80 up to any value of l;

however in this present work, we restrict ourselves up to l = 3, which corresponds to the
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Figure 4.8: The spectrum of the Stokes parameter Q for the CMB quadrupole (left panel) and

octupole (right panel) for a thermal electron distribution with kT = 10 keV and τ = 10−3

(red curves) combined with a power-law electron distribution, spectral index α = 2.5 and

τ = 10−4, for different minimum momentum p1. The blue curves represent the resulting

spectrum for different values of p1 (Emritte et al. 2016).

octupole. In Fig 4.3, for different temperatures of a thermal plasma hosted by a cosmic

structure, we show the Stokes parameters Q arising from the quadrupole (Left) and oc-

tupole (Right). It is noticed that, even though our calculation is restricted to non-moving

clusters, the octupole is non-zero, and with higher temperature, its contribution becomes

more apparent. This result can be contrasted with a previous work (Yasini & Pierpaoli 2016)

whereby kinematic effects were the source of the octupole contribution to polarization. Fur-

thermore, the spectral features of the quadrupole and the octupole are distinct. Relativistic

effects become more pronounced for hot clusters while for low electron temperatures, kT < 1

keV, the relativistic spectrum and the non-relativistic one become nearly identical in the

case of the CMB quadrupole. This shows the consistency our derivation.

The peak of the relativistic Q spectrum (see Fig 4.3) for the quadrupole occurs roughly

around the same frequency as that of the non-relativistic one, ≈ 216 GHz, but slightly

deviating towards higher frequencies as the temperature increases, reaching 230 GHz for 20

keV. Additionally, the peak value of the spectrum is slightly lowered as the temperature

is increased, and the difference between a cluster at 20 keV and a cluster at 1 keV being

≈ 0.05 µJy/arcmin2 at 216 GHz for an optical depth of τ = 0.001.

The Q spectrum amplitude of the octupole is smaller in comparison to the quadrupole

component, but increases with temperature. A maximum value of 0.01 µJy occurs at 204

GHz for kTe = 20 keV. A notable spectral feature of the Q spectrum for the octupole is the
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existence of a cross-over frequency which is ≈ 340 GHz in the thermal case for kT = 1 keV

and increases with electron temperature; for a temperature of 20 keV it is found at ≈ 396

GHz. This cross-over frequency implies a change in the polarization state, e.g. changing

from vertically polarized to horizontally polarized. In Fig 4.9 (top panel), we demonstrate

the variation of the cross-over frequency ν0 as a function of the temperature of a thermal gas.

The cross-over frequency varies with the temperature as ν0 = [335 + 2.84(kT/keV )] GHz,

hence this relationship provides, in principle, a way to measure the electron temperature.

However, sufficient frequency accuracy would be needed to locate the cross-over frequency

and also other polarized components that can act as biases need to be accounted for properly

and subtracted.

The CMB octupole term contributes to the total polarization spectrum like a perturba-

tion of the main contribution that is given by the CMB quadrupole term. As an illustration

of this point, we show in Fig. 4.5 (left panel) the spectrum of the total Stokes parameter

Q from the superposition of the CMB quadrupole and octupole for a thermal electron dis-

tribution. The presence of the CMB octupole-induced contribution makes the peak of the

total Q spectrum higher at the frequency of the maximum of the CMB quadrupole-induced

spectrum, reaching values of 0.182 µJy instead of 0.172 µJy for kTe = 20 keV. At frequencies

higher than ≈ 371 GHz, the total Q spectrum becomes lower in amplitude w.r.t. the case

of the CMB quadrupole-induced contribution due to the negative amplitude of the CMB

octupole-induced term in this frequency range.Therefore, the contribution of the CMB oc-

tupole term is small but not negligible, and one could consider using the cross-over frequency

of the CMB octupole term to measure the cluster electron temperature.

X-ray observations in conjunction with polarized radio measurements can be used to

separate the CMB quadrupole and octupole from each other. This can be done by extract-

ing temperature through X-ray observations which can be used to fit the CMB octupole

polarization spectrum and therefore, disentangle its contribution from the CMB quadrupole

in the total polarization spectrum (see Fig. 4.5). Knowledge of the temperature would

allow the cross-over frequency to be found and measuring at that frequency would reveal

the quadrupole-induced SZE. Once the CMB quadrupole-induced term is derived, it can be

subtracted from the total Q spectrum thus disentangling the CMB octupole-induced term.

Furthermore, we also compute the Q spectrum of the quadrupole and octupole for the

case of non-thermal electrons. In Fig 4.4, we display the spectra for different values of

the minimum momentum p1 for the case of a single power law electron distribution with

spectral index, α = 2.5, which is representative of the observed spectra in radio-halos and

radio-galaxies. Because of the lower optical depth of the non-thermal plasma, the amplitude

of the spectrum is smaller than in the thermal case, and is sensitive to the value of p1. As

expected, the non-thermal Q spectrum extends to much higher frequencies depending on



CHAPTER 4. RELATIVISTIC SZE POLARIZATION IN COSMIC STRUCTURES 104

Figure 4.9: The variation of the cross-over frequency ν0 as a function of the electron tem-

perature (top panel) for the case of a thermal distribution of electrons, of the minimum

normalized momentum p1 for a non-thermal electron distribution (mid panel) for a fixed

α = 2.5, and of the spectral index α (bottom panel) in the case of a power-law electron

distribution for a fixed p1 = 1 (Emritte et al. 2016).
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the value of p1. Fig 4.6 shows how the spectrum changes with different spectral index α. A

softer index leads to higher amplitude of the spectrum.

The non-thermal Q spectrum of the octupole also displays a cross-over frequency which

is sensitive to the minimum momentum p1 and the spectral index α. Fig 4.9 shows the

variation of the cross-over frequency with respect to p1 (mid-panel) for p1 > 2.5 and with α

(bottom-panel). Interestingly, two values of the cross-over frequency are seen for p1 greater

than ≈ 2: in fact, for p1 = 3, the cross-over frequencies are found at 389 GHz and 4000

GHz. We find that the relationship between the cross-over frequency ν0 and p1 is not linear

but quadratic in p1 and it can be described by a polynomial ν0 = (−284.3+93.4p1 +43.4p2
1)

GHz in the range p1 ≈ 2.5 − 5.0. This relation can be used to derive the value of p1 if

the cross-over frequency is measured with sufficient frequency resolution. We also show in

Fig. 4.5 (right panel) the spectrum of the total non-thermal Stokes parameter Q from the

superposition of the CMB quadrupole and the octupole contributions to the total Q.

For fixed momentum p1, the cross-over frequency of the CMB octupole Q spectrum is

sensitive to the spectral index α. A softer index leads to lower values of the cross-over

frequency. Fig 4.9 (bottom panel), we illustrate the relationship between the cross-over

frequency ν0 and the spectral index α. A linear relationship is found which can be reproduced

by the relation ν0 = (1644− 170.3α) GHz. This can be used to measure α if the value of p1

is known. The combination of the dependence of the cross-over frequency on p1 and α can

be used to set constraints on spectral parameters of the non-thermal electron distribution.

Using eq. 4.82, we compute the resulting Q spectrum produced by simultaneous IC

scattering of CMB photons by two electron populations occupying the same region. In

Fig. 4.7, we show the resulting spectrum (blue curve) for a combination of two thermal

electron distributions with different temperature and optical depth. The overall spectrum is

the superposition of the individual spectra. Another interesting scenario is the production

of polarization via IC scattering by a combination of thermal and non-thermal electrons.

We show in Fig. 4.8 the resulting spectrum (blue curve) at high frequencies for a thermal

electron distribution combined with a non-thermal electron population, for different values of

the miminum momentum p1. At low frequencies, the impact of the non-thermal Q spectrum

has less impact on the overall polarization spectrum because of the low number density of

non-thermal electrons compare to thermal ones. Therefore at low frequencies, the thermal

spectrum dominates over the non-thermal one, but at high frequencies (>1000 GHz) the

polarization spectrum becomes entirely non-thermal.

Interestingly, the existence of a non-thermal distribution superposed on a thermal dis-

tribution has an impact on the value of the cross-over frequency ν0 of the CMB octupole

Q spectrum. Without a non-thermal distribution of electrons, we obtain ν0 = 361 GHz for

kT = 10 keV, while in the presence of a non-thermal electron distribution with p1 = 1,
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Figure 4.10: The scattering of primordial CMB anisotropies in intensity for a plasma tem-

perature of 20 KeV showing the spectrum of Quad-I (blue) and Oct-I (red) (Fig from Chluba

& Dai 2014). The quantity x is the dimensionless frequency.

ν0 = 389 GHz, ν0 = 366 GHz with p1 = 2, and ν0 = 361 GHz with p1 = 3. The presence

of a non-thermal distribution of electrons with p1 > 1 produces an additional cross-over

frequency ν0, e.g. at ≈ 1000 GHz for p1 = 2 and ≈ 1191 GHz for p1 = 3. The cross-over

frequency depends on the minimum momentum p1 of the non-thermal distribution, as lower

values of p1 lead to higher cross-over frequencies. As in the case of a thermal electron dis-

tribution, it is possible to measure p1 from the CMB octupole-induced spectrum at high

frequencies and then disentangle the two electron populations in a galaxy cluster involving

non-thermal activities. The SZE intensity spectrum can exhibit features from the dipole,

quadrupole and octupole (eq. 4.69) of the CMB when the anisotropy of the radiation is

taken into account. In the intensity case, the dipole, quadrupole and octupole spectrum

are suppressed by al,0 and the Compton parameter y = τkTe/mec
2. Therefore, it is inter-

esting to compare the quadrupole (Quad-I) and octupole (Oct-I) spectrum of the intensity

case to the ones that we have obtained in the polarization spectrum. The spectrum of

Quad-I exhibits different spectral features compared to the polarization counterpart. The

quadrupole induced spectrum in the polarization case is positive over all frequencies (see

Fig. 4.3) whereas Quad-I is negative before 343 GHz and positive after that, meaning 343

GHz is a cross-over frequency for Quad-I for kTe = 20 keV (see Fig 4.10).The amplitude of

Quad-I is comparable to the octupole in our case, at 190 GHz Quad-I is -0.01 µJy/arcmin2
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and the octupole in our case is also around 0.01 µJy/arcmin2. In the case of Oct-I, it is even

more suppressed compared to our case, for kTe = 20 keV at 190 GHz, the Oct-I is 0.002

µJy/arcmin2 and the octupole in our case is 0.01 µJy/arcmin2. Also the cross-over frequency

in the case of the Oct-I is approximately at the same cross-over frequency as Quad-I , 343

GHz for kTe = 20 keV and not at the same frequency as our octupole’s cross-over frequency,

which for kTe = 20 keV is 230 GHz (see Fig 4.10).

4.2.1 Application to the Bullet cluster

In this section, we investigate the possibility of detecting SZE polarization arising from the

multipoles of the CMB for the case of the Bullet cluster. In order to do so, we calculate the

Stokes parameter Q using the parameters derived from SZE intensity measurements of the

cluster.

SZE measurements for this particular cluster are available over a wide frequency interval:

ACBAR at 150 and 275 GHz (Gomez et al. 2004), with the SEST telescope at 150 GHz

(Andreani et al. 1999), with APEX at 150 GHz (Halverson et al. 2009), the SPT at 150

GHz (Plagge et al. 2010), ATCA at 18 GHz (Malu et al. 2010) and Herschel-SPIRE at

600, 850 and 1200 GHz (Zemcov et al. 2010). The availability of multifrequency data have

allowed multiple components of the SZE intensity signal to be determined (Colafrancesco et

al. 2011, Marchegiani & Colafrancesco 2015). Assuming spherical symmetry and neglecting

the effect of possible variations of the electron temperature along the line of sight (see

Chluba et al. 2013), the SZE signal of the main sub-cluster is better explained using two

electron components, a thermal electron distribution with optical depth τ = 1.1× 10−2 and

temperature kT = 14.2+0.3
−0.2 keV (Wik et al. 2014) that is co-spatial with a non-thermal

electron distribution with optical depth 3×10−4 (Ota & Mitsuda 2004), p1 = 1 and spectral

index α = 3.7 (Marchegiani & Colafrancesco 2015). Using these parameters, we determine

the Q spectrum for this cluster by calculating the polarized flux integrated over a region of

radius 5 arcmin from the center of this cluster.

Fig. 4.11 shows the SZE polarization spectrum (red curve) computed up to 104 GHz

from the superposition of the CMB quadrupole (dashed-blue) and the octupole (dotte-blue)

signals. At 215 GHz, the polarization signal (red) is maximum, ≈ 160 µJy, and the cross-

over frequency of the octupole is found to occur at 383 GHz. At this frequency, there is no

contribution from the quadrupole signal and for frequencies > 383 GHz, the polarization

spectrum (red curve) goes below that of the CMB quadrupole spectrum (dashed-blue).

This demonstrates how the CMB octupole signal contributes constructively to the CMB

quadrupole one below the cross-over frequency (≈ 383 GHz) and for frequencies above this,

contributes destructively. Using eq. 1.49, we can estimate the degree of polarization at some

specific frequencies and we obtained for 10 GHz Π = 1.65×10−6, for 200 GHz Π = 3×10−6
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Figure 4.11: The polarization spectrum (dashed-red) of the Bullet cluster calculated over

5 arcmin2. The dashed- blue curve is the quadrupole spectrum whereas the dotted-blue

is that of the octupole. The green curves represent the non-thermal quadrupole (dashed

green) and octupole (dotted green). The brown, purple and the black curves represent the

sensitivy of SKA, ALMA and Millimetron for 260 and 1000 hrs of integration. The yellow

curve represents the sensitivity of CORE++ (Emritte et al. 2016).
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and for 1000 GHz Π = 7.7× 10−4.

The Q spectrum of the quadrupole (dashed-green) and octupole (dotted-green) pro-

duced by non-thermal electrons are also shown in Fig. 4.11 to highlight the impact of the

non-thermal component. Due to the low value of the minimum momentum, p1 = 1, for

this particular cluster, the non-thermal components are not completely negligible over the

whole spectrum. For frequencies < 2000 GHz, the overall polarization spectrum is mostly

thermal whereas at frequencies & 2000 GHz, the non-thermal component becomes more

apparent. We also show in Fig. 4.11 the sensitivities of SKA (brown), ALMA (purple)

and Millimetron (black) for 260 and 1000 hrs of integration. The sensitivities of SKA and

ALMA are at 1σ while that of Millimetron is at 5σ. It is important to stress that these

polarization sensitivities are estimated by assuming that the Stokes Q sensitivity is a factor

of
√

2 higher than the Stokes I sensitivity. We have also shown the CORE++ sensitivity

(yellow) (http://www.core-mission.org/documents/CoreProposal Final.pdf.).

4.3 Polarized IC scattering at high energies

Polarization arising from IC scattering of CMB photons has been calculated in the previous

sections, taking into account relativistic effect and the spectral features associated with the

polarization has been highlighted in the 100-2000 GHz frequency region. However, given

the relativistic nature of the non-thermal electrons found in radio halos or lobes of radio

galaxies, the non-polarized spectrum of IC scattering of CMB photons has been shown to

extend up to very high frequencies e.g. X-rays and Gamma rays and hence is also expected

for the polarization component.

Even if relativistic effects are taken into consideration, the Comptonization process that

we have studied relies on the Thomson limit, E << γemec
2, where E is the energy of the

outgoing photon. This assumption is justified for gamma rays up to about 100 GeV, given

the fact that the CMB comprises mainly of low energy photons. In fact, in the Thomson

limit of IC scattering of the CMB, the energy of the outgoing photon is related to the electron

energy via E = 8(Ee/GeV )2 keV (e.g. Longair 1994) where Ee is the energy of the electron.

Using this relation and inserting it into the Thomson limit validity relation, one can obtain

γe << 108 which will correspond to maximum photon energy E << 10 TeV. Therefore it is

fully justified to use the Thomson limit for an output photon energy of 100 GeV; this result

is in accordance with some previous results (e.g. Fargion & Salis 1998, Birkinshaw 1999,

Colafrancesco & Marchegiani 2010). Since this is the case for the IC scattering in intensity,

this will also be true for the polarization component as well, which implies that eq. 4.80 or

eq. 4.82 is still applicable to describe polarization due to the anisotropy of the CMB at high

frequencies. Therefore, we extrapolate eq. 4.80 for the case of a single power law electron

distribution (eq. 1.29) up to high frequencies, ≈ 10 GeV.
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Figure 4.12: The polarized IC scattering of the CMB associated with the quadrupole (blue)

and octupole (green) computed in the X-ray (left) and gamma-ray (right) bands for p1 =

1, 10, 100 (bottom to top) and for α = 3.7. In the left panel, we also show the sensitivity of

Chandra for 5000 hrs at 3 sigma as well as ASTROH-HXI for 5000 hrs at 3 sigma. We also

show in the right panel the sensitivity of AstroMeV for 10 years at 3 sigma, FERMI for 10

years at 5 sigma, H.E.S.S. and CTA at 5 sigma for 5000 hrs.

4.4 Polarization spectra at high frequencies

Using eq. 4.80, we calculate the IC polarized flux for the case of a typical galaxy cluster/

lobes of radio-galaxies by assuming a spectral index of α = 3.7 and we consider values of

the momentum p1 = 1, 10, 100 while holding p2 = 108 fixed. Furthermore, we integrate the

flux over a region of radius 5 arcmin assuming a value of τ = 3 × 10−4. We demonstrate

both in X-ray and gamma-rays, our calculated polarized flux in Fig. 4.12 for the case of the

quadrupole (blue) and octupole (green), for a fixed value of α = 3.7 and various values of

p1 = 1, 10, 100 (bottom to top). Higher values of p1 lead to higher fluxes.

We also superimpose on Fig. 4.12 the sensitivities of various high energy instruments

operating in the 1 keV–1 MeV and in the 0.1 MeV–0.1 TeV frequency intervals 2. However

in both the X-ray region (1 keV–1 MeV) and the gamma-ray region (0.1 MeV–0.1 TeV), the

polarization flux are very small and will be undetected by current and planned instruments.

2http://astromev.in2p3.fr/?q=aboutus/pact
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4.5 Discussion and conclusions

By solving the polarized Boltzmann equation, we have been able to demonstrate the pro-

duction of SZE polarization resulting from the anisotropy of the CMB when the photons

of the latter are IC scattered by the electrons found in the atmosphere of cosmic struc-

tures. We derived under the Thomson approximation the Stokes parameters Q and U and

when relativistic effects are accounted for, all the CMB multipoles are involved in the pro-

duction of polarization even if the cluster is not moving. This can be contrasted with the

non-relativistic counterpart, whereby only the quadrupole is involved. Contrary to previous

calculations of the SZE polarization, we have calculated explicitly the Stokes parameter

associated with the octupole of the CMB. The spectrum displays distinct spectral features

compared to the quadrupole-induced polarization spectrum, in particular the existence of a

cross-over frequency ν0. Although CMB multipoles higher than the octupole are involved

in the production of SZE polarization, they have been neglected in our calculations. This

is justified because their amplitudes will be comparatively small and the resulting signal

will be well below the detection limit of current and upcoming instruments. Also, it has

been demonstrated that higher order multipoles scatter at leading order of θ2
e and thus are

indeed suppressed relative to the dipole, quadrupole and octupole scattering (see Chluba et

al. 2013 and Chluba & Dai 2014).

Our present results have also shown that the SZE polarization spectrum is sensitive to the

electron distribution involved in the IC scattering process. There are appreciable spectral

differences between the SZE polarization spectra when the CMB photons are scattered by

thermal electrons as compared to non-thermal ones. In the thermal case, the spectrum

(quadrupole/octupole) is sensitive to the temperature of the electron plasma, whereas in

the case of non-thermal electrons following a power-law electron distribution, the spectrum

is sensitive to both the minimum momentum p1 and the spectral index α. Also demonstrated

in our results, is that the cross-over frequency associated with the octupole term is sensitive

to the parameters of the electron distribution. The cross-over frequency depends on the

temperature (e.g. 340 GHz for 1 keV, 365 GHz for 10 keV, 396 GHz for 20 keV) for

a thermal electron distribution and on p1 as well as α for that of a power-law electron

distribution. Also, we have briefly discussed the source of biases in the determination of

the cluster temperature and of the electron minimum momentum from the measurements

of the cross-over frequency ν0, as well as the possibility to disentangle the CMB quadrupole

and octupole terms from a prior measurement of the cluster temperature (or the minimum

momentum of a non-thermal electron distribution) through either X-ray or SZE intensity

observations.

Furthermore, we have also computed the polarization spectrum produced by combina-

tions of electron populations occupying the same region of space. It is found that the
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resulting spectrum is the superposition from each individual spectrum, e.g. in the case of

two thermal electron distributions that occupy the same region within the ICM, the polariza-

tion spectrum is amplified by the distribution with higher temperature. Also, the cross-over

frequency of the CMB octupole is displaced towards a higher frequency in the presence of an

additional thermal electron distribution compared to the case of a single thermal electron

distribution. In situations where there is a thermal electron distribution co-spatially existing

with a non-thermal one, the polarization spectrum is only affected by non-thermal effects

at higher frequencies. However for low values of p1 (< 1), the non-thermal effects can also

be apparent at lower frequencies. Again, the cross-over frequency of octupole polarization

spectrum is shifted depending on the value of the momentum p1 and the spectral index α.

Due to the possibility of accommodating two or more electron distributions, our approach

has allowed us to use the parameters of the Bullet cluster derived from multifrequency SZE

observations to determine its SZE polarization component. The spectrum of the Bullet

cluster exhibits interesting spectral features that allow polarization arising from the CMB

multipoles to be explored. In the frequency interval, 30 GHz to 700 GHz, the SZE po-

larization spectrum can be measured with a polarization sensitivity of ≈ 10 µJy. This

frequency interval falls into the frequency coverage of ALMA and Millimetron, which cover

approximately the interval 86 GHz up to 750 GHz and 100 GHz to 1800 GHz, respectively.

Observing at ≈ 88 GHz where the sensitivity of ALMA is maximum, i.e. ≈ 0.3 µJy, the

SZE polarization signal can be detected. The detection limit of ALMA is below both the

predicted CMB quadrupole and octupole induced signals, which would render both signals

observable.

The distinct spectral features of the CMB quadrupole induced polarization and that of

the octupole one, would allow them to be disentangled using multifrequency observations.

To achieve this, a strategy can be employed by observing at the cross-over frequency of the

CMB octupole for clusters (e.g around 390 GHz for the Bullet cluster) whose temperature

and optical depth are available from X-ray or SZE intensity measurements. At the cross-over

frequency, the polarization spectrum consists of only the CMB quadrupole term without any

contribution from the octupole one (being zero at its cross-over frequency). Then in order

to recover the latter, one can measure the SZE polarization spectrum at another frequency

where the CMB quadrupole-induced term can be subtracted to retain the octupole-induced

one. However, this would require high spectral resolution in order to observe the signal with

sufficient precision around the cross-over frequency.

Note, however, that knowledge of only the spectral shape of the quadrupole, octupole and

the cross-over frequency may not be sufficient for the disentanglement of the two multipoles.

Additional effects such as velocity corrections (Yasini & Pierpaoli 2016) and multiple scat-

terings (Chluba & Dai 2014) will have to be accounted for and their respective spectral shape
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will also have to be known. Both the quadrupole and octupole spectrum are vulnerable to

peculiar velocity effects. For moving clusters (non-zero peculiar velocities), the neighbouring

CMB multipoles can leak into the quadrupole and octupole polarization spectrum. This ef-

fect is kinematic in nature, proportional to βc = Vc/c where Vc is the peculiar velocity of the

cluster with respect to the CMB frame. The frequency weights of these leakages will impact

the cross-over frequency of the octupole spectrum, hence for moving clusters, the peculiar

velocity contribution to the polarization spectrum will have to be accounted for and treated

properly. Multiple scattering impacts are less significant given that the amplitude is of the

order of τ2 except for rich clusters ( where τ ≈ 0.02). In additon, multiple scattering effects

can be reduced if measurements are performed symmetrically around the cluster’s center.

We have also highlighted the promising experimental possibilities to measure the SZE

that are offered by future experiments: the SKA can reach a sensitivity of 0.01 µJy at 5

GHz and down to 0.1 µJy at 45 GHz for 1000 hrs of integration time. This provides an

opportunity for the SZE polarization spectrum to be measured with high accuracy at low

frequencies. Unfortunately, low frequency measurements are vulnerable to the polarized

synchrotron emissions coming from the radio halos or other sources. Nevertheless, their

distinctive spectral features would allow them (Sazonov & Sunyaev 1999, Hall & Challinor

2014) to be treated and removed properly through multifrequency observations. In addition,

if an r.m.s. value of the CMB quadrupole or the CMB octupole is what we are interested

in, then by averaging over many clusters, the polarized synchrotron emissions would cancel

each other. This is the case because the synchrotron polarization angle will not correlate

from cluster to cluster. Hence combining ALMA and the SKA, the CMB quadrupole and

the octupole-induced terms can be determined. The averaging process will also reduce the

impact of polarization from kinematic effects, assuming the peculiar velocities of cosmic

structures are uncorrelated.

The SZE polarization coming from non-thermal electrons reveals that polarization can

also be searched for in the extended lobes of radio galaxies where IC emission have been

observed. However high sensitivities (≈ 0.01 µJy at 20 GHz, ≈ 0.33 µJy at 243 GHz) would

be needed to at least measure the CMB quadrupole-induced spectrum. This would require

at least 5000 hrs of integration time for SKA and ALMA.

It is important to mentioned that polarized foregrounds would have to be carefully taken

into account and properly modelled when searching for SZE polarization. Measurements of

polarized foregrounds over a wide range of frequencies would minimize modelling errors (see

Dickinson 2014, Hall & Challinor 2014).

Another nuisance for both low and high frequency observations of SZE polarization from

cosmic structures would be the background E-mode polarization of the CMB itself. Large

scale E-modes will add a bias to the signal and also degrade the signal-to-noise (S/N) ratio.
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However, the contribution from large-scale E-mode can be removed if SZE polarization

measurement is done over a number of clusters. Since these E-modes are coherent from

cluster to cluster, it can be removed from the desired signal. On the otherhand, small-scale

E-modes will not affect the signal (see Hall & Challinor 2014).

Additionally, we have also been able to show that the polarized IC scattering of the

CMB can manifest over the high-frequency portion of the electromagnetic spectrum and

this is due to the relativistic nature of the non-thermal electrons that are present in cosmic

structures such galaxy clusters and radio galaxies. Although our calculation has been done

using the Thomson approximations, it is still valid at high energy. In addition we have also

compared the computed flux with the sensitivities of various telescopes in the 1 keV–1 MeV

and 0.1 MeV–0.1 TeV ranges. It is found that it is too difficult to measure the polarized

flux as the latter are too small.

We finally discuss in the following the comparison between the results obtained in our

work and previous ones.

The first difference between our work and previous ones (Sazonov & Sunyaev 1999,

Challinor et al. 2000, Lavaux et al. 2004, Yasini & Pierpaoli 2016) lies in the generality of our

approach, which allows the computation of SZE polarization for any electron distribution,

whereas in previous works, a series expansion in terms of the temperature parameter, θe =

kBTe/mec
2, associated with a thermal electron distribution has been used to study the

thermal SZE polarization only.

We also highlight our completely relativistic derivation of the SZE polarization spectra

for both thermal and non-thermal electron distributions without any restrictive approxi-

mations other than the Thomson limit. Particularly, we have shown explicitly the SZE

polarization spectrum produced by non-thermal electrons and therefore provides the possi-

bility of searching for the signal in structures where non-thermal activities are taking place,

such galaxy cluster radio-halos and lobes of radio-galaxies.

Furthermore we have also been able to compute the SZE polarization produced by a

combination of electron populations occupying the same region of space within a cosmic

structure.

We also stress here that we have computed for the first time the Q spectrum associated

with the octupole in the case of a non-moving cluster, although for moving clusters the

octupole does induce polarization via kinematic effects (Yasini & Pierpaoli 2016). In the

case where the cluster is not moving, the usual SZE polarization is recovered, proportional to

only the quadrupole. Our present results show that, in the presence of relativistic effects, the

octupole is indeed involved in the production of SZE polarization, even though the cosmic

structure is at rest with respect to the CMB frame. This octupole contribution becomes

important in the case of high temperature clusters, as well as in lobes of radio-galaxies where
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relativistic electrons are present. The Q spectrum of the octupole exhibits an interesting

spectral feature, i.e. a cross-over frequency, which can be used to estimate the electron

temperature (for a thermal electron population), or the minimum momentum p1 and the

spectral index α of non-thermal electron distributions.The existence of a cross-over frequency

also shows the difference between the nature of the octupole-induced polarization due to

relativistic effect and that of kinematic effects, whereby in the latter no cross-over frequency

is found in the octupole spectrum. We also discussed how multifrequency observations, by

taking advantage of the CMB octupole’s cross-over frequency, would allow one to disentangle

the CMB quadrupole and octupole-induced spectrum. However we also stress that to achieve

this, velocity corrections and multiple scatterings will have to be treated properly.

Furthermore, we have also computed the complete polarization spectrum expected from

the Bullet cluster using parameters derived from multifrequency observations of the SZE

intensity. In the context of expectations from observed clusters, we have shown that tele-

scopes like the SKA, ALMA, Millimetron and CORE++ have the sensitivity to measure the

polarization spectrum from a typical Bullet-like cluster. A statistical study of the SZE po-

larization signals from a sample of high-T clusters will be presented elsewhere and will point

to cosmological applications of this technique in large-scale observations of the polarized

cosmic microwave background.

Fiinally, we have also shown that the spectrum produced by the IC scattering process

between the CMB and non-thermal electrons can stretch up to very high very frequencies

e.g. X-rays and Gamma rays. Although our calculations relies on the Thomson limit, but

we have shown that our results are still valid up to ≈ 10 TeV.
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Conclusions and remarks

In this last chapter, we summarize the findings of this work and provide some discussions

and suggestions for future work.

We have been able to successfully compute the SZE-21cm using four models representing

the physical processes happening between redshifts z = 45 (30 MHz) and z = 6 (200 MHz).

Two of the models take into account the role of dark matter annihilation during these early

epochs. Our results on the SZE-21cm demonstrate that the study of the EoR and the DA is

entirely possible through the use of the comptonization processes happening in large scale

structures. The spectral features of the SZE-21cm are distinct for each model, hence the

physical processes occuring can in principle be discerned using spectral analysis. Relativistic

effects have appreciable impacts on the spectral feature of the SZE-21cm, in particular

around frequencies, ν ≈ 50, 60, 77, 95 MHz. The SZE-21cm presents itself as a perturbation

of the standard SZE, and the difference (∆Imod − ∆Ist) between them is on the level of

≈ µJy which is within the reach of the SKA at 1000 hrs of integration time. Following a

wise strategic approach by targeting high temperature cosmic structures (> 10 keV) and also

observing at frequencies > 100 MHz, the signal can be observed with both SKA-1 and SKA-

2 for the 21-cm background resulting from standard physical processes (benchmark model).

For the other models, only SKA-2 will be able to detect the signal ∆Imod − ∆Ist. Again,

targeting high temperature structures and observing at high frequencies will maximize the

chance of detection. We have also addressed the possible source of contamination from

point sources within the targeted cosmic structure, noting that the synchrotron radio signals

decrease with redshift. Since the SZE-21cm is independent of redshift, targeting high redshift

structures is ideal in getting rid of unwanted signals.

The possibility of NP distortions associated with plasma effects have been addressed

using current CMB spectral data both at low and high frequencies. Upperlimits have been

placed on the value of the plasma frequency at 1 σ, 2 σ and 3 σ C.I. (206, 346 and 418

MHz) and it is found that low frequency measurements, < 400 MHz, are appropriate for

116
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probing plasma effects on the CMB spectrum. Additionally, we have shown the impact of a

non-zero plasma frequency associated with the CMB on the SZE and the cosmological 21-

cm background. The SZENP spectrum shows peaks occuring at the corresponding plasma

frequency which is independent of the cluster parameters such as temperature, minimum

momentum or spectral index, but the amplitude of the peak does depend on the cluster

parameters mentioned. The SZENP can be detected with current and upcoming instruments

e.g. the SKA1 and SKA50% can set constraints on the plasma frequency at 1,2 and 3 sigma

with 1000 hrs of observation whereas the eVLA can observe up to 3 sigma on the plasma

frequency at 12 hrs of observation. Our results also show the importance of taking into

consideration the plasma effects when recovering the 21-cm spectrum related to the EoR

and the DA.

The final portion of the thesis is related to the polarization component of the SZE. We

have been able to solve the polarized relativistic Boltzmann equation for the CMB photons

and the electrons residing in cosmic structures and show that, when relativistic effects are

taken into account, all the multipoles of the CMB are involved in the production of polar-

ization. Similar to the SZE in intensity, relativistic effects become more pronounced on the

polarization spectrum at higher temperatures and for cosmic structures where non-thermal

activities are taking place. The SZE polarization associated with CMB octupole spectrum

have been shown explicitly, revealing the existence of a cross-over frequency. The latter is

sensitive to cluster parameters such as temperature, minimum momentum and spectral index

of the electron distribution. The possibility of measuring the Q spectrum of the quadrupole

and octupole spectrum through the use of multifrequency observations is discussed, stressing

the importance of taking into account velocity effects and multiple scatterings. We have also

been able to calculate the SZE polarization, highlighting the non-thermal component, of the

Bullet cluster using SZE parameters derived from multifrequency measurments. The SKA

together with ALMA and Millimetron have the capability of measuring the SZE polarization

at 260 and 1000 hrs of integration time. In particular, combining ALMA and SKA, would

allow the octupole and the quadrupole to be seperated provided others additional factors

such as velocity corrections and multiple scatterings are accounted for.

We have also shown that our approach of calculating polarization from comptonization

process is valid at high energies and hence allowed us to compute the polarization flux up

to 10 GeV. Comparison with the sensitivity of various telescope working at high energies,

we saw that the polarization fluxes in the 1 keV–1 MeV and 0.1 MeV–0.1 TeV ranges are

too small and therefore will be undetected.

We have presented the use of the SZE in a cosmological context, focusing on the intensity

and polarized spectra that can be produced in cosmic structures. Our approach of computing

the SZE and its polarization benefits from its generality, in sense that it is fully relativistic
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and also allow to accommodate any general or combination of electron populations. We have

seen that the impact of relativistic effects is substantial when calculating the SZE-21cm and

this is important in order to recover the precise spectrum describing the processes occuring

during the EoR and the DA. The error when neglecting relativistic effects is non-zero over

most of the entire spectrum, in particular around ν ≈ 50, 60, 77, 95 MHz. Therefore, the

use of the Kompaneets equation or any non-relativistic approach should be avoided as far

as possible, in particular when high temperature cosmic structures are involved or the input

spectrum is irregular. Relativistic impacts are also appreciated in the polarized component of

the SZE, whereby all the multipoles are involved in the production of polarization even if the

cosmic structure is at rest with respect to the CMB. Relativistic effects and the applicability

to general electron populations, would allow the SZE signals (SZE-21cm or SZENP ) and its

polarization to be searched for even in cosmic structures where non-thermal activities are

taking place, such as galaxy clusters hosting radio-halos or lobes of radio-galaxies.

SZE measurements benefit from differential measurements towards and away from cosmic

structures. Exact calibration using an external source is not needed and also the signal is less

vulnerable from galactic foregrounds larger than the angular extent of the cosmic structure.

Therefore, the SZE is ideal for probing the EoR, NP spectral distortions and the multipoles

of the CMB.

Until now, the SZE has always been envisaged as a useful tool to investigate the properties

of the ICM and some other traditional cosmolgical applications such as measuring the Hubble

constant, probing dark energy among others. In this present thesis, we have been able to

extend the use of the SZE spectral distortion and demonstrate its relevance for cosmological

background studies such as the 21-cm background related to the EoR and the DA and NP

effects due to plasma frequency on the CMB at the recombination. We have also presented an

extensive study of its polarization component with detail analysis of the spectra. Therefore

the SZE and its polarization present themselves as very relevant tools to study the primordial

induced spectral distortions of the CMB and also its mutlipoles at various time and location

in the cosmos. The general approach of the SZE that we have presented shows that it is

possible to probe any other backgrounds, such as the Cosmic Infrared Background.

In summary, following the methods used in this present work, it will be possible to obtain

new and important information about the properties of the Universe. Even if the effects

we discussed are small corrections w.r.t. the CMB intensity, we showed that with a high

sensitivity instrument like SKA it will be possible to derive strong information on them.

This confirms the big impact that SKA will have on our knowledge of astrophysics and

cosmology.
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Appendix A

Fractional error analysis

In this appendix, we investigate using the four models of Fig 2.2, the relationship between

the error produced when using a non-relativistic approach and the properties of the input

radiation field.

For the standard SZE, the input radiation is the usual Planck spectrum, which at low

frequency has a constant brightness temperature, and the resulting SZE ∆Tst is a constant

as well (see Fig 2.4). It is important to note that the Planck spectrum is a smooth function,

and as a result of this smoothness, the dierence between the use of a relativistic approach

and a non-relativistic approach in calculating the SZE is small for low electron temperatures

and at low frequencies (see, e.g., Colafrancesco et al. 2003). However, the 21-cm background

is not a smooth function and the spectral shape plays an important role in the determination

of the error when neglecting relativistic effects.

To start our discussion on this issue, we show the spectra of the SZE-21cm in the rel-

ativistic and non-relativistic case for a temperature of 7 keV using our four models of the

21-cm background (see Fig A.1-A.4). In addition, we show as well, the standard SZE for

the relativistic and non-relativistic case. It is noticed that the use of the non-relativistic

approach introduces an overall numerical error into the standard SZE, and that this error

is amplied in a frequency-dependent way for the SZE-21cm.

To study the spectral behaviour of the error, we also show the fractional error done

in these cases, and we compare these results with the properties of the input spectra. As

discussed in section 2.5.2, we expect that the most important factor in determining the error

done with the non-relativistic approach is the curvature of the input radiation spectrum:

if the input spectrum has a large curvature this implies that using a function P1(s) that

is narrower than the correct relativistic one (like in the non-relativistic approach) gives a

result that is more different than in the case where the input radiatin field is smooth, such

as the Planck spectrum of the CMB.

To check this conclusion, the same analysis is performed on the other models.
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The maximum (minimum) points of the fractional error between the relativistic and

non-relativistic results occur at frequencies where there is a peak (trough) in the second

derivative, which corresponds to a maximum (minimum) in the input spectrum.

We noticed in the first model (solid line Fig 2.2) that two peaks occur within the frequency

range 60-80 MHz in the non-relativistic case (see Fig A.1 (dashed line)). This can be

explained by the fact that there are two peaks in the second derivative of the input spectrum

and also that the non-relativistic approach introduces artifacts as a result of the convolution

of the input spectrum with a narrow kernel. With the correct relativistic kernel, the input

spectrum is convolved with a wider function and the two peaks are then smoothed in only

one peak. Therefore, the use of a non-relativistic approach produces a spectrum which then

gives incorrect value and shape of the SZE-21cm and the error becomes more significant as

temperature is increased.

In the other models that we have considered, only one peak occurs within the frequency

interval 60-70 MHz for the second derivative which as a result the non-relativistic SZE-21cm

has only one peak in this frequency interval as well (Fig A.1-A.4). One can also noticed the

occurence of peak/troughs in the fractional difference at frequencies where peak/troughs

occurs in the second derivative of the input spectrum (e.g. at ≈ 153 MHz for the second

model). This demonstrate that the smoothness of the input radiation is an important

factor that plays an important role in the error introduced between the relativistic and

non-relativistic approach.

To conclude, we have shown in this Appendix that there is a substantial numerical error

when computing the SZE using a non-relativistic approach, in particular when the input

radiation spectrum is not a smooth function, as in the case of the modied CMB giving rise

to the 21-cm background. This means that when using SZE of cosmic structures to study

the cosmological 21-cm, it is imperative to use a full relativistic computation in order to

obtainthe correct SZE amplitude and its spectral shape.
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Figure A.1: Spectral analysis of the first model (solid line of Fig 2.2).Top-panel :The rel-

ativistic (solid) and non-relativistic SZE-21cm (dashed line) together with the standard

relativistic (long-dashed line) and non-relativistic SZE (dotted line) calculated for a thermal

plasma of temperature 7 keV and optical depth 5×10−3. Middle-panel: The fractional differ-

ence between the relativistic and non-relativistic results. Bottom-panel: Second derivative

of the input spectrum.
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Figure A.2: Same as Fig A.1 for the second model (dashed line in Fig 2.2).
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Figure A.3: Same as Fig A.1 for the third model (dashed line in Fig 2.2).
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Figure A.4: Same as Fig A.1 for the fourth model (dashed line in Fig 2.2).


