
J
H
E
P
0
2
(
2
0
1
6
)
0
6
1

Published for SISSA by Springer

Received: December 5, 2015

Accepted: January 27, 2016

Published: February 9, 2016

Supergravity solutions with AdS4 from non-Abelian

T-dualities

Leopoldo A. Pando Zayas,a,b Vincent G.J. Rodgersc and Catherine A. Whitingc,d

aThe Abdus Salam International Centre for Theoretical Physics,

Strada Costiera 11, 34014 Trieste, Italy
bMichigan Center for Theoretical Physics, Department of Physics,

University of Michigan, Ann Arbor, MI 48109, U.S.A.
cDepartment of Physics and Astronomy, The University of Iowa,

Iowa City, IA 52242, U.S.A.
dNational Institute for Theoretical Physics,

School of Physics and Mandelstam Institute for Theoretical Physics,

University of the Witwatersrand,

Johannesburg, WITS 2050, South Africa

E-mail: lpandoz@umich.edu, vincent-rodgers@uiowa.edu,

catherine.whiting@wits.ac.za

Abstract: We present a large class of new backgrounds that are solutions of type II

supergravity with a warped AdS4 factor, non-trivial axion-dilaton, B-field, and three- and

five-form Ramond-Ramond fluxes. We obtain these solutions by applying non-Abelian

T-dualities with respect to SU(2) or SU(2)/U(1) isometries to reductions to 10d IIA of 11d

sugra solutions of the form AdS4 × Y 7, with Y 7 = S7/Zk, S7,M1,1,1, Q1,1,1 and N(1, 1).

The main class of reductions to IIA is along the Hopf fiber and leads to solutions of the

form AdS4 × K6, where K6 is Kähler Einstein with K6 = CP3, S2 × CP2, S2 × S2 × S2;

the first member of this class is dual to the ABJM field theory in the ’t Hooft limit. We

also consider other less symmetric but susy preserving reductions along circles that are not

the Hopf fiber. In the case of N(1, 1) we find an additional breaking of isometries in the
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Keywords: Supergravity Models, AdS-CFT Correspondence

ArXiv ePrint: 1511.05991

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2016)061

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/188769558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lpandoz@umich.edu
mailto:vincent-rodgers@uiowa.edu
mailto:catherine.whiting@wits.ac.za
http://arxiv.org/abs/1511.05991
http://dx.doi.org/10.1007/JHEP02(2016)061


J
H
E
P
0
2
(
2
0
1
6
)
0
6
1

Contents

1 Introduction 2

2 Freund-Rubin seeds for solution generating techniques using non-Abelian

T-duality 3

3 Background from S7/Zk 5

3.1 NATD(⇓τ (AdS4 × S7/Zk)) 5

4 Background from AdS4 × S7 7

4.1 NATD(⇓ψ2 (AdS4 × S7)) 8

5 Backgrounds from AdS4 ×M1,1,1 9

5.1 NATD(⇓τ (AdS4 × (M1,1,1))) 10

5.2 NATD of SU(2)/U(1) isometry in ⇓τ (AdS4 × (M1,1,1)) 11

5.3 Alternate reduction: ⇓φ1 (AdS4 ×M1,1,1) 11

5.3.1 NATD(⇓φ1 (AdS4 ×M1,1,1)) 12

6 Backgrounds from AdS4 ×Q1,1,1 13

6.1 Alternate reduction: ⇓φi (AdS4 ×Q1,1,1) 15

6.1.1 NATD(⇓φi (AdS4 ×Q1,1,1)) 15

7 Backgrounds from AdS4 ×N(1, 1) with less supersymmetry 16

7.1 NATD(⇓β (AdS4 ×N(1, 1))) 17

8 Dual CFT central charge 19

8.1 Dual CFT central charge for coset NATD 22

9 Discussion and conclusions 25

A Review of NATD 26

A.1 SU(2) isometries 26

A.2 Coset spaces: SU(2)/U(1) isometry 28

B Review of supergravity EOM 28

– 1 –



J
H
E
P
0
2
(
2
0
1
6
)
0
6
1

1 Introduction

The AdS/CFT correspondence [1] conjectures a complete equivalence between a field theory

and a string theory. This correspondence provides an explicit recipe to connect observable

quantities on both sides of the correspondence and it is particularly potent when the

field theory is conformal [2–4]. A central conceptual and intuitive role is played by the

geometerization of conformal invariance which on the gravity side is realized as the presence

of an AdS factor whose isometries coincide with the conformal group of the theory living

on the boundary.

More precisely, the conformal group of a field theory in d dimensions is SO(d, 2) for

d > 2; this group is precisely the isometry group for AdSd+1. This relation has prompted

the search for solutions in type II supergravities and M-theory that contain AdSd+1 as

a space-time factor. Most of the effort has, naturally, been concentrated on searching

for solutions with an AdS5 factor (see, for example, [5, 6] and [7]). There are, however,

strong efforts in other dimensions. Recent efforts include AdS7 [8]. In the context of

theories connected to massive IIA, this search can be extended to AdS6 [9, 10] and more

recently to AdS5 [11] and AdS4 [12]. Another recent approach to the construction of gravity

duals to conformal backgrounds has been presented in [13–15]. There has also been recent

progress in the direct search for solutions with AdSd+1 factors; interesting examples are the

geometries interpolating between AdS7 and AdS5 presented in [16, 17] and further studied

and generalized in [18, 19].

Recently, there has been a revival of NATD [20–22] including its systematic extension

to the Ramond-Ramond sector [23, 24]. This resurrected symmetry has already been

used to generate solutions from various seed backgrounds in the context of the AdS/CFT

correspondence [25–47]. NATD is a powerful tool in the search for solutions because it

can be considered as a solution generating technique. Even more importantly, as shown in

for example [39], it leads to supersymmetric solutions with very few apparent isometries

other than those of AdS.1 This makes NATD a unique technique which is able to probe

the space of solutions in directions that cannot be accessed by various general classification

approaches which are based on explicit symmetries.

The main goal of this paper is to further use T-duality and NATD to construct su-

pergravity backgrounds that contain an AdS4 factor in the metric. In a very direct sense,

this manuscript is an extension of [39] which was devoted to solutions with an AdS5 fac-

tor. There are various interesting applications for conformal field theories in d = 3. For

example, they have historically played an important role in our understanding of critical

phenomena through the ε expansion of the Wilson-Fisher fixed point. More formally and

recently, 3d conformal theories have helped clarify aspects of the M2 brane theory. We

hope that the backgrounds presented in this manuscript will add some interesting new

examples and motivate studies of the corresponding field theory duals which are arguably

conformal or superconformal field theories in 3d. The quintessential example in this class

is the ABJM field theory [48]; the NATD to the gravity background dual to the ABJM

theory has been discussed explicitly in [37].

1In this paper we present an example where the NATD destroys even more isometries than the previously

known examples.
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AdS4 × Y 7 Reduction−−−−−−→ ⇓ (AdS4 × Y 7)
NATD−−−−→ NATD(⇓ (AdS4 × Y 7))

F4
Reduction−−−−−−→ (F2, F4)

NATD−−−−→ (F1, F3, F5), H3

QD2 = NM2
Reduction−−−−−−→ QD2 = ND2

NATD−−−−→

(
QD5 = ND5

∆QD3 = nND5

)

Figure 1. A schematic description of some properties of the supergravity solutions discussed in

this manuscript and their field theory duals.

We summarize our strategy and main results in figure 1. Namely, we generate various

families of 10d Type IIB solutions containing an AdS4 factor by first starting with a Freund-

Rubin type solution in 11d supergravity of the form AdS4 × Y 7 and subsequently reduce

the solution to IIA, which is followed by applying a non-Abelian T-duality to either an

SU(2) or an SU(2)/U(1) isometry. Generically, the final Type IIB backgrounds have all of

the RR fluxes turned on, with the exception of the very symmetric case of S7. Finally, we

compute the Page charges of these backgrounds and the central charge of the corresponding

dual field theories. We also investigate the change in the Page charges under large gauge

transformations in B2.

The paper is organized as follows. In section 2 we sketch the procedure that we ap-

ply to generate the various explicit solutions in the rest of the paper. Sections 3, 4, 5, 6

and 7 correspond respectively to the application of our solution generating techniques to:

S7/Zk, S7,M1,1,1, Q1,1,1 and N(1, 1). In section 8, we discuss our recipe for computing

the central charge of the dual field theory holographically and present the results for one

representative background from each section. We also propose a method for determining

the ranges of the dual coordinates in backgrounds generated from NATD with coset space

isometries, where B2 is absent. We discuss some arguments for the preservation of su-

persymmetry in some of the new backgrounds and conclude in section 9. We relegate to

appendix A the rules for non-Abelian T-duality and appendix B the form of the 11d and

10d equations of motion as we used them to verify that the new backgrounds obtained in

the manuscript are solutions.

2 Freund-Rubin seeds for solution generating techniques using non-

Abelian T-duality

In this section we review a construction of solutions to 11-dimensional supergravity based

on the Freund-Rubin Ansatz [49]. Essentially every Sasaki-Einstein 7d manifold provides

a supersymmetric solution to 11d supergravity. A fairly complete description of solutions

of seven dimensional manifolds, providing Freund-Rubin solutions to 11d supegravity, was

cataloged in Duff-Nilsson-Pope [50]. The list includes further specification about those

– 3 –
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which are supersymmetric and states what fraction of the supersymmetry is preserved. An

exhaustive list of Sasaki-Einstein seven-dimensional manifolds is presented in [51]. Here

we focus on a particular but wide set of solutions, hoping to elucidate some of the most

generic aspects for other AdS4 solutions.

We start by considering Freund-Rubin type solutions to 11d supergravity,

ds2 = ds2(AdS4) + ds2(Y 7),

F = 3dΩ4, (2.1)

where ds2
7 is an Einstein metric on Y 7. In the case when Y 7 is also Sasaki, the corresponding

solution is supersymmetric. In this manuscript we are particularly interested in solutions

that are supersymmetric. The metric ds2
4 could also contain an asymptotically AdS4 black

hole but we do not consider explicitly that case as it breaks supersymmetry. If the metric

on Y 7 admits a U(1) isometry, which is always the case in the backgrounds we consider in

this paper, it can be written as

ds2
7 = a(yn)(dτ +A)2 + ds2(K6), (2.2)

where A is a connection on K6 and the yn represent coordinates on K6. Then we can

reduce the corresponding 11d solution to 10d Type IIA via the following rules:

ds2
11 = e−

2
3

Φds2
10 + e

4
3

Φ(dτ + C(1))
2,

CM(3) = CIIA(3) +B(2) ∧ dτ. (2.3)

If one is concerned with the correct dimensional scalings while performing the reduction,

it is important to note that the 11d backgrounds have lp as the natural length scale.

Therefore the dilaton must pick up this scale to compensate for the factors of the 11d

radius, R, inherited from the a(yn). This can be seen in the examples provided below.

Once we arrive at a Type IIA supergravity background using the prescription in

eq. (2.3), we can further apply a Non-Abelian T-duality (NATD) to the corresponding

background, provided that the appropriate symmetries are present. We will find that there

are generically two cases where we can perform an NATD. In the first case there is a struc-

ture resembling an S3 and in this case we apply the rules of NATD directly as in [23, 25].

In the second case we merely have one or more S2 subspaces on which we may imple-

ment NATD by exploiting the coset structure of S2 and following the prescriptions and

results of [24].

Before we begin the presentation of the backgrounds, let us first define some notational

conventions used, and clarify a few points about the NATD gauge fixing. In all of the

backgrounds presented in this paper, we choose a gauge fixing for NATD such that all three

of the Lagrange multipliers are kept as coordinates in the dual background, i.e. g = 1. We

will introduce them in terms of spherical polar coordinates, (θi, φi, ψ)→ (ρ, χ, ξ). We have

also left arbitrary the gauge fixing constant that we label m2, which arises from vi → m2vi.

We direct the reader to appendix A or [25] for more on gauge fixing in NATD. In section 8

we will use the fact that m2 may be absorbed into the definition of ρ.
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Note that we will adopt the following conventions for AdS4, dΩAdS4 and 2-spheres

throughout this document:

ds2(AdS4) =
r2

R2 (−dx2
0 + dx2

1 + dx2
2) +

R2

r2
dr2,

dΩAdS4 = − r
2

R2dr ∧ dx0 ∧ dx1 ∧ dx2,

ds2(Ω
(i)
2 ) = dθ2

i + sin2 θidφ
2
i , ds2(Ω̂2) = dχ2 + sin2 χdξ2,

dΩ
(i)
2 = sin θidθi ∧ dφi, dΩ̂2 = sinχdχ ∧ dξ. (2.4)

3 Background from S7/Zk

We begin our presentation with the background AdS4 × S7/Zk, which is given by,

ds2 =
1

4
ds2(AdS4) + ds2(S7/Zk). (3.1)

The metric on S7/Zk is:

ds2(S7/Zk) = λ2
2

[
dα2 + cos2 α

2
ds2(Ω

(1)
2 ) + sin2 α

2
ds2(Ω

(2)
2 )

+ sin2 α

2
cos2 α

2
(dψ + cos θ1 dφ1 − cos θ2 dφ2)2

]
+
λ2

3

k2
(dτ + k2A)2,

A = cosαdχ+ λ1 cos2 α

2
cos θ1 dφ1 + λ1 sin2 α

2
cos θ2 dφ2. (3.2)

with λ1 = 2, λ2 = 1
2 , λ3 = 1

4 . The angle τ parameterizes the U(1) fiber over CP3,

defined in the brackets of eq. (3.2) above. The ranges of the angles are 0 ≤ α, θ1, θ2 ≤ π,

0 ≤ φ1, φ2 ≤ 2π, 0 ≤ ψ ≤ 4π and 0 ≤ τ ≤ 2π
k . This geometry is supported by an

F4 = − 3
8R dΩAdS4 .

After a reduction to Type IIA via τ , we recover the familiar AdS4 ×CP3 background,

which we label ⇓τ (AdS4 × S7/Zk) to match our labeling conventions. In addition to the

metric, the supergravity background has a dilaton, and 4-form and 2-form field strengths

from the Ramond-Ramond (RR) sector,

e2Φ =
R3λ3

3

l3pk
3
, F4 = − 3

8R
dΩAdS4 , F2 = lpk dA . (3.3)

Here dΩAdS4 is the volume form on AdS4 and F2 is proportional to the Kähler form on

CP3. This IIA background is dual to a supersymmetric field theory with N = 6 susy in

3D; therefore the IIA background preserves the same number, 24, supercharges [48].

3.1 NATD(⇓τ (AdS4 × S7/Zk))

In this section, we perform an NATD along the (θ1, φ1, ψ) directions defining an SU(2)

isometry. This NATD was performed in [37], however, the NATD there acted along the

(θ2, φ2, χ) SU(2) isometry. It is true that the two NATD backgrounds are related by a

simple map (in the notation of [37] it is ζ → ζ+ π
2 ). Our results differ slightly, particularly

in the factors of k, due to the presence of the warp factor e−
2
3

Φ left over from the reduction to

– 5 –
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IIA, absent from [37]. Our choice here leads to a slightly different structure of singularities

in the resulting background.

d̂s
2

=
Rλ2

3

4klp
ds2(AdS4) +

λ2
2λ3R3

klp

(
sin2 α

2
ds2(Ω

(2)
2 ) + dα2

)
+

1

4∆k2α′l2p

[
4k2α′2l2pm

4
2ρ

2dρ2 + 4λ4
2λ

2
3m

2
2R6 cos4 α

2
(cosχdρ− ρ sinχdχ)2

+ λ4
2λ

2
3m

2
2R6 sin2 α cos2 α

2

(
sin2 χ

(
ρ2 (dξ − cos θ2dφ2) 2 + dρ2

)
+ρ2 cos2 χdχ2 + ρ sin 2χdρdχ

) ]
,

B̂2 =
λ2

2λ3m2R3

4∆klp

[
sin2 α cos θ2

k2α′2l2p

(
cosχ

(
k2m2

2ρ
2α′2l2p + λ4

2λ
2
3R6 cos4 α

2

)
dρ
)
∧ dφ2

− λ4
2λ

2
3ρR6 cos4 α

2
sinχdχ−m2

2ρ
2 sinχ

(
ρΘdχ+ 4 cos4 α

2
cosχdρ

)
∧ dξ

]
,

e−2Φ̂ =

(
klp
Rλ3

)3

∆, (3.4)

where we have additionally defined,

∆ =
λ2

2λ3R3

4k3l3pα
′3

(
k2l2pm

2
2ρ

2α′2Θ + λ4
2λ

2
3R6 sin2 α cos4 α

2

)
, and

Θ =
(

sin2 α cos2 χ+ 4 cos2 α

2
sin2 χ

)
, Γ =

(
4k2m2

2ρ
2α′2l2p + λ4

2λ
2
3R6 sin2 α cos2 α

2

)
.

The RR sector contains the following field strengths:

F̂1 = −
km2lp

(
λ1 cos2 α

2 (ρ sinχdχ− cosχdρ) + ρ sinα cosχdα
)

√
α′

,

F̂3 =
λ6

2λ
3
3m

2
2ρ

2R9 sin3 α cos4 α
2 cosχ

4∆k2α′5/2l2p
dα ∧

(
cos θ2 sinχdχ ∧ dφ2 − dΩ̂2

)
+
λ1λ

2
2λ3m

4
2ρ

3R3 sin2 α cos2 α
2 cosχ

4∆
√
α′

dρ ∧
(

cos θ2 sinχdχ ∧ dφ2 − dΩ̂2

)
+
λ2

2λ3m
2
2ρR3 sinα cos2 α

2 sin2 χΓ

4∆k2α′5/2l2p
dα ∧ dρ ∧

(
cos θ2dφ2 − dξ

)
+

(
kλ1m

2
2ρ
√
α′ sin2 α

2
lpdρ+

3λ6
2λ3R6 sin3 αdα

4kα′3/2lp

)
∧ dΩ

(2)
2 ,

F̂5 =
λ6

2λ
2
3m

3
2R9ρ2 sin2 α

2 cos2 α
2 sinα

4∆k2α′3/2l2p

[
(λ1λ3 sinαdρ− 3λ2

2ρΘdα) ∧ dΩ̂2

− 12λ2
2 cos4 α

2
sin2 χ cosχdα ∧ dξ ∧ dρ

]
∧ dΩ

(2)
2

− dΩAdS4 ∧

(
λ1λ

2
2λ

3
3R5 sinα cos2 α

2 dα

32k2α′3/2l2p
+

3m2
2ρ
√
α′dρ

8R

)
. (3.5)

– 6 –
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The Einstein frame Ricci scalar for this background is (after setting R = 1, lp = 1, α′ =

1,m2 = 1, k = 1 for simplicity),

RE =
1(

4096ρ2 cos2 α
2 cos 2χ+ (2048ρ2 − 1) cosα+ 2 cos 2α+ cos 3α− 6144ρ2 − 2

)3[
4096 23/4 sec4 α

2

(
− cos2 α

2

(
4096ρ2 cos2 α

2
cos 2χ+

(
2048ρ2 − 1

)
cosα+ 2 cos 2α

+ cos 3α− 6144ρ2 − 2
))3/4 (

65536ρ4(− cosα+ cos 2α− 8)

−128ρ2(4 cosα+ cos 2α− 21) cos6 α

2
cos 2χ

−32ρ2 cos4 α

2

(
−209 cosα+ 6 cos 2α+ cos 3α− 16384ρ2 cos 2χ+ 266

)
+ sin2 α

2
(16 cosα+ cos 2α− 39) cos8 α

2

)]
, (3.6)

which has singularities when α = π, or when α = 0 simultaneous with ρ = 0, or α = 0

simultaneous with χ = 0. This can also be recognized, as in many examples of NATD, in

the vanishing of ∆, which is given by the detM (see eq. (A.8)). These singularities are

generated by the NATD, since the AdS4 × S7/Zk background and its reduction to Type

IIA are smooth. NATD generates singularities whenever the duality is performed along a

collapsing cycle, as in Abelian T-duality.

In [37] the Killing spinor of CP3 was computed and shown to be dependent only on

α (ζ in their coordinates) and two constants. More precisely, [37] showed that there are

only 2 linearly independent Killing spinors on CP3 that are independent of the SU(2)

angles (θ1, φ1, ψ) in the required frame. Based on the demonstration given in [38], which

showed that supersymmetry is preserved when the Killing spinor of the original background

is independent of the isometry direction, we can conclude that this NATD background

preserves supersymmetry (at least N = 2 in 3d).

4 Background from AdS4 × S7

In this section we consider a reduction to IIA along the ψ2 direction of the AdS4 × S7

background, which we define as:

ds2
11 = ds2

AdS4
+ ds2

S7 ,

ds2
7 = dµ2 +

1

4
sin2 µω2

i +
1

4
λ2(νi + cosµωi)

2,

νi = σi + Σi, ωi = σi − Σi,

F4 = − 3

R
dVol(AdS4), (4.1)

where σi and Σi are left-invariant SU(2) Maurer Cartan 1-forms given by,

σ1 = − sinψ1dθ1 + cosψ sin θ1dφ1,

σ2 = cosψ1dθ1 + sinψ sin θ1dφ1,

σ3 = cos θ1dφ1 + dψ1, (4.2)

– 7 –
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and similarly for the Σi, but with coordinates (θ2, φ2, ψ2). The range of µ is 0 ≤ µ ≤ π, as

given in [50]. This background is supersymmetric for λ = 1, corresponding to the round

S7, and λ = 1√
5

corresponding to the squashed S7. We will focus on the round S7. Here

we perform the reduction along the U(1) angle ψ2 defined in the σ’s above.2 The 10D

background NS and RR sectors take the form:

ds2
10 =

R

lp
cos

µ

2

(
ds2(AdS4) + R2

(
sin2 µ

2
Σ2
i + cos2 µ

2
ds2(Ω

(2)
2 ) + dµ2

))
,

B2 = 0, e2Φ =

(
R

lp

)3

cos3 µ

2
,

C1 = lp cos θ2dφ2, F2 = −lpdΩ
(2)
2 ,

F4 =
3

R
dVolAdS4. (4.3)

This Type IIA background has Einstein frame Ricci scalar, RE = −3l
1/4
p (1+15 cosµ)

64R9/4 cos9/4 µ
2

. The

singularity at µ = π, however, can be understood by the presence of D6 branes. Indeed, the

presence of the F2 flux suggests a dual C7 potential along the directions of AdS4 and Σi.

More importantly, one can introduce near µ = π the following coordinate: (π−µ)dµ2/2 =

dr2/
√
r. In this new coordinate, near the singular point, the metric takes the form

ds2 =
√
r
(
ds2(AdS4) + Σ2

i

)
+

1√
r

(
dr2 + r2ds2(Ω

(2))
2

)
, (4.4)

which coincides, precisely, with the metric near a D6 brane source. Under the subsequent

NATD transformations this singularity will persist, but we know its origin.

4.1 NATD(⇓ψ2 (AdS4 × S7))

We will now perform a NATD along the SU(2) isometry defined by the Σi. The NATD

metric, B2, and dilaton have the following form,

d̂s
2

=
R

lp
cos

µ

2

(
ds2(AdS4) + R2(cos2 µ

2
ds2(Ω

(2)
2 ) + dµ2)

)
+
m2

2R6ρ2 sin2 µ sin2 µ
2

4l2pα
′∆

ds2(Ω̃) +
2lpm

2
2α
′2

R3 sinµ sin µ
2

dρ2,

B̂2 =
R3m3

2ρ
3 sinµ sin µ

2

2lp∆
sinχdξ ∧ dχ, e−2Φ̂ =

l3p∆

R3 cos3 µ
2

,

∆ =
R3 sinµ sin µ

2

2l3pα
′3 (l2pm

2
2α
′2ρ2 +

1

4
R6 sin2 µ sin2 µ

2
). (4.5)

The non-trivial dual RR Fluxes are,

F̂3 =

(
3

R6

8lpα′3/2
sin3 µdµ+ lpm

2
2

√
α′ρdρ

)
∧ dΩ

(2)
2 ,

2Note that it is only U(1) for the round S7. For the squashed S7 only φ1 and φ2 are U(1) angles.
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F̂5 = dVol(AdS4) ∧

[
R5 sinµ sin2 µ

2

2l2pα
′3/2 dµ+

3m2
2

√
α′ρ

R
dρ

]
(4.6)

−
R9m2

2ρ
2 sin3 µ sin µ

2

16l2pα
′3/2∆

(
3ρ sinµdµ− 2 sin2 µ

2
dρ
)
∧ dΩ

(2)
2 ∧ dΩ̃2.

After this NATD, the Einstein frame Ricci scalar is,

RE = − lpα
′3/4(29 + 164 cosµ+ 63 cos 2µ)

32R3 sin5/2 µ(4l2pm
2
2α
′2ρ2 + R6 sin2 µ

2 sin2 µ)1/4
,

where here we can again see that the singularities that appear correspond to the zeros of

∆ (µ = 0, π), plus the singularity at µ = π, inherited from the Type IIA background.

5 Backgrounds from AdS4 ×M1,1,1

The space we are concerned with in this section is a U(1) bundle over CP2 × S2 with

characteristic numbers n1 and n2 and metric given by,

ds2 = c2
1ds

2(AdS4) + R2ds2(M1,1,1),

ds2(M1,1,1) = c2
2

(
dτ − n1 sin2 µσ3 + n2 cos θ1dφ1

)2
+ c3

3(dθ2
1 + sin2 θ1dφ

2
1)

+ c2
4

(
dµ2 + c2

5 sin2 µ(σ2
1 + σ2

2 + cos2 µσ2
3)
)
, (5.1)

where c2
1 = 3

2Λ , c
2
2 = 3

32Λ , c
2
3 = 3

4Λ , c
2
4 = 9

2Λ , c
2
5 = 1

4 . The supersymmetric case corresponds

to n1 = 3, n2 = 2; in the notation used by Duff-Nilson-Pope [50] this space is naturally

denoted by M(−3, 2). Here, however, we follow a slightly more modern notation widely

used in the literature, M1,1,1. The corresponding 11D geometry has Ricci scalar R = − Λ
R2

and admits a 4-form Flux,

C3 = c3
1

r3

R3dx0 ∧ dx1 ∧ dx2, F4 =
3c3

1

R
dVol(AdS4), (5.2)

and 0 ≤ µ ≤ π
2 . In the IIA reduction along τ , we obtain,

ds2
IIA =

c2R3

lp

(
c2

1ds
2(AdS4) + c2

4(dµ2 + c2
5 sin2 µ(σ2

1 + σ2
2 + cos2 µσ2

3))

+ c2
3(dθ2

1 + sin2 θ1dφ
2
1)

)
,

B2 = 0, e2Φ =
c3

2R3

l3p
. (5.3)

This implies that, CIIA3 = C3, and C(1) = lp(−n1 sin2 µσ3 + n2 cos θ1dφ1). This reduced

metric has Einstein frame Ricci Scalar, RE = 0. Note that the metric on the six dimensional

subspace, which we denote ⇓τ (M1,1,1), is simply the product of S2×CP2. The solution is

supported by the Kähler forms which appear as dC(1). The field theory of this background

was examined in [52] where it was shown that this τ reduction of AdS4 ×M1,1,1 is N = 2

supersymmetric.
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5.1 NATD(⇓τ (AdS4 × (M1,1,1)))

We are now poised to perform a Non-Abelian T-duality along the SU(2) isometry made

explicit by the SU(2) invariant one-forms σ.

d̂s
2

=
c2R3

lp
(c2

1ds
2(AdS4) + c2

3ds
2Ω

(1)
2 + c2

4dµ
2)

+
m2

2

α′l2p∆

(
c2

2c
4
4c

4
5R6 sin4 µ

(
ρ2dξ2 cos2 µ sin2 χ+ ρ2dχ2

(
1− sin2 µ cos2 χ

)
+dρ2

(
1− sin2 µ sin2 χ

)
− 2ρdρdχ sin2 µ sinχ cosχ

)
+m2

2ρ
2α′2dρ2l2p

)
,

B̂ =
c2c

2
4c

2
5m

3
2ρ

2R3 sin2 µ sinχ

4lp∆
dξ ∧

(
ρ
(
−2 sin2 µ cos 2χ+ cos 2µ+ 3

)
dχ

−4 sin2 µ sinχ cosχdρ
)
,

e−2Φ̂ =
l3p∆

c3
2R3 , (5.4)

∆ =
c2c

2
4c

2
5R3 sin2 µ

α′3l3p

(
cos2 µ

(
c2

2c
4
4c

4
5R6 sin4 µ+m2

2ρ
2α′2l2p cos2 χ

)
+m2

2ρ
2α′2l2p sin2 χ

)
.

The RR sector contains,

F̂1 =
m2n1lp sin2 µ(ρdχ sinχ− cosχ(2ρdµ cotµ+ dρ))√

α′
,

F̂3 =
1

α′3/2lp

(
−3c2c

2
3c

4
4c

3
5R6 sin3 µ cosµ

c1
dµ−m2

2n2ρα
′2l2pdρ

)
∧ dΩ

(1)
2

+
c2c

2
4c

2
5m

2
2n1ρ

2R3 sin4 µ cos2 µ sinχ cosχ

α′5/2l2p∆

(
2c2

2c
4
4c

4
5R6 sin3 µ cosµdµ

−m2
2ρα

′2l2pdρ
)
∧ dξ ∧ dχ

+
2m2

2n1ρ sinµ cosµ sin2 χ
(
α′3l3p∆− c3

2c
6
4c

6
5R9 sin8 µ cos2 µ cos2 χ

)
α′5/2l2p

(
cos2 µ cos2 χ+ sin2 χ

)
∆

dµ ∧ dξ ∧ dρ,

F̂5 =
c3

1

c2
3Rα′3/2l2p

dVol(AdS4) ∧
(
3c2

3m
2
2ρα

′2l2pdρ+ c1c
3
2c

4
4c

3
5n2R6 sin3 µ cosµdµ

)
(5.5)

+
c2

2c
6
4c

5
5m

3
2ρ

2R9 sin5 µ cosµ sinχ

α′3/2l2p∆

(
3c3

3

(
sin2 µ sin2 χ+ cos2 µ

)
c1

dµ

− c2c5n2 sinµ cosµdρ

)
dξ ∧ dχ ∧ dΩ

(1)
2

+
3c4

2c
2
3c

10
4 c

9
5m

3
2ρ

2R15 sin11 µ cosµ cosχ

64c1α′15/2l8p∆
3

(
8c2

2c
4
4c

4
5R6 sin4 µ cos2 µ sinχ

+m2
2ρ

2α′2l2p

(
(cos 2µ+ 7) sinχ− 2 sin2 µ sin 3χ

))2

dξ ∧ dµ ∧ dρ ∧ dΩ
(1)
2 .

This background has singularities at µ = 0 and µ = π
2 , simultaneous with ρ = 0 or χ = 0,

all generated by the NATD.
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5.2 NATD of SU(2)/U(1) isometry in ⇓τ (AdS4 × (M1,1,1))

After the reduction to IIA of AdS4×M1,1,1 we have a six-dimensional Einstein-Kähler man-

ifold ⇓τ (M1,1,1) = CP2 × S2. In the previous section we performed an NATD along the

SU(2) isometry present in CP2 (see its explicit form in eq. (5.3)). Since S2 is a coset mani-

fold and there is a prescription for applying NATD on coset manifolds [24], we now proceed

to apply this coset NATD along the S2 factor. We review this method in appendix A.2.

The dual NS fields are given by

d̂s
2

=
c2R3

lp

(
c2

1ds
2(AdS4) + c2

4(dµ2 + c2
5 sin2 µ(σ2

1 + σ2
2 + σ2

3))

)
+
m2

2lpα
′2

c2c2
3R3

(
z

ρ
dz + dρ

)2

+
c2c

2
3R3

lpρ2
dz2,

B̂ = 0, e−Φ̂ =
m2c3lpρ

c2

√
α′

, (5.6)

with the RR sector given by,

F̂1 = −m2n2lp√
α′

dz,

F̂3 = m2
2n1lp

√
α′zdz ∧

(
sin2 µdΩ

(2)
2 − 2 sinµ cosµdµ ∧ σ3

)
,

F̂5 =
3m2

c1lp
√
α′R3

(
− c4

1m2lpR
2α′dVol(AdS4) ∧ (zdz + ρdρ)

+ c2c
2
3c

4
4c

3
5R9 cosµ sin3 µdz ∧ dµ ∧ dψ ∧ dΩ

(2)
2

)
. (5.7)

This background has a singularity at ρ = 0, as can be seen in the behavior of the dilaton.

This is generated by the collapsing cycle in eq. (5.3) given by θ1 → 0.

5.3 Alternate reduction: ⇓φ1 (AdS4 ×M1,1,1)

In this section we present an alternate, supersymmetric reduction to Type IIA of AdS4 ×
M1,1,1 presented originally in [53]. We then perform an NATD on this background, thus

providing a new supersymmetric Type IIB solution with an AdS4 factor.

In [53] it was shown that reducing along the U(1) φ1 angle yields a supersymmetric

Type IIA background of the following form,3

ds2 =
√
Ac2

1ds
2(AdS4) + ds2

6,

B = 0, e2Φ =
A3/2R3

l3p
(5.8)

where

ds2
6 =

R3

lp

√
A
[
c2

4dµ
2+c2

3dθ
2
1 +c2

4c
2
5 sin2 µ(σ2

1 +σ2
2 +cos2 µσ2

3)+c2
2c

2
3 sin2 θ1(dτ−n1 sin2 µσ3)2

]
,

(5.9)

and A = c2
2n

2
2 cos2 θ1 + c2

3 sin2 θ1.

3using the notation in eq. (5.1) above.
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The RR sector contains the F4 = −3c31
R dVol(AdS4) flux proportional to the differential

volume on AdS4, while the reduction produces an additional C1 and F2:

C1 = c2
2n2lp

cos θ1

A
(dτ − n1 sin2 µσ3),

F2 =
c2

2n2lp
A2

[
n1 sinµ

(
A cos θ1(sinµdΩ

(2)
2 − 2 cosµdµ ∧ (cos θ2dφ2 + dψ))

+W sinµ(dΩ
(2)
2 − dψ ∧ dθ1)

)
+Wdτ ∧ dθ1

]
. (5.10)

5.3.1 NATD(⇓φ1 (AdS4 ×M1,1,1))

Now we move on to present the Non-Abelian T-dual with respect to an SU(2) isometry

given in the σ’s of eq. (5.9) above.

d̂s
2

=
√
Ac2

1ds
2(AdS4) +

R3

lp

√
A
[
c2

4dµ
2 + c2

3dθ
2
1 +

c2
2c

2
3c

4
4c

2
5 sin2 θ1

Q
dτ2
]

+ d̂s
2

3,

d̂s
2

3 =
m2

2 sin4 µ

α′l2p

(
c2

4c
2
5R3α′3

√
Al3p csc6 µ sec2 µ(cosχdρ− ρ sinχdχ)2

V

+

(
c2

4c
2
5QR6 cosµ(sinχdρ+ ρ cosχdχ) +m2

2ρ
2α′2l2p csc4 µ secµ sinχdρ

)
2

∆V

+
c2

4c
2
5ρ

2R6 sec2 µ sin2 χ
(
Q cos2 µdξ − c2

2c
2
3n1 sin2 θ1dτ

)
2

∆Q

)
,

B =

√
Ac2

2c
2
3c

4
4c

4
5m2n1ρR9 sin2 θ1 sin6 µ sinχdτ ∧ dχ

∆α′2l3p

+
c2

2c
2
3m2n1R3 sin2 θ1 sin2 µ cosχ

(
Ac4

4c
4
5R6 sin4 µ+m2

2ρ
2α′2l2p

)
dρ ∧ dτ

√
A∆α′2l3p

+
m3

2ρ
3R3 sin2 µ sin3 χ

(
Ac2

4c
2
5 +Q cos2 µ cot2 χ

)
dξ ∧ dχ

√
A∆lp

+
m3

2ρ
2R3 sin2 µ sin2 χ cosχ

(
Q cos2 µ−Ac2

4c
2
5

)
dξ ∧ dρ

√
A∆lp

,

e−2Φ =
l3p

R3A3/2
∆̃, (5.11)

with ∆ = R3 sin2 µ

α′3
√
Al3p

(
c2

4c
2
5m

2
2ρ

2α′2Al2p sin2 χ+Q cos2 µ
(
c4

4c
4
5R6A sin4 µ+m2

2ρ
2α′2l2p cos2 χ

))
,

Q = c2
4c

2
5A + c2

2c
2
3n

2
1 sin2 θ1 tan2 µ, V = c2

4c
2
5QR6 + m2

2ρ
2α′2l2p csc4 µ sec2 µ sin2 χ, and W =

A sin θ1 +A′ cos θ1. This NATD generates singularities at µ = 0 and µ = π
2 , with ρ = 0, or

χ = 0.

The RR sector fields take the following form,

F1 =
c2

2m2n1n2

A
√
α′

(
1

A
ρlp sin2 µ cosχWdθ1

− cos θ1lp sin2 µ cosχdρ+ ρ cos θ1lp sin2 µ sinχdχ− ρ cos θ1lp sinµ cosµ cosχdµ

)
,
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F3 =
(3c2c

2
3c

4
4c

3
5R6

c1lpα′3/2
cosµ sin3 µ sin θ1dµ+

c2
2c

2
4c

2
5m

2
2n2lp

√
α′

AQ
Wρdρ

)
∧ dθ1 ∧ dτ

+
c2

2m
4
2n1n2R3

√
α′A3/2∆M

cos θ1 sin4 µ cosχ sinχ
(

cos2 µQdξ − c2
2c

2
3n1 sin2 θ1dτ

)
∧ dρ ∧ dχ

+
c2

2c
2
4c

2
5m

2
2n1n2ρR3W sin4 µ sinχ

A3/2∆α′5/2l2p

(
sinχ

(
c2

4c
2
5QR6 sin4 µ cos2 µ+m2

2ρ
2α′2l2p

)
dρ

+ c2
4c

2
5ρQR6 sin4 µ cos2 µ cosχdχ

)
∧ dξ ∧ dθ1

− c4
2c

2
3c

2
4c

2
5m

2
2n

2
1n2ρR3W sin2 θ1 sin2 µ sinχ

A3/2∆Qα′5/2l2p

(
m2

2ρ
2α′2l2p tan2 µ sinχdρ

+c2
4c

2
5QR6 sin6 µ (ρ cosχdχ+ sinχdρ)

)
∧ dτ ∧ dθ1

+
c2

2c
2
4c

2
5m

2
2n1n2ρR3 cos θ1 sin3 µ cosµ√

A∆α′5/2l2p

(
c2

4c
2
5ρQR6 sin4 µ cos2 µ sin 2χdχ

+2 sin2 χ
(
c2

4c
2
5QR6 sin4 µ cos2 µ+m2

2ρ
2α′2l2p

)
dρ
)
∧ dµ ∧ dξ

− 2c4
2c

2
3m

2
2n

2
1n2ρR3 sin2 θ1 cos θ1 sin3 µ cosµ cosχ

A3/2∆α′5/2l2p

(
Ac4

4c
4
5ρR6 sin4 µ sinχdχ

+ cosχ
(
Ac4

4c
4
5R6 sin4 µ+m2

2ρ
2α′2l2p

)
dρ
)
∧ dµ ∧ dτ,

F5 =
c3

1

Rα′3/2
dVol(AdS4) ∧

[
− R6

l2p
c1c

3
2c

2
3c5n

2
1n2 sin 2θ2 sin4 µdθ1 + 3m2

2α
′2ρdρ

+
R6

l2p

c1c2c
4
4c

3
5n2

c2
3

cosµ sin3 µ csc θ1Wdµ

]
+
c2c

4
4c

3
5m

3
2R9 cosµ sin5 µ sinχ

c1l2pα
′3/2
√
A∆

(
c2

4c
2
5A sin θ1

(
3c2

3 sinχdθ1 ∧ dτ ∧ dξ ∧ [dµ∧

(cosχdρ+ ρ sinχdχ) + c1c2c5n2 cosµ sinµdρ ∧ dχ]
)

+ c2
3 sin θ1

(
3 cos2 µ cosχQdθ1 ∧ dµ ∧ ξ ∧ dτ ∧ (sinχdρ+ ρ cosχdχ)

+ c1c
3
2c5n

2
1n2 sin 2θ1 sin2 µdµ ∧ dξ ∧ dρ ∧ dτ ∧ dχ

)
+ c1c2c

2
4c

3
5n2 cos θ1 cosµ sinµA′dθ1 ∧ dξ ∧ dρ ∧ dτ ∧ dχ

)
. (5.12)

6 Backgrounds from AdS4 ×Q1,1,1

The Q(n1, n2, n3) spaces (Equation 9.2.12 in Duff-Nilsson-Pope) [50] are defined as:

ds2 = c2

(
dτ +

3∑
i=1

ni cos θidφi

)2

+

3∑
i=1

1

Λ1
(dθ2

i + sin2 θidφ
2
i ). (6.1)

The n1 = n2 = n3 = 1 is N = 2 supersymmetric. Aspects of the supersymmetry were first

presented in [54]. In [55] the field theory dual to AdS4×Q1,1,1/Zk was studied and various

gauge invariant chiral operators were matched geometrically.
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The 11D metric on AdS4 ×Q1,1,1 is defined such that

ds2 = t21ds
2(AdS4) + R2ds2(Q1,1,1), (6.2)

where we define, t21 = 3
2Λ , t

2
2 = 3

4Λ , t
2
3 = 3

8Λ , and

ds2
Q1,1,1 = t23(dτ −A)2 + t22(ds2(Ω

(1)
2 ) + ds2(Ω

(2)
2 ) + ds2(Ω

(3)
2 )), (6.3)

where A = (α−cos θ1)dφ1+(β−cos θ2)dφ2+(γ−cos θ3)dφ3, and the ds2(Ω
(i)
2 ) are 2-spheres

with coordinates θi, φi. The 11D Ricci scalar is R = − Λ
L2 , and the F4 flux is normalized

according to F4 =
3t31
R dVol(AdS4). The reduction to IIA along the τ angle yields the metric

of the form,

ds2 =
Rt3
lp

[
t21ds

2(AdS4) + t22R2(ds2(Ω
(i)
2 ))

]
,

e2Φ =
R3t33
l3p

, C1 = lpA, (6.4)

along with the same F4 carried through the reduction. The total Ricci scalar vanishes for

this background, R = 0.

The NATD of the background in eq. (6.4) when dualizing along the (SU(2)/U(1))3

isometry was found in [24]. Here we present the full results for dualizing along just one

of the S2’s, i.e. one (SU(2)/U(1)) isometry. Furthermore, we pay attention to the factors

of R, the 11D radius, lp and α′ throughout the dualization. We review general aspects of

NATD with coset spaces in appendix A.2 and refer the reader there for more details. We

find that,

dŝ2 =
t21t3R

lp
ds2(AdS4) +

(
lpα
′2m2

2

R3t22t3 cos2 χ
+

R3t22t3 tanχ2

lpρ2

)
dρ2

+
R3t22t3
lp

[
ds2(Ω

(1)
2 ) + ds2(Ω

(2)
2 ) + dχ2 +

2 tanχ

ρ
dρdχ

]
,

B̂ = 0, e−Φ̂ =
lpm2t2ρ cosχ

t3
√
α′

. (6.5)

This background has Einstein frame Ricci scalar, RE =
R6t21t

4
2t

2
3+α′2l2pm

2
2ρ

2(7t21−12t22)

2α′7/4R3l
3/2
p m

5/2
2 ρ5/2t21t

5/2
2

√
t3 cos

5
2 χ

.

The RR sector has all fields turned on,

F̂1 = − lp√
α′
m2(sinχdρ+ ρ cosχdχ),

F̂3 = lp
√
α′m2

2ρdρ ∧ (dΩ
(1)
2 + dΩ

(2)
2 ),

F̂5 = −3m2t
3
1

√
α′ρ

R
dVol(AdS4) ∧ dρ

− 3m2t
6
2t3R6

t1lp
√
α′

(sinχdρ+ ρ cosχdχ) ∧ dΩ
(1)
2 ∧ dΩ

(2)
2 .

This background has singularities at ρ = 0 and χ = 0, both generated by the NATD.
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6.1 Alternate reduction: ⇓φi (AdS4 ×Q1,1,1)

In this section, we perform a different reduction to Type IIA on the AdS4 × Q1,1,1 back-

ground, in such a way that two SU(2) isometries are manifest. In order to see these

isometries, we must set the parameters appearing in the Kähler form, α, β, γ, to zero. We

must also make use of the relations between the ti’s such that t1 = 2t3, and t2 =
√

2t3.

(NB: the equations of motion are satisfied for any value of t3.)

Here we will present explicitly the reduction along φ3, however from the symmetry of

Q1,1,1 it is evident that reducing along any of the φi will yield backgrounds of the same

general form.

ds2 = e
2
3

Φ
[
4t3ds

2(AdS4) + R22t23
(
dΩ

(1)
2 + dΩ

(2)
2 + dθ2

3

+
sin2 θ3

A
(cos θ1dφ1 + cos θ2dφ2 + dψ)2

)]
,

B2 = 0, e2Φ =
t33R3A3/2

2
√

2l3p
, (6.6)

where A = 3− cos 2θ3. We can rewrite the metric above in terms of the σi,

ds2 = e
2
3

Φ
[
4t3ds

2(AdS4) + R22t23
(
dΩ

(1)
2 + σ2

1 + σ2
2 + dθ2

3

+
2 sin2 θ3

A
(cos θ1dφ1 + σ3)2

)]
. (6.7)

The RR sector contains,

C1 =
lp2 cos θ3

A
(cos θ1dφ1 + cos θ2dφ2 + dψ), F2 = dC1

F4 = −24t33
R

dΩAdS4 . (6.8)

6.1.1 NATD(⇓φi (AdS4 ×Q1,1,1))

Now we will present the results for an NATD on the Type IIA background found in the

previous section. The NATD background we will present will be along the (θ2, φ2, ψ) SU(2)

isometry, however the results from the (θ1, φ2, ψ) SU(2) isometry can easily be read off by

replacing (θ1 → θ2, φ1 → φ2). It is given by,

d̂s
2

= e
2
3

Φ
[
4t3ds

2(AdS4) + R22t23
(
dΩ

(1)
2 + dθ2

3

)]
+ d̂s

2

3,

d̂s
2

3 =
m2

2

l2pα
′

[(
cosχ

(
2AR6t63 +m2

2ρ
2α′2l2p

)
dρ− 2AρR6t63 sinχdχ

)
2

∆Ξ

+

√
2
√
AR3t33α

′3l3p(sinχdρ+ ρ cosχdχ)2

Ξ

+
4ρ2R6t63 sin2 θ3 sin2 χ (cos θ1dφ1 + dξ) 2

∆

]
,

B̂2 =

√
2t33m2R3

lp∆
√
A

[
m2

2ρ
2
(
ρ
(
A sin2 χ+ 2 sin2 θ3 cos2 χ

)
dΩ̂2 + 2 sin2 χ cosχdρ ∧ dξ

)
+

2 sin2 θ3 cos θ1

α′2l2p

(
2AρR6t63 sinχdχ− cosχdρ

(
2AR6t63 +m2

2ρ
2α′2l2p

) )
∧ dφ1

]
,
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e−2Φ̂ =
2
√

2l3p

R3t33A
3/2

∆, (6.9)

∆ =

√
2t33R3

√
Alpα′3

(
4t63R6A sin2 θ3 + l2pm

2
2α
′2ρ2(2 cos2 χ sin2 θ3 +A sin2 χ)

)
,

and Ξ = 2AR6t63 +m2
2ρ

2α′2l2p cos2 χ. The RR sector contains the following fluxes,

F̂1 =
2m2lp (A cos θ3 cosχdρ− ρ (cosχ (A sin θ3 + cos θ3A

′) dθ3 +A cos θ3 sinχdχ))

A2
√
α′

,

F̂3 =
2

α′3/2lp

(
m2

2ρα
′2 cos θ3l

2
pdρ

A
− 6R6t63 sin θ3dθ3

)
∧ dΩ

(1)
2

+
2
√

2m4
2ρ

3R3t33 sin2 θ3 cos θ3 sin 2χ

A3/2∆
√
α′

(dξ − cos θ1dφ1) ∧ dρ ∧ dχ

− 2
√

2m2
2ρR3t33 sinχ (A sin θ3 + cos θ3A

′)

A3/2∆α′5/2l2p
(dξ + cos θ1dφ1) ∧ dθ3∧(

4ρR6t63 sin2 θ3 cosχdχ+ sinχ
(
m2

2ρ
2α′2l2p + 4R6t63 sin2 θ3

)
dρ

)
,

F̂5 = 8t33

[
4R5t63 sin θ3 cos θ3dθ3

α′3/2l2p
− 3m2

2ρ
√
α′dρ

R

]
∧ dΩAdS4

− 4
√

2m3
2ρ

2R9t93 sin θ3 sinχ√
A∆α′3/2l2p

[
3ρ
(
A sin2 χ+ 2 sin2 θ3 cos2 χ

)
dχ ∧ dθ3

− 3 sin 2χdρ ∧ dθ3 − 2 sin θ3 cos θ3dρ ∧ dχ

]
∧ dξ ∧ dΩ

(1)
2 (6.10)

A simple check of the zero’s of ∆ for this background reveals that θ3 = 0 with ρ = 0 or

χ = 0 are the singular points (generated by the NATD). We have also checked this by

examining the Einstein frame Ricci scalar.

7 Backgrounds from AdS4 ×N(1, 1) with less supersymmetry

The N(k, l) spaces are SU(3)/U(1) cosets where the U(1) acts as

diag(exp(ikθ), exp(ilθ), exp(−i(k+ l)θ)). The particular case of N(1, 1) is supersymmetric

and the metric can be viewed as an SO(3) bundle over CP2,

ds2 = dµ2 +
1

4
sin2 µ(σ2

1 + σ2
2 + cos2 µσ2

3)

+ λ2

[
(Σ1 − cosµσ1)2 + (Σ2 − cosµσ2)2 +

(
Σ3 −

1

2
(1 + cos2 µ)σ3

)2
]
, (7.1)

with R = − 27
5L2 . There are two values of λ yielding supersymmetric solutions, λ2 = 1/2

corresponds to N = 3 and λ2 = 1/10 corresponds to N = 1 susy. In this section we will

focus on the more supersymmetric version of the background but an analogous treatment

can be applied to the less supersymmetric case. We expect a similar situation in the case
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of the squashed S7 which also preserves less supersymmetry compared to the round sphere

background. We will not pursue this direction here but it is certainly an interesting one.

In this section we consider the metric on AdS4×N(1, 1) with λ2 = 1
2 , which corresponds

to the case of N = 3 supersymmetry. There are several U(1) angles with which one can

perform the reduction to IIA. We have examined all of the possible reductions. The one

that leads to a tractable solution is the U(1) isometry given by the linear combination of

ψ1 + ψ2. We label α to be the coordinate corresponding to ψ1 − ψ2.

The reduced background is given by,

ds2 = e
2
3

Φ

[
1

2
ds2(AdS4) + R2

(
dµ2 +

1

4
sin2 µds2(Ω

(2)
2 )+

+
1

2

(
(s2 − cosµdθ2)2 + (s1 − cosµ sin θ2dφ2)2

)
+

2

Z
cosµ(s3 − cos θ2dφ2)2

)]
,

B2 = 0, e2Φ =
R3 sin3 µZ3/2

512l3p
(7.2)

in which we have recovered an SU(2) isometry in (θ1, φ1, α), characterised by the Maurer-

Cartan forms si. We also define Z = 3 + cos 2µ. The RR fluxes are given by,

C1 =
lp
Z

((−5 + cos 2µ)dα− 8 cos θ1dφ1 + 4 cos θ2 sin2 µdφ2), F2 = dC1

F4 = − 3

2
√

2R
dΩAdS4 . (7.3)

7.1 NATD(⇓β (AdS4 ×N(1, 1)))

In this section, we present the results of a Non-Abelian T-duality applied to the SU(2)

isometry in eq. (7.2) above. This background is somewhat unique compared to the other

backgrounds presented in this paper and other NATD backgrounds presented thus far in the

literature. It is unique in the sense that there is mixing between the spectator coordinates

(θ2, φ2) with the Maurer Cartan forms, s1, s2. Mixing terms with s3 have been fairly

common (ex. the ABJM, Klebanov Witten backgrounds), however, the non-symmetric

mixing with s1, s2 leads to a rich Type IIB NATD background. An interesting consequence

of this mixing is the breaking of the U(1) isometry normally found in the ξ coordinate

after NATD.

d̂s
2

= e
2
3

Φ

[
1

2
ds2(AdS4) + R2

(
dµ2 +

1

4
sin2 µds2(Ω

(2)
2 )

)]
+ d̂s

2

3,

d̂s
2

3 =
m2

2R6 sin2 µ

64∆α′l2p

[
cos2 µρ2 (cosµ sin ξ cosχdθ2 −Gdφ2 + sinχdξ) 2

+
1

4K

(
ρK (cosµ (sin θ2 sin ξdφ2 − cos ξdθ2) + dχ)− 2 sin2 µ sinχ cosχdρ

)
2
]

+
16m2

2

√
Zα′2lp cscµ

R3K
dρ2,
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B̂2 =
m2R3 sinµ

1024∆
√
Zα′2l3p

[(
HρR6Z sin2 µ cos3 µdθ2 −GρR6Z sin2 µ cos2 µdχ

+ JR6Z sin2 µ cos2 µdρ
)
∧ dφ2 + 64m2

2ρ
2α′2l2p

(
KdΩ̂2

−
(
M cosµdφ2 + sin2 µ sinχ sin 2χdξ + Z cosµ sin ξ sinχdθ2

)
∧ dρ

)
+ R6Z cos3 µ

(
ρ sin2 µ cos ξ sinχdξ ∧ dθ2 + sin2 µ sin ξ sinχdρ ∧ dθ2

+ ρ sin2 µ sin ξ cosχdχ ∧ dθ2 − ρ sin θ2 sin2 µ sin ξ sinχdξ ∧ dφ2

)]
,

e−2Φ̂ =
512l3p

R3 sin3 µZ3/2
∆, (7.4)

∆ =
R3 sinµ

1024l3p
√
Z

(
R6 cos2 µ sin2 µZ + 64l2pα

′2m2
2ρ

2(4 cos2 µ cos2 χ+ sin2 χZ)
)
.

To make the presentation of the background slightly more succinct we have had to define

a number of functions,

K = 4 cos2 µ cos2 χ+ Z sin2 χ,

G = cos θ2 sinχ− sin θ2 cosµ cos ξ cosχ,

H = cos θ2 cos ξ sinχ− sin θ2 cosµ cosχ,

J = sin θ2 cosµ cos ξ sinχ+ cos θ2 cosχ,

M = 4 cos θ2 cosµ cosχ+ Z sin θ2 cos ξ sinχ,

N = sin2 µ sin2 χ+ 2 cos2 µ,

V = 64m2
2ρ

2α′2l2p sin2 χ+ R6 sin2 µ cos2 µ,

X = R9 sin5 µ cos2 µ cos2 χ− 512∆
√
Zα′3l3p. (7.5)

The reduction to Type IIA along ψ1 +ψ2 generates a singularity at µ = 0, while the NATD

adds singular points at µ = π
2 with ρ = 0 or χ = 0 to the dual background.

The dual RR sector can be written as,

F̂1 =
8m2lp

KZ2
√
α′

(KρZ sinχdχ− 2 cosχ (2Kρ sinµ cosµdµ

+Z
(
sin2 µ sin2 χ+ 2 cos2 µ

)
dρ
))
,

F̂3 =
R9m2

2ρ
2 cos3 µ sin4 µ cosχ

32Z3/2∆l2pα
′5/2

[
dµ ∧ dχ ∧

(
Gdφ2 − cosµ cosχ sin ξdθ2

)
+ sinχdµ ∧ dξ ∧

(
dχ− cosµ cos ξdθ2 + cosµ sin ξ sin θ2dφ2

)]
+
m2

2Nρ cos3 µ sin2 µ sinχ cosχR9

64
√
Z∆Kl2pα

′5/2
dξ ∧ dρ ∧

(
sinµ cos ξdθ2 − sin ξ sin θ2dφ2

)
+
m2

2R9ρ2 cos3 µ sin3 µ sin2 χ

128
√
Z∆l2pα

′5/2
dξ ∧ dχ ∧

(
− cos ξdθ2 + sin ξ sin θ2dφ2

)
+
m2

2R3ρ cosµ sinµ

128
√
Z∆l2pα

′5/2
dχ ∧ dθ2 ∧

(
R6Hρ cos2 µ sin2 µ sinχdφ2 −V sin ξdρ

)
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− R3 cosµ sinµ

128Z3/2∆l2pα
′5/2

[
4R3 sin2 µ

(
HR3ρ2 cosχ sinµm2

2 cos3 µ

+3Z3/2∆ sin θ2lpα
′
)

dµ ∧ dθ2 ∧ dφ2

− ρm2
2

(
256ρ2 cosµ cosχ cos θ2 sinχl2pm

2
2α
′2 + VZ cos ξ sin θ2

)
dρ ∧ dχ ∧ dφ2

]
+

2ρ3 cos2 µ cosχ sinµ sinχm4
2dξ ∧ dρ ∧ dχR3

Z3/2∆
√
α′

− ρm2
2

64Z3/2∆Kl2pα
′5/2

(
1

4
R9Z cos2 µ sin3 µ

(
−Z sin2 µ sin2 χ sin θ2

4 cosµ cosχ
(
HN− cosµ cosχ sin2 µ sin θ2

))
−16R3ρ2K2 sin3 µ sin θ2l

2
pm

2
2α
′2) dρ ∧ dθ2 ∧ dφ2

+
m2

2Xρ sinχ

16Z3/2∆Kl2pα
′5/2 dµ ∧ dρ ∧

(
cos2 µ cosχ sinµ sin ξdθ2 −Gdφ2 + sinχdξ

)
,

F̂5 =
m3

2ρ
2R9 sin3 µ cosµ

256∆
√
Zα′3/2l2p

[(
−3

2
K sinµdµ+ cosµ

(
sin2 µ− 2 cos2 µ

)
dρ

)
∧ dΩ̂2

+ 3 sin3 µ sin2 χ cosχdµ ∧ dξ ∧ dρ

]
∧ dΩ

(2)
2

+

(
3m2

2ρ
√
α′dρ

2
√

2R
−

R5 sinµ cosµ
(
sin2 µ− 2 cos2 µ

)
128
√

2α′3/2l2p
dµ

)
∧ dΩAdS4 . (7.6)

8 Dual CFT central charge

As a first step into the interpretation of the new backgrounds we produce in this manuscript

we perform an analysis of the central charge of the dual field theories. In order to compute

the dual field theory central charge, we first consider the quantized Page charges [56, 57],

defined by

QM2 =
1

2κ2
11TM2

∫
Σ7

?F4 = M2, (8.1)

QDp =
1

2κ2
10TDp

∫
Σ8−p

(∑
i

Fi
)
∧ e−B2 = NDp, (8.2)

where κ2
11 = (2π)8l9p, κ

2
10 = (2π)7α′4 and the brane tensions are TM2 = 1

(2π)2l3p
, and

TDp = 1

(2π)pα′
p+1
2

. We will present the general results of the Page charges and central charge

for a few sample backgrounds considered in this manuscript. In particular, we discuss the

importance of the factors of the 11d radius R, and their role in the N scaling of the central

charge. Our method for computing the central charge is based on [58], as adjusted and

generalized in [39]. The main modifications take into consideration a potential dependence

on the coordinates of the internal manifold perpendicular to the field theory directions. A

generic string frame metric in type II string theory, dual to a QFT in (d + 1)-dimensions

is defined to have the following form,

ds2 = adz2
1,d + abdr2 + R2gijdθ

idθj . (8.3)
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As in [39], we define the modified internal volume to be,

V̂int =

∫
d~θ
√
e−4Φ det[gint]ad, (8.4)

so that the function Ĥ is in general given by,

Ĥ = V̂ 2
int. (8.5)

Then, the central charge for a QFT in (d+ 1) spacetime dimensions is defined to be [58]:

c = dd
bd/2Ĥ(2d+1)/2

GN (Ĥ ′)d
. (8.6)

The GN factor is needed to cancel the length dimensions in Ĥ. We will use G11 = l9p, and

G10 = l8s = α′4. In our case of AdS4, the functions are,

a =
r2

R2
f(θi), b =

R4

r4
, d = 2. (8.7)

In the case of 11 spacetime dimensions, we obtain V̂int ∼ R9, Ĥ ∼ R18r3, therefore, c ∼ L9

l9p
.

Due to our choice of Ansatz, eq. (2.1), the relevant objects are always M2 branes, whose

normalization yields a scaling relation, R6 ∼ l6pNM2, which means c ∼ N
3/2
M2 , as known

previously in [4], for example. In all of the reductions to Type IIA considered in this paper

the F4 flux comes through the reduction unaffected and an F2 = dC(1) flux is generated.

The normalization of the D2 branes leads to a relation, R6 ∼ lpα′5/2ND2. The ‘raw’ central

charge after the reduction now scales like, cIIA ∼ R9

lpα′4
, therefore cIIA ∼

√
lp

α′1/4
N

3/2
D2 . We also

note the presence of D6 branes in the Type IIA backgrounds, however they are independent

of R and instead are scaled with factors of lp only, suggesting they are topological charges.

In the case of ABJM, the factor of k present in F2 has the field theory interpretation as

the level number of the dual gauge theory.

The relevant objects to the central charge after the NATD are the D5 branes, as they

always inherit a term with the R6 scaling factor. As observed previously in [37] for the

ABJM background, we see that the effect of NATD is to preserve the N3/2 scaling, but to

change the numerical coefficient of the central charge.

After the NATD we wish to constrain the range of the dual coordinate ρ, so that we

may compute the internal Volume, V̂int. Following the prescription first hinted at in [32],

and further discussed in [37, 39], we compute the periodic quantity b0 defined by,

b0 =
1

4π2α′

∮
Σ2

B̂2 ⊂ [0, 1]. (8.8)

The relevant two-cycle is,

Σ2 = [χ, ξ]. (8.9)
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In each case we restrict to a submanifold, which we specify below:

Background Submanifold

NATD(⇓τ (AdS4 × S7/Zk)) α = 0, ρ fixed

NATD(⇓ψ2 (AdS4 × S7)) µ = 0

NATD(⇓τ (AdS4 ×M1,1,1)) µ = 0

NATD(⇓φ3 (AdS4 ×Q1,1,1)) θ3 = 0, ρ fixed

NATD(⇓β (AdS4 ×N(1, 1)) µ = 0, ρ fixed

We should point out that in all of these cases the cycle is placed on a singularity, which

could be problematic. However, the strategy still leads to reasonable results and was also

observed in the case of NATD of AdS5×S5 in [39]. Presumably in a full homology theory,

it would be possible to show independence of this procedure on position in the manifold,

but we leave that question to future investigations. For the remainder of this section we

assume the prescription can be trusted, and move on to compute,

b0 =
1

4π2α′

∮
Σ2

(α′ρ sinχ) =
ρ

π
⊂ [0, 1], (8.10)

where 0 ≤ χ ≤ π, 0 ≤ ξ ≤ 2π, and we have absorbed the m2 gauge fixing constant into

the definition of ρ. However, as discussed in [46], there is one NS-five brane every time ρ

crosses integer multiples of π. Therefore we take the range of ρ from 0 ≤ ρ ≤ (n + 1)π.

Next we compute H3 = dB̂,

H3 = α′ sinχdρ ∧ dξ ∧ dχ. (8.11)

Following [46], we normalize the NS flux to NNS5 using TNS5 = 1
(2π)5

,

QNS5 =
1

2κ2
10TNS5

∫
H3 = (n+ 1) = NNS5 (8.12)

We are now in a position to compute the Page charges and dual field theory central charge

after the NATD. The results are summarized in tables 1, 2, 3, 4, and 5 below for the

backgrounds with S7/Zk,4S7,M1,1,1, Q1,1,1, and N(1, 1), respectively. In the first column

we present the flux normalization result, obtained from eq. (8.1) and the corresponding

cycle used to integrate. The second column contains the ‘Raw’ central charge, which is

directly computed from eq. (8.6). The third and final column is the substitution of the

flux normalization into the ‘Raw’ central charge. In the cases where we have left some

of the numerical constants generalized, we also present the result with the values of these

constants replaced.

As noted in [37], NATD maps integer charges onto non-integer charges, due to a

violation of the condition, Tp−n = (2π)nTp on the D brane tensions. In fact, we see a

generic difference of π
2 between the D2 and D5 brane normalizations in these cases. In the

4A careful reader will notice a factor of 2 difference between our results for the central charge and what

was found in [37] for the ABJM background. This is due to the Jacobian factor when changing coordinates

from α→ 2ζ.
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Background
Page Charge

Cycle
‘Raw’ CC CC

AdS4 × S7/Zk
QM2 =

(
R
lp

)6 2λ62λ3
k2π2 = NM2

Σ7 = [α, θ1, φ1, θ2, φ2, ψ, τ ]

4λ62λ3π
4

3k2

(
R
lp

)9

√
2π7k

3λ32
√
λ3
N

3/2
M2

= 16
3

√
2π7kN

3/2
M2

⇓τ (AdS4 × S7/Zk)
QD2 = R6

lpα′5/2
2λ62λ3
kπ2 = ND2

Σ6 = [α, θ1, φ1, θ2, φ2, ψ]

2λ62λ3π
3

3k
R9

lpα′4

π6
√
k

3
√

2λ32
√
λ3

√
lp

α′1/4
N

3/2
D2

= 8
3

√
2π6
√
k

√
lp

α′1/4
N

3/2
D2

NATD(⇓τ (AdS4 × S7/Zk))
QD5 = R6

lpα′5/2
λ62λ3
kπ = ND5

Σ3 = [α, θ1, φ1]

m3
2π

5λ62λ3
18k

R9

lpα′4

m2
2π

6
√
k5

9
√

2λ32
√
λ3
N2
NS5N

3/2
D5

=
8
√

2m2
2π

6
√
k5

9 N2
NS5N

3/2
D5

Table 1. Results for AdS4 × S7/Zk and its supergravity duals.

case of AdS4×S7/Zk, we note, as in [37], that after the NATD, k is no longer a well-defined

level. We define a new level for the dual theory according to,

k5 =
1

2κ2
10TD5

∫
Σ3

(F̂3 − B̂2 ∧ F̂1) =
lp√
α′
m2

2π
3

2
kN2

NS5, (8.13)

where the cycle of integration is Σ3 = [ρ, θ1, φ1], and ρ is integrated over [0, (n+ 1)π]. This

leads to a N2
NS5 scaling5 in the central charge, which differs from the other cases. In the

cases without k, a factor of N3
NS5 arises from integration over ρ2 in V̂int.

Finally, we consider changes in the Page charges under large gauge transformations in

B2, particularly ∆B2 = nπα′ sinχdχ ∧ dξ. The Page charge associated to the D5 branes

is always either zero or independent of R on the cycle of interest. Therefore, we compute

∆QD3 using

∆QD3 = − 1

2κ2
10TD3

∫
Σ5

(
−∆B2 ∧ F̂3 +

1

2
∆B2 ∧∆B2 ∧ F̂1

)
, (8.14)

and Σ5 = Σ3 + [χ, ξ]. In all of the cases examined, we find the relation,

∆QD3 = nQD5. (8.15)

8.1 Dual CFT central charge for coset NATD

In this section, we present a proposal to investigate the effect of large gauge transformations

on cases where the NATD is performed on an SU(2)/U(1) coset isometry. The same

method used above in eq. (8.8) cannot be directly applied here, as there is no 2-cycle with

which to compute b0 and thus, restrict the range of the dual coordinates. We propose

5We are thankful to Niall Machpherson for pointing this out to us.
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Background
Page Charge

Cycle
‘Raw’ CC CC

AdS4 × S7 QM2 =
(

R
lp

)6
2
π2 = NM2

Σ7 = [µ, θ1, φ1, ψ1, θ2, φ2, ψ2]

32π4R9

3l9p

8
√

2
3 π7N

3/2
M2

⇓ψ2 (AdS4 × S7)
QD2 = R6

lpα′5/2
1
π2 = ND2

Σ6 = [µ, θ1, φ1, ψ1, θ2, φ2]

8π3

3
R9

lpα′4
8π6

3

√
lp

α′1/4
N

3/2
D2

NATD(⇓ψ2 (AdS4 × S7))
QD5 = R6

lpα′5/2
1

2π = ND5

Σ3 = [µ, θ2, φ2]

2m3
2π

5

9
R9

lpα′4
N3
NS5

4
√

2m3
2π

13/2

9

√
lp

α′1/4
N3
NS5N

3/2
D5

Table 2. Results for AdS4 × S7 and its supergravity duals.

Background
Page Charge

Cycle
‘Raw’ CC CC

AdS4 ×M1,1,1

QM2 =
(

R
lp

)6 3c2c33c
4
4c

3
5

c1π6 = NM2

Σ7 = [µ, θ1, φ1, θ2, φ2, ψ, τ ]

16c2
1c2c

2
3c

4
4c

3
5π

4
(

R
lp

)9

16π7c
7/2
1

3
√

3
√
c2c3c24c

3/2
5

N
3/2
M2

= 128π7

9
√

3
N

3/2
M2

⇓τ (AdS4 ×M1,1,1)

QD2 = R6

lpα′5/2
3c2c33c

4
4c

3
5

2c1π2 = ND2

Σ6 = [µ, θ1, φ1, θ2, φ2, ψ]

4c2
1c2c

2
3c

4
4c

3
5π

3 R9

lpα′4

√
2
3

8c
7/2
1 π6

3
√
c2c3c24c

3/2
5

√
lp

α′1/4
N

3/2
D2

=
√

2
3

64π6

9

√
lp

α′1/4
N

3/2
D2

NATD(⇓τ (AdS4 ×M1,1,1))

QD5 = R6

lpα′5/2
4c1π

3c2c23c
4
4c

3
5

= ND5

Σ3 = [µ, θ1, φ1]

c21c2c
3
3c

4
4c

3
5π

5

3
R9

lpα′4
N3
NS5

8c
7/2
1 π13/2

9
√

3
√
c2c3c44c

3/2
5

√
lp

α′1/4
N3
NS5N

3/2
D5

= 64π13/2

27
√

3

√
lp

α′1/4
N3
NS5N

3/2
D5

Table 3. Results for AdS4 ×M1,1,1 and its supergravity duals.
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Background
Page Charge

Cycle
‘Raw’ CC CC

AdS4 ×Q1,1,1

QM2 =
(

R
lp

)6 12t62t3
π2t1

= NM2

Σ7 = [µ, θ1, φ1, θ2, φ2, ψ, τ ]

64π4t21t
6
2t3

(
R
lp

)9

8π7t
7/2
1

3
√

3t32
√
t3
N

3/2
M2

= 32π7

3
√

3
N

3/2
M2

⇓φ3 (AdS4 ×Q1,1,1)

QD2 = R9

lpα′5/2
6t62t3
π2t1

= ND2

Σ6 = [θ3, θ1, φ1, θ2, φ2, ψ]

16π3t21t
6
2t3

R9

lpα′4

√
2
3

4π6t
7/2
1

3t32
√
t3

√
lp

α′1/4
N

3/2
D2

=
√

2
3

16π6

3

√
lp

α′1/4
N

3/2
D2

NATD(⇓φ3 (AdS4 ×Q1,1,1))

QD5 = R6

lpα′5/2
24t63
π = ND5

Σ3 = [θ3, θ1, φ1]

256m3
2t

9
3π

5

3
R9

lpα′4
N3
NS5

√
2
3

8π13/2m3
2

9

√
lp

α′1/4
N3
NS5N

3/2
D5

Table 4. Results for AdS4 ×Q1,1,1 and its supergravity duals.

Background
Page Charge

Cycle
‘Raw’ CC CC

AdS4 ×N(1, 1)

QM2 =
(

R
lp

)6
3

16π2 = NM2

Σ7 = [µ, α, β, θ1, φ1, θ2, φ2]

π4

2
√

2

(
R
lp

)9 √
2
3

16π7

3 N
3/2
M2

⇓β (AdS4 ×N(1, 1))

QD2 = R9

lpα′5/2
3

64π2 = ND2

Σ6 = [µ, α, θ1, φ1, θ2, φ2]

π3

16
√

2
R9

lpα′4

√
2
3

16π6

3

√
lp

α′1/4
N

3/2
D2

NATD(⇓β (AdS4 ×N(1, 1)))

QD5 = R6

lpα′5/2
3

128π = ND5

Σ3 = [µ, θ2, φ2]

m3
2π

5

192
√

2
R9

lpα′4
N3
NS5

16π13/2m3
2

9
√

3

√
lp

α′1/4
N3
NS5N

3/2
D5

Table 5. Results for AdS4 ×N(1, 1) and its supergravity duals.
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to introduce a nonzero B2 which is closed, and therefore does not affect the equations of

motion: B̃2 = α′dρ ∧ dχ. This is equivalent to a large gauge transformation on B2. We

compute b0,

b0 =
1

4π2α′

∫
ρoχo

B̃2 =
ρoχo

2
, (8.16)

where ρ and χ are integrated over [0, ρoπ] and [−χoπ, χoπ], respectively. Demanding b0 =

[0, 1] restricts the range of ρ and χ. Normally for polar coordinates, we would expect the

χ angle to take the range 0 ≤ χ ≤ 2π (or −π
2 ≤ χ ≤ π

2 ), however the modified internal

volume V̂int computed from eq. (8.4), restricts the range of χ to be −π
2 ≤ χ ≤

π
2 , due to a

factor of cosχ. Then we see that ρ would have to take the range 0 ≤ ρ ≤ 4π. Note that

this condition was different in the cases of SU(2) NATD.

Considering the case of the τ reduction of AdS4 × Q1,1,1 as an example, we compute

the Page charge for D3 branes,

F̂5 − B̃2 ∧ F̂3 = −3m2t
6
2t3

t1

R6

lp
√
α′

(sinχdρ+ ρ cosχdχ) ∧ dΩ
(1)
2 ∧ dΩ

(2)
2 . (8.17)

Integrating over the cycle containing ρ and the two 2-spheres, we obtain the normalization

condition,
1

2κ2
10TD3

∫
F̂5 − B̃2 ∧ F̂3 =

12m2t
6
2t3

t1π

R6

lpα′5/2
= ND3. (8.18)

After the NATD, we find that the central charge is,

c =
512m3

2t
2
1t

6
2t3π

5

3

R9

lpα′4
=

64m
3/2
2 t

7/2
1 π13/2

9
√

3t32
√
t3

√
lp

α′1/4
N

3/2
D3

=
256m

3/2
2 π13/2

9
√

3

√
lp

α′1/4
N

3/2
D3 . (8.19)

If we had instead integrated over the χ plus the two 2-spheres cycle, the final central charge

would be different by a factor of
√

2.

9 Discussion and conclusions

In this manuscript we have used Non-Abelian T-duality to produce new supergravity back-

grounds. We have focused on solutions that preserve an AdS4 factor. These solutions are

particularly relevant in the context of the AdS/CFT correspondence since they describe

strongly coupled conformal field theories in three dimensions. One of the prominent mem-

bers of the class we consider as a seed case is related to the ABJM field theory. Another

interesting example was provided by the N(1, 1) spaces, where the NATD apparently de-

stroyed all of the isometries, other than the isometries of AdS and a residual U(1) isometry.

We expect that these new backgrounds will ultimately enrich the number of entries in the

AdS/CFT dictionary.

We have only briefly mentioned the supersymmetry in the case of NATD(⇓τ (AdS4 ×
S7/Zk)), which we have argued preserves N = 2 supersymmetry. In the other cases, we
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propose that the reductions along the Hopf fibre coordinate, τ , preserve supersymmetry. In

light of the recent work [38] on supersymmetry and SU(2) NATD we argue that the NATD

backgrounds also preserved some fraction of supersymmetry. The main result in [38] shows

that, at least for backgrounds with Bianchi IX symmetry, supersymmetry is preserved

if the Killing spinors of the original background do not depend on the SU(2) isometry

directions. A more covariant way to re-state the independence of the Killing spinor on

certain coordinates is the Kosmann derivative; this is akin to the Lie derivative being the

covariant way of stating that the metric has some invariance. For the reduction along

U(1)’s other than the Hopf fiber we do not have a general geometric argument and relied

on some explicitly known cases. It would be interesting to systematically and explicitly

study the supersymmetry of the resulting backgrounds.

One interesting open problem would be to track, on the field theory side, the effects of

various NATD’s. In particular, the analysis we have presented of the holographic central

charges seems to point to marked differences when one considers reducing along the Hopf

fiber or along some other, susy preserving, U(1) direction. The implications for the dual

quiver field theories and its potential cascading phases are only hinted at in the gravity

side and it would be quite interesting to explore those phases.

Acknowledgments
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A Review of NATD

In this appendix we will briefly review the procedures for applying Non-abelian T-dualities

for backgrounds admitting SU(2) and SU(2)/U(1) isometries. The procedures are described

in more depth in [25] for SU(2) and [24] for SU(2)/U(1), as well as other coset isometries.

A.1 SU(2) isometries

We follow [25] in the generalized 3-step Büscher procedure and consider backgrounds with

an SU(2) isometry such that the metric can be written in the form of

ds2 = Gµν(x)dxµdxν + 2Gµi(x)dxµLi + gij(x)LiLj , (A.1)

where µ, ν = 1, . . . 7 and i, j = 1, 2, 3. The Li’s are the su(2) Maurer-Cartan forms

(Li± = −iTr(tig−1∂±g), with g an element of SU(2)). All of the Type IIA backgrounds
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considered in this paper have B2 = 0, so for simplicity we omit its contribution from the

general procedure. The Lagrangian density for the NS sector fields (omitting the dilaton

contribution) is given by,

L0 = QAB∂+X
A∂−X

B, (A.2)

where A,B = 1, . . . , 10 and

QAB =

 Qµν Qµi

Qiµ Eij

 , and ∂±X
A =

(
∂±X

µ, Li±
)
, (A.3)

with

Qµν = Gµν , Qµi = Gµi, Qiµ = Giµ, Eij = gij . (A.4)

We then gauge the SU(2) isometry by changing derivatives to covariant derivatives and

introduce gauge fields, A± according to ∂±g → D±g = ∂±g − A±g. The next step is to

add a Lagrange multiplier term to eq. (A.2) to ensure that the gauge fields have vanishing

field strength. The Lagrange multiplier term is given by,

− iTr(α′vF±), F± = ∂+A− − ∂−A+ − [A+, A−]. (A.5)

Since the dimension of SU(2) is three, we have introduced three new dynamical variables

in the form of the Lagrange multipliers, vi, so we must eliminate three of the variables by

making a gauge fixing choice. A natural choice is g = I, so that all of the Euler angles in

the SU(2) are zero and all three of the Lagrange multipliers become dual coordinates. The

last step is to integrate out the gauge fields to obtain the dual Lagrangian density,

L̂ = Q̂AB∂+X̂
A∂−X̂

B, (A.6)

where we can read off the dual components of Q̂AB from,

Q̂AB =

 Qµν −QµiM−1
ij Qjν QµjM

−1
ji

−M−1
ij Qjµ M−1

ij

 , and ∂±X̂
A =

(
∂±X

µ, ∂±v
i
)
. (A.7)

We have additionally defined:

Mij = Eij + fij , with fij = m2α
′ε k
ij vk. (A.8)

We can identify the dual metric and the generated B̂2 field as the symmetric and antisym-

metric components of ˆQAB, respectively. The transformation of the dilaton is given by

Φ̂ = Φ− 1

2
ln

(
detM

α′3

)
. (A.9)
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In order to transform the RR Fluxes, one must construct a bispinor out of the RR forms

and their Hodge duals, (in Type IIA):

P =
eΦ

2

5∑
n=0

/F 2n, (A.10)

where /F p = 1
p!Γµ1...µpF

µ1...µp
p . The dual fluxes simply arise from inverting Ω:

P̂ = P · Ω−1, (A.11)

where

Ω = (A0Γ1Γ2Γ3 +AaΓ
a)Γ11/

√
α′3, (A.12)

and

A0 =
1√

1 + ζ2
, Aa =

ζa√
1 + ζ2

. (A.13)

We also need to define ζa = κaiz
i with κaiκ

a
j = gij and zi = 1

detκ(bi + vi).

A.2 Coset spaces: SU(2)/U(1) isometry

Here we present a quick review of performing the dualization procedure on a background

with an SU(2)/U(1) isometry. A more complete description of generating the Non-Abelian

T-dual of a background with coset space isometries was first presented in [24]. We start

with a metric of the form of eq. (A.1), where µ, ν = 1, . . . 8 and i, j = 1, 2, and the Li’s

are replaced with L1 = dθ, L2 = sin θdφ. The procedure is essentially the same as in

appendix A.1 above, but we modify,

Eij = diag(gij , λ), (A.14)

where gij is 2-dimensional. Due to this, we must additionally gauge fix one of the three La-

grange multipliers. In all of the cases considered, we choose (v1 = 0, v2 = m2α
′ρ cosχ, v3 =

m2α
′ρ sinχ). After inverting Mij , we take λ→ 0 and construct the dual frames from

ê = κM−Tdv. (A.15)

B Review of supergravity EOM

In this appendix we will briefly review the 11 and 10D supergravity equations of motion,

presented in the convenient form of [25, 59]. The 11D supergravity action is given by [60],

S11D =
1

κ2
11

∫
M11

√
g

[
R− 1

2

(
F 2

4

4!
+ F4 ∧ F4 ∧ C3

)]
(B.1)

The 11D Einstein’s equations and Bianchi identities can be expressed as,

RAB =
1

12
(F 2

4 )AB −
1

6
gAB

1

4!
(F 2

4 )AB, (B.2)

d ? F4 =
1

2
F4 ∧ F4, dF4 = 0. (B.3)
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The action of massive Type IIA supergravity in string frame without sources is given by,

SIIA =
1

κ2

∫
M10

√
g

[
e−2Φ

(
R+ 4(∂Φ)2 − H2

12

)
− 1

2

(
F 2

0 +
F 2

2

2
+
F 2

4

4!

)]
−1

2

(
dC3 ∧ dC3 ∧B2 +

F0

3
dC3 ∧B3

2 +
F 2

0

20
B5

2

)
. (B.4)

In this case, the Bianchi identities are given by,

dF0 = 0, dF2 = F0H3, dF4 = H3 ∧ F2, (B.5)

which can be deduced from the definitions of the fluxes,

F0 = m, F2 = dC1 + F0B2, F4 = dC3 −H3 ∧ C1 +
F0

2
B2 ∧B2. (B.6)

The equations of motion that follow from varying (B.4) with respect to the metric are,

Rµν+2DµDνΦ =
1

4
H2
µν+e2Φ

[
1

2
(F 2

2 )µν +
1

12
(F 2

4 )µν −
1

4
gµν

(
F 2

0 +
1

2
F 2

2 +
1

4!
F 2

4

)]
, (B.7)

and the dilaton equation is,

R+ 4D2Φ− 4(∂Φ)2 − 1

12
H2 = 0. (B.8)

The action of Type IIB supergravity in string frame without sources is given by,

SIIB =
1

κ2

∫
M10

√
g

[
e−2Φ

(
R+ 4(∂Φ)2 − H2

12

)
− 1

2

(
F 2

1 +
F 2

3

3!
+

1

2

F 2
5

5!

)]
− 1

2
C4 ∧H ∧ dC2 (B.9)

The Bianchi identities are an additional constraint on the fluxes given by,

dH = 0, dF1 = 0, dF3 = H3 ∧ F1, dF5 = H ∧ F3. (B.10)

Here, the definition of the fluxes take the form,

H3 = dB2, F1 = dC0, F3 = dC2 − C0H3, F5 = dC4 −H ∧ C2. (B.11)

The equations of motion that follow from varying (B.9) with respect to the metric are,

Rµν+2DµDνΦ =
1

4
H2
µν+e

2Φ

[
1

2
(F 2

1 )µν+
1

4
(F 2

3 )µν+
1

96
(F 2

5 )µν−
1

4
gµν

(
F 2

1 +
1

3!
F 2

3

)]
(B.12)

and the dilaton equation is again given by,

R+ 4D2Φ− 4(∂Φ)2 − 1

12
H2 = 0. (B.13)
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