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ABSTRACT: We present a large class of new backgrounds that are solutions of type II
supergravity with a warped AdS, factor, non-trivial axion-dilaton, B-field, and three- and
five-form Ramond-Ramond fluxes. We obtain these solutions by applying non-Abelian
T-dualities with respect to SU(2) or SU(2)/U(1) isometries to reductions to 10d ITA of 11d
sugra solutions of the form AdS, x Y7, with Y7 = S7/Z;, 87, Mbb1 Qb1 and N(1,1).
The main class of reductions to ITA is along the Hopf fiber and leads to solutions of the
form AdS, x Kg, where K¢ is Kahler Einstein with Kg = CP3, 5% x CP?, 52 x §% x §2;
the first member of this class is dual to the ABJM field theory in the 't Hooft limit. We
also consider other less symmetric but susy preserving reductions along circles that are not
the Hopf fiber. In the case of N(1,1) we find an additional breaking of isometries in the
NAT-dual background. To initiate the study of some properties of the field theory dual,
we explicitly compute the central charge holographically.

KEYWORDS: Supergravity Models, AdS-CFT Correspondence

ARX1v EPRINT: 1511.05991

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP®. doi:10.1007/JHEP02(2016)061


https://core.ac.uk/display/188769558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lpandoz@umich.edu
mailto:vincent-rodgers@uiowa.edu
mailto:catherine.whiting@wits.ac.za
http://arxiv.org/abs/1511.05991
http://dx.doi.org/10.1007/JHEP02(2016)061

Contents
1 Introduction

2 Freund-Rubin seeds for solution generating techniques using non-Abelian

T-duality

Background from S7 /7
3.1 NATD({, (AdSy x S7/Z))

Background from AdS4 x S7
4.1 NATD({, (AdSs x S7))

Backgrounds from AdSy x M1
5.1 NATD({}, (AdSy x (ML)
5.2 NATD of SU(2)/U(1) isometry in |}, (AdSy x (M111))
5.3 Alternate reduction: |}, (AdSy x MLL1)
5.3.1 NATD({4, (AdSs x ML)

Backgrounds from AdS; x QU1:1
6.1 Alternate reduction: |4, (AdSs x Q1H1)
6.1.1 NATD(lly, (AdS; x QU11))

Backgrounds from AdS4 X N(1,1) with less supersymmetry
7.1 NATD({s (AdSs x N(1,1)))

Dual CFT central charge
8.1 Dual CFT central charge for coset NATD

Discussion and conclusions

Review of NATD
A1 SU(2) isometries
A.2 Coset spaces: SU(2)/U(1) isometry

Review of supergravity EOM

10
11
11
12

13
15
15

16
17

19
22

25

26
26
28

28




1 Introduction

The AdS/CFT correspondence [1] conjectures a complete equivalence between a field theory
and a string theory. This correspondence provides an explicit recipe to connect observable
quantities on both sides of the correspondence and it is particularly potent when the
field theory is conformal [2-4]. A central conceptual and intuitive role is played by the
geometerization of conformal invariance which on the gravity side is realized as the presence
of an AdS factor whose isometries coincide with the conformal group of the theory living
on the boundary.

More precisely, the conformal group of a field theory in d dimensions is SO(d,2) for
d > 2; this group is precisely the isometry group for AdS;y1. This relation has prompted
the search for solutions in type II supergravities and M-theory that contain AdS;,1 as
a space-time factor. Most of the effort has, naturally, been concentrated on searching
for solutions with an AdSs factor (see, for example, [5, 6] and [7]). There are, however,
strong efforts in other dimensions. Recent efforts include AdS7 [8]. In the context of
theories connected to massive ITA, this search can be extended to AdSg [9, 10] and more
recently to AdSs [11] and AdS, [12]. Another recent approach to the construction of gravity
duals to conformal backgrounds has been presented in [13-15]. There has also been recent
progress in the direct search for solutions with AdS411 factors; interesting examples are the
geometries interpolating between AdS7 and AdSjs presented in [16, 17] and further studied
and generalized in [18, 19].

Recently, there has been a revival of NATD [20-22] including its systematic extension
to the Ramond-Ramond sector [23, 24]. This resurrected symmetry has already been
used to generate solutions from various seed backgrounds in the context of the AdS/CFT
correspondence [25-47]. NATD is a powerful tool in the search for solutions because it
can be considered as a solution generating technique. Even more importantly, as shown in
for example [39], it leads to supersymmetric solutions with very few apparent isometries
other than those of AdS.! This makes NATD a unique technique which is able to probe
the space of solutions in directions that cannot be accessed by various general classification
approaches which are based on explicit symmetries.

The main goal of this paper is to further use T-duality and NATD to construct su-
pergravity backgrounds that contain an AdSy factor in the metric. In a very direct sense,
this manuscript is an extension of [39] which was devoted to solutions with an AdSs fac-
tor. There are various interesting applications for conformal field theories in d = 3. For
example, they have historically played an important role in our understanding of critical
phenomena through the ¢ expansion of the Wilson-Fisher fixed point. More formally and
recently, 3d conformal theories have helped clarify aspects of the M2 brane theory. We
hope that the backgrounds presented in this manuscript will add some interesting new
examples and motivate studies of the corresponding field theory duals which are arguably
conformal or superconformal field theories in 3d. The quintessential example in this class
is the ABJM field theory [48]; the NATD to the gravity background dual to the ABJM
theory has been discussed explicitly in [37].

'In this paper we present an example where the NATD destroys even more isometries than the previously
known examples.
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Figure 1. A schematic description of some properties of the supergravity solutions discussed in
this manuscript and their field theory duals.

We summarize our strategy and main results in figure 1. Namely, we generate various
families of 10d Type IIB solutions containing an AdS4 factor by first starting with a Freund-
Rubin type solution in 11d supergravity of the form AdS; x Y7 and subsequently reduce
the solution to IIA, which is followed by applying a non-Abelian T-duality to either an
SU(2) or an SU(2)/U(1) isometry. Generically, the final Type IIB backgrounds have all of
the RR fluxes turned on, with the exception of the very symmetric case of S7. Finally, we
compute the Page charges of these backgrounds and the central charge of the corresponding
dual field theories. We also investigate the change in the Page charges under large gauge
transformations in Bs.

The paper is organized as follows. In section 2 we sketch the procedure that we ap-
ply to generate the various explicit solutions in the rest of the paper. Sections 3, 4, 5, 6
and 7 correspond respectively to the application of our solution generating techniques to:
ST/ 7y, ST, ML QUL and N(1,1). In section 8, we discuss our recipe for computing
the central charge of the dual field theory holographically and present the results for one
representative background from each section. We also propose a method for determining
the ranges of the dual coordinates in backgrounds generated from NATD with coset space
isometries, where Bs is absent. We discuss some arguments for the preservation of su-
persymmetry in some of the new backgrounds and conclude in section 9. We relegate to
appendix A the rules for non-Abelian T-duality and appendix B the form of the 11d and
10d equations of motion as we used them to verify that the new backgrounds obtained in
the manuscript are solutions.

2 Freund-Rubin seeds for solution generating techniques using non-
Abelian T-duality

In this section we review a construction of solutions to 11-dimensional supergravity based
on the Freund-Rubin Ansatz [49]. Essentially every Sasaki-Einstein 7d manifold provides
a supersymmetric solution to 11d supergravity. A fairly complete description of solutions
of seven dimensional manifolds, providing Freund-Rubin solutions to 11d supegravity, was
cataloged in Duff-Nilsson-Pope [50]. The list includes further specification about those



which are supersymmetric and states what fraction of the supersymmetry is preserved. An
exhaustive list of Sasaki-Einstein seven-dimensional manifolds is presented in [51]. Here
we focus on a particular but wide set of solutions, hoping to elucidate some of the most
generic aspects for other AdS, solutions.

We start by considering Freund-Rubin type solutions to 11d supergravity,

ds® = ds*(AdSy) + ds*(Y7),
F = 3dQy, (2.1)

where ds% is an Einstein metric on Y7. In the case when Y7 is also Sasaki, the corresponding
solution is supersymmetric. In this manuscript we are particularly interested in solutions
that are supersymmetric. The metric ds? could also contain an asymptotically AdSs black
hole but we do not consider explicitly that case as it breaks supersymmetry. If the metric
on Y7 admits a U(1) isometry, which is always the case in the backgrounds we consider in
this paper, it can be written as

ds2 = a(y,)(dr + A)* + ds*(Ks), (2.2)

where A is a connection on Kg and the y, represent coordinates on Kg. Then we can
reduce the corresponding 11d solution to 10d Type ITA via the following rules:

ds?, = e‘gq’dsfo + e%q’(dT + C(I))Q,
Cls) = Clg* + By N dr. (2.3)

If one is concerned with the correct dimensional scalings while performing the reduction,
it is important to note that the 11d backgrounds have [, as the natural length scale.
Therefore the dilaton must pick up this scale to compensate for the factors of the 11d
radius, R, inherited from the a(y,). This can be seen in the examples provided below.

Once we arrive at a Type IIA supergravity background using the prescription in
eq. (2.3), we can further apply a Non-Abelian T-duality (NATD) to the corresponding
background, provided that the appropriate symmetries are present. We will find that there
are generically two cases where we can perform an NATD. In the first case there is a struc-
ture resembling an S% and in this case we apply the rules of NATD directly as in [23, 25].
In the second case we merely have one or more S? subspaces on which we may imple-
ment NATD by exploiting the coset structure of S? and following the prescriptions and
results of [24].

Before we begin the presentation of the backgrounds, let us first define some notational
conventions used, and clarify a few points about the NATD gauge fixing. In all of the
backgrounds presented in this paper, we choose a gauge fixing for NATD such that all three
of the Lagrange multipliers are kept as coordinates in the dual background, i.e. g = 1. We
will introduce them in terms of spherical polar coordinates, (6;, ¢;,¥) — (p, x,&). We have
also left arbitrary the gauge fixing constant that we label ms, which arises from v; — mov;.
We direct the reader to appendix A or [25] for more on gauge fixing in NATD. In section 8
we will use the fact that mo may be absorbed into the definition of p.



Note that we will adopt the following conventions for AdSy, dQ2aqs, and 2-spheres
throughout this document:

2 r 2 2 2 R? 2
ds“(AdSy) = ?(—d:co + dxi + dxs) + ﬁdr ,
?”2
dQaqs, = —?dr ANdxg N dxy A dzs,
ds2(Q)) = d6? + sin? 0;dg?, ds?(€2) = dx? + sin? xd¢?,
dQY) = sin 0;d0; A dep;, Sy = sin xdy A de. (2.4)

3 Background from S7/Z,
We begin our presentation with the background AdS, x S7/Zj, which is given by,
1
ds® = stz(AdS@ +ds*(S7 /7). (3.1)

The metric on S7/Zy is:

ds*(S" /) Zy) = A3 |da? + cos? %dsQ(le)) + sin? %dsQ(Qg))

)\2
+ sin? % cos? %(dl/] + cos By dpy — cos by dg)? | + k—g(dT + k2A)?,

A = cosady + A cos? % cos 01 do1 + Ap sin? % cos b dos. (3.2)

A3 = 7. The angle 7 parameterizes the U(1) fiber over CP3,

with Ay = 2, A = 3,

defined in the brackets of eq. (3.2) above. The ranges of the angles are 0 < «a, 01,60 < T,
0 < ¢1,02 <27, 0 < o < dm

Fy = —% dQAdS4-

After a reduction to Type IIA via 7, we recover the familiar AdS; x CP? background,
which we label |}, (AdSy x S7/Zj) to match our labeling conventions. In addition to the
metric, the supergravity background has a dilaton, and 4-form and 2-form field strengths
from the Ramond-Ramond (RR) sector,

333
2‘1’:%, F4:—%dQAdS4, Fy=lykdA. (3.3)
Here dQpq4g, is the volume form on AdS, and F5 is proportional to the Kéhler form on
CP3. This ITA background is dual to a supersymmetric field theory with A" = 6 susy in

3D; therefore the ITA background preserves the same number, 24, supercharges [48].

and 0 < 7 < 2% This geometry is supported by an

3.1 NATD({, (AdS4 x S7/Zy))

In this section, we perform an NATD along the (0, ¢1,%) directions defining an SU(2)
isometry. This NATD was performed in [37], however, the NATD there acted along the
(02, P2, x) SU(2) isometry. It is true that the two NATD backgrounds are related by a
simple map (in the notation of [37] it is ¢ — (4 7). Our results differ slightly, particularly

in the factors of k, due to the presence of the warp factor ¢~ 3% Jeft over from the reduction to



ITA, absent from [37]. Our choice here leads to a slightly different structure of singularities

in the resulting background.
ds = %ds (AdSy) + —=+— k:lp ( ds (Q57) + da )

# 2 12724 2 4 6 4¢ . 9
+ 4Ak2o/l2 [414 lymap dp® + 4\ )\3m2R cos* 2(cosxdp psin xdx)

+ MAZm3RE sin? ar cos? % (sm x (p 2 (d€ — cosBydgn)? + dp2)

+p? cos® xdx? + psin 2xdpdx) ] ,

. )\2 3 a2 0
B, = 5A3maR [sm o cos O (cosx (kagp a/2l2+>\4)\3R6 cos? )dp) A des

AAKkl, k2a’2(2
4 6 4« L Q
— A5 A2 3pR cos? 5 sin xdy — m2p sin (p@dx +4cos? 5 cos Xdp) A dE|,
; kl, \*
—2d D
=[] A 4
e (ge) A (3.4)

where we have additionally defined,
MAR® (9 55 44206 ;2 4@
= W <k Lym5p"a”O + AA3R sin” a cos 5), and
0= (sin2 v cos® x + 4 cos? % sin? X) , I'= (4k2m3p2al212 + A%A%Rﬁ sin? av cos? %) .

The RR sector contains the following field strengths:

- _k?’rLle ()\1 cos? S (psin xdx — cos xdp) + psin a cos xda)
Ve |
- MA3m3p?RY sin® v cos? € cos . .
Fy= 120302 Aka ’5/2l2 2 da N (cos O sin xdx A dgpo — ng)
)\1)\2)\3m2p3R3 sin® o cos? 5 cos Y p 0 sin v d p 0
AV p/\(cos o sin xdy A dog — 2)
AA3mpR? sin v cos? & sin? xT'
4Ak:20/5/2l% daNdp A (cos Ordps — d{)

Lo 3N \3R% sin® avdor 2
+ <k/\1m§p\/o7$1n2 —lpdp + =2 1ka, > A dQé ),

. MAZm3Rp? sin? 2 cos? < sin
F5 = 3 NN ,3?2% 2 [()\1)\3 sinadp — 3\2pOda) A dds

— 122 cos™ 5 2 gin? x cos xda A d€ A dp] A ngQ)

40 AMAZA3RP sin a cos? Sda 3mipVe dp
— afdags, N 32K/ SR . (3.5)



The Einstein frame Ricci scalar for this background is (after setting R = 1,1, = 1,0/ =
1,m2 = 1,k =1 for simplicity),

1
RE =
(40962 cos? § cos 2y + (2048p? — 1) cos o + 2 cos 2cr + cos 3o — 6144p? — 2)3
4096 23/* sec? % (— cos? % (4096p2 cos? % cos 2y + (2048,02 — 1) cos o + 2 cos 2«

+ cos 3o — 6144p% — 2))3/4 (65536p4(— cos & + cos 2o — 8)
—128p?(4 cos a + cos 2a — 21) cos® % cos 2x

—32p* cos* % (—209 cos o + 6 cos 2a + cos 3o — 16384 cos 2x + 266)
+ sin? %(16 cos a + cos 2a — 39) cos® %) ] , (3.6)

which has singularities when o = 7, or when a = 0 simultaneous with p = 0, or a = 0
simultaneous with y = 0. This can also be recognized, as in many examples of NATD, in
the vanishing of A, which is given by the det M (see eq. (A.8)). These singularities are
generated by the NATD, since the AdSy x S7/Z;, background and its reduction to Type
ITA are smooth. NATD generates singularities whenever the duality is performed along a
collapsing cycle, as in Abelian T-duality.

In [37] the Killing spinor of CP? was computed and shown to be dependent only on
a (¢ in their coordinates) and two constants. More precisely, [37] showed that there are
only 2 linearly independent Killing spinors on CP? that are independent of the SU(2)
angles (01, ¢1,1) in the required frame. Based on the demonstration given in [38], which
showed that supersymmetry is preserved when the Killing spinor of the original background
is independent of the isometry direction, we can conclude that this NATD background
preserves supersymmetry (at least N' =2 in 3d).

4 Background from AdS; x S”

In this section we consider a reduction to IIA along the o direction of the AdS; x S7

background, which we define as:

2 2 2
dSll = dSAdS4 + d8577

1 1
ds? = du® + 1 sin? puw? + Z)\2(Vi + cos pw;)?,
vi=0oi+ X,  wi =0 — Y,
3
F4 = —ﬁdVOI(AdS4), (4.1)

where o; and ¥; are left-invariant SU(2) Maurer Cartan 1-forms given by,
o1 = —siny1dfy + cosy sin O1d¢y,
09 = cos1dfi + sin 1 sin O1d ¢,
03 = cos bhdp1 + diy, (4.2)



and similarly for the ¥;, but with coordinates (02, ¢2,12). The range of 1 is 0 < p < 7, as
given in [50]. This background is supersymmetric for A = 1, corresponding to the round
S7, and A\ = % corresponding to the squashed S7. We will focus on the round S”. Here
we perform the reduction along the U(1) angle v defined in the o’s above.? The 10D
background NS and RR sectors take the form:

R
E cos% (d32 (AdS,) + R? (sin2 %Z? + cos? gds2 (Qg)) + d/ﬂ)) ,

ds%o =
Cy = lycosbodpy, Fy=—1,dQ0%,
F4 = %dVOlAdS4 (43)
3[1/4(1+15 cos () The

64R9/4 cos9/4 % ’
singularity at u = 7, however, can be understood by the presence of D6 branes. Indeed, the

This Type ITA background has Einstein frame Ricci scalar, Rp =

presence of the Fy flux suggests a dual C7 potential along the directions of AdS, and ¥;.
More importantly, one can introduce near y = 7 the following coordinate: (7 — p)du?/2 =
dr?/+/r. In this new coordinate, near the singular point, the metric takes the form

ds? — Jr (ds2(AdS4) + 212) + \}; (dr2 + TQdSQ(QgQ))> 7 (4.4)

which coincides, precisely, with the metric near a D6 brane source. Under the subsequent
NATD transformations this singularity will persist, but we know its origin.
4.1 NATD({y, (AdSs X S7))

We will now perform a NATD along the SU(2) isometry defined by the ¥;. The NATD
metric, By, and dilaton have the following form,

ds” = R cos = (ds (AdS4) + R?(cos? BdSZ(QEZ)) + d,u2))
o2 2
m3ROp? sin? i sin? %dSQ ) + 32l].,m%04.’2 dp?,
420’ A R”sin i sin §
. R3*m3p3 sin pusin &4 : BA
B — d d —20 f— =
2 20,A sinxdf Adx, e R? cos3 g ’
R? sin i sin & 1
A= 2137/32@2 mia’?p? + R6 sin? 1 sin? 2) (4.5)

The non-trivial dual RR Fluxes are,

. RS
s = ( si, FTE) sin® pdp + lpmg Wpdp) A ngQ),

ZNote that it is only U(1) for the round S”. For the squashed S” only ¢1 and ¢ are U(1) angles.



5 . s 2
R sin psin® 5
220

F5 = dVol(AdSy) A dp +

3m%\/o7pd
R p

RYm3p? sin® psin & . o b @) . e
_ 161§a’3/2A (3,0 sin pudp — 2 sin §d,o> N dS2y7 A dQo.

After this NATD, the Einstein frame Ricci scalar is,

1,/3/4(29 4 164 cos p + 63 cos 241)
32R3 sin®/? p(42m3a’?p? + RO sin? & sin? p)/4’

RE =

where here we can again see that the singularities that appear correspond to the zeros of
A (p = 0,7), plus the singularity at u = , inherited from the Type ITA background.

5 Backgrounds from AdS, x M1

The space we are concerned with in this section is a U(1) bundle over CP? x S? with

characteristic numbers nq and ny and metric given by,
ds? = cjds*(AdSy) + R3ds* (MY,
ds* (MY = 2 (dr —mq sin? o3 + ng cos 91dd>1)2 + ¢3(dO? + sin® 01dp?)

+ ci(dp?® + ¢z sin® (o + o3 + cos® po3)), (5.1)
where c% = %, c2 = 32%, c% = %, 2= %, cg = %. The supersymmetric case corresponds
to n1 = 3,n2 = 2; in the notation used by Duff-Nilson-Pope [50] this space is naturally
denoted by M (—3,2). Here, however, we follow a slightly more modern notation widely

used in the literature, M1, The corresponding 11D geometry has Ricci scalar R = —%
and admits a 4-form Flux,
3 r3 30‘?
C3 = c ﬁdl‘o Adx1 N\ dxos, Fy = idVOl(AdS@, (5.2)
and 0 < g < 5. In the ITA reduction along 7, we obtain,
2 R’ 2 7.2 2072 | 2.2 2 2 2 2
dsfra = - c1ds”(AdSy) + ¢f(dp” + ¢z sin® p(o7 + 05 + cos” po3))
P
+ c3(dh? + sin? 91d¢>§)> ,
3R3
By=0, 2= 62l3 (5.3)
P

This implies that, CI/4 = C3, and Cay = lp(—=m sin? puo3 + ng cos B1dgr). This reduced
metric has Einstein frame Ricci Scalar, R = 0. Note that the metric on the six dimensional
subspace, which we denote |}, (M'11), is simply the product of S? x CP2. The solution is
supported by the Kéhler forms which appear as dC(y). The field theory of this background
was examined in [52] where it was shown that this 7 reduction of AdSy x MbL!is N =2
supersymmetric.



5.1 NATD({, (AdSs x (Mb1:1)))

We are now poised to perform a Non-Abelian T-duality along the SU(2) isometry made
explicit by the SU(2) invariant one-forms o.
~2 02R3

ds” = 7 (3ds*(AdSy) + c§d32Qg1) + Adp?)
P

2
m

+ a’l22A (0204C§R6 sin* 7 (p d§ cos® ,usm X+ p dx (1 — sir12,ucos2 X)
p

+dp* (1 — sin® psin® x) — 2pdpdx sin® psin x cos x) + m3p*adp*L}) |

. 2 2R3
B = eacicgmip sin’ usin x A& N ( ( 2sin? p cos 2 + cos 2 + 3) dx
4l,A
—4sin? pusin y cos Xdp) ,
5 BA
—2& _ °p
(& = 37]:_{3, (54)
020405R351nﬂ 2 2 4 ARG ;4 22 1272 2
A= T(COS I (026465R sin” u + map a7l cos X)
P
+ m%p2a’2l§ sin? X) .
The RR sector contains,
B manyl, sin® p(pdx sin y — cos x(2pdu cot 1 + dp))
1= 7 )
Vo
~ 1 3eac2cicE RO sind i cos 2 252 (1)
I3 = ETR ( . dp —manapalydp | A dSy
22,2, 2
cacicEming p?R3 sin? 1 cos? pusin  cos x
45 2 IVIETERN ( cacicaR% sin? i cos pdp
iz
—m%paalgdp) ANdEN dy
2m%n1psinucosusin2x( ’3Z3A 0204ch9 sin® p cos? pi cos X)
dp N\ dE N dp,
o522 (cos? peos? x +sin? x) A
3
o al 2,2 1272 343 6 i3
Fs = WdVol(Ad&Q A (3czmzpal2dp + c1¢3¢ic3naR® sin® pcos pud ) (5.5)
cgcgcgm2p2R9 sin® p1 cos p sin 3c§ (Sin2 psin? x + cos? M) d
+ /3212 A 1
P

— CoC5Nng Sin 4 cos ,udp> dé Ndx N ngl)
3cyctellem3p®R1° sint! i cos i cos x
64cla’15/2l1§A3

(8 204C5R6sm pcos? pusin y

2
+ m%an'Qlf,((cos 2+ 7)sin xy — 2sin? psin 3x>> dENdp N dp A ngl).

This background has singularities at y = 0 and p = 7, simultaneous with p = 0 or x =0,
all generated by the NATD.

~10 -



5.2 NATD of SU(2)/U(1) isometry in |, (AdSy x (M111))

After the reduction to ITA of AdS, x M11:1 we have a six-dimensional Einstein-Kéhler man-
ifold |}, (M5L1) = CP? x S2. In the previous section we performed an NATD along the
SU(2) isometry present in CP? (see its explicit form in eq. (5.3)). Since S? is a coset mani-
fold and there is a prescription for applying NATD on coset manifolds [24], we now proceed
to apply this coset NATD along the S? factor. We review this method in appendix A.2.
The dual NS fields are given by

3
ds” = cglR <c%d32 (AdSy) + c5(dp* + c2 sin? (0% + o3 + ag)))
P
27 12 2 2R3
malpa’® (2 cocsR°
+ —dz+d + dz*,
cacR? <p ‘ p) lpp? :
A _&  macslyp
B=0, ¢ ®=—222" 5.6
— (5.6)
with the RR sector given by,
A m2n2lp
F1 = — \/a ClZ,
Fy = m%nllp\/azdz A (sim2 udQéQ) — 2sin p cos pdp A 03),
F5 = _ Sma__ < — ctmal,R%a’dVol(AdS,) A (zdz + pdp)
Cllp\/67R3
+ cacicicaRY cos psin® pdz A du A dip A ng2)> . (5.7)

This background has a singularity at p = 0, as can be seen in the behavior of the dilaton.
This is generated by the collapsing cycle in eq. (5.3) given by 6; — 0.

5.3 Alternate reduction: {4, (AdSy x M1L1)

In this section we present an alternate, supersymmetric reduction to Type ITA of AdS, x
M*YLY presented originally in [53]. We then perform an NATD on this background, thus
providing a new supersymmetric Type IIB solution with an AdS4 factor.

In [53] it was shown that reducing along the U(1) ¢; angle yields a supersymmetric
Type ITA background of the following form,?

ds? = VA ds?(AdS,) + ds?,

A3/2R3
2% _

B=0,
L

(5.8)

R3
dst = —\/Z[ciduz—i—cgdﬁf—i—cicg sin® pu(07 +03 +cos® po3)+cses sin® 01 (dr —nq sin? pos)?],

ly
(5.9)
and A = c%n% cos? 6, + c% sin® 6.

3using the notation in eq. (5.1) above.
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3
3cy

The RR sector contains the Fy = —5+dVol(AdS,) flux proportional to the differential
volume on AdS,4, while the reduction produces an additional Cy and Fo:

0
C) = cgnglpcosil(dr — ny sin? pos),
c2nsl . .
= QAg P {nl sin p (A cos 01 (sin ung) —2cos pdp A (cosbadps 4+ dip))

W sin p(d? — dy A del)) +Wdr A del} . (5.10)

5.3.1 NATD({4, (AdS4 x MLL1Y)

Now we move on to present the Non-Abelian T-dual with respect to an SU(2) isometry
given in the o’s of eq. (5.9) above.

9 R3 202402 6in2 9
ds” = VAGds*(AdSy) + T~ VA[cRdy® + 36} + %dﬂ + dss,
P
i 2 m% sin? ;1 c?lch?’a’S\/Zlf; escS psec? pu(cos xdp — psin xdx)?
S =
3 o'l2 %
N (CichRG cos p(sin xdp + pcos xdx) + m%p2a’2lg esct psec pusin xdp) 2
AV
n cicgpQRﬁ sec? psin? y (Q cos? pd¢& — c3cing sin? 04 dT) 2
AQ ’
B VA3 cdmang pRY sin? 0y sin® psin xdr A dy
N Aa”l3
C%C§m2n1R3 sin? 01 sin? 1 cos x (AcfichG sin® 4 m%an’QZ%) dp A dT
VAAGRE
mg’p?’R3 sin? psin® (Ac?lcg + Q cos? pcot? X) dé N dyx
VAAL,
N m3p?R3 sin? pusin? y cos x (Q cos? ji — Acic%) dé Ndp
VAAL, ’
20 b A (5.11)
T R3A43/277 '

with A = 5?38\1;;;/5 (cAcEmp?a? Al sin® x + Q cos? p (cjcdRC A sin® 1 + m3p2a/?12 cos? ),
= cjcs A + c5eanysin” 0 tan u, Vo= cje + map ' “ly csct psec” psin x, an =
Q 421%‘4 %%%20 2 vV i%QRﬁ %2/2[% 4 2 i 2 dw
Asin@; + A’ cos ;. This NATD generates singularities at 4 =0 and p = 5, with p = 0, or
x =0.
The RR sector fields take the following form,

cimaning ( 1
FL=—==(=
AVl \A

— cos thl, sin? pcos xdp + p cos 011, sin? psin ydx — p cos 611, sin ju cos ju cos Xdu) ,

plp sin? p cos xW d6,

- 12 —



3 2 4 3R6 2.2 .2, .2 l /
Fy = (M cos,usin?’ wsinO1dy + C2CaGMman2 pﬁWpdp) Adfy Adr
c1lpa/3/? AQ

3
—cgm%nlngR cos 0 sin? 11 cos y sin X( cos® pQde — c3c3ny sin? 91d7) Ndp N dx
Val A32AM

2,222 3117 cinnd 1) o
cscicEminingpRPW sin® psiny . .
2€1C5 2A3/2Aa’5/2l12, (sinx (cjc2QRO sin yi cos® pu + m%an’zli) dp

+ cicgpQR6 sin? 1 cos? p cos de) A dEN dby
cacacicEmining pR3W sin? 0; sin? pusin x
A3/2AQO/5/QZ%
+c3c2QRC sin® 11 (p cos xdx + sin xdp)) A dr A db;
c2c2c2miningpR? cos 0 sin® pcos
VAL
+2sin® x (c§c2QRC sin’ i cos® i+ m3p*a®2) dp) A dp A d€
_ 2cacim3n3ng pR3 sin? 0; cos 0; sin® p1 cos pucos x
A3/2Ao/5/2l12,
+cos X (AcicaR®sin? u + m3p*a/*12) dp) A dp A dr,
6

3
Fy = CildVol(AdSZL) Al — R—qc%c%c;,n%ng sin 20, sin* pudf; + 3m%o/2pdp
Ra9/2 B

(m%pzo/Qlf7 tan? psin xdp

(c?lc?,pQR‘3 sin p cos? psin 2y dy

(Acﬁllcng6 sin? yusin xydy

R76 c1 czcﬁcgng

2 2
Iy ]
cacie3mi3RY cos pusin® pusin

cllga’?’/? VAA
(cos xdp + psin xdx) + c1cacsng cos psin pdp A dx])

cos psin® prcsc 0y Wdu]

<ch§A sin 0y (303 sin xdby A dr A d€ A [dun

+ 3 sin b, (3 cos? jrcos xQdOy A dp A E A dr A (sin xdp + p cos xdy)
+ c1c3esning sin 20y sin® pdp A d€ A dp A dr A dx>

+ creacicang cos 0y cos psin pA'dfy A dE A dp A dT A dx) . (5.12)

6 Backgrounds from AdS,; x Q%!

The Q(n1,n2,n3) spaces (Equation 9.2.12 in Duff-Nilsson-Pope) [50] are defined as:

3 2 3
1
2 _ 2 A e 2 29 142
ds®* =c <d7-+ E n; COS Hquﬁ,) + ;:1 A (dO; + sin” 0;d¢s7). (6.1)

i=1

The n1 = no = ng = 1 is N = 2 supersymmetric. Aspects of the supersymmetry were first
presented in [54]. In [55] the field theory dual to AdSy x Q11! /Z;, was studied and various
gauge invariant chiral operators were matched geometrically.
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The 11D metric on AdSs x Q11! is defined such that
ds® = t2ds*(AdS,) + R2ds*(Q1HY), (6.2)
where we define, t7 = %, 3 = %, t% = %, and
dshi1a = t3(dr — A)? + t3(ds? () + ds*(QF)) + ds2(2)))), (6.3)

where A = (a—cos 01)d¢p; + (8 —cos 02)dpa+ (7 —cos 03)d¢s, and the dsz(Qéi)) are 2-spheres
with coordinates 0;, ¢;. The 11D Ricci scalar is R = —%,

according to Fy = %dVol(Adszl). The reduction to ITA along the 7 angle yields the metric
of the form,

and the Fy flux is normalized

i = M0 ads,) + 3R ).
p
343

C %’ Cr=IpA, (6.4)
p

along with the same F} carried through the reduction. The total Ricci scalar vanishes for
this background, R = 0.

The NATD of the background in eq. (6.4) when dualizing along the (SU(2)/U(1))?
isometry was found in [24]. Here we present the full results for dualizing along just one
of the $%’s, i.e. one (SU(2)/U(1)) isometry. Furthermore, we pay attention to the factors
of R, the 11D radius, I, and o’ throughout the dualization. We review general aspects of
NATD with coset spaces in appendix A.2 and refer the reader there for more details. We
find that,

o B3R L,a"*m3 R3t2t3 tan x2
ds® = 12 —ds*(AdSy) + (R3172 22 2[ . >d 2
P tyt3 cos® x pP
R3t3t 2t
# 2 aall) 4 s 0) + ay? + 2,
P
B-o b _ l,matap cos x (6.5)

tsvol

RO t4t2+a/212m3 p? (T3 —12t3 )

—.
20/7/4R3lg/2mg/2p5/2t%tg/2\/t3 cos2 x

This background has Einstein frame Ricci scalar, Rp =

The RR sector has all fields turned on,

. l
F = ——p,mz(sin xdp + pcos xdx),

Vao!
F3 = I,Va'm3pdp A (ngl) + ng)),
X 3/
By = BV

5 = R (AdS4) Adp
3mat§tsRE
— 1511,2\/:;7(8111 xdp + pcos xdx) A ngl) A ngQ).

This background has singularities at p = 0 and y = 0, both generated by the NATD.
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6.1 Alternate reduction: {4, (AdSs x Qb1:1)

In this section, we perform a different reduction to Type ITA on the AdS; x QY1! back-
ground, in such a way that two SU(2) isometries are manifest. In order to see these
isometries, we must set the parameters appearing in the Kéhler form, «, 3,7, to zero. We
must also make use of the relations between the ¢;’s such that t; = 2t3, and to = /2t35.
(NB: the equations of motion are satisfied for any value of t¢3.)

Here we will present explicitly the reduction along ¢3, however from the symmetry of
Qb1 it is evident that reducing along any of the ¢; will yield backgrounds of the same
general form.

ds® = 3% [Atzds® (AdSy) + R?263 (2" + df) + d6?

1 (cos 01dep1 + cos Oadpa + di)) )] ,
t3 3A3/2
By =0, ¢*® = L, (6.6)
2v/213
where A = 3 — cos 263. We can rewrite the metric above in terms of the o;,
ds® = €3 [At3ds®(AdSy) + R2263(dQ + 0F + 03 + db3
2sin? 0
Madiili: (cos1dpy + 03)?)]. (6.7)
The RR sector contains,
1,2 cos 6
cy = %(COS B1ddy + cos Baddy + dip), Fy = dCh
24t3
Fy = _ngQAdSAy (6.8)

6.1.1 NATD({4, (AdSy x Q11))

Now we will present the results for an NATD on the Type ITA background found in the
previous section. The NATD background we will present will be along the (62, ¢2, 1) SU(2)
isometry, however the results from the (01, ¢2,1) SU(2) isometry can easily be read off by
replacing (01 — 62, 1 — ¢2). It is given by,

ds’ = 3% [4tyds*(AdSy) + R2262(d0S) + d63)] + dss,
Qs — m3 (cos X (2AR6tg + m%pQO/leQ,) dp — 2ApR%t§ sin de) 2
3 2o/ A
N V2VAR? 30313 (sin xdp + p cos xdx)?

—
—

n 4p2R6tg sin? @3 sin? y (cos @1 d¢py + d€)?
A )

[11

R 2t3 3 R
By = \CZT/%R {m%pz (p (A sin? x + 2sin? 3 cos? x) d€ + 2 sin? x cos xdp A df)
P

2sin? 03 cos 0,

o/2l127 (2ApR6tg sin xydx — cos xdp (2AR6tg + m§p20/2l§) ) A dgbl] ,
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-2& _ 2\@@
R3t343/27
A V2t5R3
\/leo/3

and = = 2AR6tg +mip*a 2l§ cos? . The RR sector contains the following fluxes,

(4t5R°Asin® 03 + lim%a’2p2(2 cos” x sin” 05 + Asin? y)),

~ 2mol, (Acos Bz cos xdp — p(cosx (Asinbz + cosf3A") dbs + Acosbssin xdx))

= )
VNG

. 2 (m%po/2 cos Gglgdp

s = army, A
L 2\/§m§p3R3t§ sin? 3 cos A3 sin 2
A32AVo!
2v/2m3pR3#3 sin y (A sin 03 + cos 3 A')
B ABI2Nal/22

— 6R%S sin 03d93> A das)

(d§ — cosb1dor) N dp A dx

(df ~+ cos 91d¢1) A dO3N

(4pR6tg sin? @3 cos ydx + sin x (m%an&l; + 4R6tg sin? 93) dp) ,

- 4R5t8 sin 63 cos B3 d6 3mipva'd
_ g3 3 3 3403 2P P
Fy = 8t3 22 - R A dQds,
4v/2m3 p? Rt sin 03 sin .9 . 9 2
_ \/EAo/?’/ng 3p (A sin® x + 2 sin” #3 cos X) dx A dbs
— 3sin2xdp A dfs — 2sin 03 cos f3dp A dx} A dg A dol) (6.10)

A simple check of the zero’s of A for this background reveals that #3 = 0 with p = 0 or
x = 0 are the singular points (generated by the NATD). We have also checked this by
examining the Einstein frame Ricci scalar.

7 Backgrounds from AdS; X N(1,1) with less supersymmetry

The N (k,1) spaces are SU(3)/U(1) cosets where the U(1) acts as
diag(exp(ik@), exp(ild), exp(—i(k +1)#)). The particular case of N(1,1) is supersymmetric
and the metric can be viewed as an SO(3) bundle over CP?,

1
ds® = du® + 1 sin? p(o? + o5 + cos? po3)

1 2
+ X2 | (21 — cos por)? + (B — cos pog)? + (Eg - 5(1 + cos? ,u)03> ] , (7.1)
with R = —%. There are two values of A yielding supersymmetric solutions, A\? = 1/2

corresponds to ' = 3 and A% = 1/10 corresponds to A/ = 1 susy. In this section we will
focus on the more supersymmetric version of the background but an analogous treatment
can be applied to the less supersymmetric case. We expect a similar situation in the case
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of the squashed S” which also preserves less supersymmetry compared to the round sphere
background. We will not pursue this direction here but it is certainly an interesting one.

In this section we consider the metric on AdSyx N (1,1) with A\2 = %, which corresponds
to the case of N = 3 supersymmetry. There are several U(1) angles with which one can
perform the reduction to IIA. We have examined all of the possible reductions. The one
that leads to a tractable solution is the U(1) isometry given by the linear combination of
W1 + 2. We label a to be the coordinate corresponding to ¥ — 3.

The reduced background is given by,
2 2g (1, o 2 2 1 .9 2/0(2)
ds” = e3 §d5 (AdSy) + R dp” + 75 pds=(Qy )+

+ ((32 — cos ,ud92)2 + (s1 — cos psin 92d¢2)2) + %cos p(s3 — cos 02d¢2)2):| ,

N

2% R3 sin? p1.2%/2

BQ = 07
51213

(7.2)

in which we have recovered an SU(2) isometry in (61, ¢1, ), characterised by the Maurer-
Cartan forms s;. We also define Z = 3 4+ cos2u. The RR fluxes are given by,

l
Cy = ;((—5 + cos2u)da — 8 cos B1dpy + 4 cos b sin? udop2), B =dC;

3
Fy = ————dQ2 . 7.3
4 Wor AdSy (7.3)

7.1 NATD({g (AdSs x N(1,1)))

In this section, we present the results of a Non-Abelian T-duality applied to the SU(2)
isometry in eq. (7.2) above. This background is somewhat unique compared to the other
backgrounds presented in this paper and other NATD backgrounds presented thus far in the
literature. It is unique in the sense that there is mixing between the spectator coordinates
(02, p2) with the Maurer Cartan forms, sj,s2. Mixing terms with s have been fairly
common (ex. the ABJM, Klebanov Witten backgrounds), however, the non-symmetric
mixing with s, so leads to a rich Type IIB NATD background. An interesting consequence
of this mixing is the breaking of the U(1) isometry normally found in the £ coordinate
after NATD.

~ 2 2
ds = e3®

[;dSQ(AdSLQ +R? (d;ﬂ + % sin’ uds2(QgZ))>] + disi,

206 (i 2
-2 m3aR”sin” p 9 9 . . 9
dss = W [cos pp” (cos psin € cos xdfy — Gdpa + sin xd§)
1
+ K (pK (cos p (sin Oz sin Edgpa — cosEdba) + dx) — 2 sin? psin y cos xdp) 2}
16m3v/Za?l,csep |
K dp”,
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- maR3 sin

g = m [(HpRﬁZ sin? y1 cos® pudfy — GpROZ sin? pu cos? pdy
P

+ JROZ sin? pu cos® udp) A dpo + 64m%p2a'2l12) (KdQQ
— (M cos pudeg + sin? psin y sin 2y dé + Z cos pusin € sin Xd&g) A dp)
+R®Z cos? ,u(p sin? p cos € sin xdé A dfy + sin? psin &sin xdp A dbs

+ psin® psin € cos xdy A dfy — psin o sin? psin € sin ydé A d¢2)] ,

51213
R3sin® pz3/2 7
_ R3 sin 11
- 10243VZ

To make the presentation of the background slightly more succinct we have had to define

2% _

(7.4)

(RG cos? psin® pZ + 64[1270/2m%,02 (4 cos? ji cos? x + sin? XZ)).

a number of functions,

K = 4cos? pcos? y + Zsin? y,

G = cos ta sin xy — sin O cos p cos € cos

H = cos 05 cos & sin y — sin 6 cos p cos x,

J = sin 65 cos p cos € sin x + cos 62 cos x,

M = 4 cos 0y cos 1 cos x + Z sin 63 cos € sin x;,

N = sin? W sin? y 4 2 cos? L,

V = 64m} ,020/212 sin? x + R®sin? ju cos? p,

X = Rsin® pcos? pcos? x — 512A\/ZO/3Z3. (7.5)
The reduction to Type ITA along 11 + 12 generates a singularity at u = 0, while the NATD
adds singular points at u = § with p = 0 or x = 0 to the dual background.

The dual RR sector can be written as,

~ 8mgl

Fy = —=2_(KpZsinxdyx — 2cos x (2K psin p cos ud

1K22@(p xdx X (2K psin picos pdp
+Z (sir12,usin2 X + 2 cos? M) dp)) ,

- RPm3p? cos? usin? i cos x

N

[d,u Adx A (qubg — Cospcosxsingdﬁg)

+sin xdu A d€ A (dX — cos pcos Edfy + cos psin € sin 92d¢2):|
m3Np cos® u sin? y sin y cos xR?
64V ZAKI2a/5/?
m%Rg p? cos® pusin® pusin?
128V Z AlZo/5/2
m§R3p coSs (4 sin
128V Z Al20/5/2

d& N dp A (sin,ucosfdﬁg — sin ¢ sin 92d¢2)

de A dy A ( — cos&dfs + sin £ sin 02d¢2)

dx N dbs A <R6Hp cos? psin? psin ydgo — Vsinfdp)
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7 R3 cos pusin
128Z3/2Ai2a'5/2

+373/2Asin egzpo/) dp A dfs A depo

[4R3 sin? j1 (HR3 p? cos x sin Mm% cos® 1

— pm% (256,02 COS L1 COS Y cos f9 sin le,m%o/2 + VZ cos ¢ sin 92) dp N\ dx A doa

n 23 cos? p cos y sin psin xym3dé A dp A dxR?

732 Ao
2
— - cos”  sin ,u(—Zsm w1 sin® y sin 6o
64Z3/2AKZZ230/5/2 4

4 cos pcos x (HN — cos jcos y sin? psin 92))
—16R3p*K? sin® psin Hglﬁm%aﬂ) dp A\ dfs N\ doo

2 .
m5Xpsin x 2 ; i — i )
16Z3/2AKI20/5/2 duAdp A (COS fr.cos x sin psin €dfy — Gdey + sin xd¢ ),
i m3p?RYsin® y cos p [ ( 3KS' dit + cos (s' 2 9 cos? ) d ) A dO)
— - m m B
5 256Aﬁ0/3/2l12, 9 nap 2 % w)ap 2

+ 3sin® pusin? y cos xdp A d€ A dp} A ng)

(Z’)m%p\/adp B R® sin pu cos pu (sin? 1 — 2 cos? p)

du | A dQ . 7.6
2\/§R, 128\/§a/3/2l3 M) AdSy ( )

8 Dual CFT central charge

As a first step into the interpretation of the new backgrounds we produce in this manuscript
we perform an analysis of the central charge of the dual field theories. In order to compute
the dual field theory central charge, we first consider the quantized Page charges [56, 57],
defined by

1
QMQZ/ *F4:M2, 8.1
2/6%1TM2 pole ( )

1
QDp = 2/ (ZFZ) AN 6_32 = NDp, (82)

26701Dp Jxs_, P

where k7, = (2m)%), k3, = (2m)7a and the brane tensions are Thry = m, and
Tpp = ﬁ We will present the general results of the Page charges and central charge

(2m)Pa’ 2
for a few sample backgrounds considered in this manuscript. In particular, we discuss the

importance of the factors of the 11d radius R, and their role in the N scaling of the central
charge. Our method for computing the central charge is based on [58], as adjusted and
generalized in [39]. The main modifications take into consideration a potential dependence
on the coordinates of the internal manifold perpendicular to the field theory directions. A
generic string frame metric in type II string theory, dual to a QFT in (d + 1)-dimensions
is defined to have the following form,

ds® = adz} 4+ abdr® + R%g;;d6'd6? . (8.3)
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As in [39], we define the modified internal volume to be,

‘7int = /dé‘\/e_élq) det[gint]adv (84)
so that the function H is in general given by,

ﬁ = ‘A/int‘

(8.5)
Then, the central charge for a QFT in (d + 1) spacetime dimensions is defined to be [58]:

/2 f2d) /2
GN(fI/)d ’

CcC =

(8.6)

The Gy factor is needed to cancel the length dimensions in H. We will use Gq; = lg, and
G1o = I8 = o/*. In our case of AdSy, the functions are,

r? R
a:ﬁf(G), bzr—4, d=2. (8.7)

In the case of 11 spacetime dimensions, we obtain Ving ~ RY, H~ R'373, therefore, ¢ ~ %)
Due to our choice of Ansatz, eq. (2.1), the relevant objects are always M2 branes, Whoge
normalization yields a scaling relation, R® ~ lgN a2, which means ¢ ~ Niﬁ , as known
previously in [4], for example. In all of the reductions to Type IIA considered in this paper
the Fy flux comes through the reduction unaffected and an Fy = dC(;) flux is generated.

The normalization of the D2 branes leads to a relation, RS ~ e 5/2Npgy. The ‘raw’ central

charge after the reduction now scales like, cyj4 ~ ZPR%’ therefore cryq ~ QT\/%N%/;. We also
note the presence of D6 branes in the Type ITA backgrounds, however they are independent
of R and instead are scaled with factors of [, only, suggesting they are topological charges.
In the case of ABJM, the factor of k present in F5 has the field theory interpretation as
the level number of the dual gauge theory.

The relevant objects to the central charge after the NATD are the D5 branes, as they
always inherit a term with the R® scaling factor. As observed previously in [37] for the
ABJM background, we see that the effect of NATD is to preserve the N3/2 scaling, but to
change the numerical coefficient of the central charge.

After the NATD we wish to constrain the range of the dual coordinate p, so that we
may compute the internal Volume, Vint. Following the prescription first hinted at in [32],
and further discussed in [37, 39], we compute the periodic quantity by defined by,

1 .
bp = —— B 1]. .
0= g B2 01 (53)
The relevant two-cycle is,
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In each case we restrict to a submanifold, which we specify below:

Background Submanifold

NATD({}, (AdSy x S7/Zy)) =0, p fixed
NATD ({5, (AdSs x S7)) p=0
NATD({}, (AdSy x M1-11)) p=0

NATD ({4, (AdSy x QVH1)) 05 =0, p fixed
NATD({5 (AdSs x N(1,1)) p =0, p fixed

We should point out that in all of these cases the cycle is placed on a singularity, which
could be problematic. However, the strategy still leads to reasonable results and was also
observed in the case of NATD of AdS5 x S° in [39]. Presumably in a full homology theory,
it would be possible to show independence of this procedure on position in the manifold,
but we leave that question to future investigations. For the remainder of this section we
assume the prescription can be trusted, and move on to compute,

1

bo = A0/

7{ (d/psiny) = P [0, 1], (8.10)
Do T

where 0 < y < 7, 0 < ¢ < 27, and we have absorbed the msy gauge fixing constant into
the definition of p. However, as discussed in [46], there is one NS-five brane every time p
crosses integer multiples of 7. Therefore we take the range of p from 0 < p < (n + 1)7.
Next we compute H3 = dB ,

Hs = o' sin xdp A d€ A dy. (8.11)

Following [46], we normalize the NS flux to Nyg5 using Tnss = ﬁ,
1

QNS5 = 55—
25%0TN55

/Hg =(n+1)= Nnss (8.12)
We are now in a position to compute the Page charges and dual field theory central charge
after the NATD. The results are summarized in tables 1, 2, 3, 4, and 5 below for the
backgrounds with S7/Z;,*S7, M1 QUL and N(1,1), respectively. In the first column
we present the flux normalization result, obtained from eq. (8.1) and the corresponding
cycle used to integrate. The second column contains the ‘Raw’ central charge, which is
directly computed from eq. (8.6). The third and final column is the substitution of the
flux normalization into the ‘Raw’ central charge. In the cases where we have left some
of the numerical constants generalized, we also present the result with the values of these
constants replaced.

As noted in [37], NATD maps integer charges onto non-integer charges, due to a
violation of the condition, T},—,, = (27)"T, on the D brane tensions. In fact, we see a
generic difference of § between the D2 and D5 brane normalizations in these cases. In the

1A careful reader will notice a factor of 2 difference between our results for the central charge and what
was found in [37] for the ABJM background. This is due to the Jacobian factor when changing coordinates
from a — 2(.
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Page Charge
Background ‘Raw’ CC CC
Cycle
6 2xg STk Ar3/2
AdS, x S?/Zk QMQ = (%) 2]:\2223 = Nuso ANS A3 (B>9 3\)/\;% M2
3k2 ! . 379
X7 = [, 01, 61,02, 62,0, 7] ' = 1625 kN
RE  2X) vVE Al £3/2
Uy (AdSy x S7/Zy) @p2 = 10’572 lm23 Npo 2X87373 RO 3fA3fa’1/4N
T ' 6= [a,01, 01,00, 92,0] | O | Z 8 oyl N2
6 — » V1, 91, V2, P2, - gfw \/> ,1/4N
RS ASA m3n%vks aro 3/2
NATD({}; (AdSy x S7/Zy)) QD5 = o7 Fir = ND5 | mir®agrs RO 9\}A3rNNS5N
T 4 k 18k lpa’4 8\[m2 6 /Fs 3/9
Y3 = [a, 01, ¢1] Sv2Ema T vhs N2 o N3

Table 1. Results for AdSy x S7/Z;, and its supergravity duals.

case of AdS, x S7/7Zj,, we note, as in [37], that after the NATD, k is no longer a well-defined
level. We define a new level for the dual theory according to,

1 - A . l
k :/ By — BonFy) = 22120
’ 230 Tps 23( ’ 2~ ) Vo

where the cycle of integration is X3 = [p, 01, ¢1], and p is integrated over [0, (n+ 1)x]. This

m27r

kN ss, (8.13)

leads to a NJQV S5 scaling® in the central charge, which differs from the other cases. In the
cases without k, a factor of IV ]3{755 arises from integration over p? in Vint.

Finally, we consider changes in the Page charges under large gauge transformations in
Bs, particularly ABs = nma’sin ydx A d€. The Page charge associated to the D5 branes
is always either zero or independent of R on the cycle of interest. Therefore, we compute

AQps using

1 1 .
AQps = —/ <_ABQ A F3+ -ABy AN ABy A Fl) , (8.14)
QK%OTDg po 2
and Y5 = X3 + [x,&]. In all of the cases examined, we find the relation,
AQp3 = nQps. (8.15)

8.1 Dual CFT central charge for coset NATD

In this section, we present a proposal to investigate the effect of large gauge transformations
on cases where the NATD is performed on an SU(2)/U(1) coset isometry. The same
method used above in eq. (8.8) cannot be directly applied here, as there is no 2-cycle with

which to compute by and thus, restrict the range of the dual coordinates. We propose

5We are thankful to Niall Machpherson for pointing this out to us.
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Page Charge
Background ‘Raw’ CC CC
Cycle
r\% 2
AdS, x 57 Qo= () F =N | e 827N Y2
27: [M’917¢1aw1502a¢25¢2] ’
_ _RS 1 _
Uy, (AdSy x ST) Qp2 = famrzz = N2 st _RY 8° %%Né/f
’ 26: [%917(;5171/’1,92,(252] 3 e 3o
QD5:R76/L:ND5 om3n5 1o Wamir32 /I, 3/2
al5/2 21 msm m3m P
NATD(y, (AdSyx 87)| T BelRn S g N o Nivss N
3 — s U2, P2

Table 2. Results for AdS; x S7 and its supergravity duals.

Page Charge

Background Coel ‘Raw’ CC CC
ycle
6,. 3.4.3 1677172 3/2
— (R 3Bcaczeics _ —1 =N
111 Qumz = (lp) ant T N2 5 943 4(R 9 3\/3\/5(:3(:'/2152/2 M2
AdSy x M+ 16cicacscicsm <E>
7 A73/2
E7 = [H7017¢13027¢27w77—} = 13?/% NA;?

Q RS 3()2C§Ci()g
D2 — lpaIS/Q 2c172

= Np2

2 8(:{/27!‘6 \/E N3/2
3 D2

P 3/2 H11/4
3«/02(}3(3%05/ a’l/

1,1,1 3 3 RY
Jr (AdSy x M L ) 4c%@c§c30§7r5 Lot
= _ [264n8 Vo 773/2
X6 = [1, 01, 01,02, $2, 9] = \/; i’ Ve N
T/2 _13/2
— RS _dem N 8c;/*m18/2 \/I;N?) N3/2
Qps = I,a/572 3cac2cic — VD5 9v/3, /e A3 o/TTA* NS5 D5
1,1,1 ’ 3mam C%cgcgcicgrrf’ R9 3 2634
NATD({, (AdSg x M1 B S W Nyss
Y3 = (i, 01, _ ean32 Vo 13 3/2
3 [% 1 QSI} = NNSBNDS

273 o/1/4

Table 3. Results for AdS,; x M5! and its supergravity duals.
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Page Charge
Background Raw’ CC oo
Cycle
6 t6¢ 8 7t7/2 3/2
Q2 = (%) 17%;2;3 = N2 9 d}td\f M2
27: [/’L7917¢17927¢27w77] — :;2\7}]\7;1/5

Uy, (AdSy x Q1B

R?

6t5t3
lpo/5/2

T2t

Qp2 = = Np2

6 = [03,01, 61,02, d2, 1]

9
16734315t s o

3/2

247"%;/2 \/ﬁ N
3 3313 o/1/17 D2

_ [216m5 Vb Ar3/2
7\/; n /1/4N

RS 24153 o

Qps =

1.1.1 lpo’®/2 = s 256mi3tgmo 2 8713/2m, \/l; 3 3/2
NATD({g; (AdSs x Q1)) %ZPDANNSB \/; /1/4NN5‘5N
Z3 = [637 017 ¢1}
Table 4. Results for AdS,; x Q%! and its supergravity duals
Page Charge
Background ‘Raw’ CC CcC
Cycle
R\O
s R 2 16w
AdS4 X N(l, 1) ﬁ (E) g 3 N]\/[Q

27 = [U7a757017¢1a027¢2]

s (AdSs x N(1,1))

9
Qp2 = 2

lpa/572 6472

= Np»

R 2 167r Vi N3/2
16v/2 lpa’® 3 a/1/4
26 = [/1’7 a, 917 (bh 027 ¢2}
6

Qps = o o5 = NDs

p& 3.5 9 . 16713/2m3 1 3/2

NATD ({5 (AdSs x N(1,1))) o N s ’Tw%ﬁj\rme /

Z3 = [Pﬂ 027 ¢2]

Table 5. Results for AdSs x N(1,1) and its supergravity duals
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to introduce a nonzero Bs which is closed, and therefore does not affect the equations of
motion: By = o/dp A dx. This is equivalent to a large gauge transformation on Bs. We

compute by,

1 D PoXo
bp = —— By = 8.16
’ Ao/ PoXo ’ 2 ’ ( )

where p and x are integrated over [0, p,7] and [—x,7, Xo7], respectively. Demanding by =
[0, 1] restricts the range of p and x. Normally for polar coordinates, we would expect the
x angle to take the range 0 < x < 27 (or —5 < x < 7), however the modified internal
volume Vin computed from eq. (8.4), restricts the range of x to be —5 < x < 7, due to a
factor of cosy. Then we see that p would have to take the range 0 < p < 47. Note that
this condition was different in the cases of SU(2) NATD.

Considering the case of the 7 reduction of AdS; x QV!'! as an example, we compute

the Page charge for D3 branes,

3matSts RO

tt Vo

Integrating over the cycle containing p and the two 2-spheres, we obtain the normalization

Fs —ByANFy=— (sin xdp + p cos xdx) A dﬂél) A ngZ). (8.17)

condition,
1 12matSts RO
2H%0TD3 tm lpa/5/2

After the NATD, we find that the central charge is,

— Nps. (8.18)

/F5—BQ/\F3:

__ Sl2mitiitsn® RO 64m3 21271302 \JT, 4
3 lpa't V33 /T3 o/ b3

asomd 0y

- 9/3 o147 D3

If we had instead integrated over the y plus the two 2-spheres cycle, the final central charge
would be different by a factor of v/2.

(8.19)

9 Discussion and conclusions

In this manuscript we have used Non-Abelian T-duality to produce new supergravity back-
grounds. We have focused on solutions that preserve an AdSy factor. These solutions are
particularly relevant in the context of the AdS/CFT correspondence since they describe
strongly coupled conformal field theories in three dimensions. One of the prominent mem-
bers of the class we consider as a seed case is related to the ABJM field theory. Another
interesting example was provided by the N(1,1) spaces, where the NATD apparently de-
stroyed all of the isometries, other than the isometries of AdS and a residual U(1) isometry.
We expect that these new backgrounds will ultimately enrich the number of entries in the
AdS/CFT dictionary.

We have only briefly mentioned the supersymmetry in the case of NATD({}, (AdSy x
S7/Zt)), which we have argued preserves N’ = 2 supersymmetry. In the other cases, we
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propose that the reductions along the Hopf fibre coordinate, 7, preserve supersymmetry. In
light of the recent work [38] on supersymmetry and SU(2) NATD we argue that the NATD
backgrounds also preserved some fraction of supersymmetry. The main result in [38] shows
that, at least for backgrounds with Bianchi IX symmetry, supersymmetry is preserved
if the Killing spinors of the original background do not depend on the SU(2) isometry
directions. A more covariant way to re-state the independence of the Killing spinor on
certain coordinates is the Kosmann derivative; this is akin to the Lie derivative being the
covariant way of stating that the metric has some invariance. For the reduction along
U(1)’s other than the Hopf fiber we do not have a general geometric argument and relied
on some explicitly known cases. It would be interesting to systematically and explicitly
study the supersymmetry of the resulting backgrounds.

One interesting open problem would be to track, on the field theory side, the effects of
various NATD’s. In particular, the analysis we have presented of the holographic central
charges seems to point to marked differences when one considers reducing along the Hopf
fiber or along some other, susy preserving, U(1) direction. The implications for the dual
quiver field theories and its potential cascading phases are only hinted at in the gravity
side and it would be quite interesting to explore those phases.
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A Review of NATD

In this appendix we will briefly review the procedures for applying Non-abelian T-dualities
for backgrounds admitting SU(2) and SU(2)/U(1) isometries. The procedures are described
in more depth in [25] for SU(2) and [24] for SU(2)/U(1), as well as other coset isometries.

A.1 SU(2) isometries

We follow [25] in the generalized 3-step Biischer procedure and consider backgrounds with
an SU(2) isometry such that the metric can be written in the form of

ds® = G (x)datdz” + 2G i (z)dat LP + gij(x) L L, (A1)

where p,v = 1,...7 and 4,5 = 1,2,3. The L%s are the su(2) Maurer-Cartan forms
(L. = —iTr(t'g~'0+g), with g an element of SU(2)). All of the Type ITA backgrounds
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considered in this paper have By = 0, so for simplicity we omit its contribution from the
general procedure. The Lagrangian density for the NS sector fields (omitting the dilaton
contribution) is given by,

Lo= Qa0  X0_X5B, (A.2)

where A,B=1,...,10 and

with
Quv = Guvy, Qui=Gui, Qi=Giy, Eij=gij. (A.4)

We then gauge the SU(2) isometry by changing derivatives to covariant derivatives and
introduce gauge fields, Ay according to 0+g — D1g = d+g — ALg. The next step is to
add a Lagrange multiplier term to eq. (A.2) to ensure that the gauge fields have vanishing
field strength. The Lagrange multiplier term is given by,

— T:’I‘I'(O/UFi), Fi == 8+A7 — 37A+ — [A+,A,]. (A5)

Since the dimension of SU(2) is three, we have introduced three new dynamical variables
in the form of the Lagrange multipliers, v;, so we must eliminate three of the variables by
making a gauge fixing choice. A natural choice is g = I, so that all of the Euler angles in
the SU(2) are zero and all three of the Lagrange multipliers become dual coordinates. The
last step is to integrate out the gauge fields to obtain the dual Lagrangian density,

L=Qupd X49_XB, (A.6)

where we can read off the dual components of Q 45 from,

A v iM'_'l jv M % J
QAB _ QM Q,U iJ QJ QNJ Ju , and 8iXA = (aiX/J" 8ivz) . (A?)

V-1 V-1
ij qu ‘ ij
We have additionally defined:

M;; = E;j + fij, with  fi; = mgo/eijkvk. (A.8)

We can identify the dual metric and the generated Bs field as the symmetric and antisym-
metric components of Q;; B, respectively. The transformation of the dilaton is given by

b=0— %m (detM ) . (A.9)
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In order to transform the RR Fluxes, one must construct a bispinor out of the RR forms
and their Hodge duals, (in Type IIA):

$ O
(&

where Fp = Z%!Fm..M}FI,M"'””. The dual fluxes simply arise from inverting €:

P=pP.Q7% (A.11)
where
Q= (AgI''T?I3 + ATy / Va3, (A.12)
and . “
Ay = —— A = IS (A.13)

VI+¢ VI+¢

We also need to define (* = £%z° with k%K% = gij and P Flm(bi + v;).

A.2 Coset spaces: SU(2)/U(1) isometry

Here we present a quick review of performing the dualization procedure on a background
with an SU(2)/U(1) isometry. A more complete description of generating the Non-Abelian
T-dual of a background with coset space isometries was first presented in [24]. We start
with a metric of the form of eq. (A.1), where p,v = 1,...8 and i,j = 1,2, and the L'’s
are replaced with L1 = dfl, Lo = sinfd¢. The procedure is essentially the same as in
appendix A.1 above, but we modify,

Eij = diag(gij, )\), (A.14)

where g;; is 2-dimensional. Due to this, we must additionally gauge fix one of the three La-
grange multipliers. In all of the cases considered, we choose (v = 0, vy = maa/pcos x, v3 =
maoa’psin ). After inverting M;;, we take A — 0 and construct the dual frames from

é=rM Tdv. (A.15)

B Review of supergravity EOM

In this appendix we will briefly review the 11 and 10D supergravity equations of motion,
presented in the convenient form of [25, 59]. The 11D supergravity action is given by [60],

1 1 [ F?
SllDZQ/ \/§|:R—<Z'L—I—F4/\F4/\C3>:| (B.1)
K’ll My 2 4!
The 11D Einstein’s equations and Bianchi identities can be expressed as,
Rap = o (F*)ap — caap 35 (F?) (B.2)
AB — 12 4 )AB 69AB4! 4 )AB; .
1
d* Fy = §F4 N Fy, dFy = 0. (B3)
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The action of massive Type IIA supergravity in string frame without sources is given by,

Sira = % /Mm NG| [e_2¢’ (R + 4(0®)% — ?22) — ;<F + F—2 + Z”?)]
;(ng/\ng/\Bg + %ng/\BS’ 50 B2> (B.4)
In this case, the Bianchi identities are given by,
dFy =0, dFy; = FyHs, dF;= H3 A F5, (B.5)
which can be deduced from the definitions of the fluxes,
Fo=m, F,=dCi+ FyBs, Fy :ng—Hg/\Cl+%B2/\BQ. (B.6)
The equations of motion that follow from varying (B.4) with respect to the metric are,
2 Lo Lo 1 2, 1o
Ry, +2D,D,® = EHW i(FQ)W + 15 Euw = 79w <Fo +tof + 4,F4>] , (B.7)
and the dilaton equation is,
R+ 4D?*® — 4(0®)? — 1—12H2 =0. (B.8)

The action of Type IIB supergravity in string frame without sources is given by,

Srip = % /Mm Va |e { <R+4(a<1>) If;) - ;<F12 + f; - ;IZ?Q)]
- %(3’4 AN H A dCy (B.9)
The Bianchi identities are an additional constraint on the fluxes given by,
dH =0, dFy =0, dFs=HsAF|, dFs=H A F3. (B.10)
Here, the definition of the fluxes take the form,
=dBy, Fy=dCy, F3=dCy— CyHs, F5=dCqy— H NCj. (B.11)
The equations of motion that follow from varying (B.9) with respect to the metric are,

1
Ry,+2D,D,® = L2 o2 (F1 Vvt~ 96(F5) — 9w <F12+3‘F3>} (B.12)

i Lt

4

and the dilaton equation is again given by,

1
R+4D?*® — 4(0®)? — EH2 =0. (B.13)

~ 99 —



Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J.
Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [InSPIRE].

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical
string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [1NSPIRE].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253
[hep-th/9802150] [INSPIRE].

[4] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories,
string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

[5] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdSs solutions of
M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] InSPIRE].

[6] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdSs solutions of
type IIB supergravity, Class. Quant. Grav. 23 (2006) 4693 [hep-th/0510125] [INSPIRE].

[7] E. O Colgain and B. Stefanski Jr., A search for AdSs x S? IIB supergravity solutions dual to
N =2 SCFTs, JHEP 10 (2011) 061 [arXiv:1107.5763] INSPIRE].

[8] F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS; solutions of type-II supergravity,
JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].

[9] F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdSs solutions of type-II
supergravity, JHEP 11 (2014) 099 [Erratum ibid. 1505 (2015) 012] [arXiv:1406.0852]
[INSPIRE].

[10] H. Kim, N. Kim and M. Suh, Supersymmetric AdSs Solutions of Type IIB Supergravity, Eur.
Phys. J. C 75 (2015) 484 [arXiv:1506.05480] [INSPIRE].

[11] F. Apruzzi, M. Fazzi, A. Passias and A. Tomasiello, Supersymmetric AdSs solutions of
massive ITA supergravity, JHEP 06 (2015) 195 [arXiv:1502.06620] [INSPIRE].

[12] A. Rota and A. Tomasiello, AdS, compactifications of AdS; solutions in type-II supergravity,
JHEP 07 (2015) 076 [arXiv:1502.06622] [INSPIRE].

[13] J.B. Gutowski and G. Papadopoulos, Supersymmetry of AdS and flat backgrounds in
M-theory, JHEP 02 (2015) 145 [arXiv:1407.5652] [INSPIRE].

[14] S.W. Beck, J.B. Gutowski and G. Papadopoulos, Supersymmetry of AdS and flat IIB
backgrounds, JHEP 02 (2015) 020 [arXiv:1410.3431] [nSPIRE].

[15] S. Beck, J.B. Gutowski and G. Papadopoulos, Supersymmetry of IIA warped flur AdS and
flat backgrounds, JHEP 09 (2015) 135 [arXiv:1501.07620] [INSPIRE].

[16] I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT Dual Pairs from Mb5-Branes on
Riemann Surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].

[17] 1. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes, JHEP
06 (2012) 005 [arXiv:1203.0303] [NSPIRE].

— 30 —


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905111
http://dx.doi.org/10.1088/0264-9381/21/18/005
http://arxiv.org/abs/hep-th/0402153
http://inspirehep.net/search?p=find+EPRINT+hep-th/0402153
http://dx.doi.org/10.1088/0264-9381/23/14/009
http://arxiv.org/abs/hep-th/0510125
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510125
http://dx.doi.org/10.1007/JHEP10(2011)061
http://arxiv.org/abs/1107.5763
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5763
http://dx.doi.org/10.1007/JHEP04(2014)064
http://arxiv.org/abs/1309.2949
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2949
http://dx.doi.org/10.1007/JHEP11(2014)099
http://arxiv.org/abs/1406.0852
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.0852
http://dx.doi.org/10.1140/epjc/s10052-015-3705-1
http://dx.doi.org/10.1140/epjc/s10052-015-3705-1
http://arxiv.org/abs/1506.05480
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.05480
http://dx.doi.org/10.1007/JHEP06(2015)195
http://arxiv.org/abs/1502.06620
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06620
http://dx.doi.org/10.1007/JHEP07(2015)076
http://arxiv.org/abs/1502.06622
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06622
http://dx.doi.org/10.1007/JHEP02(2015)145
http://arxiv.org/abs/1407.5652
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5652
http://dx.doi.org/10.1007/JHEP02(2015)020
http://arxiv.org/abs/1410.3431
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3431
http://dx.doi.org/10.1007/JHEP09(2015)135
http://arxiv.org/abs/1501.07620
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.07620
http://dx.doi.org/10.1103/PhysRevD.85.121901
http://arxiv.org/abs/1112.5487
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5487
http://dx.doi.org/10.1007/JHEP06(2012)005
http://dx.doi.org/10.1007/JHEP06(2012)005
http://arxiv.org/abs/1203.0303
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0303

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

I. Bah, Quarter-BPS AdSs solutions in M-theory with a T? bundle over a Riemann surface,
JHEP 08 (2013) 137 [arXiv:1304.4954] [INSPIRE].

I. Bah, AdS5 solutions from M5-branes on Riemann surface and D6-branes sources, JHEP
09 (2015) 163 [arXiv:1501.06072] [INSPIRE].

X.C. de la Ossa and F. Quevedo, Duality symmetries from nonAbelian isometries in string
theory, Nucl. Phys. B 403 (1993) 377 [hep-th/9210021] [INSPIRE].

B.E. Fridling and A. Jevicki, Dual Representations and Ultraviolet Divergences in Nonlinear
o Models, Phys. Lett. B 134 (1984) 70 [INSPIRE].

E.S. Fradkin and A.A. Tseytlin, Quantum FEquivalence of Dual Field Theories, Annals Phys.
162 (1985) 31 [INSPIRE].

K. Sfetsos and D.C. Thompson, On non-abelian T-dual geometries with Ramond fluxes,
Nucl. Phys. B 846 (2011) 21 [arXiv:1012.1320] INSPIRE].

Y. Lozano, E. O Colgain, K. Sfetsos and D.C. Thompson, Non-abelian T-duality, Ramond
Fields and Coset Geometries, JHEP 06 (2011) 106 [arXiv:1104.5196] [INSPIRE].

G. Ttsios, C. Nunez, K. Sfetsos and D.C. Thompson, Non-Abelian T-duality and the
AdS/CFT correspondence:new N = 1 backgrounds, Nucl. Phys. B 873 (2013) 1
[arXiv:1301.6755] [INSPIRE].

E. Caceres, N.T. Macpherson and C. Nuniez, New Type IIB Backgrounds and Aspects of
Their Field Theory Duals, JHEP 08 (2014) 107 [arXiv:1402.3294] [INSPIRE].

Y. Lozano, E. O Colgéin, D. Rodriguez-Gémez and K. Sfetsos, Supersymmetric AdSg via T
Duality, Phys. Rev. Lett. 110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].

G. Ttsios, C. Nunez, K. Sfetsos and D.C. Thompson, On Non-Abelian T-duality and new
N =1 backgrounds, Phys. Lett. B 721 (2013) 342 [arXiv:1212.4840] [INSPIRE].

N.T. Macpherson, Non-abelian T-duality, generalised geometry and holography, J. Phys.
Conf. Ser. 490 (2014) 012122 [arXiv:1309.1358] [INSPIRE].

E. Gevorgyan and G. Sarkissian, Defects, Non-abelian T-duality and the Fourier-Mukai
transform of the Ramond-Ramond fields, JHEP 03 (2014) 035 [arXiv:1310.1264] [INSPIRE].

N.T. Macpherson, Non-Abelian T-duality, Gs-structure rotation and holographic duals of
N =1 Chern-Simons theories, JHEP 11 (2013) 137 [arXiv:1310.1609] [NSPIRE].

Y. Lozano, E. O Colgain and D. Rodriguez-Gémez, Hints of 5d Fized Point Theories from
Non-Abelian T-duality, JHEP 05 (2014) 009 [arXiv:1311.4842] [INSPIRE].

J. Gaillard, N.T. Macpherson, C. Nufiez and D.C. Thompson, Dualising the Baryonic
Branch: Dynamic SU(2) and confining backgrounds in IIA, Nucl. Phys. B 884 (2014) 696
[arXiv:1312.4945] [INSPIRE].

D. Elander, A.F. Faedo, C. Hoyos, D. Mateos and M. Piai, Multiscale confining dynamics
from holographic RG flows, JHEP 05 (2014) 003 [arXiv:1312.7160] InSPIRE].

S. Zacarfas, Semiclassical strings and Non-Abelian T-duality, Phys. Lett. B 737 (2014) 90
[arXiv:1401.7618] [INSPIRE].

P.M. Pradhan, Oscillating Strings and Non-Abelian T-dual Klebanov- Witten Background,
Phys. Rev. D 90 (2014) 046003 [arXiv:1406.2152] [INSPIRE].

~ 31—


http://dx.doi.org/10.1007/JHEP08(2013)137
http://arxiv.org/abs/1304.4954
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4954
http://dx.doi.org/10.1007/JHEP09(2015)163
http://dx.doi.org/10.1007/JHEP09(2015)163
http://arxiv.org/abs/1501.06072
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.06072
http://dx.doi.org/10.1016/0550-3213(93)90041-M
http://arxiv.org/abs/hep-th/9210021
http://inspirehep.net/search?p=find+EPRINT+hep-th/9210021
http://dx.doi.org/10.1016/0370-2693(84)90987-0
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B134,70"
http://dx.doi.org/10.1016/0003-4916(85)90225-8
http://dx.doi.org/10.1016/0003-4916(85)90225-8
http://inspirehep.net/search?p=find+J+"AnnalsPhys.,162,31"
http://dx.doi.org/10.1016/j.nuclphysb.2010.12.013
http://arxiv.org/abs/1012.1320
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.1320
http://dx.doi.org/10.1007/JHEP06(2011)106
http://arxiv.org/abs/1104.5196
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.5196
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.004
http://arxiv.org/abs/1301.6755
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.6755
http://dx.doi.org/10.1007/JHEP08(2014)107
http://arxiv.org/abs/1402.3294
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.3294
http://dx.doi.org/10.1103/PhysRevLett.110.231601
http://arxiv.org/abs/1212.1043
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1043
http://dx.doi.org/10.1016/j.physletb.2013.03.033
http://arxiv.org/abs/1212.4840
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4840
http://dx.doi.org/10.1088/1742-6596/490/1/012122
http://dx.doi.org/10.1088/1742-6596/490/1/012122
http://arxiv.org/abs/1309.1358
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.1358
http://dx.doi.org/10.1007/JHEP03(2014)035
http://arxiv.org/abs/1310.1264
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1264
http://dx.doi.org/10.1007/JHEP11(2013)137
http://arxiv.org/abs/1310.1609
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1609
http://dx.doi.org/10.1007/JHEP05(2014)009
http://arxiv.org/abs/1311.4842
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4842
http://dx.doi.org/10.1016/j.nuclphysb.2014.05.004
http://arxiv.org/abs/1312.4945
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.4945
http://dx.doi.org/10.1007/JHEP05(2014)003
http://arxiv.org/abs/1312.7160
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.7160
http://dx.doi.org/10.1016/j.physletb.2014.08.016
http://arxiv.org/abs/1401.7618
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.7618
http://dx.doi.org/10.1103/PhysRevD.90.046003
http://arxiv.org/abs/1406.2152
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2152

[37]

[38]

Y. Lozano and N.T. Macpherson, A new AdSy/CFTs dual with extended SUSY and a
spectral flow, JHEP 11 (2014) 115 [arXiv:1408.0912] INSPIRE].

O. Kelekei, Y. Lozano, N.T. Macpherson and E. 0 Colgain, Supersymmetry and non-Abelian
T-duality in type-II supergravity, Class. Quant. Grav. 32 (2015) 035014 [arXiv:1409.7406]
[INSPIRE].

N.T. Macpherson, C. Ninez, L.A. Pando Zayas, V.G.J. Rodgers and C.A. Whiting, Type IIB
supergravity solutions with AdSs from Abelian and non-Abelian T dualities, JHEP 02 (2015)
040 [arXiv:1410.2650] [INSPIRE].

K.S. Kooner and S. Zacarias, Non-Abelian T-Dualizing the Resolved Conifold with Regular
and Fractional D3-branes, JHEP 08 (2015) 143 [arXiv:1411.7433] [INSPIRE].

T.R. Araujo and H. Nastase, N' = 1 SUSY backgrounds with an AdS factor from non-Abelian
T duality, Phys. Rev. D 91 (2015) 126015 [arXiv:1503.00553] [INSPIRE].

Y. Bea et al., Compactifications of the Klebanov-Witten CFT and new AdSs backgrounds,
JHEP 05 (2015) 062 [arXiv:1503.07527] [INSPIRE].

Y. Lozano, N.T. Macpherson, J. Montero and E. O Colgéin, New AdSs x S? T-duals with
N =(0,4) supersymmetry, JHEP 08 (2015) 121 [arXiv:1507.02659] [INSPIRE].

Y. Lozano, N.T. Macpherson and J. Montero, A N' = 2 supersymmetric AdSy solution in
M-theory with purely magnetic flux, JHEP 10 (2015) 004 [arXiv:1507.02660] [INSPIRE].

T.R. Araujo and H. Nastase, Non-Abelian T-duality for nonrelativistic holographic duals,
JHEP 11 (2015) 203 [arXiv:1508.06568] [INSPIRE].

N.T. Macpherson, C. Nunez, D.C. Thompson and S. Zacarias, Holographic Flows in
non-Abelian T-dual Geometries, JHEP 11 (2015) 212 [arXiv:1509.04286] [INSPIRE].

H. Dimov, S. Mladenov, R.C. Rashkov and T. Vetsov, Non-abelian T-duality of
Pilch-Warner background, arXiv:1511.00269 [INSPIRE].

O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091
[arXiv:0806.1218] [INSPIRE].

P.G.O. Freund and M.A. Rubin, Dynamics of Dimensional Reduction, Phys. Lett. B 97
(1980) 233 [INSPIRE].

M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130
(1986) 1 [INSPIRE].

T. Friedrich and 1. Kath, Seven-dimensional compact Riemannian manifolds with Killing
spinors, Commun. Math. Phys. 133 (1990) 543 [INSPIRE].

D. Martelli and J. Sparks, Moduli spaces of Chern-Simons quiver gauge theories and
AdSy/CFTs, Phys. Rev. D 78 (2008) 126005 [arXiv:0808.0912] [INnSPIRE].

M. Petrini and A. Zaffaroni, N=2 solutions of massive type IIA and their Chern-Simons
duals, JHEP 09 (2009) 107 [arXiv:0904.4915] [iNSPIRE].

R. D’Auria, P. Fré and P. van Nieuwenhuizen, N = 2 Matter Coupled Supergravity From
Compactification on a Coset G/H Possessing an Additional Killing Vector, Phys. Lett. B
136 (1984) 347 [INSPIRE].

S. Franco, I.LR. Klebanov and D. Rodriguez-Gémez, M2-branes on Orbifolds of the Cone over
Q-b1 JHEP 08 (2009) 033 [arXiv:0903.3231] [INSPIRE].

~32 -


http://dx.doi.org/10.1007/JHEP11(2014)115
http://arxiv.org/abs/1408.0912
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.0912
http://dx.doi.org/10.1088/0264-9381/32/3/035014
http://arxiv.org/abs/1409.7406
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.7406
http://dx.doi.org/10.1007/JHEP02(2015)040
http://dx.doi.org/10.1007/JHEP02(2015)040
http://arxiv.org/abs/1410.2650
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.2650
http://dx.doi.org/10.1007/JHEP08(2015)143
http://arxiv.org/abs/1411.7433
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.7433
http://dx.doi.org/10.1103/PhysRevD.91.126015
http://arxiv.org/abs/1503.00553
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.00553
http://dx.doi.org/10.1007/JHEP05(2015)062
http://arxiv.org/abs/1503.07527
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07527
http://dx.doi.org/10.1007/JHEP08(2015)121
http://arxiv.org/abs/1507.02659
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.02659
http://dx.doi.org/10.1007/JHEP10(2015)004
http://arxiv.org/abs/1507.02660
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.02660
http://dx.doi.org/10.1007/JHEP11(2015)203
http://arxiv.org/abs/1508.06568
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06568
http://dx.doi.org/10.1007/JHEP11(2015)212
http://arxiv.org/abs/1509.04286
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.04286
http://arxiv.org/abs/1511.00269
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.00269
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218
http://dx.doi.org/10.1016/0370-2693(80)90590-0
http://dx.doi.org/10.1016/0370-2693(80)90590-0
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B97,233"
http://dx.doi.org/10.1016/0370-1573(86)90163-8
http://dx.doi.org/10.1016/0370-1573(86)90163-8
http://inspirehep.net/search?p=find+J+"Phys.Rept.,130,1"
http://dx.doi.org/10.1007/BF02097009
http://inspirehep.net/search?p=find+J+"Comm.Math.Phys.,133,543"
http://dx.doi.org/10.1103/PhysRevD.78.126005
http://arxiv.org/abs/0808.0912
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0912
http://dx.doi.org/10.1088/1126-6708/2009/09/107
http://arxiv.org/abs/0904.4915
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4915
http://dx.doi.org/10.1016/0370-2693(84)92018-5
http://dx.doi.org/10.1016/0370-2693(84)92018-5
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B136,347"
http://dx.doi.org/10.1088/1126-6708/2009/08/033
http://arxiv.org/abs/0903.3231
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3231

[56] D.N. Page, Classical Stability of Round and Squashed Seven Spheres in Eleven-dimensional
Supergravity, Phys. Rev. D 28 (1983) 2976 [INSPIRE].

[57] D. Marolf, Chern-Simons terms and the three notions of charge, in Quantization, gauge
theory, and strings. Proceedings, International Conference dedicated to the memory of
Professor Efim Fradkin, Moscow, Russia, June 5-10 2000. Vol. 142, pp. 312-320,
hep-th/0006117 [INSPIRE].

[58] L.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl.
Phys. B 796 (2008) 274 [arXiv:0709.2140] [NSPIRE].

[59] A. Barranco, J. Gaillard, N.T. Macpherson, C. Nunez and D.C. Thompson, G-structures and
Flavouring non-Abelian T-duality, JHEP 08 (2013) 018 [arXiv:1305.7229] [INSPIRE].

[60] E. Cremmer, B. Julia and J. Scherk, Supergravity Theory in Eleven-Dimensions, Phys. Lett.
B 76 (1978) 409 [INSPIRE].

— 33 —


http://dx.doi.org/10.1103/PhysRevD.28.2976
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D28,2976"
http://arxiv.org/abs/hep-th/0006117
http://inspirehep.net/search?p=find+EPRINT+hep-th/0006117
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.017
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.017
http://arxiv.org/abs/0709.2140
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2140
http://dx.doi.org/10.1007/JHEP08(2013)018
http://arxiv.org/abs/1305.7229
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7229
http://dx.doi.org/10.1016/0370-2693(78)90894-8
http://dx.doi.org/10.1016/0370-2693(78)90894-8
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B76,409"

	Introduction
	Freund-Rubin seeds for solution generating techniques using non-Abelian T-duality
	Background from S**7 /Z(k)
	NATD(Downarrow(tau)(AdS(4) x S**7/Z(k)))

	Background from AdS(4) x S**7
	NATD(Downarrow(psi(2))(AdS(4) x S**7))

	Backgrounds from AdS(4) x M**(1,1,1)
	NATD(Downarrow(tau)(AdS(4) x (M**(1,1,1))))
	NATD of SU(2)/U(1) isometry in Downarrow(tau)(AdS(4) x (M**(1,1,1)))
	Alternate reduction: Downarrow(phi(1) )(AdS(4) x M**(1,1,1))
	NATD(Downarrow(phi(1))(AdS(4) x M**(1,1,1)))


	Backgrounds from AdS(4) x Q**(1,1,1)
	Alternate reduction: Downarrow(phi(i) )(AdS(4) x Q**(1,1,1))
	NATD(Downarrow(phi(i))(AdS(4) x Q**(1,1,1)))


	Backgrounds from AdS(4) x N(1,1) with less supersymmetry
	NATD(Downarrow(beta)(AdS(4) x N(1,1)))

	Dual CFT central charge
	Dual CFT central charge for coset NATD

	Discussion and conclusions
	Review of NATD
	SU(2) isometries
	Coset spaces: SU(2)/U(1) isometry

	Review of supergravity EOM

