
DATA ADAPTOR UNIT FOR AN ELECTRONIC EXCHANGE:

SYSTEM DESIGN AND SIMULATION STUDY

KASPER REININK

A Dissertation submitted to the Faculty of Engineering,
University of the Witwatersrand, Johannesburg,
for the Degree of Master of Science in Engineering

Johannesburg 1981

ABSTRACT

The development of pulse code modulation systems and electronic

exchanges, together with the increase in volume of data traffic, have

made it desirable to establish a means for handling both voice and

data trarfic in the telephone network. A technique is required whereby

integrated voice and data switching may be accomplished in an electronic

exchange.

It is proposed that a data adaptor unit be incorporated in

electronic exchanges for the ourpose of concentrating data traffic onto

PCM highways. A conceptual design for the architecture of such a unit

is presented and its performance evaluated. The protocols for

connecting data adaptors into a network, and the use of flow control

procedures for regulating data traffic within the network, are described.

The hardware implementation of the unit is not considered.

The proposed data adaptor operates on the packet switching

principle. It is comprised of three types of modules each dedicated

to carrying out a particular communication function. The modules are

the interface processor that interacts with data transmitting devices,

the network processor for sending data over PCM channels between

adaptors, and the supervisory processor for regulating activities within
the adaptor unit.

Specific features developed for the adaptor unit include a protocol

allowing the sharing of a physical PCM channel by several logical paths,

as well as the transmission of only incorrect packets; the partitioning

of memory along topological lines to aid in flow control. An algorithm,

situated in the supervisory processor, is presented for controlling

packet exchanges between modules in the adaptor.

A simulation facility, written in FORTRAN IV, was developed to

determine the performance capabilities of the data adaptor. Two

networks based on the proposed unit were simulated. Response and

throughput measurements have been listed. The effect of certain model

parameters on network performance, such as the packet retransmission

interval, were examined. The simulation plots listed indicate the

characteristics of a data network consisting of adaptor units.

Comparison of the performance results attained by the hypothetical

network with those of practical networks, indicates that the proposed

data adaptor has the response and throughput capability to serve as

the basis for a data traffic system. A unit path length response of

18 milliseconds was obtained for the hypothetical network at mean line

utilization 0,46. The channel capacity was 64000 bits per second, and

the mean packet size 470 bits.

X hereby declare that this dissertation is
my own work and that it has not previously
been submitted for a degree at any University

-• / Z l< — /xf v #

K Reinink

- iv -

ACKNOWLEDGEMENTS

The work described in this dissertation was carried out in the
Electrical Engineering Department at the University of the
Witwatersrand, Johannesburg.

The author extends his sincere apprecic. ;ion to the following
people for their support and guidance:

Professor H E Hanrahan, Department of Electrical Engineering,
for his supervision of the work.

Professor M G Rodd, Department of Electrical Engineering,
for his constructive comments on the draft presentation.

The author expresses his gratitude to the Council for Scientific
and Industrial Research, and the University of the Witwatersrand,
for their generous financial assistance.

Finally, the author thanks Mrs Brooks for typing the dissertation.

CONTENTS

Page No

CHAPTER 1
1.1
1.2
1.3

1.4

Data Adaptor for an Electronic Exchange
Introduction
Review of Data Transmission
Description of the Data Adaptor Unit
1.3.1 The Nodal Architecture
1.3.2 The Network Protocols
1.3.3 Flow Control
Chapter Survey

1
1
3
7
7

10
12
13

CHAPTER 2
2.1
2.2
2.3
2.4
2.5

2.6

Flow Control Measures
Introduction
Resource Sharing in Packet Networks
Characteristics of Packet Networks
Global Flow Control
Local Flow Control
2.5.1 Priority Allocation Technique
2.5.2 Memory Partitioning Technique
Review

15
15
16
18
21
23
23
27
29

CHAPTER 3
3.1
3.2

3.3

Simulation Facility
Introduction
The Simulation Structure
3.2.1 Initialization Block
3.2.2 Executio.i Block
3.2.3 Description of Simulation Modules
3.2.4 Module Communication
Input Parameters for the Simulation
3.3.1 Network Topology Simulated
3.3.2 Traffic Control by Virtual Circuits
3.3.3 Link Specification
3.3.4 Node-Processor Mapping
3.3.5 Packet Route Map

30
30
31
32
32
32
36
38
38
38
40
41
42

Page No

I

3.3.6 Bus Multiplexing Table
3.3.7 Partition Table
3.3.8 Network Parameters
3.3.9 Summary

3.4 The Nodal Simulation Model
3.4.1 Simulation of Nodal Replicas
3.4.2 Description of the Block Structure
3.4.3 Implementation of Models Using Arrays

3.5 Review

CHAPTER 4 The Interface Communication Processor
4.1 Introduction
4.2 User-Network Protocol

4.2.1 Source Host to ICP Interaction
4.2.2 Destination/Source ICP Interaction
4.2.3 Synchronization of Processes
4.2.4 Pipelining Data Through the Network
4.2.5 Termination of the Transmission
4.2.6 Segment Sizes
4.2.7 Source ICP to Destination ICP Transmission
4.2.8 Demonstration of ICP Protocols
4.2.9 The ICP Protocol as a Flow Control Measure
4.2.10 Summary

4.3 Storage Management
4.3.1 ICP Memory Partitions
4.3.2 Packet and Buffer Sizes
4.3.3 Message Buffering
4.3.4 Double Buffering Concept
4.3.5 Reserving Buffers
4.3.6 Summary

4.4 Review

43
44
45
45
48
48
50
51
52

53
53
56
59
60
60
64
66
66
67
68
76
77
78
79
80
83
83
85
89
89

CHAPTER 5
5.1
5.2

Channel Controller
Introduction
Node-to-Node Protocol
5.2.1 Link Throughput
5.2.2 Outline of the Protocol

90
90
91
92
93

Page No

5.2.3 Logical Path Concept 93

5.2.4 Synchronisation Flags 96

5.2.5 Packet Frame Format 99

5.2.6 Valid Flag Settings 101

5.2.7 Summary 102

5.3 Storage Allocation 103

5.3.1 Store-and-Forward Buffer Blocking 103

5.3.2 Memory Partitions 104

5.3.3 Memory Partitioning According to Topology 105

5.3.4 Packet Frame Format and Memory Partitioning 108

5.4 Performance of the Link 109

5.4.1 Parameters for the Channel Simulation 111

5.4.2 Channel Performance 114

5.4.3 Channel Response 114

5.4.4 Percentage Packets Rejected 115

5.4.5 Comparison with Analytic Response Calculation 120

5.4.6 Discussion on Unequal Input/Output Rates to Link 123

5.4.7 Summary 128

5.5 Review 128

CHAPTER 6 Communication Processor Architecture 130

6.1 Introduction 130

6.2 Outline of Nodal Architecture 130

6.3 The Bus Access Problem 134

6.4 The Function of the Switching Processor 135

6.5 Nodal Timing 138

6.6 The Cycle Diagram 141

6.7 Description of the Sort Algorithm 146

6.7.1 Classification of the Status Data 146

6.7,2 Sort Algorithm 149

6,8 Description of the Switch Algorithm 153

6.8.1 Notation 154

6.8.2 Switch Algorithm 155

6.9 Description of the Format Algorithm 162

6.9.1 Data Bus Access Control 163

6.9.2 Synchronization of Data-and-Switch Events 164

Page No
6.9.3 Format Algorithm

6.10 Review
168
174

CHAPTER 7
7.1
7.2

7.3

7.4

Network Performance
Introduction
Discussion on the Topologies Simulated
7.2.1 Network Parameters
7.2.2 Assumptions made in the Simulation
7.2.3 Performance Indices used in the Simulation

Performance of the Network
7.3.1 Notational Details
7.3.2 Simulation Run-Time
7.3.3 Response and Throughput
7.3.4 Switching Algorithm Priority Variations
7.3.5 Review Concerning Nodal Characteristics
7.3.6 Variation of the Retransmission Interval
7.3.7 Variation of Bus Rate and Algorithm Period
7.3.8 Nodal Capacity
Review

176
176
176
178

181
182

184
184
184
191
204
209
209
215

222

227

CHAPTER 8
8.1
8.2
8.3

Conclusions
Discussion
Conclusions
Future Developments
8.3.1 Implementation of the Data Adaptor
8.3.2 Alternate Nodal Architectures
8.3.3 Developments at the Network Level

228
228
229
234
234
235
236

APPENDIX A Array Definitions
Page No

237

APPENDIX B Data Network Simulation Programs 256

APPENDIX C Parameters for Network Simulation 359

APPENDIX D Parameters for Nodal Simulation 365

APPENDIX E Simulation Results 372

TABLES

3.1 Logical Link and Virtual Circuit Parameters

3.2 Nodal Mappings
3.3 NCP-to-NCP Connection
3.4 Route Map
3.5 Bus Multiplexing
3.6 Partition Table
3.7 Network Parameters

41

41
42
42
43
45
46

4.1 Notation for Transmission Figures
4.2 Segment, Buffer and Packet Size Relationships

57
84

5.1 Channel Response 127

7.1 Response Characteristii
7.2 Node 1 Performance
7.3 Channel Utilizations

198
202
226

8.1 Performance of Networks
8.2 Network Response Times

232
233

CHAPTER 1

DATA ADAPTOR EOR AN ELECTRONIC EXCHANGE

1-1 Introduction

The introduction of pulse code modulation (PCM) techniques and

electronic exchanges for both the transmission and switching of

information has led to a shift in thinking away from frequency division

multiplexing to that of time division multiplexing systems. Whereas,

in conventional exchanges, computers and terminals "squired modems to

transmit their information over telephone lines, the PCM exchange

system requires no such devices since all information is transmitted

in digital fashion.

The 30/32 PCM system allows for a higher transmission rate than

the existing rates of 4800 to 9600 bits per second at which data travel
(2)over the analogue lines. This system consists of thirty speech and

two control channels for signalling purposes, each of capacity 64000
(1 2)bits per second. ' Switching takes place via time-space-time

division multiplexing, to connect the various subscribers of the network.

Developments such as terminal inquiry systems, bulk data

transmission in the form of files , facsimile mail transmission and

electronic fund transfer, means that the volume of data traffic

exchanged between geographically separated devices is expected to

increase significantly. ̂ ̂ The transmission of data will become

a major source of traffic alongside that of voice communications.

— 1 —

CHAPTER 1

DATA ADAPTOR FOR AH ELECTRONIC EXCHANGE

1.1 Introduction

The introduction of pulse code modulation (PCM) techniques and
electronic exchanges for both the transmission and switching of
information has led to a shift in ti.inking away from frequency division

multiplexing to that of time division multiplexing systems. Whereas,

in conventional excnanges, computers and terminals required modems to

transmit their information over t(l»ohone lines, the PCM exchange
system requires no such devices since all information is transmitted
in digital fashion.

The 30/32 PCM system allows for a higher transmission rate than
the existing rates of 4800 to 9600 bits per second at which data travel

(2)
over the analogue lines. This system consists of thirty speech and

two control channels for signal‘H-- "rposes, each of capacity 64000
(I 2)bits per second, ' Switching takes place via time-space-time

division multiplexing, to connect the various subscribers of the network.

Developments such as terminal inquiry systems, bulk data
transmission in the form of files, facsimile mail transmission and

electronic fund transfer, means that the volume of data traffic
exchanged between geographically separated devices is expected to

increase significantly, ̂ ̂ The transmission of data will become

a major source of traffic alongside that of voice communications.

- 2 -

The above considerations imply that the use of a PCM telepho:a

network would result in the rapid assimilation of most forms of dcta

traffic. It must be kept in mind, however, that telephone networks,

PCM or otherwise, have been designed in the first place to facilitate

the handling of voice traffic.

There exist certain differences in the characterisation of voice

and data traffic. The transmission of data usually occurs in bursts,

whereas the transmission rate in telephone channels is constant.

Different coding techniques are made use of in data communications.

Widespread channel capacities ranging from a few bits per second to

(ideally) millions of bits per second are required. Telephone traffic

requires only a single fixed capacity channel.

Certain requirements are to be met if communication between

computers is to tak place. Examples are, negligible delay in setting

up a call, provision for receiving messages at all times from remote

terminals and other centres, automatic code and format translation.

The introduction of certain improved technologies over the past

few years means that alternative solutions may be possible for data

transmission, satisfying computer communication demands. The

introduction of TDM techniques for information transmission in

telephone networks has led to increased throughput capabilities up to

64000 bits per second per channel. The cost of processing and storing

data has decreased do such an extent that it has become feasible to

- 3 -

dynamically allocate communication resources, making it possible to

integrate traffic requiring a variety of bandwidths within a single

network.

A technique is required whereby integrated voice and data

switching may be accomplished in an electronic exchange that makes use

of pulse-code-modulation channels for information transmission.

1.2 Review of Data Transmission

Three types of network have been used for the transmission of
(3)data traffic:

(1) Circuit switching systems that require a complete path to be

set up from end to end, and only when the connection has been

established may messages be multiplexed into the system.

Blocking of calls and therefore call connection times may

become a problem.

(2) Message switching that requires bulk storage devices for the

buffering of entire messages before data is forwarded to the

destination; these systems are generally more suitable for

large file transfers.

(3) Packet switching systems where a message is divided into

shorter packets, each of which works its way through the

network from node to node. The packet—switch method possesses

the capability of satisfying most of the requirements for

adequate computer-communication.

It is a characteristic of packet-switching that, once a call has

been set up, the channel resources are only used when a device transmits

a message. When the pair of subscriber devices are idle, the channel

may be allocated to other users. Provision is made for receiving

messages at all times without on each occasion proceeding through the

motions of call connection. Code and format translations are
(4)possible.

The differences between computer and telephone type traffic have

resulted in various solutions to the data transmission problem.

These include:

(1) the use of modems for transmitting data over the analogue

lines of the public telephone system,

(2) the use of circuit-switch based networks for data transmission.

The Electronic Data Switching System makes use of PCM

transmission links and circuit switching data exchanges that

include synchronous data multiplexers. ̂ DATRAN is a

specialized common carrier operating a fast-connect switched

data network, switching carried out by means of c-mputer-

controlled time-space-time division multiplexing facilities.^

- 5 -

(3) dedicated message and packet-switching circuits have been

constructed, e.g., commercial time-sharing networks (TYMNET),

airline reservation facilities (SITA), and computer resource

sharing networks (ARPA).^ Certain manufacturers have constructed

their own networks, such as IBM's Synchronous Network Architecture

that enables a variety of machines to be interconnected over
(7)geographically dispersed regions.

(4) ideas of integrating voice and data traffic systems. A number of

analyses have been conducted to determine the conditions for
which either a packet or a circuit switch based technique is to be

used, the two techniques being incorporated into a single node in

a network .̂ ̂ The majority of integrated voice and data

switching systems have been confined to introducing a master frame

format of a statistical TDM facility, allocating certain slots to

voice and other slots to data information.

Available integrated voice/data switching facilities have been

based on the circuit-switch method. Packet-switching has generally

been dedicated to specific applications. Required is a system

incorporating both types of methods for switching voice and data traffic.

A survey was carried out - .uain an idea of the state of

communication processors. The article by Newport and Ryzlak^11 ̂

contains a review of the use of small computers for communication

processing. They discuss the software and hardware requirements for

network processors, data concentrators, and message-switching systems.

A corresponding article by Mills on communication software deals

with network control, message processing, and error recovery. Steel
(13)and Mattson describe a 16-bit general purpose minicomputer configured

to operate as a communications processor. A minicomputer-multiprocessor

built specifically to meet expanding traffic requirements, and to provide

extreme reliability is the Pluribus system. It performs packet-switching
(14)in the ARPA network.

The above constitute - r '11 selection of papers on communication

processors. Most deal wi.n the software and hardware utilities

applicable to minicomputers. A paper describing the technology used

in the implementation of packet processors has been published by
(15)Roberts. He identifies three generations of architecture. In

the late 1960's limited capacity minicomputers in a single-level

hierarchy distributed network were utilized. A typical example is that

of the ARPA network. The second generation networks utilized more

powerful minicomputers in a two-level network with central office

switching centres containing minicomputer subnets, e.g., TELENET. In

the late 1970's, with the advent of the microprocessor, the third

generation of networks is in the process of development in the form of

multi-microcomputer systems serving as nodes in a three-level hierarchy.

A report by Sarch^^ confirms that there is a trend to multi

microcomputer configurations, due to the decreasing costs of micro

processors and memory. It is pointed out, however, that careful

consideration must be given to the overheads involved in managing all

these decentralized processors. Each microprocessor is being seen as

dedicated to single tasks, such as coding, diagnostics, interfacing, etc.

The above leads to the observation that mini-computers have been

largely used to date to perform the packet-switch function, that the

application of multi-microcomputer architectures for communication is

regarded favourably, but that not much has been done to construct such

computer structures. The idea of micro-computer based modules for

packet-switching in electronic exchanges indicates the possibility of

realizing an integrated voice-data switching system.

1.3 Description of the Data Adaptor Unit

It is proposed that a data adaptor unit, based on microprocessor-

type elements, be included in electronic exchanges for the purpose cf

handling data traffic. Adaptor units will make use of the packet-switch

method, which is best suited to meet computer communication requirements.

A solution for the architecture of such a data adaptor is presented in

terms of functional modules, the communication protocols used to link

data units into a network, and flow control procedures for regulating

traffic in the network.

1.3.1 The Nodal Architecture

The architecture (see Figure 1.1) consists of three types of

modules, interface and network processors, and a supervisory or switch

processor. Each module is envisioned to consist of a microprocessor

DAT A

A D A P T O R TO OTHERT A N D E M

EX C HA NG ESTO DATA EX CHA NG E

T R A N S M IT T IN G

DEVICES DATA
P C M HIGHWAYS

A D A P T O R

LOCAL PCM HIGHWAYS

TO OTHER

EX C H A N G E S
INCOMING PCM

HIGHWAYS
EXCHANGE

DATA E L E C T R O N IC E X C H A N G E :

ADA PTOR STORED PROGRAM COMPUTER +

T I M E - S P A C E - T IME S W IT C HING

FIGURE 1 (a DATA T R A F F I C CONCENTRATION

I C P
J x

NCR P C M

HIGHWAYS

TO D A T A

TRANSMITTING

J V
DEVICES NCR

/ v
I C P

I C P I INTERFACE

PROCESSORDATA BUS SWITCH

N C R : N ETWO RK
CONTROL BUS

PROCESSOR

F I G U R E 1 (b) D A T A A D A P T O R UNIT I / F : INTERFACE

CIRCUITRY

— Q —

plus memory and appropriate interface integrated circuits. The

modules are linked together via two separate, asynchronous busses,

termed the data and control bus.

Each of the modules performs a specific function. The interface

processors (ICP's) interface with user devices, and perform functions

such as code and format translations, packetizing of messages, and

reassembly. The network processors (NCP's)control the transmission of

packets via PCM channels that connect nodes with one another. The

switching processor controls the activities within the node. At regular

intervals, it determines the status of the node by polling the NCP's and

ICP's. The polled information is processed, and commands are subsequently

issued to the interface and network processors, directing these modules as

to which packets to send, and when transmission is to take place. The

switching processor takes into account factors relevant to nodal operation,

such as the availability of buffering in modules, and the congestion

experienced on internodal channels.

Data packets are transferred between ICP and NCP modules via the data

bus. Information exchange between the switch and the other processors

in the node, takes place over the control bus. Note that the detailed

design of the microprocessor elements is not of concern here.

The basic operation of the data adaptor unit is summarized as follows.
The ICP modules interact with network users. Packets for network
transmission are exchanged with NCP1s via the data bus. The NCP's ensure
packets are transmitted to, or received from, neighbouring nodes. The
switch processor supervises the activities of the ICP and NCP modules
over the control bus.

/

— 10 —

1.3.2 The Network Protocols

The protocols Implemented for the network are shown in Figure 1.2.
Depicted are two host devices that require high bandwidth communication

facilities on demand. The traffic between the two host devices is

bursty, with long gaps in time between the transmission of messages.

The host protocol is undefined. It is both specific to the pair

of communicating host devices, and transparent to the network.

The host-network protocol allows communication of user devices

with the network. Although the codes and formats used may be device

specific, certain protocol procedures necessary for controlling the data

flow are common to all ICP-hcst links.

The information flow between nodes is implemented via the internodal

protocol. The protocol is based on the send-and-wait procedure commonly

used in packet networks. It is a high-level h'.t-oriented protocol,

allowing up to eight packets to be transmitted before an acknowledgement
is required, thus ensuring full utilization of a channel. The protocol

differs from commonly encountered bit-oriented protocols, such as

Synchronous Data Link Control, in that the acknowledgement process relies

upon associating a bit position in a transmitted frame with a packet to

be acknowledged, rather than modulo sequence numbers.

The end-to-end protocol is used to control the traffic flow between

two ICP s each connected to a pair of communicating host devices. It

allows for the pipelining of long file transfers, and for the efficient

NETWORK___________ ^

DATA
ADAPTOR

HOST

DE VIC E

I N T E R
MEDIATE

DATA
ADAPTOR

D AT A

ADAPTOR

HOST

DEVICE

A : HOST NETWORK PROTOCOL

B : I N T E R N O D A L PR O T O C O L

C : END - TO - END PROTOCOL

D : HOST PROTOCOL

F I G U R E 1 -2 N ETWORK PROTOCOLS

- 12 -

transmission of short interactive messages. User devices are connected

via logical links, realized by the end-to-end protocol. Once a
connection has been established, data may be transmitted at any time,
the necessary channel and buffer resources being allocated when required.

No central or supervisory node is present in the network to control

data flow between nodes. The above protocols are required to cooperate

in the transmission of a message from one host to another.

1.3.3 Flow Control
Traffic flow control measures may be divided into the two broad

categories of local and global control. Global flow techniques extend

across the entire network domain and, generally, have the function of
limiting the number of packets in the network. It has been implemented
in conjunction with the end-to-end protocol. Only a maximum specified

number of packets per logical link may be in transit across the network

at any one time.

The local flow measures operate within the domain of a node and its

immediate neighbours, to prevent the occurrence of congestion m the

nodal channels. Such a measure has been implemented in the switching
processor of each node. Data traffic within the node is classified

into the two categories:
(i) traffic entering the network,

(ii) traffic in transit or leaving the network.
The second class of packets is given priority over the first. The

measure has been implemented by the use of time-dependent priority

scheduling.

— 13 —

1. 4 Chapter Survey

This chapter has served to introduce the structure of the data

adaptor unit. It was proposed that the data adaptor, based on the
packet-switch method, be incorporated into an electronic exchange to
deal exclusively with data traffic. The following chapters expand on

the system design of the adaptor unit.

Chapter 2 concentrates on the local and global flow control measure

Incorporated into the data adaptor. The throughput and delay
characteristics of packet networks is discussed. It is shown that

excessive utilization of communication channels results in performance

degradation.

The simulation facility used to model and test the performance of
networks based on the proposed data adaptor is described in Chapter 3.
The input parameters required to describe a network are extensively
listed. The facility concentrates on simulating the operation of
a node; simulation of a network occurs by defining the topological

connections between nodes.

A functional description of the Interface processor module is
contained in Chapter 4. An end-to-end protocol is described.
A graphical demonstration of the protocol workings is included.
Finally, the buffer management technique used in the interface

processor is outlined.

- 14 -

Chapter 5 describes the functions of the network processor module.

The internodal protocol and processor buffering structure art fined.

To aid in flow control, memory is partitioned according to topological

connections of a node to its neighbours. A nodal link was simulated
to gain insight into the parameters affecting nodal performance.

..he method of packet interchange between modules within a node is

discussed in Chapter 6. Nodal architecture is outlined. The role

of the switching processor in controlling the activities of the network

and interface processors is described. The chapter concentrates on the

nature of the algorithm executed by the switch processor to perform the

controlling action.

The performance of two simulated networks is listed and discussed

in Chapter 7. A preview of the network parameters used, the assumptions

made in the simulation, and the indices required for defining network

performance, is contained. Tests conducted include, the simulation

time required for the models to arrive at a state of equilibrium,

response and throughput measurements, local flow control behaviour, and

the effect of certain nodal parameters, the retransmission interval,

data bus rate and switch algorithm period, on network performance.

Conclusions as to the feasibility of the proposed data adaptor are

set out in Chapter 8. A number of suggestions for further work in

this area is included.

- 15 -

CHAPTER 2

FLOW CONTROL MEASURES

2.1 Introduction

Chapter 2 stud: -> flow control aspects pertaining to a network

consisting of a number of connected data adaptor units. The application

of such control measures is in fact necessary for all packet-switch

based networks.

The network is considered as consisting of a set of components or

resources, e.g., buffers, channels, processors, that must be shared
amongst a number of logical links for the packet transmission phase to

be executed. An excessive number of conflicts over resources can

result in the network performance of packet response and throughput^

being degraded. Graphical plots have bean included to illustrate

this efrect. To prevent the occurrence of excessive resource sharing

conflicts, flow control procedures need to be instituted. Both local

and global techniques have been incorporated into the data adaptor unit,

and these are described.

Two terms relevant to this chapter are defined. 'Global Flow

Control' is a procedure by which the network regulates traffic flow

between a source user device and a destination user device. 'Congestion

Control' or 'Local Flow Control' is a procedure whereby distributed

network resources are protected from over-subscription. In general

successful operation of global flow control procedures for every pair

of communicating processes does not guarantee that the network resources

will remain uncongested, hence the need for both global and local control.

/

— 16 —

2.2 Resource-Sharing in Packet Networks

One of the main problem areas to be found in packet-switching

technology is that of the need for distributed resource sharing.

Resources must be allocated on demand at various points in the network

if successful transmission of data is to take place. The performance

of the network is linked to the efficiency of resource allocation.

The principle of resource allocation is briefly explained. The

computer network has, as one of its main resources, high capacity

channels (others are buffers, processors, data busses, etc.). These

channels are allocated to users for short durations of time - the time

to transmit a packet of specified size via the 6 400 BPS link. If all

users were to send data to the network for transmission at the same

point in time, the capacity of the channel to transport the information

would be exceeded. In practice such an event will rarely occur, and

then only for a short duration.

As the number of messages to the network is increased per unit

time, more conflicts will arise regarding the sharing of resources.

In extreme conditions deadlock may occur in which two or more competing

demands have each been assigned a subset of their necessary resources;

neither can proceed until one of them collects some additional resources

which, currently, are assigned to the other, and neither is willing to

release any resources currently assigned to him. When too many

conflicts for resources take place the network performance degrades;

an increased time to transport a packet from source to destination host

- 17 -

results and the average number of packets transmitted per unit time,

decreases.

The importance of the above discussion is that the data adaptor

unit cannot be considered in isolation from its neighbouring nodes.

A data adaptor acts, not only as a source and a destination of messages

in its interaction with host devices, but it also serves as intermediate
node, receiving and transmitting packets enroute from and to its
neighbours. The unit must be regarded as one part of a network system

for data transmission. The success of a nodal architecture can only

be determined when a number of units are linked together into a network
and the network system is able to achieve a satisfactory level of

performance.

It is important to note that the functioning of any data unit is,

to a large extent, determined by the operation of its neighbours. The

difficulty of designing successful packet networks with adequate

performance levels occurs due to the distribution of the resources in

geographically dispersed communication units, where access to these

resources arises from asynchronous processes in a highly bursty fashion.

Not only is the demand process bursty, but it is also high unpredictable,

in the sense that the instants when the demands arise are not known

ahead of time.

The problem of resource sharing in a distributed environment

manifests itself in the flow control problems. The problem of flow

control is to regulate the rate at which data crosses the boundary of

the communication network.

It is Lo be noted that the data network envisaged would be

decentralized. No one node would control the operation of the network

in centralized fashion; this is impractical. By the time control data

were to reach the supervisory node, and appropriate control action taken,

the information received might have become invalid.

2.3 Characteristics of Packet Networks

Investigations carried out by means of analyses and simulation ̂20^

as well as data gathering on experimental networks, particularly
(21)ARPANET, have shown that the response and throughput characteristics

of packet networks, may be depicted as shown in Figure 2.1.

As the input load in packets per second is increased, the response

of the network remains fast at the value of To milliseconds, the

no-load packet delay, until an input load of y* is reached. Thereafter

the network becomes 'unstable' due to an excessive number of resource-
sharing conflicts occurring. The response time then increases at a

virtually exponential rate.

The throughput curve shows a similar characteristic. Increasing

the input load past a certain point (in the region of y*) will cause

- 19 -

packet
delay

To

input load

throughput

input load / ^

Figure 2.1 Network Characteristics

the throughput in packets per second to start decreasing. The

interpretation is that under normal conditions the input load equals

the network capacity; a point is reached, however, where the input

will start to exceed the capacity of the network to transport the

packets and performance degradation occurs.

The purpose of the flow control measures is to prevent the network

from entering the region where the performance indices of response and

throughput become degraded, and the amount of work performed by the

system effectively decreases. The above graphs are somewhat deceptive
in the sense that absolute input load values do not of themselves

result in congestion taking place, rather resources become overloaded,

e.g., a channel may become blocked.

Equations for a simplified threshold model of network delay,
(21)derived in Kleinrock, are restated.

Consider an M-channel, N-node network. The channels are assumed

to be noiseless, the i'th channel having capacity Ci bits/sec. The

nodal processing times are assumed negligible. The packet lengths are

assumed to follow an exponential distribution with mean 1/U bits. All

nodes in the network have infinite storage capacity. A fixed routing
procedure is defined. Define ^ as the average number of packets per

second that travel over the i'th channel. In order to evaluate the

delay at a channel imbedded in the network it is necessary to make use
of Kleinrock's independence assumption: each time a packet is received

at a node, a new length b is chosen independently from the distribution,

p (b) = pie ^ b ^ o (2.1)

This assumption has been shown to be reasonable for networks of moderate
connectivity, i.e., that most nodes should have more than one channel

entering and more than one leaving.

Representing the i'th channel by a M/M/1 queueing system, i.e.,

Poisson arrival (M) and exponential server (M) distributions, single

server, the mean packet delay is given by:

M
T I

i=l
Xi
Y UCi - Xi

(2.2)

where y is the total input load in packets/sec.

- 21 -

If a relatively homogeneous set of Ci capacities is assumed then,

as the load in the network is increased, no individual term in the above

summation will dominate, until the flow in one channel lo approaches
the capacity of the channel. At that point T will grow rapidly. The
mean packet delay curve will thus express a threshold behaviour.

The no-load delay To is expressed in terms of the mean path

length n as

some channel is saturated; this is the point at which Xio - WClo

where io is the critical channel. The above equation corresponds to

pio =1. In practice saturation in a channel generally occurs with

the utilization factor, p, taking on values of 0,7 and greater.

Control measures must be instituted to maintain the network at

the response and throughput levels of To milliseconds and Tho packets/sec

respectively, despite possible further increases in the input traffic

load. If effective measures ate not taken, congestion will result.

(2.3)

The saturation load y* corresponds to the smallest value of y at which

2.4 Global Flow Control

Global flow techniques extend across the entire network domain,

and generally have the function of limiting the number of packets in

the network, The global flow control has been implemented in

conjunction with the end-to-end or source ncde-to-destination node
protocol.

The link connecting two communicating host devices consists of

a number of resources, such as channels, processors, buffers, etc.,

that must be allocated on demand to the host connection for communication

to take place. This connection is termed a logical link. It consists

of both hardware and software components, e.g., memory, processing

capacity. The link is not dedicated by providing a physical channel

between the two hosts as in circuit switching. Rather, once a call

establishment procedure has been evoked, the link may be identified by

addresses stored in the supervisory processors in nodes. at any

time thereafter a message may be forwarded to the source node by the

host device. The required resources will be allocated in order for

transmission of the packets, constituting the message, to take place.

The global control measure has been instituted by limiting the

number of packets in transit per logical link at any one time. For

proper functioning it is essential to obtain ,o„e idea of the number of

logical links that will be operational. .. u be described by

some statistical distribution, in terms of me jacket lengths and

interarrival times, possibly as a function of the time of day.

hong messages are divided into segments by the host devices, the

segments being divided into packets by the nodes. The packets are

initially retained in the ICP's. The flow control procedure ensures

that only a specified maximum number of packets may be in transit, in

the case of the simulations, eight packets. The remaining packets

(if any) must wait until the first eight have been transmitted. In

effect, blocks of eight packets are sent into the network at a time,

under control of the end-to-end protocol. Thus, although the number

of messages stored in the Interface processors may be large, the number
allowed into the store-and-forward section (as realized by the network

processors) is strictly limited.

2.5 Local Flow Control

Local flow measures operate within the domain of a node and its

immediate neighbours, to prevent the occurrence of congestion in the

region of the node. The local flow measures are implemented in the

switching processor of each node. The switch samples the state of

the node at regular intervals, processes the status data, and sends

commands to the ICP and NCP modules directing their activities. Two

types of flow measures are considered, the allocation of priorities

to packets, and the partitioning of memory along topological lines.

2.5.1 Priority Allocation Technique

The switch algorithm has been based on exploiting certain properties

of a store-and-forward network, i.e., its queueing structure. The nodal

operation may be reduced to the concept of the servicing of a set of

- 24-

queues in the ICP and NCP modules by the switch processor. The algorithm

does not rely upon lengthy mathematical calculations based on statistical

traffic flow measures, as is the case in adaptive routing, but makes use

of time-dependent priority evaluations. The use of time-dependent

priority evaluations for preventing congestion is not treated in the

literature.

Packets have been grouped into the following two classes:

i) packets entering the network;

ii) packets in transit, or leaving the network.

Each class is allocated a priority value that is incremented with

respect to time (see Figure 2.2).

packet

priority

value

q(t)

transit traffic

-ft-Tibn',

-r' t0 time

Figure 2.2 Priority Assignment

The function of the switch is to control the flow of traffic proceeding

from the ICP modules to the store-and-forward section, realized L:.y the
NCP modules, on a local level, A node that starts to become congested
will grant priority to transit traffic at the expense of the entry
traffic, thereby causing less packets to gain admittance to the network.

The time-dependent priority system provides a set of variable
parameters, bi, where

c bp<f bp'

These parameters may be used to adjust the relative waiting times for
the packets in the queue, Assume that the packet under consideration
arrives at tine T and is assigned at time t a priority qp(t) where

qp(t) = (t -T)bp

where t ranges from T until the time at which the packet's service time

is completed. Whenever the service centre (i.e., the switch) is ready

for another packet, it chooses to service that packet with the highest

instantaneous priority q(t). If a tie for the highest priority occurs,
the tie is broken by the first-come-flrst-served rule.

Figure 2.2 shows the manner in which packets from two priority

groups interact. A packet from priority group p (entry traffic) arrives
at time T and attains priority at a rate bp. At time T' another packet
enters the node and attains priority at a rate bp' (transit traffic group).

If the service facility becomes free at any time between r and to, the

packet from group p will be serviced in preference to that of the packet

from group p'. For any time after to, the transit traffic packet will

be serviced beforehand.

(21)Kleinrock has analyzed such a queueing system. ' Thr analysis

models a node as consisting of an M/G/l queue — Poisson â j...,al rave,

general service time distribution, and single server. Such j-orms an

approximation to the queue maintained by the switch processor servicing

ICP and NCP module requests.

The mean waiting times for group p a id group p 1 packets in a non-
preemptive time-dependent discipline is shown in Figure 2.3. The mean

waiting times as a function of the queue utilization factor p, for the

parameters bl/b2 = 1, bl/b2 = 0,2, and bl/b2 =0,1 are plotted. The

utilization factor p is defined to be the ratio of the mean arrival rate

to the capacity of the system to service the arrivals. Note that it is

not the absolute values bp and bp1, but the ratios bp/bp that are

important. At the lower utilization factors (p < 0,4) the priority
designations have little effect and the waiting times for both traffic

groups is the same. At the larger values (p > 0,7) the mean waiting

time of transit traffic is far less than that of entry traffic.

The maximum service rate of the data adaptor in packets per second

is finite. By granting transit traffic servicing priority (as opposed

to entry traffic) less packets wanting to gain entry to the network are

serviced. The overall effect is to limit the number of packets that
gain entry to the network under heavy traffic conditions. In Chapter 7,

simulation results for various parameter ratios bp/bp' are listed,

/

- 27 -

i

showing the effect of this technique on mean packet response in a network.

E(W)

T im e u n i ts

f i r s t - c o m e - f i r s t - s e r v e d
queue

5 - -

e n t ry
t r a f f i c

2 -L t r a n s i t
t r a f f i c

u t i l i z a t i o n fa c to r
^ = 1 1 message a r r iva l p e r t im e u n i t b; I p r io r i t y increment

Figure 2.3 Mean Waiting Times for Delay Dependent Traffic

2.5.2 Memory Partitioning Technique

A second local flow control measure is realized by the internodal

protocols. An NCP module is connected to each end of a PCM channel,

implementing the data transmission protocol between two nodes. When

the buffers of a destination NCP become blocked, a signal is sent to

the source NCP, indicating this state. The source NCP will then cease

transmitting packets until the elapse of a time-out period. Thereafter

another attempt is made to transmit the data.

— 28 —

The source NCP will indicate the blocking of its destination NCP

buffers to its supervisory processor. The supervisor will subsequently

ensure that no packets are transmitted to the source NCP by the other

nodal modules, until the elapse of the time-out period, this being

conveyed to the switch by the source NCP module.

The above discussion needs to be further clarified. Packets

requiring to make use of the said NCP are divided into groups. The

groups are classified according to topological attributes of the network

(this aspect is further dealt with in Chapter 5). Each NCP contains

a number of buffers dedicated to each of the groups? in addition a common

buffering area is provided for use by all classes. Blocked buffering

at a destination NCP usually means that the buffers belonging to

a particular group are all occupied. The NCP therefore ceases the
transmission of a particular class of packets (conveyed to the super

visory processor), whilst other classes are sent as normal.

The implication of use of this measure is that data flow of

different groups enroute from a number of different source-destination

nodes through the same intermediate node, will not cause excessive

interference with each other. If this measure were not included, it

would be possible for traffic enroute from one source-destination link

whose service rate was poor and intensity high, to block traffic from

other links passing through the same NCP.

- 29 -

2.6 Review

This chapter has described the resource-sharing aspect of packet-

switching networks. It was pointed out that a data adaptor unit

cannot be considered in isolation, but forms part of a network. The

characteristics of such networks, and the subsequent need for flow

control measures to prevent performance degradation, were described.

Both global and local flow control measures have been incorporated.

The global technique operates by limiting the number of packets per

logical link in transit. It is implemented by means of the end-to-end
protocol. Two local flow techniques have been incorporated in the

switching processor:

1) the allocation of different time-dependent priority

increments to entry and transit traffic,

2) control of the transmission of packets to the network

communication processors.

— 30 —

CHAPTER 3

SIMULATION FACILITY

3.1 Introduction

The object of the simulation program is to model the interactions

of the flow control measures and protocols that cause packets to be

transported from one end of the network to the other. The performance

and characterisation of a network could then be determined as a function

of the control measures and protocols.

It was found that simulation could be conducted either by utilizing

available packages, or by designing a model in a high-level language.

A general Purpose Systems Simulator (GPSS version 3) was available.

GPSS is based on the modelling of events. Entities such as packets,

messages, jobs, customers, etc., are modelled as passing through a

queueing system. A certain amount of time was spent experimenting

with this package. It was found to be unsuitable as the emphasis of

the work lay in modelling the mechanisms of the network that cause data

transmission to take place, rather than in the entities or data packets

themselves.

The high-level languages available were FORTRAN, PL/1 and Pascal.

In terms of language structure and the implementation of data types,

Pascal and PL/1 were favoured, but only a compiler was available for

each. In contrast, a FORTRAN interpreter and compiler existed.

- 31 -

The turn-around time for batch jobs could be considerable at the computer

system where the simulation program was developed. Accordingly, the

model was written in Fortran, on the basis that the advantages to be

gained by writing and debugging the program interactively, outweighed

those to be gained by using the data structure of Pascal or PL/1.

The simulation model developed is non-mathematical. It simulates

the transition of states in the protocols for ensuring synchronization

of sender and receiver, and the subsequent transmission of information.

The remainder of the chapter provides an overview of the simulation

facility developed.

3.2 The Simulation Structure

This section is concerned with introducing the structure of rhe

simulation program developed to study the proposed network. Extensive

use of arrays was made to represent the various parameters and

quantities of the network. The array descriptions are contained in

Appendix A, whilst the program listing, together with appropriate

documentation, is to be found in Appendix B.

The simulation model may be divided into two main sections, the

initialization and the execution blocks, as in Figure 3.1.

- 32 -

INITIALIZATION

BLO C K

MODEL

EXECUTION

BLOCK

j? igure 3.1 Main Simulation Structure

3•?.1 Initialization Block

The initialization block is concerned with reading in the

appropriate network parameters, and initializing the array structures.
In addition this block provides for initializing the execution block
into a state of readiness for simulating the network. The execution
block contains the necessary code for simulating the network on an

event-by_event basis. The output of data describing the performance
of the network is also included in this block.

3.2.2 Execution Block

The execution block may further be subdivided into a number of

modules, each simulating a particular aspect of the network. These
modules are shown in Figure 3.2.

3 - 2 - 3 Description of the Simulation Modules

The node-to-node communication module simulates the protocol used
to transmit data between two nodes via the network communication processors

- 33 -

PACKET SOURCE H OST DESTINATION HOST

IN J E C T IO N N E T W O R K N E TW O R K

F A C I L I T Y C O M M U N IC A T IO N C O M M U N IC A T IO N

N O D E - T O - NODE DATA BUS S W IT C H

C O M M U N IC A T IO N PACKET

T R A N S F E R S

PROCESSOR

O P E R A T IO N

BUFFER (!CP) BU FFER (1CP)

C L O C K M A N A G E M E N T M A N A G E M E N T

ALLOCATION R E S E R V A T IO N

Figure 3.2 Simulation Modules

The communication between processors (ICP's and NCP1s), and the
packet transfers via the data bus within a node are modelled by the

data bus packet transfer module.

The r. etching processor module contains the switching algorithms

used to direct the nodal activity. This module simulates the activities

of sampling the nodal status, processing the status data, and trans

mitting subsequent commands to the ICP's and NCP's.

- 34 -

The above modules constitute the network simulation components

for modelling the signalling and flow control measures.

A number of additional modules have been included. Two of these,

the buffer management alloca :ion and reservation blocks, simulate the

processes of allocating storage for message segments and packets in

•the ICP's. The allocation module models the granting of buffer blocks

to logical devices; the reservation module maintains a list of requests

for storage when the available TCP buffers are all occupied. The

reservation module contains an algorithm that allows priorities to be

allocated to different groups of messages,, e.g., short interactive

messages and long file transfers.

The packet injection facility generates the traffic to the network.

The facility is used to generate data messages and packets with Poisson

interarrival times and geometric or exponential length distributions.

Finally, the clock module is used as a timing mechanism for events.

It keeps track of all events, and activates the relevant mechanisms in

the main simulation section when the event occurs. This module

maintains a clock using real numbers to represent time.

The structure of the simulation is such that the above modules

may be placed in any order. Valid simulation of the network is not

dependent on the order in which the modules are executed. This has

been done specifically to allow additional modules to be incorporated

if it is desired to simulate aspects of the network in greater detail

- 35 -

than represented here; or to simulate other protocols and flow control

techniques.

The format of the program is shown in Figure 3.3. The clock and

buffer management modules are subroutines. The remaining modules,

constituting the execution block, are grouped together into a single loop.

IN IT IA L IZ A T IO N

B L O C K
V

EXECUTE

ONCE

SUBROUTINES

p a c k e t

i n j e c t i o n
c l o c k

s o u r c e hostSIGNAL

n e tw o r k c o m m .

d e s t . h o s tb u f f e r

a l l o c a t i o n LOOf

CONTINUOUSLY
n e tw o r k c o m m .

n o d e - t o - n o d eb u f f e r

r e s e rv a t io n c o m m .

d a ta bus

s im u la t i o n

s w i t c h

p r o c e s s i n g .

Figure 3.3 Simulation Model
EXECUTION B L O C K

/

- 36 -

A double execution of the loop is termed a 'cycle'. The duration
of the simulation is directly controlled by the number of cycles

specified for the loop. To determine the performance characteristics
of the network (see Chapter 7) Initial runs were first conducted to
determine the number of cycles required for the model to reach a state

of equilibrium. These tests are conducted for different input loads.

3-2.4 Module Communication

Each module Is an autonomous unit, simulating a particular aspect
of the network. The following terminology, i.e., 'message' and 'signal',
refer to the simulation itself.

The intercommunication between modules takes place via messages
or signals. A signal is transmitted from one module to another when
an event is to take place or has occurred. A message constitutes

information passed from one module to another. The characteristics of
a packet passing through the network may be passed between modules via
messages. An example of signal use occurs when a packet is transmitted
across a communication channel; such an event takes a certain amount
of time. When the packet has reached the destination, i.e., use of

the channel is terminated, then this event is indicated to the appropriate
module via a signal generated by the clock module.

Signalling takes pla^e between the clock module and the modules
constituting the execution block. The clock enables each module to

regulate the simulation of its own events relative to the events occurring
in other modules with reference to the same time scale. An event

— 37 —

occurring in module n may cause an event to take place in module n + m,

or V.V., such causal action being transferred between two modules via

a massage or signal (see Figure 3.4). It is important to note that

such action implies that the execution of the code for the event in

module (n + m) must take place in the same instant of simulated time
as the events of module n. The code is therefore scanned more than
once during each cycle, each cycle depicting a point in simulated time.
Consider Figure 3.4(b). During the first scan a message is passed
from module n + m to module n; during the second scan, events in
module n, activated by the message, are simulated. The example in
Figure 3.4(a) requires only one scan, the second having no effect.
In the simulation model, two scans per cycle are sufficient.

P"

o r d e r o f

e x e c u t i o n

m o d u le n

m e ssa ge

m o d u le n + m
rece ive .

m o d u l e n rece ive

\I/
m o d u le n + m

m e ssa ge

send

(«) a)

Figure 3.4 Message Passing

3.3 Input Parameters for the Simulation

This section deals with the data that is required to define

a network to be simulated. The parameters that define network topology

and operation are considered. Description of the input parameters will

take place with reference to the example shown in Figure 3.5. The

reasons for choosing this topology are considered in Chapter 7, where

its characteristics are described.

3.3.1 Network Topology Simulated

The topology consists of five nodes connected via PCM channels.

Hierarchically-based networks consist of nodal clusters. The simulated

topology approximates such a cluster. Simulation of a network with

more than five nodes would require an excessive amount of computer time
to determine the network characteristics. Each node contains a number

of channel controllers that control the transmission of packets between

nodes. There is a total of fourteen such controllers (also referred

to as network communication processors). Each node contains eight

interface communication processors that enable the network to interact

with host devices. Fifty logical links and fifty virtual circuits

have been implemented. A logical link refers to the connection between

two communicating host devices. The network resources, e.g., lines,

buffer;;, are allocated on demand.

3.3.2 Traffic Level Control by Virtual Circuits

In order to raise the level of traffic within the network without

having to resort to excessive use of computer time, the concept of

a virtual circuit has been defined. A virtual circuit refers to the

- 39 -

N i l c h a n n e l o r n e t w o r k c o n t r o l p r o c e s s o r

N3 N7.
NODE 1 NODE 2

N2

N i N8

NluN4

NODE 3 NODE 4
N11N5

N12N6

NODE 5
N13 N14

Figure 3.5 Network Simulation Topology

link existing between a source ICP and destination ICP. Packets are

.generated at a given rate at the source ICP, transmitted via the network

according to a fixed routing matrix, and sunk by the destination ICP.

No simulation of host-network protocols is done. The level of traffic

in the network and in particular along each route may be controlled by

— 40 —

varying the mean packet generation rate and length. The distributions

of interarrival time and length have been chosen to be Poisson and

geometric or exponential, respectively.

3.3.3 Link Specifications

The parameters for defining logical links and virtual circuits are

shown in Table 3.1. Each link and circuit is identified by a number.

For each link it is necessary to specify the source node - and ICP

numbers, and the destination node - and ICP numbers. Each ICP, NCP

and node is identified via an integer. The values may be identical

for the above three groups, e.g., ICP and NCP may both be identified by

the integer 3, the context will distinguish between them.

The source and destination channel capacity slots refer to the

capacity of the connection between user device and network in bits per

second. The source and destination channels may be of different line

rates.

The length and arrival slots refer to the mean values of the

statistical distributions incorporated in the main program to generate

packets or messages.

Finally, the contents of the slot denoted by 'NO MSGS' enables one

to limit the number of packets or messages generated for the duration

of the simulation. This feature is extremely useful for debugging

purposes. A negative value in this slot causes an unlimited number

to be generated.

Link
No

Sour
Nodt

Source
ICP

Dest.
Node

Dest. Source Dest.
Channel Channel

ICP Capacity Capacity
Mean

Length
Mean

Arrival
NO

MSGS

111
1 1 1 7 7200 7200 450 10 10

i
1
50 5 40 5 34 7200 7200 450 10 10

(a) Logical Link Table

Link
No

Source
Node

Source
ICP

Dest.
Node

Dest.
ICP

Source Dest.
Channel Channel
Capacity Capacity

Mean
Length

Mean
Arrival

NO
MSGS

1Ii
1 1 1 7 - - 450 10 -5

1
1
50 5 40 5 34 - - 450 10 2

(b) Virtual Circuit Table

Table 3.1 Logical Link and Virtual Circuit Parameters

3.3.4 Node-Processor Mapping

The ICP's ay- NCP's forming part of a particular node must be

specified as shown in Table 3.2

Node
No ICP No

1
11

1 2 3 4 5 6 7 8

1
5 33 34 35 36 37 38 39 40

Node
No NCP No

1l
1

1 2 3 0

1
i
5 13 14 0 0

Mapping: Node-to-ICP

Table 3.2 Nodal Mappings
Mapping: Node-to-NCP

/

-42 -

A zero in a slot simply indicates an empty location. A unique mapping

exists between each node and the NCP's and ICP's it contains.

The topology is formulated by specifying which two NCP's are linked.

Table 3.3 shows, for example, that NCP1 is linked to NCP4. The result

is a connection between node 1 and node 3. The fixed topology produced

is that shown in Figure 3.5.

Source NCP 1 2 13 14
Dest. NCP 4 10 6 12

Table 3.3 NCP-to-NCP Connection

3.3.5 Packet Route Map

The route that packets are to follow is implemented via a nodal

route map, as shown in Table 3.4. Each packet will be a member of

either a logical link or virtual circuit, the source and destination

ICP's of which will have been specified as in Table 3.1.

1
Present 2
Nodal _
No.

4
5

Table 3.4 Route Map

Routing functions are performed under the control of the supervisory

processor in each node. By consulting the route map, the supervisor

can direct a packet to the relevant NCP, once the present and destination

Dest. Nodal No.
1 2 3 4 5
0 3 1 2 1
7 0 7 8 8
4 4 0 5 6
10 9 11 0 12
13 14 13 14 0

— 43 —

nodal positions are known. If the present and destination nodal

positions coincide, then the supervisor knows that the destination node

has been reached, and that the packet must be directed to the relevant ICP.

For example, a packet at node 2, having as destination node 5, will

be directed to NCP8 (of node 2). Referring to Figure 3.5, the packet
will be transmitted to NCP9 of node 4. From node 4 it will be sent to

node 5 via NCP12 and NCP14, situated within each of the above nodes.

In the event of there being more than one channel between two nodes,

an additional map for each extra channel is to be specified. A choice

then exists as to which channel the packet is to be directed to. The

choice has been based on assigning the packet to the NCP with the

smallest queue.

3.3.6 Bus Multiplexing Table

A table is needed to specify the number of packets multiplexed on

the data bus of each node, every period. No attempt will be made to

define further this concept; these parameters have been included for

the sake of completeness.

Node 1 2 3 4 5
NO PCKS 11 10 1 12 10
MUX

Table 3.5 Bus Multiplexing

- 44 -

3-3.7 The Partition Table

Packets enroute from one node to another may be grouped into

a number of classes. These classes are a function of the network

topology. Buffer blocks in the NCP are dedicated to each class.
The term partition refers to the class of buffers set aside for a
specific group of packets. Partitions have been implemented to

prevent the traffic flow enroute to one destination from blocking flow
enroute to other destinations. Such would occur if one class of

traffic were to occupy all buffers in an NCP. See Table 3.6.

In addition, a node plot matrix of partitions must be provided to

enable the supervisory processor to classify the packets into classes.
If the buffers allocated to a particular class of packets are all

occupied, then the supervisor will ensure that no packets belonging to
that class will be transmitted to the NCP with blocked buffers.
See Table 3.6.

Consider NCP 1 of node 1 (see Figure 3.5). Packets passing
through NCP 1 will be enroute either to node 3 or node 5, such may be
verified by referring to the packet route map. Accordingly, partitions
denoted by 3 and 5 are set aside in NCP1. The simulation program

provides for up to eight possible partitions. The node plot matrix

enables the supervisory processor at node 1 to classify the packet with
destination node 5 to be 3.

- 45 -

Processor
Partition
Matrix

Destination Node

1 2 3 4 5
1
2

Source 3
Node

4
5

Table 3.6 Partition Table

3.3.8 Network Parameters

Finally, Table 3.7 contains a set of parameters that may easily

be altered for a given topology to study the network performance.

The parameters contained in the table are all variables, unlike the

above input data (which are constants)/ and may be changed during

execution.

3.3.9 Summary

The defined parameters specify the topology of the network, the

number and types of processors in each node, the logical links and

virtual circuits for generating traffic, and the route map for packets.

Node
Plot
Matrix

NCP's
1 2 3

Partitions
4 5 6 7 8

1 3 5 0 0 0 0 0 0
21 4 0 0 0 0 0 0 0

1
14 2 4 0 0 0 0 0 0

- 46 -

Parameter Description

N Total number of logical links and virtual circuits
NUMBER Duration of simulation run in cycles
SCAN Number of loops of main block per cycle
BUFBLK ICP buffer block size in bits
NSOURC Number of buffer blocks allocated at TCP per logical link
SGMENT Message segment size in bits
NONDS Total number of nodes in network
NOICPS Total number of TCP's in network
NONCPS Total number of NCP's in network
PSZNO Packet size in bits
MNOBPS Number of buffer blocks in NCP - send or receive
BITLNG Packet overhead in bits
MAXCH Maximum number of channels between any two nodes
NO I Maximum number of processors in any node
NOPCKS Maximum number of packets that model can simulate
CMAX Number of switch cycles per period
NMAXIC Maximum number of TCP's in any node
NMAXIN Maximum number of NCP's in any node
QUS Total storage locations provided for algorithm execution
TXMhX Re transmission interval for incorrect packets
PXMAX Partition retransmission interval
MVXRT Data bus rate in bi fcs per second
PMEANC Mean packet interarrival time for virtual circuits
SWPROC Estimated switch algorithm execution duration
NVC Number of virtual circuits
NRDN Number of packets generated - exponential length, arrival
NRRN time

Number of packets generated per instant for virtual circuit
NODPRC Estimated NCP processing time per packet
NPZ Estimated processing time for data bus transmission

Table 3.7 Network Parameters

- 47 -

Parameter Description

SUBROUTINE ACCESS
BLOCK(I,5) Number of single packet blocks (ICP) - memory
BLOCK(I,6) Number of multipacket blocks (ICP) - memory
BLOCK(I,7) Number of multisegment blocks (ICP) - memory
BLOCK(1,8) Number of blocks of common memory (ICP)

SUBROUTINE RESERVE
NPRSIN Single packet priority increment (ICP)
NPRMUL Multipacket priority increment (ICP)
NPRSOU Source segment priority increment (ICP)
NRSV Number of locations for requests

Table 3.7 (Contd.) Network Parameters

Each of these parameters is addressed by a subscript of a particular
array. The size of the arrays allowed is dependent on the amount of
storage available to the computer user. The Network Simulation was

run on an IBM System/370 using a 512K memory partition.

The above method for defining a network topology has been tested
and proven by implementing and simulating four different networks.
The input data listings of three of the networks, the Network Simulation,
the Nodal Simulation, and the Interface Simulation are defined in

Appendix B. The fourth topology, not listed, was used to develop and
debug the simulation.

3.4 The Nodal Simulation Model

The main execution block consists of a number of modules that are

used to simulate the operation of a node. The nodal simulation model

is illustrated in Figure 3.6. Shown is the interaction between the

various modules. The block structure is a reflection of the nodal

architecture as reproduced in Figure 3.7.

3.4.1 Simulation of Nodal Replicas

The simulation network is structured by producing a number of

replicas equivalent to that of the model shown in Figure 3.6. The

input parameters, discussed in a previous section, are used to connect

these replicas so that a network topology may result. The number of

replicas required is equal to the number of nodes simulated.

The relevant control measures are contained in the simulation

blocks of the nodal model, and these are required to communicate with

the corresponding measures implemented in other nodal models.

For example, the source-to-destination protocol is implemented in

the source and destination ICP1s. The simulation of this protocol is

contained in the source-nost-network and destination-host-network blocks

of each nodal model. Th= simulation of a logical link therefore

requires the two nodal models, one for the source ICP and the other for
the destination ICP, to communicate. This communication takes place

via the transfer of the simulated packets from one ICP to the other,

or alternately between one nodal model and another.

- 49-

k

SERVICE
REQ U ESTS SERVICE

\ REQUESTS
COMMANDS

PACKE

PA C K E T

p a c k e t
in je c t io n
f a c i l i t y

n o d a l
p ro to c o l
s im u la t io n

s o u rc e host
s im u la t io n

d a ta bus
s im u la t io n

s w i t c h
s im u la t io n
b lo c k

TRANSFE

d e s t in a t io n
h o s t
s im u la t io n

FIGURE 3 - 6 NODAL SIMULATION MODEL

CONTROL BUS

DATA BUS

USER

NCR NCR'C P ICR

S W ITC H

DEVIC ES

FIGURE 3 - 7 NODAL A R C H IT E C T U R E

C H AN N ELS TO
NO DES

1

- 50 -

The simulation model is very much simplified compared to practical

networks, but it nonetheless attempts to reproduce the essential

features of traffic control in a network, i.e., the simulation models

a number of nodes, each containing the necessary protocols and flow

measures, communicating with each other so as to transport packets.

3.4.2 Description of the Block Structure

Referring to Figure 3.6, the packet injection facility generates

the messages and packets that are used to simulate the transmission of

data to the network by logical links and virtual circuits. The source-

host-network block receives these packets and messages. In the case

of logical links the user-network protocol is simulated. The source

host block formats the packets. The destination—host—network block

simulates the destination user protocol, including the reassembly

function. Both these blocks contain the source node-destination node

protocol for controlling the flow of data between two communicating

user devices.

The nodal protocol bloi ■ simulates the signals exchanged between

two NCR s linked via a common channel. All requests for packet

transmission via the data bus are sent to the switch simulation block.

The switch block processes the requests and transmits commands to the

data bus simulation block. This block then transfers the packets

between the following blocks: source host-network, destination host-

network, and nodal protocol. It is noted that packet transfers

between each of the above three blocks may take place in either

- 51 -

direction, since both data and control packets, e.g., acknowledgements,

are simulated.

3.4.3 Implementation of Models Using Arrays

The above structure may be easily implemented in FORTRAN. The

nodal simulation model is replicated for each node in the network;

the source host-network and the destination host-network protocol

blocks are replicated for each ICP, and the nodal protocol block for

each NCR in the network. The switch and data bus simulation blocks

are implemented for each node. These are all exact replicas, and by

making use of arrays, each block need only be coded once. The various

simulation entities are identified by the appropriate array subscript,

hence the need for numbering each ICP, NCP and node via the input

parameters,

The following generalization concerning the simulation may now be

made. The messages, transferred between nodal models, or, analogously

between nodes, are the actual packets. Included are both the data

packets generated by user devices, and control packets used by the

nodes for traffic control purposes. The messages exchanged between

blocks, within a nodal module, include packets and simulated messages.

A typical example of a simulated message is the service request by an

ICP or NCP to the switch; in this case, data describing the request

is transferred from one block to another by writing into the location

of a specific array. The switch block periodically examines the

array contents and processes any data found.

— 52 —

3.5 Review

This chapter has provided an overview of the simulation model

structure. The primary simulation modules used and the means for

module intercommunication were described. The input parameters that

determine the nature of the network to be simulated were dealt with

at some length. Finally a description of the interaction of the

modules constituting the facility has been included.

This overview thus provides an idea of the nature of the facility.

The network topology and parameters may be experimented with, but

a change in nodal architecture or protocol requires a module replacement.

Provided the module interaction rules are adhered to, such may be

achieved.

A severe limitation of the facility was found to be the extensive

amount of computer time required before the model reaches a state of

equilibrium. This is apparently so in the simulation of all complex
(53)models with a queueing-type structure. Use of the facility to

determine performance of a network was on the whole satisfactory.

53 -

CHAPTER 4

THE INTERFACE COMMUNICATION PROCESSOR

4.1 Introduction

The nodal architecture consists of three units, the channel

controller, the switching processor, and the interface communication

processor. This chapter will outline the role of the interface

communication processor or ICP in the data network.

j-t is the function of the ICP to provide an interface between the

user environment and the packet network. The interface is required

for two reasons. It is used to connect different machines to the

network, e.g., teletypewriters, terminals, and computers. This means

that facilities must be provided for allowing two otherwise incompatible

machines to communicate, e.g., translation of user codss to a single

standardized network code. The ICP is also used to isolate the packet
network from the user environment. Access to the network is controlled

by the interface and switching processors. Unrestricted access to the

network could result in performance degradation.

An ICP is envisaged to be microcomputer-based with facilities for

data, as opposed to computational processing, e.g., bit, byte, and

block manipulation. Users are connected to an ICP via a serial link
with line rates from 50 to 9600 Baud. Lines with rates from 9600 to
64000 Baud are best connected to the network via a channel controller

as described in the next chapter. In this case, packets and not

messages must be transmitted by the user (the distinction is detailed
in Section 4.3).

- 54 -

To prevent excessive overhead, identical user machines would be

connected to a single interface processor. A node may therefore be

connected to a large number of different network users by utilizing

several ICP's each with software appropriate for interfacing to a

specific type of machine. It is noted that such a machine may be

a multiplexor or computer. This entails the use of a single physical

line by possibly several logical processes.

A user will transmit variable length message segments to an ICP.

These segments may not exceed a specified maximum size? in the

simulation the size is 4000 bits. The segments are divided into

packets (size 400 bits) by the ICP, and transmitted through the network

to a destination ICP. The destination ICP is required to reassemble

the packets back into the original segment, the segment subsequently

being sent to the destination host. In this network no provision is

made for ensuring that packets of a given segment arrive in sequence

at the destination ICP. The ICP must therefore sort these into the

correct order? information for reassembly is included in the packet

header. In addition, the ICP's must regulate data flow between each

other, and between the network and users. A protocol has been defined

for ICP's to maintain correct data flow.

The ICP thus serves as a type of 'front-end1 processor to the
network. It interacts with both user and packet network, receiving

and translating messages into suitable formats for subsequent

transmission to either hosts or the network.

- 55 -

The network transmission formats are shown in Figure 4.1. The

host protocol is device dependent. The node-to-node protocol has the

function of ensuring that packets are transmitted correctly between

two nodes, The source-destination node protocol serves to regulate

the flow of data between two ICP's. The device-network protocol

interacts closely with the source-destination node protocol to control

the amount of data admitted to the network.

The succeeding sections detail further the user-network protocol,

the source-destination node protocol, and the buffer management

technique, incorporated into the TCP.

h o s t so u rce
node n ode

—̂ A </ —

t0
<—

A: Device-Network Protocol

B: Node-to-Node Protocol

C: Source-Destination Node Protocol

D: Host Protocol

Figure 4.1 Network Protocol

c
D

B

destinati'
n o d e

dn
<e- h o s t

- 56 -

4.2 User-Network Protocol

Due to the close interaction between the device-netvzork and

source-to-destination protocols, both are described here.

The network should be capable of transmitting both short (20 to

1000 bits) and long messages (104 to 107 bits). For interactive

users with short messages low delay is important, whilst for the transfer

of long data files high throughput is necessary. The goals of

transmitting both long and short messages in optimal fashion are, however,

contradictory. For low delay, a small packet size is necessary to

cut transmission time and to shorten queueing times; for high throughput

a large packet size is necessary to decrease overhead in bits per second

and the processing overhead per bit. Long queues may be needed to

provide sufficient buffering for full circuit utilization. It is

therefore difficult to satisfy both goals, and a compromise must be made.

For this packet switching network it has been decided to emphasize

the delay aspect, but at the same time the protocol devised does allow

long file transfers to take place. If the messages sent by a

particular device are generally very lengthy (greater than 106 bits)

and the response time is to be low, it is perhaps better to employ

a dedicated link between the machine and the destination.

Figures for response and throughput performance indices of the

network cannot at this stage be given; these are examined in

subsequent chapters. Presented here is the protocol enabling devices

to communicate via the network; performance is determined by the

- 57 -

network mechanisms and is influenced by packet and segment sizes.

The outline of the protocol for controlling data flow between two

devices, via a logical link, is shown in Figures 4.2 and 4.3 for single

and multisegment transmissions respectively. Table 4.1 gives the

meanings of abbreviations used in Figures 4.2 and 4.3. It is noted

that these signals are essentially logical signals; their implement

ation will vary from device to device, e.g., a RFNS (#n) (Ready for

Next Segment process number n) signal may be a complex control packet

to a computer, or a simple asynchronous TTY eleven bit command word.

The interfacing of different devices to a network is a complex matter.

These signals form the basis of a flow control structure that should

be general enough to be expanded and implemented in an ICP for any
particular situation that may arise.

Key to Figures 4.3 and 4.4

S3 : segment number j
CALLES (#n) : call signal for process number n
TRSM (#n) : call signal acknowledgement
ACK ($n) : acknowledgement signal between device

and network for data received
Sj (EOM) final segment in message
SD (EOM) : acknowledgement signal for message transmitted (Source-dest)
RFNS (#n) : Ready for next segment (process number n)
TRM (#n) Transmit next segment,destination node ready
(#n) : Indicates logical link process numbers
EOM : End of message

Table 4.1 Notation for Transmission Figures

/

TIME

TIME

- 58

V

CALEBS (#n)

TRSM (#n)

SI (EOM)

ACK (#=n)

SB (EOM)

SOURCE
HOST

<-

SI (EOM)

SD (EOM)

SOURCE
NODE

SI (EOM)
ACK (#:n)

DESTINATION
NODE

DESTINATION
HOST

Figure 4.2 Single Segment Transmission

CALEBS (=j#n) ^

» SI .

. .________________s

TRSM (#n)

<
_ RFNS (#n)C ------ --- -— . s

32

f ?
TRM (4j=n)

c <

s.. 52 s

r >
ACK (*n)

X

S2 .

...... y
/ RFNS (4j=n)

S3 (EOM) x

^ TRM (#n)
S. 1

S3 (EOM x

......y
^ ACK (#n)s ' " .

S3 (EOM) x

/

, ACK (#n)
1 1)

SO (EOM)
<-----— ----- ----

^ SD (EOM)

^ ACK (#n) /xC

X

SOURCE SOURCE DESTINATION DESTINATION
HOST NODE NODE HOST

Figure 4.3 Multisegment Transmission

- 59 -

4.2.1 Source Host to TCP Interaction

A device or process requiring to transmit data informs the

relevant TCP of its request via a 'CALLES' signal. The ICP provides

the necessary buffers to receive the data and returns a 1TRSM' signal

to the calling device. A segment limited to some maximum size is

forwarded to the ICP by the device,.

To ensure that no data is lost due to insufficient buffering, the

transmitting process must divide long messages into segments; dividing
messages only affects those users sending long files. The segment,

when received by the ICP is processed (e.g., code translation) and

subdivided into packets of smaller length. For obvious reasons the

packet and segment sizes chosen should be such ^hat a segment consists

of an integral number of packets.

As soon as these packets are ready for network transit, a 1RFNS'
signal is sent to the caller, provided an End of Message (EOM) was

not indicated in the preceding segment just received. The caller will

will subsequently transmit its next segment to the ICP.

By using double buffering, a source TCP will be receiving segments

and transmitting packets through the network at the same time for

a specified logical link. The second and subsequent segments, when

stored and processed, will be transmitted only when a 'TRM' signal is

received by the source ICP from the destination ICP. This signal

may or may not have arrived by the time the second segment is ready.

Once 'TRM' is received and the segment is ready, the segment (in the

form of packets) is sent to the destination ICP and a 1RFNS' is sent

to the device. The above process is then repeated for successive

segments until an 'BOM' arrives.

4.2.2 Destination Source ICP Interaction

The destination ICP works on the same principle utilizing double
buffering. When a segment received at the destination ICP nas been

reassembled from its packets, it is transmitted to the destination host,
at the same time a 'TRM' signal is sent to the source ICP. The 'TPM'

signal serves to synchronize the packet flow between source and

destination ICP. The 'ACK' signals the destination ICP of correct

segment reception. Once the 'TRM' signal has been sent to the source

ICP, no further 'TRM' signals are sent until the destination ICP

receives an 'ACK' from the destination host and a segment from the

source ICP.

4.2.3 Synchronization of Processes

Figure 4.4 depicts the synchronization toeIs used for communi

cation processes. These processes take place in four separate

machines, two host and two nodal processors, and formulate a single

logical link.

The 'wait-for-and-receive1 segment and the 'send' segment blocks

indicate that these two processes are to occur concurrently.

The scheme shown in Figure 4.4 is not a flowchart indicating

program execution. An explanation of the send and receive blocks is

I

- 61

k

§H
|

H
g
§

1

*Z
0H

1

IA

8 I

w
5 o

8 a

H

H

H

o
H

<
N
H \

rf
H
E-<
i-j
K

H

Ofo C/lwE-<H J<5 3»■ U

H
a
M
S 6
< M
« 05Bi E-i

EiJ

„ I
SK fr,

H
a W
w M
2
g

c5

ti•H

rtiU

S|
W<DtntnG)u

£
•H
4-1(0O*HC

0U
■g

I
3•H

I

62

& o-

2 N
W 2

8 8 o cq aco a

a aa m

g a 2

12 a
8 8

88

eh ah n< a aa a

v ZU 2

Fi
gu
re

4.
4(
b)

Sy
nc
hr
on
iz
at
io
n

of
Co
mm
un
ic
at
in
g

Pr
oc
es
se
s

on
a
Lo
gi
ca
l

Li
nk

63

EH.moit
s .o
H O'Eh x yC -2 <a
H oEh am wH wQ

ao
Hwm
Hh ao maQ2 SM Eh

ao
H
C/2to
H

a ao toa
a S
w EH

§
§
H

103

a
s
8 \ § X

1totoHa > M --- ---^
P Q a ato o to
E* Q Q 5

1 1 s EH

Ss
03

ao
Htoto
Ha ao toaQaw

Fi
gu
re

4.
4(
c)

Sy
nc
hr
on
iz
at
io
n

of
Co
mm
un
ic
at
in
g

Pr
oc
es
se
s

on
a
Lo
gi
ca
l

Li
nk

— 64 —

necessary; the rest of the schematic is intuitively obvious. The

send and receive blocks illustrate a pipeline for transmitting data

segments through the network.

The following is an explanation for the source node in Figure 4.4.

After a CALLES has been received and a TRSM signal transmitted by the

source node, the node waits for and receives the data segment.

Provided the segment is not the last one of the message, the node

transmits a RFNS signal to the source host for the next segment and,

at the same time, sends the segment just received to the destination

node. The node subsequently waits for the segment (from the host) to

arrive and stores the characters. As soon as the segment from the

host and a THM signal from the destination node has been received,

the cycle starts anew with the source node transmitting a RFNS to the

host and the recently arrived segment to its destination. The cycle

is ended when the last segment in the message (EOM) arrives. It is

noted that these communication processes take place in the interface

processors of the nodes.

4.2.4 Pipelining Data Through the Network

The flow control protocol serves to limit the number of packets

transmitted through the network by a logical link at any one time.

For normal operation, at any one point in time, one segment will be

entering the network, one will be in the process of leaving, and one

is in transit through the network - assuming that the message is of

length greater or equal to three segments. This aspect is demon

strated in Figure 4.5. Since the network is able to transmit

- 65 -

information at a higher rate (64000 bits per second) than the serial
links connecting the devices to the network (50 to 9600 Baud) the time
gaps between successive segment transmissions are small - the time to
transmit a RFNS signal via a serial link, provided the TRM signal has
already arrived. Near continuous transmission between devices is
possible.

PACKETS
ENTERING BUFFER

SN1
BUFFER
DN1

BUFFER
SN2 transit packets

(NETWORK)

PACKETS
LEAVING

BUFFER
DN2

BUFFER
SN1 TRANSIT PACKETS

(NETWORK)
BUFFER
DN1

PACKETS
ENTERING

BUFFER
SN2

BUFFER
DN2

PACKETS
LEAVING •>

SN: SOURCE NODE
DN: DESTINATION NODE

— ^-ure ,.4 • 5 Pipelining Messages via Double Buffering

- 66 -

4.2.5 Termination of the Transmission

When an EOM is reached, an acknowledgement is transmitted by the

source TCP to the source host indicating correct segment reception.

It is noted that the RFNS and TRM signals used previously are

acknowledgement signals by default. Bit errors in the segment

transmitted to the ICP by the source host results in a negative

acknowledgement signal being sent, requiring the retransmission of the

segment. Correct packet transmission within the network is the

responsibility of the channel controller (see . hapter j).

The segment bearing an EOM header is sent to the destination ICP,

and subsequently to the host. The data transmission phase is

terminated when the destination ICP transmits SDEOM to the source host,

once the destination ICP has received the final acknowledgement from

the destination host.

The logical connection is not terminated, however,' a subsequent

block of data may be transmitted at any time by proceeding through the

above process again. Short interactive messages follow the same

procedure,* in this case a single segment is sent only.

4.2.6 Segment Sizes

It must be understood that the ICP1s on both sides of the link

have no way of predicting the length of the message to be handled.

Accordingly, variable length messages have been divided into segments

so that buffer management and flow control problems may be simplified.

In is also noted that the size of the segment does not affect the

— 57 —

packet network operation, since the network handles smaller entities

(packets) to keep delay times low.

The size of the segment should not be too large, the effect of

line errors must be taken into account. Large segment sizes are

needed to keep overheads down and throughput high, but line errors

may result in the necessity to retransmit an entire segment if the

protocol is to be maintained at an elementary level. This problem

has been left open as it is essentially device and line dependent,

wherein the segment size alternately selected is determined by the

individual case. Segment sizes may differ from logical link to

logical link.

4.2.7 Source ICP to Destination TCP Transmission

The ICP-to-ICP protocol interacts closely with that of the inter

face processor communication with a host. When the first segment of

a message has been received by the ICP, and the segment divided into

packets, one of the packets, denoted by the 'first packet', is

transmitted to the destination ICP. This first packet has the

function of informing the destination ICP of the impending transmission

and provides details to the ICP of the required number of buffer blocks

The destination ICP must determine whether the destination host is in

a position to accept the call. If the destination ICP and host are

free to receive the data message, the source ICP is informed and

transmission may begin. If the destination ICP or host cannot accept

the data, the source ICP, after receiving the appropriate control

packet TRMNCK, will delete the segment from its buffers and signal

— 68 —

‘-he calling process to attempt another call after some random

interval of time.

The communication between source and destination ICP's occurs by

way of control packets; if two ICP's already happen to be in contact,

the control packet may be piggybacked onto a data packet. In effect

this occurs when the first packet of a message is sent to prepare the

way for the rest of the message.

The above procedure is followed for multipacket messages. Single

packet messages, i.e., messages of length less than or equal to that

of the chosen packet size, are transmitted without initially reserving

buffers at the destination ICP. A certain amount of delay is there

fore to be expected for multipacket segments whilst the destination

ICP allocates buffers. Single packets do not incur this delay,

allowing low network transit times for short interactive data traffic.

4.2.8 Demonstration of the ICP protocols

Figures 4.6 to 4.9 have been included to indicate the pipeline

effect and speed control for the ICP protocol.

Figure 4.6 illustrates multi-segment, Figure 4.7, single segment,

and Figure 4.8,.single packet transfers.

The synchronization of transmission is basically achieved as

follows: initiation of a segment transmission along 'Dest Node to

Dest Host1 results in a TRMT signal sent to the source ICP. The TRMT

KEY TO GRAPHS

SH-SN: SOURCE HOST TO SOURCE NODE

SN-DN: SOURCE NODE TO DESTINATION NODE

DN-DH: DESTINATION NODE TO DESTINATION HOST

DH-DN: DESTINATION HOST TO DESTINATION NODE

LN-SH: DESTINATION NODE TO SOURCE NODE

SN-SH: SOURCE NODE TO SOURCE HOST

- 70 -

Ox

st Q
O t

UJ

02

O I

co

I

- 71 —

k

CZD
QC
LU
U.<0z<
££,
h-

H
Z
UJ
2
<3
LU
Cfi

LUU
CDz
03

S iLU

2
OLU
CS-
03

o
g #0)

2
0 LU
1r~
cd

o
Q
Z
o

T- 00

LU2

CO
I .
CNa,.
1—
CL '

o

E i
bsi

CN!

2
0 LU
1
t—
03

O

S
d

N>

LUEC
3
CD
U-

03
LU

< l

Z
03
I

X
03

CMd

Z
a
iz

03

X
a
iz
a

z
Q
IX

Q

Z
03I
Z
a

03
Z

-SLjL
x
03
I

Z
03

- 72 -

CO
KUUU-
tn
z<ocH

UJ
ido<a.

LUU
O
Z
CO

S
0
LU
1v—CO

I

S
0LU
1
rm
(I)

i

5
O
LU

5
OLU x
QCO

5
O
LU
a
co

bd
bd
u
< -i.

CO
LU —i -J
<
o

I
CO
z
LU
EC

I

00 w
cm a
o' §

o
LU

* *
LU

o s

z
COI
X
CO

z
ai
z
CO

X
a
iz
a

z z X
ai CO CO

X 1z 1
za a CO

o
CM

CO

CM

5
co:
o
d

CO

LU
GC

O
LU

1

0,
8

1.6

2,
4

3-
2

4-
0

4-
8

5-
6

6.
4

7.2

8,
0

8_
8

TI
M

E

(S
E

C
O

N
D

S
)

FI
G

UR
E

4-
9

(A
)

74

K

<n

- 75 -

signal is necessary before a source node may transmit a set of packets

to the destination node. Segment transmission along 1 Source Host to
Source Node1 is only possible if a RFNS is received frrrni the source
node and the transmission of the previous segment ai - Jource Host

to Source Node' has finished. A RFNS is generated whenever a set of

packets is sent along 1 Source Node to Dest Node', unless the set of
packets belongs to the last segment in the message.

Figure 4.6 shows the typical effect of store-and-forward buffering

on the host machine connected to the network, a shifting of the entire

segment in time due to the delays incurred in network transit.

Figure 4.8 shows that single packet traffic may achieve low transit

delay times provided sufficient buffering is available at the inter

face processors and the packet switching section is not congested.

Figures. 4 .S(a) and 4.9(b) illustrate the speed control aspect of

this protocol, wherein two users are connected to the network with

links of different bit rates. Line rates used are 2400 BPS for the

1 Source Host to Source Node1, 1 Source Node to Source Host' links, and

7200 BPS for 'Dest Node to Dest Host', 'Dest Host to Dest Node1 links
in Figure 4.10(a), whilst the line rates are reversed between the user

links in Figure 4.10(b). The large gap in time between transmission

of successive segments for the faster links occurs since the network

does not process more than three segments at a time ~ one segment

entering, one in transit, and one leaving the network.

- 76 -

4.2.9 The ICP Protocol as a Flow Control Measure

The ICP protocol is used by the packet switching network as an

end-to-end flow control measure.

It is possible using this technique to restrict the total number

of packets that the network may have to process, since only one segment

per logical link may be in transit at any time. The maximum number

of packets that are in transit through the network is given by the

product of the total number of logical links serviced by the network

and the number of packets per segment.

Although end-to-end control will not of itself prevent congestion

from occurring, it does provide the network with a means for limiting

the amount of data to be transferred, i.e., it is not possible for

exceedingly large numbers of packets to gain access, thus resulting

in almost complete degradation of network performance.

If the specifications of a network are known, e.g., topology,

protocols, amount of buffering at nodes, channel capacities, the

designer may simulate and determine approximately the number of

packets that the network can handle, and whether in turn the network

is capable of handling the anticipated traffic conditions.

Although the ICP protocol controls the flow of data between

user and network, and provides a means of limiting the amount of data

- 77 -

stored and in transit, it has no control over the admission of packets

into the network. This aspect is handled by the switching processor
in the node.

Figures 4.S to 4.9 therefore provide insight only into the user

environment-network area for the traffic control procedures used.

Simulations performed for fully operational networks in which the

end to end and local control measures are employed are studied in

Chapter 7.

The simulations as shown in Figures 4.6 .to 4.9 were conducted
for a network utilising both above flow control techniques in which

the behaviour of a particular logical link was recorded, however,

the traffic in the network was minimal, ensuring little delay for

packets in network transit. For highly utilized networks in which

packet delays are excessive, the effect on the user-network
transmission phase is to increase the intersegment time delay gap.

4.2.10 Summary

This section has detailed the ICP protocol for enabling data

transmission between user devices via the network. The format of

the protocol, synchronization of network and user processes, and the

pipeline effect of the protocol have been discussed. A graphical

demonstration of the working of the protocol has been included. its

use, not only as a means for effecting data transmission, but also as

a flow control measure, has been pointed out.

- 78 -

4.3 Storage Management

The ICP memory basically serves as a secondary storage medium for

the network. ' e packet switching section requires faster turnover

of buffers to achieve adequate throughput and response performance

indices. Such use of store-and-forward buffers cannot occur if these

buffers are directly utilized by outside devices. A buffer allocated

to a 50 bit per second line will be unavailable to other network users

for an unacceptable amount of time if used in a store-anl-forward mode.

The buffer will be tied up for five seconds if used to receive and

store a data block of 250 bits. Reassembly buffering may also be

blocked whilst packets arrive and are formatted into the original

segment.

Thus store-and-forward buffering in the channels has been purposely

separated from the interface buffering. The ICP memory is used to

temporarily store data until the network is ready to accept and

transmit the packets.

Sharing of buffers between users with different line rates will

require sophisticated flow control measures if congestion is to be

avoided. Rather, provide a temporary storage medium whereby the

necessary conversion to a standard line rate can take place, i.e., to

64000 bits per second.

- 79 -

4.3.1 ICP Memory Partitions

The ICP storage has been divided into a number of partitions to

prevent performance degradation (see Figure 4.10).

Source
Area

Dest.Area
Single
Packet

Dest.Area
Multi-
Packet

Common Area Control
Packets

Figure 4.10 ICP Memory Areas

The source class is used to provide the necessary storage for

entering data, the destination class is used as a reassembly area.

The mult’packet area is intended for long file transfers, the single

packet area for interactive traffic. Provided sufficient single

packet blocks are available, short messages will have a high probability

of obtaining a buffer at the first attempt. Finally, a common area for

use by all classes is provided. An area is also reserved for control
data.

Ideally most efficient usage of storage would occur if all memory

were available to whichever logical link section requires it. Such

a technique might, however, arise in deadlock, e.g., if all of memory

were to be completely occupied by source blocks, the ICP would not be
able to receive packets from other ICP's ,

Additional storage classes may be devised where necessary:

a specific memory area for control packets is a necessity; further

— 80 —

different priority areas may be implemented corresponding to various

user classes.

Various buffer allocation techniques have been devised. The most

simple is to associate a fixed input and output area with each

communication line. A more sophisticated approach is to use a pool

of blocks, each block smaller than the size of the majority of messages.

A block is assigned at the start of the transmission process. If the

block fills with characters, another block from the pool is chained to

it. The more complex techniques, although more efficient in buffer

usage, require more sophisticated software for implementation.

4.3.2 Packet and Buffer Sizes

The host must divide its messages into segments not exceeding

a specified size. The segments are further split into blocks by the

ICP (see Figure 4.11).

The size of the packet to be transmitted may be chosen independently

of the block size. The packet and block lengths are not necessarily

identical. Packet sizes are determined by network response and

throughput considerations. The block size is determined by the average

incoming message length: smaller block sizes are more efficient since

less memory is wasted for short messages, but the overhead increases

due to the necessity to employ more block headers and chaining

information.

— 81 —

message

........... seament 1 seament 2 s e q m r i

h lo n k 1 hi n e k 2 b lo c k 3 b l o c k 4 b lo c k 5 . _black_&_ bia.ck_JL

1 ? 3 4 3 6 1 2 3 4 5 6
I

packets

Figure 4.11 Length Concepts

Maximum data field lengths for packets employed in some of the

current networks range from 16 to 1024 bytes. In general,

selection of parameters such as packet sizes, buffer size, resource

allocation, etc., depend very much on the network performance goals

and operation of the network mechanisms for transmission of data, e.g.,

a particular protocol may strongly influence the packet size choice.

Unfortunately, the construction of networks with specified performance

indices is not fully understood.

One approach, that followed here, is to produce a simulation

facility so as to experiment and observe the behaviour of a network

subject to parameter and traffic variations. The effect of varying

packet and buffer sizes is observed.

- 82 -

Pm = ' (MISCHA)(Ref. 4)1-p

Plot for p ^ 0,001
"”80

-- 70

- - 60

50
Number of

40Buffer
Blocks --30

20

-"10

* AXES
Queue Utilization Factor

PN is the probability that a buffer of size N blocks is filled and

that messages are turned away. Criterion is p^^ 0,001

Figure 4.12 Buffer Size vs Line Utilization

Figure 4.12 shows the number of buffer blocks required with increasing

line utilization. Assumed is an M/M/1 queue, a very crude approximat'

to the buffering processes taking place in the ICP.

-83 -

4.3.3 Message Buffering

The ICP storage technique used allocates buffers as follows.

The total required number of buffers must be allocated before trans

mission of the message segment, either between source host and source

ICP, or between source ICP and destination ICP. If these are not

available, they must be reserved. When the required number of buffers

become available and are allocated to the relevant logical link,

transmission ensues. If buffers cannot be allocated, or reserved,

the transmitter is informed. A transmission attempt must then be

attempted at a later stage.

4.3.4 Double Buffering Concept

It will be recalled that double buffering is required for the

transmission of messages consisting of two or more segments. Since

it is assumed that a source interface processor has no way of determining

the length of the message to be received, upon reception of a CABLES

signal, the full quota of buffers is allocated, i.e., 2 x NSOURC,

where NSOURC is the number of buffer blocks required to store a single

segment. The packet, block and segment size relationships are given

in Table 4.2. An ICP, upon receiving a CABLES signal, checks that

a sufficient number of blocks is available, and then allocates these

blocks to the logical link concerned. The double buffering is

maintained until an 'End of Message' code is encountered. This will

occur for single segment messages and for the final segment of a number

of segments transmitted. Unused buffers at the source ICP are

thereupon released, the remaining buffer blocks being released as

packets are transferred from the source ICP to the relevant channel

- 84 -

NSOURC• NUMBER OF BLOCKS PER SEGMENT
SGMENT: SEGMENT SIZE (MAXIMUM) IN BITS
BUFBLK: BUFFER BLOCK SIZE IN BITS
PSZNO: PACKET SIZE IN BITS
NOPCKS: NUMBER OF PACKETS PER SEGMENT
NOBUF: NUMBER OF BUFFERS FOR DST ICP

RELATIONSHIPS

NSOURC

NOBUF

NOPCKS

SGMENT
BUFBLK

NOPCKS * PSZNO
BUFBLK

SGMENT
PSZNO

NP: ABOVE NAMES USED CORRESPOND TO THOSE
FOR SIMULATION

Table 4.2 Segment, Buffer and Packet
Sine Relationships

- 85 -

uuncroncr in the node (the channel controller must acknowledge
reception of the packet).

Ths destination ICP, however, is i„ , position to allocate the
exact number of buffer blocks required for transmission, whether multi-
segment K x NSomtc blocks), single segment - multipacket, or single
segment - single packet. The source ICP informs the destination ICP
of these requirements (since it has at this stage stored the first/only
segment) by sending the first packet in the segment to the destination
interface processor. If the destination processor is able to
allocate the required number of blocks, it informs the source ICP via
a control packet that transmission may ensue. It is noted that single
packet messages are sent to the destination ICP without first reserving
the required number of blocks, since a single packet is a first packet
by default. The scheme defined may be used for the transmission of
both long and short messages. Figure 4.13 illustrates the storage
allocation procedures for source and destination interface processors.

4-3.5 Reserving Buffers

I* an ICP is not able to allocate buffer blocks, then the
possibility of reserving blocks exists. Reserving buffers requires
a certain amount of scheduling. The reservation of buffers is
classified according to the type of packet requiring the buffer:
source, multipacket and single packet types have been defined. These
types may be given different priorities, fixed or dynamic. Both
modes of priority allocation have been incorporated in the simulation.

— 86 —

RECEIVE CALLES

 _±___________

BUFFER ALLOCATION:
2 * NSOURC BLOCKS AVAILABLE?

YES NO

ALLOCATE 2 * NSOURC
BLOCKS TO LOGLINK

RECEIVE FIRST SEGMENT:
TRM 'FIRST PACKET' TO DST
ICP IF MULTIPACKET.
WAIT FOR TRMT FROM DST ICP

MULTISEGMENT MULT____ [PACKET

RETAIN BUFFERS, RECEIVE
AND TRM SEGMENTS UNTIL
EOM SEGMENT’ ARRIVES

CAN BUFFERS BE RESERVED?

vr NO

RESERVE BUFFERS

'/
ALLOCATE BUFFERS AS
THESE BECOME AVAILABLE
UNTIL 2 * NSOURC

INFORM HOST
FIRST SEGMEN'

FO TRM
F

--- --- -------- h'

SINGLE
PACKET/ MULTIPACKET .EOM)

RELEASE
UNUSED BLOCKS

TRANSMIT PACKETS BELONGING TO FINAL/ONLY
SEGMENT. BUFFERS RELEASED SUCCESSIVELY
AS ACK FROM CHANNEL PROCESSOR FOR EACH
CORRECT PACKET RECEIVED

INFORM HOST: NO
BUFFERS ALLOCATED/
RESERVED. CALL
LATER

Figure 4.13(a) Source ICP Buffering Procedure

— 87 —

RECEIVE FIRST PACKET

c J z _

REQUIRED NUMBER OF BUFFER BLOCKS:
SINGLE SEGMENT: * ^ 0BUFBLK

See
Table 4.

MULTISEGMENT: NSOURC

NB. SOURCE ICP TO
TRANSMIT PACKETS
REMAINING

_V

ARE BUFFERS AVAILABLE?
YES

ALLOCATE BUFFERS

SINGLE
PACKET MULTIPACKET

\k
INFORM SOURCE ICP TO
ENSUE TRANSMISSION

\/
RECEIVE FIRS! SEGMENT

-N4.
EOM

NO
 x

RETAIN BUFFERS
UNTIL EOM
RECEIVED

YES

V/

NO
A l

CAN BUFFERS BE RESERVED?

YES

RESERVE BUFFERS
ALLOCATE BUFFERS AS
THESE BECOME AVAILABLE

RELEASE REMAINING WAIT FOR FINAL ACK
UNUSED BUFFERS IF FROM HOST.
ORIGINALLY ' y
MULTISEGMENT RELEASE REMAINING

BUFFERS

x/

NO

INFORM SOURCE
ICP:
NO BUFFERS

Figure 4.13(b) Destination ICP Buffering Procedure

— 88 —

Dynamic priorities are incremented with respect to time, the size of

the increment depending on the type of packet.

All reservation requests are queued by the ICP 'waiting-state1
algorithm according to their respective priority ratings. In order

to prevent deadlock only the request at the head-of-queue is initially

processed. When buffer blocks are freed by other links, their blocks

are allocated to the request at the head-of-queue. If the blocks

released are of a type different to that of the head-of-queue request,

the remainder of the queue is examined in descending order to determine

if any other requests may be allocated the released block. (Appendix B)

The identity of the head-of-queue request is retained by the

algorithm and may not be pre-empted by other requests of higher priority

(as might occur with dynamic priority assignment, resulting in possible

deadlock).

As soon as the required number of blocks has been allocated, the

request is deleted and the caller is informed that transmission may

proceed. The next head-of-queue is subsequently processed.

In the case of blocks not being able to be allocated or reserved

(the number of segments is limited), the relevant transmitting unit

is informed that it must attempt to send its data at a later stage,

after some random interval.

- 89 -

4.3.6 Summary

The ICP protocol has been purposely kept simple to eliminate r.he

need for complex flow control and storage algorithms. The flow control

procedure is conservative in that buffers must initially be reserved

for all data messages of size larger than one packetr before data

transmission may begin. Buffers are not, however, reserved for the

packets in transit through the packet switching section of the network,

i.e., in the channel controllers. Although the buffering at the

source ICP1s is handled somewhat inefficiently, this method ensures

that data cannot be lost, since the situation of finding no buffers for

storage midway through a transmission cannot occur.

4.4 Review

This chapter has introduced one of the main components of the

communication node, the interface processor. The role and functions

of the interface processor have been discussed. The logical link

concept, the basis for further work, has been described. Attention

was focussed on the details of a user-network protocol that allowed

for data transmission and flow control between user devices and the

network nodes. Simulation results have been included to demonstrate

graphically the workings of the user-network protocol in coordinating

data transmission from one end of the network to the other. Finally,

the storage structure of the ICP was outlined.

- 90 -

CHAPTER 5

CHANNEL CONTROLLER

5.1 Introduction

This chapter considers the network communications processor or

channel controller. The node-to-node protocol and the buffer manage
ment technique incorporated in the controller, are specifically

examined. In addition simulations have been conducted to evaluate

the performance of the controller.

The concept of a 1 channel1 consisting of two controllers, one
attached t_, either end of a PCM link, is a basic building block of the

network. Arbitrary network topologies may be constructed by linking

nodes with channels. An example is shown in Figure 5.1. The capacity

of the PCM link is 64000 bits per second, with error rates in the region

of one in 10^ to 10^ bits.^ The controllers are envisaged to be

microcomputer-based.

The function of the channel controller is purely store-and-forward.

The source controller accepts packets, provided buffers are available,

and transmits these packets on a first-come-first-served basis to the

destination controller. It is the responsibility of the channel to

ensure that packets are transmitted correctly from one node to another.

The controllers operate in full duplex mode. The channel concept is

modular and may therefore be applied where network expansion is

necessary.

- 91 -

NODE 1 NODE 2
|------- 1 I--------1

CO
USER
ENVIRONMENT

CO

:M LINK ,PCM LINK

PCM LINK .NODE 4
NODE 3I—

CO cc

CO: CHANNEL
CONTROLLER

I—
'CM LINK _ NODE!? 'CM LINK

CC

CCcc

cc

cc

cc

cc

cccc

' — L— I

/ <

Figure 5■1 Network Example

The following sections consider the protocol enabling the exchange

of packets between channel controllers to take place, as well as the

technique for allocating buffers to packets enroute through the network.

5.2 Node-to-Node Protocol

A link control procedure must satisfy certain requirements if it

is to serve as v. reliable means of communication control. Synchro

nization must be established and maintained for proper delivery of

- 92 -

messages. Messages must be formatted and checked, and an acknowledge

ment procedure is necessary to indicate whether a packet has been

correctly transmitted or not. Overhead in terms of control characters

must be kept low. The line overhead depends critically on the

characteristics of the messages. A large number of small messages

involves more overhead than a small number of large messages to transfer

the same number of data bits.

The protocol incorporated into the channel controller is independent

of the code structure transmitted. It is bit-oriented and does not use

control characters. It applies to sarial-by-bit synchronous trans

mission between buffered stations. The protocol operates in full

duplex mode and is employed in the point-to-point configuration. The

above characteristics are shared with most other bit-oriented protocols.

The protocol incorporated differs in that only incorrect packets are

retransmitted. The Synchronous Data Link Control, for example, requires

the retransmission of all transmitted packets after a faulty packet has

been received at the destination controller.(27)

5.2.1 Link Throughput

The effective channel throughput depends not only on the link bit

rate and packet overhead, but also on the ability to acknowledge packets

efficiently.

When a packet is transmitted from a source to a destination station

a copy of the packet is retained at the source until such time as an

acknowledgement is received from the destination, indicating to the

source station that the packet has been correctly received at the

destination. A buffer block is thus occupied at the source for the

duration of the packet transmission and the acknowledgement delay time.

The amount of buffering required is approximately given by the circuit

rate times the expected acknowledgement delay.

It is therefore imperative to keep the delay as short as possible,

if memory requirements are to be kept within reasonable limits, yet

allowing for a high throughput rate to be attained.

5.2.2 Outline of the Protocol

To provide a description of the protocol two channel controllers,

A and B, connected via a link are assumed. Controller A is to transmit

a packet to controller B.

A packet is sent from A to B, a copy being retained at A. Upon

correct reception of the packet at B, an acknowledgement is transmitted
from B to A, either via a data packet in the process of being sent from

B to A (piggybacked) or by a control packet. When A receives the

acknowledgement it releases the copy and the buffer is available for
another packet. If the packet received at B is incorrect, then it is

discarded. In this event, no acknowledgement is sent to A. At A,

after the elapse of a time-out period, the packet is retransmitted.

5.2.3 Logical Path Concept

Although the protocol outlined above is correct, it has one problem.

Once a packet has been transmitted by a source controller, then that

— 94 —

packet must be acknowledged before further packets can be transmitted.

The technique is thus unsatisfactory from the throughput point of view.

The problem can be overcome by making use of a number of logical paths

(see Figure 5.2).

TFl =» RF1

CPCP

TCU

CPPHYSICAL PATHCP

DP

TF9
CPCP

LOGICAL
TF10

RF8

RF10

TF8

TF2

LOGICAL
PATH

RF2

RF9

MEMORY
BUFFERSMEMORY

BUFFERS

TCU

CONTROLLER A CONTROLLER B

TFl 6

TCU: Transmission control unit
TF: Transmitting field
RF: Receiving field
DP: Data Path
CP: Control Path

Implemented in software

Figure 5■2 Schematic of Fields

- 95 -

A number of logical paths may be defined that share the physical

PCM link, according to the protocol outlined above. Each logical

path operates independently of the other paths, sending a packet and

then waiting for acknowledgement. The maximum number of packets that

remain unacknowledged at any one time, is equal to the number of paths

used. Simulation tests have indicated that eight logical paths per

channel are sufficient.

For each channel, status information concerning each of the logical

paths is retained at both the source and destination controllers. The

block of data that describes the state of the logical path is termed

a 1 field1. The fields at the source and destination controllers are

referred to as the transmitting and receiver fields respectively. All

such fields are maintained and updated by control unit programmes, in

each of the channel controllers.

Data packets stored in the controllers1 buffers are sent to the

destination controller provided the physical link is free and a trans

mitting field is unused. The control unit supervises the transmission

making sure that each field obtains adequate usage of the physical path

resource. The transmitter and receiver fields at the source and

destination cont/oilers respectively, must maintain synchronism. The

transmitter field maintains status data concerning the packet in

transmission. The receiver field has the function of informing the

source controller whether a packet was accepted or not, and whether

the packet has been rejected due to bit errors or due to insufficient

buffering (at the destination controller).

- 96 -

The field structures are shown in Figure 5.3,

FIELD aCTIVE PACKET PARTITION SYNCH TIME-OUT PARTITION
NUMBER FLAG NUMBER NUMBER FLAGS CONTROL CONTROL

TRANSMITTER FIELD

FIELD SYNCH COMMAND
NUMBER FLAGS FLAG

RECEIVER FIELD

Figure 5.3 Field Structure

Each logical path is identified by a field number. The activity flag

is used to indicate whether a field is in use or not. The packet

number is used to identify the packet currently in transmission, or

awaiting transmission along the logical path specified by the field

number. The partition number and partition control, as well as t ,e

command flag, are used to aid the buffer management process (see

Section 5.3). The cime-out section controls the duration of the

time-out interval, after which a packet is to be retransmitted. The

synchronization flags control the flow of packets along a logical path.

5,2.4 Synchronization Flags

The synchronization flags are used to ensure that duplication of

packets occurs should error conditions arise. The mechanism is in

face time-independent. If a time-out occurs due to excessive

acknowledgement delay (e.g., an acknowledgement packet is incorrect),

whilst the originally transferred packet has been accepted by the

- 97 -

destination controller, the retransmitted packet will be identified

as a duplicate and not accepted.

The synchronisation mechanism is shown in Figure 5.4. Four

combinations of bite are used, the right-most bit, a zero, indicating

packet transmission,the same bit, a one, indicating acknowledgement of

transmission. The transmitter.and receiver fields may be initialized

to either '00' and 1111 respectively, or to '10' and '01' respectively.

To ensure continued synchronization^control packets are periodically

transmitted between the two controllers to ensure that the above

condition is satisfied. This condition is only guaranteed for non

active fields.

Assume that a packet requires to be transferred from controller A

to controller B and that the transmitting field at A and the receiving

field at B are initialized to '00' and '11' respectively. Correct

packet communication requires that B receives the packet frame with

flags set to '00'. An acknowledgement with flags set to '01' will be

returned to A provided the packet is correct, otherwise the previous

values of '11' will be returned. A awaits the return of the

acknowledgement flags set to '01', and once received will release
the buffer.

If a time-out occurs before the required flags are received, the

packet will be retransmitted. For the following transmission A will

set its flags to '10', and B will return a value of '11'. The process

- 98 -

starts anew with values of '00' and '01' for the packet transmission

thereafter. If an incorrect acknowledgement occurs whilst the packet

has been accepted, a retransmission will take place once the time-out

perio' has elapsed. The retransmitted packet will be identified as

a duplicate, since the destination controller recognizes the transmitter

flag settings to be the same as those for the previously received packet.

Flag settings for both receiver and transmitter fields must

alternate with successive packet transmissions. It is noted that

each logical path operates independently of the other paths in this

respect.

TRM PACKET

WAIT FOR
ACK

TRM PACKET

11WAIT E
ACK

OR

10

00

01

PACKET

ACK

PACKET

< -
ACK

WAIT FOR PACKET

TRM ACK01

WAIT FOR PACKET

TRM ACK

OO

11

10

TRANSMITTER FIELD RECEIVER FIELD

Figure 5.4 Synchronization Flags

- 99 -

5.2.5 Packet Frame Format

The packet format is shown in Figure 5.5. A packett together

with its flags and control information, is referred to as a frame.

The header is used to contain network addressing and control infor

mation. It is used for routing by intermediate nodes, and for flow

control and packet reassembly by source and destination nodes. The

text is transparent to the network code used. The flags, serving as

frame delimiters, establish and maintain synchronization. The flag

format is that of SDLC where bit-stuffing is used to ensure that the

flag is the only such data field appearing in a frame.

F TRM
COM
MAND REC FRAME F

L •TAGS ADDRESS TEXT FLAG FLAG CHECK
SEQU L

A ENCE A
G G

____i

0
1
1
1
1
1
1
0

•Field
Number
Flag TRM

Partition
Number

1/0

1/0

EIGHT COMMAND AND
RECEIVER FLAGS
CORRESPONDING TO
EIGHT LOGICAL PATHS

TRANSMITTER SECTION RECEIVER SECTION

Figure 5.5 Frame Format

— 100 —

The transmitter, receiver, and command sections are the important

features of this protocol. The field number identifies to which

logical path the packet belongs. Eight paths are possible with the

frame format depicted in Figure 5.5. The single bit transmitting

flag has the synchronization function as described in the previous

sub-section. In addition, sixteen possible partition numbers are

included for buffer management purposes (see Section 5.3).

A channel controller transmitting to its destination controller

will always include the status of its receiver fields, with each,

packet sent. Such a feature has two advantages. It allows for

simultaneous acknowledgement of any or all fields, and it ensures that

only i .rect packets are retransmitted. This technique thus allows

for efficient acknowledgement, piggybacked on returning data packets.

In the event of no returning data packets, a control packet containing

the receiver flags is sent.

The command bit is used by the receiver to indicate whether

a packet has been rejected due to insufficient buffering or not (see

next section).

A standard generator polynomial may be used for the frame to check

for errors, e.g., CCITT recommendation.

V.41 for 16-bit fields: g (x) = x"^ + + x^ + 1

- 101 -

5.2.6 Valid Flag Settings

The valid combinations of synchronization and command flag settings

are shown in Figure 5.6. P-i.j other combinations are incorrect and a

re-indtialication process is required.

FLAG SETTINGS FLAG SETTINGS
OF -------- -------> OF

PACKET FRAME DESTINATION
IN TRANSIT CONTROLLER

TRANSMITTER FIELD RECEIVER FIELD

00

10

PART A

00

10

RECEIVER FIELD

COMMAND

0
0
1
1

PART B

0
0
1
1

SYNCHRONIZATION

01
11
11
01

11
01
01
11

11 RECEIVE

01 PACKET

01 DUPLICATE

11 PACKET

TRANSMITTER FIELD

00 RELEASE BUFFER
00 NO-OPERATION
00 NO-OPERATION
00 RETRANSMISSION

10 RELEASE BUFFER
10 NO-OPERATION
10 NO-OPERATION
10 RETRANSMISSION

Figure 5.6 Flag Settings

- 102 -

Part A is used to enable the destination station to determine

whether it already has a copy of the packet or not. Part B is used

for acknowledgement of packets.

A 'no-operation' indicates that:

i) a packet has not yet arrived at the destination controller,

ii) the packet has arrived but been rejected,

iii) the packet has arrived, been accepted, but its

acknowledgement has not been received.

A 'retransmission' means that buffering was not available for the

packet and that the source controller must retransmit the packet after

a suitable delay period (in the simulation approximately 40 milliseconds).

A 'release buffer' indicates that the packet was accepted at the

destination, so that its buffer may be made available to another oacket.

5.2.7 Summary

A possible protocol has been outlined, only in-so-far as it affects

network traffic flow. The principal feature of this protocol is its

use of bit positions to synchronize frame transmissions. Such provides

for the retransmission of only incorrect packets and enables a number

of logical paths to be superimposed on a physical channel. Delays on

one logical path do not affect link throughput significantly since

other logical paths are not blocked in the process.

- 103 -

5.3 Storage Allocation

The amount of buffering in the channel controllers is limited;

as such, network operation is very much dependent on the flow control

measures employed. (Bulk storage mechanisms are excluded mainly for

reasons of reliability and the added complexity to the nodal architecture.)

As no techniques for deleting packets at very congested network regions

have been considered, due to the complexity of the error recovery

procedures required to continue network operation after deletion,

greater emphasis must be placed on techniques for preventing degradation

from occurring. The role of the storage allocation tecluiique in this

respect is now examined.

5.3.1 Store-and-Forward Buffer Blocking

Degradation in throughput occurs if buffers are not available to

packets in transit through the network. If all of memory were made

available to any one of a number of different groups of packets, e.g.,

packets to a specific neighbouring node, it is possible that a situation

could arise whereby packets from one group use most of available memory.

Such can arise when the ratio of the service rate to that of the

arrival rate is low for one group, this group thus effectively blocking

the transmission of other groups by occupying most of the buffers.

Deadlock may even arise if two or more groups require each others

resources for transit, whilst retaining their own.

Due to the limited processing power of the computing elements

involved, no mechanism exists for temporarily releasing a resource,

i.e., the buffer, and later regaining it. Once a resource is accessed,

/

- 104 -

it will only be released when the user (a packet in this case) has

finished with it.

Thus a packet in transfer from node A to node B will occupy a

buffer in node A until such time as it is able to seize a buffer at

node B, the release at A subsequently occurring upon reception of an

acknowledgement signal.

5.3.2 Memory Partitions

To overcome the above problem the memory is partitioned into

a number of segments. A schematic is shown in figure 5.7.

PG1 PG8 PG1 PG8
PARTI''IONE3 PfRTIT CONED

COMMON
RECEIVER SECTION

COMMON
TRANSMITTER SECTION

PGi: PARTITION GROUP i

Figure 5.7 Memory Division

The memory is split into a receiver and a transmitter section.

Each section is in turn divided into a partitioned and common area.

A partitioned memory area is allocated to a specific group of packets,

- 105 -

whilst the common memory is available to all groups.

From a resource sharing point of view, better sharing of resources

occurs if all storage is available to all groups, rather than to

provide each group with its own storage modules•

A compromise has therefore been made, each group having sole access

to a number of memory blocks and the rest of memory being made

accessible to any group requiring it. This means that heavy demands

by one group may be satisfied, but the dominant group will not be able

to block others from acquiring the necessary resource for netwo" ' transit.

(215It is in fact shown in Kleinrock that the response time for

a channel comprising two resources (receiver and transmitter memory)

will not be significantly larger than if the two resources were merged

into a single resource, assuming constant channel capacity. The

increase is in the order of two milliseconds.

In the simulation program eight partitions or groups are provided

for. Each partition consists of two buffer blocks. Any particular

group of packets will thus not be blocked since memory partitions in

the transmitter section at a source node will have corresponding

partitions in the receiver section of a destination.

5.3.3 Memory Partitioning According to Topology

The grouping of packets occurs with reference to the topology of

the netwo-k. As packets move through the network their grouping will

change from node to node. In this regard' control packets, e.g.,

- 106" -

acknowledgements, 'Ready for Next Segment' messages, are not

distinguished from data packets. These packets are usually best

differentiated by providing better service times for control packets

based on priority ratings.

The process of partitioning is illustrated in Figures 5.-8 and

5.9. a reference node in any network may be considered in terms of

the tree structure shown in Figure 5.8. The reference node is

connected to a number of neighbours, and these in turn are connected

to their own particular neighbours (if any). For convenience, the

first is referred to as a 1 direct connection', and the second as an
'indirect connection'. The partitioning takes place on the basis

that group packet flow between any nodes must never be impeded due to

lack of buffer resources caused by other groups. Thus all directly

and indirectly connected nodes must at all times be able to transmit

data to the reference node. This implies that directly connected

nodes may never form a barrier between an indirect and reference node.

A number of buffers will be specifically made available for data

transferred from any one node in a network to another. Generally,

use will be made of the buffer pool (common) since the numbef of

partitioned buffers is small - two at the source and two at the

destination, per partition.

Figure 5.9 gives an illustration of the partitioning for

channel m. The partitioning process is done for all channels of

a reference node as follows:

- 107 -

m+1

CHI

CH
m+KN,R

m+K+1

— ON

Nr : Reference Node
N, to N1 m+K+n : Nodes directly and indirectly

connected to Reference Node
CHI — CH : ra channels connected to Reference Node

Figure 5.8 Memory Partitioning: Topology

Receiver

Transmitter

nr nr

N1 N1

Nm-1 vCHANNEL m v Nm-1
Nm

x— “ .. >
Nm

Nm+K+1 Nm+K+1

Nm+K+n Nm+K+n

Transmitter

Receiver

CHANNEL CONTROLLER N_ CHANNEL CONTROLLER NR m

Figure 5.9 Memory Partitioning:__Channel m

- 108 -

concerning the receiver section, the reference node itself, plus

all directly connected nodes, excluding the node linked to

the channel under consideration, are all allocated a partition;

concerning the transmitter section, all indirectly connected

nodes via the referenced channel are allocated a partition.

It is noted that by obeying the above rule at the m'th node for

the same channel (m), corresponding partitions to those for node R are

produced. The memory sections of two channel controllers connected

to a common channel are aligned.

5.3.4 The Packet Frame Format and Memory Partitioning

The command bit mentioned in the previous section is used as a

flow control measure to ensure that a source station does not transmit

packets associated with occupied destination partitions and full

common storage, needlessly. The relationship between fields, logical

paths, command flags, and partitions may now become clear. In order

that the channel controller may transmit data at a high rate without

recourse to extensive software based decisions, a technique has been

formulated whereby a physical line may be shared by several logical

paths. Due to the delay encountered by geographically separated

communication processes, it is necessary to share a physical path

between a number of such processes to achieve high line utilization.

It is noted that the processes referred to above are not those of

network users who are allocated channels on demand for their messages,

but those of channel controllers who ust share these channels amongst

users efficiently.

- 109 -

The status of each logical path is retained via a field

(synchronization flags, packet identity, partitioning data, etc.),

each path responsible for its own transmission, and granted access to

the physical line by the transmission control unit. The partition of

a packet allocated to a field is determined by a Markovian routing

matrix based on present and destination nodal addresses. If a packet

is rejected due to insufficient buffering at the destination, the

command bit will be set. The transmitting controller will subsequently

become aware of this when it receives a packet from its destination;

by mapping the command bit onto the partition information stored in

the source field, the controller can determine which partitions are

blocked at the destination, and transmit subsequent packets accordingly.

The blocked packet is removed from the field to make way for differently

partitioned packets, After a time-out period set by the partition

timer, a retransmission of the packet is attempted.

The swi toning processor responsible for coordinating the activities
of the nodal processors, will ensure that no packets of a blocked

partition will be sent to an XCP with its partition command flag set.

5.4 Performance of the hxnk

A channel has been simulated to obtain figures for the average

response time. The throughput of the channel is not too important in

this regard; an approximate measure of throughput is given by the

product of the average arrival rate and the blocking probability due to

no buffering being available for an arrival. The throughput is

considered in more detail when dealing with the entire network.

In Figure 5.10 is shown a schematic of the channel tested.

Data packets are generated on both sides of the channel at the rate
of Al packets per second. If no buffering is available the packet

is simply rejected. Once buffered, the packet is transmitted to the
destination controller according to the link control procedure as
described in Sections 5.2 and 5.3.

SOURCE Al
PACKETS/
SECOND a,
SINK A2
PACKERS/
SECOND*"̂

CONTROLLER LINK CONTROLLER----

---

B
64000 BPS

SINK A2
PACKETS/
SECQND
SOURCE Al
PACKETS/
<--- SECOND

Figure 5.10 Channel Simulation

Associated with each channel controller is a mechanism for

extracting packets from the hannel at the r^te of A2 packets per
second. The order in which packets are withdrawn from the link is

arbitrary. The response time is defined to be the time from when
a packet enters the source controller until the time it arrives at the
destination controller. Thus only the amount of buffering available
at the destination is of importance, and not the order in which packets
are sunk. At any rate, the order of packet extraction from a channel
that has been incorporated into a network, is a function of the traffic
patterns in a node. These patterns are rather complex and consequently

- Ill -

it is difficult to give a distribution for the average waiting time

at a destination controller. This point is examined in more detail

in Chapter 6, where a nodal configuration is considered.

The purpose of the set of simulation results is to obtain some

idea of the behaviour of a channel when subjected to a number of

controlled traffic inputs. There exists a large number of combinations

of different parameters for which to test the channc1 but only two

have been considered. The parameters studied are the response of the

channel and the amount of buffering required subject to different

channel utilization factors. It is felt that these two parameters

are sufficient to gain an understanding, from the flow control point of

view, of channel performance when the channel is placed into a network.

5.4.1 Parameters for the Channel Simulation

A description of parameter settings for the simulation follows.

The number of fields per controller has been established at eight.

As the simulation results will demonstrate, the eight fields are

sufficient for a 64000 BPS line rate, utilization factor 0,7, provided

enough buffering is available at the source and destination controllers?

no blocking of packets at the input to the channel was found to occur

in this case.

A single set of partitions has been used, comprising two buffers

at the transmitter and two at the receiver side of a channel controller.

Two buffer blocks are provided so that, in the event of blocking due to

- 112 -

other packet groups occurring, a double buffering feature is available.

Whilst one buffer's contents are sent from data bus to controller, or

V V, the second buffer's contents are transmitted across the channel

link, the buffer roles reversed in the next phase.

Line error distributions are assumed to be geometric, with the

mean set at ICf* bits per error.

A buffer block has been taken to be equal to the maximum packet

size, the size in this case limited to 1000 bits. Although the

storage size is varied, transmitter and receiver storages are kept at

equal sizes. In the graphs to be shown, the unit referred to is a

'buffer', i.e., a block of 1000 bits. These units refer only to a

transmitter or receiver section; the total amount of buffering

required per controller is therefore twice the number of buffering

units shown, plus four buffers for partitions.

The packet length has been assumed to follow a geometric

distribution, whilst the arrival rate is a Poisson distribution.

Packet sizes may be adjusted by the mean value parameter, but in all

cases truncation occurs at 1000 bits for packets of length greater
than the buffer block sizes. The rate of packe-1 extraction has also

been assumed to follow a Poisson distribution.

The retransmission interval for incorrect packets' is 40 milli

seconds and the partition timer period 30 milliseconds.

- 113 -

The expected delay for a channel utilized at 0,7 with an average

packet length of 300 bits is approximately 10 milliseconds. This

figure is obtained from the Pollaczek-Kintchine formula for M/G/l

queues. (Measurements performed on the Arpa network give packet sizes
(21)of mean length 218 bits .) Four fields may therefore be trans

mitted before a retransmission is due, by which time an acknowledge

ment should have been received. For a heavily utilized destination

controller, servicing packets at the average rate of 150 per second,

an average of four buffers are freed every 30 milliseconds.

A retransmitted packet will therefore certainly obtain a buffer at the

destination in this case, since only one partition has been assumed.

A blocked partition thus implies a complete cessation of transmission.

Required is to obtain a time-out period such that a retransmitted

packet has a high probability of obtaining a destination buffer.

A detailed investigation of this facet is felt to be outside the scope

of network flow control, however.

Preliminary calculations indicate that the order of delay, as

determined by the above figures, is tens of milliseconds. Since

a channel controller has essentially only link control functions to

perform, the delay due to message processing has been neglected. It

is thus assumed that processing overhead will have little effect on

the figures presented for response times.

- 114 -

5.4.2 Channel Performance

Figures 5.H to 5.14 show the relationship between response and

buffer amount for three channel utilization factors. These include

the mean value and variance of the response. The simulation points

are plotted for mean packet lengths of 300 bits and assume equal input

and output rates to the channel via external sources and sinks. The

curves connecting the simulation points are intended to show the

general response trend.

5.4.3 Channel Response

The response at low channel utilization (p = 0,3) is depicted in

Figure 5.11. It is of interest to note that the response peaks to

a value of 35 milliseconds for a buffer value of eight, before

decreasing to 9 milliseconds as the storage is increased. This

characteristic occurs due to the large number of retransmissions

required, since the buffering at the destination is insufficient.

Retransmissions affect the response to a large extent (the time-out

period is 40 milliseconds). As more storage is provided the queueing

uelay for packets becomes the predominant factor. The threshold point

for p = 0,3 is sixteen buffers.

At a larger utilization factor of 0,7 (Figure 5.12) the same trend

is exhibited as above, but the final state response is much larger,

i.e., approximately 23 milliseconds.

»

- 115 -

When the amount of traffic on the link is increased, such that

P = 0,82, the response time increases as more storage is added to the

controllers. Figure 5.13 shows that no final value of delay has been

reached at a 32 buffer value. This large response is again primarily

a queueing delay.

A comparative view of the response trends of the previous three

graphs is given in Figure 5,.14., Only the mean response values are

shown. It is clear that the number of buffers chosen should not be

less than sixteen if one is to avoid operation of the link in a region

where delays are large, even under low traffic conditions.

5.4.4 Percentage of Packets Rejected

Figure 5.18 has been included to demonstrate the effect of storage

size on the percentage of offered traffic rejected. For each simulation

run the number of packets offered to the channel, and the number

subsequently rejected due to insufficient storage (at the source

controller) were counted. The number of rejected packets is expressed

as a percentage of the offered traffic.

These results have been included only to emphasize that sixteen

buffers are adequate under the above stated conditions. Accordingly

the rest of the simulation results are based on the value of sixteen

buffers per transmitter or receiver section of a controller.

— 118 -

X

<LU
2E

<>

CO
a:
LU
LL.
LU
3
CD
LL
O
QC
LU
CD
Z
Z)
z
ui>
><
— j
LU
Q

CLLU
CM
CO
o'

oo
CO0_

CM
CO

m
o
s .

C/3

c
m
0)

I
CL0.
03

ro
CN
m

oCO
COCN

UD
CN

7̂
<N

CN
CN

OCl

CO

UD

CN

+

CN

CO

CN

o
UD

inin oin in<r o
UD

in
m o

CO
in
CN

o
CN

in in

> -<
LU
Q

ui
u
03
Ul
E

FI
G.

5.
 1

3
NO

.
B

U
F

F
E

R
S

FI
G

.
5.

NO

B

U
F

F
E

R
S

(+
2

)

- 120

5.4.5 Comparison with Analytic

The increase in response for a corresponding increase in p is

illustrated in Figure 5.15. The four simulation points are plotted

together with a predicted response based on the Poliaczek-Kintchine

equation for M/G/l queues. Although the M/G/l queue assumes infinite

buffering and an infinite sink for serviced packets, the latter

assumption is satisfied by minimizing the number of retransmitted

packets (sufficient storage at the destination controller), whilst the

former assumption is satisfied by providing sufficient storage at the

source controller so that the probability of blocking for incoming

packets is small.

It may be seen that the analytic approximation gives a reasonable

estimate of the simulation results. The packet transit delay at line

utilization factors greater than 0,7 increases extremely rapidly.

A delay of 25 milliseconds at p = 0,70 rises to approximately 60 milli

seconds at p = 0,85.

Figure 5.16 gives a more complete picture of the channel response-

utilization characteristic. A number of simulations for different

average packet lengths have been performed. These curves all show

the rapid rate of change of response time as the amount of traffic on

a channel exceeds the p = 0,70 point. The curves also demonstrate the

applicability of the Poliaczek-Kintchine equation for predicting

performance based on different mean packet lengths.

121

I

Q

O

o

Cs>
CD

r-

oo o oo
m

o
~ - T

U1

LA
If)

m t

Li_

- 122 -

oO'
8w

OOM

S

J3

v— o

ooin oO

Oo o
ID

o<N

O
CO o

CO

I

- 123 -

The utilization factors may be calculated from equation (5.1),

where C is the line rate in bits per second, X the average packet

arrival rate, and 1/p' the average packet length.

(The Poisson arrival rate and geometric message length distribution

are assumed.)

The Pollaczek-Kintchine equation for mean response is given in

5.4.6 Discussion on Unequal Input/Output Rates to Link

The results of these simulation runs indicate that the traffic

utilization factors of a channel should not exceed some specified

limit if excessive delays are to be avoided. The limit chosen is that

of p = 0,7. For average lengths of 300 bits, the mean time to transmit

packets from the source to the destination station is approximately

25 milliseconds. An 1 operating region1 has been defined in Figures
5.15 and 5.16 to illustrate this point.

The preceding simulations have been performed on the basis of

equal input and output rates for a channel, i.e., X I = X2 (as in Figure

5.10). This situation obviously occurs infrequently in practice.

Accordingly, simulations for differing input and output packet rates

(5.1)

equation (5.2); see Schwarz. (4)

E(T)

- 124 -

have been run. These are illustrated in Figure 5.17. Assumed is

a 16 buffer channel controller transmitting packets of 300 bits average

length. Output rates (A2) of 100, 150 and 180 packets per second have

each been plotted for various input rates (Al). The standard

deviations are shown in Table 5.1.

The results follow the trend of the curves displayed in Figures

5..11 to 5.16. Irrespective of the channel utilization, a rapid increase

in response time occurs when the input rate exceeds the output rate.

This result is not as obvious as it might sound, bearing in mind that

the channel controllers must reject packets offered (from external

sources to the channel) if no buffers are free. The explanation for

this characteristic is again based on the retransmission of packets.

A lower output rate at the destination controller means that insufficient

buffering (at the destination) will consistently occur, leading to the

retransmission of an abnormally high number of packets, thus causing

the response time to increase rapidly. This explains in part why no

further time has been spent on optimizing the time-out period.

In Chapter 7 it will be shown that a retransmission interval of from

30 to 40 milliseconds is sufficient.

The results of both equal and differing input/output rates to

channels should be borne in mind when incorporating channels into

a network.

- 126

k

i

o
§

o
o

omcS

ocn o(N

o d

L D

LD
(-4

- 127 -

Inkc o n t r o l l e r c o n t r o l l e r

L i n k ra te is 6 4 0 0 0 BPS, m e a n p a c k e t s i z e 3 0 0 b i t s ,

L I N K C A P A C IT Y = 2 1 3 PACKETS/SEC

Input Rate

Xl

Packets/sec

Output
Service
Rate
X2

Packets/sec

Mean Delay

-3Units 10 seconds

Standard
Deviation

-3Units 10 ' seconds

50 7,3 5,5
80 100 8,4 6,1

100 11,5 10,8
120 54,1 58,6

60 7,3 5,5
120 150 8,4 6,2
±60 54,1 59,5
180 92,5 56,5

80 8,2 6,4
120 180 12,0 8,5
160 29,1 21,7
200 55,3 58,5

Table 5.1 Channel Response

- 128 -

5.4.7 Summary

A channel should not be operated for traffic utilization factors

exceeding 0,7. The packets output from a channel should be given

priority over the packets input to a channel. A solution to the

channel utilization problem has already been formulated in Chapter 4,
where the number of packets per logical link and, therefore, the number
in the network is restricted.

The channel transit time of a packet is dependent on the processes
governing the relative rates of input and output traffic to and from

the channel. Although channel flow control techniques may regulate
the amount of traffic accessing a channel, these techniques are

insufficient in themselves to prevent performance degradations from
taking place, since the output rate is determined by processes not

under the immediate control of the channel (assuming no packets are to
be lost). This implication is studied further in Chapter 6 when the
nodal architecture is presented.

5.5 Review

The structure of the channel controller has been outlined in this
Chapter. Particular attention was paid to line control procedure and
buffer allocation aspects, regarding their effect on data flow between

nodes. The problem of packet acknowledgement delay has led to the
concept of regarding a transmission line as a resource to be shared
amongst a number of logical communicating processes residing on either
side of the link in the channel controllers. The storage area has

- 129 -

been partitioned so as to allow traffic from a number of neighbouring

nodes to communicate with a reference node without the risk of blocking

occurring. Subsequent simulation of the channel has shown that
operation should be confined to a region such that the traffic

utilization factors should not exceed 0,7 if performance degradation

is to be avoided. Finally, it became apparent that performance of

the channel is dependent on the ability to remove packets at a

sufficiently high rate whereby destination buffering remains unblocked.

— 130 -

CHAPTER 6

COMMUNICATIONS PROCESSOR ARCHITECTURE

6.1 Introduction

An outline of the proposed communication processor architecture,

in terms of functionality o:: modules, is contained in this chapter.

The aim is to provide insight into the technique by which packet inter

changes within a node take place. Two types of processor, interface

and network, have been described, each performing a specific function.

A third module, a 'switching processor', is introduced to coordinate

operation of the interface and network processors. The switching

processor functions by sampling the states in the nodal modules,

processing this information, and then issuing commands based on the

current nodal states to control packet transmission between ICP1s and

NCP's. The chapter concentrates on the algorithms required in order

that the switching processor may perform the above stated function.

6.2 Outline of the Node Architecture

The architecture proposed for a packet switching communication

processor is shown in Figure 6.1. The architecture consists of three

types of processor, the interface, network and switching modules.

Further, a data bus and control bus serve to link together the modules.

The two buses operate asynchronous!?, each serving a specific function.

The data bus allows for packet transmission between ICP' s and NCP' s

communication between the switch processor and all other units, i.e.,

ICP's and NCP's, takes place via the control bus. Finally, interface

131

o Pd2 OH to
a w
o w
EH uH oS «CO A

CN
04
w

NC
P

1 ^8
^ _____BR e2p*— 2 2 H m

88

w
s

Iu
H g

D

H-m— fa
«fa faU faH W 1 ^ DD W-- ffa l w1 n

O H

8COM

1
IwM

g

H

I 8
I

a i

Fi
gu
re

6.
1

Co
mm
un
ic
at
io
n

Pr
oc
es
so
r

Ar
ch
it
ec
tu
re

buffers connect the TCP's and NCP's to the data bus.

The TCP communicates with nodal user devices via an I/O bus or

switching matrix, enabling it to interact with users over a number of

serial links. Messages are formatted into packets, generally these

packets will be transmitted to another processor, either interface if

the destination host is attached to the same node as the source host,

or network processor if the destination host is connected to a different

node. It is also possible that source and destination processors make

use of the same TCP. The ICP then simply serves as a buffering module,

possibly providing code translation functions.

The network processors are used to transmit data between nodes.

Each processor is connected to a set of full duplex 64 KBPS pulse code

modulation-based links, and transmits packets according to the protocol

as described in Chapter 5. Data passing through n intermediate node,

must be transmitted from one NCP to another, the transfers taking place

over the data bus.

The data bus thus serves as the medium via which data is shifted

within the node. Whether a packet enters, leaves, or is in transit in

the network, in each case it must make use of the data bus. The medium

might equally well be a common memory buffer accessible to all nodal

processors.

- 113 -

The data bus rate must be high in orav not to become a bottleneck.

To aid the processor in transmitting packets into - or receiving packets

from the bus, a buffer interface unit is inserted between processor and

bus. The buffer acts as a high speed translation unit. The buffer

unit transmits a packet at a time to a similar destination unit.

A processor requiring to transfer data to another module informs the

buffering unit of the starting address and length of the packet to be

sent, including the destination address. The I/O operation is therefore

envisaged to be direct memory access. The buffer is divided into

a transmitter and receiver section, each capable of holding a single

packet. The receiver memory is essential, since a processor may not

be in a position to receive a packet, e.g., the processor accessing

memory and busy on an uninterruptable task.

The transmission of packets over the data bus is a controlled

operation in which each processor is given a turn to access the bus.

However, the processor does not know when this access will occur.

To leave it free to continue its tasks the buffering unit, once it has

been informed whicn packet to transmit, will take control of the

transmission aspect when the processor's access turn is due.

Bus multiplexing is shown in Figur. 6.2, where each buffering unit

transmits data from its transmission section to a receiver section in

another unit.

- 134 -

ICP/NCP ICP/NCP ICP/NCP ICP/NCP

CU

T R

ik_

CU

T R

A

SL

CU

R

CU

T R

k. DATA BUS

CU: CONTROL UNIT
T: TRANSMISSION BUFFER
R: RECEIVER BUFFER

/fV /IV

Figure 6■2 Bus Multiplexing

6.3 The Bus Access Problem

The accessing of the data bus must be given careful consideration,

since an excessive number of conflicts by processors transmitting

simultaneously will result in a significant lowering of the nodal

throughput. Systems whereby processors may transmit at will, result

in inefficient operation as is shown in the following.

In Schwarz ̂ it is shown that a pure Aloha channel (one where

processors transmit at will over a common channel) can attain

a utilization factor of no more than 0,18, after which instability

/

- 135 -

results. For slotted Aloha, wherein packets may only be transmitted

within time slots, the utilization can be increased to 0,368.

Assumed is a fixed packet size and a Poisson transmit'- -n distribution.

Channel instability results when the channel throughput is so high

that a significant number of collisions occur; these collisions require

the retransmission of the packets involved which, in turn, increases the

number of packets to be transferred across the bus. This, in turn,

results in more collisions. One solution used is to provide the

transmitter with a detection unit to determine whether a packet is in

transit across the bt-.s. Another is a slot reservation scheme where

the utilization factor may theoretically be increased to 0,8.^

These schemes are not followed up here since they do not satisfy

a criterion central to the nodal operation: that the local flow control

mechanism be bound up with the bus access control technique. This will

be subsequently explained.

6.4 The Function of the Switching Processor

It is necessary that some knowledge of the nodal processors1 states

be available so that processors can be made to coordinate their

transmission activities to minimize the number of conflicts. By

1 states1 is meant:

* knowledge of buffer availability,

* number of packets to be transmitted,

* the destinations of the packets .

- 136 -

If the states of processors can be determined at specific intervals,

it is possible to arrange orderly data bus accessing and to ensure

availability of buffering at the destination processor. It is clear

that the exchange of information and the resolution of conflicts amongst

processors themselves, would be highly inefficient. Accordingly,

a processor has been dedicated specifically for this task - henceforth

referred to as the 'switching1 processor.

The control bus is used to transfer status information and switch

processor commands between the processing and control modules. Operation

of the node is thus centralized and is dependent on the continued and

correct functioning of the switch. A dual set-up may be necessary for

reliability purposes.

The switching processor maintains the routing tables. A processor

requiring to transmit a packet informs the switch of the packet s

destination (logical process number and nodal address). The switch

sends the destination processor address to the transmitting processor.

Certain error detection and recovery techniques are executed by the

switch; ideally it should be able to isolate defective units and

arrange for continued nodal functioning without them. It should have

some capability for serving in a network reconfiguration role if nodes

or internodal links fail. Abnormal conditions such as congestion

must be detected and steps taken to ensure that performance degradation

does not result. Specific recovery procedures have not been implemented

in the simulation, however. Simulations for traffic control have been

- 137 -

performed assuming well-behaved nodal modules.

Control of nodal operation takes place as envisaged in Figure 6.3.

At regular intervals the switching processor obtains the nodal status

information, processes it according to some defined algorithm, and then

issues commands to the network and interface processors. The switch

instructs as to which packets to transmit and when the transmission is

to take place.

NETWORK
AND

INTERFACE
PROCESSORS

ALGORITHM
FORMAT

NODAL
STATUS
STORE

ALGORITHM
SWITCHING

ALGORITHM
SORT

Figure 6.3 Switch Operation

The switching process consists of four parts. The sorting

algorithm obtains the status information and sorts it into a form

convenient for later processing. The data is subsequently stored

together with data from previous intervals in the 1 status store1.

- 138 -

The switching algorithm processes this data so as to coordinate the

activities of 'he NCP's and TCP's. It is noted that the inputs to the

node are ra._ , in the sense that message lengths and interarrival

times are stochastic quantities. Finally, the format algorithm

translates the switch algorithm's results into a form surtable for

output to the nodal processors. This sequence of operations is

repeated at regular intervals, providing the node with some form of

adaptability to varying traffic conditions.

The entire algorithm must be executable within a certain time so

that status information does not become so outdated that incorrect

decisions are made. In addition, it must be executable by a unit with

limited processing capability. The algorithm serves two well-defined

functions. It must multiplex the data bus between TCP and NCP modules,

and it must exercise control over data flow within the node.

6.5 Nodal Timing

The basic unit of time chosen for nodal operation is the 'cycle'.

A cycle is defined to be the time required to transmit a maximum length

packet over a 64KBPS channel. The network processors deal with such

channels and ideally are required to transmit at the rate of one packet

per cycle. In practice this rate can never be attained due to the

queueing delays and acknowledgement requirements of the NCP operation.

/

- 139 -

The switching processor samples the nodal states approximately

once per cycle (implying that the algorithm must be executable within

this time). It is believed that sampling every cycle is sufficient

for the switch to maintain 'control' over events, since during one

cycle no more than one packet may be transmitted from any one

neighbouring node to the node under consideration.

DATA BUS

N <s)
« +1

N <s!
PCM LINK

(s) = +1 packet received
N,', (s) = 0 no change
Nij ^ - -1 packet transmitted

Figure 6.4 NCP Buffering Status

Let the buffer status of an NCP be denoted by N(s) where (s) is

the address of the processor. Then during a single cycle N(s) may

/

140 -

indicate a -maximum change of

0 < AN (s). | 2|

as shown in Figure 6.4.

It is assumed that each packet occupies one buffer. The unknown

quantity, N^(s), over which the switch has no control since it has

no knowledge of when packets may need to be received, can take on

values of only

Ng (s) = O or N22(s) = +1

during a single cycle. Since N(s) is therefore reduced to its most

primitive form, the switch may observe each change of state in the

NCP's and produce appropriate commands.

A large number of packets may be generated by ICP's during a cycle

the arrival of a number of long messages at the ICP. These packets

do not, however, affect the response and throughput of the switching

section of the network.

It is noted that the cycling operation of nodes is asynchronous.

The data bus rate may now be estimated. The requirement of

the bussing structure is that each of the nodal processors be able to

transmit packets at the instantaneous rate of 64KBPS - the interface

- 141 -

buffering units ensure the speed translation process. The data bus,

used in a multiplexing fashion, then has a word rate of

RATE = |p x 64|/q K words/sec (6.1)

where d is the number of processors that transmit curing a single cycle,

q is the word length of the bus in bits.

1 << p < m

where m is the number of processors attached to the data bus.

6.6 The Cycle Diagram

A 1 cycle diagram' is produced by the switching processor to indicate

which NCP or ICP is to transmit. To prevent packet loss, each processor

is constrained to transmit and to receive only one packet per cycle.

Due to the high bus speed, two modules transmitting successively to the

same destination, would result in either the first packet being over

written, or the second to be lost. Figure 6.5 shows the transmission

process.

Two rules are to be adhered to if conflicts on the bus are to be

avoided:

(a) no processor transmits to more than one processor in a single cycle,

(b) no processor receives from more than one processor in a single cycle.

- 142 -

PROC
MEMORY

4l

DATA
BUS

V

IB 1

T R

PROC
MEMORY

/X
i/

IB 2

T R

MEMORY

IB 3

T R

MEMORY

IB 4

T R

Ak-

/x

A

IBi : INTERFACE BUFFER 1

T : TRANSMITTER

R : RECEIVER

Bus rate - (4 x 64)/16 Kwords/sec

- 16 Kwords/sec

For a packet size of 1000 bits: cycle time is

(1000 bits/64000 bits per second)

= 15,6 milliseconds

Every 15,6 milliseconds four 1000 bit packets can be transmitted

via the bus.

Figure 6.5 Multiplexing of Four Packets

- 143 -

Application of these rules leads to the cycle diagram, a graphic

description of the multiplexing process in a node. Figure 6.6 shows

the diagram, where the address of the transmitting processor is indicated

along the Y-axis, the receiving processor along the X-axis. For example,

X nl) indicates that processor P2 is to transmit packet nl to processor

P4 during cycle ot. The diagonal of the cycle diagram is not used.

PI P2 P3 P4 P5 PK

PI ——

P2 — ((#nl

P3 — — }:(#nK

Source -4X (#n3) --
Processors

P5 > (#n2 —

1
1
1
1
I

1
i
i
i
i

PK — .

Destination Processors

Figure 6.6 Cycle Diagram
The two rules given above are illustrated in Figure 6.7, where

diagrams for cases (a) and (b) indicate the two situations to be avoided

for efficient multiplexing.

- 144 -

Pm Pm+1 Pm+2 Pm Pm+1 Pm+2

— —

Pm
— Pm —— ̂(#nl)

Pr.+l (#nl — K(#n2) Pm+1 —

Source Pm+2 — — Pm+2 K (#n2
Processors

—
Cycle a —

.
— — ■

Case (a) DESTINATION PROCESSORS Case W)

Figure 6.7 Bus Conflicts

The switching algorithm must produce a cycle diagram, whereby the

intersection lines of any packet X(={j=ni) with coordinates (PR , P^), do

not intersect the coordinates (P̂ , P̂ .) of any other packet X(^Nj)

displayed in the diagram.

DESTINATION PROCESSORS
PI P2 P3 P4 P5

Source
Processors

PI

P2

P3

P4

P5

PK

PK

--- i
1
i

t
t
l

i

i
i
i

— —
1

- T -i
—— !r (^Hl --------- — — -

1
1
1

1
1

— — - xl#n
i

1
_ 1 _

1
-- — — - — - - — — -

i
1
1
l
i

1
1
1
1
1

i
i
i .

I
1
1

——

Intersection Line

Figure 6.8 Switch Algorithm Criterion

- 145 —

In order to preserve the integrity of the nodal status stored in

the switch, it was decided that the switch would poll the ICP's and

NCP's. If the nodal processors were allowed to update the switch

status table, problems of data integrity might arise. A processor

updating the table, whilst the switching processor is generating a cycle

diagram from the stored data, may result in the table giving an

incorrect vied of the nodal status. Svch an incorrect table is

difficult to rectify on-line, if the node is at the same time

executing communication tasks. Updating the table by the NCP's and

ICP's interrupting the switch, may result in the switch spending an

excessive amount of time generating the cycle diagram. The polling

technique has therefore been used.

A cycle is subdivided into three parts; the switch fetches the

status data, processes it, and sends commands to the ICP's and NCP's.

It is possible to generalize so that a number of cycle diagrams are

produced utilizing only a single fetch and output operation (Figure 6.9).

A multiple cycle operation is termed a 'period'. Implementation aspects

might dictate that fewer fetch and output operations be used so as not

to cause an excessive number of interrupts in ICP and NCP functioning.

EXECUTE DATA
< >

FETCH ' OUTPUT
Cl C2 C3 Ci| DATA

Period m-1 Period m

COMMANDS |

Period m+1
Cj ; Cycle Diagram Generation

Figure 6.9 Cycle Operation

- 146 -

It is noted that packets are, in general, of variable length,

although a maximum size is specified; also the execution period for

the switching algorithm is dependent on the amount of data to be

processed. The cycle diagram method is intended to establish upper-

bound s for nodal resource service rates in order that implementation

figures be determined for data bus rates, processor throughput and

response, etc.

6.7 Description of the Sort Algorithm

This section discusses the method used to sort the polled processor

data into a form suitable for processing by the switching algorithm.

6.7.1 Classification of the Status Data

The information content may be divided into packet description and

network processor status groups. The latter consists of a tabulation

of the number of unoccupied buffers in each of the NCP's, and includes

a partition flag (indicating whether the NCP of a neighbouring node has

become congested or not). These parameters are obtained every poll

period. An example of a partition parameter:

|NCPi| |PARTITION j| |FLAG|

The partition function, j, for network processor, i, is allocated

a particular address in store, the contents of which indicate whether

the partition of a particular NCP is occupied or not.

- 147 -

The packet group has the following format:

• PACKET IDENTIFIER

SOURCE ADDRESS

DESTINATION ADDRESS

TYPE

The packet identifier is a name associated with a particular packet in

a particular processor, as allocated by the ICP or NCP. The source

address corresponds to that of a module in the node. Packet

identifications need thus be unique only for a particular ICP or NCP.

The destination address corresponds to the logical process number of

a source-destination host logical link. For example:

IDENTIFIER i

ICP] LOG LINK n

TYPE K

The switch will cause packet i to be transmitted via the data bus from

ICPj to NCPq. It is assumed that NCPq controls the channel over which

the packet must be sent to arrive at its destination node. The above

is done by the switch making use of its address table. Identifiers

may be implemented by modulo-n sequences, where n is the maximum

number of packets that can be processed by a module. The addresses

and packet types may be described by simple n-bit codes.

The above addressing method is used by the switch to control data

bus multiplexing. The packet type and the status information is used

by the switch for flow control. Packets may be differentiated

according to a number of different criteria, discussion here being

restricted to the types implemented in the simulation.

- 148 -

The types used are:

(a) network, control packet

(b) data, packet: (i) single packet

(ii) multipacket

(iii) multisegment

These types correspond to the packet groupings for the memory reservation

algorithm presented in Chapter 4.

The above types serve mainly in an auxiliary manner, e.g., that

control packets are given greater priority than data messages. An

additional packet classification, as used by the local flow control

method, has been implemented. These are:

(a) ICP - ICP

(b) ICP - NCP

(c) NCP - NCP

(d) NCP - ICP

Case (b) corresponds to all packets requiring transmission via the data
bus from an ICP to an NCP, i.e., these packets are in the process of

entering the network. Case (c) corresponds to packets in transit,

case (d) for packets leaving the network. Case (a) is included, as

the source and destination hosts may be connected to the same node.

These types are stored in an associative manner with the packet

identifier? they are determined during the execution phase of the

sorting algorithm.

- 149 -

6.7.2 Sort Algorithm

To facilitate the handling of packet descriptor data, an elementary

queueing structure has been implemented using pointers. The structure

for the simulation of each node is shown in Figure 6.10.

As indicated in Chapter 2, packets are assigned priorities that

increase with time. The switching algorithm attempts to transmit the

higher priority packets before those of lower priority. Array Q is

used to implement and maintain these priorities. Array QLIST maintains

the additional information concerning each packet for transmission needs.

The packets in Q are arranged in order of priority.

PRIORITY |Q(i)| > PRIORITY |g(j)|

where i < j i = 1 QUS
j =]....... QUS

The maximum number of locations available in the array for status

storage is defined as QUS. Packets belonging to different groups are

shifted in the Q array according to the size of the priority increment

allocated to each group in each cycle interval. Rather than shifting

all the data describing each packet, only the priority data in the queue

array is dynamic. Status data for each packet is stored in the first free

location in QLIST. Pointers are used to link the data in QLIST to that

in Q, a bidirectional link is necessary.

The source and destination addresses in QLIST refer to the module

addresses in the node. Two types of modules are distinguished: ICP's

and NCP's. The partition number refers to the partition of the

- 150 -

ARRAY QLIST

contents

SOURCE PROCESSOR ADDRESS
PROCESSOR TYPE

DESTINATION PROCESSOR ADDRESS
PROCESSOR TYPE

PACKET IDENTIFIER

PETITION NUMBER

WEIGHTING FACTOR

POINTER VALUE TO Q

*addresses of
network
processors

i.

ARRAY Q

contents

POINTER VALUE TO QLIST

PRIORITY VALUE

ARRAY PARTNP
contents: addresses* + flag settings

ARRAY STO

contents: addresses* + storage status

Figure 6.10 Nodal Status Table

For each processor in node do:

If NCP: store buffer values in STO
set partition flags

LABEL QL Any packets to be transmitted?
in processor =#: n

if EL

Search for free location in QLIST

-- -- vy
Determination of destination module address,
based on input data.
If number of channels between node and next node > 2,
choose channel with greatest number of empty buffers,
if eoual amount of free blocks, choose first channel
on route list

\y
Write: processor addresses

packet identifier
partition number

in QLIST locati
Signal ICP/NCP write opera

on
tion completed

■^EXIT

- 152 -

\/

Determine packet group:
ICP-ICP/ICP-NCP/NCP-NCP/NCP-ICP and allocate
appropriate weighting factor, store factor in QLIST

Parse Q(i) array from i = 1 to i = Qtt until
PRIORITY |Packet processed) > PRIORITY |Q/i]

location j in Q

<C

insert pointers in Q and QLIST
Insert priority of packet in location j of Q:

(priority initial E weighting factor)

\/
GO BACK TO LABEL QL

NB: Locations of Q/QLIST initialized to zero

Figure 6.11 Sort Algorithm

- 153 -

destination NCP to which the packet is axlocaced, as discussed in

Chapter 5. The weighting factor is the increment unit assigned to

each packet, as determined by its type. The priority value in 0 is

incremented in each cycle by an amount equal to the weighting factor

stored in QLIST.

An outline of the SORT algorithm is given in Figure 6.11, the

simulation code for which appears in Appendix B and is executed every

poll period. The algorithm shown is very simple.

If an array overflow occurs during simulation, the simulation is

terminated and an appropriate error message printed. Concerning

possible action for nodal implementation, the SORT algorithm is

terminated and no further processors are polled. The SWITCH and

FORMAT algorithms proceed as normal. When packets are transmitted via

the bus, their QLIST descriptions are deleted. Locations will, in

general, be available when polling is initiated again on the following

cycle, either starting from the first processor on the polling list,

or from the processor for which storage overflow occurred.

6.8 Description of the Switch Algow.r.hm

The function of the switching algorithm is to generate the cycle

diagram from the data stored in arrays QLIST and Q. This section

discusses the working of the algorithm.

- 154 -

6.8.1 Notation

In order that the cycle diagram may be produced each cycle, the

switch requires a temporary workspace to store data whilst processing

the contents of the QLIST and Q arrays. This space is denoted by

SWITCH |I,j|, where

I = maximum number of NCP1s plus ICP's in node.

The array description is shown in Figure 6.12. The contents of

array SWITCH are in fact equivalent to the X and Y axes of the cycle

diagram. The addresses (source and destination) refer to those of the

processors in the node. The contents of this array state that the

packet give, "y the identifier will be transferred from the processor

identified by the source address to that of the processor identified by the.

destination address, in the following period.

ARRAY SWITCH (I,J)

contents

i A maximum number of locations

i—1II*3 SOURCE PROCESSOR ADDRESS

J = 2 PROCESSOR TYPE (ICP,NCP)

J = 3 DESTINATION PROCESSOR ADDRESS

J = 4 PROCESSOR TYPE (ICP,NCP)

J = 5 PACKET IDENTIFIER

Figure 6.12 Switch Workspace

- 155 -

It is necessary to clarify some of the terminology used. The

term c|XXX| denotes 'contents of array XXX'. Since this algorithm is

based on the ordering of the Q array contents, the QLIST array must be

referenced by using the pointer in Q, this is indicated by

c|QLIST(Q (j):pointer) yyy |

where yyy is the descriptor of the contents in QLIST to be processed,

and j is the subscript in Q for the queue position of the packet

identified by the pointer to QLIST. Queueing is denoted by

Q(j,i) ---- »• Q (j)

where j indicates the queue position, i = 1 the pointer value, or

i = 2 the priority value.

6.3.2 Switch Algorithm

Once the polling phase has been completed, the switch is ready to

generate a cycle diagram. Initially it is determined whether there are

are in fact any packets to be transmitted; if none, the execution

terminates (EXIT) and the switch waits for a one period duration before

polling. If packets are to be transmitted the contents of the workspace

SWITCH are initialized to zero, the queue position indicator j of Q (j)

is set to on™, and the counter QCOUNTER is set to zero.

The execution then enters the main loop, terminated by 1 BRANCH TO

LBL A*. One of the loop exit conditions occurs when no more data

requires to be processed. The algorithm is shown in Figure 6.13.

156

Auy packets in Q "r processing?

YES

Initialize . jrkspace of SWITCH to zero
itialize J counter to 1

Initialize Q counter to 0

START OF
MAIN LOOP

LBL Any packets in Q for processing?
NO

\L/
DO for M = 1 to M = NOI
where M is subscript of array SWITCH
and NOI is total number of processors in node:
if c | SWITCH (source proc address)| = empty

BRANCH to LBL B
if c | gLIST(g(j)pointer): source proc address

and type | E c | SWITCH (source proc address and type)|
BRANCH to LBL D

if c | QLIST(Q(j)pointer): destination proc address
and type| 5 c [SWITCH (destination proc address and type)

BRANCH to LBL D

END

LBL B

if c @LIST(Q(j)pointer): destination proc type|=;ICP

BRANCH TO LBL C

Oj EXIT

7̂ EXIT

E

N/

157 -

-ML.
CONDITIONAL
if c | QLIST(Q(j)pointer): partition | =

partition fxag set: PARTN
BRANCH to LBL $

if c | STO | QLIST(Q(j)pointer: destination
proc address, type NCR | | « 1

BRANCH to LBL D

DECREMENT c | STO |QLIST(Q(j)pointer): destination
proc address, type NCR I

LBL C

Insert e | QLIST(Q(j)pointer) | into SWITCH for M

for source processor address and type destination
processor address and type packet identifier

Delete c | QLlST(Q(j)pointer,' | inserted.
Delete c |Q(j) | by shifting all

c |Q(i) | E c | Q(i+1) I
c | Q(QUS) | « o

for all i = j to i = QUS-1

FV

- 158 -

_4l

Increment Q counter
Decrement J counter: all contents for 1

i = QUS-1 shifted one location
j to

PKMOX: t-jvXIMUM number of packets allowed
transmitted in one cycle
PKMUX < NOI
If Q counter = PMKUX

■HTion "RYTT

EXIT

LBL D
V

Increment J counter
If J counter > QUS

then EXIT

EXIT

BRANCH to LBL A

EXIT

0 then STOPIf Q counter = <
Set all c I SWITCH 0 to

-1SWITCH

TO FORMAT ALGORITHM

Figure 6.13(a) Switching Algorithm

- 159 -

The following holds for any packet in position j of Q. The first

phase is concerned with satisfying the cycle diagram criteria: the

source processor address for the packet in position j of Q, as given

by QLIST, may not be the same as that of any of the source processor

addresses currently stored in SWITCH. The same argument holds for

destination processor addresses. If an empty location is found in

SWITCH, that location is reserved until further conditions can be

satisfied. In the event of these being satisfied the packet is

allocated the location. Packets of higher priority will therefore be

assured of a better chance of transmission success than those of lower

priority. More important, since priorities are incremented with time,

no packet can be delayed indefinitely. Finally, this subloop can never

overflow since NOI is equivalent to the total number of ICP's and NCP's

in the node.

The conditions mentioned above only apply to NCP1s. So that

congestion in the switching section of the network will not occur,

packets are always transferred to ICP's irrespective of whether storage

is available in the ICP. Temporary storage of such a blocked packet

occurs in the buffer interface unit, enabling the ICP to issue a negative

acknowledgement to the source ICP, if necessary. The conditions for the

NCP to be met are:

(a) the relevant partition flag must not be set,

(b) buffering must be available in the NCP to accept the packet.

If the conditions are not able to be satisfied, the SWITCH locations

— 160 -

are relinquished, and it is attempted to transmit the packet in the

next position in array Q. Otherwise the variable indicating store

contents of the destination NCP concerned is decremented.

The data describing identifier, source, and destination processor

addresses for a packet is inserted into the SWITCH locations, the

corresponding QLIST contents are deleted, and the queue in array Q is

shifted up one position. The J counter for queue position must be

decremented since all data from the j 'th position has been shifted

once. At the end of the main loop the J counter is incremented, so

that the next packet in order of priority can be processed, irrespective

of whether the queue from position j has been shifted or not. If the

j cou"-1- - exceeds QVS, execution exits since end-of-queue has been

reached. The QCOUNTER is subsequently incremented to indicate the

total number of packets tr be transmitted in the cycle, thus far.

The final exit condition occurs when QCOUNTER is compared with

PKMUX, where PKMUX is a constant denoting the maximum number of packets

allowed to be transmitted over the data bus in one cycle. PKMUX is

in general dictated by bus bandwidth considerations.

Once the exit label is reached execution ceases if QCOUNTER is

zero, the switch reverting to the polling stage some time later. Such

an exit may arise if NCP1s cannot meet the above conditions for

accepting packets. All unused SWITCH locations are set to (-1) tJ

- 161 -

Do for j = 1 vo i - „,VS

If c | Q(j) | empty chen EXIT

C I Q (j) I = C I Q(j) I + c I QLIST(Q(j)pointer):
weighting factor |

Set M to j

Set N to j

LBL A Decrement M

if M = O BRANCH to LBL B

if c | Q(N) | < c |Q(M) | BRANCH to LBL B

EXCHANGE c ! g(N) | with c |Q(M) |

Adjust pointers in QLIST to new Q(N), Q(M)
locations

Decrement N

BRANCH to LBL A

LBL B CONTINUE DO L^OP

END

Figure 6.13(b) Priority Incrementation

distinguish between valid and invalid processor addresses. Finally,

the switch algorithm may be executed several times in succession,

generating a cycle diagram for every loop, if more than one cycle per

period is required.

Figure 6.13(b) shows the manner of incrementing priorities; this

code is not included in the main loop. It is executed every period.

The priority of a packet is incremented by the weighting factor assigned

in QLIST; the packet may jump ahead of other packets in the queue if

its priority becomes greater than that of its neighbours.

6.9 Description of the Format Algorithm

Once the cycle diagram has been generated it is necessary for the

switch to transfer the diagram results to the individual interface and

network processors in the form of commands. These commands dictate

when and which packet each processor is to transmit via the data bus.

It is remembered that control bus operations occur asynchronously

to those on the data bus. This asynchronism allots packet transfers

over the data bus to occur virtually continuously. Although previously

events were described in terms of cycle terms, implementation-wise it

is not very practicable; packets have varying lengths and the algorithm

duration varies according to the amount of data uo be processed.

Synchronization flags have been used to control the transfer of commands

from the switch to the ICP's and NCP's in a time-independent manner.

- 163 -

The format of the command is shown in Figure 6.14. It consists

of four parts or fields. The packet to be transmitted is that defined

by the packet identifier, and it must be sent to the processor listed

in the field 'DEST PROC ir.

SEMPRC (fa)

PROG a

ONE PERIOD
(i)

FIELD
(ii) (iii) (iv)

PROC a 1 PROC a PROC b
4

PROC c

Packet
Identifier 2 ̂ Packet

Identifier / Packet
Identifier

/
/

Packet
Identifier

DE3T
PROC j 3

/
DEST
PROC k / DEST

PROC 1
DEST
PROC m

PROC b
/

4 PROC c ' PROC d
/

(- 200)

RECEIVE
CONTROL
FROM -'

HAND OVER
CONTROL
TO -

PROC b PROC c PROC d

Figure 6.14 Formats Stored in Processors

6.9.1 Data Bus Access Control

The bus access technique used is essentially a form of hub polling,

wherein control of the bus is passed from one module to another without

recourse to a bus arbitration unit or a supervisor. The difference is

that no polling of neighbouring modules occurs, but control is handed

over directly to the processor specified in the fourth field of the

command (see Figure 6.14). All transmitting processors are chained,

bus access occurring only when needed. The transmitter contacts the

- 164 - q

destination processor, sends its packet, and after an acknowledgement

is received, hands bus control over to the next processor in the list.

The first field of the command is the module address from which

a processor is to receive bus control, the fourth field dictates to

which module it is no hand over control. The switching algorithm tries

to ensure, where possible, that the processor to which the packet is to

be sent, and the processor to which bus control is to be handed, coincide.

This will reduce overhead in bus transfers.

It is necessary that the switch maintains some form of bus time-out.

A faulty NCP or ICP in the chain may result in deadlock if bus control

is not passed on to the next module. A diagnostic routine should then

be initiated by the switch, to isolate the faulty module, and to

re-initiate bus transfers. This level has not, however, been dealt

with in the simulation.

The first field of the first processor in the chain to transmit

will coincide with the processor's own address. This processor

receives a signal from the switch to start the transmission procedure.

Used is the signal SEMPRC (#a) where#a is the processor address.

The last processor in the chain contains the code —200 (as used in the

simulation) to signify that control is to be passed back to the switch.

6.9.2 Synchronization of Data and Switch Events

The synchronization of command transfers is shown in Figure 6.15.

- 165 -
SWITCH ALG
EXECUTION +
PROCESSOR LOADING

BUSSEM = 1

QUEUE TRANSFER TO v
EXECUTION BUFFER

PACKET TRANSFER

\—
SEMPH = 3

= 3
-

SEMPRC (n) 9&MPH =

CASE (a)

4, WAIT FOR BUSSEM = 1

QUEUE TRANSFER TO
EXECUTION BUFFER

3USSEM

\/

PACKET TRANSFER

QUEUE TRANSFER TO
E)ECUTION BUFFER

X/

PACKET TRANSFER

BUSSEM = I

<T

CASE (b)
BUSSEM = 1

BUSSEM = :
SEMPH = 3

<r
SEMPRC (n)

xk
NCP OR ICP

w

5x3
SEMPH = 3 SEI

/ .. . SEMPRC (n) %
MPH = 1

Period n TIME

L.

Period n+1

3FMPH = 1

4/WAIT FOR
SEMPH = 3

<1/
SWITCHING PROCESSOR

Figure 6.15 Packet and Command Transfer Synchronization

- 166 -

Synchronization is necessary to prevent the switching processor from

overwriting a command that has been stored in the ICP or NCP, but not

yet been executed.

Taking into account variable packet lengths, switch algorithm

execution times, the term period may be redefined as the time for the
initiation, execution, and termination of a chain of bus transfers,' this

definition is basically equivalent to the previously given one.

Basic nodal functioning may be considered to consist of two parts:

i) the sampling, processing and command output to the I-P's and

NCP1s by the switch,

ii) the transfer of packets over the data bus as controlled by the

commands in each NCP and ICP.

These two functions may occur concurrently, i.e., whilst the switch is
processing status data during period m for use in period m + 1, data
bus transfers take place according to the commands produced by the

switch in the previous period m - 1.

Buffers for storing commands consist of queueing and execution

sections. The switch loads the command into the queueing buffer, it

being subsequently transferred to the execution buffer by the ICP/NCP

after the packet of the previous command has been sent. The command

in the execution buffer controls the ICP/NCP packet transfer. Since

the time of bus access by the ICP/NCP, and the time of command loading

by the switch, cannot be determined in advance, double buffering serves

as a simple means of preventing overwriting of a command that has not

yet been executed. In practice, simple interchange of a pair of

pointers to indicate which is currency the execution and which the

queueing buffer, is needed.

Synchronization is achieved as follows. The last processor in

the chain must wait for a signal 'BUSSEM^l1 from the switch, indicating

that the algorithm execution and command loading has been terminated.

The processor transfers the contents of the queue buffer to that of the

execution buffer. This transfer phase will have oeen already

completed in all other processors. Once accomplished, the signal

'SEMPH=3' is sent from processor to switch. Note that the above

signal is only sent once the processor has. transmitted its packet.

The switch responds by issuing the signal SEMPRC (̂-m) to processor m

initiating the next chain of bus transfers. While data bus transfers

are proceeding, the switch samples and processes nodal status data.

This operation is repeated successively.

If no packets are to be transmitted, no commands are senu, the

sampling occurring every period as before, however.

Two situations, (a) and (b), in Figure 6.15 are discussed. If

the data bus transfer period cerminatcs before the switch has completed

processing, as in (a), the transfer phase is forced to wait for the

switch, i.e., the last processor in the chain must wait for the BUSSEM

signal. In case (b), the BUSSEM signal has already been sent to the

last processor before the transfer phase has been completed. The last

- 168 -

processor to transmit in the period will issue the SEMPH signal once

it has sent its packet and transferred the contents of the queue buffer

to the execution store. Thus, irrespective of which phase terminates

first, both are synchronized and proceed as soon as the switch, after

receiving SEMPH, has sent the SEMPRC (#n) signal to the first processor

allowed bus access for the subsequent period.

6.9.3 Format Algorithm

The translation of switch algorithm results to command format is

examined. Figure 6.16 illustrates the translation required between

the SWITCH ana PTICP/PTNCP array. The latter arrays are used in t

simulation to store the commands destined for NCP s and ICP s. The

packet identifier and destination processor address locations of array

SWITCH are translated directly to fields 2 and 3 in PTICP/PTNCP. The

source processor address in SWITCH is the address to which the command

is transmitted. The format algorithm must determine the contents of

fields 1 and 4 in arrays PTICP/PTNCP. Recall that field 1 specifies

the processor from which a reference processor receives bus control,

field 4 specifies which processor bus control is to be handed to.

The first part of the algorithm concerns the alignment of source

and destination processor addresses (Figure 6.17). For such to occur,

the destination processor address contents in array SWITCH (I, J) at

location I = i, must be identical to the source processor address

location contents of SWITCH at I = i + 1.

— 169 -

LOCATION i IN WORK
SPACE OF SWITCH ARRAY

SOURCE PROC m TYPE

OCST PROC n TYPE

PACKET IDENTIFIER

PTICP/PTNCP ARRAY

COMMAND ADDRESS OF
TRANSMITTER PROC m

I
LOCATION j IN ARRAY
PT2ICP OR PT2NCP
STORING COMMANDS

I

PROC ADDRESS:
RECEIVE BUS CONTROL
FROM: p___________

PACKET IDENTIFIER

PROC ADDESS:
TRANSMIT PACKET TO: n

PASS BUS CONTROL
TO: q

PROC ADDRESS

Field 1

Field 2

Field 3

Field 4

Figure 6.16 Translation of Switch Contents to Commands

The algorithm shown in Figure 6.18 aligns the two addresses where

possible. For each indjx i in SWITCH (I,J), the contents of all other

■locations from I = i + 1 to NOI are examined, where NOI is the number

of TCP's plus NCP's in the node. When it is found that a. pair of

source and destination addresses are identical, for example at I = j,

- 170 -

ARRAY SWITCH (m,5)
1 SOURCE PROC SOURCE PROC SOURCE PROC SOURCE PROC

2 ADDRESS i ADDRESS j
7

ADDRESS k
7

ADDRESS n
7

3 DEST PROC / DEST PROC DEST PROC DEST PROC

4 ADDRESS j ADDRESS k ADDRESS 1 ADDRESS p

5 PACKET ID PACKET ID PACKET ID PACKET ID

m=l m=2 m=3 m=4

Figure 6.17 Alignment of Source and Destination
Processor Addresses in Workspace Switch

NOI : Number of workspace locations in SWITCH(I,J) =
total number of ICP1s and NCP1s in node

DO for JV = 1 to JV = (NOI - 1):
if c | SWITCH(JV+1,SPA) | = -1 EXIT LOOP
KW = JV+1
DO for JW = KW to JW = NOI:
if C | SWITCH(JV,SPA) | = c | SWITCH(JW,DPA) |

BRANCH TO LBL A
END
BRANCH TO LBL B

LBL A interchange c | SWITCH(JV+1, j = 1 to 5) | with
c | SWITCH(JW, j = 1 to 5) |

LBL B CONTINUE

END

EXIT

Figure 6.18 Alignment Algorithm

SPA: SOURCE PROC ADDRESS
DPA: DESTINATION PROC ADDRESS

- 171 -

the contents of the SWITCH (I,J) at I = i + 1 are interchanged with

those at I = j.

The second part of the algorithm formats the commands and is

shown in Figure 6.19.

For each non-empty location I = 1 to NOI in array SWITCH (I,J)

a command is formatted to be sent to the source processor identified

by address J = 1 and J - 2. The loop is exited when all locations

in SWITCH have been processed - the contents set to -1 indicate no

packet transmission.

The variable SEMPRC is set to the address of the processor

initiating bus transfers in the first cycle at the time the first

command is generated.

The contents of field 1 of the command are set equal to the address

of the processor itself - for the first processor in the chain to

transmit. The variable VARIABLE 1 is set to the contents of the source

processor address location in array SWITCH. It is used to contain the

source address of the previous command for use in field 1 of the current
command generated. The contents of field 1 (1 receive bus control from -1
are thus able to be specified by noting which processor was the last to

be allowed bus access.

For simulation purposes, if the transmitter is an interface

- 172 -

Field 1

Field 2

Field 3

Field 4

PROC ADDR:
RECEIVE BUS CONTROL
FROM:

PACKET ID

PROC ADDR:
TRANSMIT PACKET TO:

PROC ADDR:
PASS BUS CONTROL
TO:

COMMAND for
transmitting processor

PTICPI ARRAYS USED TO
PTNCPJ STORE COMMANDS

IN SWITCH PROC

SPA: Source processor address

DPA: Destination processor address

NOCYC: Number of current cycle in period generated

NOI: Number of workspace locations in array SWITCH

SEMPRC: Contents denote address of first processor in chain to transmit

DO for M = 1 to M = NOI:

if c | SWITCH {M,SPA)| = -1 EXIT LOOP

counter = counter + 1 (initialized at sorting algorithm stage)

if counter = 1 and NOCYC = 1

set c | SEMPRC | to c | SWITCH (M,SPA) |

set c | VARIABLEl j to c | SWITCH (M,SPA) |

if processor is ICP:

set c |PTICP (trm proc addr, field 1) 1 to c | VARIABLE 1 I
set c | PTICP (trm proc addr, field 2) | to c | SWITCH (M,PCK ADDR)
set c 1| PTICP (trm proc addr, field 3) | to c 1SWITCH (M, DPI!) 1

BRANCH to LBL A

P

sstssim

- 173 -

if processor is NCP:

set c | PTNCP (trra proc addr, field 1) | to c | VARIABLEl |

set c | PTNCP (trm proc addr, field 2) | to c | SWITCH (M,PCK ADDR)

set c | PTNCP (trm proc addr, field 3) | to c | SWITCH (M,DPA) j

LBL A if counter = 1 and NOCYC = 1

BRANCH TO LBL C

if counter = 1

set c | PTICP (VARIABLEl, field 4) | of previous cycle
to c | SWITCH (M,SPA) | if ICP

set c | PTNCP (VARIABLEl, field 4) | of previous cycle
to c | SWITCH (M,SPA) | if NCP

BRANCH TO LBL B

set c | PTICP (VARIABLEl, field 4) | present cycle
to c | SWITCH (M,SPA) | if ICP

set c | PTNCP (VARIABLEl, field 4) | present cycle
to c I SWITCH (M,SPA) | if NCP

LBL B C | VARIABLEl | = c | SWITCH (M,SPA) |

LBL C

END

if not FINAL CYCLE IN PERIOD RESTART SWITCH AND
FORMAL ALGORITHMS AGAIN

END-OF-PERICD: if ICP set c | trm proc addr, field 4) | = -200

if NCP set c | trm proc addr, field 4) | = -200

Figure 6.19 Format Algorithm

processor the command is stored in array PTICP, if a network processor

in array PTNCP.

The address specified in the fourth field of the command ('pass

hus control to —1) can only he known once the command for the next

processor has been generated. This is achieved by setting the contents

of field 4 for array PTICP/PTNCP as indexed by the content of VARIABLl,

to the contents of the source processor address location in array

SWITCH currently being processed. The arrays PTICP/PTNCP, indexed by

VARIABLEl, will refer to the command most recently generated,

excluding the current.

The variable VARTABLE1 containing the source address of the

previously generated command, serves two purposes: its content is

used to set field 1 of the current command; at the same time it is

used as an index specifying where the previously generated command

may be found in arrays PTICP/PTNCP, i.e., the command to be sent to

the processor that is to hand over bus control to the processor

• currently of interest.

6.10 Preview

A functional outline of the communications processor has been

given in this chapter. A technique has been evolved whereby a switching

processor supervises the operation of the other modules in the node.

The three primary functions and their algorithmic implementation, sort,

switch and format, of the switching processor were dealt with.

- 175 -

It was shown that this technique provides a means for resolving bus

access problems and for controlling data flow within the node, and

between neighbouring nodes and the node itself.

- 176 -

CHAPTER 7

NETWORK PERFORMANCE

7.1 Introduction

Nodal operation, by virtue of its architectural features and

protocols, must be tested as part of a network. No centralized

facility exists in the network for monitoring and controlling data

transmission. The implementation of the protocols and flow control

techniques discussed in the preceding chapters is an attempt to

enable a number of connected nodes to function as a syucem for packet

transmission. Two network topologies have therefore been simulated

to test the above idea and to determine the performance and

characteristics of the proposed communication unit.

7.2 Discussion on the Topologies Simulated

The two network topologies simulated are illustrated in

Figure 7.1, and will be referred to as the 'network simulation'

and the 'nodal simulation'. The network simulation has been used

to observe the characteristics of a decentralized system in which

no master node exists to direct data flow in the network. The

nodal simulation focusses attention on the behaviour of a nodal

packet switch. The remaining nodes used in the nodal simulation

are necessary to ensure implementation of complete protocols and

flow control measures.

It is not particularly efficient to simulate a large network

consisting of many nodes. Very long simulation runs would be

- 177 -

CHC3 CKC7
NODE 1 NODE 2

:HC2
CHC8

CHC4
CHC.10'

NODE 3 NODE 4
CHC5 CHC11

CHC6 CHC12

NODE 5CHC13 EC 14

CHC: CHANNEL CONTROLLER

Figure 7.1(a) Network Simulation

NODE 1 TEST NODE

10CHC

CHC 11,12. CBC1 CHCi;,16 CHC1 CHI 20

NODE 5NODE 4 NODE 6NODE 3NODE 2

Figure 7.1(b) Nodal Simulation

- 178 -

needed before the model queueing structures arrived at a state of

equilibria. The model shown in Figure 7.1(a) may be considered

to form a subset of such a large network, forming an approximation

to a hierarchically-based network consisting of nodal clusters.

It is noted that the network simulation is an autonomous unit, with

its own set of logical links.

7.2.1 Network Parameters

The network simulation consists of five nodes connected as in

Figure 7.1(a). Each node has a connectivity of at least two.

Fourteen channels are used to link the nodes; two network processors,

one on either side of a channel, control intemodal packet transfers.
The capacity of the channels is 64 000 bits per second. Eight

interface processors per node simulate the connection of hosts

logical links.

The nodal simulation (Figure 7.1(b)) consists of a total of

six nodes, twenty network and forty interface processors. The test

node contains fifteen interface and ten network processors^ each

of the remaining five nodes, five interface and two network processors.

A double link connects each of the five nodes to the test node.

The channel capacity between two nodes is 128 000 bits per second.

Each channel has its own pair of network processors controlling

the link.

The route map for packets is fixed. In the nodal simulation

a choice exists as to which of the two channels connecting node and

- 179 -

test node is to be used. The choice is decided by allocating the

packet to the network processor with the shortest queue. If queues

in both channel processors are equally long, the first on the route

list transmits the packet.

• Fifty logical links and fifty virtual circuits have been used

for both simulation models.

Concerning the network simulation, each of the five nodes acts

as source to ten logical links. Two of the ten links are sourced

and sunk at the same node (also referred to as incest traffic).

The remaining eight links are sunk in each of different nodes, two

per node. This provides a reasonably equalized traffic distribution

in terms of the number of links handled per node, but will cause

differences in line and bus utilization as the topology is asymmetric.

Concerning the nodal simulation, the test node acts as source

to fifteen links, three links terminating at each of the five

remaining nodes. Nodes 2, 3 and 4 source five links each, one link

sunk in each of the remaining five nodes; nodes 5 and 6 source ten
links each, two links terminated at each of five remaining nodes.

The traffic distribution is itself asymmetric.

For each logical link there exists a virtual circuit with

identical source and sink node (remember that the virtual circuits

are used to increase the traffic intensities in the network).

- 180 -

The maximum number of packets able to be multiplexed per cycle

in each node of the network simulation is as follows:

node 1 and node 3 : eleven packets per cycle,

node 2 and node 5 : ten packets per cycle,

node 4 : twelve packets per cycle.

These figures correspond to those given for the number of interface

and network processors in each node. Maximum througnput rates in

each node can thus be attained. Similarly, for the nodal

simulation:

node 1 (test node) : vwenty-five packets per cycle,

nodes 2 - 6 : seven packets per cycle.

The following holds for both simulation models. The buffer block

sizes used in the processors are equal to the maximum packet lengths

and are 500 bits. Eight buffer blocks are allocated to logical

links at the start of a message transmission, the maximum segment

size being 4 000 bits. Each network processor is provided with

sixteen buffer blocks per transmitter and per receiver section,

plus two blocks per partition. Each .interface processor contains

enough buffers to ensure that no blocking at this level occurs -

parameters to be tested concern the performance of the switching

section of the network.

The message and packet lengths (for virtual circuits) and

their interarrival times follow the Poisson distribution. The mean

message length has been set at 400 bits. The message interarrival

times will vary depending on the level of traffic injected, as holds

- 181 -

for packet lengths and generation rate. The overhead on packers

has been set at 70 bits for internodal communication (added to the
packet length). The error rates on channels has been assumed to

5
follow a Poisson distribution, the mean error rate set at 10 bits

per error.

For the switch processor in each node, one cycle per period has

been used. This allows the switch to retain maximum control over

nodal operation, as status data is sampled must frequently.

The input parameter listings for the network and nodal

simulations are to be found in Appendices C and D respectively.

7.2.2 Assumptions made in the Simulation

The orimary assumption made is that the time spent in processing

data packets in the network and interfac - ts is negligible
compared to the time spent in queueing for resources.

The time taken for a packet to be transmitted across a channel

may take from twenty to one hundred milliseconds, depending on the

utilization of the link. The execution time of protocols by net
work processors, especially as many features may be implemented in

hardware, is negligible compared to the queueing times of which the

above figures are a reflection.

The processing of packets may take place concurrently in the

182 -

processors constituting the node. Whilst one packet is being

transmitted across the bus by one module, the others can process

packets until such time as they are allowed bus access. There is

thus considerable overlap between the module activities and the

packet transfers via the nodal bus. Again, it is assumed that

use of the bus resource constitutes the dominant time factor.

In fact the simulation results to follow will show that the

internodal transit times are dominant - of the order of tens of

milliseconds.

7.2.3 Performance Indices Used in the Simulation

The performance indices used to characterize the behaviour of

the network are the packet delay, the network throughput, and the

bus and line utilization factors.

Three different delay variables have been made use of;

definitions follow:

the entry delay is defined to be the time taken for a packet

to enter an interface processor to the time it leaves the

processor, gaining entry to the network.

the transit delay is defined to be the time taken for a packet

to leave the interface processor, transit the network, and gain

entry to the destination interface unit,

the total delay is the sum of entry and transit delays.

- 183 -

Packet delay is the primary performance index used to define network

behaviour. It is noted that the time taken for a message to

traverse the line connecting host and network is not included;

these delays depend on the capacities of the lines employed.

The traffic intensity in the network is measured via the line

and nodal bus utilization factors. The utilization factor p is

defined as the product of the mean packet arrival rate to the

resource and the mean service time required. This quantity gives

the fraction of time that the server is busy. It may also be

defined as the ratio of the rate at which packets arrive at the

resource to the capacity of the resource to service the packets.

Unlike the measurement of mean packet delay, which may be

determined in a single simulation run, a mean value for packet

throughput can only be found by repeating a number of simulation

runs at different random number generator seeds for packet length

and interarrival time. Such a mean throughput value has been

found for certain simulation runs. A second figure, the 1 recorded
throughput1 gives the number of packets transmitted .̂or a single

simulation run only. It is used primarily to obtain an idea of

the total number of packets transmitted, averaged over the

simulated time period that the model was run.

- 184 -

7.3 Performance of the Network

7.3.1 Notational Details

In order to observe the response and throughput it is necessary

to control the rate of input of packets to the network. The logical

links generate messages at the rate of one every second. This rate

is kept constant for all simulations. Packet injection is done

primarily by use of virtual circuits. Input rates range from 1,0

to 16,7 packets per second per circuit. The input rates displayed

on the graphs are the total rates for fifty virtual circuits, thus

a total input rate of 500 packets per second implies fifty circuits

each transmitting at 10 packets per second.

It will be remembered that priority functions may be programmed

into the switching algorithm executed in each node. Throughout

most of the simulation tests to follow, tests will take place

considering the following two cases. The priorities are time-

dependent and are termed PRIORITY (ENTRY) and PRIORITY (TRANSIT).

The former holds for packets input to the switching section of the

network and for incest traffic, whilst the latter is valid for

packets in transit at a node, or leaving the switching section.

7.3.2 Simulation Run-Time

Tests were conducted on the network simulation to determine

the run time required for a five node topology model to reach

a state of equilibrium. The basic unit employed is the cycle.

Nodal bus rates were 640 KBPS, with a retransmission interval of

- 185 -

- milliseconds. Further details are contained in T a b l e s F.2

to E .12 of Appendix E .

ihe response has been plotted in Figures 7.2 and 7.3, through
put in Figures 7.4 and 7.5.

Consider the relation between the number of cycles and

simulated time. The amount of time simulated at inputs of 50,

525, 625, 750 and 835 packets per second after 16 000 cycles is
46,0, 5,0, 4,5, 3,6, and 3,5 seconds respectively (Table E.2).

The variation occurs since the simulation model is event driven.

With fewer events taking place per unit time (as in the lower

input levels), a longer time period may be simulated for a given
number of cycles.

The response curves indicate that, above a certain input level

no equilibrium state can be reached. The curves for input rates

up to 625 packets per second remain steady, varying by not more

than a few milliseconds. The delays at the levels of 750 and
835 packets per second show no sign of settling down. That no

steady state will be reached no matter,the length of the simulation,
may be inferred by considering the bus . utilization factors
(Tables E.3 to E.12). Consider the run with level 835 packets per

second. A perusal of the line and bus factors shows that whilst
the bus utilization remains relatively constant for each node, the

line utilization increases with each increment of 2 000 cycles.

186
"535
INPUT RATE
PACKETS/SECOND

NETWORK RESPONSE
80 DELAY
70-- 750

msecs
625

525
40

50

30
20- -

15146 7 8 9 10 11 1
(TIMES 1000) NUMBER OF O/CLES

80--

PRIORITY (ENTRY)70'- INPUT RATE
PACKETS/SECONDPRIORITY (TRANSIT)

60

ENTRY DELAY 835
40- -

msecs 75030.
625

20" 525
■0~ 5010'

5 7 8 9 10 11 12 13
(TIMES 1000) NUMBER OF CYCLES

70
INPUT RATE
PACKETS/SECOND60' TRANSIT DELAY

50 83
msecs

40-“ 750

30" 525
5020"

10

14135 7 8 9 10 11 12
(TIMES 1000) NUMBER OF CYCLES

Figure 7.2

- 187 -

70-

60"

50-

40-

30-

20-

835
NETWORK RESPONSE

750
INPUT RATE
PACKETS/SECOND

625

DELAY
msecs 50

- O -O- ~o~

70-

60-

50*

40-

30"

20-

10-

ENTRY DELAY
msecs

“Cr

5 6 7 8 9 10 11 12
(TIMES 1000) NUMBER OF CYCLES

13 14

s r
iSr

-O

- d -

INPUT RATE
PACKETS/SECOND

-~G-
835
750

-&-5T5-

-o-

tP-

-<s>-
-o-

15

-CP--
-t9— - _<?--

■zr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(TIMES 1000) NUMBER OF CYCLES

70"

60-

50-

40"

30-

20"

10-

INPUT RATE
PACKETS/SECOND
835T R A N S IT

DELAY
msecs

750

625
ZL.,.52,5

50
~sr

1*2 i i i t

-<9—

10 1
(TIMES 1000) NUMBER OF CYCLES

14 1'5

Figure 7.3

800

700

600

500

400

300 ■

200

100

- 188 -

NETWORK RECORDED THROUGHPUT

THROUGHPUT
PACKETS/SECOND 835

750
-O

625

525

PRIORITY (ENTRY) = 1
PRIORITY (TRANSIT) = 5

INPUT RATE
PACKETS/SECOND

50
~0--------------0-------------- o--------------a-------------—(£>—---------- o------------- -o------------ o —

6 7 8 9 10 11 12 13 14
(TIMES 1000) NUMBER OF CYCLES

THROUGHPUT
PACKETS/SECOND900

800

835700"
750

625500.-

525
400

300 INPUT RATE
PACKETS/SECOND

PRIORITY (ENTRY) =
PRIORITY (TRANSIT)

100- -

50

10 11 12
(TIMES 1000) NUMBER OF CYCLES

Figure 7.4

— 189 —

860

840

820

800

780

760

740 +

720

700

680

660

640

NETWORK THROUGHPUT

RECORDED THROUGHPUT
PACKETS/SECOND

PRIORITY (ENTRY) = 1
PRIORITY (TRANSIT = 5

INPUT RATE 835 PACKETS/SECOND

— f~
3 4 5
(TIMES 1000)

6 7 8 9 10 11 12
SIMULATION DURATION IN CYCLES

13 14 15

Figure 7.5

- 190 -

This implies that the amount of data transferred by each node remains

almost constant, but the channel activities continually increase.

This takes place due to the destination channel buffers having become

blocked, thereby increasing the packet retransmission rate. As

demonstrated in Chapter 5, a packet network cannot function properly

if line utilization factors tend to unity, due to the excessive

delays encountered by packets.

The above is illustrated again with the throughput curves.

The curve at input level 835 packets per second shows that the

number of packets transmitted by the network peaks, and then

decreases with time. At the lower levels the throughput remains

constant.

There thus exists a certain level of input traffic to a network

at which congestion takes place, resulting in decreased throughput

and longer response times for packets. Such takes place due to

certain of the network channels becoming congested.

The results produced indicate that simulations for the 'stable1

input levels (625 packets per second or less) need not be run for

16 000 cycles or longer. A run of 6 000 cycles is sufficient.

Finally, mention is made of an alternative technique often

used in modelling: the simulation is run until desired accuracies

- 191 -

in mean and variance values are attained. This method is

impractical for the models tested here, where mean and variances

tend to increase very rapidly when the network enters a congested

state. It was therefore necessary to resort to the method

described above,

7.3.3 Response and Throughput

The response and throughput for both network and nodal

simulations i s discussed. Again, bus rates were set at 640 KBPS,

with the retransmission interval at 40 milliseconds. Details of

the results are to be found in Tables E.13 to E.23, Appendix E.

Simulations have been repeated three times for a given traffic

input. The seeds of random number generators injecting packets

with variable length and interarrival times were different for each

of the three runs. These are termed Run One, Run Two, and Run Three,

they are shown in Figures 7.6 to 7.11. The repetition of runs

meant that a mean value for throughput could be found, and that

the results from a number of runs using different packet inputs

(following the same distribution function, however) could be

compared.

The mean response has been plotted for total entry and transit

delays, corresponding deviation values may be found in Appendix E.

- 192 -

NETWORK SIMULATION RUN ONE
DELAY
90 -f msecs

8 0 "

7o -

30

100 200 300 400 500 600 700 800 900 1000
TOTAL INPUT RATE PACKETS/SECOND

60--
PRI0R1TY (ENTRY) =
PRIORITY (TRANSIT)ENTRY DELAY

msecs / PRIORITY (ENTRY) =
PRIORITY (TRANSIT)40

30"

20

10

800 1000600
TOTAL INPUT RATE PACKETS/SECOND
400100 200

70-"
TRANSIT DELAY

msecs60

50

40

20
10

1000 PACKETS/SECOND800600400100 200
TOTAL INPUT RATE

Figure 7.6

/

193
NETWORK SIMULATION RUN TWO

80

msec
63

50-.

40

100 200 400 600 800
TOTAL INPUT RATE PACKETS/SECOND <?

1000

PRIORITY (ENTRY)
PRIORITY (TRANSIT) =S0--

/ PRIORITY (ENTRY) =
/ PRIORITY (TRANSIT)ENTRY DELAY

msecs40

30

20

10--

100 200 400 600 800 1000

TOTAL INPUT RATE PACKETS/SECOND

70
TRANSIT DELAY

msecs60

50

40 __

30

20

10
TOTAL INPUT RATE PACKETS/SECOND

100 200 400 800600 1000

Figure 7.7

/

194

NETWORK SIMULATION RUN THREE

70 -L
DELAY

60-- msecs

50 --

40

30

1000800400 600
TOTAL INPUT RATE r-ACKETS/ SECOND

100 200

PRIORITY (ENTRY) =
PRIORITY (TRANSIT)50

ENTRY DELAY
msecs40 4- /RR10RITY (ENTRY) =

PRIORITY (TRANSIT)
30

20 - -

10

1000800600400
TOTAL INPUT RATE PACKETS/SECOND

100 200

80--

70 " TRANSIT DELAY
msecs

60 --

50

40

30

20

10
TOTAL INPUT RATE PACKETS/SECOND

1000800600400100 200

Figure 7 .8

195

NODAL SIMULATION RUN ONE

100 "

80 1 msecs
60 --

40

20 - •

800 1000600400100 200
TOTAL INPUT RATE PACKETS/SECOND

PRIORITY (ENTRY) =
PRIORITY (TRANSIT)60

ENTRY DELAY
msecs

50

40
PRIORITY (ENTRY) =
PRIORITY (TRANSIT)30

20

10

1000800
PACKETS/

400 600
TOTAL INPUT RATE PACKETS/SECOND

100 200

90
TRANSIT DELAY

msecs80

70

60

50

40

30

1000400 600 800
TOTAL INPUT RATE PACKETS/SECOND

lOO 200

196

NODAL SIMULATION RUN TWO

lOO - - DELAY
msecs

60

40

20

loo 200 400 600
TOTAL INPUT RATE PACKETS/SECOND

800 1000

60
PRIORITY (ENTRY) = 1
PRIORITY (TRANSIT) =550

ENTRY DELAY
msecs40 PRIORITY (ENTRY) =

PRIORITY (TRANSIT)
30

20

10

100 200 400 600
TOTAL INPUT RATE PACKETS/SECOND

800 1000

80
TRANSIT DELAY

msecs70

60

50

40

30

>0 400 600 800
TOTAL INPUT RATE PACKETS/SECOND

1000

Figure 7.10

- 197 -

NODAL SIMULATION RUN THREE

DELAY120 msecs

100- '

80--

60

40

20

100 200 400 600 800
TOTAL INPUT RATE PACKETS/SECOND

1000

PRIORITY (ENTRY) = 1 Ii
PRIORITY (TRANSIT) = 5 I60 "*

ENTRY DELAY
msecs

Priority (entry) = 5
PRIORITY (TRANSIT) =40

30

20

10 ■■

200 400 600 800 li
TOTAL INPUT RATE PACKETS/SECOND

80 -■
TRANSIT DELAY

msecs70 "*

50

30

100 200 400 600 800
TOTAL INPUT RATE PACKETS/SECOND

1000

Figure 7.11

- 198 -

The curves plotted for the three runs do not differ significantly.

In all case ; curves are of the exponential form. The response

time as a function of input increases gradually until a critical

input level is reached (in the region of 500 packets per second for

both networks), thereafter the mean time required for packets to

traverse the network becomes extremely long.

The curve characteristic is summed up in Table 7.1

Network (msecs) Nodal (msecs) Input Levels in
Simulation Simulation Packets/sec

Total Delay Increment 12 20 100 to 500
100 to 500

Entry Delay Increment 8 9

Total Delay Increment 50 80
500 to 800

Entry Delay Increment 40 50

Table 7.1 Response Characteristic

The curves show that the main component of the delay is that

of transit. The time taken for a packet to traverse the network

takes longer than the time spent in waiting for - and being serviced

by an interface processor. This result only holds for the network

in an uncongested state. Congestion causes the mean entry values

to exceed those of transit delay. Under this condition the network

starts to block packets attempting to enter the switching section.

— .199 ~

Channel congestion may be confirmed by examining the line

utilization factors in Appendix E. For example, Channel 4 in the

network simulation, recorded factors of 0,78, 0,73, 0,72, and 0,80,

0,80, 0,84 at input level 835 packets per second for each of the

three runs for priorities, PRIORITY (TRANSIT) = 5, PRIORITY (ENTRY) = 1

and PRIORITY (TRANSIT) = 1, PRIORITY (ENTRY) = 5, respectively.

Values for mean throughput are found plotted in Figures 7.12

and 7.13. These curves hold only for data packets transmitted from

source to destination ICP. For comparison, a linear curve has been

drawn indicating at which points the input and throughput packet

rates coincide. As the input level is increased the network is able

to maintain its throughput at the equivalent rate. At a certain

input rate, however, the input starts to exceed the capacity of the

network to transmit packets. Such occurs at an input level of

approximately 500 packets per second.

Comparison with the delay curves shows that the above input

rates at which the model throughput curves start to deviate from

the ideal throughput plot, lie approximately in the same region as

the input rates for which the mean packet delays start to increase

rapidly and become unbounded. This behaviour results due to

channel saturation. This statement may be substantiated by

examining the contents of Table 7.2 depicting the behaviour of

node 1 as a function of input traffic levels.

NODAL SIMULATION THROUGHPUT

MEAN THROUGHPUT
PACKETS/SECOND

iTE = OUTPUT RATEINPUT
900

PRIORITY (ENTOY) = lz
PRIORITY (TMNSIT) /=/800

Oz
/a

//PRIORITY (ENTRY) = 5
/ PRIORITY (TRANSIT) =

700

600

500

400

300

200

100

400 600 800
TOTAL INPUT RATE - PACKETS/SECOND

1000100 200

Figure 7.12

- 201 -

10 0 0.

NETWORK SIMULATION THROUGHPUT

INPUT RATE = OUTPUT RATE
MEAN THROUGHPUT

900-- IN PACKETS/SECOND

PRIORITY (ENTRY) I- 1
PRIORITY (TRANS IJT) =/800 ■

700 - -

//"PRIORITY (ENTRY) =
/ PRIORITY (TRANSIT)

600

500 - -■

400

300 --

200

100 —

100 200 400
TOTAL

600
INPUT RATE

800 1000
IN PACKETS/SECOND

Figure 7.13

PERFORMANCE OF NODEl : NETWORK SIMULATION

RUN TWO : PRIORITY (ENTRY) - 1, PRIORITY (TRANSIT) = 5

BUS UTILIZATION : 22 VIRTUAL CIRCUITS HANDLED

: DERIVED FROM TABLE £.14

: CHANNEL CAPACITY 640 KBPS

INPUT/VC: PCKS/SEC RECORDED PREDICTED

2 0,03 0,03

4 0,07 0,06

10 0,18 0,16

12,5 0,21 0,20

16,7 0,28 0,27

LINE UTILIZATION : LINE 1 and LINE 4 ; 6 VIRTUAL CIRCUITS HANDLED EACH

: LINE 3 and LINE 7 : 4 VIRTUAL CIRCUITS HANDLED EACH

: DERIVED FROM TABLE E.15

: CHANNEL CAPACITY 64 KBPS

INPUT/VC:
PCKS/SEC PREDICTEI RECORDED PREDICTED RECORDED

LINE 1 LINE 4 LINE 3 LINE 7

2 0,09 0,09 0,09 0,06 0,07 0,06

4 0,18 0,21 0,20 0,12 0,13 0,13

10 0,44 0,42 0,56 0,29 0,44 0,29 ,

12,5 0,55 0,60 0,66 0,37 0,43 0,36

16,7 0,74 0,80 0,83 0,49 0,76 0,88

Table 7.2 N0DE1 Performance

- 203 -

The predicted values were found by determining the product of

the mean packet length (470 bits) and the mean total input rate to

the resource, divided by the channel capacity. There is little

difference between the predicted and recorded bus utilization factors.

At the lower input levels (less than 500 packets per second) the

line utilization factors for predicted and simulated cases are

similar, but at the higher input rates the recorded factors are

greater than those predicted. It must therefore be inferred that

considerable retransmissions due to blocked buffers take place,

resulting in a corresponding performance degradation of the network.

It is noted that no restrictions were placed on the number of

packets entering the network; the majority of packets were generated

by virtual circuits. In practice the number allowed access to the

network would be limited, each logical link being allowed to transmit

some specified maximum number of packets at one time.

Finally, examination of the line utilization factors for the

network simulation indicates that saturation of only a few channels

can cause performance degradation. From Table E.15, a limited

number of channels are utilized highly with factors in the region

of 0,8 (channels 1, 4, 8, 9, 14), whilst the remainder have factors

ranging from 0,35 to 0,76. Adaptive routing is one solution, but

only up to a certain input load. Thereafter congestion occurs.

/

— 204 —

7.3.4 Switching algorithm Priority Variations

This section deals with a proposed method for local flow

introl; by local is meant operating in the immediate surroundings

of the node. A distinction has been made between packets entering,

and packets in transit or leaving the network. The two cases are

denoted by PRIORITY (ENTRY) and PRIORITY (TRANSIT) respectively.

Weighting factors are allocated to packets waiting for service in

a node, and these are incremented with time by the appropriate

priority value. The initial priority of packets arriving at a

node is zero. The aim of the simulation is to determine whether

less blocking in the switching section of the net ;ork will result

if packets in transit or leaving the network be given higher

priority increments than those entering.

The details of this section are contained in Tables E.22 and

E.23, Appendix E. The tests were conducted on the network

simulation, using an input level of 750 packets per second.

Network parameters such as the bus rate and retransmission interval

are the same as for previous runs.

The results are plotted ju Figure 7.14. The total delay

curve shows little variation as a function of priority, being

slightly longer when tve transit priority values exceed those of

the entry values. In the region where both priority cases take

on an increment value of one, the points are scattered conveying

- 205 -

NETWORK PRIORITY VARIATION
110

-O-
o

15 10 8
PRIORITY (ENTRY)

DELAY
msecs

•100

90

- 80
TO—
70

60

1 2 3

O
o

8 10 IE
PRIORITY (TRANSIT)

ENTRY DELAY msecs
50

PRIORITY (TRANSIT)
-- 45

--40

35
PRIORITY (ENTRY)30

15 10
PRIORITY (ENTRY) 8 10

PRIORITY (TRANSIT)

TRANSIT DELAY msecs
-50

30

■5 10
PRIORITY (ENTRY) 8 10

PRIORITY (TRANSIT)
15

Figure 7.14

— 206 —

a certain instability in delay performance. When either of the

priority increments is increased to 15, the other kept at 1, the

delays tend to a more defined limit; in the case of transit priority

greater, to 80 milliseconds, for the entry priority greater 77

milliseconds.

The entry and transit delays show clearly the effect of

priority variations. Higher entry increment values cause a decrease

in the waiting time spent in the ICP, whilst a larger transit

increment causes a decrease in the time required for a packet to

traverse the network. As with the total delay, the entry and

transit delays tend to certain limits, these being 30 and 45

milliseconds for entry, 47 and 35 milliseconds for transit responses.

That the curves do tend to certain limits is substantiated by the

analytically derived graph shown in Figure 2.3 of Chapter 2.

Further increases in priority increments than those indicated will

have little effect.

The time-dependent priority technique was purposely chosen

since its effect becomes apparent at the higher traffic intensities,

when the ability to give precedence to transit traffic is most

needed. Such may be seen from Figures 7.6 to 7.8. The differ nee

in response times for the two priority cases becomes greater with

increase in the traffic input level.

The allocation of priorities to packets and the queueing

- 207 -

structure inherent in the network a^e properties that allow for an

approximation to a conservative system; this means that no work is

created or destroyed in the system. For example, destruction of

work would occur if a packet were to leave the system before

completing its service, and the creation of work might correspond

to a server standing idle in the face of a non-empty queue. These

systems are termed work conserving. In priority systems this means

that preferential treatment given to one class of customers is

afforded at the expense of another c l a s s . I t can be shown

that so long as the queueing discipline selects customers in a way

that is independent of their service time, then the distribution of

the mean waiting time of customers is invariant to the order of

service, i.e., any attempt to modify the genuine discipline so as

to reduce the waiting time of one group of packets, will force an

increase in the waiting time of another group. This is the

phenomenon that has occurred for entry and transit delays as shown

in Figure 7.14. That the total delay remains more or less constant

is due to the fact that all packets at some stage become members

of both priority groups. The mean entry and transit responses can

thus be controlled, but the total delay cannot be manipulated,

other than by controlling the input loads.

In practice the switching processors would function by

allocating transit traffic higher priorities. The effect of this

would be a better transit response, whilst the main time spent in

waiting would be at the ICP stage where the greater portion of

storage is concentrated.

— 208 —

An assumption inherent in conservative queueing systems is

that the amount of storage is infinite, i.e., no blocking of packets

takes place. This condition is met when the input loads are less

than about 600 packets per second and the line utilization factors

less than 0,70. In this case the amount of blocking is extremely

small (see Figure 5.21 of Chapter 5). At the higher input loads,

more blocking occurs so that the conservation principle is less

applicable, resulting in slight variations in the total delay for

the two priority cases.

A better transit response will result in more packets per unit

time interval being able to make use of the finite number of

resources in the switching section. In store-and-forward

buffering the longer a packet occupies a buffer, whether due to

line errors or blocked destination storage, the slower the effective

circuit, rate becomes. The smaller transit response time implies

that fewer packets are blocked on traversing the network.

The priority technique cannot be used as a measure on its own.

It does not provide for sufficient rejection of packets when certain

of the network regions enter a state of congestion. Global flow

control wherein the number of logical links and the number of packets

per logical link is limited, must be incorporated.

— 209 —

7.3.5 Preview Concerning Nodal Characteristics

The following sections are concerned with the study of certain

nodal parameters and their influence on the capacity of the node to

transmit packets. The tests were conducted for the nodal simulation.

Nodal parameters are altered, but in a network environment. Thus

a parameter such as the data bus rate is varied for each node, and

its effect on the mean packet delay in the network is recorded.

When a parameter is varied it is done so for all nodes, being set

to the same value for all nodes. Finally, the priority setting for

all tests conducted was PRIORITY (TRANSIT) = 5, PRIORITY (ENTRY) = 1.

7.3.6 Variation of the Retransmission Interval

The retransmission curves are shown in Figures 7.15 to 7.17.

The line and bus utilization factors are to be found in Tables E .24

and E.26 of Appendix E.

A retransmission may take place in two ways. A packet

transmitted to a destination channel controller may find all storage

occupied; a retransmission is attempted after some interval of time.

Alternatively, the packet itself or its acknowledgement may have

incurred errors. The source controller will retransmit the packet

after a certain time period, having received no acknowledgement.

The duration of time after which retransmission takes place is the

same for both cases.

- 210 -

Figure 7.15 shows the effect of variation in interval duration

on the mean packet response. The curves are characterized by two

main parts? a section where no variation in response results for

the interval period ranging from 35 to 100 milliseconds, and

a section where the period is less than 30 milliseconds causing

the mean packet delay to increase rapidly.

The thro»hold behaviour occurs when the retransmission interval

is decreased to such an extent that it is of shorter duration than

the time required to receive an acknowledgement signal. A rough

set of calculations is in order to substantiate this.

The time taken to transmit a packet of mean length 470 bits

via a 64 KBPS link is about 7,3 milliseconds. Assuming a control

packet of length 70 bits to be directly transmitted as acknowledge

ment, a lower bound for the process is 7,3 (packet) 4 1,1 (AGK)

or 8,4 milliseconds. An upper bound occurs when the acknowledge

ment must wait for the line to become free; it is assumed an

averaged sized packet of 470 has just been transmitted. In addition,

it is assumed the acknowledgement is piggybacked when the line

becomes available. The upper bound is then 7,3 (packet) 4- 7,3

(wait for channel) 4-7,3 (piggybacked AGK) or 22 milliseconds.

The threshold behaviour for the simulation occurs at 30 milliseconds.

It may be inferred that packets are being retransmitted without

properly ascertaining whether errors or blocked storage have in

fact occurred.

- 211 -

VARIATION OF RETRANSMISSION INTERVAL

835
160

140 INPUT LEVEL
PACKETS/SECONE:120

30. 750DELAY

625
60

1110
INTERVAL(TIMES 10) msecs

120 ENTRY DELAY
msecs

835ioo--

80
INPUT LEVEL
PACKETS/SECOND60
75040
625

20

1110
INTERVAL(TIMES 10) msecs

120
INPUT LEVEL
PACKETS/SECOND100

80 835 — O

60"
TRANSIT DELAY

40--
mse cs

750
625

20—

10 11
INTERVAL(TIMES 10) msecs

Figure 7.15

- 212 -

VARIATION OF RETRANSMISSION INTERVAL
140

120-

INPUT LEVEL 750 RACKETS/SECOND
 _______—-- — d> ---------IOC

80 "

60 TOTAL DELAY
msecs

40

20

10 11
INTERVAL(TIMES 100) msecs

45 ..

40

35

30

25

<r
a

ENTRY DELAY
msecs

 4-----1--- 1---- 1----r5 6 7 8 9
(TIMES 100) msecs

4- +
10 11 12 13

INTERVAL

100 TRANSIT DELAY
msecs

90

80 --

70 "

60

50 --

1110
INTERVAL(TIMES 100) msecs

Figure 7.16

- 213 -

VARIATION OF RETRANSMISSION INTERVAL
RECORDED THROUGHPUT

—O-

540--
PACKETS/SECOND

520--
INPUT LEVEL 625 PACKETS/SECOND

500.

480"

460'

440--

10
(TIMES 10) msecs INTERVAL

RECORDED THROUGHPUT
PACKETS/SECOND

850

800

750

700

650 INPUT LEVEL 835 PACKETS/SECOND
600

550 --

500

450

10 11
(TIMES 10) msecs INTERVAL

Figure 7.17

- 214 -

Examination of the line utilization factors confirms the

increased channel activity. As an example, at the input rate of

625 packets/sec. in channel 10, the factors at the interval periods

of 50, 30 and 10 milliseconds are respectively 0,40, 0,46 and 0,83

(Table E.25).

The effect of decreasing the retransmission interval causes

the node to transmit less packets. The effect is to reduce the

amount of work performed by the node. For the above case consider

the bus utilization factors for the test node; these are 0,43,

0,43, and 0,39 respectively (Table E.24), i.e., the channels are

occupied : too many retransmitted packets.

Figure 7.16 shows the effect on delay when the interval period

is varied over the large range of 5 to 1 000 milliseconds. The

result is somewhat surprising in that the delay does not increase

at the interval periods in excess of 100 milliseconds. It appears

that the number of retransmissions due to either line errors or

blocked storage, at the input level of 750 packets/sec., is minimal

compared to the number sent along each link.

Again, examination of the line utilization factors confirm

the above (see Table E.26), For the input level 750 packets/sec.,

retransmission period 1 000 milliseconds, the highest utilization

factor recorded is 0,63 for channel seventeen; the remainder lie in

the range of 0,31 to 0,57. Provided sufficient buffering is

available in the switching section of the network, and provided
5

mean line error rates are low (a mean of one in 10 bits was used),

the duration of the retransmission interval has little effect on

the response so long as the channel is operated in the stable

region, in this case an interval period of greater than

30 milliseconds.

The throughput graphs in Figure 7.17 show that retransmission

periods of less than 30 milliseconds or greater than approximately

40 milliseconds cause a drop in the number of packets transmitted

by the network.

Summarizing, a retransmission interval that is too short will

result in a form of channel instability, causing large packet

delays and low network throughput. At the larger interval

duration, a slightly lower throughput occurs, caused by packets

occupying buffers for longer than is necessary. An optimum

retransmission period was found, satisfying both response and

throughput indices. The period was found to be ^0 milliseconds.

7.3.7 Variation of Bus Rate and Algorithm Period

Two further nodal parameters, the data bus rate and the

switch algorithm execution time, are discussed. The algorithm

execution time has been assumed to be a constant, even though in

- 216 -

practice it would depend on the amount of data processed. Its

effect on nodal .-formance may then be more clearly demonstrated.

Consider first the mean packet response as a function of the

nodal bus rate.. Threshold behaviour is observed in Figure 7.18.

As the bus capacity is increased the packet response improves,

until a point is reached where the response remains constant

despite further increases in bus capacity. The point occurs at

a capacity of approximately 600 KBPS. The poorer response at the
lower bus rates takes place since the service time required for

a node to perform the work of transferring a packet j.rom one

processor module to another, becomes longer, i.e. packets queued

in TCP's and NCP's must wait longer before being serviced. The

overall effect is an increase both in the transit response (NCP

servicing) and entry responses (TCP servicing).

A rough estimate of the bus capacity required may be

calculated on the basis that each of the processor modules be able

to transmit and to receive one packet per cycle (see Chapter 6).

A cycle was defined to be the time taken for a network processor

to transmit a packet of maximum size oirer a 64 KBPS channel.

Effectively, this reduces the nodal bus to a statistical multiplexing

facility. The number of packets transmitted by the TCP's is

negligible compared to the number handled by the NCP's? recall that

virtual circuits are used to control the traffic intensities in the

network. With ten NCP's in the test node, a theoretical bus rate

- 217 -

VARIATION OF BUS RATE WITH ALGORITHM rXECUTION TIME

DELAY
mseus160 INPUT LEVEL IS 500 PACKETS/SECOND

140

ALGORITHM EXECUTION TIME
15 msecs

120 - -

-&—

80 10 msecs

5 msecs
40

1 msecs
20 —

14 151210 11
BUS RATE(TIMES 10)

60 - ■

50

15 msecs
40

30
10 msecs

20 1 ENTRY DI
msec
10 '

LAY 5 msecs

1 msecskj? --
15

140

120

100

15 msecsTRANSIT DELAY msec s
10 msecs

1 msecs,
20

1310 11 12
BUS RATE(TIMES 10)

Figure 7.18

- 218 -

of 640 KBPS is required. Thus, increasing the bus rata beyond

a certain point (600 KBPS as in the simulation) will have little

effect, since the NCP and ICP modules are not able to transmit at

a higher rate.

It is noted that for these simulations no limit has been

placed on the data bus module transfer rate, but that the store-and-

forward buffering technique itself restricts the amount of data

transferred per unit time interval. The effective internodal

circuit rate depends on the amount of buffering, the channel

capacity and the response time cf the acknowle .'gement. For above

given parameters, a channel throughput limit is reached, after which

further increases in the nodal bus capacity have little effect.

The second parameter shown in Figure 7.18 is the switch

execution time. It is defined to be the time required to sample,

process and output status data for controlling nodal operation.

In general the algorithm period should not be of greater duration

than the cycle time, otherwise the switch module will become

a bottleneck. A decrease in the algorithm period results in

a corresponding decrease in packet response time tending to a limit

as the period approaches the value of one millisecond. In Figure

7.19, the total response has been plotted against the logarithms

of algorithm duration time, at the bus rate of 1,5 MBPS. The graph

indicates the limit the response tends to, in this case 16 milliseconds.

- 219 -

VARIATION IN DELAY vs. EXECUTION TIME

90

80

70

60
TOTAL DE:

50 -
msecs

40 -

30 *

20 -

10 ■

:a y

18 20 22 26 30 34
-10 LOG (execution time)

(secs)

Figure 7.19

- 220 -

Two plots of recorded throughput versus bus rate, for algorithm

periods of 5 and 15 millis.cords, are shown in Figure 7.20. The

same characteristics are found to occur as for delay. Bus rates

of less than 400 KBPS result in a marked decrease in throughput,

as does an increase in the algorithm period.

The bus utilization factors are indicative of the activity

taking place on the data bus when the bus capacity is reduced.

For example, at the algorithm duration period of 5 milliseconds, the

utilization factors recorded for the test node at bus rates of 100,

600, 100O, and 1500 KBPS are 0,99, 0,37, 0,23, and 0,15, respectively

(Table E.28). These figures clearly illustrate how performance

.idic.es became degraded. At the bus rate of 100 KBPS the bus o.s

99 percent utilized on average, causing a substantial bottleneck

in nodal operation.

An examination of the line utilization, factors shows an increased

line activity with decrease in bus rate. If the data bus is unable

to service packets in the NCP's at a sufficient rate, blocking of

packets at the destination buffers occurs, causing an increase in

the number of retransmissions. The result is a reduction of the

effective internodal circuit rate.

The above indicates the importance of keeping the algorithm

duration time to a minimum. Due to the repetitive nature of this

aspect of the switch the algorithm may be implemented in hardware,

RECORDED THROUGHPUT vs. VARIATION IN BUS RATE

550--
THROUGHPUT

500-- PACKETS/SECOND
15450--

ALGORITHM EXECUTION400-- TIME in msecs

350

300--

200"

1310
BUS RATE IN BITS/SECOND(TIMES 10

Figure 7.20

which should result in faster execution than if coded in software.

The bus rate, too, should be high enough so as not to cause the

bus to become a bottleneck.

7.3.8 Nodal Capacity
For the network simulation the mean packet response has been

plotted for algorithm duration parameters of one and ten millr-

seconds, as a function of the input level in Figure 7.21. In
addition an analytical approximation has been shown.

The analytical model is based on a set of interconnected M/M/1

queues. Kleinrock's Independence Assumption has been used, i.e.,

the length of a packet is regenerated at each node as it passes
through the network. The model equations are derived in Kleinrock.

The graphs in Figure 7.21 show that the plot based on a one
millisecond algorithm duration approaches that of the analytical
model. Certain aspects, such as the estimated packet processing

time in the simulation mode], are not taken into account. In
addition, the analytical model approximates a node by a simple
M/M/1 queue, whereas in fact it is far more complex consisting of
a number of interconnected queues. This implies that the mean

packet delay at a given input load will be less as derived by the

analytical model. Use of a longer algorithm duration (10 milli

seconds) results in a poorer response, as was encountered for the

nodal simulation.

(21)

- 223 -

VARIATION OF ALGORITHM EXECUTION TIME
NETWORK SIMULATION

100- -

TOTAL DELAY
msecs ANALYTICAL

80

60

0 ALGORITHM EXECUTION TIME
1 m/ec4
/ & /

10 msecs

20

1000I 800
PACKETS/SECOND

400 600
INPUT LEVEL IN PACKETS/SECOND

200

Figure 7.21

— 224 -

Figure 7.22 shows similar plots to those of Figure 7.21, but

making use of the nodal simulation. An additional variation has
been introduced. Whereas before, a double set of channels inter

connected the test node with each of its neighbours (referred to as

the double channel case), a simulation has also been performed

wherein the test node is linked to each of its neighbours via only

a single channel. In effect the number of NCP's in the test node

has been reduced from ten to five. This has been done to gain

insight into network performance as a function of the number of

processors in the node. It is important to note that traffic

distributions used were identical for both the single and double

channel cases.

In Figure 7.22 the analytical model again shows a fair

approximation to the simulated results, for algorithm durations of

one millisecond. This model was in fact applied to the ARPANET
and compared with measurements conducted on the network. The

model was found to be able to give reasonable predictions for packet

delays.(21)

A figure for nodal capacity must be considered in terms of the

utilization of the nodal resources. When a resource becomes

utilized such that p > 0,70, then it will tend to become a bottle

neck for the rest of nodal operation. The contents of Table 7.3

are instructive in this regard. In the single channel case the

nodal links have become congested, whilst the bus utilisation

- 225 -

NUMBER OF CHANNELS vs. ALGORITHM EXECUTION TIME
NODAL SIMULATION

SINGLE CHANNEL
1 msec EXECUTION
/ / I TIME-- DELAY

msecs
150 --

SINGLE CHANIIeE
10 msecs I
EXECUTION
TIME

140 "■

DOUBLE CHANNEL
10 mse EXECUTION

TIME
110

100

90

30

DOUBLE CHANNEL
1 msec EXECUTION
TIME /

70

60

SO ANALYTICAL:
single/CHANNEL

40

^ANRLYTigAL:
DOUBLE- CHANNEL20 - -

10 - -

100 200 300 400 500 600 700 SCO
INPUT LEVEL IN PACKETS/SECOND

900 1000

Figure 7.22

- 226 -

factor is only 0,37. In the double channel case both the links and

the bus are used to full capacity - with utilization factors for

resources greater than 0,70.

It is thus possible to drive the nodal unit at full capacity,

provided the bus rate and algorithm duration are at 640 KBPS and

one millisecond respectively. By full nodal capacity is thus meant

using the resources at up to a 0,70 utilization factor. A proviso

is that traffic distributions be more or less uniform.

A change in the number of processors per node will require

a repetition of the simulations similar to those encountered in

this chapter, to determine the required bus rates and algorithm

duration times for optimum nodal operation, given the channel

capacity and traffic distribution parameters.

SINGLE CHANNEL CASE (TABLE E.32, E. 33)

INPUT LEVEL 500 PACKETS/SEC, ALG DURATION 1 msec

BUS UTILIZATION: 0,37
CHANNEL (UTILIZATION):
1(0,96) 3(0,95) 5(0,93) 7(0,96) 9(0,94)

DOUBLE CHANNEL CASE (TABLE E.31)
INPUT LEVEL 1 000 PACKETS/SEC, ALG DURATION 1 msec
BUS UTILIZATION: 0,84
CHANNEL (UTILIZATION):
1(0,76) 2(0,70)
6(0,71) 7(0,73)

3(0,85)
8(0,74)

4(0,76)
9(0,65)

5(0,71)
10(0,66)

1

Table 7.3 Channel Utilizations

- 227 -

7.4 Review

The purpose of this chapter has been to study certain of the

characteristics of a defined packet switching network. The

performance indices concentrated on were those of response and

throughput. A dynamic priority allocation technique was studied

as a possible local flow control measure. The nodal parameters

of retransmission period, data bus rate and switch algorithm

execution duration were examined. The simulations have shown

that the network structure defined in the previous chapters, is

able to transport messages between source and destination host

machines. The coordination between the various protocols and

measures is sufficient for satisfactory data transmission. In

each of the performance tests conducted it has been attempted to

explain the underlying mechanisms contributing to the resultant

behaviour.

- 228 -

CHAPTER 8

CONCLUSIONS

8.1 Discussion

The preceding chapters have outlined the system design of

a data adaptor unit. The modules constituting the unit and their

functions, the protocols and the flow control measures for

regulating traffic flow were dealt with.

Three types of modules were defined for carrying out the

communication functions in a node. The interface process r was

used to interface user devices to the network. Nodes were

interconnected by means of the network processors. The switching

processor was used to regulate the flow of packets within the node.

It did this by sampling the status of the interface and network

processors, and then issuing commands so that packet exchanges

in the node could be carried out in orderly fashion.

An examination of the delay and throughput characteristics of

packet-switch based networks showed that flow control measures are

needed to prevent congestion. A global flow control technique was

implemented using an end-to-end protocol. At the local level,

transit traffic was granted priority over that of entry traffic.

Further features implemented to aid in traffic flow control

- 229 -

included the node-to-node protocol and the partitioning of packet

buffers along topological lines. The node-to-node protocol was

designed to provide for only incorrect packet retransmission.
It allowed for the efficient usage of network channels by

superimposing a number of logical paths onto a single physical link.

The algorithms implemented in the switch processor for the
sorting, switching, and formatting of status data were described.

It was shown that such a technique provides a means both for

resolving bus access problems and for controlling data flow within
the node.

The performance of the data adaptor unit was evaluated as
part of a network. The response and throughput indices were

determined in simulation tests. The purpose of these tests was
to determine the capability of the adaptor for sharing high speed
communication channels amongst a number of data transmitting

devices. The simulation results also showed the effect that

certain parameters, such as bus rate and retransmission interval,
have on nodal performance.

8-2 Conclusions

1. The combination of protocols, interprocessor signals, and

switch algorithmic control, as incorporated in each of the

data units constituting the network were able to function as

a system for the transmission of data packets.

The network was able to function in a decentralized mode.

Simulation results indicated that performance degradation of

the network occurred primarily due to the congestion experienced

on the internodal links. The decrease in packet response was
a result of the blocking at destination network processors, and

an increase in the number of retransmissions that subsequently

took place. A possible solution is to incorporate more of the

available pern channels for communication between nodes.

Tests wherein more buffers for the network processors were
provided showed no improvement in the mean packet delay;

increased queue lengths resulted in longer waiting times

before service.

Throughput of th node may be limited by too slow data bus

and switch algorithm execution rates. In this event,

congestion in the nodal channels also resulted.

A chart giving an indication of the performance of a number

of networks, including that of a network based upon the

hypothetical data adaptor, is shown in Table 8.1 (Different

line capacities, packet sizes, line utilization factors, etc.,

- 231 -

of the networks makes direct comparison difficult}. It is

found that the performance of the hypothetical network is

similar to that of the operational examples.

7. It is observed that the traffic utilization factors of all

four operational networks are in the region 0,07 to 0,40.

The networks are purposely kept at low utilization to minimize

the packet queueing times, thus ensuring a *.̂ st response.

This is in agreement with the simulation results obtained,

i.e., packet networks must be operated at low traffic

utilization to avoid excessive resource-sharing conflicts.

8. The throughput of a packet network is determined by its

available channel capacities, and the ability to utilize

those channels at a percentage of the capacity (40 to 60

percent), without packet delays becoming excessive.

Simulations indicated that the data adaptors were able to

achieve a mean line utilization of 0,39 for its 64 KBPS

channels without delays becoming unbounded.

9. A comparison of response times may be derived by considering

the time for a packet to travel a unit path length. The

following results are obtained.

- 232 -

i\

to toin H
2 CO PS
u U Ehto 0
03 CO Qto s z
PS 5

m O
cp ps

X to
2 Eh Z
O H H
H U t " to CO

to Eh fid o a1
2 < to - Eh '
H N fid o co o
to H U toto H

H S to
Eh PS o
D Eh P3

EIs
H
*-3

tnsCO

§I
g

I

g

I
oin

HraCO COB 00 8-1
H vO MH h pa
008
I--I

Q 03
CNI

kOHin ini i—im
§ i
P v-3

§w m

X
M g
s ^
g ^
COIr w wEj U «g a< o Oj to X w co P5 in

1

A
HgI«

W
u < m co in d E8

HiI

CO

s
om

co«
5

CO u

EC i—I
U Q CO <co Mii"
o ooCO CO

O CO

0) H
Cfl Eh

e gII

CO o

H (B

H CO

W H

CD U

Q co Z U
M 0)

;
fcH O OH a* Hu to«=d o to Xto to nto o H CNu to Eh to
« O Z £ to
z m fidH toto O S

co
g
8
OD■a-

Q COZ O
W 0)I
¥Q
to

coE
O
8

1to

PS
H
D
CC CO S to
H M

co co OS PS
U U U
o o
ro cn

I -—'•
S gto s8h O

u

co =a

;i
_ a_

o
•a1
CN

X

CO CO CO

to to to
8 8 8
N 1 CO CO
cn ■a' cp

PS CO

U Q

N' to
CO to

to CD

a toto to toe' to to
en 00COto to to
CO a a
to to toto fidfidto > t>to to toK Zto D

I
I
to
a

iico o

CO

•w to
o o
CN CN
CO CO

2 2

g a« PS

to
a

CO gj
w COX I

tosH to
u Eh

PS toH fid
Eh CO H2 X u
A Z Eh X
g H to to
O to Z 2
u 2 2in X O
CP to Eh U

O H
o oun co

Z to co
l O

O 0
CO
S

to m

% m
< CN

o

in
u
0)cn
E
co
•31

CO

ocn

i
H

CN
r—(

COI
■a*co

to
Eh
Hto

co
Eh
Hto
Or-

co
gto

s iPSX to CD
g B "%

i
Ehi
COI
§II

XtoHtoQ fidto to
UJ fidtoto pdC)HX fidto to

to co to X§§
in in

ino0
inE
Oin

inum
inS
o
CN

mn roCO

CTicn kO

Ta
bl
e

8.1

Pe
rf
or
ma
nc
e

of
Ne
tw
or
k,

- 233 -

NETWORK RESPONSE LINE
UTILIZATION LINE CAPACITY

ARPANET 14 msecs 0,07 50 KBPS

TYMNET 120 msecs 0,13 4 800 BPS

HYPOTHETICAL
NETWORK 18 msecs 0,46 64 KBPS, 1 msec

ALGORITHMIC PERIOD

HYPOTHETICAL
NETWORK 33 msecs 0,13 64 KBPS, 10 msec

ALGORITHMIC PERIOD

Table 8.2 Network Response Times

The non-linear characteristic of the line utilization function

makes direct comparison difficult. ARPANET and the simulation

results are similar. The response values attained by the

proposed data adaptor may be considered sufficient for inter

active processing to be performed using a network of such units.

10. By comparison of the simulated network with operational

networks, it is concluded that the data adaptor proposed has

the response and throughput capability to serve as the basis

for a network dedicated to handling data traffic.

11. It is noted that the hypothetical system has a totally

different architecture to that of the practical systems (which

are based on minicomputer architectures) so that performance

comparisons show only that the data adaptor is able to utilize

network channels at a level comparable to that of existing

systems.

- 234 -

12. It is realized that problems may be encountered in the

hardware implementation of the data adaptor. The architecture

makes use of two separate address and data busses. Conflicts

arising from the simultaneous addressing of a given processor

unit via the two bus systems must be resolved - in hardware.

8.3 Future Developments

This dissertation provides the basis for implementation of

a packet switched network. Further development in certain areas

might be worthwhile. Suggestions for work, both at the nodal

and network levels, is contlined.

8.3.1 Implementation of the Data Adaptor

1. Development concerning the format the inter-module signals

would take is necessary. These might take the form of

a command word, expressing source and destination processor

addresses, and a code signifying the operation that is to

take place.

2. It is suggested that the switch algorithm be implemented in

hardware, or perhaps bit-slice technology to meet tie stringent

algorithm execution period requirements. The essentially

repetitive nature of the algorithm makes this possible.

- 235 -

3. An additional switch processor might be needed for reliability

purposes, and to take care of functions such as addressing,

logical link establishment, and the execution of diagnostic

routines to check and to recover from fault conditions.

4. The network processors may, for the most part, be implemented

in hardware. If use is made of conventional bit-oriented

protocols such as SPLC, internodal packet transmission may

be realized by use of integrated circuits such as the Western

Digital Micro Packet Interface, which contains both the

physical and link control procedures.

5. Tlie interface processor implementation reguires a processing

unit together with general purpose input/output integrated

circuits, so as to enable the node to be connected to a variety

of host machines with different interface standards.

8.3.2 Alternate Nodal Architecture

1. The use of common memory rather than a data bus for packet

transfer between processors may result in a higher nodal

throughput. Use of such memory will require the solution

to a number of problems specific to multiprocessor design,

e.g., resolution of conflict between simultaneous memory

accesses, adequate storage management techniques.

- 236 -

|

1
2. The simulation program may be used to test different strategies |

other than the priority differentiation technique. Different .

algorithms may be experimented with to test local flow control j
imeasures.

i

8.3.3 Developments at the Network Level 1

1. The possibility of incorporating adaptive routing exists.

The algorithm would be executed by the switch processor, which <

is ideally placed to examine the status of the nodal channels.

The main problem is to execute the algorithm at a sufficiently

high rate, as a large number of additions and multiplications

are necessary. A high speed mathematics unit will be required.

2. The concept of providing links on a dynamic basis, subject to

varying traffic demands, may be looked into. The establishment

of a link may take place by one node dialling another, using

the existing facilities in the telephone system. A topology

may be configured to suit traffic conditions.

APPENDICES

Array Definitions

Simulation Programmes

Parameters for the Network Simulation

Parameters for the Nodal Simulation

Simulation Results

- 237 -

APPENDIX A

ARRAY DEFINITION

This appendix contains a list of the arrays used in the

simulation. The coordinates of each array are defined.

Array TOP (I, J)

I = 1 to n, where 'n' is the sum of the number of logical links and

virtual circuits simulated.

J = 1 : input port number

J = 2 : source node number

J = 3 : source ICP number

J = 4 : destination node number

J = 5 : destination ICP number

J = 6 : source channel capacity

J = 7 : destination channel capacity

J = 8 : mean message length

J = 9 : mean message interarrival time

J = 10 : number of messages generated

(when set to a negative number, no upper limit is placed
on the number of messages generated for that logical link)

J = 11 : counter; queue of number of messages generated by source

device

J = 12 : counter; value indicates number of packets constituting

message, excluding 1 first packet1

J = 13 : temporary buffer containing generated message length by

device, used for device simulation

■ML 1

- 238 -

J = 14 : temporary buffer containing generated mess

device, used for ICP simulation

J = 15 : device - network signalling

10P (I, 15) 1 : CALLES

IOP (I, 15) 2 : RFNS

IOF (I, 15) = 3 : MSGRDY

IOP (I, 15) 4 : EOM

IOP (I, 15) = 5 : SDEOM (device)

IOP (I, 15) 9 : TRMNCK

IOP (I, 15) 10 : SDEOM (network)

IOP (I, 15) 11 : wait state

IOP (I, 15) 12 : wait state terminated

CALLES : device--to-network: call establishment

MSGKDY

EOM

RFNS : network-to-device or destination ICP-to-source ICP:

ready for next segment

device-to-network: message ready

device-to-network: end of message

SDEOM(device) : network-to-device: an acknowledgement signal

indicating to device that message has been successfully

transmitted to destination device.

TRMNCK : destination ICP-to-source ICP: no buffering available

at destination ICP

SDEOM(network) : destination ICP-to-source ICP: an acknowledgement

signal indicating to source ICP that message has been

successfully transmitted to destination device,

wait state : source device awaiting buffering at the source ICP

wait state : source device granted buffers

- 239 -

counter: program control for multipacket transmissjon

counter: program control for the translation of messages
to packets

flag: when flag set to 1, indicates to source ICP to

transmit next segment

IOP (I, 19) =1: multisegment buffer release

IOP (I, 20) = 2: multipacket buffer release

segment length storage: decremented by amount equal to

packet size as segment is translated to packets

Array MODEST (I,. J, K)

I = 1 to NONDS, where NONDS is the number of nodes in the network.

I is therefore the nodal identifier

J - 1 to NOPCKS where NOPCKS is the maximum number of packets

provided for in the network simulation

A number of packets in excess of NOPCKS in transit will result in

overflow of simulation arrays? an error message is subsequently

generated indicating which array overflowed. The above holds

equally for the arrays PACKET (I, J), QLIST (I, J, K) and Q(I, J, K).
K = I : packet identifier

K = 2 : processor identifier

K = 3 : 1: interface processor

2: network processor

J = 16 :

J = 17 :

J = 18 :

J = 19 :

J = 20 :

- 240 -

Array PACKET (I, J)

I = 1 to NOPCKS where i-TOPCKS is the maximum number of packets

provided for in the network simulation

I = packet identifier

J = 1 : logical link or virtual circuit identifier

J = 2 : bit length of packet

J = 3 : PACKET (I, 3) = 0 : logical link

PACKET (I, 3) = 1 : virtual circuit

J = 4 : value recording total number of packets in segment

J = 5 : packet format : data or control

PACKET (I, 5) = 1 data packet

PACKET (I, 5) = 7 data packet belonging to either final or
only segment in message in transmission

PACKET (I, 5) = 2 : Buffer access ack

PACKET (I, 5) = 4 : ready for ne^u segment

PACKET (I, 5) = 5 : no buffering available at ICP

PACKET (I, 5) = 6 : message/segment acknowledgement

The final three conditions define control packets from destination

to source ICP.

J = 6 channel controller transmission priority value

- 241 -

Array SWITCH (I, J)

I = 1 to NOI where NOI is the maximum number of processors per node

I : processor work space for switching algorithm execution

J = 1 source processor identifier

J = 2 : 1 - interface processor

: 2 - network processor -

J = 3 destination processor identifier

J = 4 : 1 - interface processor

: 2 - network processor

J = 5 packet identifier

Array KDNCTR (I)

I - 1 to r where n is the number of logical links simulated

KDNCTR (I) : is a counter recording the number of messages

transmitted via the logical link defined by I. The random number

generates a maximum of NRDN deviates; it is essential that NRDN

not be exceeded in the simulation if error conditions are not to

arise. An error message and program termination results if NRDN

is exceeded.

- 242 -

Array MSGLNZ (I, J) MSGEXP (I, J)

I = 1 to n where n is the number of logical links

I : logical link identifier

J = 1 to MRDN where NRDN is the maximum number of deviates generated

MSGLNZ (I, J) : recording of message length generated

MSGEXP (I, J) : recording of message interarrival time generated

MSGLNZ is an integer - whilst MSGEXP is a real array. Both are

used to record the length and the interarrival time characteristics

of a message and are determined in the initialization section of

the program, i.e., these are determined beforehand and there is

thus no need to call the appropriate subroutine each time a message

is generated. Additionally, a proper distribution is formulated

by generating a large number of deviates at one time.

Array Q (I, J, K)

1 = 1 to NONDS, where NONDS is number of nodes in network

I : nodal identifier

J = 1 to QUS where QUS is the maximum number of packet identifiers

that can be stored in the switching processor

K = 1 pointer to QLIST array location as defined by dimension J of QLIST

K = 2 interval dependent priority value

1

- 243 -

Array QLIST (I, J, K)

I = 1 to NONDS

I : nodal identifier

J = 1 to QUS

K = 1 : source processor identifier

K = 2 : 1 - interface processor

: 2 - network processor

K = 3 : destination processor identifier

K = 4 : 1 - interface processor

: 2 - network processor

K = 5 : packet identifier

K = 6 : partition number

K = 7 : weighting factor, static priority

K = 8 : pointer to Q array locations as defined by dimension J of Q

Array NCPCNT (I)

I = 1 to NONCPS, where NONCPS is number of NCP's in network

I : source network processor identifier

NCPCNT (I) : destination network processor identifier

- 244 -

Array NODPLT (I, J, K)

I = 1 to NONDS

J = 1 to NONDS, where NONDS is the number of nodes in network

I : present nodal identifier

J : destination nodal identifier

K = 1 : partition number

K = 2, 3, (£ + 1) where £ is the maximum number of channels

between any two nodes

NODPLT (I, J, K ̂ 1) : for K = 2, 3, 4 ... (£ + 1) ; listing

of network processor identifiers

Array ERRORG (I, J)

I = 1 to NONCPS where NONCPS is the number of NCP1s in network

I = network processor identifier

J = 1 : bit generation value

J = 2 : bit counter value

J = 3 : error flag

Arrays FIELD1 (I, J, K), FIELD2 (I, J, K, ■-3 (I, J, K)

I = 1 to NONCPS where NONCPS is the number of NCP1s in the network

I : network processor identifier

J = 1 to 8

J : field identifier; in this simulation eight field identifiers

have been provided for.

- 245 -

FIELD1 (I, J, K) : transmitting field

K = 1 : packet identifier

K = 2 : partition number

K = 3 : least significant bit position

K = 4 ; most significant bit position

K = 5 : buffer release synchronization flag

FIELD2 (I, J, K) : receiver field

K = 1 : least significant bit position

K = 2 : most significant bit position

K = 3 : field command bit position

FIELDS (I, J, K) : retransmission field

K = 1 : flag to initiate time-out interval

K = 2 : retransmission code execution flag control

K = 3 : flag to indicate retransmission of packet necessary,

i.e., time-out interval completed before acknowledgement

signal received

— 246 -

Arrays BFPOOL (I, J, K) , BFPOLR (I, J, K)

I = 1 to NONCPS where NONCPS is number of NCP's in network

I = network processor identifier

J = 1 ... £ where £ is number of buffer blocks storage in receiver

transmitter section of network processor

K = 1 : packet identifier

K = 2 : partition number

BFPOOL : transmitter storage in NCP

BFPOLR : receiver storage in NCP

Arrays PRTNS1 (I, u , K), PRTNS2 (I, J, K)

I = 1 to NONCPS where NONCPS is number of NCR's in network

I : network processor identifier

J = 1 to 8

Eight fields per NCP are simulated

PRTNS1 (I, J, K) : transmitter partitioning

K = 1 : partition number

K = 2 : TRMBUF storage location

K = 3 : QBUF storage location

.7

- 247 -

PRTNS2 (I, J, K) : receiver partitioning

K = 1 : partition number (destination NCP)

K = 2 : TRMBUF storage location

K = 3 QBUF storage location

K = 4 : partition number (present NCP)

K = 5 : flag indicating partition blocked

K = 6 : code execution flag concrol

Arrays PACTR (I, J, K), PACRC (I, J, K)

I = 1 to NONCPS where NONCPS is number of NCP's in network

I : network processor identifier

J = x K = 1 : frame field number

K = 2 : least significant bit position

K = 3 : most significant bit position

K = 4 : packet identifier

K = 5 : partition number

K = 6 : error flag

K = 7 : timer flag control

J = 2 K = 1 to 8 : partition commands

J = 3 K = 1 to 8 : least significant bit field position

J = 4 K = 1 to 8 : most significant bit field positions

- 248 -

Array LINE (I)

I = 1 to NONCPS where NONCPS is number of NCP's in network

I : network processor identifier

LINE (I) : flag : code execution control

LINE (I) = 0 : channel free

LINE (I) = 1 : channel in use

Array IFBUFR (I)

I - 1 t.u NONCPS where NONCPS is number of NCP1 s in network

I : network processor identifier

IFBUFR (I) : packet identifier stored in interface buffer of

network processor I

Array NOMCC (I)

1 = 1 to NONDS where NONDS is number of nodes in network

I : nodal identifier

NONCC (I) : bus (data) cycle counter

- 249 -

Array REASSM (I, J)

I = 1 to n where n is number of logical links in network

J = 1 : packet identifier of most recent arrival

J = 2 : number cf packets in segment

J = 3 : number of packets assembled

J -- 4 : accumulated segment length

J = 5 : program execution control flag

J = 6 : end-of-message execution control

J = 7 : multisegment messages - flag

8 accumulated destination ICP buffer storage

Arrays PEST (I), SRC10 (I), STATEG (I), MESSAG (I)

I = 1 to n where n is number of logical links in network

The above arrays serve to control the execution of code in the

simulation program

Array MAPICP (I, J)

I = 1 to NONDS

I : nodal identifier

J = 1 to & where I is the maximum number of interface processors

per node

MAPICP : interface processor identifiers

- 250 -

Array MAPNCP (I, J)

I = 1 to NGNDS

I : nodal identifier

J = 1 to k where k is the maximum number of networ] processors per node

.MAPNCP : network processor identifiers

The above two arrays serve to associate interface and network

processors to a given node

Arrays PT1ICP (I, J, K), PT2ICP (I, J, K) PT1NCP (I, J, K), PT2NCP (I, J, K)

PT1ICP

PT1NCP
transmit pointers for ICP and NCP respectively

queue pointers for ICP and NCP respectively
PT2ICP

PT2NCP

For PT1ICP and PT2ICP : I = 1 to NOICPS

I ; interface processor identifier

For PT1NCP and PT2NCP : I = 1 to NONCPS

1 : network processor identifier

J = 1 to m where m is the number of cycles per period

K = 1 : initial pointer

K = 2 : = 1 : interface processor

= 2 : network processor

K = 3 : packet identifier

K = 4 : destination processor identifier

K = 5 : = 1 : interface processor

= 2 : network processor

- 251 -

K = 6 : terminating pointer

K = 7 : = 1 : interface processor

= 2 : network processor

K = 8 : end of cycle indicator

Arrays DATABS (I), SWCONT (I)

I = 1 to NONDS

I : nodal identifier

program execution control arrays

Array PKMUX (I)

I = 1 to NONDS

I : nodal identifier

PKMUX (I) : number of packets multiple. 3d per cycle in node 1

Array DATIMR (I)

I = 1 to NONDS

I : nodal identifier

DATIMR (I) : data bus timing control

- 252 -

Array LGLINK (I, J)

I - 1 to n where n is the number of logical links simulated

J = 1 t source processor (TCP) flag

J = 2 : destination processor (ICP) flag

LGLINK (I, J) = 1 logical link waiting for buffer

LGLINK (I, J), = 2 logical link allocated buffers, message

transmission proceeds

Array STO (I, J)

I = 1 to NONCPS

I : network processor identifier

STO (I, 1) : tabulation of number of free buffer blocks in NCP I
STO (I, 2) :

Array PARTNP (I, J, K)

I = 1 to NONCPS

I : network processor identifier

J = 1 to 8 : number of partitions allowed used in simulation

K = 1 : partition number

K = 2 : = 0 : unblocked partition

: = 1 : blocked partition

- 253 -

Array BUSSEM (I), SEMPH (I)

I = 1 to NONDS, nodal identifier

BUSSEM (I)

SEMPH (I)

switching algorithm execution and data bus packet

transfers synchronization flags

Array SEMPRC (I, J)

I = 1 to NONDS

I : nodal identifier

J = 1 : SOP : start of processing : processor identifier

J = 2 : = 1 : interface processor

= 2 : network processor

j = 3 ; = -200 : end cl processing

^ -200 : processing in operation

J = 4 : NOP : next to process : processor identifier

J = 5 : = 1 : interface processor

= 2 : network processor

NB: the word 'process' as used here is meant to indicate the
processing done by a module in transmitting packets onto -
and receiving packets from the data bus

Array BLOCK (I, J)

I = 1 to NOICPS

I : interface processor identifier

J = 1 : number of source blocks used

j = 2 : number of single packet blocks used

j = 3 : number of multipacket blocks used

J = ,4 : number of common blocks used

J = 5 : number of source blocks

j = 6 : number of single packet blocks

J = 7 : number of multipacket blocks

J = 8 : number of common blocks

Array AELOC (I, J , K)

I = 1 to NOICPS

I : interface processor identifier

J = 1 to N where N is number of locations for storing addresses of

logical links allocated buffers

K = 1 : logical link number

K = 2 : type

K = 3 : number of blocks of type used

K = 4 : number of blocks of common used

Array WAITLN (I, J, K)

I = 1 to NOICPS

I : interface processor identifier

J = 1 to A : number of locations for reserving buffer

requests allowed for

K = 1 : logical link number

K = 2 : number of buffers required

K = 3 : clock value at time of request

K = 4 : type of buffers required

K = 5 : priority value

Array LMA (I)

I = 1 to NOICPS

LMA (I) : 1 waiting state' algorithm execution flag

Arrays TIMERZ (I), EVENT (I), SIGNTM (I), IDTINV (I)

I = 1 to p where p — (4 x N) + NONCPS + (2 x NONDS) + 16

N : number of logical links

NONCPS : number of network processors simulated

NONDS : number of nodes simulated

TIMERZ (I) : interval generated by simulation event

EVENT (I) : queue of events

IDTINV (I) : queue of labels of events

SIGNTM (I) = 2 : wait for interval to elapse

= 3 : interval elapsed

- 256 -

APPENDIX B

DATA NETWORK SIMULATION PROGRAMS

This appendix provides the program listings and flowcharts for

the simulation model. Reference to Appendix A must be made for

descriptions of the arrays and their subscripts.

The simulation program has been written in modular fashion so

that the various blocks constituting the model can be separated and

described. The procedure followed here will be to identify the

modules and blocks and to provide flowcharts at the lowest level

of blocks.

The highest levels consist of an initialization and an

execution block. The initialjzation block is responsible for

reading the input data parameters, and initializing the array

contents. The execution block constitutes the model simulation,

and is comprised of nine main modules. These are the packet

injection facility, the source host- and destination host-network

communication, the node-to-node communication, the data bus transfers,

the switch processor operation, the clock, the buffer management
allocation and the buffer management reservation modules. These

are illustrated in Figures B-l and B-2. It is assumed that

Chapter 3, describing the overall program structure and operation,

has been read. In particular it is necessary to understand the

concept of signalling used between the clock and the remaining

modules.

- 257 -

INITIALIZATION BLOCK

MAIN

EXECUTION

Figure B.l Main Simulation Structure

- 258 -

INITIALIZATION
BLOCK

PACKET INJECTION FACILITY

SOURCE HOST-NETWORK
COMMUNICATION

MODULES

DEST HOST-NETWORK
COMMUNICATION

NODE-TO-NODE
COMMUNICATION

MAIN
EXECUTION
BLOCK

DATA BUS PACKET TRANSFERS

SWITCH PROCESSOR OPERATION

SUBR: PROGTM SUBR: ACCESS SUBR: TIMER SUBR: RESERV

BUFFER TYPE BUFFER
CLOCK MANAGEMENT

ALLOCATION
TRANSLATION MANAGEMENT

RESERVATION

SUBROUTINES

Figure B .2 Program Structure

- 259 -

BLOCK INITIALIZATION

DECLARATION OF VARIABLES

DECLARATION OF ARRAYS

COMMON VARIABLES:
SIGNTM, LGLINK

See Appendix A for array
descriptions and dimensions

Figure B .3 Array and Variable Declarations

— 260 —

BLOCK INITIALIZATION

READ IN FOLLOWING VARIABLE CONTENTS:

N PSZND NMAXIC

NUMBER NRDN NMAXIN

SCAN NRRN QUS

BUFBLK MNOBFS NVC
NSOURC BITLNC SWPROC

SGMENT NO I MUXRT
NONDS MAXCH TXMAX
NOICPS NOPCKS PXMAX
NONCPS CMAX NPS
NODPRC PMEANC

See Chapter 3
for description
of these
parameters

READ LOGICAL LINK DESCRIPTORS
VIRTUAL CIRCUITS : IOP

READ PROCESSOR PARTITION MATRIX : PRTNS1
READ NODE PLOT DATA : NODPLT
READ CHANNEL PROCESSOR DATA : NCPCNT
READ MULTIPLEXING MATRIX : PKMUX
READ NODE TO ICP MAPPING : MAPICP
READ NODE TO NCP MAPPING : MAPNCP
READ CHANNEL DATA 1 ...(n) : NODPLT
PLACE SENDER PARTITION : PRTMS1 CONTENTS INTO
RECEIVER PARTITION : PRTNS2 LOCATIONS

\/
WRITE ABOVE DATA FOR VERIFICATION

Figure B-4 Input Data

L I11 r , 1 „ , .. < « > 1 » t « • < < t . • » * * *
I. , •'12 c — 261 —
I . 11'i .). r DAI A Ht lWOF'l '' TI’MU AT ION
L.r04 C
L. 005 C **
L.006 c
L.007 INTEGER IR(100),MSGLN2(20,100),RDNCTR(20),NRDN
L.ooa REAL WK(100) r R, (100) , MSGEXP (20 ,100 >
L.009 c
L.010 REAL TIMER2(130)
L.011 INTEGER SIGNTM<130) , LGLINK(20r2)
L.012 c
L.013 c MAX NO LOGICAL LINKS+VIRTUAL CIRCUITS: 24
L.014 INTEGER IOP(24 » 20) ,VIRTM(24)
L.015 c
L. 016 c MAX NO LOGICAL LINKS: 20
L.017 INTEGER REA.3SM(20,8) »D E S K 20) , KNTR(20) ,STATEG(20) , MESSAG(20)
L.018 INTEGER CNTR(20)? SRCI0(20)
L.019 c

MAX NO "NCPS" IN NETWORK: STORAGE 20 BLOCKS? NO CYCLES=1 : 20L.020 c
L.Q21 INTEGER NCPCNT(20)rBFPOOL(20,60,2),BFPOLR(20,60r2),IFBUFR(20)
L.022 INTEGER PACTR(20,4,8),PACRC(20,4,8),LINE(20)rSTO<20r2)
L.023 INTEGER PARTNP(20,8,2),PT1NCP(20,1,8),PT2NCP(20,1,8)
L.024 INTEGER ERRORG(20,3),FIELD1(20,8,5),FIELD2(20,8,4)
L.025 INTEGER FIELD3(20,8 , 4),PRTNS1(20,8,6),PRTNS2(20,8,6)
L.026 INTEGER DUPLCT(50,20)
L.027 c
L.028 c MAX NO "ICPS" IN NETWORK: NO CYCLES=1 ? 10
L.029 INTEGER DRSICP(10),PTIICP(1C,1,8),PT2ICP(10,1,8)
L . 030 c
L.031 c MAX NO NODES IN NETWORK? 6
L.032 INTEGER NODPLT(6,6,3),SEMPH(6),BUSSEM(6),DATABS(6),SEMPRC(6,5)
1.033 INTEGER DATIMR(6),QLIST(6,50,8),G (6,50,2),PKMUX<6),IN1TL2(6)
L.034 INTEGER SWCONT(6),NODEST(6,200,3),NONCC(6)
L.035 c
L.036 c MAX NO "NCPS" PER NODE: 10
L.037 INTEGER MAPNCP(6,10)
1.038 c
L.039 0 MAX NO "ICPS" PER NODE: 10
L.040 INTEGER MAPICP(6,10)
L. 041 0
L.042 c MAX NO ("ICPS" + "NCPS") PER NODE: 10
L.043 INTEGER VARTM(10),SWITCH(10,5)
L.044 c
L.045 c PACKET INFORMATION IN NETWORK
1.046 INTEGER PACKET(100,6)
1.047 c
L.048 c TIMER LABEL INFORMATION
L.049 c MAX NO LABELS=130
1,. 050 c N0=(4*N)+(NONCPS)+(2*N0NDS)+16
1.051 c ** v ‘ ******
1.052 c
L.053 INTEGER CALLES,RFNS , EOM,SDEOM,RS T ,NRB,LTNKNR,TNR
L.054 INTEGER ICPNR,AC C ,S O M ,NSOURC,S T ,ICP,L N K ,N O ,CL
L.055 INTEGER R E S ,TP E ,N F F ,NMM,N X ,WAITST,WAITFN,BUFBLK
L .056 INTEGER DESTND,NONCP,PCKNO,PRSNND,PARTON,QS
L.057 INTEGER PKNN,BITLNG , DSSNCP,PCCNO,PAANO,PACCN,PAARTN
1.058 INTEGER FRMFLD,PCCKNO,PRES,QUS,CMAX,SCAN,PSZNO
L. 059 INTEGER DIVIS,2TYP , SGMNO,GAMMA,CNZ,ID,INTERV
L.060 I N T E G E R N C R , N S O U , N S I N G , N M U L , Q C N T R , SGMENT
1.061 REAL NPZ,N O D P R C , SWPROC , CLOCK
L.062 c
L.063 COMMON S I G N T M , L G L I N K
L.064 DOUBL E P R E C I S I O N DSEED
L » 0 6 5 c *

' '-‘' b L - 262 -
I '.167 r r->-6 l I V ' P h f D A l f r C'f NE. TWOF' l :
L . 0 6 8 C
L . 0 6 9 C
L . 0 7 0 RF AO (5 , 9 5) N , N U M B E R , SCAN , B U F B L K , NSOUR.C , SGMENT , NO NOS , NO I CPS , NO NCR
L . 0 7 1 REAU (5 , 9 6) P S Z N O , M R D N , N R R N , M N O B F S , B I T L N G , N O I , M A X C H , N O P C K S , CMAX
L . 0 7 2 READ (5 , 9 7) N M A X I C , N M A X I N , Q U S , NVC
L . 0 7 3 SWPP.0C = 0 . 01
L . 0 7 4 M U X R T = 6 4 0 0 0 0
L . 0 7 5 • T X M A X = 0 . 0 4 0
L . 0 7 6 P X M A X = 0 . 0 3 0
L . 0 7 7 N P Z = 0 . 0
L . 0 7 8 N 0 D P R C = 0 . 0
L . 0 7 9 P M E A N C = 0 . 5 0
L . 0 8 0 9 5 FORMAT (T 2 , 9 I 7)
L . 0 8 1 9 6 F O R M A T ' (1 2 , 9 1 7)
L . . 0 8 2 9 7 , FORMAT (T 2 , 4 I 7)
L . 0 8 3 C I O P SOURCE D A T A
L . 0 8 4 • N T T L I = N + 1
L . 0 8 5 N T T L = N + N V C
L . 0 8 6 READ (5 , 1 0 1) ((I O P (I , J) , J = 2 , 1 0) , I = 1 , N T T L)
L . 0 8 7 DO 1 0 0 1 = 1 , N T T L
L . 0 8 8 J = 1
L . 0 8 9 I O P (I , J) = I
L . 0 9 0 1 0 0 C O N T I N U E
L . 0 9 1 1 0 1 F O R M A T (T 2 , 9 1 7)
L . 0 9 ' C READ PROCESSOR P A R T I T I O N DATA
L . 0 9 3 READ (5 , 1 0 8) ((P R T N S 1 (I , K , 1) , K = 1 , 8) , 1 = 1 , N O N C P S)
L . 0 9 4 1 0 8 FORMAT (T 2 , 8 I 7)
L . 0 9 5 C READ NODE P L O T D A T A
L . 0 9 6 READ (5 , 1 1 1) ((N O D P L T (I , J , 1) , J = 1 , N O N D S) , 1 = 1 , N O N D S)
L . 0 9 7 1 1 1 FORMAT (T 2 , 6 I 7)
L . 0 9 8 C READ C H A N NE L PR O C E S S O R DATA
L . 0 9 9 READ (5 , 1 1 4) (N C P C N T (I) , 1 = 1 , 8)
L . 1 0 0 READ (5 , 1 1 5) (N C P C N T (I) , 1 = 9 , 1 6)
L . 1 0 1 1 1 4 FORMAT < T 2 , 8 I 7)
L . 1 0 2 _ 1 1 5 FORMAT (T 2 , 8 I 7)
L . 1 0 3 C " N U M B E R ' 0 > P A C K E T S " M U L T I P L E X E D PER CYCLE FOR I N D I V I D U A L NODES
L . 1 0 4 READ (5 , 1 1 8) (P K M U X (I) , 1 = 1 , NONDS)
L . 1 0 5 1 1 8 FORMAT (T 2 , 6 I 7)
L . 1 0 6 C NODE TO TCP M A P P I N G
L . 1 0 7 READ (5 , 1 2 2) ((M A P I C P (I , U) , J = 1 , N M A X I C) , 1 = 1 , NONDS)
L . 1 0 8 1 2 2 FORMAT (T 2 , 2 I 7)
L . 1 0 9 C NODE TO NCR M A P P I N G
L . 1 1 0 READ (5 , 1 2 6) ((M A P N C P (I , J) , J = 1 , N M A X I N > , 1 = 1 , N O N D S)
L . I l l 1 2 6 FORMAT (T 2 , 5 I 7)
L . 1 1 2 C READ I N C H A N N E L D A T A
L . 1 1 3 READ (5 , 1 3 0) ((N O D P L T (I , J , 2) , J = l , N O N D S) , 1 = 1 , NONDS)
L . 1 1 4 1 3 0 FORMAT (T 2 , 6 I 7)
L . 1 1 5 C READ I N C H A N N E L D A T A (2)
L . 1 1 6 READ (5 , 1 3 4) ((N O D P L T (I , J , 3) , J = 1 , N O N D S) , 1 = 1 , N O N D S)
L . 1 1 7 1 3 4 FORMAT (T 2 . 6 I 7)
L . 1 1 8 C R E C E I V E R P A R T I T I O N B U F F E R I N G
L . 1 1 9 DO 1 3 9 K = 1 , NONCPS
L . 1 2 0 MLG = N C P C N T (K)
L . 121 DO 1 3 8 M = 1 ,8
L . 1 2 2 P R T N S 2 (M L G , M , 1) = P R T N S 1 (K , M , 1)
L . 1 2 3 P R T N S 2 (K , M , 4) = P R T N S 1 (K , M , 1)
L . 1 2 4 1 3 8 C O N T I N U E
L . 1 2 5 1 3 9 C O N T I N U E
L . 1 2 6 C
L . 1 2 7 C *

I

- 263 -

L . 1 2 8 C
L . 1 2 9 WR I T E (6 , 1 0 3)
L . 1 3 0 W R I T E (6 , 1 0 4) _
L . 1 3 1 W R I T E (6 , 1 0 2) ((I O P (I , J) , J = 1 , 1 0) , 1 = 1 , N)

L. ’ l 3 3 1 0 3 FORMAT (T 1 0 ! ° S R C N O D S R C I C P DSTNOD D S T I C P SRC CPC D S T C P C ’)
L . 1 3 4 1 0 4 F O R M A T (T 3 , ' L I N E N O T 5 2 M L M G T H MARRVL N O . M b G I
L . 1 3 5 W R I T E (6 , 1 0 5)
L . 1 3 6 1 0 5 F O R M A T (T 2 , / / Z)
L . 1 3 7 WR I T E (6 , 1 6 0)
L . 1 3 8 1 6 0 FORMAT (T 2 , r I N T E R N A L P A C K ET G E N E R A T I O N ')
L .139 WR I T E (6 , 1 6 1) ((1 0 P (I , J) , J = 1 , 1 0) , I = N T T L I , N T TL)

L*. 1 4 0 1 6 1 FORMAT (T 2 , 1 0 I 7)
L . 1 4 1 W R I T E (6 , 1 6 2)
L . 1 4 2 1 6 2 FORMAT (T 2 , / / /)
L , 1 4 3 WR I T E (6 , 1 0 9)
L . 1 4 4 1 0 9 FORMAT (T 2 , ' PROCESSOR P A R T I T I O N M A T R I X ')
L . 1 4 5 WR I T E (6 , 1 1 0) ((PRT N S 1 (I , K , 1) , K = 1 , 8) , 1 = 1 , N O N C P S)
L*. 1 4 6 1 1 0 FORMAT (T 2 , 8 I 7)
L , 1 4 7 W R I T E (6 , 1 0 6)
L . 1 4 8 1 0 6 FORMAT (T 2 , / / / >
L . 1 4 9 W R I T E (6 , 1 1 2)
L 1 5 0 1 1 2 f OR MAT (T 2 , ' NODE PL OT M A T R I X , P A R T I T I O N S ')
L . 1 5 1 W R I T E (6 , 1 1 3) ((N O D P L T (I , 0 , 1) , 0 = 1 , N O N D S) , 1 = 1 , N O N D S)

L ! l 5 2 1 1 3 FORMAT (T 2 , 6 I 7)
L . 1 5 3 W R I T E (6 , 1 0 7)
L . 1 5 4 1 0 7 FORMAT (T 2 , / / /)
L , 1 5 5 W R I T E (6 , 1 1 6)
L . 1 5 6 1 1 6 FORMAT (T 2 , ’ NCP TO NCP C O N N E C T I O N ')
L . 1 5 7 W R I T E (6 , 1 1 7) (N C P C N T (I) , 1 = 1 , 1 6)
L . 1 5 8 1 1 7 FORMAT (T 2 , 1 6 I 4)
L . 1 5 9 W R I T E (6 , 1 4 0)
L . 1 6 0 1 4 0 FORMAT (T 2 , / / /)
L . 1 6 1 W R I T E (6 , 1 1 9)
L . 1 6 2 1 1 9 FORMAT (T 2 , ’ P A C K ET M U L T I P L E X I N G ON B U S ')
L . 1 6 3 W R I T E (6 , 1 2 0) (P K M U X (I) , 1 = 1 , N O N D S)
L . 1 6 4 1 2 0 FORMAT (T 2 , 6 I 7)
L . 1 6 5 W R I T E (6 , 1 2 1)
L . 1 6 6 1 2 1 FORMAT (T 2 , / / /)
L . 1 6 7 W R I T E (6 , 1 2 3)

\

I

/

- 264

L . 1 6 8 1 2 3
L, 169
L . 1 7 0 1 2 4
L. 171
L. 172 1 2 5
L. 173
L. 174 127
L . 1 7 5
L. 176 128
L . 1 7 7
L. 176 129
L. 179
L. 180 1 3 1
L . 1 8 1
L. 182 1 3 2
L. 183
L. 184 133
L. 185
L.186 1 3 5
L. 187
L. 188 1 3 6
L . 1 8 9
L. 190 1 3 7
L. 191
L. 192
L. 193
L . 1 9 4 151
Lu 195 152
L. 196 1 5 3
L. 197
L. 198 154
L. 199 150

_ L . 200 C

FORMAT < T 2 , ' M A P P I N G : NODE TO I C P ')

f h p m a t 1 ((M A P I C P (I r J) , J = 1 r N M A X I C) , 1 = 1 , NONDS)
r v K n A T (T r £ I 7)
W R I T E (6 , 1 2 5)
FORMAT (T 2 , / / / >
W R I T E (6 , 1 2 7)
FORMAT (T 2 , ' M A P P I N G : NODE TO N C P ')

FORMAT (n ' ^ 25 I 7) (MAF’ NCP (1 ' ^ J r U = 1 , N M A X I N) , 1 = 1 , NONDS)

W R I T E (6 , 1 2 9)
FORMAT (T 2 , / / /)
W R I T E (6 , 1 3 1)

FORMAT (T 2 , ' R O U T I N G D A T A : F I R S T C HA NNE L ')
W R I T E (6 , 1 3 2) ((N O O P L T (I , J , 2) , J = l , N O N D S) , 1 = 1 , NONDS) FORMAT (T2,617)
W R I T E (6 , 1 3 3)
FORMAT (T 2 , / / /)
W R I T E (6 , 1 3 5)

FORMAT (T 2 , ' R O U T I N G D A T A : SECOND C H A N N E L ’)
W R I T E (6 , 1 3 6) < (N O O P L T < I , J , 3) , J = 1 , N O N D S) , 1 = 1 , NONDS)
FORMAT (T 2 , 6 1 7 '
W R I T E (6 , 1 3 7)
FORMAT (T 2 , / / /)

W R I T E (6 , 1 5 1) N , N U M B E R , SCAN , B U F B L K , N 8 0 U R C , S G M E N T , NONDS
W R I T E (6 , 1 5 2) P S Z N O , N R D N , N R R N , M N O B F S , B I T L N G , N O I , MAXCH^
WR I T E (6 , 1 5 3) N M A X I C , N M A X I N , Q U S . N V C
FORMAT (T 2 , 9 I 7)
FORMAT (T 2 , 9 1 7)
FORMAT (T 2 , 4 I 7)
WR I T E (6 , 1 5 4)
FORMAT (T Z / /)
C O N T I N U E

\

I

,NOICPS,NONCPS
N 0 P C K S , C M A X

- 265 -

BLOCK: INITIALIZATION

INSERT SEED FOR RANDOM NUMBER GENERATOR: DSEED - DOUBLE PRECISION;

FOR EACH LOGICAL LINK DO: INITIALIZE THE FOLLOWING PGM CONTROL
VARIABLES:

STATEG(I) = 2 VIRTM(I) = 1 MESSAG(I) = 1
SRCIO(I) = 1 CNTR(I) = 1 DEST(I) = 1
RDNCTR(I) = 1 REASSM(1,1) = 1

END;

- LOGICAL LINKS: 1...N (I)
- VIRTUAL CIRCUITS NTTLI = N+l

: NTTLI, NTTL (I)

INITIALIZE ALL IOP ARRAY LOCATIONS FOR LOGICAL LINK AND VIRTUAL
CIRCUIT DESCRIPTORS TO ZERO: IOP(I,11) TO IOP(I,20);

FOR EACH VIRTUAL CIRCUIT DO: INITIALIZE PGM CONTROL VARIABLE:

VIRTM(I) = 1,-

END;

INITIALIZE SUER ACCESS;
INITIALIZE SUBR RESERV;
INITIALIZE SUBR PROGTM;

FOR EACH NCP DO (220):
INITIALIZE MESSAGE BUFFER IFBUFR(I) = O;
INITIALIZE PGM CONTROL VARIABLE LINE(I) = 0;

SET MEAN BIT ERROR RATE FOR LINES ERROG (1, 1);
INITIALIZE ERRORG(1,2), ERROR(I,3) = O;

— 266 —

INSERT PARTITION NUMBERS OF PRTNSl INTO PARTNP;

INITIALIZE 'NO FREE BUFFERS' INTO STO;

INITIALIZE 'NO OCCUPIED BUFFERS IN COMMON' BFPOOL = O

INITIALIZE TRM AND REC CONTROL VARIABLES PACTR = O PACRC = O

INITIALIZE REMAINING PARTITION BUFFERS PRTNSl = O PRTNS2 = O

INITIALIZE SWITCH COMMANDS PT1NCP = O PT2NCP = 0;

INITIALIZE ALL FIELD CONTROL PARAMETERS
FIELD1 = O FIELD2 = O FIELD3 = O

220 CONTINUE;
END;

FOR EACH ICP DO (275);

INITIALIZE PGM CONTROL VARIABLE DRSICP = O;

INITIALIZE SWITCH COMMANDS PT1ICP = O PT2ICP = O?

275 CONTINUE;
END;

FOR EACH NODE DO (280):

INITIALIZE FOLLOWING PGM CONTROL VARIABLES:
SWCONT = 1 SEMPH = 3 BUSSEM = 3
DATABS = 3 SEMPRC = (-200);

- 267 -

INITIALIZE REQUEST BUFFER:
NODEST = O;

INITIALIZE SWITCH WORKSPACE
QLIST = 0 Q = O

280 CONTINUE
END;

SET ALL PACKET ARRAY LOCATIONS
PACKET = O
DUPLCT = O

GENERATE MESSAGES WITH MEAN LENGTH OF IOP (1,8) AND MEAN INTER
ARRIVAL TIME OF IOP (1,9):

FOR EACH LOGICAL LINK DO (298):

NRDN = NUMBER.OF MESSAGES GENERATED;

DO FOR EACH MESSAGE (294) :
CALCULATE A MESSAGE LENGTH;
294 CONTINUE

END

DO FOR EACH MESSAGE (296):
CALCULATE MESSAGE INTERARRIVAL TIME;
296 CONTINUE;

END

298 CONTINUE
END

MESSAGE LENGTHS AND INTERARRIVAL TIMES ARE OF POISSON DISTRIBUTION

- 268 -
: - ' i '
I . i ' U ? D S E E D = 6 7 5 4 6 5 . ODD
L . 2 0 3 DO 2 0 0 1 = 1 , N
L . 2 0 4 S T A T E G d) = 2
L . 2 0 5 V I R T H (I) = 1
L . 2 0 6 M E S S A G (I) = 1
L . 2 0 7 S R C 1 0 (I) = 1
L . 2 0 8 C N T R (I) = 1
L . 2 0 9 D E S T (I) = 1
L . 2 1 0 R D N C T R (I) = 1
L . 2 1 1 R E A S S M (I , i) =0
L . 2 1 2 DO 2 0 0 0 = 1 1 , 2 0
L . 2 1 3 T O P (I , J) = 0
L . 2 1 4 200 C O N T I N U E
L . 2 1 5 DO 2 0 5 I = N T T L I , N T T L
L . 2 1 6 D 0 : . 2 0 5 0 = 11 , 2 0
L . Z 1 7 I O P (I , 0) = 0
L . 2 1 8 V I R T M (I) = 1
L . 2 1 9 2 0 5 C O N T I N U E
L . 2 2 0 RST = 4
L . 2 2 1 S T = 5
L . 2 2 2 C N Z = 6 .
L . 2 2 3 C A L L ACCES S (RST , NRB , L I N K N R , I CF'NR , T N R , A C C , SDM, NCR , NSOU , N S I N G , NMUL)

L . 2 2 4 ' C A L L R E S E R V I S T , I C P , L N K , N O , C L , R E S , T P E)

L . 2 2 5 C A L L P R O G T M (T I M E R 2 , C L O C K , C N Z , I D)
L . 2 2 6 DO 2 2 0 1 = 1 , NONCPS
L . 2 2 7 I F B U F R < I) = 0
L . 2 2 8 L I N E (I) = 0
L . 2 2 9 E R R O R G (1 , 1) = 1 0 0 0 0 0
L . 2 3 0 ERRORG(I , 2) = 0
L . 2 3 1 E R R O R G (I , 3 > = 0
L . 2 3 2 DO 2 2 5 0 = 1 , 8
L . 2 3 3 P A R T N P C I , 0 , 1) = P R T N S 1 (1 , 0 , 1)
L . 2 3 4 P A R T N P (I , 0 , 2) = 0
L . 2 3 5 I F (0 . G E . 3) GO TO 2 2 5
L . 2 3 6 S T O d , 0) = M N 0 B F S
L . 2 3 7 2 2 5 C O N T I N U E
L . 2 3 8 DO 2 3 0 0 = 1 , M N O B F S
L . 2 3 9 DO 2 3 0 K = 1 , 2

L . 2 4 0 B F P O O L (I , 0 , K) = 0
L . 2 4 1 B F P O L R (I , 0 , K) = 0
L . 2 4 2 2 3 0 C O N T I N U E
L . 2 4 3 DO 2 3 5 0 = 1 , 4
L . 2 4 4 DO 2 3 5 K = 1 , 8
L . 2 4 5 P A C T R (I , 0 , K) = 0

L . 2 4 6 P A C R C (I , 0 , K) = 0
L . 2 4 7 P R T N S 1 (I , K , 2) = 0
L . 2 4 8 P R T N S 1 (I , K , 3) = 0
L . 2 4 9 P R T N S 2 (I , K , 2) = 0
L . 2 5 0 PR T N S 2 d , K., 3) = 0
L . 2 5 1 P R T N S 2 (I , K , 5) = 0
L . 2 5 2 P R T N S 2 (I , K , 6) = 0
L . 2 5 3 2 3 5 C O N T I N U E
L . 2 5 4 DO 2 4 0 0 = 1 , CMAX

L . 2 5 5 DO 2 4 0 K = 1 , 8
L . 2 5 6 P T 1 N C P (I , 0 , K) =0
L . 2 5 7 P T 2 N C P (I , 0 , K) = 0
L . 2 5 8 2 4 0 C O N T I N U E

i

Author Reinink K
Name of thesis Data Adaptor unit for an electronic exchange: system design and simulation study 1981

PUBLISHER:
University of the Witwatersrand, Johannesburg

©2013

LEGAL NOTICES:

Copyright Notice: All materials on the Un i ve r s i t y o f the Wi twa te r s rand , Johannesbu rg L ib ra ry website
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise
published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page) for your personal and/or
educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.

