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ABSTRACT 

Although brachial blood pressure (BP) is a well-recognized risk factor for 

predicting cardiovascular events, aspects of aortic BP may enhance risk prediction. 

Pulse pressure (PP) is amplified from the aorta to peripheral arteries and variations in 

differences between brachial and aortic PP (PP amplification) are determined by factors 

that influence either the aortic forward (Pf) or backward (Pb)(reflected) pressure waves. 

Although aortic Pb may be more important than Pf in mediating cardiovascular risk, the 

best approach to assessing backward wave function (augmentation pressures [Pa] and 

index [AIx] or wave separation analysis); the relative impact of aortic Pb versus Pf on 

cardiovascular damage; and whether the ability of aortic-to-brachial PP amplification 

(PPamp) to add to risk prediction reflects backward or forward wave effects, is uncertain. 

In the present thesis I therefore first assessed in 808 community participants 

whether gender influences relations between Pa or AIx and left ventricular mass (LVM), 

a well-accepted end-organ measure. Aortic haemodynamics were determined using 

radial applanation tonometry and SphygmoCor software and LVM from 

echocardiography. In men, both AIx derived from Pa/central aortic PP (Pa/PPc) (p<0.01) 

and AIx derived from the second peak/first peak (P2/P1) of the aortic pulse wave 

(p<0.0005) were associated with LVM. In contrast, in women neither AIx derived from 

Pa/PPc (p=0.08) nor AIx derived from P2/P1 (p=0.17) were associated with LVM. Both 

the strength of the correlations (p<0.001 and p<0.0005) and the slope of the AIx-LVM 

relationships (p=0.001 and p<0.0005) were greater in men as compared to women. 

Therefore, in the present study I show that AIx is independently associated with LVMI in 

men, but not in women. 

I subsequently evaluated whether in women, measures of aortic systolic pressure 

augmentation (Pa or AIx) underestimate the effects of reflected waves on cardiovascular 

risk or whether Pb plays little role in cardiovascular risk prediction. In the same 

community sample I therefore evaluated sex-specific contributions of reflected (Pb and 

the reflection index [RI]) versus augmented (Pa and AIx) pressure wave indices to 
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variations in PPc (n=1185, 65.0% women), and LVM (n=793, 64.9% women). Aortic Pb 

and Pf were determined using wave separation analysis. In both women and in men, 

independent of confounders, RI and Pb contributed more than Pf, whilst Pa and AIx 

contributed less than incident wave pressure (Pi) to variations in PPc (p<0.0001 for 

comparison of partial r values). In both men and in women Pb contributed more than Pf 

(p<0.05) to variations in LVM. Although in men Pa (partial r=0.33, p<0.0001) contributed 

to a similar extent as Pi ((partial r=0.34, p<0.0001) to variations in LVMI, in women Pa 

(partial r=0.05, p=0.36) failed to contribute to LVM, whilst Pi was significantly associated 

with LVM (partial r=0.30, p<0.0001). Similar results were obtained with AIx as opposed to 

Pa in the regression models. Therefore, in both women and in men, Pb is more closely 

associated with PPc and LVM than Pf, but indices of aortic pressure augmentation 

markedly underestimate these effects, particularly in women. 

As the relative impact of aortic Pb as compared to Pf on cardiovascular damage 

independent of brachial BP is uncertain, in 1174 participants from a community sample I 

subsequently assessed the relative impact of Pb and Pf on variations in LVM (n=786), 

aortic pulse wave velocity (PWV)(n=1019), carotid intima-media thickness (IMT)(n=578), 

transmitral early-to-late LV diastolic velocity (E/A)(n=779) and estimated glomerular 

filtration rate (eGFR)(n=1174). Independent of mean arterial pressure and confounders, 

PPc and both Pb and Pf were associated with end-organ measures or damage (p<0.05 

to <0.0001). With adjustments for brachial PP and confounders, Pb remained directly 

associated with LVM (partial r=0.10, p<0.01), PWV (partial r=0.28, p<0.0001), and IMT 

(partial r=0.28, p<0.0001), and inversely associated with E/A (partial r=-0.31, p<0.0001) 

and eGFR (partial r=-0.14, p<0.0001). Similar relations were noted with the presence of 

end-organ damage (p<0.05 to <0.0001). In contrast, with adjustments for brachial PP 

and confounders, Pf no longer retained direct relations with LVM, PWV, and IMT or 

inverse relations with E/A and eGFR. Adjustments for Pb, but not Pf diminished brachial 

PP-independent relationships between PPc and end-organ measures. Thus, although 

both Pf and Pb contribute to end-organ measures and damage, independent of brachial 
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BP, the impact of aortic BP is accounted for largely by Pb. 

PPamp is independently associated with cardiovascular outcomes. However, the 

aortic functional change most likely to account for this effect is uncertain. In 706 

community participants I subsequently aimed to identify the aortic functional change that 

accounts for relations between PPamp and LVM. In multivariate models with the 

inclusion of brachial PP, 1/PPamp (partial r=0.12, p<0.005), Pb (partial r=0,09, p<0.05), 

and aortic PWV (partial r=0.09, p<0.05) were independently associated with LVMI. 

Similarly, in multivariate models with the inclusion of brachial PP, 1/PPamp (p<0.005), 

Pb (p<0.01), and aortic PWV (p<0.01) were independently associated with LV 

hypertrophy (LVH). With adjustments for Pb, the brachial PP-independent relationships 

between 1/PPamp and LVMI or LVH were abolished (p>0.08 for both). However, 

adjustments for PWV failed to modify brachial PP-independent relations between 

1/PPamp and LVMI or LVH. Hence, independent relations between PPamp and LVM or 

LVH are largely accounted for by Pb. 

In conclusion, in the present thesis I show that the use of augmented pressures 

underestimates the impact of reflected pressure wave effects on end-organs, particularly 

in women; that brachial BP-independent relations between aortic BP and end organs is 

determined largely by Pb and that relations between PPamp and end organ measures is 

largely accounted for by Pb. These findings add to our understanding of the adverse 

effects of aortic functional changes on the cardiovascular system and suggest cost-

effective approaches to add to risk prediction. 
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PREFACE 

Cardiovascular disease is the leading cause of morbidity and mortality globally 

and a major cause of mortality in South Africa. Although several well-established risk 

factors may be employed to risk predict, these may only account for a portion of the 

overall cardiovascular risk. A major cause of cardiovascular disease is hypertension and 

hypertension is thought to be the major risk factor for cardiovascular events in South 

Africa. Although brachial blood pressure (BP) is a well-recognised predictor of 

cardiovascular events and target for drug therapy, there is increasing evidence that 

several factors that contribute to aortic BP may add to risk prediction. However, the 

relative role of these variables beyond brachial BP is uncertain. 

The present thesis is motivated by a need to better understand those aortic 

functional changes that contribute toward variations in target organ measures in a 

community of African ancestry in South Africa. These studies were performed with the 

hope that this information will provide a guide to how to best enhance risk prediction 

beyond conventional cardiovascular risk factors, including brachial BP, using simple, 

easy to measure and cost-effective approaches to aortic function measurements. 

Importantly, in the present thesis I assessed relations between aortic function and target 

organ measures, rather than cardiovascular outcomes (hard end points) as in South 

Africa 50% of death certificates indicate “natural causes” rather than a specific cause of 

death. In this regard, it is well accepted that several end-organ measures including left 

ventricular hypertrophy, carotid indices of atheroma, an index of large artery stiffness, 

and measures of renal function predict outcomes beyond conventional risk factors. 

These end-organ measures are therefore assumed to represent effective intermediate 

phenotypes to hard end-point.     

 The present thesis is written as a series of semi-independent chapters, each with 

its own introduction, methods, results and discussion section. The thesis begins with a 

review chapter which highlights the current understanding and controversies in the field 

and leads the reader through a series of arguments in support of conducting the studies 
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described in the present thesis. Furthermore, the present thesis concludes with a 

summary chapter which consolidates the findings of each chapter and underscores the 

novelty of the findings by placing the studies in the context of our present understanding 

of the field. In support of the present thesis, the data presented in chapters 2 and 3 have 

been published in the journals Hypertension Research (Sibiya et al 2014), and 

Hypertension (Booysen et al 2015) respectively, the data presented in chapter 4 in the 

Journal of Hypertension (Sibiya et al 2015), and the data in chapter 5 has received 

favourable reviews from the Journal of the American Society of Hypertension (Sibiya et 

al 2017, under review). 
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1.1 Introduction 

 

Cardiovascular disease constitutes a group of disorders of the heart and blood 

vessels which often share similar risk factors. These disorders mainly include 

cerebrovascular disorders or stroke (ischaemic and haemorrhagic), ischaemic heart 

disease including myocardial infarction, heart failure, peripheral arterial disease and 

renal failure. As identified in the Global Burden of Disease (GBD 2015) study, 

cardiovascular disease is a major cause of global mortality and morbidity (Roth et al 

2015, GBD 2015), where in 2013 cardiovascular disease contributed to 32% (17 million) 

of the more than 54 million deaths recorded world-wide. The GBD study was a 

comprehensive study that accounted for outcomes based on both death registrations, as 

well as verbal autopsies, and determined mortality for 240 diseases from 188 countries 

globally from the year 1990 to 2013. Of the four major categories of non-communicable 

diseases (diabetes mellitus, cardiovascular disease, cancer and chronic obstructive lung 

disease) cardiovascular disease was noted to be the most common cause of death 

compared to the other three categories (Roth et al 2015). 

The GBD study (2015) was limited by the fact that data from low income or 

developing countries was not readily available. Economic challenges leading to a lack of 

education and malnutrition play a major role in the epidemiology of non-communicable 

disease. Therefore, understanding the burden of non-communicable diseases in 

developing countries is of critical importance. It is essential to note that approximately 

80% of cardiovascular deaths in the year 2005 occured in low-to-middle income 

countries (Mendis et al 2007). When comparing mortality rates between high and low 

income countries using age standardized methods, the mortality rate attributable to 

cardiovascular disease in low income countries decreased from 381 per 100 000 people 

in 1990 to 332 per 100 000 in the year ending 2013 (13% decline) whilst in high income 

countries, the mortality rate decreased from 283 per 100 000 people in 1990 to 160 per 

100 000 in the year ending 2013 (43% decline) (Roth et al 2015). Thus, the decline in 
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mortality rate from cardiovascular disease was markedly worse for low as compared to 

high income countries. Moreover, there was a significant increase in the number of 

deaths attributed to cardiovascular disease in low income countries from 7.2 million to 12 

million (66% increase) in the year ending 2013 (Roth et al 2015). This marks a striking 

increase over a two-decade period. In 2013, cardiovascular disease caused 

approximately a million deaths sub-Saharan Africa (Mensah et al 2015). These data 

suggest that the burden of cardiovascular disease is far greater in developing nations 

rather than economically developed countries. Why is cardiovascular disease becoming 

more important in developing countries? 

An epidemiologic transition is thought to exist in developing nations. Whilst 

previously diseases of poverty, malnutrition and infectious diseases were the main 

causes of morbidity and mortality, this spectrum of disease is now changing into 

diseases of lifestyle. In Africa, the burden of non–communicable disease is attributed to 

cardiovascular disease (Mocumbi 2013). Although people in Africa present with 

traditional risk factors for cardiovascular disease, the condition is exacerbated by the 

scourge of infectious disease. In Africa, especially, sub- Saharan Africa, the high rate of 

human immunodeficiency virus infections, which for several reasons increases the 

prevalence of conventional risk factors and may itself have direct effects on the 

cardiovascular system, has complicated the management of cardiovascular risk factors 

(Mocumbi et al 2012, Temu et al 2015). In sub-Saharan Africa the low doctor-to-patient 

ratio and scarcely resourced healthcare systems as noted by the World Health 

Origination (WHO) add to the threat of inadequate healthcare provision. 

In 2007 and 2008 greater than 19.4% of deaths in South Africa were from 

cardiovascular disease. This represents a similar burden of disease as that given for the 

leading reported cause of death, which is tuberculosis (21.8%) (Statistics SA 2010). Age-

adjusted mortality rate attributable to cardiovascular disease in South Africa indicates the 

range to be between 250-to-325 per 100 000 people in the year 2013 (GBD 2015). As 

with other developing countries, this is higher than developed nations. These figures 
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represent similar figures of reported deaths as those given in 2003/2004 (Statistics SA 

2006) and are in-line with the WHO prediction that during the period 2006 to 2015, 

deaths from non-communicable diseases will increase by more than 24% in Africa, and 

that a substantial portion of families with heart disease will experience catastrophic 

expenditure which will drive families below the poverty line (Zarocostas 2010). These 

figures are also in-line with WHO predictions that by 2020, 69% of diseases in 

developing countries such as South Africa will be non-communicable diseases, of which 

the greatest burden will derive from cardiovascular disease (Zarocostas 2010, Boutayeb 

2006).  

 

1.1.1 Hypertension as cause of cardiovascular disease  

 

Of all the risk factors for cardiovascular disease, which include hypertension, 

diabetes mellitus, dyslipidaemia, obesity, smoking, and alcohol consumption, most 

population attributable risk for cardiovascular events is determined by hypertension 

(Steyn et al 2005, Rayner et al 2010, Huang et al 2013, Park et al 2015). As an important 

example of such a study conducted in those of African ancestry, in The Atherosclerosis 

Risk in Communities Study which evaluated a large multi-center and biracial community-

based cohort; diabetes mellitus and hypertension accounted for most of the risk for 

cardiovascular disease (Cheng et al 2014). It is not only blood pressure values over 

presently accepted thresholds of 140/90 mm Hg that predict risk. Indeed, there is 

considerable evidence that blood pressure values over a lower range predict risk and 

that this is noted irrespective of age, gender, ethnicity, or follow-up duration and that the 

impact of blood pressure on risk prediction in the pre-hypertensive range was unaffected 

by adjustments for comorbidities (Huang et al 2013). In this regard, the high population 

attributable risk of hypertension and pre-hypertension may be explained by the fact that 

of all of the cardiovascular risk factors, the prevalence rate of hypertension and pre-

hypertension is by far the highest. Importantly however, it should be acknowledged that 
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hypertension is strongly associated with other risk factors and these risk factors often 

precede the development of hypertension. Indeed, those with pre-hypertension have at 

least one other cardiovascular risk factor (Greenlund et al 2004). 

 

1.1.2 Differences in hypertension prevalence rates between populations. 

  

There are considerable differences in the prevalence of hypertension in 

developed and developing countries. In this regard, in population-based measurement 

surveys from 200 countries of 19.1 million participants 18 years and above, when 

compared to most countries in most continents, based on age-standardized blood 

pressure the prevalence of hypertension was noted to be the highest in sub-Saharan 

Africa and South Asia when it used to predominately affect high-income countries or 

regions (NCD-RisC [NCD Risk Factor Collaboration] 2017). In this survey, age-

standardized adult mean blood pressure remained virtually unchanged between the 

years 1975 to 2015 in men, whilst a slight decrease of blood pressure in women was 

noted. The cause of hypertension in different populations may vary and this may 

contribute to variations in the prevalence rate of hypertension between communities. For 

example, in African populations salt sensitivity may be a more important cause of 

hypertension than in alternative populations and hence prevalence rates may depend 

more on the average salt intake of a community (Maseko et al 2006). Socio-economic 

status also determines the prevalence of hypertension in various populations. High 

income population groups tend to have a lower prevalence of hypertension as compared 

to low income populations and this may be attributed to a greater ability to afford 

healthier foods, a better understanding of what healthier foods are or higher levels of 

activity (Yusuf et al 2011).  

 

1.1.3 Half of cardiovascular deaths may not be accounted for by conventional risk 

factors 
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Previous studies have estimated that about 50% of cardiovascular deaths or 

events may not be accounted for by conventional risk factors (Yusuf et al 2004, 

Chockalingam et al 2000, Yusuf et al 2001). More recently however, some studies have 

reported that when taken together, conventional risk factors account for approximately 

90% or more of cardiovascular risk (Ôunpuu et al. 2001, Yusuf et al 2004, McQueen et al 

2008, O’Donell et al 2010a, O’Donell et al 2010b, O’Donell et al 2016). However, these 

studies (Ôunpuu et al 2001, Yusuf et al 2004, McQueen et al 2008, O’Donell et al 2010a, 

O’Donell et al 2010b, O’Donell et al 2016) are case-control studies and in none of these 

studies did the authors indicate how they avoided a selection bias in the control groups. 

In these studies (Ôunpuu et al 2001, Yusuf et al 2004, McQueen et al 2008, O’Donell et 

al 2010a, O’Donell et al 2010b, O’Donell et al 2016) controls were convenience samples 

including the use of hospital patients who had not had a cardiovascular event. Moreover, 

in these studies (Ôunpuu et al 2001, Yusuf et al 2004, McQueen et al 2008, O’Donell et 

al 2010a, O’Donell et al 2010b, O’Donell et al 2016) the authors failed to indicate 

whether the control samples showed risk factor profiles comparable with randomly 

selected population or community samples from which the cases were derived. Hence, it 

is likely that the results are in-part attributed to population stratification. Thus, these 

studies have not hampered the search for biomarkers of cardiovascular risk beyond 

conventional risk factors. 

 

1.2 Aortic as opposed to brachial blood pressure in risk prediction 

 

 In the present thesis I studied the possibility of measures of aortic blood pressure 

(BP) adding to risk prediction beyond brachial BP and additional cardiovascular risk 

factors. Hence, in the present chapter I will provide a critical review of the current 

evidence supporting or refuting a role of aortic function (with a focus on aortic BP 

measurements) in risk prediction. Central to an understanding of why aortic BP was 
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considered as a measurement that may add to risk prediction is the landmark findings of 

a more important role of brachial systolic as opposed to diastolic BP in risk prediction.  

 

1.2.1 Why has the emphasis moved from diastolic to systolic BP in risk prediction? 

 

The presence of hypertension is diagnosed on the basis of a raised brachial 

artery systolic or diastolic BP. However, risk prediction using brachial BP measurements 

has over the years changed from a focus on diastolic BP (DBP) to that of systolic BP 

(SBP). In this regard, the most important risk factor for cardiovascular disease, that is 

advancing age, is associated with linear increases in SBP across the adult lifespan, 

whilst DBP increases during early to mid-life and then begins to decline during old age 

(Franklin et al 1999). Importantly, the Framingham Heart Study showed that SBP is a 

stronger predictor of cardiovascular risk than DBP in older persons (Kannel et al 1971). 

Moreover, several observational studies subsequently reported on a direct relationship 

between SBP and cardiovascular risk whilst an inverse relationship was noted between 

DBP and cardiovascular risk (Franklin et al 1999, Benetos et al 2000, Staessen et al 

2000). Nevertheless, when predicting risk, DBP is now recognized as being more 

important than brachial SBP in those younger than 45 years of age (Chobanian et al 

2003, Mancia et al 2007), but this has been suggested to be attributed to the 

overestimation of aortic SBP with brachial SBP measurements in this age group 

(McEniery et al 2008). 

With the recognition of a more important role for brachial SBP than DBP in 

cardiovascular risk prediction, the question has arisen as to whether SBP measured at 

the brachial artery is the best SBP measurement for risk prediction? In this regard, 

through amplification of BP from the aorta to the brachial artery (see later discussion for 

the mechanisms), aortic SBP may be considerably lower than brachial SBP whilst DBP is 

similar in the aorta and the brachial artery. As it is hypothesized that the BP in the aorta 

rather than the brachial artery is more likely to be responsible for end-organ damage, it is 
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possible that brachial SBP may not be an adequate surrogate of the BP thought to 

produce cardiovascular damage. Hence, in the following sections of this chapter I will 

discuss the differences in the determinants of aortic and brachial BP and the evidence 

for or against a role for aortic as opposed to brachial BP or their determinants as the 

better measures of end-organ damage. I will simultaneously highlight the missing 

evidence which prompted me to perform the studies conducted in the present thesis.  

 

1.2.2  Central aortic BP is lower than brachial BP 

 

Aortic SBP is generally lower than brachial SBP because of the higher stiffness 

(and hence impedance) of more peripheral arteries as compared to the aorta (Nichols et 

al 2011). In other words the pulse is amplified from the aorta to the brachial artery 

because the aorta is an elastic artery whilst peripheral arteries are less compliant. This 

difference in stiffness occurs because peripheral arteries are muscular with a relatively 

small radius, whilst the aorta is a distensible conduit (high quantity of elastic tissue) and 

has a much wider radius. Importantly, there is little difference between DBP in the aorta 

as compared to peripheral arteries and hence the main distinction between aortic and 

brachial BP is in the difference between SBP and DBP, that is, the main difference 

between aortic and brachial BP is in the pulse pressure (PP). Hence, differences 

between brachial and aortic BP are often referred to as PP amplification. What are the 

factors that determine aortic as opposed to brachial PP and hence PP amplification? 

 

1.2.3 Determinants of aortic versus brachial PP 

 

Although during youth and early adulthood the aorta represents a highly elastic 

conduit, with ageing and with the effects of several risk factors (hypertension, smoking, 

diabetes mellitus, dyslipidaemia and chronic inflammation), the aorta becomes stiffer.  As 

the aorta stiffens, aortic pressures are enhanced during aortic ejection when blood is 
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pumped into a stiffer conduit. Increasing stiffness of the aorta with age and 

cardiovascular risk factors involves destruction of elastic tissue, increases in aortic 

collagen content and changes in the properties of collagen (e.g. increased collagen 

cross-linking as may occur with enhanced glycosylation of collagen in diabetes mellitus or 

in conditions where lysyl oxidase activity [the enzyme responsible for cross-linking of 

collagen] increases) (Nichols et al 2011). Importantly, the magnitude of the pressure 

waveform generated when blood is ejected into a stiffer aorta (the aortic forward pressure 

wave, Figure 1.1) is determined largely by two factors. In this regard, the forward wave 

pressure increases with an enhanced stroke volume which in-turn increases with 

increments in left ventricular contractility and the Frank-Starling effect (improved 

ventricular filling causing a greater force of contraction). In addition, the forward wave 

pressure is also augmented by aortic impedance, which increases as the aorta stiffens. 

Across the adult lifespan whilst aortic stiffness may increase, especially with the ageing 

process, the stiffness of peripheral arteries in the upper limb increases to a lesser degree 

(Nichols et al 2011). Hence, with ageing and disease, it is proposed that as aortic BP 

increases, BP in peripheral arteries increases far less and hence brachial BP begins to 

approximate aortic BP (Nichols et al 2011, McEniery et al 2008). Indeed, on average, 

brachial BP increases by 25 mm Hg between the ages of 20–80 years, whilst central 

aortic BP increases by 40 mm Hg over this same age range (Vlachopoulos & O’Rourke 

2000). Thus, with increasing age, and with more cardiovascular risk factors, aortic BP 

increases far more than brachial BP and PP amplification decreases. Hence, increases in 

aortic BP in excess of brachial BP and a reduced PP amplification may be surrogate 

indices of an increased aortic stiffness that occurs with advancing age and the presence 

of cardiovascular risk factors. Consequently, it has been proposed that either aortic BP or 

PP amplification may be better indices than brachial BP, or at least indices that add to the 

ability of brachial BP to predict cardiovascular events. 
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Figure 1.1 Aortic pressure wave (upper panel) as determined by the combined effect of 

the aortic forward (Pf) and aortic backward (Pb) pressure waves (lower panel). Definitions 

of various measures of arterial pulse wave analysis are also shown. The figure shows 

actual data obtained from SphygmoCor recordings. 
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To recapitulate, a higher brachial as compared to aortic BP (PP amplification) is 

attributed to the differences in stiffness between the distensible aorta and stiff peripheral 

arteries (brachial). Thus, decreases in PP amplification are attributed in-part to increases 

in aortic stiffness with lesser increases in peripheral artery stiffness. However, variations 

in aortic backward wave pressure (Figure 1.1) also determine the variability of PP 

amplification. In this regard, pressure waves travelling down arteries encounter reflection 

points which may occur at innumerable sites in the arterial bed (Nichols et al 2011). 

These reflection points are generated by discontinuities in the arterial tree produced by 

branch points, changes in wall structure and tapering of vessels. Increases in tapering of 

vessels may occur with vasoconstriction of either arterioles or of more proximal vessels. 

At these sites pressure waves are reflected back and return to the ascending aorta. 

Summation of reflected waves derived from multiple reflection points results in a single 

backward wave returning to the aorta. 

The backward wave may return sufficiently early that the pressure generated by 

this wave (Pb) adds to the pressure generated by the forward wave (Pf) and hence Pb 

augments aortic SBP (Figure 1.1). In this regard, two pressure waves appear in the aorta 

and the peak of the backward wave (second systolic shoulder) appears as the peak of 

the aortic pressure wave (Figure 1.1). In contrast, the peak of the forward wave 

approximates the inflection point of the first systolic shoulder and appears as a lower 

value than the peak of the backward wave (Figure 1.1). Hence, in the aorta, although the 

backward wave is of smaller amplitude than the forward wave, the backward wave clearly 

contributes to peak aortic SBP. However, the aortic backward wave appears in a different 

form in the brachial pressure wave. 

As with the aorta, in the brachial artery two pressure waves are also generated, 

and these include a percussion wave (first systolic shoulder), which largely reflects the 

effect of blood flow generated by aortic Pf, and a later tidal wave (second systolic 

shoulder), which largely reflects aortic backward wave pressures (Figure 1.2). In contrast 

to what occurs in the aorta however, where the backward wave clearly adds to peak  
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Figure 1.2. The contribution of aortic forward and aortic backward waves to aortic and 

radial (approximate of brachial) pulse waves. The dashed lines show temporal alignment 

of 1st and 2nd systolic shoulders (left panels) and alignment of the magnitude (left versus 

right panels) of pressure waves. The figure shows actual data obtained from 

SphygmoCor recordings. 
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aortic pressures, in peripheral e.g. brachial) arteries the backward wave (second systolic 

shoulder) appears as a lower value than the forward wave (the percussion wave is larger 

than the tidal wave), and hence makes little contribution to brachial pressures. Because 

SBP is considered to be the maximum pressure generated in the brachial artery, the 

pressure generated by the forward wave (percussion wave) is therefore recorded as 

SBP, whilst the pressures generated largely by backward waves (the tidal wave) are not 

recorded (Figure 1.2). 

With aging, because backward wave pressures (Pb) begin to increase from as 

early as 20-30 years of age, brachial SBP increases less than aortic SBP from early adult 

life to old age. This is because brachial SBP only detects the peak of the percussion 

wave which is driven by the forward wave pressure (Pf) (Figure 1.3). In contrast, aortic 

SBP increases more than brachial SBP as aortic SBP is determined by both Pf and Pb 

(Figure 1.3). With advanced age, Pb may be sufficiently large that peak brachial SBP 

reflects either Pf or Pb (Figure 1.3) (Nichols et al 2011). Under these circumstances peak 

brachial BP closely approximates the peak of Pb and PP amplification is close to 0. 

Hence, variations in differences between aortic and brachial BP and in PP amplification 

may not only be attributed to differences in stiffness between the distensible aorta and 

stiff peripheral arteries, but also to the effects of age on wave reflection. Importantly, 

unlike aortic stiffness, which only increases to any marked extent from age 50 to 60 

years, the aortic reflected wave begins to increase from age 20 years. Hence, although 

aortic pressures are lower than brachial pressures because of differences in stiffness 

between these vascular beds, peak brachial SBP in most adults, especially the young 

and in middle-aged adults, largely ignores the impact of Pb on aortic BP (tidal wave) and 

assesses mainly the impact of Pf (percussion wave) (Figure 1.2). 
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Figure 1.3. Age effects on aortic and radial artery pressure waves (which approximate 

brachial pressure waves). The figure shows changes in the combined effect of the aortic 

forward and aortic backward waves on pressure waveforms with age. The dashed line 

show how the forward and backward pressure waves contribute to radial and aortic 

pressure waves in a young and an old participant. The figure shows actual data obtained 

from SphygmoCor recordings.   
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1.2.4 Aortic versus brachial BP in risk prediction and associations with end-organ changes 

 

Over the past two-to-three decades a number of simple and reliable approaches to 

aortic BP measurement have become commercially available. Several studies employing 

these approaches support the view that aortic BP is associated with cardiovascular end-organ 

measures better than or independent of brachial BP (Boutouyrie et al 1999, Covic et al 2000, 

(Safar et al 2002, Williams et al 2006, Wang et al 2009, Benetos et al 2010, Roman et al 

2010, Wohlfahrt et al 2012, Benetos et al 2012, Neisius et al 2012, Norton et al 2012, 

Regnault et al 2012) and this topic has been extensively reviewed by Roman and Devereux 

(2014). Moreover, a recent meta-analysis provides evidence to show that aortic SBP or PP is 

more strongly associated with end-organ measures than brachial SBP or PP (Kollias et al 

2016). However, the results of the relative role of aortic versus brachial BP in cardiovascular 

risk prediction are more contradictory. 

A number of studies have demonstrated that aortic BP predicts cardiovascular 

outcomes better than or independent of brachial BP (Safar et al 2002, Williams et al 2006, 

Roman et al 2007, Jankowski et al 2008, Pini et al 2008, Roman et al 2009, Wang et al 2009, 

Benetos et al 2010, Benetos et al 2012, Regnault et al 2012). These findings were reported in 

patients with end-stage renal disease (Safar et al 2002), in patients undergoing coronary 

angiography (Jankowski et al 2008), in the elderly (Pini et al 2008), and in the general 

population (Roman et al 2007, Roman et al 2009). In contrast, however, in female 

hypertensives, brachial, but not central aortic BP was reported to predict cardiovascular 

outcomes (Dart et al 2006). Moreover, in a meta-analysis of these studies (Vlachopoulos et al 

2010), the comparative ability of aortic versus brachial BP to cardiovascular risk predict did 

not achieve significance, although a trend for a better effect was noted for aortic as compared 

to brachial PP (p=0.057). This meta-analysis (Vlachopoulos et al 2010) however, excluded 

data from the The Conduit Artery Function Evaluation (CAFE) study (and obviously other later 

studies) which also reported on relations between aortic versus brachial BP and 

cardiovascular outcomes (Williams et al 2006) as well as a study conducted in Taiwan which 
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had not as yet been published at the time of the meta-analysis (Wang et al 2009) which 

similarly demonstrated an enhanced ability of aortic as compared to brachial BP in risk 

prediction. Moreover, this meta-analysis (Vlachopoulos et al 2010) was criticized for the 

inclusion of data from the study which failed to show relations between aortic BP whilst 

brachial BP did (Dart et al 2006). This criticism was based on the possibility that aortic BP 

values had not been adequately calibrated in that study (Dart et al 2006). Nevertheless, the 

Framingham Heart Study, which similarly had not been published at the time of the meta-

analysis, demonstrated that neither aortic SBP or PP, nor PP amplification offered an ability 

to risk predict beyond brachial BP (Mitchell et al 2010a). However, in the Framingham Heart 

Study, little difference between aortic and brachial BP (PP amplification) was noted across 

the adult lifespan (Mitchell et al 2010b) and hence the chances of demonstrating a better or 

independent ability of aortic BP to risk predict than brachial BP were low. Although several 

subsequent and more contemporary studies also failed to show that aortic SBP or PP adds 

much to risk prediction beyond brachial SBP or PP, at the same time these studies 

demonstrated that PP amplification does add to risk prediction (Benetos et al 2010, Regnault 

et al 2012, Benetos et al 2012, Chirinos et al 2012, Bursztyn et al 2016). Hence, it is possible 

that PP amplification rather than aortic BP is more likely to act as a useful biomarker of risk 

prediction beyond brachial BP measurements. 

Because of the inconsistencies in the ability of aortic BP and even PP amplification (in 

the Framingham Heart Study) to predict risk beyond brachial BP, the focus has shifted to the 

question of the importance of the factors which determine differences between aortic and 

brachial BP in risk prediction. As indicated in previous discussion there are two possible 

determinants of the differences in aortic and brachial SBP and PP and these include 

increases in aortic stiffness and increases in aortic backward waves. As the role of aortic 

stiffness as indexed using aortic pulse wave velocity (PWV) is now a well-established risk 

factor for cardiovascular events beyond brachial BP (Vlachopoulus et al 2010, Ben-Sehlomo 

et al 2014), further work on this topic is unlikely to significantly add to this field. However, as 

will be discussed there is still considerable uncertainty as to the role of aortic backward waves 
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in risk prediction. Hence, in the present thesis I have focused my efforts on evaluating the role 

of aortic backward waves as determinants of cardiovascular end-organ measures. 

 

1.3 Role of aortic backward versus forward waves 

 

  In the following section I will discuss the methods of assessing aortic backward wave 

function; the evidence to support a particularly important role of aortic backward waves in 

groups of African ancestry, and the evidence to either support or refute a role for aortic 

backward waves in cardiovascular risk prediction or in associations with end-organ measures 

beyond brachial BP. In doing so I will highlight the unanswered areas in the field which 

prompted me to perform the studies conducted in the present thesis. 

 

1.3.1 Approaches to assessing aortic backward wave function 

 

Figure 1.1 shows the two approaches to assessing aortic reflected wave (backward 

wave) function. In this regard, aortic reflected waves have mainly been determined by 

evaluating the extent to which aortic systolic pressure is augmented by reflected waves and is 

derived from the difference between peak systolic pressure and the inflection point on the first 

systolic shoulder of the aortic pulse. This is called augmented pressure (Pa). Augmented 

pressure is expressed as a proportion of aortic pulse pressure and this is called augmentation 

index (AIx). Augmentation index as opposed to Pa is often employed to assess reflected 

wave function in order to avoid calibration errors (errors in calibration will appear in both the 

numerator and the denominator and hence will largely be eliminated by expressing the data 

as a ratio or proportion) and to demonstrate the relative importance of the backward 

(reflected) wave versus the forward wave. The latter argument is based on the fact that the 

portion of aortic PP that is not determined by the reflected wave will obviously be determined 

by the forward wave. To avoid negative values in younger persons (when backward wave 

pressures appear as a lower value than forward wave pressures), aortic augmentation index 
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is sometimes calculated as aortic SBP/pressure at the first systolic shoulder of the aortic 

pressure wave x 100. 

In addition to the use of aortic augmentation pressures or index, aortic backward 

waves can be separated from forward waves using “wave separation analysis” to produce two 

distinct waveforms illustrated in the lower panel of Figure 1.1. From these waveforms, the 

peak pressure generated by the forward (Pf) and backward (Pb) waves can be determined 

and the relatively greater role of the aortic backward wave is sometimes identified as the ratio 

of Pb to Pf (reflected wave magnitude [RM] or the reflection coefficient). The backward and 

forward waveforms may be separated using simultaneous aortic pressure and flow 

measurements (Westerhof et al 2006). The following formula is used to calculate Pf and Pb:  

 

Pf(t)=[P(t) + Zc • F(t)]/2 

Pb(t)=[P(t) – Zc • F(t)]/2 

 

where P(t) is the measured pressured wave, F(t) is the flow wave, and Zc is characteristic 

impedance of the proximal aorta (Westerhof et al 2006). Characteristic impedance (Zc) is 

derived from the 4th to 7th harmonic (Westerhof et al 2006). In the calculation of Pb and Pf, Zc 

• F appears, where Zc is a ratio of (P/F). Therefore the product of Zc • F is independent of 

flow calibration (Westerhof et al 2006). 

As simultaneous pressure and flow waveforms are laborious to acquire and are 

therefore unlikely to ever be used for risk prediction at a primary healthcare level, “assumed” 

aortic flow waves have been employed for wave separation analysis. This approach to “wave 

separation” analysis is depicted in Figure 1.4. The aortic flow wave is assumed to either be a 

triangular waveform or to assume a single “physiological” waveform shape (Kips et al 2009, 

Westerhof et al 2006). The more readily usable approach is to assume that the flow wave is  
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Figure 1.4. Approach to separating aortic forward and backward pressure waves using an 

assumed triangular aortic flow wave. (Modified from Mitchell 2006). 
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triangular in shape. From comparisons against actual flow measurements, it was noted that 

one can approximate a flow waveform using a triangulation technique (Westerhof et al 2006). 

To apply a triangular flow waveform all that is required is the identification of the start, peak 

and end of the aortic flow (Westerhof et al 2006). As indicated in Figure 1.4, the start is at the 

beginning of the ejection period, the peak occurs at the inflection point of the first systolic 

shoulder or at 30% of the ejection time, and the end of flow is at the dicrotic notch where the 

aortic valve closes. The three points of the triangle are placed at these points (Figure 1.4) and 

the forward and backward waves determined as shown in Figure 1.4. As the aortic flow wave 

is often not a precise triangle, a better approach to wave separation analysis may be the use 

of a “physiological waveform”, which represents the average aortic flow waveform for a 

particular community (Kips et al 2009). Indeed, relationships between aortic backward waves 

derived from actual aortic flow waves and “physiological waveforms” may be stronger than 

relationships between aortic backward waves derived from actual aortic flow waves and 

“triangular waveforms” (Kips et al 2009). However, this approach assumes that every person 

has the same flow waveform shape, which is obviously not the case.  

 

1.3.2. Aortic backward waves and pulse pressure. 

 

  The debate as to the factors that contribute most to increases in aortic PP with age is 

still ongoing. In this regard, the misconception that aortic stiffness is the main determinant of 

age-related increases in aortic PP is still propagated. However, as previously indicated aortic 

pulse wave velocity, a gold-standard measure of aortic stiffness only increases to any 

significant degree from around age 50 years, whilst aortic PP begins to increase from early 

adulthood (Hodson et al 2016, McEniery et al 2008, Mitchell et al 2010b). In contrast to 

significant increases in aortic stiffness occurring from only around 50 years of age, aortic 

backward wave pressures increase from early adulthood (20-30 years of age) and closely 

track age-related increases in aortic PP (Hodson et al 2016, Namasivayam et al 2009). A 

number of studies indicate that across the adult age range, as compared to aortic forward 
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wave pressures (or incident wave pressures) reflected waves, assessed from either indices of 

pressure augmentation, or from wave separation analysis, dominate age-related increases in 

aortic pressure (McEniery et al 2008, Namasivayam et al 2009, Cecelja et al 2009, Booysen 

et al 2015) and that reflected waves account for increases in aortic pressure in hypertension 

(Sibiya et al 2015). Hence, there is significant evidence that aortic backward waves are more 

important than forward waves in contributing toward increases in aortic PP. However, the 

contribution of aortic backward waves to increases in aortic PP may be more important in 

some as compared to other ethnic groups. What is the evidence to suggest an ethnic-specific 

effect on aortic backward waves? 

It is well recognized that groups of African ancestry have a higher prevalence of salt 

sensitivity. Recently, our group have demonstrated an independent relationship between the 

ratio of urinary sodium to potassium derived from 24-hour urinary samples, and aortic 

augmented pressures or augmentation index and hence aortic pulse pressure (Redelinghuys 

et al 2010), thus suggesting a relationship between salt intake and aortic reflected wave 

function. This may explain the markedly higher aortic augmentation indexes noted in this 

ethnic group as compared to alternative populations around the world (Chirinos et al 2011).  

The possibility that there may be an ethnic-specific effect of aortic backward waves is 

underscored by the fact that unlike in may studies, aortic forward waves have been 

demonstrated to contribute far more to age-related increases in aortic PP than aortic 

backward waves in the Framingham Heart Study (Mitchell et al 2010b). However, in that 

study (Mitchell et al 2010b) a very high proportion of participants were receiving 

antihypertensive therapy and it is now well-recognized that antihypertensive agents produce 

marked decreases in aortic backward waves and the relationship between backward and 

forward wave pressures (see section1.3.6). 

 

1.3.3 Aortic pressure augmentation in risk prediction and associations with end-organ 

measures 
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Several earlier studies demonstrated that aortic backward (reflected) waves, as 

determined from indices of pressure augmentation (Pa or AIx) are associated with 

cardiovascular damage (Hashimoto et al 2007, Hashimoto et al 2006, Weber et al 2006, 

Westerbacka et al 2005, Sibiya et al 2014), and predict cardiovascular outcomes (Chirinos et 

al 2005, London et al 2001, Ueda et al 2004, Weber et al 2005) independent of brachial BP. A 

meta-analysis of these and other outcome driven studies provides clear evidence that indices 

of pressure augmentation predict outcomes beyond brachial BP (Vlachopoulos et al 2010). 

Hence, based on measures of aortic pressure augmentation, aortic reflected waves were 

considered to be an important determinant of aortic pressure effects on cardiovascular 

damage independent or beyond brachial BP. However, the Framingham Heart Study failed to 

show that indices of aortic pressure augmentation predict outcomes independent of brachial 

BP (Mitchell et al 2010). Further, all of the earlier studies suggesting an important role for 

aortic wave reflection in mediating cardiovascular damage (Hashimoto et al 2007, Hashimoto 

et al 2006, Weber et al 2006, Westerbacka et al 2005, Chirinos et al 2005, London et al 2001, 

Ueda et al 2004, Weber et al 2005) employed Pa or AIx as a measure of wave reflection. As 

shown in Figure 1.1, the obvious error which may be introduced when assessing wave 

reflection with indices of pressure augmentation is that the point where the forward wave 

peaks and the reflected wave begins is obscure. Indeed, reflected wave pressures derived 

from wave separation analysis are considerably higher than that reported from Pa. The use of 

Pa or AIx as measures of aortic wave reflection have recently been criticized (Davies et al 

2010, Cheng et al 2012, Hughes et al 2013, Fok et al 2014a, Torjesen et al 2014, Schultz et 

al 2013). In this regard, several studies suggest that many factors other than the magnitude of 

the aortic backward wave influence Pa and AIx (Cheng et al 2012, Fok et al 2014a, Torjesen 

et al 2014, Schultz et al 2013) and hence these measures may be poor indices of wave 

reflection. Indeed, there may be a weak relationship between the magnitude of the reflected 

wave and Pa or AIx with increases in aortic reservoir function, the timing or magnitude of the 

Pf or incident (Pi) wave pressures (aortic PP- [Pressure at the first systolic shoulder of the 

aortic pressure wave-DBP]) (Figure 1.1), and left ventricular systolic function playing a more 



- 23 - 
 

  

important role than wave reflection in contributing to variations in Pa and AIx (Davies et al 

2010, Cheng et al 2012, Hughes et al 2013, Fok et al 2014a, Torjesen et al 2014, Schultz et 

al 2013). Furthermore, there is some evidence that whilst reflected wave magnitude derived 

from wave separation analysis is independently associated with cardiovascular events, 

augmentation index is not (Chirinos et al 2012) and that adjustments for augmented 

pressures and augmentation index do not influence the independent relationship between 

wave-separation analysis-derived backward wave pressures and cardiovascular events 

(Wang et al 2010). However, both augmentation index and the reflected wave magnitude 

have also been demonstrated to independently predict cardiovascular events (Weber et al 

2012). Hence, there is considerable controversy as to whether relations between Pa or AIx 

and end-organ measures or cardiovascular outcomes reflect an impact of backward waves or 

alternative factors that influence Pa or AIx.   

An impact of gender on Pa or AIx is well-recognised. In this regard, women have a 

higher AIx than men (Hughes et al 2013, Mitchell et al 2010b), but these differences may be 

attributed to factors unrelated to the magnitude of aortic wave reflection (Hughes et al 2013, 

Mitchell et al 2010a). Indeed, gender-specific effects on AIx in women of the Framingham 

Heart Study were attributed to increases in forward wave peak width, slope of the backward 

pressure wave, and forward wave amplitude, but not backward wave amplitude (Torjesen et 

al 2014). Whether these other factors (forward wave peak width, slope of the backward 

pressure wave, and forward wave amplitude) contribute as much as backward wave 

amplitude to cardiovascular damage is unknown. Hence, the impact of AIx on cardiovascular 

damage in women may not be as strong as that in men. Indeed, while AIx predicts outcomes 

in men, similar relationships may be diminished in women (Wang et al 2010). Nevertheless, in 

that study (Wang et al 2010) unadjusted relationships between AIx and end-organ changes 

were no different in women as compared to men. However, multivariate adjusted 

relationships between AIx and end-organ changes were not reported on (Wang et al 2010). 

To clarify whether gender influences relationships between AIx and cardiovascular end-organ 

changes, in the present thesis I aimed to compare the association between AIx and left 
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ventricular mass index (LVMI) in men and women in a large, community-based sample and to 

evaluate whether these effects are attributed to differences in backward wave pressures 

effects. These data are described in chapters 2 and 3 of the present thesis and have been 

published in the journals Hypertension Research (Sibiya et al 2014) and in-part in the journal 

Hypertension (Booysen et al 2015). 

 

1.3.4 Relative contribution of aortic backward versus forward waves as determined using 

wave separation analysis to cardiovascular risk and end-organ measures. 

 

As there is significant evidence to suggest that the use of aortic Pa or AIx are 

inadequate indices of aortic backward wave function, the question arises as to the relative 

contribution of aortic forward and backward waves, as determined using wave separation 

analysis, to cardiovascular end-organ measures and events. In the past few years, several 

studies have described an association of reflected waves (Pb or the reflected wave index-RI) 

derived from wave separation analysis with end-organ changes (Wang et al 2010, Weber et 

al 2012) or an ability of Pb or RI (or reflected wave magnitude-RM) to risk predict beyond 

brachial BP (Wang et al 2010, Weber et al 2012, Chirinos et al 2012, Zamani et al 2014). In 

this regard, in 1272 normotensive and untreated hypertensives, over an average of 15 years 

of follow-up, an increased wave reflection predicted cardiovascular mortality (n=64 events) in 

both men and women (Wang et al 2010). However, the extent to which the forward wave also 

contributed to cardiovascular end-organ changes and events was uncertain. In this regard, 

these authors (Wang et al 2010) showed that forward wave pressures were also predictive of 

events and similar relations between aortic forward wave pressures and end-organ measures 

as those noted between aortic backward wave pressures and end-organ measures were 

noted, but they failed to adjust for confounders or brachial BP. Further, in 725 patients 

undergoing coronary angiography, over an average of 3.83 years of follow-up, backward, but 

not forward wave pressures independently predicted cardiovascular events (n=139 events) 

(Weber et al 2012). However, again the extent to which the forward wave also contributed to 
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cardiovascular end-organ changes was uncertain (Weber et al 2012). In this regard, these 

authors (Weber et al 2012) also showed equivalent relations between aortic forward wave 

pressures and end-organ measures as those noted between aortic backward wave pressures 

and end-organ measures. In addition, in 5960 participants of a multi-ethnic community 

sample followed for an average of 7.61 years, the reflective wave magnitude was predictive of 

cardiovascular events and heart failure (n=281 events) (Chirinos et al 2012), but in this study 

it was uncertain as to whether the forward wave also predicted events. Nevertheless, in this 

same multi ethnic study, analysis of a much larger cohort of 6814 participants followed for 9.8 

years, the backward, but not the forward wave was independently associated with all-cause 

mortality (n=617 events) (Zamani et al 2014). In contrast to the ability of several groups to 

show independent relations between aortic backward waves and outcomes, neither backward 

wave pressures nor the reflected wave index were independently associated with outcomes 

in the Framingham Heart study (Cooper et al 2014). Nevertheless, as pointed out in previous 

sections, a high proportion of the participants of the Framingham Study were receiving 

antihypertensive therapy, and as will be discussed in section 1.3.6, antihypertensive agents 

reduce aortic backward wave pressures. Consequently, aortic backward waves in the 

Framingham Heart Study failed to contribute as much as aortic forward waves to age-related 

increases in aortic PP as did aortic forward wave pressures (Mitchell et al 2010b). 

In summary, despite the evidence in favor of aortic backward waves derived from 

wave separation analysis contributing to end-organ changes and cardiovascular risk (Wang et 

al 2010, Weber et al 2012, Chirinos et al 2012, Zamani et al 2014), whether forward wave 

pressures also associate with cardiovascular damage independent of brachial BP, and the 

relative contribution of forward wave and backward wave pressures to the brachial BP-

independent relationship between PPc and cardiovascular damage is uncertain. This is 

particularly important for relations between the backward and forward wave components of 

aortic pulse pressure and end-organ measures. As highlighted above, the two studies which 

previously described these relations (Wang et al 2010, Weber et al 2012) failed to provide 

convincing evidence of a stronger brachial BP-independent relationship between aortic 
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backward as opposed to forward wave pressures and end-organ measures. Hence, as part of 

the present thesis I aimed to assess in a community of African ancestry whether brachial BP-

independent associations between Pb, Pf or both and end-organ measures or damage occur 

and whether brachial BP-independent associations between PPc and cardiovascular end-

organ measures or damage are accounted for by an impact of Pb, Pf or both. These data are 

described in chapter 4 of the present thesis and have been published in the Journal of 

Hypertension (Sibiya et al 2015). 

 

1.3.5 Relative contribution of aortic backward versus forward waves to the impact of PP 

amplification on cardiovascular risk. 

 

 As indicated in the aforementioned discussion, PP amplification is determined by a 

greater stiffness of peripheral arteries as compared to the central aorta. However, as also 

indicated in previous sections the age-associated decline in PP amplification that occurs in 

most individuals is attributed to two factors. These include an increased aortic stiffness so 

that the aortic stiffness approximates or even becomes greater than peripheral arterial 

stiffness. The consequence is that whilst aortic PP increases markedly with age, peripheral 

arterial PP increases to a lesser extent for a given increase in age. In addition, age-related 

increases in aortic backward wave pressures occur, and these increases are reflected mainly 

in increases in the peak of the aortic pulse, but do not contribute as much to the peak of the 

peripheral arterial pulse (see section 1.2.3 for explanation). Importantly, as previously 

indicated, because aortic backward wave pressures increase markedly from young 

adulthood, whilst aortic stiffness only begins to significantly increase from 50-60 years of age, 

age-related decreases in PP amplification are mainly attributed to increases in aortic 

backward wave pressures (Hodson et al 2016). 

As summarized in section 1.2.4 of the present chapter, PP amplification has on 

several occasions been shown to predict cardiovascular risk (Benetos et al 2010, Regnault et 

al 2012, Benetos et al 2012, Chirinos et al 2012, Bursztyn et al 2016). Importantly, these 
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associations have frequently been demonstrated in studies where aortic PP was imputed 

from simple clinical measures (Benetos et al 2010, Bursztyn et al 2016). Hence, PP 

amplification can be determined using approaches which cost little and hence are ideal for 

resource-limited settings. Because age-related increases in aortic backward waves are 

largely responsible for age-related decreases in PP amplification, we hypothesize that the 

mechanism responsible for associations between PP amplification and cardiovascular risk is 

mainly attributed to age-related increases in aortic backward wave pressures. However, no 

study has assessed whether increases in aortic stiffness or backward waves account for the 

brachial BP-independent association between PP amplification and cardiovascular end-organ 

changes. As one of the key end-organ changes that occur in response to aortic 

haemodynamic loads is left ventricular hypertrophy (LVH), as part of the present thesis I 

therefore aimed to determine first whether PP amplification adds to brachial BP in 

associations with LV mass index (LVMI) and LVH in a large randomly selected community-

based sample of largely young-to-middle aged participants. I further aimed to assess whether 

this relationship can be accounted for either by aortic stiffness as indexed by PWV, and/or by 

aortic backward wave function. These data are shown in chapter 4 of the present thesis and 

have been accepted for publication in the Journal of the American Society of Hypertension 

(Sibiya et al 2017). 

 

1.3.6 Antihypertensive effects on aortic forward and backward waves and PP amplification 

 

 As summarized in the preceding discussion there is still considerable uncertainty as 

to the role of PP amplification and aortic backward waves in mediating cardiovascular 

damage, whilst the gold-standard measure of aortic stiffness, PWV, is now recognized as a 

measure that will enhance risk prediction beyond brachial BP (Vlachopoulus et al 2010, Ben-

Shlomo et al 2014). It is therefore important to understand whether current antihypertensive 

therapy modifies aortic stiffness and hence forward wave pressures, aortic backward wave 

pressures and/or PP amplification. Several antihypertensive drug classes have been 
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demonstrated to reduce aortic PP in-part through decreases in wave reflection, as indexed 

using Pa or AIx (Agabiti-Rosei et al 2007, Manisty et al 2012, Williams et al 2006, Miyashita 

et al 2010, Jiang 2007, Vinereanu et al 2014, Agnoletti et al 2013). Whether antihypertensive 

effects on aortic PP are mainly through reductions in Pb is nevertheless uncertain with a 

meta-analysis (Manisty et al 2012) and a large recent study (Agnoletti et al 2013) 

demonstrating little effect on AIx. In this regard vasodilator agents may also reduce Pf by 

decreasing distending pressures and hence aortic stiffness without altering vascular structure 

(McDonald’s 2011). Moreover, diuretic agents may decrease Pf by reducing stroke volume. 

Thus, decreases in Pf rather than Pb may be the main mechanism of antihypertensive drug 

effects on aortic PP. However, if aortic backward waves and consequent decreases in PP 

amplification are central to mediating cardiovascular damage, it is important to first identify 

the role of these indices of aortic function and then to detect those antihypertensive agents 

that best modify these indices. Hence, in the present thesis I focused my efforts on 

contributing to our understanding of the role of aortic backward waves and PP amplification 

on end-organ measures. 
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1.4 Aims 

 

In the present thesis, I therefore aimed to: 

 

1) compare the association between AIx and left ventricular mass index (LVMI) in men 

and women in a large, community-based sample and to evaluate whether these effects are 

attributed to differences in backward wave pressures effects. These data are described in 

chapters 2 and 3 of the present thesis and have been published in the journals Hypertension 

Research (Sibiya et al 2014) and in-part in the journal Hypertension (Booysen et al 2015). 

2) assess in a community of African ancestry whether brachial BP-independent 

associations between Pb, Pf or both and end-organ measures or damage occur and whether 

brachial BP-independent associations between PPc and cardiovascular end-organ measures 

or damage are accounted for by an impact of Pb, Pf or both. These data are described in 

chapter 3 of the present thesis and have been published in the Journal of Hypertension 

(Sibiya et al 2015). 

3) whether PP amplification adds to brachial BP in associations with LV mass index 

(LVMI) and LVH in a large randomly selected community-based sample of largely young-to-

middle aged participants. I further aimed to assess whether this relationship can be 

accounted for either by aortic stiffness as indexed by PWV, and/or by aortic backward wave 

function. These data are shown in chapter 4 of the present thesis and have been accepted 

for publication in the Journal of the American Society of Hypertension (Sibiya et al 2017). 
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CHAPTER 2 

 

 

Gender-Specific Contribution of Aortic Augmentation Index to Variations in Left 

Ventricular Mass Index in a Community Sample of African Ancestry. 

 

This chapter has been published as follows 

 

Moekanyi J Sibiya, Gavin R Norton, Bryan Hodson, Michelle Redelinghuys, Muzi J Maseko, 

Olebogeng HI Majane, Elena Libhaber, Angela J Woodiwiss. Gender-specific contribution of 

aortic augmentation index to variations in left ventricular mass index in a community sample 

of African ancestry. Hypertension Research 2014;37:1021-1027 
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2.1 Abstract 

 

Although indices of aortic augmentation derived from radial applanation tonometry are 

independently associated with adverse cardiovascular effects, whether these relationships 

are influenced by gender is uncertain. I compared the brachial BP-independent contribution 

of augmentation index (AIx) to variations in left ventricular mass index (LVMI) in a community 

sample of 808 participants, 283 of whom were men. Aortic haemodynamics were determined 

using radial applanation tonometry and SphygmoCor software and LVMI from 

echocardiography. In men, both AIx derived from aortic augmentation pressure/central aortic 

pulse pressure (AP/PPc) (partial r=0.17, β-coefficient±SEM=0.55±0.20, p<0.01) and AIx 

derived from the second peak/first peak (P2/P1) of the aortic pulse wave (partial r=0.21, β-

coefficient±SEM=0.42±0.12, p<0.0005) were associated with LVM indexed to body surface 

area (LVMI-BSA). In contrast, in women neither AIx derived from AP/PPc (partial r=-0.08, β-

coefficient±SEM=-0.20±0.11, p=0.08) nor AIx derived from P2/P1 (partial r=-0.06, β-

coefficient±SEM=-0.07±0.05, p=0.17) were associated with LVMI-BSA. Both the strength of 

the correlations (p<0.001 and p<0.0005 with z-statistics) and the slope of the AIx-LVMI 

relationships (p=0.001 and p<0.0005) were greater in men as compared to women. The lack 

of relationship between AIx and LVMI was noted in both premenopausal (n=285)(AP/PPc vs 

LVMI-BSA, partial r=0.01, p=0.95, P2/P1 vs LVMI-BSA, partial r=0.02, p=0.77), and 

postmenopausal (n=240)(AP/PPc vs LVMI-BSA, partial r=-0.06, p=0.37, P2/P1 vs LVMI-BSA, 

partial r=-0.03, p=0.64) women. Similar differences were noted in the relationships between 

AIx and LVM indexed to height2.7 in men and women. In conclusion, radial applanation 

tonometry-derived AIx may account for less of the variation in end organ changes in women 

as compared to men. 

 

Key words: Central aortic augmented index, left ventricular mass index, gender. 
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2.2 Introduction 

 

  Although pulse pressure (PP) measured at the brachial artery is closely correlated 

with central PP (PPc), PPc may be considerably lower than in brachial arteries (Aviolo et al 

2009, Agabiti-Rosei et al 2007). The factors that determine aortic PP differ markedly from 

those that determine brachial PP. In this regard, aortic PP is augmented by changes in aortic 

reservoir function, the timing or magnitude of both the forward and reflected waves, and left 

ventricular systolic function (Aviolo et al 2009, Agabiti-Rosei et al 2007, Davies et al 2010, 

Cheng et al 2012, Hughes et al 2013). Several studies have demonstrated that indices of 

aortic pressure augmentation predict cardiovascular events (London et al 2001, Ueda et al 

2004, Weber et al 2005, Chirinos et al 2005, Wang et al 2010, Chirinos et al 2012, 

Vlachopoulos et al 2010), or are associated with end-organ damage independent of or better 

than brachial blood pressure (BP) (Hashimoto et al 2006, Hashimoto et al 2007, Weber et al 

2006, Westerbacka et al 2005). As indices of aortic pressure augmentation may be derived 

from simple, and highly reproducible tonometric assessments of the radial artery, these 

indices are attractive additions to routine risk prediction. However, some studies 

(Vlachopoulos et al 2010, Mitchell et al 2010a, Hayashi et al 2014) including the Framingham 

Heart Study (Mitchell et al 2010a), have failed to show similar relations between indices of 

aortic augmentation and cardiovascular outcomes. The factors that determine whether 

indices of aortic pressure augmentation predict cardiovascular damage therefore require 

identification. 

 The impact of gender on aortic augmentation index (AIx) (augmentation 

pressure/aortic pulse pressure), is well-recognised. In this regard, women may have a higher 

AIx than men (Hughes et al 2013, Mitchell et al 2010b), but these differences may be 

attributed to factors unrelated to aortic wave reflection (Hughes et al 2013). Hence, the 

impact of AIx on cardiovascular damage in women may not be as strong as that in men. 

Indeed, while AIx predicts outcomes in men, similar relationships may be diminished in 

women (Wang et al 2010). Nevertheless, in that study (Wang et al 2010) unadjusted 
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relationships between AIx and end-organ changes were no different in women as compared 

to men. However, multivariate adjusted relationships between AIx and end-organ changes 

were not reported on (Wang et al 2010). To clarify whether gender influences relationships 

between AIx and cardiovascular end-organ changes, the aim of the current chapter is to 

compare the association between AIx and left ventricular mass index (LVMI) in men and 

women in a large, community-based sample. In this regard, LVMI and the regression thereof 

with antihypertensive therapy are well-recognised independent predictors of cardiovascular 

outcomes (Casale et al 1986, Levy et al 1990, Koren et al 1991, Levy et al 1994, Verdecchia 

et al 1996, Ghali et al 1998, Devereux et al 2004, Okin et al 2004). 

 

2.3 Methods 

 

2.3.1 Study group. 

 

The present study was conducted according to the principles outlined in the Helsinki 

declaration. The Committee for Research on Human Subjects of the University of the 

Witwatersrand approved the protocol (approval number: M02-04-72 and renewed as M07-04-

69 and M12-04-108). Participants gave informed, written consent. The present study design 

has previously been described (Norton et al 2008, Woodiwiss et al 2009, Redelinghuys et al 

2010). Briefly, 808 participants from randomly recruited families of black African descent 

(Nguni and Sotho chiefdoms) with siblings older than 16 years from the South West 

Township of Johannesburg, South Africa, and with central haemodynamic measurements 

and high quality echocardiograms were studied. 

 

2.3.2 Clinical, demographic and anthropometric measurements. 

 

A standardized questionnaire was administered to obtain demographic and clinical 

data (Norton et al 2008, Woodiwiss et al 2009, Redelinghuys et al 2010). Height and weight 
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were measured using standard approaches and participants were identified as being 

overweight if their body mass index (BMI) was ≥25 kg/m2 and obese if their BMI was ≥30 

kg/m2. High quality BP measurements were obtained by a trained nurse-technician using a 

standard mercury sphygmomanometer (Woodiwiss et al 2009). Korotkoff phases I and V 

were employed to identify systolic and diastolic BP respectively and care was taken to avoid 

auscultatory gaps. Hypertension was defined as a mean systolic/diastolic BP≥140/90 mm Hg 

or the use of antihypertensive medication. Laboratory blood tests of renal function, liver 

function, blood glucose, haematological parameters, and percentage glycated haemoglobin 

(HbA1C) were performed. Diabetes mellitus (DM) or abnormal blood glucose control was 

defined as the use of insulin or oral hypoglycaemic agents or an HbA1C value greater than 

6.1%. Menopause was confirmed with measurements of follicle stimulating hormone 

concentrations. 

 

2.3.4 Pulse wave analysis. 

 

Central aortic systolic BP (SBPc), PPc and AIx were estimated using techniques 

previously described (Redelinghuys et al 2010, Norton et al 2012). Briefly, after participants 

had rested for 15 minutes in the supine position, arterial waveforms at the radial (dominant 

arm) pulse were recorded by applanation tonometry during an 8-second period using a high-

fidelity SPC-301 micromanometer (Millar Instrument, Inc., Houston, Texas) interfaced with a 

computer employing SphygmoCor, version 6.21 software (AtCor Medical Pty. Ltd., West 

Ryde, New South Wales, Australia). The pulse wave was calibrated by manual measurement 

(auscultation) of brachial BP taken immediately before the recordings. The peripheral 

pressure waveform was converted into a central aortic waveform using a validated 

generalized transfer function incorporated in SphymoCor software. Recordings where the 

systolic or diastolic variability of consecutive waveforms exceeded 5% or the amplitude of the 

pulse wave signal was less than 80 mV were discarded. All measurements were made by a 

single experienced trained technician unaware of the clinical history of the participants and 
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with a low degree of intra-observer variability and a high degree of reproducibility 

(Redelinghuys et al 2010, Norton et al 2012). Central aortic PP was determined as the 

difference between SBPc and diastolic BP (DBP). Augmented pressure (AP) was determined 

using SphygmoCor software and identified as the difference between PPc and the first 

systolic shoulder of the aortic pulse wave.  Aortic AIx was determined as AP/aortic PP 

(AP/PPc) expressed as a percentage. To avoid obtaining negative aortic AIx values in young 

participants, AIx was also determined as the pressure at the second systolic peak of the 

aortic pulse wave/the pressure at the first systolic peak of the aortic pulse wave (P2/P1) 

expressed as a percentage (Chirinos et al 2011). 

 

2.3.5 Echocardiography. 

 

Left ventricular end diastolic internal diameter and septal (anterior wall) and posterior 

wall thickness were determined from transthoracic two-dimensional targeted M-mode 

echocardiographic images obtained in the parasternal long-axis as previously described 

(Norton et al 2008, Woodiwiss et al 2009, Norton et al 2012). Variables were analysed 

according to the American Society of Echocardiography convention (Sahn et al 1978). All 

measurements were recorded and analysed off-line by experienced investigators (CDL and 

AJW) who were unaware of the clinical data of the participants and whom had a low degree 

of inter- and intra-observer variability (Norton et al 2008, Woodiwiss et al 2009, Norton et al 

2012). Only M-mode images of acceptable quality were analysed (see Figure 2.1). In this 

regard, acceptable quality was considered to exist when appropriate visualization of both the 

right and the left septal surfaces occurred and where the endocardial surface of the septal 

and posterior wall were clearly visible when imaging at the optimal angle of incidence 

(perpendicular to the posterior wall) and close to the mitral leaflets. Left ventricular mass 

(LVM) was determined using a standard formula (Devereux et al 1986) and indexed (LVMI) 

to height2.7 (LVMI-ht2.7) and to body surface area (LVMI-BSA). Left ventricular relative wall 

thickness (RWT) was defined as (LV anterior + posterior wall thickness at end diastole)/LV  
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Figure 2.1. Example of an M-mode echocardiographic image obtained in the parasternal 

long-axis of the heart. M-mode images were used to determine left ventricular end diastolic 

internal diameter and septal and posterior wall thickness dimensions. 
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end diastolic diameter. LVH was identified as an LVMI-BSA>95 g/m2 for women and >115 

g/m2 for men. Concentric LV remodelling was identified as a RWT ≥0.42, and eccentric LVH 

as a RWT<0.42 with an increased LVMI-BSA.    

 

2.3.6 Statistical analysis. 

 

For database management and statistical analysis, SAS software, version 9.1 (SAS 

Institute Inc., Cary, NC) was employed. To determine relationships between PPc or AIx and 

LVMI, multivariate linear regression analysis was performed. To determine relationships 

between AIx and concentric LV remodelling, LVH or eccentric LVH in sex-specific groups, 

multivariate logistic regression analysis was performed. In multivariate models adjustments 

were made for the impact of brachial BP (PP, systolic BP [SBP] or mean arterial pressure 

[MAP]), age, body weight, body height (for LVMI-BSA), the presence of diabetes mellitus or 

an HbA1C>6.1%, treatment for hypertension, regular tobacco use, and regular alcohol intake. 

To determine probability values, further adjustments for non-independence of family 

members was performed using non-linear regression analysis (mixed procedure as defined 

in the SAS package). To ensure that relationships occurred independent of the use of 

antihypertensive therapy, sensitivity analysis was conducted in participants not receiving 

antihypertensive therapy. Regression coefficients were compared with z statistics. 

 

2.4 Results 

 

2.4.1 Characteristics of the participants. 

 

The clinical and demographic characteristics of women and men are shown in Table 

2.1. 1.9% of participants had a history of cardiovascular disease. Importantly, 45.2% of 

participants with hypertension were not receiving therapy. Moreover, 35.4% of all participants 

and 28.0% of participants not receiving antihypertensive therapy had uncontrolled 
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hypertension. 19.1% of participants had concentric LV remodelling, and 17.3% had LVH 

(7.1% concentric and 10.2% eccentric LVH). More women than men had concentric LV 

remodelling, but a similar proportion had LVH, with no differences noted in the proportion 

with concentric and eccentric LVH (Table 2.1). Women had a higher AIx than men, but PPc 

was similar in men and women (Table 2.1). 

 

2.4.2 Relationships between aortic BP and LVMI independent of brachial BP in gender-

specific groups. 

 

Aortic pulse pressure (PPc) was related to LVMI independent of MAP in both men 

and women (Table 2.2, Figure 2.2). However, the strength of the relations (partial r) was 

greater in men than in women (Table 2.2). In men, but not in women PPc was related to  
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Table 2.1. Characteristics of the study sample. 

              Men (n=283)     Women (n=525)     p-value 

_________________________________________________________________________ 

Age (years)                 43.0±19.0    45.3±17.5           =0.09 

Body mass index (kg/m2)                        25.9±16.1    32.6±13.6           <0.0001 

Body weight (kg)              71.9±17.6    80.2±29.2           <0.0001 

Body height (m)              168.5±8.7    157.4±7.1           <0.0001 

% obese                 17.7         56.6           <0.0001 

Regular tobacco (% subjects)                 33.6         4.8           <0.0001 

Regular alcohol (% subjects)            33.2         12.4           <0.0001 

% with DM or HbA1C>6.1%                               21.2         28.4           <0.05 

% women postmenopausal        -         45.7                - 

% hypertensive      40.3         45.3             =0.17 

% treated for hypertension     15.6         30.7           <0.0001 

% hypertensives controlled to target BP#        28.1         39.1           <0.05 

% of all with uncontrolled BP##               38.9         33.5           =0.14 

Pulse rate (beats/min)                                      62±12                 68±11           <0.0001 

Conventional SBP/DBP (mm Hg)                131±22/85±13   128±23/83±13         =0.07/<0.05 

Conventional pulse pressure (mm Hg)          45.9±18.0            44.5±15.3           =0.26      

Central SBP (mm Hg)                                    121±22                 120±23           =0.29 

Central pulse pressure (PPc) (mm Hg)         35.9±17.1              35.7±14.1           =0.90           

Aortic augmentation index (AP/PPc)† (%)     23.9±12.8              28.8±12.5           <0.0001 

Aortic augmentation index (P2/P1)†† (%)        135±22                  145±25           <0.0001   

Left ventricular mass index (g/m2.7)              40.4±14.8               42.3±15.1           =0.07 

Left ventricular mass index (g/m2)                82.8±34.4                72.1±27.7           <0.0001 

Left ventricular relative wall thickness          0.38±0.08                0.39±0.08           <0.05 

Concentric LV remodelling (%)                        14.8                        21.3            <0.05 

Concentric LV hypertrophy (%)                        7.4                           6.9            =0.77 

Eccentric LV hypertrophy (%)                          8.5                          11.1            =0.25 

__________________________________________________________________________  

Data are expressed as mean±SD or proportions. Data were compared with Chi-squared 

analysis or a Student’s unpaired t-test. DM, diabetes mellitus; HbA1C, glycosylated 

haemoglobin; BP, blood pressure; SBP, systolic BP; DBP, diastolic BP; AP, aortic 

augmentation pressure; LV, left ventricular. †(Augmentation pressure/aortic pulse pressure) x 

100, ††(Pressure at the second systolic peak of the aortic pulse wave/Pressure at the first 

systolic peak of the aortic pulse wave) x 100. #indicates conventional SBP/DBP<140/90 mm 

Hg.  ##indicates conventional SBP/DBP≥140/90 mm Hg. 
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Table 2.2. Brachial blood pressure-independent relations between central aortic pulse 

pressure (PPc) and left ventricular mass (LVM) index in men and women from a community 

sample. 

 

          Men      Women 

        Adjustments      n= partial r* (95% CI)  p-value    n=   partial r* (95% CI)  p-value 

__________________________________________________________________________ 

PPc vs LVM indexed to body surface area 

      * + brachial SBP        283   0.25 (0.14 to 0.36) <0.0001   525  0.05* (-0.03 to 0.14) =0.23 

      * + brachial PP          283   0.14 (0.02 to 0.25) <0.05   525  0.02 (-0.07 to 0.10)  =0.71 

      * + brachial MAP     283   0.27 (0.16 to 0.38) <0.0001   525 0.13* (0.04 to 0.21) <0.005 

PPc vs LVM indexed to height2.7 

      * + brachial SBP        283   0.27 (0.16 to 0.38) <0.0001   525  0.06* (-0.03 to 0.14) =0.18 

      * + brachial PP         283   0.18 (0.06 to 0.29) <0.005   525  0.02* (-0.07 to 0.11) =0.65 

      * + brachial MAP    283   0.29 (0.18 to 0.39) <0.0001   525  0.11* (0.02 to 0.19) <0.05 

__________________________________________________________________________ 

SBP, systolic blood pressure; PP, pulse pressure, OR, odds ratio. *Adjustments are for age, 

body weight, height (for LVM indexed for BSA), the presence of diabetes mellitus or an 

HbA1c>6.1%, pulse rate, treatment for hypertension (in all participants), regular tobacco use, 

and regular alcohol intake and brachial BP as indicated. Probability values are derived after 

further adjustments for the non-independence of family members. *p<0.05 for comparison of 

r values between men and women using z-statistics. 
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Figure 2.2. Multivariate adjusted left ventricular mass indexed for body surface area (BSA) 

(LVMI in g/m2) or height2.7 (LVMI in g/m2.7) across quartiles of central aortic pulse pressure in 

men and women from a community sample. Adjustments are for age, mean arterial pressure, 

body weight, body height (for LVM indexed for BSA), the presence of diabetes mellitus or an 

HbA1C>6.1%, pulse rate, treatment for hypertension, regular tobacco use, and regular alcohol 

intake. Probability values are derived after further adjustments for the non-independence of 

family members. p for trend effects: LVM indexed for BSA; men, p<0.0001, women, p<0.005; 

, LVM indexed for height2.7; men, p<0.0001, women, p<0.05. See Table 2 for comparison of 

relationships between men and women. *p<0.05, **p<0.01, ***p<0.0001 vs quartile1, †p<0.01, 

††p<0.0005 vs quartile 2. 
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LVMI independent of confounders and brachial PP and SBP (Table 2.2). However, no 

differences were noted in the strength (partial r values, Table 2, p=0.09 using z-statistics) or 

slopes (β-coefficients, p=0.06) of the brachial PP adjusted PPc-LVMI-BSA relations in men 

versus women. In contrast to the brachial BP-independent relations between PPc and LVMI 

in men, SBPc was not related to LVMI-BSA independent of brachial SBP or PP in men 

(p=0.36-0.38) or brachial SBP in women (p=0.43). Moreover, SBPc was not related to LVMI-

ht2.7 independent of brachial SBP or PP in men (p=0.07-0.73) or brachial SBP in women 

(p=0.68). These brachial BP-independent relations between PPc or SBPc and LVMI were 

largely reproduced in participants not receiving antihypertensive therapy and in pre- and 

post-menopausal women (data not shown). 

 

2.4.3 Gender-specific relationships between AIx and LVMI. 

 

On bivariate analysis, AIx was associated with LVMI in both men (p<0.0001 for all) 

and women (p<0.05 to p<0.0001). However, the relationship between AIx (P2/P1) and LVM 

indexed to BSA was stronger in men (r=0.28, 95% CI=0.16 to 0.38, p<0.0001) as compared 

to women (r=0.11, 95% CI=0.02 to 0.19, p<0.05)(p<0.05 for comparison of relationships 

using z-statistics). Furthermore, men showed a trend for a stronger AIx (AP/PPc)-LVM 

indexed for BSA relationship (p=0.05 for comparison of relationships) and for a stronger AIx 

(P2/P1)-LVM indexed for height2.7 relationship (p=0.05 for comparison of relationships) than 

women. 

On multivariate regression analysis independent of MAP and alternative confounders, 

AIx was associated with LVMI in men, but not in women (Table 2.3, Figure 2.3). Moreover, 

the strength (partial r values) and the slope (β-coefficients) of the relationships between AIx 

and LVMI were greater in men as compared to women (Table 2.3). Independent relationships 

between AIx and LVMI were noted in neither pre-, nor postmenopausal women (Table 2.3).  
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Table 2.3. Brachial blood pressure-independent relations between aortic augmentation 

indices and left ventricular mass indexed to body surface area (LVMI-BSA) or height2.7 (LVMI-

ht2.7) in men and in women from a community sample. 

 

                n=     partial r (95% CI)*    β-coefficient±SEM   p-value    

__________________________________________________________________________ 

Augmentation index (AP/PPc)† vs LVMI-BSA 

      Men             283    0.17‡ (0.05 to 0.28)        0.55±0.20#  <0.01      

      Women             525   -0.08  (-0.16 to 0.01)      -0.20±0.11  =0.08      

      Premenopausal women           285    0.01  (-0.11 to 0.12)       0.01±0.14  =0.95      

      Postmenopausal women           240   -0.06  (-0.19 to 0.07)      -0.18±0.21  =0.37      

Augmentation index (P2/P1)†† vs LVMI-BSA 

      Men             283    0.21‡ (0.10 to 0.32)        0.42±0.12#  <0.0005      

      Women             525   -0.06  (-0.14 to 0.03)      -0.07±0.05  =0.17      

      Premenopausal women           285    0.02  (-0.10 to 0.14)       0.02±0.08  =0.77      

      Postmenopausal women            240   -0.03  (-0.16 to 0.10)      -0.04±0.09  =0.64      

Augmentation index (AP/PPc)† vs LVMI-ht2.7 

      Men             283    0.19‡ (0.07 to 0.30)       0.25±0.08#  <0.005      

      Women             525   -0.04  (-0.13 to 0.04)     -0.05±0.06  =0.34      

      Premenopausal women           285    0.09  (-0.02 to 0.21)      0.09±0.06  =0.12      

      Postmenopausal women           240   -0.09  (-0.21 to 0.04)     -0.15±0.12  =0.19      

Augmentation index (P2/P1)†† vs LVMI-ht2.7 

      Men             283    0.23‡ (0.11 to 0.34)        0.18±0.05#  =0.0001      

      Women             525   -0.04  (-0.13 to 0.04)      -0.03±0.03  =0.32      

      Premenopausal women           285    0.09  (-0.02 to 0.21)       0.05±0.03  =0.12      

      Postmenopausal women           240   -0.07  (-0.20 to 0.05)      -0.06±0.05  =0.26      

__________________________________________________________________________ 

*Adjustments are for age, mean arterial pressure, body weight, height (for LVM indexed for 

BSA), the presence of diabetes mellitus or an HbA1C>6.1%, pulse rate, treatment for 

hypertension, regular tobacco use, and regular alcohol intake. Probability values are derived 

after further adjustments for the non-independence of family members. †(Augmentation 

pressure/aortic pulse pressure) x 100, ††(Pressure at the second systolic peak of the aortic 

pulse wave/Pressure at the first systolic peak of the aortic pulse wave) x 100. ‡p<0.005 vs 

partial r value for women. #p<0.005 vs β-coefficient for women. 
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Figure 2.3. Multivariate adjusted left ventricular mass indexed for body surface area (BSA) 

(LVMI in g/m2) or height2.7 (LVMI in g/m2.7) across quartiles of aortic augmentation index 

([Pressure at the second systolic peak of the aortic pulse wave/Pressure at the first systolic 

peak of the aortic pulse wave] x 100) in men and women from a community sample. 

Adjustments are for age, mean arterial pressure, body weight, body height (for LVM indexed 

for BSA), the presence of diabetes mellitus or an HbA1C>6.1%, pulse rate, treatment for 

hypertension, regular tobacco use, and regular alcohol intake. Probability values are derived 

after further adjustments for the non-independence of family members. p for trend effects: 

LVM indexed for BSA; men, p<0.0005, women, p=0.17; , LVM indexed for height2.7; men, 

p=0.0001, women, p=0.32. See Table 2 for comparison of relationships between men and 

women. *p<0.001, **p<0.0005 vs quartile1, †p<0.05, ††p<0.005 vs quartile 2, #p<0.05, 

##p<0.01 vs quartile 3. 
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In participants not receiving antihypertensive therapy, an independent relationship between 

AIx (P2/P1) and LVMI-BSA was noted in men (n=239, partial r=0.16, p<0.05), whilst no 

relationship between AIx and LVMI-BSA was noted in women (n=364, partial r=-0.02, 

p=0.76)(p<0.05 for comparison using z-statistics). Moreover, in participants not receiving 

antihypertensive therapy, a trend for an independent relationship between AIx (P2/P1) and 

LVM indexed for height2.7 was noted in men (partial r=0.13, p=0.05), whilst no relationship 

between AIx and LVM indexed for height2.7 was noted in women (partial r=-0.003, p=0.96). 

 

2.4.4 Relationships between AIx and LV remodelling or LVH. 

 

In neither men (AIx [AP/PPc], Odds ratio=1.029, Wald statistics=2.31, p=0.13; AIx 

[P2/P1], Odds ratio=1.013, Wald statistics=1.70, p=0.19) nor in women (AIx [AP/PPc], Odds 

ratio=0.99, Wald statistics=0.65, p=0.42; AIx [P2/P1], Odds ratio=1.00, Wald statistics=0.001, 

p=0.98), was AIx independently associated with LVH (concentric + eccentric) (Table 4). No 

relations between AIx and concentric LV remodelling or AIx and the type of LVH (eccentric 

versus concentric) were noted in either men or women (data not shown). 

 

2.5 Discussion 

 

The main finding of the present study is that in a large, community-based sample, AIx 

was associated with LVMI in men, but not in women. Although there is considerable debate 

as to the factors that determine AIx (Davies et al 2010, Cheng et al 2012, Hughes et al 

2013), this does not detract from the evidence provided from several studies demonstrating 

that AIx is associated with cardiovascular damage beyond brachial BP (London et al. 2001, 

Ueda et al 2004, Weber et al 2005, Chirinos et al 2005, Wang et al 2010, Chirinos et al 2012, 

Vlachopoulos et al 2010, Hashimoto et al 2007, Hashimoto et al 2006). However, as in some 

studies AIx does not predict cardiovascular outcomes (Vlachopoulos et al 2010, Mitchell et al 

2010a, Hayashi et al 2014) the possible factors that influence this relationship require 
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identification. In this regard, although AIx predicts outcomes in men, similar relationships may 

be diminished in women (Wang et al 2010). The present study provides support for a 

decrease in the relationship between AIx and end-organ damage in women as compared to 

men. This is in contrast to the comparable unadjusted relations previously demonstrated 

between AIx and LVMI or alternative end-organ changes between men and women in a large 

community-based study (Wang et al 2010). However, whether in that study (Wang et al 

2010) similar relations between AIx and end-organ changes were also noted in men and 

women after multivariate adjustments is unclear (Wang et al 2010). 

Previous studies that have demonstrated that AIx derived from radial applanation 

tonometry is independently associated with LVM reduction, or LVH, (Hashimoto et al 2007, 

Hashimoto et al 2006) were not statistically powered to report on whether these associations 

were sex-specific. Interestingly however, in both studies 70% or more of study participants 

were men (Hashimoto et al 2007, Hashimoto et al 2006). Hence, both of these studies 

(Hashimoto et al 2007, Hashimoto et al 2006)  may reflect a dominant impact of AIx on LVMI 

in men. 

 An explanation for the gender-specific impact on relations between AIx and LVMI 

noted in the present study, or between AIx and cardiovascular outcomes in a previous study 

(Wang et al 2010), requires consideration. In this regard, in contrast to what was previously 

thought, AIx is not an appropriate index of wave reflection (Davies et al 2010, Cheng et al 

2012, Hughes et al 2013). Rather, unlike more suitable indices of wave reflection, AIx may be 

influenced by aortic reservoir function (Davies et al 2010), left ventricular systolic function 

(Cheng et al 2012), as well as height and female gender (Davies et al 2010). Some of these 

factors may have little impact on cardiovascular risk. Indeed, measures of reflective wave 

function are better risk markers than AIx (Wang et al 2010, Mitchell et al 2010a). 

Alternatively, although aortic PP is associated with cardiovascular damage, reflective wave 

function may contribute little toward the impact of aortic PPc on cardiovascular damage in 

women. Indeed, in a large, community-based study, both AIx and the reflection index 

predicted cardiovascular outcomes in men, but not in women (Wang et al 2010). Hence, 
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further studies are required to establish whether the sex-specific relations between AIx and 

LVMI or alternative end-organ changes are attributed to the poor relationship between AIx 

and reflective wave function (Davies et al 2010, Cheng et al 2012, Hughes et al 2013), or to 

the lack of impact of reflective waves on end-organ changes in women as compared to men. 

 Several differences were noted between men and women in the present study, 

differences which may account for the sex-specific effects of AIx on LVMI. In this regard, 

more women than men were obese or had diabetes mellitus or an abnormal HbA1c and 

hence obesity or diabetes mellitus may play a more important role than BP in mediating 

increases in LVMI in women. In addition, although a similar proportion of men and women 

were hypertensive, fewer hypertensive men were receiving antihypertensive medication. 

Hence, the sensitivity to detect an impact of AIx on LVMI may have been greater in men than 

in women.  

 The clinical implication of the present study is that when considering the contribution 

of central aortic haemodynamic measurements as predictors of cardiovascular damage, AIx 

may serve as an appropriate predictor in men, but not in women. Hence, in women, either 

aortic BP per se may be a better aortic haemodynamic index to predict damage beyond 

brachial BP, or wave separation analysis may be required to identify the impact of reflective 

waves on cardiovascular damage. 

 The limitations of the present study are as follows: First, the cross-sectional nature of 

the study precludes conclusions being drawn regarding cause and effect. Second, in the 

present study calibration of the radial waveform from brachial BP measurements ignores 

amplification of BP from brachial to radial arteries. Hence, aortic pressures are likely to have 

been underestimated using the current approach. Third, because the present study was 

community-based, only a small proportion of participants had LVH. Hence, we were not 

statistically powered to show sex-specific relations between AIx and LVH. Thus, further 

studies are necessary in untreated hypertensives to evaluate whether the relationship 

between AIx and LVH is sex-specific. Last, the present study was conducted in one ethnic 

group. Hence further studies in communities of alternative ethnic origins are required. 
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In conclusion, in the present study I show that despite an independent relationship 

between aortic BP and LVMI in both men and women, AIx is independently associated with 

LVMI in men, but not in women. These data suggest that AIx may not be an appropriate 

predictor of the extent of cardiovascular end-organ changes in women. 



- 49 - 
 

  

 

 

 

 

 

 

                  CHAPTER 3 

 

 

The Relationship Between Aortic Reflected Waves, Derived From Wave 

Separation Analysis, and Aortic Pulse Pressure or Left Ventricular Mass Index 

is Not Gender-Specific 

 

This chapter has been published as a component of the following paper: 

 

Hendrik L Booysen, Angela J Woodiwiss, Moekanyi J Sibiya, Bryan Hodson, Andrew 

Raymond, Elena Libhaber, Pinhas Sareli, Gavin R Norton. Indexes of aortic pressure 

augmentation markedly underestimate the contribution of reflected waves toward variations 

in aortic pressure and left ventricular mass. Hypertension 2015;65:540-546 
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3.1 Abstract 

 

Although indices of aortic wave reflection enhance risk prediction, the extent to which 

measures of aortic systolic pressure augmentation (augmented pressures [Pa] or 

augmentation index [AIx]) underestimate the effects of reflected waves on cardiovascular risk 

in women is uncertain. From a community sample (age>16 years) I therefore evaluated sex-

specific contributions of reflected (backward wave pressures [Pb] and the reflection index 

[RI]) versus augmented (Pa and AIx) pressure wave indices to variations in central aortic 

pulse pressure (PPc) (n=1185, 65.0% women), and left ventricular mass index (LVMI [n=793, 

64.9% women]). Aortic haemodynamics and LVMI were determined using radial applanation 

tonometry (SphygmoCor) and echocardiography. In both women and in men, independent of 

confounders, RI and Pb contributed more than forward wave pressures (Pf), whilst Pa and 

AIx contributed less than incident wave pressure (Pi) to variations in PPc (p<0.0001 for 

comparison of partial r values). In both men and in women Pb contributed more than Pf 

(p<0.05 for comparison of r values) to variations in LVMI. Although in men Pa (partial r=0.33, 

p<0.0001) contributed to a similar extent as Pi (partial r=0.34, p<0.0001) to variations in 

LVMI, in women Pa (partial r=0.05, p=0.36) failed to contribute to LVMI, whilst Pi was 

significantly associated with LVMI (partial r=0.30, p<0.0001). Similar results were obtained 

with AIx as opposed to Pa in the regression models. In conclusion, the contribution of aortic 

backward wave pressures to variations in aortic PP and LVMI is similar in women as it is in 

men; in both women and in men indices of aortic pressure augmentation markedly 

underestimate the contribution of aortic backward wave pressures to variations in LVMI; and 

in women this effect is sufficiently marked that augmentation indices are unrelated to LVMI. 

 

Key words: Central blood pressure, aortic pulse pressure, reflected waves, augmentation 

index, left ventricular mass index. 
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3.2 Introduction 

 

Although pulse pressure (PP) measured at the brachial artery is closely correlated 

with central aortic PP (PPc), PP may be considerably higher in brachial arteries as compared 

to the aorta (Aviolo et al 2009, Agabiti-Rosei et al 2007). A key determinant of PPc is an 

increase in aortic wave reflection, which enhances backward wave pressures (Pb) and hence 

augments aortic systolic blood pressure (BP) if returning to the ascending aorta sufficiently 

early (Aviolo et al 2009, Agabiti-Rosei et al 2007). An enhanced aortic wave reflection is 

thought to be a major cause of cardiovascular damage. Indeed, several studies have 

demonstrated that aortic augmented pressures (Pa), and augmentation index (AIx), indexes 

of wave reflection, are associated with cardiovascular outcomes (London et al 2001, Ueda et 

al 2004,Weber et al 2005, Chirinos et al 2005, Davies et al 2010, Vlachopoulos et al 2010, 

Cheng et al 2012) and end-organ damage (Hashimoto et al 2007, Hughes et al 2013, 

Hashimoto et al 2006, Fok et al 2014a, Weber et al 2006, Torjesen et al 2014, Westerbacka 

et al 2005, Sibiya et al 2014) independent of brachial BP. However, more recently the use of 

Pa or AIx as indexes of wave reflection in risk prediction has been challenged (Davies et al 

2010, Cheng et al 2012, Hughes et al 2013). 

Marked overlap between aortic forward and reflected waves may confound Pa and 

AIx and hence these measures may be poor indexes of wave reflection (Davies et al 2010, 

Cheng et al 2012, Hughes et al 2013). Indeed, there is a weak relationship between the 

magnitude of the reflected wave and Pa or AIx, and increases in aortic reservoir function, the 

timing or magnitude of the forward (Pf) or incident (Pi) wave pressures, and left ventricular 

systolic function may play a more important role than wave reflection in contributing to 

variations in Pa and AIx (Davies et al 2010, Cheng et al 2012, Hughes et al 2013). More 

recent studies have therefore focused on the role of reflected waves (Pb and reflected wave 

index-RI), as determined using wave separation analysis, as independent determinants of 

age-related increases in PPc or cardiovascular damage (Wang et al 2010, Chirinos et al 

2012, Weber et al 2012, Mitchell et al 2010b). However, in these studies (Wang et al 2010, 
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Chirinos et al 2012, Weber et al 2012, Mitchell et al 2010b) the extent to which Pb or RI are 

more closely associated with PPc or cardiovascular damage than Pa or AIx is uncertain. In 

this regard in these studies, relations with end-organ damage were not adjusted for 

confounders (Wang et al 2010, Chirinos et al 2012, Weber et al 2012); discrepancies in the 

index of wave reflection that was better associated with end-organ damage beyond forward 

wave pressures were noted (Wang et al 2010, Chirinos et al 2012, Weber et al 2012); and 

forward wave pressure rather than Pb was reported to be the main determinant of PPc in a 

community sample with a high prevalence of well-controlled BP values (Mitchell et al 2010b). 

In the previous chapter and recently reported on (Sibiya et al 2014), I have demonstrated that 

Pa and AIx associate with left ventricular mass index (LVMI) and left ventricular hypertrophy 

(LVH) in men, but not in women. However, in that study (Sibiya et al 2014, chapter 2), I did 

not have access to wave separation analysis to determine the actual relationship between 

aortic reflected (backward) waves and LVMI. As the manufacturer of the measurement 

system that I employed to determine aortic function (SphygmoCor) has recently developed 

the software to perform wave separation analysis, in the present study I aimed to determine 

whether the lack of association between Pa or AIx and LVMI or LVH can be attributed to a 

lack of impact of aortic backward waves on aortic PP or LVMI, or because Pa and AIx are 

poor indices of backward wave effects in women as opposed to men. 

 

3.3 Methods 

 

3.3.1 Study group. 

 

The present study was conducted according to the principles outlined in the Helsinki 

Declaration. The Committee for Research on Human Subjects of the University of the 

Witwatersrand approved the protocol (approval number: M02-04-72 and renewed as M07-04-

69 and M12-04-108). Participants gave informed, written consent. The present study design 

has previously been described (Norton et al 2008, Woodiwiss et al 2009, Redelinghuys et al 
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2010, Norton et al 2012). Briefly, 1185 participants from families of black African descent 

(Nguni and Sotho chiefdoms) with siblings older than 16 years with central haemodynamic 

measurements were randomly recruited from the South West Township (SOWETO) of 

Johannesburg, South Africa. In a sub-study, 793 participants had LVMI determined using 

echocardiography. 

 

3.3.2 Clinical, demographic and anthropometric measurements. 

 

For details see section 2.3.2 

 

3.3.3 Pulse wave analysis. 

 

For further details see section 2.3.4. Aortic Pb and Pf were determined using 

SphygmoCor software which separates the aortic waveform using a triangular flow wave 

(Westerhof et al 2006). In the present study we did not employ a “physiological aortic flow 

waveform” approach to wave separation analysis as in a pilot study conducted in 26 

participants, the previously described physiological aortic flow waveform did not closely 

approximate aortic flow waveforms in the present community sample. Moreover, a wide 

variety of aortic flow waveforms were identified in the 26 participants studied, precluding the 

possibility of identifying a single “representative waveform” which could be used for wave 

separation analysis. Reflected wave index (RI) was determined as previously described 

(Hughes et al 2013). Aortic augmented pressure (Pa) was determined using SphygmoCor 

software and identified as the difference between SBPc and the first systolic peak of the 

aortic pulse wave. Incident wave pressure (Pi) was defined as PPc-Pa. To avoid obtaining 

negative aortic AIx values in young participants, AIx was determined as the pressure at the 

second systolic peak of the aortic pulse wave/the pressure at the first systolic peak of the 

aortic pulse wave expressed as a percentage. 
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3.3.4 Echocardiography. 

 

For details see section 2.3.5 Acceptable quality of images was considered to exist 

when appropriate visualization of both the right and the left septal surfaces occurred and 

where the endocardial surface of the septal and posterior wall were clearly visible when 

imaging at the optimal angle of incidence (perpendicular to the posterior wall) and close to 

the mitral leaflets. Left ventricular mass was determined using a standard formula (Devereux 

et al 1986) and indexed (LVMI) to body surface area (LVMI-BSA) or height1.7 (LVMI-ht1.7). Left 

ventricular hypertrophy (LVH) was identified as an LVMI-BSA>95 g/m2 for women and >115 

g/m2 for men. Stroke volume was evaluated from the difference between LV end diastolic and 

systolic volumes determined using the Z-derived method (de Simone et al 1996). 

 

3.3.5 Statistical analysis. 

 

For database management and statistical analysis, SAS software, version 9.1 (SAS 

Institute Inc., Cary, NC) was employed. To determine relationships multivariate regression 

analysis was performed with appropriate adjustments. Adjustments included in multivariate 

models were those correlated with central hemodynamic variables or LVMI in bivariate 

analysis. To assess the relative contribution of incident and augmented waves to variations in 

PPc, in stepwise regression analysis, Pi and AIx were included in multivariate models. AIx 

rather than Pa was included in the same regression model with Pi to avoid the confounding 

effect of forward wave amplitude on the amplitude of the augmented wave (Mitchell et al 

2010b). To determine probability values, further adjustments for non-independence of family 

members was performed using non-linear regression analysis (mixed procedure as defined 

in the SAS package). To ensure that relationships occurred independent of the use of 

antihypertensive therapy, sensitivity analysis was conducted in participants not receiving 

antihypertensive therapy. Regression coefficients were compared with z statistics. 
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3.4 Results 

 

3.4.1 Characteristics of the participants. 

 

The clinical and demographic characteristics of the participants are shown in Table 

3.1. 1.9% of participants had a history of cardiovascular disease. Importantly, a high 

proportion (45.9%) of participants had hypertension, and 47.2% of hypertensives were not 

receiving therapy. Moreover, 36.4% of all participants and 60.6% of participants receiving 

antihypertensive therapy had uncontrolled hypertension. Of the participants with 

echocardiography, 17% had LVH. Although of a similar age, women were more obese, had a 

higher prevalence of DM, and a higher pulse rate, but regularly smoked or consumed alcohol 

less, and more were receiving antihypertensive therapy than men. Women had higher values 

for indices of wave reflection (Pb, RI, Pa and AIx). 

 

3.4.2 Age-related increases in aortic hemodynamics. 

 

In multivariate-adjusted models, including adjustments for mean arterial pressure  

(MAP), all aortic haemodynamic parameters were independently associated with age (Table 

3.2). In both men and in women the association between age and Pa was stronger (partial r) 

than the association between age and Pi (Table 3.2). However, in men the strength (partial r) 

of the association between age and either aortic forward or backward wave pressures was 

similar, whilst in women the association between age and aortic backward wave pressures 

was stronger than the association with forward wave pressures (Table 3.2). 
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Table 3.1. Characteristics of the study sample. 

Characteristics         All                  Women  Men 

      (n=1185)      (n=771)          (n=414) 

____________________________________________________________________ 

% Female              65.0          -      - 

Age (years)                  44.3±18.3   44.8±17.6      43.3±19.4 

Body mass index (kg/m2)                         29.6±8.1   32.0±8.2***      24.9±5.2 

% Obese                    43.3        57.8***         16.2 

Regular tobacco (% subjects)                        15.2          5.8***         32.7 

Regular alcohol (% subjects)              20.9        13.6***            34.6 

% with DM or HbA1c>6.1%                                  25.8        28.8**         20.3 

% Hypertensive          45.9         45.9         45.8 

% Treated for hypertension               24.2         28.1***         16.7 

% Hypertensives controlled to target BP              20.8         24.9***         12.7 

% of all with uncontrolled BP               36.4         34.5               39.9 

Pulse rate (beats/min)                                        66±12                 68±11***         63±11 

Brachial SBP/DBP (mm Hg)                      130±22/84±13    129±23*/83±13**  131±21/85±12 

Brachial pulse pressure (mm Hg)                       46±16                44±16              46±18         

Brachial mean arterial pressure (mm Hg)         100±16              100±17            101±15    

Central aortic SBP (mm Hg)                             120±23               119±23            122±23 

Central aortic pulse pressure (PPc) (mm Hg)    35±15                  35±14         35±17 

Aortic forward wave pressure (Pf) (mm Hg)       24±9                    24±9*         25±9  

Aortic reflected wave pressure (Pb)(mm Hg)      17±8                   17±8         17±9 

Aortic reflected wave index                             0.16±0.06            0.16±0.06      0.15±0.06  

Aortic augmented pressure (Pa)                         11±8                   11±8**            10±8 

Aortic Pi                                                               25±9                   24±8**         26±10 

Aortic augmentation index (AIx) (%)                  142±25               146±26***      135±23 

Stroke volume (mls)(n)                                      63±17 (793)       60±17*** (515)    67±17 (278) 

Left ventricular mass index (g/m2)(n)                 76±31 (793)       72±29*** (515)   82±33 (278) 

Left ventricular mass index (g/m1.7)(n)                67±24 (793)       67±24 (515)   68±25 (278) 

____________________________________________________________________                          

Data expressed as mean ± SD or proportions. DM, diabetes mellitus; HbA1C, glycosylated 

haemoglobin; BP, blood pressure; SBP, systolic BP; DBP, diastolic BP; Pi=PPc-Pa. 

*p<0.05,**p<0.005, ***p<0.0005 versus men.  
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Table 3.2 Multivariate adjusted relations between age and central aortic hemodynamics in 

sex-specific categories in a group of African ancestry (n=1185). 

 

    Age versus                     Estimate (mm Hg)*       partial r (95% CI)      p-value 

                      (±SEM)   

____________________________________________________________________ 

Women (n=771) 

Forward wave pressure (Pf)                     0.27±0.06       0.15 (0.08 to 0.22) <0.0005  

Reflected wave pressure (Pb)         0.94±08           0.39 (0.32 to 0.44)† <0.0001  

Reflected wave index (RI=Pb/Pf)              120±10            0.41 (0.35 to 0.47) <0.0001 

Aortic Pi                                                      0.40±0.07          0.21 (0.14 to 0.28)       <0.005 

Aortic augmented pressure (Pa)                 1.17±0.08         0.44 (0.38 to 0.49)†      <0.0001 

Aortic augmentation index (AIx)         0.20±0.02        0.30 (0.24 to 0.37) <0.0001 

Stroke volume (n=515)          0.06±0.04        0.07 (-0.01 to 0.16)         =0.09 

Men (n=414) 

Forward wave pressure (Pf)                     0.46±0.09        0.24 (0.15 to 0.33) <0.0001  

Reflected wave pressure (Pb)         1.30±0.10         0.24 (0.15 to 0.33) <0.0001  

Reflected wave index (Pb/Pf)                      169±12           0.57 (0.50 to 0.63) <0.0001 

Aortic Pi                                                       0.46±0.09         0.26 (0.16 to 0.34)       <0.0001 

Aortic augmented pressure (Pa)                 1.47±0.10          0.57 (0.51 to 0.64)†     <0.0001 

Aortic augmentation index (AIx)          0.45±0.04        0.52 (0.45 to 0.59) <0.0001 

Stroke volume (n=278)           0.07±0.06        0.07 (-0.04 to 0.19)         =0.22 

____________________________________________________________________ 

CI, confidence intervals; Pi=Aortic pulse pressure-Pa. *β-coefficient (slope) of the relations. 

Pi=aortic pulse pressure-Pa. Adjustors are mean arterial pressure, body height, body weight, 

pulse rate, diabetes mellitus or an HbA1c>6.1%, regular smoking and regular alcohol intake. 

†p<0.0001 for comparisons of partial r values with Pf. 
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3.4.3 Relative independent contribution of reflected versus forward waves to variations in 

PPc. 

 

When included in separate models (Table 3.3) or in the same multivariate stepwise 

models (Figure 3.1), in both women and in men a stronger relationship was noted between 

RI and PPc or Pb and PPc than between Pf and PPc or AIx and PPc. In contrast, in both 

women and in men a stronger relationship was noted between Pi and PPc, than between Pa 

and PPc (Table 3.3) or between AIx and PPc (Table 3.3, Figure 3.1). In both women and in 

men with RI and AIx in the same multivariate model, a distinctly stronger relationship was 

noted between RI and PPc than between AIx and PPc (Figure 3.1). Similar findings were 

noted in participants not receiving antihypertensive therapy (Table 3.4). Stroke volume was 

modestly correlated with PPc (r=0.20, p<0.0001). With the inclusion of stroke volume in 

multivariate models, similar differences between aortic hemodynamic-PPc relations were 

noted (Table 3.5). 

 

3.4.4 Comparison of independent relations between aortic hemodynamics and LVMI. 

 

In both men and in women Pb was more closely associated with LVMI than Pf (Figure 

3.2). In a multivariate model in women with Pb and Pf in the same model, Pb (partial r=0.32, 

CI=0.22 to 0.40, p<0.0001), but not Pf (partial r=0.02, CI=-0.06 to 0.10, p=0.59) was 

independently associated with LVMI. Similarly, in a multivariate model in men with Pb and Pf 

in the same model, Pb (partial r=0.34, CI=0.22 to 0.45, p<0.0001), but not Pf (partial r=0.02, 

CI=-0.10 to 0.13, p=0.75) was independently associated with LVMI. In contrast however, in 

men Pa showed similar associations with LVMI as did Pi and in women Pi, but not Pa was 

independently associated with LVMI (Figure 3.2). In addition, RI was more closely associated 

with LVMI than AIx in both men and in women (Figure 3.2). Importantly, although the 

relations between Pa or AIx and LVMI were stronger in men than in women (p=0.01 to 

0.0001 for comparison of r values) (Figure 3.2), these differences were not attributed to  
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Table 3.3 Independent relationships between aortic hemodynamics and central aortic pulse 

pressure (PPc) in women versus men of African ancestry. 

 

        Women (n=771)          Men (n=414) 

PPc vs          partial r (CI)*        p value          partial r (CI)*         p value 

__________________________________________________________________ 

Pb        0.97 (0.90 to 1.04)†  <0.0001      0.92 (0.82 to 1.02)†   <0.0001 

Pf        0.80 (0.73 to 0.87)   <0.0001      0.75 (0.65 to 0.85)    <0.0001 

Pa       0.88 (0.81 to 0.95)    <0.0001      0.90 (0.80 to 1.00)    <0.0001 

Pi       0.90 (0.83 to 0.97) #    <0.0001      0.94 (0.84 to 1.04) #    <0.0001 

RI       0.88 (0.81 to 0.95) $   <0.0001      0.86 (0.76 to 0.96) $    <0.0001 

AIx       0.02 (-0.05 to 0.09)    =0.46      0.34 (0.24 to 0.44)    <0.0001 

__________________________________________________________________ 

CI, confidence intervals. See tables 1 and 2 for further abbreviations. *Adjustors are age, 

mean arterial pressure, body height, body weight, pulse rate, diabetes mellitus or an 

HbA1c>6.1%, regular smoking and regular alcohol intake. †p<0.0001 for comparisons of 

partial r values with Pf, # p<0.05, ##p<0.005 for comparisons of partial r values with Pa, 

$p<0.0001 for comparisons of partial r values with AIx (z-statistics). 
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Table 3.4 Independent relationships between aortic hemodynamics and central aortic pulse 

pressure (PPc) in women and men of group of African ancestry not receiving 

antihypertensive therapy. 

 

PPc vs             Women (n=554)                  Men (n=342) 

  partial r (CI)*  p value  partial r (CI)*  p value 

___________________________________________________________________ 

Pb  0.97 (0.89 to 1.05)†  <0.0001  0.89 (0.78 to 0.99)†  <0.0001 

Pf  0.83 (0.75 to 0.91)   <0.0001  0.70 (0.59 to 0.81)   <0.0001 

Pa  0.85 (0.77 to 0.93)   <0.0001  0.90 (0.79 to 1.01)   <0.0001 

Pi  0.88 (0.80 to 0.96)#  <0.0001  0.94 (0.83 to 1.05)## <0.0001 

RI  0.88 (0.80 to 0.96)$  <0.0001  0.83 (0.72 to 0.94)$  <0.0001 

AIx            -0.01 (-0.09 to 0.08)  =0.84  0.33 (0.22 to 0.44)   <0.0001 

___________________________________________________________________ 

CI, confidence intervals. See tables 1 and 2 for further abbreviations. *Adjustors are age, 

mean arterial pressure, body height, body weight, pulse rate, diabetes mellitus or an 

HbA1c>6.1%, regular smoking and regular alcohol intake. †p<0.0001 for comparisons of 

partial r values with Pf, #p<0.05,##p<0.0005 for comparisons of partial r values with Pa, 

$p<0.0001 for comparison of partial r values with AIx (z-statistics). 
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Figure 3.1. Relative contribution of aortic hemodynamic variables to variations in central 

(aortic) pulse pressure (PPc) in sex-specific groups in a group of African descent. Closed 

circles indicate indexes of wave reflection; open circles indicate indexes of forward or 

incident wave pressures. Data show multivariate adjusted correlation coefficients (partial r) 

derived from stepwise regression analysis with Pf and Pb (model 1), Pf and RI (model 2), Pi 

and AIx (model 3), or RI and AIx (model 4) + confounders included in the same regression 

models. Potential confounders included in the model are age, mean arterial pressure, body 

height, body weight, pulse rate, diabetes mellitus or an HbA1c>6.1%, regular smoking and 

regular alcohol intake. Those factors not independently associated with PPc were forced into 

the model. Pi=Aortic pulse pressure-Pa. *p<0.0001 for comparisons of partial r values with Pf 

or AIx (z-statistics). 
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Table 3.5. Impact of adjustments for stroke volume (SV) on the independent relationships between indexes of aortic wave reflection and central 

aortic pulse pressure (PPc) in women and men of African ancestry. 

 

PPc vs                       Women (n=515)               Men (n=278) 

SV adjusted      Before            After         Before            After 

  partial r (CI)*   p value        partial r (CI)*    p value  partial r (CI)*       p value       partial r (CI)*       p value 

_______________________________________________________________________________________________________ 

Pb  0.97 (0.88 to 1.05)†  <0.0001      0.97 (0.88 to 1.05)†  <0.0001 0.89 (0.77 to 1.01)†  <0.0001   0.89 (0.77 to 1.01)†  <0.0001            

Pf  0.78 (0.69 to 0.86)  <0.0001      0.78 (0.69 to 0.86)  <0.0001 0.69 (0.57 to 0.81)  <0.0001   0.69 (0.57 to 0.81)  <0.0001                    

Pa            0.86 (0.77 to 0.94)  <0.0001      0.86 (0.77 to 0.94)  <0.0001 0.91 (0.79 to 1.03)  <0.0001   0.91 (0.79 to 1.03)  <0.0001            

Pi            0.90 (0.81 to 0.99)##  <0.0001      0.90 (0.81 to 0.99)##  <0.0001 0.95 (0.83 to 1.07)#  <0.0001   0.95 (0.83 to 1.07)#  <0.0001            

RI            0.87 (0.78 to 0.95)$  <0.0001      0.87 (0.78 to 0.95)$  <0.0001 0.84 (0.72 to 0.96)$  <0.0001   0.84 (0.72 to 0.96)$  <0.0001            

AIx           -0.04 (-0.12 to 0.04)  =0.19     -0.03 (-0.12 to 0.05) =0.26  0.46 (0.34 to 0.58)  <0.0001   0.46 (0.34 to 0.58)  <0.0001            

_______________________________________________________________________________________________________ 

CI, confidence intervals. See tables 1 and 2 for further abbreviations. *Adjustors are stroke volume (as indicated), age, mean arterial pressure, 

body height, body weight, pulse rate, diabetes mellitus or an HbA1c>6.1%, regular smoking and regular alcohol intake. †p<0.0001 for 

comparisons of partial r values with Pf, #p<0.01,##p<0.005 for comparison of partial r values with Pa, $p<0.0001 for comparison of partial r values 

with AIx (z-statistics). 
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Figure 3.2. Contribution of aortic hemodynamic variables to variations in left ventricular mass 

indexed to body surface area (LVMI-BSA) in sex-specific categories in a group of African 

descent. Closed circles indicate indexes of wave reflection; open circles indicate indexes of 

forward or incident wave pressures. Potential confounders included in the model are age, 

mean arterial pressure, body height, pulse rate, diabetes mellitus or an HbA1c>6.1%, regular 

smoking and regular alcohol intake. Those factors not independently associated with LVMI 

were forced into the model. Pi=Aortic pulse pressure-Pa. *p<0.05 for comparisons of partial r 

values with Pf and AIx, †p<0.05 for comparison of partial r values with AIx, #p<0.05 for 

comparison of partial r values with Pa and AIx (z-statistics). 
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reflected wave effects. Indeed, Pb or RI-LVMI relations were similar in men and women 

(Figure 3.2). Similar findings were also noted in participants not receiving antihypertensive 

therapy (Table 3.6). Stroke volume was correlated with LVMI (r=0.64, p<0.0001). However, 

with further adjustments for stroke volume, relative differences in relations between reflected 

versus forward wave indexes and LVMI were retained (Table 3.7).   

 

3.5 Discussion 

  

The main findings of the present study are as follows: In a large (n=1185), 

community-based sample of African ancestry, independent of confounders including MAP 

(distending pressures), reflected waves (RI or Pb) accounted for more of the variation in PPc 

and LVMI than did forward wave pressures (Pf) in both women and men. However, incident 

wave pressure (Pi) accounted for more of the variation in PPc than did aortic systolic 

pressure augmentation (AIx or Pa) in both women and in men, and Pi accounted for as much 

of the variation in LVMI as Pa or AIx in men, whilst Pi, but not Pa or AIx accounted for 

variations in LVMI in women. 

Several prior studies have reported on a relatively greater contribution of Pa as 

compared to Pi to age-related increases in PPc (McEniery et al 2005, Namasivayam et al 

2009, Cecelja et al 2009). However, it is now recognised that Pa may be confounded by 

considerable overlap between forward and backward waves and that there is a poor 

relationship between the magnitude of the reflected wave and Pa (Davies et al 2010, Cheng 

et al 2012, Hughes et al 2013). Nevertheless, studies which have employed approaches to 

separate Pb from Pf, suggest that Pb contributes little to age-related increases in PPc 

(Mitchell et al 2010b, Segers et al 2007). These studies were nonetheless conducted either 

in a sample where BP values were largely well-controlled (Mitchell et al 2010b), or in a 

sample with a narrow age range. In contrast, using wave separation analysis in the present 

study  
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Table 3.6. Independent relationships between aortic hemodynamics and left ventricular mass 

indexed to body surface area (LVMI-BSA) in women and men of African ancestry not 

receiving antihypertensive therapy. 

 

   Women (n=354)       Men (n=231) 

LVMI-BSA vs       partial r (CI)* p value               partial r (CI)*  p value  

___________________________________________________________ 

Pb   0.34 (0.24 to 0.49)†  <0.0001   0.39 (0.26 to 0.52)†  <0.0001 

Pf   0.15 (0.05 to 0.25)   <0.005     0.17 (0.04 to 0.300  <0.01 

Pa   0.05 (-0.05 to 0.15)  =0.36      0.33 (0.20 to 0.46)   <0.0001 

Pi   0.30 (0.19 to 0.40)#  <0.0001   0.34 (0.21 to 0.47)  <0.0001 

RI   0.30 (0.20 to 0.40)$  <0.0001   0.39  (0.26 to 0.52)$ <0.0001  

AIx           -0.06 (-0.16 to 0.05)  =0.27       0.10 (-0.03 to 0.22)  =0.18 

____________________________________________________________ 

CI, confidence intervals. See tables 1 and 2 for further abbreviations. *Adjustors are age, 

mean arterial pressure, body height, body weight, pulse rate, diabetes mellitus or an 

HbA1c>6.1%, regular smoking and regular alcohol intake. †p<0.05 for comparisons of partial 

r values with Pf, #p<0.0001 for comparison of partial r values with Pa, $p<0.005 for 

comparison of partial r values with AIx (z-statistics). 
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Table 3.7 Impact of adjustments for stroke volume (SV) on the independent relationships between indexes of aortic wave reflection and left 

ventricular mass indexed to body surface area (LVMI-BSA) in women and men of African ancestry. 

 

 LVMI-BSA vs                          Women (n=515)               Men (n=278) 

SV adjusted      Before            After         Before            After 

  partial r (CI)*   p value        partial r (CI)*    p value  partial r (CI)*       p value       partial r (CI)*       p value 

_______________________________________________________________________________________________________ 

Pb  0.31 (0.22 to 0.40)†  <0.0001       0.15 (0.06 to 0.23)†  <0.0001 0.34 (0.22 to 0.45)†  <0.0001  0.22 (0.10 to 0.34)†  <0.0001          

Pf  0.08 (0.01 to 0.16)   <0.05       0.03 (-0.05 to 0.11)  =0.33 0.14 (0.02 to 0.25)   <0.05  0.06 (-0.06 to 0.17)  =0.18          

Pa          0.03 (-0.05 to 0.11)  =0.40       0.01 (-0.07 to 0.09)  =0.72 0.31 (0.19 to 0.42)  <0.0001  0.21 (0.09 to 0.33)   <0.0001          

Pi           0.29 (0.20 to 0.37)##  <0.0001       0.15 (0.06 to 0.23)#  <0.0001 0.30 (0.18 to 0.41)  <0.0001  0.18 (0.06 to 0.29)   <0.0001          

RI           0.30 (0.21 to 0.38)$  <0.0001       0.14 (0.05 to 0.22)$  <0.0001 0.35 (0.23 to 0.46)$  <0.0001  0.22 (0.10 to 0.33)$  <0.0001          

AIx          -0.07 (-0.15 to 0.01)   =0.08      -0.05 (-0.14 to 0.03)  =0.11 0.12 (0.01 to 0.23)   <0.05  0.10 (-0.01 to 0.22)  =0.10          

_______________________________________________________________________________________________________ 

CI, confidence intervals. See tables 1 and 2 for further abbreviations. *Adjustors are stroke volume (as indicated), age, mean arterial pressure, 

body height, body weight, pulse rate, diabetes mellitus or an HbA1c>6.1%, regular smoking and regular alcohol intake. †p<0.0001 for 

comparisons of partial r values with Pf, #p<0.01,##p<0.0005 for comparison of partial r values with Pa, $p<0.0001 for comparison of partial r 

values with AIx (z-statistics). 
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conducted in a community sample with a wide age range and with a high prevalence of 

uncontrolled hypertension, I show that Pb has a far stronger relationship with PPc than Pf, and 

that these associations occurred independent of gender. Hence, the present study provides the 

first direct evidence to show that in both women and in men reflected waves account for more of 

the variation in PPc than do forward wave pressures and that indexes of aortic pressure 

augmentation underestimate the contribution of aortic wave reflection to variations in PPc. 

 A few prior studies have suggested that indexes of reflected waves derived from wave 

separation analysis (Pb or RI) are more closely associated with end-organ damage than 

augmented pressure indexes (Pa and AIx) (Wang et al 2010, Weber et al 2012). However, in 

neither study were these comparisons made with adjustments for confounders. Hence, the 

differences reported on (Wang et al 2010) may be attributed to confounders including distending 

pressures and heart rate. Furthermore, in one study (Weber et al 2012) no comparisons were 

made between correlation coefficients and similar relations were noted between reflected wave 

indices derived from wave separation analysis and end-organ changes as compared to relations 

between indices of aortic systolic pressure augmentation and end-organ changes (Weber et al 

2012). In the present study I provide clear evidence that relations between indices of wave 

reflection and LVMI were markedly stronger than forward wave pressure effects, whilst indices 

of aortic systolic pressure augmentation considerably underestimated the contribution of 

reflected as compared to forward wave pressures. As previously described (chapter 2, Sibiya et 

al 2014), the lack of ability of augmentation indices to independently relate to LVMI was 

particularly striking in women where no significant relations were noted, whilst in men, although 

the effect was still diminished, a significant relation was still noted. Importantly, the present 

study advances this previous work by demonstrating that differences in the independent 

relationships between aortic augmentation indices and LVMI are not attributed to a sex-specific 

effect of aortic backward wave pressures on LVMI. 
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Prior studies have demonstrated that impact of aortic pressure augmentation on end-

organ changes (Sibiya et al 2014) or cardiovascular outcomes (Wang et al 2010) is attenuated 

in women as compared to men. In the present study we similarly show that relations between 

Pa or AIx and LVMI were diminished in women as compared to men. However, these 

differences were not attributed to disparities in reflected wave effects. Indeed, Pb or RI-LVMI 

relations were similar in men as compared to women. Hence, the weaker associations between 

augmentation indexes and cardiovascular damage in women as compared to men (Sibiya et al 

2014, Wang et al 2010) are likely to be attributed to a greater degree of inaccuracy of pressure 

augmentation as an index of wave reflection in women as compared to men. 

Increases in indices of augmentation index are not just determined by increases in 

reflected wave magnitude, but also by an enhanced aortic reservoir function as well as factors 

that influence the forward traveling wave amplitude (Chirinos et al 2005, Davies et al 2010, 

Vlachopoulos et al 2010, Cheng et al 2012, Hashimoto et al 2007, Hughes et al 2013, 

Hashimoto et al 2006, Fok et al 2014a), the magnitude of the forward wave (Weber et al 2006, 

Torjesen et al 2014), forward wave peak width (Weber et al 2006, Torjesen et al 2014), and the 

slope of the backward wave upstroke (Weber et al 2006, Torjesen et al 2014). Although a 

shorter stature, and hence an earlier return of reflected waves has generally been the 

explanation for an increased AIx in women, more recently an increased forward wave peak 

width, slope of the backward pressure wave, and forward wave amplitude, but not backward 

wave amplitude have been suggested to be the main determinants of an increased AIx in 

women of the Framingham Heart study (Weber et al 2006). In this regard, if one or more of 

these factors contributes little to increases in LVMI, but influences augmentation indices in 

women more so than men, then this could explain the lack of relationship between aortic 

augmentation indices and LVMI in women, whilst a significant relationship was still noted in 

men. As the manufacturer’s software does not allow for the determination of the forward wave 

peak width or slope of the backward pressure wave, I could not assess whether one or more of 
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these additional factors modified the relationship between augmentation indices and LVMI to a 

greater extent in women as compared to men.  

 As previously demonstrated (Kips et al 2009) the assumptions intrinsic to the use of the 

‘triangulation method’ of aortic wave separation are not ideal. However, this approach produces 

correlations between reflected wave indexes derived from the ‘triangulation method’ and actual 

aortic flow waveforms (r2=0.55) that are considerably stronger than between AIx and indexes 

derived from actual aortic flow waveforms (r2=0.34) (Kips et al 2009). Thus, the triangulation 

method of wave separation is better than augmentation indices at identifying reflected wave 

effects. Despite employing a relatively imprecise method of identifying reflected wave magnitude 

and index, we were still able to show that indices of aortic wave reflection were more closely 

associated with PPc and LVMI than forward wave pressures, whilst indices of aortic pressure 

augmentation showed weaker associations than forward wave pressures with PPc and LVMI. 

Hence, the present study provides evidence that improved measures of wave reflection are 

indeed better than augmentation indexes at detecting relations between reflected wave effects 

and both PPc and LVMI. 

 Dobutamine, which enhances PPc through increases in myocardial contractility and 

stroke volume, largely increases forward wave pressures (Fok et al 2014b). In contrast, 

norepinephrine, which augments PPc through marked vasoconstriction, mainly increases 

backward wave pressures but does not produce as much of an increase in PPc (Fok et al 

2014b). Further, increases in forward wave pressures may account for more of the increment in 

PPc in hypertensives than reflected wave pressures (Fok et al 2014b). It has therefore been 

suggested that forward wave pressures, mediated by increases in stroke volume may be more 

important than reflected wave pressures in determining variations in PPc in hypertension (Fok et 

al 2014b). However, as in the present and previous (Cecelja et al 2009, Segers et al 2007) 

studies where no increase (Segers et al 2007) or only modest increases (present study) in 

stroke volume were noted with increasing age, or where stroke volume contributed little to 
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variations in PPc (Cecelja et al 2009), increases in stroke volume are unlikely to explain a 

significant proportion of age-related increases in PPc in either women or men. Moreover, 

norepinephrine-induced effects on aortic reflected waves (Fok et al 2014b) are more likely to 

represent the hypertensive state where a major effect on BP is through increases in vascular 

smooth muscle tone. Further, in the present study the greater impact of Pb as compared to Pf 

on variations in PPc and LVMI were replicated even when stroke volume was included in 

multivariate adjusted analysis. 

 Additional limitations of the present study are as follows: The present study was a cross-

sectional design. Therefore, I cannot determine whether the age-related changes reported on 

are attributed to the long-term impact of age or a cumulative effect of alternative risk factors 

over time or whether relations between aortic hemodynamics and LVMI are indeed cause and 

effect. Further longitudinal studies are required to determine these effects. Moreover, in the 

present study calibration of the radial waveform from brachial BP measurements ignores 

amplification of BP from brachial to radial arteries. Hence, aortic pressures are likely to have 

been underestimated using the current approach. 

 In conclusion, in the present study conducted in a community sample with a high 

prevalence of uncontrolled hypertension, I show that in both women and in men, reflected 

waves are more closely associated with PPc and LVMI than forward waves, but that indices of 

aortic systolic pressure augmentation markedly underestimate these effects. These data provide 

support for a role of reflected wave function in mediating the adverse effects of aortic PP, effects 

which nonetheless cannot be accurately detected using indices of aortic systolic pressure 

augmentation. Moreover, given the high prevalence of hypertension and related cardiovascular 

events in urban communities in Africa, the present study suggests that approaches to 

decreasing age-related increases in aortic wave reflection may produce a major impact on the 

burden of disease in these communities. 
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              CHAPTER 4 

 

 

Reflected Rather than Forward Wave Pressures Account for Brachial 

Pressure-Independent Relations Between Aortic Pressure and End-Organ 

Changes in an African Community. 

 

 

This chapter has been published as follows: 

 

Moekanyi J Sibiya, Angela J Woodiwiss, Hendrik L Booysen, Andrew Raymond, Aletta ME 

Millen, Muzi J Maseko, Olebogeng HI Majane, Pinhas Sareli, Elena Libhaber, Gavin R Norton. 

Reflected Rather than Forward Wave Pressures Account for Brachial Pressure-Independent 

Relations Between Aortic Pressure and End-Organ Changes in an African Community. J 

Hypertens 2015;33:2083-2090 
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4.1 Abstract 

 

As the relative impact of aortic backward as compared to forward wave pressures on 

cardiovascular damage independent of brachial blood pressure (BP) is uncertain, I aimed to 

determine whether brachial BP-independent relations between aortic pressure and 

cardiovascular damage are better explained by reflected (backward)(Pb) or forward (Pf) wave 

pressure effects. In 1174 participants from a community sample of African ancestry I assessed 

central aortic pulse pressure (PPc), Pb and Pf (radial applanation tonometry, SphygmoCor 

software) as well as left ventricular mass index (LVMI)(n=786), aortic pulse wave velocity 

(PWV)(n=1019), carotid intima-media thickness (IMT)(n=578), transmitral early-to-late LV 

diastolic velocity (E/A)(n=779) and estimated glomerular filtration rate (eGFR)(n=1174). 

Independent of mean arterial pressure and confounders, PPc and both Pb and Pf were 

associated with end-organ measures or damage (p<0.05 to <0.0001). With adjustments for 

brachial PP and confounders, Pb remained directly associated with LVMI (partial r=0.10, 

p<0.01), PWV (partial r=0.28, p<0.0001), and IMT (partial r=0.28, p<0.0001), and inversely 

associated with E/A (partial r=-0.31, p<0.0001) and eGFR (partial r=-0.14, p<0.0001). Similar 

relations were noted with the presence of end-organ damage (p<0.05 to <0.0001). In contrast, 

with adjustments for brachial PP and confounders, Pf no longer retained direct relations with 

LVMI, PWV, and IMT or inverse relations with E/A and eGFR. Adjustments for Pb, but not Pf 

diminished brachial PP-independent relationships between PPc and end-organ measures. 

Independent relations between Pb, but not Pf and end-organ measures were largely attributed 

to Pb accounting for most of the variation in brachial-to-aortic PP amplification. In conclusion in 

communities of African ancestry, brachial BP-independent relations between aortic pressure 

and end-organ changes are largely attributed to an impact of reflected rather than forward wave 

pressures.  

Key words: aortic pressure, reflected waves, forward waves, end organ changes.  
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4.2 Introduction 

 

Although pulse pressure (PP) measured at the brachial artery is closely correlated with 

central aortic PP (PPc), amplification of PP occurs from the aorta to brachial arteries (Avolio et 

al 2009, Agabiti-Rosei et al 2007). As there may be marked differences in aortic versus brachial 

blood pressure (BP) (Avolio et al 2009, Agabiti-Rosei et al 2007) and because of the close 

proximity of the aorta to end organs, aortic BP has been proposed to be of greater 

pathophysiological significance than brachial BP. Indeed, several studies have demonstrated 

that PPc or the ratio of brachial and aortic BP, an index of PP amplification, are associated with 

cardiovascular outcomes (Safar et al 2002, Roman et al 2007, Jankowski et al 2008, Pini et al 

2008, Wang et al 2009, Williams et al 2006, Benetos et al 2010, Regnault et al 2012, Benetos et 

al 2012, Vlachopoulos et al 2010) and end-organ measures (Roman et al 2014) either 

independent of or better than brachial BP. However, the exact changes that determine PPc and 

account for brachial BP-independent relations between PPc and cardiovascular damage are 

uncertain. 

Numerous factors contribute toward PPc and these may influence PPc by modifying 

either aortic forward (Pf) or backward (reflected) (Pb) wave pressures. Several studies have 

evaluated the contribution of Pf and Pb to age-related increases in PPc (Segers et al 2007, 

Mitchell et al 2010a) and the contribution of Pf and Pb to variations in end-organ measures or 

cardiovascular outcomes (Wang et al 2010, Chirinos et al 2012, Weber et al 2012, Zamani et al 

2014, Hughes et al 2014). Importantly, in some of these studies (Wang et al 2010, Chirinos et al 

2012, Zamani et al 2014, Hughes et al 2014) indices of reflected waves predicted 

cardiovascular outcomes independent of brachial BP. However, whether forward wave 

pressures also associate with cardiovascular damage independent of brachial BP, and the 

relative contribution of Pf and Pb to the brachial BP-independent relationship between PPc and 

cardiovascular damage is uncertain. In the present study, I therefore aimed to assess in a 
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community of African ancestry whether brachial BP-independent associations between Pb, Pf or 

both and end-organ measures or damage occur and whether brachial BP-independent 

associations between PPc and cardiovascular end-organ measures or damage are accounted 

for by an impact of Pb, Pf or both. 

 

4.3 Methods 

 

4.3.1 Study group. 

 

The present study was conducted according to the principles outlined in the Helsinki 

declaration. The Committee for Research on Human Subjects of the University of the 

Witwatersrand approved the protocol (approval number: M02-04-72 and renewed as M07-04-69 

and M12-04-108). Participants gave informed, written consent. The present study design has 

previously been described (Norton et al 2008, Woodiwiss et al 2009, Redelinghuys et al 2010, 

Norton et al 2012). Briefly, 1174 participants from families of black African descent (Nguni and 

Sotho chiefdoms) with siblings older than 16 years with central hemodynamic measurements 

were randomly recruited from the South West Township (SOWETO) of Johannesburg, South 

Africa. In a series of sub-studies, 1019 had aortic pulse wave velocity (PWV), 786 had left 

ventricular mass index (LVMI) (echocardiography), 578 had carotid intima media thickness 

(IMT), and 779 had LV diastolic function (transmitral velocity) determined. 

 

4.3.2 Clinical, demographic and anthropometric measurements. 

 

See section 2.3.2 for details 

 

4.3.3 Pulse wave analysis. 
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 See section 2.3.4 for details 

 

4.3.4 End-organ measures. 

 

Echocardiographic measurements were recorded and analysed off-line by experienced 

investigators who were unaware of the clinical data of the participants and whom had a low 

degree of inter- and intra-observer variability (Norton et al 2012). Left ventricular mass index 

(LVMI) was determined as described in section 2.3.5. Left ventricular mass was determined 

using a standard formula (Devereux et al 1986) and indexed (LVMI) to height2.7. Left ventricular 

hypertrophy (LVH) was identified as LVMI >51 g/m2.7 (Woodiwiss et al 2015). Left ventricular 

diastolic function was assessed from a pulsed wave Doppler examination of the mitral inflow at 

rest (Libhaber et al 2014). Transmitral flow velocity in early (E) and late (atrial) diastole was 

assessed and data expressed as E/A. A reduced E/A was identified as <0.75 (Quinones et al 

2002). 

Aortic PWV was determined from sequential waveform measurements at carotid and 

femoral sites using applanation tonometry and SphygmoCor software as previously described 

(Norton et al 2008, Woodiwiss et al 2009) (see figure 4.1). The time delay in the pulse waves 

between the carotid and femoral sites was determined using an electrocardiograph-derived R 

wave as a fiducial point. Pulse transit time was taken as the average of 10 consecutive beats. 

The distance which the pulse wave travels was determined as the difference between the 

distance from the femoral sampling site to the suprasternal notch, and the distance from the 

carotid sampling site to the suprasternal notch. Aortic PWV was calculated as the ratio of the 

distance to the transit time (m/sec). An increased PWV was identified as >10 m/sec (Mancia et 

al 2013). 



- - 76 - 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Photograph of the SphygmoCor device (upper panel) used to determine aortic pulse 

wave velocity. Images in the lower panel show carotid and femoral pressure waves together 

with the electrocardiographic trace showing R waves which were used as fiducial points to 

calculate transit time. The transit time is the difference between time A and B. 

A 

Time of aortic wave travel=A-B  

B 
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Carotid intima-media thickness (IMT) was determined using high resolution B-mode 

ultrasound (SonoCalc IMT, Sonosite Inc, Bothell, Washington) employing a linear array 7.5 MHz 

probe as described previously (Norton et al 2012). Images of at least 1cm length of the far wall 

of the distal portion of the right common carotid artery from an optimal angle of incidence 

(defined as the longitudinal angle of approach where both branches of the internal and external 

carotid artery are visualized simultaneously) at least 1 cm proximal to the flow divider were 

obtained. Carotid IMT measurements were determined using semi-automated border-detection 

and quality control software (see figure 4.2). An increased IMT was identified as >0.90 mm 

(Mancia et al 2013). 

Estimated glomerular filtration rate (eGFR) was determined using the abbreviated 

Modification of Diet in Renal Disease (MDRD) study group equation: 186.3 x (serum creatinine 

in mg/decilitre-1.154) x (age in years-0.203) x 1.212 x 0.742 (if female). A reduced eGFR was 

identified as <60 ml/min/1.73 m2 (Mancia et al 2013). 

 

4.3.5 Statistical analysis. 

 

For database management and statistical analysis, SAS software, version 9.1 (SAS 

Institute Inc., Cary, NC) was employed. Multiple linear regression analysis was performed to 

determine the independent effects of aortic BP on end-organ measures considered as 

continuous traits. Logistic regression analysis was performed to determine the independent 

effects of aortic BP on end-organ damage considered as categorical traits. Adjustments 

included in multivariate models were those correlated with central haemodynamic variables or 

end-organ measures in bivariate analysis. In order to avoid the effects of co-linearity, in primary 

analysis age was not included as an adjustor as Pb and Pf are strongly related to age over the 
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adult age range. However, in secondary analysis, age was included as an adjustor to confirm 

the impact of Pb or Pf beyond age. To determine probability values, further adjustments for non-  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Ultrasonic image of the right common carotid artery showing semi-automated border 

detection (yellow lines) to obtain intima-media thickness measurement (of 1cm length, between 

blue lines) at least 1cm proximal to the flow divider. 
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 independence of family members was performed using non-linear regression analysis (mixed 

procedure as defined in the SAS package). To ensure that relationships occurred independent 

of the use of antihypertensive therapy or as a result of sex-specific effects of aortic function, 

sensitivity analysis was conducted in participants not receiving antihypertensive therapy and in 

sex-specific groups. Regression coefficients were compared with z statistics. 

 

4.4 Results 

 

4.4.1 Characteristics of the participants. 

 

Table 4.1 gives the demographic and clinical characteristics of the participants. Tables 

4.2-4.4 give the demographic and clinical characteristics of the participants recruited in the sub-

studies where LVMI, E/A or IMT were measured as compared to participants without these 

measurements. More women than men participated in the study. As compared to those without 

IMT measurements, those with IMT measurements were modestly younger with a trend toward 

higher BP values (Table 4.3). Otherwise, no differences were noted in participants recruited in 

the sub-studies where LVMI and E/A were measured as compared to participants without these 

measurements (Tables 4,2 and 4.4). A high proportion of participants had an increased LVMI 

and decreased E/A (Table 4.1). A low-to-intermediate proportion had an increased IMT, PWV or 

a reduced eGFR (Table 4.1). 
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Table 4.1. Characteristics of the study sample. 

  

__________________________________________________________ 

Sample number (% female)    1174 (65.1%)   

Age (years)           44.2±18.2 

Body mass index (kg/m2)                     29.5±8.0 

% Overweight/obese        23.0/43.1 

Regular tobacco (% subjects)                15.3 

Regular alcohol (% subjects)                 21.1   

% Diabetes mellitus or an HbA1c>6.1%           25.7   

% Hypertensive            45.6 

% Treated for hypertension           24.0 

Total cholesterol (mmol/l)        4.62±1.35 

HDL cholesterol (mmol/l)        1.40±0.43 

Estimated GFR (eGFR) (mls/min/1.73 m2)        116±32 

Brachial SBP/DBP (mm Hg)                                        128±22/84±13 

Brachial pulse pressure (mm Hg)         44±15 

Aortic SBP (mm Hg)        120±22 

Aortic pulse pressure (mm Hg)          35±14 

Forward wave pressure (Pf) (mm Hg)          24±8 

Backward (reflected) wave pressure (Pb) (mm Hg)           17±8 

Reflected wave index (RI)(Pb/Pf)       71.6±21.5 

Left ventricular mass index (LVMI)(g/m2.7)  41.7±15.1 (n=786) 

Left ventricular E/A  1.28±0.49 (n=779) 

Aortic pulse wave velocity (PWV)(m/sec)  6.39±2.65 (n=1019) 

Carotid intima-media thickness (mm)                          0.64±0.13 (n=578) 

LVMI>51 g/m2.7 (%)           20.7 

PWV>10 m/sec (%)           8.5 

IMT>0.90 mm (%)           3.3 

E/A<0.75 (%)          13.5 

eGFR<60 mls/min/1.73 m2)(%)           1.4 

___________________________________________________________  
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Data are shown as mean±SD or proportions (%). HDL, high density lipoprotein; GFR, 

glomerular filtration rate; SBP, systolic blood pressure; DBP, diastolic BP; E/A, transmitral 

early/atrial diastolic blood flow velocity. 

 



- - 82 - 
 

  

Table 4.2. Characteristics of the study sample with and without left ventricular mass 

measurements. 

            With      Without 

___________________________________________________________ 

Sample number (% female)   786 (65.0)     388 (65.2)  

Age (years)        44.7±18.0     43.0±18.5  

Body mass index (kg/m2)                 29.6±7.8     29.4±8.6   

% Overweight/obese    23.8/44.0      21.4/41.2 

Regular tobacco (% subjects)            14.9         16.2   

Regular alcohol (% subjects)             19.9          23.7      

% Diabetes mellitus or an HbA1c>6.1%       26.1         25.0     

% Hypertensive         46.6         43.6  

% Treated for hypertension        25.7         20.6  

Total cholesterol (mmol/l)   4.64±1.44     4.56±1.15 

HDL cholesterol (mmol/l)   1.38±0.39     1.43±0.43 

Brachial SBP/DBP (mm Hg)                      128±22/84±13      128±21/84±13         

Brachial pulse pressure (mm Hg)                     44±15                 43±13        

Aortic SBP (mm Hg)                                        120±22                119±22        

Aortic pulse pressure (mm Hg)                        35±14                  34±13        

Forward wave pressure (Pf) (mm Hg)               24±8                    23±7        

Backward wave pressure (Pb) (mm Hg)           17±8                    17±7 

Reflected wave index (RI)(Pb/Pf)                   71.8±21.4       71.2±21.7 

____________________________________________________________        

Data are shown as mean±SD or proportions (%). SBP, systolic blood pressure; DBP, diastolic 

BP. 
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Table 4.3. Characteristics of the study sample with and without carotid intima-media thickness 

measurements. 

           With      Without 

___________________________________________________________ 

Sample number (% female)   578 (65.2)     596 (64.9)  

Age (years)        45.3±18.1     43.0±18.2*  

Body mass index (kg/m2)                 29.9±8.2     29.2±7.9   

% Overweight/obese    22.7/44.5      23.3/41.8 

Regular tobacco (% subjects)            16.1         14.6   

Regular alcohol (% subjects)             21.3          21.0      

% Diabetes mellitus or an HbA1c>6.1%       25.6         25.8     

% Hypertensive         45.3         45.8  

% Treated for hypertension        25.4         22.7  

Total cholesterol (mmol/l)   4.66±1.08     4.58±1.57 

HDL cholesterol (mmol/l)   1.40±0.43     1.40±0.43 

Brachial SBP/DBP (mm Hg)                      126±21/83±13      130±23**/85±13*         

Brachial pulse pressure (mm Hg)                     43±14                 45±15*        

Aortic SBP (mm Hg)                                        118±21                121±23*        

Aortic pulse pressure (mm Hg)                        34±13                  36±14*        

Forward wave pressure (Pf) (mm Hg)               23±8                    24±8        

Backward wave pressure (Pb) (mm Hg)           17±7                    18±8* 

Reflected wave index (RI)(Pb/Pf)                   71.1±21.5       72.1±21.5 

___________________________________________________________        

Data are shown as mean±SD or proportions (%). SBP, systolic blood pressure; DBP, diastolic 

BP. * p<0.05, **p<0.005 vs with. 
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Table 4.4. Characteristics of the study sample with and without left ventricular diastolic function 

measurements. 

           With      Without 

___________________________________________________________ 

Sample number (% female)   779 (65.0)     395 (65.3)  

Age (years)        44.6±17.9     43.3±18.7  

Body mass index (kg/m2)                 29.6±7.8     29.4±8.5   

% Overweight/obese    23.8/43.9      21.5/41.5 

Regular tobacco (% subjects)            15.0         16.0   

Regular alcohol (% subjects)             20.0          23.3      

% Diabetes mellitus or an HbA1c>6.1%      25.8          25.6     

% Hypertensive        46.2          44.3  

% Treated for hypertension        25.3         21.5  

Total cholesterol (mmol/l)   4.64±1.45     4.57±1.14 

HDL cholesterol (mmol/l)   1.38±0.39     1.43±0.43 

Brachial SBP/DBP (mm Hg)                      128±22/84±13      128±22/84±13         

Brachial pulse pressure (mm Hg)                     44±15                 44±14        

Aortic SBP (mm Hg)                                        120±22                119±22        

Aortic pulse pressure (mm Hg)                        35±14                   34±14        

Forward wave pressure (Pf) (mm Hg)               24±8                    24±8        

Backward wave pressure (Pb) (mm Hg)           17±8                    17±8 

Reflected wave index (RI)(Pb/Pf)                   71.8±21.2       71.2±21.9 

___________________________________________________________        

Data are shown as mean±SD or proportions (%). SBP, systolic blood pressure; DBP, diastolic 

BP. 
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4.4.2 Both reflected and forward wave pressures are independently associated with end-organ 

measures and damage. 

 

With adjustments for confounders including mean arterial pressure, PPc, Pb, Pf, and RI 

were independently associated with end-organ measures (Table 4.5) and damage (Table 4.6). 

The magnitude of the effect on end-organ measures (slope or β-coefficient) was greater for Pb 

as compared to Pf (Table 4.5). Moreover, for several end-organ measures relations with Pb 

were stronger than with Pf (comparison of partial r values in Table 4.5). 

 

4.4.3 Brachial BP-independent associations between reflected or forward wave pressures and 

end-organ measures or damage. 

 

With adjustments for brachial PP (Figure 4.3) or SBP (Figure 4.4) in addition to 

confounders, PPc, Pb and RI were directly associated with LVMI, PWV, and IMT or increases in 

these variables and inversely associated with E/A and eGFR or decreases in these variables. 

However, with adjustments for brachial PP (Figure 4.3) or SBP (Figure 4.4) in addition to 

confounders, Pf was inversely associated with LVMI, PWV, and IMT or increases in these 

variables and directly associated with E/A and eGFR or decreases in these variables. With 

further adjustments for age, the independent relations between Pb and  
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Table 4.5. Multivariate adjusted (including adjustments for mean arterial pressure) relationships 

(partial correlation coefficients [r] and 95% confidence intervals [CI]) between central aortic 

haemodynamics and end-organ measures. 

  n=        β-coefficient               Partial r*              p value 

                (±SEM)*            (95% CI) 

________________________________________________________ 

Left ventricular mass index (LVMI) vs 

    PPc  786 0.29±0.05            0.22 (0.15 to 0.29)      <0.0001 

    Pf  786 0.31±0.07            0.16 (0.09 to 0.23)      <0.0001 

    Pb  786 0.53±0.09†           0.21 (0.15 to 0.28)      <0.0001 

    RI  786 0.08±0.03            0.10 (0.03 to 0.17)       <0.01 

Aortic pulse wave velocity (PWV) vs 

    PPc  1019 0.08±0.01            0.38 (0.33 to 0.43)      <0.0001 

    Pf  1019 0.08±0.01            0.25 (0.19 to 0.31)      <0.0001 

    Pb  1019 0.16±0.01†††        0.40 (0.34 to 0.44)†††   <0.0001 

    RI  1019 0.03±0.04            0.22 (0.16 to 0.28)      <0.0001 

Carotid intima-media thickness (IMT) vs 

    PPc  578 0.004±0.0004      0.33 (0.25 to 0.40)       <0.0001 

    Pf  578 0.003±0.0007      0.20 (0.12 to 0.28)       <0.0001 

    Pb  578 0.007±0.0008†††  0.35 (0.27 to 0.41)††     <0.0001 

    RI  578 0.001±0.0003      0.21 (0.13 to 0.29)       <0.0001 

Left ventricular E/A vs  

    PPc  779     -0.008±0.001       -0.21 (-0.27 to -0.14)       <0.0001 

    Pf  779     -0.004±0.002       -0.06 (-0.13 to 0.01)       =0.08 

    Pb  779     -0.016±0.003†††   -0.23 (-0.30 to -0.16)††   <0.0001 

    RI  779     -0.006±0.0008     -0.25 (-0.31 to -0.18)      <0.0001 

Estimated glomerular filtration rate (eGFR) vs 

    PPc  1174   -0.43±0.008         -0.15 (-0.21 to -0.09)       <0.0001 

    Pf  1174   -0.35±0.13           -0.08 (-0.14 to -0.02)       <0.01 

    Pb  1174   -0.84±0.16†          -0.16 (-0.21 to -0.10)†     <0.0001 

    RI  1174   -0.23±0.05           -0.13 (-0.19 to -0.08)      <0.0001 

__________________________________________________________ 

PPc, central aortic pulse pressure; Pb, aortic backward (reflected) wave pressure; Pf, aortic 

forward wave pressure; RI, reflected wave index (Pb/Pf); E/A, transmitral early/atrial diastolic 
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blood flow velocity.*Adjusted for mean arterial pressure, sex, body mass index (except for LVMI 

which was adjusted for body weight), total cholesterol, HDL cholesterol, regular tobacco use, 

regular alcohol intake, diabetes mellitus or an HbA1c>6.1%, and pulse rate. †p=0.05, ††p<0.005, 

†††p<0.0005 versus β-coefficient or partial r with the forward wave (z-statistics for comparison of 

partial r values). 
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Table 4.6. Multivariate adjusted (including adjustments for mean arterial pressure) relationships 

(partial correlation coefficients [r] and 95% confidence intervals [CI]) between central aortic 

haemodynamics and end-organ damage. 

  n= n with damage    Odds ratio (95% CI)     p value        

____________________________________________________________ 

Left ventricular mass index (LVMI) >51 g/m2.7 vs 

    PPc  786       163     1.03 (1.01 to 1.05)     <0.005 

    Pf  786       163     1.02 (1.00 to 1.05)     <0.05 

    Pb  786       163     1.06 (1.03 to 1.09)     <0.0005 

    RI  786       163     1.01 (1.00 to 1.02)     <0.05 

Aortic pulse wave velocity (PWV)>10 m/sec vs 

    PPc  1019        87       1.09 (1.07 to 1.12)     <0.0001 

    Pf  1019        87       1.10 (1.07 to 1.14)     <0.0001 

    Pb  1019        87       1.19 (1.14 to 1.24)     <0.0001 

    RI             1019        87       1.03 (1.02 to 1.05)     <0.0001 

Carotid intima-media thickness (IMT) >0.90 mm vs 

    PPc  578        19                  1.08 (1.03 to 1.12)     <0.005 

    Pf  578        19                  1.07 (1.01 to 1.14)     <0.05 

    Pb  578        19              1.14 (1.05 to 1.23)     <0.005 

    RI  578        19       1.03 (1.01 to 1.06)     <0.02 

 Left ventricular E/A <0.75 vs 

    PPc  779         105       1.05 (1.03 to 1.07)    <0.0001 

    Pf  779         105       1.05 (1.02 to 1.08)    <0.005 

    Pb  779         105       1.08 (1.04 to 1.12)    <0.0001 

    RI  779         105       1.01 (1.00 to 1.03)    =0.05 

Estimated glomerular filtration rate (eGFR) <60 mls/min/1.73 m2 vs 

    PPc  1174         16       1.06 (1.01 to 1.11)    <0.05 

    Pf  1174         16       1.05 (0.99 to 1.12)    =0.09 

    Pb  1174         16       1.12 (1.03 to 1.21)    <0.01 

    RI  1174         16       1.02 (0.996 to 1.05)   =0.09 

__________________________________________________________ 

PPc, central aortic pulse pressure; Pb, aortic backward (reflected) wave pressure; Pf, aortic 

forward wave pressure; RI, reflected wave index (Pb/Pf); E/A, transmitral early/atrial diastolic 
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blood flow velocity. Adjusted for mean arterial pressure, sex, body mass index (except for LVMI 

which was adjusted for body weight), total cholesterol, HDL cholesterol, regular tobacco use, 

regular alcohol intake, diabetes mellitus or an HbA1c>6.1%, and pulse rate. 
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Figure 4.3. Brachial pulse pressure (PP)-independent relations between central aortic 

haemodynamics and end-organ measures (upper panel) or damage (lower panel). Pb, aortic 

backward (reflected) wave pressure; Pf, aortic forward wave pressure; LVMI, left ventricular 

mass index; PWV, aortic pulse wave velocity; IMT, carotid intima-media thickness; E/A, 

transmitral early/atrial diastolic blood flow velocity; eGFR, estimated glomerular filtration rate; 

LVH, LV hypertrophy; Incr., increased; Decr., decreased. *Adjustments are for brachial PP as 

well as sex, body mass index (except for LVMI which was adjusted for body weight), total 
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cholesterol, HDL cholesterol, regular tobacco use, regular alcohol intake, diabetes mellitus or an 

HbA1c>6.1%, and pulse rate. 
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Figure 4.4. Brachial systolic pressure (SBP)-independent relations between central aortic 

haemodynamics and end-organ measures (upper panel) or damage (lower panel). Pb, aortic 

backward (reflected) wave pressure; Pf, aortic forward wave pressure; RI, reflected wave index 

(Pb/Pf); LVMI, left ventricular mass index; PWV, aortic pulse wave velocity; IMT, carotid intima-

media thickness; E/A, transmitral early/atrial diastolic blood flow velocity; eGFR, estimated 

glomerular filtration rate; LVH, LV hypertrophy; Incr., increased; Decr., decreased. *Adjustments 
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are for SBP as well as sex, body mass index (except for LVMI which was adjusted for body 

weight), total cholesterol, HDL cholesterol, regular tobacco use, regular alcohol intake, diabetes 

mellitus or an HbA1c>6.1%, and pulse rate. 
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PWV (Tables 4.7 and 4.8), IMT (Tables 4.7 and 4.8), E/A (Table 4.7) and LVMI (Table 4.8) were 

retained. The non-age and age-adjusted relations noted in all participants were similarly also 

noted in participants not receiving antihypertensive therapy (Tables 4.9 and 4.10). Moreover, 

brachial BP-independent relations between either PPc or Pb and end-organ measures were 

largely reproduced in both women (Table 4.11) and men (Table 4.12).  

 

4.4.4 Reflected, but not forward wave pressures account for brachial BP-independent relations 

between aortic PP and end-organ measures or damage. 

 

Adjustments for Pb, but not for Pf eliminated or significantly attenuated brachial PP 

(Figure 4.5) or brachial SBP (Figure 4.6)-independent relations between aortic PP and end-

organ measures. 

 

4.4.5 Relative contribution of forward and backward wave pressures to pulse pressure 

amplification. 

 

Aortic Pb was more strongly correlated with aortic-to-brachial PP amplification than Pf 

(Figure 4.7) and these effects were noted in both women (Pb vs PP amplification, r=-0.57, 

p<0.0001; Pf vs PP amplification, r=-0.08, p<0.05) and in men (Pb vs PP amplification, r=-0.64, 

p<0.0001; Pf vs PP amplification, r=-0.27, p<0.001) (p<0.0001 for comparison of r values with z 

statistics in both women and in men). 
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Table 4.7 Brachial pulse pressure (PP) and age-independent relations between central aortic 

haemodynamics and end-organ measures. 

 

      n=        Partial r* (95% CI)     p value 

_______________________________________ 

Left ventricular mass index (LVMI) vs   

    PPc  786      0.04 (-0.03 to 0.11)    =0.21   

    Pf  786     -0.06 (-0.13 to 0.01)    =0.11   

    Pb  786      0.05 (-0.03 to 0.12)    =0.21  

    RI  786      0.07 (-0.01 to 0.14)    =0.06  

Aortic pulse wave velocity (PWV) vs    

    PPc  1019    0.08 (0.02 to 0.14)     <0.01  

    Pf  1019   -0.07 (-0.14 to -0.01)  <0.05  

    Pb  1019    0.10 (0.04 to 0.16)    <0.005  

    RI  1019    0.09 (0.03 to 0.16)    <0.005 

Carotid intima-media thickness (IMT) vs 

    PPc  578    0.10 (0.01 to 0.18)      <0.05 

    Pf  578    0.01 (-0.07 to 0.09)     =0.78   

    Pb  578    0.09 (0.01 to 0.17)      <0.05  

    RI  578    0.04 (-0.05 to 0.12)     =0.39 

Left ventricular E/A vs 

    PPc  779   -0.11 (-0.18 to -0.04)     <0.005 

    Pf  779    0.06 (-0.01 to 0.13)      =0.11   

    Pb  779   -0.12 (-0.19 to -0.05)    <0.005 

    RI  779   -0.11 (-0.18 to -0.04)    <0.005 

Estimated glomerular filtration rate (eGFR) vs 

    PPc  1174  0.04 (-0.02 to -0.10)    =0.18 

    Pf  1174  0.003 (-0.05 to 0.06)   =0.91   

    Pb  1174  0.02 (-0.03 to -0.08)    =0.41 

    RI  1174  0.001 (-0.06 to 0.06)   =0.98 

________________________________________________________________________ 

PPc, central aortic pulse pressure; Pb, aortic backward (reflected) wave pressure; Pf, aortic 

forward wave pressure; RI, reflected wave index (Pb/Pf); E/A, transmitral early/atrial diastolic 

blood flow velocity.*Adjusted for brachial pulse pressure, age, sex, body mass index (except for 
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LVMI which was adjusted for body weight), total cholesterol, HDL cholesterol, regular tobacco 

use, regular alcohol intake, diabetes mellitus or an HbA1c>6.1%, and pulse rate. 



- - 97 - 
 

  

Table 4.8. Brachial systolic blood pressure (SBP) and age-independent relations between 

central aortic haemodynamics and end-organ measures. 

 

  n=        Partial r* (95% CI)       p value    

_________________________________________ 

Left ventricular mass index (LVMI) vs 

    PPc  786      0.10 (0.03 to 0.17)     <0.01  

    Pf  786      0.05 (-0.02 to 0.12)    =0.14  

    Pb  786      0.09 (0.02 to 0.16)     <0.02 

    RI  786      0.04 (-0.03 to 0.11)    =0.28 

Aortic pulse wave velocity (PWV) vs 

    PPc  1019    0.09 (0.03 to 0.15)     <0.005  

    Pf  1019    0.04 (-0.02 to 0.10)    =0.18  

    Pb  1019    0.10 (0.04 to 0.16)     <0.002 

    RI  1019    0.09 (-0.02 to 0.10)    =0.18 

Carotid intima-media thickness (IMT) vs 

    PPc  578      0.08 (0.00 to 0.16)     <0.05  

    Pf  578      0.05 (-0.03 to 0.13)    =0.21  

    Pb  578      0.09 (0.01 to 0.17)     <0.05 

    RI  578      0.01 (-0.07 to 0.09)    =0.79 

Left ventricular E/A vs  

    PPc  779      0.03 (-0.04 to 0.10)    =0.37  

    Pf  779      0.09 (0.02 to 0.16)     <0.05  

    Pb  779      0.002 (-0.07 to 0.07)  =0.97 

    RI  779     -0.09 (-0.16 to 0.02)   <0.02 

Estimated glomerular filtration rate (eGFR) vs 

    PPc  1174     0.05 (-0.01 to 0.10)    =0.12 

    Pf  1174     0.01 (-0.04 to 0.07)    =0.62 

    Pb  1174     0.05 (-0.01 to 0.10)    =0.12 

    RI  1174     0.01 (-0.04 to 0.07)    =0.65 

_________________________________________ 

PPc, central aortic pulse pressure; Pb, aortic backward (reflected) wave pressure; Pf, aortic 

forward wave pressure; RI, reflected wave index (Pb/Pf); E/A, transmitral early/atrial diastolic 

blood flow velocity.*Adjusted for brachial SBP, age, sex, body mass index (except for LVMI 
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which was adjusted for body weight), total cholesterol, HDL cholesterol, regular tobacco use, 

regular alcohol intake, diabetes mellitus or an HbA1c>6.1%, and pulse rate. 
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Table 4.9. Brachial blood pressure (BP) independent relations between central aortic 

haemodynamics and end-organ measures in participants not receiving antihypertensive 

therapy. 

         Adjustments→    *+Brachial pulse pressure  *+Brachial systolic BP  

    n=        Partial r (95% CI)    p value         Partial r (95% CI)        p value 

____________________________________________________________________ 

Left ventricular mass index (LVMI) vs 

    PPc  584      0.16 (0.08 to 0.24)       <0.0001       0.15 (0.07 to 0.23)      <0.0005  

    Pf  584     -0.004 (-0.09 to 0.08)    =0.92           0.09 (0.01 to 0.17)      <0.05  

    Pb  584      0.14 (0.06 to 0.22)       <0.001         0.14 (0.06 to 0.22)      <0.001 

    RI  584      0.11 (0.03 to 0.19)       <0.01           0.07 (-0.01 to 0.15)    =0.08 

Aortic pulse wave velocity (PWV) vs 

    PPc  780     0.37 (0.31 to 0.43)         <0.0001        0.25 (0.19 to 0.32)    <0.0001  

    Pf  780    -0.15 (-0.22 to -0.08)      <0.0001        0.04 (-0.03 to 0.11)    =0.31  

    Pb  780     0.37 (0.31 to 0.43)         <0.0001        0.30 (0.24 to 0.36)    <0.0001 

    RI  780     0.32 (0.26 to 0.39)         <0.0001 0.25 (0.19 to 0.32)    <0.0001 

Carotid intima-media thickness (IMT) vs 

    PPc  431     0.30 (0.21 to 0.38)         <0.0001        0.25 (0.16 to 0.33)   <0.0001  

    Pf  431    -0.05 (-0.14 to 0.05)        =0.33 0.09 (-0.01 to 0.19)   =0.06  

    Pb  431     0.26 (0.16 to 0.34)         <0.0001 0.25 (0.16 to 0.34)    <0.0001 

    RI  431     0.22 (0.13 to 0.31)         <0.0001 0.18 (0.09 to 0.27)    <0.0002 

Left ventricular E/A vs 

    PPc  582   -0.37 (-0.40 to -0.26)     <0.0001         -0.16 (-0.24 to -0.08)   =0.0001 

    Pf  582    0.15 (0.07 to 0.23)        =0.0004          0.06 (-0.02 to 0.14)    =0.15  

    Pb  582   -0.32 (-0.39 to -0.24)     <0.0001         -0.20 (-0.28 to -0.12)   <0.0001 

    RI  582   -0.30 (-0.38 to -0.23)     <0.0001         -0.26 (-0.34 to -0.18)   <0.0001 

Estimated glomerular filtration rate (eGFR) vs 

    PPc  892   -0.19 (-0.25 to -0.12)     <0.0001         -0.10 (-0.16 to -0.03)   <0.01 

    Pf  892    0.03 (-0.03 to 0.10)       =0.32            -0.004 (-0.07 to 0.06)   =0.91  

    Pb  892   -0.17 (-0.23 to -0.11)     <0.0001         -0.11 (-0.18 to -0.05)   <0.001 

    RI  892   -0.16 (-0.22 to -0.09)     <0.0001         -0.13 (-0.19 to -0.06)   <0.0005 

________________________________________________________________________ 

PPc, central aortic pulse pressure; Pb, aortic backward (reflected) wave pressure; Pf, aortic 

forward wave pressure; RI, reflected wave index (Pb/Pf); E/A, transmitral early/atrial diastolic 
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blood flow velocity.*Adjusted for brachial blood pressure as indicated, sex, body mass index 

(except for LVMI which was adjusted for body weight), total cholesterol, HDL cholesterol, 

regular tobacco use, regular alcohol intake, diabetes mellitus or an HbA1c>6.1%, and pulse rate. 
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Table 4.10. Brachial blood pressure (BP) and age-independent relations between central aortic 

haemodynamics and end-organ measures in participants not receiving antihypertensive 

therapy. 

         Adjustments→    *+Brachial pulse pressure  *+Brachial systolic BP  

    n=        Partial r (95% CI)    p value         Partial r (95% CI)        p value 

____________________________________________________________________ 

Left ventricular mass index (LVMI) vs 

    PPc  584      0.11 (0.03 to 0.19)       <0.01           0.11 (0.03 to 0.19)       <0.01  

    Pf  584      0.02 (-0.06 to 0.10)      =0.59           0.09 (0.01 to 0.17)       <0.05  

    Pb  584      0.09 (0.01 to 0.17)       <0.05           0.10 (0.02 to 0.18)       <0.05 

    RI  584      0.06 (-0.02 to 0.14)      =0.13           0.03 (-0.06 to 0.11)      =0.53  

Aortic pulse wave velocity (PWV) vs 

    PPc  780     0.14 (0.07 to 0.21)         <0.0001       0.07 (0.01 to 0.14)       <0.05  

    Pf  780    -0.05 (-0.13 to 0.02)        =0.13           0.02 (-0.05 to 0.09)     =0.63  

    Pb  780     0.17 (0.10 to 0.24)         <0.0001        0.11 (0.03 to 0.17)     <0.005 

    RI  780     0.12 (0.05 to 0.19)         <0.002          0.06 (0.01 to 0.13)      =0.12 

Carotid intima-media thickness (IMT) vs 

    PPc  431     0.03 (-0.07 to 0.12)        =0.57           0.04 (-0.06 to 0.13)      =0.42  

    Pf  431     0.07 (-0.03 to 0.16)        =0.17            0.07 (-0.03 to 0.16)      =0.15  

    Pb  431     0.01 (-0.09 to 0.10)        =0.86            0.02 (-0.08 to 0.12)      =0.68 

    RI  431    -0.01 (0.11 to 0.08)         =0.80          -0.03 (-0.13 to 0.06)      =0.49 

Left ventricular E/A vs 

    PPc  582   -0.09 (-0.17 to -0.01)        <0.05           0.03 (-0.05 to 0.11)      =0.44  

    Pf  582    0.05 (-0.03 to 0.13)         =0.20           0.08 (-0.003 to 0.16)    =0.06  

    Pb  582   -0.11 (-0.19 to -0.02)        <0.02         -0.003 (-0.08 to 0.08)     =0.95 

    RI  582   -0.10 (-0.18 to -0.02)        <0.02         -0.08 (-0.17 to -0.003)    <0.05 

Estimated glomerular filtration rate (eGFR) vs 

    PPc  892    0.02 (-0.05 to 0.08)        =0.59            0.05 (-0.01 to 0.12)      =0.12  

    Pf  892   -0.04 (-0.11 to 0.02)        =0.20            0.003 (-0.06 to 0.07)    =0.93  

    Pb  892    0.01 (-0.05 to 0.08)        =0.72            0.05 (-0.01 to 0.12)      =0.12 

    RI  892    0.02 (-0.05 to 0.08)        =0.59            0.03 (-0.04 to 0.10)      =0.36 

______________________________________________________________________ 

PPc, central aortic pulse pressure; Pb, aortic backward (reflected) wave pressure; Pf, aortic 

forward wave pressure; RI, reflected wave index (Pb/Pf); E/A, transmitral early/atrial diastolic 
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blood flow velocity.*Adjusted for brachial blood pressure as indicated, sex, body mass index 

(except for LVMI which was adjusted for body weight), total cholesterol, HDL cholesterol, 

regular tobacco use, regular alcohol intake, diabetes mellitus or an HbA1c>6.1%, and pulse rate. 
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Table 4.11. Brachial blood pressure (BP) independent relations between central aortic 

haemodynamics and end-organ measures in women. 

         Adjustments→    *+Brachial pulse pressure  *+Brachial systolic BP  

    n=        Partial r (95% CI)      p value          Partial r (95% CI)        p value 

Left ventricular mass index (LVMI) vs 

    PPc  511      0.08 (-0.01 to 0.16)       =0.09           0.10 (0.02 to 0.19)      <0.01  

    Pf  511     -0.10 (-0.18 to -0.01)     <0.05            0.03 (-0.06 to 0.12)     =0.52  

    Pb  511      0.09 (0.00 to 0.17)       =0.05            0.11 (0.02 to 0.19)       <0.02 

    RI  511      0.11 (0.02 to 0.19)       <0.02            0.07 (-0.02 to 0.15)      =0.14  

Aortic pulse wave velocity (PWV) vs 

    PPc  645     0.25 (0.18 to 0.32)         <0.0001       0.11 (0.04 to 0.19)       <0.005  

    Pf  645    -0.10 (-0.17 to -0.02)       <0.02          0.003 (-0.07 to 0.08)     =0.93  

    Pb  645     0.22 (0.15 to 0.29)         <0.0001       0.12 (0.04 to 0.20)       <0.005 

    RI  645     0.23 (0.15 to 0.30)         <0.0001       0.14 (0.06 to 0.22)        <0.0005 

Carotid intima-media thickness (IMT) vs 

    PPc  377     0.25 (0.15 to 0.30)          <0.0001      0.04 (-0.06 to 0.13)      =0.42  

    Pf  377    -0.13 (-0.22 to -0.02)       <0.02          0.009 (-0.09 to 0.11)     =0.86  

    Pb  377     0.23 (0.13 to 0.32)          <0.0001      0.19 (0.09 to 0.29)        <0.0005 

    RI  377     0.22 (0.12 to 0.32)          <0.0001      0.17 (0.07 to 0.27)        <0.002 

Left ventricular E/A vs 

    PPc  506   -0.31 (-0.38 to -0.23)        <0.0001      -0.10 (-0.18 to 0.01)      <0.05  

    Pf  506    0.13 (0.04 to 0.22)           <0.005         0.08 (-0.01 to 0.17)      =0.07  

    Pb  506   -0.28 (-0.36 to -0.20)        <0.0001      -0.14 (-0.22 to -0.05)     <0.005 

    RI  506   -0.26 (-0.34 to -0.18)        <0.0001      -0.22 (-0.30 to -0.13)     <0.0001 

Estimated glomerular filtration rate (eGFR) vs 

    PPc  764   -0.11 (-0.18 to -0.04)        <0.005        -0.03 (-0.10 to 0.04)       =0.38  

    Pf  764    0.06 (-0.01 to 0.13)          =0.12           0.02 (-0.05 to 0.09)       =0.60  

    Pb  764   -0.11 (-0.18 to -0.04)        <0.002         -0.05 (-0.12 to 0.02)      =0.17 

    RI  764   -0.12 (-0.19 to -0.05)        <0.001         -0.08 (-0.15 to -0.01)     <0.05 

________________________________________________________________________ 

PPc, central aortic pulse pressure; Pb, aortic backward (reflected) wave pressure; Pf, aortic 

forward wave pressure; RI, reflected wave index (Pb/Pf); E/A, transmitral early/atrial diastolic 

blood flow velocity.*Adjusted for brachial blood pressure as indicated, body mass index (except 
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for LVMI which was adjusted for body weight), total cholesterol, HDL cholesterol, regular 

tobacco use, regular alcohol intake, diabetes mellitus or an HbA1c>6.1%, and pulse rate. 
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Table 4.12. Brachial blood pressure (BP) independent relations between central aortic 

haemodynamics and end-organ measures in men. 

         Adjustments→    *+Brachial pulse pressure  *+Brachial systolic BP  

    n=        Partial r (95% CI)    p value         Partial r (95% CI)     p value 

____________________________________________________________________ 

Left ventricular mass index (LVMI) vs 

    PPc  275      0.14 (0.02 to 0.26)       <0.05           0.20 (0.08 to 0.31)       <0.001  

    Pf  275     -0.02 (-0.14 to 0.10)      =0.80           0.13 (0.01 to 0.24)       <0.05  

    Pb  275      0.11 (-0.006 to 0.23)    =0.06           0.19 (0.07 to 0.30)       <0.005 

    RI  275      0.13 (0.01 to 0.24)        <0.05          0.14 (0.02 to 0.25)        <0.05  

Aortic pulse wave velocity (PWV) vs 

    PPc  374     0.28 (0.18 to 0.37)         <0.0001       0.37 (0.27 to 0.45)       <0.0001 

    Pf  374    -0.22 (-0.31 to -0.12)       <0.0001      0.14 (0.04 to 0.24)       <0.01  

    Pb  374     0.32 (0.22 to 0.41)         <0.0001       0.40 (0.31 to 0.48)      <0.0001 

    RI  374     0.31 (0.22 to 0.40)         <0.0001       0.30 (0.20 to 0.39)      <0.0001 

Carotid intima-media thickness (IMT) vs 

    PPc  201     0.34 (0.21 to 0.46)         <0.0001       0.36 (0.22 to 0.47)       <0.0001 

    Pf  201     0.03 (-0.11 to 0.17)        =0.64            0.22 (0.08 to 0.35)      <0.005  

    Pb  201     0.29 (0.15 to 0.41)         <0.0001       0.35 (0.22 to 0.47)       <0.0001 

    RI  201    0.20 (0.05 to 0.33)          <0.01           0.20 (0.06 to 0.33)       <0.01 

Left ventricular E/A vs 

    PPc  273   -0.36 (-0.46 to -0.25)        <0.0001     -0.19 (-0.30 to -0.07)     <0.005  

    Pf  273    0.16 (0.04 to 0.28)           <0.01          0.06 (-0.06 to 0.18)      =0.34  

    Pb  273   -0.35 (-0.45 to -0.24)        <0.0001     -0.23 (-0.34 to -0.11)     <0.0005 

    RI  273   -0.36 (-0.46 to -0.25)        <0.0001     -0.34 (-0.44 to -0.23)     <0.0001 

Estimated glomerular filtration rate (eGFR) vs 

    PPc  410   -0.17 (-0.27 to -0.08)        <0.001       -0.16 (-0.25 to -0.06)     <0.005  

    Pf  410    0.08 (-0.01 to 0.18)          =0.09         -0.04 (-0.13 to 0.06)      =0.48  

    Pb  410   -0.16 (-0.25 to -0.06)        <0.002       -0.16 (-0.26 to -0.07)      <0.001 

    RI  410   -0.19 (-0.28 to -0.09)        <0.0005     -0.19 (-0.28 to -0.09)      <0.0005 

________________________________________________________________________ 

PPc, central aortic pulse pressure; Pb, aortic backward (reflected) wave pressure; Pf, aortic 

forward wave pressure; RI, reflected wave index (Pb/Pf); E/A, transmitral early/atrial diastolic 
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blood flow velocity.*Adjusted for brachial blood pressure as indicated, body mass index (except 

for LVMI which was adjusted for body weight), total cholesterol, HDL cholesterol, regular 

tobacco use, regular alcohol intake, diabetes mellitus or an HbA1c>6.1%, and pulse rate. 
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Figure 4.5. Impact of adjustments for forward (Pf) or backward (reflected) (Pb) wave pressures  

on the brachial pulse pressure (PP)-independent relations between central aortic pulse pressure 

(PPc) and end-organ measures. LVMI, left ventricular mass index; PWV, aortic pulse wave 

velocity; IMT, carotid intima-media thickness; E/A, transmitral early/atrial diastolic blood flow 

velocity; eGFR, estimated glomerular filtration rate. †Adjustments are for brachial PP as well as 

sex, body mass index (except for LVMI which was adjusted for body weight), total cholesterol, 

HDL cholesterol, regular tobacco use, regular alcohol intake, diabetes mellitus or an 

HbA1c>6.1%, and pulse rate. *p<0.005, **p<0.0001 versus without adjustments for Pb. 
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Figure 4.6. Impact of adjustments for forward (Pf) or backward (reflected) (Pb) wave pressures 

on the brachial systolic blood pressure (SBP)-independent relations between central aortic 

pulse pressure (PPc) and end-organ measures. LVMI, left ventricular mass index; PWV, aortic 

pulse wave velocity; IMT, carotid intima-media thickness; E/A, transmitral early/atrial diastolic 

blood flow velocity; eGFR, estimated glomerular filtration rate. †Adjustments are for SBP as well 

as sex, body mass index (except for LVMI which was adjusted for body weight), total 

cholesterol, HDL cholesterol, regular tobacco use, regular alcohol intake, diabetes mellitus or an 

HbA1c>6.1%, and pulse rate. *p<0.005, ** p<0.0001 versus without adjustments for Pb. 
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Figure 4.7. Bivariate relationships between either aortic forward (Pf) or backward (reflected) 

wave (Pb) pressures and aortic-to-brachial pulse pressure (PP) amplification. Comparison of r 

values using z-statistics, p<0.0001. 

r=-0.59  

p<0.0001 

n=1174 

r=-0.14  

p<0.0001 

n=1174 
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4.5 Discussion 

  

The main findings of the present study are as follows: In a large community-based 

sample of African ancestry after multivariate adjustments including adjustments for distending 

pressures (mean arterial pressure), independent relationships were noted between PPc, Pf, Pb 

or RI and several end-organ changes. However, with adjustments for brachial PP, aortic PPc, 

Pb and RI, but not Pf remained independently and directly associated with LVMI, PWV, and IMT 

or increases thereof and inversely associated with E/A and eGFR or decreases thereof. 

Furthermore, Pb, but not Pf accounted for the brachial BP-independent relations between aortic 

PP and end-organ measures. 

 Several studies have suggested that indices of aortic wave reflection provide unique 

prognostic information beyond brachial BP (Wang et al 2010, Chirinos et al 2012, Zamani et al 

2014, Hughes et al 2014). However, whether forward wave pressures, which have previously 

been demonstrated to account for most of the age-related (Mitchell et al 2010b) or 

hypertension-related (Mancia et al 2013) increases in aortic pulse pressure, also account for 

cardiovascular damage independent of brachial BP, is uncertain. Moreover, whether forward, or 

backward (reflected) wave pressures or both account for the brachial BP-independent 

relationship between aortic PP and cardiovascular damage (Safar et al 2002, Roman et al 2007, 

Jankowski et al 2008, Pini et al 2008, Wang et al 2009, Williams et al 2006, Benetos et al 2010, 

Regnault et al 2012, Benetos et al 2012, Vlachopoulos et al 2010, Roman et al 2014), is 

similarly unknown. In the present study I show that Pb and RI, but not Pf is associated with end-

organ measures and damage independent of brachial BP. Further, I show that the brachial BP-

independent relationships between aortic PP and end-organ measures are largely accounted for 

by Pb, but not by Pf. Hence, the present study suggests that brachial BP-independent relations 

between aortic pressure and cardiovascular end-organ changes are largely attributed to 

backward (reflected) rather than forward wave pressure effects. 



- - 111 - 
 

  

 An important caveat of the present study is that brachial BP-independent relationships 

between reflected, but not forward wave pressures does not imply that forward wave pressures 

do not contribute to end-organ measures. Indeed, with adjustments for mean arterial pressure 

(distending pressures), both forward and backward wave pressures contributed to variations in 

end-organ measures and damage. The results of the present study could be explained in two 

possible ways. First, as demonstrated in the present study, reflected wave pressures may be 

more closely associated with amplification of PP from the aorta to the brachial artery. Hence, 

relations between brachial BP and end-organs are likely to closely reflect associations between 

forward rather than backward wave pressures and end-organ measures. In contrast, backward 

wave pressure effects are more likely to be detected using aortic BP measurements. Second, 

as compared to relations between Pf and end-organ measures, the relations between Pb and 

end-organ measures had a greater slope (magnitude) and for several end-organs the 

relationship was also stronger. Hence, Pb may contribute more than Pf to variations in end-

organ measures. In this regard, prior studies have reported on closer relations between 

reflected as compared to forward wave indices and end-organ measures (Wang et al 2010, 

Weber et al 2012) or cardiovascular outcomes (Zamani et al 2014). However, in neither of the 

studies reporting on relations between Pf or Pb and end-organ measures (Wang et al 2010, 

Weber et al 2012) were these relations assessed with adjustments for brachial BP. 

Nevertheless, even without adjustments for brachial BP, Pb but not Pf has been demonstrated 

to predict cardiovascular outcomes (Zamani et al 2014). 

  The clinical implications of the brachial BP-independent relations between Pb, but not Pf 

and end-organ measures require consideration. The present results suggest that brachial BP-

independent relations between aortic pressure and cardiovascular damage (Safar et al 2002, 

Roman et al 2007, Jankowski et al 2008, Pini et al 2008, Wang et al 2009, Williams et al 2006, 

Benetos et al 2010, Regnault et al 2012, Benetos et al 2012, Vlachopoulos et al 2010, Roman 

et al 2014) are attributed largely to reflected wave pressure effects, with little contribution from 
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forward wave pressure effects. Hence, whilst the adverse effects of forward wave pressures are 

likely to be revealed using brachial BP measurements, backward wave pressure effects are 

unlikely to be readily detected using brachial BP measurements. These results may in-part 

explain why in community samples where the backward wave contributes little to age-related 

increases in aortic BP (Mitchell et al 2010b), aortic pressure does not predict cardiovascular 

outcomes beyond brachial BP (Mitchell et al 2010a), whilst in community samples where a 

strong age-related increase in the backward wave pressures occurs (Wang et al 2010), aortic 

BP predicts outcomes beyond brachial BP (Wang et al 2009). 

 Although I provide clear evidence that aortic PWV is more strongly associated with 

reflected as compared to forward wave pressures, it is possible that the association between 

PWV and Pb may be interpreted as an increased aortic stiffness enhancing the magnitude of 

wave reflection. However, more recent studies suggest that increases in aortic stiffness reduce 

the degree of wave reflection and hence cause microvascular damage by augmenting flow 

pulsatility (Mitchell et al 2011, Hashimoto et al 2011). Thus, it is possible that the association 

between Pb and PWV reflects an effect of Pb on aortic stiffness, rather than aortic stiffness on 

Pb. 

 The limitations of the present study are as follows: First, the present study was a cross-

sectional design and end-organ measures rather than hard outcomes were assessed. 

Therefore, I cannot determine whether relations between aortic haemodynamics and 

cardiovascular damage are indeed cause and effect. Further longitudinal studies with 

cardiovascular outcomes are required to determine these effects. Second, in the present study 

calibration of the radial waveform from brachial BP measurements ignores amplification of BP 

from brachial to radial arteries. Hence, aortic pressures may have been underestimated using 

the current approach. Third, as previously described (Westerhof et al 2006), a triangular aortic 

flow waveform was assumed for wave separation analysis, rather than separating forward and 

backward waves with measured aortic flows. In this regard, the assumptions intrinsic to the use 
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of the ‘triangulation method’ of wave separation may not be ideal (Kips et al 2009). Hence, it is 

possible that I may have over- or underestimated the contribution of forward or reflected waves 

to variations in end-organ measures. Fourth, the present study was conducted in a group of 

African ancestry and hence the results require confirmation in other ethnic groups. 

 In conclusion, in a group of African ancestry, I show that although both forward and 

reflected wave effects contribute to end-organ measures and damage, independent of brachial 

BP, the impact of aortic BP is accounted for largely by backward (reflected) wave effects. This 

finding is attributed in-part to reflected, rather than forward wave pressures contributing to 

aortic-to-brachial BP amplification and in-part to stronger relations between reflected rather than 

forward wave pressures and end-organ changes. These findings may explain why in community 

samples which show strong age-related increases in reflected wave pressures (Wang et al 

2010), aortic BP predicts outcomes beyond brachial BP (Wang et al 2009), whilst in community 

samples where backward waves contribute little to age-related increases in aortic BP (Mitchell 

et al 2010b), aortic pressure does not predict cardiovascular outcomes beyond brachial BP (Fok 

et al 2014b). 
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Aortic Backward Waves Rather Than Stiffness Account for Independent 

Associations Between Pulse Pressure Amplification and Left Ventricular Mass in a 

Young-to-Middle Aged Sample. 
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Moekanyi J Sibiya, Gavin R Norton, Hendrik L Booysen, Grace Tade, Carlos D Libhaber, 

Imraan Ballim, Pinhas Sareli, Angela J Woodiwiss. Aortic Backward Waves Rather Than 

Stiffness Account for Independent Associations Between Pulse Pressure Amplification and Left 

Ventricular Mass in a Young-to-Middle Aged Sample. J Am Soc Hypertens (in-press) 
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5.1 Abstract 

 

A decreased aortic-to-brachial pulse pressure amplification (PP amplification), which is 

independently associated with cardiovascular outcomes, may index several aortic functional 

changes. However, that aortic functional change most likely to account for this effect is 

uncertain. In 706 randomly selected community participants of African ancestry with a mean age 

of 44.4±18.2 years I assessed aortic function using radial applanation tonometry and 

SphygmoCor software (including forward [Pf] and backward [Pb] wave separation analysis 

assuming a triangular flow waveform) and left ventricular mass index (LVMI)(echocardiography). 

In multivariate models with the inclusion of brachial PP, 1/PP amplification (partial r=0.12, 

p<0.005), reflected wave pressures (partial r=0,09, p<0.05), and aortic pulse wave velocity 

(PWV) (partial r=0.09, p<0.05) were independently associated with LVMI. Similarly, in 

multivariate models with the inclusion of brachial PP, 1/PP amplification (p<0.005), the reflected 

wave pressure (p<0.01), and aortic PWV (p<0.01) were independently associated with LV 

hypertrophy (LVH). With adjustments for reflected wave pressures, the brachial PP-independent 

relationships between 1/PP amplification and LVMI or LVH were abolished (p>0.08 for both). 

However, adjustments for PWV failed to modify brachial PP-independent relations between 

1/PP amplification and LVMI or LVH. Similar results were noted when brachial SBP rather than 

PP was included in regression models and in sensitivity analysis conducted in participants not 

receiving antihypertensive therapy. In conclusion, the independent relations between the 

reciprocal of aortic-to-brachial PP amplification and LVMI or LVH in a largely young-to-middle-

aged sample are accounted for by variations in backward wave pressures rather than aortic 

stiffness. 

 

Key words: Central blood pressure, aortic pulse pressure, reflected waves, pulse pressure 

amplification, left ventricular mass. 
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5.2 Introduction 

 

Pulse pressure (PP) is a strong determinant of cardiovascular damage beyond steady-

state pressures and as such is incorporated in guidelines for risk prediction (Mancia et 2013). 

Brachial PP may not however accurately reflect aortic PP measurements. Indeed, PP is 

amplified from the aorta to the brachial artery (PP amplification) and this effect is due to 

differences in stiffness between the aorta and peripheral arteries (Avolio et al 2009, Nichols et al 

2011). With age, PP amplification is reduced due to increases in aortic stiffness and a 

consequent attenuation in the difference between the stiffness of the aorta and peripheral 

arteries, as well as because of an earlier timing and an increased amplitude of aortic backward 

waves (Avolio et al 2009, Nichols et al 2011). In this regard, reductions in PP amplification 

predict risk beyond brachial blood pressure (BP) (Benetos et al 2010, Regnault et al 2012, 

Benetos et al 2012, Bursztyn et al 2016). However, the mechanisms that explain the ability of 

PP amplification to risk predict beyond brachial PP are uncertain. 

Increases in aortic pulse wave velocity (PWV), an index of aortic stiffness, and a 

determinant of variations in PP amplification, is now an accepted measure of risk prediction 

beyond brachial BP (Vlachopoulos et al 2010a, Ben-Shlomo et al 2014). Moreover, several 

studies suggest that increases in aortic backward waves, which are also a determinant of 

variations in PP amplification, predict the risk of cardiovascular events (Vlachopoulos et al 

2010b, Wang et al 2010, Chirinos et al 2012, Weber et al 2012, Zamani et al 2014), or associate 

with end-organ changes (Booysen et al 2015, Sibiya et al 2015) beyond brachial PP. However, 

no study has assessed whether increases in aortic stiffness or backward waves account for the 

brachial BP-independent association between PP amplification and cardiovascular end-organ 

changes. As one of the key end-organ changes that occur in response to aortic hemodynamic 

loads is left ventricular hypertrophy (LVH), in the present study I evaluated first whether PP 

amplification adds to brachial BP in associations with LV mass index (LVMI) and LVH in a large 
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randomly selected community-based sample of largely young-to-middle aged participants. I 

subsequently assessed whether this relationship can be accounted for either by aortic PWV, 

and/or by aortic backward wave function. 

 

5.3 Methods 

 

5.3.1 Study group. 

 

The present study was conducted according to the principles outlined in the Helsinki 

declaration. The Committee for Research on Human Subjects of the University of the 

Witwatersrand approved the protocol (approval number: M02-04-72 and renewed as M07-04-69 

and M12-04-108). Participants gave informed, written consent. The present study design has 

previously been described (Booysen et al 2015, Sibiya et al 2015, Norton et al 2008, Woodiwiss 

et al 2009, Redelinghuys et al 2010, Norton et al 2012). Briefly, 1197 participants from randomly 

recruited (from the population census figures of 2001) families of black African descent (Nguni 

and Sotho chiefdoms) from the South West Township (SOWETO) of Johannesburg, South 

Africa, with siblings older than 16 years with all central aortic haemodynamic measurements 

were evaluated. In a sub-study, 706 had left ventricular mass index (LVMI) determined by 

echocardiography and PWV assessments. 

 

5.3.2 Clinical, demographic and anthropometric measurements. 

 

See section 2.3.2 for details. 

  

5.3.3 Pulse wave analysis. 
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See section 2.3.4 for details. In addition, PP amplification was determined as the ratio of 

brachial-to-aortic PP. As PP amplification is inversely associated with cardiovascular damage, 

for comparisons of PP amplification-LVMI or LVH relations with relations between alternative 

indexes of aortic function and LVMI or LVH (which are directly proportional to LVMI and LVH), 

PP amplification was expressed as a reciprocal (1/PPamp).  

 

5.3.4 Echocardiography. 

 

See sections 2.3.5 for details (Chirinos et al 2010). In the present study sample, in 

bivariate analysis height is correlated with LVM (r=0.19, p<0.0001), height becomes inversely 

correlated with LVM when indexed to height2.7 (r=-0.24 p<0.0001), but no significant relationship 

between height and LVM is noted when LVM is indexed to height1.7 (r=-0.07, p=0.08). In 

addition, left ventricular hypertrophy (LVH) was identified as an LVMI-ht1.7>80 g/m1.7 for men 

and >60 g/m1.7 for women (Chirinos et al 2010). Left ventricular end diastolic and systolic 

volumes were determined from M-mode images using the Teichholz method. Left ventricular 

ejection fraction (EF) was calculated as [(LV end diastolic volume-LV end systolic volume)/ LV 

end diastolic volume] x 100. 

 

5.3.5 Data analysis. 

 

For database management and statistical analysis, SAS software, version 9.3 (SAS 

Institute Inc., Cary, NC) was employed. Multiple linear regression analysis was performed to 

determine the independent relations between aortic hemodynamic parameters and LVMI 

(continuous data). Multivariate adjusted logistic regression analysis was performed to determine 

the independent relations between aortic haemodynamic parameters and LVH (discrete data). 

Adjustments included in multivariate models were those correlated with central haemodynamic 
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variables and LVMI in bivariate analysis. To determine probability values, further adjustments 

for non-independence of family members was performed using non-linear regression analysis 

(mixed procedure as defined in the SAS package). Regression coefficients were compared with 

z statistics. In order to ensure that the results were not influenced by the presence of 

antihypertensive therapy, sensitivity analysis was also conducted in participants not receiving 

antihypertensive therapy. Moreover, to ensure that wave separation analysis using the 

triangular flow wave did not influence our results, we evaluated whether the essential findings of 

the study could be replicated in the 336 participants in whom wave separation analysis was 

conducted using aortic flow measurements and who had aortic pulse wave velocity 

measurements. 

 

5.4 Results 

 

5.4.1 Characteristics of the participants. 

 

The clinical and demographic characteristics of the participants are shown in Table 1. 

Body mass index and aortic PWV were modestly greater in those in whom echocardiography 

was not available (Table 5.1). Otherwise, no marked differences in the clinical and demographic 

characteristics of the participants included in the echocardiographic sub-study were noted as 

compared to those not included in the sub-study (Table 5.1). The study sample was largely 

young-to-middle aged. 2% of participants had a history of cardiovascular disease. Importantly, a 

high proportion of participants had hypertension, and a significant proportion were not receiving 

therapy (Table 5.1). Moreover, 35% of all participants and 58% of participants receiving 

antihypertensive therapy had uncontrolled hypertension. Of the participants, 45% had LVH. 

 

5.4.2 Relations between aortic hemodynamic measures and PP amplification. 
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PP amplification was correlated with several aortic hemodynamic measures including 

PPc, Pb, PWV and AIx, but not with Pf (Table 5.2). Importantly, the correlation between Pb and 

PP amplification was markedly stronger than that between PWV and PP amplification (Table 

5.2). The relations between aortic Pb, as determined using the aortic flow wave, and PPc 

(r2=0.95), PP amplification (r2=0.36), Pf (r2=0.59), PWV (r2=0.21), and AIx (r2=0.31), were similar  
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Table 5.1. Characteristics of the study sample. 

     Echocardiographic  No  

          Sub-study  echocardiography 

_____________________________________________________________ 

Sample size (% Female)             706 (64.7) 491 (66.3)   

Age (years)                 44.4±18.2 44.1±18.5     

Body mass index (kg/m2)     29.0±7.4 30.3±8.8*                              

% Obese                   42.1     45.6       

Regular tobacco (% subjects)                        16.5     13.8       

Regular alcohol (% subjects)              19.7     21.7       

% with DM or HbA1c>6.1%                                24.5     26.9       

% Hypertensive         45.8     45.9       

% Treated for hypertension         25.8     21.9       

Pulse rate (beats/min)                                        69±10            69±11     

Brachial SBP/DBP (mm Hg)                         128±23/84±12 129±23/84±13                       

Brachial pulse pressure (PP)(mm Hg)               45±17            45±16   

Central aortic SBP (mm Hg)                            120±23            120±23                  

Central aortic PP (PPc) (mm Hg)                      35±15             35±15 

PP amplification (PPamp) (mm Hg)                1.29±0.18        1.30±0.18 

Augmentation index (AIx) (%)                           141±25           142±25 

Aortic forward wave pressure (Pf) (mm Hg)      24±10              24±8 

Aortic reflected wave pressure (Pb)(mm Hg)    17±8                17±8 

Aortic pulse wave velocity (PWV) (m/sec)        6.14±2.71        6.71±2.48** 

Left ventricular mass index (g/m1.7)                   66.2±21.7           - 

_____________________________________________________________ 

Data expressed as mean ± SD or proportions. DM, diabetes mellitus; HbA1c, glycosylated 

haemoglobin; BP, blood pressure; SBP, systolic BP; DBP, diastolic BP; PP amplification, aortic-

to-brachial PP amplification. *p<0.05, **p<0.005 vs echocardiographic sub-study group. 
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Table 5.2. Correlations (r2 values) between aortic hemodynamic variables in a community 

sample (n=706). 

 

PPamp PPc            Pb  Pf              AIx  PWV  

____________________________________________________________________  

PPamp                - 

PPc   0.27*  - 

Pb   0.37*  0.95*          - 

Pf   0.02  0.73*         0.57*    - 

AIx   0.63*  0.19*         0.30*   0.002*         - 

PWV   0.10*†  0.32*          0.28*    0.22*         0.09*             - 

_____________________________________________________________________ 

See table 1 for abbreviations. *p<0.0001 for significant correlations. †p<0.0001 versus 

correlation between PP amplification and Pb. 
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to those relations obtained between aortic Pb, as determined using the triangular wave form and 

these aortic hemodynamic variables (Table 5.2). 

 

5.4.3 Associations between aortic function and LVMI or LVH. 

 

Aortic PP, 1/PP amplification, Pb and PWV, but not AIx or Pf were associated with LVMI (Table 

5.3) and LVH (Table 5.4) independent of brachial PP or SBP and additional confounders. The 

relations between Pb or Pf and LVMI obtained with a triangular flow wave were similar to these 

relations determined using Pb and Pf obtained using an actual aortic flow wave (Table 5.3). 

Importantly, 1/PP amplification added to the ability of brachial BP to associate with LVMI or LVH 

(Tables 5.3 and 5.4). Indeed, with the inclusion of 1/PP amplification together with brachial BP 

in multivariate models, brachial BP retained similar independent relations with LVMI or LVH and 

1/PP amplification further added to these effects (Tables 5.3 and 5.4). Of importance, the 

brachial PP-independent relationship between Pb and LVMI was similar after (partial r=0.09, 

p=0.02) as compared to before (partial r=0.09, p=0.02) adjustments for LV ejection fraction. 

 

5.4.4 Aortic function variables that accounts for relations between 1/PP amplification and LVMI 

or LVH. 

 

Adjustments for Pb attenuated the relations between 1/PP amplification and LVMI, or 

LVH (Tables 5.5 and 5.6). However, adjustments for PWV, Pf or AIx failed to modify the 

relations between 1/PP amplification and LVMI, or LVH (Tables 5.5 and 5.6). Importantly, the 

impact of adjustments for Pb and Pf on relations between 1/PP amplification and LVMI were 

similar irrespective of whether Pb or Pf were derived from wave separation analysis performed 

using a triangular wave form or an actual aortic flow wave (Table 5.5). 
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Table 5.3. Relations between brachial or aortic hemodynamic parameters and left ventricular 

mass index in all participants and participants having never received antihypertensive therapy 

(untreated). 

 Models with→          Pulse pressure (PP)            Systolic BP (SBP) 

     Adjustors        Partial r                 p-value          Partial r              p-value   

                 (95% CI)              (95% CI)     

__________________________________________________________________________  

Models: LVMI-ht1.7 vs         

      All participants (n=706) 

1. Brachial PP/SBP     *   0.185 (0.112 to 0.256)  <0.0001     0.204 (0.131 to 0.274)  <0.0001       

2. Brachial PP/SBP     *   -0.009 (-0.083 to 0.065) =0.81   0.025 (-0.049 to 0.099)  =0.50     

    PPc/SBPc        0.080 (0.005 to 0.153)  <0.05         0.021 (-0.053 to 0.095)  =0.58         

3. Brachial PP/SBP     *    0.183 (110 to 0.254)     <0.0001     0.187 (0.114 to 0.257)  <0.0001        

    1/PP amplification         0.120 (0.046 to 0.193)  <0.005       0.091 (0.017 to 0.165)  <0.02      

4. Brachial PP/SBP     *    0.047 (-0.028 to 0.121) =0.22         0.082 (0.007 to 0.156)  <0.05      

    Pb         0. 092 (0.018 to 0.166)  <0.02         0.082 (0.007 to 0.156)  <0.05      

5. Brachial PP/SBP     *    0.157 (0.083 to 0.229)  <0.0001      0.173 (0.099 to 0.244)  <0.0001        

    Pf        -0.055 (-0.129 to 0.0.020) =0.15     -0.023 (-0.098 to 0.051) =0.54      

6. Brachial PP/SBP     *    0.154 (0.080 to 0.226)  <0.0001    0.170 (0.097 to 0.241)  <0.0001        

    PWV        0.093 (0.019 to 0.166)  <0.05    0.080 (0.006 to 0.154)  <0.05 

7. Brachial PP/SBP     *    0.186 (0.113 to 0.257)  <0.0001      0.199 (0.126 to 0.269)  <0.0001          

    AIx                    0.051 (-0.023 to 0.125) =0.18          0.018 (-0.056 to 0.092)  =0.63 

8. Brachial PP/SBP     * 

   Pb† (n=336)   *   0. 130 (0.022 to 0.236)  <0.02          0.130 (0.019 to 0.236)  <0.05 

9. Brachial PP/SBP     * 

    Pf† (n=336)  *    -0. 107 (-0.213 to 0.007)  =0.54       -0.066 (-0.174 to 0.043) =0.      

             Untreated participants (n=524) 

1. Brachial PP/SBP     *   0.224 (0.140 to 0.304)  <0.0001     0.227 (0.143 to 0.307)  <0.0001       

2. Brachial PP/SBP     *   -0.039 (-0.125 to 0.047) =0.37   0.008 (-0.079 to 0.094)  =0.86     

    PPc/SBPc        0.126 (0.039 to 0.210)  <0.005      0.048 (-0.038 to 0.134)  =0.27         

3. Brachial PP/SBP     *    0.226 (142 to 0.306)     <0.0001    0.204 (0.119 to 0.285)  <0.0001        

    1/PP amplification         0.194 (0.109 to 0.275)  <0.0001    0.164 (0.078 to 0.247)  <0.0005      

4. Brachial PP/SBP     *    0.048 (-0.039 to 0.135) =0.28         0.062 (-0.026 to 0.148) =0.17      

    Pb         0. 148 (0.062 to 0.232)  <0.001      0.155 (0.068 to 0.239)  =0.0005      
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5. Brachial PP/SBP     *    0.153 (0.067 to 0.237)  =0.0005      0.161 (0.074 to 0.244)  <0.0005        

    Pf        -0.007 (-0.094 to 0.0.080) =0.88       0.029 (-0.058 to 0.116) =0.51      

6. Brachial PP/SBP     *    0.185 (0.100 to 0.267)  <0.0001     0.181 (0.096 to 0.263) <0.0001        

    PWV        0.095 (0.008 to 0.180)  <0.05     0.094 (0.008 to 0.179)  <0.05 

7. Brachial PP/SBP     *    0.225 (0.141 to 0.305)  <0.0001      0.220 (0.136 to 0.300)  <0.0001          

    AIx                    0.068 (-0.018 to 0.154) =0.12          0.033 (-0.054 to 0.119)  =0.46      

_________________________________________________________________________ 

LVMI-ht1.7, left ventricular mass indexed to height1.7. See table 1 for additional abbreviations. 

Untreated refers to never having received antihypertensive therapy *Adjustments are for age, 

sex, body weight, pulse rate, regular smoking, regular alcohol intake, diabetes mellitus or an 

HbA1c>6.1% and treatment for hypertension (in all). †Refers to data obtained in 392 participants 

in whom wave separation analysis was performed using aortic flow assessments. Variance 

inflation factors (VIF) for all aortic function variables except PPc/SBPc ranged from only 1.43 to 

4.39. VIFs for aortic PPc or SBPc were however 12.31-30.56. VIFs for 1/PP amplification were 

only 1.55 to 1.60.   
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Table 5.4. Relations between brachial and aortic hemodynamic parameters and left ventricular 

hypertrophy (LVH) (317 of all 706 participants and 202 of 524 participants never having 

received antihypertensive therapy [untreated]). 

Models with→          Pulse pressure (PP)           Systolic BP (SBP) 

   Adjustors         OR (95% CI)          p-value      OR (95% CI)           p-value 

_________________________________________________________________________ 

Models: LVH versus      

                     All participants 

1. Brachial PP/SBP    *    1.020 (1.008 to 1.032)  <0.001    1.016 (1.007 to 1.025)  <0.001 

2. Brachial PP/SBP    *     0.988 (0.956 to 1.022)   =0.49       0.995 (0.956 to 1.035)  =0.81 

    PPc/SBPc       1.040 (1.000 to 1.081)   <0.05  1.022 (0.981 to 1.065)   =0.30 

3. Brachial PP/SBP    *    1.020 (1.008 to 1.032)   <0.005     1.013 (1.004 to 1.023)   <0.005 

    1/PP amplification       36.2 (4.2 to 309.6)        <0.005      21.99 (2.51 to 192.71)   =0.005 

4. Brachial PP/SBP     *    0.997 (0.976 to 1.019)  =0.78        1.003 (0.990 to 1.016)   =0.67     

    Pb         1.066 (1.016 to 1.118)  <0.01        1.053 (1.011 to 1.097)   <0.02 

5. Brachial PP/SBP     *    1.025 (1.004 to 1.047)  <0.02        1.015 (1.004 to 1.027)   <0.01 

    Pf          0.997 (0.953 to 1.023)  =0.47        1.000 (0.974 to 1.026)   =0.97 

6. Brachial PP/SBP    *    1.015 (1.003 to 1.028)   <0.05        1.012 (1.002 to 1.021)   <0.02 

    PWV        1.132 (1.037 to 1.236)   <0.01         1.125 (1.030 to 1.229)   <0.01 

7. Brachial PP/SBP     *    1.020 (1.008 to 1.032)  <0.001        1.016 (1.006 to 1.025)   <0.001    

    AIx         1.003 (0.995 to 1.011)  =0.42          1.001 (0.993 to 1.009)   =0.81 

                     Untreated participants 

1. Brachial PP/SBP    *    1.021 (1.006 to 1.036)    <0.01    1.016 (1.005 to 1.027)  <0.005 

2. Brachial PP/SBP    *     0.971 (0.930 to 1.013)   =0.18       0.984 (0.938 to 1.032)  =0.50 

    PPc/SBPc       1.063 (1.012 to 1.117)   <0.02  1.035 (0.985 to 1.087)   =0.17 

3. Brachial PP/SBP    *    1.021 (1.005 to 1.036)   <0.01        1.013 (1.002 to 1.025)   <0.02 

    1/PP amplification       93.6 (7.7 to 999.1)        <0.0005    59.62 (4.82 to 737.82)   <0.005 

4. Brachial PP/SBP     *    0.995 (0.968 to 1.022)  =0.70        1.002 (0.985 to 1.018)   =0.85     

    Pb         1.079 (1.016 to 1.146)  <0.02        1.066 (1.012 to 1.122)   <0.02 

5. Brachial PP/SBP     *    1.015 (0.994 to 1.037)  =0.17        1.013 (0.999 to 1.027)   =0.07 

    Pf         1.009 (0.970 to 1.049)  =0.66        1.011 (0.979 to 1.045)   =0.50 

6. Brachial PP/SBP    *    1.015 (1.000 to 1.031)   <0.05       1.013 (1.000 to 1.026)   <0.05 

    PWV        1.133 (1.006 to 1.275)   <0.05        1.139 (1.004 to 1.293)   <0.05 

7. Brachial PP/SBP     *    1.021 (1.006 to 1.036)  <0.01         1.016 (1.005 to 1.027)   =0.005    
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    AIx         1.004 (0.995 to 1.013)  =0.43         1.002 (0.993 to 1.011)    =0.74 

____________________________________________________________________ 

 OR, odds ratios. See table 1 for additional abbreviations. * Adjustments are for age, sex, body 

weight, pulse rate, regular smoking, regular alcohol intake, diabetes mellitus or an HbA1c>6.1% 

and treatment for hypertension (in all). 
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Table 5.5. Impact of adjustments for aortic function measurements on relations between the 

reciprocal of pulse pressure amplification (1/PP amplification) and left ventricular mass index 

(LVMI) or LV hypertrophy (LVH) (317 of 706 participants) in all participants. 

 

        Adjustors        β-coeff±SEM†         Partial r (95% CI)         p-value    

__________________________________________________________________________ 

LVMI-ht1.7 vs         

     With adjustments for brachial pulse pressure 

1/PP amplification        *         29.0±9.1              0.120 (0.046 to 0.193)     <0.005 

1/PP amplification        * + PWV        29.5±9.1              0.123 (0.049 to 0.195)      =0.001 

1/PP amplification        * + AIx        40.6±12.8            0.119 (0.045 to 0.192)      <0.005     

1/PP amplification        * + Pf        25.6±9.6              0.102 (0.027 to 0.176)      <0.01       

1/PP amplification        * + Pb              20.0±11.7            0.065 (-0.010 to 0.139)    =0.09 

1/PP amplification†        *                       

1/PP amplification†        * + PWV         

1/PP amplification†        * + AIx  

1/PP amplification†        * + Pf               

1/PP amplification†        * + Pb        

     With adjustments for brachial systolic blood pressure 

1/PP amplification        *         22.3±9.2              0.091 (0.017 to 0.164)     <0.02 

1/PP amplification        * + PWV        23.8±9,2              0.098 (0.023 to 0.171)     <0.01 

1/PP amplification        * + AIx        37.4±12.9            0.110 (0.036 to 0.183)      <0.005     

1/PP amplification        * + Pf        20.6±9.9              0.079 (0.004 to 0.153)      <0.05       

1/PP amplification        * + Pb              13.1±10.3            0.049 (-0.026 to 0.123)    =0.20 

1/PP amplification†        *                      31.1±13.0            0.131 (0.023 to 0.237)      <0.02 

1/PP amplification†        * + PWV         

1/PP amplification†        * + AIx  

1/PP amplification†        * + Pf              32.0±13.8            0.129 (0.020 to 0.234)      =0.02 

1/PP amplification†        * + Pb             21.4±14.7            0.081 (-0.029 to 0.189)     =0.15 

        Adjustors       Odds ratio (95% CI)     Wald Х2 p-value 

____________________________________________________________________ 

LVH versus      

     With adjustments for brachial pulse pressure 
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1/PP amplification        *       36.2 (4.2 to 309.6)  10.73  <0.005 

1/PP amplification        * + PWV        37.9 (4.3 to 330.7)  10.80  =0.001   

1/PP amplification        * + AIx      324.4 (15.8 to 999.0)         14.1               <0.0005 

1/PP amplification        * + Pf             32.4 (3.4 to 309.9)              9.12               <0.005  

1/PP amplification        * + Pb            10.0 (0.6 to 157.9)              2.66                =0.10 

     With adjustments for brachial systolic blood pressure 

1/PP amplification        *       22.0 (2.5 to 192.7)  7.79  =0.005 

1/PP amplification        * + PWV        27.9 (3.0 to 242.3)  8.66  <0.005   

1/PP amplification        * + AIx      264.4 (12.5 to 989.9)        12.85               <0.0005 

1/PP amplification        * + Pf             25.4 (2.4 to 264.9)              7.30               <0.01  

1/PP amplification        * + Pb            7.3 (0.6 to 82.4)                  2.58                =0.11 

____________________________________________________________________ 

 See table 1 for abbreviations. * Adjustments are for brachial pulse pressure or systolic blood 

pressure as indicated, age, sex, body weight, pulse rate, regular smoking, regular alcohol 

intake, diabetes mellitus or an HbA1c>6.1% and treatment for hypertension. †Refers to data 

obtained in 336 participants where Pb and Pf were derived from wave separation analysis using 

actual aortic flow waves Variance inflation factors for 1/PP amplification for all models ranged 

from only 1.55 to 3.12. 
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Table 5.6. Impact of adjustments for aortic function measurements on relations between the 

reciprocal of pulse pressure amplification (1/PP amplification) and left ventricular mass index 

(LVMI) in participants not receiving antihypertensive therapy (n=524). 

 

        Adjustors        β-coeff±SEM†         Partial r (95% CI)         p-value    

__________________________________________________________________________ 

LVMI-ht1.7 vs         

     With adjustments for brachial pulse pressure 

1/PP amplification        *         44.8±9.2              0.211 (0.126 to 0.292)     <0.0001 

1/PP amplification        * + PWV        44.7±9.2              0.206 (0.121 to 0.287)     <0.0001 

1/PP amplification        * + AIx        64.0±12.9            0.215 (0.131 to 0.296)      <0.0001     

1/PP amplification        * + Pf        45.8±9.7              0.207 (0.121 to 0.289)      <0.0001       

1/PP amplification        * + Pb              30.0±11.6            0.114 (0.027 to 0.200)†     <0.05 

 

     With adjustments for brachial systolic blood pressure 

1/PP amplification        *         39.5±9.4              0.184 (0.098 to 0.266)     <0.0001 

1/PP amplification        * + PWV        39.2±9.4              0.183 (0.097 to 0.265)     <0.0001 

1/PP amplification        * + AIx        61.7±13.0            0.207 (0.122 to 0.288)     <0.0001     

1/PP amplification        * + Pf        44.4±10.1            0.194 (0.108 to 0.276)     <0.0001       

1/PP amplification        * + Pb              24.0±10.5            0.101 (0.014 to 0.187)    <0.05 

____________________________________________________________________ 

 See table 1 for abbreviations. *Adjustments are for brachial pulse pressure or systolic blood 

pressure as indicated, age, sex, body weight, pulse rate, regular smoking, regular alcohol 

intake, and diabetes mellitus or an HbA1c>6.1%. †p=0.05 versus adjustors alone. Variance 

inflation factors for 1/PP amplification for all models ranged from only 1.55 to 3.08. 
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5.5 Discussion 

  

The main findings of the present study are as follows: In a community-based sample of 

largely young-to-middle-aged participants of African ancestry I show that the reciprocal of PP 

amplification was independently associated with and added to the ability of brachial BP to 

associate with LVMI and LVH. This was noted even when aortic PP, although showing 

independent relations with LVMI and LVH replaced rather than added to brachial BP in 

associations with LVMI and LVH. The brachial BP-independent relations between the reciprocal 

of PP amplification and LVMI or LVH were abolished with adjustments for the reflected 

(backward) wave pressure (Pb), but not aortic PWV, suggesting that variations in wave 

reflection largely account for the ability of PP amplification to associate with LVMI and LVH 

beyond brachial BP in this community sample. 

Several studies have demonstrated a brachial BP-independent relationship between 

aortic-to-brachial PP amplification and outcomes (Benetos et al 2010, Regnault et al 2012, 

Benetos et al 2012, Bursztyn et al 2016). However, the mechanisms of this effect are uncertain. 

To the best of our knowledge, the present study represents the first study to show an ability of 

the reciprocal of PP amplification to add to the ability of brachial BP to associate with LVMI or 

LVH, suggesting that adverse effects on cardiovascular outcomes may be mediated in-part 

through an independent effect on LVM. 

 Prior studies reporting on the adverse effects of PP amplification on outcomes (Benetos 

et al 2010, Regnault et al 2012, Benetos et al 2012, Bursztyn et al 2016) have assumed that all 

of those physiological factors that determine variations in PP amplification contribute to the 

ability of this aortic function variable to risk predict. In this regard, amplification of PP from the 

aorta to the brachial artery is largely determined by increments in stiffness from the aorta to the 

brachial artery (Avolio et al 2009, Nichols et al 2011). With an increasing aortic stiffness whilst 

brachial stiffness remains relatively stable, PP amplification decreases and hence associations 
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between a reduced PP amplification and LVMI are thought to be through an enhanced aortic 

stiffness. However, the inclusion of aortic PWV in multivariate models, an accepted referent 

method of assessing aortic stiffness, failed to modify relations between PP amplification and 

LVMI or LVH. Thus, the ability of PP amplification to independently associate with LVMI and 

LVH in the young-to-middle-aged is unlikely to be accounted for by variations in aortic stiffness. 

 Decreases in PP amplification are also determined by increases in aortic backward 

waves, produced either by increments in the magnitude of the pressure or the speed of 

backward wave travel (Avolio et al 2009, Nichols et al 2011). An increased magnitude of the 

backward wave or an earlier time of backward wave arrival will enhance aortic PP with a lesser 

effect on brachial PP, the consequence being a reduced PP amplification. In the present study, 

as with PP amplification, reflected wave pressure was also independently related to LVMI and 

LVH. Moreover, adjusting for reflected wave pressure markedly attenuated or abolished the 

independent relations between the reciprocal of PP amplification and LVMI and LVH and the 

ability of the reciprocal of PP amplification to add to brachial PP-LVMI or LVH associations. 

These data suggest that reflected wave pressure may in-part account for the independent 

relations between the reciprocal of PP amplification and LVMI and LVH in the young-to-middle-

aged. 

 Pulse pressure amplification is often attributed to increases in aortic PWV causing a 

greater speed of wave reflection, an enhanced overlap between the forward and reflected 

waves and an increase in aortic augmentation index and hence aortic PP. However, PP 

amplification was more strongly correlated with reflected wave pressure (r2=0.37) than with 

PWV (r2=0.10). Moreover, whilst reflected wave pressure was independently associated with 

LVMI and LVH and made a significant contribution to relations between PP amplification and 

LVMI or LVH, augmentation index was not independently associated with LVMI and LVH and 

made no significant contribution to relations between PP amplification and LVMI or LVH. Hence, 

the contribution of reflected wave pressure to variations in PP amplification or to the relationship 
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between PP amplification and LVMI or LVH cannot be attributed to an enhanced overlap 

between the forward and reflected waves with a consequent increase in augmentation index. 

 The present study design (cross-sectional) does not allow me to draw conclusions as to 

cause and effect. It may therefore be argued that LVH enhances systolic function and hence 

aortic backward wave pressures (reverse causality) rather than increases in aortic backward 

wave pressures increase LVMI. However, the relationship between aortic backward wave 

pressure and LVMI or LVH was unchanged with adjustments for LV ejection fraction. Hence, I 

assume that this relationship is explained by increases in backward wave pressures resulting in 

increases in LVMI and LVH rather than LVH promoting an enhanced systolic function and hence 

an increased backward wave pressure.    

 A caveat of the present study is that the present results do not discount the possible role 

of aortic PWV in mediating brachial PP-independent relations between PP amplification and 

LVMI or LVH at an older age. In this regard, aortic PWV only begins to increase to a marked 

extent between 50 to 60 years of age (Mitchell et al 2010b), which is at least a decade older 

than the average age of the present study group. Hence, in the present sample PWV may not 

contribute to any marked extent to PP amplification, but may in samples represented by an 

older age group. Indeed, the correlation (r2) between PWV and PP amplification in the present 

study sample was only 0.10 (p<0.0001). The present study nevertheless highlights the 

importance of aortic backward wave function in mediating cardiovascular end-organ changes 

and explains at least a significant portion of the independent relation between the reciprocal of 

PP amplification and LVMI and therefore possibly some of the independent relations between 

PP amplification and outcomes (Benetos et al 2010, Regnault et al 2012, Benetos et al 2012, 

Bursztyn et al 2016). 

A further caveat of the present study is that I studied only one ethnic group (black 

African) in which aortic backward waves are markedly higher than in alternative groups 

(Chirinos et al 2011). In this regard some populations, such as the Framingham sample, where 
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a high proportion of participants were receiving antihypertensive therapy which decreases 

backward wave pressures, show only small age-related increases in aortic backward waves and 

hence only modest age-related increments in PP amplification (Mitchell et al 2010b). In the 

Framingham sample therefore, PP amplification was not an independent predictor of outcomes ( 

Mitchell et al 2010a).    

 There are several limitations to the present study that warrant consideration. First, the 

present study was a cross-sectional design and cardiovascular end-organ measures were 

employed as surrogates of outcomes. Hence, the present study provides no conclusive 

evidence that aortic backward waves mediate the relationship between PP amplification and 

LVMI and whether similar relations with hard end-points is unknown. Further longitudinal and 

intervention (targeting backward waves) studies are therefore required with hard end-points 

included as outcomes. Second, the assumptions intrinsic to the use of the ‘triangulation method’ 

of aortic wave separation may not be ideal (Kips et al 2009). However, in 392 participants of the 

present sample with aortic velocity measurements, we were able to show a correlation (r2) 

between Pb derived from the ‘triangulation method’ versus ‘actual aortic flow’ methods of wave 

separation of 0.82 and a correlation (r2) between Pf derived from the ‘triangulation method’ 

versus ‘actual aortic flow’ methods of wave separation of 0.88. Moreover, in sensitivity analysis 

conducted in those participants in whom wave separation analysis was performed using aortic 

flow waveforms and in whom aortic PWV measurements were available, relations between Pb 

and other aortic hemodynamic variables were similar to those between Pb determined using a 

triangular flow wave, and these aortic variables. Furthermore, irrespective of whether wave 

separation analysis was performed using a triangular wave form or an actual aortic flow wave, 

relations between Pb or Pf and LVMI were similar and the impact of adjustments for Pb and Pf 

on relations between PP amplification and LVMI were the same. Hence, at least in the present 

study, the use of the ‘triangulation method’ is unlikely to have significantly affected our results. 

Third, in the present study, calibration of the radial waveform from brachial BP measurements 
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ignores amplification of BP from brachial to radial arteries (Picone et al 2015). Hence, aortic 

pressures are likely to have been underestimated using the current approach. However, Pb and 

Pf are equally susceptible to errors in calibration and Pb and not Pf accounted for the ability of 

PP amplification to associate with LVMI and LVH beyond brachial BP. 

 In conclusion, in the present study I show in a largely young-to-middle aged community 

sample, that the reciprocal of PP amplification adds to the ability of brachial PP and 

conventional risk factors to associate with LVMI and LVH and that this is in-part accounted for 

by an increased backward wave pressures, but not by aortic pulse wave velocity. These findings 

may add to our understanding of the ability of aortic functional variables to detect end-organ 

changes beyond brachial BP. 
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6.1 Introduction 

 

In the present thesis I have performed a series of studies in a group of African ancestry 

living in SOWETO, South Africa (previously disadvantaged community) that have advanced our 

knowledge on the role of various indices of aortic function as possible factors that are 

associated with cardiovascular end-organ measures beyond brachial blood pressure (BP). In 

the present chapter I will summarize these findings and place them in context with the field of 

aortic function in general and with the possibility of how aortic function may be employed to 

enhance risk prediction beyond conventional risk factors in a resource limited country such as 

South Africa. In this regard, it is important to first emphasize several points highlighted in 

chapter 1 regarding cardiovascular disease in South Africa. 

There is no question that the world’s burden of cardiovascular disease is now in 

developing rather than in developed nations, and South Africa, as an economically developing 

nation, is no exception to this finding (Roth et al 2015). Whilst in developed countries age-

adjusted mortality rates attributed to cardiovascular disease in 2013 were estimated to be 160 

per 100 000 persons, in South Africa they were estimated to be 250-to-325 per 100 000 people 

(Roth et al 2015). In this regard, there are several factors which may account for these higher 

mortality rates attributed to cardiovascular disease in South Africa as compared to developed 

nations. As with other developing nations around the world, South African populations are 

undergoing an epidemiological transition, where diseases of lifestyle are beginning to replace 

diseases of poverty (infectious diseases and malnutrition). Lifestyle changes in developing 

nations that are likely to account for a higher prevalence of cardiovascular diseases include 

more tobacco use, a more sedentary work and social environment, less time to walk to work or 

other destinations and an easier access to motor vehicles (and hence lower levels of activity), 

higher stress occupations, and easier access to fast foods with an emphasis on dietary habits 

that provide instant gratification (high sodium, saturated fat, and high glycaemic index-sugar 
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diets). All of these changes promote the development of cardiovascular risk factors (an 

increased BP, cholesterol concentrations and a greater risk of type II diabetes mellitus) and 

through limited overall education levels in developing nations (few gain tertiary level education), 

a lack of awareness of the importance of early identification of risk factors and the variety of 

safe means to treat these risk factors. 

The aforementioned factors that contribute toward increasing prevalence rates of 

cardiovascular risk factors and a lack of awareness and treatment of these risk factors, are all 

confounded by limited resources at a primary healthcare level. For example primary healthcare 

clinics in South Africa often do not carry appropriate medication (lipid lowering therapy is not 

available); do not have the means to assess blood and other markers useful for risk prediction 

(e.g the assessment of lipid profiles, markers of renal function, glycated haemoglobin levels for 

patients with diabetes mellitus and electrocardiography); and do not have access to reliable BP 

monitors (they are often not serviced or for cost purposes are purchased having never been 

validated). A limited number of primary healthcare clinics and understaffing results in long 

patient waiting times (often entire days of work are lost) and a lack of faith in healthcare 

services. Limited budgets necessitates the dispensation of chronic medication on a monthly 

rather than 6 monthly basis and hence the need for frequent visits to clinics with further loss of 

work and greater costs to patients. In addition, because of low doctor-patient ratios, primary 

health care is often only provided by nurses with a limited ability to detect pathology or refer on 

to secondary or tertiary hospitals. Moreover, limited resources in developing countries prevents 

appropriate tertiary healthcare so that patients who have an event do not receive the same level 

of care as in developed countries (e.g. patients with stroke seldom receive thrombolysis; 

patients with myocardial infarction requiring catheterization and stenting often do not receive 

this care; and patients requiring valve replacements or bypass grafts do not receive these 

procedures). It is only with economic development, better education, and more resources for 
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healthcare that many of the aforementioned factors responsible for the burden of cardiovascular 

deaths in developing nations can be addressed. 

Despite all of the problems listed above, there is overwhelming consensus that 

prevention of an event is more cost-effective than managing the event once it has occurred. 

Hence, the focus in developing nations should always be on early cardiovascular risk 

identification and management of risk factors. As indicated in chapter 1 of the present thesis, of 

all the risk factors for cardiovascular disease most population attributable risk for cardiovascular 

events is determined by hypertension (Steyn et al 2005, Rayner et al 2010, Huang et al 2013, 

Park et al 2015) and presently Africa has the highest prevalence of hypertension (NCD-RisC 

2017). For the past century BP has been determined at the brachial artery and there is no 

question that brachial BP is a strong cardiovascular risk predictor. However, in South Africa and 

elsewhere in the world there are several reasons to believe that the ability to predict 

cardiovascular risk may, in the future, be better determined using a combined approach which 

employs both brachial and aspects of aortic BP measurements. Given the ease (non-invasive 

and requires little expertise to perform the measurement with accuracy) and reproducibility with 

which these aortic BP measurements can be made, together with the declining costs of 

measurement devices (often no more expensive than a reliable and validated oscillometric BP 

device), due consideration has to be given to the ability to add to risk prediction in South Africa 

using these approaches. What is the evidence to indicate that the measurement of certain 

aspects of aortic BP may enhance risk prediction beyond brachial BP; are there compelling 

reasons why these measurements should be made in Africa; and how has the present thesis 

added to our understanding of what aspects of aortic BP measurement may add to risk 

prediction in South Africa? 

 

6.2 Aortic BP measurements and risk prediction beyond brachial BP. A need for clarity  
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 As highlighted in chapter 1 of the present thesis there is considerable controversy as to 

whether aortic systolic BP (SBP) or pulse pressure (PP) add to brachial SBP or PP in risk 

prediction. There are several studies that suggest that aortic SBP or PP are more strongly 

associated with end-organ measures than brachial BP or associated with end-organ measures 

independent of brachial BP (Safar et al 2002, Williams et al 2006, Roman et al 2007, Jankowski 

et al 2008, Pini et al 2008, Wang et al 2009, Benetos et al 2010, Regnault et al 2012, Dart et al 

2006, Norton et al 2012, Booysen et al 2013). The results of many of these studies has recently 

been included in a meta-analysis and this meta-analysis clearly shows a stronger association of 

aortic SBP or PP with end-organ measures than does brachial SBP or PP (Kollias et al 2016). In 

South Africa, there is also evidence, produced by our group, to show that aortic PP is 

associated with end-organ measures independent of brachial SBP or PP (Norton et al 2012). In 

that study (Norton et al 2012) the authors provided the evidence to show that the second 

systolic shoulder of the peripheral pulse, which closely approximates aortic SBP or PP derived 

from conversion of the radial into an aortic pulse wave using a generalized transfer function 

(GTF), is as closely associated with end-organ measures beyond brachial SBP or PP as is 

aortic SBP or PP derived from a GTF. These data suggested that the GTF, which because it 

has not been disclosed by the manufacturer has thus been a subject of much criticism, is 

unnecessary to identify end-organ changes beyond brachial BP (first systolic shoulder). This 

finding (Norton et al 2012) therefore raised the question of whether simpler approaches 

(peripheral pulse wave analysis without the need to convert the data to aortic pressures) was 

sufficient to risk predict beyond brachial pressures. These findings (Norton et al 2012) therefore 

also raised the question of whether the cost of risk predicting beyond brachial BP using pulse 

wave analysis may not be considerably cheaper (some of the cost is in the GTF which has a 

patent on it) than even present costs (which are no more expensive than some validated 

oscillometric brachial BP devices). However, in contrast to the relatively consistent findings of a 

brachial SBP and PP- independent relationship between aortic PP and SBP (derived either from 
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the GTF or estimated only from the second systolic shoulder of the peripheral pulse wave) and 

end-organ measures, the role of aortic SBP or PP in actual risk prediction beyond brachial BP 

has been far more controversial. What are the important features of this controversy? 

 As reviewed in section 1.2.4 of chapter 1 of the present thesis, although several initial 

studies demonstrated that aortic SBP or PP predicted risk beyond brachial BP, there were 

additional studies that failed to do so and a meta-analysis of these studies (Vlachopoulos et al 

2010), showed only a trend for a stronger relationship with cardiovascular outcomes than 

brachial SBP or PP. Subsequent larger studies have similarly failed to show consistency, with 

some (Williams et al, 2006, Wang et al 2010), but not others (Mitchell et al 2010a, Benetos et al 

2010, Regnault et al 2012, Benetos et al 2012, Chirinos et al 2012, Bursztyn et al 2016) 

demonstrating a stronger relationship between aortic PP or SBP and outcomes than brachial 

SBP or PP. These inconsistent findings are likely to be attributed to the strong correlations 

between aortic and brachial SBP or PP (r2=0.96 0r 0.91, p<0.0001 in our large [n=1185] 

community-based sample) despite often considerable differences in aortic and brachial BP, and 

question the value of using aortic SBP or PP to replace brachial SBP or PP. These inconsistent 

findings have led many investigators to seek alternative indices of aortic function when adding 

to risk prediction beyond aortic BP. What are some of these indices; is there sufficient evidence 

to support the use of these approaches in Africa and around the world; and how has the current 

thesis added to our overall understanding of these issues? 

 

6.3 Aortic reflected waves as determined using augmentation indices: Should these be used 

to risk predict in Africa and elsewhere? 

 

There are two essential explanations for variations in the difference between aortic and 

peripheral arterial BP and these have been described in chapter 1 of the present thesis (see 

sections 1.2.2, 1.2.3 and 1.2.4). To recapitulate, these are differences in stiffness between the 
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aorta and peripheral arteries, where an increased aortic stiffness reduces the difference 

between aortic and brachial pulse pressure (PP), and the effect of increases in aortic backward 

(reflected) wave pressures which similarly reduce the difference between aortic and brachial 

PP. At present aortic stiffness, as determined using aortic pulse wave velocity (PWV) is 

recommended for risk prediction (Vlachopoulus et al 2010, Ben-Shlomo et al 2014). However, 

the role of aortic reflected wave function is more controversial. As highlighted throughout this 

thesis, there are two fundamental approaches to assessing aortic backward (reflected) wave 

effects. The more commonly employed and easier to use approach is to determine indices of 

aortic systolic pressure augmentation and these include augmented pressure (Pa) and 

augmentation index (AIx). In this regard, as described by a collaborative study involving various 

populations around the world, including the SOWETO community sample reported on in the 

present thesis, marked ethnic differences in AIx occur with the highest values reported in people 

living in SOWETO (black African ancestry) (Chirinos et al 2011). These data suggest that if 

aortic backward wave function is important as a determinant of cardiovascular damage, that 

brachial BP in groups of African ancestry may be insufficient to detect the adverse effects of 

increased pressures on the cardiovascular system and that AIx may be an important additional 

measurement. In work performed by our group at a similar time on the community sample 

reported on in the present thesis, we demonstrated that salt intake as indexed by urinary 

Na+/K+, was independently associated with AIx (Redelinghuys et al 2010). These data 

(Redelinghuys et al 2010) suggested a possible mechanism for the increased AIx in the study 

sample reported on (Chirinos et al 2011) as it is well recognized that groups of African descent 

have a higher prevalence of salt sensitive hypertension than other ethnic groups. The question 

therefore is whether AIx should be employed to add to brachial BP to enhance risk prediction in 

groups of African ancestry in South Africa? 

As described in chapter 1 (section 1.3.3) of the present thesis, earlier studies 

demonstrated that aortic backward (reflected) waves, as determined from indices of pressure 
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augmentation (Pa or AIx) are associated with cardiovascular damage (Hashimoto et al 2007, 

Hashimoto et al 2006, Weber et al 2006, Westerbacka et al 2005, Sibiya et al 2014), and predict 

cardiovascular outcomes (Chirinos et al 2005, London et al 2001, Ueda et al 2004, Weber et al 

2005) independent of brachial BP. A meta-analysis of these and other outcome driven studies 

provides clear evidence that indices of aortic pressure augmentation predict outcomes beyond 

brachial BP (Vlachopoulos et al 2010). However, several additional studies (Dart et al 2006, Pini 

et al 2008, Roman et al 2007, Safar et al 2002,), including the Framingham Heart Study 

(Mitchell et al 2010a) failed to show that indices of aortic pressure augmentation predict 

outcomes independent of brachial BP. Nevertheless, it has become apparent that Pa and AIx 

are determined by several factors other than aortic reflected wave magnitude, including 

changes in aortic reservoir function, the timing or magnitude of the aortic forward wave, the 

timing rather than the magnitude of the aortic reflected wave, and left ventricular systolic 

function (Aviolo et al 2009, Agabiti-Rosei et al 2007, London 2001 et al 2001, Ueda et al 2004, 

Weber et al 2005). It is therefore conceivable that indices of aortic pressure augmentation may 

be useful for risk prediction in some, but not others, depending on the extent to which the 

magnitude of wave reflection or other factors play a role in determining Pa or AIx and whether 

these factors contribute significantly to end-organ changes. What are the possible factors that 

may modify whether Pa or AIx add to risk prediction? 

The impact of gender on aortic augmentation index (AIx) (augmentation pressure/aortic 

pulse pressure), is well-recognized. In this regard, women may have a higher AIx than men 

(Weber et al 2005, Mtchell et al 2010b) , but these differences may be attributed to factors 

unrelated to aortic wave reflection, including a greater forward wave magnitude (Weber et al 

2005). Hence, depending on the contribution of these alternative factors to cardiovascular 

disease, the impact of AIx on cardiovascular damage in women may not be as strong as that in 

men. Indeed, while AIx predicts outcomes in men, similar relationships may be diminished in 

women (Wang et al 2010. Nevertheless, in that study (Wang et al 2010) unadjusted  
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relationships between AIx and end-organ changes were no different in women as compared to 

men. However, multivariate adjusted relationships between AIx and end-organ changes were 

not reported on (Wang et al 2010). To clarify whether gender influences relationships between 

AIx and cardiovascular end-organ changes, as part of the present thesis (chapter 2, Sibiya et al 

2014) I therefore compared the association between AIx and left ventricular mass index (LVMI) 

in men and women in a large, community-based sample in SOWETO. In this regard, LVMI and 

the regression thereof with antihypertensive therapy are well-recognised independent predictors 

of cardiovascular outcomes (Hughes et al 2014, Norton et al 2008, Woodiwiss et al 2009, 

Redelinghuys et al 2010, Norton et al 2012, Westerhof et al 2006, Sahn et al 1978, Devereux et 

al 1986).  What were the findings and clinical implications of that study?   

In that study described in chapter 2, and published in the journal Hypertension Research 

(Sibiya et al 2014) I demonstrated that AIx was independently associated with LVMI in men, but 

not in women. As indicated in the discussion to this chapter (chapter 2), there are several 

possible explanations for the gender-specific impact on relations between AIx and LVMI noted 

in that study, or between AIx and cardiovascular outcomes in a previous study (Wang et al 

2010). Whether the lack of independent association between AIx and LVMI in women in that 

study was attributed to the confounding effect of several factors other than reflected wave 

magnitude contributing to AIx but not LVMI was uncertain at the time of the original publication. 

Indeed, in women AIx may not depend on reflected wave magnitude as much as on forward 

wave magnitude, and the timing of aortic forward and backward waves (Weber et al 2005). 

Some of these factors may have little impact on cardiovascular risk and hence create a low 

signal-to-noise ratio. Alternatively, reflective wave function may contribute little toward the 

impact of aortic PPc on cardiovascular damage in women, whereas the effect is prominent in 

men. Indeed, in a large, community-based study, both AIx and the reflection index derived from 

wave separation analysis predicted cardiovascular outcomes in men, but not in women (Wang 

et al 2010). As I did not have access to software to separate the forward and the backward 
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waves at the time of publishing the data in chapter 2 (Sibiya et al 2014), I could not determine 

whether the sex-specific relationship reported on was attributed to AIx being a poor index of 

reflected wave magnitude, or because reflected waves contribute little toward LVMI in women of 

African ancestry. Hence, further studies were required employing wave separation analysis to 

address these questions. With the acquisition of the software to separate forward and backward 

waves, I subsequently performed these analyses and these findings are reported in chapter 3. 

What are the implications of the findings in chapter 3? 

 

6.4 Aortic reflected waves as determined using wave separation analysis: Should these be 

used to risk predict in Africa and elsewhere? 

 

As indicated in chapter 1 (sections 1.3.3, 1.3.4 and 1.3.5), there are several studies that 

have described an association of reflected waves (Pb or the reflected wave index) derived from 

wave separation analysis with end-organ changes (Wang et al 2010, Weber et al 2012) or an 

ability of Pb or the reflection index (RI)(or reflected wave magnitude) to risk predict beyond 

brachial BP (Wang et al 2010, Weber et al 2012, Chirinos et al 2012, Zamani et al 2014). 

Although there is now considerable evidence to support a role of aortic backward waves in risk 

prediction, neither Pb nor the reflected wave index were independently associated with 

cardiovascular outcomes in the Framingham Heart study (Cooper et al 2014). Nevertheless as I 

have repeatedly pointed out, a high proportion of the participants of the Framingham Study were 

receiving antihypertensive therapy, and as discussed in section1.3.6, antihypertensive agents 

reduce aortic backward wave pressures. Consequently, aortic backward waves in the 

Framingham Heart Study failed to contribute as much as aortic forward waves to age-related 

increases in aortic PP as did aortic forward wave pressures (Mitchell et al 2010b). Hence, it is 

likely that the use of antihypertensive therapy confounded the cardiovascular outcomes data in 

the Framingham Heart study (Cooper et al 2014). As pointed out by the data reported on in 
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chapter 2 (Sibiya et al 2013), an additional possibility is that aortic reflected waves do not 

contribute to risk prediction in women. To draw this conclusion nevertheless, it was necessary 

for me to evaluate relations between aortic backward waves, determined from, wave separation 

analysis, and aortic PP and LVMI in the SOWETO cohort. This approach is clearly not 

confounded by the many determinants of Pa and AIx, including forward wave pressures and the 

timing of forward and backwards waves. In this regard, the manufacturer of the device 

employed to assess aortic function had recently introduced software to perform wave separation 

analysis using an assumed ‘triangular’ flow wave, and hence this afforded me the ability to 

address this question. What are the results and the implications of this study (chapter 3, 

Booysen et al 2015)? 

As reported in chapter 3, and published in the journal Hypertension (Booysen et al 2015) 

where I am a co-author and responsible for the sex-specific analyses, I have shown that the 

contribution of aortic backward waves, determined from wave separation analysis, to variations 

in aortic PP and hence LVMI is similar in men as it is in women (Booysen et al 2015). In 

contrast, as described in chapter 2 and again shown in chapter 3, Pa and AIx were correlated 

with LVMI in men, but not in women. These results (Booysen et al 2015) therefore provided the 

evidence to suggest that the use of Pa or AIx was a particularly poor index of the adverse 

effects of backward wave function on aortic PP or end organ measures in women (Booysen et 

al 2015). Moreover, in that study (Booysen et al 2015), although AIx and Pa were independently 

associated with aortic PP and LVMI in men, even in men the relatively greater contribution of 

aortic backward as compared to forward wave function was markedly underestimated when AIx 

or Pa were employed as measures of aortic backward wave pressures. Hence, at least in the 

African context these data suggest that AIx and Pa should not be employed as approximates of 

aortic backward wave effects in either women or men (Booysen et al 2015). Rather, these data 

(Booysen et al 2015) suggest that adverse effects of aortic backward waves can only be 

accurately assessed using wave separation analysis. Hence, these findings support the view 
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that further outcome-based studies assessing the ability of aortic backward wave function, as 

determined using wave separation analysis, to risk predict in groups of African descent, are 

required. 

 

6.5 Aortic reflected waves as determined using wave separation analysis: Are they better 

associated with end organ measures than forward wave pressures? 

 

As indicated throughout the present thesis, aortic PP is determined by both forward and 

backward waves. As also demonstrated in chapter 3, aortic backward wave pressures 

contribute more toward variations in aortic PP and LVMI than aortic forward wave pressures and 

this is not sex-specific (Booysen et al 2015) as previous data had suggested (Sibiya et al 2014). 

In this regard, several studies have similarly evaluated the relative contribution of forward and 

backward wave pressures to variations in end-organ measures or cardiovascular outcomes 

(Wang et al 2010, Chirinos et al 2012, Weber et al 2012, Zamani et al 2014, Hughes et al 2014). 

Importantly, in some of these studies (Wang et al 2010, Chirinos et al 2012, Zamani et al 2014, 

Hughes et al 2014) indices of reflected waves predicted cardiovascular outcomes independent 

of brachial BP. However, whether forward wave pressures also associate with cardiovascular 

damage independent of brachial BP, and the relative contribution of forward and backward 

wave pressures to the brachial BP-independent relationship between aortic PP and 

cardiovascular damage was uncertain. In these prior studies, closer relations between reflected 

as compared to forward wave indices and end-organ measures (Wang et al 2010, Weber et al 

2012) or cardiovascular outcomes (Zamani et al 2014) were reported on. However, neither of 

the studies reporting on relations between forward or backward wave pressures and end-organ 

measures (Wang et al 2010, Weber et al 2012) were these relations assessed with adjustments 

for brachial BP. Nevertheless, even without adjustments for brachial BP, backward but not 

forward wave pressures had been demonstrated to predict cardiovascular outcomes (Zamani et 
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al 2014). The question of whether aortic forward wave pressures also contribute to 

cardiovascular damage beyond brachial BP is essential to an understanding of whether aortic 

PP (which reflects the composite of forward and backward wave pressures) or aortic backward 

wave pressures (or the reflected wave magnitude) per se should be determined when risk 

predicting. In this regard, because forward wave pressures are amplified from the aorta to the 

brachial artery, and because aortic backward wave pressures appear as a lower second systolic 

shoulder on the peripheral pulse, either forward or backward wave pressure effects on end-

organ measures could be underestimated with brachial BP measurements. What has the 

present thesis added to our understanding of the relative role of aortic forward and backward 

wave pressures, independent of brachial BP, to end-organ measures? 

 In chapter 4 and published in J Hypertension (Sibiya et al 2015) I have provided strong 

evidence to show that backward wave pressures and the reflected wave magnitude or index, 

but not forward wave pressures are associated with end-organ measures and damage 

independent of brachial BP. Further, I show that the brachial BP-independent relationships 

between aortic PP and end-organ measures are largely accounted for by backward wave 

pressures, but not by forward wave pressures. Nevertheless, without adjustments for brachial 

BP, but with adjustments for steady-state pressures (mean arterial pressure) both forward wave 

and backward wave pressures were associated with end-organ measures. Importantly, unlike in 

chapters 2 and 3 where my focus was on LVMI as the main end-organ change, in chapter 4 my 

findings were largely reproduced across several end-organ measures involving LV structure and 

diastolic function, carotid intima-media thickness, an index of atherosclerosis, aortic PWV, an 

index of arteriosclerosis, and estimated glomerular filtration rate, an index of renal function. 

Hence, the present study suggests that although both forward and backward wave pressures 

contribute to end-organ changes, brachial BP-independent relations between aortic pressure 

and cardiovascular end-organ changes are largely attributed to backward (reflected) rather than 
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forward wave pressure effects. As pointed out in chapter 4, these findings have several 

important clinical implications. What are these implications? 

The findings reported in chapter 4 suggest that whilst the adverse effects of forward 

wave pressures are likely to be revealed using brachial BP measurements, backward wave 

pressure effects are unlikely to be readily detected using brachial BP measurements. The fact 

that forward wave pressures are associated with end organ measures, but not independent of 

brachial BP, suggests that brachial and aortic PP share similar features (both signal forward 

wave pressure effects) and hence that the better aortic function index to add to risk prediction 

beyond brachial BP is backward wave pressure effects. The results described in chapter 4 may 

also in-part explain why in community samples where the backward wave contributes little to 

age-related increases in aortic BP (Mitchell et al 2010b) aortic pressure does not predict 

cardiovascular outcomes beyond brachial BP (Mitchell et al 2010a), whilst in community 

samples where a strong age-related increase in the backward wave pressures occurs (Wang et 

al 2010), aortic BP predicts outcomes beyond brachial BP (Wang et al 2009). 

 

6.6 Are there alternative approaches to assessing aortic reflected wave effects? 

 

To recapitulate, the work that I have conducted as part of the present thesis and 

described in chapters 2-4, has demonstrated that although both aortic forward and backward 

waves associate with end-organ measures independent of steady-state pressures (mean 

arterial pressure), aortic backward, but not forward waves account for the brachial PP or SBP-

independent relations between aortic PP and end organ measures (chapter 4 and published as 

Sibiya et al 2015). The independent relations between aortic backward wave pressures and 

end-organ measures are nevertheless poorly indexed by aortic augmented pressure or 

augmentation index (chapters 2 and 3 and published as Sibiya et al 2013 and Booysen et al 

2015) as surrogates of backward wave function. Moreover, the use of aortic augmented 
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pressure or augmentation index as indexes of the adverse effects of aortic backward wave 

function on end-organ measures is particularly inappropriate in women (chapter 2 and published 

as Sibiya et al, 2014). These findings together therefore suggest that in groups of African 

ancestry in South Africa, aortic backward wave function may enhance risk prediction beyond 

brachial BP, but that simple approaches to detecting backward wave effects, such as the use of 

augmented pressure or augmentation index, are inappropriate for routine use. Assuming that 

these findings translate into cardiovascular outcomes, how does this information better inform 

as to how best to risk predict in Africa? 

Until devices or approaches that assess aortic backward wave effects become no more 

expensive than validated oscillometric devices employed to assess brachial BP, and where 

brachial BP and aortic backward wave pressures can be measured together (only one device is 

required), it is unlikely that developing countries will ever adopt aortic backward wave 

measurements as part of routine risk prediction. However, more recently, several studies, 

including data from our own group (Bursztyn et al 2016) have demonstrated that aortic PP can 

be relatively accurately imputed from simple clinical measures that can be obtained at no 

additional cost (Benetos et al 2010, Bursztyn et al 2016). Although as highlighted in previous 

discussion aortic PP may add little to risk prediction beyond brachial BP, findings supported by 

these studies (Benetos et al 2010, Bursztyn et al 2016), both of these studies provided the 

evidence to show that aortic-to-brachial PP amplification, calculated from imputed aortic PP, 

considerably added to (rather than replacing) the ability of brachial PP to risk predict (Benetos et 

al 2010, Bursztyn et al 2016). As highlighted in chapter 1 (section 1.3.5), there are essentially 

two factors that determine variations in PP amplification and these are aortic stiffness and aortic 

backward wave pressures. This then raised the question as to what extent relationships 

between PP amplification and either end organ measures or cardiovascular outcomes are 

attributed to backward wave effects? If relations between PP amplification and cardiovascular 

damage are largely accounted for by backward wave effects, rather than increases in aortic 
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stiffness, then a simple and costless approach to assessing backward wave effects (imputing 

aortic PP and calculating PP amplification) would be available. 

 

6.7 To what extent are relations between PP amplification and end-organ measures 

accounted for by aortic reflected wave effects? 

 

 As part of the present thesis I addressed the question as to what extent relationships 

between PP amplification and end organ measures are attributed to backward wave effects. 

These data are described in chapter 5 and have been accepted for publication in the J Am Soc 

Hypertens (Sibiya et al 2017 in-press). In this study I showed in a community-based sample of 

largely young-to-middle-aged participants of African ancestry that the reciprocal of PP 

amplification was independently associated with and added to the ability of brachial BP to 

associate with LVMI and LV hypertrophy (LVH). This was noted even when aortic PP, although 

showing independent relations with LVMI and LVH replaced rather than added to brachial BP in 

associations with LVMI and LVH. The brachial BP-independent relations between the reciprocal 

of PP amplification and LVMI or LVH were abolished with adjustments for the reflected 

(backward) wave pressure, but not aortic PWV, suggesting that variations in wave reflection 

largely account for the ability of PP amplification to associate with LVMI and LVH beyond 

brachial BP in this community sample. 

  There are several aspects of the design of this study that warrant further comment. In 

this regard, the only end-organ assessment that I studied in this chapter was LVMI, whilst 

several other end-organ measures were at this time, available. However, in the present 

community sample aortic PWV was noted to independently associate with LVMI (in women) and 

estimated glomerular filtration rate (eGFR) (in men and women), but not carotid intima-media 

thickness or LV diastolic function (Peterson et al 2016). Hence, there was no value in assessing 

whether relations between PP amplification and carotid intima-media thickness or LV diastolic 
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function are attributed to PWV. Moreover, as demonstrated in chapter 4, relations between 

aortic backward wave pressures and eGFR were not independent of age, and hence there was 

no value in assessing the contribution of aortic backward waves to independent relations 

between PP amplification and eGFR. Nevertheless, it is important to note that in-keeping with 

results with LVMI, without adjustments for age (which is the main determinant of PP 

amplification and backward wave pressures), PP amplification was associated with carotid 

intima-media thickness, LV diastolic function, and eGFR, and that adjustments for backward, 

but not forward wave pressures or PWV markedly attenuated these relations (data not shown).  

 The obvious clinical implication of the findings of chapter 5 are that PP amplification may 

be a surrogate of aortic backward wave effects on cardiovascular end-organ measures. If these 

results are confirmed in outcome-based studies, these data provide a cost-effective approach 

(calculating PP amplification from brachial PP and imputed aortic PP derived from simple 

clinical measures) to estimating the adverse effects of aortic backward waves and hence risk 

predicting using this approach. 

 

6.8 Limitations 

 

The limitations of the present thesis have largely been addressed in the discussion to 

each data chapter or stated in preceding discussion in the present chapter and hence will not be 

reiterated. 

 

6.9 Conclusions 

 

 In conclusion, the present thesis has demonstrated that although both aortic forward and 

backward waves associate with end-organ measures independent of steady-state pressures 

(mean arterial pressure), aortic backward, but not forward waves account for the brachial PP or 
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SBP-independent relations between aortic PP and end organ measures (chapter 4 and 

published as Sibiya et al 2015). Moreover, the present thesis indicates that the independent 

relations between aortic backward wave pressures and end-organ measures are poorly indexed 

by aortic augmented pressure or augmentation index (chapters 2 and 3 and published as Sibiya 

et al 2014 and Booysen et al 2015). Furthermore, the present thesis suggests that the use of 

aortic augmented pressure or augmentation index as indexes of the adverse effects of aortic 

backward wave function on end-organ measures is particularly inappropriate in women (chapter 

2 and published as Sibiya et al, 2014). In addition, the present thesis shows that the reciprocal 

of PP amplification is independently associated with and added to the ability of brachial BP to 

associate with end-organ measures and that this was noted even when aortic PP, although 

showing independent relations with end-organ measures replaced rather than added to brachial 

BP in associations with end organ measures (chapter 5 and in-press as Sibiya et al 2017). 

Importantly, the brachial BP-independent relation between the reciprocal of PP amplification and 

end-organs was abolished with adjustments for the reflected (backward) wave pressure, but not 

aortic PWV, suggesting that variations in wave reflection largely account for the ability of PP 

amplification to associate with end-organs beyond brachial BP (chapter 5 and in-press as Sibiya 

et al 2017). These findings taken together and if reproduced in longitudinal or intervention 

studies with hard outcomes as the end point, suggest that in groups of African ancestry in South 

Africa, aortic backward wave function may enhance risk prediction beyond brachial BP; that 

simple approaches to detecting backward wave effects, such as the use of augmented pressure 

or augmentation index, are inappropriate for routine use; but that the use of the reciprocal of PP 

amplification, which can be imputed from simple and costless clinical measurements, may be 

employed as a surrogate of aortic backward wave effects to add to brachial BP when risk 

predicting. 

 



- - 154 - 
 

  

References 

Agabiti-Rosei E, Mancia G, O’Rourke MF, Roman MJ, Safar ME, Smulyan H, Wang J-G, 

Wilkinson IB, Williams B, Vlachopoulos C. Central blood pressure measurements and 

antihypertensive therapy. A consensus document. Hypertension 2007;50:154-160. 

Agnoletti D, Zhang Y, Borghi C, Blacher J, Safar ME. Effects of antihypertensive drugs on 

central blood pressure in humans: a preliminary observation. Am J Hypertens 

2013;26:1045-1052.       

Aviolo AP, van Bortel LM, Boutouyrie P, Cockcroft J, McEniery CM, Progerou AD, Roman MJ, 

Safar ME, Segers P, Smulyan H. Role of pulse pressure amplification in arterial 

hypertension: Experts opinion and review of the data. Hypertension 2009;54:375-383. 

Benetos A, Gautier S, Labar C, Salvi P, Valbusa F, Marino F, Toulza O, Agnoletti D, Zamboni 

M, Dubail D, Manckoundia P, Rolland Y, Hanon O, Perret-Guillaume C, Lacolley P, 

Safar ME, Guillemin F. Mortality and cardiovascular events are best predicted by low 

central/peripheral pulse pressure amplification but not by high blood pressure levels in 

elderly nursing home subjects. The PARTAGE (Predictive Values of Blood Pressure and 

Arterial Stiffness in Institutionalized Very Aged Population) Study. J Am Coll Cardiol 

2012;60:1503-1511. 

Benetos A, Thomas F, Joly L, Blacher J, Pannier B, Labat C, Salvi P, Smulyan H, Safar ME.  

Pulse pressure amplification: A mechanical biomarker of cardiovascular risk. J Am Coll 

Cardiol 2010;55:1032-1037. 

Benetos A, Zureik M, Morcet J, Thomas F, Bean K, Safar M, Ducimetie`re P, Guize L. A 

decrease in diastolic blood pressure combined with an increase in systolic blood 

pressure is associated with a higher cardiovascular mortality in men. J Am Coll Cardiol 

2000;35:673-680. 

Ben-Sehlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, 

Cameron J, Chen CH, Cruickshank JK, Hwang SJ, Lakatta EG, Laurent S, Maldonado J, 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Toulza%20O%5BAuthor%5D&cauthor=true&cauthor_uid=22999729
http://www.ncbi.nlm.nih.gov/pubmed/?term=Agnoletti%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22999729
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zamboni%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22999729
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zamboni%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22999729
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dubail%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22999729
http://www.ncbi.nlm.nih.gov/pubmed/?term=Manckoundia%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22999729
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rolland%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=22999729
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hanon%20O%5BAuthor%5D&cauthor=true&cauthor_uid=22999729
http://www.ncbi.nlm.nih.gov/pubmed/?term=Perret-Guillaume%20C%5BAuthor%5D&cauthor=true&cauthor_uid=22999729
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lacolley%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22999729
http://www.ncbi.nlm.nih.gov/pubmed/?term=Safar%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=22999729
http://www.ncbi.nlm.nih.gov/pubmed/?term=Guillemin%20F%5BAuthor%5D&cauthor=true&cauthor_uid=22999729


- - 155 - 
 

  

Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, 

Shokawa T, Sutton-Tyrell K, Verbeke F, Wang K, Webb DJ, Hansen TW, Zoungas S, 

McEniery CM, Cockcroft JR, Wilkinson IB. Aortic Pulse wave velocity improves 

cardiovascular event prediction: an individual participant meta-analysis of prospective 

observational data from 17,635 subjects. J Am Coll Cardiol 2014;63:636-646.    

Booysen HL, Norton GR, Maseko MJ, Libhaber CD, Majane OHI, Sareli P, Woodiwiss AJ. 

Aortic, but not brachial blood pressure category enhances the ability to identify target 

organ changes in normotensives. J Hypertens 2013;31:1124-1130. 

Booysen HL, Woodiwiss A J, Sibiya MJ, Hodson B, Raymond A, Libhaber E, Sareli P Norton 

GR. Indexes of aortic pressure augmentation markedly underestimates the contribution 

of reflected waves toward variations in aortic pressure and left ventricular mass. 

Hypertension 2015;65:540-546. 

Boutayeb A. The double burden of communicable and non-communicable disease in 

developing countries. Transactions Royal Soc Trop Hygiene 2006;100:191-199. 

Boutouyrie P, Bussy C, Lacolley P, Girerd X, Laloux B, Laurent S. Association between local 

pulse pressure, mean blood pressure, and large-artery remodeling. Circulation 

1999;100:1387-1393.  

Bursztyn M, Norton GR, Ben-Dov IA, Booysen HL, Sibiya MJ, Sareli P, Woodiwiss AJ. Aortic 

pulse pressure amplification imputed from simple clinical measures adds to the ability of 

brachial pressure to predict survival. Am J Hypertens 2016;29:754-762. 

Camacho F, Avolio A, Lovell NH. Estimation of pressure pulse amplification between aorta and 

brachial artery using stepwise multiple regression models. Physiol Meas 2004;25:879-

889. 

Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering TG, Laragh JH. Value of 

echocardiographic measurement of left ventricular mass in predicting cardiovascular 

morbid events in hypertensive men. Ann Intern Med 1986;105:173-178. 



- - 156 - 
 

  

Cecelja M, Jiang B, McNeill K, Kato B, Ritter J, Spector T, Chowienczyk P. Increased wave 

reflection rather than central arterial stiffness is the main determinant of raised pulse 

pressure in women and relates to mismatch in arterial dimensions: a twin study. J Am 

Coll Cardiol 2009;54:695-703. 

Cheng K, Cameron JD, Tung M, Mottram PM, Meredith IT, Hope SA. Association of left 

ventricular motion and central augmentation index in healthy young men. J Hypertens 

2012;30:2395-2402. 

Cheng S, Claggett B, Correia AW, Shah AM, Gupta DK, Skali H, Ni H, Rosamond WD, Heiss 

G, Folsom AR, Coresh J, Solomon SD. Temporal trends in the population attributable 

risk for cardiovascular disease: The Atherosclerosis Risk in Communities Study. 

Circulation 2014;130:820-828. 

Chirinos JA, Kips JG, Jacobs DR Jr, Brumback L, Duprez DA, Kronmal R, Bluemke DA, 

Townsend RR, Vermeersch S, Segers P. Arterial wave reflections and incident 

cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J 

Am Coll Cardiol 2012;60:2170-2177. 

Chirinos JA, Kips JG, Roman MJ, Medina-Lezama J, Li Y, Woodiwiss AJ, Norton GR, Yasmin, 

Van Bortel L, Wang JG, Cockcroft JR, Devereux RB, Wilkinson IB, Segers P, McEniery 

CM. Ethnic differences in arterial wave reflections and normative equations for 

augmentation index. Hypertension 2011;57:1108-1116. 

Chirinos JA, Segers P, De Buyzere ML, Kronmal RA, Raja MW, De Bacquer D, Claessens T, 

Gillebert TC, St. John-Sutton M, Rietzschel ER. Left ventricular mass allometric scaling, 

normative values: Effect of obesity, and prognostic performance. Hypertension 

2010;56:9198. 

Chirinos JA, Zambrano JP, Chakko S, Veerani A, Schob A, Willens HJ, Perez G, Mendez AJ. 

Aortic pressure augmentation predicts adverse cardiovascular events in patients with 

established coronary artery disease. Hypertension 2005;45:980-985. 



- - 157 - 
 

  

Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, 

Materson BJ, Oparil S, Wright JT Jr, Roccella EJ; National Heart, Lung, and Blood 

Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment 

of High Blood Pressure; National High Blood Pressure Education Program Coordinating 

Committee. The seventh report of the joint national committee on prevention, detection, 

evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 

2003;289:2560-2572. 

Chockalingam A, Balaguer-Vinto I, Achutti A, de Luna AB, Chalmers J, Farinaro E, Lauzon R, 

Martin I, Papp JG, Postiglione , Reddy KS, Tse TF. The World Heart Federation's white 

book: Impending global pandemic of cardiovascular diseases: Challenges and 

opportunities for the prevention and control of cardiovascular diseases in developing 

countries and economies in transition. Can J Cardiol 2000;16:227-229. 

Cooper LL, Rong J, Benjamin EJ, Larson MG, Levy D, Vita JA, Mitchell GF. Components of 

hemodynamic load and cardiovascular events: The Framingham Heart Study. 

Circulation 2015;131:354-361. 

Covic A, Goldsmith DJ, Panaghiu L, Covic M, Sedor J. Analysis of the effect of hemodialysis on 

peripheral and central arterial pressure waveforms. Kidney Int. 2000;57:2634-2643. 

Dart AM, Gatzka CD, Kingwell BA, Wilson K, Cameron JD, Liang YL, Berry KL, Wing LMH, 

Reid CM, Ryan P, Beilin LJ, Jennings GLR, Johnston CI, McNeil JJ, MacDonald GJ, 

Morgan TO, West MJ. Brachial blood pressure but not carotid arterial waveforms predict 

cardiovascular events in elderly female hypertensives. Hypertension 2006;47:785-790. 

Davies JE, Baksi J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, Aguado-Sierra J,       

Foale RA, Malik IS, Tyberg JV, Parker KH, Mayet J, Hughes AD. The arterial reservoir 

and pressure increases with aging and is the major determinant of aortic augmentation 

index. Am J Physiol Heart Circ 2010;298:H580-H586. 



- - 158 - 
 

  

de Simone G, Devereux RB, Ganau A, Hahn RT, Saba PS, Mureddu F, Roman MJ, Howard 

BV. Estimation of left ventricular chamber and stroke volume by limited M-Mode 

echocardiography and validation by two-dimensional and doppler echocardiography. Am 

J Cardiol 1996;78:801-807. 

Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. 

Echocardiograph assessment of left ventricular hypertrophy: comparison to necropsy 

findings. Am J Cardiol 1986;57:450-458. 

Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, Rokkedal J, 

Harris K, Aurup P, Dahlof B. Prognostic significance of left ventricular mass change 

during treatment of hypertension. JAMA 2004;292:2350-2356. 

factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control 

study. Lancet 2016;388: 761-775. 

Fok H, Guilcher A, Brett S, Jiang B, Li Y, EpsteinS, Alastruey J, Clapp B, Chowienczyk P. 

Dominance of the forward compression wave in determining pulsatile components of 

blood pressure: similarities between inotropic stimulation and essential hypertension. 

Hypertension 2014b;64:1116-1123. 

Fok H, Guilcher A, Li Y, Brett S, Shah A, Clapp B, Chowienczyk P. Augmentation pressure is 

influenced by ventricular contractility/relaxation dynamics. Hypertension 2014a;63:1050-

1055. 

Franklin SS, Khan SA, Wong ND, Larson MG, Levy D. Is Pulse Pressure useful in predicting 

risk for coronary heart disease? The Framingham Heart Study. Circulation 

1999;100:354-360. 

GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age–sex 

specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a 

systematic analysis for the global burden of disease study 2013. Lancet 2015;385:117-

171. 



- - 159 - 
 

  

Ghali JK, Liao Y, Cooper RS. Influence of left ventricular geometric patterns on prognosis in 

patients with or without coronary artery disease. J Am Coll Cardiol 1998;31:1635-1640. 

Greenlund KJ, Croft JB, Mensah GA. Prevalence of heart disease and stroke risk factors in 

persons with prehypertension in the United States,1999–2000. Arch Intern Med 2004: 

164:2113-2118. 

Hashimoto J, Imai J, O’ Rourke MF. Indices of pulse wave analysis are better predictors of left 

ventricular mass reduction than cuff pressure. Am J Hypertens 2007;20:378-384. 

Hashimoto J, Ito S. Central pulse pressure and aortic stiffness determine renal 

heamodynamics: pathophysiological implication for microalbuminuria in hypertension. 

Hypertension 2011; 58:839-846. 

Hashimoto J, Watabe D, Hatanaka R, Hanasawa T, Metoki H, Asayama K, Ohkubo T, Totsune 

K, Imai Y. Enhanced radial late systolic pressure augmentation in hypertensive patients 

with left ventricular hypertrophy. Am J Hypertens 2006;19:27-32. 

Hayashi S, Yamada H, Bando M, Hotchi J, Ise T, Yamaguchi K, Iwase T, Soeki T, Wakatsuki T, 

Tamaki T, Sato M. Augmentation index does not reflect risk of coronary artery disease in 

elderly patients. Circ J 2014;78:1176-1182. 

Hodson B, Norton GR, Booysen HL, Sibiya MJ, Raymond A, Maseko MJ, Majane OHI, 

Libhaber E, Sareli P, Woodiwiss AJ. Brachial pressure control fails to account for most 

distending pressure-independent, age-related aortic hemodynamic changes in adults. 

Am J Hypertens 2016;29:605-613. 

Hope SA, Antonis P, Adam D, Cameron JD, Meredith IT. Arterial pulse wave velocity but not 

augmentation index is associated with coronary artery disease extent and severity: 

implications for arterial transfer function applicability. J Hypertens 2007;25:2105-2109. 

Huang Y, Wang S, Cai X, Mai W, Hu Y, Tang H, Xu D. Prehypertension and incidence of 

cardiovascular disease: a meta-analysis. BMC Medicine 2013;11:177:1-9. 



- - 160 - 
 

  

Hughes AD, Park C, Davies J, Francis D, McG Thom SA, Mayet J, Parker KM. Limitations of 

augmentation index in the assessment of wave reflection in normotensive healthy 

individuals. PLoS ONE 2013;8:1-8. 

Hughes AD. Ahead of the curve. Waveform analysis of blood pressure, reflection magnitude, 

and outcomes. Hypertension 2014;64:929-930. 

Jankowski P, Kawecka-Jaszcz K, Czamecka D, Brzozowska-Kiszka M, Styczkiewicz K, Loster 

M, Kloch-Badełek M, Wilinski J, Curyło AM, Dudek D; Aortic blood pressure and survival 

study group. Pulsatile, but not steady component of blood pressure predicts 

cardiovascular events in coronary patients. Hypertension 2008;51:848-855. 

Jiang XJ, O'Rourke MF, Zhang YQ, He XY, Liu LS. Superior effect of an angiotensin-converting 

enzyme inhibitor over a diuretic for reducing aortic systolic pressure. J Hypertens 

2007;25:1095-1099. 

Kannel WB, Gordon T, Schwartz MJ. Systolic versus diastolic blood pressure and risk of 

coronary heart disease: The Framingham Study. Am J Cardiol 1971;27:335-346. 

Kips JG, Rietschel ER, De Buyzere ML, Westerhof BE, Gillebert TC, Van Bortel LM, Segers P. 

Evaluation of noninvasive methods to assess wave reflection and pulse transit time from 

the pressure waveform alone. Hypertension 2009;53:142-149. 

Kollias A, Lagou S, Zeniodi ME, Boubouchairopoulou N, Stergiou GS. Association of central 

versus brachial blood pressure with target-organ damage: systematic review and meta-

analysis. Hypertension 2016;67:183-190. 

Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass 

and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann 

Intern Med 1991;114:345-352. 

Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A. 

Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in 

hypertensive patients. Hypertension 2001;37:1236-1241. 



- - 161 - 
 

  

Laurent S, Cockfort J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, 

Vlachopoulos C, Wilkinson I, Struijker-Boudier H; on behalf of the European network for 

non-invasive investigation of large arteries. Expert consensus document on arterial 

stiffness: methodological issues and clinical applications. European Heart Journal 

2006;27:2588-2605. 

 Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of 

echocardiographically determined left ventricular mass in the Framingham Heart Study. 

N Engl J Med 1990; 322: 1561-1566. 

Levy D, Salomon M, D’Agostino RB, Belanger AJ, Kannel WB. Prognostic implications of 

baseline electrocardiographic features and their serial changes in subjects with left 

ventricular hypertrophy. Circulation 1994; 90: 1786-1793. 

Libhaber CD, Woodiwiss AJ, Booysen HL, Maseko MJ, Majane OHI, Sareli P, Norton GR. 

Differential relationships of systolic and diastolic blood pressure with components of left 

ventricular diastolic dysfunction. J Hypertens 2014; 32:912-920. 

Liszka HA, Mainous AR 3rd, King DE, Everett CJ, Egan BM. Prehypertension and 

cardiovascular morbidity. Ann Fam Med 2005;3:294-299. 

London GM, Blacher J, Pannier B, Guerin AP, Marchais SJ, Safar ME. Arterial wave reflections 

and survival in end-stage renal failure. Hypertension 2001;38:434-438. 

Mancia G, de Backer G, Dominiczak A, Cifkova R, Germano G, Grassi G, Heagerty AM, 

Kjeldsen SE, Laurent S, Narkiewitcz K, Ruilope L, Rynkiewicz A, Scmieder RE, Boudier 

HA, Zanchetti A, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Filippatos 

G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, 

Tandera M, Widimsky P, Zamorano JL, Erdine S, Kiowski W, Agabiti-Rosei E, 

Ambrosioni E, Lindholm LH, Viigimaa M, Adamopoulous S, Bertomeu V, Clement D, 

Erdine S, Farsang C, Gaita D, Lip G, Mallon JM, Manolis AJ, Nilsson PM, O’Brien E, 

Poikowski P, Redon J, Ruschitzka F, Tamargo J, van Zwieten P, Waeber B, Williams B. 



- - 162 - 
 

  

Management of arterial hypertension of the European Society of Hypertension: 

European Society of Cardiology. 2007 guidelines for the management of arterial 

hypertension: the task force for the management of arterial hypertension of the 

European Society of Hypertension (ESH) and of the European Society of Cardiology 

(ESC). J Hypertens 2007;6:1105-1187. 

Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, 

De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen 

SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight 

P, Viigimaa M, Waeber B, Zannad F; task force members. 2013 ESH/ESC guidelines for 

the management of hypertension: the task force for the management of arterial 

hypertension of the European Society of Hypertension (ESH) and of the European 

Society of Cardiology (ESC). J Hypertens 2013;31:1281-1357. 

Manisty CH, Hughes AD. Meta-analysis of the comparative effects of different classes of 

antihypertensive agents on brachial and central systolic blood pressure, and 

augmentation index. Br J Clin Pharmacol 2012;75:79-92. 

Maseko MJ, Majane HO, Milne J, Norton GR, Woodiwiss. Salt intake in an urban, developing 

South African community. Cardiovasc J South Afr 2006;17:186-191. 

McDonald’s blood flow in arteries: Theoretical, experimental and clinical principles. 6th edition. 

Nichols W, O’Rourke MF, Vlachopoulos C. 2011;195-223,226-253. 

McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockfroft JR, on behalf of ACCT 

investigators. Normal vascular aging: Differential effects on wave reflection and aortic 

pulse wave velocity. The Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 

2005;46:1753-1760. 

McEniery CM, Yasmin, McDonnell B, Munnery M, Wallace SM, Rowe CV, Cockcroft JR, 

Wilkinson IB; on behalf of the Anglo-Cardiff Collaborative Trial investigators. Central 



- - 163 - 
 

  

pressure: variability and impact of cardiovascular risk factors: the Anglo-Cardiff 

Collaborative Trial II. Hypertension 2008;51:1476-1482. 

McQueen MJ, Hawken S, Wang X, Ounpuu S, Sniderman A, Probstfield J, Steyn K, John E 

Sanderson JE, Hasani M, Volkova E, Kazmi K, Yusuf S, for the INTERHEART study 

investigators. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial 

infarction in 52 countries (the INTERHEART study): a case-control study. Lancet 

2008;372: 224-33. 

Mendis S, Lindholm L H, Mancia G, Whitworth J, Alderman M, Lim S, Heagerty T. World Health 

Organization (WHO) and International Society of Hypertension (ISH) risk prediction 

charts: assessment of cardiovascular risk for prevention and control of cardiovascular 

disease in low and middle-income countries. J Hypertens 2007;25:1578-1582. 

Mensah GA, Roth GA, Sampson UKA, Moran AE, Feigin VL, Forouzanfar MH, Naghavi M, 

Murray CJL; for the GBD 2013 mortality and causes of death collaborators. Mortality 

from cardiovascular diseases in sub-Saharan Africa, 1990–2013: a systematic analysis 

of data from the global burden of disease study 2013. Cardiovasc J Afr 2015;26:S6-S10.  

Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, Vita JA, Levy D, 

Benjamin EJ. Arterial stiffness and cardiovascular events: the Framingham Heart Study. 

Circulation 2010a;121:505-511. 

Mitchell GF, van Buchem MA, Sigurdsson S, Gotal JD, Jonsdottir MK, Kjartansson O, Garcia 

M, Aspelund T, Harris TB, Gudnason V, Launer LJ. Arterial stiffness, pressure and flow 

pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility-

Reykjavik Study. Brain 2011;134:3398-3407. 

Mitchell GF, Wang N, Palmisano JN, Larson MG, Hamburg NM, Vita JA, Levy D, Benjamin EJ, 

Vasan RS. Hemodynamic correlates of blood pressure across the adult age spectrum: 

noninvasive evaluation in the Framingham Heart Study. Circulation 2010b;122:1379-

1386. 



- - 164 - 
 

  

Mitchell GF. Triangulating the peaks of arterial pressure. Hypertension 2006;48:543-545. 

Miyashita H, Aizwa A, Hashimoto J, Hirooka Y, Imai Y, Kawano Y, Kohara K, Sunagawa K, 

Suzuki H, Tabara Y, Takazawa K, Takenaka T, Yasuda H, Shimada K. Cross-sectional 

characterization of all classes of antihypertensives in terms of central blood pressure in 

Japanese hypertensive patients. Am J Hypertens 2010;23:260-268. 

Mocumbi AO. Focus on non-communicable diseases: an important agenda for the African 

continent. Cardiovasc Diagn Ther 2013;3:193-195. 

Mocumbi AO. Lack of focus on cardiovascular disease in sub-Saharan Africa. Cardiovasc 

Diagn Ther 2012;2:74-77. 

Namasivayam M, Adji A, O’Rourke MF. Evaluating the hemodynamic basis of age-related 

central blood pressure change using aortic flow triangulation. Am J Hypertens 2015 doi: 

10.1093/ajh/hpv080. 

Namasivayam M, McDonnell BJ, McEniery CM, O’Rourke MF. Does wave reflection dominate 

age-related change in aortic blood pressure across the human life-span? Hypertension 

2009;53:979-985. 

NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: 

a pooled analysis of 1479 population-based measurement studies with 19·1 million 

participants. Lancet 2017; 389:37-55. 

Neisius U, Bilo G, Taurino C, McClure JD, Schneider MP, Kawecka-Jaszcz K, Stolarz-Skrzypek 

K, Klima L, Staessen JA, Kuznetsova T, Redon J, Martinez F, Agabiti-Roseif E, Muiesan 

ML, Melander O, Zannad F, Rossigno P, Laurent S, Collin C, Lonati L, Zanchetti A, 

Dominiczak AF, Delles C. Association of central and peripheral pulse pressure with 

intermediate cardiovascular phenotypes. J Hypertens 2012;30:67-74. 

Nichols W, O'Rourke M, Vlachopoulos C. McDonald’s Blood Flow in Arteries: Theoretical, 

Experimental and Clinical Principles 6th ed. London: Hodder Arnold, 2011. 



- - 165 - 
 

  

Norton GR, Majane OHI, Maseko MJ, Libhaber C, Redelinghuys M, Kruger D, Veller M, Sareli 

P, Woodiwiss AJ. Brachial blood bressure-independent relations between radial rate 

systolic shoulder-derived aortic pressures and target organ changes. Hypertension 

2012;59:885-892. 

 Norton GR, Maseko M, Libhaber E, Libhaber CD, Majane OHI, Dessein P, Sareli P, Woodiwiss 

AJ. Is pre-hypertension an independent predictor of target organ changes in young-to-

middle aged persons of African descent? J Hypertens 2008;26:2279-2287. 

Norton GR, Maseko M, Libhaber E, Libhaber CD, Majane OHI, Dessein P, Sareli P, Woodiwiss 

AJ. Is prehypertension an independent predictor of target organ changes in young-to-

middle aged persons of African descent? J Hypertens 2008;26:2279-2287. 

O’Donell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, Rangarajan S, Islam S, Pais 

P, McQueen MJ, Mondo C, Damasceno A, Lopez-Jaramillo P, Hankey GJ, Dans AL, 

Yusoff K, Truelsen T, Diener H, Sacco RL, Ryglewicz D, Czlonkowska A, Weimar C, 

Wang X, Yusuf S; on behalf of the INTERSTROKE investigators. Risk factors for 

ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE 

study): a case-control study. Lancet 2010a;376:112-123. 

O'Donnell MJ, Xavier D, Diener C, Sacco R, Lisheng L, Zhang H, Pias P, Truelsen T, Chin SL, 

Rangarajan S, Devilliers L, Damasceno A, Mondo C, Lanas F, Avezum A, Diaz R, 

Varigos J, Hankey G, Teal P, Kapral M, Ryglewicz D, Czlonkowska A, Skowronska M, 

Lopez-Jaramillo P, Dans T, Langhorne P, Yusuf S; on behalf of the INTERSTROKE 

investigators. Rationale and design of INTERSTROKE: a global case-control study of 

risk factors for stroke. Neuroepidemiology 2010b;35:36-44.  

Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, Snapinn S, Harris KE, 

Aurup P, Edelman JM, Wedel H, Lindholm LH, Dahlof B, for LIFE Study Investigators. 

Regression of electrocardiographic left ventricular hypertrophy during antihypertensive 



- - 166 - 
 

  

treatment and the prediction of major cardiovascular events. JAMA 2004;292:2343-

2349. 

Ôunpuu S, Negassa A, Yusuf S. INTER-HEART: a global study of risk factors for acute 

myocardial infarction. Am Heart J 2001;141:711-721. 

Park JB, Kario K, Wang J. Systolic hypertension: an increasing clinical challenge in Asia. 

Hypertension Research 2015;38:227-236. 

Peterson VR, Woodiwiss AJ, Libhaber CD, Raymond A, Sareli P, Norton GR. Cardiac diastolic 

dysfunction is associated with aortic wave reflection, but not stiffness in a predominantly 

young-to-middle–aged community sample. Am J Hypertens 2016;29:1148-1157. 

Picone DS, Climie RED, Ahuja KDK, Keske MA, Sharman JE. Brachial-to-radial SBP 

amplification: implications of age and estimated blood pressure and radial tonometry. J 

Hypertens 2015;33:1876-1883. 

Pini R, Cavallini C, Palmieri V, Marchionni N, Bari MD, Devereux RB, Masotti G, Roman MJ. 

Central but not brachial blood pressure predicts cardiovascular events in an unselected 

geriatric population: The ICARe Dicomano Study. J Am Coll Cardiol 2008;51:2432-2439. 

Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA. Recommendations for 

quantification of doppler echocardiography: a report from the doppler quantification task 

force of the nomenclature and standards committee of the American Society of 

Echocardiography. J Am Soc Echocardiogr 2002;15:167-184. 

Qureshi AI, Suri MF, Kirmani JF, Divani AA, Mohammad Y. Is prehypertension a risk factor for 

cardiovascular diseases? Stroke 2005;36:1859-1863. 

Rayner B. Hypertension: detection and management in South Africa. Nephron Clinical Practice 

2010;116:c269-c273. 

Redelinghuys M, Norton GR, Scott L, Maseko MJ, Brooksbank R, Majane OHI, Sareli P, 

Woodiwiss AJ. Relationship between urinary salt excretion and pulse pressure and 



- - 167 - 
 

  

central aortic hemodynamics independent of steady state pressure in the general 

population. Hypertension 2010;56:584-590. 

Regnault V, Thomas F, Safar ME, Osborne-Pellegrin M, Khalil RA, Pannier B, Lacolley P. Sex 

difference in cardiovascular risk: Role of pulse pressure amplification. J Am Coll Cardiol 

2012;59:1771-1777.  

Roman MJ, Devereux RB, Kizer JR, Okin PM, Lee ET, Wang W, Umans JG, Calhoun D, 

Howard BV. High central pulse pressure is independently associated with adverse 

cardiovascular outcome: The Strong Heart Study. J Am Coll Cardiol 2009;54:1730-1734. 

Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, Umans JG, Howard BV. 

Central pressure more strongly relates to vascular disease and outcome than goes 

brachial pressure: The Strong Heart Study. Hypertension 2007;50:197-203. 

Roman MJ, Devereux RB. Association of central and peripheral blood pressures with 

intermediate cardiovascular phenotypes. Hypertension 2014;63:1148-1153. 

Roman MJ, Ganau A, Saba PS, Pini R, Pickering T, Deveraux R. Impact of arterial stiffening on   

left ventricular structure. Hypertension 2000;36:489-494. 

Roth GA, Huffman MD, Moran AE, Feigin V, Mensah GA, Naghavi M, Murray CJL. Global and 

regional patterns in cardiovascular mortality from 1990 to 2013. Circulation 

2015;132:1667-1678.  

Safar ME, Blacher J, Pannier B, Guerin AP, Marchais AJ, Guyonvarc’h P, London GM. Central 

pulse pressure and mortality in end-stage renal disease. Hypertension 2002;39:735-738. 

 Sahn DJ, De Maria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-

mode echocardiography: results of a survey of echocardiographic measurement. 

Circulation 1978;58:1072-1083.  

 Schultz MG, Davies JE, Roberts-Thomson P, Black JA, Hughes AD, Sharman JE. Exercise 

central (aortic) blood pressure is predominantly driven by forward traveling waves, not 

wave reflection. Hypentension  2013;62:175-182. 



- - 168 - 
 

  

Segers P, Carlier S, Pasquet A, et al. Individualizing the aorto-radial pressure transfer 

function:feasibility of a model-based approach. Am J Physiol Heart Circ Physiol. 

2000;279:H542-H549. 

Segers P, Rietzschel ER, De Buyzere ML, Vermeersch SJ, De Bacquez D, Van Bortel LM, De 

Backer G, Gillebert TC, Verdonck PR. Noninvasive (input) impedance, pulse wave 

velocity and wave reflection in healthy middle-aged men and women. Hypertension 

2007;49:1248-1255. 

Sibiya MJ, Norton GR , Booysen HL, Tade G, Libhaber CD, Sareli P,Woodiwiss AJ. Aortic 

backward waves rather than stiffness account for independent associations between 

pulse pressure amplification and left ventricular mass in a young-to-middle aged ample. 

J Am Soc Hypertens 2017 (in-press). 

Sibiya MJ, Norton GR, Hodson B, Redelinghuys M, Maseko MJ, Majane OHI, Libhaber E, 

Woodiwiss AJ. Gender-specific contribution of aortic augmentation index to variations in  

            left ventricular mass index in a community sample of African ancestry. Hypertension 

Research 2014;37:1021-1027.   

Sibiya MJ, Woodiwiss AJ, Booysen HL, Raymond A, Millen AME, Maseko MJ, Majane OH, 

Sareli P, Libhaber E, Norton GR. Reflected rather than forward wave pressures account 

for brachial pressure-independent relations between aortic pressure and end-organ 

changes in an African community. J Hypertens 2015; 33:2083-2090. 

Staessen  JA, Gasowski J, Wang JG, Thijs L, Hond ED, Boissel J, Coope J, Ekbom T, 

Gueyffier F, Liu L, Kerlikowske K, Pocock S, Fagard RH. Risks of untreated and treated 

isolated systolic hypertension in the elderly: meta-analysis of outcome trials. Lancet 

2000;355:865-872. 

Statistics South Africa 2006. Mortality and causes of death in South Africa, 2003 and 2004. 

Findings from death notification. Statistical release No P03039.3. Pretoria: Statistics 

South Africa. www.statssa.gov.za. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Majane%20OH%5BAuthor%5D&cauthor=true&cauthor_uid=26237557
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sareli%20P%5BAuthor%5D&cauthor=true&cauthor_uid=26237557
http://www.ncbi.nlm.nih.gov/pubmed/?term=Libhaber%20E%5BAuthor%5D&cauthor=true&cauthor_uid=26237557
http://www.ncbi.nlm.nih.gov/pubmed/?term=Norton%20GR%5BAuthor%5D&cauthor=true&cauthor_uid=26237557
http://www.statssa.gov.za/


- - 169 - 
 

  

Statistics South Africa 2010. Mortality and causes of death in South Africa, 2008. Findings from 

death notification. Statistical release No P0309.3. Pretoria: Statistics South Africa. 

www.statssa.gov.za. 

Steyn K. Sliwa K, Hawken S, Commerford P, Onen C, Damasceno A, Yusuf S. Risk factors 

associated with myocardial infarction in Africa The INTERHEART Africa Study. 

Circulation 2005;112:3554-3561. 

Temu TM, Kirui N, Wanjalla C, Ndungu AM, Kamano JH, Inui TS, Bloomfield GS. 

Cardiovascular health knowledge and preventive practices in people living with HIV in 

Kenya. BMC Infect Dis 2015 14;15:421. doi: 10.1186/s12879-015-1157-8. 

Torjesen AA, Wang N, Larson MG, Hamburg NM, Vita JA, Levy D, Benjamin EJ, Vasan RS, 

Mitchell GF. Forward and backward wave morphology and central pressure 

augmentation in men and women in the Framingham Heart Study. Hypertension 

2014;64:259-265. 

Ueda H, Hayashi T, Tsumura K, Yoshimaru K, Nakayama Y, Yoshikawa J. The timing of the 

reflected wave in the ascending aortic pressure predicts restenosis after coronary stent 

placement. Hypertens Res 2004;27:535–540. 

Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB, Levy D. Impact of high-

normal blood pressure on the risk of cardiovascular disease. N Engl J Med 

2001;345:1291-1297. 

Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Gattobigio R, Zampi I, Santucci A, Santucci C, 

Reboldi G, Porcellati C. Prognostic value of left ventricular mass and geometry in 

systemic hypertension with left ventricular hypertrophy. Am J Cardiol 1996;78:197-202. 

Vinereanu D, Dulgheru R, Magda S, Galrinho RD, Florescu M, Cinteza M, Granger C, Ciobann 

AO. The effect of indapamide versus hydrochlorothiazide on ventricular and arterial 

function in patients with hypertension and diabetes: Results of a randomized trial.  Am 

Heart J 2014;168:446-456. 

http://www.statssa.gov.za/


- - 170 - 
 

  

Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of 

cardiovascular events and all-cause mortality with central haemodynamics: a systematic 

review and meta-analysis. Eur Heart J 2010;31:1865-1871. 

Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-

cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll 

Cardiol 2010;55:1318-1327. 

Vlachopoulos C, O'rourke M. Genesis of the normal and abnormal arterial pulse. Curr Probl 

Cardiol. 2000;25:303-367.  

Wang JG, Staessen JA, Gong L, Liu L; for the Systolic Hypertension in China (Syst-China) 

Collaborative Group. Chinese trial on isolated systolic hypertension in the elderly. Arch 

Intern Med 2000;160:211-220. 

Wang KL, Cheng HM, Chuang SY, Spurgeon HA, Ting CT, Lakatta EG, Yin FCP, Chou P, 

Chen CH. Central or peripheral systolic or pulse pressure: Which best relates to target-

orgnas and future mortality?  J Hypertens 2009;27:461-467.  

Wang K-L, Cheng H-M, Sung S-H, Chuang S-Y, Hung C-H, Spurgeon HA, Ting C-T, Najjar SS, 

Lakatta EG, Yin FCP, Chou P, Chen C-H. Wave reflection and arterial stiffness in the 

prediction of 15-year all-cause and cardiovascular mortalities: A community-based study. 

Hypertension 2010;55:799-805. 

Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Lamm G, Stark N, Rammer M, Eber B. 

Increased arterial wave reflections predict severe cardiovascular events in patients 

undergoing percutaneous coronary interventions. Eur Heart J 2005;26:2657-2663. 

Weber T, Auer J, O’Rourke MF, Punzengruber C, Kvas E, Eber B. Prolonged mechanical 

systole and increased arterial wave reflections in diastolic dysfunction. Heart 

2006;92:1616-1622. 



- - 171 - 
 

  

Weber T, Wassertheurer S, Rammer M, Haiden A, Hametner B, Eber B. Wave reflection, 

assessed with a novel method for pulse wave separation, are associated with end-organ 

damage and clinical outcomes. Hypertension 2012;60:534-541. 

Westerbacka J, Leinonen E, Salonen JT, Salonen R, Hiukka A, Yki-Jarvinen H, Taskinen M-R. 

Increased augmentation of central blood pressure is associated with increases in carotid 

intima-media thickness in type 2 diabetic patients. Diabetologia 2005;48:1654-1662. 

Westerhof N, Guelen I, Westerhof N, Karemaker JM, Avolio A. Quantification of wave reflection 

in the human aorta from pressure alone: a proof of principle. Hypertension 2006;48:595-

601. 

Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, Hughes AD, Thurston H. 

Differential impact of blood pressure–lowering drugs on central aortic pressure and 

clinical outcomes: Principal results of the conduit artery function evaluation (CAFE) 

study. Circulation 2006;113:1213-225. 

Wohlfahrt P, Wichterle D, Seidlerová J, Filipovský J, Bruthans J, Adámková V, Cífková R. 

Relation of central and brachial blood pressure to left ventricular hypertrophy. The Czech 

Post-MONICA Study. J Hum Hypertens 2012;26:14-19. 

Woodiwiss AJ, Molebatsi N, Maseko MJ, Libhaber E, Libhaber C, Majane OHI, Paiker J, 

Dessein P, Brooksbank R, Sareli P, Norton GR. Nurse-recorded auscultatory blood 

pressure at a single visit predicts target organ changes as well as ambulatory blood 

pressure. J Hypertens 2009;27:287-297. 

Woodiwiss AJ, Norton GR. Obesity and left ventricular hypertrophy: The hypertension 

connection. Curr Hypertens Reports 2015;17:28 

Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, Mcqueen M, Budaj A, Pais P, 

Varigos J, Lisheng L, on behalf of the INTERHEART Study Investigators. Effect of 

potentially modifiable risk factors associated with myocardial infarction in 52 countries 

(the INTERHEART study): case-control study. Lancet 2004;364:937-952. 



- - 172 - 
 

  

Yusuf S, Islam S, Chow CK, Rangarajan S, Dagenais G, Gupta R, Kelishadi R, Iqbal R, 

Avezum A, Kruger A, Kutty R, Lanas F, Lisheng L, Wei L, Lopez-Jaramillo P, Oguz A, 

Rahman O, Swidan H, Yusoff K, Zatonski W, Rosengren A, Teo KK; on behalf of the 

Prospective Urban Rural Epidemiology (PURE) Study Investigators. Use of secondary 

prevention drugs for cardiovascular disease in the community in high-income, middle-

income, and low-income countries (the PURE Study): a prospective epidemiological 

survey. Lancet 2011;378:1231-1243. 

Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases part I: 

general considerations, the epidemiologic transition, risk factors, and impact of 

urbanization. Circulation 2001;104:2746-2753. 

Zamani P, Jacobs DR, Segers P, Duprez DA,  Brumback L, Kronmal RA, Lilly SM, Townsend 

RR, Budoff M, Lima JA, Hannan P, Chirinos JA. Reflection magnitude as a predictor of 

mortality: reflection magnitude as a predictor of mortality. Hypertension 2014;64:958-

964. 

Zarocostas J. Need to increase focus on non-communicable diseases in global health, says 

WHO. BMJ 2010;341:c7065. 

 

 

 

 

 

 

 

 

 

 



- - 173 - 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

                                                

 

                                                                Appendix 1 

 

                                               Ethics and clearance certificates  

 



- - 174 - 
 

  

 



- - 175 - 
 

  



- - 176 - 
 

  

 



- - 177 - 
 

  

 

 



- - 178 - 
 

  



- - 179 - 
 

  

 



- - 180 - 
 

  

 

 

 

 

 

 

 

 

 

 

                                                                 Appendix 2 

 

                                                  ‘’Turnitin” plagiarism report  

 

 

 

 

 

 

 

 

 

 

 

 

 



- - 181 - 
 

  

 

 

 

 

Please note that the “Turnitin” originality report was run with the following filters: 

Student Publications “Sibiya et al” 

 


