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Abstract 

 

This work aims at designing and simulating on Aspen Plus process simulator a process 

that can recover valuable chemicals from a High Organic Waste (HOW) stream 

produced at Sasol Secunda plant, South Africa.  The waste is made up of low boiling 

point organic components such as pyridine, acetonitrile and Methyl Ethyl Ketone and 

water. Currently, the waste is incinerated without energy recovery. This practice serves 

to exacerbate the already high greenhouse gases emissions from the plant, but more 

importantly, it results in the missed opportunity to maximize revenues through resale of 

recycled valuable chemicals. The recovery of valuable chemicals from the HOW is 

made difficult by the formations of azeotrope between organic components and water; 

at least 6 azeotropes exist in the HOW stream. In this work the emphasis is on pyridine 

because of its established market value and demand. Pyridine market size is about 400 

million USD in 2017 and is expected to increase to over 600 million USD by 2021 

mainly due to increased usage in the agrochemical industry. Water integration strategy 

was also assessed demand because of the reported need to improve water utilization 

efficiency at Sasol Secunda plant. 

The recovery was achieved in 2 separate steps: 1) water-pyridine mixture was 

separated from the rest of the HOW stream using fractional distillation and 2) pyridine 

enrichment section which was designed using thermodynamic tools such as residue 

curve maps and isovolatility curves. The rest of the HOW stream (light fractions) was 

sent to the currently used incinerator. Liquid-liquid extraction and azeotropic distillation 

were considered for the pyridine enrichment step. Results showed that the combination 

of liquid-liquid extraction and distillation offered the benefit of a lower entrainer to 

azeotropic mixture ratio (EA) compared to azeotropic distillation. This gave the lowest 

recorded EA at 0.320:1. The comparison between the proposed process and the 

incineration of the whole HOW stream showed that the implementation of the process 

proposed reduced the incineration load by 60wt% and CO and CO2 emissions by 50%. 

Dividing Wall column process integration technique was implemented to reduce the 
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number of distillation columns in the proposed process and 10% reduction in the 

reboiler and condenser duties was observed. Implementation of DWC further improved 

the purity of the recovered pyridine from 96mol% to over 99.9mol%. Preliminary 

economic evaluation carried out on Aspen Plus showed that the proposed recovery 

process was profitable with an Internal Rate of Return (IRR) of 20% and a payback 

period of 4.5 years. 

 

 

 

 

 

 

 

 

 

 



 

iv 
 

Acknowledgements 

 

I wish to express my sincere gratitude to the following people and 

organizations/institutions: 

1. Prof Jean Mulopo (supervisor) for his guidance and patiently answering to my 

curiosities throughout my research. Moreover, thank you for assuming mentor 

position in my life and helping me deal with life challenges I encountered during 

my project, you are simply the best;  

2. The school of Chemical and Metallurgical Engineering for affording me the 

opportunity to work on Aspen Plus process simulator;  

3. My colleagues, Miss Lisa Shambare and Mr Jibril Abdulsalam for their advices 

and input in my research; 

4. Sasol and National Research Foundation (NRF) for their financial support to 

carry out this work; 

5.  My mother (Kgomotso Molote) thank you for your unparalleled support and faith 

in me; 

6. A big thank you to my life companion (Letlhogonolo Morake) for the support and 

encouragement you gave me throughout this journey, much love to you! 

7. Finally, to God, the father of my Lord Jesus Christ for seeing me through this 

work.  

 

 

 



 

v 
 

 Dedications 

 

I would like to dedicate this thesis to my beautiful daughter (Realeboga Morake); I hope 

this mile stone will serve to inspire you to be the best version of yourself, reaching for 

the stars. I love you!! 

I would like to further honor my late father (Letshwenyo Molote) with this work. You 

have always encouraged me unto academic excellence, thank you for that. Rest in 

eternal peace.  

 

 



 

vi 
 

Table of Contents 

 

Declaration ................................................................................................................... i 

Abstract ........................................................................................................................ii 

Acknowledgements ......................................................................................................iv 

Dedications .................................................................................................................. v 

Table of Contents ........................................................................................................vi 

List of Tables ...............................................................................................................ix 

List of Figures ..............................................................................................................xi 

Abbreviations List .......................................................................................................xv 

Chapter 1 : Introduction ................................................................................................... 1 

1.1. Background ........................................................................................................ 1 

1.2. Problem Statement ............................................................................................ 2 

1.3. Aims and Objectives .......................................................................................... 3 

1.4. Scope of Research ............................................................................................. 3 

1.5. Thesis Outline .................................................................................................... 4 

References .................................................................................................................. 6 

Chapter 2 : Literature Survey .......................................................................................... 9 

2.1. Brief Background on the South African Waste Landscape ................................. 9 

2.2. Oil Production Processes at Sasol Secunda .................................................... 12 

2.2.1. Background of the HOW ............................................................................ 15 

2.2.2. Current HOW Stream Treatment ............................................................... 19 

2.3. Azeotropic Mixtures Separation ....................................................................... 20 

 ............................................................................................................................... 23 

2.4. Energy Saving Techniques for Distillation Processes ...................................... 45 

2.5. Thermodynamic Tools for Separation Systems ................................................ 50 

2.6. Aspen Plus ....................................................................................................... 56 

References ................................................................................................................ 57 

Chapter 3 : Recovery of Pyridine-Thermodynamic Constraints and Alternatives Analysis

 ...................................................................................................................................... 63 

3.1. Introduction ...................................................................................................... 63 

3.2. Separating Water-Pyridine Mixture from the HOW ........................................... 65 



 

vii 
 

3.2.1. Shortcut Model to determine Distillation Parameters for the Rigorous 

Simulation .............................................................................................................. 68 

3.2.2. Rigorous simulation of the Water-Pyridine Mixture from the HOW ............ 71 

3.3. Pyridine Enrichment ......................................................................................... 74 

3.3.1. Thermodynamic Analysis ........................................................................... 74 

3.3.2. Process Analysis Application ..................................................................... 78 

3.3.3. Simulation of the Chloroform Improved System ........................................ 87 

3.3.4. Further implications for the HOW stream ................................................... 98 

3.3.5. Sensitivity Analysis to Assess Pyridine Purity Improvement .................... 100 

3.4. Conclusions.................................................................................................... 102 

References .............................................................................................................. 103 

Chapter 4 : Integration of the Distillation Columns using Dividing Wall Column (DWC) 

Technique ................................................................................................................... 106 

4.1. Introduction .................................................................................................... 107 

4.2. Aspen Plus Simulation ................................................................................... 117 

4.3. Discussions .................................................................................................... 126 

4.3.1. Troubleshooting Recommendations to Deal with Convergence Issues ..... 126 

4.4. Results Implications ....................................................................................... 131 

4.5. Conclusions.................................................................................................... 134 

References .............................................................................................................. 136 

Chapter 5 : Entropy Generation Analysis of the Regeneration Column ...................... 138 

5.1. Introduction .................................................................................................... 139 

5.2. Entropy Generation Analysis .......................................................................... 140 

5.3. Results Discussion and Recommendations ................................................... 144 

5.4. Conclusions.................................................................................................... 146 

References .............................................................................................................. 147 

Chapter 6 : Incineration Evaluation and Process Economics ...................................... 148 

6.1. Introduction .................................................................................................... 149 

6.2. Incineration of the whole HOW stream Versus Incineration of Light Fraction 

Only 150 

6.2.1. Simulation of Incinerator Units on Aspen Plus ......................................... 150 

6.2.2. Energy Recovery through Steam Production ........................................... 157 

6.2. Economic Evaluation of the Proposed Process.............................................. 162 



 

viii 
 

6.3. Conclusions.................................................................................................... 165 

References .............................................................................................................. 166 

Chapter 7 : Conclusions and Recommendations ........................................................ 167 

Appendices .............................................................................................................. 170 

Appendix A: Conference Paper .................................................................................... i 

Appendix B: Shortcut Models Specifications .......................................................... xxxii 

Appendix B.1. Shortcut Model Specifications for the water-pyridine mixture 

separation from the HOW ................................................................................... xxxii 

Appendix C: Detailed Material balances ................................................................ xxxvi 

Appendix C.1. Pyridine Enrichment Section Material Balances ............................ xxxvii 

Appendix C.2. Dividing Wall Column Material Balances ........................................ xxxix 

Appendix D: Binary Parameters ................................................................................ xlv 

Appendix E: Calculations ........................................................................................ xlviii 

Appendix F: Entropy Generation Data ......................................................................... lii 

 



 

ix 
 

List of Tables 

Table 2.1. HOW stream typical average composition and components properties ....... 15 

Table 2.2. Main azeotropes found in the HOW stream.................................................. 18 

Table 2.3. Summary of separation techniques considered ............................................ 45 

Table 3.1.  Waste stream composition, existing azeotropes and boiling points ............. 66 

Table 3.2.  Nomenclature for Table 3.1 and azeotropic compositions ........................... 66 

Table 3.3. Summary of the Winn Underwood Gilliland shortcut design calculation 

(Aspen Plus help function) ............................................................................................ 69 

Table 3.4. Shortcut model results for column (C-1) ....................................................... 71 

Table 3.5. Component-water azeotrope flowrate .......................................................... 72 

Table 3.6. Summary of columns used for pyridine dehydration ..................................... 88 

Table 3.7. Material balance for water-pyridine-toluene system [19] .............................. 96 

Table 3.8. Comparison of toluene and chloroform as entrainers for dehydration of 

pyridine .......................................................................................................................... 98 

Table 4.1. Applications of DWC in Industry as reported in 2010 [12] .......................... 115 

Table 4.2. DWC Industrial Applications [12] ................................................................ 115 

Table 4.3. Boiling points of pure components and azeotropes .................................... 117 

Table 4.4. Shortcut simulation results ......................................................................... 119 

Table 4.5. Comparison between the original two-column system and DWC the system

 .................................................................................................................................... 134 

Table 5.1. Entropy values from Aspen Plus ................................................................ 142 

Table 5.2. Summary of the parameters in the regeneration column (C-3)................... 144 

Table 6.1. Incineration of all the HOW mass balance.................................................. 153 

Table 6.2. Incineration of the whole HOW stream after implementation of sensitivity 

results .......................................................................................................................... 155 

Table 6.3. Incineration of light fractions only mass balance ........................................ 157 

Table 6.4. Parameters required to calculate the amount of steam generation ............ 161 

Table 6.5. Proposed process versus incineration of all the HOW: Summary .............. 161 

Table 6.6. Major Equipment Capital and Installation Costs ......................................... 163 

Table 6.7. Process Utility Costs of the distillation columns .......................................... 163 

Table 6.8. Total Costs Summary ................................................................................. 163 



 

x 
 

Table 6.9. Cash flow, present value and collected payback ........................................ 164 

Table D.1: Binary parameters for the pre-concentration section ................................... xlv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 
 

List of Figures 

Figure 2.1. Waste composition in South Africa .............................................................. 10 

Figure 2.2.  Employment opportunities in the waste management sector ..................... 11 

Figure 2.3.Coal to Liquid simplified process flow diagram ............................................. 13 

Figure 2.4. Phenosolvan unit: Origin of the HOW stream.............................................. 14 

Figure 2.5. Schematic diagram of the incineration unit for High Organic Waste ........... 20 

Figure 2.6. Liquid-liquid extraction unit .......................................................................... 21 

Figure 2.7. Effect of contact time on separation efficiency ............................................ 22 

Figure 2.8. Effect of temperature on separation efficiency ............................................ 23 

Figure 2.9. Schematic diagram of a pervaporation unit ................................................. 25 

Figure 2.10. Effect of water concentration feed on flux (a) for in the PVA based 

membrane and (b) Pervap 2202 (commercial membrane) ............................................ 27 

Figure 2.11. Effect of composition on PSI of Water-Acetonitrile membranes at 35˚C ... 28 

Figure 2.12. Effect of feed temperature on the permeate acetone composition ............ 30 

Figure 2.13. Effect of Organic feed composition on permeate organic composition for 

component-water binary mixture  .................................................................................. 30 

Figure 2.14. Effect of pyridine composition on pyridine permeate composition ............. 31 

Figure 2.15. Effect of pyridine feed composition on separation factor and permeation 

flux................................................................................................................................. 33 

Figure 2.16. Effect of pyridine feed composition on pyridine composition in the permeate

 ...................................................................................................................................... 33 

Figure 2.17. Effect of methanol composition on flux ...................................................... 35 

Figure 2.18. Effect of methanol composition on separation factor  ................................ 35 

Figure 2.19. Effect of temperature on selectivity and separation factor ......................... 36 

Figure 2.20. Ternary mixture separation (a) Direct split and (b) Indirect split ................ 38 

Figure 2.21. Typical setup of: (a) Extractive distillation and (b) Azeotropic distillation .. 41 

Figure 2.22. Petlyuk column setup ................................................................................ 47 

Figure 2.23. (a) Dividing Wall Column (DWC) configuration; (b) Equivalent Petlyuk 

column  .......................................................................................................................... 49 

Figure 2.24. Residue curve map superimposed with isovolatility curve......................... 52 



 

xii 
 

Figure 2.25. Pyridine-water RCM with material balances lines, liquid-liquid envelope and 

boundary lines; (b) Corresponding distillation sequence ............................................... 53 

Figure 2.26. Improved pyridine-toluene-water system: (a) Residue curve maps; (b) 

Corresponding process flow diagram  ........................................................................... 55 

Figure 3.1. Generic layout of the separation process .................................................... 67 

Figure 3.2. Separation of the water-pyridine mixture from the HOW ............................. 67 

Figure 3.3. Specification for the configuration of column C-1 ........................................ 71 

Figure 3.4. Feed stage specifications for column C-1 ................................................... 73 

Figure 3.5. Material balance for water-pyridine mixture separation from the HOW ....... 74 

Figure 3.6. Superimposition of isovolatility curve on a residue curve map .................... 77 

Figure 3.7. Water-pyridine-chloroform residue curve map showing liquid-liquid envelope, 

isovolatility curves, distillation boundary and material balance lines ............................. 80 

Figure 3.8. Process flow diagram for the water-pyridine-chloroform system ................. 81 

Figure 3.9. MIBK-water-pyridine residue curve map showing liquid-liquid envelope, 

isovolatility curves, distillation boundary and material balance lines ............................. 83 

Figure 3.10. Process flow diagram for the water-pyridine-MIBK system ....................... 84 

Figure 3.11. Improved pyridine-water-chloroform separation sequence........................ 85 

Figure 3.12. Process flow diagram for the improved water-pyridine-chloroform system 87 

Figure 3.13. Configuration Specification for column C-2 ............................................... 88 

Figure 3.14. Feed stream specification for column C-2 ................................................. 89 

Figure 3.15. Configuration for the liquid-liquid extraction unit ........................................ 89 

Figure 3.16. Specification of the key components on the Extraction unit ...................... 90 

Figure 3.17. Specification of the feed stages location on the extraction unit ................. 91 

Figure 3.18. Configuration specification for the regeneration column ........................... 91 

Figure 3.19. Feed stream specifications in the regeneration column ............................ 92 

Figure 3.20. Overall material balance for the pyridine enrichment section .................... 93 

Figure 3.21. Effect of chloroform fresh feed on the pyridine purity in product stream ... 94 

Figure 3.22. Water-pyridine-toluene system residue curve map ................................... 95 

Figure 3.23. Water-pyridine-toluene process flow diagram for pyridine dehydration using 

toluene .......................................................................................................................... 96 

Figure 3.24. Proposed flowsheet for the recovery of pyridine from the HOW ................ 99 



 

xiii 
 

Figure 3.25. The effect of reflux ratio on the quantity of pyridine and acetonitrile that 

report to the bottoms product ...................................................................................... 100 

Figure 3.26. The effect of reflux ratio on the mass fraction of pyridine and acetonitrile in 

the pyridine product stream ......................................................................................... 101 

Figure 4.1. Proposed pyridine recovery process ......................................................... 106 

Figure 4.2. Dividing Wall Column  ............................................................................... 108 

Figure 4.3. Pump around model for dividing wall column simulation ........................... 110 

Figure 4.4. Two-column model for the representation of DWC: (a). Pre-fractionator and 

Main column (b). Main column and post fractionator ................................................... 111 

Figure 4.5. Four-column model for the DWC ............................................................... 112 

Figure 4.6. Integration of the first two distillation columns (C-1 and C-2) into 1 .......... 116 

Figure 4.7. DWC model as depicted in Aspen Plus ..................................................... 118 

Figure 4.8. Shortcut model as shown on Aspen Plus .................................................. 119 

Figure 4.9. Configuration Specifications for Absorber 1 .............................................. 120 

Figure 4.10. Streams Specifications for Absorber 1 .................................................... 120 

Figure 4.11. Pressure Specification for the Absorber Column ..................................... 121 

Figure 4.12. Configuration Specifications for Absorber Column 2 ............................... 121 

Figure 4.13. Inlet and product streams specifications for absorber column 2 .............. 122 

Figure 4.14. Pressure Specification for Absorber Column 2 ........................................ 122 

Figure 4.15. Configuration Specifications for the Rectifier ........................................... 123 

Figure 4.16. Inlet and Product Streams Specifications ................................................ 123 

Figure 4.17. Pressure Specifications ........................................................................... 124 

Figure 4.18.  Stripper configuration specifications ....................................................... 124 

Figure 4.19. Inlet and Product Streams Specifications ................................................ 125 

Figure 4.20. Pressure Profile Specifications ................................................................ 125 

Figure 4.21. Profiles in Absorber 1 .............................................................................. 127 

Figure 4.22. Pyridine and water composition profiles and temperature profile in the 

second absorber ......................................................................................................... 129 

Figure 4.23. Stripper profiles ....................................................................................... 130 

Figure 4.24. Rectifier Profiles ...................................................................................... 131 

Figure 4.25. Overall material balance of the Dividing Wall Colum ............................... 132 



 

xiv 
 

Figure 4.26. Overall Material balance around the liquid-liquid extraction and 

regeneration column.................................................................................................... 133 

Figure 5.1. Proposed pyridine recovery process ......................................................... 138 

Figure 5.2. Double effect distillation system ................................................................ 146 

Figure 6.1. The proposed pyridine recovery process .................................................. 148 

Figure 6.2. Schematic diagram of incineration unit as carried out by Sasol ................ 150 

Figure 6.3. Simplified schematic diagram of the incineration unit (Status Quo) .......... 151 

Figure 6.4. RGibbs reactor specifications .................................................................... 151 

Figure 6.5. RGibbs reactor specifications continued ................................................... 152 

Figure 6.6. Air stream specifications ........................................................................... 152 

Figure 6.7. Sensitivity of O2, CO, and CO2 to air flowrate .......................................... 154 

Figure 6.8. Sensitivity analysis to determine the ideal air flowrate .............................. 156 

Figure 6.9. Proposed utilization of recovered water (B2 and Raffinate) ...................... 158 

Figure 6.10. Heat exchange ........................................................................................ 160 

Figure 6.11. Cumulative cash flow for the proposed process ...................................... 165 

 

 

 

 

 

 

 

 

 

  

 



 

xv 
 

Abbreviations List 

 

Abbreviation Explanation 

DSTWU Distillation Winn-Underwood 

DWC Dividing Wall Column 

NRTL Non-Random Two-Liquid 

RCM Residue Curve Map 

UNIQUAC Universal QuasiChemical 

 

 

 



 

1 
 

Chapter 1 : Introduction 
 

1.1. Background 

Recent economic expansion in developing countries such as South Africa and China 

has resulted in an increased waste generation [1]. If untreated, waste results in 

undesirable environmental impacts such as pollution and health associated issues [2]. 

The most widely used waste treatment is incineration [3]. While incineration can reduce 

the amount of solid waste by over 90mass% and can eliminate liquid waste [3], it is an 

energy intensive process and is prone to air pollution [4]. Recycling and reusing of 

waste has the potential to address some of the socio-economic issues such as 

unemployment;  for instance, the South African waste industry is worth over 15 billion 

ZAR, employing over 29000 people and this is achieved with a recycle of only 10% of all 

waste produced [4]. This work considers the High Organic Waste (HOW) produced at 

Sasol Secunda plant, South Africa. The stream is composed of mainly low boiling point 

organic components such as pyridine, Methyl Ethyl Ketone (MEK), acetone and 

acetonitrile; its typical flowrate range is 20-30kton/year. Currently, the stream is 

incinerated without energy recovery. The HOW stream emanates from the coal 

gasification process. 

Some of the components contained in the HOW are valuable chemical solvents. The 

formation of azeotropes renders the stream complex and deters recovery of valuable 

chemicals. Prime focus in this work will be the recovery of pyridine. Although pyridine 

has a low composition in the HOW (5mass%), its market size and demand justify the 

recovery.  Pyridine market size is currently estimated at 400 million USD and growth 

projections indicate that the market size will increase to over 600 million USD by 2021 

[5]. The growth is mainly attributed to the increased pyridine usage in the agrochemical 

industry [6]. Pyridine finds application in a wide variety of other industries such as the 

paint, pharmaceutical and spectrometry [5]. The recovery of pyridine has been a subject 

of many research studies  [7-12]; however, most of the studies have mainly focused on 

its recovery from a binary mixture. The limitation with these studies is that pyridine is 

likely to be found in waste streams with many other organic components. The 
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contribution of this study lies in the extension of known separation techniques to the 

recovery of valuable chemicals from a multicomponent waste stream. 

Pervaporation and other novel separation techniques have been proposed for the 

recovery of pyridine and other valuable chemical solvents from azeotropic aqueous 

streams [13-16]. Pervaporation is a membrane based separation technique with 

advantages such as low energy consumption and low capital investment compared to 

traditional separation techniques such as distillation [17]. However, due to confidence 

and expertise in distillation based techniques, the chemical industry has shown more 

preference towards distillation [18,19]. Moreover, a lot of capital has been invested in 

distillation; it is reported that over 90% of separations taking place in the chemical 

industry occur in distillation columns [18]. On the other hand, fractional distillation 

cannot separate azeotropic mixtures into pure components. Nevertheless, other 

distillation techniques such as Pressure Swing Distillation (PSD) and azeotropic 

distillation are capable of separating azeotropic mixtures [9,20,21]. Although distillation 

is energy intensive, there are energy saving techniques that have been proposed and 

have not been implemented adequately in industry [22].  

Dividing Wall Column (DWC) and diabatic distillation are examples of established 

energy saving distillation-based techniques. DWC is an integration of 2 or more 

thermally coupled distillation columns into 1 so that the integrated column has more 

than 2 product streams [23]. This is achieved by inserting a vertical wall in the 

midsection of the column [22-24].  DWC technique has been reported to reduce energy 

utilization by up to 30% [25]. By contrast, diabatic distillation involves the use of heat 

exchangers to enable tray wise heat exchange [26].  

1.2. Problem Statement 

The incineration of the High Organic Waste (HOW) stream signifies 2 main problems: 1) 

loss of opportunity to maximize revenues through the resale of the recovered valuable 

chemicals and 2) air pollution through emission of greenhouse gases; incineration may 

be eliminating the HOW, but this is done at the expense of air pollution. Moreover, 

incineration of the HOW is an energy intensive process, requiring consistent addition of 
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liquid fuel. With all its drawbacks, incineration of waste may be inevitable as not all 

components contained in the HOW warrant recovery. Therefore, there is a need to 

reduce the incinerator load to mitigate pollution and the fuel consumption due to 

incineration. Ideally, this should be achieved through a recovery of valuable chemicals 

that can be resold. Sasol has reported water utilization inefficiency issue at their 

Secunda plant and implemented strategies to improve water utilization in 2011 which 

have not been able to reach the targeted efficiency [27]. Water constitutes 40-60% of 

the HOW; consequently, water integration assessment in addition to recovery of 

valuable chemicals is worth considering.  

 

1.3. Aims and Objectives 

1. Use of thermodynamic tools to assess different separation techniques for the 

recovery of pyridine from the HOW 

2. Design and propose a cost-effective process flowsheet for the recovery of 

pyridine from the HOW stream produced at Sasol Secunda plant. 

3. Simulation of the proposed process on Aspen Plus process simulator. 

4. Assessment of water integration feasibility on the proposed process. 

5. Evaluate economic performance using Net Present Value (NPV) and Internal 

Rate of Return (IRR). 

 

1.4. Scope of Research  

Computer simulations are well established in the chemical and petrochemical industry; 

they are used in process development, design of equipment and optimization of both 

new and old plants [28]. Moreover, simulations avoid costly and time-consuming 

processes of experimentation especially in the initial stages of design [28]. For this 

reason, simulation approach was chosen in this work. Aspen Plus was selected as the 

software package for this work because of its reported versatility [29]. It can be used for 

design, control, optimization, and monitoring processes. It is used extensively in fine 

chemicals. polymer, bulk and biochemical industries and has a wide-ranging, class 

leading database of pure components [29]. Most of process units in the chemical 

industry, i.e. reactors, distillation columns, absorbers and strippers are built-in within the 
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Aspen Plus library. For those units that are not part of the Aspen Plus library, it offers an 

option of building custom models; these include pervaporation and other membrane-

based techniques which can be modelled on Aspen Custom Modeler (ACM) then 

imported to Aspen Plus.   

 

1.5. Thesis Outline 

Chapter 1: Introduction  

Background to the work is given and the objectives of this study are presented. 

 

Chapter 2: Literature Review 

In Chapter 2, South African waste landscape is discussed. Furthermore, Sasol 

processes are briefly deliberated to better understand the source of waste. Potential 

techniques for azeotropic mixtures separations are reviewed. 

 

Chapter 3: Recovery of Pyridine: Thermodynamic Constraints and Alternatives 

Analysis 

In Chapter 3, different separation techniques are assessed using thermodynamic tools 

for the recovery of pyridine from the HOW. Pyridine recovery process is proposed and 

compared with a classical example of pyridine recovery from an aqueous stream. 

 

Chapter 4: Integration of the Pre-concentration Stage using Dividing Wall Column 

Technique 

In Chapter 4, the assessment of the integration of distillation columns using a principle 

of Dividing Wall Column (DWC) is made. 

 

Chapter 5: Entropy Generation Analysis of the Regeneration Column 

In Chapter 5, energy integration commenced in Chapter 4 is extended to other parts of 

the process and recommendation to improve energy utilization is made.  
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Chapter 6: Evaluation of the Incineration Process and Process Economics 

In Chapter 6, the proposed process is compared with the current practice of 

incineration. Heat recovery from the incineration unit through water integration is 

proposed. Furthermore, economic evaluation of the proposed process is evaluated.  

 

Chapter 7: Conclusions 

Summary of all chapters is given, and recommendations are made for future work.  
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Chapter 2 : Literature Survey 
 

This chapter gives a background on South African waste landscape.  A brief history 

about Sasol and its production processes is presented to give a better understanding of 

the origin of the High Organic Waste (HOW) stream under consideration. The basic 

properties of valuable chemicals found in the waste stream are also discussed, and the 

detailed discussion for pyridine and its market size is made. State of the art azeotropic 

mixtures separation techniques are then discussed in detail as well as analyzing their 

applications by different researchers for similar waste streams as the HOW. Advantages 

and disadvantages of each technique are outlined. A discussion about the application of 

thermodynamic tools for distillation design and synthesis is presented in this chapter. 

  

2.1. Brief Background on the South African Waste Landscape 

Recent economic and industrial expansion across the globe (Indonesia, China, South 

Africa and India), increasing population and the development of urban cities 

(megacities) has resulted in massive waste generation; a phenomenon which has 

grown to be one of the major challenges of the 21st century [1, 2]. Ineffective data 

collection, lack of policy enforcement capacities and thus lack of compliance from 

stakeholders are some of the challenges pertaining to effective waste management in 

South Africa [3]. The general waste composition in SA is depicted in Figure 2.1.  
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Figure 2.1. Waste composition in South Africa [1]  

 

Dilute industrial waste streams are often discarded onto large water bodies by coastal 

firms and onto sewage systems for companies located inland [3]. The former results in 

the ecosystem disturbance and the latter results in difficulty in treating sewage waste. 

Recent research has shown that in SA, of the 108 million tons of waste (all types of 

waste) generated per annum, only 10% is recycled and the rest is landfilled [3]. 

Consequently, the development of sustainable waste management strategies remains a 

critical area of concern in South Africa. Waste valorization through implementation of 

appropriate waste management strategies has the potential to alleviate the socio-

economic stresses such as unemployment and high resource consumption rate in 

South Africa [3]. For instance, the SA waste industry was reported to be worth 15.8 

billion ZAR (0.51% GDP of the country) in 2012, employing over 29,000 people [1, 4]. It 

is estimated that a further 20% and 60% recycle of industrial waste and domestic waste 

respectively could result in a further 17 billion ZAR revenue and potential job creation 

for 30,000 more people [4]. In its entirety, the waste management sector can create 
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over 100,000 jobs [4]. The main source of employment opportunity lies in recycling  

(Figure 2.2) [4].  

 

 

Figure 2.2.  Employment opportunities in the waste management sector [1]  

 

In response, the SA government developed a green policy and regulatory framework for 

waste management which emphasize minimization of waste production and resource 

consumption in  2008 [National Environmental Management: Waste Act (Act 59 of 

2008))] [4]. This work focuses on the aqueous High Organic Waste (HOW) stream 

produced at Sasol Synthetic Fuels (SSF) in Secunda, South Africa. 
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2.2. Oil Production Processes at Sasol Secunda 

In 1950, the South African government responded to a lack of crude oil and natural gas 

by sponsoring the South African Coal, Oil and Gas Ltd (Sasol) to produce crude oil from 

coal using the then new German technology referred to as the Fischer-Tropsch (FT) 

process [5]. Sasol’s first production took place in 1955 in the plant situated in the Free 

State province, the town currently known as Sasolburg [5]. Owing to growth and 

increased need for a variety of chemicals due to population growth, Sasol set up 2 more 

plants in Secunda, Sasol 2 and Sasol 3 in 1980 and 1982 respectively [6]. Today, using 

the FT process, Sasol produces about 160,000 barrels of liquid fuel from coal which 

account for over 40% of the country’s liquid fuel [7].  

Sasol has contributed over 40 billion ZAR to the South African Gross Domestic Product 

(GDP) and employs over 170,000 people [6].  In its 50th year anniversary in the year 

2005 it had produced over 1.5 billion barrels of liquid fuels from Coal since its inception 

[7]. Sasol produces over 200 liquid fuels including petrol, paraffin, diesel, jet fuel and 

wax. There are 3 main liquid fuels and chemicals production routes at Sasol: refinery of 

crude oil, Gas to Liquid (GTL) and Coal to Liquid (CTL) technologies [7]. 

 

Crude Oil Refinery 

Crude oil consists of hydrocarbons ranging from C5-C18 [8]. Like coal, it is acquired from 

nature. Due to the lack of crude oil in South Africa, Sasol imports it from West Africa, 

Gabon [8]. Production of liquid fuels and chemicals from crude oil is achieved through 

refining the oil in the Natref (National petroleum refiners of South Africa) plant; a plant 

jointly owned by Sasol and Total South Africa. This plant was commissioned in 1971 for 

the most part, to cater for the refinery needs of Sasol in Sasolburg [8]. 

   

Gas to Liquid Technology (GTL)  

The raw materials used to produce liquid fuels at Sasol are natural gas imported from 

Mozambique, crude oil, and coal. Natural gas imported from Mozambique is reacted 

with steam and oxygen at temperatures as high as 1300˚C in an auto-thermal reactor to 

produce syngas [9]. The syngas then reacts in the Sasol Slurry Phase (SSP) reactor in 

the presence of iron catalyst. Fischer-Tropsch process takes place in this reactor [9].  
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Coal to Liquid Technology (CTL) 

The process of converting coal to liquid fuels occurs in 4 main steps: coal mining, coal 

gasification, gas purification, and Fischer-Tropsch process [9]. Coal gasification results 

in the gas which is mainly composed of carbon monoxide and hydrogen, referred to as 

synthesis gas (syngas) [10]. The Fischer-Tropsch process takes place in a Sasol 

Synthol Reactor (SAS) wherein carbon monoxide and hydrogen (syngas) react at 

elevated temperature and pressure in the presence of an iron catalyst. The reaction 

temperature in the Sasol Slurry Phase (SSP) is much higher than the temperature in the 

SSF reactor [9]. The product of the SAS reactor are different hydrocarbon chains and 

water; the general reaction of which is given by equation (2.1),  where n represents the 

number of carbon atoms [8]. The waste emanating from the coal gasification unit as 

shown in Figure 2.3, is of interest in this research work. 

 

 (2𝑛 + 1)𝐻2 + 𝑛𝐶𝑂 →  𝐶𝑛𝐻2𝑛 + 𝑛𝐻2𝑂 (2.1) 

Where: 

n denotes the number of carbon atoms in a chain.  

 

 

Figure 2.3.Coal to Liquid simplified process flow diagram [9] 

 

 

 

 



 

14 
 

Coal Gasification 

In coal gasification, the coal is subjected to temperatures as high as 1300˚C [8]. The 

products of this process are ash and raw gas where ash is collected by an intermittent 

collection unit. The raw gas is comprised of carbon monoxide, tar, oils and phenols 

amongst other things. The raw gas is cooled to condense and remove the gas liquor 

which is mainly water and dissolved impurities (phenols, tar, organic acids etc.) from the 

raw gas. The raw gas concentrated with CO and H2 is finally taken to an absorber 

referred to as the Rectisol unit. In the Rectisol unit, methanol is used to remove CO2 

and H2S [8]. The gas liquor from the condenser is passed to the gas liquor separation 

unit in which phenols, dissolved gases and oils are removed from the gas liquor. The 

product of this unit is referred to as the clean gas liquor gas. The clean gas liquor is 

then passed to the Phenosolvan process where ammonia and High Organic Waste 

(HOW) stream are separated (Figure 2.4) [9].  

 

 

 

Figure 2.4. Phenosolvan unit: Origin of the HOW stream [9] 
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2.2.1. Background of the HOW  

The high organic waste stream is composed mainly of low boiling components (Table 

2.1). Some of the components from the HOW are valuable chemical solvents and find 

applications in a variety of fields. Brief discussion about the application of acetone, 

acetonitrile and pyridine is given in this section.  

 

Table 2.1. HOW stream typical average composition and components properties 

Component Mass Fraction 

Pyridine 0.05 

Acetone 0.02 

Water 0.62 

Acetonitrile  0.15 

Methyl Ethyl Ketone 0.04 

Methyl Iso Propyl Ketone 0.12 

 

Acetone 

Acetone, also known as propanone is a colorless liquid ketone with characteristic odor 

and taste. It has proven itself as multipurpose solvent and is applied extensively in the 

manufacturing of paints and nail polish. Furthermore, it is used an intermediate 

chemical to produce other chemicals such as methylmethacrylate and bis-phenol-A [10]. 

Sasol uses acetone as a raw material in the production of Methyl Isobutyl Ketone 

(MIBK) over an impregnated ion exchange catalyst in the presence of hydrogen [11]. 

 

Acetonitrile  

Acetonitrile is a toxic, clear liquid with a sweet-like smell. Acetonitrile is used in the 

making of pharmaceuticals, rubber products, nail polish and batteries [12]. Although 

acetonitrile is a polar solvent (miscible with water in all proportions), it also possesses 

hydrophobic properties, enabling its application in liquid chromatography and as 

photosensitive material [13]. In petrochemical industries it is used in the separation of 

ole-diolefin as an extracting solvent [14]. There are 2 main sources of acetonitrile; 
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reaction of acetic acid in the excess of ammonia and as a byproduct of the production of 

acrylonitrile in the Sohio process [14]; nonetheless the latter is a major source of 

acetonitrile. Upon heating, acetonitrile emits harmful gases such as hydrogen cyanide 

which can have adverse health effects to humans and the environment in general; if 

inhaled, acetonitrile can cause mucous irritation [15]. The toxicity of acetonitrile and its 

broad range of applications serve as incentives for its recovery from a spent stream.  

Pyridine 

Pyridine is a colorless chemical with an unpleasant odor which is structurally related to 

benzene; the only difference between the molecular structure of benzene and pyridine 

is that one of the C-H groups in the benzene is replaced by a nitrogen atom N. Pyridine 

has a broad range of applications and is used in most industries. Its application ranges 

from alcohol denaturation, use as a chemical solvent in paint and rubber preparation 

and extraction of plant hormones. It is also renowned for its use in HNMR spectrometry 

[16].  Moreover, pyridine is used in colometric determinations of cyanide in aqueous 

solutions, as a dyeing agent in the textiles industry, and a precursor to agrochemicals 

and pharmaceuticals [17,18]. Separation of pyridine from water and other components 

is an ongoing research topic. This can be attributed to the fact that pyridine is currently 

in high demand with a market size of over 450 million USD [19]. It is also projected that 

the pyridine market size will grow by at least 200 million USD by 2021 [16].  

Recovery of pyridine from waste has been investigated since early 1990s. A case study 

by Crew & Schafer [20] refers to a project that was undertaken to recover pyridine from 

a waste stream; this project was forecasted to have the potential to save a drug a 

manufacturing company (Burroughs Co.) up to 1.5 million USD pa . The motivation 

behind the need to recover pyridine from a waste was mainly economical; firstly, the 

recovery of pyridine would reduce the disposal costs since the waste in this plant was 

incinerated without energy recovery and secondly the cost of virgin pyridine was high 

and the recovery of used pyridine could then abate such costs [20].  
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Water  

South Africa is currently faced with a water crisis and has been listed as one of the 30 

driest countries in the world [5]. In 2016, the Vaal dam which supplies the Gauteng 

province, South African economic hub and the most populated province with water was 

reported to have hit an all-time low, below 30% of its capacity, resulting in water supply 

interruption. This affected the industrial and agricultural activities adversely, 

exacerbating the already strained economic performance of the country. Furthermore, 

water is one of the key raw material to Sasol for steam generation purposes and it is 

also used for other purposes such as heat exchanger medium and in cooling towers; an 

average of 167,000,000m3 is consumed per annum [8].  As such, in 2011, Sasol 

initiated a voluntary water efficiency usage in their water intensive plants (Sasol 

Synfuels and Sasol Infrachem) [21]. In alignment with the implemented water efficiency 

strategy, water recovery will also be assessed in this work.  

The successful recovery of pyridine and water from the HOW will reduce the stream by 

50mass% and thus the incinerator load. Consequently, less steam and liquid fuel will be 

required to incinerate the remaining fraction of the HOW. The main hindrance of 

pyridine or any of the valuable chemicals recovery from the HOW stream is the 

complexity introduced by azeotropic formations between the organic components and 

water and between organic components themselves. The stream comprises at least 6 

main azeotropes (Table 2.2).  
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Table 2.2. Main azeotropes found in the HOW stream 

Type Components Mole Fraction Temperature (°C) 

Binary 
Pyridine 0.25 

93.71 
Water 0.75 

Binary 
Acetonitrile 0.33 

76.53 
Water 0.67 

Ternary 

Water 0.37 

76.32 Acetonitrile 0.50 

MIPK 0.13 

Binary 
MEK 0.64 

73.65 
Water 0.36 

Binary 
Water 0.56 

77.61 
MIPK 0.44 

Binary 
Acetonitrile 0.29 

79.09 
MEK 0.71 

 

Non-ideal intermolecular interactions between two or more dissimilar components  may 

lead to an azeotropic phenomenon [22]. This causes the mixture to exhibit equal 

compositions between the liquid phase and vapor phase at equilibrium. The interactions 

may be repulsive or attractive in which case the azeotrope is a minimum boiling 

azeotrope or maximum boiling azeotrope respectively. Minimum boiling azeotrope 

means that the azeotrope has the lowest boiling point compared to all the components 

originally in the mixture and maximum boiling azeotrope means that the azeotrope has 

the highest boing point compared to original components of the mixture. Depending on 

the strength of the intermolecular interaction, the azeotrope may be homogenous or 

heterogeneous; stronger interactions result in the formation of heterogeneous 

azeotrope. At azeotropic composition the relative volatility of an azeotropic composition 

is unity [23]. Relative volatility of a binary mixture is given by equation (2.2).  

 𝛼𝐴𝐵 =
𝛾𝑎𝑃𝑎

𝛾𝑏𝑃𝑏
  (2.2) 
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Where: 

𝛼𝐴𝐵:  relative volatility of component A and B. 

𝛾: Activity coefficient  

𝑃:  Vapor pressure of component 

 

To avoid dealing with azeotropic formation, the steam is currently incinerated without 

energy recovery.  

 

2.2.2. Current HOW Stream Treatment 

Currently, the HOW stream is incinerated without energy recovery. Incineration is a 

thermal treatment in which waste is combusted at elevated temperatures. It is the most 

preferred waste treatment technique globally [24]. Incineration temperature is controlled 

at 1300˚C at Sasol Secunda [21].  The HOW incineration unit at Sasol use 2 main 

utilities: steam and fuel gas [21]. The steam serves to atomize the HOW and the fuel 

gas is used to ignite the waste (Figure 2.5). 

Incineration of the HOW stream serves to exacerbate the CO2 emissions from Sasol 

operations; the greenhouse gases emissions (measured in CO2 equivalent) for the year 

2016 was reported as 69.3 million tons [21]. On the other hand, National Environmental 

Air Quality Act and Minimum Emissions Standards (MES) which were introduced in 

2004, dictate that Sasol adhere to more stringent emission standards by the year 2020 

[21]. This has put Sasol under pressure to reduce emissions and as a result in the last 

decade, it has spent over 20 billion ZAR in environmental improvement projects [21]. 

Potential techniques that can be used to recover valuable chemicals from the HOW 

despite the azeotropic formations of components are presented in section 2.3.  
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Figure 2.5. Schematic diagram of the incineration unit for High Organic Waste [21] 

 

2.3. Azeotropic Mixtures Separation 

The aim of a separation process is to separate a mixture of components into its 

distinctive constituents; the performance of such a process is evaluated on the purity of 

respective components from a mixture. There are several separation technologies for 

azeotropic mixtures currently in use in industry today. Separation processes exploit the 

difference in physical and chemical characteristics. Characteristics such as boiling point, 

size, shape, density, solubility and magnetic properties are used to separate mixtures 

[25].  

 

Liquid-liquid Extraction 

Liquid-liquid extraction (LLE), also referred to as solvent extraction, is a separation 

technique based on the difference of solute solubility in a solvent and the aqueous 

solution. The liquids are brought into contact either in a counter current or cross current 

manner to cause mass transfer of solute, usually from an aqueous phase to the solvent 

phase [26] (Figure 2.6). For this mass transfer to be possible, the solute has to be more 
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soluble in the solvent phase than in the aqueous phase. Some of the factors that are 

considered upon choosing a solvent are: favorable partition coefficient, high selectivity 

towards the solute and easy separation of the solvent from the solute. The advantages 

of liquid-liquid extraction are: low energy intensity [27], ability to extract solutes present 

in smaller concentrations and separate heat sensitive chemicals [26].  

 

 

Figure 2.6. Liquid-liquid extraction unit 

 

Liquid-liquid extraction has been traditionally used extensively in the separation of 

aliphatic-aromatic mixtures [26]. Like the waste stream considered in this work, these 

mixtures are made up of components with close boiling points and some of them form 

azeotropes with each other. Kaewchada et al. [26] conducted an experimental 

investigation of the effect of temperature, contact time and solvent to feed ratio on the 

separation efficiency of toluene from heptane using a micro tube contactor. It was found 

in this study that increasing contact time between 2s and 6s resulted in the reduction of 

extraction efficiency (Figure 2.7); this phenomenon was sensibly ascribed to the fact 

that contact time was controlled by flowrates of the solvent and the mixture respectively, 

therefore, higher flow rates (lower contact time) resulted in finer liquid droplets, which 

implied larger mass transfer interfacial area; a very important factor for any mass 
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transfer operation. It was also observed that beyond 6s, extraction efficiency started 

increasing. This may be because of sufficiently higher contact time allowed for adequate 

mass transfer despite the interfacial area being relatively smaller.   

These results show that interfacial area is a more influential parameter than contact 

time. Owing to diffusion coefficient being directly proportional to temperature [26], the 

separation efficiency was also found to increase with increasing temperature (Figure 

2.8). The temperature was increased only up to 60˚C and this was taken as the 

operating temperature. Temperature could not be increased indefinitely due to several 

reasons: some chemicals degrade at elevated temperatures, but most importantly in 

liquid-liquid extraction the state of the solvent and the mixture to be separated needs to 

be in liquid phase; these factors limited the extent to which temperature could be 

increased. 

 

 

Figure 2.7. Effect of contact time on separation efficiency [26] 
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Figure 2.8. Effect of temperature on separation efficiency [26] 

 

Since the early 2000s, novel approaches have been proposed for the breaking of 

azeotropes using liquid-liquid extraction. One such approach is replacing the organic 

solvent with ionic liquid. The argument with ionic liquid is that they enable easier 

regeneration and are less volatile unlike most of the organic solvents, and therefore 

losses to the environment can be minimized [27]. However, the problem with ionic 

liquids is that there is no exhaustive data around their toxicity and hence their 

environmental impact is not adequately known [28]. Also, the research of the use of 

ionic liquids is still in early development, there may be a need for further research to 

investigate their application for different azeotropic mixtures. Work by Pereiro & 

Rodriguez [27] proved the applicability of ionic liquids as extractants for the separation 

of propanol and ethyl acetate for liquid-liquid extraction.  A study by Królikowski [28] 

aimed at investigating the separation of p-xylene (aromatic compound), octane and 

decane (aliphatic compounds) using ionic liquids in liquid-liquid extraction revealed that 

an increase in aliphatic chain length significantly increase selectivity of the ionic liquid. 

Furthermore, the experimental liquid-liquid equilibrium data was compared to the 

correlated Non-Random Two-Liquid (NRTL) and Universal QuasiChemical (UNIQUAC) 

liquid-liquid equilibrium data. A satisfactory representation was established between the 

correlated and experimental values, however NRTL was found to be a better 
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representative of the experimental liquid-liquid equilibrium. The study also found that to 

acquire satisfactory separation, large amounts of ionic liquid(s) were required [28]. 

A drug manufacturing, pharmaceutical company (Burroughs Wellcome Co.) assessed 

liquid-liquid extraction for the recovery of pyridine from an industrial organic waste 

stream in 1993 [20]. The waste mixture was pre-concentrated to the water-pyridine 

azeotropic composition using fractional distillation and the azeotrope was broken using 

solvent extraction.  The process used caustic soda as a solvent.  Successful recovery of 

pyridine at purity over 99mass% was achieved. This resulted in the reduced need for 

virgin pyridine by 30mass% for drug production in the company. The reduction in the 

need for virgin pyridine corresponded to a 1.5 million USD savings per annum for the 

drug manufacturing company. This work showed that recovery of pyridine and perhaps 

any other valuable chemical may be economically viable.    

 

Pervaporation  

Pervaporation is a membrane based technique used to separate liquid mixtures by 

partial vaporization of a single component in a mixture [29]. The liquid feed is kept in 

contact with the membrane and the component to be removed is sucked through the 

membrane by a vacuum pump [30]. The vapor permeate leaving the membrane is 

condensed before being pumped to the product storage (Figure 2.9). The rejected liquid 

is referred to as the retentate. The membrane must have high selectivity towards the 

component that is being targeted. The membrane may be hydrophilic, hydrophobic or 

organoselective [18]. Hydrophilic membranes, which are more common than the other 2 

excrete water as the permeate whereas hydrophobic membranes produce water as a 

retentate.  

Hydrophobic membranes are not to be confused with organoselective membranes; 

separation in organoselective membranes is based on permeability of organic 

components of the mixture while separation in hydrophobic membranes is based on the 

rejection of water by the membrane. Hydrophobic membranes that have been tested in 

experiments show poor selectivity and they tend to allow the permeation of water [18]. 

Because the separation using pervaporation is independent of the vapor-liquid 
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equilibrium, the technique is usually used for the separation of azeotropic mixtures, 

mixtures containing close boiling points and recovery of trace amounts [15]. Areas of 

application include: dehydration of organic mixtures, separation of organics and 

recovery of organics from aqueous solutions [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Schematic diagram of a pervaporation unit [31] 

 

Some of the advantages of this process over the conventional methods of separation 

include: low energy consumption  and low capital investment [30, 31].  Moreover, 

pervaporation is in accordance with green chemical processing as it does not require 

additional solvent to induce separation in case of azeotropic mixtures as is with 

azeotropic distillation and liquid extraction. The fact that only the diffusing component(s) 

experience phase change contribute to the low energy consumption of this process [10]. 

The synthesized membrane must be both chemically and structurally resistant; usually 

this is achieved through crosslinking. Crosslinking presents a dilemma; low level 

crosslinking results in swelling in a dilute mixture, whereas high level crosslinking 

causes membrane stiffness and comes in at the expense of reduction of flux and 

selectivity of the membrane. Reduction in flux is undesirable, particularly at industrial 

level because it means low throughput, and thus lower separation rate.  

Pevaporation Unit

Feed

Retentate

Permeate
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Various studies have undertaken to overcome the issues associated with crosslinking 

and few suggestions have been made. One of the explored avenues has been the use 

of PVA (Poly Vinyl Alcohol) based membranes reinforced with metal oxides. PVA is 

preferred due to its hydrophilicity and good chemical resistivity [15]. The purpose of the 

metal oxides nanocomposites is mainly reinforcement of the structure of the membrane. 

Work by Mandal et al. [15] established that using PVA based nanocomposite iron oxide 

membranes improved general performances of the membrane without the need for 

crosslinking. This study was aimed at comparing pervaporative performances of the 

PVA based commercial membrane with special crosslinking (Pervap 2202) and PVA 

based nanocomposite iron oxide membranes for the separation of water and 

acetonitrile. For pervap 2202, there was a direct relationship between flux and water 

mass% in the feed. The increase of flux with water mass% was faster between 5 and 

10mass% and then slowed down approaching a plateau at about 130 g/m2/s (Figure 

2.10(b)). Separation factor (equation (2.3)) on the other hand decreased linearly with 

increasing water composition in the feed.  

 𝛼𝑖/𝑗 =
𝑌𝑖/𝑌𝑗

𝑋𝑖/𝑋𝑗
 (2.3) 

 

Where:  

𝛼𝑖/𝑗: Separation factor 

𝑌𝑖/𝑗:  The vapor composition of component i or j. 

𝑋𝑖/𝑗:  The liquid phase composition of component i or j. 

i:  Component which the membrane is selective toward. 

j: Component to be rejected by the membrane.  
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Figure 2.10. Effect of water concentration feed on flux (a) for in the PVA based 

membrane and (b) Pervap 2202 (commercial membrane) [15] 

 

Due to the nature of the membranes (hydrophilic), water was meant to be recovered as 

the permeate and acetonitrile as the retentate, therefore, according to equation (2.3), 

the decrease of separation factor with increasing water feed composition is an 

undesirable phenomenon implying that some of the acetonitrile is lost to the permeate 

for the in-situ membrane (Figure 2.10 (a)). This is evident in Figure 2.10 (a) which 
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shows acetonitrile flux increases with increasing water feed composition. For the 

commercial membrane (Pervap 2202), the decrease in separation factor as water feed 

composition increases implies that some of the water reported to the retentate, which is 

equally an undesirable phenomenon as the latter.   

A concept of Pervaporative Separation Index (PSI) given by equation (2.4) was also 

considered. This parameter encompasses both flux and separation factor [35]. For both 

membranes, PSI peaked around 13mass% water composition, but the PSI for PVA-Fe 

based membrane was over 2 times higher than the one observed in the commercial 

membrane (Figure 2.11). The peak on the PVA-Fe membrane was followed by a sharp 

decrease with increasing water composition. Be that as it may, below and at azeotropic 

composition the PVA-Fe based membrane had a higher PSI showing that it is more 

suitable for the separation of water and acetonitrile as an azeotrope breaking 

membrane than the commercial membrane.  

 

 

Figure 2.11. Effect of composition on PSI of Water-Acetonitrile membranes at 35˚C [15] 
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 𝑃𝑆𝐼 = 𝐽(𝛼 − 1) (2.4) 

Where: 

𝑃𝑆𝐼:  Pervaporative Separation Index. 

𝛼: Separation factor 

𝐽:  Permeate flux 

 

Das & Kumar [15] also overcame the need for crosslinking. They used acrylonitrile and 

itaconic acid copolymer for the separation of water and pyridine. The acrylonitrile part of 

the polymer provided structural and chemical resistance whereas the itaconic acid 

provided hydrophilicity due to its bi-carboxylic acid nature [15]. The result was a 

hydrophilic membrane that does not need crosslinking.  

A study to investigate the pervaporative performance of a commercial organoselective 

membrane (pervap 4060) was undertaken by Khayet et al. [31]. The effects of organic 

feed concentration and feed temperature on pervaporation performance (permeation 

flux and selectivity) were studied. Three binary mixtures were considered separately: 

acetone-water, acetonitrile-water and ethanol-water and then wastewater solution 

containing the combination of these organics was also studied. A peculiar phenomenon 

was spotted in the investigation of the effect of temperature on the pervaporative 

performance; it was found that the concentration of acetone in the permeate decreased 

with increasing feed temperature even though the concentration of the same acetone 

decreased rapidly in the feed (Figure 2.12). This was ascribed to the fact that the water 

permeation increased with increasing temperature thereby reducing the concentration of 

acetone in the permeate. Furthermore, results reported in this work show that water had 

a higher composition in the permeate for the acetonitrile-water and ethanol-water binary 

mixtures at different feed compositions. Even though acetone had a higher composition 

in the permeate at higher feed composition, it still had a substantial amount of water, 

about 13mass% of the permeate was water (Figure 2.13). All these indicate that the 

commercial organoselective membrane (Pervap 4060) may not be good for the 

separation of the mixtures considered. 
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Figure 2.12. Effect of feed temperature on the permeate acetone composition [31] 

 

 

 

Figure 2.13. Effect of Organic feed composition on permeate organic composition for 

component-water binary mixture [31] 
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Singha et al. [18] used organoselective membrane in their experiment for the for the 

selective recovery of pyridine from water. Ethylene propylene diene monomer filled with 

N330 carbon filler was the employed membrane. Three of such membranes were 

synthesized and compared. The differences in the compared membranes were the 

composition of the filling; the compositions of the fillings were 2, 4 and 6wt% 

respectively.  All these fillings showed a similar recovery of pyridine when the effect of 

feed concentration of pyridine on the concentration of pyridine in the permeate was 

investigated.  

Admittedly the compositions were relatively high, showing a greater selectivity of 

pyridine. However, the concentration in the permeate which can be linked to purity was 

found to be satisfactory at 98mass% pyridine at feed compositions of pyridine of around 

25mass%. For pyridine feed concentration of 5-15wt%, the concentration of pyridine in 

the permeate was not as good at 86wt% (Figure 2.14). It is unlikely that the composition 

of pyridine could be greater than 20wt% in a waste stream. Typical pyridine composition 

is about 10mass% in aqueous waste streams [22].  As such, this membrane would be 

more suitable as a purification technique as opposed to a separation technique.  

 

 

 

Figure 2.14. Effect of pyridine composition on pyridine permeate composition [18] 
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Another study by Mandal & Bhattacharya [29] endeavored to recover pyridine from an 

aqueous solution using an organoselective membrane. This pair utilized Poly (Ether-

Block-Amide) membrane to recover pyridine from a pyridine-water binary mixture. They 

also studied the impact of pyridine feed composition on the permeate flux and permeate 

pyridine composition amongst other things. It was found that both partial fluxes of 

pyridine and water increased with increasing pyridine feed concentration, thereby also 

increasing the total flux. The composition was varied up to 7wt% and it was found that 

at lower compositions (around 1-5wt%) of pyridine in the feed, the water had a higher 

flux compared to pyridine. The pyridine permeation flux increased substantially with 

increasing feed pyridine composition and water permeation flux only increased slightly; 

this resulted in pyridine flux exceeding water flux beyond feed concentration of 6mass% 

(Figure 2.15). It followed that the composition of pyridine in the permeate increased with 

increasing feed concentration (Figure 2.16). These results conform with the ones 

reported by Singha et al. [18] in terms of the trends observed upon investigating the 

impact of pyridine feed composition on the permeate flux and pyridine concentration in 

the permeate. Separation factor decreased with increasing pyridine feed composition 

(Figure 2.15), implying that some of the pyridine reported to the retentate stream, 

thereby impacting recovery negatively. This observation is in agreement to results 

obtained by Mandal et al. [15].  
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Figure 2.15. Effect of pyridine feed composition on separation factor and permeation 

flux [29] 

 

 

Figure 2.16. Effect of pyridine feed composition on pyridine composition in the permeate 

[29] 

 

Pervaporation has also been tested for the recovery of acetone from a binary mixture of 

water and acetone.  Samanta & Ray [10] synthesized an organoselective membrane of 
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polyvinyl chloride (PVC) filled with polystyrene (PS) to investigate the effect of acetone 

feed concentration on acetone concentration in the permeate. The results were similar 

to the ones reported by Mandal et al. [15] and Mandal & Bhattacharya [29]. It was found 

that the concentration of acetone in the permeate increased with increasing acetone 

feed concentration. The composition of acetone in the permeate was between 20-

35mass% for feed concentration range of 0-15mass%. The different membrane filling 

composition had little impact on the acetone concentration in the permeate. In fact, it 

was deduced by Mandal & Bhattacharya [29] that Vapor Liquid Equilibrium (VLE) 

separation would yield higher composition of acetone in the permeate than the 

suggested membrane technology.  

Pulyalina et al. [32] studied the purification of methanol/ethanol mixture through 

pervaporation using polybеnzoхazinonеimidе (PBOI) membrane using organoselective 

membrane. The effect of temperature and methanol feed concentration ranges (5-

20mass%) was investigated on flux, permeability, selectivity and permeate purity. It was 

found that the membrane was more permeable to methanol. The increase in 

temperature was found to increase the total flux through the membrane. This was 

attributed to the increase in free volume of the membrane at higher temperatures, 

thereby allowing more passage of methanol [32]. Moreover, the total flux was almost 

equal to the methanol flux, showing the high selectivity toward methanol in all 

composition ranges (Figure 2.17). As observed in the previous studies, an increase in 

the target component feed composition was inversely proportional to the separation 

factor (Figure 2.18). This was also confirmed by Pulyalina et al. [32].  
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Figure 2.17. Effect of methanol composition on flux [32] 

 

 

 

Figure 2.18. Effect of methanol composition on separation factor [32] 

 

Effect of temperature, feed flow rate and water composition in the feed on the 

pervaporation performance was also investigated during the dehydration of ethyl 

acetate using PVA/ceramic composite membrane [33]. It was observed that 
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temperature and flux were directly proportional. It was argued that this was caused by 

the fact that an increase in temperature resulted in increased free volume fraction [32]. 

Inherently, increased free volume fraction resulted in the passage of larger molecules 

that were initially hindered, hence decreased separation factor and selectivity (Figure 

2.19). Nonetheless, this phenomenon was valid for a specific temperature range; an 

increase of temperature between 50 and 70˚C resulted in the increased separation 

factor.  

 

 

Figure 2.19. Effect of temperature on selectivity and separation factor [33] 

 

Pulyalina et al. [33] deduced that, an increase in the water content of the feed resulted 

in the overall flux increase but had negative effect on selectivity as the ethyl acetate flux 

was also increased. This is an undesirable phenomenon as it results in the loss of the 

targeted product. It is noteworthy that this observation is contrary to Mandal et al. [15] 

who reported insignificant difference on the selectivity of the hydrophilic membrane 

upon increasing water content of the feed. This discrepancy can be attributed to the 

different membranes that were used, but more importantly to the fact that Mandal et al. 

[15] observed these improved results using a commercial membrane.  
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Distillation  

Despite the advancement in research of other separation techniques and the energy 

intensity associated with distillation, it remains the most preferred technique in industry 

today [34-40]. The reluctance to move away from distillation may be due to the 

investment that has already been made by the chemical industry to the technology both 

in terms capital and expertise; it is reported that distillation is responsible for over 90% 

of the recovery/separation systems in the US [40]. Some of the advantages associated 

with distillation are: high purity of products and the ability to separate complex mixtures.  

The basis of separation in distillation is the difference in volatility [41, 42]. There are 2 

types of splits that can take place in distillation: direct and indirect. A direct split of a two 

or more components mixture implies that a pure low boiling component is recovered 

from the first distillation column, whereas an indirect split suggests that the highest 

boiling component is recovered as a pure bottoms product in the first column (Figure 

2.20).  Fractional cannot separate azeotropic mixtures, however, other distillation 

techniques such as extractive/azeotropic, reactive and pressure swing distillation are 

well suited for separation of azeotropic and other complex mixtures [17,23].  
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Figure 2.20. Ternary mixture separation (a) Direct split and (b) Indirect split [17] 

 

Pressure Swing Distillation 

Pressure swing distillation (PSD) is a technique in which 2 or more columns operating at 

different pressures are used to separate a homogeneous azeotropic mixture [43]. It may 

be appropriate if the azeotropic composition and temperature of a mixture are pressure 

sensitive. Pressure swing distillation may be perceived as being more environmentally 

friendlier than the other azeotrope breaking distillation techniques because it does not 

require the addition of a solvent/entrainer to effect separation. This eliminates the need 

for solvent regeneration column and cuts costs of raw materials.  Furthermore, PSD 

configuration is relatively simpler [44]. Due to these advantages, some have suggested 
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the evaluation of the feasibility of using pressure swing distillation before considering 

any other distillation types [43].  

Cutting on regeneration and entrainer costs does not always translate to economically 

viable processes; in some instances, it has been shown that PSD is more energy 

intensive than azeotropic distillation which may render it expensive to operate [25]. 

Lladosa et al. [25] looked at the separation of di-n-propyl ether and n-propyl alcohol. 

They compared the use of extractive distillation and pressure swing distillation and 

concluded that pressure swing distillation was a more economical process for this 

application with total annual costs amounting to 557,157 USD as opposed to 796,933 

USD required for extractive distillation. Pressure swing distillation system was 

composed of 2 columns operating at different pressures, 30kPa and 101.325kPa for the 

first and second column respectively. Both systems attained over 99mol% purity of di-n-

propyl ether and n-propyl alcohol. However, it may be not entirely objective to conclude 

that in this case pressure swing distillation was more economical than the extractive 

distillation since the efficiency and hence the economy of the extractive distillation is 

largely dependent on the type of entrainer used.  

Working on the separation of n-heptane and isobutanol, Wang et al. [44] aimed at 

assessing the economic viability and controllability of different types of PSD. In their 

preliminary studies, they discovered that the n-heptane and isobutanol azeotrope 

exhibited a minimum boiling azeotrope below 6atm and a maximum boiling azeotrope 

from around 7atm. This was accordingly referred to as an unusual phenomenon and 

hence was termed Unusual Pressure Swing Distillation (UPSD). UPSD was then 

defined as the pressure swing distillation in which a mixture displayed a minimum 

boiling azeotrope at low-pressures column and a maximum boiling azeotrope on the 

high-pressures. In the Conventional Pressure Swing Distillation (CPSD) the mixture 

showed minimum boiling azeotrope in both columns.  

UPSD and CPSD could attain 99.9mol% purity of both n-heptane and isobutanol, but it 

was found that CPSD was more economical having Total Annual Cost (TAC) of 653,130 

USD pa. UPSD proved to be more expensive to run with TAC reaching 897,690 USD 

pa. These results are not surprising when the dynamics of the UPSD are considered in 
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detail. Firstly, the high-pressure column in the UPSD was operated at 12atm, whereas 

the high-pressure column in the CPSD was operated at 4atm. It is known high 

pressures are directly proportional to high energy consumption resulting in high energy 

costs. Moreover, higher pressures require that the columns be made of high strength 

material which do not come cheap either.  Interestingly, the group reported that the 

control of UPSD was easier than that of the CSPD [44].  

Zhu et al. [43] used a refined PSD referred to as Triple Column Pressure Swing 

Distillation (TCPSD) to separate acetonitrile-methanol-benzene into its distinct products. 

The system was made up of three sequential distillation columns operating at different 

pressures. The mixture considered in this work comprises 3 azeotropes, namely: 

methanol/acetonitrile, methanol/benzene and acetonitrile/benzene. The group reasoned 

that the use of one or two columns for the separation of the ternary azeotrope-based 

mixture would be impractical and hence the use of the TCPSD. The system was 

modelled on Aspen plus software.  99.9mass% purity of each recovered component 

was reported. The first column which was operated at 607.95kPa was used to seclude 

acetonitrile as a bottoms product. The recovery of methanol was made on the second 

column at 101.33kPa and lastly benzene was recovered on the last column at a 

pressure of 607.95kPa. The pressure for each column was determined using Sequential 

Iterative Optimization. All the papers reviewed agree that configuration plays a 

significant role in the economics of a PSD, thus it is important for one to optimize the 

sequencing of columns. The mostly used technique for this purpose has been iterative 

sequential optimization.  

 

Azeotropic Distillation 

Azeotropic distillation involves the addition of a solvent referred to as an entrainer to 

enhance the relative volatility of an azeotropic mixture or a mixture of components with 

close boiling points [22]. There are 2 types of azeotropic distillation: homogeneous and 

heterogeneous. Homogeneous azeotropic distillation is usually referred to as extractive 

distillation and heterogeneous azeotropic distillation is referred to as azeotropic 

distillation. This standard of naming will be followed in the sections that follow. The 

difference in the setup of the 2 techniques is shown in Figure 2.21 (a) and (b). Usually 
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the entrainer in extractive distillation does not introduce any more azeotropes to the 

system and is often heavier than all the components originally in the mixture. For easier 

regeneration of the entrainer there must be at least 20ºC temperature difference 

between the entrainer and the higher boiling component in the mixture [45]. In 

heterogeneous azeotropic distillation on the other hand, the added entrainer is meant to 

form a low boiling, heterogeneous azeotrope with one of the constituents of the original 

mixture. This azeotrope would be recovered as a distillate in the azeotropic column and 

is usually separated using a decanter due to its immiscibility.  

 

 

Figure 2.21. Typical setup of: (a) Extractive distillation and (b) Azeotropic distillation 
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Sazonova & Raeva [13] endeavored to recover acetonitrile from a waste aqueous 

solution using extractive distillation technique. They investigated the effect of an 

entrainer on the purity of acetonitrile produced, energy consumption and purity of the 

water recovered in the regeneration unit. They reported that glycerol was the most 

economical entrainer. The purity of the acetonitrile obtained by Sazonova & Raeva [13] 

was 99% which was neither adequate for acetonitrile to be used in HPLC (High 

Performance Liquid Chromatography) nor in pharmaceutical applications which are the 

major markets for acetonitrile. With further optimization of distillation conditions, the 

purity required for industrial application (99.5%) may be attained. The study nonetheless 

gives good insight into the relevant entrainers for extractive distillation.  

Cheng et al. [17] considered several options for the recovery of pyridine and 3-

methylpyridine from a stream of low boiling point organics stream but explored only 2 in 

detail. The explored processes were pervaporation and azeotropic distillation. Both 

processes could recover pyridine of industrial specifications, but it was found that the 

azeotropic distillation route was more economical. The conclusion reported in their work 

was contrary to what has been previously reported in literature that pervaporation is 

more economical than any type of distillation [17, 18].   

One of the key studies done on the extractive distillation technique was by Hilal et al. 

[23]. Their study evaluated the factors that could reduce the solvent requirement in 

extractive distillation. The impact of solvent feed stage and splitting the solvent into 2 

streams on the consumption of the solvent were investigated. Although the results 

found in this work were characteristic of the mixture being studied (methanol-acetone), 

the study addressed some of the key issues against extractive distillation i.e., the 

environmental concerns raised by the addition of an entrainer and the large amounts of 

entrainer required at times to effect separation where the solvent requirement may be 

up to 2 times the mixture in each stage [46].  

Large entrainer requirements increase process costs in terms of entrainer procurement. 

The reduction of entrainer could further reduce the energy requirement of the extractive 

distillation column [23]. It was further reported by Hilal et al. [23] reported that that the 

solvent consumption was reduced by up to 35% due to moving the solvent feed stage 
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from 3 to 8 when the mixture was fed at stage 2. An additional 28% reduction was 

experienced upon splitting the solvent feed into streams entering the column at stage 5 

and 8 respectively in equal amounts. 

Furthermore, Langston et al. [47] showed that the feed conditions of the extractive 

distillation column may impact the performance of the column on the methanol-acetone 

mixture. In their work, the effect of entrainer feed stages relative to the mixture feed 

stage, entrainer stream split as well as solvent feed conditions on the column 

performance were investigated.  It was observed in this work that the purity of the 

distillate improved with increasing entrainer feed stage; this implied that sufficient 

distance between binary feed mixture and entrainer feed stages was required for 

efficient separation. This phenomenon can be ascribed to the fact that the solvent and 

the mixture have enough contact time to effect separation when the respective feed 

stages are far apart. Binary feed temperature as well as solvent feed temperature had 

no significant impact on the separation efficiency of the column [47]. In a typical 

distillation column, there is sufficient heat to induce separation of the mixture, therefore, 

it is sensible to learn that the feed temperature had negligible effect of the separation 

efficiency; if anything, feeding the mixtures near their boiling points should help reduce 

the heat duties of the column.  

Upon reviewing technologies that can be used and have been used for the recovery of 

acetonitrile from acetonitrile-water azeotropic system, Mcconvey et al. [12] conducted a 

case study on the acetonitrile-water-toluene system; 4 azeotropes were said to exist in 

this system: acetonitrile-water, acetonitrile-toluene, water-toluene and water-acetonitrile-

toluene. This study considered different azeotrope breaking agents and key issues with 

each were pointed out. The agents discussed were; ionic liquids, aromatics, ketones, 

esters and alcohols. Ionic liquids show a lot of potential for the recovery of acetonitrile 

but the problem with them as pointed out by Mcconvey et al. [12] is that there is no 

exhaustive data around their toxicity and thus their usage should be carried out with 

caution.  
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Summary of Recovery Technologies 

The summary of the discussed separation techniques is given in Table 2.3. According to 

the summary, pervaporation has more merits to it than any other separation technique. 

However, the understanding of this process is still at elementary level. More research is 

still needed to fully understand the dynamics of pervaporation, especially the synthesis 

of suitable membranes with high recoveries. From the literature reviewed, it was 

established that membrane performance was sensitive to feed conditions. Liquid-liquid 

extraction on the other hand, is well understood in industry however, it has not been 

applied to separation of azeotropic mixtures, yet it is more economical than distillation 

techniques that can be used for azeotropic separations.  Industry is well equipped with 

distillation-based techniques separation expertise. Moreover, a lot of capital has been 

invested in distillation equipment; it is reported that distillation is responsible for over 

90% of all industrial separation in the United States [40]. Furthermore, distillation-based 

techniques have massive untapped potential such as the reduction of energy 

consumption using dividing wall column and diabatic operation. 
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Table 2.3. Summary of separation techniques considered 

  

 

Distillation 

 Technique Pervaporation Azeotropic  PSD LLE 

Separation 

Basis 

Membrane 

Permeability 
Vapor Liquid Equilibrium(VLE) Solubility 

Industrial 

Application 
Still at lab scale Common Common 

Capital 

Investment 
Low High Mid-Range 

Energy 

Intensity 
Low High Low 

Solvent 

Addition 
No yes no Yes 

Separation 

Efficiency 
Sketchy High High 

 

2.4. Energy Saving Techniques for Distillation Processes 

Entropy minimization 

The energy intensity associated with distillation remains a concern. It has been reported 

that distillation processes can account for up to over half of the energy consumption in a 

typical plant [25, 41, 48]. It has also been reported that distillation accounts for 5 million 

Ton Joules per year in the United States which is about 43% of the total net installed 

capacity [40]. Not only is distillation energy intensive, but it also generally has a low 

energy efficiency; i.e. thermodynamic second law efficiencies of 10-25% are typical in 

industry [49]. Entropy generation of a distillation column is directly proportional to its 

energy consumption and it is inversely proportional to the second law of thermodynamic 

efficiency [50].  

Shen et al. [48] showed that entropy generation is a function of design variables such as 

reflux ratio and entrainer to feed ratio. The main source of entropy generation however, 
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was found to be the cooler and the reboiler. Shen et al. [48] and Langston et al. [47] 

concur that the feed temperature is not an important variable in distillation design. It was 

also observed that reflux ratio had a more pronounced effect than solvent feed to feed 

ratio and as a result, it was recommended that to minimize entropy generation, entrainer 

to feed ratio should be increased and reflux ratio be decreased to a minimum possible 

value [48]. This may be sensible from a thermodynamic perspective but pose a problem 

from a material balance perspective as it will increase the amount of energy required to 

regenerate the solvent downstream. Moreover, the solvent costs would also increase. 

The use of a concept of entropy generation for energy analysis of a separation process 

has the advantage that it can identify areas of significant energy loss and can thus 

enable designers to selectively increase overall energy utilization [48].  

To combat the high-energy consumption associated with distillation the concept of 

diabatic distillation has also been revisited by Koeijer & Kjelstrup [49]. This type of 

distillation is believed to have a higher thermodynamic second law efficiency (lower 

entropy generation) and to have a higher economic feasibility than its counter-part; 

adiabatic distillation [50]. This increased efficiency may be attributed to the supply or 

removal of heat at various stages of the column [51]. Koeijer & Kjelstrup [49] showed 

that entropy generation in an adiabatic distillation column can be reduced by 30-50% by 

using and optimizing a diabatic distillation column. It is of no surprise to learn of these 

results because in a diabatic distillation column, heat exchangers are used within trays 

to maximize energy utilization and replace the traditional reboiler and condenser in an 

adiabatic distillation column [51]. This is also in agreement with the observation by Shen 

et al. [48] that reboiler and condenser are the major sources of entropy generation. The 

use of heat exchangers at various levels within the column gives rise to the ability to 

provide exact heat where it is required.  

Energy efficiency in a diabatic distillation column implies reduced operating costs 

because of reduced quantity of steam and cooling water requirement. However, this 

may be counteracted by the technical complexity of trays that demands expensive 

instrumentation and control [51]. The need to add an entrainer to overcome the 

azeotrope using extractive/azeotropic distillation has also been a point of major 
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concern; this has been so because generally a solvent to feed ratio of at least 2:1 would 

be required for effective separation. However, recent studies have endeavored to 

reduce solvent consumption. Some of the suggestions that have been made are to split 

the solvent feed into 2 and to increase solvent feed and mixture feed distance. 

 

Petlyuk Column and Dividing Wall Columns 

The most promising technique to reduce the energy consumption of distillation columns 

for a multicomponent mixture separation is the thermal coupling of the distillation 

columns. This is referred to as Petlyuk column. It is reported that the implementation of 

this technique can save up to 20-40% of the reboiler duty [37, 52]. This may be due to 

the fact that Petlyuk column setup eliminates the need for a condenser and reboiler on 

every column and instead distillate vapor in one column is taken to the next distillation 

column without condensing thereby providing heat to that column (Figure 2.22). 

 

C-1 C-2
ABC

C

A

B

 

Figure 2.22. Petlyuk column setup [37] 
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The Petlyuk column can be further integrated into a single thermodynamically 

equivalent column referred to as the Dividing Wall Column (DWC) (Figure 2.23). In its 

basic form, DWC has a vertical wall that divides the column into 2 compartments that 

act as a pre-fractionator or post-fractionator and the main column (I and II in Figure 2.23 

(a)). For a ternary mixture, the feed deflects against the wall; then the low boiling 

component moves upward along with some of the mid-boiling component. At the top 

stages, the mid-boiling component is separated from the low boiling component and 

goes down on the opposite side of the wall and the light component is recovered as the 

distillate. The rest of the mid-boiling component goes down with the high boiling 

component, separating in the lower stages of the column, then going upward on the 

opposite side of the wall while the heavy component is removed as the bottoms product. 

The mid-boiling component is then recovered as the midsection product of the column 

[36,  53].  

 Advantages of DWC over Petlyuk column include reduced capital investment due to 

equipment integration, reduced maintenance and control costs [53]. Both Petlyuk and 

DWC arrangements can reduce energy consumption of the distillation sequence by up 

to 30% [36]. Illner & Othman [53] illustrated the application of DWC for the fractionation 

of fatty acids in the oleochemical industries. The study is not comprehensive regarding 

the energy consumption of the DWC versus using 2 distillation columns in series. Bravo 

et al. [40] extrapolated the concept of DWC to extractive distillation claiming an 

improved thermodynamic efficiency from 21.42% to 23.70% compared to the 

conventional configuration. 

Usually the Petlyuk equivalent of DWC (Figure 2.23 (b)) is used for simulation purposes 

since most of the commercial simulation software do not have the DWC unit in their 

libraries [35]. The Petlyuk column setup in Figure 2.23 (b) is referred to as the four-

column model [54]. To mimic the DWC setup using the four-column model, 1 stripper, 2 

absorbers and 1 rectifier are required. Because the stripper only has a reboiler and no 

condenser (column (O) in Figure 2.23 (b)), it is used to represent the bottom section of 

the DWC and the rectifier (column (M)) is used to represent the top section of the DWC 

since it only has a condenser and no reboiler. Lastly, 2 absorbers (columns (L and N)) 
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are used to represent to represent the midsection of the column. The four-column is the 

closest representation of DWC in terms of practicality. Two more Petlyuk models for 

DWC representation and a more thorough discussion are presented in Chapter 4.   

 

 

 

Figure 2.23. (a) Dividing Wall Column (DWC) configuration; (b) Equivalent Petlyuk 

column [54]  
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Entrainer selection is of utmost importance in the synthesis of azeotropic distillation 

since it determines feasible sequence and number of columns required to achieve the 

desired separation and consequently influences the economics of the distillation system 

[25, 41]. Thermodynamic tools can be used for distillation synthesis including entrainer 

screening for new/novel separation sequences.  

 

2.5. Thermodynamic Tools for Separation Systems 

Residue Curve Maps 

A residue curve represents a change in composition of the liquid phase during 

continuous evaporation in a batch distillation [42]. The residue curve can be expressed 

mathematically as shown in equation (2.2). Alternately, residue curve can be 

determined experimentally by subjecting a mixture of certain composition to heat and 

recording the changing concentration of the liquid mixture remaining in the vessel. A 

collection of such curves with different starting compositions is referred to as the 

Residue Curve Map (RCM) (Figure 2.24).  Detailed discussion of the topology of the 

residue curve maps and its implications on the separation sequence is given in chapter 

3.  

𝑑𝑥𝑖

𝑑𝜉
= 𝑥𝑖 − 𝑦𝑖          (2.2) 

Where 

 𝑥𝑖: Liquid composition of component i 

𝑦𝑖: Vapor composition of component i 

𝜉: Dimensionless time 

 

In addition to the assessment of feasibility of separation, flowsheet development and 

preliminary design, Residue Curve Maps (RCMs) can be used for the assessment of 

novel entrainers [41]. Prayoonyong [46] illustrated the use of RCMs for the assessment 

of novel entrainers when she was evaluating 1-butanol as a potential replacement for 

benzene (1-butanol was deemed as environmental friendlier than benzene) for the 
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dehydration of ethanol. She concluded in this work that the use of 1-butanol was not 

economical compared to that of benzene which could be attributed to the large entrainer 

consumption of the 1-butanol system [46].  As such, RCMs are a valuable tool in 

distillation design.  

Residue curve maps can also be used for entrainer selection for azeotropic distillation 

[41, 55, 56]. Julka et al. [41] summarized the process of using the residue curve maps 

for entrainer selection as: 1) plot RCM of each entrainer and the binary mixture being 

separated, 2) synthesize a distillation sequence by plotting material balance lines on the 

RCM and 3) make a decision on a suitable entrainer based on the feasibility and the 

number of columns required for separation using the entrainer [41]. The RCM approach 

may not always be effective for entrainer selection. For instance, when all the entrainers 

considered offer feasible separations with the same number of columns, then the 

method fails. It is rather useful for discarding entrainers that cannot work. So, it may be 

profitable to use it as an entrainer screening as opposed to entrainer selection process. 

Isovolatility curves are more suitable to assess the effectiveness of potential entrainers 

for the separation of azeotropic mixtures (more on this in Chapter 3). A complete 

residue curve map superimposed with the isovolatility curve, liquid-liquid immiscibility 

region and tie lines is depicted in Figure 2.24.  
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Figure 2.24. Residue curve map superimposed with isovolatility curve 

 

Liquid-liquid immiscibility region represents a range of compositions in which there are 2 

phases of liquids in the ternary mixture due to immiscibility of mixture components. The 

end of the tie lines within the liquid-liquid envelope denotes feasible products of liquid-

liquid separation techniques such as decanting and liquid-liquid extraction (Figure 2.24). 

Wu & Chien [57] proposed the use of heterogeneous azeotropic distillation for the 

separation of pyridine and water using toluene as the entrainer.  The use of RCM for the 

synthesis of distillation sequence was illustrated in their work. Using the residue curve 

maps enabled the authors to improve the initial design they proposed (Figure 2.25). The 

economic analysis of the 2 systems showed that by implementing the strategy 

presented in Figure 2.26 reduced the total annualized costs by  1.59 million USD, which 

was equivalent to about 40% reduction [57].   
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Figure 2.25. Pyridine-water RCM with material balances lines, liquid-liquid envelope and 

boundary lines; (b) Corresponding distillation sequence [57] 

 

The feed is first preconcentrated to azeotropic composition in column C-1 by removing 

excess water which is collected as the bottoms product. The distillate (water-pyridine 

azeotrope) is mixed with toluene in column C-2. Then pyridine is collected as the 

bottoms product of C-2; the distillate of this column (water-toluene azeotrope) is cooled 

in a condenser and separated in a decanter into an organic rich phase and an organic 
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lean phase. The organic rich phase is recycled into C-2 in the form of reflux. This is first 

mapped on the residue curve map using material balances. The problem with the 

design is that for it to be feasible, the material balance line must go through the 

distillation boundary which may require many stages which is in turn energy intensive 

(Figure 2.25) [57]. This is where the strength of RCM is shown as it enables process 

engineers to improve on poor distillation sequences design even before simulation 

stages.  

Figure 2.26 depicts the improved version of the design in Figure 2.25. Instead of 

insisting the distillate to be the water-toluene azeotrope composition, the distillate is 

allowed to approach this composition without crossing the distillation boundary. This 

was a more realistic and sensible design. The water-pyridine mixture is very common 

azeotropic mixture occurring in industrial waste streams, however not much work has 

been done around its separation using azeotropic (homogeneous and heterogeneous 

alike). Although there has been patent work on the applicability for azeotropic distillation 

of this mixture, toluene is the only recorded entrainer which has been assessed in 

detail. Its application was assessed by Wu & Chien [57] and Sébastien et al. [58]. 

Moreover, these patents are old.  

 

 



 

55 
 

 

 

Figure 2.26. Improved pyridine-toluene-water system: (a) Residue curve maps; (b) 

Corresponding process flow diagram [57]  
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2.6. Aspen Plus 

According Lladosa et al. [25] computer simulations are well established in the chemical 

and petrochemical industry as they are used in process development, design of 

equipment and optimization of both new and old plants. They are preferred because 

they avoid costly and time consuming processes of experimentation especially in the 

design of separation processes [25]. The major challenge in the simulation approach is 

finding reliable and consistent data [25]. Thermodynamic model chosen in the 

simulation determines the reliability and quality of the results obtained.  

Aspen Plus is the industry leading chemical process simulation package that can be 

used for the design, control, optimization, and monitoring processes. It is used 

extensively in fine chemicals polymer, bulk and biochemical industries [59]. It has a 

wide-ranging, class leading database of pure components. Most of process units in the 

chemical industry, i.e., reactors, distillation columns, absorbers, strippers are built-in 

with Aspen Plus. For those units that are not part of the Aspen Plus library, it offers an 

option of building custom models which include pervaporation and other membrane-

based techniques which can be modelled on the Aspen Custom Modeler (ACM) and 

then imported to Aspen Plus.  Its reliability is corroborated by extensive use in industry. 

World class chemical processing companies such as Sasol make use of Aspen Plus in 

their operations. Moreover, the application of Aspen Plus is very commonly used in the 

simulation-based academic research.   
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Chapter 3 : Recovery of Pyridine-Thermodynamic 
Constraints and Alternatives Analysis 

 

The summary of this chapter was submitted as a conference paper and presented orally at the 

International Research Conference on Sustainable Energy, Engineering, Materials and Environment 

(IRCSEEME), United Kingdom, England, Northumbria University, 26-28 July 2017. The submitted paper 

can be found in Appendix A.  

In this chapter, the recovery of pyridine from the High Organic Waste (HOW) produced 

at Sasol Secunda plant is discussed. This chapter is concerned with the recovery of 

pyridine from the High Organic Waste (HOW) produced at Sasol Secunda plant. Water 

recovery from the HOW is also assessed to add to the already implemented water 

utilization efficiency strategies at Sasol Secunda. The recovery is divided into 2 

sections. The first section is about separation of water-pyridine mixture from the HOW 

and the second section is concerned with pyridine enrichment using thermodynamic 

tools. 

 

3.1. Introduction 

Pyridine is a versatile chemical solvent with application in a variety of industries [1]. It is 

used in the paint, spectrometry, and pharmaceutical industries [2]. A recent surge in 

pyridine usage in the agrochemical industry has contributed to its increased demand [1]. 

The pyridine market size is estimated around 400 million USD in 2017 and it is projected 

that the market size will increase by 50% in the next five years [1,2]. Consequently, 

pyridine recovery from water and other components is an ongoing research topic [3]. 

Luyben & Chien [3] proposed the use of heterogeneous azeotropic distillation using 

toluene as an entrainer; Burroughs Wellcome Co implemented  liquid-liquid extraction 

for the recovery of pyridine from a waste stream and made 1.5 million USD worth of 

savings per annum in the early 1990s [4]. Although novel separation techniques such as 

pervaporation have been proposed for the separation of azeotropic mixtures such as 

water-pyridine, water-ethanol and water-acetonitrile [5-8], distillation remains the most 
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widely used separation technique in industry today [9]. Distillation processes are well 

understood and are continuously improved [9-12].  

In its ordinary form, distillation cannot separate azeotropic mixtures. As a result, modified 

distillation techniques such as azeotropic distillation (homogeneous and heterogeneous) 

and pressure swing distillation (PSD) are used for this purpose [13,14]. Pressure swing 

distillation involves using 2 or more columns operating at different pressures and may be 

suitable if the azeotropic mixture is pressure sensitive [3]. Since pyridine-water 

azeotrope is not pressure sensitive, this technique cannot be used [10,15]. 

Homogeneous azeotropic distillation (usually referred to as extractive distillation) 

involves the addition of a heavy entrainer (heavier than all the components originally in 

the mixture). Preferably, the entrainer should not introduce a new azeotrope onto the 

system for extractive distillation [13,16]. In contrast, heterogeneous azeotropic distillation 

entrainer introduces one or more azeotrope(s) and liquid-liquid immiscibility to the 

original mixture [12]. The new azeotrope must have the lowest boiling point of all 

components and azeotropes originally present in the mixture [3].  

The addition of an entrainer in azeotropic distillation is a cause for concern especially for 

the application of waste minimization. In some applications, the entrainer to mixture ratio 

(EA) can be as high as 8:1, as in the dehydration of ethanol using 1-butnaol [12]. The 

higher the entrainer demand, the more redundant the waste treatment becomes since 

the chief aim is to reduce waste while the recovery of valuable chemicals serves as 

motivation. The entrainer reduction techniques including increasing the distance 

between entrainer and azeotropic mixture feed points and splitting the entrainer feed 

were studied by Hilal et al. [17], but entrainer consumption reduction has  generally not 

been addressed adequately in the past, therefore, this chapter aims to expand on the 

subject as well. 

The objective in this chapter was to assess the economic pyridine enrichment from the 

High Organic Waste (HOW) stream produced at Sasol Secunda plant using known 

separation techniques. The assessment was done through the combination of 
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thermodynamic tools and Aspen plus process simulator.  Hitherto, no other solvent apart 

from toluene has been studied in detail for the separation of water and pyridine 

azeotrope. In this chapter, Methyl Isobutyl Ketone (MIBK) and chloroform were 

compared as potential entrainers for the same. The assessment of MIBK and chloroform 

as potential entrainers was informed by the mentioned literature [4,18]. Solvent demand 

in the proposed process was then compared with the classical example of toluene-

water-pyridine system proposed by Wu & Chien [19].  

 

3.2. Separating Water-Pyridine Mixture from the HOW 

A large fraction of the stream is made up of water. The stream composition is given in 

Table 3.1. As can be seen from Table 3.2, water is common in all the azeotropes formed 

except for the acetonitrile-Methyl Ethyl Ketone azeotrope. Azeotropic compositions were 

obtained from Aspen Plus using the “distillation synthesis” function. Pyridine is the 

highest boiling component, followed by water and Methyl Isopropyl Ketone (MIPK). Also, 

water-pyridine azeotrope is the highest boiling azeotrope in the feed mixture. The 

difference between the boiling points allows for the isolation of water-pyridine azeotrope 

using fractional distillation (Figure 3.2). This can be done without the loss of pyridine 

because pyridine forms azeotrope with water only.  From these observations, the 

generic process flow diagram is depicted in Figure 3.1.  
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Table 3.1.  Waste stream composition, existing azeotropes and boiling points 

Component 
Mass 

Fraction 
BP(°C) 

Azeotropes 

Formed 
Azeotrope BP(°C) 

Pyridine 0.05 115.16 W-P 93.71 

Acetone 0.02 56.14 W-A 76.53 

Water 0.62 100.02 W-A-MIPK 76.32 

Acetonitrile  0.15 81.48 W-MEK 79.34 

Methyl Ethyl Ketone 0.04 79.34 W-MIPK 77.61 

Methyl Iso Propyl 

Ketone 
0.12 94.08 A-MEK 79.09 

 

Table 3.2.  Nomenclature for Table 3.1 and azeotropic compositions 

Abbreviation Explanation 
Azeotropic composition (Mass 

fraction) 

W-P Water-Pyridine 0.596 Pyridine  

W-A Water-Acetonitrile 0.825 Acetonitrile 

W-A-MIPK 
Water-Acetonitrile-Methyl 

Isopropyl Ketone 
0.5353 Acetonitrile, 0.2887 MIPK 

W-MEK Water-Methyl Ethyl Ketone 0.875 MEK 

W-MIPK Water-Methyl Isopropyl Ketone 0.792 MIPK 

A-MEK Acetonitrile-Methyl Ethyl Ketone 0.712 MEK 
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Figure 3.1. Generic layout of the separation process 

 

 

Figure 3.2. Separation of the water-pyridine mixture from the HOW 
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Assumptions 

1. The waste stream flow rate is 20kton/year. 

2. Pressure drop is insignificant in all distillation columns.  

3.  NRTL property method was used across all process units: Aspen plus uses the 

modified Antoine equation (3.1) to calculate the liquid activity coefficients using 

binary parameters. The binary parameters used can be found in Appendix D, 

Table D.1.  

 

 

ln 𝛾𝑖 =
∑ 𝑥𝑗𝜏𝑗𝑖𝐺𝑗𝑖𝑗

∑ 𝐺𝑘𝑖𝑘
+ ∑

𝑥𝑗𝐺𝑖𝑗

∑ 𝐺𝑘𝑗𝑘
[𝜏𝑖𝑗

∑ 𝑥𝑚𝜏𝑚𝑗𝐺𝑚𝑗𝑚

∑ 𝑥𝑘𝐺𝑘𝑗𝑘
]

𝑗

 

 

Where: 

(3.1) 

 𝐺𝑖𝑗 = exp(−𝛼𝑖𝑗𝜏𝑖𝑗) (3.2) 

 𝜏𝑖𝑗 = 𝑎𝑖𝑗 +
𝑏𝑖𝑗

𝑇
+ 𝑒𝑖𝑗𝑙𝑛𝑇 (3.3) 

 𝛼𝑖𝑗 = 𝑐𝑖𝑗, 𝜏𝑖𝑖 = 0, 𝐺𝑖𝑖 = 1  (3.4) 

   

3.2.1. Shortcut Model to determine Distillation Parameters for the Rigorous 

Simulation 

Using the Distillation-Winn-Underwood (DSTWU) column in its model library, Aspen Plus 

uses the Winn Underwood Gilliland shortcut design method to determine the minimum 

number of stages given the reflux ratio and vice versa.  The method also determines the 

optimum feed stage along with the reboiler and condenser duties (ASPEN Plus help 

function). The summary of the use of each correlation is given in Table 3.3.  
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Table 3.3. Summary of the Winn Underwood Gilliland shortcut design calculation (Aspen 

Plus help function) 

DSTWU uses this 

method/correlation 
To estimate 

Winn 
Minimum number of stages and optimum 

feed location at total reflux 

Underwood Minimum reflux ratio 

Gilliland 

Required reflux ratio and optimum feed 

location for the specified number of stages, 

or the required number of stages and 

optimum feed location for the specified reflux 

ratio 

 

The Winn method is simply a modification of the Fenske equation (equation (3.5)). 

 
𝑁𝑚𝑖𝑛 =

𝑙𝑛 [
𝑋𝐿𝐾,𝐷

𝑋𝐿𝐾
(

𝑋𝐻𝐾,𝐵

𝑋𝐻𝐾,𝐷
)

𝜃𝐿𝐾

]

ln 𝛽𝐿𝐾/𝐻𝐾
 

(3.5) 

 

Where: 

B: Bottoms rate 

D: Distillate rate 

LK: Light Key 

HK: Heavy Key 

𝛽𝐿𝐾/𝐻𝐾 and 𝜃𝐿𝐾 are constants at fixed pressure determined using K values for the Light 

Key and Heavy Key at the bottom temperature.  
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Gilliland [20] produced a plot that correlated the minimum number of stages to the actual 

number of stages. In his plot (N-Nmin)/(N+1) and (R-Rmin)/(R+1) were plotted as the Y-

axis and X-axis respectively. The mathematical expression of the plot has since been 

the subject of many studies, however the most famous expression was presented in 

1972 by Molokanov and colleagues (3.6) [21]. 

 

 

𝑁 − 𝑁𝑚𝑖𝑛

𝑁 + 1
= 1 − 𝑒𝑥𝑝 [(

1 +
54.4(𝑅 − 𝑅𝑚𝑖𝑛)

𝑅 + 1

11 +
117.2(𝑅 − 𝑅𝑚𝑖𝑛)

(𝑅 + 1)

) (

𝑅 − 𝑅𝑚𝑖𝑛

𝑅 + 1 − 1

[(𝑅 − 𝑅𝑚𝑖𝑛)(𝑅 + 1)]0.5
)] 

 

(3.6) 

Where: 

R:  Reflux ratio 

Rmin:  Minimum reflux ratio 

N: Number of stages  

Nmin: Minimum number of stages  

On the other hand, the Underwood equation is given by (3.7).  

 𝑅𝑚𝑖𝑛 + 1 = ∑
𝑋𝐷

(𝛼 − 𝜃)/𝛼

𝑛

1

  
(3.7) 

 

Where: 

𝑛: Number of components  

𝛼: Relative volatility  

These methods assume constant overflow and that the relative volatility does not 

change in the mean column temperature. An example of the shortcut model 

specifications on Aspen Plus can be found in Appendix B.1. The results obtained from 

the shortcut simulation model are presented in Table 3.4. 
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Table 3.4. Shortcut model results for column (C-1) 

Parameter C-1 

Number of Stages 20 

Reflux Ratio 7 

Feed stage 7 

 

3.2.2. Rigorous simulation of the Water-Pyridine Mixture from the HOW 

In this section the specifications as input on Aspen Plus are illustrated and where 

needed explained; for instance, the choice of distillate rate and the calculations for such 

are shown and the assumptions made are stated. The results (material balance) are 

also discussed. 

 

Aspen plus specifications and explanations 

Distillation column C-1 

 

Figure 3.3. Specification for the configuration of column C-1 

 

To get a good initial estimation of the distillate rate in column C-1, it was assumed, due 

to large presence of water (over 60mass% (Table 3.1)), that all water-component 

azeotrope forming components were consumed into forming water-component 

azeotropes. This suggested that they did not exhibit individual properties but displayed 

water-component azeotropic properties depicted in Table 3.1 and Table 3.2. Feed 

component flowrate was used along with component-water azeotropic composition to 
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determine the component-water azeotropic flowrate. For instance, acetonitrile flowrate in 

the feed is 3kton/year and composition of acetonitrile in the acetonitrile-water azeotrope 

is 0.825 (Table 3.2). Therefore, the water-acetonitrile azeotrope flowrate was determined 

by dividing 3kton/year by 0.825.  

The same procedure was followed to determine the flowrates of all other component-

water azeotrope flowrate and the total was calculated to be 7.580kton/year as shown in 

Table 3.5.   However, when this value was specified as the distillate rate, the simulation 

resulted in errors. Therefore, from this value, the 8kton/year specified on Aspen Plus 

(Figure 3.3) was found by trial and error.   The error can be attributed to the fact that the 

water-acetonitrile-MIPK azeotrope was not accounted for in these calculations (Table 

3.2).  However, the assumption provided a good initial estimate for simulation and it will 

be further validated or disqualified by the simulation results discussed in the sections to 

follow. 

 

Table 3.5. Component-water azeotrope flowrate 

Name of component           Mass flowrate (kg/hr) 

Component Pure component Component-water azeotrope 

Acetonitrile 3.000 3.635 

MEK 0.800 0.915 

MIPK 2.400 3.030 

Total 6.200 7.580 
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Figure 3.4. Feed stage specifications for column C-1 

 

The material balance around column C-1 is depicted in Figure 3.5. The simulation 

results are in line with the assumption made regarding the behavior of components in 

the mixture. On the other hand, the acetonitrile presence in the water-pyridine mixture 

stream was not expected (Figure 3.5).  However, it is noteworthy that over 99mol% of 

acetonitrile was recovered to the distillate and its composition in the water-pyridine 

mixture stream is only 0.1mol% (Figure 3.5). The impact of the presence of acetonitrile 

in this stream will be evaluated in the subsequent sections. 
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Figure 3.5. Material balance for water-pyridine mixture separation from the HOW 

 

3.3. Pyridine Enrichment 

3.3.1. Thermodynamic Analysis 

Thermodynamic analysis of separation processes has been proposed to gain insight of 

the processes. The most used thermodynamic tools used for separation processes are 

residue curve maps and isovolatility curves.  These are commonly applied to distillation 

based techniques [16, 22, 23].   
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Residue Curve Maps (RCMs) 

Residue curve maps (RCMs) are primarily used for the preliminary design of distillation 

sequence and to assess the feasibility of separation [15, 16]. Other uses include column 

troubleshooting and control [16]. Although the RCMs are useful, their use have been 

extremely limited in the past due to the tedious process of producing them 

mathematically [16]. Today, computer software such as Aspen Plus and Matlab can 

generate these curves with relative ease. In this work, Aspen Plus was used to generate 

the residue curve maps. A residue curve represents composition of a liquid remaining in 

the vessel during simple batch distillation process [23]. This can be represented 

mathematically by equation (3.8) [12].  

 
𝑑𝑥𝑖

𝑑𝜉
= 𝑥𝑖 − 𝑦𝑖 (3.8) 

Where: 

 𝑥𝑖: Liquid composition of component i 

𝑦𝑖: Vapor composition of component i 

𝜉: Dimensionless time 

 

A residue curve starts at a lowest boiling component represented as the unstable node 

(M) and approaches the intermediate boiling component (Figure 3.6). The mid-boiling 

component appears as the saddle node (L) in the residue curve map. Finally, the 

residue curve ends up at the stable node (N) which corresponds to the high boiling 

component (Figure 3.6). Residue curve maps generated for azeotropic distillation will 

typically have at least one distillation boundary (A, M) (Figure 3.6).  

The distillation boundary divides the RCM into regions and represents a thermodynamic 

limitation. For instance, a ternary mixture found in region I (A, L, M) can only be 

separated into component 1, component 3 and the azeotrope (A) (Figure 3.6). The 

recovery of pure component 2 from region I can only be achieved by crossing the 

distillation boundary, which cannot be done using ordinary distillation.  Material balance 
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lines are used to synthesize and assess different distillation sequences. The material 

balance line must start and end on the same residue curve as shown in Figure 3.6 (X, 

Y). One end of the material balance line represents the distillate and the other 

represents the bottoms product.  

 

Isovolatility Curves 

The isovolatility curve tracks the composition in which the relative volatility of the mixture 

is 1 [3]. Below the isovolatility curve (A, B) (Figure 3.6), the relative volatility of the 

mixture is less than unity and is thus more difficult to separate [39]. On the contrary, 

above the isovolatility curve, the relative volatility of the mixture is greater than unity and 

it is relatively easier to separate. The superimposition of the isovolatility curve on the 

residue curve map can help with the comparison of the effectiveness of potential 

entrainers for azeotropic distillation [3]. The isovolatility curve starts at the azeotrope (A) 

and ends at the intersection where the composition of one of the components in the 

original binary mixture is zero (B) (Figure 3.6). The entrainer whose point B (Figure 3.6) 

is farther from the entrainer is regarded as the most effective entrainer for enhancing the 

relative volatility of the mixture [3]. The isovolatility curve also gives insight about 

feasible distillate product of the extractive distillation column [3]. The component with the 

lowest boiling point at the intersection (B) becomes a feasible distillate [3]. In the case of 

RCM presented in Figure 3.6, Component 3 is a feasible distillate product. This concept 

is reserved for extractive distillation with a heavy entrainer [3].   
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Figure 3.6. Superimposition of isovolatility curve on a residue curve map 

 

The knowledge of feasible distillate product ahead of time is valuable because it is 

preferable to recover the desired component in the extractive column than the 

regeneration column. This is so because once the desired component has been 

recovered, the subsequent separation sections do not have to have high purity 

specifications which may be costly. Therefore, the entrainer whose RCM and isovolatility 

topology promotes the recovery of the desired component in the extractive distillation 

column will most likely be selected, assuming all other criteria are met.    
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3.3.2. Process Analysis Application 

Entrainer selection is the single most crucial step in azeotropic distillation. This is 

because the entrainer dictates feasible separation sequence and number of columns 

required to realize the desired separation. Consequently, the entrainer plays a key role 

in the economics of the process and its energy consumption thereof. Any design made 

is within the constraints imposed by the entrainer, i.e. distillation boundaries. Some of 

the factors to consider when selecting the entrainer are: cost relative to the cost of the 

targeted chemical, availability within the area of the process and its toxicity. The most 

widely used entrainer for the separation of water-pyridine mixture is toluene [3, 19]. In 

this section, we assess chloroform and Methyl Isobutyl Ketone (MIBK) as potential 

entrainers and compare the selected entrainer with toluene.  

 

Option I: Chloroform 

The addition of chloroform to the water-pyridine mixture introduces one more azeotrope 

to the system (water-chloroform) as depicted in Figure 3.7. The resulting residue curve 

map is divided into 2 regions (D2, B2, D3 (region I) and D2, D3, OR, B3 (region II)) with 

a large liquid-liquid immiscibility region, thus allowing for natural liquid-liquid separation 

to take place (Figure 3.7). In both regions, the water-chloroform azeotrope is the lowest 

boiling point (unstable node). The feed is in region I (point FM) and the objective is to 

move into region II wherein pyridine (B3) is found. This can be achieved by pre-

concentrating the mixture from feed composition (FM) to azeotropic composition (D2) in 

column C-2, then adding chloroform in the form of organic reflux (OR) in column C-3. In 

region II, pyridine is the stable node; therefore, it follows that once in region II, an 

indirect split approach will be followed to sample pyridine as a bottoms product (B3) of 

the distillation column.  

The distillate of column C-3 is the water-chloroform azeotrope (D3); this azeotrope is 

separated using natural liquid-liquid separation in a decanter to get the aqueous outlet 

(AO) and the organic reflux (OR). The process flow diagram corresponding to this 

residue curve map analysis is depicted in Figure 3.8. It is important that the chloroform is 
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added until its composition is 80mol% (point A in Figure 3.7). Any composition below 

point A will result in the loss of pyridine. For example, if point A is moved to 70mol%, the 

material balance line for sampling pyridine may not be able to cross the distillation 

boundary (D2, D3) at point M (Figure 3.7). This results in the loss of pyridine since the 

pyridine is present at about 3mol% at point M (Figure 3.7). Further distillation of the 

mixture at point M will yield D2 and D3 as bottoms and the distillate respectively. 

Sometimes when the distillation boundary is closer to the edge, then the boundary could 

be crossed; however, this occurrence is very rare.  
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Figure 3.7. Water-pyridine-chloroform residue curve map showing liquid-liquid envelope, 

isovolatility curves, distillation boundary and material balance lines 
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Figure 3.8. Process flow diagram for the water-pyridine-chloroform system 

 

Option II: Methyl Isobutyl Ketone (MIBK) 

The residue curve map is divided into 2 regions (D2, B2, D3 (region I) and D2, D3, B4, 

D4 (region II)) (Figure 3.9) by a single distillation boundary (D2, D3). The topology of the 

MIBK-water-pyridine system is similar to the one of chloroform-water-pyridine system; 

however, the former has a smaller liquid-liquid envelope thus limiting the effectiveness of 

the liquid-liquid separation (Figure 3.9). The feed is found in region I and as in the 

previous analysis the aim is to move to region II wherein pyridine is found. The feed is 

first concentrated to azeotropic composition (D2) in column C-2. The mixture at 

azeotropic composition (D2) leaves the first distillation column C-2 as a distillate and 

pure water leaves this column as the bottoms product (B2). D2 is mixed with the organic 

reflux (OR) in the next distillation column (C-3) where the MIBK-water azeotrope (D3) is 

a distillate product and the mixture of pyridine and MIBK are sampled as a bottoms 

product (B3).  

The bottoms product of C-2 is further distilled to separate it into pure pyridine and MIBK 

as a distillate (D4) and bottoms product (B4) respectively in distillation column C-4. The 

process flow diagram corresponding to this synthesis is depicted in Figure 3.10. The 
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residue curve formed by the addition of methyl isobutyl ketone to the water-pyridine 

system necessitates the use of 3 distillation columns. Consequently, the operational 

costs will be much higher than the 2-column process on the chloroform system in terms 

of energy intensity and control costs. Moreover, the difference between boiling points of 

pyridine and MIBK is insignificant. This is undesirable because to achieve reasonable 

separation for components with close boiling points requires substantial number of 

stages and hence bigger columns thereby increasing capital costs. Furthermore, even 

with large number of stages, purity of the recovered pyridine is likely to be compromised.    

Therefore, it follows that chloroform is the more suitable entrainer for the separation of 

pyridine-water azeotrope. Furthermore, the isovolatility curves also support the notion 

that chloroform may be a more effective entrainer (point J, Figure 3.7 and Figure 3.9 

respectively); the isovolatility curve in the chloroform-water-pyridine intersects the water-

chloroform axis at 0.18 whereas the intersection is at 0.30 for the MIBK system. Only the 

isovolatility curve originating from the water-pyridine azeotrope (D2, J) (Figure 3.7, 

Figure 3.9) is considered for this comparison. This is because the isovolatility curve 

emanating from the entrainer-water azeotrope (D3, Z) in Figure 3.7 and Figure 3.9 is 

concerned with the VLE limitations of the separation of the entrainer-water azeotrope 

and in this case, these azeotropes are separated using liquid-liquid separation which is 

independent of VLE limitations. 
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Figure 3.9. MIBK-water-pyridine residue curve map showing liquid-liquid envelope, 

isovolatility curves, distillation boundary and material balance lines 
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Figure 3.10. Process flow diagram for the water-pyridine-MIBK system 

 

Although chloroform is a better than entrainer compared to MIBK, it has a very high 

entrainer to azeotropic mixture ratio (EA) (4:1). This ratio can be deduced from the RCM 

using equation (3.9) (sample calculation is presented in Appendix E, calculation 1 (a)). 

Higher entrainer to azeotropic mixture ratios may render the waste treatment redundant 

considering the overall objective of waste treatment. In the next section, reduction of 

entrainer consumption is assessed by altering separation sequence using RCM as a 

guide. 

 
𝐸𝐴 =

𝐸𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑟 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 

𝐴𝑧𝑒𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒
 

(3.9) 
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Use of Residue Curve Maps to Synthesize a Process requiring less Entrainer 

 

 

Figure 3.11. Improved pyridine-water-chloroform separation sequence 

 

The idea is to add just enough entrainer to move point D2 to point A (Figure 3.11) after 

the water-pyridine mixture is pre-concentrated to azeotropic level in column C-2 (Figure 

3.12). Once the composition in A is attained, liquid-liquid extraction is used to separate 

the mixture into an organic rich phase (extract) and an organic lean phase (raffinate). 

The extract is a ternary mixture of pyridine, water and chloroform (Extr in Figure 3.11). 

This mixture is then taken to the azeotropic distillation column (C-3) where pyridine is 
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sampled as a bottoms product (B3). Since the distillate of C-3 (D3) is composed of 

mainly chloroform (about 77mol%), and water (23mol%) (D3 in Figure 3.11), it is 

recycled back to the liquid-liquid extraction column as it is to avoid the regeneration 

costs.   

The main difference between the design in Figure 3.12 and the conventional analysis 

proposed in Figure 3.7 is that liquid-liquid separation in the conventional analysis is used 

for entrainer regeneration and water-pyridine separation takes place mainly in the 

distillation column, whereas in the improved design, separation of pyridine-water mixture 

takes place both in the  liquid-liquid extraction column and the distillation column. This 

approach takes advantage of the both LLE (Liquid-Liquid Equilibrium) and VLE (Vapor 

Liquid Equilibrium) for separation of the same mixture. This results in the reduction of the 

entrainer to mixture mole ratio from 4:1 to 0.36:1 (sample calculation given in Appendix 

E, calculation 1). This is equivalent to over 90% reduction of the entrainer demand. 

Liquid-liquid extraction column (E-1) removes just enough water to enable distillation to 

sample pure pyridine from the ternary mixture. Therefore, distillation column C-3 serves 

2 purposes: solvent regeneration as well as pyridine recovery.  The former approach is 

equivalent to mixing the entrainer and the azeotropic mixture then distilling to sample the 

target component. That way, to move from D1 to a point in region II where pyridine can 

be effectively sampled using distillation requires the addition of a large amount of 

entrainer. Separation would only be feasible if the entrainer makes up about 80mol% of 

the ternary mixture (point A in Figure 3.7). 
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Figure 3.12. Process flow diagram for the improved water-pyridine-chloroform system 

 

3.3.3. Simulation of the Chloroform Improved System 

This process was simulated in Aspen Plus using NRTL property method.  The binary 

parameters used are presented in Table D.2 of Appendix D. These parameters are built-

in within Aspen Plus.  Acetonitrile effect on the binary interaction was assumed to be 

negligible since it was only present in low concentration on this part of the process.  
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Shortcut model to determine distillation column parameters 

The DSTWU shortcut model was used to determine the distillation parameters given in 

Table 3.6.  

 

Table 3.6. Summary of columns used for pyridine dehydration 

Parameter C-2 C-3 E-1 

Total number of stages 20.000 30.000 10.000 

Reflux Ratio 2.000 2.500  - 

Feed stage 7.000  7.000 1.000 

 

Aspen Plus specifications and explanations for pyridine enrichment units 

Distillation column C-2 

 

Figure 3.13. Configuration Specification for column C-2 

 

 Column C-2 was only simulated after the results for column C-1 were obtained. The 

distillate rate in this column was specified as 6.1kmol/hr (Figure 3.13). This included the 

water-pyridine azeotrope plus the acetonitrile impurity found in the bottoms product of 

column C-1. This flowrate was found by dividing the pyridine flowrate in the bottoms 

stream by 0.25 (pyridine composition in the water-pyridine azeotrope).  
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Figure 3.14. Feed stream specification for column C-2 

 

Extraction column (E-1) 

 

Figure 3.15. Configuration for the liquid-liquid extraction unit 
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Figure 3.16. Specification of the key components on the Extraction unit 

 

The extraction column requires the user to specify key components in the 2 liquid 

phases (Figure 3.16). In liquid-liquid extraction, there are 2 phases: organic and 

aqueous. In this case, the organic phase (second liquid phase) is chloroform and the 

aqueous phase (first liquid phase) is made up of pyridine and water.  
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Figure 3.17. Specification of the feed stages location on the extraction unit 

 

Regeneration Distillation Column (C-3) 

 

Figure 3.18. Configuration specification for the regeneration column 

 

The separation in the regeneration column followed the indirect sequence (recovery of 

the heavy component first). To get the distillate rate in the regeneration column, simple 

arithmetic was made. Flowrate of pyridine was subtracted from the total of the stream 

and the balance was stated as the distillate rate. This is feasible because the liquid-
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liquid extraction unit (E-1) has pushed the ternary mixture away from the boundary (Extr 

in Figure 3.11) and consequently, pyridine was the highest boiling component and was 

expected to report to the bottom of the regeneration column as a pure component when 

indirect separation sequence was employed in region II (D2, D3, OR, B3) in Figure 3.11.  

 

 

Figure 3.19. Feed stream specifications in the regeneration column 

 

Results Discussion 

Pyridine recovery of over 99wt% at 98wt% (96mol%) purity is possible using the 

proposed design. Moreover, usable water at 99.99mass% purity was recovered from the 

HOW. The material balance summary for the pyridine enrichment section of the process 

is given in Figure 3.20 (detailed material balance is given Appendix C.1 and C.2). It is 

noteworthy that the main impurity in the pyridine stream (B2) is acetonitrile (Figure 3.20) 

and not water. This signifies that the proposed system is effective in breaking water-

pyridine azeotrope in that in the absence of acetonitrile impurity, purity over 99mol% 

could potentially be attained. 
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Figure 3.20. Overall material balance for the pyridine enrichment section 
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Sensitivity analysis depicted in Figure 3.21 to determine the amount of fresh chloroform 

that would realize the anticipated separation.  

 

 

Figure 3.21. Effect of chloroform fresh feed on the pyridine purity in product stream 

 

It can be deduced from Figure 3.21 which shows that the amount of fresh chloroform 

feed is indirectly proportional to the pyridine purity in the pyridine stream. The relation is 

sensible due to chloroform buildup in the recycle stream and the amount of water 

recovered to the raffinate can only take with it a certain amount of chloroform depending 

on solubility. Consequently, the chloroform that couldn’t come out as the raffinate, report 

to the pyridine product stream.  Below 1kg/hr of fresh chloroform the simulation resulted 

in errors.  

The process using toluene as an entrainer proposed by Wu & Chien [19] and its mass 

balance are depicted in Figure 3.22 and Table 3.7 respectively. The residue curve 

produced for this system has 2 distillation boundaries resulting in 3 distillation regions.  

Fresh feed is mixed with the aqueous outlet from the decanter (Figure 3.23). The mixture 

is distilled to concentrate the mixture closer to azeotropic composition; this is done to 

avoid using excessive amounts of solvents in the azeotropic column [3]. The azeotropic 
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mixture (D2) is recycled back to the heterogeneous azeotropic distillation column (C-1). 

From C-1, pure pyridine is recovered as the bottoms product as per material balance line 

shown in Figure 3.22. Liquid-liquid separation (decanter in this case) is used to cross the 

boundary to separate the organic rich phase from the organic lean phase (Aqueous 

Outlet). The organic rich phase is recycled back into the column.  

 

 

 

Figure 3.22. Water-pyridine-toluene system residue curve map [19] 
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Figure 3.23. Water-pyridine-toluene process flow diagram for pyridine dehydration using 

toluene [19] 

 

Table 3.7. Material balance for water-pyridine-toluene system [66] 

  Fresh Feed AO D2 B2 D1 B1 OR 

Total flow 

(kmol/hr) 
1000.00 391.20 490.400 900.800 696.30 99.20 305.10 

Mole fraction 

Pyridine 0.100 0.010 0.210 0.001 0.071 0.999 0.15 

Water 0.900 0.999 0.790 0.999 0.561 0.001 0.011 

Toluene 0.000 0.000 0.000 0.000 0.368 0.000 0.839 

 

Toluene to water-pyridine azeotropic mixture ratio (EA) was first calculated from the 

residue curve map as plotted by Wu & Chien [19] to be 0.471:1 (sample calculation 

illustrated in Appendix E, calculation 2 (a)).  The toluene to water-pyridine azeotropic 

mixture ratio was calculated as 0.522:1 from the material balance of the toluene-water-
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pyridine system given in Table 3.7 (sample calculation provided in Appendix E, 

calculation 2 (b)). On the other hand, the chloroform to water-pyridine azeotropic mixture 

ratio from the residue was calculated to be 0.360:1 (sample calculation given in 

Appendix E, calculation 1 (a)) and the ratio calculated from the simulation material 

balance was 0.320:1 (the calculation is illustrated in Appendix E, calculation 1 (b)). In 

both systems (chloroform-pyridine-water and toluene-pyridine-water) the predictive 

calculation of the EA from RCM was close to the one calculated from simulation material 

balance.  

For the proposed chloroform system, the calculation made from the residue curve map 

had a percentage relative error of 12.500% (equation (3.10)); sample calculation 

provided in Appendix E, calculation 1 (c)) and for the toluene system, the percentage 

relative error was calculated to be 9.770% (sample calculation shown in Appendix E, 

calculation 2 (c)). It can be concluded that residue curve maps probably have a 

predictive percentage relative error of around 10% for entrainer performance evaluation. 

The results from the two systems serve to illustrate the reliability of residue curve maps 

in predicting entrainer performance for separation processes such as liquid-liquid 

extraction, decanting and distillation.  

 
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =

|𝑥 − 𝑥0|

𝑥
× 100 

(3.10) 

Where:  

𝑥: entrainer to mixture ratio from the simulation material balance 

𝑥0: entrainer to azeotropic mixture ratio predicted from the RCM 

The chloroform system has a lower EA of 0.320:1 versus 0.522: 1 of the toluene system. 

This translates to the chloroform system using 1.6 times less entrainer than the toluene 

system. Furthermore, the separation is achieved with the entrainer 3.1 times less than 

the azeotropic mixture. The reduced amount of entrainer means smaller equipment for 

storage and processing and thus lower capital costs. It can therefore be concluded that 

the chloroform process proposed in this work is better than the status-quo toluene 
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azeotropic distillation system based on entrainer consumption. Chloroform has the 

added benefit of being cheaper than toluene at 0.5 USD/kg [24]  versus 1 USD/kg [25]. 

The fact that separation of water and pyridine in the process proposed in this work takes 

place in both the liquid-liquid extraction column (E-1) and regeneration distillation 

column (C-3) (Figure 3.20), results in lower energy consumption compared to the 

instance whereby the entire load is processed by distillation. This is so because liquid-

liquid extraction is less energy intensive than distillation [4]. 

 

Table 3.8. Comparison of toluene and chloroform as entrainers for dehydration of 

pyridine 

 Parameter Chloroform Toluene 

Composition in the total mixture 0.270 0.321 

Entrainer to mixture ratio 0.320 0.522 

 

3.3.4. Further implications for the HOW stream 

Currently the HOW stream is incinerated without energy recovery. With the proposed 

process, only 40% of the HOW is sent to the incinerator (Figure 3.5).  The impact of the 

reduction of the incinerator load will be discussed in Chapter 6. The use of the 

recovered water (“recovered water” stream in Figure 3.24) will also be assessed in 

Chapter 6.  The presence of acetonitrile on the recovered pyridine stream negatively 

impacts the reusability of pyridine for industry applications. In section 3.3.5, sensitivity 

analysis was made to determine the variables that affect the purity of the recovered 

pyridine and to also assess if acetonitrile composition in the pyridine stream could be 

reduced in the pyridine stream.   
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Figure 3.24. Proposed flowsheet for the recovery of pyridine from the HOW 
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3.3.5. Sensitivity Analysis to Assess Pyridine Purity Improvement  

Acetonitrile is the main impurity in the pyridine stream. This undesirable phenomenon 

originates from the inefficient separation that occurred in the first pre-concentration 

column (C-1) (Figure 3.24). In this column, all the acetonitrile present in the feed should 

have reported to the distillate product but only a small amount of acetonitrile reported to 

the bottoms product and finally reports to the pyridine stream. The main consideration in 

column C-1 is to minimize the loss of pyridine to the distillate.  Therefore, the sensitivity 

analysis focused on both acetonitrile and pyridine.  

 

 

Figure 3.25. The effect of reflux ratio on the quantity of pyridine and acetonitrile that 

report to the bottoms product 

 

 An increase in reflux ratio resulted in a desirable decrease of acetonitrile in the bottoms 

product of column C-1 (Figure 3.25). The same is accompanied by an increase in 

pyridine flowrate in the bottoms product.  However, the change is extremely small; in the 

1.5-7 reflux ratio range the flowrate of acetonitrile and pyridine in the bottoms product 

have decreased by 0.0111kg/hr and increased by 0.0081kg/hr respectively. Since high 

reflux ratios are associated with high energy consumption, the increase of the reflux 

ratio does not seem justified in this case. This can however be confirmed or disproved 
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by the slight change the increase has on the final pyridine purity in the pyridine stream. 

Figure 3.26 shows the impact of the reflux ratio in the column C-1 on the final product 

purity.  

 

 

Figure 3.26. The effect of reflux ratio on the mass fraction of pyridine and acetonitrile in 

the pyridine product stream 

 

As assumed in the previous discussion, the reflux ratio in the first column has negligible 

impact on the purity of the pyridine product. The increase in the reflux ratio in the range 

of 1.5-7 has negligible effect on the pyridine purity (Figure 3.26), and therefore, 

increasing the reflux ratio may not be the solution to the problem. In Chapter 4, the 

Dividing Wall Column (DWC) process integration technique is assessed to improve 

energy utilization in the pre-concentration columns (C-1 and C-2). This technique has 

also been reported to improve product quality from distillation [26].   
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3.4. Conclusions  

The recovery of pyridine from the High Organic Waste (HOW) was assessed. Recovery 

was achieved in 2 steps: separation of water-pyridine mixture from the HOW and 

pyridine enrichment. The first step was realized using fractional distillation while the 

second step was achieved using residue curve maps to synthesize a feasible 

separation process for separating the water-pyridine azeotrope. The combination of 

liquid-liquid extraction and distillation using chloroform as an entrainer was proposed for 

the pyridine enrichment section and had the lowest recorded entrainer to azeotropic 

mixture ratio (EA=0.32:1) for the water-pyridine mixture. over 99mass% pyridine 

recovery at 96mol% purity was achieved. The obtained pyridine purity is not up to 

industry specification for resalable pyridine. In Chapter 4, we will be assessing the 

implementation of Dividing Wall Column (DWC) technique mainly for energy integration, 

but since it has been reported that DWC can improve quality of products, improvement 

of pyridine purity will also be assessed. From the pyridine enrichment section over 

80mass% of the water originally present in the HOW was recovered at over 99mass% 

purity. Therefore, the water can be used for any process water requirements. 
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Chapter 4 : Integration of the Distillation Columns 
using Dividing Wall Column (DWC) Technique 

 

In this chapter, one of the renowned process intensification techniques referred to as 

the Dividing Wall Column (DWC) is being explored for the integration of the first 2 

distillation columns in the proposed separation process in Chapter 3 (C-1 and C-2 in 

Figure 4.1). The following subtopics are covered: advantages and limitations of DWC, 

industrial applications, different simulation setups for DWC in Aspen Plus and other 

commercial process simulators. The application of DWC is then illustrated for our 

desired purpose with a step by step explanation of how it was implemented on Aspen 

Plus. The obstacles of simulation of DWC are discussed and troubleshooting 

recommendations are given. Furthermore, the results obtained are discussed vis-à-vis 

the results in Chapter 3 where possible.   

 

 

Figure 4.1. Proposed pyridine recovery process 
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4.1. Introduction  

Process intensification consists in any effort to combine 2 or more chemical processes 

into 1 in order to reduce the size of the plant, reduce energy consumption or increase 

efficiency [1]. The key characteristic of process intensification is that production 

throughput is retained [2]. Some examples of process intensification are reactive 

distillation, membrane distillation and rotating packed beds [1]. The most common 

process intensification for distillation is the Dividing Wall Column. This technique 

combines 2 or more columns into 1 by dividing the core of the column into 2 parts using 

a vertical wall [3].  

For a ternary mixture, the feed gets deflected by the wall and the low boiling component 

is propelled upward, while the heaviest component inherently flows downwards. The 

mid-boiling component on the other hand, is entrained with both the light and heavy 

components. At the bottom of the column, the mid-boiling component is separated from 

the heavy component and flows upwards on the opposite side of the wall. A similar 

phenomenon is observed at the top of the column whereby the mid-boiling component 

is again separated from the light component and flows downwards on the opposite side 

of the wall. Finally, the mid-boiling component is recovered as the middle product of the 

column [4] (Figure 4.2).  
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ABC
B

A

C
 

Figure 4.2. Dividing Wall Column [1] 

 

Although distillation is the most preferred separation method, it has a low 

thermodynamic efficiency [3-5].  Sangal et al. [6] argued that over 50% of the total 

energy consumption in a chemical plant is typically due to distillation. In the US, 

distillation is reported to consume 3% of the total energy produced per annum [7]. 

Consequently, Petlyuk column or DWC technique has been proposed to curb the 

energy intensity of the distillation process. It has been reported in literature that process 

intensification through the application of the principle Petlyuk column or Dividing Wall 

Column can reduce the energy consumption of the distillation columns by up to 30% 

[3,4,6,7,8,9,10,11].. The reduced energy consumption is due to the reduced number of 

condensers and reboilers. In addition to economic gains, the reduction in energy 

consumption also benefits the environment through reduced burning of fossil fuels and 

hence abridged emissions [7].  Furthermore, the minimum equipment required for DWC 

results in the reduction of operational costs and capital investment [9]; it is argued that 

the operating costs can be reduced by up to 25% by employing the DWC technique 

[11].  It is further reported that the product streams from the DWC are of high purity 

compared to the conventional direct or indirect separation sequence [1]. Even with 
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these advantages, the industrial application of DWC has been minimal mainly due to 

lack of expertise in its design and control [5,6].  

Due to the complex nature of DWC, simulation work is a prerequisite. However, even its 

simulation is made difficult by the fact that many process simulators do not have a built-

in column to simulate DWC. Therefore, the underlying thermodynamic principles must 

be understood to be able to simulate its equivalent. It is widespread practice to simulate 

the DWC as a Petlyuk column since the two are thermodynamically equivalent 

assuming that the heat transfer across the wall is negligible [7]. Petlyuk column is a 

process in which 2 or more columns are thermally coupled; its main objective being to 

minimize the energy consumption of distillation. In this way, the DWC is an integration 

of a Petlyuk column into one column [4]. The DWC configuration advantage over the 

Petlyuk are reduced number of equipment resulting in lower capital investment and low 

space consumption on the plant site. There are 3 ways to represent and simulate the 

DWC as a Petlyuk column [1]. These are:  

 The pump around model (Figure 4.3) [1],  

 Two-column model (Figure 4.4) [1] and; 

  The four-column model (Figure 4.5) [1].  
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Figure 4.3. Pump around model for dividing wall column simulation [5] 

 

In this model, the 4 sections found in the DWC are mimicked by placing different 

sections vertically above one another [5]. The regulation of vapor and liquid traffic is 

done through the vapor bypasses and liquid pump around as shown in Figure 4.3 [1]. 

This tends to result in convergence problems because of a stage in which all the liquid 

and vapor are drawn off [5].  
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C-1 C-2 B

C

ABC

A

C-1: Pre-fractionator

C-2: Main column

(a)

C-1 C-2 B
ABC

A

C

C-1: Main column

C-2: Side column

(b)
 

Figure 4.4. Two-column model for the representation of DWC: (a). Pre-fractionator and 

Main column (b). Main column and post fractionator [1] 
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There are 2 ways to simulate a two-column model. One way is to have a pre-

fractionator and the main column (Figure 4.4 (a)) while the other is to have the main 

column and the post-fractionator (Figure 4.4 (b)). The former representation is the most 

commonly used for simulation design and optimization [1, 9].  

 

C-1 C-2

C-4

C-3

ABC B

C

A

C

 

Figure 4.5. Four-column model for the DWC [7] 

 

Although the two-column model is generally used for simulation, it is too simplified and 

does not capture the complexities within the DWC and to some extent nullifies the 

purpose of simulation which is to help overcome some of the complexities that may be 

encountered in a real setup. The four-column model on the other is the best 

representative of the actual real-life DWC [1] (Figure 4.5). This is so because the four 

individual columns represent each section found in the DWC. Moreover, the fluid 
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transport around the model is aligned with the DWC concept. The four-column model is 

avoided because it is generally difficult to initialize and due to the potential convergence 

issues that may arise resulting from an increased number of recycles. In this chapter, 

the four-column approach is assessed for the integration of the first 2 distillation 

columns in the proposed recovery process. In the discussions sections (4.3), 

suggestions have been made on how to overcome some of the convergence problems. 

Aspen Plus and Aspen HYSYS process simulators have been preferentially used for the 

simulation and study of DWC [4, 9, 11]. In this work Aspen Plus has been chosen for its 

consistency with the results obtained in Chapter 3.  

In 2010, there were 125 applications of DWC worldwide and the number was expected 

to increase to 350 applications by 2015 [1]. Sasol operates the largest DWC that is 

107m tall and 5m wide which is used to separate Fischer-Tropsch products [4]. The 

areas of application of DWC throughout the world are summarized in Table 4.2. In 2010, 

there was only one application of DWC for azeotropic mixtures with most of the systems 

being about separation of ternary mixtures (Table 4.1) [12].In many systems, the pre-

concentration of mixtures is often required to isolate mixtures containing desired 

components. For instance, in cases of azeotropic and extractive distillation, mixtures are 

often pre-concentrated to azeotropic composition to minimize entrainer quantity required 

to effect separation [13-15]. In complex mixtures, like the one considered in this work, 

two or more distillation units may be required to finally sample the desired mixture at 

azeotropic compositions. Because the pre-concentration units process higher loads of 

mixtures, their energy consumption tend to be substantial in the grand scheme of 

things. This is illustrated by the heat equation (4.1), which can be interpreted as: the 

higher the quantity of the mixture (M), the higher the heat (Q) required to raise the 

temperature by ΔT. As such, the application of DWC or any energy saving technique on 

the first 2 distillation columns in the proposed process is worth considering. 
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 𝑄 = 𝑀𝐶𝑝𝛥𝑇 (4.1) 

Where  

Q:  Heat duty 

M: Mass flow rate 

Cp: Specific heat capacity 

ΔT: Change in temperature 

 

Therefore, this chapter aims to contribute to the application of DWC to azeotropic 

mixtures. In this work, the DWC concept is applied for the recovery of the water-pyridine 

azeotropic mixture (75mol% water and 25mol% pyridine) from the HOW by integrating 

Column C-1 and C-2 into 1 (Figure 4.6). To our knowledge, this type of application of 

DWC has not been conducted, as usually DWC is used for ideal mixtures like the 

fractionation of petroleum products (gasoline, diesel and naphtha) and the most 

prevalent application being the separation of benzene, toluene and xylene (BTX) [1, 3, 

6, 10]. The azeotropic boiling points are tabulated in Table 4.3. The light, mid and heavy 

fractions are highlighted with assorted colors. The study of Table 4.3 shows that all the 

azeotropes have boiling points 80˚C except that of pyridine with water which boils at 

93˚C and the boiling point of water is 100˚C.  Therefore, the anticipation is that all the 

water containing azeotropes but water-pyridine are to be recovered as the distillate, 

water-pyridine azeotrope as the middle component and water recovered as the bottoms 

product (Figure 4.6).  
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Table 4.1. Applications of DWC in Industry as reported in 2010 [12] 

System Frequency 

Mixtures with more than 3 components 2 

Ternary mixtures 116 

Azeotropic 1 

Extractive 2 

Revamps 4 

Reactive - 

 

Table 4.2. DWC Industrial Applications [12] 

Company System 
Constructor 

and Year 
Features 

Sasol, 

Johannesburg, South 

Africa 

Separation of 

hydrocarbons from 

Fischer-Tropsch unit 

1999 
largest DWC 

column 

BASF SE, diverse 

sites 
Mostly undisclosed 1985 

More than 70 

DWCs 

Veba Oel Ag, Münchs 

münster,Germany 

Separation of benzene 

from pyrolysis gasoline 
1999 140000 mt/year 

Saudi Chevron 

Petrochemical Al 

Jubail, Saudi Arabia Al 

Jubail, Saudi Arabia 

Undisclosed 2000 
140,000 mt/year 

feed capacity 

ExxonMobil 

Rotterdam, 

Netherlands 

Benzene-Toluene-

Xylene fractionation 
2008 

No data 

available 
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Figure 4.6. Integration of the first two distillation columns (C-1 and C-2) into 1 
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Table 4.3. Boiling points of pure components and azeotropes 

Pure Components Azeotropic Components 

Component 

Boiling 

Point(˚C) Azeotrope 

Boiling  

Point (˚C) 

Water 100.02 Water-MIK 77.61 

Pyridine 115.16 Water-MEK  73.65 

Acetone 56.14 Water-pyridine 93.71 

Acetonitrile 81.48 acetonitrile-MEK 79.09 

Methyl Ethyl Ketone (MEK) 79.34 Water-Acetonitrile 76.53 

Methyl Isopropyl Ketone 

(MIK) 94.08 

Water-MEK-

Acetonitrile 76.32 

    

 

High boiling  

  

 

Mid-boiling 

  

 

low boiling 

   

4.2. Aspen Plus Simulation 

The shortcut simulation model is used to get the operating parameters like number of 

columns, reflux ratio and feed stages of the columns C-1, C-2, C-3 and C-4 in Figure 

4.7. The simulation is carried out using DSTWU column in the Aspen Plus library. It is 

noteworthy that column B and C represent the middle section of the DWC and thus 

have the same number of stages. For this reason, column C is not accounted for in the 

shortcut model (Figure 4.8). To get a good representation of the DWC, the mid-boiling 

composition for mid-boiling 1 and 2 must be close [3, 9]. This is achieved mainly by trial 

and error through adjusting light and heavy keys recoveries in the columns [16]. This 

illustration and other specifications for the shortcut model can be found in Appendix B.1.  
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C-3
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Feed (HOW) Water-pyridine

 azeotropeStripper 

vapor 1

Stripper 

vapor

Stripper 

vapor 2

Rectifier

 liquid1

Rectifier 

liquid

Rectifier

 liquid 2

Liquid 1

Liquid 2

Absorber 

liquid

Light fractions- to 

incinerator

Vapor 1
Vapor 2

Absorber 

vapor

B2 (water)

C-3: Stripper

C-4: Rectifier

C-1: Absorber 1

C-2: Absorber 2

 

 

Figure 4.7. DWC model as depicted in Aspen Plus 
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C-1

D
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Distillate

Feed

Mid boiling Component 

(Water-pyridine azeotrope)

Heavy boiling Component 

(Water)

Light Fractions (MEK-

water, Mik-water-

azeotrope,MEK,  MIK, 

acetonitrile-water 

azeotrope, acetonitrile and 

acetone)

Mid boiling Component 

(Water-pyridine azeotrope)Mid-boiling 1

Mid-boiling 2

Bottoms
 

Figure 4.8. Shortcut model as shown on Aspen Plus 

 

Table 4.4. Shortcut simulation results 

Column Number of stages Reflux Ratio 

C-1 40 7 

C-4 20 4.5 

C-3  10 2.2 

 

The parameters obtained from the shortcut model were specified on the rigorous 

simulation model (Figure 4.9 to Figure 4.20). Due to the azeotropic nature of the waste 

the convergence type in all columns were changed from standard to azeotropic. As 

standard, the simulation resulted in severe errors.  
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Absorber 1 (column C-1) 

 

Figure 4.9. Configuration Specifications for Absorber 1 

 

Since the absorber has got no reboiler and condenser, they are both specified as none 

in the specifications (Figure 4.9).  The absorber is used to represent the middle part of 

the DWC because indeed in that section there is no heat exchange device.  

 

 

Figure 4.10. Streams Specifications for Absorber 1 

 

Because the absorber does not have a condenser nor a reboiler the recycled stream 

from the rectifier (RECLIQ1) and stripper (STRVAP2) were fed on stage 1 and 40 

respectively (Figure 4.10). If this is not done, Aspen reports that specifications are not 

complete.  
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Figure 4.11. Pressure Specification for the Absorber Column 

 

Absorber 2 (Column C-2) 

 

Figure 4.12. Configuration Specifications for Absorber Column 2 
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Figure 4.13. Inlet and product streams specifications for absorber column 2 

 

The first and second absorbers (C-1 and C-2 in Figure 4.7) represent the midsection of 

the DWC. C-1 represents one side of the wall while C-2 represents the other side of the 

wall. Therefore, their number of stages are equal.  Like the first absorber, the second 

absorber also requires that the first (stage 1) and last stage (stage 40) have feeds. The 

feed from the stripper split is fed onto the 40th stage and the feed from the rectifier split 

is fed onto the 1st stage. Lastly the mid boiling product is specified to be withdrawn on 

the 25th stage. This stage was found by trial and error.  

 

 

Figure 4.14. Pressure Specification for Absorber Column 2 
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Rectifier (column C-4) 

 

Figure 4.15. Configuration Specifications for the Rectifier 

 

The rectifier has got no reboiler therefore the reboiler is specified as none in the 

specifications (Figure 4.15) 

 

Figure 4.16. Inlet and Product Streams Specifications 
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Figure 4.17. Pressure Specifications 

 

Stripper (column C-3) 

 

Figure 4.18.  Stripper configuration specifications 

 

A stripper is used to represent the bottom section of the DWC since it has the reboiler 

and no condenser which is what the bottom of the DWC looks like. The bottoms rate 

specified is equal to the bottoms rate from in C-2 of the original design (Figure 4.6). 
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Figure 4.19. Inlet and Product Streams Specifications 

 

Since the stripper is without a condenser, the feed stream to this column is fed onto the 

first stage.  

 

Figure 4.20. Pressure Profile Specifications 
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4.3. Discussions 

The initial simulation of the DWC resulted in severe errors on all units. Then steps 

outlined below were followed to overcome the errors. Some of the recommendations 

were acquired from open literature [13] and some were initiated in this research work 

(section 4.31, i & iii).  Whilst all the blocks ran without problems, the mixers had issues 

converging the material balance thereby affecting the material balance of the whole unit. 

Consequently, the material balance is off by 0.6%.  

 

4.3.1. Troubleshooting Recommendations to Deal with Convergence Issues 

Convergence problems are common when simulating a complex unit as a Dividing Wall 

Column [13]. They may be brought about by an increased number of recycles, multiple 

feeds on the columns and the extent to which the mixture is far from ideality. A single 

cause of convergence problems may not be known in advance, usually a trial and error 

approach should be followed. Some of the steps that can be taken are as follows: 

i. Ensure realistic and sensible withdrawal flowrates. 

While it would be easier to determine the withdrawal flowrates for a ternary ideal 

mixture, it is difficult to determine the flowrates for azeotropic and other non-ideal 

mixtures. In such cases, it may prove worthwhile to first simulate an indirect or direct 

separation sequence of the mixture to get proper initial estimates of the flowrates of 

withdrawal streams.  

ii. Change convergence of the column [13]. 

Depending on the type of mixture being separated the column convergence may have 

to be changed from default standard to either azeotropic, non-ideal, petroleum or 

cryogenic. 

iii. Minimize the number of streams feeding columns. 

The distillates from the two absorbers are both fed to the last stage of the rectifier, so 

instead of feeding these streams individually on this stage mix them first using the mixer 

unit on Aspen Plus library, then feed the combined stream to the rectifier. The same 

should be done for the bottoms product of the two absorbers that feed on the first stage 

of the stripper column. Using the three recommendations, one should at least be able to 
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get the simulation to run sensibly. As a last resort, one may consider changing the 

solver method. The default solver in Aspen Plus is Wegstein method and it is possible 

to change this to Newton [13]. Increasing the number of iterations should be considered 

after everything else has failed. In the plots to follow only pyridine, water and acetonitrile 

compositions profile are plotted. Acetonitrile represents the trends observed in all other 

light components (MEK, MIK, and acetone). The profiles for the first absorber are 

depicted in Figure 4.21.  

 

 

Figure 4.21. Profiles in Absorber 1 

 

Temperature increases with increasing number of stages over the entire range. On the 

20th stage, there occurs a trough on the temperature profile. This phenomenon occurs 

because the feed is fed onto the 20th stage and the feed is at a lower temperature 

(Figure 4.21). Acetonitrile composition increases with increasing number of stages and 

thus increasing temperature for the first 25 stages. On the 20th stage, the acetonitrile 

composition increases abruptly. This increase is due to the feed being fed on this stage.  

From the 26th stage, the composition reaches a plateau at about 62mol% acetonitrile. 

Unsurprisingly, this composition is close to that of water-acetonitrile azeotrope (67mol% 

acetonitrile and 33mol% water). Consequently, acetonitrile cannot concentrate any 
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further than this composition. This serves to corroborate the assumption made that the 

components do not act as individuals but follow azeotropic properties due to massive 

presence of water in the feed. Moreover, beyond the 33rd stage the acetonitrile 

composition starts decreasing due to elevated temperatures that are higher than the 

boiling point of acetonitrile-water azeotrope (76.53˚C). After being vaporized by elevated 

temperatures, the water-acetonitrile azeotrope is entrained upwards resulting in 

decreased composition in the lower part of the column until it is very close to zero on 

the 40th stage.  

Since water is the heaviest component, it is expected not to find large presence of water 

on the upper part of the column. The presence of water in the first stages of the column 

may be due to azeotropic formations with light components like MEK, MIK and 

acetonitrile.  Unlike water, pyridine does not form azeotropes with light components in 

the waste and hence its composition remains close to zero until the 33rd stage. Its 

composition increases up to about 22mol% on the 40th stage which is also closer to 

water-pyridine azeotrope. On this stage, the water composition is 75mol% (Figure 4.21). 

Water-pyridine azeotrope is the heaviest of all azeotropes boiling at 91˚C. A closer look 

at water and pyridine compositions shows that the profiles are the same showing that 

the two components act as a unit, especially beyond the 33rd stage. This may be 

because of the water-pyridine azeotrope formation. The profiles observed in the second 

absorber (column C) are shown in Figure 4.22. 
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Figure 4.22. Pyridine and water composition profiles and temperature profile in the 

second absorber 

 

The minimum temperature in the second absorber is 88˚C and the maximum is 97˚C; 

this is because the streams feeding the second absorber (one from stripper and the 

other from the rectifier) enter at these temperatures respectively, and since the absorber 

has no condenser or reboiler, heat exchange can only be within the two ranges. The 

temperature increases with increasing number of stages up to the sixth stage (Figure 

4.22). At this point, it is noteworthy that the stages are numbered from top to bottom. As 

shown in Figure 4.22 acetonitrile composition decreases with increasing number of 

stages and hence temperature; at around the fifth stage the composition of acetonitrile 

approaches zero. This is because at the fifth stage temperature is over 95˚C and this is 

beyond the acetonitrile boiling point. Furthermore, the water and pyridine compositions 

start to stabilize around the fifth stage at 75mol% and 25mol% respectively.  

The increase in number of stages and doesn’t seem to affect these compositions. This 

is because these compositions represent azeotropic point between the two 

components. Since the primary aim was to recover this azeotrope, the knowledge of the 

stage at which these compositions are reached helps with the decision of where to 

withdraw the middle product. In this column, other light components such acetone and 
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MEK are present but are not depicted in  Figure 4.22, all the light fractions are 

represented by acetonitrile since they exhibit similar trends. This is also shown by the 

fact that as the number of stages increase the mole fractions of water and pyridine 

summation approaches 1 showing that that they are the only components left. The fact 

that stabilizations of almost all components occur at the fifth stage does no warrant 

reducing the number of stages of the column since in reality the second absorber along 

with the first represent the middle section therefore the number of stages which is 

directly related to the height must be equal. Stripper profiles are depicted in Figure 4.23. 

 

 

Figure 4.23. Stripper profiles 

 

The theory behind the operation of the Dividing Wall Column suggests that all the light 

components are entrained upwards and recovered as the distillate while the mid-boiling 

component is entrained both upwards and downwards with the light and heavy 

components respectively. The composition profiles in the stripper (bottom section) 

support this notion as the only light component present in this part of the column is 

acetonitrile at less than 1mol% composition (Figure 4.23). In the top section of the 

column, pyridine and water composition sum up to 1 with acetonitrile being negligible; in 

stage 1, pyridine composition is about 20mol% and that of water is 80mol%. From the 

4th stage the composition of water stabilizes at 100mol% while pyridine composition 

goes to 0. As the heavy component, water is recovered in its pure form from the bottom 
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of this column. The profiles found in the rectifier column (top part of the DWC) are 

illustrated in Figure 4.24.  

 

 

Figure 4.24. Rectifier Profiles 

 

Figure 4.24 shows that light fractions dominate the top section of the rectifier. This is 

expected since it is where they are recovered as a distillate. Pyridine-water azeotrope 

was evidently entrained upwards and downwards as pyridine trace amount can be seen 

on the 20th stage of the rectifier where the combination of the distillates from absorbers 

is fed. Pyridine composition is small because it is the pyridine-water azeotrope that is 

entrained and not pyridine alone and even in the azeotrope the pyridine composition is 

still low at 25mol%.   

 

4.4. Results Implications  

Figure 4.25 depicts the overall material balance around the Dividing Wall Column 

(detailed material balance presented in Appendix C.3-C.6). The intermediate product 

(water-pyridine azeotrope) is almost pure at 24.7mol% pyridine 74.7mol% water, as it is 

closer to the water-pyridine azeotrope (75mol% water and 25mol% pyridine) than the 

composition achieved by the original design (23.6mol% pyridine and 75.5mol% water 

with the difference being acetonitrile).  
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Figure 4.25. Overall material balance of the Dividing Wall Colum 
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Liquid-liquid Extraction Unit plus Regeneration Column Overall Balance 

The summary of the material balance around the extraction unit and the regeneration 

column is given in Figure 4.26.  

 

 

Figure 4.26. Overall Material balance around the liquid-liquid extraction and 

regeneration column 

 

The comparison of Dividing Wall column and the original two-column design is 

summarized in Table 4.5. As mentioned in Chapter 3, the acetonitrile present in the 

bottoms stream of the distillation column (C-1) was the main impurity in the pyridine 

stream from the regeneration column. The implementation of DWC has reduced the 

acetonitrile impurity in the water-pyridine azeotrope stream by around 36mol% (from 

0.055kmol/hr to 0.036kmol/hr). This made an enormous difference in the purity of 

pyridine recovered; the purity has increased from 98mass% to over 99mass% matching 

closely the industry specification of pyridine. These results agree with what has been 

reported in the open literature that the DWC technique has the potential to enhance the 
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purity of products [64]. Although the original design does not recover all the pyridine, the 

loss to the light fraction stream is extremely small (about 5kg/year), however, the DWC 

system has 100% pyridine recovery. Results also show that the application of the DWC 

technique reduces the condenser and reboiler heat duties by 10% and 9% respectively 

(Table 4.5). This reduction in the reboiler and condenser duties is lower than the ones 

that have been reported in the open literature. Between 20 and 40% reduction in energy 

consumption have been reported by many authors [10-12]. 

 

Table 4.5. Comparison between the original two-column system and DWC the system 

Parameter 
Original two-column 

System 

Dividing Wall Column 

System 

Chloroform Makeup Flowrate 

(kg/hr) 
1.000 1.000 

Total Condenser Heat Duty 

(kW) 
-1909.279 -1719.600 (-9.935%) 

Total Reboiler Heat duty (kW) 2076.19 1885.000 (-9.209%) 

Pyridine Purity (mass%) 97.72 99.957 

Pyridine Recovery (%) 99.997 100 

 

4.5. Conclusions  

The objective in this chapter was to use DWC process integration technique to integrate 

the first two 2 distillation columns in the previously proposed recovery process using the 

principle of Dividing Wall Column. This was done to improve energy utilization. The 

more realistic four-column model was used to model the Petlyuk column equivalent of 

the DWC. Some of the convergence errors that are usually encountered in simulation of 

the DWC were overcome using mixers to reduce the number of recycle streams feeding 

onto the rectifier and the stripper.  It was found that the implementation of DWC reduced 

both the reboiler and condenser by 10% each. This energy was relatively lower than 

30% that has been reported in the open literature. However, the reduction in capital and 

other operational costs such as control costs justify the implementation of the technique. 
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Moreover, DWC implementation improved the purity of the recovered pyridine from 

97mass% to over 99.9mass% matching industry specifications for reusable pyridine.   
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Chapter 5 : Entropy Generation Analysis of the 
Regeneration Column 

 

After the pre-concentration section (C-1 and C-2) of the process proposed in Chapter 3 

(Figure 5.1), the regeneration unit (C-3) is likely to be the most energy intensive part of 

the process. In Chapter 4, energy integration using DWC was implemented on the pre-

concentration section to abate energy consumption. Therefore, in this chapter, a 

method of entropy generation analysis across a distillation column proposed by 

Benyounes et al. [1]  was adopted to determine if the separation efficiency in Column 

(C-3) was within acceptable range. If not, to establish if there were an area that 

warranted improvement.  

Figure 5.1. Proposed pyridine recovery process 
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5.1. Introduction 

Traditionally, overall energy consumption of separation processes is used to determine 

the efficiency of separation. However, in recent years an innovative approach to 

evaluate efficiencies of separation processes which uses the thermodynamic second 

law has been proposed. The main advantage of the thermodynamic second law 

analysis over the first law is that the latter approach follows a section by section energy 

analysis of the distillation column. There are 2 ways to make a thermodynamic second 

law analysis; one is entropy generation and the other is exergy destruction. Exergy 

destruction is equivalent to entropy generation. Exergy is the maximum amount of work 

obtainable from a reversible process given by equation (5.1) [2]. The exergy lost due to 

distillation can be determined by doing an exergy balance around the column (equation 

(5.2)). 

 

 𝐸 = (𝐻 − 𝐻0) − 𝑇0(𝑆 − 𝑆0) (5.1) 

Where: 

𝐸:  Exergy  

𝐻0:  Enthalpy at standard state (298.15K, 1 atm) 

𝑇0: Standard state temperature 

𝑆: Entropy 

𝑆0: Entropy at standard state 

 

 �̇�𝑙𝑜𝑠𝑠 = 𝐿𝑗−1𝐸𝑗−1
𝐿 + 𝑉𝑗+1𝐸𝑗+1

𝑉 + 𝐹𝑗𝐸𝑗
𝐹 − 𝑉𝑗𝐸𝑗

𝐹 − 𝑆𝑗𝐸𝑗
𝑉 − �̇�𝑗 (5.2) 

   

Where: 

j: stage number 

�̇�: Rate of exergy  

𝐿:  Liquid flowrate  
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𝐸𝐿:   Exergy of the liquid stream 

𝐸𝑉:  Exergy of the vapor stream 

 

In this chapter, entropy generation analysis as proposed by Benyounes et al. [1] is 

made on the regeneration column (C-3). This approach is discussed and applied in the 

subsequent sections. Like with the exergy analysis, the entropy generation analysis is 

made on the trays, reboiler and condenser independently [1]. This way, it is possible to 

determine the area of greater inefficiency and suitable modifications can be made to 

improve the performance of the distillation column [3]. 

 

5.2. Entropy Generation Analysis 

Assumptions: 

1. The column is operated adiabatically; 

2. All the heat is provided by the reboiler; 

3. All the cooling is provided by the condenser. 

 

The entropy of the liquid and vapor stream on the jth stage is given by equation (5.3) 

and (5.4) respectively. The number of stages are calculated from the top to bottom. 

 

 
𝑆𝑗

𝐿 = 𝐿𝑗 [∑ (𝑥𝑖𝑗(𝑆𝑖
𝑂𝐿 + 𝐶𝑃𝑖

𝐿 𝑙𝑛 (
𝑇𝑗

𝑇0
)) − 𝑅 ∑ 𝑥𝑖𝑗𝑙𝑛(𝛾𝑥𝑖𝑗𝑥𝑖𝑗)] 

(5.3) 

 

 
𝑆𝑗

𝑉 = 𝑉𝑗 [∑ 𝑦𝑖𝑗 (𝑆𝑖
0𝑉 + 𝐶𝑃𝑖

𝑉 𝑙𝑛 (
𝑇𝑗

𝑇0
)) + 𝑅𝑙𝑛 (

𝑃𝑖
0

𝑃𝑇
) − 𝑅 ∑ 𝑦𝑖𝑗𝑙𝑛 (𝑦𝑖𝑗

𝑃𝑇

𝑃0
)] 

(5.4) 

Where: 

𝑆𝑗
𝐿: Entropy of the liquid stream of the jth stage 

𝑆𝑗
𝑉: Entropy of the vapor stream of the jth stage. 

𝐿𝑗: Liquid stream flowrate from the jth stage 
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𝑉𝑗: Vapor stream flowrate from the jth stage 

 𝑥𝑖𝑗: Mole fraction component i in the liquid phase from the jth stage 

𝑦𝑖𝑗: Mole fraction component i in the vapor phase from the jth stage 

𝑆𝑖
𝑂𝐿: Entropy of a pure component i at standard state (298.15K, 1 atm) 

𝑆𝑖
0𝑉: Entropy of a pure component i at standard state 

𝐶𝑃𝑖
𝐿 : Specific heat capacity of liquid component i 

𝛾𝑥𝑖𝑗: Liquid activity coefficient of component i  

 𝑇𝑗: Temperature in the jth stage 

𝑇0:  Standard state temperature (298.15K) 

𝑅: Gas constant (8.314Kj/Kmol-K) 

𝑃𝑖
0: Partial pressure of component i at standard state. 

𝑃𝑇:  Vapor pressure of the vapor stream at the stage temperature. 

𝑃0: Standard state pressure 

 

In this work, the stage-wise vapor and liquid entropy were obtained from Aspen Plus. 

The entropy values for the first 6 stages are depicted in Table 5.1, the rest of the 

entropy values can be found in Appendix F, Table F.1.  
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Table 5.1. Entropy values from Aspen Plus 

Stage 
liquid stream  

Entropy (kJ/kmol-K) 

Vapor stream  

Entropy (KJ/kmol-K) 

1 -42.678 0.000 

2 -45.904 -19.258 

3 -45.944 -22.22 

4 -45.889 -22.498 

5 -45.904 -22.453 

6 -46.79 -22.353 

 

The entropy of streams exiting the jth stage was calculated using equation (5.5) and 

equation (5.6) was used to calculate the entropy of streams entering the jth stage. The 

entropy production within each stage was determined using equation (5.7) to be 

23.486kW/K. The entropy production in each stage data is depicted in Appendix F, 

Table F.2.  

 𝑆𝑜𝑢𝑡,𝑗 = 𝑆𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑆𝑗
𝑉 + 𝑆𝑗

𝑉 (5.5) 

 

 𝑆𝑖𝑛,𝑗 = 𝑆𝑚𝑖𝑥,𝑗 = 𝑆𝑗−1
𝐿 + 𝑆𝑗+1

𝑉  (5.6) 

 

 𝛥𝑆𝑗 = 𝑆𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑆𝑚𝑖𝑥,𝑗 (5.7) 

 𝛥𝑆𝑡𝑟𝑎𝑦𝑠 = ∑ 𝛥𝑆𝑗 (5.8) 

 

Entropy production in the reboiler was determined using equation (5.9) and data 

depicted in Table 5.2 to be 525.755kW/K. Vapor and liquid stream flowrates from each 

tray were extracted from Aspen Plus (depicted in Appendix F, Table F.2).   

 
𝛥𝑆𝐵 = 𝑉𝐵𝑆𝐵

𝑉 + 𝑊𝑆𝐵
𝐿 − 𝐿𝑛𝑆𝑛

𝐿 −
𝑄𝐵

𝑇𝐵
 

(5.9) 
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Where: 

𝛥𝑆𝐵: Entropy generation in the reboiler. 

𝑉𝐵: Vapor flowrate from the reboiler 

𝑊:  Bottoms flowrate 

𝐿𝑛: Liquid stream flowrate from the last stage of the column 

𝑆𝑛
𝐿: Entropy of the liquid stream from the last stage 

𝑄𝐵: Reboiler heat duty 

𝑇𝐵: Reboiler temperature.  

 

Using equation (5.10), the entropy production within the condenser was found to be 

35.105kW/K. The result from the entropy generation analysis of the distillation column 

stages, reboiler and condenser are summarized in Table 5.2. Lost work which is 

proportional to energy inefficiency can then be calculated for each section using 

equation (5.11) [1]. 

 

 
𝛥𝑆𝐶 = 𝑉1 (𝑆𝐶

𝐿 − 𝑆1
𝑉) +

𝑄𝐶

𝑇𝐶
 

(5.10) 

 𝐿𝑊 = 𝑇0𝛥𝑆𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (5.11) 

 

Where: 

𝛥𝑆𝐶:  Entropy generation in the condenser 

𝑉1: Vapor flowrate from stage 1 

𝑆𝐶
𝐿: Entropy of the liquid stream from the condenser 

𝑆1
𝑉: Entropy of vapor from stage 1 

𝑄𝐶: Condenser duty 

𝑇𝐶: Condenser temperature 



 

144 
 

𝐿𝑊:  Lost Work 

𝛥𝑆𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛: Refers to entropy generation in any section of the column (trays, 

condenser or reboiler) 

 

Table 5.2. Summary of the parameters in the regeneration column (C-3) 

Parameter Reboiler Condenser Column Trays Total 

Q (kW) 80.911 82.042 - 162.953 

T(K) 378.187 315.226 - - 

ΔS (kW/K) 525.755 35.105 23.486 584.347 

Lost work (LW) 156675.070 10461.227 6998.969 174135.266 

 

Minimum work can be calculated from equation (5.12). The calculated minimum work in 

this work was 8044.870kW. The data required for the calculation can be found in 

Appendix F, Table F.3. 

 

 𝑊𝑚𝑖𝑛,𝑇0
= 𝑅𝑇0 [𝐹 ∑(𝑥𝑖𝐹𝑙𝑛(𝛾𝑖𝐹𝑥𝑖𝐹)) − 𝐷 ∑ 𝑥𝑖𝐷𝑙𝑛(𝛾𝑖𝐷𝑥𝑖𝐷) − 𝑊 ∑ 𝑥𝑖𝑊𝑙𝑛(𝛾𝑖𝑊𝑥𝑖𝑊)] (5.12) 

Finally, thermodynamic second law efficiency was calculated as 4.62% from equation 

(5.13). 

 
𝜂 =

𝑊𝑚𝑖𝑛,𝑇0

𝑊𝑚𝑖𝑛,𝑇0
+ 𝐿𝑊

 
(5.13) 

 

 

5.3. Results Discussion and Recommendations 

Results show that the reboiler is the main source of entropy generation contributing 

90% to the total entropy produced and the trays produce the lowest entropy (Table 5.2). 

Therefore, the inefficiency of the regeneration column is largely due to the reboiler. This 

coincides with observations reported by Benyounes et al. [1].  The calculated efficiency 

for the regeneration column (4.6%) was within the anticipated range of second law 

thermodynamic efficiencies  (5-20%) of distillation columns [3].  Kim [2] obtained a 

second law efficiency of 5.8% for the separation of toluene and upon implementation of 
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double effect distillation system, Kim [2] was able to improve the second law efficiency 

from 5.8% to 24.3% which was a major improvement (Figure 5.2).  

The double effect is a distillation heat integration technique in which a reboiler of one 

distillation column is paired with a condenser of another column within the process. 

Therefore, we recommend the assessment of a similar technique to integrate the heat 

between the condenser of the proposed Dividing Wall Column (DWC) and the reboiler 

of the regeneration column. One way in which this could be achieved is through the 

application of the pinch technology. It is anticipated that the implementation of such a 

system would result in improved efficiency since the entropy generation analysis 

showed that the reboiler is the main source of inefficiency, followed by the condenser in 

the regeneration column. The entropy generation analysis is indeed a better alternative 

to analyze thermodynamic efficiency since the analysis is done by section and shows 

the areas of greater inefficiency. The knowledge of the areas of greater inefficiencies is 

valuable for the purpose of proposition solutions to improving energy usage within the 

column; for instance, in the current work, the implementation of diabatic distillation in 

which there is heat exchange within trays to optimize energy usage would have 

insignificant impact on the overall efficiency because the main source of inefficiency is 

the reboiler followed by the condenser.   
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Figure 5.2. Double effect distillation system [2] 

 

5.4. Conclusions 

In this chapter we aimed to do an entropy generation analysis on the regeneration 

column. This was done to locate the area of greater inefficiency an explore possible 

ways to improve energy utilization in the column. The column was found to have a 

thermodynamic second law efficiency of 4.6%, which is typical of a distillation column 

according to the open literature. It was established that the reboiler was a major 

contributor of entropy generation, i.e. about 90% of lost work is due to the reboiler. Tray 

by tray separation was found to be the least contributor to entropy generation of the 

column. As a result, it is recommended for future work to assess the heat integration 

between the DWC condenser and the regeneration column reboiler through a method of 

pinch technology.  
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Chapter 6 : Incineration Evaluation and Process 
Economics 

 

Currently the HOW stream is incinerated without energy recovery. In this chapter we 

present a simplified incinerator model from Aspen Plus. Two options are considered and 

compared: incineration of all the HOW stream as is currently practiced at Sasol versus 

the incineration of only the light fractions from the pre-concentration section (D1) as 

shown in our proposed process (Figure 6.1). Heat recovery in the form of steam 

generation is assessed for both options. Furthermore, economic evaluation of the 

proposed process is made to assess its economic performance. Economic evaluation 

was done using Aspen Plus economic analyzer. Since there was no reliable technique 

found in literature for the costing of the Diving Wall Column (DWC), the economic 

evaluation was done on the process proposed in Chapter 3 (Figure 6.1) and it is 

expected that the economic performance will be improved by the implementation of 

DWC proposed in Chapter 4.  

 

 

Figure 6.1. The proposed pyridine recovery process 
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6.1. Introduction  

Incineration is a combustive thermal waste treatment technique. It is mostly used to 

minimize landfilling of waste; it is recorded that this technique can reduce the solid 

waste by up to 90%. On the other hand, there has been compelling arguments against 

incineration and related thermal waste treatment techniques i.e. the harmful gases 

emissions [1]. Although modern incinerators can be operated with emissions control 

devices, most operators may be unwilling to fit them because of the additional capital 

and operational costs [1]. Zero waste production lobbyists have argued that thermal 

treatment techniques act as barriers to the objective of waste minimization through 

valuable resources recycling and as a result, stands in the way of economic growth 

[2,,3]. Connett [3] argued recycling and reusing of waste components uses 4 times less 

energy than incineration. Nonetheless, it is only fair to acknowledge that zero waste 

may not be feasible and there would always be residual even after intensive recycling; 

consequently, incineration of waste may be inevitable to a certain extent. Also, there are 

instances whereby the incineration of waste may be more beneficial than recycling, one 

such example is the treatment of medical waste.  

At Sasol the HOW stream is incinerated without energy recovery using 2 incinerator 

compartments (Figure 6.2). In this chapter, quantification of the incinerator impact was 

made and the energy recovery through steam generation was assessed. It is also 

proposed that the water recovered in the pyridine enrichment section be used for steam 

generation.  
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Figure 6.2. Schematic diagram of incineration unit as carried out by Sasol 

 

6.2. Incineration of the whole HOW stream Versus Incineration of 

Light Fraction Only 

6.2.1. Simulation of Incinerator Units on Aspen Plus 

 Assumptions: 

i. The incinerator is operated at 1300˚C and 1atm; 

ii. The HOW does not contain particulate matter; 

iii. The air composition is 79mol% nitrogen and 21mol% Oxygen; 

iv. The fuel added to keep the incinerator burning was not accounted for; 

v. The incineration model has only 1 compartment. 
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Figure 6.3. Simplified schematic diagram of the incineration unit (Status Quo) 

 

A simplified incineration unit was modelled on Aspen Plus using an RGibbs reactor 

model on Aspen library. The use of RGibbs reactor for the combustion reaction taking 

place in an incinerator was proposed by Cimini et al. [4]. The setup of the simulation is 

depicted in Figure 6.3. The reactor was specified to operate at 1300ºC and 1.1 bar 

(Figure 6.4). This reactor model is mostly used when the kinetics of reactions are 

unknown or complex as is the case with kinetics of the combustion of the HOW stream. 

The RGibbs model uses Gibb’s free energy minimization to predict possible products 

(Figure 6.5).   

 

 

Figure 6.4. RGibbs reactor specifications 
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Figure 6.5. RGibbs reactor specifications continued 

 

Option i. Incineration of all the HOW 

 

Figure 6.6. Air stream specifications 

 

The air stream flowrate was determined using trial and error approach via sensitivity 

analysis function on Aspen Plus. The objective of the sensitivity analysis was to 

determine the amount of air flowrate that favored the formation of CO2 over that of CO. 

While this required higher air flowrates, it was undesired to have unreacted oxygen in 
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the flue gas stream. The first assumption of the air flowrate was 100kton/year (Figure 

6.6). The results of this trial run are depicted in Table 2.1 

 

Table 6.1. Incineration of all the HOW mass balance 

 Parameter HOW AIR Flue gas 

Total flowrate(kg/hr) 2281.542 11407.710 13689.250 

Mass Fraction 

Methyl Isopropyl Ketone 0.290 0.000 0.000 

Methyl Ethyl Ketone 0.081 0.000 0.000 

Carbon monoxide 0.000 0.000 0.148 

Carbon dioxide 0.000 0.000 0.049 

Acetonitrile 0.173 0.000 0.000 

Acetone 0.033 0.000 0.000 

Pyridine 0.111 0.000 0.000 

Nitrogen 0.000 0.767 0.652 

Oxygen 0.000 0.233 0.000 

Water 0.313 0.000 0.151 

 

When the flowrate of the air stream was set at 100kton/year (11407.170kg/hr), all the 

oxygen was used up and more carbon monoxide (CO) than carbon dioxide (CO2) was 

formed (Table 2.1)This meant that there was no oxygen left to convert the CO to CO2, 

which is undesirable because carbon monoxide is more environmentally harmful than 

carbon dioxide. Therefore, sensitivity analysis was done to determine the flowrate that 

minimizes the CO formation and maximizes CO2 formation, while also minimizing the 

oxygen flowrate in the emissions stream. The sensitivity analysis is depicted in Figure 

6.7. 
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Figure 6.7. Sensitivity of O2, CO, and CO2 to air flowrate 

 

Carbon monoxide formation increases with increasing air flowrate up to 10,000kg/hr 

then starts decreasing with a further increment in the air flowrate (Figure 6.7). The 

opposite trend is observed for CO2 formation; CO2 composition remains zero up to 

10,000kg/hr, after which it increases rapidly with the increasing air flowrate, almost as 

fast as CO composition is decreasing (Figure 6.7). This is probably due to the 

conversion of CO to CO2 beyond 10,000kg/hr air stream flowrate. At point X (around 

13,000kg/hr) (Figure 6.7), CO composition is equal to CO2 composition. Beyond X, CO2 

becomes more dominant than CO. The most desired phenomenon occurs at 

16,000kg/hr (line A, Figure 6.7). 16,000kg/hr represents maximum dominance of CO2 

over CO. Beyond line A, CO composition reaches zero and CO2 composition starts 

decreasing; this occurs at the expense of having unreacted oxygen in the emissions 

stream, which is undesirable. Therefore, 16,000kg/hr was used as the air flowrate. The 

corresponding mass balance is given in Table 6.2. 
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Table 6.2. Incineration of the whole HOW stream after implementation of sensitivity 

results 

 Parameter HOW Air Flue gas 

Total flowrate(kg/hr) 2281.542 16000.000 18281.540 

Mass Fraction 

Methyl Isopropyl Ketone 0.290 0.000 0.000 

Methyl Ethyl Ketone 0.081 0.000 0.000 

Carbon monoxide 0.000 0.000 0.009 

Carbon dioxide 0.000 0.000 0.197 

Acetonitrile 0.173 0.000 0.000 

Acetone 0.033 0.000 0.000 

Pyridine 0.111 0.000 0.000 

Nitrogen 0.000 0.767 0.681 

Oxygen 0.000 0.233 0.000 

Water 0.313 0.000 0.113 

 

Feeding air at 16,000kg/hr results in the composition of CO and CO2 in the flue gas 

stream being 0.9mass% and 19.7mass% respectively (Table 6.2). This corresponds to 

the anticipated composition as indicated by point Y in Figure 6.7. The CO2 composition 

was equivalent to 86,558 tons/day and CO composition to 3,827tons/day. 
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Option ii. Incineration of the Light Fractions from Distillation Column (C-1) 

Because the topology of the sensitivity analysis curves for the 2 options are similar 

(Figure 6.7 and Figure 6.8), a similar approach and reasoning to determine the air 

flowrate for the incineration of the whole HOW stream, was used to determine the ideal 

air flowrate for the incineration of the light fractions. The required airflow was 

determined to be 7420kg/hr (line A in Figure 6.8) for the incineration of the part of the 

HOW stream (light fractions). The resulting material balance is depicted in Table 6.3. 

 

 

Figure 6.8. Sensitivity analysis to determine the ideal air flowrate 

 

The CO2 emissions flowrate from the incineration of light fractions from the proposed 

process (Figure 6.1) is reported by the simulation to be 39.755tons/day and the CO 

emissions 1.503tons/day. For both CO2 and CO, the flowrates in the flue gas is over 2 

times less than the values reported for the incineration of the whole HOW stream.  
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Table 6.3. Incineration of light fractions only mass balance 

Parameter  Light fraction Air Flue gas 

Total flowrate(kg/hr) 912.617 7420.000 8332.617 

Mass Fraction 

Methyl Isopropyl Ketone 0.300 0.000 0.000 

Methyl Ethyl Ketone 0.100 0.000 0.000 

Carbon monoxide 0.000 0.000 0.008 

Carbon dioxide 0.000 0.000 0.199 

Acetonitrile 0.373 0.000 0.000 

Acetone 0.050 0.000 0.000 

Nitrogen 0.000 0.767 0.697 

Oxygen 0.000 0.233 0.000 

Water 0.177 0.000 0.097 

 

6.2.2. Energy Recovery through Steam Production 

The incinerator is operated at 1300ºC; therefore, the fuel gas is expected to exit the 

incinerator at the same temperature. Therefore, the flue gas can be used to produce 

superheated steam through heat exchange with the water. The steam can then be used 

for power generation and other steam requirements within the process. In the 

subsequent sections, the quantity of steam produced by each of the 2 options being 

considered in this chapter (incineration of all the HOW versus incineration of only the 

light fractions from the column C-1 (D1, in Figure 6.1). It is noteworthy that, the 

incineration of all the HOW will require external water source for steam generation 

purposes. On the other hand, in the proposed process, it is suggested that the water 

recovered in the pyridine enrichment section be recycled for steam generation (water 

recycle stream in Figure 6.9). This promotes water utilization efficiency in the plant 

which could align with some of the water efficiency strategies implemented in 2011 at 

the Sasol Secunda plant [5].   
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Figure 6.9. Proposed utilization of recovered water (B2 and Raffinate) 

 



 

159 
 

 Estimation of the Steam Generation Capacity 

In both the options, it was assumed that the superheated steam target temperature was 

1200ºC (Figure 6.10) and heat recovery takes place in a simple heat exchanger. A 

shortcut, cross current heat exchanger model from Aspen Plus library was used for heat 

recovery assessment. If we also assume that all the heat flow (enthalpy) of the flue gas 

is consumed by the water stream to reach a temperature of 1200ºC, then the amount of 

water that can be superheated can be calculated using equation (6.1). According to 

equation (6.1), the water is first heated to the boiling point, then vaporization occurs and 

finally, the water vapor is heated from the boiling temperature of water to 1200ºC. It is 

assumed that the water is at 25ºC and that water boils at 100ºC. Data required for 

equation (6.1) is depicted in Table 6.4.  

The enthalpy of the flue gas and heat capacity of the water were extracted from Aspen 

Plus. The mass flowrate to be determined from this calculation may not achievable in 

application due to heat transfer coefficients and other heat transfer limitations of the 

heat exchange device. Nevertheless, the calculation will provide good initial estimation 

which can then be adjusted through trial and error in simulation. The amount of water at 

25ºC that could be converted to superheated steam at 1200ºC was found to be 

6282.722kg/hr. However, from simulation the amount of water that could be converted 

to steam was 5800kg/hr. This gave a percentage relative error of 8% from the 

calculated value.   

 

 �̇� = �̇�(𝐶𝑝,𝑙𝛥𝑇1 + 𝛥𝐻𝑉 + 𝐶𝑝,𝑣𝛥𝑇2) (6.1) 

   

Where: 

�̇�:  Enthalpy flow of the flue gas; 

𝛥𝐻𝑉: Heat of vaporization; 

�̇�: Water mass flowrate; 

𝐶𝑝,𝑙: liquid water heat capacity; 
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𝐶𝑝,𝑙: Water vapor steam capacity; 

𝛥𝑇: Change in temperature of the water from the initial temperature to 1200ºC. 

A similar approach was followed to determine the amount of recycled water from the 

pyridine enrichment section (Figure 6.9) using data in Table 6.4. The potential amount 

of water that could be superheated from the pyridine enrichment temperature (93ºC) to 

1200ºC was calculated to be 2784.336kg/hr. On the other hand, the water recycle 

flowrate is 1253.189kg/hr; therefore, the recycled water cannot fully exploit the heat 

available from the flue gas.  This was indicated by the fact that the flue gas exited the 

heat exchanger at over 700ºC, indicating that a lot of heat energy is still contained in the 

stream. For comparison sake, the flue gas from the incineration of the whole HOW 

stream exits the heat exchanger at 59ºC. There are 2 things that could be done to 

maximize heat recovery from the flue gas resulting from light fractions only 

incinerations: 1) supplement the recycled water with external source water before heat 

exchange with the flue gas or 2) use external source water to recover some of the 

energy from the flue gas after heat exchange with the recycled water.  

 

Heat Exchange Device

Flue gas

Water

Cooled flue

 gas

Superheated

 steam (1200˚C)
 

Figure 6.10. Heat exchange 
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Table 6.4. Parameters required to calculate the amount of steam generation 

  Whole Incineration Light fractions only 

Parameter Value 

Cp,l (kJ/kg-K) 4.199 4.199 

Cp,v (kJ/kg-K) 1.996 1.996 

ΔHv (kJ/kg) 2,260 2,260 

Q̇ (kJ/hr) 30,000,000 12,500,000 

ΔT1 (K) (100-25) (100-93) 

ΔT2 (K) (1200-100) (1200-100) 

 

Table 6.5. Proposed process versus incineration of all the HOW: Summary 

Parameter Proposed Process HOW incineration 

Superheated Steam (kg/hr) 1253.189 5800.000 

Enthalpy flow (kJ/hr) 12,500,000 30,800,000 

CO2 emissions (tpd) 39.755 86.558 

CO emissions (tpd) 1.503 3.827 

*tpd: tons per day 

 

The enthalpy flow of the flue gas for the incineration of the whole HOW was 8,556kW 

(30,800,000kJ/hr) and enthalpy flow of the flue gas from the light fraction only 

incineration only 40% of this value at 3,471kW. This is equivalent to 1684.99kJ/kg and 

1499kJ/kg for the flue gas from full HOW incineration and light fraction only incineration 

respectively. Even though the enthalpy remains higher on per unit mass basis, the 

difference is not that significant. For instance, if the light fraction had the same flowrate 

as the whole HOW, then its enthalpy flow would be 27,415,851.48kJ/hr, 89% of the 

value of the enthalpy flow of the full incineration flue gas.  
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6.2. Economic Evaluation of the Proposed Process  

Economic evaluation is used to assess the potential of process to be profitable.  Net 

Present Value (NPV), Internal Rate of Return (IRR) and payback period are the most 

widely used financial indicators for assessing profitability of processes. Net Present 

Value records the difference between the present values cash inflows and outflows. The 

IRR is the interest rate at which the NPV is zero. A higher IRR is desired for a lucrative 

investment project. If for instance, there exists another investment option yielding 

interest rate higher than the IRR, then one is better off investing in that option than 

investing in the project. The payback period is the number of years it will take to recover 

the invested capital. Payback period may be an effective comparison tool between two 

seemingly profitable investment in which the one resulting in shorter payback period 

would be favored.  

Assumptions  

The following assumptions form the basis of the economic evaluation carried out by 

Aspen Plus: 

i. Plant life = 10 years; 

ii. Pyridine can be resold at 5 USD/kg [6]; 

iii. Chloroform can be purchased at 0.5 USD/kg [7]; 

iv. Interest rate=5%; 

v. Tax rate=40%; 

vi. The process will be built at Sasol Secunda plant and thus there is no need to buy 

land.  

The main costs of the process are specified in Table 6.6 to Table 6.8.  The total 

operating profit was calculated to be 3,261,790USD/year (44,360,344 ZAR/year using 

an exchange rate of 1 USD:13.60). 
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Table 6.6. Major Equipment Capital and Installation Costs 

Unit Equipment Cost [USD] Installation Cost [USD] 

C-1 800,400 1,719,000 

C-2 323,500 843,300 

C-3 385,100 917,800 

 

Table 6.7. Process Utility Costs of the distillation columns 

Unit Steam [USD/hr]  Cooling Water [USD/hr] Electricity [USD/hr] 

C-1 21.777186 1.30752 0.058125 

C-2 6.500189 0.50412 0.014725 

C-3 2.528699 0.20148 0.028675 

 

Table 6.8. Total Costs Summary 

Parameter Total 

Capital Cost [USD] 10,102,400 

Operating Cost [USD/Year] 1,853,870 

Raw Materials Cost [USD/Year] 4,382.17 

Product Sales [USD/Year] 5,115,660 

Utilities Cost [USD/Year] 324,948 

Equipment Cost [USD] 1,510,100 

Total Installed Cost [USD] 3,437,200 

 

Cash flow data depicted in Table 6.9 was extracted from aspen plus. The Present Value 

for each cash flow was calculated using equation (6.2) and the Net Present Value 

(NPV) was calculated from the Present Value data using equation (6.3) (Table 6.9). The 

NPV was determined to be 5,775,740USD indicating that the process could potentially 

be a profitable investment. Internal Rate of Return (IRR) was determined from the cash 

flow data in Table 6.9 as 19.597%. Excel IRR function was used to calculate IRR.  A 

higher value of IRR is a characteristic of a profitable investment.  
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𝑃𝑉 =

𝐶𝐹

(1 + 𝑖)𝑛
 

(6.2) 

Where: 

𝑃𝑉: Present Value for cash flow at the nth year; 

𝐶𝐹: Cash Flow; 

𝑖: Interest rate; 

𝑛: Number of years. 

 𝑁𝑃𝑉 = ∑ 𝑃𝑉 (6.3) 

 

Cumulative cash flow curve (Figure 6.11) found by the cumulative summation of the 

cash flows (collected payback in Table 6.9) shows that the breakeven point occurs 

between 4 and 5 years meaning that it would take about 4.5 years to recover the 

invested capital. After the breakeven point the process starts to be profitable.   

 

Table 6.9. Cash flow, present value and collected payback 

Number of years Cash flow (USD) PV (USD) Collected payback (USD) 

0 -11,654,300 -11,654,300 -11,654,300 

1 1,812,190 1,647,445 -9,842,110 

2 2,575,180 2,128,248 -7,266,930 

3 2,711,780 2,037,400 -4,555,150 

4 2,855,930 1,950,639 -1,699,220 

5 3,008,040 1,867,756 1,308,820 

6 3,168,520 1,788,547 4,477,340 

7 3,337,830 1,712,835 7,815,170 

8 3,516,410 1,640,431 11,331,580 

9 6,264,450 2,656,738 17,596,030 
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Figure 6.11. Cumulative cash flow for the proposed process 

 

6.3. Conclusions 

The incineration of whole HOW stream emits over 2 times CO and CO2 as flue gas. We 

acknowledge the limitation of the simplified model, as the incinerator as currently 

applied for the incineration of the HOW stream may be more complex. One of the key 

aspects of incineration that was not accounted for in this work, is the addition of fuel to 

keep the incinerator running. Furthermore, it is expected that the flue gas will have a 

diverse range of gases, whereas in this work, CO and CO2 were the main products of 

consideration. On this basis, the simplified model represents minimum impact of the 

whole HOW stream incineration. Still, it may be a good basis for the argument against 

the incineration of the whole HOW. The economic evaluation shows that the pyridine 

recovery yields a payback period of 4.5 years and an Internal Rate of Return of 

19.576%.  

 

 



 

166 
 

References  

[1] European Commission, “Reference document on the Best Available Techniques 

for Waste Incineration,” Integr. Pollut. Prev. Control, no. August, pp. 1–638, 2006. 

[2] “Energy from Waste: Part 1 -The Myths Debunked - YouTube,” 2007. 

[3] P. Connett, “Zero waste: A global perspective,” 2006. [Online]. Available: 

https://web.archive.org/web/20080406085208/http://www.recycle.ab.ca/2006Proc

eedings/PaulConnett_Zero_waste.pdf. [Accessed: 23-Oct-2017]. 

[4] S. Cimini, M. Prisciandaro, and D. Barba, “Simulation of a waste incineration 

process with flue gas cleaning and heat recovery sections using Aspen Plus,” 

Waste Manag., vol. 25, pp. 171–175, 2005. 

[5] Sasol, “Sasol online sustainable development information: responding to 

environmental challenges,” 2015. 

[6] “Pyridine Price, Pyridine Price Suppliers and Manufacturers at Alibaba.com.” 

[Online]. Available: https://www.alibaba.com/showroom/pyridine-price.html. 

[Accessed: 18-Oct-2017]. 

[7] “Chloroform Price, Chloroform Price Suppliers and Manufacturers at 

Alibaba.com.” [Online]. Available: https://www.alibaba.com/showroom/chloroform-

price.html. [Accessed: 18-Oct-2017]. 

 

 

 

 

 

 

 



 

167 
 

Chapter 7 : Conclusions and Recommendations 
 

The objective in this work was to recover pyridine from a petrochemical waste stream, 

namely, the High Organic Waste (HOW) stream produced at Sasol Secunda plant. The 

proposed recovery process was divided into 2 sections: water-pyridine mixture 

separation from the rest of the HOW using simple distillation and pyridine enrichment 

section. In the latter, thermodynamic tools were used to assess different entrainers and 

techniques that can separate the water-pyridine azeotropic mixture.  Methyl Isobutyl 

Ketone (MIBK) and chloroform were compared as potential entrainers and it was shown 

that chloroform was a better entrainer. Even so, the conventional design of the 

chloroform-water-pyridine system had a very high Entrainer to azeotropic mixture 

(EA=4:1; calculated from the RCM). This was deemed inappropriate for waste treatment 

facility which was meant to recover pyridine but also reducing the incinerator load.  

A separation process that incorporates liquid-liquid extraction into the system was 

synthesized based on the Residue Curve Map (RCM) topology and this resulted in a 

90% reduction of the EA from 4:1 to 0.36:1 (calculated from the RCM). The EA 

calculated from the simulation material balance was 0.32:1 and the percentage relative 

error between the EA from the RCM and the EA from simulation material balance was 

calculated to be 13%. The entrainer performance of the proposed system was 

compared to the classical toluene-water-pyridine system and it was established that the 

proposed process required 1.6 times less entrainer than the toluene system. The 

proposed process had the added benefit of lower energy consumption due to the 

reduced load to the azeotropic distillation column as liquid-liquid extraction unit removed 

over 80% of the water originally in the azeotrope. Over 99% recovery of pyridine and 

over 80% of water was achieved using the proposed process. The water and pyridine 

had purities of 99.9mol% and 96mol% respectively.  

To reduce the number of distillation columns in the proposed process and consequently 

improve energy utilization, a Diving Wall Column (DWC) technique was proposed for 

the integration of the two pre-concentration distillation columns as in the initial proposed 

process. The DWC implementation reduced the reboiler and condenser heat duties by 
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10% each. Furthermore, it improved the recovered pyridine purity from 96mol% to over 

99.9mol% matching up to industry specification of reusable pyridine. Therefore, despite 

the low energy saving, DWC was still advocated for in this work.  

As an extension of energy integration in the proposed process, entropy generation 

analysis was done on the regeneration column to evaluate its thermodynamic second 

law efficiency and to recommend an energy integration strategy if the efficiency is low. 

The calculated second law efficiency was 4.6% which is typical of a distillation column 

according to literature. It was also found that the reboiler in the regeneration column 

was the major source of inefficiency, being responsible for over 90% of the total lost 

work. Consequently, it was recommended that heat integration between the DWC 

condenser and regeneration column reboiler be assessed using pinch technology in 

future work.  

Incineration of the whole HOW as currently practiced at Sasol Secunda plant was 

compared with the incineration of only the light fractions from the proposed pyridine and 

water recovery process. It was established that the proposed process reduced the CO 

and CO2 emissions by 50%. Although the incineration of the HOW stream is currently 

executed without energy recovery, heat recovery was assessed for both the incineration 

of the whole HOW and light fractions. The enthalpy of the flue gas due to incineration of 

the whole stream 1685kJ/kg and that of the flue gas resulting from the incineration of 

the light fractions only was 1499kJ/kg. The steam produced from the incineration of the 

whole stream was 5800kg/hr versus 1253kg/hr for the incineration. However, the flue 

gas emanating from the heat exchanger for light fractions only incineration had a 

temperature over 700ºC showing that it still contained significant energy. 

In future work, the recycled water could be supplemented with external water source for 

maximum heat recovery. We acknowledge the limitation of the simplified model, as the 

incinerator as currently applied for the incineration of the HOW stream may be more 

complex. One of the key aspects of incineration that was not accounted for in this work, 

is the addition of fuel to keep the incinerator running. Furthermore, it is expected that 

the flue gas will have a diverse range of gases, whereas in this work, CO and CO2 were 

the main products of consideration. On this basis, the simplified model represents 
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minimum impact of the whole HOW stream incineration. Still, it may be a good basis for 

the argument against the incineration of the whole HOW.  

Finally, preliminary economic evaluation of the proposed recovery process was done 

using Aspen Plus economic analyzer. Ideally, the evaluation should have been done on 

the improved design incorporating DWC, however a reliable technique for DWC costing 

has not been established yet. Therefore, the process economic evaluation was done on 

the original design including heat recovery through steam generation. The process was 

found to be profitable with the Net Present Value of over 5 million USD and an Internal 

Rate of Return of about 20%. The payback period of the project was calculated from the 

cash flows to be 4.5 years.  
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Recovery of pyridine and water from a petrochemical organic rich waste 

stream: thermodynamic constraints and alternatives analysis 

 

Moratwe Molote1 and Jean Mulopo2 

(1), (2) Sustainable Energy and Environment Research Group, School of Chemical 

Engineering, University of Witwatersrand PO Box 3, Johannesburg, Wits 2050, 

South Africa. Phone: +27 11 717-7507; Fax: +27 11 717-7604;  

*Corresponding Author email: moratwe.molote@gmail.com 

ABSTRACT. The South African waste industry is currently worth 

over 15 billion ZAR (1 GBP=17.34 ZAR), employing 29,000 

people. Recent research has shown that of the 108 million tons of 

waste generated per annum (all types of waste), only 10% is 

recycled. Consequently, the development of sustainable waste 

management strategies remains a critical area of concern in South 

Africa. In most cases, industrial liquid waste streams are usually 

very dilute so that it is often economically inviable to recover 

targeted valuable chemicals. The use of process simulators may 

be the fastest way to check for the feasibility of separation and 

chemical processes in general. However, over the past 2 decades, 

process simulators have grown in complexity and robustness 

resulting in a detachment between process engineers and the 

processes they design. On the other hand, the use of 

thermodynamic tools, i.e. residue curve maps (RCM) and iso-

volatility curves have proven valuable in providing unique insight 

into the synthesis and design of complex separation processes. 

The objective of this work is therefore twofold i) to use simple 
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thermodynamic analysis tools to assess the recovery of pyridine 

from an organic rich industrial waste stream and ii) to validate the 

thermodynamic prediction using Aspen Plus process simulator. It is 

shown that the combination of thermodynamic tools and rigorous 

process simulation resulted in a process that reduces the waste 

and the corresponding CO2 emissions from the incinerator by 60% 

and 50% respectively compared to the current incineration practice 

and stands to save $3 million from pyridine reuse.

1 Introduction 

Recent economic and industrial expansion across the globe (Indonesia, China, South 

Africa and India) and the development of urban cities (megacities) has resulted in 

massive waste generation; a phenomenon which has grown to be one of the major 

challenges of the 21st century [1]. Lack of strategic plans for waste management has 

undesirable consequences such as pollution and loss of lives as could be seen with the 

accident that took place in Quezon in the year 2000 wherein a stack of waste collapsed 

[86].  Due to lack of policy enforcement in South Africa, dilute industrial waste streams 

are often discarded onto large water bodies and sewage systems for companies located 

inland [25]. The latter results in difficulty in treating sewage waste.  One of the most 

widespread, global strategies to treat waste is incineration; although this practice 

reduces the volume of waste, it is not always the best approach to waste treatment as it 

could also contribute to global warming through greenhouse gases emissions and could 

also result in loss of valuable chemicals [4]. There is thus a need to do away with “treat 

to discard” mentality and start focusing on the opportunities presented by waste 

generation [87].   

Waste valorization through implementation of appropriate waste management 

strategies has the potential to alleviate the socio-economic stresses such as 

unemployment and high resource consumption rate in South Africa. For instance, the SA 

waste industry was reported to be worth 15.8 billion ZAR (0.51% GDP of the country) in 

2012, employing over 29,000 people [4]. It is estimated that a further 20% and 60% 
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recycle of industrial waste and domestic waste respectively could result in a further 17 

billion ZAR revenue and potential job creation for 30,000 more people. Consequently, 

the SA government has recently developed a new green policy and regulatory 

framework for waste management which emphasize minimization of waste production 

and resource consumption [National Environmental Management: Waste Act (Act 59 of 

2008))] [4]. This paper focuses on the aqueous waste stream produced in SASOL 

Secunda composed of low boiling organic components such as acetonitrile, pyridine, 

and methyl ethyl ketone. Currently the stream is incinerated with energy recovery in the 

form of steam generation. This practice produces about 13 tons per day of CO2 emission 

which serves to exacerbate the already alarming CO2 emissions from this plant that 

emanates from power generation part of the plant. 

Separation of pyridine from water and other components is an ongoing research [6]. 

This can be attributed to the fact that pyridine is a versatile chemical solvent that has 

found application in a variety of industries including textile, paint and agrochemical 

industries [6,7]. Currently the pyridine market is worth over 450 million USD; it is 

projected that this will increase to about 650 million USD by 2021 [5].  Moreover, its 

demand is expected to grow by 9.95% compound annual growth rate between now and 

2025 [6]. Besides the azeotrope formed between pyridine and water, pyridine recovery 

from spent streams is further made difficult by the dilute nature of the waste streams in 

which it is found [39]. Luyben and Chien (2013) [39] proposed the use of heterogeneous 

azeotropic distillation using toluene as an entrainer, Burroughs Wellcome Co 

implemented  liquid-liquid extraction for the recovery of pyridine from a waste stream 

and made 1.5 million USD per annum worth of savings in the early 1990s [37].  

Pervaporation, and other membrane based techniques have been proposed as 

techniques for the separation of azeotropic mixtures [11-14], however industry has 

shown more preference toward distillation processes because of their simplicity, ability to 

deal with complex mixtures and to yield purer products and perpetual improvements it 

receives [15-18]. More importantly, distillation is preferred because its separation is 

based on VLE (Vapor Liquid Equilibrium) which can be rigorously predicted using 
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thermodynamic models such as Wilson, Non-Random Two Liquid (NRTL) and others 

[53].  

In its ordinary form, distillation cannot separate azeotropic mixtures, as a result, 

modified distillation techniques such as azeotropic distillation (homogeneous and 

heterogeneous) and pressure swing distillation (PSD) are used [19,20]. Pressure swing 

distillation cannot be used for the separation of water-pyridine azeotrope since this 

mixture is not pressure sensitive [16,21]. Of interest, is the heterogeneous azeotropic 

distillation in which the entrainer introduces one or more azeotrope(s) and liquid-liquid 

immiscibility to the original mixture [55]. The addition of a solvent (entrainer) in 

azeotropic distillation is a cause for concern especially for the application of waste 

minimization; in some applications, the entrainer to mixture ratio can be as high as 8, as 

in the dehydration of ethanol using 1-butnaol [55]. The higher the solvent requirement 

the more redundant the treatment becomes since the chief aim is to reduce waste while 

the recovery of valuable chemicals serves as motivation. The entrainer reduction 

techniques were studied by Hilal et al (2002) [40], but have generally not been 

addressed adequately in the past; therefore this work aims to expand on the subject. 

The objective of this work is therefore to assess the applicability of separation 

processes to the recovery of pyridine from a low boiling organic waste stream produced 

at Sasol Secunda plant using Aspen Plus process simulator in conjunction with 

thermodynamic tools. Hitherto, no other solvent apart from toluene has been studied in 

detail for the separation of water and pyridine azeotrope. In this work, Methyl Isobutyl 

Ketone (MIK) and chloroform were compared as potential entrainers for the same. We 

illustrate using chloroform-pyridine-water system how the design of heterogeneous 

azeotropic distillation can be modified to reduce the entrainer to azeotropic mixture ratio. 

The proposed process’ solvent consumption was then compared with the classical 

example of toluene-water-pyridine system proposed by Wu and Chien (2009) [27].  
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2 Thermodynamic Analysis of Separation Processes 

2.1 Background  

Thermodynamic analysis of separation processes has been proposed to gain insight 

of separation processes. The most used thermodynamics tools used for separation 

processes are residue curve maps and iso-volatility curves discussed below.  These are 

commonly applied for distillation processes [23-25]. Although the curves are useful, their 

use have been extremely limited in the past due to the tedious process of producing 

them mathematically [65]. Today, computer software such as Aspen Plus and Matlab 

can generate these curves with relative ease. The amount of solvent required is largely 

influenced by the topology of the residue curve map and can de deduced from the 

residue curve map plot. In conjunction with residue curve maps, iso-volatility curves can 

be used to enhance entrainer selection criteria. 

2.2 Residue Curve Maps 

Residue curve maps are primarily used for the preliminary design of distillation sequence 

and to assess the feasibility of separation, but their use can be easily extrapolated to the 

assessment of the effectiveness potential entrainers as shown [21,24]. Other uses 

include column troubleshooting and control [65] . A residue curve represents 

composition of a liquid remaining in a simple batch distillation process [57]. This can be 

represented mathematically by equation 1 below [55]. The plot of a residue curve may 

be done on an equilateral triangle or right-angled triangle. In this work, Aspen Plus was 

used to generate the residue curve maps. Figure 1 below shows graphically how a 

residue curve is generated experimentally.  

 

𝑑𝑥𝑖

𝑑𝜉
= 𝑥𝑖 − 𝑦𝑖          (1) 

Where 𝑥𝑖: Liquid composition of component i 
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𝑦𝑖: Vapor composition of component i 

𝜉: Dimensionless time 

A residue curve starts at an unstable node (lowest boiling component) and 

approaches the saddle point (intermediate boiling component) then ends up at the stable 

node (highest boiling component) (see Figure 1 below). Residue curve maps generated 

for heterogeneous azeotropic distillation will typically have at least one distillation 

boundary. It is practically impossible to separate components located in different 

distillation regions using distillation; however, liquid-liquid separation such as decanting 

and liquid-liquid extraction may be used to cross the boundary when there is liquid-liquid 

immiscibility within the mixture.  

 

 

 

Figure 1.  Experimental development of a residue curve [65]. 

2.3 Iso-volatility Curves 

The iso-volatility curve tracks the composition in which the relative volatility of the 

mixture is 1 [39]. The superimposition of iso-volatility curve on the residue curve map 

can help with the comparison of the effectiveness of potential entrainers for azeotropic 
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distillation. Although, they are mainly used for when heavy entrainers are concerned 

[39], their use can be extended to light entrainers application as illustrated in this work. 

The iso-volatility curve starts at the azeotrope and ends at the intersection where the 

composition of one of the components in the original binary mixture is zero (from point A 

to B in Figure 2 below); the number of azeotropes present in the mixture will match the 

number of iso-volatility curves. The entrainer whose point B is farther from the entrainer 

is regarded as the most effective entrainer for separation using azeotropic distillation 

[39].  

 

 

 

Figure 2. Superimposition of iso-volatility curve on a residue curve map. 

3 Process Analysis Application 

A waste stream under consideration consists mainly of low boiling organic components 

is produced at SASOL Secunda plant. Amongst the components contained in the waste 

is pyridine; one of the most versatile solvents in industry.  A large fraction of the stream 

is made up of water. The stream composition is given in Table 1 (a) below. The waste 

stream flow rate is reported to vary between 20 and 30 kilo tons per year. As can be 

seen from Table 1(a), water is common in all the azeotropes formed except for the 

acetonitrile-methyl ethyl ketone azeotrope. Moreover, pyridine is the highest boiling 
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component, followed by water and Methyl Isobutyl Ketone. Also, water-pyridine 

azeotrope is the highest boiling azeotrope in the feed mixture; the difference between 

the boiling points allows for the isolation of water-pyridine azeotrope using simple 

distillation. This can be done without the loss of pyridine because pyridine forms 

azeotrope with water only. From these observations, the generic process flow diagram 

depicted in Figure 2 below was proposed for the recovery of pyridine from this waste 

stream.  

 

Table 1 (a). Waste stream composition, existing azeotropes and boiling points. 

Component 

Mass 

Fraction BP(C) 

Azeotropes 

Formed 

Azeotrope 

BP(C) 

Pyridine 0.05 115.16 W-P 93.71 

Acetone 0.02 56.14 W-A 76.53 

Water 0.62 100.02 W-A-MIK 76.32 

Acetonitrile  0.15 81.48 W-MEK 79.34 

Methyl Ethyl Ketone 0.04 79.34 W-MIK 77.61 

Methyl Iso Propyl 

Ketone 0.12 94.08 A-MEK 79.09 

 

Table 1(b). Explanation of keys used in Table 1 (a). 

Abbreviation Explanation 

W-P Water-Pyridine 

W-A Water-Acetonitrile 

W-A-MIK Water-Acetonitrile-Methyl Isopropyl Ketone 

W-MEK Water-Methyl Ethyl Ketone  

W-MIK Water-Methyl Isopropyl Ketone 
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A-MEK Acetonitrile-Methyl Ethyl Ketone 

 

 

Figure 3. Generic proposed separation process flow.

The system being studied in the sections to follow is the pyridine-water stream in 

Figure 3 above. 

Assumptions 

4. The waste stream flow rate is 20 kilo tons per year. 

5. Pressure drop is insignificant in all distillation columns.  

6.  NRTL property method was used across all process units: Aspen plus uses the 

modified Antoine equation given as equation 2 below to calculate the liquid 

activity coefficients using binary parameters. 

 

ln 𝛾𝑖 =
∑ 𝑥𝑗𝜏𝑗𝑖𝐺𝑗𝑖𝑗

∑ 𝐺𝑘𝑖𝑘
+ ∑

𝑥𝑗𝐺𝑖𝑗

∑ 𝐺𝑘𝑗𝑘
[𝜏𝑖𝑗

∑ 𝑥𝑚𝜏𝑚𝑗𝐺𝑚𝑗𝑚

∑ 𝑥𝑘𝐺𝑘𝑗𝑘
]                      (2)

𝑗

 

𝐺𝑖𝑗 = exp(−𝛼𝑖𝑗𝜏𝑖𝑗)             (2a) 

 𝜏𝑖𝑗 = 𝑎𝑖𝑗 +
𝑏𝑖𝑗

𝑇
+ 𝑒𝑖𝑗𝑙𝑛𝑇            (2b)       

𝛼𝑖𝑗 = 𝑐𝑖𝑗, 𝜏𝑖𝑖 = 0, 𝐺𝑖𝑖 = 1         (2c)               
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Entrainer selection is the single most crucial step in azeotropic distillation. This is 

because the entrainer dictates feasible separation sequence and number of columns 

required to realize the desired separation. Consequently, the entrainer plays a key role 

in the economics of the process and its energy consumption thereof. Any design made 

is within the constraints imposed by the entrainer, i.e. distillation boundary. In azeotropic 

distillation, entrainer performance should also be gauged by the ease with which they 

can enhance the relative volatility of an azeotropic mixture (indicated by the iso-volatility 

curves). Some of the factors to consider when selecting the entrainer are: its cost 

relative to the cost of the targeted chemical, availability within the area of the process 

and its toxicity. The choice of Chloroform and methyl isobutyl ketone as potential 

entrainers was informed by literature [10,28].   

 

 

 

 

 

 

 

Chloroform  
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Figure 4. (a): Chloroform-water-pyridine residue curve map showing liquid-liquid 

envelope, iso-volatility curves, distillation boundary and material balance lines; (b): 

Corresponding synthesized process flow diagram. 

The addition of chloroform to the water-pyridine mixture introduces one more 

azeotrope to the system (water-chloroform) as depicted in Figure 4(a) above. The 

resulting residue curve map is divided into 2 regions with a large liquid-liquid 

immiscibility region, thus allowing for natural liquid-liquid separation to take place. In 

both regions, the water-chloroform azeotrope is the lowest boiling point (unstable node). 

The feed is in Region I and the objective is to move into Region II wherein pyridine is 

found. This can be done by taking advantage of the liquid-liquid equilibrium 

phenomenon to cross the boundary. In Region II pyridine is the stable node. Therefore, 

it follows naturally that once in this region, an indirect split approach will be followed to 

sample pyridine as a bottoms product (B2) of a distillation column. The process flow 

diagram corresponding to this residue curve is depicted in Figure 4(b). 

 

Methyl Isobutyl Ketone 
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Figure 5. (a): MIK-water-pyridine residue curve map showing liquid-liquid envelope, iso-

volatility curves, distillation boundary and material balance lines; (b): Corresponding 

Synthesized process flow diagram.

The residue curve map is divided into 2 regions and as required for heterogeneous 

azeotropic distillation, there exists a liquid-liquid immiscibility region (see Figure 5 (a) 

above).  The feed is found in Region I and as in the last analysis the aim is to move to 

region 2 wherein pyridine is found. The feed is first concentrated to azeotropic 

composition using a distillation column. The azeotropic composition (D1) leaves the first 

distillation column (C-1) as a distillate and pure water leaves this column as the bottoms 

product. D1 is mixed with the organic reflux in the next distillation column (C-2) where 

the MIK-water azeotrope is a distillate product and the mixture of pyridine and MIK are 

sampled as a bottoms product. The bottoms product of C-2 are further distilled to 

separate into pure pyridine and MIK as a distillate and bottoms product respectively in 

distillation column C-3. The process flow diagram corresponding to this synthesis is 

depicted in Figure 5(b). The residue curve formed by the addition of methyl isobutyl 

ketone to the water-pyridine system necessitates the use of 3 distillation columns. 

consequently, the operational costs will be much higher than the 2-column process on 

the chloroform system in terms of energy intensity and control costs. Moreover, the 

difference between boiling points of pyridine and MIK is insignificant, therefore 

separation in column 3 may not be feasible at all.  
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From the discussion above, it follows that chloroform is the more suitable entrainer 

for the separation of pyridine-water azeotrope. furthermore, the iso-volatility curves in 

Figure 5 and 4 above also shows that chloroform is a more effective entrainer; the iso-

volatility curve in the chloroform-water-pyridine intersects the water-chloroform axis at 

0.18 whereas the intersection is at 0.30 for the MIK system (see point C in Figures 4 & 5 

respectively). The chloroform system process however requires large sums of entrainer 

in the azeotropic distillation column. This is seen by point A in Figure 4 (a) wherein 

chloroform composition is approximately 80mol% of the ternary mixture.   

 

 

 

 

4 Can We Do Better? 

 

Figure 6. (a): Chloroform-water-pyridine residue curve map showing liquid-liquid 

envelope, iso-volatility curves, distillation boundary and material balance lines; (b): 

Improved process flow diagram including liquid-liquid extraction.  
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The idea is to add just enough entrainer to move point D1 to point A (see Figure 6(a) 

above) to the distillate of the pre-concentrator (D1). Once the composition in A is 

attained, liquid-liquid extraction is used to separate the mixture into an organic rich 

phase (extract) and an organic lean phase (raffinate). The extract is a ternary mixture of 

pyridine, water and chloroform (see Extract in Figure 6 (a) above). It is then taken to the 

azeotropic distillation column (C-2) where pyridine is sampled as a bottoms product.  

The distillate of C-2 (D2) is the composed of mainly chloroform (about 77mol%), and 

water (23mol%) (see point D2 in Figure 6(a) above) and it is recycled back to the liquid-

liquid extraction column.  To avoid the loss of pyridine and because chief fraction of D2 

is chloroform (the entrainer); it is recycled back to the liquid-liquid extraction column as it 

is. This process was simulated in Aspen Plus with the NRTL binary parameters and 

equipment design parameters given in Table 2 and 3 respectively. 

                     Table 2. Binary parameters of the chloroform-water-pyridine mixture. 

Comp* i Pyridine Pyridine Water 

Comp* j Water Chloroform Chloroform 

aij 0.138 2.671 8.844 

aji 5.118 -4.517 -7.352 

bij -197.679 -1225.041 -1140.115 

bji -735.747 1595.533 3240.688 

cij 0.300 0.300 0.200 

Comp*: Component 

                               Table 3. Summary of columns used for pyridine dehydration.

 

C-1 C-2 E-4 

Reflux Ratio 2.000 2.500 - 

Total number of 

stages 20.000 30.000 10 

Condenser duty -205.316 -81.837 - 
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Reboiler duty 207.987 80.882 - 

 

The main difference between the design in Figure 6 and the conventional analysis 

proposed in Figure 4 above is that liquid-liquid separation in the conventional analysis, 

liquid-liquid separation is used for entrainer regeneration and water-pyridine separation 

takes place mainly in the distillation column; whereas, in the improved design separation 

of pyridine-water mixture takes place both in the  liquid-liquid extraction column and the 

distillation column, thereby taking advantage of the both LLE (Liquid-Liquid Equilibrium) 

and VLE (Vapor Liquid Equilibrium) for separation of the same mixture. The result is a 

dramatic reduction of entrainer to mixture ratio (from 80mol% to 22mol% in the total 

mixture (see point A in Figure 4(a) and Figure 6(a) respectively). Liquid-liquid extraction 

removes just enough water to enable distillation to sample pure pyridine from the ternary 

mixture. Therefore, distillation column C-2 serves 2 purposes: solvent regeneration as 

well as pyridine recovery.  The former approach is equivalent to mixing the entrainer and 

the azeotropic mixture then distilling to sample the target component. That way, to move 

from D1 to a point in Region II where pyridine can be effectively sampled using 

distillation requires the addition of a large amount of entrainer; separation would only be 

feasible if the entrainer makes up about 80mol% (point A in Figure 4(a)) of the total 

mixture (entrainer plus   azeotropic mixture), anything below this will either result in 

pyridine loss, unnecessary recycles or more unduly number of columns. Substantial 

amounts of entrainer to azeotropic mixture ratio results in higher energy consumption, 

increases raw materials costs significantly and large recycle flowrates which can be very 

costly. More importantly, it makes the waste treatment redundant in light of sustainable 

development.  

Pyridine recovery of over 99wt% at 98wt% (96mol%) purity is possible using the 

proposed design. The mass balance for the recovery process is given in Table 4 below. 

There is good agreement between the simulation composition depicted in Table 4 below 

and the ones predicted in the residue curve map in Figure 6(a). The differences between 

these can be attributed to the presence of acetonitrile as an impurity in the feed stream 
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that is unaccounted for in the residue curve map.  It is noteworthy that the main impurity 

in the pyridine stream (B2) is acetonitrile (see Table 4 below) and not water. This 

signifies that the proposed system is effective in breaking water-pyridine azeotrope in 

that in the absence of acetonitrile impurity, purity over 99mol% could potentially be 

attained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Material balance of the proposed process. 

 

Feed  B1 D1 E-F Raffinate Extract B2 D2 

Fresh 

Chloroform 

Component Mole Fraction 

  Pyridine 0.020 0.000 0.236 0.000 0.000 0.341 0.961 0.000 0.000 

Water 0.979 1.000 0.755 0.282 0.000 0.182 0.000 0.283 0.000 

Acetonitrile 0.001 0.000 0.009 0.001 0.999 0.014 0.036 0.001 0.000 

Chloroform 0.000 0.000 0.000 0.717 0.001 0.463 0.002 0.716 1.000 

Units Mole Flow Rate 

  kmol/hr 71.027 64.927 6.100 2.736 4.608 4.228 1.500 2.727 0.008 
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The process proposed by Wu and Chien (2009) [27] and its mass balance are depicted 

in Figure 7 and Table 5 respectively. The residue curve produced for this system has 2 

distillation boundaries resulting in 3 distillation regions.  Fresh feed is mixed with the 

aqueous outlet from the decanter (see Figure 7(a)). The mixture is distilled to 

concentrate the mixture closer to azeotropic composition; this is done to avoid using 

excessive amounts of solvents in the azeotropic column [39]. The azeotropic mixture 

(D2) is recycled back to the heterogeneous azeotropic distillation column (C-1). From C-

1, pure pyridine is recovered as the bottoms product as per mass balance line shown in 

Figure 7 (a). Liquid-liquid separation (decanter in this case) is used to cross the 

boundary to separate the organic rich phase from the organic lean phase (Aqueous 

Outlet). The organic rich phase is recycled back into the column.  

 

Figure 7. (a) Water-pyridine-toluene system residue curve map; (b) Azeotropic 

distillation process flow diagram for pyridine dehydration using toluene [66]. 

Table 5. Material balance for the toluene-water-pyridine system [66]. 

 

Fresh 

Feed AO D2 B2 D1 B1 OR 

Component Mole fraction 
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Pyridine 0.100 0.010 0.210 0.001 0.071 0.999 0.150 

Water 0.900 0.990 0.790 0.999 0.561 0.001 0.011 

Toluene 0.000 0.000 0.000 0.000 0.368 0.000 0.839 

Units Mole Flow Rate 

 kmol/hr 1000.000 391.200 490.400 900.800 696.300 99.200 305.100 

 

The entrainer to azeotropic mixture ratio is 0.285 for the chloroform system and 0.474 for 

the toluene system [66] (see Table 6 below). The compositions of the entrainers for the 

chloroform and toluene system are 0.221 and 0.321 respectively in the total mixture. 

These compositions can be predicted preliminary using residue curve maps systems 

(see Figure 6(a) and Figure 7(a) above). Therefore, the proposed design uses 1.7 times 

less solvent as used in the toluene system. This translates to the toluene system using 

over 16,000 kmol/year more than the chloroform system. The reduced amount of 

entrainer means smaller equipment for storage and processing and thus lower capital 

costs. Therefore, in terms of entrainer consumption, the chloroform process proposed in 

this work is better than the status-quo toluene azeotropic distillation system. Chloroform 

has the added benefit of being cheaper than toluene at 0.5 USD/kg versus 1USD/kg. 

The fact that separation is divided between the liquid-liquid extraction and distillation has 

good implications on the energy requirements of the system because distillation is more 

energy intensive than liquid-liquid extraction so the reduction of the load to be processed 

by the distillation column is bound to result in less energy consumption of the separation 

process.     

Table 6. Comparison of toluene and chloroform as entrainers. 

 

Chloroform Toluene  

Composition in the total 

mixture  
0.222 0.321 
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Entrainer to mixture ratio  
0.285 0.474 

 

5 Let us Consider the Bigger Picture 

Currently the feed stream under consideration is incinerated with energy recovery in the 

form of steam generation that in turn helps in the production of electricity as shown in 

Figure 8 below. This practice produces at least 36tons/day of CO2; this can be deduced 

from Table 7 below. The treatment facility depicted in Figure 9 reduces the waste stream 

by 60%. Presently, 20kt/year is fed to the incinerator but with the proposed treatment, 

only 8kt/year is fed to the incinerator. This reduces the carbon dioxide emissions from 

the incinerator by 50wt% (from 36 to 18 tons per day) with the benefit of recovering 

pyridine. The 40% remaining is incinerated as per current practice. This is advantageous 

in a sense that the current facility would still be used and will not become redundant. 

Moreover, over 90wt% of the water present in the feed was recovered and reused for 

steam generation using the heat from the stream exiting the incinerator (see Figure 9). 

Chloroform required to achieve pyridine using the proposed design is about 0.5mol% of 

the pyridine in the original feed; so, even in the bigger scheme of things, particularly in 

light of sustainable development the proposed process is sensible. Table 8 below 

summarizes the economic evaluation of the treatment plant.  
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Figure 8. Simplified waste incineration treatment plant (Status Quo) 

Table 7. Incineration Material Balances 

 

Feed 

(waste) Air feed 

Water 

feed Steam Flue gas 

 

Mass Fraction 

Acetone 0.020 0.000 0.000 0.000 0.000 

Acetonitrile 0.150 0.000 0.000 0.000 0.000 

Pyridine 0.050 0.000 0.000 0.000 0.000 

Methyl ethyl ketone 0.040 0.000 0.000 0.000 0.000 

ethyl isopropyl ketone 0.120 0.000 0.000 0.000 0.000 

Water 0.620 0.000 1.000 1.000 0.207 

Oxygen 0.000 0.233 0.000 0.000 0.000 

Carbon monoxide 0.000 0.000 0.000 0.000 0.034 

Carbon dioxide 0.000 0.000 0.000 0.000 0.149 

Nitric oxide 0.000 0.000 0.000 0.000 0.000 

Hydrogen cyanide 0.000 0.000 0.000 0.000 0.000 

Nitrogen 0.000 0.767 0.000 0.000 0.610 

Units Mass flow rate 

kg/hr 2281.542 7985.398 4449.008 4449.008 10266.940 
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Figure 9. Full treatment plant.  
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Table 8. Preliminary economic analysis summary of the chloroform system.  

Currency (USD)  

Pyridine cost (per kg) 5 

Chloroform cost (per kg) 0.5 

Utility cost (pa) 324,948 

Capital cost (pa) 10,102,400 

Operating profit (pa) 3,621,790 

 

As shown in Table 8 above, the proposed chloroform process provides a good 

financial incentive operating at a profit of over 3 million USD per annum. With the capital 

cost being 10 million USD, the payback period is just over 3 years. The implementation 

of this process by SASOL would therefore be a fruitful investment.  

Conclusions  

Simulation results were in agreement with the predicted compositions by the residue 

curve maps showing that RCMs are a handy tool to be used along with process 

simulators for separation systems. Pyridine recovery from dilute waste streams is a 

profitable undertaking and chloroform was shown be the most effective entrainer for this 

endeavor up to so far. Future work will be based on energy optimization the process 

proposed in this work.  
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Appendix B: Shortcut Models Specifications 

 

Appendix B.1. Shortcut Model Specifications for the water-pyridine 

mixture separation from the HOW 

The light key is defined the component whose presence is in the residue is 

substantial but components lighter than it are present in small concentrations. On 

the other hand, is the components with a recognizable presence in the distillate but 

components with higher boiling points have negligible concentrations in the 

distillate 

B

D

A

Distillate

Feed

Mid boiling Component 

(Water-pyridine azeotrope)

Heavy boiling Component 

(Water)

Light Fractions (MEK-water, 

Mik-water-azeotrope,MEK,  

MIK, acetonitrile-water 

azeotrope, acetonitrile and 

acetone)

Mid boiling Component 

(Water-pyridine azeotrope)Midboiling 1

Midboiling 2

Bottoms

  

Figure B.1. DWC shortcut model  
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4.5.1.1. Specifications on Aspen Plus for the Shortcut Model 

In the following specifications, the pressure of the column is the same, this is 

mainly because the columns represent one Dividing Wall Column. Furthermore, 

the absorbers have the same number of stages since they both represent the 

middle section of the column. Absorber 1 represents one side of the wall while the 

second absorber represents the other side of the wall.  The shortcut model is 

purely trial and error process to achieve the desired results. Consequently, the 

recovery specifications in the shortcut model were established through trial and 

error to achieve the desired results.   

Column B 

 

Figure B.2. Column B specifications 

The reflux ration is specified as -1.2 (Figure B.2). This is interpreted by Aspen to 

mean 1.2 times the minimum reflux ratio. The value 1.2 is justified because of the 

specification itself relate to the Fenske equation assumptions. The column is 

assumed to be run at 1.1atm and total condenser is chosen. The recovery refers to 

the fraction of a particular component that reports to the distillate. Conventionally, 

pyridine is heavier than water but because in this case pyridine has formed an 

azeotrope with water and the azeotrope’s boiling point is lower than that of water, 

pyridine is taken as the light fraction and water taken as the heavy component.  
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Column A 

 

Figure B.3. Column A specifications. 

In the specifications of column A, recovery of water is assumed to be 87% and that 

of pyridine to be 0.5%. Ideally, the recovery of pyridine must be 0 but then Aspen 

Plus does not run when this is done so the closest value to zero is taken instead. 

The recovery of water in this column is very high because only a small fraction of 

the original quantity was entrained to this column. The water in this column is 

specified as the light component because a fraction of water will report to the 

distillate along with light components in the stream. This occurs because water 

also forms azeotropes with light components and these azeotropes boiling at a 

lower temperature and all of them boil at a lower temperature than the water-

pyridine azeotrope. Therefore, this specification is justified. 

Column D 
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Figure B.4. Column D specifications 

In the stripper section (column D) the recovery of pyridine is stated as 0.99 to 

minimize losses to the bottoms product. In this column pyridine is again the light 

component because all of it along with some of the water (water-pyridine 

azeotrope) report to the distillate.  

 

 

 

 

 

 

 

 

 



 

xxxvi 
 

Appendix C: Detailed Material balances 

 

Figure C.1. Proposed pyridine recovery process 
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Appendix C.1. Pyridine Enrichment Section Material Balances 

 

Table C.1. Extraction Column (E-1) detailed material balances 

 Parameter 

Water-

pyridine 

azeotrope 

Chloroform Extract Raffinate 

Mole Basis 

Total Flow (kmol/hr) 6.1 2.736 4.227345 4.608372 

Composition (Mole Fraction) 

Pyridine 0.236 0.000 0.341 0.000 

Acetone 0.000 0.000 0.000 0.000 

Water 0.755 0.282 0.182 0.999 

Acetonitrile 0.009 0.001 0.014 0.000 

Methyl Ethyl Ketone 0.000 0.000 0.000 0.000 

Methyl Isopropyl Ketone 0.000 0.000 0.000 0.000 

Chloroform 0.000 0.717 0.463 0.001 

Mass Basis 

Total Flow (kg/hr) 199.252 248.200 363.936 83.516 

Composition (Mass Fraction) 

Pyridine 0.573 0.000 0.313 0.000 

Acetone 0.000 0.000 0.000 0.000 

Water 0.416 0.056 0.038 0.993 

Acetonitrile 0.011 0.000 0.006 0.000 

Methyl Ethyl Ketone 0.000 0.000 0.000 0.000 

Methyl Isopropyl Ketone 0.000 0.000 0.000 0.000 

Chloroform 0.000 0.944 0.642 0.007 

 

 



 

xxxviii 
 

 

 

Table C.2. Regeneration Column (B4) Detailed Material Balances 

Parameter  Extract 
Chloroform 

recycle 
Pyridine 

Mole Basis 

Total Flow (kmol/hr) 4.227 2.727 1.500 

Composition (Mole Fraction) 

Pyridine 0.341 0.000 0.961 

Acetone 0.000 0.000 0.000 

Water 0.182 0.283 0.000 

Acetonitrile 0.014 0.001 0.036 

Methyl Ethyl Ketone 0.000 0.000 0.000 

Methyl Isopropyl Ketone 0.000 0.000 0.000 

Chloroform 0.463 0.716 0.002 

Mass Basis 

Total Flow (kg/hr) 363.936 247.200 116.736 

Composition (Mass Fraction) 

Pyridine 0.313 0.000 0.977 

Acetone 0.000 0.000 0.000 

Water 0.038 0.056 0.000 

Acetonitrile 0.006 0.001 0.019 

Methyl Ethyl Ketone 0.000 0.000 0.000 

Methyl Isopropyl Ketone 0.000 0.000 0.000 

Chloroform 0.642 0.943 0.004 
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Appendix C.2. Dividing Wall Column Material Balances 
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Figure C.2. Dividing Wall Column setup as modelled on Aspen Plus 
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Table C.3. Absorber 1 detailed material balance 

Parameter Feed 
Stripper 

vapor1 

Rectifier 

liquid 1 

Stripper 

vapor 1 
Liquid 1 

Mole Basis 

Total Flow (kmol/hr) 93.528 82.007 74.498 80.796 169.237 

Composition (Mole Fraction) 

Pyridine 0.015 0.183 0.063 0.013 0.118 

Acetone 0.008 0.000 0.003 0.013 0.000 

Water 0.840 0.807 0.502 0.425 0.873 

Acetonitrile 0.089 0.010 0.264 0.339 0.009 

Methyl Ethyl Ketone 0.014 0.000 0.022 0.036 0.000 

Methyl Isopropyl Ketone 0.034 0.000 0.146 0.174 0.000 

Mass Basis 

Total Flow (kg/hr) 2281.542 2411.301 2919.123 3308.026 4303.940 

Composition (Mass Fraction) 

Pyridine 0.050 0.491 0.126 0.026 0.368 

Acetone 0.020 0.000 0.005 0.018 0.000 

Water 0.620 0.495 0.231 0.187 0.619 

Acetonitrile 0.150 0.014 0.277 0.340 0.014 

Methyl Ethyl Ketone 0.040 0.000 0.041 0.064 0.000 

Methyl Isopropyl Ketone 0.120 0.000 0.321 0.366 0.000 
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Table C.4. Rectifier detailed material balances 

Parameter 
Absorber 

vapor 

Rectifier 

liquid 

Light 

fractions 

Mole Basis 

Total Flow (kmol/hr) 171.593 148.995 22.598 

Composition (Mole Fraction) 

Pyridine 0.054 0.063 0.000 

Acetone 0.007 0.003 0.035 

Water 0.487 0.502 0.389 

Acetonitrile 0.279 0.264 0.377 

Methyl Ethyl Ketone 0.027 0.022 0.056 

Methyl Isopropyl Ketone 0.145 0.146 0.143 

Mass Basis 

Total Flow (kg/hr) 6761.729 5838.245 923.483 

Composition (Mass Fraction) 

Pyridine 0.109 0.126 0.000 

Acetone 0.011 0.005 0.050 

Water 0.223 0.231 0.171 

Acetonitrile 0.291 0.277 0.379 

Methyl Ethyl Ketone 0.049 0.041 0.100 

Methyl Isopropyl Ketone 0.318 0.321 0.301 
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Table C.5. Stripper detailed material balances 

Parameter  
Absorber 

liquid 

Stripper 

vapor 
B2(Water) 

Mole Basis 

Total Flow (kmol/hr) 228.940 164.014 64.927 

Composition (Mole Fraction) 

Pyridine 0.131 0.183 0.000 

Acetone 0.000 0.000 0.000 

Water 0.862 0.807 1.000 

Acetonitrile 0.007 0.010 0.000 

Methyl Ethyl Ketone 0.000 0.000 0.000 

Methyl Isopropyl Ketone 0.000 0.000 0.000 

Mass Basis 

Total Flow (kg/hr) 5992.274 4822.603 1169.671 

Composition (Mass Fraction) 

Pyridine 0.395 0.491 0.000 

Acetone 0.000 0.000 0.000 

Water 0.593 0.495 1.000 

Acetonitrile 0.011 0.014 0.000 

Methyl Ethyl Ketone 0.000 0.000 0.000 

Methyl Isopropyl Ketone 0.000 0.000 0.000 
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Table C.6. Absorber 2 detailed material balances 

Parameter 
Stripper 

vapor 2 

Rectifier 

liquid 2 
Vapor 2 Liquid 2 

Water-

pyridine 

azeotrope 

Mole Basis 

Total Flow (kmol/hr) 82.007 74.498 90.073 60.332 6.100 

Composition (Mole Fraction) 

Pyridine 0.183 0.063 0.091 0.164 0.247 

Acetone 0.000 0.003 0.003 0.000 0.000 

Water 0.807 0.502 0.543 0.831 0.747 

Acetonitrile 0.010 0.264 0.225 0.004 0.006 

Methyl Ethyl Ketone 0.000 0.022 0.018 0.000 0.000 

Methyl Isopropyl 

Ketone 0.000 0.146 0.121 0.000 0.000 

Mass Basis 

Total Flow (kg/hr) 2411.301 2919.123 3428.981 1698.650 202.794 

Composition (Mass Fraction) 

Pyridine 0.491 0.126 0.189 0.462 0.588 
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Acetone 0.000 0.005 0.004 0.000 0.000 

Water 0.495 0.231 0.257 0.532 0.405 

Acetonitrile 0.014 0.277 0.242 0.006 0.007 

Methyl Ethyl Ketone 0.000 0.041 0.035 0.000 0.000 

Methyl Isopropyl 

Ketone 0.000 0.321 0.273 0.000 0.000 
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Appendix D: Binary Parameters 

 

Table D.10: Binary parameters for the pre-concentration section 

Comp i Comp j AIJ AJI BIJ BJI CIJ 
TLower 

(C) 
TUpper(C) 

Pyridine Acetone -5.854 5.573 1966.062 
-

1793.400 
0.300 30.000 115.300 

Pyridine Water 0.138 5.118 -197.679 -735.747 0.300 50.000 115.500 

Acetone Water 6.398 0.054 
-

1808.991 
419.972 0.300 20.000 95.100 

Acetone Acetonitrile 0.000 0.000 -53.460 53.285 0.300 45.000 80.400 

Acetone MEK -8.099 5.103 2364.934 
-

1083.496 
0.300 56.200 79.500 

Water Acetonitrile 1.057 
-

0.116 
283.409 256.459 0.300 60.000 94.900 

Water MEK 0.000 0.000 1087.744 201.301 0.300 73.300 100.000 

Water MIK 10.721 
-

3.839 

-

2071.876 
1378.792 0.200 20.000 30.000 

Acetonitrile MEK 0.000 0.000 224.274 -143.421 0.300 55.000 60.520 

MEK MIK 0.000 0.000 -220.770 278.458 0.300 78.000 93.850 

Pyridine Acetonitrile 0.000 0.000 669.600 -455.011 0.300 25.000 25.000 

Pyridine MEK 0.000 0.000 180.649 -125.756 0.300 25.000 25.000 

Pyridine MIK 0.000 0.000 253.748 -191.946 0.300 25.000 25.000 

Acetone MIK 0.000 0.000 138.794 -114.406 0.300 25.000 25.000 

Acetonitrile MIK 0.000 0.000 315.820 -189.130 0.300 25.000 25.000 
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Table D.2. Binary parameters of the chloroform-water-pyridine mixture 

Comp* i Pyridine Pyridine Water 

Comp* j Water Chloroform Chloroform 

aij 0.138 2.671 8.844 

aji 5.118 -4.517 -7.352 

bij -197.679 -1225.041 -1140.115 

bji -735.747 1595.533 3240.688 

cij 0.300 0.300 0.200 

Comp*: Component   
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Appendix E: Calculations 

 

Calculation 1: Chloroform system 

 

Figure E.1. Water-pyridine-chloroform residue curve map 

 

The composition of the chloroform in the ternary mixture required for feasible separation 

is 80mol% (point A in the RCM above). If we assume the ternary mixture flowrate of 

1kmol/hr, it is established that the chloroform flowrate is 0.8kmol/hr and the azeotropic 

mixture is 0.2kmol/hr. Therefore, the entrainer to azeotropic mixture is calculated as 

thus: 
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𝐸𝐴 =
𝐸𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑟 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 

𝐴𝑧𝑒𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒
                     (𝐸. 1) 

𝐸𝐴 =
0.8𝑘𝑚𝑜𝑙/ℎ𝑟

0.2𝑘𝑚𝑜𝑙/ℎ𝑟
= 4.000 

The entrainer to azeotropic mixture ratio is therefore 4.000:1.000. 

The ratio for the improved design was calculated using the same procedure and it was 

found that the ratio was 0.360:1. 

(a) The entrainer to azeotropic mixture ratio from simulation material balance 

𝐶ℎ𝑙𝑜𝑟𝑜𝑓𝑜𝑟𝑚 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝐶 − 1 = 0.717 × 2.736
𝑘𝑚𝑜𝑙

ℎ𝑟

= 1.961
𝑘𝑚𝑜𝑙

ℎ𝑟
   

𝑤𝑎𝑡𝑒𝑟 − 𝑝𝑦𝑟𝑖𝑑𝑖𝑛𝑒 𝑎𝑧𝑒𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 = 6.100
𝑘𝑚𝑜𝑙

ℎ𝑟
 

Therefore, using equation E.1, the chloroform to water-pyridine azeotropic mixture is 

calculated as: 

𝐸𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑟 𝑡𝑜 𝑎𝑧𝑒𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑟𝑎𝑡𝑖𝑜 =
1.961 𝑘𝑚𝑜𝑙/ℎ𝑟

6.1 𝑘𝑚𝑜𝑙/ℎ𝑟
= 0.320 

Therefore, the chloroform to water-pyridine azeotropic mixture was 0.320:1. 

(b) Relative error calculation for the for the predicted chloroform to water-pyridine 

azeotropic mixture  

(c)  
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =

|𝑥 − 𝑥0|

𝑥
× 100 

    

E.2 

(d)    

Where: 

𝑥: entrainer to mixture ratio from the simulation material balance 



 

l 
 

𝑥0: entrainer to azeotropic mixture ratio predicted from the RCM 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
0.320 − 0.360

0.320
× 100 = 12.500% 

Calculation 2: Toluene system 

 

Figure E.2. Toluene-water-pyridine system residue curve map 

(a) Predictive calculation of toluene to water-pyridine azeotropic mixture ratio from 

RCM 

The same procedure used in calculation 1a above was used to determine the toluene to 

azeotropic mixture ratio from the RCM. The ratio was calculated to be 0.471:1. 

(b) Toluene to water-pyridine azeotropic mixture ratio calculated from simulation 

results.  
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𝑇𝑜𝑙𝑢𝑒𝑛𝑒 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑎𝑧𝑒𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝐶 − 1 = 305.1
𝑘𝑚𝑜𝑙

ℎ𝑟
× 0.839

= 255.978
𝑘𝑚𝑜𝑙

ℎ𝑟
  

𝑊𝑎𝑡𝑒𝑟 − 𝑝𝑦𝑟𝑖𝑑𝑖𝑛𝑒 𝑎𝑧𝑒𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 = 490.4 𝑘𝑚𝑜𝑙/ℎ𝑟 

Using equation E.1, the toluene to water-pyridine azeotropic mixture was calculated as 

thus: 

𝑒𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑟 𝑡𝑜 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑟𝑎𝑡𝑖𝑜 =  
255.978𝑘𝑚𝑜𝑙/ℎ𝑟

490.400𝑘𝑚𝑜𝑙/ℎ𝑟
= 0.522 

Therefore, toluene to azeotropic mixture is ratio is 0.522:1. 

 

 

 

 

 



 

lii 
 

Appendix F: Entropy Generation Data 

 

Table F.1. Vapor and liquid streams entropy 

Stage  liquid stream Entropy (kJ/kmol-K) Vapor stream Entropy(Kj/kmol-K) 

1 -42.678 0.000 

2 -45.904 -19.258 

3 -45.944 -22.220 

4 -45.889 -22.498 

5 -45.904 -22.453 

6 -46.790 -22.353 

7 -46.758 -23.501 

8 -46.618 -23.655 

9 -46.349 -23.493 

10 -45.890 -23.125 

11 -45.176 -22.496 

12 -44.178 -21.539 

13 -42.948 -20.249 

14 -41.621 -18.737 

15 -40.364 -17.195 

16 -39.302 -15.820 

17 -38.493 -14.730 

18 -37.928 -13.953 

19 -37.567 -13.448 

20 -37.373 -13.148 

21 -37.339 -13.002 

22 -37.536 -12.994 

23 -38.162 -13.178 

24 -39.574 -13.743 

25 -42.083 -15.067 

26 -45.506 -17.571 
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27 -49.150 -21.215 

28 -52.291 -25.315 

29 -54.497 -29.007 

30 -55.779 -31.696 
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Table F.2. Entropy generated on each stage, liquid and vapor stream flowrates 

stage Entropy generation (KW/K) 
Liquid flow 

(kmol/hr) 
Vapor flow(kmol/hr) 

1 3.433 6.818 0.000 

2 0.256 6.939 9.546 

3 0.050 7.030 9.666 

4 -7.123 7.026 9.758 

5 -174.681 6.875 9.753 

6 0.392 10.734 9.173 

7 0.145 10.793 9.234 

8 0.199 10.787 9.293 

9 0.365 10.756 9.287 

10 0.603 10.703 9.256 

11 0.853 10.628 9.203 

12 1.029 10.544 9.128 

13 1.077 10.472 9.044 

14 1.005 10.430 8.972 

15 0.855 10.423 8.930 

16 0.673 10.443 8.923 

17 0.497 10.477 8.943 

18 0.350 10.513 8.977 

19 0.239 10.543 9.013 

20 0.162 10.564 9.043 

21 0.127 10.568 9.063 

22 0.202 10.546 9.068 

23 0.548 10.477 9.046 

24 1.210 10.336 8.977 

25 1.797 10.131 8.836 

26 1.944 9.924 8.631 

27 1.713 9.775 8.424 
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28 1.272 9.695 8.274 

29 184.294 9.668 8.194 

30 23.486 1.500 8.167 
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Table F.3. Components compositions and activity coefficients in trays 

 

 Activity coefficient (γ) Liquid composition (x) 

Stage 

 

 

 

Pyridine 

 

Water 

 

 

Acetonitrile Chloroform Pyridine Water Acetonitrile Chloroform 

1 0.084 11.234 0.762 1.430 0.000 0.330 0.000 0.670 

2 0.246 75.184 1.069 1.005 0.000 0.283 0.001 0.716 

3 0.301 79.957 1.152 1.000 0.000 0.102 0.002 0.896 

4 0.305 78.668 1.155 1.000 0.000 0.085 0.004 0.912 

5 0.321 68.349 1.119 1.001 0.001 0.084 0.005 0.910 

6 0.461 28.646 0.923 0.982 0.011 0.076 0.008 0.905 

7 0.479 29.479 0.951 0.976 0.012 0.014 0.011 0.963 

8 0.479 28.977 0.961 0.976 0.012 0.002 0.017 0.969 

9 0.474 27.770 0.973 0.977 0.013 0.000 0.027 0.960 

10 0.465 25.717 0.993 0.980 0.013 0.000 0.047 0.941 

11 0.455 22.706 1.020 0.981 0.013 0.000 0.082 0.905 

12 0.448 18.994 1.052 0.979 0.014 0.000 0.139 0.848 

13 0.453 15.195 1.079 0.971 0.015 0.000 0.222 0.763 

14 0.474 11.897 1.093 0.954 0.018 0.000 0.327 0.655 
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15 0.516 9.364 1.091 0.932 0.022 0.000 0.445 0.533 

16 0.573 7.569 1.077 0.908 0.028 0.000 0.560 0.412 

17 0.636 6.358 1.059 0.886 0.035 0.000 0.661 0.304 

18 0.698 5.564 1.041 0.866 0.042 0.000 0.742 0.216 

19 0.750 5.046 1.026 0.850 0.048 0.000 0.803 0.149 

20 0.792 4.706 1.015 0.836 0.054 0.000 0.845 0.101 

21 0.824 4.467 1.007 0.820 0.060 0.000 0.873 0.067 

22 0.851 4.267 1.000 0.793 0.068 0.000 0.888 0.044 

23 0.877 4.033 0.994 0.743 0.083 0.000 0.887 0.030 

24 0.911 3.696 0.984 0.656 0.117 0.000 0.862 0.020 

25 0.954 3.251 0.966 0.547 0.188 0.000 0.797 0.015 

26 0.991 2.811 0.941 0.453 0.310 0.000 0.678 0.012 

         

         

 


