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Abstract 

Since their discovery, protease inhibitors continue to be an essential component of 

antiretroviral treatment for human immunodeficiency virus type 1 (HIV-1). However, the 

development of resistance to protease inhibitors remains one of the most significant challenges 

in the fight for sustained viral suppression in those infected with HIV-1. Studies show that 

specific mutations arising within the HIV-1 gag and protease genes can lead to the 

development of resistance. In this research, a South African HIV-1 subtype C Gag-protease 

variant (W1201i) was investigated. This variant was considered due to the presence of a 

mutation and insertion (N37T↑V), located within the hinge region of the protease enzyme. 

Moreover, the variant displayed the following polymorphisms: Q7K, I13V, G16E, M36T, 

D60E, Q61E, I62V and M89L. Genotyping of W1201i Gag revealed a previously unreported 

MSQAG insertion between the CA/p2 and p2/NC cleavage sites. Additionally, a mutation and 

insertion (I372L↑M), and multiple polymorphisms (S369N, S371N, I373M and G377S) were 

discovered within the p2/NC cleavage site. Single-cycle phenotypic assays were performed to 

determine the drug susceptibility and replication capacity of the variant. The results show that 

the mutations present in the N37T↑V protease conferred a replicative advantage and reduced 

susceptibility to lopinavir, atazanavir and darunavir. Interestingly, the mutations in W1201i 

Gag were found to modulate both replication capacity and protease inhibitor susceptibility. 

In silico studies were performed to understand the physical basis for the observed variations. 

Molecular dynamics simulations showed that the N37T↑V protease displayed altered dynamics 

around the hinge and flap region and highlighted the amino acids responsible for the observed 

fluctuations. Furthermore, induced fit docking experiments showed that the variant bound the 
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protease inhibitors with fewer favourable chemical interactions than the wild-type protease. 

Collectively, these data elucidate the biophysical basis for the selection of hinge region 

mutations and insertions by the HI virus and show that protease, as well as Gag, needs to be 

evaluated during resistance testing. 
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CHAPTER 1 

Introduction 

1.1 Human immunodeficiency virus 

Human immunodeficiency virus (HIV) is the pathogen responsible for acquired 

immunodeficiency syndrome (AIDS). HIV and AIDS have a devastating impact on 

sociocultural frameworks and economics in regions with high infection rates [1]. In South 

Africa, AIDS results in the death of ~110 thousand people a year. In 2016, 7.1 million people 

were living with AIDS in South Africa. Of those infected, ~56% were women [2].  

Two types of HIV have been identified: HIV-1 and HIV-2. HIV-1 is predominant and may be 

classified into the groups M, N, O and P; where classification is based on sequence data. 

Similarly, group M can be further classified into the subtypes A, B, C, D, F, G, H, J, and 

K [3]. In South Africa, HIV-1 subtype C (HIV-1 C-SA) is responsible for 95% of 

infections [4]. 

HIV-1 is a retrovirus that contains two copies of positive-sense single-stranded RNA, which 

code for nine genes [5]. Illustrated in Figure 1, gene products such as protease (PR), integrase 

(IN), reverse transcriptase (RT) and various structural proteins each have a unique function that 

facilitates successful viral replication [6, 7]. 

HIV-1 infection occurs when the envelope glycoprotein 120 (or gp120) of the mature virion 

recognises and binds the CD4+ receptor and subsequently the CCR5 (or CXCR4) co-receptor  
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Figure 1: Life cycle of HIV-1 

The chronology of HIV-1 replication and the functions of the viral enzymes. Step 7 indicates 

the involvement of HIV-1 PR. The figure was taken from NIAID (https://www.niaid.nih.gov/, 

2011). 

https://www.niaid.nih.gov/
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of the host T-cell [8]. This interaction results in structural modification of the envelope 

glycoprotein 41 (gp41) of the virion, which allows entry into the host cell through the 

phospholipid membrane [7, 9]. As the host cell membrane is breached, the viral capsid 

degrades and uncoats the two single-stranded RNA particles. Inside the host cell, the RNA is 

transcribed to DNA by RT. The IN enzyme incorporates the viral DNA into the host cell 

nucleus [9]. After incorporation, the viral genome is transcribed into mRNA which is 

translated by ribosomes into viral precursor proteins [7]. The resultant proteins assemble into a 

protoviral particle at the membrane interface, which is subsequently able to bud off from the 

cell. At this point, HIV PR cleaves the polyproteins to form a fully functional virion that can 

repeat the infection cycle [5, 7, 10].  

1.2 HIV protease 

HIV-1 PR is an attractive drug target due to its direct involvement in viral maturation, and, 

therefore, the viability of the viral particle [7]. Effectively targeting HIV-1 PR requires a 

comprehensive understating of both its structure and function. Unfortunately, conventional 

therapeutic agents were developed and tested predominantly on HIV-1 subtype B as it is the 

predominant subtype in the Americas and in Europe [11, 12]. Therefore, these compounds may 

not be as effective on HIV-1 C-SA and derived variants [13].  

1.2.1 General structure of HIV-1 C-SA protease 

HIV-1 C-SA PR is an obligate homodimer with a single active site [14]. Each subunit consists 

of one α-helix and two antiparallel β-sheets (Figure 2) [15, 16]. The monomer has a molecular 

weight of 11 kDa [17, 18]. There are eight amino acid polymorphisms distinguishing HIV-1  
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Figure 2: A ribbon diagram representing the homodimeric native structure of wild-type 

HIV-1 C-SA protease  

The relative positions of the flap region, hinge region, active site Asp residues, cantilever and 

fulcrum are shown. This figure was generated with the molecular visualisation software 

PyMOL (The PyMOL Molecular Graphics System, Version 1,8 Schrödinger, LLC), using data 

from the Protein Data Bank (PDB ID: 3U71)  [19, 20]. 
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C-SA PR from HIV-1 B PR; namely: T12S, I15V, L19I, M36I, R41K, H69K, L89M and I93L 

[13, 21]. These polymorphisms may also play a role in aiding other known drug resistance 

mutations [13, 22]. 

Structurally, HIV-1 PR has five distinct regions. The hinge region is composed of the amino 

acid residues 35-42 and 57-61 [23, 24]. Residues 46-54 form the flap region and are integral to 

the specificity as well as the activity of HIV-1 PR [20]. The fulcrum region is composed of 

residues 10-23, and the cantilever region is composed of residues 62-75 [25]. The active site 

contains two catalytic Asp residues (residue 25) [26]. 

The hinge region remains flexible and facilitates substrate entry into the active site by 

extending the flap region upwards, and outwards. The PR flaps can move up to 15 Å from each 

other (outwards) and up to 20 Å from the active site Asp residues (upwards) [27, 28]. After 

recognition, the flap region encloses the bound substrate and allows chemical interactions to 

form [29–31]. According to Naicker et al., (2014), the flexibility of the hinge region may 

facilitate an exaggerated movement of the flap region. Additionally, the flap region coordinates 

a single water molecule that is required for enzymatic catalysis [32]. Thus, the hinge region 

contributes to the activity and biological function of HIV-1 PR, [31, 33]. 

1.3 Function of HIV-1 C-SA protease 

HIV-1 PR is responsible for the catalytic action that allows the cleavage and consequently the 

activation of the Gag (p55) and Gag-Pol (p160) polyproteins [6, 10, 34]. The Gag polyprotein 

contains the matrix (p17), capsid (p24), nucleocapsid (p7) and p6 proteins as well as two 

spacer peptides; namely, p1 and p2 [5]. HIV PR cleaves the Gag polyprotein at five cleavage 
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sites (CSs). The cleavage of Gag is an ordered and conserved process, without which the virion 

cannot mature into its infective form [35].  

HIV-1 PR functions as a homodimeric catalyst which can cleave peptide bonds with high 

efficiency. The PR active site consists of a highly conserved catalytic triad consisting of 

residues Asp-25, Thr-26 and Gly-27 [36, 37]. The active site residues are contributed by both 

subunits of the dimeric PR molecule. Hydrogen bonds allow a single water molecule to bridge 

the two aspartate carboxyl groups as they are in proximity (< 2.4 Å) to one another [34]. 

The catalytic mechanism of HIV-1 PR has been extensively studied, and several similar 

mechanisms have been proposed. These studies have converged into a consensus mechanism 

that is widely accepted. HIV-1 PR has a general acid-base reaction mechanism [38, 39]. When 

the natural substrate binds the active site of HIV-1 PR, a covalent intermediate is formed. Only 

then are the products released sequentially [16, 39].  

Figure 3 highlights the catalytic mechanism of the HIV-1 PR. Substrate catalysis takes place as 

follows: firstly, the bound water molecule present in the active site is activated by Asp-25 of a 

single subunit. The carboxylate group acts as a general Lewis base and the reaction results in 

the liberation of an OH- ion. The ion acts as a nucleophile to attack the scissile peptide bond on 

the substrate and results in the formation of a tetrahedral intermediate [32, 40]. The carboxyl 

group on the Asp-25' residue is protonated via general acid catalysis, which results in the 

stabilisation of the resultant oxyanion. In the final step, decomposition of the intermediate into 

products occurs through general acid catalysis, as well as general base catalysis, through the 

action of both Asp-25 and Asp-25', respectively [41]. After catalysis, the products are released 

from the active site. 



 

 

7 

 

 

 

Figure 3: Schematic representing the catalytic mechanism of HIV-1 protease 

The catalytic mechanism of HIV-1 PR is based on kinetic and structural data. The figure was 

taken from Brik and Wong (2002). 
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1.4 Protease inhibitors 

The discovery of protease inhibitors (PIs) in the early 1990s allowed the possibility of  

dual-class triple combination ARV therapy, which later became known as highly active 

antiretroviral therapy (HAART). For more than 20 years, HIV-1 PIs have been the gold 

standard in therapeutic agents that target HIV PR [21, 22]. Nearly 30 years later, PIs remain 

part of standard health care for HIV-infected patients worldwide. There are currently nine 

approved (not including the prodrug fosamprenavir) PIs that explicitly target HIV PR (Figure 

4) [42, 43]. Eight of the nine drugs are known as peptidomimetic inhibitors because they 

mimic the transition state of the natural PR substrate; namely, the viral Gag-Pol and Gag 

polyproteins [44, 45]. These PIs contain chemical analogues of proline and phenylalanine; 

amino acids which are found at positions 167 and 168 on the Gag-Pol polyprotein [46]. Thus, 

the PIs are competitive inhibitors that bind the active site of the HIV-1 PR molecule. The drug 

tipranavir (TPV) is not a peptidomimetic and it binds uniquely to HIV-1 PR; consequently, 

TPV presents a unique resistance profile [47].  

The development of the first generation PR inhibitors; namely, saquinavir (SQV), ritonavir 

(RTV), indinavir (IDV), nelfinavir (NFV) and amprenavir (APV), provided essential 

therapeutic benefits to those infected with HIV-1 [42]. Unfortunately, resistance to these drugs 

developed rapidly, which led to the development of the second generation PIs:  

lopinavir (LPV) and atazanavir (ATV). In time, tipranavir (TPV) and darunavir (DRV), the 

third generation PIs were also developed [48].  

The co-administration of RTV with a second or third generation PI is considered a significant 

step forward in HIV treatment. RTV is a potent inhibitor of the xenobiotic detoxification 

enzyme cytochrome P450 isoenzyme CYP3A4, which is the principal enzyme responsible for  
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Figure 4: The two-dimensional molecular structures of the FDA-approved HIV-1 

protease inhibitors and the clinical use release dates 

The names of the pharmaceutical companies responsible for the development of the various PIs 

are indicated. The figure was taken from Ali et al., (2010). 
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PI metabolism [49]. The administration of RTV has been shown to compliment the effect of 

other PIs, a mechanism which is referred to as boosting [50]. Boosted PIs can be administered 

in lower concentrations, which dramatically reduces side-effects [51]. Furthermore, patients 

receiving boosted PIs are much less prone to develop drug resistance mutations within PR [52]. 

Structure-assisted drug design is the leading method used in modern pharmacology to create 

therapeutic agents targeting HIV-1 PR [53, 54]. The structure-based approach is 

multidisciplinary as it incorporates data from the biological, mathematical and physical 

sciences [32]. Understanding the thermodynamic principles governing drug binding is arguably 

one of the most important aspects of rational drug design.  

The development of lead compounds (i.e. developmental candidates) relies on the optimisation 

of their respective binding affinities for the chosen target [43]. The binding affinity of a given 

lead compound is enhanced by increasing the binding enthalpy and solvation entropy, while 

decreasing binding entropy [55]. For instance, the binding of the PIs to HIV-1 PR may be 

either enthalpically or entropically driven. A favourable increase in bulk solvent entropy is 

predominantly responsible for entropically driven drug binding processes [56]. Usually, 

conformational entropy is lost in both the target and drug due to reduced flexibility upon 

binding [57]. Entropy loss, however, is compensated for by an increase in solvation entropy 

resulting from the exclusion of ordered water molecules within the active site [58]. An increase 

in bulk solvent entropy, therefore, drives some biological processes. The favourable entropic 

change is due to the hydrophobic nature of the compound [11]. Enthalpically driven drug 

interactions result from the optimisation of specific molecular contacts between substrate and 

enzyme. Interactions include ionic interactions, polar and dipolar interactions, hydrogen 

bonding and specific van der Waals interactions [11].  
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The majority of first-generation PIs were predominantly entropically driven. The binding of a 

specific drug be made more entropically favourable to its respective target, by increasing its 

overall hydrophobicity. Increasing the hydrophobicity of a drug decreases its overall solubility. 

Therefore, higher concentrations of the drug are needed to ensure adequate bioavailability. 

However, higher concentrations of the drug could result in unintended interactions with  

non-targeted enzymes, leading to adverse side-effects [59]. 

Rational drug design endeavours to create drugs that have better potency, higher selectivity, 

and better pharmacokinetics. Drugs posessing these atribures are often found to be 

enthalpically, opposed to entropically, driven [60].  However, it often takes years for 

enthalpically driven drug candidates to appear on the market because it is notoriously difficult 

to optimise binding enthalpy [61]. The second and third generation PIs were found to be 

enthalpically driven. In fact, all protease inhibitors with picomolar binding affinity have 

favourable binding enthalpies [61]. 

The PR enzyme has many known sites that are attractive allosteric drug targets and recently 

there has been a drive to develop non-peptidomimetic PIs that act on allosteric sites rather than 

targeting the active site of the enzyme  [28, 62, 63]. The hinge and flap regions are particularly 

attractive targets because the opening of the PR active site is dependent on them [28]. 

Unfortunately, no allosteric drugs have yet been approved as a viable treatment for HIV-1 

infection. 
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1.5 HIV-1 C-SA protease drug susceptibility  

1.5.1 HIV-1 Protease variants 

The leading cause of ARV failure is the development of drug resistance. HIV-1 develops drug 

resistance swiftly due to the action of the highly error-prone reverse transcriptase. Moreover, 

the HI virus displays broad genetic diversity [64, 65]. However, while some regions within the 

HIV-1 protease gene are highly mutable, other regions remain highly conserved [54, 66].  

The development of PI resistance is a complicated process involving the accumulation of 

primary and secondary drug resistance mutations in the PR enzyme [67]. These primary 

resistance mutations develop in, or within proximity, to the substrate binding pocket of the PR 

and function by decreasing the binding affinity for PIs [68]. PR mutations that confer drug 

resistance occur due to specific drug pressures; however, these usually have a negative impact 

on the ability of the enzyme to process its natural substrate [69]. As a result, there is a 

reduction in the replication capacity (RC) of the virus.  

Compensatory mutations, also known as secondary mutations, will develop distal to the PR 

active site if drug pressures persist. Secondary mutations can allow the modified enzyme to 

bind the substrate more efficiently, thereby restoring viral fitness [47, 70, 71]. These mutations 

are often able to confer reduced drug susceptibility even in the absence of primary resistance 

mutations within PR [72]. Furthermore, if drug pressure is ceased, strains will often revert to 

the wild-type genotype, in an attempt to restore viral fitness [73].  

Typically, each subunit of HIV-1 PR consists of 99 amino acids. However, recently discovered 

PR variants had been shown to consist of 100 or even 101 amino acids per subunit [74, 75]. 

These unique secondary amino acid polymorphisms may determine how the HIV-1 PR 
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interacts with drugs specifically designed to counteract its biological function [47]. Kožíšek 

and colleagues proposed that amino acid insertion mutations in HIV-1 PR may contribute to 

drug resistance [75]. Hence, it is imperative that further work be done to characterise novel 

mutations in PR and to test the efficacy of current therapeutic agents on these variants [42]. 

At a biochemical level, the combined effects of primary and secondary mutations have 

important consequences on the viability of PIs. The optimisation of new drug leads against a 

highly variable target such as HIV-1 PR requires that each polymorphism is studied in depth. 

Thus, the study of clinically significant PR variants is vital for an in-depth molecular 

characterisation of the mechanism by which drug resistance and viral fitness occur [11].  

1.5.2 HIV-1 protease dynamics 

The flap region is critical to the activity of the PR as it allows substrate entry into the active 

site [62]. Studies show that increased flap dynamics result in fewer chemical interactions 

between the enzyme and PIs [12]. Therefore, the recognition and binding of the PIs are less 

thermodynamically favourable, which ultimately affects the drug susceptibility profile of the 

PR [76]. Flap region dynamics is partially controlled by the dynamics of the hinge region [77]. 

In fact, the effect of the hinge region on flap flexibility has been extensively studied 

experimentally (HDX-MS, NMR and EPR) as well as computationally (MD simulations) [29, 

30, 78–80]. The hinge region displays a high degree of mutability. Hinge region mutations can 

alter drug susceptibility, enzyme activity, conformational flexibility and facilitate immune 

system concealment [31, 76, 81].  

Hinge region mutations are considered secondary mutations as they occur distal to the active 

site and do not directly alter the molecular interactions between the PR and PIs. Instead, 
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secondary mutations confer their effect indirectly by altering flap flexibility [81–83]. 

Experiments on the apo form of HIV-1 PR have indicated that the movements of the flap 

region can be observed on the nanosecond timescale [84]. MD simulations have proven to be a 

particularly useful tool for determining the kinetics of specific regions within the PR [27].  

1.5.3 HIV-1 Gag variants 

The clinical management of PI failure is still largely based on the protease gene sequence [85]. 

Research groups are ever trying to determine the next group of PI resistance mutations. 

However, a body of evidence is accumulating that both drug susceptibility and PI resistance 

involves the viral Gag polyprotein [86, 87]. Unfortunately, the precise mechanism governing 

Gag’s role in PI susceptibility has not been completely characterised [88].  Nijhuis and 

colleagues (2007) have reported that CS mutations could independently affect drug 

susceptibility in the absence of known PR drug resistance mutations. In fact, it was reported 

that non-CS mutations could reduce PI susceptibility by up to ten-fold [89]. Since then, 

multiple studies have eluded that CS, as well as non-CS mutations, play a key role in resistance 

to PIs [90–94]. Therefore, polymorphisms within Gag, both CS and non-CS mutations, should 

be considered when evaluating the PI susceptibility of HIV-1 variants.  

1.6 W1201i Gag-protease 

Recently, HIV-1 C-SA sequence data was obtained from a South African PI-naïve infant 

(NICD, South Africa). The patient displayed a high viral load and very low CD4 count despite 

prevention of mother-to-child transmission (PMTCT) treatment [95]. A specific Gag-PR 

isolate, named W1201i, was identified [96]. The PR sequence data confirmed a PR hinge  
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Figure 5: A ribbon diagram showing the positions of the amino acid substitutions and 

single amino acid insertion present on the N37T↑V variant.  

Beta sheets and alpha helices are rendered red and green, respectively. Random coils are 

rendered light blue. The relative position of the Thr mutation and Val insertion is shown in 

yellow. The blue spheres represent the van der Waals radii of the various polymorphisms that 

are present in the N37T↑V variant; namely, I13V, G16E, I36T, P39S, D60E, Q61E, I62V, 

L63P, V77I and M89L. This figure was generated with the molecular visualisation software 

PyMOL (The PyMOL Molecular Graphics System, Version 1,8 Schrödinger, LLC), using data 

from the Protein Data Bank (PDB ID: 3U71) [20]. 
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region mutation and insertion (N37T↑V) as well as several amino acid polymorphisms; 

namely, I13V, G16E, I36T, P39S, D60E, Q61E, I62V, L63P, V77I and M89L (Figure 5). 

Consequently, each monomeric subunit consists of 100 amino acids. This variant was dubbed 

N37T↑V as the substitution and insertion mutations were both found at residue 37. The Gag 

sequence of W1201i had not been characterised before this study. 

1.7 Aim and objectives 

1.7.1 Aim 

The aim of this study was to determine how hinge region mutations and insertions, such as 

those found in the N37T↑V variant, affect the overall structure, function, catalytic ability, and 

drug susceptibility of HIV-1 C-SA PR. 

1.7.2 Objectives 

1. Overexpress and purify both the wildtype and N37T↑V variant PR using a novel purification

method.

2. Probe the quaternary structural parameters of the of the N37T↑V variant using high-

performance liquid chromatography.

3. Obtain the kinetic parameters of the molecular interaction between the N37T↑V variant and

a fluorogenic substrate.

4. Evaluate the drug susceptibility of both the N37T↑V and wild-type proteases through

phenotypic viral assays.

5. Using computational modelling and induced fit docking to evaluate the molecular dynamics

and drug binding energetics of N37T↑V protease
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CHAPTER 2 

Overexpression, purification and functional characterisation of 

wild-type HIV-1 subtype C protease and two variants using a 

thioredoxin and his-tag protein fusion system 

Jake Zondagh, Alison Williams, Ikechukwu Achilonu, Heini W. Dirr and Yasien Sayed. 

Protein J (Manuscript accepted) 

In this publication, a novel method for HIV-1 protease purification is described. The paper 

deals with the expression of wild-type HIV-1 subtype C and two variant proteases using a 

thioredoxin fusion protein system. The thioredoxin fusion protein system has not been used on 

HIV-1 proteases before. 

Author contributions: Jake Zondagh performed all the experiment work on the N37T↑V 

protease, and Alison Williams performed all the experimental work on L38↑N↑L. The 

experimental work on the wild-type protease and data analysis was shared equally by both Jake 

Zondagh and Alison Williams. Yasien Sayed, Ikechukwu Achilonu and Heini Dirr assisted in 

manuscript revision. Yasien Sayed and Ikechukwu Achilonu assisted in method design and 

data interpretation. Yasien Sayed supervised the project. 
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Abstract
In recent years, various strategies have been used to overexpress and purify HIV-1 protease 

because it is an essential drug target in anti-retroviral therapy. Obtaining sufficient quantities 

of the enzyme, however, remains challenging. Overexpression of large quantities is prevented 

due to the enzyme’s autolytic nature and its inherent cytotoxicity in Escherichia coli cells. 

Here, we describe a novel HIV-1 protease purification method using a thioredoxin-

hexahistidine fusion system for the wild-type and two variant proteases. The fusion proteases 

were overexpressed in Escherichia coli and recovered by immobilised metal ion affinity 

chromatography. The proteases were cleaved from the fusion constructs using thrombin. 

When compared to the standard overexpression and purification protocol in use in our 

laboratory, the expression of the fusion-derived wild-type protease was increased from 0.8 to 

2.5 mg/L of culture medium. The final concentration of the two variant proteases ranged from 

1.5 to 2 mg/L of culture medium and the total wild-type protease yield from this fusion 

system exceeds our control purification method by 250%. The fusion wild-type and variant 

proteases were inactive before the cleavage of the thioredoxin-hexahistidine fusion tag as no 

enzymatic activity was observed. The proteases were, however, active after cleavage of the 

tag. The novel thioredoxin-hexahistidine fusion system, therefore, enables the successful 

overexpression and purification of catalytically active HIV-1 proteases. 
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Abbreviations 
HIV-1:  Human Immunodeficiency Virus type 1 

PR:  Protease 

TRX:  Thioredoxin 

6His:  Hexahistidine 

TCS:  Thrombin cleavage site 

N37T↑V: HIV-1 subtype C protease containing asparagine 37 mutated to threonine; the 
upward arrow indicates an insertion of valine at position 37 

L38↑N↑L: HIV-1 subtype C protease containing leucine at position 38 followed by a 
double insertion of asparagine and leucine  

IMAC:  Immobilised Metal Ion Affinity Chromatography 
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1. Introduction 
Human Immunodeficiency Virus (HIV) is the etiological agent of Acquired 

Immunodeficiency Syndrome (AIDS). Globally, 35 million people are HIV positive, and 

1.9 million people are infected each year [1]. HIV is problematic in sub-Saharan Africa 

because it is estimated that one in twenty adults is living with the virus and this accounts for 

69% of the total global statistic [1]. 

HIV-1 was first isolated in 1983 [2] and, since then, it has been studied extensively. HIV-1 is 

the most common form of HIV and is further divided into groups and subtypes  

[3, 4]. Subtype B, the most studied of the subtypes, is found in America, Western Europe and 

Australia [5]. Subtype C, of interest to this study, is found predominantly in southern Africa, 

the horn of Africa and India [6, 7]. 

The homodimeric aspartyl protease is one of three enzymes produced by HIV-1 and is 

essential for the production of mature virions [8, 9], and is an important drug target. HIV 

protease is expressed as a Gag-Pol precursor from which it can free itself by autocatalysis 

after dimerisation [10]. The catalytically mature enzyme then processes the Gag and Pol 

polyproteins to produce viral structural proteins and reverse transcriptase and integrase 

enzymes [11, 12].  

In-depth biochemical studies require sufficient amounts of protein. HIV-1 protease has 

previously been synthesised chemically [13] and expressed in heterologous systems using 

recombinant DNA technology [14]. Recombinant DNA technology permits the successful 

production of clinically significant proteins in large quantities and is, therefore, of major 

importance [15]. However, many expression systems do not yield adequate amounts of 

product necessary for specific downstream analyses such as isothermal titration calorimetry.  

It is challenging to obtain HIV-1 protease in large quantities due to its cytotoxic effects when 

overexpressed. Bacterial and mammalian cells are primarily affected by the cytotoxic nature 

of HIV-1 protease [16]. In the past, various strategies have been investigated to acquire 

greater yields. Purification strategies include production by autocatalytic processing of a 

larger precursor (Gag-Pol region), recovery by refolding of E. coli inclusion bodies, 

purification of a His-tagged recombinant protein, and the use of fusion proteins such as β-

lactamase, glutathione transferase and maltose binding protein [14, 17–20].  
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This study aimed to improve the expression of the wild-type HIV-1 subtype C protease by 

using a thioredoxin-fusion protein system. Additionally, this method was tested on two 

clinically relevant variant proteases under investigation in our laboratory. The amino acid 

insertions and background mutations in these variant proteases were found in protease 

inhibitor-naïve (PI-naïve) patients and are not prevalent in patients receiving PI therapy or 

failing PI therapy.   

We, therefore, aimed to overexpress and purify four separate proteases; namely, a Gag-Pol 

derived wild-type protease as a non-fusion control (referred to as the “control wild-type”), a 

thioredoxin-fusion derived wild-type protease (referred to as the “fusion wild-type”), and two 

thioredoxin-fusion derived variants (i.e. N37T↑V and L38↑N↑L) (Fig. 1A, B). The N37T↑V 

protease indicates that asparagine at position 37 was mutated to threonine and the upward 

arrow indicates a valine amino acid was inserted. The L38↑N↑L protease represents a double 

insertion (asparagine and leucine) after position 38. 

This system has not been used on HIV-1 protease before but has been used successfully with 

other human proteins [22]. In this paper, we demonstrate the successful overexpression and 

purification of catalytically active wild-type subtype C protease and two variants using a 

thioredoxin-hexahistidine fusion system.  
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2. Materials and Methods 

2.1 Construction of the fusion plasmids 

The genes coding for the fusion wild-type, N37T↑V and L38↑N↑L proteases were 

synthesised by GenScript (Hong Kong) and cloned into three separate pET-11a expression 

vectors. The sequences for the variant proteases were obtained from Professor Lynn Morris 

(Head of the AIDS Research Unit) at the National Institute for Communicable Diseases 

(NICD, South Africa). Wild-type subtype C protease was generated previously in our 

laboratory and contained the following polymorphisms: T12S, I15V, L19I, M36I, R41K, 

H69K, L89M, and I93L [21]. Fusion protein sequences were confirmed by Sanger DNA 

sequencing (Inqaba Biotech, South Africa). The protease sequences were aligned using the 

Clustal Omega tool (EMBL-EBI) [22]. Homology models were generated with the molecular 

visualisation software programme PyMOL, using data from the Protein Data Bank (PDB ID: 

3U71) [23]. 

2.2 Expression and purification 

The control wild-type protease was purified using a standard protease purification system 

routinely used in our laboratory [23]. Briefly, E. coli BL21 (DE3) pLysS cells were 

transformed with a plasmid encoding the control wild-type protease gene. The cells were 

induced at 37 °C for four hours with 1 mM isopropyl β-D-thiogalactoside (IPTG), and the 

protease was recovered from inclusion bodies after cell disruption. Recovery buffer contained 

8 M urea, 10 mM Tris-HCl and 2 mM DTT (pH 9). The sample was incubated at 20 °C for 

one hour in the urea buffer before recovery by centrifugation. The sample was dialysed (and 

refolded) against 10 mM sodium acetate (pH 5) at 4 °C and purified using CM-Sepharose ion 

exchange chromatography with a 0-1 M NaCl gradient. The control protease was included to 

measure the success of the new purification strategy.  

The three thioredoxin fusion proteases; namely, fusion wild-type, N37T↑V and L38↑N↑L, 

were expressed by separately transforming E. coli BL21 (DE3) pLysS cells with a pET-11a 

expression vector encoding each of the constructs. The fusion wild-type and N37T↑V fusion 

proteases were expressed in six litres of LB media at 37 °C for four hours using 1 mM IPTG, 

and expression was induced when the culture media reached an OD600 of 0.5. Cells were 

harvested by centrifugation at 5000×g, resuspended in lysis buffer (20 mM Tris-HCl, 1 mM 

lysozyme, 150 mM NaCl, pH 7.5) and sonicated at 10 V for 10 cycles of 30 s.  
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The samples were separated into soluble and insoluble fractions by centrifugation at 

24 000×g. The insoluble pellets were washed twice with 20 mM Tris-HCl buffer, pH 7.4, 

containing 1% (v/v) Triton X-100. The proteins in the insoluble fraction were unfolded using 

8 M urea, and the cell debris was collected by centrifugation at 24 000×g. The urea 

concentration was decreased to 4 M by overnight dialysis against 20 mM Tris-HCl buffer  

(pH 7.4) at 20 °C. Fusion wild-type and N37T↑V proteases were bound to a 5 ml IMAC 

column charged with Ni2+ and eluted with an imidazole gradient (0-500 mM).  

Fractions containing the fusion wild-type and N37T↑V proteases were dialysed against 

refolding buffer (20 mM Tris-HCl, 10% (v/v) glycerol, 150 mM NaCl, pH 7.4) at 4 °C. The 

thioredoxin-hexahistidine tag was cleaved from the protease using thrombin (1 U/ml of 

sample, overnight at 20 °C). Untagged protease was collected and thrombin removed by 

passing the sample over a 5 ml benzamidine column (to which thrombin binds) connected in 

series to a 5 ml IMAC column (to which the cleaved tag and any uncleaved proteins bind). 

The flow-through, containing the untagged protease, was incubated in 25 mM formic acid for 

one hour and dialysed against 10 mM formic acid at 4 °C for 4 hours to precipitate any 

unwanted protein present. The pure protease sample was dialysed against 10 mM sodium 

acetate buffer (pH 5.0) at 4 °C overnight and stored at -80 ℃ until needed.  

The L38↑N↑L fusion protease was overexpressed in six litres of LB media at 20 °C overnight 

using 1 mM IPTG. The cells were resuspended in 40 ml of 20 mM Tris-HCl buffer (pH 7.4). 

The cells were sonicated as described earlier and the soluble fraction was isolated by 

centrifugation at 24 000×g. The protease was purified from the soluble fraction using a  

5 ml IMAC column and eluted using an imidazole gradient (0-500 mM).   

Following thrombin cleavage (as described earlier), and 10 mM formic acid precipitation, the 

sample was dialysed against 10 mM sodium acetate buffer (pH 5) at 4 °C. The sample was 

passed through a CM-Sepharose column to remove any unwanted protein. The protease was 

eluted using a 0-1 M NaCl gradient and dialysed against 10 mM sodium acetate buffer (pH 5) 

at 4 °C overnight to remove any residual NaCl. The absence of the salt decreases autolysis 

(the ability to undergo autoproteolysis in solution). The final concentration of pure protease 

was determined using the absorbance value at 280 nm and the extinction coefficient of the 

protein according to the Beer-Lambert equation. The extinction coefficients were calculated 

using the ProtParam online tool [24]. The extinction coefficients used were: 25 480 M1
.cm-1 

for wild-type, 24 980 M-1
.cm-1 for N37T↑V and 25 230 M-1

.cm-1
 for L38↑N↑L. 
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2.3 Structural characterisation 

HIV-1 protease is functional in its homodimeric form and, therefore, it was essential to 

determine the quaternary structure of all the proteases. Verificatin of size was determined by 

size-exclusion high-performance liquid chromatography (SE-HPLC) using a TSKgel 

SuperSW2000 column equilibrated with 10 mM sodium acetate buffer (pH 5) containing 

150 mM NaCl. 

2.4 Functional characterisation 

HIV-1 protease is prone to autolysis and, for this reason, it is important to quantify the 

concentration of active enzyme in a purified sample. The percentage active protease was 

determined by performing isothermal titration calorimetry (ITC) active site titration 

experiments using a VP-ITC Microcalorimeter (MicroCal Inc., Malvern Instruments, 

Malvern, Worcestershire, UK). Briefly, 200 µM acetyl pepstatin, a competitive inhibitor of 

HIV-1 protease, was titrated (6 µl injections) into a solution of 10 to 13 µM protease at 

293.15 K. The percentage active protease in each sample was determined from the binding 

stoichiometry (N-value) after subtracting the heats of dilution and correcting baseline errors 

from the calorimetric data using the Origin 7.0 software package (OriginLab Corporation, 

Northampton, MA, USA). The N-value is used as a correction factor for the concentration of 

active protease in a purified sample. The ITC data were fitted using an algorithm for one set 

of binding sites because acetyl pepstatin binds to protease in a 1:1 ratio. An N-value of 1 is 

theoretically representative of 100% active enzyme in sample preparations, i.e. all the 

protease molecules are in their active form, and no self-cleavage has occurred.  

An enzyme assay was conducted during thrombin cleavage to determine whether the protease 

was catalytically active. The increase in fluorescence intensity attributed to the cleavage of 

the fluorogenic substrate (Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-Nle-NH2) was measured. 

The protein and substrate were dissolved in buffer consisting of 20 mM Tris-HCl, 10% (v/v) 

glycerol and 150 mM NaCl (pH 7.4) The assay was performed with 50 nM of protein and a 

constant substrate concentration of 50 µM under steady state conditions (20 °C). All samples 

were measured for 1 minute using an excitation bandwidth of 2.5 nm and an emission 

bandwidth of 5 nm and all measurements were performed in triplicate. The complete 

cleavage of 1 nmol substrate was measured which served as a standard to convert the 

measured emission intensity to activity. The peptide substrate was excited at 337 nm and the 

fluorescence emission monitored at 425 nm. The assay was performed on a Jasco FP-6300 

Spectrofluorometer. 
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3. Results 

3.1 Construction of fusion plasmids 

The fusion construct (THX-6His-TCS-PR) contained a thioredoxin (TRX) moiety followed 

by a hexahistidine tag (6His), thrombin cleavage site (TCS) and protease (PR) (Fig. 2). A 

Q7K mutation, known to decrease autolysis, was incorporated into the protease coding region 

of all three fusion constructs [12].  

3.2 Overexpression of fusion proteases 

Figure 3 represents whole-cell lysates. The gel shows the improved expression profile of the 

fusion wild-type (Fig. 3, lane 2, ~25 kDa) compared to that of the control wild-type protease 

(Fig. 3, lane 1, ~11 kDa) purified using ion exchange chromatography. Samples were 

normalised before electrophoresis to ensure that equal amounts of cell lysate were loaded 

onto each gel. The expression of the control wild-type was verified by separating the soluble 

and insoluble fractions.  

The size of the fusion-product corresponds to the predicted size of the reduced, monomeric 

fusion protein (ProtParam tool, http://www.expasy.ch/tools/protparam.html) [24].  

3.3 Protease purification  

The control wild-type was overexpressed and purified by ion exchange chromatography as 

previously described by Naicker et al. (2014) [25]. The three fusion proteases were purified 

by immobilised metal ion affinity chromatography (IMAC). The steps involved in the 

purification of the fusion wild-type, N37T↑V and L38↑N↑L proteases are shown in Figure 

4A, B and C.  

The insoluble cell fractions used in this study were incubated in buffer containing 8 M urea, 

10 mM Tris-HCl and 2 mM DTT (pH 9). The cell debris was collected by centrifugation, and 

the resultant supernatant was diluted to a final concentration of 4 M urea before the first 

IMAC step. The dilution was performed to prevent spontaneous crystallisation of the urea. 

The L38↑N↑L fusion construct was purified from the soluble fraction by metal ion affinity 

chromatography. The first chromatographic step yielded high concentrations of all three 

fusion proteases. The final pure protein samples (last lane of each gel in Fig. 4) were taken 

directly after the second IMAC step and were not normalised prior to performing SDS-

PAGE. The final yield of the fusion derived proteases were between 150% and 250% higher 

than the yield of protease derived from the control method. The final concentration of free 

http://www.expasy.ch/tools/protparam.html
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protease is represented in milligrams per litre of culture and the data are represented in  

Figure 5. 

3.4 In vitro fusion protease processing  

Thrombin cleavage trials were conducted on the TRX-6His-TCS-PR construct to determine 

the optimal time, temperature and amount of thrombin required for optimal cleavage  

(Fig. 6A). We found that ideal cleavage occurred overnight at 20 °C with 1 U/ml thrombin. 

As thrombin cleavage progressed, protease activity (Fig. 6B) was measured by conducting 

enzyme assays which followed the cleavage of Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-Nle-

NH2. This peptide mimics the cleavage site between the capsid and p2 proteins of the Gag-

Pol polyprotein. To assess whether the protease samples possessed functional activity, we 

monitored the activity of the proteases using linear progress curves. The functional activity of 

the protease sample was measured concurrently with thrombin cleavage to confirm that the 

protein regains activity after cleavage from the TRX-6His tag. The assay was performed on a 

control sample containing no HIV-1 protease. The control sample possessed no activity 

whatsoever (data not included). Specific activity assays were performed after overnight 

cleavage and it was found that both mutants were active (manuscript in preparation). Both 

mutants were inactive prior to thrombin cleavage. 

3.5 Structural analysis  

The quaternary structures of the fusion proteases were analysed using high-performance 

liquid chromatography (Fig. 7). The results indicate that the dimeric sizes of the proteins 

were: 22 kDa, 23 kDa and 22 kDa for the fusion wild-type, N37T↑V and L38↑N↑L proteases, 

respectively. These sizes correspond with the expected sizes of the fully folded homodimeric 

molecule. Additionally, HPLC was performed on the pure fusion-derived wild-type to 

determine if any other molecular species were present after purification (Fig. 8). 

3.6 Enzyme activity determination  

An active site titration was performed on each purified protease sample using a VP-ITC 

Microcalorimeter (Fig. 9). It is important to assess the percentage active protease in a sample 

preparation because HIV-1 protease possesses autolytic activity [12]. This procedure, 

therefore, allows the experimenter to correct the concentration of active protease in a sample. 

Obtaining the concentration via absorbance spectroscopy at 280 nm and applying the Beer-

Lambert equation is insufficient. Acetyl pepstatin is a naturally occurring weak inhibitor, and 

it was titrated against each protease sample. Since the stoichiometry of acetyl pepstatin 
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binding to HIV-1 protease is known (1:1), it is possible to determine the concentration of 

active protease in a sample as a function of the total measured protease concentration [26, 

27]. Upon titration, the percentage of each protease in the active conformation was; 13% 

fusion wild-type, 32% N37T↑V and 9% L38↑N↑L.  

4 Discussion 
HIV-1 protease represents a major drug target in the treatment of HIV/AIDS. To study this 

enzyme, it is important to obtain sufficient quantities for use in biochemical and biophysical 

studies. Heterologous overexpression of the viral enzyme does not occur readily. In fact, 

HIV-1 protease exhibits cytotoxic effects when expressed in a variety of host cells, including 

bacteria, yeast and mammalian cells. The rationale of constructing a fusion protein was to 

reduce the cytotoxic effects observed when HIV protease is heterologously expressed in  

E. coli in the absence of a fusion tag [28–30]. In addition, incorporating the tag to the N-

terminus of the HIV protease also enhances expression of soluble protein [19]. In this paper, 

we describe the overexpression and purification of the wild-type and two variant HIV-1 

proteases using a thioredoxin-hexahistidine fusion system. A thioredoxin moiety coupled 

with a hexahistidine tag successfully improved the overexpression of all three proteases.  

Plasmid inserts were designed to express each protease (wild-type and two variant proteases) 

as a fusion protease to reduce cytotoxic effects during host cell overexpression of the 

proteases. The fusion construct contained a thioredoxin (TRX) moiety for enhanced 

expression by reducing cytotoxicity [21]. This moiety was followed by a hexahistidine (6His) 

tag for ease of purification. A thrombin cleavage site (TCS) was included after the His-tag to 

allow excision of the protease molecule from the TRX-6His-TCS-PR construct. 

Immobilised metal ion affinity chromatography was used to purify the fusion proteases from 

crude cell lysates created from each clone. Human plasma thrombin was used to cleave the 

TRX-6His tag from the protease, and this permitted the homodimeric assembly of the HIV-1 

protease molecules. The acquisition of untagged protease from the TRX-6His tag by 

thrombin cleavage yielded improved amounts of pure protease. Gel analysis indicated that no 

autolytic activity occurred before the final thrombin cleavage step. As the thrombin cleavage 

assay progressed, an increasing amount of fluorogenic substrate was cleaved indicating that 

the dimeric protease species was active. 
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The fusion wild-type protease was expressed in the insoluble fraction whereas the L38↑N↑L 

variant was expressed in the soluble fraction of the cell lysate. Interestingly, the N37T↑V 

variant was expressed in roughly equal amounts in the soluble and insoluble cell fractions. It 

would be beneficial to transfer the expression of N37T↑V into the insoluble cell fraction 

completely by altering the overexpression conditions. Altering the expression profile may be 

achieved by varying the IPTG concentration, induction time or temperature of the induction 

experiment [31].  

The overexpression of the fusion proteases was notably greater than that of the control wild-

type protease which was purified using ion exchange chromatography. Conventionally, a 

large volume of culture media (6-8 L) is required to generate a sufficient amount of protease. 

The control method produced a final concentration of 0.8 mg/L. In this paper, we 

demonstrated that one litre of culture could produce 2.5 mg/L of fusion wild-type, 2 mg/L of 

N37T↑V and 1.5 mg/L of L38↑N↑L. Our novel HIV protease fusion purification method, 

therefore, produced significantly higher concentrations of pure protease than our control 

method (Gag-Pol derived protease). 

The quaternary structure of each protease was analysed by determining the relative 

hydrodynamic volume using high-performance liquid chromatography. An online tool was 

also used to predict the sizes of the dimeric proteases for comparison. The predicted sizes of 

all the fusion proteases were 22 kDa (ProtParam tool) [24]. HIV-1 protease is an obligate 

homodimer and must be conformationally stable to function correctly. The experimentally 

determined sizes of the proteases were as follows: fusion wild-type, 22 kDa; N37T↑V, 

23 kDa and L38↑N↑L, 22 kDa. The sizes correspond to the homodimeric size of the HIV-1 

protease.  

HIV-1 protease is autolytic. Therefore, it is crucial to determine the percentage of active 

enzyme in a prepared sample. Active site titrations, determined using ITC, showed the 

percentage of active enzyme in each protease sample and also verified that all the enzymes 

possessed enzyme activity [32]. Thirteen percent of the fusion wild-type enzyme sample was 

active and available to the natural ligand; whereas, N37T↑V and L38↑N↑L had 32% and 9% 

of active proteases in these samples, respectively. The low percentage of active proteases in 

the samples could be explained by high levels of autolytic activity that often occurs when 

proteases are incubated for an extended period (e.g. thrombin cleavage). The observed 

autolytic activity is particularly interesting because these proteases contain a Q7K mutation 
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that should minimise autolysis [33]. L38↑N↑L was expressed in the soluble fraction thus 

indicating that it was most likely active and able to undergo autolysis which could have 

contributed to the lower percentage of active protease in this sample. Additionally, HPLC on 

the pure protein sample showed two other molecular species present. The relative 

hydrodynamic volumes of these species correspond to three and four protease monomers, 

respectively. The presence of higher oligomeric states shows that aggregation could influence 

the amount of active sites in the protein sample. 

Other groups have investigated the effectiveness of different HIV-1 protease fusion 

expression systems. In those systems, autocatalysis occurred despite the presence of the tags 

[17]. In our study, we postulate that the relative size of the TRX-6His-TCS moiety does not 

interfere with protease dimer formation – dimerisation is essential for autocatalytic activity 

(removal of itself from the Gag-Pol polyprotein). The thioredoxin moiety, however, 

sufficiently mimics the structure of the Gag protein from which HIV-1 protease cleaves itself. 

Here, autocatalysis (autoexcision from the Gag-Pol precursor) must not be confused with 

autolysis - which is the ability of a protease to undergo autoproteolytic activity in solution. 

Our results are, therefore, different to the studies from others [17]. In our case, we postulate 

that the TRX-6His-TCS moiety and the protease form higher order oligomeric states where 

steric hindrance effects inhibit the autocatalytic activity of the protease. This postulation is 

demonstrated by the observed increase substrate cleavage as a function of thrombin cleavage 

time as the protease is released from the TRX-6His tag (Fig. 5). The presence of higher order 

oligomeric states could be determined using size exclusion chromatography, analytical 

ultracentrifugation and static light scattering. 

To prevent autolysis after cleavage of the thioredoxin tag, the protease could be incubated in 

a suitable concentration of inhibitor. Protease misfolding could also contribute to the 

presence of non-functional enzymes. Unfolding the fusion proteases in 8 M urea, before 

refolding in an appropriate buffer, would be expected to increase the percentage of active 

proteases in a prepared sample.  

5 Conclusion  
The procedure described in this study highlights a quick and easy method of HIV-1 protease 

purification. In addition to the smaller volume of culture media needed, the total wild-type 

protease yield from this fusion system exceeds our control purification method by 250%. 

Because the fusion proteases are autolytic, a suitable method of inhibition could be included 
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during the purification step so that higher yields of active protease are obtained. Although a 

subtype C protease was used for this study, the system could also be applied to HIV-1 

proteases from other subtypes.  
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Figure Captions 

Fig. 1 A Homology models of the (1) N37T↑V and (2) L38↑N↑L proteases. The secondary 

structural elements of the homology models are rendered as ribbons. The relative positions of 

the amino acid insertions are indicated by arrows.  Spheres without arrows represent 

background mutations present in each variant. The N37T↑V variant has the following 

mutations: I13V, G16E, I36T, P39S, D60E, Q61E, I62V, L63P, V77I and M89L. The 

background mutations in L38↑N↑L include K20R, E35D, R57K and V82I. The homology 

models were generated with the molecular visualisation software programme PyMOL, using 

data from the Protein Data Bank (PDB ID: 3U71). B The sequence alignment data shows the 

positions of the mutations. The wild-type subtype C protease sequence is included as a 

reference. The alignment was performed using the Clustal Omega tool (EMBL-EBI). 

Fig. 2 Plasmid construct of TRX-6His-TCS-PR. The abbreviation TRX-6His-TCS-PR 

denotes the thioredoxin-like moiety (TRX), hexahistidine (6His) tag and protease (PR) 

enzyme. A thrombin cleavage site (TCS) is present between the hexahistidine tag and the 

protease. The size of each constituent is shown and is represented in kilodalton. The entire 

construct is ~25.1 kDa. The figure was adapted from a figure in SnapGene® (GSL Biotech; 

available at snapgene.com). 

Fig. 3 A SDS-PAGE gel showing the overexpression of control wild-type and fusion wild-

type. Whole lysates are shown. Transformed BL21 (DE3) pLysS E. coli cells were grown to 

early exponential phase and induced for six hours with 1 mM IPTG. MW: molecular weight 

marker, lane 1: control wild-type protease overexpression, lane 2: fusion wild-type 

overexpression. The positions of the fusion wild-type protease (lane 2, ~25 kDa)  and the 

control wild-type protease (lane 1, ~11 kDa) are indicated by arrows. B Soluble and insoluble 

cell fractions of control wild-type. MW: molecular weight marker, lane 1: insoluble cell 

fraction, lane 2: soluble cell fraction. The position of the protease is indicated by an arrow 

(~11 kDa). Protease was recovered from the insoluble cell fraction.  

Fig. 4 Overexpression profiles of fusion wild-type and variant proteases from IPTG-induced 

cell lysates. The purification steps, from cell lysis to final product, are shown from left to 

right. MW: molecular weight marker. A Fusion wild-type purification profile. B N37T↑V 

fusion purification profile. C L38↑N↑L fusion purification profile. Samples were stained with 

0.25% Coomassie Blue R-250 and analysed by 16% SDS polyacrylamide gel electrophoresis. 

The last lane in each gel confirms the presence of pure protease for fusion wild-type, 
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N37T↑V variant and L38↑N↑L variant proteases, respectively. The positions of the fusion 

proteins (~25 kDa) and pure protease samples (~11 kDa) are indicated by arrows. 

Fig. 5 Quantity of fusion-derived HIV-1 protease produced per litre of culture media 

compared to an ion exchange purification method. Bar (a) 0.83 mg/L control wild-type 

protease, (b) 2.5 mg/L fusion-derived wild-type protease, (c) 2 mg/L N37T↑V protease, and 

(d) 1.5 mg/L L38↑N↑L protease. 

Fig. 6 A Time-course thrombin cleavage assay of fusion wild-type protease. B Fusion wild-

type protease activity over time. Protease activity was monitored during thrombin (1 U/ml) 

cleavage by following fluorogenic substrate (Abz-Arg-Val-Nle/Phe(NO2)-Glu-Ala-Nle-NH2) 

processing at a wavelength of 425 nm.  

Fig. 7 Size exclusion-HPLC retention times of A fusion wild-type, B N37T↑V and C 

L38↑N↑L proteases. The molecular standards consisted of blue dextran (2000 kDa), serum 

albumin (66 kDa), carbonic anhydrase (29 kDa), cytochrome C (12.4 kDa) and aprotinin 

(6.5 kDa). The retention time of each protease is indicated. The relative molecular weight of 

each protease was calculated from the standard curve. The elution of fusion wild-type and 

L38↑N↑L was 0.25 ml/min and the elution of N37T↑V was 0.20 ml/min. 

Fig. 8 A Size exclusion-HPLC chromatogram of pure fusion wild-type. Three molecular species 

are present. The size of each species was calculated. (a) 22 kDa (b) 47 kDa and  

(c) 74 kDa. B Standard curve used to extrapolate the log molecular weight of each molecular 

species in the sample. The molecular standards consisted of blue dextran (2000 kDa), serum 

albumin (66 kDa), carbonic anhydrase (29 kDa), cytochrome C (12.4 kDa) and aprotinin 

(6.5 kDa). The retention time of each species is indicated. The elution elution was performed 

at 0.20 ml/min. 

Fig. 9 Active site titrations were performed on A fusion derived wild-type, B N37T↑V and C 

L38↑N↑L protease. Each protease was titrated against acetyl-pepstatin. The data were fitted to a 

one-to-one model. 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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CHAPTER 3 

Drug Susceptibility and Replication Capacity of a Rare HIV-1 

Subtype-C Protease Hinge Region Variant  
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In this manuscript, the drug susceptibility and replication capacity of an HIV-1 Subtype C 

isolate is described. The N37T↑V protease confers reduced drug susceptibility to three 

commonly used protease inhibitors. Furthermore, the N37T↑V protease was observed to 

increase viral replication capacity. 
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Abstract 
Protease inhibitors form the main component of second-line antiretroviral treatment in South 

Africa. Despite their efficacy, mutations arising within the HIV-1 gag and protease genes 

contribute to the development of resistance against this class of drug. In this paper, we 

investigate the drug susceptibility, replication capacity and catalytic activity of a South 

African HIV-1 subtype C Gag-protease (W1201i) that contained a mutation and insertion 

(N37T↑V), located within the hinge region of the protease. An in vitro single-cycle drug 

susceptibility assay showed a small (3-fold), but significant (p<0.0001) reduction in drug 

susceptibility to darunavir when compared to a wild-type control (MJ4). Substitution of 

W1201i-Gag with MJ4-Gag resulted in an additional small (2-fold), but significant (p<0.01) 

reduction in susceptibility to lopinavir and atazanavir. The W1201i pseudovirus had a 

significantly (p<0.01) reduced replication capacity (16.4%) compared to the wild-type 

control. However, this was dramatically increased to 160% (p<0.05) when W1201i-Gag was 

substituted with wild-type control-Gag. Furthermore, the N37T↑V protease displayed 

reduced catalytic processing power when assayed against a fluorogenic substrate that mimics 

the wild-type CA/p2 cleavage site. Collectively, these data suggests that the N37T↑V 

mutation and insertion, marginally increases viral infectivity and decreases drug 

susceptibility. This is contrary to most other secondary mutations which do not increase viral 

infectivity and are usually only able to confer reduced drug susceptibility when modified by 

active site resistance mutations. Additionally, polymorphisms arising in Gag can modify the 

impact of protease with regards to viral replication and susceptibility to protease inhibitors.  
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Abbreviations 

ART:   Antiretroviral Therapy 

ARV:    Antiretroviral  

ATV:   Atazanavir 

AZT:   Azidothymidine 

DRV:     Darunavir 

ELISA: Enzyme-Linked Immunosorbent Assay 

HIV-1:   Human Immunodeficiency Virus type 1 

LPV:   Lopinavir 

MD:   Molecular Dynamics 

NVP:   Nevirapine: 

NNRTIs:  Non-Nucleoside Reverse Transcriptase Inhibitors 

NRTIs:  Nucleoside Reverse Transcriptase Inhibitors 

N37T↑V: HIV-1 subtype C protease containing asparagine 37 mutated to 
threonine; the upwards arrow indicates an insertion of valine at 
position 37 

PMTCT: Prevention of Mother-to-Child Transmission 

PCR: Polymerase Chain Reaction 

PIs: Protease Inhibitors 

PR:   Protease 

RC:    Replication Capacity  

Resistance control:  Multi-drug resistant gag-protease isolate 

RTV:   Ritonavir 

Wild-type control: MJ4GP 

WTGagN37T↑VPR: Chimeric construct consisting of patient-derived protease, combined 
with wild-type gag 

W1201i:  Patient-derived HIV-1 gag-protease  
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Introduction  
HIV-1 subtype C is responsible for the majority of HIV infections in Southern Africa, the 

epicentre of the global HIV pandemic [1]. The HIV-1 protease enzyme remains an attractive 

drug target because it is among the three viral enzymes involved in viral replication and is 

responsible for the maturation of an infective virion [2,3]. There are currently nine FDA 

approved protease inhibitors (PIs) available to those infected with HIV [4,5].  

PIs are substrate transition state analogues that bind competitively to the protease active site 

[3]. PIs are prescribed as part of the second-line regimen in South Africa, after failure on a 

non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimen [6]. Of the nine 

approved PIs, lopinavir (LPV) or atazanavir (ATV) are preferred. Darunavir (DRV) is 

exclusively prescribed for salvage therapy after failure on a PI-based second-line regimen [7]. 

ATV and LPV are co-administered with ritonavir (RTV) as it functions as a potent inhibitor 

of the xenobiotic detoxification enzyme cytochrome P450 Isoform 3A4, thereby increasing PI 

bioavailability [8]. However, ritonavir (RTV) is avoided as a standalone drug due to the 

severity of its side-effects at higher concentrations, and due to the selection of drug resistance 

mutations [8–10].  

The development of antiretroviral (ARV) drug resistance remains one of the most significant 

hurdles in the fight for sustained viral suppression within HIV-1 infected patients on 

antiretroviral therapy (ART) [11]. PI-resistance is mediated by primary mutations located 

within the active site of the enzyme. These mutations ordinarily give rise to low levels of 

resistance when not enhanced by secondary mutations distal to the active site. Furthermore, 

studies indicate that the drug resistance profile of HIV-1 protease is enhanced when 

compensatory changes arise within the Gag polyprotein, which can modulate the replicative 

capacity of the virus to further decrease the likelihood of successful treatment [8,12–16]. 

A recent study has reported on an HIV-1 isolate (W1201i) from an HIV-1 infected South 

African drug-naïve infant with an N37T↑V hinge region mutation and insertion in the 

protease enzyme [17]. An increasing number of insertion mutations in protease are being 

reported, although their impact on drug susceptibility has not been well characterised [18]. 

The hinge (residues 35-42 and 57-61) of protease is highly variable and controls the 

molecular dynamics (MD) of the flap region (residues 46-54) [19]. The flap region, in turn, 

controls substrate entry into the active site and influences drug binding [8]. MD simulations 

suggest that the N37T↑V hinge region mutation increases the dynamics of the flap region 
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which alters its kinetic profile [20]. The altered kinetics of the N37T↑V protease may result 

in reduced PI drug susceptibility [8,21]. Here, we report on the in vitro drug susceptibility, 

viral replication capacity and enzymatic catalytic efficiency of the W1201i isolate.  

Materials and Methods 

2.1 Cohort study 
Plasma samples from newly diagnosed PI-naïve children younger than two years of age were 

investigated in a previous study that examined drug resistance following short-course 

treatment to prevent mother-to-child HIV transmission [17]. A sample from an infant 

(W1201i) was selected for further study because the isolate was shown to contain a protease 

hinge region mutation and insertion (N37T↑V). No ethics clearance was required for this 

research. The sequences are available on GenBank (personal communication from Professor 

Lynn Morris).

Prenatally, the mother of W1201i was PI-naïve but had been exposed to nevirapine (NVP) for 

42 days before labour to prevent mother-to-child transmission. The infant had been treated 

with azidothymidine (AZT) as prophylaxis after birth and was PI-naïve at the time 

blood samples were taken [17].  

2.2 Vector construction 
Total viral RNA was extracted from patient plasma using the QIAmp Viral RNA Mini 

kit (QIAGEN, Belgium) and reverse transcribed using a Thermoscript RT-PCR kit 

(Invitrogen, CA). The 1.8 kb gag-protease amplicon was amplified by nested polymerase 

chain reaction (PCR) using an Expand High Fidelity PCR kit (Roche Applied Science, 

Basel, Switzerland). Population-based Sanger sequencing of gag-protease and the 

construction of the patient-derived HIV-1 expression vector was performed as previously 

described by Giandhari et al., (2016). 

A wild-type reference (p8.9MJ4GP) containing the gag-protease of a subtype C reference 

isolate (MJ4, GenBank: AF321523.1) and a known multi-drug resistant reference (resistance 

control) were included in this study [22,23]. Moreover, an artificial chimeric construct was 

created by exchanging W1201i-gag in the patient-derived HIV-1 expression vector with the 

MJ4 wild-type-gag to form WTGagN37T↑V. The W1201i gag-protease, chimeric construct 

and the resistance control were each cloned into a p8.9NSX+ expression vector to use in the 

single cycle phenotypic assays. 
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2.3 Phenotypic drug susceptibility 
A single-cycle non-replication assay was used for phenotypic drug susceptibility testing [24]. 

Briefly, HEK293T cells were transfected the HIV-1 expression vector, the pMDG vector that 

expresses vesicular stomatitis virus protein G for entry, and the pCSFLW vector that encodes 

the firefly luciferase reporter gene. The transfected cells were harvested after incubation at 

37 °C under 5% CO2 for 36 hours. The harvested cells were seeded in 96-well culture plate 

with serially diluted PIs. After 24 hours, the supernatants were transferred to the 

corresponding wells of an indicator plate that contained uninfected HEK293T cells. The 

degree of pseudoviral infection was measured 48 hours post-transfer, as determined by the 

expression of firefly luciferase in infected target cells. Luciferin containing Bright-Glo 

(Promega, CA, USA) was added to each well and incubated for 2 minutes before reading the 

luminescence on the Victor 3 Luminometer (Perkin Elmer, Massachusetts).  

The half maximal inhibitory concentration (IC50) values were calculated for each sample and 

drug (DRV, ATV, LPV). The percentage luciferase activity was plotted against the log of the 

drug concentration to determine the relative half maximal inhibitory concentration (IC50). 

Experiments were performed in duplicate and three experiments were averaged for the final 

result. The drug susceptibility (represented in fold change) of the W1201i isolate, resistance 

control, and the WTGagN37T↑VPR construct was expressed relative to MJ4. One-way 

analysis of variance (ANOVA) of the IC50 values of MJ4 was used to identify fold change 

values.  The lower biological cut-off value for each drug was set at the 99th percentile of IC50 

replicates for MJ4: LPV (1.2 FC), ATV (1.4 FC) and DRV (1.7 FC). Values above these 

levels indicate a decrease in drug susceptibility. Figures and statistics were compiled 

in GraphPad Prism 5 (GraphPad Software, Inc. La Jolla, CA, USA). 

2.4 Viral replication capacity 
Replication capacity (RC) was determined by harvesting pseudovirions from transfected 

drug-free HEK293T cells and infecting fresh HEK293T cells with the neat viral stocks. The 

subsequent expression of firefly luciferase was quantified 48 hours later, as described in 

section 2.3. Input virus was quantified using a chemiluminescent p24-antigen ELISA assay 

(Protocol 2, Aalto Bio Reagents Ltd., Dublin, Ireland). The RC was calculated by referring to 

the ratio of input virus (nanogram p24) against the level of luciferase expression.  
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2.5 Protease characterisation  
The N37T↑V protease derived from the W1201i isolate was purified as a recombinant protein 

through immobilised metal ion affinity chromatography [25]. The wild-type protease was 

purified as described by Naicker et al., (2013). A Q7K mutation, known to decrease autolysis 

without affecting catalysis, was incorporated into the protease coding region of both 

enzymes. 

Enzymatic parameters were determined following the hydrolysis of the HIV-1 protease 

fluorogenic substrate (Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-Nle-NH2), which mimics the 

CA/p2 cleavage site in the HIV-1 Gag polyprotein. The Nle-Phe(NO2) residue efficiently 

quenches the substrate aminobenzoyl (Abz) group. Quenching is abolished when the 

substrate is cleaved, which allows Abz to fluoresce at a wavelength of 425 nm when excited 

at 337 nm [26,27].  

For the specific activity, a variable protein concentration (10 to 50 nM) and constant substrate 

concentration (50 µM) was assayed under steady state conditions. The activity was 

determined from the slope of the progress curve. The catalytic efficiency (kcat/KM) was 

determined with a variable substrate concentration (1 to 10 µM) and a constant protein 

concentration (50 nM) assayed during steady state. All samples were measured for 1 minute 

using an excitation bandwidth of 2.5 nm and an emission bandwidth of 5 nm. The complete 

cleavage of 1 nmol substrate was measured and used to convert the emission intensity to 

activity. The catalytic constant (kcat) for each protease was determined from their respective 

specific activity values. 

Results 

3.1 Genotypic analysis of gag-protease from W1201i    
The protease encoding region of the W1201i amplicon was previously shown to contain a 

mutation and a rare insertion at position 37 in the hinge region [10]. A homology model of 

the W1201i protease containing the N37T↑V as well as a sequence alignment with the 

consensus wild-type, MJ4 and resistance control proteases is shown in Figure 1. Compared to 

the MJ4, the variant protease displayed the following background mutations: Q7K, I13V, 

M36T, Q61E and M89L. Furthermore, three minor ATV resistance mutations were also 

found: G16E, D60E, and I62V [28]. Both the wild-type and N37T↑V exhibited L63P, a 

minor LPV resistance mutation; however, the effect of L63P was found to be negligible. The 
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resistance control displayed the six major multi-drug resistance mutations; namely, L10I, 

K20R, M46I, I54V, I62V, and V82A. Additionally, five background mutations were present: 

E35D, S39P Q61H, T74S and I77V. Resistance mutations were verified by the Stanford HIV 

drug resistance database (https://hivdb.stanford.edu/) and by Wensing et al., (2017). 

Given the close link between Gag and protease we also sequenced the Gag region of W120li. 

All polymorphisms and their locations in Gag are indicated in Figure 2, which shows a 

sequence alignment between W1201i and a subtype C wild-type consensus sequence. 

Genotypic analysis (Figures 3) of W1201i gag showed several insertions in, or near, cleavage 

sites, which could potentially influence drug susceptibility and RC [29,30]. Mutations include 

a single PTAPP duplication and LE insertion in p6Gag, as well as an I372L↑M mutation and 

insertion in the p2/NC cleavage site. In addition to I372L↑M, the p2/NC cleave site showed 

the following polymorphisms: S369N, S371N, I373M and G377S. Moreover, a previously 

unreported MSQAG duplication was found between the CA/p2 and p2/NC cleavage sites.  

3.2 Phenotypic drug susceptibility 
The W1201i Gag-proteaseThe W1201i sample-derived pseudovirus was susceptible to both 

LPV (FC 2.0) and ATV (FC 1.6), and no significant difference (p>0.05) was observed 

compared to the wild-type control (Figure 4). However, a reduced susceptibility was 

observed to DRV (FC 4.6), which was significantly higher (p<0.0001) than the wild-type 

control. With the substitution of W1201i-Gag, WTGagN37T↑VPR showed a small, but 

significant (p<0.001), reduction in susceptibility for both LPV (FC 3.4) and ATV (FC 3.7). 

No further significant reduction (p>0.05) was observed for DRV (FC 4.7). The resistance 

control exhibited a significant (p<0.0001) reduction in susceptibility (FC>10) towards 

all three PIs. Error bars could not be included for the resistance control assayed 

against ATV and DRV because the drug susceptibility of these samples surpassed 

the sensitivity of the assay. These samples show only a qualitative relative difference 

between it and the other isolates.

3.3 Viral replication capacity 
When assessed for RC, the W1201i pseudovirus showed a significant (p<0.05) reduction in 

RC (16.4%), compared to the wild-type control (100%) (Figure 5). However, with the 

substitution of the Gag, the resulting WTGagN37T↑VPR pseudovirus showed a drastic 

increase in RC (164%, p<0.01), compared to the wild-type virus suggesting that the 

polymorphisms in the W120li Gag caused the observed reduction in RC. 

https://hivdb.stanford.edu/
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3.4 Protease characterisation 

The enzyme kinetic parameters of the wild-type and N37T↑V proteases were determined via 

fluorogenic substrate cleavage (Table 1). The specific activity was found to be 

12 ± 1 µmol.min-1.mg-1  for wild-type and 1.8 ± 0.2 µmol.min-1.mg-1 for N37T↑V, indicating 

that the variant shows reduced specificity toward the fluorogenic substrate. The catalytic 

constant (substrate turnover per second) was determined from the specific activity data and 

was found to be 6.4 ± 0.2 and 1.5 ± 0. 2 s-1 for wild-type and N37T↑V, respectively. The 

wild-type protease was five times more catalytically efficient than the N37T↑V variant with a 

kcat/KM value of 2.4 ± 0.3 s-1.µM-1 compared to 0.5 ± 0.1 s-1.µM-1 for wild-type. 

Cumulatively, the data indicate that the N37TV variant processes the fluorogenic substrate 

less efficiently. 

Discussion 
Nucleotide insertions occur most commonly between codon 32 and 42 in the protease 

gene [18]. However, the prevalence of insertion mutation are rare and their prevalence range 

from 0.1 to 4.55% [15,31,32]. It has been reported that insertion mutations can modulate the 

activity of the enzyme and impact the RC [15,18,33,34]. Frequently, insertion mutations are 

found to be duplications of neighbouring amino acids generated due to the error-prone nature 

of reverse transcriptase. Furthermore, two-thirds of protease insertion variants contain one or 

more of the major resistance mutations [15,34]. We have previously shown that the N37T↑V 

mutation and insertion increases the molecular dynamics of both the flap and the hinge 

regions in HIV-1 protease [20]. Here, we investigated the in vitro phenotypic drug 

susceptibility, replication capacity and enzymatic properties of this insertion variant to 

understand its impact on HIV-1 protease. 

As anticipated, W1201i displayed a significant reduction in RC compared to the wild-type 

control pseudovirus. However, when the W1201i Gag was substituted with wild-type Gag, a 

significant increase in RC, relative to the wild-type control, was observed. Thus, N37T↑V 

appears to catalyse the cleavage of wild-type Gag more effectively. We postulate that the 

selection of N37T↑V is dependent on the variations within Gag, and not vice versa since 

natural selection would favour a virus with an increased RC. The increase in RC was 

complemented by an additional small decrease in drug susceptibility to all three PIs. 
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In the context of its native Gag, a small, but statistically significant decrease in susceptibility 

to DRV was observed, while replication capacity was significantly impaired. However, in the 

presence of an unrelated wild-type Gag, a small but significant decrease in susceptibility was 

observed to all three PIs while replication capacity was significantly improved. Cumulatively, 

the data show that the W1201i Gag confers no advantage to RC and PI susceptibility. 

However, genotyping of Gag revealed notable polymorphisms and insertions.  

The W1201i Gag displayed a PTAPP duplication and variations in the p2/NC cleavage site 

(S369N, S371N, I372L↑M, I373M and G377S). Gag insertion variants are usually co-

selected with other polymorphisms to help maintain viral fitness [35]. However, these 

polymorphisms can accumulate in the absence of drug pressures [36]. It has been shown that 

nucleoside-based ART positively correlates with PTAP duplications in subtype B strains 

[36]. However, the PTAP duplication occurs at a higher frequency in subtype C variants 

[36,37]. Studies suggest that the PTAP motif influences the packaging of Pol proteins during 

late assembly, and may be involved in improving viral fitness [14,38]. However, a study 

performed by Martins et al., (2015) concluded that PTAP duplications had little effect on the 

viral infectivity in wild-type strains, but only led to increased viral infectivity, and decreased 

drug susceptibility, when modified by specific drug resistance mutations. Our results are in 

accordance with the findings of Martins et al., (2015), in that the W1201i Gag conferred no 

replicative advantage. In fact, W1201i Gag appears to be disadvantageous with regards to 

viral infectivity. Similarly, it has been reported that p2/NC cleave site mutations will 

accumulate under PI pressure [39]. It is currently believed that cleavage site mutations 

accumulate to restore lost viral fitness due to the development of mutations within protease 

[40]. Our results do not corroborate these findings because neither the PTAP duplication nor 

the cleavage site mutations were able to restore the RC of W1201i. However, we did not 

investigate the RC of W1201i in the absence of these polymorphisms. 

Not all the insertions within W1201i Gag are thought to be advantageous. The W1201i 

isolate presented a previously unreported MSQAG insertion in proximity to the both the 

CA/p2 and p2/NC cleavage sites (Figure 3). Tamiya and colleagues suggested that insertions 

near the CA/p2 cleavage may compromise RC; however, the mechanism has not been 

established [14]. It is believed that insertions alter the conformation of the cleavage site and 

limit access to the protease enzyme [14]. It is reasonable to expect that insertions could 

impact RC, as the cleavage of Gag is thought to be controlled by the shape of the cleavage 

site and not a particular amino acid sequence [41]. Therefore, it is possible that the observed 
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reduction in the RC of W1201i is due to a deleterious effect conferred by the MSQAG 

insertion. Moreover, these data are in agreement with the low specific activity, catalytic 

turnover and catalytic efficiency displayed by the N37T↑V PR towards a substrate mimicking 

the CA/p2 cleavage site. If the N37T↑V protease displays lowered catalytic efficiency toward 

the substrate, then further structural changes such as an MSQAG insertion could possibly 

enhance the detrimental effect on specificity. 

The fold change of susceptibility to LPV, ATV and DRV was analysed (Figure 4 A, B 

and C) because these drugs are the most commonly used  ARVs in South Africa, with DRV 

reserved for third line ART. W1201i displayed a minimal, but statistically significant 

decrease in drug susceptibility to ATV, whereas the chimeric construct displayed a minimal 

but statistically significant decrease in drug susceptibility to LPV, ATV and DRV. Under 

normal conditions, protease insertion variants are usually fully susceptible to all 

PIs [34]. However, here the variant is modified by only three minor ATV resistance 

mutations, compared to the wild-type. Despite this, the N37T↑V protease displayed decreased 

susceptibility to both LPV and DRV. Considering the drug resistance profile of N37T↑V, it is 

possible that the observed reduction in susceptibility to LTV and DRV is due to the presence 

of the hinge region insertion and mutation. 

Analysis of the kinetic properties of the N37T↑V protease indicates that the hinge region 

insertion and mutation impacts the activity of the enzyme. The specific activity, catalytic 

activity and catalytic turnover were decreased compared with the wild-type, as a result of the 

combined effects of the mutations present in the N37T↑V protease (Table 1). These data 

confirm that the catalytic processing power of the N37T↑V protease is less than the wild-

type, at least concerning the fluorogenic substrate used. These results are to be expected as 

the fluorogenic substrate is a mimic of the wild-type Gag CA/p2 cleavage site, and insertion 

mutations within HIV-1 protease (particularly hinge region insertions) are known to decrease 

the rate of substrate processing [18].  

Gag and protease appear to be inextricably linked with regards to PI resistance and viral 

fitness. A body of evidence is accumulating in support of the fact that Gag polymorphisms 

can modulate PI susceptibility, even in the absence of protease drug resistance mutations 

[23,42–44]. Despite the evidence, phenotypic testing is still focused predominantly on the 

protease sequence [44]. In this study, we have once again shown a clear link between 

protease and Gag based on phenotypic testing. 
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Figure 1: (A) Homology model of the N37T↑V protease. The relative positions of the amino acid 

insertions (N37T↑V) are indicated by yellow spheres. The hinge regions (residues 35-42 and 57-61) 

are denoted in blue, and the flap regions (residues 46-54) are denoted in red. The homology model 

was generated with the molecular visualisation software programme PyMOL (The PyMOL 

Molecular Graphics System, Version 1.8 Schrödinger, LLC.), using data from the Protein Data 

Bank (PDB ID: 3U71) [19]. (B) The sequence alignment data shows the positions of the mutations of 

both N37T↑V and the resistance control protease. The N37T↑V variant has the following mutations: 

Q7K, I13V, G16E, M36T, D60E, Q61E, I62V and M89L. The resistance control protease has the 

following mutations: L10I, K20R, E35D, S39P, M46I, I54V, Q61H, I62V, T74S, I77V and V82A. 

The wild-type subtype C protease consensus and MJ4 sequences are included as a reference. The 

alignment was performed using the Clustal Omega online tool (EMBL-EBI) [45]. 
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Figure 2: Alignment of the consensus wild-type Gag sequence and W1201i-Gag. Sequence 

alignment was performed on the Clustal Omega online tool (EMBL-EBI) [45].
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Figure 4:  The phenotypic drug susceptibility of four pseudoviruses. The in vitro susceptibilities of 

the W120i, WTGagN37TVPR and resistance control are shown relative to the wild-type control for 

(A) LPV, (B) ATV and (C) DRV. The error bars indicate the standard error of the mean (SEM). The

horizontal bars represent the statistical significance (P value). The lower biological cut-off values are

shown for each drug.
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Figure 5: Viral infectivity of the isolates/constructs. The replication capacity of W1201i and 

WTGagN37T↑VPR are shown relative to the wild-type control. The error bars indicate the standard 

error of the mean (SEM). The horizontal bars represent the statistical significance (P value) 



74 
 

 

 

 

Table 1: Enzymatic parameters of the wild-type subtype C and N37T↑V proteases. 
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CHAPTER 4 

Molecular dynamics and ligand docking of a hinge region variant 

of South African HIV-1 subtype C protease 

Jake Zondagh, Vijayakumar Balakrishnan, Ikechukwu Achilonu, Heini W. Dirr and Yasien 

Sayed. 

J. Mol. Graph. Model. 82 (2018) 1–11. doi:10.1016/j.jmgm.2018.03.006.

In this manuscript, the molecular dynamics and drug binding characteristics of the N37T↑V 

protease were examined computationally. It was found that the N37T↑V variant displayed 

altered dynamics around the hinge and fap regions. The altered dynamics of the variant 

resulted in higher binding free energies when docked to three commonly used protease 

inhibitors. 
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Abstract 

HIV-1 protease is an important antiretroviral drug target due to its key role in viral 

maturation. Computational models have been successfully used in the past to understand the 

dynamics of HIV-1 protease variants. We performed molecular dynamics simulations and 

induced fit docking on a wild-type South African HIV-1 subtype C protease and an N37T↑V 

hinge region variant. The simulations were initiated in a cubic cell universe and run in 

explicit solvent, with the wild-type and variant proteases in the fully closed conformation and 

under periodic boundary conditions. The trajectory for each simulation totalled 20 

nanoseconds. The results indicate that the N37T↑V hinge region mutation and insertion alter 

the molecular dynamics of the flap and hinge regions when compared to the wild-type 

protease. Specifically, the destabilisation of the hinge region allowed a larger and protracted 

opening of the flap region due to the formation of two key hinge/cantilever salt-bridges, 

which are absent in the wild-type protease. Domain-domain anti-correlation was observed 

between the flap and hinge region for both models. However, the N37T↑V variant protease 

displayed a lower degree of anti-correlation. The mutations affected the thermodynamic 

landscape of inhibitor binding as there were fewer observable chemical contacts between the 

N37T↑V variant protease and lopinavir, atazanavir and darunavir, respectively. These data 

elucidate the biophysical basis for the selection of hinge region insertion mutations by the HI 

virus. 
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Abbreviations 

ART:    Antiretroviral Treatment 

ATV:    Atazanavir 

Cα    Alpha Carbon 

DRV:      Darunavir 

FDA:    Food and Drug Administration 

HIV-1:    Human Immunodeficiency Virus type 1 

IFD:    Induced Fit Docking 

LPV:    Lopinavir 

MD:    Molecular Dynamics 

ns:     Nanoseconds 

N37T↑V: HIV-1 subtype C protease containing asparagine 37 mutated to 
threonine; the upwards arrow indicates an insertion of valine at 
position 37 

PDB: Protein Data Bank 

PI: Protease Inhibitors  

PR:    Protease 

Rg:    Radius of Gyration 

RMSD:   Root Mean Square Deviation 

RSMF:    Root Mean Square Fluctuation 

SASA:    Solvent Accessible Surface Area 
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1. Introduction 

HIV continues to be a socioeconomic problem in sub-Saharan Africa. In South Africa alone, 

more than six million people are HIV positive [1]. The virus encodes several proteins and 

enzymes, one of which is a homodimeric aspartyl protease that is directly involved in viral 

maturation [2]. The function of HIV-1 protease is the cleavage and subsequent activation of 

the viral Gag and Gag-Pol polyproteins [3,4]. Thus, it remains an attractive target for rational 

drug design [5,6].  

Currently, there are nine United States Food and Drug Administration (FDA) approved 

protease inhibitors (PIs) [5]. The PIs are mainly developed and tested in countries affected by 

HIV-1 subtype B and are known to be less effective against some subtype C variants [7]. 

Numerous subtype C variants modulate drug susceptibility via a reduction in the binding 

affinity to the PIs. An investigation into PI/protease interaction is required to understand the 

biochemical basis underlying PI susceptibility [8]. 

The flap, hinge, cantilever and fulcrum regions make up the four domains of an HIV-1 

protease monomer. The hinge region is composed of amino acid residues 35-42 and 57-61 

(figure 1A). Residues 46-54 form the flap region and are integral to the specificity and 

activity of HIV-1 protease [9]. The fulcrum region consists of residues 10-23 (figure 1A). 

According to Gustchina and Weber (1990), the hinge region regulates the stability and 

movement of the flap region, which in turn controls access to the substrate binding site. Flap 

region dynamics affect the binding energetics of both PIs and natural substrates and are 

responsible for coordinating a single water molecule required for proteolytic cleavage [11]. 

Liu et al., (2006) suggests that increased flap region flexibility can markedly reduce the rate 

of substrate proteolysis and drug susceptibility. It is, therefore, important to understand how 

hinge region mutations, and more specifically the insertion mutations, modulate PI-

susceptibility.  

Recently, South African HIV-1 subtype C protease (HIV-1 C-SA) sequence data were 

obtained from a South African PI-naïve infant (Professor Lynn Morris, AIDS Virus Research 

Unit, NICD, Johannesburg, South Africa) [13]. The sequence data confirmed a hinge region 

mutation and insertion (N37T↑V) as well as several background mutations: I13V, G16E, 

I36T, P39S, D60E, Q61E, I62V, L63P, V77I and M89L (figure 1B and 1C) [14]. As a result, 

each monomeric subunit is comprised of 100 amino acids instead of the conventional 99 



82 
 

amino acids in the canonical wild-type sequence [15]. In this paper, the variant is referred to 

as N37T↑V, as the substitution and insertion mutations are both present at residue 37. The 

N37T↑V nomenclature was developed by Yasien Sayed and Ikechukwu Achilonu (Protein 

Structure-Function Research Unit, University of the Witwatersrand, South Africa) because no 

convenient taxonomy for describing such mutations currently exists. 

Previous studies have compared the flap dynamics of subtype C and subtype B. However, 

mutations within subtype C need to be explored, particularly if they can potentially confer 

reduced drug susceptibility [9]. Several molecular dynamics (MD) simulation studies have 

shown the spontaneous opening of the flap region during specific solvation states [16]. 

However, PI bound structures are only observed in the closed conformation as opposed to the 

semi-open conformation of the apo-enzyme [17].  

Recent advances in computational biology allow detailed insight into molecular interactions, 

particularly those controlled by dynamics. A well-known example of this is the visualisation 

of the spontaneous opening of the protease flaps, which was proven through NMR studies 

and reproduced by MD simulations [18]. Accurate homology models need to be created to 

study proteins computationally. Homology models are created from data derived from 

previously solved crystal structures of homologous proteins. Currently, the Protein Data Bank 

(PDB: www.rcsb.org) contains numerous solved X-ray crystal structures of HIV-1 protease, 

including structures that are ligated with the nine FDA-approved protease inhibitors (PIs) 

[19,20]. In this study, the behaviour of the hinge region was assessed because it plays a 

significant role in flap region dynamics and drug susceptibility [21]. Our findings may assist 

in shaping the development of more selective protease inhibitors. 
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2. Materials and methods 

2.1 Computational data acquisition  

Homology models were constructed from the coordinates of the wild-type South African 

HIV-1 subtype C protease, resolved at a resolution of 2.72 Å (PDB ID: 3u71) [9,20]. This 

reference structure was chosen because the South African subtype C protease sequence has 

the closest homology to the N37T↑V clinical variant. Figure 1B depicts the homology model 

of N37T↑V, where the relative locations of the polymorphisms are indicated. Sequence 

alignment was performed on the Clustal Omega online tool [22]. Homology models were 

generated using the SWISS-model online tool [23,24]. Models were validated by 

PROCHECK [25,26].  

The wild-type and variant (N37T↑V) system each contained the Q7K substitution that is used 

in our laboratory to decrease autoproteolysis. The Q7K mutation is present in many 

experimental protease constructs, particularly in structural, kinetic, and binding affinity 

studies because it does not affect the kinetic properties of the protease [27]. In addition to the 

N37T↑V mutations, the variant enzyme has the following polymorphisms: I13V, G16E, 

I36T, P39S, D60E, Q61E, I62V, L63P, V77I and M89L. Individually, these polymorphisms 

represent background mutations as confirmed on the Stanford HIV database (http://hivdb. 

stanford.edu/).  

MD simulation studies were performed on Groningen Machine For Chemical Simulations 

(GROMACS) version 5.0 [28], running on two 3.68 GHz Intel core i7 5960x computers 

implemented on LINUX architecture. The AMBER99sb force field was used for both models 

[29,30]. Simulations were conducted with explicit solvent in a cubic box universe. Long-

range electrostatics was handled by the particle-mesh Ewald (PME) method [31]. Wild-type 

and variant systems were neutralised by the addition of 8 (charge -8) and 4 (charge -4) 

chloride ions, respectively.  

The solvated systems were relaxed with energy minimisation using the steepest descent 

method. Minimisation was continued until the systems reached a maximum atomic force of  

1000 kJ/mol/nm. Following minimisation, 5 ns of MD simulation was performed under the 

NPT ensemble (constant number of particles (N), constant pressure (P) and constant 

temperature (T)). Afterwards, the temperatures were linearly increased from 10 to 300 

degrees kelvin. Positional restraints were also calculated, and the original values annealed to 
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relax the models and ensure a stable temperature. Next, the temperature-stable models were 

subjected to 5 ns of simulation under the NVT ensemble (constant number of particles (N), 

constant volume (V) and constant temperature (T)), where the pressure of each system was 

equilibrated. These trajectories were used in subsequent data acquisition. After equilibration, 

MD simulations were performed for 20 ns under a constant temperature of 300 K with a 

Berendsen thermostat, and an average pressure of 1 atm maintained by the Parrinello–

Rahman barostat algorithm [32]. 

2.2 Data analysis 

The resultant trajectories were analysed by both the script-based utilities in GROMACS 

version 5.0 and with the molecular visualisation software UCSF Chimera version 1.11.2 

[28,33,34]. Models were viewed with the molecular visualisation software PyMOL (The 

PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.). Sequence alignment 

was performed using the Clustal Omega tool (EMBL-EBI) [22]. Principal component 

analyses were performed using the Bio3D package in the language and environment for 

statistical computing known as R [35–37]. Figures were compiled on GraphPad Prism 6 

(GraphPad Software, Inc. La Jolla, CA, USA). 

2.3 Ligand docking 

Glide software (Schrödinger LLC 2009, USA) was used to perform the induced fit docking 

(IFD) and calculate the binding free energies. The docking simulations were executed on a 

CentOS EL-5 workstation. Graphical visualisation was achieved using the PyMOL software 

(The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC).  

The wild-type subtype C reference structure (PDB ID: 3u71) was downloaded from the PDB 

[9]. The homology models were generated with the SWISS-model online tool [23,24]. 

Models were validated by PROCHECK [25,26]. Schrödinger modules Glide, Prime, QSite, 

Liaison and MacroModel were used for protein preparation. Each model was modified by 

correcting bond orders while ionizable residues were assigned a charge corresponding to a 

solution at pH 5.0 (experimentally determined optimal pH). The models were subject to 

energy minimisation until the average RMSD reached 0.3 Å.  

The Schrödinger suite contains various tools for ligand preparation. The LigPrep tool was 

used to convert 2D drug structures to 3D structures and to add hydrogens, correct bond 

lengths and bond angles, correct chirality and to perform energy minimisation. The Epik tool 
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was used to choose the lowest energy tautomers and ring structures. The energy-minimised 

protein models were loaded into the workspace, and a PI was selected and specified to the 

active site of each. IFD calculations were carried out for lopinavir (LPV), atazanavir (ATV) 

and darunavir (DRV). Twenty conformational poses (system default setting) were calculated 

for each drug. The best conformations were chosen for further evaluation based on their 

respective IFD scores and their similarity to known PI bound HIV-1 protease crystallographic 

structures (PDB: www.rcsb.org). 

3. Results and discussion

MD simulations have advanced sufficiently to model macromolecular structure-to-function 

relationships [38]. Our goal was to understand how an HIV-1 protease hinge region insertion 

and mutation affects the behaviour of the protease by using the N37T↑V variant as a 

representative model. Solvated MD simulations were performed on the apo-structures of both 

the wild-type protease and the clinically relevant N37T↑V hinge region variant. The 

simulations were initiated with each structure in a closed, energy-minimised conformation. 

The starting structures were aligned with the reference crystallographic structure (PDB ID: 

3u71). The alignment RMSD for the wild-type and N37T↑V models were 0.4 Å and 

0.41 Å, respectively. Simulations were conducted for 20 ns to observe the complete opening 

of the flaps and their subsequent return to the closed conformation. The closed (< 7 Å), semi-

open (7-12 Å) and fully-open (>12 Å) conformations are defined based on the distance 

between the alpha carbon (Cα) of the two flap tip residues (Gly 51/52 to Gly-51′/52′). 

Representative snapshots of the simulations were taken to show the various conformations of 

the proteases over time (figure 2A). Both proteases sampled the closed, semi-open and fully-

open conformations that are known to occur in HIV proteases. The switching of flap 

handedness is known to occur during MD simulations. Figure 2B shows the switching of 

handedness in both models. Flap switching occurred at and 14.98 ns in the wild-type 

simulation and 11.45 ns in the variant simulation. The switching only occurred when the 

protease flaps were in the semi-open conformation. This observation has been previously 

reported by others as well [9,17]. 

3.1 RMSD and RMSF 

The RMSD infers the overall dynamic motion concerning the Cα backbone structure. The 

data show that the RMSD variation of N37T↑V was much greater than that of the wild-type 

http://www.rcsb.org/
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protease (figure 3A). The wild-type exhibited a relatively low RMSD throughout the 

simulation, with values remaining well below 3 Å. The highest RMSD reached by the wild-

type model was 2.85 Å at approximately 13.12 ns. Conversely, the N37T↑V model exhibited 

a higher RMSD overall. The highest RMSD reached by the variant model was 4 Å at 

approximately 14.05 ns. Both simulations follow a similar trajectory until approximately  

12 ns at which point the variant protease samples a larger dynamic field (figure 3A, 12-19 

ns). The data highlights that the dynamics of the wild-type trajectory differ considerably from 

that of the N37T↑V trajectory.  

The root mean square fluctuation (RMSF) was calculated to understand which residues were 

responsible for the altered dynamics. The RMSF indicates the specific motion of each amino 

acid throughout the MD simulation. Figure 3B shows the residue-based RMSF of the wild-

type and N37T↑V variant over a 20 ns trajectory. Regions of high mobility were defined as 

regions that fluctuated more than the average RMSF of the wild-type protease (~1.5 Å). 

Residues 34-60 (34′-60′) exhibit high mobility. These residues illustrate that the N37T↑V 

variant has enhanced flap and hinge region dynamics when compared to the wild-type 

enzyme. Similarly, residues 78-85 (78′-85′) and residues 16-24 (16′-24′) show prominent 

fluctuations. These two groups of residues correspond to a random coil and a portion of the 

fulcrum region, respectively.  

3.2 Radius of gyration and solvent accessibility  

The relative radius of gyration (Rg) and differences in the global solvent accessible surface 

area (SASA) were calculated to assess the degree of compactness of each protease. Figure 4A 

shows that the highest Rg attained by the wild-type model was 1.86 nm at 13.12 ns. The Rg of 

the variant model exceeded 1.95 nm at 13.39 ns. Relative to the wild-type, the variant 

displayed a noticeably larger Rg from 3 to 9 ns and from 12 to 20 ns. The Rg data indicate that 

the N37T↑V is relatively unstable compared to the wild-type model because the wild-type 

adopts a more constrained conformation for the duration of the simulation. Therefore, the 

variant has fewer interactions between adjacent amino acids and the stability the flap and 

hinge domains are particularly affected [39].   

Figure 4B shows that the global SASA of the variant is greater than the wild-type throughout 

the simulations. The average SASA for the wild-type is 110 nm2, whereas the average SASA 

for N37T↑V is 116.75 nm2. The higher degree of solvent accessibility infers that the variant 

protease adopts a more open conformation than the wild-type protease. The increase in the 
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SASA of the N37T↑V protease further confirms that the variant protease is more dynamic 

relative to the wild-type protease. These findings may assist us in understanding the 

biochemical basis for an altered kinetic profile of the N37T↑V variant (manuscript in 

preparation). 

3.3 Essential dynamics 

The essential dynamics refer to the correlated and anti-correlated motions between different 

domains within a protein and were examined to understand which motions are related and to 

identify the pattern of movement for each trajectory [40]. The essential dynamics analyses 

were restricted to the backbone Cα atoms. The essential dynamics within a model are usually 

due to only a few eigenvectors with large eigenvalues [41]. The eigenvectors describe the 

degree of atomic fluctuation of each model. The highest eigenvalues correspond to the most 

relevant dynamics of the molecule, represented as dynamics cross-correlation maps (figure 

5). Analysis of these maps revealed that the greatest degree of flexibility occurs around the 

flap region for both the wild-type and the variant protease (figure 5). Usually, the opening of 

the flap region is anti-correlated (directionally opposing) with the hinge region trajectory for 

wild-type HIV-1 protease [42]. Although some anti-correlation is observed in the variant 

model, the opening of the variant flaps is less reliant on the downward trajectory of the hinge 

region.  

3.4 Flap opening and curling 

The trajectory data show that the MD of the N37T↑V protease is altered. Figure 6 

demonstrates the differences in the MD profiles between the two models. The hinge region 

stability was determined by measuring the relative distance between Gly-16 (fulcrum) and 

Gly-40/41 (hinge). Experimental evidence suggests that the motion of the flaps correlate with 

hinge region fluctuations [42]. The flaps cover the substrate upon protease-substrate 

association and open again to release the products. Therefore, the exposure of the substrate 

binding site (drug binding site) is proportional to the distance of the flap tips from one 

another, as well as the distances of the flap tips from the catalytic site. The distance between 

both flap tips (Gly 51/52) and the catalytic Asp-25 residue as well as the relative distance 

between the two flap tips Gly-51/51 to Gly-50′/51′ were both calculated. The corresponding 

regions between the two chains behaved differently in the wild-type and N37T↑V models, as 

shown by the large variance in flap tip to active site distance between chain A and B. 

However, the N37T↑V protease exhibits larger dynamic fluctuations than the wild-type 
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because the hinge region insertion (Val-38) allows the protease to sample regions of newly 

allowed space, thereby altering the dynamic profile of the flap region. Inhibitors that alter the 

behaviour of the hinge region may provide key therapeutic benefits and be a viable drug 

design strategy. An example would be an inhibitor that can lock the hinge in place and 

prevent the flaps from opening [43] 

Flap curling acts as a trigger for the opening of the HIV-1 protease flaps because the opening 

of the protease, both from “closed to semi-open” and “semi-open to fully-open” is preceded 

by the curling of the flap tips [43,44]. Perryman et al., (2003) reported that flap curling is due 

to the increased conformational flexibility of the two glycine residues at position 49 and 51 in 

the wild-type protease. The mechanism is important because it allows the burial of a 

conserved hydrophobic Ile-50/50′ residue which ensures that the opening of the flap region 

remains thermodynamically favourable. We analysed the angle produced between three 

adjacent Cα: residues Gly-49, Ile-50 and Gly-51 (Gly-49′, Ile-50′ and Gly-51′) for wild-type 

and residues Gly-50, Ile-51 and Gly-52 (Gly-50′, Ile-51′ and Gly-52′) for N37T↑V. The angle 

between these three residues (henceforth referred to as tri-Cα angles) served as a metric to 

measure flap curling. For both models, the opening of the flap region was preceded by the 

positive curling (a decrease in the tri-Cα angles) early during the simulation (0-2 ns). Despite 

this, the N37T↑V protease extended both flaps at a faster rate and was observed to sample 

multiple open and closed conformations before the wild-type was able to complete a single 

open-to-closed cycle. Interestingly, no flap curling was observed when the variant protease 

was in the fully open conformation. At ~12.3 ns the variant flaps remained uncurled; thereby, 

exposing the hydrophobic Ile-51 to the bulk solvent. In theory, this would cause an ordering 

of water molecules around Ile-51, leading to a decrease in solvation entropy associated with 

this residue. Therefore, flap curling is not the driving force behind the extended opening of 

the variant flaps.  

3.5 Analysis of residue interaction networks 

Residue interaction networks describe the non-covalent interactions between amino acid 

residues within a simulation. We analysed the residue interaction networks of the two models 

to understand how the N37T↑V protease flaps are able to extend further away from the active 

site than the wild-type flaps (see section 3.4). Specifically, the formation and dissolution of 

salt-bridges were examined. A salt-bridge can form when two oppositely charged residues 

fall within 4 Å of one another [45].  HIV-1 protease contains several charged residues that 
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form stabilising salt-bridges [9,46]. Our data reveal that the N37T↑V protease has an altered 

network of salt-bridge formation that modify the dynamics of the flap and hinge regions.  

Figure 7A illustrates an important inter-hinge salt-bridge between Glu-35 and Arg-57 that 

remains intact for the majority of the wild-type simulation. However, Glu-35 and Arg-58 in 

the variant protease do not fall within 4 Å of each other. The enhanced mobility derived from 

the Val-38 insertion weakens the interaction, increasing the probability that the bond will not 

form. Taken alone, these data are inadequate at explaining the extensive motion observed for 

the variant flaps. This salt-bridge can similarly be disrupted in the wild-type protease (figure 

7B at ~18 ns) without any effect on flap dynamics. 

Other biochemical interactions also likely contribute to the extensive opening of the variant 

flaps. Consider the wild-type cantilever region that contains an aspartic acid residue (Asp-60) 

in close proximity (<10 Å) to two lysine residues (Lys-41 and Lys-43) (figure 8A). Both 

lysine residues are located in the hinge region. At the start of the simulation, the wild-type 

protease is in the fully closed conformation, and Asp-60 falls within 4 Å of Lys-43. However, 

once disrupted, this contact is never re-established (figure 8B). At no point during the 

simulation does Asp-60 and Lys-41 come within 4 Å of one another (data not shown). 

Conversely, the N37T↑V protease has two charged residues in lieu of Asp-60; namely,  

Glu-61 and Glu-62. As the simulation progresses, the destabilised variant hinge region 

fluctuates until the Lys-44/Glu-61 and Lys-42/Gly-62 salt-bridges can form. Upon formation 

of the salt-bridges, the hinge-cantilever contacts can leverage the flaps open allowing them to 

sample areas of space that are non-permissible in the wild-type protease. We postulate that 

the formation of the Lys-44/Glu-61 and Lys-42/Gly-62 salt-bridges provide the 

thermodynamically favourable conditions that allow the variant flaps to open to this extent.  

3.6 Ligand docking 

In a parallel study, we have shown that the N37T↑V protease displays a 3 fold increase in 

IC50 to DRV (manuscript in preparation). We set out to understand the biochemical basis for 

the experimentally observed reduction in DRV susceptibility using IFD simulations. 

Additionally, LPV and ATV were also considered. Computational molecular docking 

methods such as IFD are routinely used to predict protein-ligand interactions. IFD considers 

the possible binding modes and the associated conformational changes between a ligand and 

protein upon ligand binding. Table 1 shows the calculated free energy (ΔG) of docking for 

the proteases complexed to the selected PIs. The wild-type/LPV, wild-type/ATV and wild-
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type/DRV complexes show binding free energies of -12 kcal/mol, -12 kcal/mol and  

-10 kcal/mol, respectively. The N37T↑V/LPV, N37T↑V/ATV and N37T↑V/DRV complexes 

had binding free energies of -8 kcal/mol, -9 kcal/mol and -7 kcal/mol, respectively. It is 

evident that there are diffrences between the binding energies of the PIs bidning to the the 

active site of the wild-type and variant proteases. 

Ahmed et al., (2013) performed a comparative study using experimentally determined 

binding free energy data for proteases from HIV-1 B and C-SA subtypes. The data were 

derived from isothermal titration calorimetry experiments. The authors found that LPV, ATV 

and DRV bind the wild-type C-SA protease with higher affinities due to strong interactions 

between the PIs and protease flaps. The experimental binding free energies for LPV, ATV 

and DRV are -15.1 kcal/mol, -14.3 kcal/mol and -15.2 kcal/mol, respectively. Given the 

lower resolution of computational binding, our results are reasonably consistent with what is 

reported in literature.  

Figure 9 shows a ligand interaction diagram of DRV bound to the proteases. The diagram 

shows that the wild-type/DRV complex possesses more hydrophobic contacts relative to the 

N37T↑V/DRV complex. Therefore, more water molecules are excluded from the SASA 

within the binding pocket which entropically favours the association of the PI and wild-type 

protease. Similarly, the association between the wild-type/DRV complex is more 

enthalpically favourable due to the relative abundance of favourable contacts such as van der 

Waals interactions, hydrogen bonds and salt bridges [48]. Similar conclusions can be drawn 

from the association of the proteases with LPV and ATV. Ligand interaction plots of the 

proteases bound to LPV and ATV are included in the supplementary material (figure 1). 

3.7 Study limitations 

In this study, there are several limitations to consider. The duration of the simulations was 

relatively short. Simulations were conducted to observe the opening and closing of the flap 

regions only. Longer simulation run times could provide further insight into the mechanisms 

that govern the opening of the variant flaps. The variant displays an altered trajectory; 

however, most individual analyses in the current work have a high correlation for the 

majority of the trajectories. Therefore, care must be taken to prevent over-interpretation of 

the results (e.g. RMSD, RMSF and Rg). Secondly, the present study focusses on the 

cumulative effect of all the mutations present within the N37T↑V clinical variant. Another 
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manuscript currently in preparation focuses on key residues that play a role in flap and hinge 

dynamics. 

4. Conclusion

The precise impact of hinge region mutations and insertions in the HIV-1 protease is not yet 

understood. The prevalence of hinge region insertions is gradually increasing, and it is 

important to understand the basis of this selection process. Previously, we have shown that 

the N37T↑V mutation and insertion confers reduced drug susceptibility to DRV, a third-line 

antiretroviral drug (manuscript in preparation). In this article, we report how a hinge region 

mutation and insertion, such as N37T↑V, affects the dynamics of the HIV-1 protease. The 

findings here correlate with previously published in vitro experiments performed on HIV-1 

protease mutations as well as other in silico based studies, indicating that the motion of the 

flaps is partially controlled by the hinge region. The data show that hinge region flexibility 

was greatly enhanced by the N37T↑V mutation and insertion, which results in a faster rate of 

active site opening. Moreover, the flap regions of the variant protease open to a greater extent 

due to the action of two key salt-bridges between the hinge and cantilever regions. IFD 

studies showed that the variant displayed a reduced binding affinity for LPV, ATV and DRV, 

respectively. The N37T↑V model and resultant kinetic scheme presented here provides an 

explanation for the experimentally determined decrease in drug susceptibility that should be 

further explored using conventional biochemical techniques.  
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Figure 1. A) The structural architecture of the wild-type HIV-1 protease enzyme (PDB ID: 

3u71). The flap regions (46-54 and 46′-54′) are rendered in purple, the hinge regions 

(residues 35-42, 35′-42′, 57-61, and 57′-61′) are rendered in blue, the fulcrum regions 

(residues 10-23 and 10′-23′) are rendered in orange, the cantilever regions (residues 62-75 

and 62′-75′) are rendered in red and the two catalytic aspartic acids (resides 25 and 25′) are 

rendered in green. B) Homology model of N37T↑V showing the secondary structural 

elements of the homology model in blue. The relative position of the insertion mutation is 
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indicated by red spheres. The yellow spheres represent various background mutations. C) 

Amino acid sequence alignment of the wild-type and N37T↑V proteases. The sequence 

alignment data show the positions of the polymorphisms coloured in accordance with Figure 

1B. Wild-type subtype C consensus sequence is included as a reference.  
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Figure 2. The topologies of the proteases are in a state of flux throughout the simulations. A) 

Trajectory snapshots of the Wild-type (blue) and N37T↑V (red) at various time points. The 

snapshots were taken when proteases were in closed, semi-open and fully-open 

conformations. Models are depicted in side view as cartoon diagrams. B) Atomic surface 

representations show the switching of the flap handedness. The wild-type flaps are depicted 

in green and purple, and the N37T↑V flaps are depicted in yellow and cyan.  
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Figure 3. A) RMSD of the peptide backbone with respect to time. The RMSD of the 

backbone Cα atoms were calculated over the entire trajectory for both the wild-type (blue) 

and the N37T↑V (red) proteases. All simulations were initiated in the closed conformation. 

B) RMSF of the structure with respect to amino acid number. The Cα fluctuations were 

measured over 20 ns. Wild-type data are depicted in blue and N37T↑V data are depicted in 

red. For each simulation, the values for the two subunits were averaged per corresponding 

amino acid. The error bars reflect the average values of the two monomers. Included are 

ribbon diagrams of each protease, wild-type (left inset) and N37T↑V (right inset), colour 

coded to denote areas of low (<1.5 Å, depicted in black) and high (>1.5 Å, depicted in 

magenta) atomic fluctuations during the simulations.  
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Figure 4. The wild-type protease is more compact than the N37T↑V protease. A) The radius 

of gyration was measured over the course of each simulation. The blue and red lines highlight 

the deviations in radius of gyration for wild-type and N37T↑V, respectively. B) The global 

solvent accessible surface area was calculated for each model. N37T↑V is depicted in red, 

and the wild-type is depicted in blue.  
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Figure 5. Dynamical cross-correlation maps showing the vectors governing the Cα backbone 

atoms of the two simulations. The spectrum of positive (1) to negative correlations (-1) is 

shown on the right.  Blue represents positively correlated amino acid vectors, indicating that 

they move in the same direction, and pink represents anti-correlated amino acid vectors, 

indicating that they move in opposite directions. 
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Figure 6. The N37T↑V hinge region mutation and insertion change the dynamic profile of the 

protease enzyme. The MD data are mapped around the N37T↑V protease which is depicted in 

the open conformation (centre). Wild-type data are depicted in blue and N37T↑V data are 

depicted in red. The Cα atoms of key residues are denoted by spheres. For simplicity, the 

spheres were colour labelled according to the figure headings. Residues of chain B are 

represented by a prime symbol. Equivalent residues between the variant and wild-type are 

numbered differently after amino acid 37 due to the presence of an insertion mutation in the 

variant.  
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Figure 7. The wild-type protease hinge region is stabilised by a salt-bridge formed between 

Glu-35 and Arg-57 A) Snapshots of wild-type (blue) and N37T↑V (red) proteases in the fully 

open conformation. Only the hinge and cantilever regions are illustrated. Charged residues 

are depicted as sticks and labelled. B) The distance between charged residues residing in the 

hinge and cantilever regions were measured over the trajectory of both the wild-type (blue) 

and N37T↑V (red) proteases. The dotted black line marks the maximum distance (4 Å) at 

which salt-bridges may form.  
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Figure 8. The N37T↑V protease exhibits an altered salt-bridge network between the hinge 

and cantilever regions. A) Snapshots of the wild-type (blue) and N37T↑V (red) proteases in 

the fully open conformation. Only the hinge and cantilever regions are illustrated. Charged 

residues are depicted as sticks and labelled. B) The distance between charged residues 

residing in the hinge and cantilever regions were measured over the trajectory of both the 

wild-type (blue) and N37T↑V (red) proteases. The dotted black line marks the maximum 

distance (4 Å) at which salt-bridges may form.  

 

 

 

 



105 
 

 

 

Table 1. Computationally determined binding docking energy of the wild-type (blue) and 

N37T↑V (red) proteases. The Glide energy and Glide E-model values, used to for pose 

selection, are included. 
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Figure 9. 2-D ligand interaction plot highlighting the differences in DRV binding between the 

wild-type (left) and N37T↑V (right) protease. In the figures above, hydrophobic interactions 

are depicted in green, polar interactions are depicted in cyan, positively charged depicted as 

red/blue lines, and hydrogen bonds are depicted as red arrows. 
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7. Supplemental figure 

Figure 1. 2-D ligand interaction plot high highlighting the differences in ATV and LPV 

binding between the wild-type (left inset) and N37T↑V (right inset) proteases. In the figures 

above, hydrophobic interactions are depicted in green, polar interactions are depicted in cyan, 

positively charged residues are depicted in red, negatively charged residues are depicted in 

blue, salt-bridges are depicted as red/blue lines, and hydrogen bonds are depicted as red 

arrows. 
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CHAPTER 5 

General discussion and conclusions 

5.1 Expression and purification of HIV-1 C-SA proteases 

Recombinant DNA technology allows for the successful overexpression of heterologous 

proteins that can be used for scientific investigation [97]. However, some proteins remain 

difficult to overexpress as a result of their inherent biochemical properties. The overexpression 

of HIV-1 PR is particularly challenging due to its cytotoxicity and autolytic nature [98]. The 

cytotoxicity of HIV-1 PR is derived from its natural function, because it performs detrimental 

non-specific proteolysis within the host cell, which interferes with normal proliferation [99]. 

PR expression in bacterial host cells ultimately leads to a slower growth rate, higher death rate 

and decreased final cell density [99]. Autolysis refers to the ability of HIV-1 PR to perform 

proteolysis on other HIV-1 PR molecules in solution and this process negatively impacts the 

final concentration of active PR [100, 101]. For these reasons, current expression systems do 

not always produce enough PR for subsequent downstream experiments that require high 

yields, e.g. isothermal titration calorimetry (ITC).  

In Chapter 2, a novel method for overexpressing and purifying HIV-1 PR was preposed. The 

method involved the overexpression of HIV-1 PR as a fusion protein containing a 

hexahistidine tag for purification purposes. The final construct (TRX-6His-TCS-PR), 

contained a thioredoxin (TRX) moiety followed by a hexahistidine (6His) tag, thrombin 

cleavage site (TCS) and protease (PR). The results were compared to a non-fusion Gag-Pol 



 

 

109 

 

derived wild-type purified using ion-exchange chromatography. Fusion constructs were 

prepared for the wild-type PR as well as two variants, one of which was the N37T↑V PR. 

A relatively large initial yield of the fusion protein was recovered after the first immobilised 

metal ion affinity chromatography step (first IMAC step), indicating that the fusion protein 

displayed a much lower cytotoxic profile than its non-fusion PR counterpart. Additionally, the 

host cell density and growth rate were improved using this system, signifying that the fusion 

protein does not disrupt normal host cell activity to the extent of the non-fusion PR control.  

The fusion protein was then subjected to an overnight thrombin cleavage assay to free the 

HIV-1 PR from the construct. The fusion protein was not catalytically active when assayed 

prior to cleavage of the 6His tag; however, upon cleavage using thrombin, the activity of PR 

increased over time. These data confirm that the proteolytic activity of HIV-1 PR is virtually 

abolished when expressed as a TRX fusion protein. However, the activity of the PR is 

recovered after cleavage from the fusion construct. 

After cleavage, pure PR was recovered through a second IMAC purification step. In addition 

to the smaller volume of culture media needed (1 litre vs 6 litres), the total yield (mg/litre of 

culture) fusion-derived wild-type and N37T↑V exceeded the control purification method by 

250% and 200%, respectively (Chapter 2-Results, Figure 5). The fusion system described in 

this work solves a fundamental problem of HIV-1 PR overexpression, in that the intrinsic 

cytotoxicity of the PR is reduced significantly. This method, however, is not without 

limitations as active site titrations using ITC revealed a relatively low quantity of active 

protein.  Unfortunately, there is a significant loss of active PR during thrombin cleavage due to 

autolysis. Additionally, there may be some misfolded PR molecules as a result of the refolding 
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conditions employed during purification, as fusion proteins were recovered from the insoluble 

cell fraction.  

Possible steps that can be taken to improve the quantity of active PR include the following: 

firstly, thrombin cleavage can be performed at a lower temperature, which would minimise 

autolysis by decreasing the relative kinetic energy of the PR. Secondly; thrombin cleavage 

could be performed for a shorter period of time, thereby decreasing the contact time among 

proteases. Lastly, pure PR could be unfolded in a suitable denaturant and subsequently be 

refolded; this would increase the number of active proteases in the event of misfolding. These 

methods have previously been used to recover HIV-2 PR [102, 103]. 

5.2 Drug susceptibility and replication capacity of W1201i 

The drug susceptibility and RC of the W1201i isolate were evaluated by performing in-vitro 

singe cycle drug susceptibility assays [104–107].  Additionally, a chimeric construct, 

consisting of W1201i PR (N37T↑V) and wild-type Gag was assessed to account for the effects 

conferred by the W1201i Gag. A wild-type subtype C Gag-PR isolate (MJ4), and a known 

multidrug-resistant isolate served as controls [108]. The isolates were assayed against LPV, 

ATV and DRV, the most commonly used PIs in South Africa [52]. 

Results were calculated as a fold-change (FC) in IC50 for each drug, and the results were 

compared to the wild-type and resistance control data. The interpretation of the drug 

susceptibility tests was based on individually defined cut-offs. The cut-offs were calculated 

from repeated experiments on the same sample and serve as a measure of variation between 

experiments [109, 110]. Therefore, cut-offs are an indication of the reproducibility of the 

experiments and values below the experimentally determined cut-off indicate that an isolate is 
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fully susceptible to a given PI. Conversely, values above the cut-off indicate that the isolate 

confers reduced susceptibility to a given PI. 

At baseline, FC cut-offs were 1.2 for LPV, 1.4 for ATV and 1.7 for DRV. The W1201i isolate 

conferred a 4-fold (FC: 4.2) reduction in susceptibility to DRV. No significant differences 

were observed for LPV and ATV. The chimeric construct showed a 3-fold (FC: 3.4) reduced 

susceptibility to LPV, 4-fold (FC: 3.6) reduced susceptibility to ATV and 5-fold (FC: 4.7) 

reduced susceptibility to DRV (Chapter 3-Results, Figure 4). A one-way ANOVA and 

Bonferroni’s multiple comparisons test confirmed that the differences in FC with respect to 

calculated baseline were significant for all values.  

The chimeric construct displayed a similar reduction in susceptibility to DRV compared to the 

W1201i isolate. Remarkably, the chimeric construct displayed an additional, small but 

significant, decrease in susceptibility to both LPV and ATV. These results indicate that the 

observed reduction in susceptibility is primarily due to the N37T↑V PR and not the patient-

derived Gag. In fact, the W1201i Gag confers a small, but significant, increase in PI 

susceptibility. These data add to the body of research highlighting the role of Gag in PI 

susceptibility [111, 112]. 

As expected, the W1201i isolate showed a significant 5-fold reduction in RC compared to the 

wild-type (Chapter 3-Results, Figure 5). Interestingly, the RC of the chimeric construct was 

increased by more than 60% compared to the wild-type. These data indicate that W1201i Gag 

is accountable for the observed decrease in RC and not N37T↑V. Additionally, N37T↑V PR is 

the likely candidate liable for the observed increased in RC. 



 

 

112 

 

The co-evolution of Gag and PR has been well-documented [94, 111]. Mutations arising within 

Gag are able to influence the PR gene sequence and vice versa. This begs the question: did the 

N37T↑V variant arise in response to mutations accumulating in Gag? 

Despite PMTCT treatment, the patient from which the W1201i isolate was recovered 

contracted HIV.  Prenatally, the patient’s mother had been exposed to nevirapine (NVP), for 42 

days before labour and the patient had been treated with azidothymidine (AZT) as prophylaxis 

after birth. Both the patient and the mother were PI-naïve at the time blood samples were 

taken. It has been well-established that both Gag CS, as well as non-CS mutations, can 

accumulate under NNRTI (e.g. NVP) and NRTI (e.g. AZT) drug pressure [113]. Furthermore, 

if the mutations seen in N37T↑V developed prior to the Gag mutations, then viral fitness 

would have markedly increased and natural selection would favour a virus with a replicative 

advantage. Therefore, the mutations in N37T↑V likely developed as a response to mutations 

arising in Gag and not vice versa.  

In conclusion, the results presented here demonstrate that hinge region mutations and 

insertions are capable of modifying viral fitness. However, further studies on PR insertions are 

needed to determine the full extent of the conferred fitness, not only in vitro but in vivo as well 

[114]. Currently, genotypic and phenotypic testing often do not take into account the sequence 

of gag during PI resistance testing. This study, however, confirms that the effects of Gag need 

to be considered if meaningful conclusions are to be drawn about PI resistance [85, 111, 112, 

115].  
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5.3 Characterisation of W1201i Gag  

Many pressures exist that shape the evolution of HIV-1 Gag. Firstly, specific drug pressures, 

particularly during suboptimal PI-based therapy, can alter both the CS and non-CS sequences.  

ARVs such as NNRTIs and NRTIs are known to cause the accumulation of mutations within 

Gag [113]. Secondly, immune system responses can cause mutations due to the presence of 

multiple CD8 epitopes along the Gag sequence [116]. Hence, PR and Gag are deemed to co-

evolve with respect to drug resistance [111].  

In Chapter 3, genotypic evaluation of the W1201i Gag-PR isolate was performed. The W1201i 

Gag sequence contained notable amino acids polymorphisms and insertions. Firstly, a PTAP 

motive duplication (PTAPP duplication and LE insertion in p6Gag) was found after the p1/p6 

cleavage site. Additionally, a previously unreported MSQAG insertion was found within the 

p2 domain. Within the p2/NC cleavage site, an I372L↑M mutation and insertion was found as 

well as the following polymorphisms: S369N, S371N, I373M and G377S (Chapter 3-Results, 

Figure 3).  

Some of these polymorphisms and insertions have previously been reported, and are known to 

affect RC and PI susceptibility. It has been shown that PTAP duplications are more common in 

subtype C isolates (e.g. W1201i), and are known to influence the virological response to  

ART [71, 113, 117–122]. Additionally, they may confer a replicative advantage [120, 123]. 

Interestingly, a positive correlation exists between nucleoside-based ART and PTAP 

duplications [111, 117]. Furthermore, the p2 domain is highly involved in the sequential 

processing by HIV-1 PR [124]. However, mutations within p2/NC are not known to directly 

affect viral loads or RC of the virus [125]. 



 

 

114 

 

The current study focused predominantly on the effect of a PR hinge region mutation and 

insertion on PI susceptibility and RC. Therefore, the precise impact of the individual point 

mutations and insertions within W1201i Gag has not been established here and further 

investigation needs to be done to ascertain the effects of each of these polymorphisms.  

5.4 Molecular dynamics of N37T↑V protease 

Molecular dynamics simulations have proven to be an ideal tool for studying the dynamics of 

HIV-1 PR in full atomic detail [27, 55]. To perform MD simulations, accurate homology 

models need to be created from X-ray crystallographic or nuclear magnetic resonance (NMR) 

data [30]. Fortunately, there are numerous crystal structures available of the apo and drug 

bound forms of HIV-1 PR [126]. Crystal structures provide a wealth of information about the 

overall structure of the enzyme and the binding modes of specific PIs [127]. Additionally, they 

provide insight into explicit biochemical interactions between the PR and PIs. However, 

crystal structures do not provide adequate information on the kinetics (i.e. the fluctuations and 

flexibility of specific regions) of a PR presenting functional polymorphisms [27]. 

Both computational and experimental studies show that the dynamics of the PR flap region is 

essential to its function [20, 76, 79, 128–130]. Mutations that alter the flap region behaviour 

can ultimately lead to lower PI susceptibility and increased viral fitness [27]. The factors that 

control flap mobility, therefore, have implications in the rational design of new PIs [131].  

It has been well-documented that the motion of the PR flap region is interrelated with the 

motion of the hinge and fulcrum regions [25, 132–134]. In this study, MD simulations were 

performed to analyse a hinge region variant of C-SA HIV-1 PR; namely, the N37T↑V PR (a 

video of the simulations can be viewed at: https://youtu.be/V4aHhznWxW8) [135]. Insertion 

https://youtu.be/V4aHhznWxW8
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mutations can cause conformational changes in the geometry of highly mobile regions within 

HIV-1 PR [136]. For this reason, it was anticipated that the N37T↑V model would display an 

altered kinetic profile.  

Molecular dynamics simulations showed that the N37T↑V variant indeed presented altered 

dynamics compared to the wild-type PR because conformers of N37T↑V were able to sample 

regions of space not permitted in the wild-type model. Analysis of RMSD and RMSF data 

revealed that the majority of the fluctuations corresponded to residues within the flap and 

hinge regions. Consequently, the inter-flap and inter-hinge distances were measured and a 

residue interaction network was created. 

It was found that the observed variations in the N37T↑V PR dynamics were due to the 

presence of the hinge region mutation and insertion as well as several other mutations. 

Therefore, it is not a single process that governs the larger opening of the flap region, but 

rather the collective action of many amino acid polymorphisms [84]. An altered salt-bridge 

network, which involved residues of the flap, hinge and fulcrum regions, proved to be a key 

player in contributing to the larger and protracted opening of the N37T↑V PR flap region. 

The data reveal that the N37T↑V PR does not form the stabilising Glu-35/Arg-57 inter-hinge 

salt-bridge seen in the wild-type model. The resultant destabilisation, in conjunction with the 

added mobility derived from the N37T↑V insertion, allows the association of two key salt-

bridges; namely, Glu-61/Lys-44 and Glu-62/Lys-42. These key salt-bridges are absent within 

the wild-type PR, and are directly responsible for the larger opening of the variant flaps. 

Additionally, the increased mobility lessens the probability that the stabilising  

Glu-35/Arg-57 salt-bridge will form thereby allowing the N37T↑V flaps to remain open for 

longer relative to the wild-type. 
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The semi-open conformation is usually the dominant species of wild-type HIV-1 PR in 

solution, but occasionally the PR will sample the fully-open and closed conformations [30, 

134, 137]. Contact with the substrate stimulates the PR to open its flap region fully to allow 

substrate entry into the active site. It is only in the fully-open configuration that PR readily 

binds to the substrate because when the flaps are open there is adequate space to accommodate 

the substrate within the active site, enabling the PR to form the optimal number of chemical 

contacts required for recognition [28, 62].  

Scott and Schiffer have suggested that the semi-open conformation would disallow substrate 

entry into the active site of the PR [62]. Substrate entry would require that the flaps move at 

least 15 Å from each other, starting from the closed position, or 7 Å from the semi-open 

position [138]. In contrast, product release does not require the opening of the flaps to the 

fully-open conformation, as the products can slide out of the binding cleft on either side of the 

enzyme [139]. Variants that select for predominantly closed species lead to lower substrate/PR 

association rates whereas preference for the fully-open conformer is known to improve the rate 

of substrate entry [28]. An improved rate of entry would contribute positively to the enzyme 

kinetics of the PR by increasing the catalytic efficiency (kcat/KM) and the catalytic turnover 

(kcat) [77].  

However, an optimum flap distance that allows substrate recognition and entry appears to 

exist, and if this distance is surpassed a marked decrease in catalytic efficiency will result. If a 

PR variant conformer can sample regions of space further than the established 15 Å from the 

closed position, then lower rates of substrate processing results due to a decrease in favourable 

chemical contacts [76, 139]. The alteration of the kinetic parameters is possibly due to 

increased rates of dissociation between the substrate and N37T↑V PR (Chapter 3-Results, 

Table 1). 
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Although the MD models of the wild-type and N37T↑V proteases were moderately different, 

similarities were also observed.  Both structures exhibited a change in flap handedness, where 

the flaps spontaneously rearrange from the closed to semi-open form (including reversal of flap 

handed-ness). This phenomenon has been reported by others as well; however, understanding 

of the precise impact of flap handedness has not yet been discovered  [36, 63, 134]. 

Furthermore, both models sampled multiple opening and closing events in the nanosecond 

range, which corresponds to the timescale reported by others [28, 31, 32, 134, 140, 141]. The 

similarities show that there are some conserved molecular dynamics between the two models. 

Indeed, throughout the simulation the tertiary structure of the variant remains largely the same 

a result of the high sequence similarity (89 % identity) to the wild-type.  

The data represented here could aid in understanding how natural hinge region polymorphisms 

modulate PI susceptibility and perhaps even provide insight into the development of new 

allosteric PIs [63]. Recent improvements in macromolecular simulation technology can 

complement laboratory experiments by providing information on the processes that govern the 

MD of a system as well as the chemistry behind protein-ligand interactions. 

5.5 Computational ligand docking 

In Chapter 4, the dynamic regions of the HIV-1 PR enzyme were highlighted. The PR flaps 

undergo considerable structural changes that are crucial not only for enzyme activity, but for 

inhibitor binding [34]. Similarly, PIs are peptidomimetic and, have many possible conformers 

[142]. Understandably, the PIs do not rigidly bind to the HIV-1 PR. It is well-established that 

conformational changes occur in both the drug and ligand upon binding [11, 127, 141]. 
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Therefore, the flexibility of the drug and protein must be taken into account when performing 

computational drug binding [143].  

The goal of computational docking is to predict the complex of two or more biological 

molecules, e.g. receptor and ligand. Once docked, the binding modes and energetics of 

molecules can be calculated. At a minimum, one should possess structural information about 

the molecules of interest; these data can be determined experimentally (e.g. NMR and X-ray 

crystallography),  and predicted computationally (e.g. homology models and MD simulations) 

[79]. Understandably, accurate input information such as working pH conditions (charge-state) 

and using statistically likely conformers will greatly improve the binding calculations. 

Ultimately, the goal is to achieve computationally determined binding free energies that are 

comparable to experimentally observed binding energies.  

Classical computational docking methods treated proteins as rigid bodies, i.e. lock and key 

approach, which allowed a reduction in both the search space and computational energy, so 

that the calculations could be performed [144, 145]. With the advent of modern 

computationally-based methods for ligand docking such as IFD, a broader view of protein-

ligand interactions is possible [146]. Modern computers have enough computing power to 

analyse thousands of possible conformers, where both the protein and ligand are 

conformationally sampled to find the best poses and the lowest possible binding free energies. 

Thus, the accuracy of computationally determined energies has improved drastically [147]. 

IFD is particularly useful if the protein is known to have highly dynamic regions surrounding 

the substrate binding site [148]. 

In this study, IFD experiments were carried out on both the N37T↑V as well as the wild-type 

proteases so as to understand the differences in their respective PI binding modes and energies. 
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The variant and wild-type proteases were both computationally ligated to LPV, ATV and 

DRV. The final docked structures were chosen for comparison based on their respective 

GLIDE E-model scoring functions [149, 150]. In addition, crystallographic data of known drug 

bound PR structures were examined to ensure that the selected poses conformed to the 

established natural binding modes of LPV, ATV and DRV, respectively.  

It was found that the three PIs bound to the variant with slightly higher binding free energies, 

suggesting that the affinity between the PIs and the variant is reduced (Chapter 4-Results and 

Discustion, Table 1). The 3-dimensional bound structures were then plotted as 2-dimensional 

ligand interaction diagrams (Schrödinger, Maestro ligand interaction plot, LLC 2009, USA) to 

provide a snapshot of the PR/PI complex at its lowest energy point, highlighting the 

biochemical basis for the calculated increase in the binding free energies. The data indicate that 

the variant possessed fewer van der Waals contacts, ionic interactions, hydrogen bonds and 

hydrophobic contacts when bound to the three PIs, respectively. Thus, there were fewer 

thermodynamically favourable interactions between the PIs and the variant than between the 

PIs and the wild-type-type PR.  

It is comprehensible that the N37T↑V PR would display a lower affinity toward the PIs. MD 

simulations show that the variant PR possesses some structural adaption around the flap and 

hinge regions which confer improved flexibility and range of movement (Chapter 4-Results 

and Discussion, Table 1). The resultant conformational changes of the N37T↑V PR invariably 

impact the drug binding landscape by decreasing the number of favourable interactions 

between the drug and PR. 
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5.6 Enzyme kinetics of N37T↑V protease 

The enzymatic parameters of the proteases were determined following the hydrolysis of a 

fluorogenic substrate (Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-Nle-NH2), which mimics the 

CA/p2 cleavage site of the Gag polyprotein precursor  [26, 151]. The activity of the N37T↑V 

variant PR was confirmed by performing a specific activity assay. Although relatively 

comparable, the variant displayed a marginally lower specific activity than the wild-type PR. 

Similarly, the variant PR displayed a lower catalytic processing ability (kcat/KM) and catalytic 

turnover (kcat).  

The evidence presented in Chapter 4, suggests that N37T↑V PR maintains a highly flexible 

flap region with increased flap and hinge region dynamics. The impaired rate of substrate 

processing discussed here likely stems from the altered molecular dynamics of the variant PR 

because the variant samples “fully-open” flap conformers that open to a larger extent than the 

“fully-open” wild-type conformers. Such a configuration could result in fewer chemical 

contacts upon substrate/PR association, leading to lower kinetic rates concerning cleavage of 

the fluorogenic substrate [152].  Decreased substrate processing rates are linked to the 

observed loss of viral fitness as the PR cannot cleave its natural substrate as well its wild-type 

counterpart, leading to lower rates of virion production (Chapter 3-Results, Figure 5) [69]. 
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5.7 Conclusions 

Non-active site polymorphisms can profoundly affect the structure, function, drug 

susceptibility, and replication capacity of HIV-1 protease. In this research, a hinge region 

variant of South African HIV-1 subtype C protease was analysed. The results provide a 

detailed and plausible mechanism by which hinge region insertion mutations can modulate 

protease inhibitor susceptibility and viral replication capacity. The natural structural 

determinants responsible for the observed changes were also established and it was found that 

protease drug susceptibility is reliant on the viral Gag polyprotein sequence. A holistic 

approach to protease drug resistance would, therefore, include studying the effects of 

variations within both protease and Gag. Lastly, the data suggest that the mutations within 

protease arose to compensate for the mutations already present in Gag and not vice versa. 

Cumulatively, this work adds to the growing knowledge base detailing the mechanisms that 

govern protease inhibitor drug susceptibility. 
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