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ABSTRACT 

Background: In spite of the contributions of cardiovascular disease (CVD) to 

morbidity and mortality in chronic kidney disease (CKD) worldwide, there are no 

studies that have looked at cardiovascular risk factors (CVRFs) and their association 

with cardiovascular changes in African children with CKD. Several CVRFs have 

been implicated in the initiation and progression of cardiovascular changes in 

children with CKD, and these changes have been reported even in early CKD. This 

study investigated CVRFs and their association with cardiovascular changes in 

South African children with CKD. 

Method: This comparative cross sectional study recruited children (5-18 years) with 

CKD being followed up at the Division of Paediatric Nephrology of the Charlotte 

Maxeke Johannesburg Hospital and the Chris Hani Baragwanath Academic Hospital. 

One hundred and six children with a spectrum of CKD including those on chronic 

dialysis (34 CKD I, 36 CKD II-IV and 36 CKD V-dialysis) were enrolled over a 12 

month study period. All patients had a short history taken along with a physical 

examination. Blood samples for serum creatinine, urea, albumin, calcium, 

phosphorus, parathyroid hormone (PTH), alkaline phosphatase, total cholesterol, 

haemoglobin and C-reactive protein, Vitamin D, Fibroblast growth factor-23 (FGF-

23), Fetuin-A and genomic DNA studies were taken. Where feasible, transthoracic 

echocardiography and high resolution ultrasonography of the common carotid artery 

was performed.  

Results: The overall median age of the patients was 11 years (8-14 years), with a 

male female ratio of 2.1:1. Several CVRFs detected include hypertension, 

proteinuria, anaemia, hypercholesterolaemia and dysregulated mineral bone 

metabolism. The most common CVRF detected was anaemia (39.6%) and its 
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prevalence was highest in the dialysis group when compared with the other CKD 

groups. The overall median (range) cIMT was 0.505mm (0.380-0.675), and was 

highest in patients with dialysis dependant CKD (p=0.003). The distribution of left 

atrial diameter (LAD) and left ventricular mass (LVM) differed significantly (p<0.05) 

across the different CKD groups. Abnormal LAD was seen in 10% of patients; left 

ventricular hypertrophy (LVH) in 27%; left ventricular systolic dysfunction in 6% and 

diastolic dysfunction in one patient. Mean arterial pressure and haemoglobin levels 

were independently associated with cIMT; hypertension was independently 

associated with concentric LVH; and age and hypoalbuminaemia were 

independently associated with eccentric LVH. Overall, the dialysis group had the 

highest prevalence of vascular changes, cardiac changes and associated risk 

factors. 

A skewed pattern of Fetuin-A and FGF-23 levels with medians (range) of 57.7 (0.9-

225.2) mg/dL and 28.9 (0-3893.0) pg/ml respectively, were observed. The levels of 

these two biomarkers varied significantly between the different CKD groups (p<0.05). 

Fetuin-A was independently associated with abnormal LAD but no similar 

relationship with other cardiovascular changes and plasma levels of Fetuin-A and 

FGF-23 was found. Plasma FGF-23 levels correlated better with markers of bone 

mineralization than Fetuin-A. Eight Fetuin-A SNPs were analysed; rs2248690, 

rs6787344, rs4831, rs4917, rs4918, rs2070633, rs2070634 and rs2070635.  We 

found an association between log-transformed Fetuin-A levels and the SNP rs4918 

G-allele compared to the rs4918 C-allele (p=0.046) and the rs2070633 T-allele when 

compared to the rs2070633 C-allele (p=0.015). Markers of MBD such as phosphate 

and PTH levels were associated with Fetuin-A SNPs. The rs6787344 G-allele was 
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significantly associated with phosphate levels (0.042), and the rs4918 G-allele with 

PTH (p=0.044). 

Seven deaths were recorded in the dialysis group during the study period and severe 

hypertension and intracranial bleed were the most common causes of death. 

Modifiable risk factors such as increased total cholesterol (TC) and decreased 

albumin levels were more commonly seen among the deceased dialysis patients. 

Conclusion: A high prevalence of CVRFs and cardiovascular changes were 

observed in the study groups, even in those with mild to moderate disease. 

Information obtained from the study highlights the need to address modifiable 

CVRFs such as hypertension, anaemia and hypoalbuminaemia in children with CKD 

and also the need to determine new, population specific, paediatric reference values 

for cIMT in healthy African children. Finally, the study was able to demonstrate 

differences in the relationship between Fetuin A SNPs and Fetuin-A levels and 

cardiovascular changes in our study population when compared with previously 

published data. We postulate that these differences may be due to genetic 

differences between our population and other population groups previously studied. 
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PREFACE 

This study was undertaken to determine the prevalence of cardiovascular risk factors 

(CVRFs) and their association with cardiovascular changes in children with chronic 

kidney disease. In addition, this study also determined the relationship between 

Fetuin A SNPs with Fetuin-A levels and cardiovascular changes in the study group. 

The researcher was involved in patient recruitment, clinical examination, Fetuin-A 

and FGF-23 assays, DNA extraction, RFLPs, and likewise analysis and 

interpretation of all results. Where feasible, the researcher was also involved with 

echocardiogram and cIMT measurements.  

This PhD is presented in a divided block format consisting of seven chapters. In this 

format, the results are presented in the form of submissible manuscripts (chapters 3 

to 6). 

Chapter 1-2 addresses the literature review and the methods 

Chapter 3 addresses the results on the prevalence of cardiovascular risk factors and 

their association with mortality 

Chapter 4 addresses the results on the prevalence of increased cIMT and their 

association with CVRFs including Fetuin-A and FGF-23. 

Chapter 5 addresses the results on prevalence and types of cardiac changes and 

their association with CVRFs including Fetuin-A and FGF-23. 

Chapter 6 addresses the results on the Fetuin-A and FGF-23 relationship in CKD 

and the relationship between Fetuin-A gene polymorphisms and their association 

with Fetuin-A levels and CVRFs. 
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Chapter 7 addresses the summary of the findings, the recommendations and the 

study limitations  
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CHAPTER 1: LITERATURE REVIEW 

1.1 Introduction 

The prevalence of Chronic Kidney Disease (CKD) continues to increase worldwide, 

and it has been implicated to be a major risk factor for cardiovascular disease 

(CVD).(1)  

The true incidence and prevalence of CKD in Africa in general and in South Africa in 

particular is unknown. Even in the first world, given that CKD in its initial stages is 

asymptomatic, most reports in children focus on patients with ESRD and requiring 

renal replacement therapy (RRT) and are therefore likely to underestimate the true 

prevalence of CKD.(2)  This makes it difficult to compare the prevalence of CKD in 

adults and children. 

The ItalKid study, probably the largest report of its kind, puts the mean incidence of 

CKD in children to be 12.1 cases per million age-related population (pmarp) with a 

prevalence of 74.7 pmarp,(3)  and in the most recent registry of The European 

Society for Paediatric Nephrology, The European Renal Association and European 

Dialysis and Transplantation Association, the overall incidence of end stage renal 

disease (ESRD) in children in Europe was reported as 5.2 pmarp.(4) 

In Africa, poor data quality from most countries and limited RRT restricts 

interpretations of the prevalence of CKD.(5, 6) Except for Sudan and South Africa, 

the RRT rate is <20 pmarp for most African countries.(6) 

There are no reliable statistics about the overall prevalence of CKD in children in 

South Africa.(6) The South African renal registry only provides details about patients 

on RRT indicating the burden of end stage renal disease (ESRD) among the South 
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African population and does not differentiate the prevalence in children from adults. 

In its most recent report, the registry highlights the increase in the prevalence of 

patients on RRT from 167 to 178 pmarp.(7) The increase in prevalence  was 

attributed to the increase in number of treatment centres that contributed to the data 

and this may not necessarily reflect a true increase in the prevalence of patients with 

ESRD. 

Bhimma et al. found the incidence of ESRD in KwaZulu-Natal to be 1–2 pmarp.(8) 

This is less than half the reported incidence in Europe and possible explanations for 

this discrepancy include a lack of adequate clinical skills, adequate laboratory 

services and radiography facilities when it comes to diagnosing and reporting CKD in 

children in South Africa. 

Data from North America demonstrates that there are fewer children with ESRD 

compared to adults and, although no such studies exist in South Africa, it is likely 

that the patient load will be approximately the same.(9)  

The Division of Paediatric Nephrology of the Department of Paediatrics of the 

Charlotte Maxeke Johannesburg Academic Hospital (CMJAH), from which the 

majority of the patients were recruited for the study, provides the largest paediatric 

dialysis service in the country. The Division of Paediatric Nephrology at Chris Hani 

Baragwanath Academic Hospital (CHBAH), the third largest hospital in the world, 

runs a very large inpatient service, as well as a large outpatient service. However, for 

historical reasons, the Division of Paediatric Nephrology at Chris Hani Baragwanath 

Academic Hospital has a very limited capacity to provide long term paediatric 

dialysis, and so most of the children with ESRD from CHBAH end up being 

managed, dialysed and transplanted at CMJAH. At CMJAH, in addition to a large 
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outpatient service, in which around 250 children are seen per year, the division has 

10 haemodialysis machines dedicated for paediatric use. 

At the time of the study the division was dialysing 35 children with chronic ESRD. 

Unpublished data from our unit has shown that, of all the children with ESRD on 

chronic dialysis managed by the unit, up to 60% are no longer transplantable! One of 

the major reasons for having to be delisted from our transplant program was 

cardiovascular disease in the form of irreversible myocardial dysfunction. 

Cardiovascular disease is thought to begin early in renal failure and progress rapidly 

on dialysis.(10, 11) Cardiovascular disease was found to be the most common cause 

of death among paediatric patients with end stage renal disease (ESRD). (12, 13) 

Various cardiovascular risk factors (CVRFs) including Fetuin-A and Fibroblast growth 

factor-23 (FGF-23) have been implicated in the initiation and progression of 

cardiovascular changes observed in children with CKD.(14-18) The prevalence of 

these CVRFs in children with CKD has been on the increase and hypertension 

remains the single most important risk factor as it accounts for left ventricular 

hypertrophy (LVH), vascular damage and vascular remodelling.(13) Dysregulated 

bone metabolism and chronic inflammation have been associated with vascular 

changes and calcification especially in children on dialysis.(19, 20)  

There are no documented African studies that have looked into these cardiovascular 

risk factors in children with CKD. For this reason, this study looked at risk factors for 

CVD in children with CKD and determined whether these risk factors are associated 

with cardiovascular changes. 
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1.2 Background on CKD 

Chronic kidney disease (CKD) simply refers to a state of irreversible kidney 

damage and/or reduction of kidney function that can lead to a future decrease in 

kidney function. The Kidney Disease: Improving Global Outcomes (KDIGO) 2012 

clinical practice guideline for evaluation and management of CKD defines children 

with CKD based on fulfilling one of the following clinical criteria:(1) 

▪ Glomerular filtration rate (GFR) of less than 60 mL/min per 1.73 m2 for greater 

than three months with implications for health regardless of whether other 

CKD markers are present. 

▪ GFR greater than 60 mL/min per 1.73 m2 that is accompanied by evidence of 

structural damage or other markers of functional kidney abnormalities 

including proteinuria, albuminuria, renal tubular disorders, or pathologic 

abnormalities detected by histology or inferred by imaging 

The KDIGO guideline classifies the severity of CKD for patients greater than two 

years of age based on GFR as seen in Table 1.1  

Clinically, the GFR is usually estimated from the serum creatinine rather than by the 

more difficult technique of timed urine collection for creatinine clearance, especially 

in children. There are various equations recommended for estimation of GFR and 

each one has its own limitations.(1)  

  



 
5 

Table 1.1.  KDIGO classification for CKD (1) 

Grade GFR (mL/min/1.73m2) Terms 

1 ≥ 90 Normal or high 

2 60 – 89 Mildly decreased 

3a 45 – 59 Mildly to moderately decreased 

3b 30 – 44 Moderately to severely decreased 

4 15 – 29 Severely decreased 

5 < 15 Kidney failure 

 

In children, CKD is often asymptomatic especially in the early stages and hence it is 

felt that, in many reports, a large number of children have not been included in the 

epidemiological data for CKD. (3, 21) 

In children, CKD may progress leading to end-stage renal disease (ESRD).(3, 21) 

This group of patients with ESRD will require renal replacement therapy (RRT), 

either in the form of dialysis or renal transplantation. Slowing the progression of CKD 

is of utmost importance in terms of improving quality of life and minimising the risk of 

complications. 

Various complications occur in children with CKD. These include volume overload, 

hyperkalaemia, metabolic acidosis, renal osteodystrophy, hypertension, accelerated 

atherosclerosis, anaemia, dyslipidaemia, growth failure and stunting, 

neurodevelopmental impairment and psychosocial disturbances.  

In low income countries where RRT is not readily available due to high cost, 

shortage of skilled personnel and donor organs, death often complicates CKD.(6) 

Besides the high mortality rate in low income settings, modifiable CVRFs in patients 



 
6 

on RRT such as anaemia, fluid overload, hypertension, infection, growth failure and 

stunting also contribute to the morbidity in paediatric CKD due to poor compliance 

and adherence to medication, prolonged hospitalisation, scarce resources and low 

socio-economic status.(8)  

 

1.3 Chronic kidney disease and the cardiovascular system 

 

Chronic kidney disease is a major risk factor for cardiovascular disease (CVD) and 

CVD is thought to begin early in renal failure and progress rapidly on dialysis.(10, 11, 

22) Cardiovascular disease has been reported to be the most common cause of 

death among paediatric patients with end stage renal disease (ESRD).(12, 13) There 

are no local data in children to support the contribution of CVD to CKD associated 

morbidity and mortality in South Africa. 

In older adults with ESRD, coronary artery disease (CAD) and cardiomyopathy are 

the leading cause of CVD mortality. This is not the case in children. CVD related 

causes of death in children that have been described up until now include cardiac 

arrest, arrhythmia, cardiomyopathy, cerebrovascular disease and rarely myocardial 

disease.(20) Atrial fibrillation (AF) is one of the most common cardiac arrhythmias 

seen in patients with CKD. Dialysis patients are at highest risk for AF especially 

those with congestive heart failure or severe dilated cardiomyopathy.(23, 24) 

In our clinic, an unpublished observation indicated that cardiovascular related 

problems were the major reason that patients get removed from the kidney 

transplant list. In addition, cardiovascular related issues also contributed significantly 

to mortality. Cardiomyopathy associated with poor ejection fraction is the most 

common cardiovascular related problem observed in our patients on chronic dialysis. 

Less frequently, cerebrovascular disease, arrythmias and poor vascular access have 
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also been noted. The above reasons prompted the researcher to investigate and 

provide evidence for these observations.  

Various vascular changes have been reported in children with CKD.(18, 21) Some of 

these vascular changes include atherosclerosis, arteriosclerotic lesions, including 

fibrous or fibro-elastic intimal thickening, disruption of the internal elastic lamella, and 

vascular calcification. These vascular changes increase the risk for symptomatic 

CVD later in life.(25)  

 

1.4 Cardiovascular risk factors in children with CKD 

The prevalence of traditional cardiovascular risk factors (CVRFs) such as 

hypertension, dyslipidaemia, obesity and hyperglycaemia are increased in children 

with even early stages of CKD. (21, 22) Non-traditional (CKD-related) CVRFs are 

more evident in children with moderate to severe CKD.(10, 13, 18, 21, 25, 26) These 

include anaemia, fluid overload, dysregulated mineral bone metabolism 

(hyperparathyroidism, increased calcium-phosphate product), proteinuria, hypo-

albuminaemia, inflammation (increased C-reactive protein and cytokines) and 

oxidative stress. Other potential risk factors are treatment-related such as calcium 

overload from dialysate, calcium-based phosphate binders and vitamin D therapy. 

The single most important risk factor for CVD is hypertension.(21, 22, 27, 28) 

Nevertheless, dysregulated bone metabolism is responsible for much of the vascular 

calcification typical of CKD.(18, 29, 30) It is believed that calcification is widespread 

and begins in the pre-dialysis stage and rapidly accelerates on dialysis.(31) There is 

no doubt that individual CVRF play a vital role in CVD either independently or 
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amplified by the presence of multiple other CVRFs.(21, 25) In spite of the above 

information, there is a large knowledge gap due to the lack of local data on CVRFs in 

South African children with CKD.  

Identifying these CVRFs in our population is of vital importance if we are to plan 

interventions to manage these CVRFs so as to prevent CVD in our young patients 

with CKD.   

1.4.1 Hypertension 

Hypertension on its own accounts for left ventricular hypertrophy (LVH), vascular 

damage and vascular remodelling.(21, 22, 27, 28) Hypertension in children with CKD 

can be as a result of complication of the disease and/or treatment, and may also be 

due to other causes such as essential hypertension, vascular disease (arteritis and 

vascular stenosis), endocrine causes and tumours.(32, 33) In children with CKD, 

sodium retention, fluid overload and increased renin activity are recognised causes 

of hypertension.(33)  

Autonomic dysfunction and increased sympathetic activity have also been shown to 

cause hypertension in children with CKD.(34-36) In addition, the use of 

glucocorticoids, erythropoietin and cyclosporine-A, among other medications used in 

the management of children with CKD, may also cause hypertension in children with 

CKD.(37-39) 

Hypertension remains the most prevalent CVRF reported in children with CKD. Data 

from the CKD in children (CKiD) study and North American Pediatric Renal 

Transplant Cooperative Study (NAPRTCS) demonstrated a high rate of 54% and 

48% respectively, and this was seen to increase to a higher rate in ESRD (50-

75%).(21, 40)   
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Figure 1.1: Illustrative summary of cardiovascular risk factors 
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Masked hypertension, which is best detected via ambulatory blood pressure 

monitoring (ABMP), is common among pre-dialysis CKD patients. A high prevalence 

of 20% was reported by Mitsnefes et al and was found to be associated with 

LVH.(41) This indicates the importance of ABMP in early CKD rather than routine BP 

measurement. 

Various characteristics have been associated with hypertension in children with 

CKD. (21, 42) These include black race, glomerular cause of CKD, shorter duration 

of CKD, obesity, elevated serum potassium and nephrotic range proteinuria.  

1.4.2 Dyslipidaemia 

In children, dyslipidaemia plays an important role in the atherogenesis which is seen 

in CVD.(43, 44) Dyslipidaemia in CKD results from an abnormal lipoprotein 

metabolism and this has been reported in both pre-dailysis and dialysis CKD 

patients.(45, 46) Common changes observed include moderate hypertriglyceridemia, 

increased triglyceride-rich lipoproteins (TRL) and reduced high-density lipoproteins 

(HDL). Total and low-density lipoprotein cholesterol (LDL-C) remain normal or 

modestly increased.(47) Studies in children with CKD have reported high rates of 

dyslipidaemia, as high as up to 44-45%, in children with CKD and, in addition, 

dyslipidaemia has been documented as the second most common CVRF seen in 

children with CKD.(22, 46). It is therefore very important to screen for dyslipidaemia 

in children with CKD especially with the added risk of other associated CVRF.  

1.4.3 Obesity and Under-nutrition 

Obesity is an independent risk factor for CVD.(48, 49) This is a major concern as 

there has been a general increase in the trend of obesity all over the world, (50, 51) 

even though under nutrition may be seen more in our setting as confirmed by the 

Birth to 20 study.(52) Overweight and obesity in children are classified based on the 
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body mass index (BMI) for age and sex and the Centre for Disease Control (CDC) 

and World Health Organization (WHO) BMI centile charts are the most commonly 

used references when assessing childhood BMI. (53, 54) 

Even though growth retardation is more often seen in children with advanced CKD, 

and has been reported to contribute to mortality,(55, 56) obesity has also been 

reported in pre-dialysis CKD children.(22) In addition, data has shown that being 

overweight or obese increases the risk of having other CVRF (hypertension, 

dyslipidaemia and abnormal glucose metabolism) when compared to lean 

patients.(22) 

The relationship between under-nutrition in CKD and risk of cardiovascular disease 

is not well understood but has been attributed to chronic inflammation. Under-

nutrition and inflammation are usually present in patients on maintenance 

dialysis.(57, 58) Chronic inflammation via several mechanisms attract pro-fibrotic 

factors leading to renal damage and progression of CKD.(59) Chronic Inflammation 

also contributes  to atherosclerotic changes and endothelial injury via several 

mechanisms and one of these complex process is known as the malnutrition 

inflammation atherosclerosis (MIA) syndrome leading to cardiovascular disease.(57, 

58, 60) 

1.4.4 Anaemia 

The decline in the production of erythropoietin (EPO) by the kidney is known to play 

the major role in the pathogenesis of anaemia in CKD.(61) The kidney takes over the 

production of EPO from the liver soon after birth and remains the major site of 

production.(62). Other factors that contribute to anaemia in CKD include iron 

deficiency, inflammation, severe secondary hyperparathyroidism leading to 
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myelofibrosis, marrow hypo-responsiveness, aluminium toxicity from long term 

haemodialysis, poor nutrition, the use of myelosuppressive agents and infection.(63) 

Anaemia has been associated with poor cardiovascular outcome and an increase in 

morbidity and mortality in CKD.(64, 65) Studies have shown that there is an increase 

in quality of life with treatment of anaemia in children with CKD.(66, 67)  

In the CKiD study, a high rate (45%) of anaemia was reported. They also reported 

that haemoglobin (Hb) levels were significantly associated with a decline in the 

glomerular filtration rate (GFR) in pre-dialysis CKD.(68) Similarly, other studies have 

shown a sharp rise in the rate of anaemia in advanced CKD children when compared 

to children with early or mild CKD.(65, 69) 

1.4.5 Fluid overload 

Fluid overload is of major concern in children with advanced CKD especially in oligo-

anuric patients on chronic dialysis. In these patients, there is a decreased ability to 

excrete sodium and water which leads to an increase in extracellular fluid. This 

increase in extracellular fluid then results in an increase in cardiac output and 

subsequent increase in BP.(70) Fluid overload contributes to hypertension and 

increased strain on the heart.(33, 71) However, both fluid overload and aggressive 

fluid removal can lead to circulatory stress and multi-organ injury on chronic 

dialysis.(26) In adults on chronic dialysis, fluid overload has been reported to be an 

important independent predictor of mortality.(72) 

Several methods have been described for the assessment of volume status in 

dialysis patients, but they only allow for crude detection of volume overload.(73) 

Inter-dialytic weight gain (IDWG) differs in physiology from the chronic overload seen 

in dialysis patients.(73) Inter-dialytic weight gain is also a marker of nutrition besides 

volume status in chronic dialysis patients and the use of IDWG alone in regulating 
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salt and water regulation may not be appropriate in controlling fluid status of dialysis 

patients.(74, 75) Furthermore, studies have shown that it is chronic overload that 

increases mortality and not IDWG.(73) 

1.4.6 Dysregulated mineral bone metabolism 

The kidney regulates calcium and phosphate excretion in the body through the help 

of parathyroid hormone (PTH).(76) It excretes phosphate and retains calcium in 

response to PTH. Parathyroid hormone also causes resorption of mineralized bone 

with release of calcium alongside phosphate into circulation. Active vitamin D is also 

produced in the kidney and causes calcium absorption from the gut.(77) A decline in 

renal function will lead to a decline in active vitamin D production,  retention of 

phosphate and subsequent secondary hyperparathyroidism.(78) In addition to 

secondary hyperparathyroidism, long term uraemia, metabolic acidosis and FGF-23 

have been found to contribute to mineral bone disorder seen in CKD. (79, 80) 

A detailed definition of mineral and bone disorder (MBD) seen in CKD was 

recommended by KDIGO to accommodate ectopic calcification including vascular 

calcification;(81)  

The KDIGO defined this disorder of MBD seen in CKD as a systemic disorder of 

mineral and bone metabolism due to CKD manifested by either one or a combination 

of the following: 

i. Abnormalities of calcium, phosphorus, PTH or vitamin D metabolism 

ii. Abnormalities in bone turnover, mineralization, volume, linear growth or 

strength 

iii. Vascular or other soft tissue calcification 

 

The KDIGO recommends monitoring serum levels of calcium, phosphate, PTH and 

alkaline phosphatase for dysregulated mineral bone metabolism from CKD stage 2 in 

children.(82) 
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a. Hyperphosphataemia 

Hyperphosphataemia is an independent predictor of mortality in CKD and has 

also been associated with an increase in carotid artery intima media thickness 

(cIMT), vascular stiffness, coronary calcification and left ventricular 

hypertrophy.(19, 83-86) A report in adult CKD patients showed that higher serum 

phosphate levels, even if they fell within the recommended normal ranges for 

phosphate levels, were associated with CVD.(87) 

Studies have reported an increasing rate of Hyperphosphataemia as the GFR 

declines in children with CKD with rates of Hyperphosphataemia increasing from, 

8.51% in CKD I all the way up to the highest rate of 43.5% in CKD V.(88, 89)  

b. Increased calcium phosphate product (CaxP) 

Both adult and paediatric studies have reported a strong association between 

increased calcium phosphate product (CaxP) and CVD in patients with end stage 

renal disease (ESRD).(90-92) Increased CaxP has also been associated with an 

increase in FGF-23, with a positive significant relationship.(93) 

c. Hyperparathyroidism 

Parathyroid hormone is a surrogate marker of bone turn over and levels are seen 

to increase in early CKD as dysfunctional mineral bone metabolism sets in. 

Parathyroid hormone levels increase as GFR declines(89, 94) and increased 

PTH levels have been associated with LVH and vascular calcification in children 

with CKD.(19, 64, 92)  

The role of FGF-23 and vitamin D as CVRF will be discussed in the segment 

‘Biomarkers and CVD’ (section 1.7) below. 
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Figure 1.2: Dysfunctional mineral bone metabolism in CKD. GFR-Glomerular 

filtration rate, CaxP-calcium phosphate product, PTH-parathyroid hormone, Ca-

calcium, P-Phosphate. 

  



 
16 

1.4.7 Proteinuria  

Proteinuria is a marker of kidney injury and an important risk factor for CVD in both 

patients with and without CKD.(95-97) Proteinuria is thought to contribute to impaired 

endothelial function and atherosclerotic events in patients with CKD.(97) The risk for 

cardiovascular morbidity and mortality in patients with proteinuria is higher in those 

with low GFR (<60 mL/min/1.73m2). (98, 99)  

1.4.8 Hypoalbuminaemia 

Hypoalbuminaemia results from increased degradation and reduced synthesis of 

albumin in CKD patients, especially those with ESRD.(100) Malnutrition arising as a 

result of anorexia and dietary restriction is the major cause of nutritional 

hypoalbuminaemia in ESRD. Albumin loss also occurs in patients with nephrotic 

syndrome and during dialysis.(100) Inflammation also reduces albumin synthesis 

and increases its catabolism in dialysis patients.(101) 

Adult studies have reported hypoalbuminaemia as an independent predictor of CVD 

in both pre-dialysis and dialysis CKD patients.(102) Hypoalbuminaemia has also 

been associated with poor outcome and mortality in patients with ESRD.(103, 104) 

Wong et al reported that for every decrease in albumin by 1g/dl, mortality increases 

by 54% in paediatric ESRD.(103) 

1.4.9 Inflammation 

Inflammation is an important cardiovascular risk factor in CKD, and various factors 

have been postulated to cause inflammation in this condition. These include 

cytokines, acidosis, oxidative stress, infection, dialysate contamination and an 

incompatible response to the dialysate membrane.(105) A decline in GFR also 

appears to cause a rise in the levels of circulatory cytokines and this may be 

because the kidney is the major site for excretion of circulating cytokines.(106, 107) 
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Inflammation has been implicated in the vascular injury and left ventricular 

abnormalities seen in CKD.(59, 105) In addition, Fetuin-A, a circulatory inhibitor of 

calcification, is down regulated by the inflammatory state.(108, 109) 

Various markers of inflammation have been described in CVD. These include:(110, 

111) 

a. Circulatory cytokines such as interleukin-1β, -6, -8, -10 and tumour necrosis 

factor- α (TNF-α).  

b. Acute phase reactants such as C-reactive protein (CRP), fibrinogen and 

serum amyloid A (SAA) 

c. Adhesion molecules such as E-selectin, P-selectin, intracellular adhesion 

molecule-1 (ICAM-1), vascular and cell adhesion molecule-1 (VCAM-1).  

d. Others such as white cell count (WCC), erythrocyte sedimentation rate (ESR) 

 

1.4.10 Oxidative stress 

Oxidative stress has been defined as a “state in which oxidation exceeds the 

antioxidant systems in the body secondary to a loss of the balance between 

them.”(112) Oxidative stress has been associated with several human diseases 

including CVD.(113) A number of biomarkers of oxidative stress of research 

importance in CVD have been described.(114)  

The oxidative modification of low density lipoprotein (LDL) contributes to the 

atherosclerotic changes seen in CVD.(115-118) A recent study in children with CKD 

showed a significant association between oxidised LDL (oxLDL) and left ventricular 

hypertrophy, hypertension and dyslipidaemia.(119) 
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Figure 1.3: Putative pathway of oxidized low-density lipoprotein (oxLDL) in the 

atherogenetic process according to the oxidative hypothesis of atherosclerosis. 

(Reproduced under the ‘Creative Commons Attribution License’ from Maiolino G, Rossitto G, 

Caielli P, Bisogni V, Rossi GP, Calo LA. The role of oxidized low-density lipoproteins in 

atherosclerosis: the myths and the facts. Mediators Inflamm. 2013;2013:714653.) (118)  

 

1.5 Pathogenesis of CVD in CKD  

Cardiac remodelling and vascular injury have been described as the most important 

processes in the pathogenesis of CVD in CKD.(120, 121) A combination of 

cardiovascular risk factors plays an important role in the initiation and progression of 

these changes.(25, 122) Cardiac remodelling leads to left ventricular hypertrophy 

(LVH) in response to mechanical or haemodynamic overload.(121) Concentric LVH 

has been attributed to pressure overload due to hypertension. This pressure induced 

LVH results in an increase in the LV wall thickness with a less evident increase in the 

LV cavity. The result is an elevated relative wall thickness and concentric LVH. 
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Eccentric LVH is essentially thought to be related to volume overload, although 

sodium retention, anaemia, hypoalbuminaemia and arteriovenous shunt have also 

been implicated in its development.(120, 121) In eccentric LVH, the LV cavity 

increases together with a symmetric increase in wall thickness. The ratio between 

the LV transversal ratio and the wall thickness (the relative wall thickness) is 

maintained and the result is the development of eccentric LVH.(121, 122) 

Vascular changes include plaque formation (atherosclerosis), arterial stiffening 

(arteriosclerosis) and vascular calcification. Atherosclerotic changes occur due to 

atheroma formation in the vascular intima with subsequent penetration of the 

vascular wall.(121) These atheromatous plaques consist of lipids, smooth muscle 

cells and collagen fibres. Calcification may also be part of the process and it usually 

involves the intima.(18, 121) Atherosclerotic changes occur in a patchy pattern along 

the length of the artery causing stenosis and occlusion. Arteriosclerosis involves both 

intimal and medial thickening along the entire arterial tree affecting arterial 

elasticity.(121) This process is associated with vascular remodelling resulting in an 

increased vessel wall thickness and  lumen enlargement, ultimately leading to an 

increase in systolic blood pressure, pulse pressure and arterial stiffness.(86, 121) 

The process of vascular calcification is complex.(18) Dysfunctional mineral bone 

metabolism has been implicated. Hyperphosphataemia and increased calcium-

phosphate products are central to the formation of this vascular calcification, and a 

decrease in the inhibitors of calcification such as Fetuin-A, matrix Gla-protein and 

osteoprotegerin, may also contribute to the whole process. (18, 86) Other metabolic, 

mechanical and inflammatory processes may also contribute to these changes. (115, 

120, 122) 
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Figure 1.4: Cardiovascular disease in chronic kidney disease. (Reproduced with permission 
from Mitsnefes MM. Cardiovascular complications of pediatric chronic kidney disease. 
Pediatr Nephrol. 2008;23(1):27-39.) 
  

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2100430_467_2006_359_Fig1_HTML.jpg
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1.6 Early markers of CVD in children with CKD 

Recent research has focused attention on the detection of early cardiovascular 

abnormalities in children with CKD.(21, 27) Early markers of cardiomyopathy and 

atherosclerosis such as left ventricular (LV) abnormalities (LV hypertrophy-LVH, LV 

dysfunction), damage to large arteries such as stiffness, and increased intima media 

thickness (IMT) are said to be strong independent predictors of cardiac morbidity and 

mortality.(21) These changes have also been shown to begin early in pre-dialysis 

CKD patients and are worst in children on chronic dialysis.(21, 31, 123) 

Transthoracic echocardiography is a non-invasive method that has been reliably 

used in the assessment of heart structure and function. Traditionally, the M-mode 

and the two-dimensional doppler echocardiogram have allowed for an adequate 

assessment of ventricular mass and volumes, the diagnosis of hypertrophy, the 

definition of ventricular geometric pattern and systolic and diastolic function 

estimation. (124-126) However, with the availability of new technology, such as 

magnetic resonance imaging (MRI), there is ongoing discussion about the best way 

to assess LVH and LV dysfunction in children.(127-131) 

The methods used in this study for assessing vascular changes in CKD are 

discussed in the segment ‘Vascular changes and CKD’ below. 

1.6.1 Left ventricular hypertrophy  

Left ventricular hypertrophy (LVH) has been reported even in the initial stages of 

CKD in children and progresses as kidney function deteriorates.(64) This LVH is 

thought to be a compensatory mechanism by the heart to maintain function.(132) 

Hypertension is the main cause of LVH in both children and adults.(27, 28) However, 

elevated parathyroid hormone (PTH) has also been implicated in the progression of 
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LVH in children with stage 2-4 CKD.(133) Of note, volume overload has been 

associated with LVH in children on dialysis.(26)  

In children, the presence of LVH implies an increase in the mass of the left ventricle 

and this is generally defined using the left ventricular mass index (LVMI) by which 

the left ventricular mass is indexed for body size by different methods related to 

height, weight, body surface area (BSA) and lean body mass (LBM).(129, 134)  

However, there are some concerns about the accuracy of this method in children, 

(129, 135, 136) although normal values in children have been reported.(129, 137, 

138) 

Left ventricular mass (LVM) is usually calculated from the following formula:(139) 

LVM (g) = 0.8 (1.04 [(LVEDD + PWT +IVSD)3 − (LVEDD)3] + 0.6). 

LVEDD-Left ventricular end diastolic diameter 

PWT-Left ventricular posterior wall thickness at end diastole 

IVSD-Intraventricular septum thickness at end diastole 

Relative wall thickness (RWT) is a measure of concentricity and is calculated as the 

ratio of the posterior and septal wall to the LV diastolic diameter.(140) 

RWT = [(IVSD + PWT) / LVEDD]  

Four types of left ventricular geometric patterns have been described based on the 

ratio of the wall thickness to the cavity diameter:(140-144) 

a. Normal LV geometry-normal LV mass with normal RWT 

b. Concentric remodelling (CR)-normal LV mass with elevated RWT  

c. Concentric hypertrophy (CH)-increased LV mass and elevated RWT 

d. Eccentric hypertrophy (EH)-increased LV mass and normal RWT 
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Figure 1.5: Geometric patterns of left ventricular hypertrophy based on linear measurements. 

(Reproduced with permission from Lang RM et al. Recommendations for chamber quantification: a 

report from the American Society of Echocardiography's Guidelines and Standards Committee and 

the Chamber Quantification Writing Group, developed in conjunction with the European Association of 

Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005; 

18: 1440-146) (144) 

 

1.6.2 Left ventricular (LV) dysfunction 

Left ventricular dysfunction can be systolic, due to a reduction of the ejection fraction 

(EF) with an enlarged LV chamber. or diastolic with preserved EF and increased 

resistance to filling.(145) Both types of LV dysfunction can be diagnosed non-

invasively with echocardiography. 

The highest risk for LV dysfunction in children with CKD is seen in children on 

maintenance dialysis,(13, 146) and several studies have documented subtle 

alterations in LV wall mechanics in these children.(146, 147) Studies in children with 

CKD have reported the presence of systolic dysfunction in pre dialysis CKD patients 
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with LVH and also in dialysis CKD patients.(146-148) Mitsnefes et al reported 

diastolic dysfunction in mild to moderate CKD patients and also showed that their 

dialysis CKD group had a worsened dysfunction when compared to their other 

groups.(149) 

Measured parameters, such as ejection fraction and fractional shortening, may serve 

as an indicator of LV systolic function, but they may be insensitive in milder degrees 

of systolic dysfunction or in heart failure with a preserved ejection fraction 

(HFEPF).(150-152) The use of trans-mitral flow velocity ratio (E/A) and the index for 

LV filling pressure (E/E’) can be used as a measure of  LV diastolic dysfunction.(153) 

 
1.6.3 Vascular changes in CKD. 

Various methods have been documented for assessing vascular anatomy and 

function especially in patients with CKD. Some of these methods include; measuring 

common carotid artery(CCA) intima media thickness (cIMT), carotid distensibility, 

flow mediated dilatation (FMD), and pulse wave velocity.(18) Some studies have 

even attempted to define paediatric reference values for these measurements.(154, 

155)  

a. Intima media thickness 

The carotid intima media thickness (cIMT) is a validated morphological 

parameter reflecting vascular structural changes.(155-158) The measurement 

of cIMT can be achieved by high resolution doppler ultrasound of the common 

carotid artery (CCA).(155, 159) The values for cIMT increase with age and 

body dimensions.(155) It is thought that the early increase in cIMT seen in 

stage 2-4 CKD is due to hypertension and dyslipidaemia, while in late pre-
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dialysis it is due to abnormal mineral bone metabolism.(160) Normal values in 

children have been reported.(155, 161-163) 

b. Resistance index and pulsatility index 

Changes in resistance index and pulsatility index are determined by blood 

flow velocity and both of them reflect downstream flow resistance.(164, 165) 

In addition, they are also affected by arterial stiffness and compliance.(165, 

166) Resistance index has been reported to be an indirect marker of 

atherosclerosis similar to the cIMT.(167) 

 

1.7 Biomarkers of CVD in CKD. 

Various substances in the circulation may act as predictors of CVD risk and future 

CVD.(11, 18, 30, 168) These include 25-hydroxyvitamin D (25[OH]D), fibroblast 

growth factor 23 (FGF-23) and physiological calcification inhibitors such as Fetuin-A, 

Osteprotegerin (OPG), Matrix Gla-protein (MGP) and Pyrophosphate. Other 

biomarkers include vascular/endothelial growth factors such as angiopoietin-1 and -

2.(14, 16)  

In the current study, the researcher assessed 25(OH)D, FGF-23 and Fetuin-A and 

how they relate to CVD risk and future CVD. The biomarkers FGF-23 and Fetuin-A 

were selected based on their important role in cardiovascular disease, mortality and 

mineral and bone disorder (MBD). In CKD patients, studies have shown that FGF-23 

contributes to left ventricular hypertrophy, mortality and MBD,(80, 169, 170) while 

Fetuin-A has been described as the most important circulatory inhibitor of ectopic 

calcification and also associated with mortality.(18, 171) Although MGP and OPG 

are also inhibitors of calcification, Fetuin-A contributes to over 50% of circulatory 

inhibition of ectopic calcification.(172) 
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1.7.1 Vitamin D 

Both 25(OH)D and 1,25(OH)2D can have a direct effect on the vascular smooth 

muscle cells (VSMC).(30, 173) Studies in children have shown that a high vitamin D 

dose adversely affects cIMT and calcification. (23-25) In addition, children on 

maintenance dialysis have been shown to have a bimodal association of vitamin D 

levels with vascular change measurements, such that both low and high doses of 

vitamin D are associated with abnormal cIMT and CAC.(173)  

Plasma concentrations of 25(OH)D can be measured by various methods such as 

liquid chromatography/tandem mass spectrometry (LC-MS/MS), high performance 

liquid chromatography(HPLC), ELISA, chemiluminescence and other 

immunoassays.(174, 175) Even though studies have compared the other methods 

against LC-MS/MS and found a positive correlation in terms of precision and 

sensitivity with other techniques (161-164), Liquid chromatography/tandem mass 

spectrometry is currently considered to be the  gold standard for the measurement of 

plasma concentrations of 25(OH)D. In addition, it also has the advantage of being 

able to measure all the known vitamin D metabolites.(176, 177)  

1.7.2 Fibroblast growth factor 23  

Fibroblast growth factor 23 (FGF-23) is a phosphaturic hormone produced by 

osteocytes and osteoblasts, and the use of an ELISA assay to measure the plasma 

concentration of the carboxy-terminal (C-Term) of FGF-23 is well documented.(71, 

168, 170, 171, 173). FGF-23 binds to its receptors alongside Klotho (an FGF-23 co-

receptor) and causes an increase in the urinary excretion of phosphate and the 

inhibition of the renal production of 1,25(OH)2D. Studies have shown that FGF-23 is 

independently associated with LVH, LVMI and increased cardiovascular mortality in 
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adult dialysis patients. (169, 170, 178). Research has also implicated FGF-23 in 

mineral bone disease seen in children with CKD.(80, 179) 

1.7.3 Fetuin-A 

Fetuin-A (α2-Heremans-Schmid glycoprotein-AHSG) is a multifunctional glycoprotein 

produced in the liver, and the use of an ELISA technique to measure plasma 

concentrations of Fetuin-A is well documented. (11, 177-180) Other methods used to 

measure plasma Fetuin-A include immunoturbidimetry and nephelometry.(96, 181) 

Fetuin-A plays a very important role in mineral bone metabolism, inflammation and 

metabolic disease.(17, 180, 181) It is an important inhibitor of calcification, and 

contributes significantly to the calcification inhibitory capacity of human plasma.(18, 

180) Studies have reported low Fetuin-A levels in dialysis patients, possibly as a 

combined result of reduced Fetuin-A production in a pro-inflammatory uremic milieu 

and an increased Fetuin-A consumption in a pro-calcific environment.(108, 171) 

Increased cardiovascular mortality in dialysis patients has also been linked to low 

Fetuin-A levels and this has been confirmed in two large multicentre trials which 

were appropriately designed and powered.(108, 171)  

1.7.4 Fetuin-A gene polymorphism 

Functional polymorphisms of the AHSG gene can lead to the alteration of the levels 

of Fetuin-A in the plasma. The altered levels of Fetuin-A will ultimately affect the 

control of ectopic vascular calcification. Several single nucleotide polymorphisms 

(SNPs) of the AHSG gene have been implicated in vascular calcification and 

stiffness seen in CKD and other diseases. (109, 182) Furthermore, other diseases 

that involve tissue calcification such as Alzheimer’s disease and pseudoxanthoma 

elasticum (PXE), that involves wide spread brain calcification, have also been 

associated with Fetuin A gene polymorphism.(183) 
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Eight SNPs of interest (rs2248690, rs6787344, rs4831, rs4917, rs4918, rs2070633, 

rs2070634 and rs2070635) were identified based on their reported relationship with 

Fetuin-A levels, CVD and markers of bone mineralisation in both CKD and non-CKD 

patients.(109, 182, 184-189)  
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1.8 Summary of study and research gap 

Cardiovascular disease is the most common cause of mortality and morbidity in CKD 

worldwide and several cardiovascular risk factors (CVRF) that contribute to the 

pathogenesis of CVD have been reported in both adults and children with CKD from 

other parts of the world. Despite the burden of disease imposed by paediatric CKD in 

Africa, there are no documented studies that have specifically looked into these 

CVRFs in African children with CKD. This knowledge gap needs to be addressed in 

order to prevent the initiation and progression of CVD and its associated 

complications in African children with CKD. 

This study aimed to provide an insight into the types and prevalence of CVRFs, and 

their role in cardiovascular changes seen in a South African cohort of children with 

CKD. 
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1.9 Research hypothesis 

1. The prevalence of CVRFs is higher in South African children with severe 

CKD (stage V on dialysis) when compared to children with mild (stage 1) 

and moderate disease (stage 2-4). 

2. The prevalence of cardiovascular abnormalities is higher in South African 

children with severe CKD (stage V on dialysis) when compared to children 

with mild (stage 1) and moderate disease (stage 2-4). 

3. Fetuin-A and FGF-23 are associated with CVRFs and cardiovascular 

abnormalities in South African children with CKD. 

4. Fetuin-A gene polymorphisms are negatively associated with plasma 

Fetuin-A levels in South African children with CKD. 
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1.10 Study aim 

The study aimed to determine and compare the prevalence of cardiovascular risk 

factors, cardiovascular abnormalities, and their association with Fetuin-A and FGF-

23 in a cohort of South African children with mild (stage 1), moderate (stage 2-4) and 

severe (stage 5 on dialysis) CKD. 

 

1.10.1 Objectives  

1. To determine and compare the prevalence of traditional and non-traditional 

CVRFs (including FGF-23 and Fetuin-A) in these children. 

2. To determine and compare cardiovascular abnormalities (where feasible) in 

these children. 

3. To determine and compare the association between the risk factors and 

cardiovascular abnormalities identified in these children. 

4. To determine and compare common Fetuin-A gene polymorphisms using 

polymerase chain reaction and their association with plasma Fetuin-A levels. 

5. To determine the association of Fetuin-A gene polymorphisms, cardiovascular 

risk factors and cardiovascular abnormalities. 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Study design and population 

This was a comparative cross-sectional study that recruited 106 children with CKD 

who were being followed up at the Division of Paediatric Nephrology of the Charlotte 

Maxeke Johannesburg Academic Hospital and Chris Hani Baragwanath Academic 

Hospital, Johannesburg, South Africa. 

2.1.1 Sample size 

Sample size was calculated using a sample size formula for proportions in a 

comparative cross sectional study.(190) In order to detect a difference in the 

prevalence of cardiovascular risk factors among pre-dialysis (CKD II-IV) and dialysis 

(CKD V) children with CKD a sample error of 0.05, and a power of 90%, were 

considered.  

Number of participants required per group =   
P1 (1− P1) + P2 (1− P2)

(P2−P1)2  
 × 𝑓(𝛼, 𝛽) 

P1 = prevalence of hypercholesterolemia in children with pre-dialysis CKD, 21% (46) 

P2 = prevalence of hypercholesterolemia in children with dialysis CKD, 60.9% (89) 

 𝑓(𝛼, 𝛽) = 10.5 for a power of 90% 

A minimum of 27 participants in each comparison group was needed to detect this 

difference and thus the final sample size was aimed to be a minimum of 30 

participants per comparison group.  
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2.1.2 Inclusion criteria 

a. Children aged between 5 and 18 years with CKD (<90mL/min/1.73m2) being 

followed up by the Division of Paediatric Nephrology at CMJAH and CHBAH. 

b. Children whose parents/caregivers consented to the study 

c. Children ≥7 years who assent to the study 

2.1.3 Exclusion criteria 

a. Children with known congenital heart disease, diabetes mellitus, liver disease, 

active infection, systemic lupus erythematosus (SLE) and malignancies 

b. Children with a kidney transplant 

c. Children who were febrile (Temperature ≥38oC)  

2.1.4 The reference group 

Due to the need for study participants to be subjected to venepuncture it was difficult 

to obtain ethical clearance to recruit a healthy control group (i.e. apparently well 

children) for this study. It was therefore decided that CKD I patients with an eGFR 

>90mL/min/1.73m2, a normal blood pressure and with no proteinuria would be used 

for the reference/comparison group. The reference group patients were those seen 

in the clinic who had evidence of structural abnormalities [e.g pelvi-ureteric junction 

(PUJ) obstruction, vesico-ureteric junction (VUJ) obstruction, vesico-ureteric reflux 

(VUR), posterior urethral valve (PUV)] or other markers of functional kidney 

abnormalities including: isolated haematuria, pathologic abnormalities detected by 

histology and/or inferred by imaging but who had no proteinuria, normal blood 

pressure and GFR. The exclusion criteria previously mentioned were also applied 

when recruiting these participants. 
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2.2 Ethics and permission 

The study was approved by the University of the Witwatersrand, Human Research 

Ethics Committee (Protocol M150312) and was conducted in accordance with the 

Helsinki Declaration, Good Clinical Practice and within the laws and regulations of 

South Africa.  

Written consent was obtained for each parent/guardian of participating child, with 

assent being obtained from children >8 years old. 

To maintain patient confidentiality and anonymity, study numbers and not names 

were allocated to the participants and anonymous data without potential identifiers 

such as date of birth were used in the data analyses. Access to raw data was 

restricted to the researcher and supervisors.  

 

2.3 Methods 

Recruitment of participants for the study commenced in August 2015 and ended in 

July 2016. Participants were recruited consecutively into each of the groups 

mentioned above during the study period. Patients on both peritoneal dialysis (PD) 

and haemodialysis (HD) were recruited into the dialysis group.  

Participants’ medical records were reviewed for age; gender; race; dialysis modality; 

cause of CKD; duration of CKD (since diagnosis); duration of dialysis; and pertinent 

medications, including antihypertensive agents, calcium-based phosphate binders 

(P-binders), and calcitriol. 

All recruited participants had their history taken and a standard physical examination 

was done. Their height, weight, temperature and blood pressure (BP) were 
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measured.  Body mass index (BMI) was calculated from the weight and height. 

Blood pressure was measured by auscultation using an appropriately sized cuff and 

a mercury sphygmomanometer and with the patient in the sitting position. For the 

haemodialysis CKD participants, BP was measured prior to the dialysis session. All 

other participants had their BP measured during a routine clinic visit. Blood pressure 

readings were indexed to the age-, gender-, and height-specific percentile for each 

participant according to the Fourth Report on the Diagnosis, Evaluation, and 

Treatment of High Blood Pressure in Children and Adolescents.(19) Pulse pressure 

(PP) was calculated as the difference between the systolic blood pressure (SBP) and  

diastolic blood pressure (DBP), while mean arterial blood pressure (MAP) was 

calculated as the sum of DBP and a third of PP. 

The racial composition of the different CKD groups recruited is shown in Table 2.1.  

The CKD V patients were patients on maintenance dialysis; 26 on haemodialysis 

(HD) and 10 on peritoneal dialysis (PD). (Table 2.1) The majority (31/36) of these 

patients were on erythropoietin (22 on HD and 9 on PD). The range of the dose of 

erythropoietin per week was 1500 – 18000 IU depending on the patients’ age and 

weight and their response to treatment. 
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Table 2.1: Racial distribution of the CKD groups 

 CKD groups Total 

Racial groups I II-IV V-Dialysis  

Black 32 30 31 93 

White 2 3 1 6 

Asian 0 2 2 4 

Mixed 0 1 2 3 

Total 34 36 36 106 

 

2.3.1 Sample collection and processing 

Blood samples were drawn from each participant and sent for measurement of the 

serum creatinine, albumin, calcium (Ca), phosphorus (P), parathyroid hormone 

(PTH), alkaline phosphatase (ALP), total cholesterol, haemoglobin (Hb), C-reactive 

protein (CRP), iron, transferrin, transferrin saturation and ferritin levels. An extra 

10mL of blood was drawn during the same venepuncture and sent for measurement 

of the blood vitamin D, FGF-23 and Fetuin-A levels. Genetic testing was also 

performed on this blood sample. Where applicable, participants also had their urine 

sample collected for measurement of the urine protein to creatinine ratio. The blood 

samples and urine samples were sent to the hospital’s National Health Laboratory 

Service (NHLS) for analysis and the results retrieved. The extra blood samples were 

taken to the Department of Internal Medicine Research Laboratory of the University 

of the Witwatersrand for further study.  

Ethylene-di-amine-tetra-acetic acid (EDTA) tubes were used to collect an extra 10mL 

of blood (for the biomarker assay and genetic testing). Plasma was used to run the 

specific biomarker assay. In order to obtain plasma, 5mL of the extra 10mL of blood 
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was centrifuged for 15 minutes at 1,500 x g within 30 minutes of collection. Where 

there was a delay in processing the samples, the samples were stored on ice and 

processed within the same day. The plasma obtained was then divided into equal 

aliquots, decanted into micro-containers and stored in the Department of Internal 

Medicine Research Laboratory of the University of the Witwatersrand at -80°C for 

subsequent assay. 

The remaining 5mL of the extra blood sample was stored at -20°C in the Department 

of Internal Medicine Research Laboratory of the University of the Witwatersrand for 

subsequent DNA extraction. 

2.3.2 Carotid artery ultrasound 

For the purpose of this study, the researcher used carotid intima media thickness 

(cIMT), the common carotid artery (CCA) resistance index (RI) and pulsatility index 

(PI) to assess the vascular changes in CKD.  

Common carotid artery ultrasound was performed using high resolution B-mode 

ultrasonography with the aid of L3-11 MHz linear array transducer (Phillips 

Corporation USA) as has been previously described elsewhere.(164, 165, 191) This 

was carried out by a single research sonographer who was blinded to the clinical 

details of the participants. 

The sonographer visualised and focused on the far walls of the common carotid 

artery, 1 cm proximal to the bifurcation of the CCA in the longitudinal plane (Figure 

2.1), and then acquired the cIMT measurements automatically. A similar process 

was followed for both right and left CCA and the mean of right and left common cIMT 

was used for analysis.  
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The doppler mode of the same machine was used to record the flow velocities of 

both the left and the right CCA and to determine the PI and the RI. The PI was 

calculated as (systolic velocity ‒ diastolic velocity)/(time averaged mean velocity   0 

and the RI was calculated as (systolic velocity ‒ diastolic velocity)/(systolic 

velocity).(165)  

 

 

 

Fig 2.1: The measurement of intima-media thickness in the carotid artery using ultrasonograph. 

IMT: intima-media thickness, CCA: common carotid artery, BIF: bifurcation, ICA: internal carotid 

artery. (Reproduced under the ‘Creative Commons Attribution License’ from Kim H, Ishag M, Piao M, 

Kwon T, Ryu K. A data mining approach for cardiovascular disease diagnosis using heart rate 

variability and images of carotid arteries. Symmetry. 2016;8(6):47.)(192) 
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2.3.3 Echocardiography 

A once off echocardiography to evaluate cardiac structure and function was 

performed by a single experienced research echocardiography technician. 

Echocardiography was performed by the use of the Phillips iE33 machine equipped 

with a S5-1 1-5 MHz transducer, allowing for M-mode, two dimensional and colour 

doppler measurements (Phillips Corporation USA). All examinations were carried out 

with the participant at rest, according to the American Society of Echocardiography 

recommendations.(144, 193, 194)  

The following parameters were determined: left atrium diameter (LAD), left 

ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameters 

(LVESD), left ventricular posterior wall thickness at end diastole (LPWD), 

interventricular septal thickness at end diastole (IVSD), ejection fraction (EF), 

fraction shortening (FS), trans-mitral flow velocity ratio (E/A) and the index for LV 

filling pressure (E/E’). 

Left ventricular mass (LVM) was calculated according to the equation described 

previously.(139, 195) Left ventricular mass was then indexed (LVMI) for sex and 

body surface area .(196) Relative wall thickness (RWT) was also calculated in order 

to determine the pattern of the left ventricular geometry.(140-143)  

Where abnormalities were found, participants were referred to the paediatric 

cardiology service at CMJAH for further evaluation.   

Because of time and budgetary constraints and other logistical problems, only 68% 

and 83% of the study participants had cIMT measurements and echocardiography 

respectively.  
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2.3.4 Biochemical assay 

a. Routine blood samples 

Blood samples were assayed at the hospital laboratory serviced by the NHLS, 

using standard operating procedures. Specifically, serum creatinine and intact 

parathyroid hormone (PTH) were assayed using the Siemens Advia 

enzymatic technique and Siemens Advia Centaur chemiluminometric 

immunoassay technique. 

b. Vitamin D assay 

Plasma 25(OH)D was quantitatively measured using The ARCHITECT 25-OH 

Vitamin D assay method which employs the chemiluminescence micro-

particle immunoassay (CMIA) technique.  

d. FGF-23 assay 

FGF-23 was assayed using Human FGF-23 ELISA Kit by Merck Millipore 

(Merck group, Massachusetts, USA). 

e. Fetuin-A assay 

Fetuin-A was assayed using the EDITM Human Fetuin-A ELISA kit (EPITOPE 

Diagnostics, Inc, CA, USA). 

2.3.5 DNA extraction and Fetuin-A genotyping 

a. DNA extraction 

The extraction of DNA was carried out by an automated method facilitated by 

the Maxwell platform for DNA extraction using commercially available 

Maxwell® DNA purification kits (Promega corporation, WI, USA) as per 

manufacturer’s protocol. The DNA concentrations were determined by the 

NanoDropTM 2000 spectrophotometer (Thermo Scientific, USA) with A260/280 
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ratios, and then the DNA samples were stored at -80oC for subsequent 

genotyping. 

Eight SNPs of interest (rs2248690, rs6787344, rs4831, rs4917, rs4918, 

rs2070633, rs2070634 and rs2070635) were identified based on their 

reported relationship with Fetuin-A levels, CVD and markers of bone 

mineralisation in both CKD and non-CKD patients.(109, 182, 184-189)  

b. Polymerase chain reaction (PCR) set up and DNA amplification 

In preparation for genotyping, polymerase chain reaction (PCR) was set up for 

DNA amplification. The PCR reaction consisted of water, 2 x master mix 

(KAPA2G Robust Hot Start Ready-Mix PCR kit, Kapa Bio systems, USA), 

1.25µl of 10µM DNA primers and 50 ng DNA diluted to 25ng/µl in a total 

reaction volume of 25µl. The reactions were amplified on the MJ MiniTM 

Thermal cycler (Bio-Rad, USA) with initial denaturation at 95oC for 3 minutes 

followed by 40 cycles of denaturation at 95oC for 15 seconds, annealing at 

60oC for 15 seconds and extension at 72oC for 20 seconds and a final 

extension of 72oC for 1 minute. A higher annealing temperature of 66oC was 

used for rs6787344, while the remaining four SNPs were annealed at 60oC.  

c. Fetuin-A gene restriction fragment length polymorphism (RFLP) 

Genotypes for rs2248690, rs6787344, rs4831, rs4917 and rs4918 in Fetuin-A 

were determined by restriction fragment length polymorphism (RFLP).  

Samples were incubated with their respective restriction enzymes (Table 2.1) 

overnight at 37°C.  To prevent evaporation, each reaction was overlaid with15 

µl of mineral oil. The following day, the reactions were terminated by adding 

an EDTA-containing gel dye. 
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Table 2.2: Primers and product lengths for the different SNPs 

    RFLP Allelic discrimination 

SNP Primers PCR product Restriction Enzyme Allele Size 

rs2248690 Fwd: 5’ - GAA CCC AGA GCT GTG TCA TA - 3’ 150 bp NdeI A 150bp 

 Rev: 5’ - TCC TTC TCC AGA CCT CAC T - 3’   T 132bp and 18bp 

rs6787344 Fwd: 5’ – TAC CGA GGT AAG GAG GGA TTG - 3’ 145 bp BsaI C 147bp 

 Rev: 5’ – CCT TAA AAT AGA TTG GCT AGG GAGA - 3’   G 125bp and 20bp 

rs4831 Fwd: 5’ – GGC AGG CTC CAA CAG ATA AA - 3’ 361 bp PvuII C 361bp 

 Rev: 5’ – CAT AGA CAG CAG GTC CAC TTAC - 3’   G 199bp and 162bp 

rs4917 Fwd: 5’ – TCT CTG TGG GCA GCA ATA TG - 3’ 284 bp NlaIII C 284bp 

 Rev: 5’ – GGA GGG AAA GGC ATA GCT AAA - 3’   T 202bp and 82bp 

rs4918 Fwd: 5’ – GGG AGG AGG AAG CAA ACT AAC - 3’ 264 bp SacI C 264bp 

 Rev: 5’ – CAA TGA GAC CAC ACC CAT GAA - 3’   G 209bp and 55bp 

rs2070633, rs2070634  Fwd: 5’ - GCT CTA TGA AAC AGG TGG AAG A  - 3’ 439 bp - - - 

and rs2070635 Rev: 5’ - GGG CTG AGA AGA GTA CAT GAA A  - 3’     
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Three closely positioned SNPs (rs2070633, rs2070634 and rs2070635) were 

genotyped by direct sequencing at a private laboratory (Inqaba biotech). 

d. Gel electrophoresis 

Restricted products were resolved on 10% Tris-Boric Acid-EDTA 

polyacrylamide gels. Polyacrylamide gel electrophoresis was performed for 

rs2248690, rs6787344, rs4831, rs4917 and rs4918.  

e. Gel imaging 

Visualization of the restricted PCR products representing Fetuin-A genotypes 

performed using Gel DocTM EZ imager (Bio-Rad systems, USA). 

 

2.4  Definition of terms 

• Hypertension: defined as the need for antihypertensive treatment and/or 

according to the Fourth Report on the Diagnosis, Evaluation, and Treatment of 

High Blood Pressure in Children and Adolescents.(19) 

• Body mass index (BMI): interpreted according to the World Health Organization 

(WHO) BMI centile for gender and age in children.(54) 

• Proteinuria: urine protein/creatinine ratio >0.02g/mmol.(197, 198) 

• Hypercholesterolaemia: total cholesterol >5.18mmol/L (>200mg/dL).(46) 

• Anaemia: defined based on age according to the Kidney Disease Improving 

Global Outcome (KDIGO) clinical practice guidelines for anaemia in  CKD.(199) 

• Hyperphosphatemia, hypocalcaemia, hypercalcaemia, elevated calcium product 

and elevated alkaline phosphatase: defined based on age according to the 

Kidney Disease Outcomes Quality Initiative (KDOQI) clinical practice guidelines 

for bone metabolism and disease in children with chronic kidney disease.(200) 
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• Hyperparathyroidism: parathyroid hormone (PTH) levels above laboratory normal 

limit (>7.6pmol/L) in pre-dialysis patients and above nine times the upper normal 

limit (>68.4pmol/L) in dialysis patients as recommended by KDIGO.(82) 

• Hypoalbuminaemia: serum albumin <35g/L.(103) 

• Elevated CRP: >10mg/L.(201) 

• Low 25 OH Vitamin D: <30ng/ml.(200) 

• Increased cIMT: >95th percentile for age, height and gender. (155) 

• Abnormal LAD: > normal for age.(202)  

• Abnormal LVMI defined based on body surface area for gender.(196) 

• Ejection Fraction: low (<40%), borderline (41-50%), normal (51-70%), high 

(>70%) 

• Abnormal E/A: <1.(203) 

 

2.5 Data analysis  

Study data were collected and managed using Research Electronic Data Capture 

(REDCap) tools hosted at the University of the Witwatersrand.(204) Research 

Electronic Data Capture-REDCap is a secure, web-based application designed to 

support data capture for research studies, providing 1) an intuitive interface for 

validated data entry; 2) audit trails for tracking data manipulation and export 

procedures; 3) automated export procedures for seamless data downloads to 

common statistical packages; and 4) procedures for importing data from external 

sources. 

The statistical analyses used are described in the respective result chapters.  

The results are presented in the form of manuscripts as chapters 3 to 6. 
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CHAPTER 3 (MANUSCRIPT 1): CARDIOVASCULAR RISK FACTORS AND 

MORTALITY IN CHILDREN WITH CHRONIC KIDNEY DISEASE  

3.1 Abstract 

Background: Cardiovascular disease (CVD) begins early in children with chronic 

kidney disease (CKD), and its progression is determined by the presence of single or 

multiple cardiovascular risk factors (CVRFs). This study determined the prevalence 

of CVRFs in children with CKD and their association with mortality in children on 

chronic dialysis. 

Methods: This comparative cross sectional study recruited children (5-18 years) with 

all stages of CKD. All patients had a short history taken along with a physical 

examination and their blood samples assessed for serum creatinine, urea, albumin, 

calcium, phosphorus, parathyroid hormone, alkaline phosphatase, total cholesterol, 

haemoglobin and C-reactive protein. Patients’ urine samples were also assessed for 

proteinuria. 

Results: One hundred and six children who met the study criteria were recruited, 34 

CKD I, 36 CKD II-IV and 36 CKD V (dialysis). The overall median age of the patients 

was 11 years (8-14 years) with a male female ratio of 2.1:1. The most common 

CVRF was anaemia (39.6%). The rate of anaemia was highest in the dialysis group 

when compared with the CKD II-IV group and the CKD I group (77.8%, 33.3% and 

5.9%). Other CVRFs detected include hypertension, proteinuria, 

hypercholesterolaemia and dysregulated mineral bone metabolism. Seven deaths 

were recorded in the dialysis group during the study period. Severe hypertension 

and intracranial bleed were the most common causes of death. Modifiable risk 

factors such as increased total cholesterol (TC) and decreased albumin levels were 

more among the deceased dialysis patients.  
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Conclusion: Cardiovascular risk factors may be present in early CKD, even before 

the decline in GFR. Routine screening for CVRFs, along with timely intervention, 

may prevent the progression of CVD and mortality later in life. 

Keywords: Cardiovascular disease, Risk factors, Mortality, Children, Chronic kidney 

disease. 

 

3.2 Introduction 

Cardiovascular disease (CVD) is thought to begin early in chronic kidney disease 

(CKD) and to progress rapidly as renal function declines especially on dialysis.(10, 

11, 22) Cardiovascular disease is the most common cause of death among 

paediatric patients with end stage renal disease (ESRD). (12, 13)  

Traditional and non-traditional cardiovascular risk factors (CVRFs) play an important 

role in the initiation and progression of CVD in children with CKD. Combinations of 

these risk factors could cause accelerated manifestations of cardiac and vascular 

changes in children.(21, 25) Traditional CVRFs such as hypertension, dyslipidaemia, 

obesity and hyperglycaemia have been shown to be increased in children even with 

early stages of CKD.(21, 22) Non-traditional CVRFs including anaemia, fluid 

overload, dysregulated mineral bone metabolism (hyperparathyroidism, increased 

calcium-phosphate product), hypoalbuminaemia, inflammation (increased C-reactive 

protein and cytokines) and oxidative stress are more evident in children with 

moderate to severe CKD. (10, 13, 18, 21, 25, 26) Other risk factors for CVD are 

potentially treatment-related such as calcium overload from dialysate, calcium-based 

phosphate binders and vitamin D therapy.(29, 92, 173) 
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In adults with ESRD, coronary artery disease (CAD) and cardiomyopathy are the 

leading cause of CVD mortality. Children however die from cardiac arrest, 

arrhythmia, cardiomyopathy and, rarely, myocardial disease.(205, 206) Various 

vascular changes such as atherosclerosis, arteriosclerotic lesions (including fibrous 

or fibro-elastic intimal thickening), disruption of the internal elastic lamella, and 

atheromatous plaques have also been reported in children with CKD.(18, 21) These 

vascular changes increase the risk of symptomatic CVD later in life.(25)  

This study looked at the prevalence of CVRFs and their association with mortality in 

children with CKD.  

 

3.3 Methods 

This comparative cross sectional study recruited 106 children with CKD being 

followed up by the Division of Paediatric Nephrology of the Charlotte Maxeke 

Johannesburg Academic Hospital and Chris Hani Baragwanath Academic Hospital, 

Johannesburg, South Africa. 

Thirty-four CKD I, 36 CKD II-IV and 36 CKD V (dialysis) were recruited consecutively 

over a 12-month period (August 2015 – July 2016). The CKD I group were children 

with a glomerular filtration (GFR) of >90 ml/min/1.73m2 (with either structural 

abnormalities or isolated haematuria) with normal blood pressure and no proteinuria, 

CKD II-IV were those with GFR of 15-90 ml/min/1.73m2 and CKD V were those 

children on maintenance haemodialysis and peritoneal dialysis. 
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Children with known congenital heart disease, diabetes mellitus, liver disease, active 

infection, systemic lupus erythematosus, malignancies and renal transplant were 

excluded from the study.  

All patients had a short demographic and clinical history taken along with a physical 

examination. Routine blood samples for serum creatinine, urea, albumin, calcium 

(Ca), phosphorus (P), parathyroid hormone (PTH), alkaline phosphatase (ALP), 

random total cholesterol, haemoglobin (Hb) and C-reactive protein (CRP) were 

taken, results retrieved and analysed. 

3.3.1 Definition of terms 

• Hypertension: defined as the need for antihypertensive treatment and/or 

according to the Fourth Report on the Diagnosis, Evaluation, and Treatment 

of High Blood Pressure in Children and Adolescents.(207)  

• Body mass index (BMI): interpreted according to the World Health 

Organization (WHO) BMI centile for sex and age in children.(54) 

• Proteinuria: urine protein/creatinine ratio >0.02g/mmol.(197, 198) 

• Hypercholesterolaemia: total cholesterol >5.18mmol/L (>200mg/dL).(46) 

• Anaemia: defined based on age according to the Kidney Disease Improving 

Global Outcome (KDIGO) clinical practice guidelines for anaemia in  

CKD.(199) 

• Hyperphosphataemia, hypocalcaemia, hypercalcaemia, elevated calcium-

phosphate product (CaXP) and elevated alkaline phosphatase: defined based 

on age according to the Kidney Disease Outcomes Quality Initiative (KDOQI) 

clinical practice guidelines for bone metabolism and disease in children with 

chronic kidney disease.(200) 
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• Hyperparathyroidism: parathyroid hormone (PTH) levels above laboratory 

normal limit (>7.6pmol/L) in pre-dialysis patients and above nine times the 

upper normal limit (>68.4pmol/L) in dialysis patients as recommended by 

KDIGO.(82) 

• Hypoalbuminaemia: serum albumin <35g/L.(103) 

• Elevated CRP: >10mg/L.(201) 

3.3.2 Data analysis  

All data were collected and managed using Research Electronic Data Capture 

(REDCap).(204)   Computer based statistical package STATA 13.1 was used for the 

analysis. Continuous variables were described using means and standard deviations 

for data normally distributed, and medians and inter-quartile ranges used for skewed 

data. Categorical variables were presented as percentages and frequencies. 

Statistical significance in the prevalence of risk factors was tested for using Chi-

square (χ2) tests or Fisher exact test where appropriate. Mean/median values of the 

different groups were compared using ANOVA, Kruskal-Wallis test, T-test and Mann-

Whitney U test depending on the distribution of the data. To compensate for multiple 

testing, Bonferroni type correction was used to adjust for significant levels for the 

CVRFs as appropriate. Logistic regression was used to determine the relationship 

between mortality and CVRFs. All CVRFs were tested using univariate logistic 

regression and only significant CVRFs (p<0.05) are presented in Table 3 and 

included in the multivariate regression model.   A confidence interval of 95% was 

used and p<0.05 was regarded as significant.  
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3.3.3 Ethics and permission 

The study was approved by the University of the Witwatersrand, Human Research 

Ethics Committee (Protocol M150312) and was conducted in conformance with the 

Helsinki Declaration, Good Clinical Practice and within the laws and regulations of 

South Africa. Informed written consent/assent was obtained from participants where 

appropriate. 

 

3.4 Results 

The overall median age of the patients was 11 years (8-14 years), with a 

male:female ratio of 2.1:1 (Table 3.1). 

Congenital anomaly of the kidney and urinary tract (CAKUT) was the most common 

cause of CKD across all groups, with a total rate of 47.2% (50/106) observed (Table 

3.1).  

A breakdown of the nutritional status of the different groups of patients is illustrated 

in Figure 3.1. The majority of the patients (79/106; 74.8%) were well nourished. 

Undernutrition was seen only in the dialysis group (6/36; 5.6%).  Seventeen (16.0%) 

of the patients were classified as overweight (10 CKD I, 7 CKD II-IV) and three 

(2.8%) as being obese (1 CKD I, 1 CKD II-IV, 1 CKD V).  

Anaemia (42/106; 39.6%) was the most common CVRF as shown in Table 3.1. 

Furthermore, anaemia differed significantly between the groups and was observed in 

2/34 (5.9%) patients in CKD I group, 9/36 (25%) of CKD II-IV patients and 31/36 

(86.1%) of CKD V patients (p<0.001). Hypertension was the second most common 

CVRF and was significantly higher in the dialysis group compared with the CKD II-IV 
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group (28/36 vs 12/36; p<0.001). Elevated CaXP was the CVRF with the overall 

lowest rate (6.5%) and was found in the dialysis group only.  Similar trends were 

observed when the absolute values of the various CVRFs were compared across 

groups (Table 3.1). The majority of these CVRFs remain significant after Bonferroni 

correction, where p<0.004 was considered significant. (Table 3.1) 

Over the 12-month duration of the study, we recorded seven deaths all of whom 

were in the dialysis (CKD V) group. Cerebrovascular accident (intracranial bleed) 

associated with severe hypertension accounted for the majority (4/7; 57.1%) of the 

deaths (Figure 3.2). Further analysis of the dialysis group showed a statistically 

significant difference in the presence of hypercholesterolaemia and 

hypoalbuminaemia between the deceased patients and the surviving patients (Table 

2). Similarly, the deceased group had significantly higher mean levels of total 

cholesterol (TC) and lower mean levels of albumin, when compared to the surviving 

group (Table 3.2). After Bonferroni correction, where p<0.004 was considered 

significant, only Cholesterol remained significant in Table 3.2. Cholesterol and 

albumin levels were not associated with proteinuria in this sub group. Univariate 

logistic regression among the dialysis group showed an association of mortality with 

age, serum TC and albumin (Table 3.3). After adjusting for these three in a 

regression model, we found age to be the most important associated factor for 

mortality in our group of patients (Table 3.3). 
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Table 3.1: Cardiovascular risk factors in all CKD patients 

 
CKD I 

 (n=34) 
CKD II-IV  

(n=36) 
Dialysis CKD 

(n=36) 
p value 

Age (years) # 9.48 (2.85) 11.28 (3.52) 11.86 (3.77) 0.012 

Sex (M:F) 25:9 26:10 21:15 0.314 

Diagnosis     

• CAKUT 13 (38.2%) 19 (52.8%) 18 (50.0%)  

• Glomerular disease 12 (35.3%) 13 (36.1%) 11 (30.6%)  

• Others 9 (26.5%) 4 (11.1%) 7 (19.4%)  

    0.515 

MAP (mmHg) * 71 (70-80) 80 (70-86) 91 (81-102) <0.001α 

Hypertension 0 12 (33.3%) 28 (77.8%) <0.001 α 

BMI (Kg/m2) * 17 (15-18) 18 (16-19) 16 (15-18) 0.089 

Increased BMI  11 (32.4%) 8 (22.2%) 1(2.8%) 0.002 α 

Haemoglobin (g/dl) * 13.2 (12.5-14.4) 13.4 (12.1-14.3) 9.3 (8.1-10.6) <0.001 α 

Anaemia 2 (5.9%) 9 (25.0%) 31 (86.1%) <0.001 α 

CRP (mg/L) * 10 (-) 10 (-) 10 (10-14) 0.003 α 

Increased CRP 0 4 (11.1) 10 (27.8%) 0.002 α 

Cholesterol (mmol/L) * 3.7 (3.2-4.3) 4.2 (3.3-4.7) 4.2 (3.3-5.7) 0.242 

Hypercholesterolaemia 4 (11.8%) 3 (8.3%) 13 (36.1%) 0.007 

Albumin (mg/dl) * 44 (42-45) 44 (41-45) 36 (30-39) <0.001 α 

Hypoalbuminaemia 0 2 (5.6%) 15 (41.7%) <0.001 α 

Phosphate (mmol/L) # 1.46 (0.23) 1.37 (0.29) 1.64 (0.52) 0.014 

 Hyperphosphatemia 4 (11.8%) 4 (11.1%) 17 (47.2%) <0.001 α 

CaXP* 3.3 (3.0-3.6) 3.3 (2.8-3.6) 3.5 (2.5-4.2) 0.329 

Increased CaXP 0 0 7 (19.45) - 

Alphos (U/L) * 245 (212-328) 263 (184-313) 250 (184-484) 0.773 

Increased Alphos 4 (11.8%) 9 (25.0%) 19 (52.8%) 0.001 α 

PTH (pmol/L) * 3.5 (2.7-5.3) 6.6 (4.0-10.9) 77.9 (17.4-144.5) <0.001 α 

Increased PTH 4/34 (11.8%) 15/35 (42.9%) 19/36 (52.8%) 0.001 α 

PCR (g/mmol) * 0.004 (0.001-0.007) 0.030 (0.007-0.084) 0.235 (0.050-0.930) <0.001 α 

Proteinuria 0 20/32 (62.5%) 8/10 (80%) <0.001 α 

#-Mean ± SD, *-Median (IQR), α-significant after Bonferroni correction, CAKUT-congenital anomalies of the kidney and urinary tract, MAP-mean arterial 

pressure, BMI-body mass index, CRP-C reactive protein, TC-total cholesterol, CaXP-calcium-phosphate product, Alphos-alkaline phosphatase, PTH-

parathyroid hormone, PCR-urine protein-creatinine ratio 
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Figure 3.1: Nutritional status of the patients. CKD-chronic kidney disease 

 

 

 

Figure 3.2: Causes of death. CVA-cerebrovascular accident 
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Table 3.2: Mortality and cardiovascular risk factors among dialysis patients 

 Mortality  

 Yes (n=7) No (n=29) P value 

Age (years)# 7.71 (2.81) 12.86 (3.28) 0.005 

Duration of dialysis (months)# 11.43 (9.20)  25.72 (36.50)  0.309 

BMI (Kg/m2)* 15 (14-16) 17 (15-18) 0.031 

MAP (mmHg)# 85.86 (16.69) 93.66 (18.61) 0.435 

Hypertension 5 (71.4%) 23 (79.3%) 0.639 

Haemoglobin (g/dL) # 8.30 (2.65) 9.46 (1.96) 0.200 

Anaemia  6 (85.7%) 25 (86.2%) 1.000 

CRP (mg/L) * 10 (10-29) 10 (10-14) 0.441 

Increased CRP   2 (28.6%) 8 (27.6%) 1.000 

Cholesterol (mmol/L) # 6.17 (1.44) 4.13 (1.29) 0.001α 

Hypercholesterolemia  6 (85.7%) 7 (24.1%) 0.005 

Albumin (g/L) # 29.57 (4.50) 36.04 (5.62) 0.008 

Hypoalbuminaemia  6 (85.7%) 9 (31.0%) 0.013 

Phosphate (mmol/L) # 1.57 (0.52) 1.66 (0.53) 0.695 

Hyperphosphatemia  3 (42.9%) 14 (48.3%) 1.000 

CaXP# 3.31 (1.26) 3.59 (1.37) 0.622 

Increased CaXP 1 (14.3%) 6 (20.7%) 1.000 

PTH (pmol/L) # 71.49 (69.42) 89.19 (74.36) 0.571 

Increased PTH  3 (42.9%) 15 (51.7%) 1.000 

PCR (g/mmol) * 1.46 (1.00-1.91) 0.11 (0.03-0.35) 0.116 

Proteinuria 2/2 6/8 0.622 

#-Mean ± SD, *-Median (IQR), α-significant after Bonferroni correction, SBP-systolic blood pressure, DBP-diastolic blood pressure, MAP-mean arterial 

pressure, BMI-body mass index, Hb-haemoglobin, CRP-C reactive protein, CaXP-calcium-phosphate product, PTH-parathyroid hormone 

 

Table 3.3: Logistic regression for mortality among dialysis patients 

 Univariate Multivariate 

 OR p value 95% CI OR p value 95% CI 

Age (years) 0.62 0.008 0.44-0.88 0.67 0.058 0.44-1.01 

Cholesterol (mmol/L) 2.83 0.008 1.31-6.14 2.32 0.119 0.81-6.68 

Albumin (mg/dl) 0.81 0.021 0.68-0.97 0.85 0.194 0.66-1.09 
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3.5 Discussion 

The initiation and progression of CVD in children with CKD is determined by the 

presence of single or multiple CVRFs, and this is thought to begin early and then 

worsen as the renal function declines. Our study looked at traditional and non-

traditional risk factors for CVD, as well as their association with mortality, among 

children with CKD.  

The use of BMI alone in determining the nutritional status of dialysis CKD patients 

may not be appropriate because of inter-dialytic weight gain and variable dry weight 

status.(208) Despite these concerns, under-nutrition was exclusively seen in the 

dialysis group and we recorded only a single case of over-nutrition in the same 

group. A similar finding of undernutrition in advanced CKD has been reported in 

several studies.(209, 210) The finding of under-nutrition in advanced CKD may be 

explained by low appetite, nausea and vomiting, the effect of enforced dietary 

restriction resulting in caloric deficiency, along with chronic illness, increased 

metabolic rate, metabolic acidosis and chronic inflammation, in a growing child.(211)  

Being overweight or obese has been reported to increase the risk of having other 

CVRFs (hypertension, dyslipidaemia and abnormal glucose metabolism) when 

compared to lean patients.(22) It should be emphasized at this point that the CKD I 

group did not have proteinuria and so it is unlikely that the presence of nephrotic 

syndrome patients influenced the rate of hypercholesterolaemia in this group. In our 

study, over-nutrition was most common in the CKD I and CKD II-IV groups and we 

feel that this is a more likely explanation for the higher rate of hypercholesterolemia 

among the CKD I group than in the CKD II-IV group.  
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Even though hypertension has been reported to be the single most important CVRF 

in CKD,(21, 27, 28)  we found anaemia to be the overall most common CVRF in our 

study, and hypertension to be the overall second most common CVRF. The high rate 

of anaemia likely reflects the undernutrition reported in the dialysis group in addition 

to other causes of anaemia in CKD such as declining production of erythropoietin, 

inflammation, severe secondary hyperparathyroidism leading to myelofibrosis, 

marrow hypo-responsiveness and infection.(212) In spite of anaemia being a 

modifiable risk that can be corrected with erythropoiesis stimulating agents (ESA) 

and iron supplements, poor absorption and compliance to oral iron due to side 

effects like constipation, diarrhoea and abdominal discomfort might have also 

contributed to the high rate of anaemia in our patients. 

Across the study groups, except for over-nutrition, the rates of recorded CVRF were 

highest among the dialysis group. Previous studies have documented a similar 

pattern in children with CKD.(21, 89, 213)  

Although less common, increased serum total cholesterol, phosphate, alkaline 

phosphatase, PTH and anaemia were also seen in the CKD I group. This may be 

attributed to the presence of early changes of CKD even before a decline in GFR, 

onset of proteinuria and hypertension are manifest. 

The high death rate recorded over the study period is concerning, with severe 

hypertension and cerebrovascular accident (intracranial bleed) accounting for the 

most common causes of death. Our observations differ from cardiac related deaths 

reported in other cohorts of paediatric dialysis CKD patients,(205, 206) where 

cardiac arrest, arrhythmia, cardiomyopathy, cardiac failure and myocardial 

infarction/ischemia were the most common causes of death. The reason for this 
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difference may be attributed to lack of adequate volume and blood pressure control 

in our dialysis group leading to severe hypertension. Our findings further emphasize 

the need for adequate blood pressure and fluid volume control in our chronic dialysis 

patients, in addition to control of other CVRFs.  

Younger age at commencement of dialysis, especially being under the age of one 

year, has been associated with poorer survival compared to those of older age (>5 

years) at the start of dialysis.(205, 206) Similarly, we found age to be an associated 

factor for mortality in our group of patients.  

The finding of a higher rate of increased TC and decreased albumin levels, among 

the deceased dialysis patients, may be indicative of their role in mortality. Even 

though both TC and albumin levels were not significantly associated with mortality 

after adjusting for age in this study, it is nevertheless still important to correct TC and 

albumin levels in all CKD patients as previous studies have implicated both of these 

risk factors as predictors of morbidity and mortality in CKD.(44, 102-104)  

 

3.6 Conclusion 

Cardiovascular risk factors may be present in early CKD, even before the decline in 

GFR is detected, and tend to worsen as renal function deteriorates especially in 

dialysis patients. These risk factors play an important role in morbidity and mortality 

associated with CVD in children with CKD. Routine screening for these CVRFs, 

along with timely intervention, may go a long way to prevent the progression of CVD 

and cardiac related mortality later in life. 
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3.7 Strength and limitation 

This is the first African study to look at traditional and non-traditional risk factors for 

CVD, as well as their association with mortality, among children with CKD.  

The major limitation is the small number of patients in this study and the lack of a 

disease free control group for comparison. Another limitation is that random and not 

fasting cholesterol was measured.  
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CHAPTER 4 (MANUSCRIPT 2): CAROTID INTIMA MEDIA THICKNESS IN 

SOUTH AFRICAN CHILDREN WITH CHRONIC KIDNEY DISEASE 

4.1 Abstract 

Background: Increased carotid intima media thickness (cIMT) is one of the early 

changes seen in chronic kidney disease (CKD) associated cardiovascular disease. 

This study aimed to determine cIMT measurements and its association with 

cardiovascular risk factors, including FGF-23 and Fetuin-A, in African children with 

CKD. 

Methods: Seventy-two children (5-18 years) with CKD; 20 with CKD I, 23 with CKD 

II-IV, 29 with CKD V (on dialysis) were recruited. Each patient had a clinical 

examination and blood samples assessed for creatinine, urea, albumin, calcium, 

phosphorus, parathyroid hormone, alkaline phosphatase, total cholesterol, 

haemoglobin, C-reactive protein, Vitamin D, Fetuin-A and FGF-23. Carotid intima 

media thickness was measured with high resolution ultrasound.   

Results: The mean age was 10.8 (3.5) years and there were 49 males and 23 

females (2:1). The overall median (range) cIMT was 0.505mm (0.380-0.675), and 

was highest in patients with dialysis dependant CKD (p=0.003). Mean arterial 

pressure (MAP), haemoglobin and PTH showed a significant correlation with cIMT 

(p<0.001, p=0.034 and p=0.002 respectively). After adjusting for confounders in a 

multivariable analysis, MAP and haemoglobin levels were independently associated 

with cIMT, p<0.050. No significant relationship between cIMT and plasma levels of 

Fetuin-A and FGF-23 was found.  
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Conclusion: This study reports an unexpectedly high cIMT measurements in African 

children with CKD and also the uncommon finding of haemoglobin as an 

independently associated factor for cIMT in children with CKD.   

 

4.2 Introduction 

Increased carotid intima media thickness (cIMT) is one of the early changes seen in 

cardiovascular disease (CVD) associated with chronic kidney disease (CKD).(13) 

Other reported vascular changes include increased arterial wall stiffness and 

vascular calcification.(2, 13, 132) These changes begin early in disease and tend to 

progress with advancing disease, especially during dialysis.(18, 214) High resolution 

ultrasound of the common carotid artery (CCA) is used in the assessment of cIMT, 

and paediatric reference values have been defined.(155) 

Several modifiable risk factors such as hypertension, dyslipidaemia, mineral bone 

disease (MBD), uraemia, anaemia and inflammation have been implicated in 

cardiovascular disease and mortality.(18, 21, 215) Mineral bone disease presents as 

dysregulated phosphate, calcium, parathyroid hormone and Vitamin D levels, which 

may eventually lead to the vascular changes seen in CKD.(86)  

In this study, the biomarkers FGF-23 and Fetuin-A were selected base on their 

important role in cardiovascular disease, mortality and mineral and bone disorder 

(MBD). Fibroblast growth factor-23 (FGF-23), produced by the osteocytes, is a 

phosphaturic hormone that regulates phosphate levels by suppressing phosphate 

reabsorption and suppressing 1,25-Hydroxyvitamin D production in the kidney.(18) 

Studies have shown that FGF-23 is implicated in vascular calcification and the risk of 

cardiovascular events in CKD. (216-218) Fetuin-A, which is predominantly produced 
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in the liver, has been described as one of the key circulatory inhibitors of 

calcification.(18, 219) Although MGP and OPG are also inhibitors of calcification, 

Fetuin-A contributes to over 50% of circulatory inhibition of ectopic calcification.(172) 

Low levels of Fetuin-A have been associated with vascular calcification, arterial 

stiffness and other cardiovascular events.(171, 184, 220, 221)  

This study aimed to determine cIMT measurements and its association with 

cardiovascular risk factors including FGF-23 and Fetuin-A in African children with 

CKD. 

 

4.3 Methods 

Fifty-two children (5-18 years) with a glomerular filtration (GFR) of <90 

ml/min/1.73m2 (23 CKD II-IV, 29 CKD V on dialysis) and 20 CKD I children (5-18 

years) with a GFR>90 ml/min/1.73m2 (with either structural abnormalities, or isolated 

haematuria but with a with normal blood pressure and no proteinuria) were recruited 

consecutively over a 12-month period (August 2015 – July 2016). Children with 

known congenital heart disease, diabetes mellitus, liver disease, active infection, 

systemic lupus erythematosus, malignancies and renal transplant were excluded 

from the study.  

In this comparative study, participants were recruited out of over 250 children with 

CKD who are being followed up by the Divisions of Paediatric Nephrology of the 

Charlotte Maxeke Johannesburg Academic Hospital and the Chris Hani 

Baragwanath Academic Hospital, Johannesburg, South Africa for various paediatric 

renal pathologies. Due to the difficulty in obtaining ethical clearance for blood 

sampling in healthy children, a disease free control group was not included. 
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All patients had a short demographic and clinical history taken together with a 

physical examination. Blood samples were taken and assessed for serum creatinine, 

urea, albumin, calcium, phosphorus, parathyroid hormone (PTH), alkaline 

phosphatase, total cholesterol, haemoglobin and C-reactive protein (CRP) in the 

National Health Laboratory Service of CMJAH. Specifically, serum creatinine and 

intact parathyroid hormone (PTH) were assayed using the Siemens Advia enzymatic 

technique and the Siemens Advia Centaur chemiluminometric immunoassay 

technique respectively. From the same blood samples, plasma 25-Hydroxyvitamin D 

[25(OH)D] was measured using the Chemiluminescence Micro-particle 

Immunoassay (CMIA) using the ARCHITECT 25-OH Vitamin D method in a private 

laboratory (Lancet Laboratories), while intact Plasma FGF-23 was measured using 

the Human FGF-23 ELISA Kit (Merck Millipore, Merck group, Massachusetts, USA) 

and plasma Fetuin-A levels using the EDITM Human Fetuin-A ELISA kit (EPITOPE 

Diagnostics, Inc, CA, USA) in the Medical Research Laboratory of the Department of 

Internal Medicine of the University of the Witwatersrand. 

Each patient had a high-resolution ultrasound of the common carotid artery (CCA) 

performed as previously described.(191) This was carried out by a single research 

sonographer who was blinded to the clinical details of the participants. Both the right 

and left cIMT were measured and the mean was used for analysis. The Doppler 

mode of the same machine was used to record the flow velocities of both left and 

right CCA and to determine pulsatility index (PI) and the resistivity index (RI) as 

previously described.(165)  
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4.3.1 Definition of terms 

• Glomerular filtration rate (GFR) was estimated by the use of the modified 

Schwartz formula.(222) 

• Hypertension: the need for antihypertensive treatment and/or according to the 

Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood 

Pressure in Children and Adolescents.(19) 

• Hypercholesterolaemia: total cholesterol >5.18mmol/L (>200mg/dl).(46) 

• Anaemia: defined based on age according to the Kidney Disease Improving 

Global Outcome (KDIGO) clinical practice guidelines for anaemia in  

CKD.(199) 

• Hyperphosphatemia and elevated calcium phosphate product: defined based 

on age according to the Kidney Disease Outcomes Quality Initiative (KDOQI) 

and KDIGO clinical practice guidelines for bone metabolism and disease in 

children with chronic kidney disease.(82, 200) 

• Hyperparathyroidism: parathyroid hormone (PTH) levels above laboratory 

normal limit (>7.6pmol/L), in pre-dialysis patients and above nine times the 

upper normal limit (>68.4pmol/L) in dialysis patients as recommended by 

KDIGO.(82) 

• Hypoalbuminaemia: serum albumin <35mg/dl.(103) 

• Elevated C-reactive protein (CRP): >10mg/L.(201) 

• Low 25(OH)D: <30ng/ml.(200) 

4.3.2 Data analysis  

All data were collected and managed using Research Electronic Data Capture 

(REDCap) tools hosted at the University of the Witwatersrand (204) and STATA 13.1 
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used for the analysis. Data was tested for normal distribution or skewedness using 

the STATA programme. Continuous variables were described using means 

(standard deviations) for data normally distributed, and medians (inter-quartile 

ranges) for skewed data. Categorical variables were presented as percentages and 

frequencies. Standard deviation scores (SDS) expressed as z scores for the 

individual cIMT measurements for age and height were calculated using the 

reference values by Doyon et al.(155)  

Mean values of the different groups were compared using the student t and ANOVA 

test, while median values were compared using the Mann-Whitney U and Kruskal-

Wallis tests. Spearman’s correlation was used to determine the correlates of cIMT. 

Proportions were tested using the Chi square test and the Fisher exact test, where 

appropriate. Multivariate analysis was used to determine independently associated 

factors for increased cIMT. All risk factors in the univariable analysis were included in 

the multivariable analysis. A p value of <0.05 was regarded as statistically significant 

for all analyses.  

4.3.3 Ethics and Consent 

The study was approved by the University of the Witwatersrand, Human Research 

Ethics Committee (Protocol M150312) and was conducted in conformance with the 

Helsinki Declaration, Good Clinical Practice and within the laws and regulations of 

South Africa.  

Written consent was obtained for each parent/guardian of participating child, with 

assent being obtained from children >8 years old. 
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4.4 Results 

The distribution of age and gender for the different CKD groups can be seen in Table 

4.1. The mean age was 10.8 (3.5) years and there were 49 males and 23 females 

(2:1). The racial distribution of the cohort was Black race 79 (90%), White race 

3(4%), Asian race 3(4%) and the Mixed race 2(2%).  

The overall median cIMT was 0.505mm (0.380-0.675), and the median cIMT was 

higher in patients with dialysis dependant CKD compared to the other CKD groups 

(p=0.003). (Table 4.1) Thirty-three patients (46%) had cIMT greater than the mean 

cIMT of 0.506mm. The Z scores for cIMT for both age and height were highest in the 

dialysis group, and four patients (6%) had cIMT Z score greater than two. (Table 

4.1). We did not find any patients with vascular calcification. (Table 4.1) 

The mean pulsatility index (PI) and median (IQR) resistive index (RI) were 1.68 ± 

0.42 and 0.72 (0.68-0.76) respectively, and did not differ significantly between the 

different CKD groups. (Table 4.1) 

The CKD V group had the highest proportion of hypertension and abnormal 

biochemical parameters when compared to the other CKD groups. Among these 

parameters, haemoglobin showed a negative correlation with cIMT (ρ=-0.43, 

p<0.001), while MAP and PTH showed a positive correlation with cIMT (ρ=0.251, 

p=0.034 and ρ=0.37, p=0.002 respectively). No significant relationship was found 

between cIMT and plasma levels of Fetuin-A and FGF-23. 
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#-Mean (Standard deviation), *-Median (Range), BMI-Body mass index, MAP-Mean arterial pressure, CRP-C reactive protein, CaXP-Calcium 
phosphate product, PTH-Parathyroid hormone, 25(OH)D-25-Hydroxyvitamin D, FGF-23-Fibroblast growth factor-23, cIMT-Carotid intima 
media thickness, RI-Resistance index, PI-pulsatility index. 
  

Table 4.1: Comparison among the different study groups   

 CKD groups   

 
I  

(n=20) 
 II-IV  

(n=23) 
 V-Dialysis  

(n=29) 
p value Overall (n=72) 

Age (years)a 8.9 (2.4) 10.8 (3.6) 12.1 (3.6) 0.006 10.8 (3.5) 

Sex (M/F) 15/5 16/7 18/11 0.628 49/23 

Disease duration (years)b 7 (0-10.0) 6 (0-15) 4 (0-18) 0.0347 6.0 (0-18.0) 

Height (m)a 1.30 (0.12) 1.38 (0.21) 1.34 (0.18) 0.411 1.34 (0.18) 

Weight (kg)b 26.8 (16.0-52.5) 33.7 (14.5-72.9) 27.4 (9.5-46.0) 0.659 27.5 (9.5-72.9) 

BMI b 17 (14-28) 17 (13-23) 16 (11-30) 0.085 17 (11-30) 

MAP (mmHg) b 74 (60-100) 76 (63-113) 94 (66-163) <0.001 81 (60-163) 

Hypertension (y/n) 0/20 7/16 22/7 <0.001 29/43 

Haemoglobin (g/dl) a 13.3 (1.4) 13.2 (1.7) 9.4 (2.1) <0.001 11.7 (2.6) 

Anaemia (y/n) 1/19 5/18 24/5 <0.001 30/42 

CRP (mg/l) b 10 (-) 10 (10-37) 10 (10-38) 0.377 10 (10-38) 

Elevated CRP (y/n) 0/20 3/20 7/22 0.050 10/62 

Albumin (g/L) b  44 (39-49) 42 (26-48) 36 (22-48) <0.001 41 (22-49) 

Hypoalbuminaemia (y/n) 0/20 2/21 11/18 0.001 13/59 

Cholesterol (mmol/l) b 3.8 (2.0-6.2) 4.5 (2.0-13.5) 4.1 (2.3-8.1) 0.517 4.1 (2.0-13.5) 

Hypercholesterolaemia (y/n) 3/17 3/20 9/20 0.265 15/57 

Calcium (mmol/l) b 2.22 (2.16-2.57) 2.31 (2.04-2.46) 2.23 (1.29-2.72) 0.018 2.28 (1.29-2.72) 

Phosphate (mmol/l) a 1.49 (0.23) 1.41 (0.31) 1.60 (0.54) 0.222 1.52 (0.57-2.81) 

Hyperphosphataemia (y/n) 2/18 4/19 13/16 0.013 19/53 

CaXP a 3.46 (0.52) 3.21 (0.68) 3.45 (1.39) 0.642 3.41 (1.36-6.60) 

Elevated CaXP 0/20 0/23 6/23 - 6/66 

Alkaline phosphatase (U/l) b 256 (159-438) 262 (110-482) 248 (101-1352) 0.929 250 (101-1352) 

PTH (pmol/l) b 4.0 (1.1-43.0) 6.9 (1.5-19.9) 40.8 (1.7-201.0) <0.001 7.4 (1.1-201.0) 

Elevated PTH (y/n) 1/19 9/13 14/15 0.003 24/48 

25(OH)D (ng/ml) b 22.2 (9.9-43.5) 24.8 (8.0-46.1) 18.6 (8.0-33.3) 0.037 21.7 (8.0-46.1) 

Low 25(OH)D (y/n) 18/2 19/4 28/1 0.241 65/7 

FGF-23 (pg/ml) b 15.7 (1.5-90.0) 21.2 (0-66.1) 264.1 (13.1-3893.0) <0.001 32.2 (0-3893.0) 

Fetuin-A (mg/dl) b 60.0 (11.1-96.6) 57.7 (26.6-126.0) 39.8 (0.9-225.2) 0.055 55.8 (0.9-225.2) 

cIMT (mm) b   0.508 (0.425-0.647) 0.470 (0.380-0.555) 0.525 (0.405-0.675) 0.003 0.505 (0.380-0.675) 

Z score cIMT for age and sex a  1.17 (0.48) 0.77 (0.39) 1.26 (0.54) 0.002 1.08 (0.52) 

- Patients with Z score > 2 2 (10%) 0 (-) 2 (7%) 0.371 4 (6%) 

Z score cIMT for height and sex a 1.19 (0.48) 0.81 (0.39) 1.34 (0.58) 0.002 1.12 (0.54) 

- Patients with Z score > 2 2 (10%) 0 (-) 4 (14%) 0.196 6 (8%) 

RI, n=72 b 0.72 (0.63-0.78) 0.74 (0.62-0.83) 0.70 (0.48-0.86) 0.081 0.72 (0.48-0.86) 

PI, n=72 a 1.66 (0.31) 1.83 (0.43)  1.57 (0.45) 0.083 1.67 (0.42) 
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Table 4.2. Regression analysis for log transformed carotid intima media thickness 

 Univariable  Multivariable 

 Coefficient P value 95% CI  Coefficient P value 95% CI 

Age (years) 0.002 0.558 -0.006; 0.010  -0.007 0.395 -0.025; 0.010 

Sex  -0.032 0.297 -0.092; 0.029  -0.017 0.601 -0.084; 0.049 

Log duration of illness (years) 0.022 0.215 -0.013; 0.058  0.043 0.050 -0.001; 0.086 

Height (m) -0.079 0.325 -0.237; 0.080  -0.057 0.693 -0.347; 0.233 

Log BMI -0.010 0.904 -0.180; 0.160  -0.074 0.504 -0.293; 0.147 

Log MAP 0.149 0.054 -0.003; 0.300  0.324 0.008 0.090; 0.557 

Haemoglobin (g/dL) -0.020 <0.001 -0.030; -0.010  -0.022 0.035 -0.042; -0.002 

Log CRP 0.028 0.552 -0.066; 0.122  0.057 0.313 -0.056; 0.169 

Log Albumin -0.072 0.345 -0.237; 0.084  0.072 0.588 -0.195; 0.340 

Log Cholesterol 0.015 0.731 -0.069; 0.098  0.077 0.158 -0.031; 0.185 

Log Calcium -0.202 0.108 -0.450; 0.046  -0.038 0.956 -1.425; 1.349 

Phosphate (mmol/L) 0.002 0.945 -0.066; 0.072  -0.206 0.665 -1.158; 0.746 

CaXP -0.007 0.631 -0.036; 0.022  0.046 0.830 -0.386; 0.478 

Log Alkaline phosphate 0.066 0.028 0.006; 0.105  0.045 0.176 -0.021; 0.055 

Log PTH 0.033 <0.001 0.015; 0.051  0.021 0.210 -0.012; 0.055 

Log 25(OH)D -0.016 0.629 -0.082; 0.050  0.012 0.791 -0.082; 0.107 

Log FGF-23 0.008 0.343 -0.008; 0.024  -0.001 0.940 -0.032; 0.030 

Log Fetuin-A -0.009 0.538 -0.038; 0.020  -0.013 0.581 -0.059; 0.033 

CKD        

Stage I Reference - -  Reference - - 

Stage II-IV -0.083 0.017 -0.150; -0.016  -0.112 0.006 -0.190; -0.034 

Stage V (Dialysis) 0.030 0.347 -0.033; 0.094  -0.123 0.084 -0.265; 0.017 

BMI-Body mass index, MAP-Mean arterial pressure, CRP-C reactive protein, CaXP-Calcium phosphate product, PTH-Parathyroid hormone, 
25(OH)D-25-Hydroxyvitamin D, FGF-23-Fibroblast growth factor-23, CKD-Chronic kidney disease, CI-Confidence interval 

 

 

 

Regression analysis for cIMT in relation to the clinical and biochemical parameters 

showed that only haemoglobin levels, log transformed Alkaline phosphatase and log 

transformed PTH were significantly associated with log transformed cIMT in a 

univariable model, p<0.050. In the multivariable analysis, log transformed MAP 

showed a positive independent association with log transformed cIMT (p=0.008) and 

haemoglobin showed a negative independent association with log transformed cIMT 

(0.035). (Table 4.2) 
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4.5 Discussion 

Our study results highlighted four findings which are at odds with the current 

literature. We observed a higher overall median cIMT (even in our CKD 1 group) 

than previously reported, (19, 29, 223) we demonstrated an negative association 

between cIMT and low levels of haemoglobin which has generally not been 

described before, we found no association between cIMT and FGF-23 and we also 

found no association with cIMT and Fetuin A. 

It is difficult to compare our data with that from other papers. Many papers 

demonstrating lower mean levels of cIMT had a normal distribution of cIMT data 

around the mean, (29-34) while our data showed a skewed distribution of cIMT. In 

addition, of the papers which showed lower levels of cIMT only recruited patients 

with mild to moderate CKD, while our study recruited patients with advanced disease 

in addition to those with mild to moderate disease. On the other hand, a study by 

Poyrazoğlu et al which reported a high median cIMT was carried out in older children 

and young adults who had a much higher mean age than our study patients.(224)  

Despite this, all of the above mentioned studies reported higher cIMT values in 

patients with advanced CKD when compared to healthy controls or with those with 

mild to moderate CKD, in keeping with our data. 

It is possible that our observations are a true reflection of the current vascular state 

of our patients although, keeping in mind that it is likely that vascular calcification 

takes time to develop, we did not find any evidence of vascular calcification in any of 

our cohort. Given the high cIMT observed in our study population and also that our 

CKD 1 group was noted to have high cIMT, we wonder if the reference values 
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provided by Doyon et al (6) are appropriate for our cohort. Unfortunately, the 

absence of a control group in our study makes it difficult to assess this issue. 

Several studies have reported an association of cIMT with various cardiovascular 

risk factors such as duration of dialysis, hypertension, phosphate levels, calcium-

phosphate product levels and PTH levels,(19, 20, 29, 225) but the independent 

association of cIMT we noted was with MAP and haemoglobin level. This is 

interesting for two reasons; firstly, in the past, haemoglobin has been associated 

more with cardiac changes than with vascular changes in patients with CKD(64, 226) 

and, secondly, it may explain why we saw high cIMTs despite the absence of 

vascular calcification which is usually associated with MBD.   

The relationship between cIMT and anaemia is a surprising finding and the reasons 

are unclear.  It has not been reported elsewhere and could possibly be the topic of 

further research 

In spite of previous reports of the association between cIMT with FGF-23 in adult 

CKD patients,(227-229) we did not find a similar association in our cohort. This is in 

keeping with findings from another  paediatric study in CKD patients where no 

association between FGF-23 and cIMT in children on peritoneal dialysis was 

seen.(230) We also did not find any association between Fetuin-A and cIMT as 

previously reported in both adults and children with CKD.(231, 232) 

 

4.6 Strength and limitations 

This is the first African study looking at cIMT in groups of children with different 

spectra of CKD and also determined the association of cIMT with cardiovascular risk 

factors, Fetuin-A and FGF-23. Given our findings we would suggest that population 



 
70 

specific cIMT levels need to be defined for our group of patients, and we would like 

to see a prospective study performed specifically looking at the effect of level of 

haemoglobin on the development, and regression, of cIMT. 

The major limitation of our work is the lack of a disease free control group for 

comparison, and also the relatively small sample size. However, we do not believe 

that these limitations impact on the overall strength of the study and hence we 

believe that the findings still remain significant.  

 

4.7 Conclusion 

This study reports an unexpectedly high cIMT in African children with a wide range of 

CKD and also the uncommon finding of haemoglobin as an independently 

associated factor for cIMT in African children with CKD. Mean arterial pressure was 

independently associated with cIMT. Also, contrary to previous reports, we did not 

find any independent associations of cIMT with Fetuin-A, FGF-23 or markers of 

MBD. We believe that our findings highlight the need to address modifiable risk 

factors, especially anaemia and hypertension, in our group of CKD patients, and also 

the need to establish paediatric reference values for cIMT in healthy African children. 
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CHAPTER 5 (MANUSCRIPT 3): CARDIAC CHANGES AND THEIR ASSOCIATION 

WITH FETUIN-A AND FIBROBLAST GROWTH FACTOR-23 IN CHILDREN WITH 

CHRONIC KIDNEY DISEASE 

 

5.1 Abstract 

Aims: In children with chronic kidney disease (CKD), Fetuin-A and Fibroblast growth 

factor-23 (FGF-23) have been implicated in the mechanism and progression of 

several cardiac changes. This study aimed to determine the types and rates of 

cardiac changes in children with CKD and their association with Fetuin-A, FGF-23 

and other cardiovascular risk factors (CVRFs). 

Methods: This comparative cross sectional study recruited 88 children (5-18 years); 

27 CKD I with a GFR>90 ml/min/1.73m2, 61 with a glomerular filtration (GFR) of <90 

ml/min/1.73m2 (29 CKD II-IV, 32 CKD V-Dialysis). Each patient had a short 

demographic and clinical history taken along with a physical examination. Blood was 

taken and sent for routine tests and for Fetuin-A and FGF-23 assay. All patients had 

an echocardiogram to evaluate cardiac structure and function. 

Results: The distribution of left atrial diameter (LAD) and left ventricular mass (LVM) 

differed significantly (p<0.05) across the different CKD groups. Abnormal LAD was 

seen in 10% of patients; left ventricular hypertrophy (LVH) in 27%; left ventricular 

systolic dysfunction in 6% and diastolic dysfunction in one patient. Fetuin-A was the 

only independent predictor for abnormal LAD; mean arterial pressure was 

independently associated with concentric LVH, and age and hypoalbuminaemia with 

eccentric LVH. Overall, the dialysis group had the highest rate of cardiac changes 

and associated risk factors. 
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Conclusion: Though not common, the importance of left atrial changes in children 

with CKD is highlighted along with the need to address modifiable CVRFs such as 

hypertension and hypoalbuminaemia. 

 

5.2 Introduction 

Cardiovascular disease (CVD) is a major cause of death in children with chronic 

kidney disease (CKD), and children with CKD have the highest cardiovascular risk in 

the paediatric population.(13, 18) Several cardiac changes have been reported such 

as left ventricular hypertrophy, cardiomyopathies, systolic and diastolic dysfunctions, 

coronary artery disease, arrhythmias and myocardial ischemia.(89, 148, 149) These 

changes can begin early in CKD and worsen as the disease progresses.(132)  

Cardiovascular risk factors (CVRFs) have been reported even in children with early 

CKD.(132) In addition to risk factors such as anaemia, dyslipidaemia, hypertension, 

inflammation and dysfunctional mineral bone metabolism, cardiovascular risk 

assessment using biomarkers such as Fibroblast growth factor-23 (FGF-23) and 

Fetuin-A have been recommended for early detection and intervention of subclinical 

CVD.(18)  

Transthoracic echocardiography is a non-invasive method that can be used to 

assess heart structure and function. Traditionally, the M-mode and the two-

dimensional doppler echocardiogram allow assessment of ventricular mass and 

volumes with good accuracy for the diagnosis of hypertrophy, definition of ventricular 

geometric pattern and systolic and diastolic function estimate.(124, 125)  

In a recent unpublished study in our centre, we observed that more than 60% of the 

children with CKD awaiting transplant get delisted due to various cardiovascular 
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related complications. Cardiomyopathy, associated with poor ejection fraction, is the 

most common cardiovascular related problem observed in our patients on chronic 

dialysis and, less frequently, cerebrovascular disease, arrhythmia and poor vascular 

access have also been noted. We have also observed that some of these children 

with dialysis CKD die from cardiovascular causes. We therefore felt that it was 

essential to identify and manage these cardiovascular complications to improve the 

outcome of these children. 

This study determined the different types and rates of cardiac changes seen in 

children with different spectrum of CKD, and their association with Fetuin-A, FGF-23 

and other CVRFs. 

 

5.3 Methods 

This comparative cross sectional study recruited 88 children (5-18 years) with CKD 

being followed up by the Divisions of Paediatric Nephrology of the Charlotte Maxeke 

Johannesburg Academic Hospital and Chris Hani Baragwanath Academic Hospital, 

Johannesburg, South Africa. 

Sixty-one children with a glomerular filtration (GFR) of <90 ml/min/1.73m2 (29 CKD 

II-IV, 32 CKD V-Dialysis) and 27 CKD I with a GFR>90 ml/min/1.73m2 (with either 

structural abnormalities or isolated haematuria) with normal blood pressure and no 

proteinuria were recruited consecutively over a 12-month period (August 2015 – July 

2016). Twenty three of the patients on maintenance dialysis were on haemodialysis 

and the remaining nine on peritoneal dialysis. 
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Children with known congenital heart disease, diabetes mellitus, liver disease, active 

infection, systemic lupus erythematosus, malignancies and renal transplant were 

excluded from the study.  

All patients had a short demographic and clinical history taken along with a physical 

examination. Blood samples were taken for serum creatinine, urea, albumin, 

calcium, phosphorus, parathyroid hormone (PTH), alkaline phosphatase, total 

cholesterol, haemoglobin and C-reactive protein (CRP. Blood samples for 25-

Hydroxy Vitamin D [25(OH)D], Fibroblast growth factor-23 (FGF-23) and Fetuin-A 

were also taken and sent to a research laboratory for assay.  

Blood pressure (BP) was measured by auscultation using an appropriately sized cuff 

and a mercury sphygmomanometer and with the patient in the sitting position. For 

the haemodialysis CKD participants, BP was measured prior to the dialysis session. 

All other participants had their BP measured during a routine clinic visit. Blood 

pressure readings were indexed to the age-, gender-, and height-specific percentile 

for each participant according to the Fourth Report on the Diagnosis, Evaluation, and 

Treatment of High Blood Pressure in Children and Adolescents.(19) Pulse pressure 

(PP) was calculated as the difference between the systolic blood pressure (SBP) and 

diastolic blood pressure (DBP), while mean arterial blood pressure (MAP) was 

calculated as the sum of DBP and a third of PP.  

Serum creatinine and intact parathyroid hormone (PTH) were assayed using the 

Siemens Advia enzymatic technique and Siemens Advia Centaur chemiluminometric 

immunoassay technique. Plasma 25(OH)D was assayed by Chemiluminescence 

Micro-particle Immunoassay (CMIA) using the ARCHITECT 25-OH Vitamin D 

method. Plasma intact FGF-23 was assayed using Human FGF-23 ELISA Kit (Merck 
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Millipore, Merck group, Massachusetts, USA). Plasma AHSG level was assayed 

using EDITM Human Fetuin-A ELISA kit (EPITOPE Diagnostics, Inc, CA, USA). 

Cardiac structure and function was evaluated using an echocardiogram administered 

by a single experienced research echocardiogram technician using a Phillips iE33 

machine equipped with a S5-1 1-5 MHz transducer, allowing for M-mode, two 

dimensional and colour doppler measurements (Phillips Corporation USA). All 

examinations were carried out according to the American Society of 

Echocardiography recommendations.(144, 193, 194) The following parameters were 

determined: left atrial diameter (LAD), left ventricular dimensions including, left 

ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameters 

(LVESD), left ventricular posterior wall thickness at end diastole (LPWD), 

interventricular septal thickness at end diastole (IVSD). Subsequently, ejection 

fraction (EF) and fractional shortening (FS) were calculated. Traditional pulsed wave 

doppler indices of peak early (E) and late (A) trans-mitral inflow velocities were 

measured to obtain the (E/A) ratio. Tissue doppler imaging (TDI) was used to obtain 

the index for LV filling pressure (E/E’). 

Left ventricular mass (LVM) was calculated according to the equation described by 

Devereux et al.(139, 195) Left ventricular mass was indexed (LVMI) for gender and 

body surface area and abnormal LVMI graded into mild, moderate and severe.(134, 

196) Relative wall thickness (RWT) was also calculated in order to determine the 

pattern of the left ventricular geometry.(144) Left ventricular (LV) geometry was 

classified using LVMI and RWT into normal, concentric remodelling (CR), concentric 

hypertrophy (CH) and eccentric hypertrophy (EH). 
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Where abnormalities were found, patients were referred to a paediatric cardiologist 

for further evaluation.   

5.3.1 Definition of terms 

• Glomerular filtration rate (GFR) was estimated by the use of the modified 

Schwartz formula.(222) 

• Hypertension: the need for antihypertensive treatment and/or according to the 

Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood 

Pressure in Children and Adolescents.(19) 

• Proteinuria: urine protein/creatinine ratio >0.02g/mmol.(197, 198) 

• Hypercholesterolaemia: total cholesterol >5.18mmol/L (>200mg/dl).(46) 

• Anaemia: defined based on age according to the Kidney Disease Improving 

Global Outcome (KDIGO) clinical practice guidelines for anaemia in  

CKD.(199) 

• Hyperparathyroidism: parathyroid hormone (PTH) levels above laboratory 

normal limit (>7.6pmol/L), in pre-dialysis patients and above nine times the 

upper normal limit (>68.4pmol/L) in dialysis patients as recommended by 

KDIGO.(82) 

• Hypoalbuminaemia: serum albumin <35mg/dl.(103) 

• Elevated C-reactive protein (CRP): >10mg/L.(201) 

• Low 25 OH Vitamin D: <30ng/ml.(200) 

• Abnormal LAD: > normal for age.(202)  

• Abnormal LVMI and its severity defined based on body surface area for 

sex.(196) 
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• Ejection Fraction: low (<40%), borderline (41-50%), normal (51-70%), high 

(>70%) 

• Abnormal E/A: <1.(203) 

 

5.3.2 Data analysis  

All data were collected and managed using Research Electronic Data Capture 

(REDCap) tools hosted at the University of the Witwatersrand (204).  STATA 13.1 

was used for the analysis. Continuous variables were described using means and 

standard deviations for data normally distributed, and medians and inter-quartile 

ranges for skewed data. Categorical variables were presented as percentages and 

frequencies. Mean/median values of the different groups were compared using 

Student’s t-test, Mann-Whitney U test, ANOVA and Kruskal-Wallis test, depending 

on the distribution of the data. Statistical significance in the proportions of cardiac 

changes and risk factors was tested for using Chi square test and Fisher exact test, 

where appropriate. Regression analysis was used to determine independent 

associated factors for abnormal LAD and LVH. A p value <0.05 was regarded as 

statistically significant for all analyses.  

5.3.3 Ethics and Consent 

The study was approved by the University of the Witwatersrand, Human Research 

Ethics Committee (Protocol M150312) and was conducted in conformance with the 

Helsinki Declaration, Good Clinical Practice and within the laws and regulations of 

South Africa.  

Written consent was obtained for each participating parent/guardian, with assent 

from the children >8 years old. 
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5.4 Results 

The mean age of patients was 10.85 years ± 3.14. There were 58 males and 30 

females giving a male to female ratio of 2:1. The median (interquartile range-IQR) 

age at diagnosis and duration of illness was 4 years (0-7) and 6 years (2-9) 

respectively. The majority of the children were from the Black racial group (79/88). 

Children from the White (3/88), Asian (2/88) and the Mixed racial groups (4/88) made 

up the rest of the cohort. 

The overall median (IQR) left atrial diameter (LAD) was 26mm (22-29). The median 

LAD was seen to increase significantly across the study groups with advancing 

disease (p=0.017). Nine patients had abnormal LAD (>95 centile for age), and the 

dialysis group had the highest number of patients (6/9; 67%) with abnormal LAD. 

(Table 5.1)  

The overall absolute LVM median (IQR) was 81g (56-134). The dialysis group had 

the highest absolute LVM median when compared to the other study groups and 

there was a statistically significant difference in the median comparison of absolute 

LVM by the different CKD groups (p<0.001). A skewed LVMI pattern was observed 

with a median (IQR) of 74.5g/m2 (61.5-117.5). Similarly, the dialysis group had the 

highest median and there was a statistically significant difference in the median LVMI 

of the study groups (p<0.001). (Table 5.1) There was a strong positive correlation 

between LAD and LVMI, ρ=0.54, p<0.001. 

Abnormal LVMI was defined based on gender and BSA. The majority (21/32; 66%) 

of the patients on dialysis had an abnormal LVMI, while none of the patients in the 

CKD I group had an abnormal LVMI. The majority (12/24; 50%) of patients with LVMI 
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abnormality had a severe form of this abnormality and this was most common in the 

dialysis group. (Table 5.1) 

More than half of the patients (46/88; 52%) had abnormal geometry. Left ventricular 

hypertrophy (LVH) was seen in 27% (24/88) of the patients, with the majority (21/24; 

88%) of patients with LVH seen in the dialysis group. (Table 5.1) The CKD I group 

had the least number of patients (9/88; 10%) with abnormal LV geometry and this 

was only in the form of concentric remodelling.  

Left ventricular systolic function was determined using LV ejection fraction (EF) and 

fractional shortening (FS). The median (IQR) EF and FS were 66% (60-73) and 36% 

(32-41) respectively. There was no statistically significant difference in EF and FS 

when compared across the study groups, p=0.071 and p=0.535 respectively. 

Ejection fraction was further categorised into low (<40%), borderline (40%-50%), 

normal (50%-70%) and high (>70%). About 58% (51/88) of the patients had a normal 

EF and about 6% (5/88) had low EF. Four (80%) of the five patients with low EF 

belonged to the dialysis group. (Table 5.1) Low EF was only seen in patients with 

abnormal LVMI and abnormal LV geometry. (Figure 5.1 and 5.2) 

Diastolic function was determined using the trans-mitral flow velocity ratio (E/A) and 

the index for LV filling pressure (E/E’). The median (IQR) E/A and E/E’ was 1.59 

(1.30-1.90) and 10.1 (8.3-13.2) respectively. There was a statistically significant 

difference in the median E/A and E/E’ when compared across the different study 

groups, p=0.031 and p<0.001 respectively. (Table 5.1) Only one of the dialysis 

patients was found to have an abnormal E/A (<1). 

Several CVRFs described previously were identified in the study groups. (Table 5.1) 

The CKD dialysis group had the highest rate of all the risk factors identified. There 
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was a statistically significant difference in the rates of the majority of the risk factors 

when compared by the different CKD groups (p<0.05). 

These risk factors mentioned above were compared for abnormal LAD. Patients with 

abnormal LAD had a higher proportion of these risk factors compared to their 

counterparts with a normal LAD. (Table 5.2) Mean arterial pressure, haemoglobin 

and CRP were significantly associated with abnormal LAD in a univariable 

regression model but only Fetuin-A was identified as an independent predictor of 

abnormal LAD, p=0.034. (Table 5.3) 

Left ventricular hypertrophy showed a significant association with age, MAP, 

haemoglobin, albumin, PTH and FGF-23 in a univariable model (p<0.050). (Table 

5.2) After adjusting for these risk factors in a multivariable model only MAP was 

identified as an independent associated factor for LVH, p=0.020. (Table 5.3) 

Concentric LVH was also found to have MAP as an independent associated factor 

(p=0.018), while Eccentric LVH was found to have age and albumin levels as 

independent associated factors, p=0.026 and p=0.011 respectively. (Table 5.4)  

We did not find any association between mode of dialysis and cardiac changes and, 

similarly, duration of dialysis was not associated with cardiac changes. 
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@-Comparison across CKD groups, ANOVA test for means, Kruskal Wallis test for medians, Chi square/Fisher exact test for proportions, *-Median (Interquartile range), #-Mean (Standard deviation), CVRFs-Cardiovascular 

risk factors, ECHO- Echocardiogram, MAP-mean arterial pressure, CRP-C-reactive protein, PTH-Parathyroid hormone, PCR-Protein creatinine ratio, LAD-Left atrial diameter, LVM-Left ventricular mass, LVMI-Left ventricular 

mass index, EF-Ejection fraction, FS-Fractional shortening, e/a-Trans mitral flow velocity ratio, e/e’- left ventricular filling pressure 

Table 5.1: Comparison among the different study groups 

 CKD I (n=27) CKD II-IV (n=29) 
CKD V-Dialysis 

(n=32) 
P value@ 

Demographics     

Age (years)# 9.33 ± 2.40 11.10 ± 3.55 11.88 ± 3.73 0.015 

Sex (M/F) 19/8 20/9 19/13 0.616 

Height (m)# 131.36 ± 14.33 137.22 ± 20.03 133.24 ± 19.50 0.471 

Weight (kg)# 30.22 ± 11.78 34.21 ± 13.73 29.73 ± 11.10 0.309 

     

CVRFs     

MAP (mm/Hg)* 70 (70-80) 76 (70-83) 93 (82-103) <0.001 

Hypertension 0/27 9/29 24/32 <0.001 

Haemoglobin (g/dl)* 13.2 (12.5-14.4) 13.4 (11.9-14.1) 9.4 (8.3-10.6) <0.001 

Anaemia 2/27 8/29 27/32 <0.001 

CRP (mg/l)* 10 (-) 10 (-) 10 (10-13.5) 0.008 

Elevated CRP 0/27 3/29 9/32 0.004 

Albumin (mg/dl)* 44 (42-45) 43 (39-44) 36 (30-40) <0.001 

Low Albumin 0/27 2/29 12/32 <0.001 

Cholesterol (mmol/l)* 3.7 (3.2-4.5) 4.5 (3.5-4.7) 4.2 (3.3-5.7) 0.479 

Hypercholesterolaemia 4/27 3/29 11/32 0.057 

PTH (pmol/l), n=87* 3.5 (2.8-5.3) 7.3 (4.1-11.1) 50.5 (17.4-136.6) <0.001 

Elevated PTH, n=87 3/27 13/28 16/32 0.002 

Vitamin D (ng/ml) * 22.7 (19.3-27.3) 24.8 (18.3-29.3) 18.9 (12.9-23.0) 0.025 

Low Vitamin D 23/27 24/29 31/32 0.157 

FGF-23 (pg/ml)* 12.0 (6.7-25.3) 21.2 (8.0-42.5) 265.1 (120.7-463.2) <0.001 

Fetuin-A (mg/dl)* 61.1 (44.2-73.6) 55.1 (47.8-74.7) 40.5 (11.9-70.1) 0.049 

PCR (g/mmol), n=63* 0.004 (0.001-0.008) 0.030 (0.006-0.080) 0.310 (0.060-0.930) <0.001 

Proteinuria, n=63 0/27 15/27 8/9 <0.001 

     
ECHO     

LAD (mm)* 24 (20-28) 25 (22-29) 28 (23-32) 0.017 
Abnormal LAD 1/27 2/29 6/32 0.159 
LVM (g)* 60 (44-83) 84 (65-119) 127 (78-200) <0.001 
LVMI (g/m2)* 63 (51-70) 72 (62-92) 122 (91-168) <0.001 
Abnormal LVMI 0/27 3/29 21/32 <0.001 
Severity of abnormal LVMI     

Mild 0 0/3 7/21  
Moderate 0 1/3 4/21  

Severe 0 2/3 10/21  

    0.564 
LV geometry     

Normal 18/27 18/29 6/32  
Concentric remodelling 9/27 8/29 5/32  
Concentric hypertrophy 0/27 1/29 16/32  
Eccentric hypertrophy 0/27 2/29 5/32  

    <0.001 
EF (%)* 68 (63-74) 66 (61-68) 67 (55-73) 0.374 
EF pattern     

Low (<40%) 0/27 1/29 4/32  
Borderline (41-50%) 1/27 1/29 1/32  

Normal (51-70%) 14/27 22/29 15/32  
High (>70%) 12/27 5/29 12/32  

    0.071 
FS (%)# 37.57 ± 7.11  35.35 ± 8.67 35.13 ± 10.34 0.525 
e/a (m/s)* 1.6 (1.3-2.0) 1.6 (1.5-2.0) 1.3 (1.2-1.7) 0.031 
e/e’ (m/s)* 8.6 (7.1-9.3) 9.1 (8.3-10.9) 13.4 (10.9-15.8) <0.001 
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Figure 5.1 Ejection fraction by left ventricular mass index. EF-ejection fraction, 

LVMI-left ventricular mass index 

 

 

 

Figure 5.2 Ejection fraction by left ventricular geometry. EH-eccentric 

hypertrophy, CH-concentric hypertrophy, CR-concentric remodelling, EF-ejection 

fraction.  
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Table 5.2: Risk factors for abnormal left atrial diameter (LAD) and LVH 

 

Abnormal LAD p value@ LVH p value@ 

 
Yes (n=9) No (n=79)  Yes (n=24) No (n=64) 

 

Age (years)# 12.56 ± 3.40 10.65 ± 3.42 0.115 12.25 ± 3.87 10.31 ± 3.14 0.018 

Sex (M/F) 5/4 53/26 0.483 13/11 45/19 0.155 

MAP (mm/Hg)* 100 (79-105) 80 (70-88) 0.016 97 (82-106) 74 (70-83) <0.001 

Hypertension 7/9 26/79 0.013 22/24 11/64 <0.001 

Haemoglobin (g/dl)* 9.5 (8.4-11.2) 12.7 (10.1-13.7) 0.029 9.3 (8.4-11.0) 13.1 (12.0-14.1) <0.001 

Anaemia 7/9 30/79 0.032 21/24 16/64 <0.001 

CRP (mg/l)* 10 (10-19) 10 (-) 0.004 10 (10-14) 10 (-) 0.012 

Elevated CRP 4/9 8/79 0.018 7/24 5/64 0.015 

Albumin (mg/dl)* 36 (29-45) 42 (38-44) 0.238 36 (29-39) 42 (39-45) <0.001 

Low Albumin 4/9 10/79 0.033 10/24 11/64 <0.001 

Cholesterol (mmol/l)* 3.6 (3.0-4.2) 4.2 (3.4-5.0) 0.218 4.2 (3.3-5.5) 4.2 (3.4-4.9) 0.859 

Hypercholesterolaemia 1/9 17/79 0.679 7/24 11/64 0.243 

PTH (pmol/l), n=87* 18 (4.1-60.1) 7.3 (3.8-25.7) 0.299 36.1 (15.7-136.6) 5.3 (3.1-11) <0.001 

Elevated PTH, n=87 3/9 29/78 1.000 13/24 19/63 0.038 

Vitamin D (ng/ml)* 20.8 (10.6-27.1) 22.3 (15.5-27.3) 0.457 18.9 (14.4-23.0) 23.1 (15.8-27.8) 0.109 

Low Vitamin D 8/9 70/79 1.000 22/24 56/64 0.721 

FGF-23 (pg/ml)* 266.1 (52.9-384.1) 25.3 (9.0-102.4) 0.011 265.1 (120.7-579.5) 19.4 (7.9-43.2) <0.001 

Fetuin-A (mg/dl)* 24.1 (4.0-44.2) 59.0 (39.8-74.7) 0.003 37.7 (13.8-79.1) 58.8 (44.1-71.4) 0.120 

PCR (g/mmol), n=63* 0.046 (0.007-0.693) 0.009 (0.003-0.048) 0.230 0.432 (0.105-1.422) 0.01 (0.001-0.030) <0.001 

Proteinuria, n=63 2/3 21/60 0.548 7/8 16/55 0.003 

@-t-test for means, Mann-Whitney U test for medians, Chi square/Fisher exact test for proportions, *-Median (Interquartile range), #-Mean (Standard deviation), LAD-left atrial diameter, LVH-left ventricular hypertrophy, 

MAP-mean arterial pressure,  CRP-C-reactive protein, PTH-Parathyroid hormone, PCR-Protein creatinine ratio 

 

  



 
84 

 

LAD-left atrial diameter, LVH-left ventricular hypertrophy, MAP-mean arterial pressure, CRP-C-reactive protein, PTH-Parathyroid hormone, OR-Odds ratio, CI-Confidence interval 

α- None of the patients in the CKD I group had LVH and as such the model automatically drops this group from the regression analyses for LVH. 

 

  

Table 5.3: Regression analysis for abnormal left atrial diameter and left ventricular 
hypertrophy 
 

Abnormal LAD (n=88) 

 
Univariable Multivariable  

 
OR p value 95% CI OR p value 95% CI 

Age (years) 1.18 0.123 0.96-1.47 1.08 0.653 0.78-1.50 

MAP (mmHg) 1.04 0.036 1.00-1.08 1.06 0.096 0.99-1.15 

Haemoglobin (g/dl) 0.76 0.035 0.58—0.98 0.84 0.503 0.49-1.42 

Albumin (mg/dl) 0.92 0.098 0.83-1.02 0.97 0.689 0.83-1.13 

CRP (mg/l) 1.06 0.083 0.99-1.13 1.07 0.115 0.99-1.15 

PTH (pmol/l), n=87 1.01 0.217 1.00-1.02 0.994 0.531 0.975-1.013 

FGF-23 (pg/ml) 1.000 0.229 0.999-1.001 1.000 0.744 0.999-1.001 

Fetuin-A (mg/dl)  0.956 0.005 0.927-0.987 0.955 0.034 0.916-0.997 

CKD      
                    I 

 
Reference 

 
- 

 
- 

 
Reference 

 
- 

 
- 

II-IV 1.93 0.602 0.17-22.55 1.11 0.944 0.06-22.21 

V 6.00 0.108 0.67-53.38 0.30 0.582 0.003-22.412 

 LVH (n=88) 

 Univariable Multivariable  

Age (years) 1.19 0.022 1.03-1.38 1.19 0.286 0.87-1.63 

MAP (mmHg) 1.14 <0.001 1.07-1.20 1.10 0.020 1.02-1.19 

Haemoglobin (g/dl) 0.55 <0.001 0.42-0.72 0.60 0.058 0.35-1.02 

Albumin (mg/dl) 0.82 <0.001 0.74-0.91 0.93 0.396 0.78-1.10 

CRP (mg/l) 1.03 0.321 0.97-1.09 1.03 0.517 0.95-1.12 

PTH (pmol/l), n=87 1.02 <0.001 1.01-1.03 1.006 0.504 0.988-1.025 

FGF-23 (pg/ml)  1.001 0.044 1.000-1.002 1.001 0.089 1.000-1.002 

Fetuin-A (mg/dl)  1.00 0.530 0.980-1.010 1.030 0.080 0.997-1.064 

CKD α             

II-IV Reference - - Reference - - 

V 16.55 <0.001 4.08-67.10 0.62 0.738 0.04-10.36 
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LVH-left ventricular hypertrophy, MAP-Mean arterial pressure, CRP-C-reactive protein, PTH-Parathyroid hormone, OR-Odds ratio, CI-Confidence interval 

α- None of the patients in the CKD I group had LVH and as such the model automatically drops this group from the regression analyses for LVH. 

  

  

Table 5.4: Regression analysis for Concentric and Eccentric left ventricular hypertrophy 

 
Concentric LVH (n=88) 

 
Univariable Multivariable  

 
OR p value 95% CI OR p value 95% CI 

Age (years) 1.11 0.193 0.95-1.30 0.78 0.139 0.56-1.08 

MAP (mmHg) 1.10 <0.001 1.05-1.16 1.12 0.018 1.02-1.23 

Haemoglobin (g/dl) 0.57 <0.001 0.44-0.75 0.70 0.166 0.42-1.16 

Albumin (mg/dl) 0.90 0.017 0.83-0.98 1.21 0.070 0.99-1.48 

CRP (mg/l) 1.03 0.388 0.97-1.09 1.02 0.705 0.93-1.11 

PTH (pmol/l), n=87 1.018 <0.001 1.008-1.027 1.014 0.129 0.996-1.031 

FGF-23 (pg/ml) 1.0006 <0.001 1.0000-1.0012 1.001 0.227 1.000-1.002 

Fetuin-A (mg/dl)  0.996 0.668 0.980-1.013 1.017 0.266 0.988-1.047 

CKD α       

II-IV Reference - - Reference - - 

V 28.0 0.002 3.39-231.32 4.91 0.422 0.10-238.05 

 Eccentric LVH (n=88) 

 Univariable Multivariable 

Age (years),  1.28 0.062 0.99-1.66 1.96 0.026 1.08-3.53 

MAP (mmHg) 1.04 0.062 1.00-1.08 0.99 0.853 0.92-1.08 

Haemoglobin (g/dl) 0.79 0.097 0.59-1.05 0.83 0.614 0.39-1.75 

Albumin (mg/dl) 0.81 0.001 0.71-0.92 0.72 0.011 0.56-0.93 

CRP (mg/l) 1.02 0.689 0.94-1.10 0.97 0.718 0.81-1.16 

PTH (pmol/l), n=87 1.002 0.779 0.989-1.015 0.985 0.259 0.959-1.011 

FGF-23 (pg/ml) 1.000 0.131 0.999-1.001 1.001 0.276 0.999-1.002 

Fetuin-A (mg/dl)  0.995 0.680 0.970-1.020 1.017 0.354 0.981-1.055 

CKD α       

II-IV Reference - - Reference - - 

V 2.5 0.298 0.45-14.02 0.43 0.731 0.004-50.325 
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5.5 Discussion 

Cardiovascular disease remains a major cause of morbidity and mortality among 

children with CKD. This study compared the type and rates of cardiac changes in 

three distinct groups of CKD patients; CKD I, CKD II-IV and CKD V-Dialysis. Cardiac 

changes observed include abnormal LAD, abnormal LVMI, abnormal LV geometry, 

LVH and changes in LV systolic and diastolic function. Cardiovascular risk factors in 

these patients were also compared and their association with abnormal LAD and 

LVH was determined. 

Even though LAD has been described as an independent predictor of cardiovascular 

events in adults,(233, 234) abnormal LAD is not frequently reported as one of the 

cardiac changes seen in children with CKD. Our study observed a 10% rate of 

abnormal LAD in our cohort. Of these patients with LAD, 67% of them were of the 

dialysis group. The LAD measurement by CKD groups, when compared with a 

previous study that looked at LAD, showed a similar pattern, where the highest 

measurements were observed in the dialysis group.(149) The influence of blood 

pressure on atrial size has been previously reported,(235) but in our study plasma 

Fetuin-A level was the only independent associated factor for abnormal LAD 

observed. 

We are not sure how to explain the presence of an abnormal LAD in the one patient 

in the CKD 1 group. We hypothesize that the child might have had an underlying 

cardiac problem, such as mitral valve pathology or a congenital heart condition, 

which was missed during the study. Alternatively, although this child was in the CKD 

1 group, they might have already started to develop cardiac changes even though 

the deterioration of their renal function is not clinically apparent.  
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Left ventricular hypertrophy has been reported as the most common cardiac 

abnormality observed in children with CKD.(28, 148)  A wide range of rates of LVH 

(10-50%) in children with various stages of CKD has been reported,(28, 71, 89, 131, 

134, 148, 236) and this disparity has been attributed to the different methods of 

indexation of LVMI which ultimately affects the categorization of LVH in 

children.(134) The rate of LVH observed in our study (27%) falls within this range but 

was found to be higher than the rate reported by Simpson et al,(134) where BSA 

was also used for indexation of LVMI. This difference may be explained by the fact 

that their study did not include dialysis CKD patients while our study did include 

them. Another similar study by Adiele et al reported a higher rate of 50% for LVH but 

the smaller nature of their sample size may be the reason for the variance when 

compared to our study.(148)  

Various risk factors have been implicated in LVH but hypertension has been 

described as the most important risk factor.(28) In our study MAP was identified as 

overall independent associated factor for LVH. Even though FGF-23 has been 

associated with LVH in both adults and children with CKD,(237-239) we didn’t find a 

similar association after adjusting for other risk factors. The reason for this may be 

that the majority of these studies were carried out in adult patients, and the few 

studies performed in paediatric patients were conducted in children with advanced 

disease. 

Concentric LVH (CH) has been attributed to hypertension,(71, 240, 241) while 

eccentric LVH (EH) has been attributed to anaemia.(226, 242) Our findings also 

suggest that hypertension, plays a vital role in CH, while age and hypoalbuminaemia 

are independent associated factors for EH.  
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It is interesting that, although Fetuin A was associated with the development of LAD, 

there was no correlation between Fetuin A and the development of LVH. As far as 

we are aware this is a novel finding which has not been previously described. 

Further research on the relationship between Fetuin A and cardiac changes in 

paediatric would need to be undertaken to confirm, and explain, this finding. 

In contrast to adult patients, left ventricular systolic function (often assessed by the 

use of left ventricular EF and FS) has been observed to occur in lower rates when 

compared to LV diastolic dysfunction in children with CKD.(89, 121, 148) Our study 

reports a rate of a low left ventricular EF of 6%. Diastolic dysfunction was observed 

only in one patient in our study; this is certainly much lower than what has been 

described previously.(89, 148, 149)  No clear reason could be identified for this 

finding. 

 

5.6 Strength and limitations 

This is a study from an African setting that looked at three groups of children with 

different spectrum of CKD. It also looked at the association between early cardiac 

changes and biomarkers such as Fetuin-A and FGF-23 that are not routinely 

assessed in clinical practice. 

The major limitations are the small sample size and the lack of a control group for 

comparison. Another limitation is that left atrial diameter, rather than left atrial volume 

which correlates better with cardiovascular disease, was measured. 

 

  



 
89 

5.7 Conclusion 

This comparative study provides new information on the types and rates of cardiac 

changes seen in a spectrum of South African children with CKD. It also highlights the 

possible role played by biomarkers such as plasma Fetuin-A and FGF-23 in the 

development of early changes seen in cardiovascular disease. Although Fetuin A is 

associated with the development of an increased LAD it does not appear to be 

associated with the development of LVH. We also found no independent association 

between FGF-23 and cardiac changes. Left ventricular hypertrophy remains the 

most common cardiac change seen in children with CKD and, although less 

common, it is important to monitor for left atrial changes in these children. 

Hypoalbuminaemia, in addition to adequate blood pressure control, need to be 

addressed in order to retard the progression of cardiovascular disease in children 

with CKD. A prospective study, with a larger sample size and a control group, 

looking at these biochemical markers and cardiac changes alongside progression of 

CKD, may provide more information on interventions which might halt or slow the 

risk of cardiovascular disease in these children. 
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CHAPTER 6 (MANUSCRIPT 4): FIBROBLAST GROWTH FACTOR-23 AND 

FETUIN-A GENE RELATIONSHIP IN BLACK SOUTH AFRICAN CHILDREN WITH 

CHRONIC KIDNEY DISEASE 

 

6.1 Abstract 

Background: Both Fibroblast growth factor-23 (FGF-23) and Fetuin-A levels have 

been implicated in mineral and bone disorder associated with chronic kidney disease 

(CKD), and several single nucleotide polymorphisms (SNPs) of the Fetuin-A gene 

have also been associated with Fetuin-A levels. This study aimed to determine the 

relationship between FGF-23 and Fetuin-A and also to determine the role of Fetuin-A 

SNPs with respect to Fetuin-A levels and markers of bone mineralisation in black 

South African children. 

Methods: Blood samples from 93 children (5-18 years) with various stages of CKD 

were assessed for C-reactive protein, calcium, phosphate, parathyroid hormone, 25-

hydroxyvitamin D, FGF-23 and Fetuin-A levels. Genomic DNA was extracted from 

whole blood and regions of the Fetuin-A gene amplified by polymerase chain 

reaction.  Single nucleotide polymorphisms (SNPs) were genotyped by restriction 

fragment length polymorphism analysis or by direct sequencing.  

Results: The median FGF-23 and Fetuin-A levels were 28.9 (0-3893) pg/ml and 

57.7 (0.9-225.2) mg/dl respectively.  A significant negative relationship between 

Fetuin-A and FGF-23 was only observed in the CKD V group (ρ=-0.60, p<0.001). 

Plasma FGF-23 levels correlated better with markers of bone mineralization than 

Fetuin-A. Eight SNPs were analysed; rs2248690, rs6787344, rs4831, rs4917, 

rs4918, rs2070633, rs2070634 and rs2070635.  We found significant association of 

the Fetuin-A SNPs rs4918-G and rs2070633-T alleles with log-transformed Fetuin-A 
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levels. Serum phosphate and parathyroid hormone levels were also associated with 

Fetuin-A SNPs.  

Conclusion: An inverse relationship between FGF-23 and Fetuin-A is more likely to 

be observed in children with advanced CKD, and patients with rs4918-G and 

rs2070633-T alleles are more likely to have altered Fetuin-A levels.   

 

6.2 Introduction 

Fibroblast growth factor-23 (FGF-23), produced by the osteocytes, is a phosphaturic 

hormone that regulates phosphate levels by suppressing phosphate reabsorption 

and suppressing 1,25-Hydroxyvitamin D production in the kidney.(18) This effect is 

exerted when FGF-23 binds to its receptors alongside Klotho (an FGF-23 co-

receptor).(243) Studies have shown that FGF-23 is associated with progression of 

chronic kidney disease (CKD) as well as various CKD complications such as mineral 

and bone disorder (MBD), cardiovascular disease (CVD) and Mortality.(218, 237, 

244, 245)  

Fetuin-A also known as α2-Heremans-Schmid glycoprotein (AHSG) is a 

multifunctional glycoprotein predominantly produced in the liver and has been 

described as one of the key circulatory inhibitors of calcification.(18, 219) Low levels 

of Fetuin-A have been associated with MBD, vascular calcification, arterial stiffness, 

atherosclerosis and other cardiovascular events.(171, 184, 185, 220, 221)  

A rise in FGF-23 is often observed in response to hypophosphataemia observed with 

declining renal function in CKD patients.(246) On the other hand, studies have 

reported low Fetuin-A levels with declining renal function, possibly as a combined 
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result of reduced Fetuin-A production in a pro-inflammatory uraemic environment 

and increased Fetuin-consumption in a pro-calcific environment.(108, 171) 

Considering the roles of FGF-23 and Fetuin-A, it may be assumed that these 

biomarkers maintain an inverse relationship in patients with CKD. 

The biomarkers FGF-23 and Fetuin-A were selected based on their important role in 

cardiovascular disease, mortality and mineral and bone disorder (MBD). In CKD 

patients, studies have shown that FGF-23 contributes to left ventricular hypertrophy, 

mortality and MBD,(80, 169, 170) while Fetuin-A has been described as the most 

important circulatory inhibitor of ectopic calcification and also associated with 

mortality.(18, 171) Although MGP and OPG are also inhibitors of calcification, 

Fetuin-A contributes to over 50% of circulatory inhibition of ectopic calcification.(172) 

Fetuin-A gene polymorphisms have been associated with Fetuin-A levels, ultimately 

affecting cardiovascular injury in both CKD and non-CKD patients. Several single 

nucleotide polymorphisms (SNPs) of the Fetuin-A gene have been implicated in this 

process. (182, 184-186, 247) Eight SNPs of interest (rs2248690, rs6787344, rs4831, 

rs4917, rs4918, rs2070633, rs2070634 and rs2070635) were identified based on 

their reported relationship with Fetuin-A levels and markers of bone mineralisation in 

both CKD and non-CKD patients.(109, 182, 184-189)  

This study aimed to determine the relationship between FGF-23 and Fetuin-A in 

children with CKD and also to determine the role of Fetuin-A SNPs with respect to 

Fetuin-A levels and biochemical parameters in these children. 
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6.3 Methods 

Thirty-two CKD I, 30 CKD II-IV and 31 CKD V (dialysis) black South African children 

(aged 5-18) were recruited consecutively over a 12-month period (August 2015 – 

July 2016). The CKD I group were children with a glomerular filtration (GFR) of >90 

ml/min/1.73m2 (with either structural abnormalities, or isolated haematuria) with 

normal blood pressure and no proteinuria, CKD II-IV were those with GFR of 15-90 

ml/min/1.73m2 and CKD V were those children on maintenance haemodialysis and 

peritoneal dialysis. Children with known congenital heart disease, diabetes mellitus, 

liver disease, active infection, systemic lupus erythematosus, malignancies and renal 

transplant were excluded from the study.  

Blood samples were drawn for biochemical assay and genomic DNA. Serum 

creatinine, phosphate, calcium and intact parathyroid hormone (PTH) levels were 

assayed using the Siemens Advia system. Plasma 25-hydroxyvitamin D or 25(OH)D 

was assayed using the ARCHITECT 25(OH)D method. Plasma intact FGF-23 was 

assayed using Human FGF-23 ELISA Kit (Merck Millipore, Merck group, 

Massachusetts, USA). Plasma AHSG level was assayed using EDITM Human Fetuin-

A ELISA kit (EPITOPE Diagnostics, Inc, CA, USA). 

Glomerular filtration rate (GFR) was estimated by the use of the modified Schwartz 

formula.(222) Hyperphosphatemia, hypocalcaemia, elevated calcium product and 

elevated alkaline phosphatase were defined based on age according to the Kidney 

Disease Outcomes Quality Initiative (KDOQI) and the Kidney Disease Improving 

Global Outcomes (KDIGO) clinical practice guidelines for MBD in children with 

CKD.(200) Hyperparathyroidism was defined as  PTH levels above laboratory 

normal limit (>7.6pmol/L) in pre-dialysis patients and above nine times the upper 



 
94 

normal limit (>68.4pmol/L) in dialysis patients as recommended by KDIGO.(82) Low 

25(OH)D was defined as <30ng/ml and elevated CRP as >10mg/L.(200, 201) 

Genomic DNA was extracted using the automated Maxwell platform and 

commercially available Maxwell® DNA purification kits (Promega corporation, WI, 

USA). DNA concentrations were determined by the NanoDropTM 2000 

spectrophotometer (Thermo Scientific, USA), and the DNA samples stored at -80oC. 

Regions of the AHSG gene covering the SNPs of interest (rs2248690, rs6787344, 

rs4831, rs4917, rs4918, rs2070633, rs2070634 and rs2070635) were amplified by 

polymerase chain reaction (PCR) on the MJ MiniTM Thermal cycler (Bio-Rad, USA). 

Primers were designed using the IDT PrimerQuest software 

(http://eu.idtdna.com/PrimerQuest/Home/Index) with sequences and product lengths 

shown in table 1.  For SNPs rs2248690 and rs6787344, primers were modified to 

induce a restriction site for restriction fragment length polymorphism (RFLP) 

analysis.  The PCR amplification was carried out using the KAPA2G Robust HotStart 

ReadyMix PCR Kit using x 50 ng DNA and 1.25 µl of each of the forward and 

reverse primers and the recommended thermocycling conditions.  

Genotypes for rs2248690, rs6787344, rs4831, rs4917 and rs4918 in Fetuin-A were 

determined by RFLP.  Samples were incubated with their respective restriction 

enzymes overnight at 37°C. (Table 6.1) To prevent evaporation, each reaction was 

overlaid with 15 µl of mineral oil. The following day, the reactions were terminated by 

adding an EDTA-containing gel dye. Fragments were resolved on 10% 

polyacrylamide gels and visualized using a Gel Doc™ EZ imager (Bio-Rad systems, 

USA). Three closely positioned SNPs (rs2070633, rs2070634 and rs2070635) were 

genotyped by direct sequencing at a private laboratory (Inqaba biotech).  

http://eu.idtdna.com/PrimerQuest/Home/Index
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6.3.1 Data analysis 

All data were collected and managed using Research Electronic Data Capture 

(REDCap) tools hosted at the University of the Witwatersrand and STATA 13.1 used 

for the analysis.(204) Continuous variables from the biochemical parameters were 

described using means (standard deviations) for data normally distributed, and 

medians (ranges or inter-quartile ranges; IQR) used for skewed data. Categorical 

variables were presented as proportions. Statistical significance in proportions was 

tested for using Chi-square (χ2) tests or Fisher exact test where appropriate. 

Mean/median values of the different groups were compared using ANOVA or 

Kruskal-Wallis test depending on the distribution of the data. To compensate for 

multiple testing, Bonferroni type correction was used to adjust for significant levels 

for the biochemical parameters as appropriate.  

Genotype frequencies for each SNP distribution were calculated and tested for 

Hardy-Weinberg equilibrium. In addition to the Fisher exact test or the Chi square 

test, the Trend test of association were used to determine significant difference in the 

distribution of the genotypes in the CKD groups. Median values of Fetuin-A for each 

of the different SNP genotypes were compared using Kruskal-Wallis tests. To test for 

relationships between SNPs and Fetuin-A levels and markers of mineral bone 

disease, linear regression was used. Skewed data was log transformed before 

inclusion into the regression model. Only the allele and not the genotype patterns 

were used to determine these relationships due to the low numbers in some of the 

genotype categories. A p value of <0.05 was regarded as statistically significant for 

all analyses. 
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Table 6.1: Primers and product lengths for the different SNPs 

    RFLP Allelic discrimination 

SNP Primers PCR product Restriction Enzyme Allele Size 

rs2248690 Fwd: 5’ - GAA CCC AGA GCT GTG TCA TA - 3’ 150 bp NdeI A 150bp 
 Rev: 5’ - TCC TTC TCC AGA CCT CAC T - 3’   T 132bp and 18bp 
rs6787344 Fwd: 5’ – TAC CGA GGT AAG GAG GGA TTG - 3’ 145 bp BsaI C 147bp 
 Rev: 5’ – CCT TAA AAT AGA TTG GCT AGG GAGA - 3’   G 125bp and 20bp 
rs4831 Fwd: 5’ – GGC AGG CTC CAA CAG ATA AA - 3’ 361 bp PvuII C 361bp 
 Rev: 5’ – CAT AGA CAG CAG GTC CAC TTAC - 3’   G 199bp and 162bp 
rs4917 Fwd: 5’ – TCT CTG TGG GCA GCA ATA TG - 3’ 284 bp NlaIII C 284bp 
 Rev: 5’ – GGA GGG AAA GGC ATA GCT AAA - 3’   T 202bp and 82bp 
rs4918 Fwd: 5’ – GGG AGG AGG AAG CAA ACT AAC - 3’ 264 bp SacI C 264bp 
 Rev: 5’ – CAA TGA GAC CAC ACC CAT GAA - 3’   G 209bp and 55bp 
rs2070633, rs2070634  Fwd: 5’ - GCT CTA TGA AAC AGG TGG AAG A  - 3’ 439 bp - - - 
and rs2070635 Rev: 5’ - GGG CTG AGA AGA GTA CAT GAA A  - 3’     

 



 
97 

6.3.2 Ethics and Consent 

The study was approved by the University of the Witwatersrand, Human Research 

Ethics Committee (Protocol M150312) and was conducted in conformance with the 

Helsinki Declaration, Good Clinical Practice and within the laws and regulations of 

South Africa.  

Written consent was obtained for each parent/guardian of participating child, with 

assent being obtained from children >8 years old. 

 

6.4 Results 

The overall mean age of the patients was 10.7 (3.6) years with a male female ratio of 

2.3:1.  The biochemical parameters of the patients are shown in Table 6.2. The CKD 

V group had the highest proportion of abnormal parameters. 

The median FGF-23 and Fetuin-A levels were 28.9 (0-3893) pg/ml and 57.7 (0.9-

225.2) mg/dl respectively.  Both FGF-23 and Fetuin-A levels varied between the 

different CKD groups.(Table 6.2) Median plasma levels of FGF-23 were lowest in the 

CKD I group and highest in the CKD V group and differed significantly between the 

three groups (p<0.001). Fetuin-A levels were almost similar in the CKD I and CKD II-

IV groups but much lower in the dialysis dependant group although range was wider 

(p=0.006).   

There was no significant linear relationship between total Fetuin-A and FGF-23 

levels (ρ=-0.18, p=0.088), but a sub-group analysis showed a significant negative 

relationship between Fetuin-A and FGF-23 in the CKD V group (ρ=-0.60, p<0.001). 

Plasma FGF-23 levels correlated better with markers of bone mineralization than 

Fetuin-A, and no correlation was observed between Fetuin-A and CRP (a marker of 

inflammation). (Table 6.3) 
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Table 6.2: Biochemical parameters of the patients 

 
CKD I 

 (n=32) 
CKD II-IV  

(n=30) 
Dialysis CKD 

(n=31) 
p valuea 

Age (years)c  9.5 (2.9) 11.0 (3.6) 11.6 (4.0) 0.051 

Sex (M/F) 23/9 24/6 18/13 0.167 

CRP (mg/L)d 10 (-) 10 (10-61) 10 (10-62) 0.024 

Elevated CRP (y/n) 0/32 4/26 7/24 0.008 

Calcium (mmol/L) d 2.32 (2.22-2.38) 2.32 (2.21-2.37) 2.22 (1.99-2.35) 0.005 

Hypocalcaemia (y/n) 17/15 15/15 18/13 0.816 

Phosphate (mmol/L) c 1.47 (0.26) 1.42 (0.25) 1.55 (0.49) 0.333 

Hyperphosphatemia (y/n) 4/28 4/26 12/19 0.023  

CaXP c 3.42 (0.65) 3.23 (0.52) 3.35 (1.28) 0.722 

Increased CaXP 0 0 7/24 - 

Alkaline phosphatase (U/L) d 249 (209-333) 263 (199-310) 252 (184-517) 0.669 

Increased Alkaline phosphatase (y/n) 4/28 8/22 16/15 0.003b  

PTH (pmol/L) d 3.8 (2.9-5.4) 6.6 (3.8-10.9) 60.1 (18.0-157.4) <0.001b  

Increased PTH (y/n) 4/28 13/16 16/15 0.002b  

25(OH)D c 22.7 (7.4) 25.5 (9.1) 18.1 (6.7) <0.002b 

Low 25(OH)D  (y/n) 28/4 23/7 30/1 0.059 

FGF-23 (pg/ml) e 15.0 (1.5-90.0) 19.02 (0-219.0) 264.1 (2.4-3893.0) <0.001b 

Fetuin-A (mg/dl) e 65.5 (11.1-96.6) 56.4 (26.6-126.0) 34.2 (0.9-225.2) 0.006 

CKD-Chronic kidney disease, CRP-C reactive protein, CaXP-Calcium-phosphorous product, PTH-Parathyroid hormone, 25(OH)D-
25Hydroxyvitamin D, FGF-23-Fibroblast growth factor-23 
a-Anova, Kruskal Wallis or Chi square test as appropriate 
b-Significant after Bonferroni correction (p<0.005) 

c- Mean (standard deviation) 

d- Median presented with interquartile ranges 
e-Median presented with ranges  
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Table 6.3: Fetuin-A and FGF-23 association with markers of inflammation and bone mineralisation 

 FGF-23 Fetuin A 

 Correlation (p value) Correlation (p value) 

CRP (mg/L) 0.082 (0.435) -0.165 (0.113) 

Calcium (mmol/L) -0.258 (0.012) 0.129 (0.219) 

Phosphate (mmol/L) 0.192 (0.065) -0.044 (0.676) 

Alkaline Phosphatase (U/L) -0.125 (0.234) 0.193 (0.064) 

PTH (pmol/l) 0.485 (<0.001) -0.253 (0.015) 

25(OH)D (ng/ml) -0.370 (<0.001) 0.103 (0.328) 

CRP-C reactive protein, PTH-Parathyroid hormone 

 

Table 6.4: Distribution of SNPs by CKD groups  
  CKD I (n=32) CKD II-IV (n=30) CKD V-Dialysis (n=31) p value b p value c 

       
rs2248690 AA 15 15 18   

 AT 13 10 10 0.866 0.402 
 TT 4 5 3   
       

rs6787344 CC 4 3 5   
 CG 28 27 26 0.864 0.673 
 GG 0 0 0   
       

rs4831 CC 19 15 12   
 CG 11 11 16 0.481 0.121 
 GG 2 4 3   
       

rs4917 CC 20 16 19   
 CT 11 13 11 0.940 0.918 
 TT 1 1 1   
       

rs4918a CC 0 0 1   
 CG 30 29 30 0.327 0.038 
 GG 2 0 0   
       

rs2070633 a TT 12 13 17   
 TC 10 5 10 0.128 0.135 
 CC 9 12 4   
       

rs2070634 a TT 12 13 16   
 TG 12 13 13 0.495 0.138 
 GG 7 4 2   
       

rs2070635 a AA 31 28 31   
 AG 0 2 0 0.104 1.000 
 GG 0 0 0   

CKD-chronic kidney disease 
a Total sample size <106,  
bFisher’s exact or Chi square test as appropriate,  
c trend test for association 
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Table 6.5: Regression analysis for CVRFs and individual SNP alleles 
  β coefficient p value 95% CI  

log Fetuin-A 
rs4918_C -0.40 0.568 -1.78; 0.98  
rs4918_G 1.94 0.046 0.03; 3.85  
     
rs2070633_T -0.55 0.015 -0.98; -0.11  
rs2070633_C -0.10 0.616 -0.51; 0.30  

     
Phosphate 

rs6787344_C -0.16 0.568 -0.71; 0.39  

rs6787344_G 0.22 0.042 0.01; 0.43  

     

log PTH     
rs4918_C 1.57 0.135 -0.50; 3.65  
rs4918_G -2.97 0.044 -5.86; -0.08  
PTH-Parathyroid hormone 

 

Eight SNPs were analysed; rs2248690, rs6787344, rs4831, rs4917, rs4918, 

rs2070633, rs2070634 and rs2070635.  Four of these SNPs (rs2248690, rs6787344, 

rs4918 and rs2070633) did not follow the Hardy-Weinberg law (p≤0.05) but were not 

excluded from the analysis consequent to the small sample size. (Table 6.4) 

We found no significant difference in Fetuin-A levels in the different SNP genotype 

distributions, but we found significant association between log transformed Fetuin-A 

levels and the rs4918 G-allele compared to the rs4918 C-allele (p=0.046) and the 

rs2070633 T-allele when compared to the rs2070633 C-allele (p=0.015). (Table 6.5)  

Markers of MBD such as phosphate and PTH levels were associated with Fetuin-A 

SNPs. The rs6787344 G-allele was significantly associated with phosphate levels 

(0.042), and the rs4918 G-allele with PTH (p=0.044). (Table 6.5)   
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6.5 Discussion 

This comparative study demonstrates the changes in the levels of Fetuin-A and 

FGF-23 seen in the different spectra of CKD in black South African children. As 

expected, given the roles of these two biomarkers in MBD,(246, 248, 249) we 

identified a strong negative relationship between Fetuin-A and FGF-23 in the dialysis 

group. It is interesting to observe that we did not demonstrate a similar relationship in 

the other CKD groups. This seems to suggest that, although changes of MBD are 

seen in early CKD,(250, 251) a clearer relationship between these two biomarkers is 

only seen in advanced disease. Fetuin-A levels varied across the disease spectrum 

but did not decrease linearly with disease progression, while FGF-23 levels did show 

a linear increase with progression of disease. Our study also showed that FGF-23 

correlated better with markers of bone mineralization than with Fetuin-A.  

The near similar levels of Fetuin-A in the CKD I and CKD II-IV groups despite 

advancing disease and the wider range in the dialysis group cannot be attributed 

solely to disease progression, other factors such as Fetuin-A gene polymorphisms 

might have contributed to these differences.   

Previous studies have reported a link between various Fetuin-A SNPs and Fetuin-A 

levels with the most widely reported SNPs associated with Fetuin-A levels being 

rs4917, rs4918, rs2248690, rs2070633 and rs2070635.(109, 184-189) In this study, 

there was a similar association of the rs4918 and rs2070633 SNPs and Fetuin-A 

levels. The rs4918 G-allele showed a positive association with Fetuin-A levels, while 

the rs2070633 T-allele showed a negative association with Fetuin-A levels.  

Contrary to what has been previously reported, where having the SNP genotypes 

such as rs4918 CG or GG genotypes were associated with Fetuin-A levels,(109, 
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184, 185, 187, 188) we did not observe a similar trend. This variation may be 

attributed to the small size of our study group which affected the distribution of the 

SNP genotypes and alleles. The younger age of our patients and their genetic 

makeup of our patients might have also contributed to the difference.  

There is a dearth of studies that have looked at the association between Fetuin-A 

SNPs and markers bone mineralization implicated in vascular injury such as 

phosphate, calcium-phosphate product and parathyroid hormone (PTH). A study by 

Osawa et al reported a significant difference in phosphate levels among Fetuin-A 

genotypes.(188) Our study observed a positive relationship of phosphate levels with 

the Fetuin-A SNP rs6787344 G-allele. Serum PTH levels were also found to be 

negatively associated with rs4918 G-allele. 

 

6.6 Strength and limitations 

This is a study that described the relationship between FGF-23 and Fetuin-A, and 

also explored the influence of several Fetuin-A SNPs on Fetuin-A levels and markers 

of bone mineralization in black South African children with different spectra of CKD. 

The major limitations are the small sample size and the lack of a disease free control 

for comparison.  

 

6.7 Conclusion 

In spite of the limitations, this study was able to demonstrate the relationship 

between FGF-23 and Fetuin-A and the association of Fetuin-A SNPs with serum 

Fetuin-A, phosphate and PTH levels in children with CKD.  The study suggests that 

an inverse relationship between FGF-23 and Fetuin-A is more likely to be observed 

in children with advanced CKD, and that FGF-23 correlates better with markers of 
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bone mineralisation children when compared to Fetuin-A. The study also suggests 

that children with the rs4918-G allele and rs2070633_T allele are more likely to have 

altered Fetuin-A levels.   
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CHAPTER 7: CONCLUSION 

The initiation and progression of CVD in children with CKD is determined by the 

presence of single or multiple CVRFs, and this is thought to begin early and then 

worsens as the renal function declines. There is a shortage of studies from Africa 

that have looked at CVD in paediatric CKD. This comparative multifaceted cross 

sectional study tested the following hypotheses; that the prevalence of CVRFs was 

higher in South African children with CKD when compared to results reported in 

those from developed countries, that the prevalence of cardiovascular changes was 

higher in South African children with CKD when compared results reported in those 

from developed countries, that Fetuin-A and FGF-23 were associated with CVRFs 

and cardiovascular changes in children with CKD and that Fetuin-A gene 

polymorphisms were negatively associated with plasma Fetuin-A levels in South 

African children with CKD. 

 

7.1 Summary of study findings 

The results revealed the following: 

1. There is a high prevalence of mortality in CKD-Dialysis South African children 

when compared with developed countries and this is most likely due to a 

younger age at commencement of dialysis and the high prevalence of 

modifiable CVRFs in our cohort. 

2. The overall prevalence of CVRFs is higher in South African children with 

severe CKD (stage V on dialysis) when compared to children with mild (stage 

1) and moderate disease (stage 2-4). 
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3. Anaemia is the most prevalent cardiovascular risk factor in South African 

children with CKD, and not hypertension as has been reported from 

developed countries. The high prevalence of anaemia likely reflects the 

undernutrition reported in the dialysis group in addition to other causes of 

anaemia in CKD such as declining production of erythropoietin, inflammation, 

severe secondary hyperparathyroidism leading to myelofibrosis, marrow 

hypo-responsiveness and infection.(63) Poor absorption and adherence to 

oral iron due to side effects like constipation, diarrhoea and abdominal 

discomfort might have also contributed to the high rate of anaemia in our 

patients. 

4. There was a high prevalence of hypoalbuminaemia and 

hypercholesterolaemia, however these high prevalences were not due to 

nephrotic range proteinuria. There were a total of 22 children with nephrotic 

syndrome, but only 17 had a urine protein assessment (1-congenital NS, 4-

FSGS and 12-MCD). All the patients with MCD were in remission (no 

proteinuria), and only 2 patients had nephrotic range proteinuria and the 

remaining of the patients had non-nephrotic range proteinuria. Therefore, it is 

unlikely that the hypercholesterolemia was due to nephrotic range 

proteinuria. 

5. The carotid intima media thickness (cIMT) measurements and the prevalence 

of cardiovascular changes such as abnormal left atrial dimension (LAD) and 

left ventricular hypertrophy, are higher in South African children with severe 

CKD (stage V on dialysis) when compared to children with mild (stage 1) and 

moderate disease (stage 2-4).  
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6. Cardiovascular risk factors including Fetuin-A, but not FGF-23, are 

associated with cardiovascular changes, and FGF-23 correlates better with 

CVRF including markers of mineral bone metabolism when compared to 

Fetuin-A 

7. Fetuin-A gene SNPs rs4918 G-allele is positively associated with Fetuin-A 

levels, while the rs2070633 T-allele showed a negative association with 

Fetuin-A levels. This differs from previously published findings and it is 

possible that genetic variations due to the African decent of the majority of 

our patients, and also the background CKD, could explain these differences. 

Serum phosphate and parathyroid hormone levels are also associated with 

Fetuin-A SNPs. 

 

7.2 Significance of the study 

This is the first study to specifically look at CVRFs, cardiovascular changes as well 

as mortality in African children with CKD and we found significant differences in our 

cohort of patients when compared with previously reported data from elsewhere. Our 

results highlight a higher cIMT measurements than has been previously described, 

and also the uncommon finding of haemoglobin as an independent associated factor 

for cIMT in children with CKD. Our results also highlight the need for us to determine 

our own, population specific, paediatric reference values for cIMT in healthy children.  

The study also provides information on the types and prevalence of cardiac changes 

seen in a spectrum of South African children with CKD. Left ventricular hypertrophy 

remains the most common cardiac change seen in children with CKD and, although 

less common, it is also important to monitor for left atrial changes in these children.  
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The study also provides more insight into the role of CVRFs in morbidity and 

mortality in children with CKD. Modifiable risk factors, such as anaemia and 

hypoalbuminaemia, in addition to adequate blood pressure control, need to be 

addressed in order to retard the progression of cardiovascular disease in these 

children.  

The study also demonstrated the possible role of genetic variations in Fetuin-A gene 

expression and its relationship with Fetuin-A levels and CVRFs. 

 

7.3 Future research and recommendations 

Based on our results we would recommend the following going forward: 

1. The establishment of large multicentre study to determine paediatric reference 

values for cardiovascular parameters in African children 

2. The establishment of a large, prospective, multicentre Southern African study 

(with a control group) looking at CVRFs and cardiac changes as CKD 

progresses 

3. The establishment of a screening program to detect, and address, CVRFs 

(especially the modifiable ones) in children with CKD in order to improve their 

outcome. 

 

7.4 Study limitation 

Even though this is the first African study that has highlighted the above important 

findings, the study was limited by its small sample size and the lack of a formal 

control group. In spite of the small number of patients due to the selection criteria 
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and small paediatric population of CKD patients, participants were recruited from two 

centres; CMJAH and CHBAH.  The CKD groups (CKD II-IV) were lumped up 

together due to the small number of patients in the individual groups which would 

have made the analysis difficult or void. 

Furthermore, the nature of the study did not allow for intervention and observation of 

the progression of cardiovascular changes. Another limitation was that not all of the 

study participants had cardiovascular imaging performed due to time constraints and 

other logistical problems. 

The details of the dialysis adequacy particularly fluid control was not available from 

the clinical records of these patients. However, it was clear from the frequent 

admissions and clinical records that poor compliance amidst an unfavourable social 

background could have contributed to the high prevalence of these modifiable risk 

factors and the mortality observed in the dialysis patients. 

 

7.5 Concluding remarks 

The objectives of this study were met and the study confirmed the higher rate of 

cardiovascular risk factors and cardiovascular changes in South African children with 

severe CKD (stage V on dialysis) when compared to children with mild (stage 1) and 

moderate disease (stage 2-4). The study also confirmed the association of these 

CVRFs and cardiovascular changes and showed that population specific differences 

need to be taken into account when using standard reference values established on 

different population groups. The researcher anticipates that this study, when 
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published, will bridge a significant part of the knowledge gap of CVD in African 

children with CKD.  
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APPENDIX D: INFORMATION SHEET FOR CONSENT (GENERAL) 

Study title:  Cardiovascular risk factors and their association with biomarkers in children 

with chronic kidney disease in Johannesburg, South Africa. 

Investigator:  Dr Abdullahi Mudi        011 488 3296 

Supervisors:  Prof D Ballot, Dr CS Levy, Dr C Dickens 

Institution: University of the Witwatersrand 

Good day. My name is Dr Abdullahi Mudi. I am currently working in the Division of Paediatric 

Nephrology, Charlotte Maxeke Johannesburg Academic Hospital. Permission to conduct the 

study has been granted by the WITS Human Research Ethics Committee. 

Introduction:  We are conducting research on the cardiovascular risk factors and their 

association with biomarkers in children with chronic kidney disease (CKD). Research is just 

the process to learning the answer to a question or learn more about something. In this 

study we want to learn more about the heart and the risk factors for developing heart 

disease and the association of these risk factors with certain blood markers in children with 

CKD. This is because children with CKD are at risk of developing heart and vascular 

problems. The finding of this research may determine if changes should be made in the 

follow up protocol for children with chronic kidney disease. 

 
Invitation to participate:  We are asking for your permission to include your child in this 

research study. 

What is involved in the study: One hundred and twenty five to one hundred and fifty 

patients are expected to participate in the study. All that is required from you is to answer 

some questions, your child will be examined and routine blood samples and an extra 10mL 

of blood (a tablespoon) would be taken for analysis and Genetic testing.  

Testing of DNA and genes is called genetic testing.  Genetic testing may help in the 

diagnosis and better understanding of a disease.  Genetic testing can also be performed for 

research.  When a gene has changes it is called a mutation. 

Results of the blood analysis will be retrieved later and interpreted. The remaining samples 

will be frozen and stored in a designated freezer for an unlimited period of time for future use 

in research related to diseases. However, if you decide later that you do not want the 

specimens collected from your child to be used for future research, please notify the 

principal investigator in writing and the sample will be discarded in an appropriate and timely 

manner.  

As part of the study, your child will also have an ultrasound of the heart (echo) and carotid 

(in the neck) vessel.  

Participation is entirely voluntary and declining to participate will not affect the treatment of 

your child in any way. You are also free to opt out at any point in the research. 

Risks: There are no anticipated risks for your child. 
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Benefits of being in the study: Your child has been diagnosed with CKD and CKD has 

been identified as a major risk factor for heart and blood vessel changes in children with 

CKD. These changes may lead to heart disease. No one knows exactly when these changes 

begin to occur and it is believed that early diagnosis is important for early intervention. The 

potential benefit from your participation in this study is that early changes in the blood 

vessels may be picked up and treated early. Should we detect any problem with your child’s 

heart and blood vessels we will inform you of this and will refer your child on for appropriate 

management. 

You will be given pertinent information on the study while involved in the project and 

after the results are available. 

Participation is voluntary, refusal to participate will involve no penalty or loss of benefits to 

which your child is otherwise entitled and that he/she may discontinue participation at any 

time without penalty loss of benefits to which he/she is otherwise entitled. 

There will be no extra cost to you and your family. 

Confidentiality: Efforts will be made to keep personal information confidential.  Absolute 

confidentiality cannot be guaranteed.  Personal information may be disclosed if required by 

law. 

Organizations that may inspect and/or copy your research records for quality assurance and 

data analysis include groups such as the Research Ethics Committee. 

If results are published, your child will not be identified. 

Before agreeing to participate, it is important that you read and understand the following 

explanation of the purpose of the study, and your right to withdraw your child from the study 

at any time.   

Contact details of researcher – For further information on the study, you can call the 

following number : 011 488 3296 (Working hours only). 

 

Contact details of REC administrator and chair – for reporting of complaints / problems. 

• Professor Peter Cleaton-Jones . 

• Phone no: 011-717-2301.  

 

Thank you for taking the time to consider our request. 
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INFORMED CONSENT FORM (GENERAL) 

• I hereby confirm that I have been informed by the study doctor, Dr Mudi, about the 
nature, conduct, benefit and risks of the clinical study. 

• I have also received, read and understood the above written information (Information 
sheet and Informed Consent) regarding the clinical study. 

• I am aware that the results of the study, including personal details regarding my 
child’s sex, age, date of birth, initials, and diagnosis will be anonymously processed 
into a study report. 

• I may, at any stage, without prejudice, withdraw my consent and participation in the 
study. 

• I have had sufficient opportunity to ask questions and (of my own free will) declare 
myself prepared to participate in the study.  

 

Guardian 

 

Printed Name    Signature / Mark or Thumbprint   Date and Time 

 

I, Dr Abdullahi Mudi, herewith confirm that the above participant has been fully informed 

about the nature, conduct and risks of the above study. 

Researcher: 

 

Printed Name   Signature     Date and Time 

 

 

Translator / Other person explaining informed consent………………… (Designation): 

 

Printed Name    Signature    Date and Time 
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 INFORMATION SHEET FOR STORAGE OF SPECIMEN AND GENETIC TESTING 

Study title:  Cardiovascular risk factors and their association with biomarkers in children 

with chronic kidney disease in Johannesburg, South Africa. 

Investigator:  Dr Abdullahi Mudi 

Supervisors:  Prof D Ballot, Dr CS Levy, Dr C Dickens 

Institution: University of the Witwatersrand 

Good day. My name is Dr Abdullahi Mudi. I am currently working in the Division of Paediatric 

Nephrology, Charlotte Maxeke Johannesburg Academic Hospital. Permission to conduct the 

study has been granted by the WITS Human Research Ethics Committee. 

Introduction:  In this study we want to learn more about the heart and the risk factors for 

developing heart disease by carrying out blood tests and genetic testing on your child’s 

blood sample. Storage of collected blood samples is required in order to carry out these 

testing.  

 

Testing of DNA and genes is called genetic testing.  Genetic testing may help in the 

diagnosis and better understanding of a disease.  Genetic testing can also be performed for 

research.  When a gene has changes it is called a mutation and can be associated with a 

disease. 

Invitation to participate:  We are asking for your permission to store your child’s blood 

sample for an unlimited period of time and to carry out genetic testing on the sample as part 

of the study. 

What is involved in the study: All that is required from you is to answer some questions, 

your child will be examined and routine blood samples and an extra 10mL of blood (a 

tablespoon) would be taken for analysis and Genetic testing.  

Results of the blood analysis will be retrieved later and interpreted. The remaining samples 

will be frozen and stored in a designated freezer for an unlimited period of time for future use 

in research related to this study and other diseases. However, if you decide later that you do 

not want the specimens collected from your child to be used for future research, please 

notify the principal investigator in writing and the sample will be discarded in an appropriate 

and timely manner.  

Participation is entirely voluntary and declining to participate will not affect the treatment of 

your child in any way. You are also free to opt out at any point in the research. 

Risks: There are no anticipated risks for your child. 

Benefits of being in the study: The potential benefit from your participation in this study is 

that risk factors or problems can be picked up and treated early. Should we detect any 

problem with your child’s heart and blood vessels or blood tests we will inform you of this 

and will refer your child on for appropriate management. 
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You will be given pertinent information on the study while involved in the project and 

after the results are available. 

 

Participation is voluntary, refusal to participate will involve no penalty or loss of benefits to 

which your child is otherwise entitled and that he/she may discontinue participation at any 

time without penalty loss of benefits to which he/she is otherwise entitled. 

There will be no extra cost to you and your family. 

Confidentiality: Efforts will be made to keep personal information confidential.  Absolute 

confidentiality cannot be guaranteed.  Personal information may be disclosed if required by 

law. 

Organizations that may inspect and/or copy your research records for quality assurance and 

data analysis include groups such as the Research Ethics Committee. 

If results are published, your child will not be identified. 

Before agreeing to participate, it is important that you read and understand the following 

explanation of the purpose of the study, and your right to withdraw your child from the study 

at any time.   

Contact details of researcher – For further information on the study, you can call the 

following number : 011 488 3296 (Working hours only). 

 

Contact details of REC administrator and chair – for reporting of complaints / problems. 

• Professor Peter Cleaton-Jones . 

• Phone no: 011-717-2301.  

 

Thank you for taking the time to consider our request. 
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 CONSENT FORM FOR STORAGE OF SPECIMEN AND GENETIC TESTING 

• I hereby confirm that I have been informed about the study by Dr. Mudi about the 

nature, benefits and risks of sample storage and genetic testing.  

• I understand that my child’s blood sample will be stored for future testing. 

• I understand that my child’s personal details (any identifying data) will be kept strictly 

confidential. 

• I have had the opportunity to ask questions and I have also received, read and 

understood the study as explained in the participant information sheet and consent to 

taking part in this research study. 

 

Guardian 

 

Printed Name    Signature / Mark or Thumbprint   Date and Time 

 

I, Dr Abdullahi Mudi, herewith confirm that the above participant has been fully informed 

about the nature, conduct and risks of the above study. 

Researcher: 

 

Printed Name   Signature     Date and Time 

 

 

Translator / Other person explaining informed consent………………… (Designation): 

 

Printed Name    Signature    Date and Time 
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INFORMATION SHEET FOR ASSENT 

Study title:  Cardiovascular risk factors and their association with biomarkers in children 

with chronic kidney disease in Johannesburg, South Africa. 

Investigator:  Dr Abdullahi Mudi 

Supervisor:  Prof D Ballot, Dr CS Levy, Dr C Dickens 

Institution: University of the Witwatersrand 

Good day. My name is Dr. Abdullahi Mudi. I am currently working in the Division of 

Paediatric Nephrology, Charlotte Maxeke Johannesburg Academic Hospital. Permission to 

conduct the study has been granted by the WITS Human Research Ethics Committee. 

Introduction:  We are conducting research on the cardiovascular risk factors and their 

association with some blood tests in children with chronic kidney disease. In this study we 

want to learn more about the risk factors for heart disease and their relationship with some 

blood tests for heart disease. 

Invitation to participate:  We are asking for your permission to include you in this research 

study. 

What is involved in the study: You will be examined and routine blood samples and an 

extra 10mL of blood (a tablespoon) would be taken for analysis. Subsequently you will have 

an ultrasound of the heart and neck vessel. 

Participation is entirely voluntary and if you decide not to participate in our study this will not 

affect your treatment in any way. You are also free to change your mind about being in the 

study at any time. 

Risks: There are no anticipated risks for you. 

Benefits of being in the study: We may detect early changes in the heart and blood 

vessels and refer you for appropriate management. 

There will be no extra cost to you and your family. 

Confidentiality: We will keep your details confidential which means that we won’t allow 

anyone not involved in the running of the study to know your information. 

Contact details of researcher – For further information on the study, you can call the 

following number : 011 488 3296 (Working hours only). 

 

Contact details of REC administrator and chair – for reporting of complaints / problems. 

• Professor Peter Cleaton-Jones. 

• Phone no: 011-717-2301.  

Thank you for taking the time to consider our request. 
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INFORMED ASSENT FORM 

I hereby confirm that Dr Mudi has explained what the study is about to me and that he has 
explained that I am free to refuse to take part in the study at any time should I so wish. 

 

Participant  

 

Printed Name    Signature / Mark or Thumbprint   Date and Time 

 

I, Dr Abdullahi Mudi, herewith confirm that the above participant has been fully informed 

about the nature, conduct and risks of the above study. 

Researcher: 

 

Printed Name   Signature     Date and Time 

 

 

Translator / Other person explaining informed assent………………… (Designation): 

 

Printed Name    Signature    Date and Time 
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APPENDIX E: PUBLISHED MANUSCRIPTS 

 



 
136 

 


