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In this research, we observed a torque-related limitation in the swing-up con-
trol of underactuated mechanical systems which had been integrated with viscous
damping in the unactuated joint. The objective of this research project was thus to
develop a practical work-around solution to this limitation.

The nth order underactuated robotic system is represented in this research as a
collection of compounded pendulums with n− 1 actuators placed at each joint with
the exception of the first joint. This system is referred to as the PAn−1 robot (Passive
first joint, followed by n−1 Active joints), with the Acrobot (PA1 robot) and the PAA
robot (or PA2 robot) being among the most well-known examples. A number of fric-
tion models exist in literature, which include, and are not exclusive to, the Coulomb
and the Stribeck effect models, but the viscous damping model was selected for
this research since it is more extensively covered in existing literature. The effec-
tiveness of swing-up control using Lyapunov’s direct method when applied on the
undamped PAn−1 robot has been vigorously demonstrated in existing literature, but
there is no literature that discusses the swing-up control of viscously damped sys-
tems. We show, however, that the application of satisfactory swing-up control using
Lyapunov’s direct method is constrained to underactuated systems that are either
undamped or actively damped (viscous damping integrated into the actuated joints
only). The violation of this constraint results in the derivation of a torque expression
that cannot be solved for (invertibility problem, for systems described by n > 2) or a
torque expression which contains a conditional singularity (singularity problem, for
systems with n = 2). This constraint is formally summarised as the matched damping
condition, and highlights a clear limitation in the Lyapunov-related swing-up control
of underactuated mechanical systems. This condition has significant implications
on the practical realisation of the swing-up control of underactuated mechanical
systems, which justifies the investigation into the possibility of a work-around. We
thus show that the limitation highlighted by the matched damping condition can be
overcome through the implementation of the partial feedback linearisation (PFL)
technique. Two key contributions are generated from this research as a result, which
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include the gain selection criterion (for Traditional Collocated PFL), and the conver-
gence algorithm (for noncollocated PFL).

The gain selection criterion is an analytical solution that is composed of a set of
inequalities that map out a geometric region of appropriate gains in the swing-up
gain space. Selecting a gain combination within this region will ensure that the
fully-pendent equilibrium point (FPEP) is unstable, which is a necessary condition
for swing-up control when the system is initialised near the FPEP. The convergence
algorithm is an experimental solution that, once executed, will provide information
about the distal pendulum’s angular initial condition that is required to swing-up a
robot with a particular angular initial condition for the proximal pendulum, along
with the minimum gain that is required to execute the swing-up control in this
particular configuration. Significant future contributions on this topic may result
from the inclusion of more complex friction models. Additionally, the degree of
actuation of the system may be reduced through the implementation of energy
storing components, such as torsional springs, at the joint.

In summary, we present two contributions in the form of the gain selection crite-
rion and the convergence algorithm which accommodate the circumnavigation of the
limitation formalised as the matched damping condition. This condition pertains to the
Lyapunov-related swing-up control of underactuated mechanical systems that have
been integrated with viscous damping in the unactuated joint.



iv

Acknowledgements

"All that is gold does not glitter. Not all those who wander are lost."

— J.R.R. Tolkien

I am deeply grateful for the support and guidance the following special people and
organisations have offered me through the process of producing this research:

The National Research Fund. The financial assistance offered by the NRF towards
this research is acknowledged. Opinions expressed in this dissertation and the con-
clusions arrived at are those of the author, and are not necessarily to be attributed to
the National Research Fund.

My supervisor, Dr Otis Nyandoro, for all of his guidance.

Prof. Van Wyk, Tinashe Chingozha, Prof. Hofsajer, Prof. Wigdorowitz, Prof. Oriolo,
and Jacques Naude; thank you for your contributions and advice.

Nazime and Mirriam, thank you for welcoming me into the EOH family. The
Parktown residences will always hold a special place in my heart.

The Hurwitz, Gonzalez, Vallabhapurapu, Dos Santos and Ortlepp families; thank
you for offering me a helping hand when I needed it most.

Dean, thank you for involving me in your amazing project, and for offering me the
opportunity to make a significant difference in this world.

Kevin, thank you for your tireless support and care. You provided me a sanc-
tuary in times of distress, and helped me build my own.

Valerie and Rabin, thank you for your hospitality, love, and patience.

And lastly, to Diksha, you are fearless and gentle, wise beyond measure, patient and
selfless. I am incredibly blessed that our paths crossed. Thank you.



v

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iv

List of Figures xi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Objective and Methodology . . . . . . . . . . . . . . . . . . 4
1.3 Research Question, Scope, and Contributions . . . . . . . . . . . . . . 5
1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Summary of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 General Literature Review 7
2.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Underactuated Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Relevance and Applications of Underactuated Robotic Systems 7
2.2.2 Selection of Appropriate Model . . . . . . . . . . . . . . . . . . 8

2.3 n-link Pendulum Models and Modelling Techniques . . . . . . . . . . 8
2.4 Control Methods for Pendulum Systems . . . . . . . . . . . . . . . . . 8

2.4.1 Linear Control Methods . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Nonlinear Control Methods . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Selection of Appropriate Control Objective and Technique . . 13

2.5 Altering the PAn−1 Model: Friction in Pendulum Systems . . . . . . . 14
2.5.1 Friction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Selection of Appropriate Friction Model . . . . . . . . . . . . . 14
2.5.3 Friction Compensation . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Introduction to System Modelling 17
3.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Classic System Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Calculus of Variations, the Principle of Least Action, and the
Euler-Lagrange Differential Equation . . . . . . . . . . . . . . 17

3.2.2 Symmetry and Conservation Laws . . . . . . . . . . . . . . . . 20
Cyclic Coordinates and the Conservation of Angular Momentum 21



vi

Time-Translational Symmetry and the Conservation of Energy 21
3.2.3 Methodology: Modelling the Dynamics of a system using the

Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 System Modelling using Energy . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 The Integral Transform . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Mass Matrix and the Multi-body Pendulum System . . . . . . 23
3.3.3 Decomposition of the D(q, q̇) Matrix . . . . . . . . . . . . . . 26
3.3.4 Modelling Methodology . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Stability Concepts 32
4.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Equilibrium Points and Stability . . . . . . . . . . . . . . . . . . . . . 32
4.3 Poles and Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 The Routh-Hurwitz Stability Criterion . . . . . . . . . . . . . . . . . . 39
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Introduction to Control Methods 42
5.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Lyapunov Theory and Control . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Lyapunov’s Linearisation Method . . . . . . . . . . . . . . . . 42
5.2.2 Lyapunov’s Direct Method (LDM) . . . . . . . . . . . . . . . . 45

The Lyapunov Function . . . . . . . . . . . . . . . . . . . . . . 45
Invariant Set Theorem . . . . . . . . . . . . . . . . . . . . . . . 45
Identification of Lyapunov Functions . . . . . . . . . . . . . . 47
General Procedure for Lyapunov Analysis . . . . . . . . . . . 50

5.3 Feedback Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.1 Feedback Linearisation using the Controllability Canonical

Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Exact Linearisation via Feedback Linearisation (ELFBL) . . . . 53
5.3.3 Input-Output Feedback Linearisation (IOFBL) . . . . . . . . . 56

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Viscous Damping Model 61
6.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Mathematical Representation of Viscous Damping Friction for Multi-

body Pendulum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 Effect on the Dynamics of Pendulum Systems . . . . . . . . . . . . . . 62

6.3.1 The Damped Pendulum and Lyapunov’s Direct Method . . . 62
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



vii

7 Modelling 70
7.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 The PAn−1 Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3.1 Modelling System Dynamics using the Energy Modelling
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3.2 The VCL Modelling Protocol . . . . . . . . . . . . . . . . . . . 77
7.3.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.4 The Acrobot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.5 The Passive-Active-Active (PAA) Robot . . . . . . . . . . . . . . . . . 88

7.5.1 Conventional Modelling using the Energy-Modelling Method 88
7.5.2 VCL Modelling of the PAA Robot . . . . . . . . . . . . . . . . 95

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8 Identifying the Breaking Point: The Swing-up Control of the Damped
PAn−1

Robot using Lyapunov’s Direct Method 98
8.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2 Preliminaries: The Undamped PAn−1 Robot . . . . . . . . . . . . . . . 99

8.2.1 The Necessary Swing-up Control Torque for the Undamped
PAn−1 Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.2.2 Modelling the Undamped PAn−1 Robot as the MC-ROPAn−1

Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2.3 Necessary and Sufficient Gain Conditions for the Undamped

MC-ROPAn−1 Model . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2.4 The Undamped Acrobot . . . . . . . . . . . . . . . . . . . . . . 105

Derivation of the Necessary Swing-up Control Torque . . . . 105
Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2.5 The Undamped PAA Robot . . . . . . . . . . . . . . . . . . . . 116
Derivation of the Necessary Swing-up Control Torque for the

Traditional PAA Robot . . . . . . . . . . . . . . . . . 116
Simulation Results: Traditional PAA Robot . . . . . . . . . . . 117
Modelling the Undamped PAA Robot as the MC-ROPA2 Robot124
Derivation of the Necessary Swing-up Control Torque for the

Undamped MC-ROPA2 Robot . . . . . . . . . . . . . 125
Simulation Results: MC-ROPA2 Robot . . . . . . . . . . . . . . 126

8.3 The Tenable Alteration: The Actively Damped PAn−1 Robot . . . . . 132
8.3.1 Derivation of the Necessary Swing-up Torque . . . . . . . . . 132
8.3.2 The Actively Damped Acrobot . . . . . . . . . . . . . . . . . . 135

Derivation of the Necessary Swing-up Control Torque . . . . 135
Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.3.3 The Actively Damped PAA Robot . . . . . . . . . . . . . . . . 138
Derivation of the Necessary Swing-up Control Torque . . . . 138
Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.4 The Untenable Alteration: The Passively Damped PAn−1 Robot . . . 141



viii

8.4.1 Derivation of the Necessary Swing-up Control Torque: The
Invertibility Problem . . . . . . . . . . . . . . . . . . . . . . . . 141

8.4.2 Modelling the Passively Damped PAn−1 robot as the MC-
ROPAn−1 robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.4.3 Derivation of the Necessary Swing-up Control Torque for
the Passively Damped MC-ROPAn−1 Robot: The Singularity
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.4.4 The Matched Damping Condition . . . . . . . . . . . . . . . . 146
8.4.5 The Passively Damped Acrobot . . . . . . . . . . . . . . . . . . 147

Derivation of the Necessary Swing-up Control Torque: The
Singularity Problem . . . . . . . . . . . . . . . . . . . 147

Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.4.6 The Passively Damped PAA Robot . . . . . . . . . . . . . . . . 152

Derivation of the Necessary Swing-up Control Torque: The
Invertibility Problem . . . . . . . . . . . . . . . . . . 152

Modelling the Passively Damped PAA Robot as the MC-ROPA2

Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Derivation of the Necessary Swing-up Control Torque for the

Passively Damped MC-ROPA2 Robot: The Singular-
ity Problem . . . . . . . . . . . . . . . . . . . . . . . . 154

Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9 Work-Around: The Swing-up Control of the Damped PAn−1

Robot using Partial Feedback Linearisation 161
9.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.2 Control Strategy and Research Question . . . . . . . . . . . . . . . . . 162
9.3 Partial Feedback Linearisation . . . . . . . . . . . . . . . . . . . . . . . 163

9.3.1 Collocated Partial Feedback Linearisation . . . . . . . . . . . . 164
Traditional Collocated Partial Feedback Linearisation . . . . . 164
Modified Collocated Partial Feedback Linearisation . . . . . . 166

9.3.2 Noncollocated Partial Feedback Linearisation . . . . . . . . . 167
9.4 Gain Selection Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.4.1 Preliminaries: The Undamped PAn−1 Robot . . . . . . . . . . 171
Modelling the Undamped PAn−1 Robot as the TC-ROPAn−1

Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Equilibrium Point Analysis of the TC-ROPAn−1 Robot Inte-

grated with an ATAN Controller and the Gain Selec-
tion Criterion . . . . . . . . . . . . . . . . . . . . . . . 172

The Undamped Acrobot . . . . . . . . . . . . . . . . . . . . . . 175
The Undamped PAA Robot . . . . . . . . . . . . . . . . . . . . 187

9.4.2 Actively Damped PAn−1 Robot . . . . . . . . . . . . . . . . . . 196
TC-ROPAn−1 Robot Modelling, Equilibrium Point Analysis

and Gain Selection Criterion . . . . . . . . . . . . . . 196
Actively Damped Acrobot . . . . . . . . . . . . . . . . . . . . . 197



ix

Actively Damped PAA Robot . . . . . . . . . . . . . . . . . . . 199
9.4.3 Passively Damped PAn−1 Robot . . . . . . . . . . . . . . . . . 202

Modelling the Passively Damped PAn−1 Robot as the TC-
ROPAn−1 Robot . . . . . . . . . . . . . . . . . . . . . 203

Equilibrium Point Analysis of the Passively Damped TC-
ROPAn−1 Robot Integrated with an ATAN Controller 204

The Passively Damped Acrobot . . . . . . . . . . . . . . . . . . 206
The Passively Damped PAA Robot . . . . . . . . . . . . . . . . 214

9.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.5 Convergence Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 221

9.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Modelling the PAn−1 Robot as the NC-ROPAn−1 Robot . . . . 224
Algorithm Structure . . . . . . . . . . . . . . . . . . . . . . . . 225

9.5.2 The Acrobot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Undamped Acrobot . . . . . . . . . . . . . . . . . . . . . . . . 231
Actively Damped Acrobot . . . . . . . . . . . . . . . . . . . . . 236
Passively Damped Acrobot . . . . . . . . . . . . . . . . . . . . 238

9.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

10 Conclusion and Recommendations 246
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
10.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

References 250

A Proofs 259
A.1 Conservation of Energy and Time-Translational Symmetry . . . . . . 260
A.2 Independence of the Mass matrix of a Square Affine System from qu 262
A.3 Necessary and Sufficient Gain Condition (kD) for Swing-up Control

of the MC-ROPAn−1 Robot . . . . . . . . . . . . . . . . . . . . . . . . . 263
A.4 Necessary and Sufficient Gain Condition (kP ) for Swing-up Control

of the MC-ROPAn−1 Robot . . . . . . . . . . . . . . . . . . . . . . . . . 268
A.5 The Gain Selection Criterion for the Undamped

TC-ROPAn−1 Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
A.6 The Gain Selection Criterion for the Passively Damped

TC-ROPAn−1 Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

B Examples 316
B.1 LDM-related control using the mechanical energy of a simple mass-

spring-damper system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
B.2 Implementation of Krakovskii’s Method . . . . . . . . . . . . . . . . . 320
B.3 Exact Feedback Linearisation of the Fully-Actuated Undamped DIP . 324
B.4 IOFBL of the Fully-Actuated Undamped DIP . . . . . . . . . . . . . . 330
B.5 PAn−1 Robot VCL Iteration Procedure for k = 1 : 3 . . . . . . . . . . . 335



x

C Supplementary Reading 338
C.1 Viscous Damping Friction . . . . . . . . . . . . . . . . . . . . . . . . . 338

D Partial Feedback Linearisation Techniques for the PAn−1 Robot 344
D.1 Traditional Collocated Partial Feedback Linearisation . . . . . . . . . 344
D.2 Modified Collocated Partial Feedback Linearisation . . . . . . . . . . 347
D.3 Noncollocated Partial Feedback Linearisation . . . . . . . . . . . . . . 351

E Convergence Algorithm Simulink Models 354

F Publications 358



xi

List of Figures

1.1 BigDog. Used with Permission. . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The ASIMO Robot (2000). Used with Permission. . . . . . . . . . . . . 3
1.3 The research methodology implemented in this project. . . . . . . . . 4

3.1 The perturbation of the shortest-distance function q(t). Image adapted
from [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Two Configurations of the DIP including (a) Full-extension (b) Inverse
Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 The equilibrium points of the unactuated DIP. . . . . . . . . . . . . . 33
4.2 Concepts of Stability with (a) Asymptotic Stability (b) Marginal Sta-

bility (c) Instability. Adapted from [2]. . . . . . . . . . . . . . . . . . . 34
4.3 The blowing-up form of instability. . . . . . . . . . . . . . . . . . . . . 35
4.4 The phase portrait of the Van Der Pol Oscillator, with Trajectories

originating in a ball with R = 1 and tending toward the limit cycle.
Adapted from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Generalised Pole-Zero plot. Adapted from [3]. . . . . . . . . . . . . . 39

5.1 Typical upright cup shape of the Lyapunov function of an asymptot-
ically stable equilibrium point 0 (left) with corresponding contour
curves (right). Adapted from [2]. . . . . . . . . . . . . . . . . . . . . . 46

5.2 Lyapunov function converging to invariant set M. Adapted from [2]. 47
5.3 State transformation introduced through actuated feedback. Adapted

from [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 ELFBL, described by the (a) coordinate transformation (b) the lineari-

sation loop and (c) the outer control loop. Figure adapted from [2]. . 54

6.1 The invariant sets of the possible equilibrium coefficients found as a
subset of S. The system trajectory tends towards the invariant set W
with initial conditions x(0) according to lemma 6.1. . . . . . . . . . . 64

6.2 The principle of configurational exclusion. The Acrobot (left) is ini-
tialised with a mechanical energy (dashed line) that is lower than the
potential energy found at the UEP (i), but is larger than the potential
energies of the PIEP (ii), PPEP (iii) and the FPEP (iv). The invariant
set associated with the UEP is thus excluded. . . . . . . . . . . . . . . 66

6.3 Angular displacement of the proximal pendulum of a damped DIP. . 68
6.4 Angular displacement of the distal pendulum of a damped DIP. . . . 68
6.5 The behaviour of the Lyapunov function for a DIP shown in eq. (6.4). 69



xii

7.1 Generalised n-Link pendulum model. Adapted from [5]. . . . . . . . 72
7.2 The implementation of the VCL modelling protocol on the PAn−1

robot. Adapted from [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 The holonomic constraints of the n-link pendulum. . . . . . . . . . . 80
7.4 The Acrobot model. Adapted from [6]. . . . . . . . . . . . . . . . . . . 83
7.5 The PAA Robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.6 The VCL coordinate transformation of the PAA robot. Adapted from [5]. 96

8.1 The PAn−1 robot, linearised using MCPFL, represented as a MC-
ROPAn−1 robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2 The behaviour of kD (qa) across qe2 ∈ [0, 2π], with kDM shown as the
suprenum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.3 The intercepts of ζ (qe2) between (i) a straight line function that has a
kP that satisfies the condition in eq. (8.14) (red line) and (ii) a straight
line function that has a kP that only satisfies the condition in eq. (A.64).108

8.4 The angular displacement q1 of the proximal pendulum for the un-
damped Acrobot with kP = 288.8 during LDM-related swing-up
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.5 The angular displacement q2 of the distal pendulum for the un-
damped Acrobot with kP = 288.8 during LDM-related swing-up
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.6 The phase portrait of the proximal pendulum of the undamped Ac-
robot with kP = 288.8 during LDM-related swing-up control. . . . . 110

8.7 The Lyapunov candidate function of the undamped Acrobot with
kP = 288.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.8 The difference between the mechanical energy of the undamped
Acrobot and the energy state of Er with kP = 288.8 during LDM-
related swing-up control. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.9 The LDM-related torque used to swing-up the undamped Acrobot
with kP = 288.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.10 The angular displacement q1 of the proximal pendulum of the un-
damped Acrobot with kP = 61.3 during LDM-related swing-up control.113

8.11 The angular displacement q2 of the distal pendulum of the undamped
Acrobot with kP = 61.3 during LDM-related swing-up control. . . . . 113

8.12 The phase portrait of the proximal pendulum of the undamped Ac-
robot with kP = 61.3 during LDM-related swing-up control. . . . . . 114

8.13 The Lyapunov candidate function of the undamped Acrobot with
kP = 61.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.14 The difference between the mechanical energy of the undamped
Acrobot and the energy state of Er with kP = 61.3 during LDM-
related swing-up control. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.15 The LDM-related torque used to swing-up the undamped Acrobot
with kP = 61.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.16 Contour plot (3D) of kD for the PAA robot. . . . . . . . . . . . . . . . 118
8.17 Contour plot (2D) of kD for the PAA robot. . . . . . . . . . . . . . . . 118



xiii

8.18 The angular displacement q1 of the most proximal pendulum of the
undamped PAA robot during LDM-related swing-up control. . . . . 119

8.19 The angular displacement q2 of the second pendulum of the un-
damped PAA robot during LDM-related swing-up control. . . . . . . 120

8.20 The angular displacement q3 of the most distal pendulum of the
undamped PAA robot during LDM-related swing-up control. . . . . 120

8.21 The phase portrait of the proximal pendulum of the undamped PAA
robot during LDM-related swing-up control. . . . . . . . . . . . . . . 121

8.22 The Lyapunov candidate function of the undamped PAA robot. . . . 121
8.23 The difference between the mechanical energy of the undamped PAA

robot and the energy state of Er during LDM-related swing-up control.122
8.24 The LDM-related torque τ2 used to swing-up the undamped PAA robot.122
8.25 The LDM-related torque τ3 used to swing-up the undamped PAA robot.123
8.26 The angular displacement q1 of the most proximal pendulum of the

undamped MC-ROPA2 robot during LDM-related swing-up control. 128
8.27 The angular displacement q2 of the second pendulum of the un-

damped MC-ROPA2 robot during LDM-related swing-up control. . . 128
8.28 The angular displacement q3 of the most distal pendulum of the

undamped MC-ROPA2 robot during LDM-related swing-up control. 129
8.29 The phase portrait of the proximal pendulum of the undamped MC-

ROPA2 robot during LDM-related swing-up control. . . . . . . . . . . 129
8.30 The Lyapunov candidate function of the undamped MC-ROPA2 robot.130
8.31 The difference between the mechanical energy of the undamped

MC-ROPA2 robot and the energy state of Er during LDM-related
swing-up control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.32 The LDM-related torque τ2 used to swing-up the undamped MC-
ROPA2 robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.33 The LDM-related torque τ3 used to swing-up the undamped MC-
ROPA2 robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.34 A comparison of the necessary swing-up control torques for the un-
damped Acrobot (blue) and the actively damped Acrobot (red) with
b2 = 10 and kP = 288.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.35 A comparison of the necessary swing-up control torques for the un-
damped Acrobot (blue) and the actively damped Acrobot (red) with
b2 = 10 and kP = 61.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.36 Comparison of the torque τ2 that is required to swing-up the un-
damped PAA robot (blue) and the actively damped PAA robot with
b2 = 100 (red) using LDM-related swing-up control. . . . . . . . . . . 140

8.37 Comparison of the torque τ3 that is required to swing-up the un-
damped PAA robot (blue) and the actively damped PAA robot with
b3 = 100 (red) using LDM-related swing-up control. . . . . . . . . . . 140

8.38 The angular displacement q1 of the proximal pendulum for the pas-
sively damped Acrobot with kP = 61.3 and b1 = 1 during LDM-
related swing-up control. . . . . . . . . . . . . . . . . . . . . . . . . . . 149



xiv

8.39 The angular displacement q2 of the distal pendulum for the passively
damped Acrobot with kP = 61.3 and b1 = 1 during LDM-related
swing-up control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.40 The phase portrait of the proximal pendulum of the passively damped
Acrobot with kP = 61.3 and b1 = 1 during LDM-related swing-up
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.41 The Lyapunov candidate function of the passively damped Acrobot
with kP = 61.3 and b1 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.42 The LDM-related torque used to swing-up the passively damped
Acrobot with kP = 61.3 and b1 = 1. . . . . . . . . . . . . . . . . . . . . 151

8.43 The angular displacement q1 of the most proximal pendulum of the
passively damped MC-ROPA2 robot during LDM-related swing-up
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.44 The angular displacement q2 of the second pendulum of the passively
damped MC-ROPA2 robot during LDM-related swing-up control. . . 157

8.45 The angular displacement q3 of the most distal pendulum of the
passively damped MC-ROPA2 robot during LDM-related swing-up
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.46 The Lyapunov candidate function of the passively damped MC-
ROPA2 robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.47 The torque τ2 used to swing-up the passively damped MC-ROPA2

robot during LDM-related swing-up control. . . . . . . . . . . . . . . 159

9.1 The PAn−1 robot, linearised using TCPFL, represented as a TC-ROPAn−1

robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.2 The PAn−1 robot represented as a NC-ROPAn−1. . . . . . . . . . . . . 168
9.3 The gain selection criterion of the undamped Acrobot, which forms

borders around the region of appropriate gains (shaded in grey). . . . . 176
9.4 The critical Routh coefficient c1 plotted against a range of possible

values for kD and kP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.5 The unstable response of an undamped Acrobot initialised near the

FPEP with a gain selection within the left-bottom boundary of the RAG.178
9.6 The stable response of an undamped Acrobot initialised near the

FPEP with a gain selection outside of the left-bottom boundary of the
RAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.7 The unstable response of an undamped Acrobot initialised near the
FPEP with a gain selection within the middle-top boundary of the RAG.179

9.8 The stable response of an undamped Acrobot initialised near the
FPEP with a gain selection outside of the middle-top boundary of the
RAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.9 The unstable response of an undamped Acrobot initialised near the
FPEP with a gain selection within the bottom boundary of the RAG. 180

9.10 The unstable response of an undamped Acrobot initialised near the
FPEP with a gain selection within the boundaries of the RAG. . . . . 180



xv

9.11 The angular position of the most proximal pendulum (q1) of the
undamped Acrobot during swing-up control using TCPFL and the
ATAN controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.12 The angular position of the most distal pendulum (q2) of the un-
damped Acrobot during swing-up control using TCPFL and the
ATAN controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.13 The torque required to perform swing-up control on an undamped
Acrobot using TCPFL and the ATAN controller. . . . . . . . . . . . . 183

9.14 The difference between the mechanical energy of the undamped
Acrobot and Er during TCPFL-related swing-up control. . . . . . . . 183

9.15 The angular position of the most proximal pendulum (q1) of the
undamped Acrobot during gentle swing-up control using TCPFL and
the ATAN controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.16 The angular position of the most distal pendulum (q2) of the un-
damped Acrobot during gentle swing-up control using TCPFL and
the ATAN controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.17 The torque required to perform gentle swing-up control on an un-
damped Acrobot using TCPFL and the ATAN controller. . . . . . . . 185

9.18 The difference between the mechanical energy of the undamped
Acrobot and Er during gentle TCPFL-related swing-up control. . . . 186

9.19 The angular displacement of the most proximal pendulum of the
undamped TC-ROPA2 robot during TCPFL-related swing-up control. 189

9.20 The angular displacement of the second pendulum of the undamped
TC-ROPA2 robot during TCPFL-related swing-up control. . . . . . . 189

9.21 The angular displacement of the most distal pendulum of the un-
damped TC-ROPA2 robot during TCPFL-related swing-up control. . 190

9.22 The torque τ2 that is required to perform TCPFL-related swing-up
control on the undamped TC-ROPA2 robot. . . . . . . . . . . . . . . . 190

9.23 The difference between the mechanical energy and the objective en-
ergy Er during the TCPFL-related swing-up control of the TC-ROPA2

robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.24 The angular displacement of the most proximal pendulum of the

undamped TC-ROPA2 robot during gentle TCPFL-related swing-up
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

9.25 The angular displacement of the second pendulum of the undamped
TC-ROPA2 robot during gentle TCPFL-related swing-up control. . . 193

9.26 The angular displacement of the most distal pendulum of the un-
damped TC-ROPA2 robot during gentle TCPFL-related swing-up
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.27 The torque τ2 that is required to perform gentle TCPFL-related swing-
up control on the undamped TC-ROPA2 robot. . . . . . . . . . . . . . 194

9.28 The difference between the mechanical energy and the objective en-
ergy Er during the gentle TCPFL-related swing-up control of the
TC-ROPA2 robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



xvi

9.29 Torque required to perform TCPFL-related swing-up control on the
undamped Acrobot (blue) and the actively damped Acrobot (red)
where b2 = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.30 Torque required to perform TCPFL-related swing-up control on the
undamped PAA robot (blue) and the actively damped PAA robot
(red) where b2 = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9.31 Angular velocity of the most distal pendulum of the actively damped
PAA robot during TCPFL-related swing-up control. . . . . . . . . . . 202

9.32 The RAG (grey shaded area) relating the gain kP to the passive damp-
ing coefficient b1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9.33 The stable response of a passively damped Acrobot initialised near
the FPEP, with kP = 3 (0 < kP < kP2) and b1 = 1.45 (b1 < b1lim). . . . . 209

9.34 The unstable response of a passively damped Acrobot initialised near
the FPEP, with kP = 5 (kP2 < kP < kP3) and b1 = 1.45 (b1 < b1lim). . . 209

9.35 The stable response of a passively damped Acrobot initialised near
the FPEP, with kP = 15 (kP > kP3) and b1 = 2.6 (b1 > b1lim). . . . . . . 210

9.36 The unstable response of a passively damped Acrobot initialised near
the FPEP, with kP = 12 (kP2 < kP < kP3) and b1 = 2.6 (b1 > b1lim). . . 210

9.37 The unstable response of a passively damped Acrobot initialised near
the FPEP, with kP = 5 (kP2 < kP < kP3) and b1 = 11 (b1 >> b1lim). . . 211

9.38 The angular displacement of the most proximal pendulum (q1) of the
passively damped Acrobot during ATAN swing-up control. . . . . . 212

9.39 The angular displacement of the most distal pendulum (q2) of the
passively damped Acrobot during ATAN swing-up control. . . . . . 212

9.40 The torque used to produced swing-up control on the passively
damped Acrobot using TCPFL and the ATAN controller. . . . . . . . 213

9.41 The difference between the mechanical energy of the passively damped
Acrobot and Er during swing-up control using TCPFL and the ATAN
controller (beginning at 60 seconds). . . . . . . . . . . . . . . . . . . . 213

9.42 The angular displacement of the most proximal pendulum (q1) of the
passively damped PAA robot during TCPFL-related swing-up control.217

9.43 The angular displacement of the second pendulum (q2) of the pas-
sively damped PAA robot during TCPFL-related swing-up control. . 218

9.44 The angular displacement of the most distal pendulum (q3) of the
passively damped PAA robot during TCPFL-related swing-up control.218

9.45 Phase plot of the most proximal pendulum of the passively damped
PAA robot during TCPFL-related swing-up control. . . . . . . . . . . 219

9.46 The torque used to produced swing-up control on the passively
damped PAA robot using TCPFL and the ATAN controller. . . . . . . 219

9.47 The mechanical energy of the passively damped PAA robot during
swing-up control using TCPFL and the ATAN controller. . . . . . . . 220

9.48 A high-level flow chart of the swing-up segment of the Convergence
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226



xvii

9.49 A high-level flow chart of the balance test segment of the Convergence
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

9.50 The minimum gain threshold required to swing-up an undamped
Acrobot using NCPFL evaluated after the balance test phase of the
convergence algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

9.51 The relationship between the angular initial conditions that result
in successful swing-up of the undamped Acrobot using the actuator
response frequency ωn = 5 rad.s−1 (red), ωn = 10 rad.s−1 (blue), and
ωn = 40 rad.s−1 (black). . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9.52 The angular position of the most proximal pendulum (q1) of the
undamped Acrobot during NCPFL-related swing-up control. . . . . 235

9.53 The angular position of the most distal pendulum (q2) of the un-
damped Acrobot during NCPFL-related swing-up control. . . . . . . 235

9.54 The torque required to perform swing-up control on an undamped
Acrobot using NCPFL-related swing-up control. . . . . . . . . . . . . 236

9.55 A comparison between the undamped swing-up torque (blue) and
actively damped swing-up torque (red) required to perform NCPFL-
related swing-up control on the Acrobot. . . . . . . . . . . . . . . . . 237

9.56 The minimum gain threshold required to swing-up a passively damped
Acrobot using NCPFL evaluated after the swing-up phase (black) and
after the balance test phase (red) of the convergence algorithm. . . . . . . 240

9.57 The relationship between the angular initial conditions that result
in successful swing-up of the passively damped Acrobot using the
actuator response frequency ωn = 20 rad.s−1 (red), ωn = 100 rad.s−1

(blue), and ωn = 400 rad.s−1 (black) evaluated after the swing-up
phase of the convergence algorithm. . . . . . . . . . . . . . . . . . . . . . 240

9.58 The angular position of the most proximal pendulum (q1) of the
passively damped Acrobot during NCPFL-related swing-up control. 242

9.59 The angular position of the most distal pendulum (q2) of the passively
damped Acrobot during NCPFL-related swing-up control. . . . . . . 242

9.60 The torque required to perform swing-up control on a passively
damped Acrobot using NCPFL-related swing-up control. . . . . . . . 243

A.1 The invariant sets in the state-space S ∈ Rn. . . . . . . . . . . . . . . . 269
A.2 An example of a function ρ (qe2) with its suprenum value. . . . . . . . 283
A.3 An example of the intercepts between the straight-line functions

governed by kP (red line has a sufficiently large gradient, unlike the
blue line) and the function λ (qe2) with its suprenum value. Adapted
from [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

A.4 The intercepts between the function ζ (qa2) and the straight-line func-
tion with sufficiently large kP (red line) and with an insufficient kP
(blue line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

A.5 The suprenum of ξ (qe2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
A.6 The signs of c1D with reference to its intercepts, for b1 > b1lim (left)

and 0 < b1 < b1lim (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 315



xviii

B.1 Non-linear mass-spring-damper model. Adapted from [2]. . . . . . . 317

C.1 A simple mechanical system. Figure adapted from [2, pg. 57] . . . . . 338
C.2 The mass-spring-damper. Figure adapted from [2, pg. 57] . . . . . . . 340
C.3 The typical behaviour of a damped second-order system, mathemati-

cally described by eq. (C.10). . . . . . . . . . . . . . . . . . . . . . . . 342
C.4 The typical behaviour of an underdamped second-order system,

mathematically described by eq. (C.11). . . . . . . . . . . . . . . . . . 342

E.1 The high-level overview of the Simulink model of the Acrobot used
in the convergence algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 354

E.2 The Natural Dynamics subsystem of the Simulink model of the Acrobot
used in the convergence algorithm. . . . . . . . . . . . . . . . . . . . . . 355

E.3 The Friction (R1) subsystem of the Simulink model of the Acrobot
used in the convergence algorithm. . . . . . . . . . . . . . . . . . . . . . 356

E.4 The Friction (R2) subsystem of the Simulink model of the Acrobot
used in the convergence algorithm. . . . . . . . . . . . . . . . . . . . . . 356

E.5 The Controller subsystem of the Simulink model of the Acrobot used
in the convergence algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 357



xix

List of Abbreviations

ACS Absolute Coordinate System
BVP Boundary Value Problem
COG Centre Of Gravity
COM Centre Of Mass
CPFL Collocated Partial Feedback Linearisation
DARPA Defense Advanced Research Projects Agency
DDA Direct-Drive Acrobot
DIP Double Inverted Pendulum
DIPC Double Inverted Pendulum on a Cart
DOF Degree Of Freedom
EBC Explanation-Based Learning
ELFBL Exact Linearisation via FeedBack Linearisation
FBL FeedBack Linearisation
FPEP Fully-Pendant Equilibrium Point
IOFBL Input-Output FeedBack Linearisation
LDM Lyapunov’s Direct Method
LHD Load Haul Dump
LLNF Locally Linear Neuro-Fuzzy
LQR Linear-Quadratic Regulator
LTI Linear Time Invariant
MC-ROPA Modified Collocated-Reduced Order Passive-Active
MCPFL Modified Collocated Partial Feedback Linearisation
MIMO Multiple-Input Multiple-Output
MLP Multi-Layered Perceptron
NC-ROPA NonCollocated-Reduced Order Passive-Active
NCPFL NonCollocated Partial Feedback Linearisation
NN Neural Network
PA Passive-Active
PAA Passive-Active-Active
PAn−1 A Passive joint followed by n− 1 Active joints
PFL Partial Feedback Linearisation
PIEP Partially-Inverted Equilibrium Point
PMP Pontryagin’s Minimum Principle
PPEP Partially-Pendant Equilibrium Point
RAG Region of Appropriate Gains
RCS Relative Coordinate System
RL Reinforced Learning



xx

ROPA Reduced-Order Passive-Active
ROV Remotely Operated Vehicle
SDRE State-Dependent Riccati Equation
SIP Single Inverted Pendulum
SIPC Single Inverted Pendulum on a Cart
TC-ROPA Traditional Collocated-Reduced Order Passive-Active
TCPFL Traditional Collocated Partial Feedback Linearisation
TIPC Triple Inverted Pendulum on a Cart
TITech Tokyo Institute of Technology
UAV Unmanned Air Vehicle
UEP Upright Equilibrium Point
UGV Unmanned Ground Vehicle
UMS Underactuated Mechanical System
VCL Virtual Composite Link



xxi

Ad Dei gloriam.
Scientia et fides sunt in harmonia.



1

“We do not receive wisdom; we must discover it for ourselves
after a journey that no one can take for us or spare us.”

— Marcel Proust

Chapter 1

Introduction

Humans have been interacting with underactuated systems ever since they pos-
sessed the desire to manipulate the world around them [7]. The field of robotic
applications began in teleoperations, where specific operations were performed at a
certain distance by a manipulator [7, 8]. For primitive man, this could include the
instance when one was required to control a fire using a tool [7]. In a more modern
context, these manipulators were first applied by R. Goertz and his team at the
Argonne National Laboratory, where mechanical pantographs were used to control
radioactive substances within the cores of nuclear reactors during the 1940s [7, 8].
These manipulators were completely mechanical, with the progress of electronically
integrated robotics being hindered by substantial computational requirements, and
scarcity of literature on robotic dynamics [9]. The effects of these constraints quickly
dissipated with the formation of communities that sought to amalgamate automated
control and robotics [9]. Additionally, the increased interest in electronics and com-
puting saw the rapid decrease in the cost of computation and an increase in the
computation speed of programmable systems [9]. The implementation of electrical
components in robotic manipulators was first seen in 1957, where the pantographs
developed by R. Goertz were integrated with servomotors that were used to control
movement [7].

The ability for these manipulators to navigate inhospitable territories attracted
interest from researchers who desired a low-risk alternative for retrieving informa-
tion about unknown landscapes [7]. This initiated the development of Remotely
Operated Vehicles (ROVs) which were able to manipulate objects and store sam-
ples for research testing, specifically for oceanic expeditions [7]. These robots were
refined in later years and applied to space exploration (the Voyager, NASA), in mili-
tary operations (Unmanned Air Vehicles (UAVs) and Unmanned Ground Vehicles
(UGVs)), and in mining, where the first examples of automation in underground
mining were officially deployed in the 1960s in the form of unmanned rail carriages
and Load Haul Dump (LHD) machines [7, 10]. Programmed automation saw the
rise of industrial process control in the 1960s due to an ever increasing desire to
perform tasks that were deemed impossible or impractical to complete using hu-
man labour [11–13]. The first programmable robotic manipulator to be applied
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in an industrial role was the Unimate, which was first implemented in 1961 [9].
The Unimate was used for automated movement and welding operations in the
car manufacturing industry, where the manufacturers sought to take advantage of
the robot’s ability to perform precise operations for long periods of time without
experiencing fatigue [9]. This resulted in the production of a higher quality product
as compared to the deliverables produced by their human counterparts [9]. This
eventually led to the Unimate’s involvement in full-scale operations by 1966 [9].
Whilst these developments were significant, fully flexible autonomous procedures
began to appear only during the 1980s, where the involvement of robotic manipu-
lators in automated processes became the standard [9, 11]. The potential of robotic
manipulators in applications across many different fields has yet to reach its full
potential, with innovations occurring in biomedical related fields such as prosthetic
development [14], humanoid robotics, security, and even surgery [7].

1.1 Background

Underactuated Mechanical Systems (UMS) are described as systems that contain
more Degrees Of Freedom (DOFs) than actuators [13, 15]. These systems are fre-
quently found across the engineering applications spectrum where robotic manip-
ulation is required [15]. UMSs are also used to model complex systems found in
nature using the template-anchor schema [16, 17]. Robotic manipulators are generally
modelled as n-link pendulum systems, with the number of links being dependent
on the environment of operation and the objective of the control [6, 15, 18].

The most common control objective applied to UMSs is swing-up control, whereby
the system is swung-up from a particular trajectory and is regulated about the
unstable and completely inverted equilibrium point (also known as the Upright
Equilibrium Point, or UEP), demonstrating that stability can be achieved despite
the unstable nature of the system dynamics [15]. In this dissertation, we define
swing-up control as the action of directing the trajectory of the system to the UEP,
but not necessarily regulating the system within an approximate neighbourhood of
the UEP.

A number of projects in underactuated robotics have produced significant con-
tributions at research institutions globally. These include the numerous projects
investigated at Boston Dynamics (BigDog project [19], see figure 1.1), Mazor Robotics
(surgical robots [20]), the ASIMO project [21] (seen in figure 1.2), and SpaceX (grap-
pling arm of Dragon [22]). A number of worldwide competitions have been held
to stimulate the advancement of the robotics community, including the Defense
Advanced Research Projects Agency (DARPA) robotics challenge [23, 24].
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F I G U R E 1 . 1 : BigDog. Used with Permission 1

F I G U R E 1 . 2 : The ASIMO Robot (2000). Used with Permission 2

1By DARPA - This file was derived from:DARPA Strategic Plan (2007).pdf, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=20798332.

2CC BY-SA 2.0 de, https://commons.wikimedia.org/w/index.php?curid=2783098
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1.2 Research Objective and Methodology

The main objective of this research is to develop a work-around for a significant
limitation in the swing-up control of robotic manipulators. To do this, we shall
execute the methodology demonstrated in figure 1.3. The methodology contains
four steps which are numbered according to the sequential order of execution. Each
of these steps are summarised as follows:

(1) Identify an appropriate system model, control objective and control tech-
nique from existing literature.

(2) Replicate the results found in literature concerning the items in the previous
point.

(3) Alter the model’s parameters until the limitations of the selected control
technique can be established.

(4) Develop a work-around for this limitation.

F I G U R E 1 . 3 : The research methodology implemented in this
project.



Chapter 1. Introduction 5

The following system model, control objective, and control technique (itemised with
Roman numerals in figure 1.3) were selected following an extensive literature review
(included in chapter 2) according to step (1) of the research methodology:

(i) System model→ PAn−1 robot (see section 2.2.2).

(ii) Control technique→ Lyapunov’s direct method (LDM) (see section 2.4.3).

(iii) Control objective→ Swing-up control (see section 2.4.3).

Additionally, the system model was integrated with a simple viscous damping
friction model as part of the alteration highlighted in item (3) above (see section 2.5).
We hypothesise that the integration of this friction model into the PAn−1 robot will
result in the derivation of a swing-up control torque that will not be able to satisfy
the control objective.

1.3 Research Question, Scope, and Contributions

The following research question was formulated upon the results of the preliminary
investigation of this research (highlighted in chapter 8), and is thus formally pre-
sented in chapter 9:

RQ: Using partial feedback linearisation (PFL) as a work-around for the key lim-
itation in LDM highlighted by the matched damping condition, what are the spe-
cific conditions (if any) that need to be satisfied to accommodate the satisfactory
swing-up control of a passively damped PAn−1 robot?

The scope of the project will be restricted to the swing-up control of an under-
actuated n-link pendulum system, specifically the PAn−1 robot. The research will
be of a theoretical nature only, with the proofs, lemmas, and conditions required to
perform a particular swing-up control included as required. Experimental results
will only be provided in the form of simulations as the limited time-frame prevents
the construction and testing of physical prototypes.

The key contributions, which are used to address the limitation highlighted in
this research are summarised as follows:

(1) A set of analytical inequalities that are collectively referred to as the gain
selection criterion derived specifically for the Traditional Collocated form of
the PFL swing-up control formulation. This set of inequalities maps out a
region of appropriate gains, which represents all possible gain combinations that
will ensure that the fully-pendant equilibrium point (FPEP) is unstable. This
increases the probability of, but does not guarantee, satisfactory swing-up
control.

(2) A convergence algorithm developed for the noncollocated form of partial
feedback linearisation that, once executed, will provide information about
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the exact angular initial condition pairing and minimum gain that must be
selected to ensure satisfactory Noncollocated PFL-related swing-up control.

1.4 Dissertation Outline

The remainder of the dissertation is organised as follows. Chapters 2-7 are included
specifically to present the necessary literature that forms the foundation of this
research project. Chapter 2 includes a general literature review on UMSs, system
modelling, linear and nonlinear control methods used in the swing-up control of
underactuated manipulators, friction models, and friction compensation; this review
is performed to satisfy step (1) of the research methodology. Chapter 3 includes a
discussion on the relevant modelling techniques used to represent physical systems
in mathematical form. Chapter 4 includes a brief discussion on the topic of stability,
specifically with reference to system equilibrium points. Chapter 5 introduces the
foundational concepts of control methods that are relevant to this investigation. A
brief discussion on the viscous damping model and its effect on specific physical
systems are included in Chapter 6. The mathematical models of the PAn−1 robot,
the Acrobot and the PAA robot are derived in chapter 7. Chapter 8 serves to
address items (2) and (3) of the research methodology discussion in section 1.2,
where we sought to identify a limitation in the LDM-related swing-up control
formulation. Item (4) of the research methodology is addressed in chapter 9, whereby
the contributions of the research project are presented. The concluding remarks are
presented in chapter 10.

1.5 Summary of Research

The literature review performed in this research lead to the selection of the PAn−1

robot, the swing-up control objective, and Lyapunov’s Direct Method as the most
appropriate control model, control objective, and control technique respectively. We
were able to replicate the LDM-related swing-up control results for the undamped
PAn−1 robot demonstrated in [5] (including experimental results for the Acrobot
and the PAA robot), but the integration of viscous damping into the unactuated
joint caused the derivation of an unsuitable LDM-related swing-up control torque
(formally recognised as the invertibility and singularity problems). The derivation
of this unsuitable control represents a limitation in the LDM-related swing-up
control, which is described by the matched damping condition (see criterion 8.1). The
circumnavigation of this limitation involves the application of the partial feedback
linearisation control technique, which results in the presentation of two specific
contributions, namely the gain selection criterion (section 9.4) and the convergence
algorithm (section 9.5). It has been shown that each contribution may be used as a
work-around to circumnavigate the limitation highlighted by the matched damping
condition, but it is important to note that each of these contributions are associated
with a number of advantages and disadvantages that must be considered.
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“To learn which questions are unanswerable, and not to answer
them: this skill is most needful in times of stress and darkness.”

— Ursula K. Le Guin

Chapter 2

General Literature Review

2.1 Chapter Overview

In this chapter, we present a general review on literature that is pertinent to the
field of underactuated mechanical systems. The objective of this review was to
accommodate the appropriate selection of a system model, control objective, con-
trol technique and system alteration for this research project as highlighted by the
research methodology. The key areas of interest included underactuated robotics,
n-link pendulum models and modelling techniques, robotic manipulator control
methods, and friction modelling and compensation. Chapters 3-7 will cover specific
literature in greater detail.

2.2 Underactuated Robotics

2.2.1 Relevance and Applications of Underactuated Robotic Systems

The application potential of UMSs has attracted much research interest in fields
such as robotics and automated control [13]. Research into UMSs began in the
early 1990s with the development of the theoretical framework for the control of
nonholonomic systems [25, 26]. This was done to solve control problems on systems
with constraints on velocity parameters that could not be derived from positional
constraints [27]. This framework is particularly applicable to robotics as these
constraints arise frequently in mechanical systems that experience rolling or sliding
contacts as seen in the example of the parallel parking problem [28–30]. Since
then, a number of nonholonomic systems have been modelled and controlled based
on this framework, including aircraft, satellites, manipulators, precision medical
instruments, and micro-robots [13]. One of the most well recognised UMSs is the
ASIMO robot, which became the first underactuated bipedal robotic system to
be showcased globally in 1996 [15]. Current research is aimed at understanding
and solving controllability and stabilisation issues relating to nonholonomic UMSs,
manipulating the dynamics of nonlinear systems to produce desired results, and
finding alternative system configurations that will make control problems easier to
solve [13, 15].
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2.2.2 Selection of Appropriate Model

With the importance and relevance of UMSs clearly established, we need to answer
the following question posed by the research methodology:

Which model should we select to represent the generalised UMS in this research project?

It is evident from literature that the UMS is typically modelled as a generalised
compound pendulum system, also known as the n-link pendulum system, which
has fewer actuators as compared to the DOFs [6, 15, 18]. The number of actuators
that the system uses may vary, but it is logical that, since the project is subject to a
stringent time constraint, an underactuated system with the highest possible ratio
of number of actuators to DOFs should be chosen to reduce the complexity of the
research problem. It is for this reason that the PAn−1 robot, a uniquely coined term
used to describe the n-link pendulum system which has an actuator at each joint
aside from the first joint, is chosen for this research (this model is characterised by
a Passive most proximal joint followed by n − 1 Active joints). With this choice
in mind, it is important to research into modelling techniques that are used to
mathematically model the n-link pendulum system and its variants (this review of
modelling techniques is discussed in the next section).

2.3 n-link Pendulum Models and Modelling Techniques

The generalised model of the n-link pendulum system was derived using the La-
grangian method in [5]. Additionally, the generalised model of the n-link pendulum
on a cart has been derived in [31, 32] by evaluating the dynamics of a single [33] and
double [34, 35] inverted pendulum and ascertaining the dynamics of a generalised
n-link pendulum system through induction. The mathematical model for the n-link
pendulum is also derived in [36] for both the Absolute Coordinate System (ACS)
and the Relative Coordinate System (RCS). This research suggests that the RCS may
be preferred when generalising a system with a large number of links since the
ACS modelling method introduces a number of additional terms in the equations of
motion despite being the most popular method due to the ease of computation [36].
The fully-actuated n-link pendulum system is strictly holonomic, with the centre of
gravity (COG) of each limb being constrained to a circular trajectory around the cor-
responding joint [37]. Underactuated robotic systems are classified as second-order
nonholonomic systems as seen in [38].

2.4 Control Methods for Pendulum Systems

The review that is included in this section was performed to identify an appropriate
control objective and control technique, as highlighted in the research methodology.
The control methods applied to robotic manipulator systems can be grouped up into
linear and nonlinear control methods.
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2.4.1 Linear Control Methods

The inherent nonlinear dynamics of a generalised pendulum system prevents the
development of a linear control method that can perform effectively across the global
domain of operation. It is possible, however, to apply linear control methods when
the system is linearised around a certain operating point. It has been made evident,
upon compilation of the literature review, that all of the available material focusses
on the balancing of a specific pendulum system about the UEP. Additionally, the
literature only covers pendulum-cart systems because single-input multiple-output
systems provide a more challenging balancing control problem as compared to
multiple-input multiple-output (MIMO) systems. These linear control problems for
various pendulum-cart systems are discussed below.

A Linear Quadratic Regulator (LQR) controller was designed for the linearised
Single Inverted Pendulum on a Cart (SIPC) once it has been swung-up using an
energy-shaping method in [39]. Similarly, a LQR controller was designed to balance
the single inverted pendulum (SIP) on a rotating direct-drive motor (known as a
TITech pendulum [40]) after swing-up using bang-bang control in [41]. A State-
Dependent Riccati Equation (SDRE) controller is designed to both swing-up and
balance a SIPC about the UEP in [42]. The controller is non-linear but operates in
the linearised region of the SIPC during the stabilisation process [42]. This controller
demonstrated more robust properties as compared to the general LQR controller
when the experimental results were evaluated by inspection [42]. An adaptive Ada-
line controller that operated on a linear switching surface was designed in [43, 44]
to balance an SIPC and to further improve the robustness of the linear regulators.
The switching surface was created with the use of both the position states and
velocities of the cart and pendulum [43, 44]. This controller was termed the "Net
Broom-Balancer controller" [43, 44].

Grossman and Gmiterko demonstrated in [31] that a LQR controller used to balance
a double inverted pendulum on a cart (DIPC) can be trivially designed with the help
of simulation packages. A more complex PID controller was designed using the pole
placement technique to stabilise a DIPC around the UEP in [45]. The PID controller
was shown to stabilise the DIPC significantly faster than the generic LQR controller,
reducing the settling time in the cart-position by 16.4% [45]. H-∞ and µ controllers
were designed to regulate a DIPC in [35], where an optimal Hankel norm approxi-
mation was used to reduce the 19th order controller to a 6th order controller with
little change in the controller’s performance and robustness. The optimal control of
a DIPC around the UEP is performed in [46] using LQR, SDRE and optimal Neural
Network (NN) controllers. Combining NN and LQR or SDRE controllers produced
better results than separate methodologies by providing larger recovery regions and
smaller response times [46]. A BAT algorithm is used to improve the performance of
a LQR controller used to stabilise a DIPC in [47]. The controller gains were altered
according to a square error fitness function [47]. The algorithm was modelled on the
frequency-tuning behaviour of micro-bats which were used specifically to increase
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the diversity of echolocation techniques [48]. This improved on the results produced
by a LQR controller even when a time delay was applied [47]. Similarly, a NN
system was used to automatically tune the gain parameters of a PID controller used
to stabilise a DIPC in [49].

The stabilisation of the Triple Inverted Pendulum on a Cart (TIPC) using a lin-
ear feedback controller was first demonstrated in the discrete domain in [50]. This
approach was employed using the KEDDC computer simulation package [50]. A
discrete-time H-∞ controller is designed to stabilise a TIPC about the UEP using a
reduced order robust dynamic observer in [51,52]. This controller is an improvement
on the design demonstrated in [53,54] whereby the maximum distance moved off the
desired cart trajectory is reduced from ±30cm to ±4cm [51, 52]. A continuous-time
LQR controller, used to stabilise a TIPC with linear constraints, was improved with
time-multiplied quadratic indices and was cascaded with a DIPC controller in [55].
A more recent investigation into the development of a LQR controller for the TIPC
can be found in [56].

This survey does not contain any literature highlighting linear control methods
of a generalised n-link pendulum. It has, however, been proven in [57] that the
linearised n-link pendulum system with a single actuator found in the first joint is
controllable around the UEP for n ≥ 1. It was also found that there is an inverse rela-
tionship between the stabilisability radius of the system and the number of links [57].
The pendulum system, therefore, becomes increasingly difficult to stabilise as the
number of links in the system increases [57].

2.4.2 Nonlinear Control Methods

The literature covered in the nonlinear control of underactuated robotic systems
is extensive. The review included in this section covers the relevant literature, but
does not claim to be exhaustive. The majority of the literature covers the nonlinear
control of a pendulum system with a predefined number of links and actuators.
Work on the generalised n-link pendulum system is also covered in published work
and is included in the review presented below.

A nonlinear fuzzy controller was designed to improve on the balancing perfor-
mance of a linear proportional controller on a SIPC in [58]. The linear controller
included in this research was incapable of swinging the pendulum up to the UEP if
the initial angle x1(0) is found to be > |π/4| rad [58]. The nonlinear fuzzy controller
was able to swing-up the pendulum from an initial angular state of x1(0) ∈ [-88 88],
which was a significant improvement on the linear controller [58]. A NN nonlinear
adaptive controller was designed to learn how to balance a SIPC with no a priori
knowledge of the system dynamics in [59]. Instead, the controller predicted the
input required by evaluating the behaviour of the failure signal, an indicator that
informed the system when balance control had not been satisfied [59]. This work
was done to improve on the research performed in [43, 44]. The work demonstrated
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in [60] aimed to tackle the experimental travel constraint of a SIPC through the
development of a nonlinear controller that balanced a SIPC with optimal cart dis-
placement. Tests demonstrated that the controller had an operational blind spot
at trajectories found approximately around the UEP; despite this drawback the
controller reduced the maximum displacement of the cart significantly [60].

The swing-up control of the SIPC using a Lyapunov function was demonstrated
in [61, 62]. A control input was selected to ensure that this time-derivative remained
negative semi-definite, producing the desired swing-up [61, 62]. The TITech pendu-
lum was swung-up to the UEP using a feedforward and feedback bang-bang control
strategy in [41]. Experimental results were easier to produce with the proposed
TITech pendulum as it took up less space and provided less parametric uncertainties
as compared to the pendulum-cart system [41]. Additionally, Bang-Bang feedback
and feedforward swing-up control was demonstrated on the TITech pendulum
through the construction of pseudo-states in [40]. The pseudo-states were formed
to improve the robustness of the nonlinear controller, especially in the presence
of uncertainties in the values of the system parameters [40]. LDM was used as an
energy shaping technique to demonstrate a simple swing-up control strategy for
the SIP in [63]. The goal of this research was to swing the pendulum up to the UEP
using only one swing-cycle [63]. This was done by switching between swing-up and
balancing controllers and ensuring that the control input u > 4g/3 [63].

The nonlinear control of the many configurations of the double inverted pendulum
(DIP) has been extensively researched. This review, therefore, will only focus on
one particular configuration of the DIP, namely the Acrobot. The first significant
contributions involving the Acrobot were presented by Mark Spong in [6,34], where
he utilised the combination of partial-feedback linearisation (PFL) and linear control
methods to swing the Acrobot up to the UEP. The Acrobot has an active distal joint
and a passive proximal joint which could be linearised in separate control scenarios,
termed collocated and non-collocated PFL respectively [6, 34]. Spong demonstrated
that each linearisation technique requires a unique swing-up control strategy [6, 34].
An inverse-trigonometric (ATAN) function acting on the angular velocity of the
proximal joint was chosen as the reference trajectory for the collocated linearised
Acrobot to indirectly introduce the dynamics of the proximal limb into the control
input and to pump energy into the system [6, 34]. The dynamics of the proximal
limb would be unobserved otherwise and the control input would, therefore, cause
the states of the Acrobot to tend towards the stable pendant equilibrium states [6,34].
The chosen reference trajectory lead to unstable internal dynamics, allowing the
Acrobot to tend towards the unstable inverted trajectory [6, 34]. The opposite was
true in the non-collocated case, where the dynamics of the distal limb were evidently
excluded from the control input. The correct trajectory was, therefore, only achieved
if the correct outer-loop gains and initial angular states were chosen [6, 34].

Swing-up control through the implementation of LDM was demonstrated on the
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Acrobot by Xin and Kaneda in [64]. A Lyapunov function was specifically con-
structed to observe the mechanical energy, the angular velocities, and states of
the Acrobot [64]. The control input was chosen to keep the time-derivative of the
Lyapunov function negative semi-definite, thus ensuring that the Acrobot tended
toward the UEP [64]. Minimum-time optimal control was used to directly search
for swing-up trajectories for the Acrobot using a window search in [65], combining
LDM and Pontryagin’s Minimum Principle (PMP) in [66] and using a combina-
tion of PFL and PMP in [67]. Adaptive swing-up control was demonstrated on an
Acrobot through the implementation of an adaptive fuzzy-logic controller in [68]
and provided a comparative analysis between conventional techniques and adap-
tive control. Stable control could be achieved through the switching of multiple
incomplete controllers that operated around a linearised domain as seen in [69]. The
control of switching in this case was found through Reinforced Learning (RL) [69].
The Acrobot was transformed into an approximation of a single pendulum, with
swing-up control being subsequently performed in [70]. The behaviour of the
swing-up controller was dependent on a Lyapunov function [70]. The controller
was subsequently switched to a LQR controller once the Acrobot was found to be
approximately upright [70]. Explanation-based control (EBC) was used to determine
the exact necessary parameters required to swing-up an Acrobot in [71]. The EBC
method evaluates the swing-up of the Acrobot as two distinct movements which
were linked causally, allowing for the optimisation and scheduling of each motion
separately [71]. This resulted in improved results as compared to the Heuristic
Control method and ATAN control method (seen in [34]) [71]. Pulse-torques and
rest-to-rest manoeuvres were used to swing-up an Acrobot in [72]. The pulse torques
were applied to instantaneously change the angular velocities of the limbs [72]. The
torque was then released, allowing the Acrobot to swing freely toward the UEP [72].
Rest-to-rest manoeuvres were used to introduce braking torques at the links, stop-
ping the limbs from swinging past the UEP [72]. A linear controller was then
implemented to regulate the Acrobot about the UEP [72].

The majority of the literature pertaining to the nonlinear control of the TIPC in-
volved the cascading of robust controllers on linear regulators. This includes the
work of Medrano-Cerda [53, 54] and Tsachouridis [51, 52] (mentioned in the linear
control section). The swing-up control of the TIPC using a 2 DOF control structure
and a feedforward controller was demonstrated in [73]. The first instance of both
theoretical and experimental results for this particular system was demonstrated in
this paper. The feedforward controller was designed through the evaluation of the
system’s internal dynamics and the solved constrained two-point boundary value
problem (BVP) [73]. A linear Ricatti feedback controller was designed to balance the
TIPC once it was found to be approximately upright [73]. The work demonstrated
in [73] was extended through the development of a novel feedforward controller
in [74]. This approach allowed for the inclusion of the constraints provided by the
saturation functions into the BVP, which could be trivially solved using the Matlab
BVP solver [74].
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The most extensive research into the nonlinear control of the n-link pendulum
was performed by Spong, and Xin and Liu. Their research focussed on the generali-
sation of control for a pendulum system with any number of links. The analytical
results were confirmed with simulations performed on systems with a predefined
number of links, with Spong focussing on the Acrobot, Pendubot and TIP, and Xin
and Liu focussing on a number of configurations, ranging from the Direct-Drive
Acrobot (DDA) to the Passive-Active-Active (PAA) robot. Spong demonstrated
the implementation of PFL on a generalised underactuated system with n-DOFs
using ATAN (collocated) or linear swing-up control (non-collocated) in [6, 75, 76].
This linearisation technique resulted in a characterisation of the internal and zero
dynamics of the system which, once evaluated, could be used to determine the
stability and the trajectory of all the pendulums in the system [6, 75]. Simulations
were performed for the TIP with 2 actuators in [76]. Xin’s work focussed on the
application of LDM for the swing-up control of an underactuated n-link pendulum
as demonstrated in [5, 77, 78] through the implementation of a coordinate transfor-
mation using virtual composite links (VCLs). The n-link pendulum is defined in
this case to have one passive joint (i.e. n− 1 actuators), whereby a solution to the
swing-up control problem was first derived for an n-link pendulum with a passive
first joint [5, 77, 78]. The solution was expanded to include the possibility of an
unactuated joint being located anywhere in the system [5, 79]. It is popular practise,
however, to leave the first joint unactuated, as seen with the DDA and the PAA
robot [5]. The generalised n-link form of this robot is given the name PAn−1 robot.

2.4.3 Selection of Appropriate Control Objective and Technique

It is evident that, upon analysis of the aforementioned literature, that the most
commonly chosen control objectives in underactuated robotics involves balanc-
ing (linear control methods) and swing-up control (nonlinear control methods).
Balancing control refers to the regulation of an underactuated system about some
equilibrium point whereas swing-up control involves the "swinging-up" of an un-
deractuated system from a lower energy state towards the equilibrium point which
is associated with the highest possible potential energy (UEP). Whilst the regulation
of a system about an equilibrium point is a relevant control objective, we decided to
select the swing-up control objective instead simply because the realisation of this
objective requires the implementation of more interesting control techniques. The
most popular swing-up control techniques, as made evident in the aforementioned
literature, are the LDM and PFL methods. The PFL method is rather trivial to im-
plement but does not actively track the UEP. The LDM method, on the other hand,
provides a more mathematically rigorous solution which results in a control torque
that tracks the UEP. It is for this reason that the LDM technique is chosen to perform
swing-up control on the PAn−1 robot in this investigation.
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2.5 Altering the PAn−1 Model: Friction in Pendulum Sys-
tems

With the model, control objective, and control technique chosen, the appropriate
selection of model alteration is the only requirement that remains outstanding
according to the research methodology of this project. The PAn−1 robot is an ideal
model that does not consider the effects of nonconservative physical phenomena
such as friction. If we had to evaluate the aforementioned literature retrospectively,
it is evident that there is no existing literature that discusses the swing-up control of
UMSs that have been integrated with friction. This was unexpected, especially since
the effects of friction cannot be ignored in any real-world scenarios. It seems that
the integration of friction is a viable, novel, and trivial alteration that can be made to
the PAn−1 robot when considering swing-up control. This section will thus include
a thorough investigation into the existing friction models as well as a discussion on
the selection of an appropriate friction model and methods of friction compensation
respectively.

2.5.1 Friction Models

The different types of mechanical friction and their effects on robotic manipulators
have been well documented. The most commonly used models of friction and
their implications in the control engineering field were discussed in [80]. These
included the Coulomb, viscous, Stribeck and Dahl friction models [80]. Furthermore,
a second-order Dahl model was formulated [80] to estimate the elastic and plastic
deformation of surfaces that are in contact with one another during stiction [80].
The research concludes that asymptotic stabilisation can be achieved under simple
velocity feedback if the Stribeck model is ignored [80]. The mathematical derivation
of the effects of both dry and viscous damping on a simple pendulum was demon-
strated in [81]. Dry friction damping is defined as a constant torque ±|τd| that acts
against the movement of the pendulum [81]. Coulomb friction is an approximation
of dry friction [81]. Viscous damping friction is defined as a damping torque that
is dependent on the angular velocity of the pendulum, and is extensively used in
literature, as seen in [81, 82]. Both torques remove energy from the system, causing
the pendulum to tend toward the stable pendant equilibrium state [81].

2.5.2 Selection of Appropriate Friction Model

It is evident that the viscous damping friction model is the most extensively dis-
cussed friction model in the literature included in this review since it is the most
trivial to implement, thus resulting in its selection for the project as the element that,
once integrated, introduces a sufficiently significant alteration to the PAn−1 robot
model.

It is unknown at this point whether the integration of viscous damping will have
any effect on the swing-up control of the PAn−1 robot using the LDM technique.
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An investigation into the existing methods of dealing with the effects of friction
(termed friction compensation) should be performed so that we have a general idea
of how to achieve the control objective in the event that the LDM technique fails
under this alteration. The following section is included specifically to discuss the
existing methods of friction compensation.

2.5.3 Friction Compensation

There is, to the knowledge of the author, no literature that discusses friction com-
pensation pertaining to the generalised n-link pendulum system. The following
examples do, however, include instances of friction compensation which are per-
formed on the SIPC and the DIPC. Additionally, the friction models included in this
review are not restricted to the viscous damping model or swing-up control since it
is unknown at this stage what type of solution would be appropriate or required.

An H-∞ controller is designed to stabilise a dry damped SIPC about the UEP
in [83]. The dry friction is located at the connecting link between the cart and the
pendulum [83]. The results of this research demonstrate that the effects of dry
friction cannot be ignored, even if the control strategy is simply required to balance
the pendulum-cart system [83]. Ignoring the dry friction caused the pendulum to os-
cillate, producing limit cycles. Instead, a balanced trade-off is made between friction
insensitivity and objective tracking to produce a controller that is robust enough to
achieve satisfactory results [83]. This is done by incorporating the nonlinear friction
model into the linearised model of the SIPC [83]. Limit cycles were also observed
in [84], whereby a LQR controller was developed to balance a SIPC that was subject
to both dry and viscous forces (in static and dynamic form). The oscillations are,
once again, attenuated by incorporating the frictional models in the LQR controller
formulation [84]. This control produces minor oscillations about the UEP, which
have been attributed to the quantisation error in the digital encoders that were
implemented for measurement purposes [84]. A similar approach was taken by
Park, Chwa, and Hong in [85], and Jubo, Anwar, and Tomizuka in [86], with the
exception that the viscous friction was ignored. Another method of tackling the
effects of limit cycles caused by the presence of friction involves the implementation
of a friction compensator as seen in [87, 88].

In [87], the frictional force applied to the cart in the DIPC system during the experi-
ment was estimated using a modified version of the Dahl model which included the
Stribeck effect. The objective was to feed the actuator the estimation in the hopes
that it would completely negate the effects of friction [87]. This could only occur,
however, if the estimate exactly profiled the true frictional force [87]. Experimental
results demonstrate an attenuation of the limit cycle affect in the DIPC system [87].
In [88], the friction model is coupled with the dynamics of the motor whilst a locally
linear neuro-fuzzy (LLNF) controller is used to inversely model the motor and fric-
tion dynamics [88]. The LLNF network is based on the divide-and-conquer strategy
and has been used to model nonlinear networks and for estimation purposes [88].
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The results of the control are compared to the multi-layer perceptron (MLP) method
of inverse modelling [88], whereby the LLNF method demonstrates a greater attenu-
ation of the limit cycles of the DIPC as compared to the MLP method [88].

2.6 Conclusion

The review of existing literature that is pertinent to the field of underactuated
robotics resulted in the selection of an appropriate system model (PAn−1 robot),
control objective (swing-up control), control technique (Lyapunov’s Direct Method),
and system alteration (integration of viscous damping model) as highlighted by the
research methodology of this project. UMSs have traditionally been modelled as
n-link pendulum systems according to literature, and the highest possible number
of actuators to DOFs ratio makes the PAn−1 robot the perfect candidate to mathemat-
ically represent a generalised UMS. The most extensively selected control objectives
in literature involve balancing and swing-up control, with the latter being chosen
for this investigation since its fulfilment involves the implementation of more in-
teresting control techniques. The LDM technique is selected to achieve this control
objective since it produces a more mathematically rigorous solution as compared to
the PFL alternative. The swing-up control solutions that currently exist in literature
are only applicable to ideal frictionless systems. We, thus, identified a simple alter-
ation to the PAn−1 robot that is novel when considering swing-up control, namely
the integration of a simple friction model. The viscous damping friction model
was selected in this instance since it is most extensively covered in literature and it
can be trivially implemented. A review of the most relevant friction compensation
techniques was included in this chapter to form the foundation of a work-around in
the event that the integration of the viscous damping model results in the failure to
achieve LDM-related swing-up control.
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“He who is best prepared can best serve his moment of inspiration.”

— Samuel Taylor Coleridge

Chapter 3

Introduction to System Modelling

3.1 Chapter Overview

An understanding of the dynamical behaviour of any system is required if a control
technique is to be implemented. The behaviour of a system is described by its
equations of motion, a set of differential equations that dictate the movement of
each DOF [89]. It is relatively trivial to model simple systems based on Newtonian
mechanics; a more complex system, such as a system with a transformed generalised
coordinate system, may require more robust modelling methods [89]. The founda-
tions of two modelling techniques, namely the Classical Lagrangian and the Energy
modelling methods, are discussed in this chapter. Each technique is applied to a
DIP to demonstrate each method’s efficacy in modelling a multi-body pendulum
system. Conclusions about each modelling technique are summarised thereafter.

3.2 Classic System Modelling

To understand the fundamentals of Lagrangian mechanics, the principles of Calculus
of Variations must first be discussed.

3.2.1 Calculus of Variations, the Principle of Least Action, and the Euler-
Lagrange Differential Equation

Calculus of variations involves the minimisation of a functional, a mapping between
a collection of functions to a set of real numbers� [90]. The most common functional
involves integration, whereby

I =

∫ t2

t1

L(q, q̇, t)dt (3.1)

[90]. The path of L(q, q̇, t), known as the Lagrangian, can be varied by adding
a perturbation. As defined, the function L(q, q̇, t) is composed of the function
q(t). This function, once perturbed by a noise function εη(t), can produce a single
path between the boundary points t1 and t2 for every value of ε (where ε ∈ � and
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F I G U R E 3 . 1 : The perturbation of the shortest-distance function q(t).
Image adapted from [1]

η(t1) = η(t2) = 0). This perturbed function in figure 3.1 is described as

Q(t) = q(t) + εη(t) (3.2)

where Q(t1) = q(t1) and Q(t2) = q(t2).

The integral is now dependent on ε and is not, therefore, constrained to map to one
specific real number, but instead represents the integral of all the possible paths
formed by L(q, q̇, t), where

I(ε) =

∫ t2

t1

L(q, q̇, ε, t)dt (3.3)

[90]. In most cases there exists at least one path that, once integrated over the entire
range between the bounded t-values, produces the lowest valued integral. This
represents the extrenum of the functional, the shortest path between two bounded
points [90].

This property proved to be useful in understanding the movement of physical
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bodies [91]. Newtonian physics provided the first method of calculating the tra-
jectory of physical bodies in space, but did not adequately describe the reasoning
behind the choice of these trajectories [92]. It was discovered that physical bodies
travelled along a trajectory that would always minimise the difference between the
kinetic and potential energies (known as the action, S(x̃)), where

S(x̃) =

∫ t2

t1

(
1

2
m ˙̃x2 −P(x̃)

)
dt (3.4)

and where P(x̃) represents the potential energy in the system [92]. This is known as
the Principle of Least Action. Solving for the extrenum of the action with respect to
time results in the Newtonian second law of motion described by

d
dt

S(x̃)

∣∣∣∣
min

:= 0 = −m¨̃x−∇P(x̃), (3.5)

∴ m¨̃x = −∇P(x̃) (3.6)

where∇P(x̃) represents a potential force. The full proof can be seen in [92]. This is a
remarkably elegant approach to solving for the dynamical behaviour of a system as
it provides the opportunity to include coordinate systems that may not be Cartesian
(which may be more difficult to derive using the Newtonian counterpart). Solving
from first principles is cumbersome; a simple analysis of the structure of functionals
leads to a general expression that is proven to be true for variational problems.

It is clear that q(t) in figure 3.1 was chosen to represent the shortest path between
boundary points t1 and t2. It is evident that the extrenum (minimum) of the func-
tional will exist at ε = 0 since it is known that the shortest path exists at this value of
perturbation. Therefore

d
dε
I(ε)

∣∣∣∣
ε=0

= 0 (3.7)

[90]. Solving for this formula produces an expression known as the Euler-Lagrange
differential equation, where

d
dt
∂L
∂q̇

(q, q̇, t)− ∂L
∂q

(q, q̇,t) = 0. (3.8)

The proof is not included in this dissertation, but may be viewed in [90, 91]. This
expression, when used to evaluate the dynamics of a mechanical system with any
generalised coordinate system q, exploits the Principle of Least Action when the
action of the system is chosen as the Lagrangian. The coordinate system will be
angular in the case of a rotational system, like the multi-body pendulum system. The
resulting expressions represent the equations of motion for the system, which can be
represented in the prototypical form, representing the set of nonlinear, autonomous
equations of motion. The prototypical system is described here similarly to that
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found in [93], where

M(q)q̈ + D(q,q̇) + K(q) = G(q)u (3.9)

with

q ∈ �N = the generalised coordinates of the n-link pendulum system,
M(q) = the Mass matrix, which is positive semi-definite and symmetrical [93],

D(q,q̇) = the collective representation of conservative torques (coriolis, centripetal, and
configurational changes), and nonconservative torques (friction, mass, and
pendulum length changes) acting on the system,

K(q) = the potential torques exerted on the pendulum masses possibly by gravity or
springs, and

G(q)u = the input torque τ introduced by actuators at the pendulum joints.

The equations of motion can be found by taking the inverse of the Mass matrix,
which will be always be non-zero since the Mass matrix is positive definite and
uniformly symmetric [15]. Therefore,

q̈ = M−1(q) (−D(q, q̇)−K(q) + G(q)u)

represents a set of nonlinear, autonomous (time-invariant) equations of motion for
the case of the n-link pendulum.

3.2.2 Symmetry and Conservation Laws

It is sometimes a challenge to obtain insightful information about a physical system
by evaluating the action and dynamical equations alone. This brings the discus-
sion to the idea of mathematical symmetry, which is covered in this section to
provide some context to the derivation of some important properties of specifically
structured Lagrangian functions. The most recognised theory concerning differen-
tiable symmetry is credited to the mathematician Emmy Noether, whose theorem
concerning the Lagrangian function states the following [94]:

Theorem 3.1. (Noether’s Theorem) A conserved law corresponds to the action of a physi-
cal system that experiences no first-order change in a specific variable once it has undergone
some transformation.

In other words, if one of the variables that the Lagrangian depends on is perturbed
by a small value ε, the Lagrangian will remain invariant to this perturbation if there
is a related conservation of some quantity [94]. This invariance to transformation is
known as a symmetry. Two important conditions in symmetry lead to the case of
conserved angular momentum and conserved energy regarding rotational systems.
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Cyclic Coordinates and the Conservation of Angular Momentum

The following result was proposed by Noether for rotational systems regarding the
conservation of angular momentum:

The angular momentum (pk) of the kth DOF of a rotational system is conserved
so long as the system along the aforementioned DOF remains rotationally symmetri-
cal, i.e. the Lagrangian must remain invariant to changes in the angular coordinate
of the kth DOF, i.e..

ṗk = 0 iff
dL(q, q̇, t)

dqk
= 0. (3.10)

This is proven in [94]. The conservation of the angular momentum for coordinate qk
implies that the angular velocity q̇k is not expected to change so long as the inertial
components (mk and Ik) remain constant [94]. It is easy to imagine the conditions
that will lead to this type of behaviour. One such example includes a pendulum
located in space or on a plane that is perpendicular to the gravitational acceleration
plane. If the pendulum is given an initial velocity, this velocity is not expected to
change since gravity is unable to accelerate/decelerate the pendulum. In this case,
the coordinate qk is known as a cyclic coordinate [94].

Time-Translational Symmetry and the Conservation of Energy

The following result is proposed for mechanical systems regarding the conservation
of energy principle:

The total mechanical energy of a system will be conserved so long as the system is
time-translationally symmetrical, i.e. the Lagrangian is not explicitly dependent on
time. This is demonstrated when the Hamiltonian of the system (described byH) is
constant and its constituents are not time-varying. This can only occur if

∂L(q, q̇, t)
∂t

= 0.

This is proven in appendix A (Proof A.1) since the behaviour of the states of a
damped or actuated system is the result of the constituents of the Hamiltonian,
which is not evident without this derivation. It is apparent that one can expect that
the mechanical energy of a particular system should be conserved for all time if
there is no actuation or damping. It is difficult to observe the effect of adding an
actuator or friction factor to the prototypical form on the Lagrangian equation itself,
but the proof suggests that these factors will introduce a function which is explicitly
time-dependent into the Hamiltonian. This will cause the expected change of energy
since the Hamiltonian must be kept constant.
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3.2.3 Methodology: Modelling the Dynamics of a system using the La-
grangian

The following points summarise the Classical modelling technique using Lagrangian
mechanics:

(1) Identify the generalised coordinates of the system.

(2) Construct the Lagrangian. The Lagrangian is chosen to be the difference
between the total system kinetic and potential energies to exploit the Principle
of Least Action for mechanical systems, where

L(q, q̇, t) = T(q, q̇, t)−P(q,t). (3.11)

The expressions for T(q, q̇, t) and P(q,t) must, therefore, be found. Friction
and actuation are ignored here.

(3) Apply the Euler-Lagrange differential equation on the Lagrangian.

(4) Characterise the result in terms of the prototypical form. Add frictional terms
and actuation as required.

(5) Transform the model into the state-space.

Examples of derivations for the model of the DIP can be seen in [6], [34], and [64] in
the form of the Acrobot.

3.3 System Modelling using Energy

Modelling methods based on the conservation of energy principle have been used on
many occasions to describe the dynamical behaviour of a system [82]. This method
was first described for the generalised mechanical prototypical system in [93] by
Naude. Certain definitions are adapted to include the effects of the modified friction
model described in [80]. The system energy is first derived through the use of the
integral transform.

3.3.1 The Integral Transform

The dynamics of a rotational system are dependent upon the torques that act on it.
These torques, which include conservative and nonconservative forms, as seen in
eq. (3.9). The definition of the D(q,q̇) matrix is modified to include damping effects;
this matrix will be distinctly decomposed in section 3.3.3.

The energy in the system is represented as

W =

∫ x2

x1

∑
Fdx =

∫ q2

q1

∑
τdq (3.12)
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[82]. A more useful formulation for energy system modelling is presented in the
form of the energy integral transform, where

W = E {y} =

∫
q̇Tydt (3.13)

and where
y := M(q)q̈ + D(q,q̇) + K(q)−G(q)u (3.14)

[93]. The integral assists in separating the contributors of the system energy ac-
cording to their forces. These contributors can thus be identified and labelled for
convenience. The total mechanical energy of the system can be found using the
energy integral transform seen in eq. (3.13). The result of this transformation is
demonstrated by

E {y} =
1

2
q̇TM(q)q̇−1

2

∫
q̇TṀ(q)q̇ dt +

∫
q̇TD(q,q̇) dt + (3.15)

∫
q̇TK(q) dt−

∫
q̇TG(q)u dt+E0

which is adapted from [93], where the easily identifiable energies are described as

1

2
q̇TM(q)q̇ = the energy stored in the motion of the pendulum masses and

moments of inertia (Kinetic Energy),∫
q̇TK(q) dt =

∫
K(q)Tdq = P(q) = the potential "spring-like" energy stored in the

displacement of the pendulum masses,∫
q̇TG(q)u dt = the energy introduced or removed by the actuators, and

E0 = the initial mechanical energy of the system.

The nature of the energies contributed by both the D(q,q̇) and Ṁ(q) matrices,
however, cannot be easily discerned upon such a high-level inspection. The matrices
are evaluated and decomposed in the following sections to determine whether the
energy contributions seen in the adapted integral transform are conservative, similar
to the procedure seen in [93].

3.3.2 Mass Matrix and the Multi-body Pendulum System

It is evident that the time derivative of the mass matrix Ṁ(q) is present in the energy
equation demonstrated in eq. (3.15). Intuitively, this change in the entries of the
mass matrix can represent an energy input (mass gain) or a dissipation (mass loss,
typically due to the burning of fuel, as seen in propelled vehicles during thrust) over
time [93]. It is important to note, however, that rotational systems are dependent
upon an inertial property known as the moment of inertia (kg/m2). The moment
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F I G U R E 3 . 2 : Two Configurations of the DIP including (a) Full-
extension (b) Inverse Extension

of inertia of a rigid body differs from mass as it is not an intrinsic property of an
object [82]. Instead, the moment of inertia of a rigid body is also dependent on
its rotational trajectory [82]. A change in the system configuration, therefore, may
result in the change of the entries in the mass matrix. This produces the illusion of a
changing mass in the system, even if the system is conservative. This may not be
obviously evident in the SIPC example provided in [93], but the influence of the
configuration of a rotational system on the mass matrix becomes more evident in
compounded pendulum system examples. This will be illustrated on the simplest
multi-body pendulum system, the DIP.

Consider the two configurations of the DIP, with each pendulum in figure 3.2 having
equivalent masses, lengths, and moments of inertia. The DIP has two angular DOFs
described by q1 and q2. The first DIP is configured in a fully extended manner
with q2 = 2kπ, k ∈ �. The second DIP is configured in such a way that the two
pendulums are aligned on top of one another with q2 = π + 2kπ, k ∈ �. The Mass
matrix of the generalised DIP has been derived in [78], with an adapted expressed
as

M(q) =




1

2
mL2 [3 + cos q2] + 2I

1

4
mL2 [1 + 2 cos q2] + I

1

4
mL2 [1 + 2 cos q2] + I

1

4
mL2 + I


 . (3.16)
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The kinetic energy of the system

T =
1

2
q̇TM(q)q̇ (3.17)

is extracted from the system energy equation seen in eq. (3.15). The DIP is generally
allowed to vary in its angular positions, but the two configurations will be fixed
at the joint between the two pendulums for illustration purposes (i.e. q̇2 = 0). The
mass matrix for configuration (a) & (b) described by

Ma =




2
[
mL2 + I

] 3

4
mL2 + I

3

4
mL2 + I

1

4
mL2 + I


 , Mb =




3

2
mL2 + 2I

1

4
mL2 + I

1

4
mL2 + I

1

4
mL2 + I


 (3.18)

can be calculated since the value of q2 is known for each case. There is a clear
difference between the mass matrices in the two configurations despite there being
no change in the mass in each system. Instead, the different configurations have
produced differing values of moments of inertia as the pendulums travel in different
rotational trajectories. This is the result of the parallel axis theorem [82]. The mass
matrix in this case is, therefore, intended to accommodate the relationship between
the angular velocity vector q̇ and the kinetic energy (TR) for rotational systems,
where

TR =
1

2
q̇TM(q)q̇ (3.19)

[82]. The change of energy associated with the change in the configuration of the
pendulum system is conservative as these effects can be directly observed in the
formulation of the kinetic and potential energies of the system using the Energy
method [82]. The distribution of the energy between the kinetic and potential form,
however, differs with varying configurations.

The kinetic energies in each configuration with q̇2 = 0 are described by

Ta =
[
mL2 + I

]
q̇2

1, Tb =

[
1

2
mL2 + I

]
q̇2

1. (3.20)

These results demonstrate that if a finite and equivalent amount of mechanical
energy is found in each system, E0, the pendulums in (a) will rotate collectively
at a lower angular velocity (q̇1). This configuration causes the system to skew
more of the energy distribution toward the system’s potential energy (P), therefore
explaining the change in the magnitude of some of the entries in the mass matrix.
The energy is conserved in both of these systems, with the distribution of mechanical
energy differing in each case due to the system configuration. This confirms that the
mass matrix differential Ṁ(q) can represent both an internal reshuffling of energy
(conservative) or a change in energy due to mass gain/loss or pendulum length
change (nonconservative) [93]. This conservative reshuffling of energy due to system
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configuration must be expected with the generalised n-link pendulum system. The
time differential of the mass matrix Ṁ(q) is therefore defined as

Ṁ(q) = Ṁc(q) + Ṁn(q) (3.21)

to prevent confusion, where Ṁc(q) represents the conservative change in moment of
inertia due to the system’s configuration and Ṁn(q) represents the nonconservative
moment of inertia change due to a gain/loss in mass or sudden changes in the
length of any of the pendulums in the system. This leads to the definition of the
energy contributions to the system due to the change of moment of inertia, where

1

2

∫
q̇TṀ(q)q̇ dt =

1

2

∫
q̇TṀc(q)q̇ dt +

1

2

∫
q̇TṀn(q)q̇ dt (3.22)

and where

1

2

∫
q̇TṀc(q)q̇ dt = the conservative energy shuffle in system due to change in system

configuration, and
1

2

∫
q̇TṀn(q)q̇ dt = the energy that is gained/lost due to a change in the mass or

lengths of the pendulums.

3.3.3 Decomposition of the D(q, q̇) Matrix

The effect of the D(q, q̇) matrix on the energy of the system has yet to be discussed.
This is done through decomposition, which will reveal every torque that has been
collectively represented by this matrix. The method of decomposition is taken
from [93].

The change of the system’s energy can be found through the manipulation of the
integral transformation seen in eq. (3.13) using

d
dt

E {y} =
d
dt

∫
q̇Tydt = q̇Ty (3.23)

=
d
dt

(
1

2
q̇TM(q)q̇ +

∫
K(q)dq

)
(3.24)

which was derived from the fundamental theorem of calculus [93]. The change
of the system’s energy can, therefore, be represented using the prototypical form.
The change in system energy can also be calculated by taking the direct time-
differential of the total kinetic and potential energy of the system (as seen in eq.
(3.24)). The energy in the system is not expected to change, however, unless an
external nonconservative torque acts upon it. These torques can manifest in different
forms, but are mostly introduced through lossy friction, actuation and change of physical
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system properties, which is represented mathematically by

d
dt
Es = −q̇TR(q, q̇) + q̇TG(q)u− q̇TJ(q, q̇)q̇ (3.25)

where

R(q, q̇) = the lossy torques introduced by damping, air friction or stiction, and
J(q, q̇)q̇ = the energy shuffling matrix which represents a set of conservative tor-

ques that allow energy to be shuffled in the system [93].

The J(q, q̇) matrix is skew-symmetrical, and will thus not produce a change in en-
ergy (q̇TJ(q, q̇)q̇ = 0). Instead, these torques accommodate energy transformation
within the system and is, therefore, included in the formulation.

Eq. (3.25) is equivalent to the change of energy seen as the time derivative of
the mechanical energy. Therefore,

d
dt

E {y} =
d
dt

(
1

2
q̇TM(q)q̇ +

∫
K(q)dq

)

= q̇TM(q)q̈ +
1

2
q̇TṀ(q, q̇)q̇ + q̇TK(q). (3.26)

Making M(q)q̈ the subject of the prototypical form and substituting the expression
into eq. (3.26) results in

d
dt

E {y} = q̇T (−D(q,q̇)−K(q) + G(q)u) +
1

2
q̇TṀ(q, q̇)q̇ + q̇TK(q)

= −q̇TD(q,q̇) + q̇TG(q)u +
1

2
q̇TṀ(q, q̇)q̇. (3.27)

This expression is equal to eq. (3.25). Therefore,

− q̇TR(q, q̇) + q̇TG(q)u− q̇TJ(q, q̇)q̇ = −q̇TD(q,q̇) + q̇TG(q)u +
1

2
q̇TṀ(q, q̇)q̇

which simplifies to

D(q,q̇) = R(q, q̇) + J(q, q̇)q̇ +
1

2
Ṁ(q, q̇)q̇. (3.28)

This expression can be expanded to include the definition of the conservative and
nonconservative changes in the moments of inertia in the system described in eq.
(3.21), whereby

D(q,q̇) = R(q, q̇) +
1

2
Ṁn(q, q̇)q̇

︸ ︷︷ ︸
Nonconservative

+ J(q, q̇)q̇ +
1

2
Ṁc(q, q̇)q̇

︸ ︷︷ ︸
Conservative

. (3.29)
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The conservative torques in the D(q, q̇) matrix are labelled collectively as the C(q,q̇)
matrix for convenience. In addition to this change, the decomposed D(q,q̇) matrix
differs slightly from the one described by Naude as the R(q, q̇) matrix in [93] was
chosen to only include viscous damping as a lossy friction. In this form, other forms
of damping may be considered and encompassed within the R(q, q̇) matrix.

All of the matrices, except for the J(q, q̇)q̇ vector, may be solved for trivially given
that the mass matrix Ṁn(q, q̇) may be explicitly defined as required. It is important
to note, however, that the J(q, q̇)q̇ vector is not observable in the energy domain,
thus making it difficult to identify explicit elements in the J(q, q̇) matrix. It seems
intuitive that the conservative torques produced by the natural energy shuffling in
the system must somehow be attributed to the moments of inertia in the system,
as seen with the conservative torques produced by gravitational forces. This is
proven through the evaluation of the Euler-Lagrange equation in matrix form. The
following derivation is an addition to the method developed by Naude in [93] and
is included specifically to demonstrate the generalised method of characterising the
J(q, q̇) matrix.

The Lagrangian may be defined as

L(q, q̇, t) = T−P

=
1

2
q̇TMc(q, q̇)−

∫
K(q)Tdq.

Substituting this expression of the Lagrangian into eq. (3.8) and simplifying the
resultant expression results in

d
dt

[
∂

∂q̇

(
1

2
q̇TMc(q)q̇−

∫
K(q)Tdq

)]T

−
[
∂

∂q

(
1

2
q̇TMc(q)q̇−

∫
K(q)Tdq

)]T

= 0

=
d
dt

[
Mc(q)q̇−

(
∂

∂q̇

∫
K(q)Tdq

)T
]
−
[
∂

∂q

(
1

2
q̇TMc(q)q̇

)]T

+

(
∂

∂q

∫
K(q)Tdq

)T

= Ṁc(q, q̇)q̇ + Mc(q)q̈− d
dt

(
∂

∂q̇

∫
K(q)Tdq

)T

︸ ︷︷ ︸
=0

−
[
∂

∂q

(
1

2
q̇TMc(q)q̇

)]T

+

K(q).
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The term
d
dt

(
∂

∂q̇

∫
K(q)Tdq

)T

is equal to zero as K(q) is not dependent on any

velocity vector q̇. Therefore,

Mc(q)q̈ + Ṁc(q, q̇)q̇−
[
∂

∂q

(
1

2
q̇TMc(q)q̇

)]T

︸ ︷︷ ︸
C(q,q̇)

+K(q) = 0.

In its current structure, the expression seen above is clearly in the prototypical form.
It is evident, therefore, that if the lossy matrix R(q, q̇) = 0, then C(q, q̇) can be
expressed as

C(q, q̇) = Ṁc(q, q̇)q̇−
[
∂

∂q

(
1

2
q̇TMc(q)q̇

)]T

(3.30)

[38]. Equating eqs. (3.30) and (3.29) allows for the representation of the J(q, q̇)q̇
vector in terms of the mass matrix Mc(q), where

J(q, q̇)q̇ +
1

2
Ṁc(q, q̇)q̇ = Ṁc(q, q̇)q̇−

[
∂

∂q

(
1

2
q̇TMc(q)q̇

)]T

∴ J(q, q̇)q̇ =
1

2
Ṁc(q, q̇)q̇−

[
∂

∂q

(
1

2
q̇TMc(q)q̇

)]T

. (3.31)

The q̇ matrix is not invertible, but the individual entries may be represented with
the knowledge that the J(q, q̇) matrix is skew-symmetric (with the total number
of individual elements in each J(q, q̇) matrix = n(n−1)/2 for a nth order system).
Therefore,

J(q, q̇) =




0 J1(q, q̇) J2(q, q̇) · · · Jn−1(q, q̇)
−J1(q, q̇) 0 Jn(q, q̇) · · · J2(n−1)−1(q, q̇)

−J2(q, q̇) −Jn(q, q̇)
. . . . . .

...
...

...
. . . . . .

...
−Jn−1(q, q̇) −J2(n−1)−1(q, q̇) · · · · · · 0



. (3.32)

It may be tedious to calculate each entry, but it is not required if one just wishes to
characterise the behaviour of the system in terms of torques. Finding the J(q, q̇)q̇
vector in this case would be sufficient.

3.3.4 Modelling Methodology

The method highlighted below presents an independent system modelling alterna-
tive to the classical Lagrangian method as first presented in [93]. This method is
modified here to include the explicit modelling of the energy that is shuffled within
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the system (represented by the J(x,v)v vector). The procedure is outlined similarly
to what is seen in [93]:

(1) Identify the relevant generalised coordinates of the system.

(2) Define Es, the mechanical energy of the system by determining the kinetic
and potential energies in terms of the generalised coordinates, and derive the
mass matrix M(x) and the potential torque matrix K(x) from these energy
expressions.

(3) Calculate the system’s net change in energy by taking
d
dt
Es.

(4) Describe the factors that add and dissipate energy, namely the power-loss
component −vTR(x,v) and the actuation matrix vTG(x)u. Equate these

factors to the change in energy described by
d
dt
Es. This is known as the system

power equation.

(5) Calculate the entries of the energy-shuffling component J(x,v)v using eq.
(3.31) that was derived in the last section.

(6) Substitute in all the relevant components into the system power equation and
manipulate it into the generalised prototypical form, where the equations of
motion may be solved for.

(7) Transform the equations of motion into the state-space representation using a
relevant set of transformations.

This energy method is used for the modelling obligations of this investigation
since the Lagrangian method is covered significantly in literature. The general
modelling of the n-link pendulum system is demonstrated in section 7.3.1, but a
more conceptual example of the application of the modelling methodology shown
above can be seen in section 7.4, whereby the Acrobot is modelled for experimental
purposes.

3.4 Conclusion

The foundations of two robust modelling techniques, namely the Classical La-
grangian and the Energy modelling methods, were discussed in this chapter. Each
technique was implemented on a model of the DIP (energy modelling example
shown in later chapter) with the objective of developing equations of motion that
describe the movements of each pendulum. The classical Lagrangian modelling
method involves the implementation of the Euler-Lagrange equation to derive the
equations of motion of a system, whereby calculus of variations is used to exploit
the principle of least action. Whilst the method is effective and easy to implement, the
procedural nature of this technique makes it difficult to identify underlying causes
to the torques represented in the prototypical form. The energy method involves the
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classification of the torques in the system according to the effect that each torque
has on the energy of the system. The structure of each component in the proto-
typical form is scrutinised to determine its influence on the system’s energy. This
leads to the decomposition of the unclassified D(q, q̇) matrix into conservative and
non-conservative torques. The equations of motion are then determined through
the evaluation of the power equation, which is found by evaluating the energy
that is added or dissipated from the system due to friction and actuation. The
technique highlighted by Naude has one major constraint when applied to com-
pounded pendulum systems; the torques responsible for energy-shuffling within
the system (represented by J(q, q̇)q̇) are unobservable in the energy domain (the
torques contribute no energy to the system, and are also not responsible for any
change of energy in the system). This chapter highlights a method of determining
the entries of the internal shuffling vector J(q, q̇)q̇ through the matrix evaluation of
the Lagrangian. This is a modification to the method highlighted by Naude. Both
methods allow for the satisfactory identification of the dynamics of a multi-body
pendulum system. The energy method, however, has the added benefit of identify-
ing the particular components of the dynamics and their effects on the total energy
change in the system, and is therefore selected as the preferred modelling method in
this investigation.
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“Chaos is merely order waiting to be deciphered.”

— José Saramago

Chapter 4

Stability Concepts

4.1 Chapter Overview

This chapter serves to introduce basic concepts of system stability that are relevant to
this research project. A section in this chapter is dedicated to the formal definition of
stability principles with regards to system equilibrium points, including the concepts
of local and global stability, the varying forms of stability (marginal, exponential,
asymptotic etc.) and the characteristics of an unstable system. Short discussions are
included to provide fundamental knowledge about the implementation of pole-zero
diagrams to graphically demonstrate the stability of a linear system, and the Routh-
Hurwitz stability criterion, which is a technique that is integral to this research
project. Whilst this chapter presents a superficial level of information on certain
topics, sources are provided to the reader for the purpose of supplementation if
required.

4.2 Equilibrium Points and Stability

The stability of a system describes how the system behaves around a specifically
chosen operating point [2]. This operating point is usually represented by an
equilibrium point, whereby the states of the system do not change for the remainder
of the experiment. This is formally summarised as follows [2]:

Definition 4.1. A state x∗ is an equilibrium point of the system if, once x(t) = x∗,
x(t) remains equal to x∗ as t→∞.

The number of equilibrium points found on an n-link pendulum system is equal
to 2n, as demonstrated for the case of the DIP in figure 4.1. It is evident, however,
that reaching certain equilibrium points produces particular configurations that
cannot sustain the equilibrium once the system is disturbed, therefore indicating
that different operating points can demonstrate different stability characteristics,
even within one particular system. These concepts of stability are discussed in [2],
but are summarised below.

The local stability around an operating point is subject to the region of operation
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F I G U R E 4 . 1 : The equilibrium points of the unactuated DIP.

in question, which is defined arbitrarily. If the possible states are defined on a real
state-space �n, a ball (an operational region defined as BR) is constructed to enclose
the states located arbitrarily near to the operating point x∗ (i.e. BR is found within
the range ||x− x∗|| < R, where R represents the radius of BR). The ball represents
an open set of real numbers and therefore does not include the states found at the
boundary (a closed set is referred to as a sphere (�R)). The concepts of stability and
instability may now be defined with the use of this arbitrarily placed ball.

Let us construct a scenario where an operating point is located in the centre of an
arbitrarily defined ball of operation BR, with the initial states of the experiment
occurring within a smaller ball (i.e. x(0) ∈ Br) and is found on the 2D plane �2 in
figure 4.2. Lyapunov stability in this scenario is defined as follows [2]:

Definition 4.2. The operating point x∗ is said to be Lyapunov stable if the trajec-
tory of x(t) stays within the operating region defined by the ball BR whereby
||x(t)− x∗|| > R for all time in the experiment t ≥ 0 if the initial states occurred
arbitrarily close to operating point (||x(0)− x∗|| < r). The operating point is unstable
otherwise.

Lyapunov stability is defined for a ball BR where

∀R > 0, ∃ r > 0, ||x(0)|| < r => ∀ t ≥ 0, ||x(t)|| < R

[2]. A common unstable response, known as blowing up, is seen in first-order
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F I G U R E 4 . 2 : Concepts of Stability with (a) Asymptotic Stability (b)
Marginal Stability (c) Instability. Adapted from [2].

systems of the form
L̇(t) = αL(t) (4.1)

where L(t) represents a particular state, and α ∈ R+ represents the rate of growth.
Solving for this equation using the Laplace transform produces the time-domain
response

L(t) = L(0)eαt. (4.2)

This behaviour of the function in figure 4.3 demonstrates the ideal uncontrollable
growth of a population. It is clear that the population would never be able to fall
within an approximate operational domain around an operating point for all time.
This isn’t, however, the only form of unstable behaviour demonstrated by nonlinear
systems as the definition of instability is dependent on the size and placement of
the ball BR [2]. A perfect example is provided by the Van der Pol Oscillator, whose
dynamics are described as

ẋ1 = x2,

ẋ2 = −x1 + (1 + x2
1)x2
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F I G U R E 4 . 3 : The blowing-up form of instability.

[2]. These dynamics tend towards a limit cycle that, if found outside the region
of operation defined by BR, would lead to an unstable response, despite the fact
that the response is bounded within the limit cycle as seen in figure 4.4. Similarly,
the response would be seen as unstable even if the trajectory exits and then returns
to the region of operation. This is known as state convergence. This phenomenon is
understandably labelled as unstable since the behaviour of the trajectory outside of
the region of operation may be different, as seen when an aircraft returns to subsonic
operation after breaching the sound barrier [2].

The different forms of Lyapunov stability are defined by the behaviour of the
trajectory within the explicit domain of operation. Operational points that are Lya-
punov stable may be described as marginally, asymptotically or exponentially stable [2].
Marginally and asymptotically stable trajectories are defined as follows:

Definition 4.3. Marginally stable trajectories are Lyapunov stable, i.e. remain within
the operational domain represented by the ball BR for all time, but do not remain
approximately near to the operational point (in the area defined by Br) for all time.
In mathematical terms,

∀R > 0 , ∃ r > 0 , x(0) ∈ Br =>




∀t ≥ 0 , x(t) ∈ BR

t ∈ τ , x(t) /∈ Br

t→∞, x(t) 9 x∗
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F I G U R E 4 . 4 : The phase portrait of the Van Der Pol Oscillator, with
Trajectories originating in a ball with R = 1 and tending toward the

limit cycle. Adapted from [2].

where, in this case, τ ∈ � is a set that contains the values of time when x(t) exits the
ball Br.

Definition 4.4. Asymptotically stable trajectories are Lyapunov stable, remain
within the ball BR and will eventually converge on the operating point as time
tends towards infinity, where

∀R > 0 , ∃ r > 0 , x(0) ∈ Br =>

{
∀t ≥ 0 , x(t) ∈ BR

t→∞, x(t)→ x∗

[2].

Asymptotic stability infers that the trajectory will remain close to and converge
onto the operating point, but gives no description of the amount of time it would take
for the trajectory to converge. This estimation on the time it takes to approximately
reach the desired state allows for the description of exponential stability [2]:
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Definition 4.5. An operating point is exponentially stable if there exists two strictly
positive numbers λ and α whereby

∀t > 0 , ||x(t)− x∗|| ≤ α||x(0)− x∗||e−λt

within close range of the operating point x∗ (i.e. within the ball Br).

The trajectory will technically only reach the operating point if it is exponen-
tially stable and the initial states are sufficiently close to the operating point. An
approximate convergence can, however, be defined to describe the instance where
the trajectory is sufficiently close to operating point. The construction of a control
law that utilises exponential convergence can be chosen according to the desired
time of convergence, knowing that λ = 1/τ [2].

The aforementioned concepts of stability depend upon a local analysis of the dy-
namics around the operating point. The stability of an operating point cannot be
guaranteed if the initial condition of the system is not sufficiently close to the oper-
ating point. If a system hypothetically contains dynamics that allow the states to
tend towards the desired operating point from any initial condition, the operating
point is said to be globally stable [2]. More formally [2]:

Definition 4.6. An operating point is said to be globally stable if the operating point
is asymptotically stable for any set of initial conditions, or

x(0) ∈ �n => x(t)→ x∗ as t→∞.

Linear Time-Invariant (LTI) systems are always globally stable when found to be
asymptotically stable around an operating point. Additionally, unstable LTI systems
demonstrate instability in the form of blowing-up, as seen in figure 4.3 [2]. Nonlinear
systems are less predictable, but do demonstrate linear dynamics when evaluated
in a domain that is sufficiently close to the operating point [2]. The approximate
behaviour of a system found within this domain can be determined through the
implementation of Lyapunov’s linearisation method, which is discussed in section
5.2.1 [2].

4.3 Poles and Zeros

It may not always be convenient to determine the stability of a LTI system, or the
linearised approximation around some equilibrium point of a nonlinear system,
solely by evaluating the time-dependent response of each rate equation [95]. Luckily,
the stability of such a system can be more easily determined through the evalu-
ation of the system’s transfer function [95]. This function represents the system’s
time-dependent response (where 0 ≤ t <∞) in terms of a frequency response. This
function is produced with the use of the Laplace transformation [95]. The fundamental
principles behind the Laplace transform are not included in this dissertation, but
the following source provides a robust background on the topic [96].
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Consider the time-dependent representation of a LTI system described by

ẋ(t) = Ax(t) + Bu(t), (4.3)
y(t) = Cx(t) + Du(t). (4.4)

The transfer function of this system can be found through the implementation of

H(s) = C(sI −A)−1 + D (4.5)

where

s = σ + jω (the complex Laplace variable), and
I = The identity matrix.

The derivation of this equation can be found in [95]. The application of this equation
results in

H(s) =
b0s

m + b1s
m−1 + · · ·+ bm−1s+ bm

a0sn + a1sn−1 + · · ·+ an−1s+ an
, (4.6)

=
Z(s)

P(s)

[3]. Each expression in both the numerator and the denominator may be factorised
into components that represent each intercept of the respective polynomial, where

H(s) = K
(s− z1)(s− z2) . . . (s− zm−1)(s− zm)

(s− p1)(s− p2) . . . (s− pn−1)(s− pn)
. (4.7)

These factorised constituents are known as zeros (numerator) and poles (denominator)
[3] and are a direct consequence of the system’s characteristics. The polynomial in
the denominator of the expression is also known as the characteristic equation [3].
The positions of these intercepts may be graphically demonstrated on the complex
s-plane known as a pole-zero plot, an example of which is shown in figure 4.5. The
position of the poles are of greatest concern, as they are responsible for the system
stability [3]. If the poles are found to have an imaginary component, the response
will have some oscillatory behaviour [3]. Conversely, if the pole contains a real
component the response will contain some exponential behaviour, whereby the
response will be an exponentially decaying function if found on the left-hand side of
the pole-zero plot, and an exponentially increasing function if the pole is found on
the right-hand side of the pole-zero plot [3]. Therefore, the response of a LTI system,
or the linearised approximation of a nonlinear system around some equilibrium
point, will be unstable if a pole is found on the right-hand side of the pole-zero
plot. A marginally stable response is demonstrated by a system if the poles of its
characteristic equation are found precisely on the imaginary axis of the complex
pole-zero plot. The system in this case produces an indefinite oscillation when
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F I G U R E 4 . 5 : Generalised Pole-Zero plot. Adapted from [3].

stimulated with an impulse [3]. More information on the fundamental principles of
pole-zero plots and transfer functions can be found in [3].

4.4 The Routh-Hurwitz Stability Criterion

It is difficult, in cases where the characteristic equation has a high order, to identify
whether a polynomial expression is composed solely of stable roots. It is in these
scenarios that it would be more convenient to apply the Routh-Hurwitz stability
criterion to determine the stability of the system.

The Routh-Hurwitz criterion is a set of necessary and sufficient conditions that
must be satisfied for the roots of a particular polynomial to be found in the left-hand
side of the pole-zero complex plane [97]. A simple algorithm involving what is
known as the Routh array can be followed to test the criterion against the characteris-
tics of the polynomial. The algorithm is demonstrated in [98] but is included here as
this technique is integral to the core investigations in this research project:

(1) Extract the characteristic equation from the transfer function described as

a0s
n + a1s

n−1 + · · ·+ an−1s+ an = 0. (4.8)

(2) Construct the following Routh-Array by organising the coefficients of the
characteristic polynomial in the order
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sn a0 a2 a4 a6 . . .
sn−1 a1 a3 a5 a7 . . .
sn−2 b1 b2 b3 b4 . . .
sn−3 c1 c2 c3 c4 . . .
sn−4 d1 d2 d3 d4 . . .

...
...

...
...

...
...

s2 e1 e2

s1 f1

s0 g0

where the additional coefficients are defined as

bi =
a1a2i − a0a2i+1

a1
,

ci =
b1a2i+1 − a1bi+1

b1
,

di =
c1bi+1 − b1ci+1

c1
,

...
g0 = f1.

The number of conditions that need to be satisfied to insure that all the poles of the
system are found on the left-hand side of the complex plane is equal to n+ 1, where
n represents the order of the system. The criterion is stated as follows:

Criterion 4.1. (The Routh-Hurwitz Stability Criterion) All of the poles of a char-
acteristic equation are found in the left-hand plane of the pole-zero plot if all of
the coefficients found on the far-left column of the Routh array seen in step (2) of
the Routh array algorithm (termed the Critical Routh Coefficients) are found to be
identical in sign. If this is not satisfied, then a pole is found in the right-hand plane of
the pole-zero plot for every sign change that occurs between consecutive coefficients
in the far-left column of the Routh array.

As an example, the system, whose coefficients are contained within the Routh
array seen in (2) of the definition of the Routh-Hurwitz algorithm, will have all of
its poles found in the left-hand plane of the pole-zero plot if and only if

a0 > 0,

a1 > 0,

b1 =
a1a2 − a0a3

a1
> 0,

c1 =
b1a3 − a1b2

b1
> 0,

d1 =
c1b2 − b1c2

c1
> 0,
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...
e1 > 0,

f1 = g0 > 0.

If, for instance, e1 < 0 and f1 = g1 < 0, then there is one pole in the right-hand plane,
since there was one sign change between coefficients. Conversely, if e1 < 0 but
f1 = g1 > 0, then there are two poles in the right-hand plane of the pole-zero plot,
because the signs of the coefficients changed twice during the procedure. Numerous
examples of this procedure can be seen in [98].

The proof of Criterion 4.1 is not included in this dissertation, but the reader is
encouraged to read [99] to supplement this work if necessary.

4.5 Conclusion

This chapter was included in this dissertation to provide the reader with a basic
background on stability concepts involving system equilibrium points, pole-zero
plots, and the Routh-Hurwitz stability criterion. It is difficult to estimate the stability
of a nonlinear system on a global domain. If one were to restrict the domain to be
localised around a particular equilibrium point, however, important information
about the stability and behaviour of the equilibrium point in question may be re-
vealed with the use of linear stability analysis techniques such as the Routh-Hurwitz
stability criterion and the pole-zero plot. This concept of local stability analysis was
used in this research project to generate the aforementioned key contributions.



42

“If you can’t control your peanut butter, you can’t expect to control
your life.”

— Bill Watterson

Chapter 5

Introduction to Control Methods

5.1 Chapter Overview

This chapter is dedicated to discussing the control techniques and concepts that are
pertinent to this investigation. This discussion is aimed at introducing the reader
to these control methods before they are implemented for experimental purposes
in later chapters. The first section outlines Lyapunov’s theory of stability, which
include both his linearisation method and his direct method, whilst the second
section includes a discussion on the technique of feedback linearisation (FBL). Both
sections include examples that serve to assist the reader in developing a further
intuition into these control methods.

5.2 Lyapunov Theory and Control

This section gives a brief outline of the application of Lyapunov’s theories on stability
to the control environment. The theory is covered extensively in [2, pp. 40-99]. The
natural dynamics of the n-link pendulum produces a set of nonlinear, time-invariant
equations of motion (whereby the rates are explicitly described only by the system
states). The control theory will, therefore, only focus on applications to systems
containing these properties. Time-varying systems require the inclusion of the value
of the initial time of the experiment in the formulation of the stability concepts, as
described in [2, pp. 100-156].

5.2.1 Lyapunov’s Linearisation Method

The determination of the stability for a nonlinear system described with dynamics ẋ
about an equilibrium point 0 is described in [2, pp. 53-57]. This method is adapted
here to tackle the problem of determining the stability of a system around any
generalised operating point x∗, as equilibrium points may occur at states located
outside of the origin (as seen with the SIP). The system in this case is generalised as
an unactuated autonomous system, with dynamics

ẋ = f(x̃) (5.1)
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where f(x) is continuously differentiable, x̃ = x− x∗, and ˙̃x = ẋ. The dynamics can
be expanded in the form of a Taylor expansion [2], whereby

f(x̃) = f(x̃)

∣∣∣∣
x=x∗

+

(
∂f

∂x̃

)∣∣∣∣
x=x∗

x̃ +Oh.o.t(x̃).

The dynamics at the operating point f(x̃)|x=x∗ are equal to zero if the operating
point is an equilibrium point. Furthermore, the terms that have orders that are larger
than first-order are grouped together as the term Oh.o.t(x̃). A linear approximation
leads to the exclusion of the higher order terms, with

ẋ ≈
(
∂f

∂x̃

)∣∣∣∣
x∗

x̃.

The linearised unactuated system can therefore be described as

ẋ = Ax̃

with A representing the Jacobian matrix
(
∂f

∂x̃

)∣∣∣∣
x=0

. The stability of the system

may now be determined by first performing a Laplace Transform on the system,
assuming that the system begins at t = 0, where

L{ẋ} = sX̃(s)− x̃(0) = AX̃(s),

∴ X̃(s)(sI −A) = x̃(0)

where x̃(0) = x(0)− x∗. Solving for the function X(s), we find that

X(s) = (sI −A)−1x̃(0),

=
1

|sI −A|(sI −A)Tx̃(0).

It is apparent that the determinant |sI−A| represents the poles of the state response.
The eigenvalues of the system matrix A will, therefore, describe the stability of
the system around the equilibrium point x∗ with initial condition x̃(0), which is
sufficiently close to x∗. The following conclusions can be made of the stability
around the operating point [2]:

(1) Asymptotic stability about x∗ is guaranteed if all the eigenvalues are found in
the left-hand complex plane (real-negative) [2].

(2) If any eigenvalue is found in the right-hand complex plane (real-positive) the
system will have an unstable behaviour around the equilibrium point.

(3) No conclusion on the stability of the system can be made if all of the eigen-
values are found on the left hand plane with at least one eigenvalue found
on the complex imaginary axis (real-zero). The higher-order terms that were
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removed upon linearisation may have a significant role in the stability of the
system about the operating point in this case.

These conclusions can also be applied for actuated systems upon the derivation of
the system’s linearised form. Such a system, located about an equilibrium point x∗,
is represented as

ẋ = f(x̃) + g(x̃)u.

The Taylor expansion is used to introduce the linear form, whereby

ẋ = f(x̃)

∣∣∣∣x=x∗
u=0

+

(
∂f

∂x̃

)∣∣∣∣ x=x∗
u=0

x̃ +

(
∂g

∂u

)∣∣∣∣ x=x∗
u=0

u +Oh.o.t(x̃).

Again, the dynamics at the equilibrium point are zero, and the higher-order terms
are ignored to produce

ẋ ≈
(
∂f

∂x̃

)∣∣∣∣ x=x∗
u=0

x̃ +

(
∂g

∂u

)∣∣∣∣ x=x∗
u=0

u

= Ax̃ + Bu (5.2)

which is in a first-order linearised format. The input is most commonly defined in
terms of the states, producing an autonomous set of equations of motion. The input
can, in this case, be described in terms of the states, where

u =

(
∂u

∂x̃

)∣∣∣∣
x=x∗

x̃ = Gx̃. (5.3)

Therefore, substituting eq. (5.3) into eq. (5.2), we find that

ẋ = (A + BG)x̃. (5.4)

The stability of the system around the equilibrium point can, once again, be found by
following the procedure outlined above using the Laplace transform. The result of
this procedure demonstrates that the eigenvalues of the matrix (A + BG) must be
determined to evaluate the stability of an actuated, autonomous, nonlinear system
about a particular operating point [2]. This highlights an important, yet apparent,
point about actuation and stability, which is exploited in the control of intrinsically
unstable systems; actuation can be used to influence the system’s stability.

Lyapunov’s linearisation method provides important information about the sta-
bility of a system in small domains. It is difficult, however, to identify the size of
this region of operation without testing every potential point using a trial-and-error
approach. Additionally, it is an impossible task to implement this procedure over
an infinite number of points to determine a system’s global stability. The method
discussed in the next section tackles these shortcomings.
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5.2.2 Lyapunov’s Direct Method (LDM)

A major problem with Lyapunov’s linearisation method is not knowing the size of
the linear range around an equilibrium point, i.e. how far away from the equilibrium
point can an initial condition be set without nullifying the linear approximations
derived in section 5.2.1? This issue may be circumnavigated by determining the
behaviour of a system across a larger domain of operation. This possibility is
presented by LDM.

The Lyapunov Function

Let us consider an autonomous unactuated mechanical system that is continuously
losing energy due to some damping or friction. The mechanical energy of a system is
a positive definite function, with its time-related differential being negative definite
(this will be true for any system so long as the energy dissipated from the system is
greater than the energy introduced into the system). The mechanical energy will,
therefore, tend towards zero as time tends towards infinity. The system is guaranteed
to settle at an equilibrium point when the system’s total mechanical energy is zero,
regardless of whether the system is linear or non-linear [2]. Additionally, if the
friction is removed from the unactuated system, the change of energy in the system
will be zero, resulting in the oscillation of the states within a bounded region of
the equilibrium point associated with a zero-mechanical energy state. This is an
important observation; a locally Lyapunov stable system, whose properties were
described earlier in this chapter, will always be associated with an arbitrary scalar
function, known as the Lyapunov function (V (x)), that is positive definite, always
has a negative semi-definite slope, and has continuous partial derivatives [2]. In
mathematical terms,

∀ẋ = f(x̃), ∃R > 0, ∃ 0 < r ≤ R ,x(0) ∈ Br, x(t) ∈ BR =>

{
x 6= x∗, ∃V (x) > 0

∀ t ≥ 0, V̇ (x) ≤ 0.

It is apparent upon observation of this definition and the aforementioned stability
concepts that if the derivative of the Lyapunov function for a autonomous nonlinear
system V̇ (x) is found to be strictly negative definite (i.e. V̇ (x) < 0 for x ∈ BR and
x 6= x∗), and the Lyapunov function is zero at the equilibrium point (V (x∗) = 0)
with x(0) ∈ Br, then the system is defined as being locally asymptotically stable [2].
The global stability variant of this condition occurs when the balls BR and Br are
defined to be radially unbounded [2]. The asymptotically stable Lyapunov function
V (x) in figure 5.1 described by x ∈ �2 would graphically correspond to the surface
of an upright cup, with the equilibrium point forming the lowest point in the cup.

Invariant Set Theorem

It is less trivial to determine whether a system is asymptotically stable around an
equilibrium point if the associated Lyapunov function has a negative semi-definite
derivative. Tackling this problem involves the definition of what is known as
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F I G U R E 5 . 1 : Typical upright cup shape of the Lyapunov function of
an asymptotically stable equilibrium point 0 (left) with correspond-

ing contour curves (right). Adapted from [2].

an invariant set, first defined by La Salle in his formulation of the Invariant Set
Theorems [2]:

Definition 5.1. A set G is an invariant set if, for a system with dynamical equations,
each system trajectory that begins in or enters G will remain in G for all future time.

The definition of an invariant set is subjective. For instance, an equilibrium point
may form part of an invariant set as the system states will not move off this point
once the equilibrium point has been reached. Alternatively, the entire state space of
a system may also be defined as an invariant set as the system is never expected to
leave this state space regardless of how it behaves. The definition of the invariant
set determines how useful it is in determining system asymptotic stability.

The principle of invariant sets is well suited to Lyapunov stability theory as the
Lyapunov function is expected to converge to zero once the system has reached the
desired equilibrium point, which is invariant. This is clarified through the definition
of the local invariant theorem [2]:

Theorem 5.1. (Local Invariant Set Theorem) For a time-invariant system of the form
ẋ = f(x̃), where f(x̃) is continuous, there exists a continuously differentiable scalar function
V (x) < l which defines a bounded neighbourhood Ωl where l > 0. Let the set R represent
all states in Ωl where V̇ (x) = 0, and the set M represents the union of all invariant sets
in R. If the time-differential of this function V̇ (x) is negative semi-definite for all x in the
region Ωl, then every trajectory x(t) originating in the space Ωl will tend toward the space
M as t→∞.

More specifically, the invariant set M in figure 5.2 represents the collection of
states that are associated with V̇ (x) = 0 and will remain there as t→∞. The set R
will be completely composed of M if there are no states where V̇ (x) = 0 for only a
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F I G U R E 5 . 2 : Lyapunov function converging to invariant set M.
Adapted from [2].

finite amount of time.

An equilibrium point of a system that is associated with a negative semi-definite
V̇ (x) across the entire state space can be proven to be globally asymptotically stable
by extending the radius of the neighbourhood Ωl toward an unbounded state (i.e.
where l→∞), resulting in the global invariant set theorem.

Identification of Lyapunov Functions

It is trivial to construct a Lyapunov function for a LTI system, having the quadratic
form

V (x) = x̃TPx̃ (5.5)

[2]. Differentiating the Lyapunov function, we find that

V̇ (x) = ẋTPx̃ + x̃TPẋ (5.6)

[2]. Remembering that that structure of an unactuated LTI system with equilibrium
point x∗ is well-defined as ẋ = Ax̃, eq. (5.6) can be simplified as

V̇ (x) = −x̃TQx̃ (5.7)
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where
−Q = ATP + PA (5.8)

[2]. As stated in the definition of a Lyapunov function, the differential V̇ (x) must be
strictly negative semi-definite, therefore requiring that Q be strictly positive definite
(where x̃TQx̃ > 0 when x̃ 6= 0) [2]. Similarly, the Lyapunov function V (x) must be
positive definite, leading to the conclusion that the candidate matrix P must be
defined as a positive definite matrix as a necessary condition for asymptotic stability
around an equilibrium point. The procedure of determining the candidate matrix P
is described as follows [2]:

(1) Define a positive definite matrix Q.

(2) Solve for the candidate matrix P using eq. (5.8).

(3) Identify whether P is positive definite. If so, the LTI system in question is
asymptotically stable around the equilibrium point x̃ = �.

The most trivial example of a positive definite matrix is the identity matrix (I), which
can be chosen for matrix Q. This choice not only introduces mathematical simplicity,
but also is the optimal choice for determining the exponential convergence rate of
the asymptotically stable trajectory of a LTI system [2, pp. 91-93].

There are many available methodologies of estimating the Lyapunov function for
non-linear systems, one of which is known as Krakovskii’s method. This method
allows for the definition of a Lyapunov function in the form

V (x) = f(x̃)Pf(x̃). (5.9)

This method is based on the Krakovskii theorem, which is discussed in detail in [2, p.
85].

Another formal approach of determining Lyapunov functions of a nonlinear system
is known as the Variable Gradient method [2]. This method involves the calculation
of a Lyapunov function through the integral of a set of known gradient functions,
where

V (x) =

N∑

i=1

∫ xi

0
∇Vi(x)dxi (5.10)

and where∇V (x) =

[
∂V (x)

∂x1
, . . . ,

∂V (x)

∂xN

]
. The variable gradient method can only

be used to find the Lyapunov function V (x) if and only if the matrix ∇2V (x) is



Chapter 5. Introduction to Control Methods 49

symmetric, where

∇2V (x) =




∂2V (x)

∂x2
1

∂2V (x)

∂x1∂x2
· · · ∂2V (x)

∂x1∂xN
...

...
. . .

...
∂2V (x)

∂xn∂x1

∂2V (x)

∂xn∂x2
· · · ∂2V (x)

∂x2
N




(5.11)

[100]. It is evident that the following condition must be satisfied if this matrix is to
be symmetric, where

∂∇V (x)i
∂xj

=
∂∇V (x)j
∂xi

(i, j = 1, 2 . . . , N) (5.12)

[100]. This prerequisite is known as the curl condition. It can be assumed that the
gradient functions have a specific form described by

∇Vi(x) =
N∑

j=1

aijxj (5.13)

once the curl condition is satisfied [2]. The terms aij represent a set of unknown
coefficients that are to be determined. The general procedure for determining a
Lyapunov function for a nonlinear system using the Variable Gradient method is,
therefore, described as follows:

(1) Express the elements of matrix∇V (x) as∇Vi(x) =
∑N

j=1 aijxj .

(2) Determine the values of the coefficients aij , keeping in mind that the curl
condition needs to be satisfied.

(3) Ensure that V̇ (x) = ∇V (x)ẋ is negative definite in a neighbourhood Ω around
the equilibrium point. Restrict the coefficients aij if necessary.

(4) Calculate the Lyapunov function V (x) from ∇V (x) using integration.

(5) Identify whether V (x) is positive definite.

There are not many other general methods of determining the Lyapunov function
of a nonlinear system, an evidently major constraint to this technique of stability
analysis. The autonomous nature of the Lyapunov function, however, allows for
the expression of the time differential V̇ (x) in terms of the system’s dynamical
equations, such as

dV (x)

dt
=
∂V (x)

∂x

dx

dt
=
∂V (x)

∂x
f(x). (5.14)

This expression does not provide an explicit means of determining the Lyapunov
function, but can be used to check the validity of the choice of Lyapunov function.
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In many cases, the implementation of the aforementioned methods does not produce
an appropriate Lyapunov function. It is important to note, however, that the system
cannot be identified as being unstable if the choice of Lyapunov function does not
provide sufficient evidence to prove stability. The process must be iterated until a
more accurate Lyapunov function.

General Procedure for Lyapunov Analysis

A summary of the procedure of Lyapunov’s stability analysis is provided below:

(1) Identify the system’s equations of motion and identify the relevant equilibrium
point.

(2) Identify a candidate Lyapunov function V (x) for the system. A quadratic
Lyapunov function candidate will be sufficient for a linear system, whereas a
positive definite function for a nonlinear system will require more intuition,
and possibly the implementation of methods such as the Krakovskii or Variable
Gradient methods.

(3) Determine if the candidate Lyapunov function remains positive definite within
a satisfactory domain of operation Ω. Repeat the previous step if otherwise.

(4) Identify the behaviour of the candidate Lyapunov function by deriving V̇ (x).
If V̇ (x) is negative definite throughout Ω, then the equilibrium point is asymp-
totically stable within Ω. The equilibrium point is Lyapunov stable within Ω
if V̇ (x) is negative semi-definite within Ω. Invariant set theorem will be re-
quired to determine asymptotic stability in this case. If the candidate functions
fails, it does not immediately suggest that the system is unstable around the
equilibrium point. If there is a suspicion of stability, more candidate functions
must be identified.

Example of the implementation of this method are shown in appendix B, including
an example of the implementation of the aforementioned procedure using the
system’s mechanical energy as the Lyapunov function (Example B.1), and where the
Lyapunov function of a system is found using Krakovskii’s method (Example B.2).
The steps in these examples are enumerated as seen in the generalised procedure
presented in this section.

5.3 Feedback Linearisation

The work of Spong in [6, 76] highlights another popular technique used in the
swing-up control of UMSs, namely the PFL technique. This chapter is dedicated to
highlighting the important concepts that form the foundation of this technique.
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5.3.1 Feedback Linearisation using the Controllability Canonical Form

Feedback linearisation involves the transformation of non-linear systems into equiv-
alent linear representations to allow for the application of linear control methods [2].
This form of linearisation differs from that of the Lyapunov linearisation method
highlighted in section 5.2.1 in that the linearised system dynamics of order n main-
tain their linear characteristics across a large region (if not all) of the domain Rn in-
stead of only representing an approximation about an equilibrium point x∗ ∈ Rn [2].
This is achieved through state transformation as shown in figure 5.3, enforced by
the actuators of the system through feedback [2].

F I G U R E 5 . 3 : State transformation introduced through actuated
feedback. Adapted from [4].

Therefore, for a MIMO nonlinear system with m inputs and outputs, whose dy-
namics are described by the companion form (or mth order controllability canonical
form)

ẋ =




x2

x3
...
xi

f1(x) + g1(x)u1

xi+2
...

xn−1

xn
fm(x) + gm(x)um
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where ẋ ∈ Rn, choosing the static feedback control law

u(t) = α(x) + β(x)v(t)

= −g−1(x)f(x) + g−1(x)v(t) ∈ Rm

with

g(x) =




g1(x) 0 0 . . . 0
0 g2(x) 0 . . . 0
...

. . . . . . . . .
...

0
. . . gm−1(x) 0

0 0 . . . 0 gm(x)



∈ Rm×m

and

f(x) =
[
f1(x) f2(x) . . . fm(x)

]T ∈ Rm,
v =

[
v1 v2 . . . vm

]T ∈ Rm

results in the fully-linearised system dynamics described by

ẋ =

[
p1=i︷ ︸︸ ︷

x2 x3 . . . xi−1 v1 xi+1 . . . xn−1 xn vm

]T

(5.15)

[2, 4]. A tracking controller may now be designed for each new input in v, with
each input vj being associated with rj states, as shown in eq. (5.15) (whereby v1 is
associated with p1 = i states, being x1, x2, . . . , xi). Summing all of the associated
coefficients would intuitively represent all n states (i.e.

∑m
i=1 pi = n). The tracking

controllers are represented as

v(t) =




v1

v2
...
vm


 =




ẋdΣ1
− k01e1 − k11 ė1 − · · · − k(p1−1)1e1

(p1−1)

ẋdΣ2
− k02e2 − k12 ė2 − · · · − k(p2−1)2e2

(p2−1)

...
ẋdΣm − k0mem − k1m ėm − · · · − k(pm−1)mem

(pm−1)


 (5.16)

where

Σj =

j∑

i=1

pi
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and where the tracking error for the ith DOF measured in reference to the desired
trajectory values is represented as ei(j) = xαi

(j+1) − xdαi
(j+1) with

αi =

i∑

q=2

pq−1 + 1 for 1 ≤ i ≤ m

and 0 ≤ j ≤ pi − 1 [2]. It is evident that e(pi)
i = ẋΣi − ẋdΣi = vi − ẋdΣi . Substituting

this expression into the entries of eq. (5.16) for 1 ≤ i ≤ m produces

ep11 + kp1−1e
(p1−1)
1 + · · ·+ k11 ė1 + k01e1 = 0,

ep22 + kp2−1e
(p2−1)
2 + · · ·+ k12 ė2 + k02e2 = 0,

...

epmm + kpm−1e
(pm−1)
m + · · ·+ k1m ėm + k0mem = 0.

It is apparent that the poles of each of these differential equations are found on the
left-half of the complex pole-zero plane, thus representing a set of stable signals that
will tend towards the desired trajectory. Additionally, if the outputs are explicitly
defined as

y(t) = h(x)

=
[
x1 xΣ1 xΣ2 . . . xΣm−1

]T ∈ Rm

then pi can be referred to as the relative degree of the system [2].

The procedure shown above demonstrates the basic principle behind feedback
linearisation, but it can only be applied to a system that subscribes to the control-
lability canonical form [2]. More complex systems will require the implementation
of a formalised feedback linearisation technique [2]. Two of these techniques are
discussed in this section, namely the Exact Linearisation via Feedback Linearisation
(ELFBL) and the Input-Output Feedback Linearisation (IOFBL) techniques. There
is no introductory sections that are introduced in this chapter to discuss the math-
ematical tools that are used to derive each of these techniques (including the Lie
derivative, coordinate transformations, the normal form, and relative degree). The
reader is encouraged to refer to [2] if introductory material on these tools is required.

5.3.2 Exact Linearisation via Feedback Linearisation (ELFBL)

The objective of this technique (illustrated in figure 5.4) is to present a state-space of
the form

ż(t) = Az(t) +Bv(t) (5.17)

by means of a coordinate transformation of the x state-space (represented as the
companion form of square control affine nonlinear system) and system feedback
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F I G U R E 5 . 4 : ELFBL, described by the (a) coordinate transforma-
tion (b) the linearisation loop and (c) the outer control loop. Figure

adapted from [2].

using the static feedback control input

u(t) = α(x) + β(x)v(t)

where α(x) ∈ Rm and β(x) ∈ Rm×m [101]. A pole-placement linear state feedback
control law is subsequently designed for the new input vector v to stabilise the
dynamics of the closed-loop [2]. A diffeomorphism may simplify the dynamics
of a complex nonlinear system if an appropriate transformation is selected [2]. It
is quite evident, however, that the transformed state-space seen in eq. (5.17) is
not guaranteed if there are internal dynamics in the system (i.e. if there are n − r
equations φr+1, φr+2, . . . , φn that fall out of the Lie derivative iteration) [2]. These
equations may be intrinsically nonlinear and cannot be linearised by feedback since
the dynamics are unobservable from a feedback perspective [101]. Therefore, it is
possible to demonstrate the exact linearisation of a square control affine nonlinear
system with relative degree r = n about an operating point x0 with the procedure
found below.

Consider the transformed dynamics of a square control affine nonlinear system
described by

ξ̇i =




ξ̇i1
ξ̇i2
...

ξ̇iri−1

ξ̇iri




=




ξi2
ξi3
...
ξiri

bi(ξ) +
m∑
j=1

aij(ξ)uj




which is in normal form for 1 ≤ i ≤ m and 1 ≤ j ≤ m, and where η is excluded since
r = n [101]. This state-space has m possible nonlinear components represented by

bi(ξ) +
m∑
j=1

aij(ξ)uj [101]. These components will be linearised about the operating
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point x0 using the m control feedback inputs, choosing a new desired input vi for
each nonlinear component, where 1 ≤ i ≤ m [101]. Therefore, asserting the equality
ξ̇iri = v ∈ Rm allows for the definition of

vi = bi(ξ) +

m∑

j=1

aij(ξ)uj ,

∴ v(t) = b(ξ) + C(ξ)u(t)

where

b(ξ) =
[
b1(ξ) b2(ξ) . . . bm(ξ)

]

and C(ξ) is the characteristic equation described in terms of ξ [2]. The control input
can thus be defined as

u(t) = C−1(ξ)
(
v − b(ξ)

)
(5.18)

[101]. Substituting this feedback control into the transformed state-space produces

ξ̇i =




ξ̇i1
ξ̇i2
...

ξ̇iri−1

ξ̇iri




=




ξi2
ξi3
...
ξiri
vi



.

Making

z = ξ(x)

=
[
ξ1

1 . . . ξ1
r1 . . . ξm1 . . . ξmrm

]T

we find that

ż(t) = Az(t) +Bv(t)

where

A =




0r1−1,1 Ir1−1 0r1−1,n−Σ1

01,n

0r2−1,Σ1+1 Ir2−1 0r2−1,n−Σ2

01,n
...

...
...

0rm−1,Σm−1+1 Irm−1 00

01,n




, B =




0r1−1,m

00 1 01,m−1

0r2−1,m

01,1 1 01,m−2
...

...
...

0rm−1,m

01,m−1 1 00
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with A ∈ Rn×n, B ∈ Rn×m, 00 representing an empty matrix, and

Σi =
i∑

j=1

rj .

A pole-placement linear state feedback control law can now be designed for the new
input v(t), which is defined as

v(t) = −kTz

where k represents the gain matrix

k =
[
k1 k2 . . . kn

]T
.

This technique may produce elegant results, but it is limited in applications that are
fully-actuated with respect to the chosen outputs y(t) = h(x) [2]. The technique
discussed in the next subsection is more flexible to varying states of system actuation.
An example of the application of the ELFBL technique is provided in appendix B
(Example B.3).

5.3.3 Input-Output Feedback Linearisation (IOFBL)

Instead of focussing on the transformation of the entire system state-space, one
could design a controller input u(t) such that the relationship between the newly
introduced input v(t) and the output y(t) is linear (hence the term input-output
linearisation) [4]. The result of this procedure produces a controllable output that
places no requirement on the state of system actuation, provided that the internal
dynamics of the system are stable [4]. There are a number of propositions and
definitions that lead up to the final theorem behind the choice of IOFBL input u(t)
for a MIMO system, but these are omitted for the sake of brevity (these definitions
and propositions are explained in detail in [4, 102]).

Theorem 5.2. (Generalised Input-Output Feedback Linearisation) If a system de-
scribed by the companion form

ẋ(t) = f(x) + g(x)u(t), (5.19)
y(t) = h(x)

with y(t) ∈ Rm and u(t) ∈ Rm and described by relative degrees r = {r1, r2, . . . , rm} has
a static feedback controller described by the general form

u(t) = α(x) + β(x)v(t)
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which can be represented as

u(t) =

(
ΛmC(x)

)−1
[
v(t)−

m∑

i=1

ri∑

k=0

λikL
k
fhi(x)

]
(5.20)

where

Λm =
[
λ1r1

. . . λmrm
]
∈ Rm×m

with each associated linear operator entry λik =
[
λ1
ik
, λ2

ik
, . . . , λmik

]T
∈ Rm and with

C(x) defined as the characteristic equation, then the relationship between the new input
v(t) ∈ Rm and the output y(t) ∈ Rm is described as

m∑

i=1

ri∑

k=0

λik
dkyi
dtk

= v(t) (5.21)

provided that the relative degrees in r are well defined and that λik satisfies

det

([(
r1∑
k=0

λ1ks
k

) (
r2∑
k=0

λ2ks
k

)
. . .

(
rm∑
k=0

λ1rs
k

)])
= B(s) = 6= 0, (5.22a)

det
([
λ1r1

λ2r2
. . . λmrm

])
= Λm 6= 0. (5.22b)

The relationship between the desired input v(t) and the output y(t) may be represented in
the Laplace domain, whereby

y(s) = G(s)v(s) =
[
B(s)

]−1
v(s).

An easy way of satisfying the conditions highlighted in eq. (5.22a) and (5.22b) is
to define the linear operator λik as

λik = 0m×1 for
{

1 ≤ i ≤ m;
0 ≤ k < ri.

,

λpiri
= 0 for





1 ≤ i ≤ m;
1 ≤ p < i;
i < p ≤ m.

,

λpiri
= 1 for

{
1 ≤ i ≤ m;
p = i.

.

This results in

Λm = Im, B(s) = Insk
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where

sk =
[
sr1 sr2 . . . srm

]T ∈ Rm.

It is clear that eq. (5.22a) and eq. (5.22b) are satisfied in this instance. The control
law in eq. (5.20) simplifies to

u(t) = C−1(x)

[
v −

m∑

i=1

λiriL
ri
f hi(x)

]
,

= C−1(x)(v(t)− b(x)) (5.23)

with the relationship seen in eq. (5.21) simplifying to

y
(ri)
i = vi for 1 ≤ i ≤ m. (5.24)

An appropriate linear state feedback control law may now be designed to define the
behaviour of each output yi. The result depicted in eq. (5.24) is one that is typically
seen in discussions on IOFBL (including [2]), and is a direct consequence of defining
the relationship between y(t) and v(t) through the direct differentiation of yi(t) for
1 ≤ i ≤ m (the output is repeatedly differentiated until some input uk(t) appears in
the associated expression). The number of differentiations for yi(t) strictly defines
the relative degree ri.

Continuing with this variant of IOFBL, and using the diffeomorphism principle
discussed in [2], we can define the outputs y(t) in terms of the transformation Φ(x),
whereby

y(t) =




h1(x)
h2(x)

...
hm(x)


 =




φ1
1(x)
φ2

1(x)
...

φm1 (x)




with the derivatives of the ith output with respect to time (where 1 ≤ i ≤ m)
represented as




yi

y
(1)
i
...

y
(ri)
i




=




φi1
φi2
...
φiri


 =




ξi1
ξi2
...
ξiri


 .
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If r < n, the internal dynamics of the system may be represented as

η(x) =




φr+1(x)
φr+2(x)

...
φn(x)


 =




η1(x)
η2(x)

...
ηn(x)




where r =
∑m

i=1 ri. The total transformed state-space is therefore represented as

ξ̇(x) =
[
ξ̇1 ξ̇2 . . . ξ̇m

]T ∈ Rr,
η̇ = q(ξ, η) ∈ R(n−r),

y(t) =
[
ξ1

1 ξ2
1 . . . ξm1

]
∈ Rm

where, according to the result in 5.24,

ξ̇i =




ξ̇i1
ξ̇i2
...

ξ̇iri−1

ξ̇iri




=




ξi2
ξi3
...
ξiri
vi



.

It is evident from the state-space model derived above that performing IOFBL
on a system with r = n will produce the same result as the ELFBL procedure.
If the system is underactuated (r < n), however, exact linearisation cannot be
performed, resulting in the population of the internal dynamics vector η(t) [2]. It
may, in some instances, be beneficial to linearise the observable dynamics to reduce
the complexity of the system, regardless of the system’s intrinsic underactuated
nature [15]. This procedure, typically performed using IOFBL, is known as PFL,
a popular technique in the field of swing-up control of underactuated mechanics,
as highlighted in Spong’s work (see [6, 9, 34, 76]). The PFL technique, its variants,
and its application on UMSs will be discussed in greater detail in chapter 9. An
example of the implementation of the IOFBL technique on a fully-actuated system
is included in appendix B (Example B.4).

5.4 Conclusion

The objective of this chapter was to highlight key concepts pertaining to control
methods that are relevant to this investigation, including Lyapunov’s theories of
stability and the feedback linearisation technique. Lyapunov’s linearisation method
is used to transform the nonlinear dynamics of a system into a linear state-space that
is valid when found approximately near an operating point. This is useful when
the stability of a nonlinear system across a large domain is difficult to determine,
or if the system stability only needs to be determined for an approximate region
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about an operating point. It is challenging, however, to intuit the size of the do-
main of attraction around the operating point when this method is used, whereby
the appropriate region of operation about the equilibrium point can only be deter-
mined using trial-and-error. The identification of invariant sets in the state-space
using a valid Lyapunov function provides a more accurate picture of nonlinear
system stability on a larger domain (which may, in certain instances, be valid across
the global state-space). Additionally, appropriate invariant sets may be created
through actuated state-feedback, as outlined in the LDM technique. This method
has been successfully used to perform swing-up control on a number of UMSs,
as outlined in Xin and Liu’s work. Identifying a valid Lyapunov function for any
particular nonlinear system is typically challenging since there is no formalised
identification technique currently available in existing literature, with the exception
of Krakovskii’s method and the variable gradient method (which are particularly
situational). The feedback linearisation technique, in basic terms, involves the nega-
tion of the nonlinear dynamics of a system with the use of state feedback through
system actuation. Two popular techniques discussed in this chapter include the
ELFBL and IOFBL techniques. ELFBL involves both coordinate transformation and
state-feedback, with the equivalence of the relative degree of the system (r) and the
system order (n) being a prerequisite of this technique. IOFBL is more robust to
differences in relative degree and system order, focussing on the linearisation of
the system output dynamics rather than on the state-space; IOFBL may therefore
be used to partially linearise an underactuated system. Despite this advantage, the
partial linearisation of an underactuated system (with r < n) using feedback results
in the formation of unobserved system dynamics (termed internal dynamics), which
must be evaluated to ensure system stability. Performing IOFBL on a fully-actuated
system produces the same results as the ELFBL technique, as demonstrated in the
examples of this chapter.

As mentioned before, the techniques discussed in this chapter are all pertinent
to this research investigation, and are implemented in the finalising chapters of this
dissertation. The next two chapters, however, must first be introduced to discuss
the important models that are derived for this investigation, beginning first with the
friction model.
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“This is what happens when an unstoppable force meets an im-
movable object.”

— The Joker

Chapter 6

Viscous Damping Model

6.1 Chapter Overview

This chapter is dedicated to discussing the concept of viscous damping friction, a
physical phenomenon that will be integrated into the conventional model chosen for
this research, as discussed in the literature review. We generalise the behaviour of an
unactuated compound pendulum system that has been integrated with this viscous
damping friction model using LDM to demonstrate the effects of viscous damp-
ing friction on nonlinear systems. This generalisation is simulated on a viscously
damped DIP. A high-level description of viscous damping using the linear mass-
spring-damper system is provided in appendix C for supplementation, whereby the
movement of the mass is described in the undamped, underdamped and damped
cases.

6.2 Mathematical Representation of Viscous Damping Fric-
tion for Multi-body Pendulum Systems

As seen in the mass-spring-damper model in figure C.2 of appendix C, the damping
torque produced as a result of the viscous damping friction model is directly propor-
tional to some damping coefficient (b) and the velocity of the associated mass [82].
There is significant literature that suggests that viscous damping may be represented
in a similar manner in the angular coordinate systems, whereby the viscous damping
torque seen at a joint is directly proportional to the angular velocity of the rotational
object [81, 103, 104]. The damping torque for a single joint is represented as

τdi = biq̇i. (6.1)

These damping torques must be encompassed by the lossy matrix R(q, q̇) of the sys-
tem’s prototypical form as discussed in section 3.3.3. The viscous damping torques
of the multi-link pendulum system are, therefore, represented in the prototypical
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form, where

R(q, q̇) =




b1q̇1 0 0 . . . 0

0 b2q̇2 0
. . .

...

0 0 b3q̇3
. . . 0

...
. . . . . . . . . 0

0 . . . 0 0 bnq̇n




(6.2)

and where the system energy is expected to change with respect to time as described
by

d
dt
E = −q̇TR(q, q̇) + q̇TG(q)u. (6.3)

This is similar to eq. (3.25), but the conservative torque matrix J(q, q̇) is removed
since q̇TJ(q, q̇)q̇ = 0.

6.3 Effect on the Dynamics of Pendulum Systems

It is evident that if a damped system is unactuated, the system energy will continue
to dissipate until the system reaches a stable equilibrium point, as shown in eq.
(6.3). It is, however, more difficult to mathematically prove that viscously damped
nonlinear systems, such as the DIP, will exhibit this type of behaviour. The time-
explicit behaviour of a damped pendulum system found approximately near a
stable equilibrium point has been shown in [81, 103], but a global description of the
behaviour of a damped system is not, to the knowledge of the author, included in
existing literature. LDM may not provide a time-explicit equation describing the
behaviour of each pendulum, but it can be used in this instance to determine the
general tendency of the system dynamics. The behaviour of this system is described
in the following section using LDM.

6.3.1 The Damped Pendulum and Lyapunov’s Direct Method

If S is a set of all possible states of the pendulum system, let us define an invariant
set W as a subset of this set S, which is described by the state conditions

W =

{
(q∗, 0)

∣∣∣∣ V (q,q̇) = V ∗; V̇ (q,q̇) = 0

}
; W ⊂ S; S ∈ Rn×2

where V (q,q̇) represents a Lyapunov candidate function, which must be formu-
lated. To do this, consider the dynamical equations of an underactuated multi-body
pendulum system demonstrated in chapter 7 (eq. (7.23)). The Lyapunov candidate
function

V (q,q̇) =
1

2
(E − Er)2 (6.4)
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is arbitrarily constructed for this system where

Er = −
n∑

i=1

mi

[
li +

i−1∑

j=1

Lj

]
. (6.5)

This function is evidently positive semi-definite for all time, with the function’s
minimum occurring when the pendulum system reaches the FPEP, which is the
expected goal of a damped system. The time-differential of the Lyapunov function
is described as

V̇ (q,q̇) = (E − Er)Ė
= −(E − Er)q̇TR(q,q̇). (6.6)

The R(q,q̇) matrix is positive semi-definite, therefore V̇ (q,q̇) is guaranteed to be
negative semi-definite. The following lemma is formally stated as a result of this
scenario:

Lemma 6.1. The trajectory of a damped unactuated compound pendulum system
will always tend toward the invariant set W as t→∞.

It is evident that the invariant set is made up of a collection of states that are
associated with the equilibrium points of the system, whereby

q∗ =




q∗1
q∗2
q∗3
...
q∗n




=




k1π
k2π
k3π

...
knπ



, where ki ∈ Z, i = 1, 2, . . . , n.

These equilibrium points will be found at varying potential energy levels, with the
highest potential energy level (E = |Er|) occurring at the UEP, whereby

q∗u =




q∗u1
q∗u2
q∗u3

...
q∗un




=




2k1π
2k2π
2k3π

...
2knπ



. (6.7)

These states are found in a newly defined invariant set Wu, which is characterised
by

Wu =

{
(q∗u, 0)

∣∣∣∣ V (q,q̇) = 2Er
2; V̇ (q,q̇) = 0

}
. (6.8)

Additionally, the invariant set may be associated with many possible states (accord-
ing to the values of ki), but these states all result in the same physical configuration
(i.e. with all pendulums found in the pendant position, represented by item (d) in
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figure 4.1). This will be referred to, from now on, as the equilibrium configuration.

The lowest potential energy (E = Er) will occur at the FPEP, found within the
newly defined invariant set Wp described by the states

q∗p =




q∗p1
q∗p2
q∗p3

...
q∗pn




=




π + 2k1π
2k2π
2k3π

...
2knπ



. (6.9)

Wp is defined by

Wp =

{
(q∗p, 0)

∣∣∣∣ V (q,q̇) = 0; V̇ (q,q̇) = 0

}
. (6.10)

The invariant sets Wu and Wp in figure 6.1 are, evidently, subsets of W, along with
the other equilibrium points (found in the invariant set Ω). Therefore

W = Wu ∪Wp ∪ Ω, Wu ∩Wp = ∅, Wu ∩ Ω = ∅, Wp ∩ Ω = ∅.

It is important to note that the sets Wu and Wp are associated with one unique
equilibrium configuration each (the fully-inverted and fully-pendant configuration
respectively), whereas the set Ω is associated with multiple unique configurations.
With the explicit statement of lemma 6.1, it is evident that the trajectory of the
damped unactuated multi-body pendulum system must find a final equilibrium

F I G U R E 6 . 1 : The invariant sets of the possible equilibrium coeffi-
cients found as a subset of S. The system trajectory tends towards the
invariant set W with initial conditions x(0) according to lemma 6.1.
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point within the many subsets of W, each associated with a particular equilibrium
configuration. This begs the question: which invariant set will be the eventual outcome
of the system’s trajectory? There is certainly no true answer to this question that can
be derived from invariant set theory. There are, however, a couple of considerations
that provide substantial context to this problem.

The first consideration involves the relationship between the pendulum system’s
configuration at each possible equilibrium, the system energy seen at each config-
uration, and the associated Lyapunov function magnitudes. The argument of this
observation is structured according to the following considerations:

(i) The mechanical energy of the pendulum system at any equilibrium point
will be solely dependent on the system’s potential energy, since q̇ = 0 at
equilibrium.

(ii) The Lyapunov function is directly proportional to the pendulum system’s
mechanical energy (as seen in eq. (6.4)).

(iii) The Lyapunov function has a negative semi-definite rate (as seen in eq. (6.6)).

(iv) Therefore, if the pendulum system is initialised with a mechanical energy
that is less than that of the potential energy associated with an invariant set
Φa ⊂W, then the invariant set Φa is guaranteed to be excluded as an outcome
of the system trajectory. This is because the system is initialised with a smaller
Lyapunov function magnitude (step (ii)), and thus the outcome Φa cannot be
achieved due to step (iii) of this argument.

This observation basically states that it is impossible to have a particular equilib-
rium configuration as an outcome of the damped system trajectory if the initialised
mechanical energy of the system is smaller than that of the potential energy asso-
ciated with the equilibrium configuration. Therefore, a number of invariant sets
demonstrated in figure 6.2 can be excluded as possible outcomes according to the
system’s initialised mechanical energy. This concept is termed configurational ex-
clusion, whereby the DIP contains four equilibrium points, namely the UEP, the
Partially-Inverted Equilibrium Point (PIEP), the Partially-Pendant Equilibrium Point
(PPEP) and the FPEP.

Another observation is made concerning the stability of each possible equilibrium
configuration found in the invariant set W. It is evident that the FPEP is stable,
because the Lyapunov function associated with the invariant set Wp is zero. This
represents the absolute minimum of the Lyapunov function. Any small disturbances
about this equilibrium point will simply cause the system to drive back towards the
FPEP once again, thus demonstrating asymptotic stability about this equilibrium
point. This is not, however, true for the other equilibrium configurations. The posi-
tive semi-definite nature of the Lyapunov function for all other invariant sets has the
potential to decay because the associated Lyapunov functions are all non-zero. Any
disturbances about these equilibrium points will cause the system to tend towards
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F I G U R E 6 . 2 : The principle of configurational exclusion. The Ac-
robot (left) is initialised with a mechanical energy (dashed line) that
is lower than the potential energy found at the UEP (i), but is larger
than the potential energies of the PIEP (ii), PPEP (iii) and the FPEP

(iv). The invariant set associated with the UEP is thus excluded.

the pendant equilibrium point, where the associated Lyapunov function is zero.

Both of these observations lead to the expansion of lemma 6.1, which is stated
as lemma 6.2

Lemma 6.2. The trajectory of a damped unactuated pendulum system is guaranteed
to have a final outcome that is found within the invariant set W, with the most
probable outcome being the invariant set Wp. Achieving an outcome in the sets Wu

or Ω is improbable since the equilibrium points associated with these sets are locally
unstable. Additionally, the equilibrium points found within the invariant set Wu

and sets in Ω can potentially be excluded as an outcome candidate if the pendulum
system is initialised with a smaller mechanical energy as compared to the potential
energy associated with these equilibrium points.

6.3.2 Results

The effects of lemma 6.2 are simulated on an unactuated DIP for demonstration
purposes (where the dynamical equations of the DIP are shown in section 7.4).
Viscous damping friction is included in both the proximal and distal joints, with
damping coefficients b1 = 5 and b2 = 5. The dynamics of the DIP are described by

q̈ = M−1(q) (−D(q, q̇)−K(q))
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where the coefficient matrices are described in section 7.4. The D(q, q̇ matrix is
populated with the viscous damping torques found in the R(q̇) matrix. The masses,
moments of inertia, and the lengths of the pendulums in the system accommodate
the undamped oscillatory behaviour of the pendulum system, which is not expected
to tend toward any invariant set. The integration of a non-zero damping coefficient
b2 causes the system to tend towards the FPEP, as proved by the analytical derivation
in the previous section. Energy is thus dissipated from the system in this manner.
The mechanical energy of the system is selected to represent the Lyapunov function.
This function is related to the dynamical behaviour of the system, which is described
by the aforementioned physical properties, but the function is a tool that can be used
to predict the behaviour of the system. In this instance, we predicted that the system
will tend towards an invariant set (represented by the FPEP) if the pendulum system
is undamped. The function cannot predict the degree of damping in the behaviour
of the system (i.e. whether the system is underdamped or critically damped for
instance), but the function can be used to determine the final destination of the
system trajectory.

The parameters of the DIP in this experiment are described by

m1 = 1 kg, L1 = 1 m,

m2 = 1 kg, L2 = 2 m,

l1 = 0.5 m, I1 = 0.083 kg.m2,

l2 = 1 m, I2 = 0.33 kg.m2.

The DIP is initialised in the fully-horizontal configuration, described by the initial
conditions

q1(0) = θ(0) =
π

2
, q2(0) = α(0) = 0,

q̇1(0) = θ̇(0) = 0, q̇2(0) = α̇(0) = 0.

With these initial conditions in mind, it is apparent that the invariant sets associated
with the partially-inverted and fully-inverted configurations are excluded from the
potential choices of final trajectory outcomes as specified in lemma 6.2. The results
of this simulation are demonstrated in figures 6.3-6.5. The behaviour of the proximal
pendulum demonstrated in figure 6.3 oscillated for approximately 14 seconds before
it settled at the FPEP (−π rad for q1). Similarly, the distal pendulum oscillates for the
same amount of time before settling at the FPEP (0 rad for q2). The pendulums tend
towards the FPEP due to the presence of viscous damping friction, which dissipates
energy from the system. The viscous damping friction introduces an explicitly time-
dependent component into the Hamiltonian, which produces an asymmetrically
time-translational system which, in turn, prevents energy conservation in the system
(see section 3.2.2). The Lyapunov function that is represented in figure 6.5 tends
towards the invariant set Wp as derived.
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F I G U R E 6 . 3 : Angular displacement of the proximal pendulum of a
damped DIP.
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F I G U R E 6 . 4 : Angular displacement of the distal pendulum of a
damped DIP.
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F I G U R E 6 . 5 : The behaviour of the Lyapunov function for a DIP
shown in eq. (6.4).

6.4 Conclusion

The mathematical representation of the viscous damping friction model for multi-
body pendulum systems was explicitly described in this chapter using supporting
evidence from existing literature. The model may now be integrated into the con-
ventional compound pendulum system as part of the model alteration discussed in
the research methodology. Additionally, we analytically proved that the damped
unactuated system will always tend toward some stable equilibrium point using
LDM, regardless of whether the system is linear or nonlinear. This was done in an
effort to describe the effects of viscous damping and provide the reader with an
intuitive understanding of the behaviour of unactuated damped systems. Simulated
results of this concept are provided for the unactuated and viscously damped DIP.
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“Have you ever wondered if there was more to life, other than
being really, really, ridiculously good looking?”

— Derek Zoolander

Chapter 7

Modelling

7.1 Chapter Overview

The objective of this chapter is to demonstrate the derivation the generalised math-
ematical model of the PAn−1 robot. This generalised classification encompasses a
group of systems which include the Acrobot and the PAA robot, whose derivations
are included this chapter as they will be used for swing-up control simulation in
the chapters that follow. Preliminary assumptions and constraints are first stated to
set the groundwork of the modelling procedure. The PAn−1 robot is subsequently
modelled with the energy modelling methodology described in section 3.3 and using
Virtual Composite Links (VCLs). The PAn−1 modelling procedures are followed by
a discussion of the constraints of the PAn−1 robot, specifically referencing the work
of Oriolo and Nakamura in [38]. These discussions lead to the derivation of the
mathematical models of both the Acrobot and the PAA robot, which will be used
to produce simulated results in later chapters. VCL coordinate transformations are
also discussed since PAn−1 derivatives with system order n > 2 cannot be modelled
conventionally if the execution of LDM-related swing-up control is desired.

7.2 Preliminaries

The PAn−1 robot is characterised by the following properties:

(1) The mass of each pendulum is represented as a point mass located at the centre
of mass (COM) of the pendulum.

(2) The pendulums are modelled as rigid 1-dimensional rods (described only by a
length) and are not deformable.

(3) The moment of inertia of each pendulum (Ii) subscribes to the inequality

Ii ≤ miLili −mili
2. (7.1)
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These parameters are described in section 7.3. The moment of inertia of a rigid
1-dimensional rod is, however, typically described by

Ii =
miLi

12
(7.2)

as seen in [82, 105].

(4) The parameters of the system are constructed to ensure that the conditions

βn 6= βn−1, βi >
n∑

j=i+1

βj , for 2 ≤ i < n− 2

are satisfied. This set of conditions is derived and discussed in section 7.3.2.

(5) The system is square, having the same number of inputs as outputs.

(6) The system is affine in control.

(7) The term proximal is used to describe a pendulum that is closer to the joint
found at the origin of the plane (i.e. the position of the first joint) when
the system is fully-extended, whereas the term distal is used to describe a
pendulum that is found further away from the origin of the plane when the
system is fully extended. A system that is fully extended is described by qi = 0
where 2 < i ≤ n.

The pendulum system operates under the following constraints:

(1) The system is constrained to a 2-dimensional plane.

(2) The pendulum systems introduced in this research operate under both holo-
nomic and 2nd order nonholonomic constraints. This is thoroughly discussed
in section 7.3.3.

Additionally, the following models are derived using the RCS, as discussed in section
2.3.

7.3 The PAn−1 Robot

7.3.1 Modelling System Dynamics using the Energy Modelling Method

The n-link pendulum system has been modelled extensively using the traditional
Lagrangian modelling method, as seen in [5, 6, 34]. It would be appropriate in this
instance to add to this broad body of knowledge by deriving the mathematical
model of the n-link pendulum using an alternative procedure, namely the energy
modelling method outlined in section 3.3. The following formulation of the n-link
pendulum model using the energy modelling method is thus conducted according
to the stepwise structure as seen in section 3.3.4. This formulation does not consider
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F I G U R E 7 . 1 : Generalised n-Link pendulum model. Adapted from
[5].

all cases of the n-link pendulum system, but rather includes the explicit modelling of
only the PAn−1 version of the n-link pendulum system, as discussed in the literature
review. The modelling of the PAn−1 robot is thus demonstrated below:

(1) Consider the generalised planar n-link pendulum system in figure 7.1. Each
pendulum of the system (described generally as the ith pendulum) is charac-
terised by the following properties:

(i) mass (mi),

(ii) moment of inertia (Ii),

(iii) length (Li), and

(iv) COM length (li)

where i = 1, 2, . . . , n. Additionally, the joints in the system may be actuated
(τi) and viscously damped (with viscous damping friction coefficient bi). The
position of the pendulums in space can be measured using an angular coordi-
nate system as opposed to conventional Cartesian coordinates; this is made
possible by the system’s intrinsic holonomic constraints [5]. This is discussed
in more detail in section 7.3.3. Angular displacement of each pendulum is
measured with reference to the y-axis (θi) and with reference to the preceding
pendulum (qi) [5]. These coordinates, known as the absolute and relative
generalised coordinates, are represented in vector form, whereby

θ =
[
θ1 θ2 . . . θn

]T , q =
[
q1 q2 . . . qn

]T (7.3)
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and where θi may be calculated as a summation of the preceding relative
generalised coordinates described by

θi =
i∑

k=1

qk. (7.4)

This is expressed in matrix format as

θ = Aq, q = A−1θ (7.5)

where

A =




1 0 . . . 0

1
. . . . . .

...
...

. . . 1 0
1 . . . 1 1



, A−1 =




1 0 . . . 0 0

−1 1
. . .

...
...

0 −1
. . . 0 0

...
. . . . . . 1 0

0 . . . 0 −1 1




(7.6)

[5]. The principle of virtual work relates the torque applied to the system
measured with reference to the y-axis (uθi) and the torque applied to the
system measured with reference to the preceding pendulum (ui), whereby

G(q)u = ATGθuθ, Gθuθ =

(
AT
)−1

G(q)u. (7.7)

(2) The mechanical energy of the n-link pendulum system, Es, is calculated using

Es =
n∑

i=1

[
Ti + Pi

]
. (7.8)

Following the technique demonstrated in [5], and using the information de-
rived in the previous step, we find that

P =
n∑

i=1

Pi =
n∑

i=1

mig
n∑

j=1

lij cos θj

=

n∑

j=1

[
n∑

i=1

miglij

]
cos θj

=
n∑

j=1

βj cos θj (7.9)
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where

βj =

n∑

i=1

miglij = mjglj + gLj

n∑

i=j+1

mi.

Therefore
K(q) = ATKθ(Aq) (7.10)

where

Kθ =
∂P

∂θ

=

[
∂P

∂θ1

∂P

∂θ2
. . .

∂P

∂θn

]T

. (7.11)

Additionally, we find that

M(q) = ATMθ(Aq)A (7.12)

where [
Mθ

]
jk

= αjk cos(θj − θk) (7.13)

and

αjk =

{
Ij +mjl

2
j + Li

2∑n
i=j+1mi if j = k;

mjljLk + LjLk
∑n

i=j+1mi if j 6= k.
. (7.14)

(3) The change in the mechanical energy with respect to time
(

d
dt
Es

)
is repre-

sented as
d
dt
Es = q̇TM(q)q̈ +

1

2
q̇TṀ(q)q̇ + q̇TK(q) (7.15)

which was originally derived in [93].

(4) The factors that have the potential to add/dissipate energy through actuation,
and dissipate energy purely through damping in the system are grouped up
in the qTG(q)u and qTR(q̇) matrices respectively. In the PAn−1 robot version
of the n-link pendulum, there are actuators found at each link except for the
most proximal joint to the origin [5]. The actuation in the system can, thus, be
represented as

G(q)u =
[
0 τ2 τ3 . . . τn

]T

= τ,

∴ q̇TG(q)u = q̇Tτ

= q̇2τ2 + q̇3τ3 + · · ·+ q̇n−1τn−1 + q̇nτn

=
n∑

i=2

q̇iτi
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where In represents a n× n identity matrix. The only lossy torques that exist
intrinsically in the system, as predefined for this research, are the viscous
damping torques that may occur at each joint. The mathematical model of the
viscous damping phenomenon was described explicitly in section 6.2 by

R(q̇) =
[
b1q̇1 b2q̇2 . . . bn−1q̇n−1 bnq̇n

]T (7.16)

where bi represents the specific damping coefficient for the associated joint of
the ith pendulum that is most proximal to the origin. Therefore

q̇TR(q̇) = b1q̇
2
1 + b2q̇

2
2 + · · ·+ bn−1q̇

2
n−1 + bnq̇

2
n

=
n∑

i=1

biq̇
2
i .

The total change of energy in the system with respect to time is represented as

d
dt
Es = q̇TG(q)u− q̇TR(q̇)

= −b1q̇2
1 +

n∑

i=2

q̇i(τi − biq̇i).

This is, evidently, equivalent to the expression seen in eq. (7.15), whereby

d
dt
Es = q̇TM(q)q̈ +

1

2
q̇TṀ(q)q̇ + q̇TK(q) = q̇TG(q)u− q̇TR(q̇)

= −b1q̇2
1 +

n∑

i=2

q̇i(τi − biq̇i).

(5) The energy-shuffling vector J(q, q̇)q̇ is calculated using

J(q, q̇)q̇ =
1

2
Ṁ(q, q̇)q̇−

[
∂

∂q

(
1

2
q̇TM(q)q̇

)]T

(7.17)

which was derived in section 3.3.3. This is not solved for in the case of the n-
link pendulum, but instead may be implemented once n is defined. The entries
of the square skew-symmetric matrix J(q, q̇) may be solved for deductively
once the energy-shuffling matrix is calculated. It is important to note that the
skew-symmetric properties of the J(q, q̇) matrix produces the quadratic result

q̇TJ(q, q̇)q̇ = 0. (7.18)

It is evident from this result that no power contribution is observed in the
system as a result of the torques involved in energy shuffling. The quadratic
form seen in eq. (7.18) can, therefore, be included in the system power equation
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inconsequentially, whereby

q̇TM(q)q̈ +
1

2
q̇TṀ(q, q̇)q̇ + q̇TK(q) = q̇TG(q)u− q̇TR(q̇) (7.19)

− q̇TJ(q, q̇)q̇.

(6) The system power equation seen in eq. (7.19) may be manipulated to produce
the prototypical form through the implementation of the procedure that fol-
lows.

The system power equation is transformed into the system torque equation
through the elimination of the common velocity vector q̇T. Therefore

M(q)q̈ +
1

2
Ṁ(q, q̇)q̇ + K(q) = G(q)u−R(q̇)− J(q, q̇)q̇. (7.20)

The R(q̇) and J(q, q̇)q̇ matrices are moved to the left-hand side of the equation
and are collectively represented, along with the conservative torques that are

associated with the change of the system’s configuration
(

1

2
Ṁ(q)q̇

)
, as the

D(q, q̇) matrix. Therefore

M(q)q̈ +
1

2
Ṁ(q, q̇)q̇ + R(q̇) + J(q, q̇)q̇
︸ ︷︷ ︸

D(q,q̇)

+K(q) = G(q)u. (7.21)

The final prototypical form is described as

M(q)q̈ + D(q, q̇) + K(q) = G(q)u. (7.22)

The angular acceleration of each DOF may be calculated by inverting the mass
matrix M(q), resulting in

q̈ = M−1(q)
[
G(q)u−D(q, q̇)−K(q)

]
∈ Rn. (7.23)

The D(q, q̇) matrix would, in a general case, be constructed identically to
what is seen in eq. (3.29) if the system was subject to nonconservative torques
associated with a change in mass or moment of inertia in the system. This
phenomenon is not, however, considered in this investigation.

(7) The system is now converted into the state-space representation through the
selection of the transformations

x1 = q1, xn+1 = q̇1,

x2 = q2, xn+2 = q̇2,

...
...
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xn = qn, x2n = q̇n.

Therefore



ẋ1

ẋ2
...

ẋn
ẋn+1

ẋn+2
...

ẋ2n




=




xn+1

xn+2
...

x2n

f1(x) + g1(x)u1

f2(x) + g2(x)u2
...

fn(x) + gn(x)un




where

fi(x) =
[
−M−1(q)

(
D(q, q̇) + K(q)

)]
i
, gi(x) =

[
M−1(q)G(q)

]
i
.

The output y(x) is chosen according to the control technique, but must have
the same number of entries as u(t) since the system is square (i.e. y(x) ∈ Rm).

7.3.2 The VCL Modelling Protocol

The integration of VCLs into the modelling procedure of a n-link pendulum system
was first introduced by Xin and Liu in [5] as a coordinate transformation used
to address the breakdown in the formulation of LDM related swing-up control
using the conventionally defined Lyapunov candidate function with n > 2 (a more
detailed discussion of this deficiency is provided in [5, pp. 190-191]). A n-link
pendulum system may be represented with n− 1 VCLs, as shown in figure 7.2, with
each VCL intrinsically incorporating the lengths, moments of inertia and masses
of the pendulums found distal to an assigned joint [5]. More specifically, VCLi
will account for the lengths, moments of inertia and the masses of the pendulums
distal to pendulum i− 1 (with the COM collectively represented as MV CLi). Each
COM is associated with a newly defined angular displacement qi and a length li
(representing the distance between the COM and its associated joint). It is evident
that the new coordinates may be represented by the transformation

qi = qi + ξi+1 for 2 ≤ i < n

where qn = qn [5]. Coordinate vectors are, therefore, defined to represent the
coordinate transformation for the entire n-link pendulum, whereby

qa =
[
q2 q3 . . . qn−1 qn

]T for qa ∈ Rn−1,

qa =
[
q2 q3 . . . qn−1 qn

]T for qa ∈ Rn−1, and

ξa =
[
ξ3 ξ4 . . . ξn 0

]T for ξa ∈ Rn−1
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F I G U R E 7 . 2 : The implementation of the VCL modelling protocol
on the PAn−1 robot. Adapted from [5].

with
qa = qa + ξa.

This relationship is not trivial since ξa is not well defined in this case. It would be
more beneficial to represent the coordinate transformation specifically in terms of
qa, where

qa = T(qa)

[5]. It is evident that if the system were to be fully extended, that the two coordinates
would directly map to zero, with

qa = 0n−1 ←→ qa = 0n−1 (7.24)

[5]. The relationship between the VCL transformed coordinates qa and the gener-
alised coordinates qa was derived by Xin in Liu in [5], which results in the coordinate
definition

q̇i = q̇i + wi+1q̇i+1 + vi+1β̇i+1 for 2 ≤ i < n (7.25)
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and

β̇i = fi+1β̇i+1 + pi+1q̇i+1 (7.26)

where

wi+1 =
βi+1(βi cos qi+1 + βi+1)

βi
2 , vi+1 =

βi sin qi+1

βi
2 ,

fi+1 =
βi+1 + βi cos qi+1

βi
, pi+1 =

βi+1βi sin qi+1

βi
.

Additionally, for the nth VCL, we find that

qn = qn, q̇n = q̇n, (7.27)

βn = βn, β̇n = 0. (7.28)

and

βn−1 6= βn for i = n− 1, and

βi >
n∑

j=i+1

βj for 2 ≤ i ≤ n− 2.

A high-level description of the down-cascade iteration process is demonstrated
below:

Down-cascade iteration procedure

FOR k = 1 : n− 2

(i) i = n− k.

(ii) Solve for q̇i by substituting β̇i+1 and q̇i+1 into eq. (7.25).

(iii) Solve for β̇i by substituting β̇i+1 and q̇i+1 into eq. (7.26).

END

This procedure is demonstrated for k = 1 : 3 as an example in appendix B (Ex-
ample B.5).

7.3.3 Constraints

The holonomic constraints of the n-link pendulum is demonstrated in figure 7.3. The
n-link pendulum system is found, as stated in the preliminaries of this chapter, on a
2-D plane, whereby the position of the COM of each pendulum may be intuitively
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F I G U R E 7 . 3 : The holonomic constraints of the n-link pendulum.

described by the Cartesian coordinate (xi, yi). It is evident, however, that each
pendulum mass cannot be found at any arbitrary coordinate. Instead, each COM is
intrinsically constrained to move in a circular trajectory around its corresponding
joint. These constraints allow for the transformation of the Cartesian coordinates
of each pendulum COM into corresponding angular coordinates (θi and qi). These
constraints are mathematically described for the n-link pendulum system as

f1(x,y, t) = x2
1 + y2

1 − l21 = 0,

f2(x,y, t) =
(
x2 − 2x1

)2
+
(
y2 − 2y1

)2
− l22 = 0,

...

fn(x,y, t) =
(
xn − 2

∑n−1
j=1 xj

)2
+
(
yn − 2

∑n−1
j=1 yj

)2
− l2i = 0
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[106]. Therefore

fi(x,y, t) =


xi − 2

i−1∑

j=1

xj




2

+


yi − 2

i−1∑

j=1

yj




2

− l2i = 0 (7.29)

where 1 ≤ i ≤ n, i ∈ �. These constraints are strictly autonomous and are at least
second-order differentiable, whereby constraints for the velocity and acceleration
vectors of each pendulum can be directly derived from the original positional con-
straint. These constraints are therefore classified as holonomic [106]. Each pendulum,
having a holonomic constraint fi(x,y, t), can now be described by one DOF repre-
sented by the generalised angular coordinate qi or θi (see section 7.3.1).

The aforementioned holonomic constraints of a pendulum system are evidently
independent of the effect of actuation as they are constructed to accommodate the
transformation between Cartesian and angular coordinates, a process that occurs
before the definition of the prototypical form containing the control input vector. In
the case of a fully-actuated undamped n-link pendulum system, each dynamical
equation is associated with a control input, whereby

M1(q)q̈ + C1(q,q̇) + K1(q) = τ1,

M2(q)q̈ + C2(q,q̇) + K2(q) = τ2,

...
Mn(q)q̈ + Cn(q,q̇) + Kn(q) = τn

and where

Mi(q) =
[
Mi1(q) Mi2(q) . . . Min(q)

]
∈ Rn

with 1 ≤ i ≤ n. In this case, the dynamics of each pendulum may be completely
linearised by the control input, transforming the nonlinear dynamics of the pen-
dulum system into a linear plant (this procedure is known as full-state feedback
linearisation, and is discussed in section 5.3). Any constraints imposed by the natu-
ral dynamics of the system can, therefore, be negated effectively with the use of this
control technique [2]. This is not the case with undamped underactuated systems,
whose prototypical form may be generally described by m actuated dynamical
equations and n−m unactuated dynamical equations, described by

M1(q)q̈ + C1(q,q̇) + K1(q) = τ1,

...
Mm(q)q̈ + Cm(q,q̇) + Km(q) = τm,

Mm+1(q)q̈ + Cm+1(q,q̇) + Km+1(q) = 0,

...
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Mn(q)q̈ + Cn(q,q̇) + Kn(q) = 0

[106]. These equations can be represented in matrix form as
[
Ma(q)
Mu(q)

] [
q̈a
q̈u

]
+

[
Ca(q,q̇)
Cu(q,q̇)

]
+

[
Ka(q)
Ku(q)

]
=

[
τ
0

]
(7.30)

[38]. It is evident that full-feedback linearisation cannot be applied in this instant
due to the distinct lack of actuators. The unactuated entries of the prototypical form
may, therefore, be seen as a constraint that is defined as

Mj(q)q̈ + Cj(q,q̇) + Kj(q) = hj(q̈, q̇,q, t) = 0 (7.31)

where m < j ≤ n for the generalised form [38]. According to the proof provided
in [38], the constraints seen in eq. (7.31) are classified as second-order nonholonomic
constraints if:

(1) The mass matrix Mj is not dependent on the unactuated generalised coordi-
nates qu.

(2) The gravitational torque Kj is not dependent on any generalised coordinate q.

In the case of the n-link pendulum, it can be shown that the first condition is satisfied
only if the joint related to the first generalised coordinate q1 is the only unactuated
joint in the system. This is true because the mass matrix Mj is never dependent on
q1. A proof of this independence is included in appendix A (Proof A.2). Despite
the apparent possibility of satisfying the first condition for partial integrability, the
vertical pendulum system is subject to gravitational torques that are dependent on
the generalised coordinate system q. The vertical underactuated n-link pendulum
system, therefore, contains a combination of holonomic constraints (eq. 7.29) and
second-order nonholonomic constraints, represented by the underactuated dynami-
cal equations seen in eq. (7.31).

With the model for the PAn−1 robot clearly defined, we will now model the simplest
derivatives of the PAn−1 robot, namely the Acrobot and the PAA robot. These
models will be used to demonstrate simulated results in the chapters that follow.

7.4 The Acrobot

The Acrobot is a variation of the underactuated double-pendulum system and is the
least complex derivative of the PAn−1 robot, and is demonstrated in figure 7.1). The
Acrobot is characterised by an unactuated proximal joint (a) and an actuated distal
joint (b) (this is conversely true for the other variation of underactuated double-
pendulum system, the Pendubot) [15]. Each pendulum is associated with a mass
(m1 and m2), a moment of inertia (I1 and I2), a length (L1 and L2) and a COM length
(l1 and l2). Additionally, the joints may be subjected to viscous damping, and are
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F I G U R E 7 . 4 : The Acrobot model. Adapted from [6].

thus each associated with a corresponding damping coefficient (b1 for the proximal
joint and b2 for the distal joint).

The equations of motion for the Acrobot will be derived using the procedure high-
lighted in section 3.3.4 as seen with the case of the n-link pendulum (see section
7.3.1).

(1) The position of the proximal and distal pendulums can thus be described
by generalised coordinates θ1 and θ2 (measured with respect to the y-axis)
or generalised coordinates q1 and q2 respectively (measured with respect to
the preceding pendulum. See figure 7.4). These generalised coordinates are
represented in vector form as

θ =
[
θ1 θ2

]T
, q =

[
q1 q2

]T

where the entries of the θ matrix are related to the entries of the generalised
coordinate matrix q by

θ1 = q1, θ2 = q1 + q2, q2 = θ2 − θ1. (7.32)

Therefore

θ = Aq, q = A−1θ

where

A =

[
1 0
1 1

]
, A−1 =

[
1 0
−1 1

]
.
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(2) Using [5], we find that

K(q) =

[
−β1 sin q1 − β2 sin(q1 + q2)

−β2 sin(q1 + q2)

]

and

M(q) =

[
α1 + α2 + 2α3 cos q2 α2 + α3 cos q2

α2 + α3 cos q2 α2

]

where

α11 = α1 = I1 +m1l1
2 +m2L1

2,

α22 = I2 +m2l2
2,

α12 = α21 = α3 = m2L1l2

and

β1 = g(m1l1 +m2L1), β2 = gm2l2.

(3) The change in energy (power equation) of any system is trivially solved as

d
dt
Es = q̇TM(q)q̈ +

1

2
q̇TṀ(q)q̇ + q̇TK(q). (7.33)

(4) The Acrobot is characterised by a single actuator found in its distal link. The
actuation in the Acrobot is, thus, represented as

G(q)u =
[
0 τ2

]T

= τ.

The power associated with the system actuator is represented by

q̇TG(q)u = q̇Tτ

= τ2q̇2.

The viscous damping torques are encapsulated within the lossy torque matrix
R(q̇) and, for the case of the Acrobot, is represented by

R(q̇) =
[
b1q̇1 b2q̇2

]T (7.34)

where b1 and b2 represent the damping coefficients of the viscous damping
friction present at the proximal and distal pendulums respectively. The power
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loss associated with the viscous damping is mathematically represented as

q̇TR(q̇) = −b1q̇2
1 − b2q̇2

2. (7.35)

The total power of the system is a combination of both of these factors, as
shown with

d
dt
Es = q̇TG(q)u− q̇TR(q̇)

= τ q̇2 − b1q̇1 − b2q̇2.

This is equivalent to the system power equation shown in step ((3)) of this
procedure. Therefore

d
dt
Es = q̇TM(q)q̈ +

1

2
q̇TṀ(q)q̇ + q̇TK(q) = q̇TG(q)u− q̇TR(q̇)

= τ q̇2 − b1q̇1 − b2q̇2.

(5) Following the structure of a skew-symmetric matrix given by eq. (3.32), the
J(q, q̇)q̇ vector for the Acrobot is structured as

J(q, q̇)q̇ =

[
0 −J1(q, q̇)

J1(q, q̇) 0

] [
q̇1

q̇2

]
=

[
−J1(q, q̇)q̇2

J1(q, q̇)q̇1

]
. (7.36)

Note that the matrix has only one unique entry. This skew-symmetry prevents
the observability of the energy and the power related to these torques, i.e.

q̇TJ(q, q̇)q̇ = 0 and
∫

q̇TJ(q, q̇)q̇ dt = 0.

The entries of the matrix may now be found by implementing

J(q, q̇)q̇ =
1

2
Ṁ(q, q̇)q̇−

[
∂

∂q

(
1

2
q̇TM(q)q̇

)]T

(7.37)

where

Ṁ(q, q̇) =

[
−2α3q̇2 sin q2 −α3q̇2 sin q2

−α3q̇2 sin q2 0

]
,

∴
1

2
Ṁ(q)q̇ =



−α3

(
q̇1q̇2 +

1

2
q̇2

2

)
sin q2

−1

2
α3q̇1q̇2 sinα




and

1

2
q̇TM(q)q̇ =

1

2
(α1 + α2 + 2α3 sin q2)q̇1

2 + (α2 + α3 sin q2)q̇1q̇2
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+
1

2
α3q̇2

2.

Therefore
[
∂

∂q

(
1

2
q̇TM(q)q̇

)]T

=

[
0

−α3(q̇2
1 + q̇1q̇2) sin q2

]
.

The expression for J(q, q̇)q̇ may now be solved for, resulting in

J(q, q̇)q̇ =
1

2
Ṁ(q, q̇)q̇−

[
∂

∂q

(
1

2
q̇TM(q)q̇

)]T

=



−α3

(
q̇1q̇2 +

1

2
q̇2

2

)
sin q2

−1

2
α3q̇1q̇2 sin q2


−

[
0

−α3(q̇2
1 + q̇1q̇2) sin q2

]

=



−α3 sin q2

(
q̇1q̇2 +

1

2
q̇2

2

)

α3 sin q2

(
q̇1

2 +
1

2
q̇1q̇2

)




=

[
−J1(q, q̇)q̇2

J1(q, q̇)q̇1

]
.

The solution to the entry J1(q, q̇) may now be trivially calculated from the
result above, which produces

J1(q, q̇) = α3 sin q2

(
q̇1 +

1

2
q̇2

)
. (7.38)

The internal energy shuffling matrix J(q, q̇) is, therefore, represented as

J(q, q̇) =




0 −α3 sin q2

(
q̇1 +

1

2
q̇2

)

α3 sin q2

(
q̇1 +

1

2
q̇2

)
0


 . (7.39)

Calculating the quadratic equation q̇TJ(q, q̇)q̇ produces the expected result of
zero, confirming that the matrix is indeed skew-symmetric.

(6) The equations of motion of the system are now derived by constructing the
prototypical form, which may now be solved for by equating the results found
in steps (3) and (4), producing

q̇TM(q)q̈+
1

2
q̇TṀ(q, q̇)q̇ + q̇TK(q) = −q̇TR(q, q̇)− q̇TJ(q, q̇)q̇ + q̇TG(q)u

[93]. The energy shuffling torque matrix is added to the power equation in its
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quadratic form as it plays no role in changing the magnitude of the mechanical
energy in the system. The prototypical form of the system is represented by

M(q)q̈ + D(q, q̇) + K(q) = G(q)u (7.40)

where

M(q) =

[
α1 + α2 + α3 cos q2 α2 + α3 cos q2

α2 + α3 cos q2 α2

]
,

K(q) =

[
−β1 sin q1 − β2 sin(q1 + q2)

−β2 sin(q1 + q2)

]
,

G(q)u =

[
0
τ2

]
, and

D(q, q̇) = R(q, q̇)+
1

2
Ṁ(q, q̇)q̇ + J(q, q̇)q̇

=

[
b1q̇1 − α3

(
2q̇1q̇2 + q̇2

2

)
sin q2

b1q̇2 + α3q̇
2
1 sin q2

]

since

R(q, q̇) =

[
b1q̇1

b2q̇2

]
,

Ṁ(q, q̇) =

[
−2q̇2α3 sin q2 −q̇2α3 sin q2

−q̇2α3 sin q2 0

]
, and

J(q, q̇) =




0 α3

(
q̇1 +

1

2
q̇2

)
sin q2

−α3

(
q̇1 +

1

2
q̇2

)
sin q2 0


 .

The power equation also holds true when q̇ = � [93].

The equations of motion can be found by taking the inverse of the mass
matrix, whereby

q̈ = M−1(q) (−D(q, q̇)−K(q) + G(q)u) . (7.41)

The mass matrix is always invertible as it is always uniformly symmetric and
positive definite [15]. This result is in agreement with the results produced
through the classical modelling method, as confirmed by [6, 34, 64] (these
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results do not include viscous damping friction).

(7) The system is represented in state-space form using the transformations

q1 = x1, q2 = x2,

q̇1 = x3, q̇2 = x4.

The system dynamics are thus represented in the companion form

ẋ = f(x) + g(x)u

where

f(x) =




x3

x4

f1(x)
f2(x)




and
[
f1(x)
f2(x)

]
= M−1(x) (−D(x)−K(x)) .

Additionally, we find that

g(x) =

[
g1(x)
g2(x)

]
= M−1(x)G(x).

7.5 The Passive-Active-Active (PAA) Robot

7.5.1 Conventional Modelling using the Energy-Modelling Method

The PAA robot is included as a slightly more complex supplementary model along
with the Acrobot, and is specifically introduced to test the robustness of the ana-
lytical results of this research when the derived control is applied to higher-order
systems. The PAA robot is a variation of the underactuated triple-pendulum system
and is demonstrated in figure 7.5. The name of this model describes the actuation
state of the joints in a progressive order, starting from the most proximal joint to
the most distal joint. The most proximal joint (joint (a)) is, therefore, Passive and
is followed by two Active joints (joints (b) and (c)). Excluding these differences,
the PAA robot is identical to the Acrobot in terms of physical properties, whereby
each pendulum is associated with a mass (m1, m2 and m3), a moment of inertia (I1,
I2 and I3), a length (L1, L2 and L3) and a COM length (l1, l2 and l3). Additionally,
each joint is also subject to the effects of viscous damping, with each joint being
associated with a damping coefficient (b1, b2 and b3).
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F I G U R E 7 . 5 : The PAA Robot.

The equations of motion for the PAA robot will be derived using the energy mod-
elling methodology in section 3.3.4 as seen with the case of the n-link pendulum
(section 7.3.1) and the Acrobot (section 7.4).

Important note: The model that emerges from this section will only be applica-
ble to the PFL control method highlighted in chapter 9. The order of the system is
too large to be implemented in such a conventional manner when applying LDM,
thus requiring a model which incorporates the VCL modelling methodology. This is
discussed in the next section (section 7.3.2).

(1) As with previous examples, there is one DOF that is associated with each
pendulum once the Cartesian coordinates have been transformed into the gen-
eralised coordinates θ (absolute) and q (relative), where each of the coordinates
are described in vector form, where

θ =
[
θ1 θ2 θ3

]T
, q =

[
q1 q2 q3

]T
.

These generalised coordinates are related to one another by the transformations

θ1 = q1, θ2 = q1 + q2, θ3 = q1 + q2 + q3, (7.42a)
q2 = θ2 − θ1, q3 = θ3 − θ2. (7.42b)
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Therefore

θ = Aq, q = A−1θ

where

A =




1 0 0
1 1 0
1 1 1


 , A−1 =




1 0 0
−1 1 0
0 −1 1


 .

(2) Applying the technique seen in [5] on the PAA robot, we find that

M(q) = ATMθ(Aq)A (7.43)

where
[
M(q)

]
11

= α11 + α22 + α33 + 2α12 cos q2 + 2α13 cos(q2 + q3)+ (7.44)

2α23 cos q3,[
M(q)

]
12

=
[
M(q)

]
21

= α22 + α33 + α12 cos q2 + α13 cos(q2 + q3)+ (7.45)

2α23 cos q3,[
M(q)

]
13

=
[
M(q)

]
31

= α33 + α13 cos(q2 + q3) + α23 cos q3, (7.46)
[
M(q)

]
22

= α22 + α33 + 2α23 cos q3, (7.47)
[
M(q)

]
23

=
[
M(q)

]
32

= α33 + α23 cos q3, (7.48)
[
M(q)

]
33

= α33 (7.49)

and where

K(q) =



−β1 sin q1 − β2 sin(q1 + q2)− β3 sin(q1 + q2 + q3)

−β2 sin(q1 + q2)− β3 sin(q1 + q2 + q3)
−β3 sin(q1 + q2 + q3)


 (7.50)

with

α11 = I1 +m1l1
2 + (m2 +m3)L1

2, α12 = α21 = (m2 +m3)L1l2,

α13 = α31 = m3L1l3, α22 = I2 +m2l2
2 +m3L2

2,

α23 = α32 = m3L2l3, α33 = I3 +m3l3
2

and

β1 = g (m1l1 + (m2 +m3)L1) , β2 = g (m2l2 +m3L2) , β3 = gm3l3.
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(3) As explicitly stated in the sections that precede the modelling of the PAA robot,
the power equation of any system is demonstrated as

d
dt
Es = q̇TM(q)q̈ +

1

2
q̇TṀ(q, q̇)q̇ + q̇TK(q) (7.51)

[93].

(4) The PAA robot is characterised by three joints, with an actuator fixed on each of
the two most distal joints. The actuation in the PAA robot is, thus, represented
as

G(q)u =
[
0 τ2 τ3

]T (7.52)
= τ.

The power associated with these actuators is represented as

q̇TG(q)u = q̇Tτ

= q̇2τ2 + q̇3τ3.

There are, once again, viscous damping torques that are associated with this
robotic configuration. These associated torques are enclosed within the lossy
torque matrix R(q̇) and is represented for the PAA robot as

R(q̇) =
[
b1q̇1 b2q̇2 b3q̇3

]T (7.53)

where b1, b2, and b3 represent the damping coefficients of the viscous damping
friction present at the pendulums. The power loss associated with the viscous
damping friction is represented as

q̇TR(q̇) = −b1q̇2
1 − b2q̇2

2 − b3q̇2
3. (7.54)

The total power of the system is a combination of both of viscous damping
and actuation, where

d
dt
Es = q̇TG(q)u− q̇TR(q̇)

= −b1q̇1 + (τ − b2)q̇2 + (τ3 − b3)q̇3.

It is intuitive that this expression is equivalent to the system power equation
shown in step (3) of this procedure, where

d
dt
Es = q̇TM(q)q̈ +

1

2
q̇TṀ(q, q̇)q̇ + q̇TK(q) = q̇TG(q)u− q̇TR(q̇)

= −b1q̇1 + (τ − b2)q̇2 + (τ3 − b3)q̇3.
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(5) Following the structure of a skew-symmetric matrix given by eq. (3.32), the
J(q, q̇) matrix for the PAA robot is structured as

J(q, q̇)q̇ =




0 −J1(q, q̇) −J2(q, q̇)
J1(q, q̇) 0 −J3(q, q̇)
J2(q, q̇) J3(q, q̇) 0





q̇1

q̇2

q̇3




=



−J1(q, q̇)q̇2 − J2(q, q̇)q̇3

J1(q, q̇)q̇1 − J3(q, q̇)q̇3

J2(q, q̇)q̇1 + J3(q, q̇)q̇2


 .

It is evident that the energy shuffling coefficient matrix J(q, q̇) has three
unique entries. It is not necessary to calculate each of the elemental coefficients
as the knowledge of the torque expressions alone are sufficient to describe
the behaviour of the system. The coefficients are thus not calculated in this
example.

Once again, the entries of the energy-shifting torque matrix may now be
found with the implementation of

J(q, q̇)q̇ =
1

2
Ṁ(q, q̇)q̇−

[
∂

∂q

(
1

2
q̇TM(q)q̇

)]T

(7.55)

where the entries of the Ṁ(q, q̇) are
[
Ṁ(q, q̇)

]
11

= −2 (α12q̇2 sin q2 + α13 [q̇2 + q̇3] sin(q2 + q3)+ (7.56)

α23q̇3 sin q3) ,
[
Ṁ(q, q̇)

]
12

=
[
Ṁ(q, q̇)

]
21

= −α12q̇2 sin q2 + α13

[
q̇2 + q̇3

]
sin(q2+ (7.57)

q3)− 2α23q̇3 sin q3,[
Ṁ(q, q̇)

]
13

=
[
Ṁ(q, q̇)

]
31

= −α13

[
q̇2 + q̇3

]
sin(q2 + q3)− (7.58)

α23q̇3 sin q3,[
Ṁ(q, q̇)

]
22

= −2α23q̇3 sin q3, (7.59)
[
Ṁ(q, q̇)

]
23

=
[
Ṁ(q, q̇)

]
32

= −α23q̇3 sin q3, (7.60)
[
Ṁ(q, q̇)

]
33

= 0 (7.61)

and

1

2
q̇TM(q)q̇ =

1

2

[(
α11 + α22 + α33 + 2α13 cos(q2 + q3) + 2α12 cos q2+

2α23 cos q3

)
q̇1

2 +
(
α22 + α33 + 2α23 cos(q2 + q3)

)
q2

2 + α33q̇
2
3

]
+
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(
α22 + α33 + α13 cos(q2 + q3) + α12 cos(q2) + 2α23 cos q3

)
q̇1q̇2+

(
α33 + α13 cos(q2 + q3) + α23 cos q3

)
q̇1q̇3 +

(
α33+

α23 cos q3

)
q̇2q̇3.

Therefore
[
∂

∂q

(
1

2
q̇TM(q)q̇

)]

11

= 0,

[
∂

∂q

(
1

2
q̇TM(q)q̇

)]

12

= −
[(
α13 sin(q2 + q3) + α12 sin q2

)
q̇2

1 +
(
α13 sin(q2+

q3) + α12 sin q2

)
q̇1q̇2 +

(
α13 sin(q2 + q3)

)
q̇1q̇3

]
,

[
∂

∂q

(
1

2
q̇TM(q)q̇

)]

13

= −
[(
α13 sin(q2 + q3) + α23 sin(q3)

)
q̇2

1 + α23q̇
2
2 sin q3+

(
α13 sin(q2 + q3) + 2α23 sin q3

)
q̇1q̇2 +

(
α13 sin(q2+

q3) + α23 sin q3

)
q̇1q̇3 +

(
α23 sin q3

)
q̇2q̇3

]
.

These results may be substituted in eq. (7.55), with the entries of the energy-
shuffling torque matrix represented as
[
J(q̇,q)q̇

]

11

=
α12

2

[
2q̇1 + q̇2

]
q̇2 sin q2 − α13

[
2q̇1 + q̇2 + q̇3)(q̇2+ (7.62)

q̇3)
]

sin(q2 + q3)− α23

2

[
2q̇q + 2q̇2 + q̇3

]
q̇3 sin q3,

[
J(q̇,q)q̇

]

21

=
α12

2

[
2q̇1 + q̇2

]
q̇1 sin q2 +

α13

2

[
2q̇1 + q̇2 + q̇3

]
q̇1 sin(q2+ (7.63)

q3)− α23

2

[
q̇1 + 2q̇2 + q̇3

]
q̇3 sin q3,

[
J(q̇,q)q̇

]

31

=
α13

2

[
2q̇1 + q̇2 + q̇3

]
q̇1 sin(q2 + q3) +

α23

2

[
(q̇1+ (7.64)

q̇2)(2q̇1 + q̇2 + q̇3)
]

sin q3.

Again, calculating the quadratic form q̇TJ(q, q̇)q̇ produces the expected result
of zero, confirming that the constituent coefficient matrix J(q, q̇) is indeed
skew-symmetric.
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(6) The prototypical form is constructed through the equating of the two gener-
alised expressions of the power equation, resulting in

q̇TM(q)q̈+
1

2
q̇TṀ(q, q̇)q̇ + q̇TK(q) = −q̇TR(q, q̇)− q̇TJ(q, q̇)q̇ + q̇TG(q)u

[93]. The quadratic form of the energy-shuffling torque matrix
(
q̇TJ(q, q̇)q̇

)
is

added to the power equation as it has no influence on the change of the magni-
tude of the system’s mechanical energy. The prototypical form is represented
as

M(q)q̈ + D(q, q̇) + K(q) = G(q)u (7.65)

where the entries of the mass matrix M(q), the gravitational torque matrix
K(q), and the actuator matrix G(q)u are demonstrated in eqs. (7.44)-(7.49),
eq. (7.50), and eq. (7.52) respectively. The D(q, q̇) matrix, as stated in the
preceding examples, is defined as

D(q, q̇) = R(q, q̇)+
1

2
Ṁ(q, q̇)q̇ + J(q, q̇)q̇ (7.66)

where the entries for the lossy torque matrix R(q, q̇), the matrix relating to
conservative configurational changes Ṁ(q, q̇), and the energy-shuffling torque
matrix J(q, q̇) are shown in eq. (7.53), eqs. (7.56)-(7.61), and eqs. (7.62)-(7.64)
respectively. The final representation of the entries of the D(q, q̇) matrix are
calculated by substituting the relevant matrices into eq. (7.66). Therefore
[
D(q, q̇)

]
11

= b1q̇1 − α12

[
2q̇1 + q̇2

]
q̇2 sin q2 − α13

[
(q̇2 + q̇3)(2q̇1 + q̇2+ (7.67)

q̇3)
]

sin(q2 + q3)− α23

[
2q̇1 + 2q̇2 + q̇3

]
q̇3 sin q3,

[
D(q, q̇)

]
21

= b2q̇2 + α12q̇
2
1 sin q2 + α13q̇

2
1 sin(q2 + q3)− α23q̇3

[
2q̇1 (7.68)

+ 2q̇2 + q̇3

]
sin q3,

[
D(q, q̇)

]
31

= b3q̇3 + α13q̇
2
1 sin(q2 + q3) + α23

[
q̇1 + q̇2

]2
sin q3. (7.69)

These entries are identical to the entries seen in the D(q, q̇) matrix in [5] (when
one ignores the effect of viscous damping friction) which was derived using
Lagrangian mechanics.

The equations of motion for the PAA robot may now be determined by manip-
ulating the prototypical form, specifically by retrieving the inverse of the mass
matrix and shifting all of the relevant matrices to the right-hand side of the
formula. Therefore

q̈ = M−1(q) (−D(q, q̇)−K(q) + G(q)u) .



Chapter 7. Modelling 95

(7) The PAA robot is represented in state-space format using the transformations

q1 = x1, q2 = x2, q3 = x3,

q̇1 = x4, q̇2 = x5, q̇3 = x6.

The system dynamics are thus represented in the companion form

ẋ = f(x) + g(x)u

where

f(x) =
[
x4 x5 x6 f1(x) f2(x) f3(x)

]T

and
[
f1(x) f2(x) f3(x)

]T
= M−1(x) (−D(x)−K(x)) .

Additionally,

g(x) =
[
g1(x) g2(x) g3(x)

]T
= M−1(x)G(x).

7.5.2 VCL Modelling of the PAA Robot

The swing-up of the PAA robot through the implementation of LDM requires the
modelling of the PAA robot using the VCL transformation protocol to ensure that
the invariant set problem is solvable [5]. This is only applicable to n-link pendu-
lum systems that have a system order n > 2, thus resulting in the exclusion of the
VCL modelling of the Acrobot [5]. The reader may refer to [5] if supplementary
discussions on the derivation of the VCL coordinate transformation for the n-link
pendulum system is required. Additionally, the PAA robot is explicitly modelled
using the VCL modelling method outlined in [5]. Only the necessary results of this
derivation are included in this section.

The 2nd and 3rd pendulums of the PAA robot shown in figure 7.6 will be incorpo-
rated into a VCL. The set of coordinates qa is transformed into the VCL coordinate
set

qa =

[
q2

q3

]

[5]. Using the method VCL modelling method demonstrated in [5], we find that the
total VCL coordinate transformation can be represented as

qa = 0↔ qa = 0 (7.70)

and

q̇a = Ψ(qa)q̇a
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F I G U R E 7 . 6 : The VCL coordinate transformation of the PAA robot.
Adapted from [5].

where

Ψ(qa) =

[
1 ψ23

0 1

]
(7.71)

with

ψ23 = β3

[
β2 cos q3

]

[5]. This is guaranteed so long as l2 6= 0, which is ensured when

β2 6= β3.

[5].
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7.6 Conclusion

This chapter serves to present the derivation of the mathematical models for the
PAn−1 robot and its derivatives, namely the Acrobot and the PAA robot. The models
were derived using the energy modelling method as opposed to the conventional
Lagrangian technique. The VCL coordinate transformation was implemented on
the PAn−1 robot with system order n > 2 to accommodate LDM-related swing-
up control. The Acrobot and the PAA robot are presented for swing-up control
simulation, which will be covered in the following chapters.
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“Man cannot discover new oceans unless he has the courage to
lose sight of the shore.”

— André Gide

Chapter 8

Identifying the Breaking Point:
The Swing-up Control of the Damped PAn−1
Robot using Lyapunov’s Direct Method

8.1 Chapter Overview

The preceding chapters of this dissertation were specifically included to introduce
the reader to relevant concepts found within or surrounding the field of underac-
tuated robotics, highlighting significant literature that can be used to formulate an
appropriate research question. This literature review resulted in the identification
of an appropriate physical model (the PAn−1 robot), control objective (swing-up
control), control technique (LDM) and an appropriate and relevant system alter-
ation (integration of viscous damping). The work in this chapter seeks to fulfil the
next requirements in the research methodology, namely, to prove or disprove the
hypothesis of this research (highlighted in section 1.2). To do this, we shall first
replicate results found in existing literature. Subsequent to this, we shall alter the
system until the control objective can no longer be achieved (if possible).

This chapter is structured as follows. The analytical Lyapunov swing-up control
formulation for the undamped PAn−1 robot is first replicated, using the work of
Xin and Liu as a reference point. This replication includes the proofs and lemmas
involved in establishing the gain conditions. Subsequently, the analytical derivation
of a swing-up control law for the actively damped and passively damped PAn−1

robot is included, which is integrated as a system alteration. This results in the
definition of the main finding of this chapter’s investigation, the matched damping
condition. This generalised derivation is followed by analytical and experimental
results for the simplest derivatives of the PAn−1 robot, namely the Acrobot and the
PAA robot.
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8.2 Preliminaries: The Undamped PAn−1 Robot

In this section, we will first introduce the LDM related swing-up control design
derived by Xin and Liu in [5] for the undamped PAn−1 robot and its derivatives: the
Acrobot, and the PAA Robot solely to experimentally replicate the work presented
by Xin and Liu in [5]. These results are thus included as a preliminary discussion,
which will lead up to the derivation of the swing-up control of the PAn−1 robot
that has been integrated with (i) active viscous damping (referred to as the tenable
alteration) and (ii) passive viscous damping (referred to as the untenable alteration).

8.2.1 The Necessary Swing-up Control Torque for the Undamped PAn−1

Robot

Following the control torque derivation highlighted in [5] for the conventionally
modelled PAn−1 robot, we find that the control torque

τa = Λ−1(q)

[
kDGT(q)M−1(q)

[
D(q, q̇) + K(q)

]
− kvq̇a − kPψT(qa)qa

]
(8.1)

where
Λ(q, q̇) = (E − Er)In−1 + kDGT(q)M−1(q)G(q) (8.2)

and
|Λ(q, q̇)| 6= 0 ∀ q, q̇ (8.3)

are required to perform satisfactory swing-up control on the undamped PAn−1 robot.
We can thus replicate experimental results from [5] as required.

There are two outstanding objectives from this point in the derivation that are
addressed in great detail in [5]. Firstly, the condition in eq. (8.3) must be proven to
be true across the entire state-space to ensure that Λ(q, q̇) is invertible. Subsequent
to this, the equilibrium points in the system, and their stability, must be evaluated
to guarantee the swing-up behaviour of the system trajectory towards the UEP.
These derivations result in a set of gain selection conditions for kD and kP which
ensure that the system trajectory tends towards the UEP as t→∞. These proofs are
outlined in great detail in [5], which indicates that for satisfactory swing-up control
the gains kP and kD must be selected so that

kD > kDM = max
qa
{kD (qa)}

= max
qa

{
(Er + Φ(qa))λmax

((
GT(q)M−1(q)G(q)

)−1
)}

(8.4)

and

kP > max
2≤i≤n

{kmi} (8.5)
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where

kmi = 2Erβi−1

∑n
j=1 βj∑n
j=i−1 βj

.

In this chapter, we will highlight the traditional swing-up method of higher-order
systems (n > 2) covered in [5], but we will also introduce an alternative method of
approaching the swing-up control of the higher-order systems by approximately
modelling the PAn−1 robot as an Acrobot. The result of this approximation is re-
ferred to as the Reduced-Order PAn−1 robot (ROPAn−1 robot), and is realised, in this
particular case, through the implementation of the Modified Collocated Partial Feed-
back Linearisation (MCPFL) technique. This technique, along with other pertinent
variations of the PFL technique, are discussed in section 9.3. The modified version
was chosen in this case to accommodate the independent derivation of the necessary
swing-up torque for τ2. Details of this derivation can be seen in section 9.3.1. The
ROPAn−1 robot is officially defined below.

Definition 8.1. The Reduced-Order PAn−1 (ROPAn−1) robot is a planar compound
pendulum model that results from the PFL of the PAn−1 robot. There are three
variations of the ROPAn−1 robot that correspond with the application of either the
Traditional Collocated PFL (TCPFL), MCPFL, or the Noncollocated PFL (NCPFL)
techniques. The general result of these techniques (and the application of non-
oscillatory regulatory control) is the representation of the linearised PAn−1 robot
as an Acrobot. This is contingent on the selection of a sufficiently high response
frequency for the controllers involved in regulation and the initialisation of the
angular states of the regulated pendulums to zero.

Notable examples of the ROPAn−1 robot are the ROPA1 robot (the Acrobot) and
the ROPA2 robot (reduced order representation of the PAA robot). The reason for
the inclusion of this model is not yet clear at this point of the derivation, but this will
be carefully revealed once we encounter the invertibility problem (see section 8.4.1).

8.2.2 Modelling the Undamped PAn−1 Robot as the MC-ROPAn−1 Robot

The Modified Collocated ROPAn−1 (MC-ROPAn−1) robot is defined as follows:

Definition 8.2. The MC-ROPAn−1 robot is a reduced-order representation of the
PAn−1 robot that results from the linearisation of the n− 2 most distal pendulums
of the system. The n− 1 most distal pendulums thus collectively represent a single
pendulum described by nonlinear dynamics. This system closely approximates
the behaviour of an Acrobot, provided that the selected response frequency of
the actuators involved in non-oscillatory regulation is sufficiently large and that
qi(0) = 0 for 2 < i < n.

To define this model mathematically, we begin by first defining the torque
required for each of the n − 2 distal actuators that will be used to linearise the
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dynamics of their respective joints, as derived in section 9.3.1. Each torque τi where
3 ≤ i ≤ n must satisfy

τi = M̂i3(q)v3 + M̂i4(q)v4 + · · ·+ M̂in(q)vn + Ĉi(q, q̇) + K̂i(q) + τ̂i (8.6)

where, for 3 ≤ j ≤ n and 2 ≤ k ≤ n,

M̂ij(q) = Mij(q)− M̃1j(q)Mi1(q)

M11(q)
− M̃2j(q)Mi2(q)

M̃22(q)
,

Ĉi(q, q̇) = Ci(q, q̇)− Mi1(q)

M11(q)
C̃1(q)− Mi2(q)

M̃22(q)
C̃2(q),

K̂i(q,) = Ki(q)− Mi1(q)

M11(q)
K̃1(q)− Mi2(q)

M̃22(q)
K̃2(q),

τ̂i =
Mi2(q)

M̃22(q)
τ2 −

Mi1(q)

M11(q)
τ̃2,

τ̃2 =
M12(q)

M̃22

τ2

and

M̃2k(q) = M2k(q)− M1k(q)M21(q)

M11(q)
, M̃1j(q) = M1j(q)− M12(q)M̃2i(q)

M̃22(q)
,

C̃2(q, q̇) = C2(q, q̇)− M21(q)

M11(q)
C1(q, q̇), C̃1(q, q̇) = C1(q, q̇)− M12(q)

M̃22(q)
C̃2(q, q̇),

K̃2(q) = K2(q)− M21(q)

M11(q)
K1(q), K̃1(q) = K1(q)− M12(q)

M̃22(q)
K̃2(q).

Implementing a linear controller law as seen in [2], where

vi = −kDi q̇i − kPiqi

we can ensure that the n− 2 distal pendulums will collectively act as one pendulum
provided that a sufficiently fast and damped response is chosen for kDi and kPi .
The non-oscillatory behaviour of the n− 2 distal pendulums can be guaranteed by
choosing

kDi = 2ωni , kPi = ωni
2 (8.7)
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where ωni represents the natural response frequency of the ith actuator.

Since we are guaranteed that

q3 ≈ 0,

q4 ≈ 0,

...
qn ≈ 0

we can now model the PAn−1 robot as a MC-ROPAn−1 robot. The generalised
result of modelling the PAn−1 robot using MCPFL is shown in figure 8.1. The n− 1
most distal pendulums of the generalised PAn−1 robot on the left of figure 8.1 are
linearised using the control gains in eq. (8.7), which will guarantee that the PAn−1

robot will behave as an approximation of the Acrobot. The dynamics of this system
can thus be described as

M(q2)q̈ + D(q2, q̇) + K(q) = G(q)u (8.8)

where

M(q2) =

[
M11(q2) M12(q2)

M21(q2) M22(q2)

]

F I G U R E 8 . 1 : The PAn−1 robot, linearised using MCPFL, repre-
sented as a MC-ROPAn−1 robot.
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D(q2, q̇) = C(q2, q̇) =

[
C1(q2, q̇)

C2(q2, q̇)

]
,

K(q) =

[
K1(q)

K2(q)

]

with

M11(q2) = α1 + α2 + 2α3 cos q2,

M12(q2) = M21(q2) = α2 + α3 cos q2,

M22(q2) = α2,

C1(q2, q̇) = −α3(2q̇1q̇2 + q̇2
2) sin q2,

C2(q2, q̇) = α3q̇
2
1 sin q2,

K1(q) = −β1 sin q1 − β2 sin(q1 + q2),

K2(q) = −β2 sin(q1 + q2)

and

α1 = I1 +m1l1
2 +m2L1

2, α2 = I2 +m2l2
2,

α3 = m2l2L1 β1 = (m1l1 +m2L1) g,

β2 = m2l2g,

m2 =

n∑

i=2

mi, I2 =

n∑

i=2

Ii,

m2l2 =
n∑

i=2

mi


li +

i−1∑

j=2

Lj


 , m2l2

2 =
n∑

i=2

mi


li +

i−1∑

j=2

Lj




2

.

Therefore, the dynamical equations of motion of the newly defined MC-ROPAn−1

robot may be defined as

M11(q2)q̈1 +M12(q2)q̈2 − α3(2q̇1q̇2 + q̇2
2) sin q2 − β1 sin q1 (8.9a)

− β2 sin(q1 + q2) = 0,

M21(q2)q̈1 +M22(q2)q̈2 + α3q̇
2
1 sin q2 − β2 sin(q1 + q2) = τ2. (8.9b)

8.2.3 Necessary and Sufficient Gain Conditions for the Undamped MC-
ROPAn−1 Model

In this section, we will discuss the necessary and sufficient gain conditions that
are required to swing-up the MC-ROPAn−1 robot using LDM. These conditions
are meticulously derived according to the procedural structure in [5], but only the
most pertinent results of this derivation are included in this section. The more
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mathematically rigorous sections of this derivation are included in appendix A. The
derivation is treated with a significant amount of rigour since the success of the
swing-up control is contingent on the satisfaction of these conditions. Altering the
MC-ROPAn−1 system (through the integration of viscous damping, for instance)
may significantly impact these conditions. This impact will be best identified and
understood if the derivation of the necessary conditions for swing-up of the un-
damped MC-ROPAn−1 robot are meticulously described. Again, the importance of
the MC-ROPAn−1 robot will be made clear upon the definition of the invertibility
problem, which is discussed in section 8.4.

It is apparent from eq. (8.1) that the necessary swing-up torque for the newly
defined model above is defined as

τ2 =
kDGT(q)M

−1
(q2)

[
D(q, q̇) + K(q)

]
− kv q̇2 − kP q2

Λ(q, q̇)
(8.10)

where

Λ(q, q̇) = (E − Er) + kDGT(q)M
−1

(q2)G(q)

whose dynamics is dictated by the Lyapunov candidate function

V =
1

2
(E − Ed)2 +

1

2
kD q̇

2
2 +

1

2
kP q2

2 (8.11)

and

V̇ = −kV q̇2
2. (8.12)

With this in mind, we can now demonstrate the feasibility of the swing-up control
on this model by proving that

(i) The Λ(q, q̇) matrix is invertible [5].

(ii) The system trajectory tends towards the UEP as t→∞ [5].

We will begin first with proving the invertible nature of Λ(q, q̇).

It is shown in [5, pg. 204] that the Λ(q, q̇) matrix (and therefore the Λ(q, q̇) ma-
trix) is invertible as long as the necessary and sufficient condition

kD > kDM = max
q

{
η(q)

}
(8.13)

is satisfied where

η(q) =
[
Er + Φ(qa)

]
λmax

[
(GTM−1G)−1

]
.
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This is proven in [5] for the PAn−1 robot, but an adapted version of the proof is
provided in appendix A (Proof A.3) to cater for the MC-ROPAn−1 robot.

With this necessary condition proven, we must now show that the system trajectory
of the MC-ROPAn−1 robot will tend towards the UEP as t→∞ using invariant set
theory. The result of this derivation is the gain condition

kP > 2β1β2. (8.14)

The satisfaction of this condition will ensure that there is only one other equilibrium
point in the system (the FPEP). The FPEP will be unstable in this case, thus causing
the system trajectory to follow a homoclinic orbit that tends toward the UEP [5]. The
rigorous derivation of this condition is included in appendix A (Proof A.4) for the
undamped MC-ROPAn−1 robot, and follows the structure of the DDA proof shown
in [5].

We have thus shown that the swing-up control of the MC-ROPAn−1 robot is re-
alisable. The modelling of the PAn−1 robot as the MC-ROPAn−1 robot will be useful
in overcoming the invertibility problem, which will introduced at a later stage in this
chapter.

The analytical results that have been derived for both the PAn−1 robot and the
MC-ROPAn−1 must be supported by experimental results to demonstrate practical
relevance. We must, therefore, construct defined variations of these robots, whose
swing-up control can be practically demonstrated using simulation packages. We
will begin by deriving the LDM-related swing-up control torque that is required to
swing-up the least complex derivative of the PAn−1 robot (and MC-ROPAn−1 robot),
namely the Acrobot (or MC-ROPA1 robot). We will subsequently replicate the
simulated results demonstrated in [5] for the undamped Acrobot. The modelling
aspects of the Acrobot is covered in section 7.4.

8.2.4 The Undamped Acrobot

Derivation of the Necessary Swing-up Control Torque

The Lyapunov candidate function

V =
1

2
(E − Er)2 +

1

2
kD q̇

2
2 +

1

2
kP q2

2 (8.15)

was chosen for the purpose of performing swing-up control on the Acrobot where

V̇ = (E − Er)Ė + kD q̈2q̇2 + kP q̇2q2 (8.16)

represents the time-derivative of this Lyapunov function. The change in energy in
the system, in this case, is only dependent on the actuation provided by torque τ2.
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Therefore
Ė = q̇2τ2. (8.17)

This results in
V̇ = (E − Er)τ2q̇2 + kD q̈2q̇2 + kP q2q̇2 (8.18)

through substitution. Furthermore, the dynamics q̈2 is determined from the proto-
typical form, whereby

q̈2 = GT(q)M−1(q) [G(q)τ2 −C(q, q̇)−K(q)] .

Substituting this expression into eq. (8.18) produces

V̇ = q̇2

[[
(E − Er) + kDGT(q)M−1(q)G(q)

]
τ2 − kDGT(q)M−1(q) [C(q, q̇)

+K(q)] + kpq2] .

As mentioned before, the Lyapunov function must have a negative semi-definite
rate if the system trajectory is to tend towards the invariant set Wr. The following
Lyapunov function rate

V̇d = −kv q̇2
2 ≤ 0 (8.19)

was selected for this application. Therefore, having V̇ = V̇d, we can solve for the
necessary swing-up torque

τ2 =
kDGT(q)M−1(q) [C(q, q̇) + K(q)]− kV q̇2 − kP q2

Λ(q, q̇)

where

Λ(q, q̇) = (E − Er) + kDGT(q)M−1(q)G(q).

The gain conditions are demonstrated in eqs. (8.4) and (8.5) for n = 2 (which is
identical to the results generated for the MC-ROPAn−1 robot where n = 2, shown in
eqs. (8.13) and (8.14)).

Simulation Results

Simulation results of the swing-up control formulate above is provided for the
model demonstrated in section 7.4, we define the properties

m1 = 1 kg, m2 = 1 kg,
l1 = 0.5 m, l2 = 1 m,

L1 = 1 m, L2 = 2 m,

I1 = 0.083 kg.m2, I2 = 0.33 kg.m2,

g = 9.81 m.s2
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F I G U R E 8 . 2 : The behaviour of kD (qa) across qe2 ∈ [0, 2π], with
kDM shown as the suprenum.

for experimentation, as shown in [5]. The function kD (qa) (seen in eq. (8.4)) for
this particular experiment is demonstrated in figure 8.2. The gain criterion kDM
represents the suprenum of this curve. We find that

kDM = 35.777

through inspection of the data points of figure 8.2. The second gain condition
(highlighted by eq. (8.14)) is selected to ensure that the straight-line function

f(qe2) =
kP

β1β2

qe2 (8.20)

will only intercept the function ζ (qe2) at the origin. We plotted the relationship
between ζ (qe2) and two straight-line functions in figure 8.3, where the red dotted
line represents the straight-line function whose behaviour is dictated by a gain kP
that satisfies eq. (8.14), and the blue dotted line represents a straight-line function
that does not satisfy this gain condition. It is evident from the figure that selecting a
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F I G U R E 8 . 3 : The intercepts of ζ (qe2) between (i) a straight line
function that has a kP that satisfies the condition in eq. (8.14) (red
line) and (ii) a straight line function that has a kP that only satisfies

the condition in eq. (A.64).

gain kP that satisfies the gain condition, whereby

kP > 288.7083.

in this case, will ensure that the straight-line function only intercepts ζ (qe2) at the
origin. Therefore, choosing

kD = 35.8, kP = 288.8

ensures that the Λ(q, q̇) matrix is invertible ∀t and that the FPEP is the only equi-
librium point in Ω−, with Ω+ = Ω0 = ∅. Additionally, we chose kV = 66.3 to
produce a rapid swing-up, as seen in [5] (since kV > 0 is the only condition that
must be satisfied). Therefore, a swing-up control simulation was performed using
the selected gains and the initial conditions

q1(0) = −π
2
− 1.4, q2(0) = 0,

q̇1(0), = 0 q̇2(0) = 0

as seen in [5]. The results of this swing-up control can be seen in figures 8.4 - 8.9.
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F I G U R E 8 . 4 : The angular displacement q1 of the proximal pendu-
lum for the undamped Acrobot with kP = 288.8 during LDM-related

swing-up control.
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F I G U R E 8 . 5 : The angular displacement q2 of the distal pendulum
for the undamped Acrobot with kP = 288.8 during LDM-related

swing-up control.
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F I G U R E 8 . 6 : The phase portrait of the proximal pendulum of the
undamped Acrobot with kP = 288.8 during LDM-related swing-up

control.
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F I G U R E 8 . 7 : The Lyapunov candidate function of the undamped
Acrobot with kP = 288.8.
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F I G U R E 8 . 8 : The difference between the mechanical energy of
the undamped Acrobot and the energy state of Er with kP = 288.8

during LDM-related swing-up control.
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F I G U R E 8 . 9 : The LDM-related torque used to swing-up the un-
damped Acrobot with kP = 288.8.
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The Lyapunov function demonstrated in figure 8.7 predictably tends towards zero,
demonstrating that the system tends towards the invariant set Wr as t→∞. This is
confirmed by the behaviour of the angular trajectories q1 and q2 demonstrated in
figures 8.4 and 8.5, whereby q1 tends towards the UEP (qd1 = 0), and q2 tends towards
qd2 = 0. Additionally, figure 8.8 demonstrates that the system energy continued to
tend towards the objective energy state Er. The proximal pendulum entered into a
limit cycle that approached the desired trajectory qd1 = 0, and q̇d1 = 0 found on the
far-right of the phase portrait in figure 8.6. The torque produced by the actuator
found at the joint between the proximal and distal pendulum is demonstrated
in figure 8.9. The peak of the torque corresponds to the point in the simulation
when the proximal pendulum entered the outer boundaries of the limit cycle. The
torque profile stabilises after this event, maintaining the limit cycle behaviour of
the proximal pendulum whilst causing the distal pendulum to tend towards the
desired trajectory. This behaviour is expected, but the Acrobot can, however, be
swung-up at a faster rate by using the unstable nature of extra equilibrium points in
the invariant set Ω−, as shown in [5]. Therefore, we selected the gain

kP = 61.3

that just satisfies the condition in eq. (A.64). This gain caused the three intercepts
seen with the blue straight-line curve in figure 8.3. There are, therefore, three
equilibrium points in Ω−, which are all unstable. Furthermore, choosing

kD = 35.8, kV = 66.3

with the same initial conditions as the last swing-up control simulation, we find that
the Acrobot is swung-up approximately near the UEP at a rate that is faster than
the Acrobot that was swung-up with a kP that allowed only one equilibrium point
within Ω−. The results of this swing-up control are shown in figure 8.10-8.15.

The results demonstrated in figures 8.10-8.15 are replications of the results demon-
strated in [5] for the undamped DDA, which is expected. The response of the angular
trajectories shown in figures 8.10 and 8.11 is faster than the response of the angular
displacements shown in figures 8.4 and 8.5 since the control technique uses the
unstable equilibrium point represented by the additional intercept in figure 8.3 to
repel the trajectory towards the UEP. The slight plateau in the Lyapunov function
shown in figure 8.13 and in the mechanical energy curve in figure 8.14 demonstrates
the relative interception of this additional unstable equilibrium point in the invariant
space W. The response of this equilibrium point causes the proximal pendulum to
exit the boundaries of the limit cycle demonstrated in figure 8.12. This behaviour is
temporary, however, since the dynamics of the system obeys the constraints applied
by the Lyapunov function, which dictates that the behaviour of the dynamics must
tend towards the invariant set Wr. The torque shown in figure 8.15 stabilises after
the transience introduced by the interception of the unstable equilibrium point.
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F I G U R E 8 . 1 0 : The angular displacement q1 of the proximal pendu-
lum of the undamped Acrobot with kP = 61.3 during LDM-related

swing-up control.
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F I G U R E 8 . 1 1 : The angular displacement q2 of the distal pendulum
of the undamped Acrobot with kP = 61.3 during LDM-related swing-

up control.
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F I G U R E 8 . 1 2 : The phase portrait of the proximal pendulum of the
undamped Acrobot with kP = 61.3 during LDM-related swing-up

control.
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F I G U R E 8 . 1 3 : The Lyapunov candidate function of the undamped
Acrobot with kP = 61.3.



Chapter 8. Identifying the Breaking Point 115

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

M
ec
a
h
n
ic
a
l
E
n
er
g
y
-
E

r
(J
)

F I G U R E 8 . 1 4 : The difference between the mechanical energy of
the undamped Acrobot and the energy state of Er with kP = 61.3

during LDM-related swing-up control.
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F I G U R E 8 . 1 5 : The LDM-related torque used to swing-up the un-
damped Acrobot with kP = 61.3.
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We will now demonstrate that relevant swing-up control results can be produced
for undamped higher-order systems. A classic higher-order PAn−1 robot is the PAA
robot. The PAA robot can be approximately modelled as the MC-ROPA2 robot
(whose control is discussed in the following section).

8.2.5 The Undamped PAA Robot

Derivation of the Necessary Swing-up Control Torque for the Traditional PAA
Robot

The PAA robot is a triple inverted pendulum system that is actuated only at the most
distal joints (being the 1st and 2nd joints in this configuration). The mathematical
model of the PAA robot is discussed in great detail in section 7.5. We begin with
the definition of the candidate Lyapunov function for the undamped PAA robot
originally defined in [5], whereby

V =
1

2
(E − Er)2 +

1

2
kDq̇T

a q̇a +
1

2
kPqa

Tqa

and where

qa =
[
q2 q3

]T

as stated in section 7.5. Taking the derivative of this Lyapunov function, we find that

V̇ = (E − Er)Ė + kDq̇T
a q̈a + kP q̇T

aψ
T (qa) qa. (8.21)

The change of energy in the undamped PAA robot can only be caused by the two
actuators. Therefore

Ė = q̇T
aτa

where

τa =
[
τ2 τ3

]T
.

Substituting this expression into eq. (8.21) we find that

V̇ = q̇T
a

[
(E − Er)τa + kDq̈a + kPψ

T (qa) qa
]
.

The equations of motion for the two most distal pendulums, represented by q̈a, may
be solved for through the manipulation of the prototypical form for the PAA robot.
The results in

q̈a = GT(q)M−1(q) [G(q)τa −C(q, q̇)−K(q)] .
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The substitution of this expression into eq. (8.21) produces

V̇ = q̇T
a

[[
(E − Er)I2 + kDGT(q)M−1(q)G(q)

]
τa − kDGT(q)M−1(q) [C(q, q̇) + K(q)]

+kPψ
T (qa) qa

]

= q̇T
a

[
Λ(q, q̇)τa − kDGT(q)M−1(q) [C(q, q̇) + K(q)] + kPψ

T (qa) qa
]

where

Λ(q, q̇) = (E − Er)I2 + kDGT(q)M−1(q)G(q).

If the desired Lyapunov candidate function is chosen to be

V̇d = −kV q̇T
a q̇a

then, allowing V̇ = V̇d we can solve for the torque τa, since q̇T
a is a common vector.

Therefore

τa = Λ−1(q, q̇)
[
kDGT(q)M−1(q) [C(q, q̇) + K(q)]− kV q̇a − kPψT (qa) qa

]
.

The necessary gain conditions for the undamped PAA robot are shown in eqs. (8.4)
and (8.5).

Simulation Results: Traditional PAA Robot

To simulate the swing-up control of the PAA robot with the torque derived in the
previous section, we choose the properties

m1 = 5.4 kg, m2 = 29.5 kg, m3 = 18.5 kg,
L1 = 0.58 m, L2 = 0.5 m, L3 = 0.79 m,

l1 = 0.31 m, l2 = 0.2 m, l3 = 0.33 m,

I1 = 0.15 kg.m2, I2 = 1.93 kg.m2, I3 = 1.03 kg.m2

for the PAA robot, as seen in [5]. The gains are chosen by evaluating the gain
selection conditions highlighted in eqs. (8.4) and (8.5), whereby

kD > kDM = max
qa

{
(Er + Φ(qa))λmax

((
GT(q)M−1(q)G(q)

)−1
)}

(8.22)

and

kP > km2 = 2β1 (β2 + β3) , kP > km3 =
2Erβ2β3

β2 + β3
. (8.23)

For the condition on kD, kDM must be determined through an experimental method
since eq. (8.22) offers no analytical solution, as seen with the Acrobot. We thus
swept through a range of [0, 2π] for both q2 and q3, and we plotted the function kDM
against these angular displacements, as shown in figures 8.16 and 8.17.
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F I G U R E 8 . 1 6 : Contour plot (3D) of kD for the PAA robot.
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F I G U R E 8 . 1 7 : Contour plot (2D) of kD for the PAA robot.
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The maximum of the peaks of this curve is found to be maxqa {kD} = kDM =
10101, which is approximate to the value determined in [5] for the PAA robot. The
conditions on kP (seen in eq. (8.23)) are solved for trivially, with

km2 = 120500, km3 = 42434.

Therefore, since km2 > km3 , kp > km2 is required to satisfy the gain selection criterion
in eq. (8.23). Therefore

kP > 120500.

To replicate the results seen in [5], the gains

kD = 11500, kP = 121700, kV = 4550

were considered, according to their respective selection conditions. Additionally,
we selected the initial conditions

q1(0) = −1.4− π

2
, q2(0) = q3(0) = 0,

q̇1(0) = q̇2(0) = q̇3(0) = 0.

Figures 8.18-8.25 demonstrate the results of the simulation.
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F I G U R E 8 . 1 8 : The angular displacement q1 of the most proximal
pendulum of the undamped PAA robot during LDM-related swing-

up control.
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F I G U R E 8 . 1 9 : The angular displacement q2 of the second pen-
dulum of the undamped PAA robot during LDM-related swing-up

control.
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F I G U R E 8 . 2 0 : The angular displacement q3 of the most distal pen-
dulum of the undamped PAA robot during LDM-related swing-up

control.
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F I G U R E 8 . 2 1 : The phase portrait of the proximal pendulum of the
undamped PAA robot during LDM-related swing-up control.
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F I G U R E 8 . 2 3 : The difference between the mechanical energy of the
undamped PAA robot and the energy state ofEr during LDM-related

swing-up control.
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F I G U R E 8 . 2 4 : The LDM-related torque τ2 used to swing-up the
undamped PAA robot.
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F I G U R E 8 . 2 5 : The LDM-related torque τ3 used to swing-up the
undamped PAA robot.

It is clear from figure 8.22 that the Lyapunov function tended towards zero, there-
fore reflecting the fact that the system dynamics approached the invariant set Wr

throughout the simulation. This is confirmed by the behaviour of the angular trajec-
tories shown in figures 8.18-8.20, whereby the proximal pendulum tended towards
qd1 = 0, the second pendulum approached qd2 = 0, and the most distal pendulum
approached qd3 = 0 as t → ∞. The trajectories q2 and q3 peaked at their greatest
end-state deviations at approximately 15 seconds into the simulation. The transience
attenuates after this point, allowing the proximal pendulum to enter into a limit
cycle, as demonstrated by the phase portrait in figure 8.21. The trajectory exited
the boundaries of this limit cycle during the transient phase of the simulation. The
mechanical energy of the system is demonstrated in figure 8.23. It is evident that the
mechanical energy of the PAA robot approximated the desired energy state Er by
the end of the simulation. The peak at 15 seconds occurred towards the end of the
transience, which was the result of the high kinetic energies of the pendulums. The
torques produced by the actuators in the system are demonstrated in figures 8.24
and 8.25. The profiles of these torques are similar, whereby the maximum torques
are produced towards the end of the transient phase, forcing the system to approach
the limit cycle in figure 8.21. The limit cycle is maintained by the steady-state torque
profiles produced after the transience. These results are expected since they corrobo-
rate with the results produced in [5].

With the PAA robot having an order n > 2, we can model the PAA robot as a
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MC-ROPA2 robot, which approximates the behaviour of an Acrobot so long as the
response frequency of the regulating controllers are sufficiently large. The modelling
of the MC-ROPA2 robot is, therefore, discussed in the next section.

Modelling the Undamped PAA Robot as the MC-ROPA2 Robot

To model the PAA robot as an approximation of the Acrobot, the FBL torque

τ3 = M̂33(q)v3 + Ĉ3(q, q̇) + K̂3(q) + τ̂3

is required for τ3, which is derived from eq. (8.6) where

M̂33(q) = M33(q)− M̃13(q)M31(q)

M11(q)
− M̃23(q)M32(q)

M̃22(q)
,

Ĉ3(q, q̇) = C3(q, q̇)− M31(q)

M11(q)
C̃1(q, q̇)− M32(q)

M̃22(q)
C̃2(q, q̇),

K̂3(q) = K3(q)− M31(q)

M11(q)
K̃1(q)− M32(q)

M̃22(q)
K̃2(q),

τ̂3 =
M32(q)

M̃22(q)
τ2 −

M31(q)

M11(q)
τ̃2,

τ̃2 =
M12(q)

M̃22

τ2

and, for 2 ≤ k ≤ 3,

M̃2k(q) = M2k(q)− M1k(q)M21(q)

M11(q)
, M̃13(q) = M13(q)− M12(q)M̃23(q)

M̃22(q)
,

C̃2(q, q̇) = C2(q, q̇)− M21(q)

M11(q)
C1(q, q̇), C̃1(q, q̇) = C1(q, q̇)− M12(q)

M̃22(q)
C̃2(q, q̇),

K̃2(q) = K2(q)− M21(q)

M11(q)
K1(q), K̃1(q) = K1(q)− M12(q)

M̃22(q)
K̃2(q).

Implementing this torque causes q̈3 = v3, which was selected to be

v3 = −kD3 q̇3 − kP3q3.
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With the application of the FBL torque, the PAA robot can be approximately mod-
elled as an Acrobot described by the dynamical equations

M11(q2)q̈1 +M12(q2)q̈2 − α3

(
2q̇1q̇2 + q̇2

2

)
sin q2 − β1 sin q1 (8.24a)

− β2 sin(q1 + q2) = 0,

M21(q2)q̈1 +M22(q2)q̈2 + α3q̇
2
1 sin q2 − β2 sin(q1 + q2) = τ2 (8.24b)

where

M11(q2) = α1 + α2 + 2α3 cos q2,

M12(q2) = M21(q2) = α2 + α3 cos q2,

M22(q2) = α2,

C1(q2, q̇) = −α3(2q̇1q̇2 + q̇2
2) sin q2,

C2(q2, q̇) = α3q̇
2
1 sin q2,

K1(q) = −β1 sin q1 − β2 sin(q1 + q2),

K2(q) = −β2 sin(q1 + q2)

and

α1 = I1 +m1l1
2 +m2L1

2, α2 = I2 +m2l2
2,

α3 = m2l2L1, β1 = (m1l1 +m2L1) g,

β2 = m2l2g,

m2 = m2 +m3, I2 = I2 + I3,

m2l2 = m2l2 +m3 [l3 + L2] , m2l2
2 = m2l2

2 +m3 [l3 + L2]2 .

Derivation of the Necessary Swing-up Control Torque for the Undamped MC-
ROPA2 Robot

Choosing the Lyapunov function

V =
1

2
(E − Er)2 +

1

2
kD q̇

2
2 +

1

2
kP q2

2

results, according to eq. (8.10) in the necessary swing-up torque

τ2 =
kDGT(q)M

−1
(q2)

[
D(q, q̇) + K(q)

]
− kv q̇2 − kP q2

Λ(q, q̇)
(8.25)

where

Λ(q, q̇) = (E − Er) + kDGT(q)M
−1

(q2)G(q).
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The gain selection conditions

kD > max
q2

{(
Φ(q2) + Er

) ∣∣M(q2)
∣∣

M11(q2)

}

must be satisfied to ensure that Λ(q, q̇) is invertible and that the system trajectory
will tend towards the invariant set Wr as t → ∞ with the invariant spaces Ω+ =
Ω0 = ∅, where

Φ(q2) =

√
β1

2
+ β2

2
+ 2β1β2 cos q2

and

kP >
2

π
min

{
β1

2
, β2

2
}

as described by eqs (8.13) and (8.14).

Simulation Results: MC-ROPA2 Robot

To find kDM , we use an experimental analysis as performed with the Acrobot. In
this instance, with the system parameters

m1 = 1 kg, m2 = 0.5 kg, m3 = 0.5 kg,
L1 = 1 m, L2 = 1 m, L3 = 1 m,

l1 = 0.5 m, l2 = 0.5 m, l3 = 0.5 m,

I1 = 0.083 kg.m2, I2 = 0.165 kg.m2, I3 = 0.165 kg.m2

which produces

m2 = 1 kg, I2 = 0.33 kg.m2,

m2l2 = 1 kg.m, m2l2
2 = 1.25 kg.m2.

Using these parameters, we plotted the behaviour of kD (q2) for the MC-ROPA2

robot. The behaviour of kD (q2) for this particular MC-ROPA2 robot was found to
be identical to that of the Acrobot shown in figure 8.2. As explained before, the
suprenum of this curve is kDM = 37.5134. The gain selection criterion

kP > 61.2658

was trivially solved. Therefore, we selected the gains

kD = 38, kP = 61.3, kV = 66.3.
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Additionally, we chose the gains

kD3 = 40, kP3 = 400

taken from eq. (8.7), with ωn3 = 20 rad.s−1 along with the initial conditions

q1(0) = −1.4− π

2
, q2(0) = q3(0) = 0,

q̇1(0) = q̇2(0) = q̇3(0) = 0.

The results of the swing-up control of this MC-ROPA2 robot are demonstrated in
figures 8.26-8.33. It is expected that these results should be approximately the same
as the results produced for the Acrobot earlier in this chapter. The angular dis-
placement of the most proximal pendulum of the MC-ROPA2 robot is demonstrated
in figure 8.26. The most proximal pendulum enters a limit cycle after experienc-
ing a 2π radian negative phase shift during the transient phase of the swing-up
control. This is not evident in the Acrobot simulation result shown in figure 8.10,
and is attributed to the approximations of the system dynamics that were made in
the formulation of the MC-ROPA2 robot. The angular displacement of the second
pendulum of the MC-ROPA2 robot is demonstrated in figure 8.27. The behaviour
of this function closely approximates the response of the most distal pendulum
of the Acrobot shown in figure 8.11, but there are more significant oscillations in
the steady-state present for q2 of the MC-ROPA2 robot. This can be attributed to
the approximations which are intrinsic to this model. The result of the simulated
angular displacement of the most distal pendulum is demonstrated in figure 8.28. It
is evident that this pendulum is tightly regulated about the q3 = 0 axis since it has a
maximum deviation of approximately 8× 10−13 radians.

The phase portrait of the most proximal pendulum of the MC-ROPA2 robot during
swing-up control is demonstrated in figure 8.29. The 2π radian negative phase shift
is evident in this figure, which occurs during transience. The MC-ROPA2 robot
subsequently enters a limit cycle that closely approximates the behaviour of the limit
cycle of the Acrobot shown in figure 8.12. The Lyapunov function demonstrated in
figure 8.30 tends towards zero, with an almost identical behaviour to the Lyapunov
function of the Acrobot seen in figure 8.13. The mechanical energy demonstrated
in figure 8.31 tends towards the desired energy state Er, which is expected. More
importantly, the behaviour of the mechanical energy is also almost identical to the
behaviour of the mechanical energy of the Acrobot demonstrated in figure 8.14. The
torques produced by the proximal and distal actuators are demonstrated in figures
8.32 and 8.33. The behaviour of the torque produced by the actuator found between
the most proximal pendulum and the second pendulum is almost identical to that
of the result produced in figure 8.15 for the Acrobot. The torque produced by the
actuator found between the second pendulum and the most distal pendulum is used
to linearise the dynamics of the most distal pendulum, and thus reacts similarly to
τ2 since the dynamics induced by this actuator must be negated.
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F I G U R E 8 . 2 6 : The angular displacement q1 of the most proximal
pendulum of the undamped MC-ROPA2 robot during LDM-related

swing-up control.
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F I G U R E 8 . 2 7 : The angular displacement q2 of the second pendu-
lum of the undamped MC-ROPA2 robot during LDM-related swing-

up control.
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F I G U R E 8 . 2 8 : The angular displacement q3 of the most distal
pendulum of the undamped MC-ROPA2 robot during LDM-related

swing-up control.
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F I G U R E 8 . 2 9 : The phase portrait of the proximal pendulum of the
undamped MC-ROPA2 robot during LDM-related swing-up control.
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F I G U R E 8 . 3 1 : The difference between the mechanical energy of
the undamped MC-ROPA2 robot and the energy state of Er during

LDM-related swing-up control.
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F I G U R E 8 . 3 2 : The LDM-related torque τ2 used to swing-up the
undamped MC-ROPA2 robot.
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F I G U R E 8 . 3 3 : The LDM-related torque τ3 used to swing-up the
undamped MC-ROPA2 robot.



Chapter 8. Identifying the Breaking Point 132

The results of the swing-up control of the MC-ROPA2 robot closely approximated the
swing-up control results produced for the Acrobot as predicted. There were, how-
ever, slight deviations in the behaviour of the pendulum displacements, whereby
the most proximal pendulum did not enter the limit cycle within the predicted phase
range, and the second pendulum experienced more oscillations in the steady-state
as compared to the most distal pendulum of the Acrobot during swing-up control.
Despite this, we can conclude that the implementation of a swing-up torque τ2 which
was designed on the MC-ROPA2 system accommodates the satisfactory swing-up
control of the PAA robot. This is attributed to the FBL torques that respond suffi-
ciently well to changes in the velocity and angular displacement of the most distal
pendulum, regulating the pendulum within ranges of 8×10−13 radians about q3 = 0.

We have now demonstrated the swing-up control of the undamped PAn−1, the
MC-ROPAn−1 and two of their derivatives: the Acrobot (which is identical to the
MC-ROPA1 robot), the PAA robot, and the MC-ROPA2 robot. We were able to
successfully replicate the simulated results for the Acrobot and the PAA robot
demonstrated in [5]. We have thus built the foundation on which to test our hy-
pothesis highlighted in section 1.2, which involves the integration of the viscous
damping model into the PAn−1 robot model. We will begin the execution of the next
step of the research methodology by first integrating the viscous damping model
into the actuated joints, referred to as active damping.

8.3 The Tenable Alteration: The Actively Damped PAn−1 Robot

8.3.1 Derivation of the Necessary Swing-up Torque

For the case of the actively damped PAn−1 robot, we will follow the same procedure
outlined in the last section and in [5] with the addition of an appropriately defined
lossy torque matrix R(q̇) (original definition in eq. (7.16)). With this definition, we
define R(q̇) as

R(q̇) = bTq̇ =
[
0 b2q̇2 . . . bn−1q̇n−1 bnq̇n

]T

where the viscous damping coefficients are represented collectively as

b =
[
b1 b2 . . . bn−1 bn

]T

with, in the case of active damping, b1 = 0 since there is no damping on the passive
joint. Therefore, we can represent the non-zero components of the system damping
as

Ra(q̇a) = GT(q)R(q̇)
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where

G(q) =

[
01×n−1

In−1

]
.

We once again chose

V =
1

2
(E − Er)2 +

1

2
kDq̇T

a q̇a +
1

2
kPqa

Tqa

as the Lyapunov candidate function seen in [5] where

qa = 0↔ qa = 0, q̇a = ψ (qa) q̇a (8.26)

with ψ(qa) described in [5]. The desired rate of this Lyapunov candidate function
was, once again, chosen to be

V̇d = −kV q̇T
a q̇a ≤ 0 (8.27)

where kV > 0. The actual time derivative of the Lyapunov function is

V̇ = (E − Er)Ė + kDq̇T
a q̈a + kP q̇T

aψ
T(qa)qa. (8.28)

The equations of motion for the most distal pendulums of the actively damped
PAn−1 robot, q̈a, are derived from eq. (7.23) are represented by

q̈a = GT(q)M−1(q) [G(q)τa −D(q, q̇)−K(q)] (8.29)

= GT(q)M−1(q) [G(q)τa −C(q, q̇)−R(q̇)−K(q)] (8.30)

where

D(q, q̇) = C(q, q̇) + R(q̇).

Additionally, the change of energy in the system is attributed to both actuation and
damping in this case as represented by

Ė = q̇T
a [τa −Ra(q̇a)] . (8.31)

Substituting eqs. (8.30) and (8.31) into eq. (8.28) produces

V̇ (q, q̇) = q̇T
a

[
(E − Ed) [τa −Ra(q̇a)] + kDGT(q)M−1(q) (G(q)τa −C(q, q̇)−

R(q̇)−K(q))] + kP q̇
T
aqa.

From eq. (8.26) the above expression simplifies to

V̇ (q, q̇) = q̇T
a

[
(E − Ed) [τa −Ra(q̇a)] + kDGT(q)M−1(q) (G(q)τa −C(q, q̇)−

R(q̇)−K(q)) + kPψ
T(qa)qa

]
.
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We will solve for the expression τa that is required to realise the desired Lyapunov
dynamics shown in eq. (8.27). We begin this derivation by equating the real and
desired Lyapunov dynamics, which produces

−kV q̇T
a q̇a = q̇T

a

[
(E − Ed) [τa −Ra(q̇a)] + kDGT(q)M−1(q) (G(q)τa −C(q, q̇)

−GT(q)Ra(q̇)−K(q)
)

+ kPψ
T(qa)qa

]
.

It is evident that the vector q̇T
a is a common factor among both sides of the equation,

and can thus fall away, resulting in

−kV q̇a = (E − Ed) [τa −Ra(q̇a)] + kDGT(q)M−1(q) (G(q)τa −C(q, q̇) (8.32)

−GT(q)Ra(q̇)−K(q)
)

+ kPψ
T(qa)qa.

Solving for τa requires that

|Λ(q, q̇)| 6= 0 ∀q, q̇.

If this is true, then Λ(q, q̇) is invertible. Solving for τa, therefore, produces

τa = Λ−1(q, q̇)
[
−kV q̇a + kDGT(q)M−1(q) [C(q, q̇) + K(q)]− kPψTqa

]
(8.33)

+ Ra(q̇)

where

Λ(q, q̇) = (E − Ed) In−1 + kDGT(q)M−1(q)G(q).

It is evident from eq. (8.33) that, in the case of the actively damped PAn−1 robot, each
actuator is responsible for negating the damping torques present at the respective
joint. Therefore, so long as the |Λ(q, q̇)| is invertible and we can prove that there
exists an invariant set Wr that contains the UEP and is dictated by a homoclinic
orbit that is approached from the set S ∈ Rn, as seen in the undamped case, the
behaviour of the actively damped PAn−1 robot that is being swung-up by a set of
controllers, whose torques are dictated by τa in eq. (8.33), will behave identically to
the swing-up controlled undamped PAn−1 robot. The only difference that can be
seen between the undamped and actively damped cases is the presence of a super-
imposed damping-negation torque found in the final swing-up torque. Additionally,
the gain condition proofs performed in [5] are satisfactory for a viscously damped
PAn−1 robot since the viscous damping is dependent on q̇a, which does not interfere
with the proof since the majority of the analysis occurs at the equilibrium points.
The gain selection conditions derived in [5] to ensure that |Λ(q, q̇)| is invertible and
that Wr is approached as t→∞ is shown in eqs. (8.4) and (8.5).

It is apparent, therefore, that the integration of active damping into the PAn−1

robot is a tenable alteration, since this alteration does not lead to the derivation
of a control torque that does not achieve the control objective. A discussion on
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the actively damped MC-ROPAn−1 robot is not included in this section since the
swing-up control of the actively damped PAn−1 has been proven to be satisfactory.

We shall now explicitly demonstrate the swing-up behaviour of the actively damped
Acrobot and PAA robot using simulated results, beginning with the Acrobot.

8.3.2 The Actively Damped Acrobot

Derivation of the Necessary Swing-up Control Torque

For the case of the actively damped Acrobot, we chose

R(q̇) =
[
0 b2q̇2

]T

as the viscous damping profile. The Lyapunov candidate function was chosen as

V =
1

2
(E − Er)2 +

1

2
kD q̇

2
2 +

1

2
kP q2

2

which is identical to that of the undamped case where the time-derivative of this
candidate function is described by

V̇ = (E − Er)Ė + kD q̈2q̇2 + kP q̇2q2.

The change of energy in the system is dependent on both the viscous damping and
the system actuation. Therefore

Ė = q̇2 [τ2 − b2q̇2]

which leads to

V̇ = q̇2 [(E − Er) [τ2 − b2q̇2] + kD q̈2 + kP q2] .

To complete the definition of the Lyapunov time-derivative, we solve for q̈2 from
the prototypical form of the actively damped Acrobot, with

q̈2 = GT(q)M−1(q) [G(q)τ2 −C(q, q̇)−R(q̇)−K(q)] .

Substituting this expression into the time-derivative of the Lyapunov function
produces

V̇ = q̇2

[[
(E − Er) + kDGT(q)M−1(q)G(q)

]
τ2 − (E − Er)b2q̇2 + kpq2

−kDGT(q)M−1(q) [C(q, q̇) + R(q̇) + K(q)]
]

= q̇2

[[
(E − Er) + kDGT(q)M−1(q)G(q)

]
[τ2 − b2q̇2] + kpq2

−kDGT(q)M−1(q) [C(q, q̇) + K(q)]
]
.
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Therefore, choosing the negative semi-definite Lyapunov rate

V̇d = −kV q̇2
2

and choosing V̇ = V̇d, we can now solve for the necessary swing-up torque

τ2 =
kDGT(q)M−1(q) [C(q, q̇) + K(q)]− kV q̇2 − kP q2

Λ(q, q̇)
+ b2q̇2 (8.34)

where

Λ(q, q̇) = (E − Er) + kDGT(q)M−1(q)G(q).

The gain conditions for the Acrobot are demonstrated in eqs. (8.4) and (8.5) where
n = 2.

Simulation Results

The actuator torque τ2, shown in eq. (8.34), evidently negates the damping torque
present at the actuated joint. Therefore, the results demonstrated in figures 8.4-8.8
also represents the behaviour of the actively damped Acrobot system, regardless of
the value of the damping coefficient b2 (so long as b2 9∞). It is important to note,
however, that the torque required to swing-up an actively damped Acrobot will
have a different magnitude. We demonstrate this by simulating the swing-up control
of an actively damped Acrobot. The resultant torques of the actuators involved in
the swing-up control of the actively damped Acrobot (with b2 = 10) are demon-
strated in figures 8.34 and 8.35, with the red curves representing the superposition
of both the swing-up torque and the damping-negation torque, and the blue curves
representing the torques required to swing-up an undamped Acrobot. The same
physical parameters, initial conditions, and gains were selected for this example
according to what is seen in section 8.2.4.

The comparison between the torques required to swing up the undamped and
actively damped Acrobot when using kP = 288.8 is demonstrated in figure 8.34.
The same comparison using kP = 61.3 is demonstrated in figure 8.34. In both cases,
the magnitude of the torques during transience are at least twice the magnitude
of the torque required to swing-up the undamped Acrobot. The torques closely
approximate one another once the transient phase has ended. The change in the
scaling factor is due to the strict regulation of the most distal pendulum about q2 = 0,
which only occurs after the transient phase. This behaviour was expected.

We shall now demonstrate that this damping negation phenomenon is also evident
in higher-order systems, using the actively damped PAA robot as a representative.
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F I G U R E 8 . 3 4 : A comparison of the necessary swing-up control
torques for the undamped Acrobot (blue) and the actively damped

Acrobot (red) with b2 = 10 and kP = 288.8.
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torques for the undamped Acrobot (blue) and the actively damped

Acrobot (red) with b2 = 10 and kP = 61.3.
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8.3.3 The Actively Damped PAA Robot

Derivation of the Necessary Swing-up Control Torque

In the case where active viscous damping is integrated into the PAA model, we
describe the damping torques in the system collectively as

R(q̇) =
[
0 b2q̇2 b3q̇3

]T

whereby

Ra(q̇) = G(q)R(q̇).

We defined the candidate Lyapunov function

V =
1

2
(E − Er)2 +

1

2
kDq̇T

a q̇a +
1

2
kPqa

Tqa

for this instance where

qa =
[
q2 q3

]T
.

The derivative of this candidate Lyapunov function was selected as

V̇ = (E − Er)Ė + kDq̇T
a q̈a + kP q̇T

aψ
T (qa) qa. (8.35)

Both the actuation and the viscous damping in this case is responsible for the change
of energy in the viscously damped PAA robot. Therefore

Ė = q̇T
a [τa −Ra(q̇)]

where

τa =
[
τ2 τ3

]T
.

The substitution of this torque expression into eq. (8.35) produces

V̇ = q̇T
a

[
(E − Er) [τa −Ra(q̇)] + kDq̈a + kPψ

T (qa) qa
]
. (8.36)

The dynamics of the two most distal pendulums may be solved for through the
manipulation of the prototypical form of the PAA robot, resulting in

q̈a = GT(q)M−1(q) [G(q) [τa −Ra(q̇)]−C(q, q̇)−K(q)] .

Substituting this expression into eq. (8.36) produces

V̇ = q̇T
a

[[
(E − Er)I2 + kDGT(q)M−1(q)G(q)

]
[τa −Ra(q̇)]

−kDGT(q)M−1(q) [C(q, q̇) + K(q)] + kPψ
T (qa) qa

]

= q̇T
a

[
Λ(q, q̇) [τa −Ra(q̇)]− kDGT(q)M−1(q) [C(q, q̇) + K(q)] + kPψ

T (qa) qa
]
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where

Λ(q, q̇) = (E − Er)I2 + kDGT(q)M−1(q)G(q).

The desired behaviour of the Lyapunov time-derivative must be negative semi-
definite. Therefore, we selected

V̇d = −kV q̇T
a q̇a.

Then with V̇ = V̇d, the necessary swing-up control torque for the actively damped
PAA robot may be solved for, resulting in

τa = Λ−1(q, q̇)
[
kDGT(q)M−1(q) [C(q, q̇) + K(q)]− kV q̇a − kPψT (qa) qa

]

+ Ra(q̇).

It is evident that, as seen with the Acrobot example, each swing-up torque negates
the viscous damping found on the corresponding joint, thus resulting in an identical
swing-up control performance, albeit with a resultant torque that represents the
superposition of the swing-up torque and damping-negation torque.

Simulation Results

We will now demonstrate the torque results of the simulated swing-up control on
the actively damped PAA robot using the physical parameters values

m1 = 5.4 kg, m2 = 29.5 kg, m3 = 18.5 kg,
L1 = 0.58 m, L2 = 0.5 m, L3 = 0.79 m,

l1 = 0.31 m, l2 = 0.2 m, l3 = 0.33 m,

I1 = 0.15 kg.m2, I2 = 1.93 kg.m2, I3 = 1.03 kg.m2.

The gains were chosen to satisfy the gain conditions highlighted in eqs. (8.4) and (8.5),
since the active damping has been proven to not interfere with the gain selection
condition proofs highlighted in [5]. We chose the gains

kD = 11500, kP = 121700, kV = 4550

alongside the initial conditions

q1(0) = −1.4− π

2
, q2(0) = q3(0) = 0,

q̇1(0) = q̇2(0) = q̇3(0) = 0.

The execution of this simulation for the PAA robot produced results that are identical
to the trajectories demonstrated in figures 8.18-8.23. There is, however, a discrepancy
between the resultant torques used for swing-up control in the undamped and
damped cases. The results of the torques τ2 and τ3 that are required to swing-up
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an actively damped PAA robot (where b2 = 100 and b3 = 100) are shown as the red
curves in figures 8.36 and 8.37 respectively. The corresponding torques required to
swing-up the undamped PAA robot are shown in blue on the same figures.
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F I G U R E 8 . 3 6 : Comparison of the torque τ2 that is required to
swing-up the undamped PAA robot (blue) and the actively damped
PAA robot with b2 = 100 (red) using LDM-related swing-up control.
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swing-up the undamped PAA robot (blue) and the actively damped
PAA robot with b3 = 100 (red) using LDM-related swing-up control.
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It is evident that the magnitude of the torques required to swing up the actively
damped PAA robot are larger in magnitude during the transient phase, but the
magnitude difference is relatively small during the steady-state. This difference
is caused by the dynamic second pendulum which deviates well off the objective
q2 = 0 during the transient phase. The controllers constrain the second pendulum
to fall within an approximate region of q2 = 0 once the transient phase ends, thus
reducing the contribution of the damping torques at the second joint. The damping
torque contribution of the most distal pendulum is insignificant because the most
distal pendulum is regulated quite tightly about q3 = 0 throughout the entire simu-
lation.

We have thus shown that the integration of active damping into the PAn−1 robot has
no effect on the LDM control technique’s ability to satisfy the swing-up control ob-
jective. The hypothesis described in section 1.2 has thus failed in this instance since
the alteration is tenable when considering the possibility of achieving the swing-up
control objective using the LDM technique. We shall now test the hypothesis in the
instance where viscous damping is integrated into the unactuated joint of the PAn−1

robot. This alteration is known as passive damping, and is discussed in the next
section.

8.4 The Untenable Alteration: The Passively Damped PAn−1

Robot

8.4.1 Derivation of the Necessary Swing-up Control Torque: The Invert-
ibility Problem

For the case of the passively damped PAn−1 robot, we will follow the same procedure
demonstrated for both the undamped and actively damped PAn−1 robots whilst
attempting to accommodate the lossy torque which has been integrated into the
unactuated joint (the first joint). In this case, the damping matrix R(q̇) is defined as

R(q̇) = bTq̇ =
[
b1q̇1 0 . . . 0

]T

where the viscous damping coefficients are represented as

b =
[
b1 b2 . . . bn−1 bn

]T

with b2, b3, . . . , bn equalling zero in the case of passive damping.

We select the Lyapunov candidate function

V =
1

2
(E − Er)2 +

1

2
kDq̇T

a q̇a +
1

2
qa

Tqa
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where

qa = 0↔ qa = qa = 0, q̇a = ψ(qa)q̇a

and where ψ (qa) is described in [5]. The time-derivative of the Lyapunov candidate
function is chosen to be

V̇d = −kV q̇T
a q̇a ≤ 0 (8.37)

where kV > 0. Taking the derivative of the Lyapunov candidate function with
respect to time produces

V̇ = (E − Er)Ė + kDq̇T
a q̈a + kP q̇T

aψ
T (qa) qa. (8.38)

The equations of motion for the most distal pendulums in the system are required
to solve the necessary swing-up torque. This is expressed as

q̈a = GT(q)M−1(q) [G(q)τa −C(q, q̇)−R(q̇)−K(q)] (8.39)

where

D(q, q̇) = C(q, q̇) + R(q̇).

The change of mechanical energy in the system is attributed to both the torque
produced by the actuators and the passive damping located on the most proximal
joint, which is represented by

Ė = q̇T
aτa − b1q̇2

1. (8.40)

Substituting eqs. (8.39) and (8.40) into eq. (8.38) produces

V̇ (q, q̇) = (E − Ed)
[
q̇T
aτa − b1q̇2

1

]
+ q̇T

a

[
kDGT(q)M−1(q) (G(q)τa (8.41)

−C(q, q̇)−R(q̇)−K(q)) + kPψ
T(qa)qa

]
.

Equating eqs. (8.37) and (8.41), we find

−kV q̇T
a q̇a = (E − Ed)

[
q̇T
aτa − b1q̇2

1

]
+ q̇T

a

[
kDGT(q)M−1(q) (G(q)τa −C(q, q̇)

−R(q̇)−K(q)) + kPψ
T(qa)qa

]
.

It is here where we encounter a fundamental problem with this formulation. In
the undamped and actively damped case, we could simply factor out the vector
q̇T
a since it was a common factor on both sides of the equation. In this case, how-

ever, the viscous damping is dependent on q̇2
1 , preventing the negation of the q̇T

a

vector. This is problematic since the vector is not traditionally invertible, and the
implementation of a pseudo-inverse (such as the Moore-Penrose pseudo-inverse) is
typically performed on systems that are over-actuated (see [107]). This is termed the
invertibility problem. The swing-up control problem for the passively damped PAn−1
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robot cannot, therefore, be solved in this form. The integration of passive damping
into the PAn−1 robot is thus referred to as the untenable alteration.

To overcome this problem, we must reduce the order of the system, so that the
vector will be simplified to an element (q̇2) which can be easily divided through.
This is where the MC-ROPAn−1 robot becomes relevant, since the MC-ROPAn−1 is
used to approximately model a system of order n > 2 as an Acrobot. Additionally,
the swing-up control of the MC-ROPAn−1 robot is possible, as proven in section 8.2.3.
We shall, therefore, attempt to circumnavigate the invertibility problem by modelling
the passively damped PAn−1 robot as a MC-ROPAn−1 robot.

8.4.2 Modelling the Passively Damped PAn−1 robot as the MC-ROPAn−1

robot

From section 9.3.1, we define the torques

τi = M̂i3(q)v3 + M̂i4(q)v4 + · · ·+ M̂in(q)vn + D̂i(q, q̇) + K̂i(q, q̇) + τ̂i

which are required to linearise the dynamics of the n− 2 most distal pendulums of
the PAn−1 robot, where, for 3 ≤ j ≤ n and 2 ≤ k ≤ n,

M̂ij(q) = Mij(q)− M̃1j(q)Mi1(q)

M11(q)
− M̃2j(q)Mi2(q)

M̃22(q)
,

D̂i(q, q̇) = Di(q, q̇)− Mi1(q)

M11(q)
D̃1(q)− Mi2(q)

M̃22(q)
D̃2(q),

K̂i(q) = Ki(q)− Mi1(q)

M11(q)
K̃1(q)− Mi2(q)

M̃22(q)
K̃2(q),

τ̂i =
Mi2(q)

M̃22(q)
τ2 −

Mi1(q)

M11(q)
τ̃2

and

M̃2k(q) = M2k(q)− M1k(q)M21(q)

M11(q)
, M̃1j(q) = M1j(q)− M12(q)M̃2i(q)

M̃22(q)
,

D̃2(q, q̇) = D2(q, q̇)− M21(q)

M11(q)
D1(q, q̇), D̃1(q, q̇) = D1(q, q̇)− M12(q)

M̃22(q)
D̃2(q, q̇),

K̃2(q) = K2(q)− M21(q)

M11(q)
K1(q), K̃1(q) = K1(q)− M12(q)

M̃22(q)
K̃2(q).
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Noting that for 2 ≤ m ≤ n, Dm(q, q̇) = Cm(q, q̇), D1(q, q̇) = C1(q, q̇) +R1(q̇), and
R1(q̇) = b1q̇1 in the passively damped case.

The prototypical form of the passively damped MC-ROPAn−1 robot is thus shown
in eq. (8.8) as a result of this linearisation, with the expanded form shown as

M11(q2)q̈1 +M12(q2)q̈2 − α3(2q̇1q̇2 + q̇2
2) sin q2 − β1 sin q1, (8.42a)

− β2 sin(q1 + q2) = −b1q̇1

M21(q2)q̈1 +M22(q2)q̈2 + α3q̇
2
1 sin q2 − β2 sin(q1 + q2) = τ2 (8.42b)

where

M11(q2) = α1 + α2 + 2α3 cos q2, (8.43)

M12(q2) = M21(q2) = α2 + α3 cos q2, (8.44)

M22(q2) = α2 (8.45)

and

α1 = I1 +m1l1
2 +m2L1

2, α2 = I2 +m2l2
2,

α3 = m2l2L1, β1 = (m1l1 +m2L1) g,

β2 = m2l2g,

m2 =
n∑

i=2

mi, I2 =
n∑

i=2

Ii,

m2l2 =
n∑

i=2

mi


li +

i−1∑

j=2

Lj


 , m2l2

2 =
n∑

i=2

mi


li +

i−1∑

j=2

Lj




2

.

With the model of the passively damped MC-ROPAn−1 defined, we shall now con-
struct the LDM-related swing-up control problem in an attempt to circumnavigate
the invertibility problem.

8.4.3 Derivation of the Necessary Swing-up Control Torque for the Pas-
sively Damped MC-ROPAn−1 Robot: The Singularity Problem

To begin, we construct the candidate Lyapunov function

V =
1

2
(E − Er)2 +

1

2
kD q̇

2
2 +

1

2
kP q2

2

with the time-derivative of this function being

V̇ = (E − Er)Ė + kD q̈2q̇2 + kP q̇2q2 (8.46)
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where

Ė = τ2q̇2 − b1q̇2
1. (8.47)

The vector q̈2 can be derived by solving separately for q̈1 in eq. (8.42a) and substitut-
ing it into eq. (8.42b). This will result in

q̈2 = GT(q)M
−1

(q2)
[
G(q)τ2 −C(q2, q̇)−R(q̇)−K(q)

]
(8.48)

where G(q) =
[
0 1

]T and

M(q2) =

[
M11(q2) M12(q2)

M21(q2) M22(q2)

]
,

C(q2, q̇) =

[
C1(q2, q̇)

C2(q2, q̇)

]
,

R (q̇) =

[
R1 (q̇)

R2 (q̇)

]
,

K(q) =

[
K1(q)

K2(q)

]

with

C1(q2, q̇) = −α3(2q̇1q̇2 + q̇2
2) sin q2,

C1(q2, q̇) = −α3(2q̇1q̇2 + q̇2
2) sin q2,

C2(q2, q̇) = α3q̇
2
1 sin q2,

R1 (q̇) = b1q̇1,

R2 (q̇) = 0,

K1(q) = −β1 sin q1 − β2 sin(q1 + q2),

K2(q) = −β2 sin(q1 + q2).

Therefore, substituting eqs. (8.47) and (8.48) into eq. (8.46) produces

V̇ = (E − Er)
[
τ2q̇2 − b1q̇2

1

]
+ kD q̇2G

T(q)M
−1

(q2)
[
G(q)τ2 −C(q2, q̇)

−R(q̇)−K(q)
]

+ kP q̇2q2.

The desired Lyapunov time-derivative is chosen as

V̇d = −kV q̇2
2.
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Therefore, choosing V̇ = V̇d we find that

−kV q̇2
2 = (E − Er)

[
τ2q̇2 − b1q̇2

1

]
+ kD q̇2G

T(q)M
−1

(q2)
[
G(q)τ2 −C(q2, q̇)

−R(q̇)−K(q)
]

+ kP q̇2q2.

We can, therefore, solve for the required torque

τ2 =
kDGT(q)M

−1
(q2)

[
C(q2, q̇) + R(q̇) + K(q)

]
− kV q̇2 − kP q2

Λ (q, q̇)
+

(E − Er)b1q̇2
1

q̇2Λ (q, q̇)
.

The torque is now, evidently, solvable, but it seems as if, in certain cases, it will not
be practically realisable. This is due to the conditional singularity in the second term
of the expression, which is guaranteed to occur when q̇2 → 0 and q̇1 6= 0, which is
guaranteed to occur if the system is to follow the expected homoclinic orbit that
describes Wr (see eq. (A.21)). This is termed the singularity problem. Therefore, since
this conditional singularity is guaranteed to occur in the swing-up control, then we
conclude that the swing-up control of the passively damped PAn−1 robot cannot
be achieved using the Lyapunov candidate function described for the generalised
PAn−1 robot, even if the order of the system is reduced to that of an Acrobot using
the MC-ROPAn−1 modelling protocol.

8.4.4 The Matched Damping Condition

The invertibility problem and the singularity problem thus leads to the definition of a
necessary and sufficient condition known as the matched damping condition.

Criterion 8.1. Matched Damping Condition: The LDM-related swing-up control of
the PAn−1 robot is realisable if and only if the PAn−1 robot is undamped or actively
damped. The presence of passive damping is a prerequisite of the invertibility problem
(for n > 2) or the singularity problem (for n = 2), which results in unsatisfactory
Lyapunov-related swing-up control.

The hypothesis mentioned in section 1.2 is thus confirmed through the integra-
tion of passive damping into the PAn−1 robot. This is referred to as the untenable
alteration.

The analytical results obtained that lead to the definition of the matched damping con-
dition will now be experimentally demonstrated on the passively damped Acrobot,
PAA robot, and MC-ROPA2 robot to demonstrate the unsatisfactory performance of
the swing-up controllers.
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8.4.5 The Passively Damped Acrobot

Derivation of the Necessary Swing-up Control Torque: The Singularity Problem

For the case of the passively damped Acrobot, we choose the viscous damping
profile

R(q̇) =
[
b1q̇1 0

]T
.

As with the previous cases, the Lyapunov candidate function

V =
1

2
(E − Er)2 +

1

2
kD q̇

2
2 +

1

2
kP q2

2

was selected. The behaviour of the Lyapunov function is determined by taking its
differential with respect to time. Therefore

V̇ = (E − Er)Ė + kD q̈2q̇2 + kP q̇2q2.

The change of energy in the system is, once again, dependent on the both the
actuation and viscous damping present in the system, whereby the system is pas-
sively damped in this example. The change of the system’s mechanical energy is
represented as

Ė = q̇2τ2 − b1q̇2
1.

Therefore

V̇ = q̇2 [(E − Er)τ2 + kD q̈2 + kP q2]− (E − Er)b1q̇1.

This expression is completed, once again, through the substitution of the distal
pendulum’s equation of motion, described by

q̈2 = GT(q)M−1(q) [G(q)τ2 −C(q, q̇)−R(q̇)−K(q)] .

Therefore

V̇ = q̇2

[[
(E − Er) + kDGT(q)M−1(q)G(q)

]
τ2 + kpq2

−kDGT(q)M−1(q) [C(q, q̇) + R(q̇) + K(q)]
]
− (E − Er)b1q̇2

1.

Knowing that the desired dynamics of the Lyapunov candidate function is described
as

V̇d = −kV q̇2
2
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and letting V̇ = V̇d, we can thus solve for the necessary swing-up torque described
by

τ2 =
kDGT(q)M−1(q) [C(q, q̇) + R(q̇) + K(q)]− kV q̇2 − kP q2

Λ(q, q̇)
+

(E − Er)b1q̇2
1

q̇2Λ(q, q̇)
.

The singularity problem is clearly present in this torque expression, since n = 2 for
the Acrobot.

Simulation Results

We selected the gains

kP = 61.3, kD = 35.8, kV = 66.3

which are identical to the gains chosen in the undamped and actively damped cases,
to demonstrate the effects of the singularity problem. We also selected the initial
conditions

q1(0) = −π
2
− 1.4, q2(0) = 0,

q̇1(0) = 0, q̇2(0) = 0.1

which are also identical to the initial conditions used in the undamped case. We
integrated passive damping into the proximal joint using the damping coefficient

b1 = 1.

The simulated results of the swing-up control of the passively damped Acrobot are
demonstrated in figures 8.38-8.42.

The angular displacement of the proximal pendulum q1 is demonstrated in fig-
ure 8.38. The controller is responsible for tracking the objective qd1 = 0, but the
pendulum follows a trajectory that does not fulfil this objective unlike what is seen
in the undamped and actively damped cases. The angular displacement of the
distal pendulum is demonstrated in figure 8.39. Again, the controller is expected
to direct the distal pendulum toward the objective qd2 = 0, but the control torque is
clearly unsatisfactory since the angular position of the distal pendulum oscillates
erratically across a 9 radian range. The phase portrait of the proximal pendulum is
demonstrated in figure 8.40. Whilst it seems, upon inspection of this figure, that the
controller attempts to initiate a limit cycle, there is no conclusive evidence that sug-
gests that this is intentional. It is safer to assume that the results shown in this figure
have no determinable pattern, and that it is solely the result of an unsatisfactory
control law.
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F I G U R E 8 . 3 8 : The angular displacement q1 of the proximal pen-
dulum for the passively damped Acrobot with kP = 61.3 and b1 = 1

during LDM-related swing-up control.
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F I G U R E 8 . 3 9 : The angular displacement q2 of the distal pendulum
for the passively damped Acrobot with kP = 61.3 and b1 = 1 during

LDM-related swing-up control.
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F I G U R E 8 . 4 0 : The phase portrait of the proximal pendulum of
the passively damped Acrobot with kP = 61.3 and b1 = 1 during

LDM-related swing-up control.
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F I G U R E 8 . 4 1 : The Lyapunov candidate function of the passively
damped Acrobot with kP = 61.3 and b1 = 1.
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F I G U R E 8 . 4 2 : The LDM-related torque used to swing-up the pas-
sively damped Acrobot with kP = 61.3 and b1 = 1.

The behaviour of the selected Lyapunov function is demonstrated in figure 8.9. It is
clear that the system dynamics does not adhere to an invariant set with semi-negative
gradient since the function does not exponentially tend toward zero throughout
the simulation. Instead, the function follows a steep positive gradient in certain
instances, reaching magnitudes that surpass 8000. The function, therefore, does not
follow a negatively sloping stable manifold as required for satisfactory LDM-related
swing-up control. The torque produced by the actuator during swing-up control is
demonstrated in figure 8.42. The torque profile does not contain a transient phase
followed by a steady-state as seen in the undamped and actively damped cases.
Instead, the actuator is constantly required to produce sharp torques in an attempt
to satisfy the applied control law. The large spikes coincide with the plateaus seen
in the angular displacement of q2 (figure 8.39). This is expected since the plateaus
represent q̇2 ≈ 0, which will introduce a singularity in the control torque.

The results clearly demonstrate that, despite the fact that we have implemented the
same gains and initial conditions, we cannot achieve satisfactory swing-up control
performance that is seen in both the undamped and actively damped cases when
the matched damping condition is not satisfied. We shall now demonstrate the effects
on the control of a higher-order system, namely the PAA robot, when the matched
damping condition is violated.
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8.4.6 The Passively Damped PAA Robot

Derivation of the Necessary Swing-up Control Torque: The Invertibility Prob-
lem

The passively damped PAA robot is associated with the following viscous damping
profile

R(q̇) =
[
b1q̇1 0 0

]
.

The Lyapunov function

V =
1

2
(E − Er)2 +

1

2
kDq̇T

a q̇a +
1

2
kPqa

Tqa

was chosen for the PAA robot, as seen in the undamped and actively damped cases
along with the time-related differential of this Lyapunov function described by

V̇ = (E − Er)Ė + kDq̇T
a q̈a + kPψ

T(qa)q̇
T
aqa. (8.49)

The change of energy of the system is dictated by the actuation of the system and
the passive damping, resulting in

Ė = q̇T
aτa − b1q̇2

1.

Substituting this expression into eq. (8.49) produces

(E − Er)
[
q̇T
aτa − b1q̇2

1

]
+ kDq̇T

a q̈a + kPψ
T(qa)q̇

T
aqa.

The dynamics of the two most distal pendulums in the PAA robot are represented as

q̈a = GT(q)M−1(q) [G(q)τa −C(q, q̇)−R(q̇)−K(q)] .

Therefore

V̇ = q̇T
a

[[
(E − Er)I2 + kDGT(q)M−1(q)G(q)

]
τa + kpq2 (8.50)

−kDGT(q)M−1(q) [C(q, q̇) + R(q̇) + K(q)]
]
− (E − Er)b1q̇2

1.

Knowing that V̇d = −kV q̇T
a q̇a, and V̇ = V̇d, we conclude that

−kV q̇T
a q̇a = q̇T

a

[[
(E − Er)I2 + kDGT(q)M−1(q)G(q)

]
τa + kpq2

−kDGT(q)M−1(q) [C(q, q̇) + R(q̇) + K(q)]
]
− (E − Er)b1q̇2

1,

= q̇T
a

[
Λ(q, q̇)τa + kpq2 − kDGT(q)M−1(q) [C(q, q̇) + R(q̇) + K(q)]

]

− (E − Er)b1q̇2
1

where

Λ(q, q̇) =
[
(E − Er)I2 + kDGT(q)M−1(q)G(q)

]
.
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It is apparent that the isolation of τa is contingent on the factoring out of the q̇T
a

vector, which is not practically possible since the vector is not invertible, and the
implementation of a pseudo-inverse is typically used in instances where the system
is over-actuated, as stated in section 8.4. The swing-up torque cannot, therefore,
be solved for the passively damped PAA robot as a consequence of the invertibility
problem (since for the PAA robot, n > 2). This issue can be circumnavigated through
the reduction of the order of the system using the MC-ROPA2 modelling protocol.
This evidently results in the presence of the singularity problem (as stated by the
matched damping condition). We shall demonstrate the effect of the singularity
problem on the MC-ROPA2 robot subsequent to the highlighting of the MC-ROPA2

modelling protocol.

Modelling the Passively Damped PAA Robot as the MC-ROPA2 Robot

The MC-ROPA2 robot is first constructed through the implementation of the FBL
torque

τ3 = M̂33(q)v3 + D̂3(q, q̇) + K̂3(q) + τ̂3

where

M̂33(q) = M33(q)− M̃13(q)M31(q)

M11(q)
− M̃23(q)M32(q)

M̃22(q)
,

D̂3(q, q̇) = D3(q, q̇)− M31(q)

M11(q)
D̃1(q)− M32(q)

M̃22(q)
D̃2(q),

K̂3(q) = K3(q)− M31(q)

M11(q)
K̃1(q)− M32(q)

M̃22(q)
K̃2(q),

τ̂3 =
M32(q)

M̃22(q)
τ2 −

M31(q)

M11(q)
τ̃2,

τ̃2 =
M12(q)

M̃22

τ2

and, for 2 ≤ k ≤ 3,

M̃2k(q) = M2k(q)− M1k(q)M21(q)

M11(q)
, M̃13(q) = M13(q)− M12(q)M̃23(q)

M̃22(q)
,

D̃2(q, q̇) = D2(q, q̇)− M21(q)

M11(q)
D1(q, q̇), D̃1(q, q̇) = D1(q, q̇)− M12(q)

M̃22(q)
D̃2(q, q̇),
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K̃2(q) = K2(q)− M21(q)

M11(q)
K1(q), K̃1(q) = K1(q)− M12(q)

M̃22(q)
K̃2(q)

with the D(q, q̇) matrix entries defined as

D1(q, q̇) = C1(q, q̇) +R1(q̇), D2(q, q̇) = C2(q, q̇), D3(q, q̇) = C3(q, q̇)

for the passively damped case. The implementation of this torque results in q̈3 = v3,
thus causing the most distal two pendulums to behave approximately as a single
pendulum. The equations of motion of the passively damped MC-ROPA2 robot and
its physical parameters can now be defined as

M11(q2)q̈1 +M12(q2)q̈2 − α3(2q̇1q̇2 + q̇2
2) sin q2 − β1 sin q1 (8.51a)

− β2 sin(q1 + q2) = −b1q̇1,

M21(q2)q̈1 +M22(q2)q̈2 + α3q̇
2
1 sin q2 − β2 sin(q1 + q2) = τ2. (8.51b)

The individual entries are defined as seen in section 8.2.5.

Derivation of the Necessary Swing-up Control Torque for the Passively Damped
MC-ROPA2 Robot: The Singularity Problem

Now that the PAA robot is modelled as a MC-ROPA2 robot, we can use the Lyapunov
function

V =
1

2
(E − Er)2 +

1

2
kD q̇

2
2 +

1

2
kP q2

2

to derive the swing-up control, with the time-related differential of the candidate
function represented as

V̇ = (E − Er)Ė + kD q̈2q̇2 + kP q̇2q2.

The change of energy can be modelled according to the damping experienced on the
most proximal joint and the actuation that occurs at the second joint. This results in

Ė = τ2q̇2 − b1q̇2
1

with

V̇ = (E − Er)
[
τ2q̇2 − b1q̇2

1

]
+ kD q̈2q̇2 + kP q̇2q2. (8.52)

The dynamics of the collective distal pendulum q̈2 is represented as

q̈2 = GT(q)M
−1

(q2)
[
G(q)τ2 −C(q2, q̇)−R(q̇)−K(q)

]
(8.53)



Chapter 8. Identifying the Breaking Point 155

where G(q) =
[
0 1

]T and

M(q2) =

[
M11(q2) M12(q2)

M21(q2) M22(q2)

]
,

C(q2, q̇) =

[
C1(q2, q̇)

C2(q2, q̇)

]
,

R (q̇) =

[
R1 (q̇)

R2 (q̇)

]
,

K(q) =

[
K1(q)

K2(q)

]

with

C1(q2, q̇) = −α3(2q̇1q̇2 + q̇2
2) sin q2,

C1(q2, q̇) = −α3(2q̇1q̇2 + q̇2
2) sin q2,

C2(q2, q̇) = α3q̇
2
1 sin q2,

R1 (q̇) = b1q̇1,

R2 (q̇) = 0,

K1(q) = −β1 sin q1 − β2 sin(q1 + q2),

K2(q) = −β2 sin(q1 + q2).

The expression found in eq. (8.52) can thus be represented as

V̇ = (E − Er)
[
τ2q̇2 − b1q̇2

1

]
+ kD q̇2G

T(q)M
−1

(q2)
[
G(q)τ2 −C(q2, q̇)

−R(q̇)−K(q)
]

+ kP q̇2q2.

The desired Lyapunov time-derivative is chosen as

V̇d = −kV q̇2
2.

Therefore, choosing V̇ = V̇d results in the definition of the torque expression

τ2 =
kDGT(q)M

−1
(q2)

[
C(q2, q̇) + R(q̇) + K(q)

]
− kV q̇2 − kP q2

Λ (q, q̇)
(8.54)

+
(E − Er)b1q̇2

1

q̇2Λ (q, q̇)
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as seen in the case of the passively damped Acrobot. The singularity problem is clearly
visible in this torque expression, thus confirming the prediction made by the matched
damping condition. The torque τ2 in this case is thus guaranteed to tend towards
infinity as q̇2 → 0 and q̇1 6= 0.

Simulation Results

The consequences of this problem are demonstrated on the passively damped MC-
ROPA2 robot, using the system parameters

m1 = 1 kg, m2 = 0.5 kg, m3 = 0.5 kg,
L1 = 1 m, L2 = 1 m, L3 = 1 m,

l1 = 0.5 m, l2 = 0.5 m, l3 = 0.5 m,

I1 = 0.083 kg.m2, I2 = 0.165 kg.m2, I3 = 0.165 kg.m2

which produces

m2 = 1 kg, I2 = 0.33 kg.m2,

m2l2 = 1 kg.m, m2l2
2 = 1.25 kg.m2.

Additionally, we implement the gains

kD = 38, kP = 61.3, kV = 66.3,

kD3 = 40, kP3 = 400

and the initial conditions

q1(0) = −1.4− π

2
, q2(0) = q3(0) = 0,

q̇1(0) = q̇3(0) = 0, q̇2(0) = 0.1.

The results of the simulation of the passively damped MC-ROPA2 robot are demon-
strated in figures 8.43-8.47.

The angular displacement of the most proximal pendulum of the MC-ROPA2 robot
is demonstrated in figure 8.43. The proximal pendulum demonstrated no behaviour
that suggests that it converged with the desired trajectory towards the UEP, unlike
what is seen with the undamped MC-ROPA2 robot. The angular displacement of
the second pendulum of the MC-ROPA2 robot is demonstrated in figure 8.44. The
second pendulum also did not follow an exponentially stable path toward the UEP,
demonstrating that the control law did not establish a smooth stable manifold on
which the system trajectory could be established towards the desired objective.
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F I G U R E 8 . 4 3 : The angular displacement q1 of the most proximal
pendulum of the passively damped MC-ROPA2 robot during LDM-

related swing-up control.
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F I G U R E 8 . 4 4 : The angular displacement q2 of the second pendu-
lum of the passively damped MC-ROPA2 robot during LDM-related

swing-up control.



Chapter 8. Identifying the Breaking Point 158

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-3

-2

-1

0

1

2

3

q
3
(r
a
d
)

×10
-12

F I G U R E 8 . 4 5 : The angular displacement q3 of the most distal pen-
dulum of the passively damped MC-ROPA2 robot during LDM-

related swing-up control.
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F I G U R E 8 . 4 6 : The Lyapunov candidate function of the passively
damped MC-ROPA2 robot.
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F I G U R E 8 . 4 7 : The torque τ2 used to swing-up the passively
damped MC-ROPA2 robot during LDM-related swing-up control.

The angular displacement of the most distal pendulum is demonstrated in figure
8.45. The pendulum is tightly regulated about qd3 = 0, deviating off the objective by
a maximum 4× 10−12 radians. This control ensured that the second and most distal
pendulum acted collectively as a single pendulum, as is expected when applying
MCPFL.

The behaviour of the Lyapunov function of the passively damped MC-ROPA2

robot is demonstrated in figure 8.46. The control law was not sustained in this
simulation since the Lyapunov function did not conform to an exponentially stable
semi-negative invariant set. There are many instances throughout the simulation
where the Lyapunov function demonstrated positive growth, which violates the
premise of LDM-related control. The UEP is thus not a realisable control objective in
this case. The torque produced by the actuator found between the most proximal
and second pendulum is demonstrated in figure 8.47. The actuator attempted to
sustain LDM-related control through the production of large spike torques as seen in
the swing-up control of the passively damped Acrobot. These spikes coincide with
the plateaus seen in figure 8.44, which corresponds to instances where q̇2 ≈ 0 as seen
with the passively damped Acrobot. Despite these large torque spikes, it is evident
that the control law could not be adhered to. Therefore, implementing MCPFL
in an attempt to circumvent the invertibility problem is not a satisfactory work-
around since the Acrobot and MC-ROPA2 robot are susceptible to the singularity
problem.
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8.5 Conclusion

In this chapter, we managed to confirm that the successful LDM-related swing-up
control of the PAn−1 robot model is contingent on the satisfaction of a criterion
termed the matched damping condition, which is the key result of this chapter. This
condition highlights the following phenomena:

The integration of viscous damping on the actuated joints (known as active damp-
ing) has no effect on the derivation of the control law or the determination of the
specific necessary gain conditions for the PAn−1 robot and its derivatives. The
behaviour of the actively damped system remains identical to the undamped PAn−1

robot, with the resultant swing-up torque for the actively damped case having a
superimposed damping-negating torque. Conversely, integrating viscous damping
into the unactuated joint of the PAn−1 robot (known as passive damping) results
in the derivation of an unsuitable swing-up torque expression. Specifically, for
passively damped PAn−1 robot derivatives that are of order (n > 2), the necessary
torque expression cannot be solved due to the non-invertible properties of a the q̇T

a

vector. This is referred to as the invertibility problem. This problem can be circumnav-
igated through the implementation of a modelling technique that accommodates the
transformation of PAn−1 robot derivatives of higher-order (n > 2) into a system that
approximates the Acrobot using MCPFL (termed the MC-ROPAn−1 robot). Despite
these efforts, it became evident that the torque expression that is necessary to swing-
up the passively damped MC-ROPAn−1 robot or Acrobot model is also unsuitable
since it is subject to a conditional singularity. This is referred to as the singularity
problem. It is, therefore, evident that the Lyapunov related swing-up control is lim-
ited to applications on undamped or actively damped derivatives of the PAn−1 robot.

The author believes that this limitation is significant since the presence of pas-
sive damping in a true physical underactuated robotic system is not improbable.
The application of underactuated robotic systems is becoming increasingly popular,
as mentioned in the introduction of this dissertation. We thus believe that address-
ing this issue will increase the probability of swing-up control becoming prevalent
in real-world applications. The objective of this research is to, thus, develop a
work-around for this limitation.
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“Where there is a will there is a way.”

— Samuel Smiles

Chapter 9

Work-Around:
The Swing-up Control of the Damped PAn−1
Robot using Partial Feedback Linearisation

9.1 Chapter Overview

The work presented in this chapter is dedicated to the development of a work-
around for the limitation highlighted by the matched damping condition, which
was introduced in the last chapter. This limitation pertains to the application of
Lyapunov-related swing-up control on the passively damped PAn−1 robot. There
are two contributions that are highlighted in this chapter, namely the gain selection
criterion and the convergence algorithm. These contributions are provided for the
undamped, actively damped, and passively damped PAn−1 robot.

The rest of this chapter is structured as follows. A brief discussion on the control
strategy that is implemented to address the matched damping condition is introduced
to justify the use of swing-up control using PFL as a possible work-around, and is
summarised as a research question. This is followed by a formalisation of the PFL
technique applied on the PAn−1 robot, which includes the Traditional Collocated
(TCPFL), Modified Collocated (MCPFL) and Noncollocated (NCPFL) forms. The
MCPFL technique is not explicitly implemented in this chapter, but it is formally
defined here to prevent unnecessary discontinuity. The matched damping condition is
first addressed in this chapter through the application of TCPFL on the undamped,
actively damped and passively damped PAn−1 robot, which results in the analytical
contribution referred to as the gain selection criterion. This is achieved as follows:
the PAn−1 robot is first modelled as a ROPAn−1 robot using TCPFL (TC-ROPAn−1

robot). The TC-ROPAn−1 model is subsequently integrated with an ATAN swing-up
controller and the equilibrium points of this resultant system are thus determined.
Lastly, the stability of the FPEP of the TC-ROPAn−1 robot is determined through the
implementation of the Routh-Hurwitz criterion. The results of this set of analytical
conditions are demonstrated on the undamped, actively damped and passively
damped Acrobot and PAA robot, which are the simplest derivatives of the PAn−1

robot. The matched damping condition is also addressed through the implementation
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of NCPFL on the undamped, actively damped and passively damped ROPAn−1

robot modelled using NCPFL (referred to as the Noncollocated ROPAn−1 robot,
or NC-ROPAn−1 robot), which results in the experimental solution known as the
convergence algorithm. The structure of this algorithm is highlighted in the latter
sections of this chapter, along with the results of this algorithm when applied on the
undamped, actively damped, and passively damped Acrobot (NC-ROPA1 robot).

9.2 Control Strategy and Research Question

In the last chapter, we highlighted a key limitation in the Lyapunov-related swing-up
control of the passively damped PAn−1 robot, which is summarised as an application
prerequisite known as the matched damping condition. The objective of this research
project is the development of a work-around that will address this condition, result-
ing in an increased robustness in the field of swing-up control. There are three ways
in which this condition can be addressed:

(i) Identify an appropriate Lyapunov candidate function that is not subject to the
invertibility and singularity problems.

(ii) Identify multiple Lyapunov functions that are valid within a certain region of
operation, and implement a controller switching algorithm that will switch
between these controllers when appropriate (based on Artstein’s theorem,
which states that the existence of a smooth control related Lyapunov function
will entail smooth stabilisability [108]).

(iii) Implement a different control technique that will achieve the same desired
objective without being subject to the invertibility and singularity problems.

Whilst it would be beneficial to develop either a single or multiple valid Lyapunov
candidate functions for this application (since the control is designed specifically to
actively track the UEP), it cannot be guaranteed that these functions will (or even
can) be found within a defined time-frame. This is due to the absence of a rigorous
and formalised candidate function identification method (existing conditional tech-
niques are discussed in section 5.2.2). It is for this reason that we have opted with
option (iii) for this project, but we encourage other interested researchers to explore
options (i) and (ii).

Logically, the next question one would ask at this stage would be: Which con-
trol technique will be most appropriate in this application? Whilst there are a
number of relevant nonlinear control techniques found in existing literature high-
lighted in section 2.4.2 (which include, and is not limited to, fuzzy control, NN
adaptive control, and feedforward control), the PFL technique, first implemented by
Mark Spong in [6], was deemed to be most appropriate for the following reasons:

(1) There is a significant body of existing literature that discusses the application
of this technique on varying orders of robotic systems, which includes, and
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is not limited to, [6, 34, 75, 76]. This provides us with a significantly broad
foundation on which we may base our investigation.

(2) The technique evidently does not actively track the control objective. This is
evident in the fact that:

(i) The Collocated form of PFL swing-up control relies on the definition
of an ’energy-pump’ ATAN controller, which is designed specifically
to introduce energy into the system indiscriminately through a num-
ber of swing-up cycles, thus allowing the system to ’swing-up’ from a
lower energy-state to a higher-energy state [6]. The controller does not,
therefore, have a final energy state in mind, but is simply responsible
for causing the system to behave in an unstable manner. The swing-up
controller’s performance is monitored through the system’s internal and
zero dynamics.

(ii) The Noncollocated form of PFL swing-up control relies on a set of per-
fectly tuned initial conditions, since the most proximal limb is imme-
diately swung-up to the inverted position without requiring multiple
swing-up cycles [6]. A correctly paired set of angular initial conditions
must, therefore, be chosen for the distal pendulum to guarantee that the
entire system approaches and settles near (or exactly at) the UEP. The
controller, therefore, does not track the UEP as the final objective.

These variations of PFL are discussed in section 9.3. Whilst the inability of the PFL
controller to track the UEP may be perceived as an inconvenient property, it is a
direct consequence of the flexibility of the control technique, allowing it to be more
robust to changes in the system’s physical properties. This will become evident once
the final work-around is derived. With these justifications in mind, we decided to
continue onto the next step of the research, which involved answering the following
research question:

RQ: Using PFL as a work-around for the key limitation in LDM highlighted
by the matched damping condition, what are the specific conditions (if any) that
need to be satisfied to accommodate the satisfactory swing-up control of a pas-
sively damped PAn−1 robot?

The answer to this question will be highlighted in the upcoming sections for both
the collocated and noncollocated forms of PFL, which are first defined prior to the
derivation of the conditions necessary to facilitate the swing-up of the passively
damped PAn−1 robot.

9.3 Partial Feedback Linearisation

Partial feedback linearisation (PFL) describes the implementation of the IOFBL
technique to linearise a portion of the dynamics of an underactuated system [6]. The
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application of the PFL technique was implemented in chapter 8 to accommodate
the derivation of the MC-ROPAn−1 robot, but information about this technique was
discussed at a superficial level. This section is dedicated to discussing each of the
PFL techniques whilst referring to their rigorous derivations included in appendix
D. There are currently two traditional forms of PFL that were originally defined
in [6], namely the collocated and noncollocated forms. These variants are discussed in
the subsections that follows, and are subsequently applied to the PAn−1 robot.

9.3.1 Collocated Partial Feedback Linearisation

Collocated PFL (CPFL) is defined in [6] for the Acrobot as a procedure that involves
the linearisation of the dynamics of the actuated joint (i.e. the distal joint). This
accommodates the design of a linear state feedback controller for the distal pendu-
lum, whose behaviour can be precisely controlled. The dynamics of the proximal
pendulum, however, can only be influenced indirectly by the dynamics of the distal
pendulum since it is unactuated. These dynamics are, thus, internal and unobserv-
able to the control input [2]. Despite this formal definition of CPFL for the Acrobot,
it does not consider higher-order systems, such as the PAn−1 robot. This formal defi-
nition of CPFL will be expanded in this section to include applications on systems
that have a higher order than that of the Acrobot. We identify two variations of the
CPFL technique, namely the Traditional and the Modified.

Traditional Collocated Partial Feedback Linearisation

The method of Collocated PFL performed on a PAn−1 robot is shown in figure 9.1. It
is evident that the most distal n− 1 pendulums of the PAn−1 robot found on the left
of this figure are configured in such a way that they can be collectively represented as
a single pendulum (as seen on the right of figure 8.1). It is not possible, however, to
keep the n−1 most distal pendulums in this configuration unless the actuators of the
n− 2 most distal pendulums are used for the purpose of regulation. The dynamics
of the 2nd pendulum are also linearised, but the linear state feedback controller that
is designed for this joint will be responsible for producing the swing-up control
rather than just regulating the pendulum. This control technique is formally defined
as Traditional Collocated Partial Feedback Linearisation.

Definition 9.1. Traditional Collocated Partial Feedback Linearisation (TCPFL) in-
volves the linearisation of the dynamics of the n − 1 most distal pendulums in
the PAn−1 robot. The linear state feedback controllers for the n − 2 most distal
pendulums (vi where 3 ≤ i ≤ n) are responsible for regulating the pendulum about
qi = 0 whilst the linear state feedback controller of the 2nd pendulum is designed
specifically to achieve the intended control objective.

The torques required to perform this control technique are defined as

τi = M̂i2(q)v2 + M̂i3(q)v3 + · · ·+ M̂in(q)vn + D̂i(q, q̇) + K̂i(q) (9.1)
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F I G U R E 9 . 1 : The PAn−1 robot, linearised using TCPFL, represented
as a TC-ROPAn−1 robot.

where, for 2 ≤ j ≤ n,

M̂ij(q) = Mij(q)− Mi1(q)M1j(q)

M11(q)
,

D̂i(q, q̇) = Di(q, q̇)− Mi1(q)

M11(q)
D1(q, q̇),

K̂i(q) = Ki(q)− Mi1(q)

M11(q)
K1(q).

This results in a set of dynamical equations described by

q̈1 =
−M12(q)v2 −M13(q)v3 − · · · −M1n(q)vn −D1(q, q̇)−K1(q)

M11(q)
, (9.2a)

q̈2 = −kD2 q̇2 − kP2q2, (9.2b)
q̈3 = −kD3 q̇3 − kP3q3, (9.2c)

...
q̈n = −kDn q̇n − kPnqn (9.2d)

where

M11(q) 6= 0 ∀q (9.3)

must be ensured. The full derivation of the TCPFL control technique is included in
section D.1 of appendix D.
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Modified Collocated Partial Feedback Linearisation

The MCPFL method has a similar objective to the TCPFL technique, whereby, upon
application of this technique, the behaviour of the most distal n− 1 pendulums of
the PAn−1 robot may be collectively represented as a single pendulum. The key
difference between these two techniques is the state of linearisation concerning the
second pendulum. In the traditional case, the dynamics of the second pendulum is
linearised and replaced with the linear state feedback controller

q̈2 = v2.

There are instances, however, where this would not be convenient. This is evident in
the instance where LDM-related swing-up control is applied to the ROPAn−1 robot
that has been linearised using TCPFL (TC-ROPAn−1 robot). The existing literature,
including the derivation of the gain selection criterion, have all been derived for the
nonlinear PAn−1 robot and its derivatives. It would be counterproductive in this
case to derive a new set of conditions and swing-up control torques for partially
linearised systems. Instead, it is more practical to linearise the dynamics of the
n − 2 most distal pendulums and to leave τ2 unchanged in this formulation. The
n − 1 pendulums can still be collectively represented as one pendulum, but it
accommodates the substitution of an already existing control torque τ2 without
the need for reformulation. The MCPFL technique is introduced here specifically
to supplement its application in chapter 8, and is not implemented to address the
matched damping condition. With this in mind, we can now formally define the
technique.

Definition 9.2. As with the TCPFL method, the application of this technique ac-
commodates the collective representation of the n− 1 most proximal pendulums
as a single pendulum. In this case, however, the dynamics of the n− 2 most distal
pendulums of the PAn−1 robot are linearised. The control objective torque τ2 is
reserved specifically for the substitution of an existing torque solution derived for
the traditional Acrobot. Linear state feedback controllers are defined for the n− 2
most distal pendulums (vi where 3 ≤ i ≤ n), and are responsible for regulating the
corresponding pendulum about qi = 0.

The torque expression required to perform MCPFL on a multi-link system is
described by

τi = M̂i3(q)v3 + M̂i4(q)v4 + · · ·+ M̂in(q)vn + D̂i(q, q̇) + K̂i(q) + τ̂i (9.4)

where, for 3 ≤ i ≤ n, 3 ≤ j ≤ n and 2 ≤ k ≤ n,

M̂ij(q) = Mij(q)− M̃1j(q)Mi1(q)

M11(q)
− M̃2j(q)Mi2(q)

M̃22(q)
,

D̂i(q, q̇) = Di(q, q̇)− Mi1(q)

M11(q)
D̃1(q, q̇)− Mi2(q)

M̃22(q)
D̃2(q, q̇),
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K̂i(q) = Ki(q)− Mi1(q)

M11(q)
K̃1(q)− Mi2(q)

M̃22(q)
K̃2(q),

τ̂i =
Mi2(q)

M̃22(q)
τ2 −

Mi1(q)

M11(q)
τ̃2,

τ̃2 =
M12(q)

M̃22(q)
τ2

and

M̃2k(q) = M2k(q)− M1k(q)M21(q)

M11(q)
, M̃1j(q) = M1j(q)− M12(q)M̃2i(q)

M̃22(q)
,

D̃2(q, q̇) = D2(q, q̇)− M21(q)

M11(q)
D1(q, q̇), D̃1(q, q̇) = D1(q, q̇)− M12(q)

M̃22(q)
D̃2(q, q̇),

K̃2(q) = K2(q)− M21(q)

M11(q)
K1(q), K̃1(q) = K1(q)− M12(q)

M̃22(q)
K̃2(q).

This form of linearisation results in a set of equations of motion for the MC-ROPAn−1

robot described by

q̈1 =
−M̃13(q)v3 − M̃14(q)v4 − · · · − M̃1n(q)vn − D̃1(q, q̇)− K̃1(q)

M11(q)
,

q̈2 =
τ2 − M̃23(q)v3 − M̃24(q)v4 − · · · − M̃2n(q)vn − D̃2(q, q̇)− K̃2(q)

M11(q)
.

Additionally, a set of physical parameters must be selected to ensure that

M11(q) 6= 0 ∀q. (9.5)

The detailed derivation of the necessary torque expression is included in section D.2
of appendix D.

9.3.2 Noncollocated Partial Feedback Linearisation

With CPFL and its variants defined, we will now consider the noncollocated case.
Suppose we present the PAn−1 robot in a configuration as seen on the left portion of
figure 9.2. It is apparent that if the system remains in this configuration throughout
the entire operation, the most proximal n− 1 pendulums may collectively be repre-
sented as a single pendulum (as seen on the right of figure 9.2). It is not possible,
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F I G U R E 9 . 2 : The PAn−1 robot represented as a NC-ROPAn−1.

however, to maintain this configuration throughout the entire operation unless the
actuators of the n− 2 pendulums found precisely distal to the first pendulum are
used to enforce this configuration. The dynamics of the most proximal pendulum are
also linearised, but the linear state feedback controller that is designed for this joint
will be responsible for producing the swing-up control rather than just regulating
the pendulum about a particular axis. This control technique is formally defined as
the Noncollocated Partial Feedback Linearisation technique.

Definition 9.3. Noncollocated Partial Feedback Linearisation (NCPFL) involves the
linearisation of the dynamics of the n− 1 most proximal pendulums of the PAn−1

robot. The linear state feedback controllers assigned to the n−2 pendulums precisely
distal to the most proximal pendulum (vi where 2 ≤ i ≤ n− 1) are responsible for
regulating the pendulum about qi = 0 whilst the linear state feedback controller of
the most proximal pendulum is designed specifically to achieve the intended control
objective.

The necessary torque expression required to perform NCPFL on the PAn−1 robot
is described by

τi = M̂i1(q)v1 + M̂i2(q)v2 + · · ·+ M̂in−1(q)vn−1 + D̂i(q, q̇) + K̂i(q)

where

M̂ij(q) = Mij(q)− Min(q)M1j(q)

M1n(q)
,

D̂i(q, q̇) = Di(q, q̇)− Min(q)

M1n(q)
D1(q, q̇),
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K̂i(q) = Ki(q)− Min(q)

M1n(q)
K1(q).

for 1 ≤ j ≤ n− 1. This results in a set of dynamical equations which are described
by

q̈1 = −kD1 q̇1 − kP1q1, (9.6a)
q̈2 = −kD2 q̇2 − kP2q2, (9.6b)

...
q̈n−1 = −kDn−1 q̇n−1 − kPn−1qn−1, (9.6c)

q̈n =
−M11(q)v1 −M12(q)v2 − · · · −M1n−1(q)vn−1 −D1(q, q̇)−K1(q)

M1n(q)
(9.6d)

where

M1n(q) 6= 0 ∀q. (9.7)

The details of the derivation of the NCPFL control technique is described in section
D.3 of appendix D.

9.4 Gain Selection Criterion

With the PFL technique now defined, we will derive the first work-around for the
matched damping condition using TCPFL, known as the gain selection criterion.

As mentioned before, the TCPFL technique accommodates the reduced-order repre-
sentation of the PAn−1 robot as a TC-ROPAn−1 robot. The dynamics of the collective
single pendulum must, therefore, be swung in a calculated fashion to facilitate the
introduction of energy into the system and to indirectly influence the behaviour
of the most proximal pendulum. This must be done to allow the system to move
away from a lower energy state (near the FPEP, as an example) and towards the
UEP. Spong addresses this issue by introducing the ’energy-pump’ ATAN controller,
which was designed to mimic the technique a gymnast would use when attempting
to reach an upright position on the high bar [6, 109]. The gymnast uses its hips and
lower body to introduce energy into its manoeuvre by performing multiple sinu-
soidal swing-cycles [109]. The system’s response is, thus, unstable but predictable.
The ATAN controller is described as

v2 = −kD q̇2 + kP

(
qd2 − q2

)

where

qd2 =

(
2α

π

)
arctan q̇1
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[6]. The design of this controller is justified by Spong in the following statement:

The basic idea behind our swingup strategy is to swing the second link between
fixed values ±α in order to pump energy into the system and then to schedule
the transition of the second link between these two values ±α ’in phase’ with
the motion of the first link in such a way that the amplitude of the swing of the
first link increases with each swing. [6]

Spong demonstrates that the swing-up control of an undamped Acrobot using the
ATAN controller is possible [6, 34], but his work is limited for the following reasons:

(1) The simulations for his investigation were initialised with one set of initial
conditions, which aren’t reflective of the behaviour of the system throughout
a larger domain of operation.

(2) There is no prescription on what magnitude of gains must be chosen for kD
and kP to ensure satisfactory swing-up control. Instead, Spong observes the
system’s internal and zero dynamics to determine whether the behaviour
of the controller is satisfactory. This observation can only be made once a
simulation is performed, and does not provide a prescriptive and analytical
means of ensuring swing-up.

This leads to the following questions:

1. Can an ATAN controller perform satisfactory swing-up control when ini-
tialised across the domain q1,q2 ∈ (−π, π] with the assumption that
q̇1(0), q̇2(0) = 0?

2. What magnitudes for the gains kD and kP must I choose to ensure that the
swing-up is satisfactory?

It is difficult to provide a definitive answer to these questions since the ATAN
control demonstrated by Spong does not actively track some objective. In other
words, we are not able to guarantee satisfactory swing-up performances in all
cases, but it is possible, however, to highlight certain conditions that will guarantee
unsatisfactory controller performance. For instance, if the system trajectory is found
sufficiently close to a stable equilibrium point that is not the UEP (e.g. the FPEP),
it is evident that the system trajectory will tend towards this equilibrium point,
resulting in unsatisfactory swing-up control performance. The stability of this
equilibrium point may depend on the magnitudes of kP and kD. The values of
kP and kD must be designed carefully to prevent the stability of these equilibrium
points, resulting in a possible contribution in the form of a gain selection criterion. If
this contribution is analytical in nature, it would alleviate the need to monitor the
system’s internal and zero dynamics, as seen in Spong’s work. The feasibility of
this venture must be explored through the determination of the equilibrium points
in the TC-ROPAn−1 robot (expanding on the possibility of developing solutions
for higher-order systems not covered in [6]). Additionally, we will first attempt to
demonstrate the feasibility of the gain selection criterion by evaluating the undamped
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PAn−1 robot. The modelling of the undamped TC-ROPAn−1 robot using TCPFL is
thus discussed in the next section, followed by an evaluation of the TC-ROPAn−1

robot’s equilibrium points when it is integrated with the ATAN controller seen in [6].
These processes are subsequently performed on the actively damped and passively
damped TC-ROPAn−1 robot.

9.4.1 Preliminaries: The Undamped PAn−1 Robot

Modelling the Undamped PAn−1 Robot as the TC-ROPAn−1 Robot

Similar to what is done in chapter 8, we will first proceed to derive the mathematical
model of the undamped TC-ROPAn−1 robot. The generalised TC-ROPAn−1 robot is
formally defined below:

Definition 9.4. The TC-ROPAn−1 robot is a reduced-order representation of the
PAn−1 robot that results from the linearisation of the n− 1 most distal pendulums of
the system, with the dynamics of the n− 2 most distal pendulums being regulated
about qi = 0, where 2 < i < n. The n− 1 most distal pendulums thus collectively
represent a single pendulum described by linear dynamics. The system closely
approximates the behaviour of an Acrobot that has been linearised using TCPFL,
provided that the selected response frequency of the actuators involved in non-
oscillatory regulation is sufficiently large and that qi(0) = 0.

The TCPFL technique is used in this case since the swing-up control torque τ2

does not need to be reserved for the substitution of a known control law. This will
become more apparent when we derive the gain selection criterion for the PFL-related
swing-up control of the TC-ROPAn−1 robot.

The application of the TCPFL technique on the PAn−1 robot results in the dynamical
equations shown in eqs. (9.2a)-(9.2d), where

Di(q, q̇) = Ci(q, q̇) for 1 ≤ i ≤ n

in the undamped case. Choosing the initial conditions

q3(0) = 0, q̇3(0) = 0,

q4(0) = 0, q̇4(0) = 0,

...
...

qn(0) = 0, q̇n(0) = 0

then it is guaranteed that

q3 ≈ 0, q4 ≈ 0, . . . qn ≈ 0
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∀t. So long as the natural response frequency of each of the linearising actuators
is sufficiently large (this ensures satisfactory angular regulation). This will accom-
modate the modelling of the PAn−1 robot to the TC-ROPAn−1 robot, and will be
described by the dynamical equations

M11(q)q̈1 +M12(q)v2 +D1(q, q̇) +K1(q) = 0, (9.8a)
q̈2 = v2 (9.8b)

where

M11(q2) = α1 + α2 + 2α3 cos q2,

M12(q2) = α2 + α3 cos q2,

D1(q2, q̇) = C1(q2, q̇) = −α3

(
2q̇1q̇2 + q̇2

2

)
sin q2,

K1(q) = −β1 sin q1 − β2 sin(q1 + q2)

and

α1 = I1 +m1l1
2 +m2L1

2, α2 = I2 +m2l2
2,

α3 = m2l2L1, β1 = (m1l1 +m2L1) g,

β2 = m2l2g,

m2 =

n∑

i=2

mi, I2 =

n∑

i=2

Ii,

m2l2 =
n∑

i=2

mi


li +

i−1∑

j=2

Lj


 , m2l2

2 =
n∑

i=2

mi


li +

i−1∑

j=2

Lj




2

whereby the physical parameters of the system are constrained, as seen in eq. (9.3).

Equilibrium Point Analysis of the TC-ROPAn−1 Robot Integrated with an ATAN
Controller and the Gain Selection Criterion

We shall integrate the ATAN controller into the TC-ROPAn−1 robot model by choos-
ing the linear state feedback controller

v2 = kP

(
qd2 − q2

)
− kD q̇2

as shown in [34], where

qd2 =

(
2α

π

)
arctan q̇1

represents the ATAN control with α ∈ R+. Substituting this expression into the
equations that describe the TC-ROPAn−1 robot’s motion in eqs. (9.8a) and (9.8b)
produces the following finalised TCPFL swing-up dynamics for the TC-ROPAn−1
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robot, whereby

M11(q)q̈1 +M12(q)

(
kP

[(
2α

π

)
arctan q̇1 − q2

]
− kD q̇2

)
− α3 (2q̇1q̇2 (9.9a)

+q̇2
2

)
sin q2 − β1 sin q1 − β2 sin (q1 + q2) = 0,

q̈2 = kP

[(
2α

π

)
arctan q̇1 − q2

]
− kD q̇2 (9.9b)

which can be represented as

q̈1 =

[
−M12(q)

(
kP

[(
2α

π

)
arctan q̇1 − q2

]
− kD q̇2

)
+ α3 (2q̇1q̇2 (9.10a)

+q̇2
2

)
sin q2 + β1 sin q1 + β2 sin (q1 + q2)

]/ [
M11(q)

]
,

q̈2 = kP

[(
2α

π

)
arctan q̇1 − q2

]
− kD q̇2. (9.10b)

The equilibrium point states of the TC-ROPAn−1 robot are thus represented by

qe1 = q∗1, qe2 = q∗2,

q̇e1 = 0, q̇e2 = 0,

q̈e1 = 0, q̈e2 = 0.

Additionally, we select

qd2 = 0

since the UEP is the desired trajectory. Therefore, if the TC-ROPAn−1 robot is found
at an equilibrium point, its dynamical equations demonstrated in eqs. (9.9a) and
(9.9b) simplify into

−M12kP q
e
2 − β1 sin qe1 − β2 sin (qe1 + qe2) = 0, (9.11)

kP q
e
2 = 0. (9.12)

With kP > 0, we see that

qe2 = 0

from eq. (9.12). Therefore, substituting qe2 = 0 into eq. (9.11) we find that
[
β1 + β2

]
sin qe1 = 0. (9.13)

Since β1 > 0, and β2 > 0 it is evident that the condition

qe1 = ±πk, k ∈ Z
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must hold for eq. (9.13) to be satisfied. Therefore, there are two classifications of
equilibrium points which exist in this configuration, the UEP and the FPEP, whereby

(qe, q̇e)UEP = (0, 0, 0, 0),

(qe, q̇e)FPEP = (±πk, 0, 0, 0)

and where k ∈ Z. These points can be defined within the region qe1, q
e
2 ∈ (−π, π].

Therefore

(qe, q̇e)UEP = (0, 0, 0, 0),

(qe, q̇e)FPEP = (π, 0, 0, 0).

There are no equilibrium points (other than the UEP) that the trajectory can tend
towards if the system is initialised approximately near the FPEP (provided that
the FPEP is an unstable equilibrium point). We can thus conclude the following,
assuming that the local stability of the FPEP is dependent on the gains kP and kD:

Proposition 9.1. Gain selection criterion: Choosing appropriate values for the gains
kP and kD will ensure that the FPEP is unstable. This is a necessary condition for
satisfactory swing-up control of a UMS that is initialised near the FPEP. This will
eliminate a large domain of possible value combinations for kP and kD that cannot
be used if satisfactory swing-up control is desired.

The stability of the FPEP can be determined through the derivation of the char-
acteristic equation of the system linearised about the FPEP. We, therefore, highlight
the following set of directives that must be completed for the derivation of the gain
selection criterion for the undamped TC-ROPAn−1 robot:

(i) Use Lyapunov’s linearisation technique to linearise the undamped TC-ROPAn−1

robot about the FPEP. Use the linearised model to determine a characteristic
equation, describing local stability about the FPEP.

(ii) Implement the Routh-Hurwitz stability criterion (using the Routh array) to
determine conditions that ensure that the FPEP is locally unstable.

The detailed derivation of this gain selection criterion is included in section A.5 of
appendix A. The result of this proof is summarised as follows:

Criterion 9.1. Gain selection criterion (undamped TC-ROPAn−1): The FPEP of the
undamped TC-ROPAn−1 robot is guaranteed to be locally unstable so long as the
following selection conditions for the gains kP and kD are satisfied:

(1) For
β2

α2 + α3
< kP <

β1 + β2

α1 + α2 + 2α3
:

0 ≤ kD <
2αkP
π

[
[α2 + α3] kP − β2

β1 + β2 − kP [α1 + α2 + α3]

]
;
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(2) For kP ≥
β1 + β2

α1 + α2 + 2α3
; kD ≥ 0:

We shall demonstrate the application of the gain selection criterion for practical
versions of the TC-ROPAn−1 robot. The parameters that have been selected in the
experiments that follow are taken from [5] and [6] since the results produced in this
chapter can easily be verified and compared to results in existing literature. It is
important to note, however, that any set of parameters can be selected since the gain
selection criterion is analytical in nature.

The Undamped Acrobot

The swing-up control of the undamped Acrobot (which is an identical manifesta-
tion of the TC-ROPA1 robot) using TCPFL is demonstrated to provide a practical
application of the gain selection criterion. The application of the FBL torque

τ2 = M̂22(q)v2 + D̂2(q, q̇) + K̂2(q)

derived from eq. (9.1) with i = 2 where

M̂22(q) = M22(q)− M21(q)M12(q)

M11(q)
,

D̂2(q, q̇) = D2(q, q̇)− M21(q)

M11(q)
D1(q, q̇),

K̂2(q) = K2(q)− M21(q)

M11(q)
K1(q)

and where

D1(q, q̇) = C1(q, q̇), D2(q, q̇) = C2(q, q̇)

results in the linearised dynamics

q̈1 =
−M12(q)v2 −D1(q, q̇)−K1(q)

M11(q)
,

q̈2 = v2

for the undamped Acrobot where

v2 = kP

(
qd2 − q2

)
− kD q̇2

with qd2 =

(
2α

π

)
arctan q̇1. The permissible region of gains that you can select for

the aforementioned control law (referred to as the Region of Appropriate Gains, or
RAG) is demonstrated in figure 9.3 for an Acrobot described by the parameters

m1 = 1 kg, m2 = 1 kg,
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l1 = 0.5 m, l2 = 1 m,

L1 = 1 m, L2 = 2 m,

I1 = 0.0833 kg.m2, I2 = 0.3333 kg.m2,

g = 9.81 m.s2

which adhere to the constraint in eq. (9.3). This corresponds to the relationship be-
tween appropriate gains and the negative magnitude of the critical Routh coefficient
c1, as seen in figure 9.4.

4 4.5 5 5.5

kp

0

5

10

15

20

25

30

k
d

kp =
β1 + β2

α1 + α2 + 2α3

kp =
β2

α2 + α3

kd =
2akp
π

[

kp(α2 + α3)− β2

β1 + β2 − kp(α1 + α2 + 2α3)

]

F I G U R E 9 . 3 : The gain selection criterion of the undamped Acrobot,
which forms borders around the region of appropriate gains (shaded in

grey).



Chapter 9. Work-Around: The Swing-up Control of the Damped PAn−1

Robot using Partial Feedback Linearisation
177

-10

50

-5

0

40

5

6

10

C
1

5

15

30

kd

20

4

25

kp

20
3

30

2
10

1

0 0

F I G U R E 9 . 4 : The critical Routh coefficient c1 plotted against a range
of possible values for kD and kP .

Selecting a set of gains that fall within the RAG will ensure that the FPEP of the
Acrobot is locally unstable, thus sufficing as a prerequisite to swing-up control if
the Acrobot is initialised approximately near to the FPEP. The simulated change
of energy of the Acrobot described earlier in this section with the selection of
magnitudes for gains kP and kD that either fall into or outside of the RAG are
demonstrated in figures 9.5-9.10. An increasing level of mechanical energy of the
Acrobot with a gain selection of kP = 4.21 and kD = 0.001, which falls within the
RAG, is demonstrated in figure 9.5. A decreasing level of mechanical energy of the
Acrobot with a gain selection of kP = 4.19 and kD = 0.001, which falls outside of
the RAG, is demonstrated in figure 9.6. An increasing level of mechanical energy
of the Acrobot with a gain selection of kP = 4.7 and kD = 1, which falls within the
RAG, is demonstrated in figure 9.7. A decreasing level of mechanical energy of the
Acrobot with a gain selection of kP = 4.7 and kD = 2, which falls outside of the
RAG, is demonstrated in figure 9.8. An increasing level of mechanical energy of
the Acrobot with a gain selection of kP = 5.25 and kD = 0.001, which falls within
the RAG, is demonstrated in figure 9.9. An increasing level of mechanical energy
of the Acrobot with a gain selection of kP = 5.355 and kD = 10, which falls within
the RAG, is demonstrated in figure 9.10. All these results demonstrate that a gain
selection found outside of the RAG will cause the loss of mechanical energy from
the system, and that a gain selection in the RAG will cause the mechanical energy of
the system to increase. These results are expected since they comply with the gain
selection criterion.
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F I G U R E 9 . 5 : The unstable response of an undamped Acrobot ini-
tialised near the FPEP with a gain selection within the left-bottom

boundary of the RAG.
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tialised near the FPEP with a gain selection outside of the left-bottom

boundary of the RAG.
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F I G U R E 9 . 7 : The unstable response of an undamped Acrobot ini-
tialised near the FPEP with a gain selection within the middle-top

boundary of the RAG.
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F I G U R E 9 . 9 : The unstable response of an undamped Acrobot ini-
tialised near the FPEP with a gain selection within the bottom bound-

ary of the RAG.
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F I G U R E 9 . 1 0 : The unstable response of an undamped Acrobot
initialised near the FPEP with a gain selection within the boundaries

of the RAG.
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We can thus demonstrate the swing-up control of the Acrobot using gains found
within the RAG. In the case of an aggressive swing-up (as shown in [6]), we chose
α = π/2 for the ATAN controller, and the gains

kD = 7.55482, kP = 100.

An LQR controller was used to balance the Acrobot using the gains

k1 = −246.216, k2 = −98.5841, (9.14a)
k3 = −106.3313, k4 = −50.0957. (9.14b)

The implementation of a LQR controller simply demonstrates the possibility of
regulating the system about the UEP once it has been swung-up. The results of
the swing-up of this Acrobot are demonstrated in figures 9.11-9.14 using the initial
conditions

q1(0) = −101

100
π, q2(0) = 0, q̇1(0) = 0, q̇2(0) = 0

found approximately near the FPEP. The simulations were performed using the
Dormand-Prince fixed time-interval integrator package using a 0.01 seconds reso-
lution. The swing-up controller is switched to the LQR controller after 37 seconds.
The angular displacement of the proximal pendulum during PFL-related swing-up
control is demonstrated in figure 9.11. The displacement from the initial condition
increases exponentially throughout the experiment, with the pendulum continually
oscillating about qd1 = 0 until the LQR controller is introduced at 37 seconds. The
proximal pendulum is regulated about the UEP after the LQR controller is intro-
duced, demonstrating successful swing-up control. The angular displacement of
the distal pendulum during the PFL-related swing-up control is demonstrated in
figure 9.12. The displacement of the distal pendulum demonstrates an increasing
exponential behaviour as seen with the proximal pendulum. This continues until
the LQR controller is introduced at 37 seconds, whereby the pendulum is stabilised
at the UEP (with qd2 = 0). The increasing displacement is determined by the gain
factor α, which was set at π/2 for this experiment. The swing-up and LQR torque
produced by the actuator is demonstrated in figure 9.13. The controller introduces
an exponentially growing torque throughout the experiment since its magnitude
was dependent on the displacements of the pendulums (which increased as more
energy was introduced into the system). This produces the swing-cycles seen in the
angular displacements. The actuator reduces the torque magnitude between 33-35
seconds since q2 ≈ 0 and q1 ≈ 0. A small negative torque is applied after 37 seconds
to regulate pendulum about the UEP. The mechanical energy of the undamped Ac-
robot is demonstrated in figure 9.14. The energy of the system increases with every
swing-cycle, with the peaks occurring when q̇2 = 0 and q1 = −π (as the pendulums
are swinging past the FPEP with maximum kinetic energy). The energy dips slightly
with each cycle since the actuator introduces a braking torque at the point when the
system reaches the highest possible potential energy. It is believed that this was done
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to ensure that the system achieved the appropriate states before the initiation of a
new swing-cycle. The energy stabilises at Er after the LQR controller is introduced
at 37 seconds. This confirms that the swing-up control was successful in this case.
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F I G U R E 9 . 1 1 : The angular position of the most proximal pendulum
(q1) of the undamped Acrobot during swing-up control using TCPFL

and the ATAN controller.
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F I G U R E 9 . 1 2 : The angular position of the most distal pendulum
(q2) of the undamped Acrobot during swing-up control using TCPFL

and the ATAN controller.
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F I G U R E 9 . 1 3 : The torque required to perform swing-up control on
an undamped Acrobot using TCPFL and the ATAN controller.
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F I G U R E 9 . 1 4 : The difference between the mechanical energy of the
undamped Acrobot and Er during TCPFL-related swing-up control.
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The gain selection criterion for the undamped Acrobot has been included in a paper
that has been accepted into the IEEE AFRICON17 conference proceedings [110]. The
full paper has been included in appendix F. There may be instances where a more
gentle swing-up approach may be more appropriate. A more gentle swing-up is
demonstrated using the gains

kD = 1.1280225, kP = 5.2554 =
β1 + β2

α1 + α2 + 2α3
, α =

π

2
.

These gains are chosen specifically because they satisfy the gain selection criterion
despite having low magnitudes as compared to the more aggressive swing-up
control that was demonstrated in the previous set of results. We chose the initial
conditions

q1(0) = −101

100
π, q2(0) = 0,

q̇1(0) = 0, q̇2(0) = 0

as with the previous simulations. The simulations were performed using the
Dormand-Prince fixed time-interval integrator package using a resolution of 0.01 sec-
onds. The swing-up controller, in this case, is switched for the LQR controller (which
is described by the gains shown in eqs. (9.14a)-(9.14b)) at 172 seconds. The gentle
swing-up control of the undamped Acrobot is demonstrated in figures 9.15-9.18.
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F I G U R E 9 . 1 5 : The angular position of the most proximal pendulum
(q1) of the undamped Acrobot during gentle swing-up control using

TCPFL and the ATAN controller.
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F I G U R E 9 . 1 6 : The angular position of the most distal pendulum
(q2) of the undamped Acrobot during gentle swing-up control using

TCPFL and the ATAN controller.
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F I G U R E 9 . 1 7 : The torque required to perform gentle swing-up con-
trol on an undamped Acrobot using TCPFL and the ATAN controller.
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F I G U R E 9 . 1 8 : The difference between the mechanical energy of the
undamped Acrobot and Er during gentle TCPFL-related swing-up

control.

The angular displacement of the proximal pendulum of the undamped Acrobot
during a more gentle instance of swing-up control is demonstrated in figure 9.15.
The displacement of the proximal pendulum increases exponentially throughout
the experiment but at a slower rate as compared to the result demonstrated in figure
9.11. This is expected since a smaller magnitude for the gain kP was selected in this
instance, but the exponential increase in the displacement is attributed to the satis-
faction of the gain selection criterion, since the selected gains still fell within the RAG.
The pendulum was regulated at q1 = 0 after the LQR controller was introduced
(at 172 seconds). The angular displacement of the distal pendulum during a more
gentle instance of swing-up control is demonstrated in figure 9.16. The displacement
of the distal pendulum also increases exponentially throughout the experiment
and at a slower rate as compared to the result in figure 9.12. The distal pendulum
was regulated at q2 = 0 after the LQR controller was introduced at 172 seconds as
expected. The torque produced by the actuator during the gentle swing-up control
is demonstrated in figure 9.17. The torque increases exponentially throughout the
experiment, but at a slower rate as compared to the torque results shown in figure
9.13. The torque levels off at approximately 0 N.m after 172 seconds since the con-
troller was no longer producing a swing-up torque but was instead regulating the
system about the UEP. The mechanical energy of the undamped Acrobot during this
experiment is demonstrated in figure 9.18. As with the previous experiment, the
swing-up torque increased the mechanical energy of the system exponentially until
the UEP was reached. The mechanical energy remained unchanged at the value Er
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after the LQR controller was initiated.

As expected, the swing-up controller required significantly more time to execute
the swing-up control when a lower magnitude for the gain kP was selected, but
the objective was evidently attained since the gain selection criterion was satisfied.
It is thus apparent that the gain selection criterion acts as a prerequisite to swing-up
control provided that the TC-ROPAn−1 robot is to be swung from approximately
near the FPEP. If this criterion is not satisfied, the robot’s trajectory will tend toward
the FPEP, guaranteeing unsatisfactory swing-up control.

We shall now demonstrate that the gain selection criterion is valid for higher-order
systems by performing TCPFL-related swing-up control on the undamped PAA
robot.

The Undamped PAA Robot

The undamped PAA robot is modelled as the TC-ROPA2 robot using TCPFL through
the application of the FBL torques

τ2 = M̂22(q)v2 + M̂23(q)v3 + D̂2(q, q̇) + K̂2(q),

τ3 = M̂32(q)v2 + M̂33(q)v3 + D̂3(q, q̇) + K̂3(q)

where

M̂22(q) = M22(q)− M21(q)M12(q)

M11(q)
, M̂23(q) = M23(q)− M21(q)M13(q)

M11(q)
,

M̂32(q) = M32(q)− M31(q)M12(q)

M11(q)
, M̂33(q) = M33(q)− M31(q)M13(q)

M11(q)
,

D̂2(q, q̇) = D2(q, q̇)− M21(q)

M11(q)
D1(q, q̇), D̂3(q, q̇) = D3(q, q̇)− M31(q)

M11(q)
D1(q, q̇),

K̂2(q) = K2(q)− M21(q)

M11(q)
K1(q), K̂3(q) = K3(q)− M31(q)

M11(q)
K1(q)

and where D1(q, q̇) = C1(q, q̇), D2(q, q̇) = C2(q, q̇), and D3(q, q̇) = C3(q, q̇). This
results in a set of dynamical equations described by

q̈1 =
−M12(q)v2 −M13(q)v3 −D1(q, q̇)−K1(q)

M11(q)
,

q̈2 = v2,

q̈3 = −kD3 q̇3 − kP3q3

where

α1 = I1 +m1l1
2 +m2L1

2, α2 = I2 +m2l2
2,

α3 = m2l2L1, β1 = (m1l1 +m2L1) g,
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β2 = m2l2g,

m2 = m2 +m3, I2 = I2 + I3,

m2l2 = m2l2 +m3 [l3 + L2] , m2l2
2 = m2l2

2 +m3 [l3 + L2]2 .

Additionally, we define

kD3 = 2ωn3 , kP3 = ωn3
2

and

v2 = kP

(
qd2 − q2

)
− kD q̇2

with

qd2 =

(
2α

π

)
arctan q̇1.

We modelled the behaviour of the TC-ROPA2 robot through the selection of the
parameters

m1 = 1 kg, m2 = 0.5 kg, m3 = 0.5 kg,
l1 = 0.5 m, l2 = 0.5 m, l3 = 0.5 m,

L1 = 1 m, L2 = 1 m, L3 = 1 m,

I1 = 0.083 kg.m2, I2 = 0.165 kg.m2, I3 = 0.165 kg.m2,

g = 9.81 m.s2

which adheres to the constraint highlighted in eq. (9.3) and which we used to outline
the gain selection criterion shown in Definition 9.1. These produced a similar set of
boundaries as seen in the Acrobot example shown in section 9.4.1. We thus selected
the gains

kD2 = 9.640222, kP2 = 100, α =
π

2
,

kD3 = 40, kP3 = 400

which fall well within the RAG. Additionally, we selected

q1(0) = − 99

100
π, q2(0) = 0, q3(0) = 0,

q̇1(0) = 0, q̇2(0) = 0, q̇3(0) = 0

as the initial conditions of this experiment. The results of the TCPFL-related swing-
up control of the undamped PAA robot are shown in figures 9.19-9.23, which were
simulated using the Dormand-Prince fixed time-interval integrator package using a
0.01 seconds resolution.
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F I G U R E 9 . 1 9 : The angular displacement of the most proximal
pendulum of the undamped TC-ROPA2 robot during TCPFL-related

swing-up control.
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F I G U R E 9 . 2 0 : The angular displacement of the second pendulum
of the undamped TC-ROPA2 robot during TCPFL-related swing-up

control.
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F I G U R E 9 . 2 1 : The angular displacement of the most distal pen-
dulum of the undamped TC-ROPA2 robot during TCPFL-related

swing-up control.
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F I G U R E 9 . 2 2 : The torque τ2 that is required to perform TCPFL-
related swing-up control on the undamped TC-ROPA2 robot.
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F I G U R E 9 . 2 3 : The difference between the mechanical energy and
the objective energy Er during the TCPFL-related swing-up control

of the TC-ROPA2 robot.

The swing-up controller was switched to an LQR controller at 37.9 seconds. The
LQR controller is described by the gains

k11 = −239.7244, k12 = −95.3162, k13 = −25.2219, (9.15a)
k14 = −103.4730, k15 = −48.5752, k16 = −13.6428, (9.15b)
k21 = −77.3684, k22 = −32.5982, k23 = −4.7272, (9.15c)
k24 = −33.3699, k25 = −16.0123, k26 = −3.3075. (9.15d)

The angular displacement of the most proximal pendulum of the TC-ROPA2 robot
during PFL-related swing-up control is demonstrated in figure 9.19. The displace-
ment of the most proximal pendulum off q1 = −π increased exponentially in magni-
tude throughout the experiment, as seen with the swing-up control of the undamped
Acrobot. The pendulum plateaued at q1 = 0 after the substitution of the swing-up
controller with the LQR controller 37.9 seconds into the simulation. The angular
displacement of the second pendulum of the undamped TC-ROPA2 robot during
PFL-related swing-up control is demonstrated in figure 9.20. The pendulum os-
cillated about q2 = 0, with the displacement increasing exponentially with each
swing-cycle. The pendulum was regulated about q2 = 0 after the LQR controller
was initiated 37.9 seconds into the experiment. The angular displacement of the
most distal pendulum of the undamped TC-ROPA2 robot that occurred during
PFL-related swing-up control is demonstrated in figure 9.21. The TCPFL control
technique ensured that the most distal pendulum was strictly regulated about the
neighbourhood of q3 = 0 throughout the swing-up control phase of the simulation.
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The spike in the figure occurred at the point when the swing-up controller was
switched with the LQR controller, and was a result of the LQR control law. The
deviation is, however, relatively small as compared to the displacements seen with
the more proximal pendulums, reaching a maximum deflection of 4.6×10−4 radians.

The torque produced by the PFL-related swing-up controller located between the
most proximal pendulum and the second pendulum is demonstrated in figure 9.22.
The torque increases exponentially in magnitude in response to the behaviour of
the displacements q1 and q2 (and their respective angular velocities). The pattern
continued until the TC-ROPA2 fell within the approximate neighbourhood of the
UEP (the swing-cycle before the LQR is introduced). The system was regulated
using an LQR-related torque after the swing-up phase (which ended 37. seconds
into the simulation). The mechanical energy of the TC-ROPA2 robot recorded during
the swing-up control of the undamped TC-ROPA2 robot is demonstrated in figure
9.23. The mechanical energy exponentially increased throughout the experiment,
with each swing-cycle demonstrating a peak and a trough in the mechanical energy.
The peak in mechanical energy during any particular swing-cycle corresponds to the
point when the TC-ROPA2 robot contained the largest kinetic energy (as it swung
past the FPEP). The trough corresponds to the point when the TC-ROPA2 robot had
the highest potential energy in the swing-cycle (when the robot reached the largest
possible deflection off the FPEP). The author believes that this dip in the energy
occurred due to the introduction of a braking torque by the actuator responsible for
swing-up control to ensure that the system reached the appropriate states before
initiating a new swing-cycle instance.

The results depicted in figures 9.19-9.23 demonstrate the successful swing-up of
the TC-ROPA2 robot. The behaviour of the controller was particularly aggressive,
reaching the UEP after 37.9 seconds. We will now demonstrate that successful
swing-up control can be achieved when the specific gain selection is found closer to
the boundaries of, but still within, the RAG. Using the same physical parameters
that were selected in the aggressive swing-up experiment, we selected the gains

kD2 = 1.1279685675, kP2 = 5.2554 =
β1 + β2

α1 + α2 + 2α3
, α =

π

2
,

kD3 = 40, kP3 = 400

and the initial conditions

q1(0) = −101

100
π, q2(0) = 0, q3(0) = 0,

q̇1(0) = 0, q̇2(0) = 0, q̇3(0) = 0

which initialised the system near the FPEP. The simulation of the gentle swing-up
of the undamped PAA robot using PFL was performed using the Dormand-Prince
fixed time-interval integrator package with a 0.01 seconds resolution. The results of
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this simulation are demonstrated in figures 9.24-9.28. The swing-up controller was
switched to an LQR controller at 171.79 seconds. The LQR controller is described by
the gains shown in eqs. (9.15a)-(9.15d).

0 20 40 60 80 100 120 140 160 180

Time (s)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

q
1
(t
)
(r
ad

)

F I G U R E 9 . 2 4 : The angular displacement of the most proximal
pendulum of the undamped TC-ROPA2 robot during gentle TCPFL-

related swing-up control.
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F I G U R E 9 . 2 5 : The angular displacement of the second pendulum
of the undamped TC-ROPA2 robot during gentle TCPFL-related

swing-up control.
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F I G U R E 9 . 2 6 : The angular displacement of the most distal pendu-
lum of the undamped TC-ROPA2 robot during gentle TCPFL-related

swing-up control.
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F I G U R E 9 . 2 7 : The torque τ2 that is required to perform gentle
TCPFL-related swing-up control on the undamped TC-ROPA2 robot.
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F I G U R E 9 . 2 8 : The difference between the mechanical energy and
the objective energy Er during the gentle TCPFL-related swing-up

control of the TC-ROPA2 robot.

The angular displacement of the most proximal pendulum of the TC-ROPA2 robot
during gentle swing-up control is demonstrated in figure 9.24. The pendulum os-
cillated about q1 = −π, but increased exponentially in magnitude throughout the
experiment, with < 1 radian range deflections occurring with almost every swing-
cycle (with the last swing-cycle being the exception). The states of the TC-ROPA2

fell approximately within the neighbourhood of the UEP after approximately 170
seconds, taking nearly 5 times longer than the previous experiment. The proximal
pendulum was regulated using an LQR controller 171.9 seconds into the simulation.
The angular displacement of the second pendulum of the TC-ROPA2 robot during
gentle TCPFL-related swing-up control is demonstrated in figure 9.25. The displace-
ment of the second pendulum increased exponentially throughout the experiment
until the LQR controller was initiated 171.9 seconds into the experiment, whereby
the pendulum remained within an approximate neighbourhood of q2 = 0. The
angular displacement of the most distal pendulum of the TC-ROPA2 robot that was
recorded during gentle TCPFL-related swing-up control is demonstrated in figure
9.26. The actuator found between the second and most distal pendulums exerted a
torque that ensured the strict regulation of the most distal pendulum about q3 = 0
throughout the swing-up cycle of the TC-ROPA2 robot. The spike that is evident
in the figure was the result of the response of the actuator when it was assigned
with a new LQR-related control law (occurred 171.9 seconds into the simulation).
The swing-up and LQR-related control torque that was exerted by the actuator
found between the second and most proximal pendulums of the TC-ROPA2 robot
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during gentle TCPFL-related swing-up control is demonstrated in figure 9.27. The
magnitude of the torque increased exponentially throughout the swing-up phase as
the behaviour of the torque was dependent on the magnitudes of q1 and q2 as well
as their respective velocities. A regulating torque was applied after 171.9 seconds
into the simulation as described by the LQR control law. The mechanical energy
of the TC-ROPA2 robot that was recorded during the gentle TCPFL-related swing-
up control is demonstrated in figure 9.28. The mechanical energy of the system
increased exponentially as energy was introduced by the unstable control torque
applied by the actuator responsible for swing-up control. Each swing-cycle is clearly
associated with a peak and trough of mechanical energy. The peak of the cycle
occurred when the system reached its maximum possible kinetic energy (when the
system crossed the FPEP). The troughs occurred at the point in the cycle where the
maximum potential energy was achieved (when the proximal pendulum achieved
the largest deviation away from q1 = −π for the swing-cycle). The troughs are be-
lieved to be a result of the application of a braking torque that was required to ensure
that the pendulums are synchronised before the initiation of the new swing-up cycle.

The swing-up control of the TC-ROPA2 robot was evidently successful despite
the selection of a lower magnitude for kP . The system required many more swing-
cycles to achieve the objective, but this simulation demonstrates that it is possible to
swing-up an undamped and underactuated multi-body pendulum system using
TCPFL so long as the gain selection criterion is satisfied. Therefore, a constraint
in the gain magnitudes may increase the amount of time required to perform sat-
isfactory swing-up control on an undamped underactuated robotic system, but
the objective can, nonetheless, be achieved so long as the gain selection criterion
is satisfied. Additionally, this experiment demonstrates that the reduction in the
magnitude of kP produces a more gentle swing-up control. It is not known whether
this is specific to this example, but further investigations into this phenomenon is
recommended for future research, especially since the RAG can be dissected into
areas of varying system response rates.

The gain selection criterion has been proven to be an effective tool in determining
the relevant gains that are required to swing-up an undamped TC-ROPAn−1 sys-
tem from the FPEP; This is an important milestone in this research. We shall now
evaluate the potential of using this principle to develop conditions with which a
damped TC-ROPAn−1 robot can be swung-up from the FPEP, beginning first with
the actively damped case.

9.4.2 Actively Damped PAn−1 Robot

TC-ROPAn−1 Robot Modelling, Equilibrium Point Analysis and Gain Selection
Criterion

The implementation of the TCPFL technique on the actively damped PAn−1 robot
results in the dynamical equations shown in eqs. (9.2a) and (9.2d) which describes
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the behaviour of the TC-ROPAn−1 robot, where

Di(q, q̇) = Ci(q, q̇) +Ri(q̇) for 2 ≤ i ≤ n,
D1(q, q̇) = Ci(q, q̇)

in the case of an actively damped system, and Ri(q̇) = biq̇i. The formulation of
the model follows the derivation seen in section 9.4.1, resulting in the TC-ROPAn−1

model described by eqs. (9.8a) and (9.8b). The active damping has thus been linearly
negated from the system dynamics, with the effects of this damping only evident
once the magnitude of the FBL torques τi are evaluated. The active damping there-
fore has no implications on the derivation of the TC-ROPAn−1 robot’s equilibrium
points and its respective swing-up gain selection criterion. The results of sections
9.4.1 thus adequately describes the derivation of the gain selection criterion for the
actively damped PAn−1 robot. We shall practically demonstrate this on the simplest
derivatives of the PAn−1 robot, beginning with the actively damped Acrobot.

Actively Damped Acrobot

The actively damped Acrobot requires the FBL torque

τ2 = M̂22v2 + D̂2(q, q̇) + K̂(q)

to linearise the dynamics of the most distal pendulum, which is damped in this case,
where

M̂22(q) = M22(q)− M21(q)M12(q)

M11(q)
,

D̂2(q, q̇) = D2(q, q̇)− M21(q)

M11(q)
D1(q, q̇),

K̂2(q) = K2(q)− M21(q)

M11(q)
K1(q)

and where

D1(q, q̇) = C1(q, q̇), D2(q, q̇) = C2(q, q̇) +R2(q̇),

R2(q̇) = b2q̇2.

This torque produces a set of equations of motion described by

q̈1 =
−M12v2 −D1(q, q̇)−K1(q)

M11(q)

with

v2 = kP

(
qd2 − q2

)
− kD q̇2
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and qd2 =

(
2α

π

)
arctan q̇1. To compare the effects of active damping on the torque of

the swing-up controller, we select the system properties

m1 = 1 kg, m2 = 1 kg,
l1 = 0.5 m, l2 = 1 m,

L1 = 1 m, L2 = 2 m,

I1 = 0.083 kg.m2, I2 = 0.33 kg.m2,

g = 9.81 m.s2

as seen in section 9.4.1. This set of parameters, with the gain selection criterion
highlighted in Definition 9.1, produces identical results for the actively damped
Acrobot as what is seen in figures 9.3-9.10. The only difference that is seen in
the simulation results is in the torque, whereby, in the actively damped case, the
resultant torque represents a superposition of the swing-up torque and the damping-
negation torque. We demonstrate this by performing swing-up control on the
actively damped Acrobot using

kD = 1.01, kP = 5.2554 =
β1 + β2

α1 + α2 + 2α3
,

the ATAN controller constant

α =
π

40
,

the damping coefficient

b2 = 10,

and the initial conditions

q1(0) = −101

100
π, q2(0) = 0,

q̇1(0) = 0, q̇2(0) = 0.

The gains were chosen using the gain selection criterion highlighted in criterion 9.1. A
swing-up control simulation was performed on the actively damped and undamped
Acrobot. The dynamics of the actively damped Acrobot were unaffected by the
active damping torques since these torques were negated by the controller torque.
The behaviour of the actively damped Acrobot described by the aforementioned
properties is thus identically represented in the swing-up control results of the
undamped Acrobot demonstrated in figures 9.11,9.12, and 9.14. The only discernible
difference between these cases would be the magnitudes in torque produced by
the swing-up controllers. The comparison of the torques required to swing-up an
undamped Acrobot and an actively damped Acrobot using TCPFL is demonstrated
in figure 9.29.
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F I G U R E 9 . 2 9 : Torque required to perform TCPFL-related swing-up
control on the undamped Acrobot (blue) and the actively damped

Acrobot (red) where b2 = 10.

The torque required to swing-up an undamped Acrobot using TCPFL is shown by
the blue curve, whereas the red curve represents the torque required to swing-up
an identically configured Acrobot that has been integrated with viscous damping
on the active joint (with a damping coefficient of b2 = 10). The two curves are in
phase with one another, with the difference between the magnitudes of the red and
blue curves representing the torque that is required to negate the damping friction
present at the active joint. The magnitude of this curve will evidently increase if
the damping coefficient of the damping friction torque found at the active joint is
increased. It is, therefore, evident that the gain selection criterion can be applied to
actively damped Acrobots.

We shall now demonstrate that higher-order actively damped underactuated sys-
tems may also be swung-up using the gain selection criterion.

Actively Damped PAA Robot

The actively damped PAA robot is linearised, as with the undamped case, with the
FBL torques

τ2 = M̂22(q)v2 + M̂23(q)v3 + D̂2(q, q̇) + K̂2(q),

τ3 = M̂32(q)v2 + M̂33(q)v3 + D̂3(q, q̇) + K̂3(q)
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where the parameters are identical to that of the undamped case with the exception
of

D2(q, q̇) = C2(q, q̇) +R2(q̇),

D3(q, q̇) = C3(q, q̇) +R3(q̇)

where R2(q̇) = b2q̇2, and R3(q̇) = b3q̇3. This results in a set of dynamical equations
described by

q̈1 =
−M12(q)v2 −M13(q)v3 −D1(q, q̇)−K1(q)

M11(q)
,

q̈2 = v2,

q̈3 = −kD3 q̇3 − kP3q3

with the elements above defined as seen in the undamped PAA robot case. The
gains

kD3 = 2ωn3 , kP3 = ωn3
2

were identified to produce a non-oscillating regulation of the most distal pendulum
along with

v2 = kP

(
qd2 − q2

)
− kD q̇2

and

qd2 =

(
2α

π

)
arctan q̇1.

It is evident that the linearising torques have negated the active damping torques.
The gain selection criterion for the actively damped PAA robot is identical to that of
the undamped PAA robot. Choosing the parameters

m1 = 1 kg, m2 = 0.5 kg, m3 = 0.5 kg,
l1 = 0.5 m, l2 = 0.5 m, l3 = 0.5 m,

L1 = 1 m, L2 = 1 m, L3 = 1 m,

I1 = 0.083 kg.m2, I2 = 0.165 kg.m2, I3 = 0.165 kg.m2,

g = 9.81 m.s2, b2 = 10, b3 = 10

and the control properties

kD = 1.05, kP = 5.3027 =
β1 + β2

α1 + α2 + 2α3
,

kD3 = 40, kP3 = 400,
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α =
π

2

with the gains kD and kP chosen using the gain selection criterion highlighted in
criterion 9.1. Simulating the swing-up control of the actively damped TC-ROPA2

using the initial conditions

q1(0) = −101

100
π, q2(0) = 0, q3(0) = 0,

q̇1(0) = 0, q̇2(0) = 0, q̇3(0) = 0

we find that the performance of the actively damped TC-ROPA2 robot is identical to
that of the undamped TC-ROPA2 robot demonstrated in figures 9.19-9.21, and figure
9.23. A comparison between the torques produced by the actuator found between
the most proximal and second pendulums of the TC-ROPA2 robot for the undamped
and actively damped cases is demonstrated in figure 9.30, with the torque in the
undamped system represented by the blue curve, and the torque in the actively
damped system represented by the red curve. The controller compensates for the
viscous damping by producing a damping-negation torque, which is superimposed
on the swing-up torque. The linearising torque τ3 is not affected tangibly by the
presence of viscous damping on the most distal joint since the angular velocity of
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F I G U R E 9 . 3 0 : Torque required to perform TCPFL-related swing-up
control on the undamped PAA robot (blue) and the actively damped

PAA robot (red) where b2 = 10.
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F I G U R E 9 . 3 1 : Angular velocity of the most distal pendulum of the
actively damped PAA robot during TCPFL-related swing-up control.

the most distal pendulum is regulated sufficiently by the FBL torque τ3, as shown in
the figure 9.31.

We can now finally address the issue of developing a work-around for the limita-
tion of the Lyapunov-related swing-up control highlighted in the matched damping
condition by investigating the potential of applying TCPFL swing-up control using
an ATAN controller on the passively damped PAn−1 robot. If this technique can
successfully swing-up a passively damped derivative of the PAn−1 robot, the pre-
requisites of this control shall be outlined by a set of conditions collectively referred
to as the gain selection criterion, which is similar in principle to the set of conditions
derived for the undamped and actively damped PAn−1 robot, but will be unique to
the application on passively damped PAn−1 robots.

9.4.3 Passively Damped PAn−1 Robot

This derivation begins with the reduced-order modelling of the passively damped
PAn−1 robot, which results in the definition of the passively damped TC-ROPAn−1

robot.
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Modelling the Passively Damped PAn−1 Robot as the TC-ROPAn−1 Robot

As seen in section 9.4.1, the application of the TCPFL technique on the PAn−1 robot
produces the set of dynamical equations shown in eqs. (9.2a)-(9.2d), where

Di(q, q̇) = C1(q, q̇) for 2 ≤ i ≤ n,
D1(q, q̇) = C1(q, q̇) +R1(q̇)

in the passively damped case with R1(q̇) = b1q̇1. Selecting the initial conditions

q3(0) = 0, q̇3(0) = 0,

q4(0) = 0, q̇4(0) = 0,

...
...

qn(0) = 0, q̇n(0) = 0

we can guarantee that

q3 ≈ 0, q4 ≈ 0, . . . qn ≈ 0.

This is contingent on the choice of a sufficiently large response frequency for each of
the linearising actuators. The linearising torque accommodates the modelling of the
PAn−1 robot as a TC-ROPAn−1 robot, with the dynamics of this TC-ROPAn−1 robot
described by

M11(q)q̈1 +M12(q)v2 +D1(q, q̇) +K1(q) = 0,

q̈2 = v2

where

M11(q2) = α1 + α2 + 2α3 cos q2,

M12(q2) = α2 + α3 cos q2,

D1(q2, q̇) = C1(q2, q̇) +R1(q̇) = −α3

(
2q̇1q̇2 + q̇2

2

)
sin q2 + b1q̇1,

K1(q) = −β1 sin q1 − β2 sin(q1 + q2)

and

α1 = I1 +m1l1
2 +m2L1

2, α2 = I2 +m2l2
2,

α3 = m2l2L1, β1 = (m1l1 +m2L1) g,

β2 = m2l2g,

m2 =

n∑

i=2

mi, I2 =

n∑

i=2

Ii,
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m2l2 =

n∑

i=2

mi


li +

i−1∑

j=2

Lj


 , m2l2

2 =

n∑

i=2

mi


li +

i−1∑

j=2

Lj




2

which is constrained by the condition in eq. (9.3).

Equilibrium Point Analysis of the Passively Damped TC-ROPAn−1 Robot Inte-
grated with an ATAN Controller

The identification of the equilibrium points in the ATAN control integrated passively
damped TC-ROPAn−1 robot is necessary to understand whether there may be
equilibrium points that will pull the system off of the swing-up trajectory towards
the UEP. The TC-ROPAn−1 model is thus integrated with a linear state feedback
controller described by

v2 = kP

(
qd2 − q2

)
− kD q̇2

where the ATAN control is represented using the desired angular trajectory

qd2 =

(
2α

π

)
arctan q̇1 where α ∈ R+.

Substituting v2 into eqs. (9.2a)-(9.2d) produces the expressions

M11(q)q̈1 +M12(q)

(
kP

[(
2α

π

)
arctan q̇1 − q2

]
− kD q̇2

)
− α3 (2q̇1q̇2 (9.16)

+q̇2
2

)
sin q2 + b1q̇1 − β1 sin q1 − β2 sin(q1 + q2) = 0,

q̈2 = kP

[(
2α

π

)
arctan q̇1 − q2

]
− kD q̇2 (9.17)

which describe the dynamics of the TC-ROPAn−1 model that has been integrated
with an ATAN controller. These dynamical equation can also be represented as a set
of equations of motion described by

q̈1 =

[
−M12(q)

(
kP

[(
2α

π

)
arctan q̇1 − q2

]
− kD q̇2

)
+ α3 (2q̇1q̇2 (9.18)

+ q̇2
2

)
sin q2 − b1q̇1 + β1 sin q1 + β2 sin(q1 + q2)

]/[
M11(q)

]
,

q̈2 = kP

[(
2α

π

)
arctan q̇1 − q2

]
− kD q̇2. (9.19)

The states which exists at any equilibrium point (q1, q2, q̇1, q̇2) = (qe1, q
e
2, q̇

e
1, q̇

e
2) are

selected as

qe1 = q∗1, qe2 = q∗2,
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q̇e1 = 0, q̇e2 = 0,

q̈e1 = 0, q̈e2 = 0

along with

qd2 = 0.

Substituting these equilibrium points into the dynamical equations shown in eqs.
(9.9a) and (9.9b) produces the expressions

−M12kP q
e
2 − β1 sin qe1 − β2 sin (qe1 + qe2) = 0,

kP q
e
2 = 0

that describe the dynamics of the TC-ROPAn−1 robot. These expressions are identical
to those seen in eqs. (9.11) and (9.12). It is evident, therefore, that the passive
damping has no effect on the location and number of equilibrium points in the
state-space of the TC-ROPAn−1 robot. We can thus conclude that there are two
classifications of equilibrium points found in this system, namely the UEP and the
FPEP. These equilibrium points are described as

(qe, q̇e)UEP = (0, 0, 0, 0),

(qe, q̇e)FPEP = (±πk, 0, 0, 0)

respectively where k ∈ Z. These points are defined within the region qe1, q
e
2 ∈ (−π, π]

where

(qe, q̇e)UEP = (0, 0, 0, 0),

(qe, q̇e)FPEP = (π, 0, 0, 0).

Therefore, assuming that the stability of the FPEP is dependent upon the gains
kP and kD (as done in the undamped case), then the statement in Preposition 9.1
remains relevant in the case of the passively damped TC-ROPAn−1 robot. We shall
thus state the following directives that are necessary to derive a set of conditions
(termed the gain selection criterion) for the swing-up control of the passively damped
TC-ROPAn−1 robot:

(i) Linearise the passively damped TC-ROPAn−1 robot about the FPEP using
Lyapunov’s linearisation technique. Determine the characteristic equation that
describes the local stability of the FPEP using this linearised system.

(ii) Implement the Routh-Hurwitz stability criterion (using the Routh array) to
determine conditions that ensure that the FPEP is locally unstable.

The execution of these directives results in the derivation of the gain selection criterion
for passively damped underactuated TC-ROPAn−1 robots.

Criterion 9.2. Gain selection criterion for the passively damped TC-ROPAn−1 robot
The FPEP of the passively damped TC-ROPAn−1 robot when b1 > b1lim is guaranteed
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to be locally unstable so long as the conditions

β2

α2 + α3
< kP <

n2b1
n1b1 − w2

, kD = 0

are satisfied. Additionally, the FPEP of the passively damped TC-ROPAn−1 robot
when 0 < b1 < b1lim is guaranteed to be locally unstable so long as the conditions

kP >
β2

α2 + α3
, kD = 0

are satisfied.

The derivation of this criterion is included in section A.6 in appendix A. We shall
now demonstrate the application of the gain selection criterion on derivatives of the
passively damped TC-ROPAn−1 robot, beginning with the Acrobot.

The Passively Damped Acrobot

The passively damped Acrobot is partially linearised with the implementation of
the FBL torque

τ2 = M̂22(q)v2 + D̂2(q, q̇) + K̂2(q)

where

M̂22(q) = M22(q)− M12(q)M21(q)

M11(q)
,

D̂2(q, q̇) = D2(q, q̇)− M21(q)

M11(q)
D1(q),

K̂2(q) = K2(q)− M21(q)

M11(q)
K1(q)

and where

D1(q, q̇) = C1(q, q̇) +R1(q̇), D2(q, q̇) = C2(q, q̇)

with R1(q̇) = b1q̇1. This results in the dynamics

q̈1 =
−M12(q)v2 −D1(q, q̇)−K1(q)

M11(q)
,

q̈2 = v2

where

v2 = kP

(
qd2 − q2

)
− kD q̇2.
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Following the suggestions as highlighted in [6], the ATAN control is selected for the
desired angular displacement of the most distal pendulum, whereby

qd2 =

(
2α

π

)
arctan q̇1.

With all the control parameters selected, we chose the physical parameters

m1 = 1 kg, m2 = 1 kg,
l1 = 0.5 m, l2 = 1 m,

L1 = 1 m, L2 = 2 m,

I1 = 0.083 kg.m2, I2 = 0.33 kg.m2,

g = 9.81 m.s2

for the Acrobot (as chosen in the undamped case), which will be used to demonstrate
the validity of the gain selection criterion. With these parameters, we demonstrate
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F I G U R E 9 . 3 2 : The RAG (grey shaded area) relating the gain kP to
the passive damping coefficient b1.
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the gain selection criterion for kP that is associated with an unstable response about
the FPEP for the Acrobot when compared to the value of passive damping found
in the most proximal joint, indicated by the grey area in figure 9.32. This area is
formally termed the region of appropriate gains (RAG). The boundaries of the RAG
are demarcated by the minimum gain requirement described by

kp =
β2

α2 + α3
(9.20)

and the damping coefficient dependent gain magnitude

kp =
πb1

(
β1 + β2

)

πb1 (α1 + α2 + 2α3)− 2α
(
β1α2 + β1α3 − β2α1 − β2α3

) .

This gain magnitude converges with the kP magnitude described in eq. (9.20) when
b1 →∞ and tends to +∞when

b1 = b1lim =
2α
(
β1α2 + β1α3 − β2α1 − β2α3

)

π (α1 + α2 + 2α3)
.

We shall now demonstrate the nature of the stability of the FPEP by initialising the
Acrobot with the initial conditions

q1(0) = −101

100
π, q2(0) = 0,

q̇1(0) = 0, q̇2(0) = 0

which places the Acrobot within an approximate neighbourhood of the FPEP, and
by selecting a range of values for both kP and b1 that falls within and outside of the
RAG. The results of these tests are shown in the figures 9.33-9.37. A decreasing level
of mechanical energy of the Acrobot with a gain selection of kP = 3 and damping
coefficient selection b1 = 1.45, which falls outside of the RAG, is demonstrated in
figure 9.33. An increasing level of mechanical energy of the Acrobot with a gain
selection of kP = 5 and a damping coefficient selection of b1 = 1.45, which falls
within the RAG, is demonstrated in figure 9.34. A decreasing level of mechanical
energy of the Acrobot with a gain selection of kP = 15 and damping coefficient
selection b1 = 2.6, which falls outside of the RAG, is demonstrated in figure 9.35.
An increasing level of mechanical energy of the Acrobot with a gain selection of
kP = 12 and a damping coefficient selection of b1 = 2.6, which falls within the
RAG, is demonstrated in figure 9.36. An increasing level of mechanical energy of
the Acrobot with a gain selection of kP = 5 and a damping coefficient selection of
b1 = 11, which falls within the RAG, is demonstrated in figure 9.37. These results
are expected since they comply with the gain selection criterion.
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F I G U R E 9 . 3 3 : The stable response of a passively damped Acrobot
initialised near the FPEP, with kP = 3 (0 < kP < kP2) and b1 = 1.45

(b1 < b1lim ).
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F I G U R E 9 . 3 4 : The unstable response of a passively damped Ac-
robot initialised near the FPEP, with kP = 5 (kP2

< kP < kP3
) and

b1 = 1.45 (b1 < b1lim ).
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F I G U R E 9 . 3 5 : The stable response of a passively damped Acrobot
initialised near the FPEP, with kP = 15 (kP > kP3) and b1 = 2.6

(b1 > b1lim ).
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F I G U R E 9 . 3 7 : The unstable response of a passively damped Ac-
robot initialised near the FPEP, with kP = 5 (kP2 < kP < kP3) and

b1 = 11 (b1 >> b1lim ).

We now demonstrate that the swing-up control of the passively damped Acrobot
is possible through the choice of a passive damping coefficient b1 and gain kP that
falls within the RAG. We selected the gains

kD = 0, kP = 19.58

desired swing angle

α =
π

2

and damping coefficient

b1 = 2.4

with the initial conditions remaining the same as before. With these selections, we
simulated the swing-up control of a passively damped Acrobot. The results of this
simulation are demonstrated in the figures 9.38-9.41.
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F I G U R E 9 . 3 8 : The angular displacement of the most proximal
pendulum (q1) of the passively damped Acrobot during ATAN swing-

up control.

0 10 20 30 40 50 60 70 80 90

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

q
2
(r
ad

)

F I G U R E 9 . 3 9 : The angular displacement of the most distal pendu-
lum (q2) of the passively damped Acrobot during ATAN swing-up

control.
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F I G U R E 9 . 4 0 : The torque used to produced swing-up control on the
passively damped Acrobot using TCPFL and the ATAN controller.
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F I G U R E 9 . 4 1 : The difference between the mechanical energy of the
passively damped Acrobot and Er during swing-up control using

TCPFL and the ATAN controller (beginning at 60 seconds).
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The angular displacement of the proximal pendulum of the passively damped Ac-
robot that occurred during the swing-up control simulation is demonstrated in
figure 9.38. The displacement of the proximal pendulum away from q1 = 0 in-
creased exponentially throughout the experiment, falling within the region of the
UEP during the final swing-cycle which ended approximately 92 seconds into the
simulation. The swing-up controller was not switched to an LQR controller during
this simulation since the general LQR control law does not perform satisfactorily
when passive damping is integrated into the system. A more robust regulator is
required in this instance, but could not be applied to this system due to the stringent
time constraints of the project. The angular displacement of the distal pendulum
of the passively damped Acrobot that occurred during the swing-up control sim-
ulation is demonstrated in figure 9.39. The displacement of the distal pendulum
away from q2 = 0 increased exponentially throughout the simulation, falling within
an approximate neighbourhood of the UEP after 92 seconds. The displacement
did not plateau at q2 = 0 after reaching this approximate neighbourhood since a
regulator was not implemented. The torque that was exerted by the actuator on the
passively damped Acrobot during the simulated swing-up control is demonstrated
in figure 9.40. The magnitude of the torque increased exponentially throughout the
experiment in response to the exponentially increasing angular displacements and
angular velocities. The oscillating torque produced the unstable response seen in the
angular displacements since the actuator introduced energy into the system with ev-
ery swing-cycle. The mechanical energy of the passively damped Acrobot that was
recorded during the swing-up control simulation is demonstrated in figure 9.41. The
mechanical energy of the system increased exponentially throughout the experiment,
with increments in the energy occurring with every swing cycle. The mechanical
energy oscillated with every cycle, where the energy would initially reach a peak
before rapidly dropping into a trough. The largest peak evidently occurred in the
last swing-cycle before the energy fell within an approximate neighbourhood of
Er. The author believes that the spikes are a result of overexcitation by the actuator
(which is rapidly corrected), but this assumption has not been confirmed.

We will now demonstrate that the gain selection criterion may be used to perform sat-
isfactory swing-up control of higher-order passively damped TC-ROPAn−1 robots,
specifically the passively damped PAA robot in this case.

The Passively Damped PAA Robot

The PAA robot is modelled as the TC-ROPA2 robot through the implementation of
the FBL torques

τ2 = M̂22(q)v2 + M̂23(q)v3 + D̂2(q, q̇) + K̂2(q),

τ3 = M̂32(q)v2 + M̂33(q)v3 + D̂3(q, q̇) + K̂3(q)
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where

M̂22(q) = M22(q)− M12(q)M21(q)

M11(q)
, M̂23(q) = M23(q)− M13(q)M21(q)

M11(q)
,

M̂32(q) = M32(q)− M12(q)M31(q)

M11(q)
, M̂33(q) = M33(q)− M13(q)M31(q)

M11(q)
,

D̂2(q, q̇) = D2(q, q̇)− M21(q)

M11(q)
D1(q, q̇), D̂3(q, q̇) = D3(q, q̇)− M31(q)

M11(q)
D1(q, q̇),

K̂2(q) = K2(q)− M21(q)

M11(q)
K1(q), K̂3(q) = K3(q)− M31(q)

M11(q)
K1(q)

with

D1(q, q̇) = C1(q, q̇) +R1(q̇), D2(q, q̇) = C2(q, q̇) D3(q, q̇), = C3(q, q̇)

and R1(q̇) = b1q̇1. The application of these torques results in

q̈1 =
−M12(q)v2 −M13(q)v3 −D1(q, q̇)−K1(q)

M11(q)
,

q̈2 = v2,

q̈3 = −kD3 q̇3 − kP3q3

where

kD3 = 2ωn3 , kP3 = ωn3
2

and

v2 = kP

(
qd2 − q2

)
− kD q̇2.

Additionally, we selected

qd2 =

(
2α

π

)
arctan q̇1.

The swing-up control of the TC-ROPA2 robot is performed using the parameters

kD = 0, kP = 24.6, α =
π

2
, b1 = 2.4

as suggested by the gain selection criterion. The initial conditions

q1(0) = −101

100
π, q2(0) = 0, q3(0) = 0,

q̇1(0) = 0, q̇2(0) = 0, q̇3(0) = 0
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were selected for this experiment along with the system parameters

m1 = 1 kg, m2 = 1 kg, m3 = 0.5 kg,
l1 = 0.5 m, l2 = 0.5 m, l3 = 0.5 m,

L1 = 1 m, L2 = 1 m, L3 = 1 m,

I1 = 0.083 kg.m2, I2 = 0.165 kg.m2, I3 = 0.165 kg.m2,

g = 9.81 m.s2

which adhere to the constraint shown in eq. (9.3). The results of the simulated
swing-up control of the passively damped PAA robot are demonstrated in figures
9.42-9.47. The angular displacement of the most proximal pendulum of the passively
damped TC-ROPA2 robot that occurred during the swing-up control simulation is
demonstrated in figure 9.42. The angular displacement of the proximal pendulum
about q1 = 0 increased exponentially throughout the simulation until it entered
into a limit cycle approximately 56 seconds into the simulation (oscillating in the
approximate range −4.75 < q1 < 0). Ordinarily, the pendulum would eventually
overshoot the objective since the control torque would continue to inject energy
into the system. In this case, the energy that was introduced into the system by
the swing-up controller was dissipated by the viscous damping friction present at
the most proximal joint when the highest possible angular velocity was achieved,
thus allowing the proximal pendulum to enter into a limit cycle. The angular dis-
placement of the second pendulum of the passively damped TC-ROPA2 robot that
occurred during the swing-up control simulation is demonstrated in figure 9.43. The
angular displacement of the second pendulum about q2 = 0 increased exponentially
until it entered into a limit cycle (approximately 56 seconds into the simulation),
similar to what is seen with the proximal pendulum. This cycling behaviour is not
seen in the second pendulum when LDM-related swing-up control is applied to
the system, since the controller ensures that q2 → 0 during the steady-state phase
of the swing-up control. A sufficiently robust regulator would need to be applied
to ensure that the system achieves the desired inverted configuration. The angular
displacement of the most distal pendulum of the passively damped TC-ROPA2 robot
that occurred during the swing-up control simulation is demonstrated in figure
9.44. The pendulum was strictly regulated about q3 = 0 as required by the TCPFL
controller, deviating off the objective by a maximum 4.1× 10−12 radians, which is
sufficiently small.

The phase portrait of the most proximal pendulum of the passively damped TC-
ROPA2 robot that occurred during the simulated swing-up control is demonstrated
in figure 9.45. The boundaries of the limit cycle are not as symmetrical and uni-
form as what is seen in the undamped PAA robot during LDM-related swing-up
control (figure 8.29), but the behaviour of the trajectory of the proximal pendulum
was consistent throughout the experiment, with a slight deviation in the trajectory
occurring with the very first swing-up in the limit cycle. The non-uniformity in
the shape of the limit cycle is believed to be caused by the behaviour of the second
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pendulum, which enters its own limit cycle. The torque produced by the actuator
found between the second and most proximal joint during the swing-up control
simulation is demonstrated in figure 9.46. The torque produced by the swing-up
controller increased exponentially throughout the experiment in response to the
exponentially increasing displacements and velocities of the most proximal and
second pendulums. The torque then switched rapidly between the approximate
range−40 ≤ τ2 (N.m) < 50 as the system entered the limit cycle. This control torque
profile would not be recommended in practical application since the rapid switching
would place tremendous stress on the actuator. This can be solved through the in-
troduction of a robust regulator as the system enters the limit cycle. The mechanical
energy of the passively damped TC-ROPA2 robot that occurred during the swing-up
control simulation is demonstrated in figure 9.47. The mechanical energy increased
exponentially throughout the experiment until the system reached the limit cycle.
The mechanical energy would spike and dip over a large range (described approxi-
mately by −25 < E (J) < 11) with each swing-cycle in the limit cycle. The system
settled at the approximate magnitude Er between each of these peaks and troughs.
These spikes and dips are believed to be associated with the energy that is added
to and dissipated from the system by the actuator (which produces large impulse
torques during the transitions between peak and trough energy states).
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F I G U R E 9 . 4 2 : The angular displacement of the most proximal
pendulum (q1) of the passively damped PAA robot during TCPFL-

related swing-up control.
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F I G U R E 9 . 4 3 : The angular displacement of the second pendulum
(q2) of the passively damped PAA robot during TCPFL-related swing-

up control.
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F I G U R E 9 . 4 4 : The angular displacement of the most distal pendu-
lum (q3) of the passively damped PAA robot during TCPFL-related

swing-up control.
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F I G U R E 9 . 4 5 : Phase plot of the most proximal pendulum of the
passively damped PAA robot during TCPFL-related swing-up con-

trol.
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F I G U R E 9 . 4 6 : The torque used to produced swing-up control on the
passively damped PAA robot using TCPFL and the ATAN controller.
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F I G U R E 9 . 4 7 : The mechanical energy of the passively damped
PAA robot during swing-up control using TCPFL and the ATAN

controller.

9.4.4 Discussion

We have demonstrated that the gain selection criterion is an important and relevant
set of prerequisite conditions that will prevent undesirable stable responses by the
underactuated robotic system when initiated approximately near to the FPEP. This
set of conditions is not restricted to application on the Acrobot alone, since the
implementation of the TCPFL technique allows for the reduced-order modelling of
higher-order system (resulting in the TC-ROPAn−1 robot). Despite the fact that we
have been able to provide examples of how the implementation of ATAN swing-up
control can overcome the limitation of Lyapunov-related control highlighted by the
matched damping condition, there are a number of limitations that must be considered:

(i) This set of conditions is only applicable to the case of the viscously damped
PAn−1 robot. The effects of other forms of damping (including Coulomb and
the Stribeck effect) are not considered, and will affect the performance of the
system significantly if these friction models are integrated.

(ii) The control does not track the UEP. Instead, the feedback gains need to be
perfectly tuned so that the system approaches an approximate neighbourhood
of the UEP, where it can then be regulated about the UEP.
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(iii) Traditional LQR controllers have a significantly smaller domain of operation
when viscous damping is integrated into the PAn−1 robot. More robust regula-
tors are required to regulate the system about the UEP in the event that the
gains cannot be perfectly tuned.

(iv) The fulfilment of the gain selection criterion will not guarantee satisfactory
swing-up control. It only guarantees that the system will move away from
the FPEP when the system is found sufficiently close to it. The trajectory may
move towards the UEP subsequent to this, but it may also tend towards an
orbit that results from the merging of two unstable manifold, one originating
from the FPEP and the other from the UEP.

(v) It is apparent that the mass and length related proportions of the pendulums
found in the system may affect the performance of the swing-up control, since
the most proximal pendulum remains unactuated and relies on the transfer
of energy from the distal set of pendulums. In the examples provided in this
dissertation, the lengths and masses of each pendulum are relatively similar
to one another. There are instances where, however, the proportions of the
pendulum mass and lengths won’t be so well aligned. For instance, if the most
proximal pendulum is much longer and heavier than the combined lengths
and masses of the distal set of pendulums, it will be difficult to perform
full swing-up control, despite having a locally unstable FPEP, since a larger
amount of energy will be required to deflect the most proximal pendulum as
compared to the distal pendulums. Nothing can be done in this instance, but
if the opposite were to occur (where the distal set of pendulums have a larger
mass and length proportion as compared to the most proximal pendulum)
this scenario can be remedied by relocating the swing-up control input further
down the system (instead of allocating v2 as the swing-up controller and vi
where 2 < i ≤ n as the linearising controllers, one could instead choose v2 as
a linearising controller and vj as the swing-up controller, where j represents
the index of any pendulum found distal to the second pendulum). Such
disproportionate systems may be rare to encounter, but this phenomenon
must be considered. It is also important to note that the system parameters
are also subject to the constraint highlighted in eq. (9.3). Failure to satisfy this
constraint will result in the presence of a singularity in the system dynamics.

We shall now consider the circumnavigation of the limitation highlighted in the
matched damping condition using NCPFL.

9.5 Convergence Algorithm

As with the TCPFL technique, the implementation of the NCPFL technique on the
PAn−1 results in the linearisation of a portion of the system’s dynamics, resulting in
the NC-ROPAn−1 robot. This robot is formally defined below:
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Definition 9.5. The NC-ROPAn−1 robot is a reduced-order representation of the
PAn−1 robot that results from the linearisation of the n−1 most proximal pendulums
of the system, where the dynamics of the ith pendulum (where 1 < i < n − 1) is
regulated about qi = 0. The n − 1 most proximal pendulums thus collectively
represent a single pendulum described by linear dynamics. The system closely
approximates the behaviour of a Noncollocated Partial Feedback Linearised Acrobot,
provided that the selected response frequency of the actuators involved in non-
oscillatory regulation is sufficiently large and that qi(0) = 0.

The nature of the setup obviates the need for multiple swing-up cycles since
the most proximal pendulum is directly controllable, and thus can be actuated by
a control law that tracks the upright configuration. Successful swing-up control,
however, requires that all the system’s pendulums be configured in the inverted
position. This requirement exists despite the fact that the nth pendulum is unable
to track the UEP. How can we, therefore, achieve swing-up control? We offer the
following proposition, as first suggested by Spong in [6]:

Proposition 9.2. Noncollocated-related Swing-up control of the NC-ROPAn−1

robot: Swing-up control of the NC-ROPAn−1 robot can be successfully executed if
the system’s configuration is perfectly tuned.

In other words, if the n− 1 most proximal pendulums are collectively swung-
up using a non-oscillatory linear feedback controller described by the actuator’s
response frequency ωn, then the system will naturally tend toward the UEP if
a perfectly tuned set of initial conditions are chosen for both the proximal n − 1
pendulums and the nth pendulum. This has been suggested in [6] but the application
of this solution is not provided. With this possible solution in mind, there are a few
concerns that must be considered:

(i) If the linear state feedback control law for the most proximal n− 1 pendulums
is swung-up with a response frequency ωn and an initial angular condition
q1(0), what angular position qn(0) must the nth pendulum be initialised with
to allow the satisfactory swing-up control of the system?

(ii) What is the minimum response frequency ωn that must be used to produce
satisfactory swing-up control if the n− 1 proximal pendulums are collectively
initialised at any angular position q1(0) within the range q1 ∈ (−π, π].

(iii) Can this form of swing-up control be used as a work-around for the limitation
of the Lyapunov-related swing-up control of passively damped PAn−1 robots
highlighted in the matched damping condition?

Swing-up control in this case will be deemed satisfactory if, once the most appropri-
ate end-states are achieved, the system can be regulated successfully with the use of
a conventional LQR controller. The LQR controller is designed using MATLAB, as
seen in [34].
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At this point, we believe that there is no analytical method that can be used to
address these concerns. Instead, we have developed an algorithm (referred to as the
convergence algorithm) that graphically generates a set of solutions to the highlighted
concerns for a NC-ROPAn−1 robot described by a known set of physical properties
(i.e. known masses, lengths etc.). This algorithm is based on the idea of convergence
demonstrated by the convergent series

lim
n→∞

n∑

i=1

(
1

2

)i
= 1.

This idea of convergence is useful since we will be applying an iterative process to
determine what value of qn(0) will be most appropriate in the NCPFL-related swing-
up control using a particular actuator response frequency ωn. We can manipulate
the above convergent series to produce

2π lim
n→∞

n∑

i=1

(
1

2

)i
= 2π (9.21)

which illustrates this point. Therefore, using an infinite number of iterations will
allow us, in one extreme, to circle around the entire range of qn(0), where qn(0) ∈
(−π, π], halving the difference each time so we approach a certain value of qn(0)
according to whether it overshoots (qn(T ) > 0) or undershoots (qn(T ) < 0) the
inverted position by the end of the simulation at time T . It is evidently impossible
to iterate an infinite number of times to determine the exact value of qn(0), but it is
expected that the system will converge around the appropriate value of qn(0) with a
small associated error if a sufficient number of iterations are used. This is shown by
the series

qnd(0) = π

(
±1

2
± 1

4
± · · · ±

(
1

2

)kmax
)

which either subtracts or adds a difference depending on the performance of the
swing-up, where qnd(0) represents value of qn(0) that results in the best swing-up
performance and kmax represents the maximum number of iterations that is chosen
by the user, referred to from here as the maximum convergence index.

This chapter is less detailed as compared to previous chapters due to this solu-
tion’s experimental nature. Nevertheless, details of the execution of this algorithm
(including results) are provided below, beginning with the representation of the
NCPFL linearised PAn−1 robot as a NC-ROPAn−1 robot.
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9.5.1 Preliminaries

Modelling the PAn−1 Robot as the NC-ROPAn−1 Robot

The NCPFL technique (derived in section 9.3.2) involves the linearisation of the
most proximal pendulums, allowing for the representation of the PAn−1 robot as
an NC-ROPAn−1 robot, as seen in figure 9.2. The implementation of the NCPFL
technique results in the dynamical equations that are shown in eqs. (9.6a)-(9.6d). If
one selects the initial conditions

q2(0) = 0, q̇2(0) = 0,

q3(0) = 0, q̇3(0) = 0,

...
...

qn−1(0) = 0, q̇n−1(0) = 0

then we can ensure that

q2 ≈ 0, q3 ≈ 0, . . . qn−1(0) ≈ 0

∀t. This will be true so long as the response frequency of the linearising actuators
are sufficiently large. The PAn−1 robot can now be represented as a NC-ROPAn−1

robot, described by the dynamics

q̈1 = v1, (9.22a)

M11(q)v1 +M12(q)q̈n +D1(q, q̇) +K1(q) = 0 (9.22b)

where

M11(q) = α1 + α2 + 2α3 cos qn,

M12 = α2 + α3 cos qn,

D1(q2, q̇) = b1q̇1 − α3

(
2q̇1q̇n + q̇2

n

)
sin qn,

K1(q) = −β1 sin q1 − β2 sin (q1 + qn)

and

α1 = I1 +m1l1
2 +mnL1

2
, α2 = In +mnln

2,

α3 = mnlnL1, β1 =
(
m1l1 +mnL1

)
g,

β2 = mnlng,

m1 =

n−1∑

i=1

mi, I1 =

n−1∑

i=1

Ii,

L1 =

n−1∑

i=1

Li, m1l1 =

n−1∑

i=1

mi


li +

i−1∑

j=1

Lj


 ,
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m1l1
2 =

n−1∑

i=1

mi


li +

i−1∑

j=1

Lj




2

.

These parameters are constrained by the condition highlighted in eq. (9.7).

Algorithm Structure

The convergence algorithm is separated into two parts, each having a unique pur-
pose. The first part of the algorithm is responsible for determining, if possible, the
necessary initial configuration of the NC-ROPAn−1 robot that would result in the
end-states most closely approximating the UEP. This is done for q1(0) ∈ (−π, π]
within a user-designated range of actuator response frequencies ωn. The second (and
latter) part of the algorithm is responsible for determining whether the end-states
that were derived in the previous stage of the algorithm are sufficiently close enough
to the UEP to be regulated by a conventional LQR controller. These unique partitions
of the algorithm, referred to as the swing-up and balance test segments, are demon-
strated in the following high-level flow charts respectively, with the application
of the algorithm originally designed for execution in MATLAB. These figures are
followed by an in-depth description of each function in the flow-charts, which are
labelled numerically. It is also important to note that the success of the algorithm is
contingent on the design of two separate Simulink models, one where the torque τ2

is dedicated to swing-up the system, and another model where the torque τ2 is used
to regulate the system about the UEP using a LQR controller. The Simulink models
used in this particular investigation are demonstrated in Appendix E.
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F I G U R E 9 . 4 8 : A high-level flow chart of the swing-up segment of
the Convergence algorithm.
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~

F I G U R E 9 . 4 9 : A high-level flow chart of the balance test segment of
the Convergence algorithm.
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Swing-up segment of convergence algorithm:

1 Declare the necessary input variables, which includes the system parameters
described by the pendulum masses, lengths, damping coefficients etc. (A) ,
the actuator response frequency maximum index (B), the gain multiplication
factor (C), the resolution of q1 within the range (−π, π] (D), the maximum
convergence index (E), the filename prefix where the simulated data and
algorithm segment output is stored (F), and the filename of the appropriate
Simulink model that is simulated in this algorithm (S).

2 Initialise the systems parameters (SP), the actuator response frequency max-
imum index KD, and the gain multiplication factor GM using the relevant
input variables. It is important to note that varying sets of system parameters
will be associated with varying sets of convergence algorithm results.

3 Iterate through each possible actuator response index from 1 to KD. This
will help to provide information on how the NCPFL-related swing-up control
performs with respect to the implemented swing-up gains.

4 Set the actuator response frequency Wn which will be used to create a non-
oscillatory tracking input using Kp and Kd.

5 Initialise the resolution of q1(0) within the range (−π, π] (iD) using the appro-
priate input variable D.

6 Iterate through each possible index between 1 and iD so that each possible
configuration of q1(0) may be populated in an array (with resolution iD).

7 Populate the Initial Theta Array (ITA) with all possible values of q1(0) ∈
(−π, π] using the resolution iD (Theta represents q1 in this instance).

8 Iterate through each possible index between 1 and iD so that each of the
possible configurations of q1(0) within ITA may be tested with respect to the
current actuator response frequency Wn.

9 Initialise the angular difference value δ to π. This variable will be used to
converge the solution of qn(0) towards the most appropriate initial condition
that will produce the best swing-up for the currently chosen Wn and q1(0).
Additionally, initialise the maximum convergence index CI to the variable
E. The value of CI represents the maximum number of iterations that the
algorithm will perform until the system assumes convergence.

10 Iterate through each index between 1 and CI to generate a converged solution
for qn(0).

11 Configure the current setup of the NC-ROPAn−1 robot by initialising the Initial
Theta (IT, which represents q1(0)) to the ith entry of ITA and the Initial Alpha
(represents qn(0)) to zero (always begin with qn(0) = 0 and use the difference
variable δ to change qn(0) in the next simulation according to the performance
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of the swing-up control). Initialise the MODEL variable to the appropriate
filename of the Simulink model that will be simulated (S).

12 Load the Simulink model into MATLAB and simulate (using exception han-
dling if required). This generates the results of the swing-up control using the
currently chosen q1(0), qn(0), and Wn. These results are stored in the form of
the following arrays: Theta Array (TA, which represents the stored values q1

during this particular swing-up control), Alpha Array (AA, representing qn),
Theta Dot Array (TDA, representing the angular velocity of the most proximal
pendulum q̇1), and Alpha Dot Array (ADA, representing q̇n).

13 Check the end-state value of AA (the last value in the array). Has the most
distal pendulum overshot the target of an inverted configuration (is the end-
state of AA > 0) or has it undershot (end-state of AA < 0)?

14 If the most distal pendulum has overshot, then decrease the initial condition
of the most distal pendulum (qn(0)) by the difference variable δ and store it in
the IAA array. Conversely, if the most distal pendulum has undershot, then
increase qn(0) by δ.

15 Half the difference variable δ for the next cycle so that a solution may be
converged upon, as highlighted by the convergence series in eq. (9.21).

16 Populate the output arrays TAO (Theta Array Output), TDAO (Theta Dot
Array Output), Alpha Array Output (AAO), and Alpha Dot Array Output
(ADAO) with the resultant outputs of the simulation, namely TA, TDA, AA,
and ADA respectively.

17 Create a file with the chosen filename prefix F and merge it with the suffix Wn
to give the file a unique identification. Save the file.

18 The outputs TAO, TDAO, AAO, and ADAO are fed into the next segment of
the algorithm, the balance test segment.

Balance test segment of convergence algorithm:

1 Declare the following new input variables: the file name of the appropriate
Simulink model that will be used in this segment of the algorithm (R), the file
name of the file which will ultimately store the results of the LQR results (T),
and the acceptable range away from UEP (ε). Re-declare variables A,B, and
D from the previous segment and retrieve the output variables TAO, AAO,
TDAO, and ADAO.

2 Initialise the system parameters (SP) and the actuator response frequency
maximum index KD to the relevant input variables A and B respectively.

3 Iterate through each possible actuator response index from 1 to KD. We shall,
therefore, test the efficacy of the swing-up control for each possible actuator
frequency up to the maximum actuator frequency, which is related to KD.
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4 Declare a new array name Absolute Alpha Array (AAA) which is the magni-
tude of AAO. This will be used to determine the angle that is closest to zero
and its corresponding index in the array AA.

5 Initialise the resolution of q1(0) within the range (−π, π] (iD) using the appro-
priate input variable D.

6 Iterate through each of the possible indices from 1 to iD for purposes of
populating the Fail array, one of the main outputs of this segment.

7 Initialise the ith element of the Fail array with the Boolean value ’False’. This
array will store the results of the LQR regulatory control (false if the regulation
is successful, and true if it fails).

8 Iterate, once again, through the indices 1 to iD to test the best swing-up solution
of each instance of q1(0) within the kth gain selection to determine whether it
will pass the LQR regulation test.

9 Find the angle within the array AAA that is closest to 0. This represents the
point of the simulation where the second pendulum is closest to the inverted
configuration. Initialise the index of this minimum value to the variable j.

10 Initialise the Initial Theta (IT), Initial Alpha (IA), Initial Theta Dot (ITD), and
the Initial Alpha Dot (IAD) variables to the elements found in the ith row and
the jth column. These variables are used to initialise the conditions for the
model which is simulated in the next step.

11 Initialise the variable MODEL with the file name of the appropriate LQR
model (R). Load the model onto MATLAB and simulate it (using exception
handling if required). The results of this simulation are stored in the arrays
Theta Array (TA), Alpha Array (AA), Theta Dot Array (TDA), and Alpha Dot
Array (ADA).

12 Find the magnitudes of the end states of each of the resultant arrays of the
simulation (TA, AA, TDA, ADA) and store them in the variables Theta End
Array (TEA), Alpha End Array (AEA), Theta Dot End Array (TDEA), and
Alpha Dot End Array (ADEA) respectively.

13 Choose the output matrix variables of this algorithm segment LQR Theta Array
(LQRTA), LQR Alpha Array (LQRAA), LQR Theta Dot Array (LQRTDA), and
LQR Alpha Dot Array to store the results of the simulation (TA, AA, TDA, and
ADA respectively) in their ith rows.

14 Check to see if the end-states fall within a small range of the UEP set by the
variable ε after LQR control simulation.

15 If any of the end-states fall out of this region, then it is apparent that the LQR
control has failed, and thus shows that the actuator response frequency Wn
related to the index k is not large enough to swing-up the system to within
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an acceptable domain of operation for the conventional LQR regulator. If the
end-states do fall within this range, then LQR regulation was successful in this
case. Store the results as a Boolean as the ith entry of the array Fail.

16 Create a file with the chosen filename prefix T and merge it with the suffix k to
give the file a unique identification. Save the file.

17 The outputs LQRAA, LQRTA, LQRADA, LQRTDA, and Fail are regarded as
outputs of this algorithm, which will be used in conjunction with the outputs
of the previous segment to draw up a number of graphical figures.

The results of this convergence algorithm are demonstrated for the Acrobot (NC-
ROPA1 robot) in the section that follows. These results, along with the aforemen-
tioned break-down of the convergence algorithm have been included in a paper that
has been accepted into the Control Conference Africa 2017 proceedings [111]. The
full paper has been included in appendix F.

9.5.2 The Acrobot

Undamped Acrobot

The NCPFL-related swing-up control of the undamped Acrobot is achieved through
the application of the FBL torque

τ2 = M̂21(q)v1 + D̂2(q, q̇) + K̂2(q)

derived in section 9.3.2, where

M̂21(q) = M21(q)− M22(q)M11(q)

M1n(q)
,

D̂2(q, q̇) = D2(q, q̇)− M2n(q)

M1n(q)
D1(q, q̇),

K̂2(q) = K2(q)− M2n(q)

M1n(q)
K1(q)

and

D1(q, q̇) = C1(q, q̇), D2(q, q̇) = C2(q, q̇).

This results in the dynamical equations

q̈1 = v1 = −kD q̇1 − kP q1,

q̈2 =
−M11(q)v1 −D1(q, q̇)−K1(q)

M12(q)
.
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As seen with the application of regulating FBL torques, we chose the non-oscillatory
gains

kD = 2ωn, kP = ωn
2.

The convergence algorithm is executed with the system parameters

m1 = 1 kg, m2 = 1 kg,
l1 = 0.5 m, l2 = 1 m,

L1 = 1 m, L2 = 2 m,

I1 = 0.083 kg.m2, I2 = 0.33 kg.m2,

g = 9.81 m.s2.

which satisfy the condition in eq. (9.7) and have been selected specifically since
swing-up control has been successfully achieved with this model in existing litera-
ture. The algorithm was simulated using an angular resolution of π/128 (for q1(0)),
a maximum convergence index of 25, a maximum actuator response index of 40
and a gain multiplication factor of 1. The simulations were performed using the
Dortmund-Price fixed-time integrator package with a time-step of 0.01 seconds.
Additionally, the gains

k1 = −245.9821, k2 = −98.4906, k3 = −106.2845, k4 = −50.0736

were used for the LQR controller that was implemented in the balance test segment
of the convergence algorithm. The results of the convergence algorithm applied to the
undamped Acrobot are demonstrated in figures 9.50-9.51.

The maximum values of the angular position of the most proximal pendulum (q1(0))
that can be swung-up using NCPFL-related swing-up control described by the actu-
ator response frequency ωn evaluated after the balance test phase of the convergence
algorithm is presented in figure 9.50. It is evident that a larger actuator response
frequency will be required if the most proximal pendulum is initialised further away
from the inverted position. It is also apparent that if an actuator response frequency
of ωn ≥ 18 rad.s−1 is used with this particular Acrobot, the controller will be able to
swing-up the Acrobot from the most extreme position (the pendant position).

The angular initial condition that is required for the most distal pendulum (q2(0))
if successful swing-up control is to be achieved using NCPFL for any particular
initial condition q1(0) is presented in figure 9.51. This is demonstrated for three
selected gains, namely ωn = 5 rad.s−1, ωn = 10 rad.s−1, and ωn = 40 rad.s−1. It
is evident that using an actuator response frequency ωn ≥ 18 rad.s−1 ensures that
swing-up can be achieved with any initial condition q1(0). Gains that exceed this
limit accommodate for the linear relationship between q1(0) and q2(0). The range
of successful initial conditions, however, reduces as ωn drops below this limit. In



Chapter 9. Work-Around: The Swing-up Control of the Damped PAn−1

Robot using Partial Feedback Linearisation
233

0 5 10 15 20 25 30 35 40

ωn (rad.s−1)

-3

-2

-1

0

1

2

3

q
1
(0
)
(r
a
d
)

F I G U R E 9 . 5 0 : The minimum gain threshold required to swing-up
an undamped Acrobot using NCPFL evaluated after the balance test

phase of the convergence algorithm.

other words, the values of q1(0) that are found near the extremities (the pendant
position) are not suitable for swing-up with a gain that is not sufficiently large since
the Acrobot fails the balance test. This problem becomes more evident as ωn drops
well below the limit ωnlim

= 18. Additionally, the relationship between the initial
conditions becomes non-linear, with the tails of the curves shown in figure 9.51
demonstrating a sharper gradient as compared to what is seen in the centre of the
figure. We can thus conclude that it is possible to experimentally generate a set of
necessary conditions with which to perform NCPFL-related swing-up control on
the undamped Acrobot, but this has only been proven in one particular case.

We now demonstrate the NCPFL-related swing-up control on the undamped Ac-
robot using the information derived with the convergence algorithm. The initial
conditions

q1(0) = −2.3071, q2(0) = 5.8562,

q̇1(0) = 0, q̇2(0) = 0

and actuator response frequency

ωn = 10 rad.s−1

were therefore selected. The results of this NCPFL-related swing-up control of the
undamped Acrobot are shown in figures 9.52-9.54.
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F I G U R E 9 . 5 1 : The relationship between the angular initial condi-
tions that result in successful swing-up of the undamped Acrobot
using the actuator response frequency ωn = 5 rad.s−1 (red), ωn = 10

rad.s−1 (blue), and ωn = 40 rad.s−1 (black).

The angular displacement of the proximal pendulum of the undamped Acrobot
during the NCPFL-related swing-up control simulation is demonstrated in figure
9.52. The proximal pendulum tended exponentially towards qd1 = 0 without the
need for multiple swing-cycles as seen in the TCPFL case. The angular displace-
ment of the distal pendulum of the undamped Acrobot during the NCPFL-related
swing-up control simulation is demonstrated in figure 9.53. This pendulum was not
controlled during the simulation, but was initialised at the specific initial condition
indicated by the convergence algorithm. The natural dynamics of the system caused
this pendulum to tend exponentially towards qd2 = 0. The torque produced by
the actuator on the undamped Acrobot during NCPFL-related swing-up control is
demonstrated in figure 9.54. The torque transitioned once between negative and
positive magnitudes to counteract the coupled dynamics introduced by the distal
pendulum on the proximal pendulum during the swing-cycle. The torque subse-
quently tended towards zero as the pendulums approached their desired objectives.
These results demonstrate that the convergence algorithm does indeed provide crucial
information about system initialisation characteristics that are required to ensure
the satisfactory NCPFL-related swing-up control of the Acrobot.

We shall now test the robustness of this algorithm by integrating the Acrobot with
the viscous damping model, beginning first with the active viscous damping model.
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F I G U R E 9 . 5 2 : The angular position of the most proximal pendu-
lum (q1) of the undamped Acrobot during NCPFL-related swing-up

control.
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F I G U R E 9 . 5 3 : The angular position of the most distal pendulum
(q2) of the undamped Acrobot during NCPFL-related swing-up con-

trol.
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F I G U R E 9 . 5 4 : The torque required to perform swing-up control on
an undamped Acrobot using NCPFL-related swing-up control.

Actively Damped Acrobot

As seen with the undamped case, the actively damped Acrobot is linearised with
the NCPFL torque

τ2 = M̂21v1 + D̂2(q, q̇) + K̂2(q)

where

M̂21(q) = M21(q)− M22(q)M11(q)

M1n(q)
,

D̂2(q, q̇) = D2(q, q̇)− M2n(q)

M1n(q)
D1(q, q̇),

K̂2(q) = K2(q)− M2n(q)

M1n(q)
K1(q)

and

D1(q, q̇) = C1(q, q̇).

The difference between the undamped and the actively damped case is seen in the
definition of

D2(q, q̇) = C2(q, q̇) +R2(q̇)
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where R2(q̇) = b2q̇2. Nevertheless, the application of this torque results in the
dynamics

q̈1 = v1 = −kD q̇1 − kP q1,

q̈2 =
−M11(q)v1 −D1(q, q̇)−K1(q)

M1n(q)

which is identical to that of the undamped case. We can thus conclude that the
addition of active damping to the Acrobot has no effect on the results of the con-
vergence algorithm (when evaluated after the swing-up segment of the convergence
algorithm) since the active damping is effectively negated by the swing-up torque τ2.
This results in the superposition of the swing-up torque and the damping-negation
torque, but ultimately the swing-up segment of the convergence algorithm will generate
identical gain selection thresholds and angular initial condition relationships seen
in the undamped case. The integration of viscous damping does, however, affect
the results produced by the balance test segment of the algorithm. These effects will
be discussed in the section that follows.

The NCPFL-related swing-up control torque that is required to swing-up an un-
damped Acrobot (blue curve) and the actively damped Acrobot (red curve) is
demonstrated in figure 9.55 for comparative purposes. This simulation was per-
formed with the same gain, physical parameters and initial conditions seen in the
undamped case, with b2 = 10.
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F I G U R E 9 . 5 5 : A comparison between the undamped swing-up
torque (blue) and actively damped swing-up torque (red) required to

perform NCPFL-related swing-up control on the Acrobot.
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The discrepancy between the two curves represents the torque that was produced
by the actuator to negate the viscous damping torques that were found at the active
joint. Despite the presence of this discrepancy, the actively damped Acrobot behaved
identically to the undamped Acrobot (figures 9.52 and 9.53) as predicted through the
analytical analysis presented before these results. The convergence algorithm can
thus be used to perform NCPFL-related swing-up control on the actively damped
Acrobot.

We shall now investigate the performance of the convergence algorithm in the instance
where NCPFL-related swing-up control is applied on a passively damped Acrobot.
This experiment will demonstrate whether NCPFL-related swing-up control of a
passively damped underactuated system is possible (and thus demonstrates the
appropriateness of NCPFL-related swing-up control when applied as a work-around
to the limitation highlighted by the matched damping condition).

Passively Damped Acrobot

The NCPFL torque,

τ2 = M̂21v1 + D̂2(q, q̇) + K̂2(q)

which has been used in the undamped and actively damped cases, is used to linearise
the passively damped Acrobot, where

M̂21(q) = M21(q)− M22(q)M11(q)

M1n(q)
,

D̂2(q, q̇) = D2(q, q̇)− M2n(q)

M1n(q)
D1(q, q̇),

K̂2(q) = K2(q)− M2n(q)

M1n(q)
K1(q)

and

D2(q, q̇) = C2(q, q̇).

The definition of D1(q, q̇) differs in this case, whereby

D1(q, q̇) = C1(q, q̇) +R1(q̇)

and where R1(q̇) = b1q̇1. The application of this torque results in the dynamics

q̈1 = v1 = −kD q̇1 − kP q1,

q̈2 =
−M11(q)v1 −D1(q, q̇)−K1(q)

M1n(q)
.
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The selection of the gains

kD = 2ωn, kP = ωn
2

results in the non-oscillatory tracking of the inverted position for q1. We shall
now demonstrate the results of the application of the convergence algorithm on the
passively undamped Acrobot that is described by the physical parameters

m1 = 1 kg, m2 = 1 kg,
l1 = 0.5 m, l2 = 1 m,

L1 = 1 m, L2 = 2 m,

I1 = 0.083 kg.m2, I2 = 0.33 kg.m2,

g = 9.81 m.s2, b1 = 2.4

as seen in the undamped case (aside from the damping coefficient), and an angular
resolution of π/128 (for q1(0)), a maximum convergence index of 25, a maximum
actuator response index of 40, and a gain multiplication factor of 10. The simulations
were performed using the Dormand-Prince fixed-time integrator package with a
time-step of 0.01 seconds. Additionally, the gains

k1 = 80328, k2 = 32131, k3 = 31332, k4 = 15668

were used for the LQR controller that was implemented in the balance test segment
of the convergence algorithm. This results in the minimum gain threshold and rela-
tionships between the appropriate initial conditions demonstrated in figures 9.56
and 9.57.

The minimum gain threshold results that were produced upon evaluation of the
convergence algorithm for the passively damped Acrobot after the swing-up segment
(black) and after the balance test segment (red) is presented in figure 9.56. The end-
states produced by the swing-up segment of the convergence algorithm are deemed,
in this case, to be sufficiently close to the UEP if they fall within an absolute range
ε = 1× 10−4 of the respective UEP state, where

|qi(T )− qiUEP | < ε, (9.23a)
|q̇i(T )− q̇iUEP | < ε (9.23b)

and where 1 ≤ i ≤ 2. In this case, it seems that sufficient swing-up control can be
performed for a maximum range −2.3562 ≤ q1(0) ≤ 2.3562 when ωn ≥ 240 rad.s−1.
If, however, we feed the end-states into the balance test segment, we find that the
conventional LQR controller is significantly less capable of balancing the Acrobot as
compared to the undamped case despite the fact that the Acrobot is found within a
significantly small neighbourhood of the UEP (guaranteed by the conditions seen
in eqs. (9.23a) and (9.23b)). It is evident, therefore, that the algorithm does in fact
manage to determine the appropriate minimum gain threshold and initial condition
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requirements to swing-up the Acrobot to within an approximate neighbourhood
of the UEP, but a more robust regulating controller must be implemented when
the Acrobot is viscously damped. This phenomenon is also evident in the actively
damped case.

The angular initial condition that is required for the most distal pendulum (q2(0)) if
successful swing-up control is to be achieved using NCPFL for any particular initial
condition q1(0) for the passively damped Acrobot is presented in figure 9.51. Draw-
ing our attention to the results produced by the swing-up segment of the convergence
algorithm demonstrated in figure 9.56, it is apparent that the possible range of angles
for q1(0) shown in figure 9.57 plateaus at a value that is not representative of the
fully-pendant configuration (q1(0) = π), despite the fact that the maximum actuator
response frequency selected in this instance is 10× larger than the magnitude used
in the undamped case. Therefore, regardless of the magnitude of actuator response
frequency, this passively damped Acrobot cannot be swung-up successfully if q1(0)
exceeds±2.3562 radians. The relationship between the appropriate initial conditions
loses its linearity when the magnitude of the actuator response frequency ωn falls
below the limit of ≈ 240 rad.s−1.

Despite the deficiency in regulating control, we are able to demonstrate the swing-up
control of the passively damped Acrobot through the selection of an appropriate
gain and angular initial condition pairing derived using the convergence algorithm,
where

q1(0) = −2.3071, q2(0) = 5.8562,

q̇1(0) = 0, q̇2(0) = 0,

ωn = 10 rad.s−1.

The results of the NCPFL-related swing-up control of the passively damped Acrobot
where b1 = 2.4 is demonstrated in figures 9.58-9.60.

The angular displacement of the proximal pendulum of the passively damped
Acrobot during the NCPFL-related swing-up control simulation is demonstrated
in figure 9.58. The proximal pendulum tended exponentially towards qd1 , which is
expected. A robust regulator is required, however, to keep the pendulum within
the neighbourhood of qd1 . An LQR controller could not be implemented in this
instance since it performed poorly (as demonstrated in figure 9.56). The angular
displacement of the distal pendulum of the passively damped Acrobot during the
NCPFL-related swing-up control simulation is demonstrated in figure 9.59. The
pendulum was exponentially tending towards qd2 , but the response of this pendulum
was slower than that of the proximal pendulum since the damping torque could
not be negated. The torque produced by the actuator on the passively damped
Acrobot during NCPFL-related swing-up control is demonstrated in figure 9.60,
which produced a similar response to what is seen in the undamped case.
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(q1) of the passively damped Acrobot during NCPFL-related swing-

up control.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (s)

1

2

3

4

5

6

q
2
(r
ad

)

F I G U R E 9 . 5 9 : The angular position of the most distal pendulum
(q2) of the passively damped Acrobot during NCPFL-related swing-

up control.



Chapter 9. Work-Around: The Swing-up Control of the Damped PAn−1

Robot using Partial Feedback Linearisation
243

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (s)

-6000

-4000

-2000

0

2000

4000

6000

τ
2
(N

.m
)

F I G U R E 9 . 6 0 : The torque required to perform swing-up control on
a passively damped Acrobot using NCPFL-related swing-up control.

Whilst it is evident from these results that we can circumnavigate the matched
damping condition using NCPFL-related swing-up control on the passively damped
Acrobot, the performance of this controller can be improved with the use of a robust
regulator. It is possible to implement the NCPFL-related swing-up control using
the convergence algorithm on systems with an order n > 2 (such as the PAA robot),
but we could not, unfortunately, produce these results due to the project’s stringent
time constraints. The higher-order system will, however, have to be modelled as
the NC-ROPAn−1 robot. We thus recommend that these simulations be produced in
future work.

9.5.3 Discussion

Despite the fact that we could not generate an analytical solution for this application,
we have demonstrated that the convergence algorithm can be used to facilitate the
NCPFL-related swing-up control of an undamped, actively damped, and passively
damped Acrobot, and thus provides an alternative work-around to the limitation
of Lyapunov-related swing-up control highlighted in the matched damping condition.
There are, however, a number of advantages and disadvantages that are associated
with this form of PFL-related swing-up control:

(i) It is unknown whether the convergence algorithm will be able to demonstrate
satisfactory swing-up control for a system that has been integrated with a
different damping model.
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(ii) Unlike the TCPFL-related swing-up control method, the NCPFL-related swing-
up controller is able to bring the system to the completely inverted configura-
tion without the need of swing-up cycles.

(iii) Whilst the controller does actively track the inverted position of the most
proximal set of collective pendulums, the dynamics of the distal pendulum
are unobservable. This control does not, therefore, track the UEP, a problem
that is common among the PFL-related swing-up control techniques.

(iv) We have demonstrated that full-range swing-up control of all configurations of
the passively-damped Acrobot (where q1(0) ∈ (−π, π]) cannot be guaranteed.

(v) We have not experimentally demonstrated NCPFL-related swing-up control
for systems described by n > 2.

(vi) The performance of the NCPFL-related swing-up control may also be affected
by the disproportionate distribution of the masses and lengths of the pen-
dulums within the pendulum system (a problem that may also affect the
performance of the TCPFL-related swing-up control variant). If one imagines,
for instance, that the distal pendulum is significantly smaller in length and
mass as compared to the collectively represented set of proximal pendulums, it
is apparent that a very large angular deflection of this distal pendulum would
be needed for every incremental angular difference between the proximal
collective set of pendulums and its inverted position to ensure satisfactory
swing-up control. These disproportionate systems may not be commonly
found in the field of underactuated robotics, but this issue must be considered
in such an instance.

9.5.4 Conclusion

In this chapter, we addressed the matched damping condition, which highlights the
inability to practically swing-up up a passively damped PAn−1 robot using LDM-
related swing-up control, through the implementation of PFL as a work-around.
This resulted in the production of two contributions, namely the gain selection cri-
terion (TCPFL) and the convergence algorithm (NCPFL). It is evident that, in both
cases, the control torque used to produce the swing-up control on the passively
damped PAn−1 robot is not subject to the invertibility and singularity problems that
were identified in the matched damping condition. Indeed, using both the gain selection
criterion and the convergence algorithm, we were able to demonstrate the possibility
of achieving swing-up control of passively damped systems using simulated results.
There are, however, a number of advantages and disadvantages that are associated
with each contribution.

Firstly, concerning the implementation of TCPFL, the associated contribution (the
gain selection criterion) is analytical in nature, and is thus true for TC-ROPAn−1 robots
that are defined by any set of parameters. This control does, however, require
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multiple swing-up cycles to achieve the objective since the dynamics of the most
proximal pendulum are unobservable to the actuator. Additionally, the control does
not track the UEP, and thus the gains need to be finely tuned if the system is to reach
a sufficiently close neighbourhood of the UEP that will allow for appropriate regula-
tion (using an LQR controller, for instance). The gain selection criterion guarantees
that the system will have an unstable response if it is initialised within a sufficiently
close neighbourhood of the FPEP.

Regarding NCPFL-related swing-up control, the swing-up control occurs with-
out the need for multiple swing-up cycles since the most proximal pendulum is
directly controllable. A non-oscillatory tracking control law can thus be designed
for this pendulum, which results in the active tracking of its inverted state. The
dynamics of the most distal pendulum remains unobserved, however, and thus
the minimum gain and appropriate angular initial condition of the most distal
pendulum are required to ensure satisfactory swing-up control. These parameters
cannot be determined through analytical means, thus leading to the derivation of
the convergence algorithm. As a result, the convergence algorithm must be executed for
every NC-ROPAn−1 robot that has a unique set of system parameters and damping
properties. We were able to experimentally demonstrate simulated results of the
convergence algorithm for the Acrobot, but we could not, unfortunately, demonstrate
NCPFL-related swing-up control on higher-order systems due to time constraints.
We suggest that these results should be demonstrated in future work. The simu-
lated results demonstrated that the conventional LQR controller is not a satisfactory
candidate regulator when attempting to balance the viscously damped system. The
balance test segment of the convergence algorithm must thus implement a more robust
regulator in future work. Additionally, we could not demonstrate an example in this
research where a passively damped system could be swung-up using NCPFL from
within an approximate neighbourhood of the FPEP. It is difficult to conclude whether
such a range of swing-up control using NCPFL is possible due to the experimental
nature of this contribution.

With these findings in mind, we can conclude that the implementation of PFL-related
swing-up control can be used as a work-around to the limitation of LDM-related
swing-up control highlighted in the matched damping condition, but this is contin-
gent on the highlighted advantages and disadvantages of each variation of the PFL
technique and their associated contributions.
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“There is no real ending. It’s just the place where you stop the story.”

— Frank Herbert

Chapter 10

Conclusion and Recommendations

10.1 Conclusion

The objective of this research was to produce significant contributions to the field
of mechatronics and underactuated robotics. To achieve this, we first constructed
a control problem that is relevant to the field through the identification of an ap-
propriate model (PAn−1 robot), control objective (swing-up control), and control
technique (LDM) using existing literature. The results generated from the executed
control problem were compared to the results found in existing literature. Upon
the confirmation of the successful replication of these results, the robustness of the
control technique was tested through the alteration of the model (integration of
viscous damping). The contributions of this research are presented as work-arounds
to the identified limitations in the control.

The implementation of swing-up control using LDM requires a substantial amount
of mathematical rigour. Despite this, there is a substantial amount of literature that
exists pertaining to the application of Lyapunov-related swing-up control, which jus-
tifies its selection for this project. This existing literature formed a solid foundation
of reference for this research. Additionally, the control torque that results from this
technique is designed specifically to track the UEP, thus requiring little intervention
to achieve swing-up control. We were able to replicate the analytical and practical
results seen in the work of Xin and Liu, which pertained to the LDM-related swing-
up control of the undamped PAn−1 robot. We found that the integration of viscous
damping into the actuated joints had no effect on the control since the actuator found
on the same joint would simply negate the damping torques. The actively damped
PAn−1 robot thus produced the same swing-up behaviour as the undamped PAn−1

robot. The addition of viscous damping on the passive joint, however, lead to the
derivation of the control law that could not be solved due the invertibility problem
(for systems that had n > 2). To address this issue, we attempted to reduce the order
of the PAn−1 robot so that it may be approximately modelled as an Acrobot using
the MCPFL technique (the resultant model is known as the MC-ROPAn−1 robot).
However, it became evident that the swing-up control torque for the MC-ROPAn−1

robot (including the Acrobot, or MC-ROPA2 robot) was subject to a conditional
singularity (singularity problem). It became evident, therefore, that it is not possible



Chapter 10. Conclusion and Recommendations 247

to derive a practical control law that will achieve the swing-up control objective
when LDM-related swing-up control is applied to passively damped PAn−1 robots,
regardless of the order of the PAn−1 robot. This is described as the matched damping
condition.

There are a few ways to circumnavigate this problem. One such solution involves
the derivation of another Lyapunov controller that is not subject to the invertibility
and singularity problems. Another possible solution involves the application of
Artstein’s law, which suggests that the implementation of multiple LDM-related
swing-up controllers which are activated when the control trajectory entered a par-
ticular operational domain, thus allowing for smooth stabilisability of the system
trajectory. These solutions, while perfectly valid, are not practical since there is no
truly formalised method of developing an appropriate Lyapunov function for any
specific scenario. It is more practical, in this case, to implement another control
technique that is fundamentally different to LDM in a theoretical nature. We thus
chose to implement Partial Feedback Linearisation (PFL) related swing-up control
that was originally demonstrated by Spong. The application of this technique is less
mathematically rigorous, and the resultant control laws are derived not to track to
the UEP, but to instead increase the system’s mechanical energy until the system
coincidently ends up sufficiently near the UEP (in the case of TCPFL) or to swing the
proximal pendulum to the inverted position and assume that the most distal pendu-
lums would follow suit (in the case of Noncollocated PFL, or NCPFL). We expected
that the lack of rigidity in the control torque derivation would allow the system to
be more robust to changes in system parameters, such as the introduction of passive
damping, which was proven true since the derived torques for both variants of the
PFL control law was not subject to the invertibility or singularity problems that are
highlighted by the matched damping condition. We thus derived and presented two
contributions that arose from the applications of the TCPFL and NCPFL techniques
on the TC-ROPAn−1 and NC-ROPAn−1 robots respectively, namely the gain selection
criterion and the convergence algorithm.

The gain selection criterion describes a set of analytically derived conditions that,
when satisfied, guarantees the unstable behaviour of the TC-ROPAn−1 robot when it
is initialised within an approximate neighbourhood of the FPEP. The conditions refer
to the selection of appropriate magnitudes for the swing-up gains kP and kD. This
criterion acts as a necessary condition for swing-up control when the TC-ROPAn−1

robot is initialised near the FPEP. Two separate cases of the Gain Selection criterion
are derived for the undamped and passively damped TC-ROPAn−1 robot. The
convergence algorithm is an experimental solution that, once executed, determines
the minimum actuator response frequency ωn and the appropriate angular initial
condition of the most distal pendulum (q2(0)) that is required to perform NCPFL-
related swing-up control on an undamped, actively damped, or passively damped
NC-ROPAn−1 robot that is initialised with a known set of system parameters, damp-
ing coefficients, and proximal pendulum initial angular condition (q1(0)). Simulated
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results of the ROPA2 robot (Acrobot) and the TC-ROPA3 robot (Traditional collo-
cated Reduced-order PAA robot) demonstrate that it is indeed possible to swing-up
a passively damped model using PFL-related swing-up control methods, but each
of the variants (and the related contributions) are associated with a number of ad-
vantages and disadvantages. Firstly, the gain selection criterion (associated with the
TCPFL technique) is an analytical solution, and thus the conditions described by this
criterion holds true for TC-ROPAn−1 robots with any unique set of system parame-
ters and passive damping coefficient. Despite this, the nature of this form of control
requires the steady introduction of energy into the system. This is done through
multiple swing-up cycles, which may be disadvantageous if an instantaneous swing-
up is desired. The result of these multiple swing-up cycles will produce a desirable
swing-up if and only if the gains are finely-tuned. Finding these appropriate gains
may be laborious, but the fine-tuning procedure is necessary to prevent undershoot-
ing or overshooting of the UEP. The application of the NCPFL-related swing-up
control technique accommodates the instantaneous swing-up of the system since
the dynamics of the proximal pendulum are linearised and directly controllable.
The controller cannot, however, track the inverted position for the distal pendulum.
Instead, the controller relies on the tuned positioning of the distal pendulum that
will, once influenced by the dynamics of the proximal pendulum, follow a trajectory
that will coincidently lead it to a neighbourhood that is sufficiently close to the UEP.
The minimum gain and the initial angular condition of the distal pendulum (qn(0))
cannot, to the knowledge of the author, be determined analytically, thus justifying
the introduction of the convergence algorithm. The algorithm, since it is experimental
in nature, needs to be executed for each uniquely configured NC-ROPAn−1 robot.
Simulation results of the convergence algorithm could only be provided for the Ac-
robot due to the project’s stringent time constraints. These results demonstrated that
it is indeed possible to determine minimum gain thresholds and appropriate initial
conditions for a range of actuator response frequencies, but the integration of viscous
damping into the system model results in the significant reduction of the region of
operation of the conventional LQR controller, which ultimately compromises the
performance of the balance test segment of the algorithm. Additionally, we could not
show that NCPFL-related swing-up control could be performed for the full range
q1(0) ∈ (−π, π].

In conclusion, the execution of the aforementioned research methodology accommo-
dated the discovery of a key limitation in the implementation of LDM that prevents
the swing-up control of passively damped underactuated robotic systems from be-
coming practically realisable. We have, however, demonstrated that this limitation
can be overcome through the implementation of PFL-related swing-up control (as
shown with the simulated results of the Acrobot and the PAA robot). The success
of this swing-up control is, however, contingent on the satisfactory application of
the gain selection criterion or the convergence algorithm. Additionally, each variant of
swing-up control is associated with a number of advantages and disadvantages,
which must be considered before a control technique is selected.



Chapter 10. Conclusion and Recommendations 249

10.2 Recommendations

The results of the gain selection criterion demonstrates that the selection of a larger kP
value will increase the rate at which the system swings-up. It is believed, therefore,
that the criterion can be optimised in terms of rate of swing-up, whereby the RAG
can be dissected into areas which provide varying swing-up responses. The strin-
gent time constraints of this project prevented the simulation of the NCPFL-related
swing-up control of the NC-ROPAn−1 robot with n > 2 using the convergence algo-
rithm. These results should be provided in future work to supplement the results
that have included in this dissertation. Additionally, a regulator that is better suited
to the balancing of viscously damped systems should be integrated into the balance
test segment of the convergence algorithm to improve its performance. Furthermore,
the performance of the convergence algorithm could be improved through the integra-
tion of existing algorithms, such as the Newton method.

The contributions provided in this research project can be extended on through
the integration of more complex friction models that will more closely approximate
the frictional effects that are observed in real-world rotational mechanical systems,
such as Coulomb damping, the Stribeck effect and the absolute damping observed
in [104]. Additionally, focussing on the development of economical solutions, it may
be beneficial to investigate the ability to replace certain regulating actuators in an
underactuated system with torsional springs. The feasibility of this application can
first be tested on a planar system that acts perpendicularly to the field of gravity.
The effects of viscous damping and other frictional forces can be added in once this
concept is proven. The project can then be expanded to consider the simulation of
the swing-up control technique on 3D models, with the ultimate extension involv-
ing the replication of the presented simulated results upon practical models of the
undamped, actively damped, and passively damped Acrobot and the PAA robot.
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Appendix A

Proofs

A number of mathematical proofs that are used to generate the key analytical results
that are described in the main body of the dissertation are discussed in this appendix.
There are six sections included in this appendix which include proofs related to:

1. The conservation of energy and time-translational symmetry.

2. The independence of the mass matrix of a square affine system from qu.

3. The necessary and sufficient gain condition (kD) for swing-up control of the
MC-ROPAn−1 robot.

4. The necessary and sufficient gain condition (kP ) for swing-up control of the
MC-ROPAn−1 robot.

5. The gain selection criterion for the undamped TC-ROPAn−1 robot.

6. The gain selection criterion for the passively damped TC-ROPAn−1 robot.
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A.1 Conservation of Energy and Time-Translational Symme-
try

The time differential of the Lagrangian function can be described as follows with
the implementation of the chain rule, where

dL(q, q̇, t)
dt

=
∂L(q, q̇, t)

∂q
q̇ +

∂L(q, q̇, t)
∂q̇

q̈ +
∂L(q, q̇, t)

∂t
. (A.1)

This expression may seem complicated, but the Euler-Lagrange function can be
manipulated to produce an expression that simplifies the problem. We can thus
show that

d
dt
∂L(q, q̇,t)

∂q̇
− ∂L(q, q̇,t)

∂q
= 0,

∴
d
dt
∂L(q, q̇,t)

∂q̇
=
∂L(q, q̇,t)

∂q
. (A.2)

Substituting eq. (A.2) into eq. (A.1), we find that

dL(q, q̇, t)
dt

=

[
d
dt
∂L(q, q̇,t)

∂q̇
q̇ +

∂L(q, q̇, t)
∂q̇

q̈

]
+
∂L(q, q̇, t)

∂t
. (A.3)

This substitution clearly demonstrates that the bracketed expressions are the result

of a time-differentiation on a product, i.e.
d
dt

(uv) = u̇v +uv̇. Eq. (A.3) can therefore
be represented as

dL(q, q̇, t)
dt

=
d
dt

(
∂L(q, q̇, t)

∂q̇
q̇

)
+
∂L(q, q̇, t)

∂t
. (A.4)

We know that the angular momentum of the system p is represented by the expres-

sion
∂L(q, q̇, t)

∂q̇
. Therefore

d
dt

(
∂L(q, q̇, t)

∂q̇

)
=

dp

dt
= ṗ. (A.5)

The time-derivative of the Lagrangian equation can, therefore, be represented as

dL(q, q̇, t)
dt

=
d
dt

(
pTq̇

)
+
∂L(q, q̇, t)

∂t
,

=
d
dt

N∑

i=1

(piq̇i) +
∂L(q, q̇, t)

∂t
,

= 2
dT

dt
+
∂L(q, q̇, t)

∂t
. (A.6)
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Integrating eq. (A.6) with respect to time produces

L(q, q̇, t) = 2T +

∫
∂L(q, q̇, t)

∂t
dt−H

whereH represents the constant of this integration process (and is referred to as the
Hamiltonian). We know that

L(q, q̇, t) =

N∑

i=1

(Tn − Pn) = T−P.

Therefore,

H = T + P +

∫
∂L(q, q̇, t)

∂t
dt. (A.7)

We can thus conclude from eq. (A.7) that the mechanical energy of the system,
represented by T + P will only be equal to the Hamiltonian (and thus constant) if
and only if ∫

∂L(q, q̇, t)
∂t

dt = 0.

This can only be true if
∂L(q, q̇, t)

∂t
= 0. (A.8)

The system thus contains time-translational symmetry if and only if the Lagrangian
is not explicitly time dependent. This time dependency is introduced into the system
by an external force or torque (such as damping or actuation).
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A.2 Independence of the Mass matrix of a Square Affine
System from qu

It is shown in section 7.3 and in [5] that

Mθ(θ)jk = αjk cos(θj − θk)

whereby

θj =

j∑

m=1

qm, θk =

k∑

m=1

qm.

Substituting these expressions for θj and θk produces

θj − θk =

j∑

m=1

qm −
k∑

m=1

qm,

∴ θj − θk =
i∑

m=k+1

qm for j > k, and (A.9)

θj − θk = −
k∑

m=j+1

qm for k > j. (A.10)

It is apparent that j 6= 0 and k 6= 0 for all time, the consequence of which excludes
the generalised coordinate q1 from the final summation of generalised coordinates
seen in eqs. (A.9) and (A.10). We can conclude, therefore, that Mθ(θ) cannot depend
on q1. The true mass matrix M(q) is transformed from the Mθ(θ) where

M(q) = ATMθ(θ)A (A.11)

and where the definition of A can be found in section 7.3.1. This transformation
cannot introduce the coordinate q1 into the expression, therefore M(q) is also in-
dependent of q1. The mass matrix is independent of the unactuated generalised
coordinates qu in this case if qu = q1.
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A.3 Necessary and Sufficient Gain Condition (kD) for Swing-
up Control of the MC-ROPAn−1 Robot

Choosing Ma =
(
GTM−1G

)−1
, we define Λ(q, q̇) as

Λ(q, q̇) = (E − Er)In−1 + kDM−1
a

= M−1
a

[
(E − Er)Ma + kDIn

]

= M−1
a v−1

[
λ(E − Er) + kDIn−1

]
v

where v ∈ R(n−1)×(n−1) matrix contains all the eigenvectors of Ma and λ ∈ R(n−1)×(n−1)

is an identity matrix that is populated with the eigenvalues of the matrix Ma such
that

λ =




λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn−1



.

Therefore

|Λ(q, q̇)| =
∣∣∣M−1

a v−1
[
λ(E − Er) + kDIn−1

]
v
∣∣∣

=
∣∣∣M−1

a

∣∣∣
︸ ︷︷ ︸
6=0

∣∣∣v−1
∣∣∣

︸ ︷︷ ︸
6=0

∣∣∣∣
[
λ(E − Er) + kDIn−1

]∣∣∣∣
∣∣∣v
∣∣∣

︸︷︷︸
6=0

,

∴ |Λ(q, q̇)| 6= 0↔
∣∣∣∣λ(E − Er) + kDIn−1

∣∣∣∣ 6= 0. (A.12)

This determinant can be represented as

det




λ1(E − Er) + kD 0 . . . 0

0 λ2(E − Er) + kD
. . .

...
...

. . . . . . 0
0 . . . 0 λn−1(E − Er) + kD



.

It is evident that this determinant is guaranteed to be non-zero if

kD 6= (Er − E)λi

where 1 ≤ i < n. This condition will be satisfied if

kD >

(
Er −min

q
{E}

)
λmax
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where λmax = max{λ}. Additionally

E(q, q̇) =
1

2
q̇TM(q)q̇
︸ ︷︷ ︸

≥0

+P(q)

≥ P(q)

where −Er ≤ P(q) ≤ Er. We can therefore define minq{E} ≥ minq{P(q)}, which
leads to

kD > (Er −min
q
{P(q)})λmax

= max
q
{(Er −P(q))λmax}

= max
q
{η(q)} .

To show that this condition is indeed necessary, we will show that for 0 < kD ≤
maxq {η(q)} there is an initial condition (q(0), q̇(0)) in which the condition in eq.
(8.3) is not satisfied. We first define

kD = max
q
{η(q)− d0λmax} (A.13)

where d0 is a constant bounded by 0 ≤ d0 < Er − minq P (q). Additionally, we
define a set of states ζ ∈ Rn that represents the values of q that, at any point in time
t, maximises η(q) (i.e. minimises P(q)). We also define the resulting velocity vector
as

ζd = M(ζ)−1/2vζ

where ζd ∈ Rn and

vζ =
[√

2d0 0 . . . 0
]T
.

Therefore, choosing (q(0), q̇(0)) = (ζ, ζd), we find that the mechanical energy at
t = 0 is described as

E(ζ, ζd) =
1

2
ζd

TM(ζ)ζd + P(ζ)

=
1

2
vζ

T
(
M(ζ)−1/2

)T
M(ζ)M(ζ)−1/2vζ .

It is important to note that M(ζ) is a positive definite matrix, thus resulting in

(
M(ζ)−1/2

)T
M(ζ)M(ζ)−1/2 = In.
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Therefore

E(ζ) =
1

2
vζ

Tvζ + P(ζ)

= d0 + P(ζ).

Therefore P(ζ) ≤ E(ζ) < Er. Substitution of the aforementioned expression into eq.
(A.12) produces

|Λ(ζ, ζd)| =
∣∣∣λ(E(ζ, ζd)− Er) + kDIn−1

∣∣∣

=
∣∣∣λ(d0 + P(ζ)− Er) + kDIn−1︸ ︷︷ ︸

Wζ

∣∣∣

where

W(ζ) =




W1,1 0 . . . 0

0 W2,2
. . .

...
...

. . . . . . 0
0 . . . 0 Wn−1,n−1



∈ R(n−1)×(n−1).

Each non-zero entry in the W(ζ) matrix is thus represented as

Wi,i(ζ) = λi(d0 + P(ζ)− Er) + kD (A.14)

where 1 ≤ i ≤ n− 1. The substitution of eq. (A.13) into eq. (A.14) produces

Wi,i(ζ) = λi(d0 + P(ζ)− Er) + η(ζ)− d0λmax(Ma)

= λi(d0 + P(ζ)− Er) + (Er −P(ζ))λmax(Ma)− d0λmax(Ma)

= (Er −P(ζ)− d0)
[
λmax(Ma)− λi

]
.

We note that 0 ≤ d0 < Er −P(ζ). Therefore

min
d0

{
Wi,i

}
= ε
[
λmax(Ma)− λi

]
≥ 0

where ε is an infinitesimally small positive number. It is guaranteed, therefore, one
of the entries of the W(ζ) matrix will be zero, resulting in

Wi,i = 0↔ λmax(Ma)− λi = 0

where i in this case represents the index where λi = λmax(Ma). This condition is
guaranteed since λmax(Ma) forms part of the λ matrix. Therefore

|Λ(q, q̇)| = 0↔ kD ≤ max
q

{
η(q)

}
.
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If, however, kD is changed so that it is guaranteed to be larger than maxq

{
η(q)

}
,

by choosing

kD = η(ζ) + ε

then the entries for matrix W(ζ) are expressed as

Wi,i(ζ) = λi(d0 + P(ζ)− Er) + η(ζ) + ε

= λi(d0 + P(ζ)− Er) + (Er −P(ζ))λmax(Ma)

= (Er −P(ζ))
[
λmax(Ma)− λi

]
+ λid0

︸ ︷︷ ︸
≥0

+ ε︸︷︷︸
>0

.

Therefore, kD > maxq η(q) is both a sufficient and a necessary condition for |Λ(q, q̇)| 6=
0.

The expression η(q) = (Er − P(q))λmax can be simplified to be expressed solely
in terms of the states qa [5]. Choosing q1 = ζ1 (a value that maximises η(q) with
respect to q1), we find that

∂η(q)

∂q1

∣∣∣∣∣
q1=ζ1

= −λmax
∂P(q)

∂q1

∣∣∣∣∣
q1=ζ1

= −λmaxK1(q) = 0

according to 3.15. It is evident that λmax 6= 0 since Ma is positive definite. Therefore

K1(q)

∣∣∣∣
q1=ζ1

= 0. (A.15)

We can, thus, use this expression to describe P(q)
∣∣∣
q1=ζ1

solely in terms of qa, where

P2(ζ1,qa) = P2(ζ1,qa) +K1
2(ζ1,qa).

It is evident that

P2(ζ1,qa) =

(
n∑

i=1

βi
2 cos2

[
i∑

j=1

qj

]
+ 2

n−1∑

i=1

βi cos

[
i∑

k=1

qk

]
n∑

j=i+1

βj cos

[
j∑

l=1

ql

])
,

K1
2(ζ1,qa) =

(
n∑

i=1

βi
2 sin2

[
i∑

j=1

qj

]
+ 2

n−1∑

i=1

βi sin

[
i∑

k=1

qk

]
n∑

j=i+1

βj sin

[
j∑

l=1

ql

])

where q1 = ζ1. Therefore

P2(ζ1,qa) +K1
2(ζ1,qa) =

(
n∑

i=1

βi
2 + 2

n−1∑

i=1

n∑

j=i+1

βiβj

(
sin

[
i∑

k=1

qk

]
sin

[
j∑

l=1

ql

]
+
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cos

[
i∑

k=1

qk

]
cos

[
j∑

l=1

ql

]))∣∣∣∣∣
q1=ζ1

=
n∑

i=1

βi
2 + 2

n−1∑

i=1

n∑

j=i+1

βiβj

(
cos

[
j∑

k=i+1

qk

])

= P2(qa).

Furthermore

P(qa) = ±Φ(qa) = ±
[

n∑

i=1

βi
2 + 2

n−1∑

i=1

n∑

j=i+1

βiβj

(
cos

[
j∑

k=i+1

qk

])]1/2

.

From this observation, we find that

max
q

{
P(q)

}
= max

qa

{
P(ζ1,qa)

}
= max

qa

{
P(qa)

}
(A.16)

= max
qa

{
±Φ(qa)

}
= max

qa

{
Φ(qa)

}
. (A.17)

Therefore, the condition seen in eq. (8.13) is represented as

kD > kDM = max
qa

{[
Er + Φ(qa)

]
λmax

[(
GTM−1G

)−1]}
. (A.18)
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A.4 Necessary and Sufficient Gain Condition (kP ) for Swing-
up Control of the MC-ROPAn−1 Robot

It is evident that the time-dependent behaviour of the Lyapunov function shown in
eq. (8.11) is guaranteed to be negative semi-definite so long as the torque expression
for τ2 is described as seen in eq. (8.10), with kD satisfying the condition seen in eq.
(8.3). Therefore, the system trajectories are described as

lim
t→∞

V = V ∗, lim
t→∞

E = E∗,

lim
t→∞

q2 = q∗2

where the asterix superscript identifies the equilibrium value of the particular state
trajectories [5]. Figure A.1 demonstrates a collection of subsets in the real state-space.
We define the state-space S ∈ Rn which encompasses the compact set Γc described
by

Γc =
{

(q, q̇) ∈ S | V (q, q̇) ≤ c
}

with c ∈ R+ [5]. It is evident that the compact set Γc is an invariant set since the
torque expression in eq. (8.1) guarantees that V̇ ≤ 0. Therefore, the set

S =
{

(q, q̇) ∈ Γc | V (q, q̇) ≤ c; V̇ (q, q̇) = 0
}

forms a subset of the compact set Γc. The entire set S is not itself invariant, since
there is a possibility of achieving V̇ < 0 after V̇ = 0. We can, however, define the
largest invariant set within this set, W, where

W =
{

(q, q̇) ∈ S | q̇1 ∈ R; q2 = q∗2
}
. (A.19)

The definition of W shown in eq. (A.19) is not complete, however, since there is no
definition of the behaviour of the state q1. Knowing that

E =
1

2
q̇TM(q)q̇ + P(q)

and that q̇2 = 0 when E = E∗, we find that

E∗ =
1

2
M11(q)q̇2

1 + P(q1,qa).

Therefore

q̇2
1 =

2
[
E∗ −P(q1,q

∗
a)
]

M11(q∗a)
.



Appendix A. Proofs 269

F I G U R E A . 1 : The invariant sets in the state-space S ∈ Rn.

The complete definition of the invariant set W is thus defined as follows

W =



(q, q̇) ∈ S

∣∣∣∣∣ q̇
2
1 =

2
[
E∗ −P(q1,q

∗
a)
]

M11(q∗a)
; q2 = q∗2





[5]. The trajectories of the system will therefore, according to invariant set theory,
tend toward the invariant set W as t→∞. The dynamics of the system described
by q̈a simplifies as a consequence of the states being found at an equilibrium point,
where E = E∗ and q̈2 = q̇2 = 0 [5]. Therefore

(E∗ − Er)τ2 + kP q
∗
2 = 0. (A.20)

There may be a number of possible equilibrium points that exist within the invariant
set W, of which includes both the UEP and the FPEP. We will thus classify the
equilibrium points according to the mechanical energy of the system found at the
equilibrium point E∗, whereby the equilibrium point of greatest concern is the UEP
(where E∗ = Er). There are two specific groups of equilibrium points within W
defined in [5], which are catered for in this proof.

Case 1: E∗ = Er.

In this case, it is clear that eq. (A.20) simplifies to the expression

kP q
∗
2 = 0.

It is, therefore, evident that q∗2 = 0 since kP 6= 0. This leads to the observation
that V ∗ = 0 when E∗ = Er (as seen in [5]) through the substitution of the relevant
variables). Additionally, q2 = 0. We can thus define an invariant set Wr, which is a
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subset of the invariant set W and is described by

Wr =



(q, q̇) ∈W

∣∣∣∣∣ q̇
2
1 =

2
[
Er −P(q1)

]

M11(0)
; q∗2 = 0



 (A.21)

[5]. This definition can be refined through simplification involving eq. (7.9), where

P(q1, q
∗
2)
∣∣∣
q∗2=0

= β1 cos(q1) + β2 cos(q1)

=
[
β1 + β2

]
cos(q1) = Er cos(q1).

Therefore, taking the conditions of the set Wr in eq. (A.21), we find that

q̇2
1 =

2
[
Er −P(q1)

]

M11(0)

=
2(Er − Er cos q1)

M11(0)

=
2Er(1− cos q1)

M11(0)

[5]. This trajectory represents a homoclinic orbit with the equilibrium point

x∗ = (q1, q̇1) = (2πk, 0), k ∈ Z

which is the UEP [5]. We therefore define the homoclinic orbit according to [5, pg.
27]:

Definition A.1. If an equilibrium point x = x∗ exists, then the trajectory φ(t) is a
homoclinic orbit if

φ(t)→ x∗ as t→ ±∞.

The homoclinic orbit rests on the intersection between a stable and unstable mani-
fold.

Therefore, the trajectory of the system will tend toward the equilibrium point x∗

in Wr as t→ ±∞, thus resulting in successful swing-up of the robot to the UEP.

Case 2: E∗ 6= Er

The following derivation aims to demonstrate the possibility of the trajectory tending
towards an equilibrium point outside of the invariant set Wr, i.e.

(q1, q2, q̇1, q̇2)→ (q∗1, q
∗
2, 0, 0)
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[5]. This is achieved by proving that the state q1 tends towards some constant value
q∗1 as t→∞, since it has already been proven that limt→∞ q2 = q∗2 in W.

We now proceed with the proof through the execution of the following steps, as seen
in [5].

Step (i): We will first assume that q1 6= q∗1 in an attempt to proof q1 = q∗1 through
contradiction. With this assumption in mind, we will prove that τ2 = τ∗2 and derive
a set of conditions that must be adhered to if q1(t) 6= q∗1 .

Step (ii): We will then prove, using a set of nonlinear equations derived in the
previous step, that cos q∗2 = −1 satisfies q1(t) 6= q∗1 along with the equality

(α1 − α3)β2 + (α2 − α3)β1 = 0.

Additionally, we will use this equality to prove that τ2 = 0 and that q∗2 = 0, which
demonstrates a contradiction, proving that q1(t) = q∗1 .

We shall now derive this proof for the undamped MC-ROPAn−1 robot.

Proof A.4.1. Step (i): In the case where E∗ 6= Er, the dynamical equation of the states
represented in eq. (A.20) simplifies to

kpq
∗
2 + (E∗ − Er)τ2 = 0. (A.22)

It is evident that since all of the components of eq. (A.22) are constant except for τ2, it can
be concluded that τ2 itself must be a constant. Additionally, it has been established that the
invariant set W is characterised by q2 = q∗2 and q1(t). Taking this into consideration, eqs.
(8.9a) and (8.9b) are simplified to

M11 (q∗2) q̈1 − β1 sin q1 − β2 sin(q1 + q∗2) = 0, (A.23a)

M21 (q∗2) q̈1 + α3q̇
2
1 sin q∗2 − β2 sin(q1 + q∗2) = τ∗2 . (A.23b)

Therefore, manipulating eq. (A.23a), we find that

q̈1 =
β1 sin(q1) + β2 sin(q1 + q∗2)

M11 (q∗2)
. (A.24)

Substituting eq. (A.24) into eq. (A.23b) produces

M21 (q∗2)

M11 (q∗2)

[
β1 sin(q1) + β2 sin(q1 + q∗2)

]
+ α3q̇

2
1 sin q∗2 − β2 sin(q1 + q∗2) = τ∗2 . (A.25)
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Taking the time derivative of eq. (A.25) results

q̇1

[
M21 (q∗2)

M11 (q∗2)

(
β1 cos(q1) + β2 cos(q1 + q∗2)

)
+ 2α3q̈1 sin q∗2 (A.26)

− β2 cos(q1 + q∗2)

]
= 0.

We, once again, substitute eq. (A.24) into eq. (A.26), which produces

q̇1

[(
M21 (q∗2)

M11 (q∗2)

[
β1 + β2 cos q∗2

]
+

2α3β2 sin2 q∗2
M11 (q∗2)

− β2 cos q∗2

)
cos q1−

(
M21 (q∗2)

M11 (q∗2)
β2 sin q∗2 − 2α3

[
β1 + β2 cos q∗2
M11 (q∗2)

]
sin q∗2 − β2 sin q∗2

)
sin q1

]
= 0.

This equation is represented as

q̇1

[
A0 (q∗2) cos q1 −B0 (q∗2) sin q1

]
= 0 (A.27)

where

A0 (q∗2) =
M21 (q∗2)

M11 (q∗2)

[
β1 + β2 cos q∗2

]
+

2α3β2 sin2 q∗2
M11 (q∗2)

− β2 cos q∗2, (A.28)

B0 (q∗2) =
M21 (q∗2)

M11 (q∗2)
β2 sin q∗2 − 2α3

[
β1 + β2 cos q∗2
M11 (q∗2)

]
sin q∗2 − β2 sin q∗2. (A.29)

It is, therefore, apparent through the inspection of eq. (A.27) that if q1 6= q∗1 , then

A0 (q∗2) cos q1 −B0 (q∗2) sin q1 = 0.

This can only be true if A0 (q∗2) = 0 and B0 (q∗2) = 0, as shown in lemma A.1 (as seen
in [5]).

Lemma A.1. If q1 6= q∗1 , we can represent eq. (A.27) as

q̇1

[
A0 (q∗2) cos q1 −B0 (q∗2) sin q1

]
= 0

= q̇1

√
A0

2 (q∗2) +B0
2 (q∗2)


 A0 (q∗2) cos q1√

A0
2 (q∗2) +B0

2 (q∗2)
− B0 (q∗2) sin q1√

A0
2 (q∗2) +B0

2 (q∗2)


 .

Choosing

cosφ (q∗2) =
A0 (q∗2)√

A0
2 (q∗2) +B0

2 (q∗2)
, (A.30a)
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sinφ (q∗2) =
B0 (q∗2)√

A0
2 (q∗2) +B0

2 (q∗2)
(A.30b)

we find that

q̇1

√
A0

2 (q∗2) +B0
2 (q∗2) [cosφ (q∗2) cos q1 − sinφ (q∗2) sin q1]

= q̇1

√
A0

2 (q∗2) +B0
2 (q∗2) cos (q1 + φ (q∗2)) = 0. (A.31)

Integrating eq. (A.31) with respect to time, we find that
√
A0

2 (q∗2) +B0
2 (q∗2)

∫
q̇1(t) cos (q1(t) + φ (q∗2)) dt = 0.

Using u-substitution, we choose

u = q1(t),

du
dt

= q̇1(t),

∴ dt =
du
q̇1(t)

.

Performing the u-substitution produces
√
A0

2 (q∗2) +B0
2 (q∗2)

∫
cos (u+ φ (q∗2)) du

=
√
A0

2 (q∗2) +B0
2 (q∗2) sin (q1(t) + φ (q∗2)) + C︸︷︷︸

Const. of Int.

= 0,

∴
√
A0

2 (q∗2) +B0
2 (q∗2) sin (q1(t) + φ (q∗2)) = −C = K. (A.32)

This demonstrates a contradiction, since q1(t) = q∗1(t) for the left-hand side of the
equation in eq. (A.32) to equal the constant K. It has thus been proven through
contradiction that for q1(t) = q∗1 , A0 (q∗2) = 0 and B0 (q∗2) = 0.

Step (ii): Since A0 (q∗2) = 0 and B0 (q∗2) = 0, we can redefine the expressions seen in
eqs. (A.28) and (A.29) as

A0 (q∗2) =
M21 (q∗2)

M11 (q∗2)

[
β1 + β2 cos q∗2

]
+

2α3β2 sin2 q∗2
M11 (q∗2)

− β2 cos q∗2

=
−1

M11 (q∗2)

[
−M21 (q∗2)

[
β1 + β2 cos q∗2

]
− 2α3β2 sin2 q∗2 +M11 (q∗2)β2 cos q∗2

]

=
−1

M11 (q∗2)

[
[α2 + α3 cos q∗2]

[
β1 + β2 cos q∗2

]]
− 2α3β2 sin2 q∗2 + (α1 + α2+

2α3 cos q∗2)β2 cos q∗2
]
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starting with A0 (q∗2) = 0. This simplifies to

A0 (q∗2) =
−1

M11 (q∗2)

[
3α3β2 cos2 q∗2 −

[
α3β1 − α1β2

]
cos q∗2 − α2β1 − 2α3β2

]
= 0,

∴ A0 (q∗2) = 3α3β2 cos2 q∗2 −
[
α3β1 − α1β2

]
cos q∗2 − α2β1 − 2α3β2.

For B0 (q∗2), we find that

B0 (q∗2) =
M21 (q∗2)

M11 (q∗2)
β2 sin q∗2 − 2α3

[
β1 + β2 cos q∗2
M11 (q∗2)

]
sin q∗2 − β2 sin q∗2

=
−1

M11 (q∗2)

[
−M21 (q∗2)β2 sin q∗2 + 2α3

[
β1 + β2 cos q∗2

]
sin q∗2+

M11 (q∗2)β2 sin q∗2
]

=
−1

M11 (q∗2)

[
− (α2 + α3 cos q∗2)β2 sin q∗2 + 2α3

[
β1 + β2 cos q∗2

]
sin q∗2 + (α1+

α2 + 2α3 cos q∗2)β2 sin q∗2
]
.

This simplifies to

B0 (q∗2) =
−1

M11 (q∗2)

[(
3α3β2 cos q∗2 + 2α3β1 + α1β2

)
sin q∗2

]
= 0,

∴ B0 (q∗2) =
(
3α3β2 cos q∗2 + 2α3β1 + α1β2

)
sin q∗2.

Manipulating B0 (q∗2) further we can show that

B0 (q∗2) = 3α3β2

[
cos q∗2 +

2α3β1 + α1β2

3α3β2

]
sin q∗2

= 3α3β2 [cos q∗2 + α0]
[
1− cos2 q∗2

]1/2

where

α0 =
2α3β1 + α1β2

3α3β2

. (A.33)

It is evident, therefore, that if B0 (q∗2) = 0, then

(i) cos q∗2 = −α0, or
(ii) cos q∗2 = 1, or

(iii) cos q∗2 = −1.
(A.34)

We shall first assume that cos q∗2 = −α0. If this is the case, then

A0 (q∗2)

∣∣∣∣
cos q∗2=−α0

= α3β2α0
2 +

[
α3β1 − α1β2

]
α0 − α2β1 − 2α3β2
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= 6α3
2β1

2
+ 3α1α3β1β2 − 3α2α3β1β2 − 6α3

2β2
2

= 2α3

[
β1

2 − β2
2
]

+ β1β2 [α1 − α2] = 0. (A.35)

Knowing that

α3 = m2l2L1, β2 = m2l2g (A.36)

we can simplify eq. (A.35) to

α2gβ1 + 2L1β2
2 =

[
2L1β1 + α1g

]
β1. (A.37)

We can further manipulate this inequality to make α1 the subject of the equation, resulting
in

α1 ≤
L1

(
3β2 − 2β1

)

g
. (A.38)

Additionally, if cos q∗2 = −α0, then −1 ≤ α0 ≤ 1. But, according to eq. (A.33),

α0 =
2α3β1 + α1β2

3α3β2

� 0.

Therefore, 0 < α0 ≤ 1. We can also show that

2α3β1 + α1β2 ≤ 3α3β2

through the manipulation of the expression in eq. (A.33). With the substitution of the
expressions of eq. (A.36) into the above equation, we find that

2L1β1 + α1g ≤ 3L1m2l2g.

The inequality above can be further manipulated to bring the length of the COM of the VCL
l2 into focus, whereby

l2 ≥
2L1β1 + α1g

3L1m2g
. (A.39)

A new inequality is now derived through the substitution of the equality shown in eq. (A.38)
into the expression in eq. (A.39), which results in

α2β1g + 2L1β2
2 − 2L1β1

2

gβ1

= α1 ≤
3L1β2 − 2L1β1

g
.

This simplifies to

α2g

β2

≤ 3L1β1 − 2L1β2

β1

.
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Additionally, we find that

α2g

β2

=
I2 +m2l2

2

m2l2

=
I2

m2l2
+ l2 > l2.

Therefore

l2 <
α2g

β2

≤ L1

(
3β1 − 2β2

)

β1

.

This implies, therefore, that

l2 <
L1

(
3β1 − 2β2

)

β1

.

Substituting β2 from eq. (A.36) into the expression above produces

l2 <
3L1β1

β1 + 2L1m2g
.

Therefore, l2 is bounded by

2L1β1 + α1g

3L1m2g
≤ l2 <

3L1β1

β1 + 2L1m2g
. (A.40)

Therefore

2L1β1 + α1g

3L1m2g
<

3L1β1

β1 + 2L1m2g

which simplifies to

5m2L1
2 >

2L1β1

g
+ α1 +

2α1L1m2g

β1

. (A.41)

We know that

α1 = I1 +m1l1
2 +m2L1

2.

Therefore α1 > m2L1
2. Additionally, using the inequality a + b ≥ 2

√
ab for a > 0 and

b > 0 (shown in [5, pg. 55]), with

a =
2L1β1

g
, b =

2α1L1m2g

β1
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we find that

2L1β1

g
+

2α1L1m2g

β1

≥ 4L1

√
α1m2.

But, if α1 > m2L1
2 then

4L1

√
α1m2 > 4m2L1

2.

Therefore

α1 +
2m2α1gL1

β1

+
2L1β1

g
> 5m2L1

2.

This is contradictory to the inequality demonstrated in eq. (A.41). It is evident, therefore,
that cos q∗2 6= α0.

If cos q∗2 = 1, then

A0 (q∗2)

∣∣∣∣
cos q∗2=1

= 3α3β2 −
[
α3β1 − α1β2

]
−
[
α2β1 + 2α3β2

]

= α3β2 − α3β1 + α1β2 − α2β1.

A modification on Lemma 2.1 in [5] shows that

α2β1 + α3β1 − α1β2 − α3β2 > 0. (A.42)

This shows, therefore, that A0 (q∗2) < 0, but this does not satisfy the necessary condition
shown in lemma A.1, which states that A0 (q∗2) must equal 0. This, therefore, proves that
cos q∗2 6= 1 through contradiction.

The only possible solution that satisfies lemma A.1 is cos q∗2 = −1. If this is the case,
we find that

sin q∗2 =
√

1− cos2 q∗2 = 0. (A.43)

We also find that

A0 (q∗2)

∣∣∣∣
cos q∗2=−1

= (α1 − α3)β2 + (α2 − α3)β1 = 0. (A.44)

This must hold when q1(t) 6= q∗1 . The dynamical equation of the VCL shown in eq. (8.9b)
simplifies with the consideration of eq. (A.43) and cos q∗2 into

M21 (q∗2) q̈1 − β2 sin (q1 + q∗2)

= M21 (q∗2) q̈1 + β2 sin q1 = τ∗2 .
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Substituting eq. (A.24) into the expression above produces

M21 (q∗2)

[
β1 sin q1 + β2 sin (q1 + q∗2)

M11 (q∗2)

]
+ β2 sin q1

=

[
[α2 − α3]

[
β1 − β2

]

α1 + α2 − 2α3
sin q1 + β2

]
sin q1

=

[
[α2 − α3]β1 + [α1 − α3]β2

α1 + α2 − 2α3

]
sin q1 = τ∗2 . (A.45)

It is evident, however, that eq. (A.45) is equal to zero because of eq. (A.44). Therefore,
τ2 = τ∗2 = 0. If we substitute this expression for the torque into eq. (A.20) we find that

kP q
∗
2 = 0.

Therefore, the only solution to the equality would be if q∗2 = 0. This, however, contradicts
cos q∗2 = −1. We thus have proven through contradiction that q1(t) = q∗1 . This shows that
when E∗ 6= Er and kD > kDM , kP > 0, and kV > 0 then (q1, q2, q̇1, q̇2) = (q∗1, q

∗
2, 0, 0)

as t→∞.

So at this point in the evaluation of the MC-ROPAn−1 system trajectory in the
invariant set W when E 6= Er, we know that

q1(t) = q∗1 = qe1, q̈1 = q̇1 = 0,
E∗ = P (qe2) ,
τ2 = τ∗2 = τ e2 ,
qa = q∗2 = qe2.

Substituting these expressions into eq. (8.9a) and (8.9b) produces

β1 sin qe1 + β2 sin (qe1 + qe2) = 0

and

τ e2 = −β2 sin (qe1 + qe2) .

Evaluating eq. (A.20) considering the newly derived expressions above we find that

kP q
e
2 − [P (qe)− Er]β2 sin (qe1 + qe2) = 0.

We now define a new invariant set

Ω =

{
(qe, 0) ∈W

∣∣∣∣
kP q

e
2 − [P (qe2)− Er]β2 sin (qe1 + qe2) = 0;

β1 sin qe1 + β2 sin (qe1 + qe2) = 0.

∣∣∣∣P (qe) 6= Er

}
(A.46)

which is a subset of W. From this definition, it is evident that Ω encloses all
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equilibrium points in W except for the UEP. Therefore, if kD > kDM , kP > 0, and
kV > 0, then the invariant set W satisfies

W = Wr ∪ Ω, Wr ∩ Ω = ∅

where Wr corresponds to the UEP and contains a trajectory described by a homo-
clinic orbit. The invariant set Ω encapsulates the equilibrium points that correspond
with the condition E 6= Er.

We have now established two specific invariant sets that are of importance to the
swing-up control through the application of LDM. Ideally, to achieve the goal of
swing-up control, the UEP should be the only equilibrium point in the system that
has a basin of attraction. If any other equilibrium points (i.e. the equilibrium points
in Ω) can be characterised as stable, even within an approximate neighbourhood,
then it is impossible to guarantee satisfactory swing-up control. We must, therefore,
identify the existing equilibrium points and determine what conditions will render
these equilibrium points unstable. We will begin this derivation by first proving
that the subsets of Ω related to a positive or zero potential energy for the undamped
MC-ROPAn−1 robot are empty sets, as seen in [5]. This results in the gain condition

Ω+ = Ω0 = ∅ ↔ kP >
2

π
min

{
β1, β2

}

[5].

Proof A.4.2. To begin the proof, we identify the following subsets of Ω according to their
relationship with the potential energy of the encapsulated equilibrium points, P (qe), where

Ω0 =
{

(qe, 0) ∈ Ω
∣∣∣ P (qe) = 0

}
,

Ω+ =
{

(qe, 0) ∈ Ω
∣∣∣ P (qe) > 0

}
,

Ω− =
{

(qe, 0) ∈ Ω
∣∣∣ P (qe) < 0

}

and where

Ω = Ω0 ∪ Ω+ ∪ Ω−.

The objective of this proof, ideally, is to ensure that all of these subsets are null sets through
the careful selection of an appropriate gain for kP . We shall begin by evaluating the invariant
set Ω0.

As discussed earlier in this section, we find that,

P (qe)

∣∣∣∣
Ω0

= Φ (qe2)
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=

√
β1

2
+ β2

2
+ 2β1β2 cos qe2 = 0

according to eq. (A.17). Therefore

β1
2

+ β2
2

+ 2β1β2 cos qe2 = 0 where q ∈ Ω0.

This can only be true if β1 = β2 and cos qe2 = −1. This results in sin qe2 = 0. If this is true,
then the combined COM of the VCL and the most proximal pendulum will fall exactly on
the origin, resulting in P (qe) = 0.

Substituting these newly defined expressions into eq. (8.9b) produces

τ e2 = −β2 sin (qe1 + qe2)

= β2 sin qe1. (A.47)

Substituting eq. (A.47) into eq. (A.20) results in

kP q
e
2 + (P (qe)− Er)β2 sin qe1 = 0. (A.48)

But in the case of the MC-ROPAn−1 model, considering the fact that β1 = β2, we find that

Er = β1 + β2 = 2β1. (A.49)

Therefore, substituting eq. (A.49) into eq. (A.48) produces

kP q
e
2 − 2β1

2
sin qe1 = 0,

∴ kP =
2β1

2
sin qe1
qe2

.

If cos qe2 = −1, then it is evident that qe2 = π±2kπ where k ∈ Z. It is also evident, therefore,
that

min {qe2} = π.

Therefore

sup
qe2

{
kP

}
= max

qe1

{
2β1

2
sin qe1
π

}
,

∴ sup
(qe1,q

e
2)

{
kP

}
=

2β1
2

π
(A.50)
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since maxqe1 {sin qe1} = 1. Therefore, the invariant set Ω0 = ∅ if the value for kP chosen
exceeds the suprenum of kP (shown in eq. (A.50)). Therefore

kP >
2β1

2

π
, β1 = β2 (A.51)

results in Ω0 = ∅ since

|kP qe2| ≥ kPπ > 2β1
2 ≥ 2β1

2 |sin qe1|

[5]. We now move on to evaluate the invariant set Ω+.

In Ω+, the potential energy P (qe), considering eq. (7.11), is described as

P (qe)

∣∣∣∣
Ω+

= +Φ(qe2) =

√
β1

2
+ β2

2
+ 2β1β2 cos qe2 (A.52)

= β1 cos qe1 + β2 cos (qe1 + qe2) > 0, where q ∈ Ω+. (A.53)

We can deduce from eq. (A.52) that qe2 6= 2πk where k ∈ Z since that would imply that
Φ (qe2) = Er, which cannot be the case since the equilibrium point associated with E∗ = Er
is found within the Wr invariant set. Additionally, the torque τ e2 is defined through the
simplification of eq. (8.9b), where

τ e2 = −β2 (qe1 + qe2) . (A.54)

The dynamics of the system at the equilibrium can thus be described by

kP q
e
2 − [Φ (qe2)− Er]β2 sin (qe1 + qe2) = 0 (A.55)

through the substitution of eqs. (A.52) and (A.54) into eq. (A.20). It is difficult, in this case,
to establish sufficient conditions for kP since both qe1 and qe2 are unknown. To solve this, we
will eliminate qe1 from this expression through the execution of the procedure that follows.

We know that for all equilibrium points, the potential torque exerted on the most prox-
imal pendulum, K1(q) = 0 (as shown in eq. (A.15)). Therefore,

K1(q∗) = −β1 sin qe1 − β2 sin (qe1 + qe2) = 0 (A.56)

according to eq. (7.11). Therefore

β1 sin qe1 + β2 sin (qe1 + qe2) = 0.

We can thus eliminate qe1 in eq. (A.20) through

P (qe) sin (qe1 + qe2) = P (qe) sin (qe1 + qe2) +K1(q) cos (qe1 + qe2)

=
[
β1 cos qe1 + β2 cos (qe1 + qe2)

]
sin (qe1 + qe2)−

[
β1 sin qe1+
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β2 sin (qe1 + qe2)
]

cos (qe1 + qe2)

= β1 [cos qe1 sin (qe1 + qe2)− sin qe1 cos (q1 + qe2)]

= β1 sin qe2. (A.57)

Therefore

P (qe) sin (qe1 + qe2) = β1 sin qe2,

∴ sin (qe1 + qe2) =
β1 sin qe2
P (qe)

=
β1 sin qe2
Φ (qe2)

. (A.58)

Substituting eq. (A.58) into eq. (A.55) produces

kP q
e
2 − [Φ (qe2)− Er]

[
β1β2 sin qe2

Φ (qe2)

]
= 0.

Therefore

kP q
e
2

β1β2

=
[Φ (qe2)− Er] sin qe2

Φ (qe2)
= λ (qe2) (A.59)

where Φ (qe2) 6= Er. The expression in eq. (A.59) can be simplified to

qe2

[
kP

β1β2

− ρ (qe2)

]
= 0 (A.60)

where qe2 6= 2πk with k ∈ Z and

ρ (qe2) =
[Φ (qe2)− Er]

Φ (qe2) qe2
sin qe2.

Therefore, to ensure that eq. (A.60) is not realisable, and thus resulting in Ω+ = ∅, the
condition

kP > β1β2 sup
qe2 6=0
{ρ (qe2)} (A.61)

must be adhered to. An example of the function ρ (qe2) is plotted with its suprenum in
figure A.2. Therefore, eq. (A.61) suggests that the value of kP/β1β2 must be greater than the
suprenum of ρ (qe2) for Ω+ = ∅ [5].

Another way of approaching this problem is by comparing the straight line function on the
left-hand side of eq. (A.59) with λ (qe2). An example of the relationship between λ (qe2) and
λ (qe2) is plotted in figure A.3. It is evident that a sufficiently large gain must be chosen
to prevent an intercept between the straight-line function and λ (qe2) (as seen with the red
dashed line in the figure). If the gain is insufficiently large, more intercepts between these two
functions will occur (as shown by the blue dashed line), which demonstrates that Ω+ 6= ∅.
The intercept at the origin is not of concern since qe2 6= 0. This must, however, be proven
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F I G U R E A . 2 : An example of a function ρ (qe2) with its suprenum
value.

analytically, to guarantee that for all examples a sufficiently large gain can be chosen to
ensure that Ω+ = ∅.

It is evident that the function ρ (qe2) is an even function, demonstrating symmetry across
the vertical axis. Indeed, it is also evident that, since Φ (qe2) < Er ∀qe2 and sin qe2 < 0 when
(2k − 1)π < qe2 < 2πk where k ∈ Z, then

sup
qe2 6=0
{ρ (qe2)} = sup

k

{
sup

qe2∈((2k−1)π,2πk)
ρ (qe2)

}

[5]. This is true since the suprenum cannot be located within boundaries that are guaranteed
to have a negatively valued function. It is also apparent that the function ρ (qe2) will be
attenuated as qe2 → ±∞. The true suprenum of ρ (qe2) must, therefore, be located between
the limits of the first possible positive peak (i.e. when k = 1). This leads to

sup
qe2 6=0
{ρ (qe2)} = sup

k

{
sup

qe2∈((2k−1)π,2πk)
ρ (qe2)

}∣∣∣∣∣
k=1

= sup
qe2∈(π,2π)

{ρ (qe2)}
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F I G U R E A . 3 : An example of the intercepts between the straight-line
functions governed by kP (red line has a sufficiently large gradient,
unlike the blue line) and the function λ (qe2) with its suprenum value.

Adapted from [5].

[5]. The expression above is manipulated and represented as

sup
qe2∈(π,2π)

{ρ (qe2)} = sup
qe2∈(π,2π)

{[
Φ (qe2)− Er

qe2

](
sin qe2
Φ (qe2)

)}
(A.62)

[5]. We know, from [5, pg. 46], that

|sin z| ≤ min

{
1

b
,

1

x

}
h(b, x, z).

So since Φ (qe2) = h
(
β1, β2, q

e
2

)
and Φ (qe2) = |Φ (qe2)| since Φ (qe2) > 0, then

∣∣∣∣
sin qe2
Φ (qe2)

∣∣∣∣ ≤ min

{
1

β1

,
1

β2

}
. (A.63)
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Additionally

sin qe2|qe2∈(π,2π) = − |sin qe2| .

Therefore, eq. (A.62) may be represented as

sup
qe2∈(π,2π)

{ρ (qe2)} = sup
qe2∈(π,2π)

{[
Er −Φ (qe2)

qe2

] ∣∣∣∣
sin qe2
Φ (qe2)

∣∣∣∣
}

≤ sup
qe2∈(π,2π)

{[
Er −Φ (qe2)

qe2

]}
min

{
1

β1

,
1

β2

}

[5]. From here, it is apparent that the suprenum will occur at qe2 = π since Φ (qe2) =∣∣β1 − β2

∣∣ = minqe2 {Φ (qe2)} (made evident by eq. (A.52)) where β1 6= β2. Therefore

sup
qe2∈(π,2π)

{ρ (qe2)} ≤
[
Er −

∣∣β1 − β2

∣∣
π

]
min

{
1

β1

,
1

β2

}

≤
[
β1 + β2 −

∣∣β1 − β2

∣∣
π

]
min

{
1

β1

,
1

β2

}
.

Now, for the case where β1 > β2, we know that
∣∣β1 − β2

∣∣ = β1 − β2. Additionally we find
that

min

{
1

β1

,
1

β1

}
=

1

β1

.

Therefore

sup
qe2∈(π,2π)

{ρ (qe2)} ≤ 2

π

β2

β1

where β1 > β2. For the case where β2 > β1, we know that
∣∣β1 − β2

∣∣ = β2 − β1. We can
also conclude that

min

{
1

β1

,
1

β2

}
=

1

β2

.

Therefore

sup
qe2∈(π,2π)

{ρ (qe2)} ≤ 2

π

β1

β2

where β2 > β1. This result can be summarised as

sup
qe2∈(π,2π)

{ρ (qe2)} ≤ 2

π
min

{
β1

β2

,
β2

β1

}
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which can also be represented as

β1β2 sup
qe2∈(π,2π)

{ρ (qe2)} ≤ 2

π
min

{
β1

2
, β2

2
}
.

It is, therefore, apparent that for Ω+ = ∅, the condition

kP >
2

π
min

{
β1

2
, β2

2
}

(A.64)

must be satisfied, as seen from eq. (A.61) [5]. This is the same condition derived for the
case of Ω0 = ∅, as seen in eq. (A.51). Therefore, it is evident that the gain condition

kP >
2

π
min

{
β1

2
, β2

2
}

guarantees that Ω0 = ∅ and Ω+ = ∅.

We are now left with the Ω− invariant set, which, if the gain selection criterion in eq.
(A.64) is satisfied, can be represented as Ω− = Ω. There are a number of objectives
that remain outstanding in this regard, which will all be covered in the proof that
follows. We, therefore, must prove that

(i) Ω− has a finite number of equilibrium points.

(ii) All of the equilibrium points within the invariant set Ω− are unstable.

(iii) The only equilibrium point within Ω− is the FPEP.

(iv) The FPEP is unstable.

(v) The trajectory of the system will tend towards the invariant set Wr by follow-
ing a homoclinic orbit.

Once again, all these items are demonstrated for the DDA in [5], but it is of use to
the reader to include a proof specifically for the MC-ROPAn−1 model, as justified in
the beginning of this derivation.

Proof A.4.3. (i) For Ω−, we define the potential energy P (qe) as

P (qe) = P (qe2) = −Φ (qe2) .

Therefore

sin (qe1 + qe2) = −β1 sin qe2
Φ (qe2)

according to eq. (A.57). This, along with the equilibrium point torque expression in
eq. (A.54) is substituted into eq. (A.20) to produce

kP q
e
2 − β1β2

[
Φ (qe2) + Er

Φ (qe2)

]
sin qe1 = 0.
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Therefore

kp

β1β2

qe2 =
[Φ (qe2) + Er]

Φ (qe2)
sin qe2 = ζ (qe2) (A.65)

which can also be presented as

qe2

[
kp

β1β2

− ξ (qe2)

]
= 0 (A.66)

where

ξ (qe2) =
[Φ (qe2) + Er]

Φ (qe2) qe2
sin qe2.

An example of the relationship between ζ (qe2) and the straight line functions which
are dependent on the gain kP is demonstrated in figure A.4. As seen with Ω+, the
function ζ (qe2) is bounded and odd, and is therefore guaranteed to have at least one
intercept with the straight line function on the left-hand side of eq. (A.65). There is,
however, a minimum gradient that will ensure that the only intercept between these
two functions will occur at the origin.

It is possible to determine the value of qe2 through graphical inspection, but there is,
as of yet, no method of obtaining the value of qe1. This can be achieved through the
implementation of the method that follows.

From A.57, we know that

sin (qe1 + qe2) = −β1 sin qe2
Φ (qe2)

. (A.67)

Additionally, from eq. (A.56), we find that

sin (qe1 + qe2) = −β1 sin qe1
β2

. (A.68)

Therefore, substituting eq. (A.67) into eq. (A.68) produces

sin qe1 =
β2

Φ (qe2)
. (A.69)

Using the expression above, we define

cos qe1 = ±

√

1− β2
2

sin2 qe2
Φ2 (qe2)
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F I G U R E A . 4 : The intercepts between the function ζ (qa2) and the
straight-line function with sufficiently large kP (red line) and with

an insufficient kP (blue line).

= ±

√

1− β2
2 [

1− cos2 qe2
]

Φ2 (qe2)

= ± 1

Φ (qe2)

√
Φ2 (qe2)− β2

2
+ β2

2
cos2 qe2

= ± 1

Φ (qe2)

√
β1

2
+ 2β1β2 cos qe2 + β2

2
cos2 qe2

= ± 1

Φ (qe2)

(
β1 + β2 cos qe2

)
.

But

P (qe2)

∣∣∣∣
Ω−

= β1 cos qe1 + β2 cos (qe1 + qe2) = −Φ (qe2)

= β1 cos qe1 + β2 [cos qe1 cos qe2 − sin qe1 sin qe2] .
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Substituting eq. (A.69) into the expression above results in

cos qe1
[
β1 + β2 cos qe2

]
=
β2

2
sin2 qe2 −Φ2 (qe2)

Φ (qe2)

=
β2

2 [
1− cos2 qe2

]
−Φ2 (qe2)

Φ (qe2)

=
−
[
β1 + β2 cos qe2

]2

Φ (qe2)
.

Therefore

cos qe1 = −
[
β1 + β2 cos qe2

Φ (qe2)

]
. (A.70)

The value of qe1 can be uniquely determined, thus demonstrating that there are a finite
number of equilibrium points contained in the subset Ω−.

(ii) The candidate Lyapunov function for the MC-ROPAn−1 model is represented as

V =
1

2
(E − Er)2 +

1

2
kD q̇

2
2 +

1

2
kP q2

2

with reference to eq. (8.11). This Lyapunov candidate function will be represented as

V (qe1, q
e
2, 0, 0) =

1

2
[P (qe1, q

e
2)− Er]2 +

1

2
kP q

e
2

2

when found at an equilibrium point [5]. If the trajectory is moved off of the equilibrium
point by an angle δ on the qe1 coordinate, then

V (qe1 + δ, qe2, 0, 0) =
1

2
[P (qe1 + δ, qe2)− Er]2 +

1

2
kP q

e
2

2

where

P (qe1 + δ, qe2) = β1 cos (qe1 + δ) + β2 cos (qe1 + qe2 + δ)

=
[
β1 cos (qe1) + β2 cos (qe1 + qe2)

]
cos δ −

[
β1 sin (qe1)

+β2 sin (qe1 + qe2)
]

sin δ

= P (qe1, q
e
2) cos δ +K1(qe1, q

e
2)︸ ︷︷ ︸

=0

sin δ

= P (qe1, q
e
2) cos δ

with P (qe1, q
e
2) < 0 [5]. It is, therefore, evident that

P (qe1 + δ, qe2) > P (qe1, q
e
2) , |P (qe1 + δ, qe2)| < |P (qe1, q

e
2)|
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[5]. Therefore

[P (qe1 + δ, qe2)− Er]2 < [P (qe1, q
e
2)− Er]2

which results in

V (qe1 + δ, qe2, 0, 0) < V (qe1, q
e
2, 0, 0)

[5]. It is evident, therefore, that since V̇ (q, q̇) < 0 if the torque τ2 satisfies eq. (8.1)
with kD > kDM , kV > 0 and kP satisfying eq. (A.64), then it is impossible for the
trajectory to converge on the equilibrium points in Ω− since the candidate Lyapunov
function values found in the neighbourhood of the equilibrium points will always be
less than the Lyapunov candidate function at the equilibrium point. This, therefore,
proves that all equilibrium points in Ω− are unstable.

(iii) It has been mentioned in the previous portion of this proof that the function ζ (qe2)
is an odd and bounded function that does not decay as qe2 → ±∞. Therefore, it is
evident from the relationship between ζ (qe2) and ξ (qe2) represented by

ξ (qe2) =
[Φ (qe2) + Er]

Φ (qe2) qe2
sin qe2 =

ζ (qe2)

qe2

that ξ (qe2) is in fact an even function that will decay as qe2 → ±∞. An example
of the ξ (qe2) function is demonstrated in figure A.5. We can thus conclude that the
suprenum of ξ (qe2) will be found at qe2 = 0 if ξ (qe2) > 0 at qe2 = 0. Taking the limit as
qe2 → 0 we find that

lim
qe2→0

{ξ (qe2)} = lim
qe2→0

{
[Φ (qe2) + Er]

Φ (qe2) qe2
sin qe2

}
=

[Φ (qe2) + Er]

Φ (qe2) qe2
sin qe2

∣∣∣∣
qe2=0

which, upon initial inspection, is not defined. We can, however, use L’Hôpital’s rule
to find a defined limit, whereby

lim
qe2→0

{
[Φ (qe2) + Er]

Φ (qe2) qe2
sin qe2

}
= lim

qe2→0





d
dqe2

[
[Φ (qe2) + Er] sin qe2

]

d
dqe2

[
Φ (qe2) qe2

]





= lim
qe2→0

{
Φ′ (qe2) sin qe2 + [Φ (qe2) + Er] cos qe2

Φ′ (qe2) qe2 + Φ (qe2)

}

=
Φ(0) + Er

Φ(0)
.

It is apparent that Φ (0) = β1 + β2. Therefore

sup
qe2 6=0
{ξ (qe2)} = lim

qe2→0

{
[Φ (qe2) + Er]

Φ (qe2) qe2
sin qe2

}
= 2.
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F I G U R E A . 5 : The suprenum of ξ (qe2).

Therefore, to ensure that eq. (A.66) only has the solution qe2 = 0, the condition

kP > 2β1β2 (A.71)

must be satisfied [5]. This supersedes the gain conditions seen in eqs. (A.64) and
(A.51) since

β1β2 > min
{
β1

2
, β2

2
}
, for β1 6= β2, and

β1β2 = min
{
β1

2
, β2

2
}
, for β1 = β2.

With the only solution for eq. (A.66) being qe2 = 0, we will use the expressions found
in eqs. (A.69) and (A.70) to determine qe1 as a unique solution, whereby

sin qe1|qe2=0 = 0, cos qe1|qe2=0 =
−β1 − β2

β1 + β2

= −1.

From these results, it is evident that

qe1 = π ± 2kπ



Appendix A. Proofs 292

with k ∈ Z. Therefore
(
qe1, q

e
2, q̇

e
1, q̇

e
2

)
= (π + 2kπ, 0, 0, 0) .

Thus, we have proven that the only equilibrium point in Ω− is the FPEP.

(iv) The behaviour of the system trajectory when found within an approximate neigh-
bourhood of the FPEP can be determined through the development of a characteristic
equation, which will contain information about the poles of the system when approx-
imately linearised about the FPEP. The MC-ROPAn−1 model is represented by the
companion form when it is transformed into the state-space described by

ẋ = f(x). (A.72)

The state-space was constructed by choosing the transformations

q1 = x1, q̇1 = x2,

q2 = x3, q̇2 = x4.

The approximately linearised system about the FPEP is derived using Lyapunov’s
Linearisation technique (see section 5.2.1 for more information), whereby

A =
∂f(x)

∂x

∣∣∣∣
(x1,x2,x3,x4)=(π,0,0,0)

(A.73)

and where A ∈ R4×4 in this particular scenario. The characteristic equation can thus
be generated as

λ(s) = det (sI4 −A) = 0

where s = σ + jω ∈ C (see section 4.4 for more information). This results in the
characteristic equation

λ(s) = s4 + a1s
3 + a2s

2 + a3s+ a4 (A.74)

which pertains specifically to the undamped MC-ROPAn−1 robot, where

a1 =
kV
γ
, a2 =

kP + Ψ
2 [
kD − 2

(
α2β1 + α1β2

)]

γ
,

a3 =
kV Ψ

2

γ
, a4 =

Ψ
2 (
kP − 2β1β2

)

γ

and

Ψ
2

=
Er

α1 + α2 + 2α3
, γ = kD − 2Ψ

2 (
α1α2 − α3

2
)

(A.75)
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[5]. Ψ
2 is evidently > 0. We shall now prove that γ > 0 [5].

It has been shown in Proof A.3 that kD > kDM for |Λ(q, q̇)| 6= 0 (see eq. (8.13)).
This expression can be simplified for the VCL transformed PAn−1 robot, which results
in

kDM = max
q2

{
[Φ (q2) + Er]λmax

[(
G(q)T M

−1
(q2)G (q)

)−1
]}

= max
q2

{
[Φ (q2) + Er]

∣∣M (q2)
∣∣

M11 (q2)

}

where G (q) = [0 1]T and where
∣∣M (q2)

∣∣ = M11 (q2)M22 (q2)−M12 (q2)M21 (q2)

= α1α2 + [α1 + 2α3]α3 cos q2.

Therefore

kDM = max
q2

{
[Φ (q2 + Er)]

[
α1α2 + [α1 + 2α3]α3 cos q2

α1 + α2 + 2α3 cos q2

]}

We constructed

kD1 = [Φ (q2 + Er)]

[
α1α2 + [α1 + 2α3]α3 cos q2

α1 + α2 + 2α3 cos q2

]∣∣∣∣
q2=0

= 2Er

[
α1α2 + [α1 + 2α3]α3

α1 + α2 + 2α3

]

an example of such a gain, kD1 . Substituting kD = kD1 into the expression for γ seen
in eq. (A.75) produces

γ|kD=kD1
=

2Erα3

α1 + α2 + 2α3
[α1 + 3α3] > 0

with kD1 ≤ kDM and kD1 > 2Ψ
2 (
α1α2 − α3

2
)
. Therefore

kDM > 2Ψ
2 (
α1α2 − α3

2
)

which will lead to

kD > 2Ψ
2 (
α1α2 − α3

2
)

if the condition in eq. (8.3) is satisfied. Therefore, γ > 0. Additionally, kV > 0,
therefore a1 > 0 and α3 > 0.

Information about the positions of the eigenvalues in the characteristic equation
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shown in eq. (A.74) can be revealed with the use of the Routh-Hurwitz criterion (see
section 4.4 for more information). We thus construct the Routh array and populate it
using the coefficients of the characteristic equation, as seen with

s4 1 a2 a4

s3 a1 a3 0

s2 b1 b2 0
s1 c1 0 0

s0 d1 0 0

where

b1 =
a1a2 − a3

a1
=
D2

a1
, b2 = a4

and

c1 =
b1a3 − a1b2

b1

=
[a1a2 − a3] a3 − a1

2a4

a1a2 − a3

=
D3

D2

and where, for clarity, D2 = a1a2 − a3 and D3 = [a1a2 − a3] a3 − a1
2a4. Solving

for D3 produces

D3 = −2
[
α2β1 + α3β1 − α1β2 − α3β2

]2
Ψ

2
kV

2

(α1 + α2 + 2α3)2 γ2
< 0.

Therefore, D3 < 0 regardless of the gains chosen for kP and kV . This is sufficient
to prove that the FPEP is unstable since this condition will always guarantee a sign
change in the left-hand column of the Routh array [5]. If, for instance D2 > 0, then
b1 > 0 and c1 < 0, guaranteeing at least two eigenvalues in the right-hand side of the
complex plane. If D2 < 0, then b1 < 0 and c1 > 0, once again guaranteeing at least
two eigenvalues in the right-hand side of the complex plane.

To extend this proof, we will derive, in detail, the eigenvalues positional states with
respect to the gain kP , as originally derived in [5]. This will be useful for the upcoming
derivations in the next chapter. There are three specific cases in this proof, where

(i) 0 < kP < 2β1β2,

(ii) kP = 2β1β2, and

(iii) kP > 2β1β2.

If 0 < kP < 2β1β2, the following conditions arise:
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(1) a4 < 0,

(2) D3 = [a1a2 − a3] a3 − a1
2a4 < 0,

∴ [a1a2 − a3]︸ ︷︷ ︸
D2

a3 < a1
2a4 < 0, and

(3) D2 < 0 from condition (2) if α3 > 0.

These conditions result in
D3

D2

> 0, which produces the coefficient signs {+,+,−,+,−}
on the left-hand column of the Routh array. Therefore, if 0 < kP < 2β1β2, the charac-
teristic equation will have three poles in the right-hand side of the complex plane and
one eigenvalue in the left-hand side of the complex plane [5].

For the second case, if kP = 2β1β2, then the following conditions arise:

(1) a4 = 0,

(2) D3 = [a1a2 − a3] a3 < 0, and

(3) D2 < 0 from condition (2) if α3 > 0.

Additionally, if a4 = 0 then

λ(s) = s4 + a1s
3 + a2s

2 + a3s

= s
[
s3 + a1s

2 + a2s+ a3

]
.

From this, we can construct a new Routh array, knowing that one of the poles is found
at the origin (s = 0). Therefore

s3 1 a2 0
s2 a1 a3 0

s1 b1 0 0
s0 c1 0 0

where

b1 =
D2

a1
< 0, c1 = a3 > 0.

This results in the left-hand column coefficient signs: {+,+,−,+}. Therefore, one
eigenvalue is found at the origin, and two eigenvalues are found on both the right-hand
side and left-hand side of the complex plane [5].

If kP > 2β1β2, then the following conditions arise:

(1) a4 > 0,
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(2) D3 = [a1a2 − a3] a3 − a1
2a4 < 0,

∴ [a1a2 − a3]︸ ︷︷ ︸
D2

a3 < a1
2a4,

which means that [a1a2 − a3] a3





> 0
= 0
< 0

, and

(3) D2 = a1a2 − a3





> 0
= 0
< 0

from condition (2) if α3 > 0.

In the case where D2 > 0, then
D3

D2

< 0, which results in the left-hand column

coefficients {+,+,+,−,+}. If D2 < 0, then
D3

D2

> 0, which results in the left-hand

column coefficients {+,+,−,+,+}. So for both cases where D2 < 0 and D2 > 0,
both the left-hand and right-hand sides of the complex plane will each contain two
eigenvalues [5].

If, however, D2 = 0, we won’t be able to solve for the positions of the eigenval-
ues directly. Instead, we can assume that D2 is an infinitely small number with either
a negative or positive sign to determine the behaviour of the system with D2 ≈ 0 [5].
We, therefore, choose

D2 = ε

[5]. Therefore

D2

a1
=

ε

a1
= ε = b1.

If ε > 0, then the coefficients of the left-hand column of the Routh array will be
{+,+,+,−,+}. Similarly, if ε < 0, then the coefficients of the left-hand column of
the Routh array will be {+,+,−,+,+}. Therefore, if kP > 2β1β2, then the charac-
teristic equation of the undamped MC-ROPAn−1 robot about the FPEP will have two
eigenvalues in each of the left-hand and right-hand sides of the complex plane [5].

Each solution shows that the FPEP is unstable, since there are at least two eigenvalues
in the right-hand half of the complex plane. Therefore, choosing kP > 2β1β2 not only
guarantees that the FPEP is the only equilibrium point in Ω−, it also guarantees that
FPEP is unstable and hyperbolic (has no eigenvalues on the imaginary axis), and is
therefore a saddle point (as explained in Definition 2.7 of [5, pg. 25]).

(v) It has already been proven that, in the case where E∗ = Er, there is an invariant set
Wr (shown in eq. (A.21)) that contains the UEP, which is associated with a trajectory
that is described by a homoclinic orbit. Therefore, since the FPEP is unstable and
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is a saddle point, it is apparent that, if kD > kDM , kV > 0 and kP > 2β1β2, that
every closed loop solution will approach the invariant set Wr (the UEP) as t→∞.
This does not mean that the UEP is a stable equilibrium point, however, since the
homoclinic orbit rests between a stable and unstable manifold. The unstable nature of
the UEP is proven below, as seen in [5].

Considering the companion form representation of the MC-ROPAn−1 robot seen
in eq. (A.72), the approximately linear system representation about the UEP is
represented as

A =
∂f(x)

∂x

∣∣∣∣
(x1,x2,x3,x4)=(0,0,0,0)

.

The characteristic equation is derived as per the last example, and is presented as

λ(s) = s4 + a1s
3 + a2s

2 + a3s+ a4

whereby

a1 =
kV
kD

, a2 =
kP
kD
−Ψ

2
,

a3 = −kV
kD

Ψ
2
, a4 = −kP

kD
Ψ

2
.

To our convenience, the characteristic equation can thus be neatly represented as

(
s2 −Ψ

2
)[
s2 +

kV
kD

s+
kP
kD

]
= 0,

∴
(
s−Ψ

) (
s+ Ψ

) [
s2 +

kV
kD

s+
kP
kD

]
= 0.

It is apparent, upon inspection of the expression above, that the UEP has three
eigenvalues in the left-hand half of the complex plane and one eigenvalue in the right-
hand half of the complex plane. Thus, according to Definition 2.7 of [5, 25], the UEP
is also a saddle point.

It is apparent that, despite the fact that all closed-loop solutions in S will tend
toward the invariant set Wr, it will never reach this equilibrium point within a
defined length of time. It is, therefore, imperative that a balancing controller, such
as an LQR controller, be employed once the pendulum system finds itself approxi-
mately near the UEP. This is important for practical applications, but an extensive
discussion on this topic is not included in this dissertation since the realisation of
the homoclinic orbit is deemed sufficient for this application as stated in chapter 1.
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There is, however, a sufficient discussion on the topic included in [5], and the reader
is encouraged to read this section if necessary.
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A.5 The Gain Selection Criterion for the Undamped
TC-ROPAn−1 Robot

The equations of motion of the undamped TC-ROPAn−1 robot is transformed into
the state-space by choosing the equalities

q1 = x1, q2 = x2,

q̇1 = x3, q̇2 = x4

which results in the expression

f(x) =




x3

x4

f1(x)
f2(x)


 (A.76)

where, from eqs. (9.10a) and (9.10b),

f1(x) =

[
−M12(x)

(
kP

[(
2α

π

)
arctan x3 − x2

]
− kDx4

)
+ α3

(
2x3x4 + x4

2
)

sin x2

+β1 sin x1 + β2 sin (x1 + x2)

]/ [
M11(x)

]
,

f2(x) = kP

[(
2α

π

)
arctan x3 − x2

]
− kDx4.

The linearised system about the FPEP is represented as

f(x̃) ≈ Ax̃

as seen in section 5.2.1, where

A =

(
∂f(x)

∂x̃

)∣∣∣∣∣
x=x∗

with x∗ = (π, 0, 0, 0). Therefore, with f(x) defined in eq. (A.76) we can calculate the
matrix A, resulting in

A =




0 0 1 0
0 0 0 1
a31 a32 a33 a34

a41 a42 a43 a44


 (A.77)

where

a31 =
−β1 − β2

α1 + α2 + 2α3
, a41 = 0,
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a32 =
kP (α2 + α3)− β2

α1 + α2 + 2α3
, a42 = −kP ,

a33 = −2kPα

[
α2 + α3

π (α1 + α2 + 2α3)

]
, a43 =

2kPα

π
,

a34 = kD

[
α2 + α3

α1 + α2 + 2α3

]
, a44 = −kD.

The linearised system about the FPEP is associated with a classification of stability,
which can be determined through the derivation of the characteristic equation using
the formula

λ(s) = det (sI −A) .

The characteristic equation

λ(s) = a0s
4 + a1s

3 + a2s
2 + a1s+ a0 = 0 (A.78)

was thus derived using A from eq. (A.77), where

a0 = π [α1 + α2 + 2α3] ,

a1 = kDπ [α1 + α2 + 2α3] + 2kPα [α2 + α3] ,

a2 = π
[
β1 + β2 + kP [α1 + α2 + 2α3]

]
,

a3 = kDπ
[
β1 + β2

]
+ 2kPαβ2,

a4 = kPπ
[
β1 + β2

]
.

It is apparent from the characteristic equation that the local stability of the undamped
TC-ROPAn−1 robot is indeed dependent on the gains kP and kD. We must now
choose appropriate values of kP and kD to ensure that the FPEP is unstable. We
will now derive an analytical solution using the Routh-Hurwitz stability criterion
implemented in the form of the Routh array

s4 a0 a2 a4

s3 a1 a3 0

s2 b1 b2 0
s1 c1 0 0

s0 d1 0 0

where the table has been populated with the coefficients of the characteristic equa-
tion shown in eq. (A.78). The FPEP will be defined as unstable if there are any sign
changes that occur between the coefficients on the far left-hand column of the Routh
array, termed the critical Routh coefficients (every sign change corresponds to one pole
in the right-hand side of the complex plane). We shall thus calculate the remaining
Routh array coefficients and evaluate the possibility of a sign change with respect to
the magnitudes of kP and kD, with the critical coefficients being a0, a1, b1, c1, and d1.
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It is evident that the critical coefficients a0 > 0 and a1 > 0 since

α1 > 0, α2 > 0, α3 > 0, (A.79a)
kP > 0, kD ≥ 0, α > 0. (A.79b)

The critical coefficient b1 is calculated as

b1 =
a1a2 − a0a3

a1
.

This simplifies to

b1 =
2kPπα

>0︷ ︸︸ ︷(
α2β1 + α3β1 − α1β2 − α3β2

)

kDπ (α1 + α2 + 2α3) + 2kPα (α2 + α3)
+ kPπ (α1 + α2 + 2α3) .

It is apparent, therefore, that b1 > 0 regardless of the magnitudes of kP and kD since
the conditions shown in eqs. (A.79a) and (A.79b) must hold, and because of the
condition shown in eq. (A.42), which represents a modification of Lemma 2.1 found
in [5]. Additionally, b2 is described as

b2 = a4

which results in b2 > 0 because of the conditions in eqs. (A.79a) and (A.79b) and
because

β1 > 0, β2 > 0. (A.80)

We also find, by inspection of the Routh array, that

d1 = β2 = a4 > 0.

It is conclusive, therefore, that the only coefficient whose sign could still possibly
change due to the magnitudes of the gains kP and kD is c1. We find that if c1 < 0,
then there will be two poles in both the left-hand and right-hand halves of the
pole-zero plane. This is formally described in the following criterion:

Criterion A.1. Critical Routh Coefficient Condition for the undamped TC-ROPAn−1

robot: The FPEP of the undamped TC-ROPAn−1 robot is guaranteed to be locally
unstable if the critical Routh coefficient c1 < 0, causing the allocation of two poles in
both the left-hand and right-hand halves of the complex plane.

We thus express c1 analytically as

c1 =
b1a3 − a1b2

b1
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which simplifies to

c1 =
w2

(
−n0kp

2 − n1kDkP + n2kD + n3kP
)

w0kP + w1kD + w2

where

w0 = 2α [α1 + α2 + 2α3]2 ,

w1 = π [α2 + α3] [α1 + α2 + 2α3] ,

w2 = 2α
[
α2β1 + α3β1 − α1β2 − α3β2

]

and

n0 = 2α [α2 + α3] , n1 = π [α1 + α2 + 2α3] ,

n2 = π
[
β1 + β2

]
, n3 = 2β2α.

The denominator of this expression is positive ∀t since

w0 > 0, w1 > 0

as a direct result of the conditions shown in eqs. (A.79a) and (A.79b), and w2 > 0 as
dictated by the modified Lemma shown in eq. (A.42). Therefore, to ensure that the
FPEP of the undamped TC-ROPAn−1 robot is unstable, we must guarantee that

c1n = n0kP
2 + n1kDkP + n2kD + n3kP (A.81)

= −2α [α2 + α3] kP
2 − π [α1 + α2 + 2α3] kDkP + π

[
β1 + β2

]
kD + 2αβ2kP < 0.

This is a convoluted expression, but we can represent this expression as a constraint
on kD with respect to kP , resulting in

kD < kP =
2αkP
π

[
[α2 + α3] kP − β2

β1 + β2 − kP [α1 + α2 + α3]

]
. (A.82)

Therefore, if kD < kP , then c1 < 0. It is evident that this constraint is only valid
between the bounds

β2

α2 + α3
< kP <

β1 + β2

α1 + α2 + 2α3
(A.83)

since for kP <
β2

α2 + α3
and kP >

β1 + β2

α1 + α2 + 2α3
, kP < 0. This is invalid since

kD ≥ 0 and therefore kD ≮ kP . We prove this as follows:
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Proof A.5.1. We shall begin this proof by showing that

β2

α2 + α3
<

β1 + β2

α1 + α2 + α3
. (A.84)

This is done by taking the difference between the aforementioned expressions, resulting in

δk̂p =
β1 + β2

α1 + α2 + α3
− β2

α2 + α3
.

This simplifies to

δk̂p =
β1α2 + β1α3 − β2α1 − β2α3

[α1 + α2 + 2α3] [α2 + α3]
.

The modification on Lemma 2.1 of [5] seen in eq. (A.42) thus leads to the conclusion that
δk̂p > 0. The statement in eq. (A.84) is thus proven.

Next, we shall prove that the condition kD < kP is only valid within the boundaries

β2

α2 + α3
< kP <

β1 + β2

α1 + α2 + 2α3

by completing the following steps:

(i) Prove the lower boundary of this condition is kP =
β2

α2 + α3
by proving that kP < 0

when kP <
β2

α2 + α3
.

(ii) Prove the upper boundary of this condition is kP =
β1 + β2

α1 + α2 + 2α3
by proving that

kP < 0 when kP <
β1 + β2

α1 + α2 + 2α3
.

(iii) Show that kP > 0 between these boundaries.

This process is executed below:

(i) We shall now evaluate the lower boundary of the condition highlighted in eq. (A.82)
by choosing

kP =
β2

α2 + α3
− ε

where ε is a positive infinitesimally small number. Substituting this kP into eq. (A.82)
produces

kP = −2αkP
π

[
ε [α2 + α3]2[

β1α2 + β1α3 − β2α1 − β2α3

]
+ ε [α1 + α2 + 2α3] [α2 + α3]

]
.
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It is, therefore, evident that kP < 0 when kP <
β2

α2 + α3
according to the condition

in eq. (A.42).

(ii) The upper boundary of the condition highlighted in eq. (A.82) is evaluated by choosing

kP =
β1 + β2

α1 + α2 + 2α3
+ ε

where, as before, ε is chosen as a positive and infinitesimally small number. Substitut-
ing this kP into eq. (A.82) produces the simplified result

kP = −2αkP
π

[[
β1α2 + β1α3 − β2α1 − β2α3

]
+ ε [α2 + α3] [α1 + α2 + 2α3]

ε [α1 + α2 + 2α3]2

]
.

We can again conclude in this instance that where kP >
β1 + β2

α1 + α2 + 2α3
, kP < 0 as

suggested by the modified version of Lemma 2.1 shown in eq. (A.42).

(iii) We shall now explore the validity of the condition shown in eq. (A.82) with a gain
selection for kP that falls between the boundaries as shown in eq. (A.83). We begin by
choosing a gain that falls below the upper boundary, whereby

kP =
β1 + β2

α1 + α2 + 2α3
− ε

and where ε > 0 and is no longer necessarily an infinitesimally small number. The
substitution of this expression for kP into eq. (A.82) produces

kP =
2αkP
π

[[
β1α2 + β1α3 − β2α1 − β2α3

]
− ε [α2 + α3] [α1 + α2 + 2α3]

ε [α1 + α2 + 2α3]2

]
.

Therefore, kP > 0 if

0 < ε < εmax =
β1α2 + β1α3 − β2α1 − β2α3

[α2 + α3] [α1 + α2 + 2α3]
.

Therefore

kP >
β1 + β2

α1 + α2 + 2α3
− εmax.

This simplifies to

kP >
β2

α2 + α3
.
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This proves that kP > 0 so long as

β2

α2 + α3
< kP <

β1 + β2

α1 + α2 + 2α3
.

We now understand that the inequality shown in eq. (A.82) is only valid when
kP is chosen between the boundaries demonstrated in eq. (A.83). We shall now
demonstrate two other gain selection conditions that ensures c1 < 0 whilst the value
of kP falls outside this range.

Beginning with the lower boundary, we chose

kP =
β2

α2 + α3
− ε

to describe kP , where

0 < ε <
β2

α2 + α3
.

This kP , when substituted into eq. (A.81), produces

c1n = 2αε [α2 + α3]

[
β2

α2 + α3

]
+

kDπ

α2 + α3

[
β1α2 + β1α3 − β2α1 − β2α3

+ ε [α1 + α2 + 2α3] [α2 + α3]
]

which is evidently guaranteed to satisfy c1n ≥ 0 so long as kD ≥ 0. Additionally, if

ε =
β2

α2 + α3
(which results in kP = 0) we find that

c1n = kDπ
[
β1α2 + β1α3 − β2α1 − β2α3

]

which also results in c1n ≥ 0 so long as kD ≥ 0. Therefore, c1n ≥ 0 when

0 <kP ≤
β2

α2 + α3
, kD ≥ 0.

Looking at the upper boundary, we chose the gain expression

kP =
β1 + β2

α1 + α2 + 2α3
+ ε
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where ε > 0 and is not necessarily an infinitesimally small number. The substitution
of the expression for kP into eq. (A.81) produces

c1n = −2α

[
β1 + β2

α1 + α2 + 2α3
+ ε

] [
β1α2 + β1α3 − β2α1 − β2α3

α1 + α2 + 2α3
+ ε [α2 + α3]

]

− kDπε [α1 + α2 + 2α3]

which guarantees that c1n < 0 so long as kD ≥ 0. This is also true if ε = 0 in this
case, which corresponds to

kP =
β1 + β2

α1 + α2 + 2α3
.

Considering the results derived above, we will now summarise the gain selection
criterion that is necessary to ensure that the FPEP of the undamped TC-ROPAn−1

robot is locally unstable (i.e. guarantee that the critical Routh coefficient c1 < 0)

The FPEP of the undamped TC-ROPAn−1 robot is guaranteed to be locally un-
stable so long as the following selection conditions for the gains kP and kD are
satisfied:

(1) For
β2

α2 + α3
< kP <

β1 + β2

α1 + α2 + 2α3
:

0 ≤ kD <
2αkP
π

[
[α2 + α3] kP − β2

β1 + β2 − kP [α1 + α2 + α3]

]
;

(2) For kP ≥
β1 + β2

α1 + α2 + 2α3
; kD ≥ 0:

This set of conditions is formalised as criterion 9.1 in section 9.4.1.



Appendix A. Proofs 307

A.6 The Gain Selection Criterion for the Passively Damped
TC-ROPAn−1 Robot

Choosing the state-space variables

q1 = x1, q2 = x2,

q̇1 = x3, q̇2 = x4

to represent the angular displacements and velocities of the TC-ROPAn−1 robot, we
can describe the equations of motion shown in eqs. (9.18) and (9.19) as

f(x) =




x3

x4

f1(x)
f2(x)


 (A.85)

where

f1(x) =

[
−M12(x)

(
kP

[(
2α

π

)
arctan x3 − x2

]
− kDx4

)
+ α3

(
2x3x4 + x4

2
)

sin x2

−b1q̇1 + β1 sin x1 + β2 sin (x1 + x2)

]/ [
M11(x)

]
,

f2(x) = kP

[(
2α

π

)
arctan x3 − x2

]
− kDx4

and where b1 represents the passive damping condition. The model of the TC-
ROPAn−1 robot linearised about the FPEP is represented as

f(x̃) ≈ Ax̃

where

A =

(
∂f(x)

∂x̃

)∣∣∣∣
x=x∗

and where x∗ = (π, 0, 0, 0). Applying this linearisation on the system shown in eq.
(A.85) produces

A =




0 0 1 0
0 0 0 1
a31 a32 a33 a34

a41 a42 a43 a44


 (A.86)

where the entries are described as

a31 =
−β1 − β2

α1 + α2 + 2α3
, a41 = 0,
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a32 =
kP (α2 + α3)− β2

α1 + α2 + 2α3
, a42 = −kP ,

a33 = −
[

2kPα [α2 + α3] + πb1
π (α1 + α2 + 2α3)

]
, a43 =

2kPα

π
,

a34 = kD

[
α2 + α3

α1 + α2 + 2α3

]
, a44 = −kD.

The characteristic equation of the system is found through the implementation of

λ(s) = det (sI −A)

which, with the substitution of the A matrix found in eq. (A.86) results in the
characteristic equation

λ(s) = a0s
4 + a1s

3 + a2s
2 + a1s+ a0 = 0

where

a0 = π [α1 + α2 + 2α3] ,

a1 = π [b1 + kD [α1 + α2 + 2α3]] + 2kPα [α2 + α3] ,

a2 = π
[
β1 + β2 + kP [α1 + α2 + 2α3] + b1kD

]
,

a3 = π
[
kD
[
β1 + β2

]
+ b1kp

]
+ 2kPαβ2,

a4 = kPπ
[
β1 + β2

]
.

The stability of the linearised system about the FPEP can be determined analytically
through the implementation of the Routh-Hurwitz criterion in the form

s4 a0 a2 a4

s3 a1 a3 0

s2 b1 b2 0
s1 c1 0 0

s0 d1 0 0

.

The characteristic equation of the TC-ROPAn−1 model linearised about the FPEP
will contain a pole on the right-hand half of the complex plane for every sign change
that is seen in the coefficients that are found on the far-left column of the Routh array
(i.e. this concerns the critical coefficients a0, a1, b1, c1, and d1). As seen with the
undamped case, it is evident that the critical Routh coefficients α0 > 0 and α1 > 0
since

α1 > 0, α2 > 0, α3 > 0, (A.87a)
kP > 0, kD ≥ 0, α > 0. (A.87b)
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The next critical Routh coefficient is b1, which is calculated as

b1 =
a1a2 − a0a3

a1

which simplifies to

b1 = π

[
b1kD

2n1 + kP
2w0 + kPkD (w1 + b1n0) + kPw2 + kDπb1

2 + b1n2

b1π + kDn1 + kPn0

]

where

w0 = 2α [α1 + α2 + 2α3]2 ,

w1 = π [α2 + α3] [α1 + α2 + 2α3] ,

w2 = 2α
[
α2β1 + α3β1 − α1β2 − α3β2

]

and

n0 = 2α [α2 + α3] , n1 = π [α1 + α2 + 2α3] ,

n2 = π
[
β1 + β2

]
, n3 = 2β2α.

It is evident that, since the conditions in eqs. (A.87a) and (A.87b) must hold, the
conditions

w0 > 0, w1 > 0, (A.88)
n0 > 0, n1 > 0 (A.89)

must also hold. The modification on Lemma 2.1 found in [5] (see eq. (A.42)) leads to
w2 > 0, and knowing that

β1 > 0, β2 > 0

we are certain that

n2 > 0, n3 > 0.

It is evident, therefore, that the critical coefficient b1 cannot under any permissible
circumstances exit the positive real space (i.e. b1 > 0 ∀t so long as the aforementioned
conditions hold). Additionally,

d1 = b2 = a4 > 0.

We can thus conclude that the only coefficient that has an influence on the stability
of the passively damped TC-ROPAn−1 robot about the FPEP is c1, as seen in the
undamped case, which results in the following criterion:

Criterion A.2. Critical Routh Coefficient condition for passively damped
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TC-ROPAn−1 robot: The FPEP of the passively damped TC-ROPAn−1 robot is
guaranteed to be locally unstable if the critical Routh coefficient c1 < 0, causing the
allocation of two poles in both the left-hand and right-hand halves of the complex
plane.

This critical Routh coefficient is calculated using

c1 =
b1a3 − a1b1

b1
.

Substituting the necessary expressions leads to

c1 =
p1k

3
D + p2kD

2kP + p3k
2
D + p4kDkP + p5kD + p6kP

3 + p7kDkP
2 + p8kP

2 + p9kP

π
[
z1kD

2 + z2kDkP + z3kD + z4kP
2 + z5kP + z6

]

where

p1 = πb1n1n2,

p2 = π2b1
2n1 +

(
w1π − n1

2
)
n2 + πb1 (n0n2 + n1n3) ,

p3 = π2b1
2n2,

p4 = π
(
π2b1

3 + πn3b1
2 − 2b1n1n2 + w2n2

)
,

p5 = πb1n2
2,

p6 = πw0 [n3 + πb1]− n0
2n2,

p7 = π [n0n3 + w1π] b1 + π2b1
2n0 + [w0π − 2n0n1]n2 + πw1n3,

p8 = π [[πw2 − 2n0n2] b1 + w2n3] ,

p9 = πb1n2n3

and

z1 = b1n1, z2 = n0b1 + w1,

z3 = πb1
2, z4 = w0,

z5 = w2, z6 = b1n2.

This problem is difficult to solve analytically since there are three unknowns that
may all effect the stability of the system (b1, kD, and kP ). To simplify this problem,
and in the interest of completing this derivation, we chose kD = 0. The implica-
tions of this decision on the final swing-up control is unknown at this point of the
derivation, but sacrificing the feedback of the distal pendulum’s angular velocity is
deemed necessary for the successful completion of the gain selection criterion for the
passively damped TC-ROPAn−1 robot.
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Substituting kD = 0 into the expression for c1 produces

c1

∣∣∣∣
kD=0

=
kP
π

[
r1kP

2 + r2kP + r3

w0kP
2 + w2kP + b1n2

]
(A.90)

where

r1 = π2b1w0 + πw0n3 − n0
2n2,

r2 = π [πb1w2 + w2n3 − 2b1n0n2] ,

r3 = πb1n2n3.

With the conditions set out in eqs. (A.88) and (A.89), it is evident that the denomina-
tor of the expression in eq. (A.90) will have no effect on the sign of c1 (along with
the term kP/π since kP > 0). The sign change of c1 can thus be determined solely
through the analysis of the expression

c1D = r1kP
2 + r2kP + r3. (A.91)

We can thus solve for the intercepts of c1 by evaluating c1D . We shall subsequently
determine what gain kP will produce a negative valued c1D with respect to the pas-
sive damping coefficient b1. The results of the intercept values of kP are represented
as

c1 = 0;





kP = kP1 = 0;

kP = kP2 =
β2

α2 + α3
;

kP = kP3(b1) =
πb1

(
β1 + β2

)

πb1 (α1 + α2 + 2α3)− 2α
(
β1α2 + β1α3 − β2α1 − β2α3

)

which results in

r1kP
2 + r2kP + r3 = 0

{
kP = kP2 ;
kP = kP3 .

. (A.92)

The gain kP3(b1) may also be represented as

kP3(b1) =
n2b1

n1b1 − w2
.

We shall now identify the orientation of each of these gains with respect to each
other on the real number axis with the following lemma:

Lemma A.2. It is evident that kP3(b1) is described by the asymptote

b1lim =
2α
(
β1α2 + β1α3 − β2α1 − β2α3

)

π (α1 + α2 + 2α3)
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where b1 = b1lim . This results in

b1 < b1lim ↔ kP3(b1) < 0,

b1 > b1lim ↔ kP3(b1) > 0.

Choosing b1 = b1lim + ε where ε is an infinitesimally small number, we find that

kP3(b1) =
(b1lim + ε)

(
β1 + β2

)

ε (α1 + α2 + 2α3)
.

Therefore, taking ε→∞+ results in

b1 →+ b1lim ↔ kP3 →∞+.

Additionally, it is evident that

b1 →∞+ ↔ kP3 →
β1 + β2

α1 + α2 + 2α3
.

From Proof A.5.1 we know that

β1 + β2

α1 + α2 + 2α3
>

β2

α2 + α3
.

Therefore, we conclude that so long as b1 > b1lim

kP1 < kP2 < kP3(b1) ∀t.

If, however, b1 < b1lim then

kP3 < kP1 < kP2 .

The sign of the coefficient c1D between each of the intercepts will now be deter-
mined considering the cases where b1 > b1lim and 0 < b1 < b1lim respectively.

Case 1: With b1 > b1lim , we begin by evaluating the sign of c1D when kP1 < kP < kP2 .
We therefore choose kP = ε, where ε is a positive and infinitesimally small number.
Substituting this kP into eq. (A.91) results in

c1D = r1ε
2 + r2ε+ r3

and since ε ≈ 0, then

c1 = ε

[
r3

b1n2

]
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with

r3 > 0, n2 > 0, b1 > 0.

It is evident that c1 > 0 in this case. We know that the next intercept occurs when
kP = kP2 according to Lemma A.2. Therefore

c1 > 0, for 0 < kP < kP2 .

Next we must find the sign of c1D when

kP2 < kP < kP3(b1).

First, a gain kP = kP2 + ε is chosen since kP3(b1) > kP2 . Substituting this gain into
eq. (A.91) produces

c1D = r1 (kP2 + ε)2 + r2 (kP2 + ε) + r3

= r1kP2
2 + 2εr1kP2 + ε2r1 + r2kP2 + εr2 + r3.

Using the intercept condition expressed in eq. (A.92), the expression for c1D simpli-
fies as

c1D = 2εkP2r1 + ε2kP2 + εr2

with ε2 <<< ε, resulting in

c1D = ε (2kP2r1 + r2) .

Expanding and solving the expression for c1D produces

c1D = −πw2ε
(
2β2α+ πb1

)
.

Therefore, it is evident that

c1D < 0 for kP2 < kP < kP3 .

Therefore, choosing a gain kP between kP2 and kP3 will ensure that the FPEP is an
unstable equilibrium point.

Lastly, we will evaluate the gain selection kP > kP3 and its effect on the coeffi-
cient c1D . We thus select kP = kP3 + ε, where, once again, ε is an infinitesimally
small positive number. Substituting this gain selection into eq. (A.91) produces

c1D = r1 (kP3 + ε)2 + r2 (kP3 + ε) + r3

= r1kP3
2 + r2kP3 + r3 + 2εr1kP3 + ε2r1 + εr2.
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Implementing the intercept condition shown in eq. (A.92) allows for the simplifica-
tion

c1D = 2εr1kP3 + ε2r1 + εr2

and since ε2 <<< ε, then

c1D = ε [2r1kP3 + r2] .

Upon further simplification, we find that

c1D = πw2ε
(
2β2α+ πb1

)

which shows that if the gain kP is chosen to be larger than kP3 , then this would
result in a stable response about the FPEP, since c1D > 0, as shown above. We can,
therefore, describe the gain selection criterion of the passively damped TC-ROPAn−1

robot with kD = 0 and b1 > b1lim as follows.

The FPEP of the passively damped TC-ROPAn−1 robot when b1 > b1lim is guar-
anteed to be locally unstable so long as the conditions

β2

α2 + α3
< kP <

n2b1
n1b1 − w2

, kD = 0

are satisfied. We now move onto case 2.

Case 2: For the case where 0 < b1 < b1lim , it is apparent from Lemma A.2 that

kP3 < kP1 < kP2 .

Therefore, there are only two intercepts that occur on the positive semi-definite real
axis, since kP3 < 0. Therefore, using the results from the last case, we can define the
gain selection criterion for the case when b1 < b1lim .

The FPEP of the passively damped TC-ROPAn−1 robot when 0 < b1 < b1lim is
guaranteed to be locally unstable so long as the conditions

kP >
β2

α2 + α3
, kD = 0

are satisfied. The results of each of these cases are formalised in criterion 9.2 of
chapter 9. The position of the intercepts on the real-axis for each case of damping is
demonstrated in figure A.6.
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F I G U R E A . 6 : The signs of c1D with reference to its intercepts, for
b1 > b1lim (left) and 0 < b1 < b1lim (right).

The positive sign represents a region of gain selections for kP that results in a
positively valued c1 (which corresponds to a stable system response about the FPEP).
The negative sign represents a region of gain selections for kP that results in a
negatively valued c1 (which corresponds to an unstable system response about the
FPEP).



316

Appendix B

Examples

This appendix contains a number of application examples of the certain techniques
that were mentioned in the main body of the dissertation. These examples are in-
cluded to provide the reader with a practical reference to assist them with particular
modelling or control problems they may encounter. This appendix contains five
sections which provide detailed examples of the following applications:

1. LDM-related control using the mechanical energy of a simple mass-spring-
damper system.

2. Implementation of Krakovskii’s method.

3. Exact feedback linearisation of the fully-actuated undamped DIP.

4. IOFBL of the fully-actuated undamped DIP.

5. PAn−1 robot VCL iteration procedure for k = 1 : 3.

B.1 LDM-related control using the mechanical energy of a
simple mass-spring-damper system.

The Lyapunov candidate function is used in this example to determine the behaviour
of the simple mass-spring-damper, and to prove that the mass block will always
tend towards x = 0 if the damper is associated with some non-zero viscous damping
coefficient. This example follows the procedure highlighted in chapter 5.

(1) Consider the classic model of the unactuated nonlinear mass-spring-damper
system. If the mass in figure B.1 is displaced in such a manner that the
length of the spring exceeds or falls short of its natural length, will the mass
asymptotically tend towards the position of natural spring length after a
finite amount of time? It would be possible to determine the local stability
of the system around the vicinity of the equilibrium point using the Jacobian
linearisation technique, but this technique cannot be employed if the mass is
moved a large distance off the initial equilibrium point [2]. LDM is, therefore,
well suited to solve this particular stability problem.



Appendix B. Examples 317

F I G U R E B . 1 : Non-linear mass-spring-damper model. Adapted
from [2].

The mass’ movement is translational, moving only in a one-dimensional plane.
The equation of motion dictating the behaviour of this block can be found
through the implementation of Newtonian physics. This results in

mẍ+ bẋ+ k0x+ k1x
3 = 0 (B.1)

where

x = the translational displacement of mass off origin (m),
m = the mass of block (kg),

b = the linear damping coefficient (kg.m−1.s−2),

k0 = the linear spring constant (kg.s−2), and

k1 = the nonlinear spring constant (kg.m−2.s−2).

A state-space is formed by choosing

x1 = x, x2 = ẋ.

Therefore, the state-space of this mass-spring-damper system is represented as

ẋ1 = x2, (B.2)

ẋ2 = − b

m
x2 −

k0

m
x1 −

k1

m
x3

1 (B.3)

where ẋ = f(x). All the spring constants and damping coefficients are non-
zero. The system, therefore, has only one equilibrium point, the origin. There-
fore [

x∗1
x∗2

]
= �.
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(2) The system is nonlinear. A trivial quadratic function cannot, therefore, be
used as a candidate Lyapunov function. It seems appropriate to make use
of the most accessible positive definite function for mechanical systems, its
mechanical energy. Therefore, we chose

V (x) =
1

2
mẋ2 +

∫ x

0

(
k0x+ k1x

3

)
dx

=
1

2
mẋ2 +

1

2
k0x

2 +
1

4
k1x

4

=
1

2
mx2

2 +
1

2
k0x1

2 +
1

4
k1x1

4. (B.4)

This Lyapunov function has the following properties:

(a) The mechanical energy is zero when x = x∗.

(b) Increasing the magnitude of either x1 (corresponding to an increase in
potential energy) or x2 (corresponding to an increase in kinetic energy)
results in an increase in mechanical energy whilst moving the states away
from the equilibrium point. Instability is, therefore, related to an increase
in the mechanical energy.

(c) Conversely, moving the states closer to the equilibrium point (x → x∗)
reduces the mechanical energy of the system. Therefore, asymptotic
stability of the equilibrium point is accompanied by the convergence of
mechanical energy to zero.

It is evident that the mechanical energy scalar provides sufficient information
about the stability of the equilibrium for it to be considered as a candidate
Lyapunov function for this system.

(3) The candidate Lyapunov function is clearly positive definite for x ∈ �. The
neighbourhood Ωl is therefore boundless. Proving asymptotic stability in this
region for the equilibrium point will, therefore, prove that the equilibrium
point is globally asymptotically stable [2].

(4) The time differential of the candidate Lyapunov function V̇ (x) needs to be
expressed explicitly to determine if it is negative semi-definite, thus satisfying
the Lyapunov function necessary conditions [2]. This time differential of the
candidate Lyapunov function will effectively represent the change of mechan-
ical energy in the system with respect to time. Taking the time differential
of the mechanical energy and considering a substitution of the equation of
motion in eq. (B.1), the rate of the mechanical energy is expressed as

V̇ (x) = x2

(
mẋ2 + k0x1 + k1x1

3

)
= −bx2

2 (B.5)

[2]. It is apparent that V̇ (x) is negative semi-definite, falling within the set R
when the velocity of the mass x2 = 0 (see section 5.2.2). The candidate function
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shown in eq. (B.4) can, therefore, be classified as a Lyapunov function, which
will asymptotically tend toward the invariant set M, which is a subset of R [2].
The equilibrium point has not, however, been proven to be asymptotically
stable, as there could be many states in M which the trajectory could converge
to (i.e. there could be other points in the system where an equilibrium is
reached where x2 = 0 and x1 = x∗1). Asymptotic stability of this equilibrium
point can be proven, however, by demonstrating that the equilibrium point
found at x = � is the point found in M [2].

Assume that a possible equilibrium point exists in the system, with x2 = 0
existing at a particular value of x1. If this is the case, these values should
produce a zero rate matrix (ẋ = �). Instead, substituting these values into eq.
(B.3) produces

ẋ1 = 0,

ẋ2 = −k0

m
x1 −

k1

m
x3

1 6= 0

[2]. This is clearly a contradiction; The acceleration of the mass is non-zero,
which will cause the block to move off the candidate equilibrium point. The
only state found within the set M, therefore, is the equilibrium point found
at the origin (i.e. x = �). The equilibrium point at the origin is, as proved by
contradiction, asymptotically stable due to the negative semi-definite V̇ (x),
which guarantees that the trajectory will converge in the set M, a set that
conveniently contains only one equilibrium point, namely the equilibrium
point at the origin [2].
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B.2 Implementation of Krakovskii’s Method

In this example, Krakovskii’s method is used to identify an appropriate Lyapunov
candidate function for the mass-spring-damper shown in the previous example. We
have shown that the using the mechanical energy is sufficient as a Lyapunov can-
didate function, but a system’s behaviour may be described by multiple candidate
functions, as we shall now prove.

The identification of this asymptotically stable equilibrium point may also be suc-
cessfully preformed using Krakovskii’s method:

Using the system described in eqs. (eq. B.2) and (B.3), the Jacobian matrix A
is represented as

A =
∂f(x)

∂x
=




∂f1(x)

∂x1

∂f1(x)

∂x2

∂f2(x)

∂x1

∂f2(x)

∂x2




=




0 1

−k0

m
− 3k1

m
x1

2 − b

m


 .

Choosing P = I, we find that

F(x) = ATP + PA = AT + A = −Q

=




0 −k0

m
− 3k1

m
x1

2 + 1

−k0

m
− 3k1

m
x1

2 + 1 −2b

m


 .

Q must be positive definite to conclude that V̇ (x) is negative definite. A negative
definite V̇ (x), therefore, corresponds to the requirement that F(x) must be negative
definite. One way to prove this is to identify the eigenvalues of the resultant matrix,
whereby a negative definite matrix will only have negative eigenvalues [2]. Taking
the determinant of F(x)− Iλ we find that

|F(x)− Iλ| = det




−λ −k0

m
− 3k1

m
x1

2 + 1

−k0

m
− 3k1

m
x1

2 + 1 −2b

m
− λ
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= −λ
(
− 2b

m
− λ

)
−
(
− k0

m
− 3k1

m
x1

2 + 1

)2

= λ2 +
2b

m
λ− 1

m2

(
− k0 − 3k1x1

2 +m

)2

.

The quadratic equation is used to solve for these eigenvalues, where

λ = − b

m
±

√(
2b

m

)2

− 4

m2

(
− k0 − 3mx1

2 +m

)

2

= − b

m
±

√
b2 −

(
− k0 − 3mx1

2 +m

)2

m
.

There are three different results that can be obtained from the quadratic formula
which are dependent on the values of the physical parameters of the system.

(i) In the case where |b| ≥ |−k0−3mx1
2 +m|, the eigenvalues will always be real

and negative definite. This is because the term

√
b2 −

(
− k0 − 3mx1

2 +m

)2

will be equal to γ, a real valued number that will never be larger in magnitude
than b. Therefore,

λ1 =
−γ − b
m

< 0, λ2 =
γ − b
m

< 0.

The equilibrium point at the origin is globally asymptotically stable in this
case.

(ii) In the case where |b| < | − k0 − 3mx1
2 +m|, the eigenvalues will be complex

in nature with negative real values. The term b2 −
(
− k0 − 3mx1

2 +m

)2

will

be negative in magnitude, with

√
b2 −

(
− k0 − 3mx1

2 +m

)2

resulting in an

imaginary number of magnitude jγ. Therefore,

λ1 =
−jγ − b
m

,
−b
m

< 0 and λ2 =
jγ − b
m

,
−b
m

< 0.

The equilibrium point at the origin is also globally asymptotically stable in this
case, but will exhibit oscillatory behaviour introduced by the imaginary poles.
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(iii) The most complex case involves the condition (−k0 − 3mx1
2 +m) = 0. In this

case, the eigenvalues are negative semi-definite, with

λ1 =
−2b

m
< 0, λ2 = 0.

The equilibrium point can only be labelled as marginally stable as the trajectory
is guaranteed to converge to a state in the set M, but it is not certain which
set it will converge to. The asymptotic stability of this equilibrium point can
be proven using invariant set theorem, as seen with the previous Lyapunov
function.

According to the invariant set theorem, the equilibrium point is asymptotically
stable if V̇ (x) ≤ 0 and it can be proven that the equilibrium point in question
is the only state located in M. Therefore

V̇ (x) = −xTQx = −xTF(x)x

=
[
x1 x2

]




0 −k0

m
− 3k1

m
x1

2 + 1

−k0

m
− 3k1

m
x1

2 + 1 −2b

m




[
x1

x2

]
.

Substituting the condition (−k0 − 3mx1
2 + m) = 0 into the matrix F(x) we

find that

V̇ (x) =
[
x1 x2

]



0 0

0 −2b

m



[
x1

x2

]

= −2b

m
x2

2.

V̇ (x) is clearly negative semi-definite in this case. The system equations are
also altered, where

ẋ1 = x2,

ẋ2 = −x1 +

(
3− k1

m

)
x1

3 − b

m
x2.

If one were to imagine that the set M contained all invariant states, let us
assume, once again, that there are multiple states that exist in the set M where
x2 = 0 and with x1 6= 0. If the states truly existed, the rates of these states
will be zero (i.e. ẋ = �). Substituting these values of states into the system
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equations, however, produces

ẋ1 = 0,

ẋ2 = −x1 +

(
3− k1

m

)
x1

3 6= 0.

This is, once again, a contradiction. The rates cannot cause the states to accel-
erate away from an equilibrium point. It is, therefore, proved by contradiction
that the only state found in the set M is the equilibrium point found at the
origin. The equilibrium point is, therefore, proven to be asymptotically stable.

The equilibrium point is proven to be asymptotically stable in all cases, thus proving
that the equilibrium point at the origin is globally asymptotically stable. This means
that, no matter how the block is displaced from the origin, the block will eventually
return to the origin over some finite time.
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B.3 Exact Feedback Linearisation of the Fully-Actuated Un-
damped DIP

The feedback linearisation of a UMS cannot be demonstrated using ELFBL since
the total relative degree r < n. We shall, therefore, demonstrate the technique on a
fully-actuated undamped DIP system (checking the relative degree of the system
along the way).

The system dynamics of the undamped DIP is derived using Lagrangian mechanics
in [6], [34], and [64]. These dynamics are represented using the prototypical form
described by

M(q)q̈ + D(q,q̇) + K(q) = G(q)u

with

M(q) =

[
M11 M12

M21 M22

]
=

[
α1 + α2 + α3 cos(q2) α2 + α3 cos(q2)
α2 + α3 cos(q2) α2

]
,

D(q,q̇) =

[
D1

D2

]
= α3

[
−2q̇1q̇2 − q̇2

2

q̇2
1

]
sin q2,

K(q) =

[
K1

K2

]
=

[
−β1 sin q1 − β2 sin(q1 + q2)

−β2 sin(q1 + q2)

]
, and

G(q)u =

[
τ1

τ2

]

where

α1 = m1l1
2 +m2L1

2 + I1, α2 = m2l2
2 + I2,

α3 = m2L1l2, β1 = gL1(m1 +m2),

β2 = gm2l2.

The equations of motion of the system are therefore defined as

q̈ = M−1(q)
[
G(q)u−D(q,q̇)−K(q)

]

where

M−1(q) =

[
M∗11 M∗12

M∗21 M∗22

]
.
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The equations of motion are now transformed into the state-space using

q1 = x1, q̇1 = x2,

q2 = x3, q̇2 = x4.

Therefore

ẋ1 = x2,

ẋ2 = M∗11

[
τ1 −D1 −K1

]
+M∗12

[
τ2 −D2 −K2

]
,

ẋ3 = x4,

ẋ4 = M∗21

[
τ1 −D1 −K1

]
+M∗22

[
τ2 −D2 −K2

]

which can be represented in the companion form as

ẋ = f(x) + g(x)u

where

f(x) =




f1(x)
f2(x)
f3(x)
f4(x)


 =




x2

−M∗11

[
D1 +K1

]
−M∗12

[
D2 +K2

]

x4

−M∗21

[
D1 +K1

]
−M∗22

[
D2 +K2

]


 ,

g(x) =
[
g1(x) g2(x)

]
=




0 0
M∗11 M∗21

0 0
M∗12 M∗22




with the order of the system n = 4. The system is square, having the m = 2 inputs
matched by the m = 2 outputs defined by

y(t) =

[
q1

q2

]
=

[
x1

x3

]
.

With the outputs defined, we shall now check the relative degree of the system,
knowing that

LgiL
j
fhi(x) = 0 for 0 ≤ j ≤ ri − 1,

LgiL
ri−1
f hi(x) = 0

where in this case, 1 ≤ i ≤ 2. Therefore, the process is initiated with j = 0 for the
first output, which results in

Lg1L
0
fh1(x) = Lg1h1(x) =

∂h1(x)

∂x
g1(x)
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=
[
1 0 0 0

]



0
M∗11

0
M∗12




= 0.

This result is inconclusive. Iterating the process for j = 1 produces

Lg1L
1
fh1(x) = Lg1

[
∂h1(x)

∂x
f(x)

]

= Lg1
[
1 0 0 0

]



x2

f2(x)
x4

f4(x)




= Lg1x2 =
∂x2

∂x
g1(x)

=
[
0 1 0 0

]



0
M∗11

0
M∗12




= M∗11 6= 0.

Therefore r1 = 2. This process is repeated for the second output, where

Lg2L
0
fh2(x) = Lg2h2(x) =

∂h2(x)

∂x
g2(x)

=
[
0 0 1 0

]



0
M∗21

0
M∗22




= 0.

This result is, once again, inconclusive. The procedure must be iterating once more
with j = 1. Therefore

Lg2L
1
fh2(x) = Lg2

[
∂h2(x)

∂x
f(x)

]

= Lg2
[
0 0 1 0

]



x2

f2(x)
x4

f4(x)




= Lg2x4 =
∂x4

∂x
g2(x)
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=
[
0 0 0 1

]



0
M∗21

0
M∗22




= M∗22 6= 0

which shows that r2 = 2. It can be concluded that the system is indeed fully-actuated,
having r = r1 + r2 = n. We can now continue with the ELFBL procedure knowing
that it is appropriate to this application.

The first objective of the procedure involves the establishment of a coordinate
transformation z = Φ(x), where

Φ(x) =
[
φ1(x) φ2(x)

]T

=
[
φ1

1(x) φ1
2(x) φ2

1(x) φ2
2(x)

]T

=
[
x1 x2 x3 x4

]
.

The new state-space can, therefore, be defined as

ż = Φ̇(x) =
∂Φ(x)

∂x
ẋ

= Inẋ

= ẋ
(
Φ−1(z)

)
.

It turns out that the coordinate transformation led to the definition of a new state-
space z that is identical to that of the original state-space. This is caused by the
configuration of the original system, which is evidently in the controllability canoni-
cal form. Therefore

ż1 = z2,

ż2 = M∗11

(
Φ−1(z)

) [
τ1 −D1

(
Φ−1(z)

)
−K1

(
Φ−1(z)

)]
+M∗12

(
Φ−1(z)

)
[τ2−

D2

(
Φ−1(z)

)
−K2

(
Φ−1(z)

)]
,

ż3 = z4,

ż4 = M∗21

(
Φ−1(z)

) [
τ1 −D1

(
Φ−1(z)

)
−K1

(
Φ−1(z)

)]
+M∗22

(
Φ−1(z)

)
[τ2−

D2

(
Φ−1(z)

)
−K2

(
Φ−1(z)

)]

which can, once again, be written in the companion form

ż(t) = f(Φ−1(z)) + g(Φ−1(z))u(t)
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where

f
(
Φ−1(z)

)
=




f1

(
Φ−1(z)

)

f2

(
Φ−1(z)

)

f3

(
Φ−1(z)

)

f4

(
Φ−1(z)

)


 =




z2

−M∗11

[
D1 +K1

]
−M∗12

[
D2 +K2

]

z4

−M∗21

[
D1 +K1

]
−M∗22

[
D2 +K2

]


 ,

g
(
Φ−1(z)

)
=
[
g1

(
Φ−1(z)

)
g2

(
Φ−1(z)

)]
=




0 0
M∗11 M∗12

0 0
M∗21 M∗22


 .

We shall now design a static-state feedback controller of the form

u(t) = α(z) + β(z)v(t)

to introduce a linearising feedback into the system, which results in

ż2 = v1, (B.6a)
ż4 = v2. (B.6b)

We find, however, that the control inputs are present in both ż2 and ż4. We will have
to solve for each of the control inputs (τ1 and τ2) separately. We, therefore, define

v1 = M∗11

[
τ1 −D1 −K1

]
+M∗12

[
τ2 −D2 −K2

]
, (B.7a)

v2 = M∗21

[
τ1 −D1 −K1

]
+M∗22

[
τ2 −D2 −K2

]
(B.7b)

which are a consequence of eq. (B.6a) and (B.6b) (all of the expressions above
are dependent on Φ−1(x), but this is omitted for sake of brevity). To solve these
simultaneous equations, we first solve for τ2 in eq. (B.7a), where

τ2 =
M∗21

M∗22

[
D1 +K1 − τ1

]
+

v2

M∗22

+D2 +K2. (B.8)

Substituting eq. (B.8) into eq. (B.6a) produces

v1 =

[
M∗11 −

M∗12M
∗
21

M∗22

]
τ1 +

[
M∗12M

∗
21

M∗22

−M∗11

] (
D1 +K1

)
+
M∗12

M∗22

v2. (B.9)

We now solve for τ1 in eq. (B.9), where

τ1 =

[
M∗22

M∗11M
∗
22 −M∗12M

∗
21

]
v1 −

[
M∗12

M∗11M
∗
22 −M∗12M

∗
21

]
v2 +D1 +K1. (B.10)
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This is the finalised torque expression for τ1. Substituting eq. (B.10) into eq. (B.6b)
produces

v2 =

[
M∗21M

∗
22

M∗11M
∗
22 −M∗12M

∗
21

]
v1 −

[
M∗12M

∗
21

M∗11M
∗
22 −M∗12M

∗
21

]
v2 +M∗22τ2− (B.11)

M∗22

(
D2 +K2

)
.

Taking eq. (B.11) and solving for τ2 produces the finalised expression for τ2, with

τ2 =

[
M∗11

M∗11M
∗
22 −M∗12M

∗
21

]
v2 −

[
M∗21

M∗11M
∗
22 −M∗12M

∗
21

]
v1 +D2 +K2 (B.12)

we can now construct the linear state-space using these linearising feedback control
inputs by substituting eqs. (B.10) and (B.12) into eqs. (B.6a) and (B.6b), which results
in

ż(t) = Az(t) +Bv(t)

where

A =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , B =




0 0
1 0
0 0
0 1


 .

The stabilising input v can now be designed for using pole-placement. This results
in the linear state-feedback controller

v = −kTz̃

where

K =

[
k1

1 k1
2 k1

3 k1
4

k2
1 k2

2 k2
3 k2

4

]
, z̃ =




z1 − zd1
z2 − zd2
z3 − zd3
z4 − zd4




and where zdi for 1 ≤ i ≤ 4 represents the desired final condition of each state.
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B.4 IOFBL of the Fully-Actuated Undamped DIP

The state-space equations of the fully-actuated undamped DIP have already been
derived in example B.3, whereby

ẋ1 = x2,

ẋ2 = M∗11

[
τ1 −D1 −K1

]
+M∗12

[
τ2 −D2 −K2

]
,

ẋ3 = x4,

ẋ4 = M∗21

[
τ1 −D1 −K1

]
+M∗22

[
τ2 −D2 −K2

]

which may be represented in companion form

ẋ(t) = f(x) + g(x)u(t)

where

f(x) =




f1(x)
f2(x)
f3(x)
f4(x)


 =




x2

−M∗11

[
D1 +K1

]
−M∗12

[
D2 +K2

]

x4

−M∗21

[
D1 +K1

]
−M∗22

[
D2 +K2

]


 ,

g(x) =
[
g1(x) g2(x)

]
=




0 0
1 0
0 0
0 1


 .

The outputs of the system are defined as

y(x) =

[
h1(x)
h2(x)

]
=

[
x1

x3

]
.

As seen in section 5.3.3, we define the static-state feedback control torque as

u(t) =

[
τ1

τ2

]
= C−1(x)

[
v(t)− b(x)

]
(B.13)

where

C(x) =

[
Lg1Lfh1(x) Lg2Lfh1(x)
Lg1Lfh2(x) Lg2Lfh2(x)

]

and

b(x) =

[
L2
fh1(x)

L2
fh2(x)

]
.
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We already know from example B.3 that

Lg1Lfh1(x) = M∗11, Lg2Lfh2(x) = M∗22.

The remaining entries of C(x) and b(x) are calculated by defining

Lg2Lfh1(x) = Lg2
[
x2

]

=
∂x2

∂x
g2(x)

=
[
0 1 0 0

]



0
M∗12

0
M∗22




= M∗12,

Lg1Lfh2(x) = Lg1
[
x4

]

=
∂x4

∂x
g1(x)

=
[
0 0 0 1

]



0
M∗11

0
M∗21




= M∗21,

L2
fh1(x) = Lf

[
Lfh1(x)

]

= Lf
[
x2

]

=
∂x2

∂x
f(x)

=
[
0 1 0 0

]



x2

f2(x)
x4

f4(x)




= f2(x),

L2
fh2(x) = Lf

[
Lfh2(x)

]

= Lf
[
x4

]

=
∂x4

∂x
f(x)
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=
[
0 0 0 1

]



x2

f2(x)
x4

f4(x)




= f4(x).

Therefore

C(x) =

[
M∗11 M∗12

M∗21 M∗22

]
,

b(x) =

[
f2(x)
f4(x)

]
.

Additionally

C−1(x) =
1

M∗11M
∗
22 −M∗12M

∗
21

[
M∗22 −M∗12

−M∗21 M∗11

]
.

Using eq. (B.13) we find that

τ1 =
1

M∗11M
∗
22 −M∗12M

∗
21

[
M∗22

(
v1 − f2(x)

)
−M∗12

(
v2 − f4(x)

)]

=

[
M∗22

M∗11M
∗
22 −M∗12M

∗
21

]
v1 −

[
M∗12

M∗11M
∗
22 −M∗12M

∗
21

]
v2+

M∗22

[
M∗11

(
D1 +K1

)
+M∗12

(
D2 +K2

)]

M∗11M
∗
22 −M∗12M

∗
21

−
M∗12

[
M∗21

(
D1 +K1

)
+M∗22

(
D2 +K2

)]

M∗11M
∗
22 −M∗12M

∗
21

=

[
M∗22

M∗11M
∗
22 −M∗12M

∗
21

]
v1 −

[
M∗12

M∗11M
∗
22 −M∗12M

∗
21

]
v2 +D1 +K1

and

τ2 =
1

M∗11M
∗
22 −M∗12M

∗
21

[
M∗21

(
v1 − f2(x)

)
−M∗11

(
v2 − f4(x)

)]

=

[
M∗11

M∗11M
∗
22 −M∗12M

∗
21

]
v2 −

[
M∗21

M∗11M
∗
22 −M∗12M

∗
21

]
v1+

M∗21

[
M∗11

(
D1 +K1

)
+M∗12

(
D2 +K2

)]

M∗11M
∗
22 −M∗12M

∗
21

−
M∗11

[
M∗21

(
D1 +K1

)
+M∗22

(
D2 +K2

)]

M∗11M
∗
22 −M∗12M

∗
21

=

[
M∗11

M∗11M
∗
22 −M∗12M

∗
21

]
v2 −

[
M∗21

M∗11M
∗
22 −M∗12M

∗
21

]
v1 +D2 +K2.
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Substituting these torques back into the original system equations produces

ẋ1 = x2,

ẋ2 = v1,

ẋ3 = x4,

ẋ4 = v2.

Choosing a diffeomorphism z = Φ(x) such that

z1 = x1,

z2 = x2,

z3 = x3,

z4 = x4

and substituting these transforms into the newly derived system equations results
in

ż1 = z2,

ż2 = v1,

ż3 = z4,

ż4 = v2

which can be represented by the linear state-space

ż(t) = Az(t) +Bv(t)

where

A =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , B =




0 0
1 0
0 0
0 1


 .

The transformation and the control input are identical to the results produced in
example B.3, thereby demonstrating that the IOFBL technique does indeed produce
the same result as the ELFBL technique when r = n.

Once again, a linear-sate feedback controller may now be designed using the control
law

v(t) = −kTz̃
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where

K =

[
k1

1 k1
2 k1

3 k1
4

k2
1 k2

2 k2
3 k2

4

]
z̃ =




z1 − zd1
z2 − zd2
z3 − zd3
z4 − zd4




and where zdi for 1 ≤ i ≤ 4 represents the desired final condition of each state.
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B.5 PAn−1 Robot VCL Iteration Procedure for k = 1 : 3

k = 1

(i) i = n− 1.

(ii) Substituting the expressions for q̇n and β̇n (seen in eqs. (7.27) and (7.28)) into
eq. (7.25) produces

q̇n−1 = q̇n−1 + wnq̇n + vnβ̇n

= q̇n−1 + wnq̇n

= q̇n−1 + ψ(n−1)nq̇n. (B.14)

The coefficient wn is relabelled as ψ(n−1)n to prevent confusion later on in the
derivation [5]. The index of ψ is an amalgamation of the index of the evaluated
joint and the index of the associated angular velocity respectively [5].

(iii) Substituting the expressions for q̇i and β̇i+1 (seen in eqs. (7.27) and (7.28)) into
eq. (7.26) produces

β̇n−1 = pnq̇n + fnβ̇n

= pnq̇n

= ρ(n−1)nq̇n (B.15)

[5]. Once again, the coefficient pn is relabelled as ρ(n−1)n to prevent confusion
later on in the derivation, with the index of ρ being an amalgamation of the
index of the evaluated joint and the index of the associated angular velocity
respectively [5].

k = 2

(i) i = n− 2.

(ii) Substituting the expressions for q̇n−1 and β̇n−1 (seen in eqs. (B.14) and (B.15))
into eq. (7.25) produces

q̇n−2 = q̇n−1 + wn−1q̇n−1 + vn−1β̇n−1

= q̇n−2 + wn−1q̇n−1 +
[
wn−1ψ(n−1)n + vn−1ρ(n−1)n

]
q̇n

= q̇n−2 + ψ(n−2)(n−1)q̇n−1 + ψ(n−2)nq̇n (B.16)

where

ψ(n−2)(n−1) = wn−1,

ψ(n−2)n = wn−1ψ(n−1)n + vn−1ρ(n−1)n

[5].
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(iii) Substituting the expressions for q̇n−1 and β̇n−1 (seen in eqs. (B.14) and (B.15))
into eq. (7.26) produces

β̇n−2 = pn−1q̇n−1 + fn−1β̇n−1

= pn−1q̇n−1 +
[
pn−1ψ(n−1)n + fn−1ρ(n−1)n

]
q̇n

= ρ(n−2)(n−1)q̇n−1 + ρ(n−2)nq̇n (B.17)

where

ρ(n−2)(n−1) = pn−1,

ρ(n−2)n = pn−1ψ(n−1)n + fn−1ρ(n−1)n

[5].

k = 3

(i) i = n− 3.

(ii) Substituting the expressions for q̇n−2 and β̇n−2 (seen in eqs. (B.16) and (B.17))
into eq. (7.25) produces

q̇n−3 = q̇n−3 + wn−2q̇n−1 + vn−2β̇n−1

= q̇n−3 + wn−2q̇n−2 +
[
wn−2ψ(n−2)(n−1) + vn−2ρ(n−2)(n−1)

]
q̇n−1+

[
wn−2ψ(n−2)(n) + vn−2ρ(n−2)(n)

]
q̇n

= q̇n−3 + ψ(n−3)(n−2)q̇n−2 + ψ(n−3)(n−1)q̇n−1ψ(n−3)nq̇n (B.18)

where

ψ(n−3)(n−2) = wn−2,

ψ(n−3)(n−1) = wn−2ψ(n−2)(n−1) + vn−2ρ(n−2)(n−1),

ψ(n−3)(n) = wn−2ψ(n−2)n + vn−2ρ(n−2)n

[5].

(iii) Substituting the expressions for q̇n−2 and β̇n−2 (seen in eqs. (B.16) and (B.17))
into eq. (7.26) produces

β̇n−3 = pn−2q̇n−2 + fn−2β̇n−2

= pn−2q̇n−2 +
[
pn−2ψ(n−2)(n−1) + fn−2ρ(n−2)(n−1)

]
q̇n−1+ (B.19)

[
pn−2ψ(n−2)n + fn−2ρ(n−2)n

]
q̇n

= ρ(n−3)(n−2)q̇n−2 + ρ(n−3)(n−1)q̇n−1 + ρ(n−3)nq̇n (B.20)
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where

ρ(n−3)(n−2) = pn−2,

ρ(n−3)(n−1) = pn−2ψ(n−2)(n−1) + fn−2ρ(n−2)(n−1),

ρ(n−2)n = pn−2ψ(n−2)n + fn−2ρ(n−3)n.
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Appendix C

Supplementary Reading

This appendix contains background information on the phenomenon of viscous
damping friction to supplement the information included in the main body of the
dissertation.

C.1 Viscous Damping Friction

The term "damping" has been coined to describe a phenomenon commonly seen in
non-ideal oscillatory systems, whereby a nonconservative analogous force causes
the decrease of a system’s mechanical energy over time [82]. This principle may be
quickly illustrated with a simple mechanical oscillatory system. The block-mass in
figure C.1 (inertial component of the system) has a set-point found on the x-axis at
xs, and is attached to a fixed spring (accumulates potential energy) with a spring
constant k0. The system is frictionless, which implies that energy that enters the
system can only be removed through the use of an external force (energy dissipation
is not an intrinsic property of the system itself). This type of system is expected to
oscillate for all time when influenced by an impulse force [82]. This is an expected
result, since no energy is dissipated from this system at any point, but this is proven
for convenience.

F I G U R E C . 1 : A simple mechanical system. Figure adapted from [2,
pg. 57]
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The movement of the block-mass about the set-point is ascertainable through the
implementation of Newton’s laws of motion [82]. The sum of all the forces acting on
the block-mass is generalised as

∑
Fi = m

d2x̃(t)

dt2
= F (t)− Fc (C.1)

where

Fc = the force applied by the spring on the block-mass,
F (t) = an input force, and
x̃ = x(t)− xs.

The spring applies a force on the block proportionally to the displacement away
from the set-point xs, where

Fc = k0

(
x(t)− xs

)

= k0x̃(t) (C.2)

[82]. Substituting eq. (C.2) into eq. (C.1) produces a second-order differential
equation described as

m
d2x̃(t)

dt2
+ k0x̃(t) = F (t). (C.3)

Using the Laplace transform, the complex transformation of x(t) is described as

X̃(s) =
F (s) +ms (x(0)− xs) +mv(0)

ms2 + k0
(C.4)

where

x(0) = the initial position of block-mass, and
v(0) = the initial velocity of block-mass.

The denominator of this expression represents the characteristic equation of the system,
a concept introduced in chapter 4. The poles of the system are thus described as

s = ±j k0

m

and is calculated using the quadratic formula. This result suggests that the system
will oscillate indefinitely if an impulse is introduced into the system. This can
be shown through the application of the inverse Laplace transform on eq. (C.4),
assuming that F (t) = δ(t), x(0) = xs and v(0) = 0. This results in

x(t) =
1√
k0m

sin

(√
k0

m
t

)
+ xs. (C.5)
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F I G U R E C . 2 : The mass-spring-damper. Figure adapted from [2, pg.
57]

The block-mass evidently oscillates about the set-point with this configuration, but
the energy contained in the system does not dissipate, allowing this oscillation to
occur without attenuation indefinitely.

As stated before, this effect is a result of the ideal case; the model in figure C.1
does not take nonconservative forces that act on typical systems into account. The
model is thus adjusted with the inclusion of a damper, as shown in figure C.2.

In this case, the damper applies a force against the motion of the block proportion-
ally to the block-mass’ velocity. This type of friction is known as viscous damping
friction and is typically used to model friction experienced by an object moving
through a fluid, such as air friction ( [81] and [82, pg. 471]). Once again, Newton’s
law of motion describes the summation of the forces in the system as

∑
Fi = m

d2x̃(t)

dt2
= F (t)− Fc − Fd (C.6)

where

Fd = bv(t) = b
dx(t)

dt
= b

dx̃(t)

dt
(C.7)

which represents the damping force. Substituting the expression for Fc found in eq.
(C.2), and eq. (C.7) into eq. (C.6) produces

m
d2x̃(t)

dt2
+ b

dx̃(t)

dt
+ k0x̃(t) = F (t).

The effect of the viscous damping on the system can only be clearly observed once
the poles of the system are determined. The differential equation is modified using
the Laplace transform, with the complex plane transformation of x̃(t) represented
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as X̃(s) as

X̃(s) =
F (s) + x̃(0)(b+ms) +mv(0)

ms2 + bs+ k0
. (C.8)

The poles of the system are determined through the evaluation of the characteristic
equation of this transfer function. Again, the quadratic function is implemented
here, producing

s =
−b±

√
b2 − 4mk0

2m
. (C.9)

The equation provides two fundamentally different results depending on which
condition below is satisfied (provided that b 6= 0).

(1) If b2 ≥ 4mk0, then the poles will be found explicitly on the real axis, with the
time-dependent response containing no oscillating components. Additionally,
the poles will be found explicitly in the left-hand plane of the pole-zero plot,
simply because −b+

√
b2 − 4mk0 ≯ 0. The time-dependent impulse response

will therefore be represented by an exponentially decaying signal with no
oscillating components.

(2) if 0 < b2 < 4mk0, then the function
√
b2 − 4mk0 is explicitly imaginary. In

this case, the poles will contain a real and imaginary component, with the
real component being found on the left-hand plane of the pole-zero plot.
This results in an exponentially decaying and oscillating time-dependent
impulse response.

Regardless of whether the time-dependent impulse response contains oscillating
components, the response of a viscously damped linear system is predicted to
always decay toward an equilibrium point. The time-dependent responses of the
system in each case is shown to validate these predictions. This system response is
solved through the implementation of the inverse Laplace transform as before, with
F (t) = δ(t), x(0) = xs, and v(0) = 0. The result of this procedure for the first and
second cases are proven to be

x1(t) =
1

2k1

[
eα0 − eα1

]
+ xs, (C.10)

x2(t) =
e−bt∣∣k1

∣∣ sin

(∣∣k1

∣∣
2m

t

)
+ xs (C.11)

where

α0 =
(−b+ k1)t

2m
,

α1 =
(−b− k1)t

2m
,

k1 =
√
b2 − 4mk0.
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F I G U R E C . 3 : The typical behaviour of a damped second-order
system, mathematically described by eq. (C.10).
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F I G U R E C . 4 : The typical behaviour of an underdamped second-
order system, mathematically described by eq. (C.11).
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Examples of both of these signals are provided in figures C.3 and C.4. The decay
towards the set-point is evident in both cases, with the presence of oscillation in
the underdamped signal being the only differing factor. It can be concluded, from
this evaluation of linear oscillatory systems, that the introduction of damping forces
(specifically viscous damping friction in this case) leads to the eventual dissipation
of the system’s mechanical energy until the system reaches a stable equilibrium
point (the set-point xs for the case of the mass-spring-damper).
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Appendix D

Partial Feedback Linearisation
Techniques for the PAn−1 Robot

The derivations of the partial feedback linearisation techniques used in this research
project are included in this chapter for supplementation purposes. There are three
sections that are dedicated to the discussion of the three available techniques, namely
Traditional Collocated Partial Feedback Linearisation, Modified Collocated Partial Feedback
Linearisation, and Noncollocated Partial Feedback Linearisation.

D.1 Traditional Collocated Partial Feedback Linearisation

The linear state feedback controllers for the ith pendulum (where 3 ≤ i ≤ n) is
defined as

vi = −kDi q̇i + kPi(q
d
i − qi).

The linear state feedback controller for v2 can be designed for according to the
specific control objective. We shall now derive the FBL torques that are required to
linearise the n− 1 distal pendulums using TCPFL technique.

Consider the dynamical equations of the PAn−1 robot, described by

M11(q)q̈1 +M12(q)q̈2 + · · ·+M1n(q)q̈n +D1(q, q̇) +K1(q) = 0,

M21(q)q̈1 +M22(q)q̈2 + · · ·+M2n(q)q̈n +D2(q, q̇) +K2(q) = τ2,

M31(q)q̈1 +M32(q)q̈2 + · · ·+M3n(q)q̈n +D3(q, q̇) +K3(q) = τ3,

...
Mn1(q)q̈1 +Mn2(q)q̈2 + · · ·+Mnn(q)q̈n +Dn(q, q̇) +Kn(q) = τn.

The objective of this technique is to negate the nonlinear dynamics of the n− 1 most
distal pendulums and have to have each of these accelerations assigned to a newly
defined input. Therefore

q̈2 = v2,

q̈3 = v3,
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...
q̈n = vn.

A new input v1 cannot be assigned to q̈1 since the system only contains n − 1
actuators. Substituting these expressions into the dynamical equations of the PAn−1

robot produces

M11(q)q̈1 +M12(q)v2 + · · ·+M1n(q)vn +D1(q, q̇) +K1(q) = 0, (D.2a)
M21(q)q̈1 +M22(q)v2 + · · ·+M2n(q)vn +D2(q, q̇) +K2(q) = τ2, (D.2b)
M31(q)q̈1 +M32(q)v2 + · · ·+M3n(q)vn +D3(q, q̇) +K3(q) = τ3, (D.2c)

...
Mn1(q)q̈1 +Mn2(q)v2 + · · ·+Mnn(q)vn +Dn(q, q̇) +Kn(q) = τn. (D.2d)

We will now solve for q̈1 since it is the only unknown in this set of equations.
Therefore, rearranging eq. (D.2a) results in

q̈1 =
−M12(q)v2 −M13(q)v3 − · · · −M1n(q)vn −D1(q, q̇)−K1(q)

M11(q)
. (D.3)

The substitution of eq. (D.3) into eq. (D.2b) results in the torque expression

τ2 = M̂22(q)v2 + M̂23(q)v3 + · · ·+ M̂2n(q)vn + D̂2(q, q̇) + K̂2(q)

where, for 2 ≤ j ≤ n,

M̂2j(q) = M2j(q)− M21(q)M1j(q)

M11(q)
,

D̂2(q, q̇) = D2(q, q̇)− M21(q)

M11(q)
D1(q, q̇),

K̂2(q) = K2(q)− M21(q)

M11(q)
K1(q).

We repeat this process with the next entry of the prototypical form. Therefore, the
substitution of the expression for q̈1 found in eq. (D.3) into eq. (D.2c) produces the
expression that accommodates the solving of the FBL torque τ3, whereby

τ3 = M̂32(q)v2 + M̂33(q)v3 + · · ·+ M̂3n(q)vn + D̂3(q, q̇) + K̂3(q)

where, for 2 ≤ j ≤ n,

M̂3j(q) = M3j(q)− M31(q)M1j(q)

M11(q)
,

D̂3(q, q̇) = D3(q, q̇)− M31(q)

M11(q)
D1(q, q̇),
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K̂3(q) = K3(q)− M31(q)

M11(q)
K1(q).

A similar result can be seen with the substitution of eq. (D.3) into eq. (D.2d), whereby

τn = M̂n2(q)v2 + M̂n3(q)v3 + · · ·+ M̂nn(q)vn + D̂n(q, q̇) + K̂n(q)

and where, for 2 ≤ j ≤ n,

M̂nj(q) = Mnj(q)− Mn1(q)M1j(q)

M11(q)
,

D̂n(q, q̇) = Dn(q, q̇)− Mn1(q)

M11(q)
D1(q, q̇),

K̂n(q) = Kn(q)− Mn1(q)

M11(q)
K1(q).

Therefore, by induction, we can conclude that the FBL torques that are required to
implement TCPFL on the PAn−1 robot must be described by

τi = M̂i2(q)v2 + M̂i3(q)v3 + · · ·+ M̂in(q)vn + D̂i(q, q̇) + K̂i(q) (D.4)

for 2 ≤ i ≤ n and where, for 2 ≤ j ≤ n,

M̂ij(q) = Mij(q)− Mi1(q)M1j(q)

M11(q)
,

D̂i(q, q̇) = Di(q, q̇)− Mi1(q)

M11(q)
D1(q, q̇),

K̂i(q) = Ki(q)− Mi1(q)

M11(q)
K1(q).

Choosing vm = −kDm q̇m − kPmqm for 2 ≤ m ≤ n, the application of these FBL
torques on the PAn−1 robot results in a set of equations described by

q̈1 =
−M12(q)v2 −M13(q)v3 − · · · −M1n(q)vn −D1(q, q̇)−K1(q)

M11(q)
, (D.5a)

q̈2 = −kD2 q̇2 − kP2q2, (D.5b)
q̈3 = −kD3 q̇3 − kP3q3, (D.5c)

...
q̈n = −kDn q̇n − kPnqn (D.5d)

where we must ensure that

M11(q) 6= 0 ∀q. (D.6)
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D.2 Modified Collocated Partial Feedback Linearisation

This inductive derivation begins with the definition of the equations of motion for a
PAn−1 robot, which are defined as

M11(q)q̈1 +M12(q)q̈2 + · · ·+M1n(q)q̈n +D1(q, q̇) +K1(q) = 0,

M21(q)q̈1 +M22(q)q̈2 + · · ·+M2n(q)q̈n +D2(q, q̇) +K2(q) = τ2,

M31(q)q̈1 +M32(q)q̈2 + · · ·+M3n(q)q̈n +D3(q, q̇) +K3(q) = τ3,

...
Mn1(q)q̈1 +Mn2(q)q̈2 + · · ·+Mnn(q)q̈n +Dn(q, q̇) +Kn(q) = τn.

The torque τ2 will be used for the Lyapunov swing-up control, and will thus not be
assigned a FBL torque expression. This means that both q̈1 and q̈2 will be unknowns
in this case. The other equations of motion, however, will be assigned as a new input
v that results from the linearisation of its corresponding dynamics. Therefore

q̈3 = v3,

q̈4 = v4,

...
q̈n = vn.

Linear state feedback controllers will be designed for each new input vi, thus ensur-
ing that the associated angular displacement qi ≈ 0. The equations of motion are
thus described as

M11(q)q̈1 +M12(q)q̈2 + · · ·+M1n(q)vn +D1(q, q̇) +K1(q) = 0, (D.7a)
M21(q)q̈1 +M22(q)q̈2 + · · ·+M2n(q)vn +D2(q, q̇) +K2(q) = τ2, (D.7b)
M31(q)q̈1 +M32(q)q̈2 + · · ·+M3n(q)vn +D3(q, q̇) +K3(q) = τ3, (D.7c)

...
Mn1(q)q̈1 +Mn2(q)q̈2 + · · ·+Mnn(q)vn +Dn(q, q̇) +Kn(q) = τn. (D.7d)

The objective is to describe the FBL torques (τ3, τ4, . . . , τn) solely in terms of the
desired inputs v, the system’s inertial, centrifugal and potential properties and the
Lyapunov torque τ2. To do this, we first solve for q̈1 in eq. (D.7a), which results in

q̈1 =
−M12(q)q̈2 −M13(q)v3 − · · · −M1n(q)vn −D1(q, q̇)−K1(q)

M11(q)
. (D.8)

Substituting eq. (D.8) into eq. (D.7b) produces

τ2 = M̃22(q)q̈2 + M̃23(q)v3 + · · ·+ M̃2n(q)vn + D̃2(q, q̇) + K̃2(q)
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where, for 2 ≤ k ≤ n,

M̃2k(q) = M2k(q)− M1k(q)M21(q)

M11(q)

and

D̃2(q, q̇) = D2(q, q̇)− M21(q)

M11(q)
D1(q, q̇),

K̃2(q) = K2(q)− M21(q)

M11(q)
K1(q).

Therefore

q̈2 =
τ2 − M̃23(q)v3 − · · · − M̃2n(q)vn − D̃2(q, q̇)− K̃2(q)

M̃22(q)
. (D.9)

We note that q̈2 is completely independent of q̈1, but the converse instance is not
true. Thus, we substitute eq. (D.9) into eq. (D.8) to produce

q̈2 =
−M̃13(q)v3 − · · · − M̃1n(q)vn − D̃1(q, q̇)− K̃1(q)− τ̃2

M̃11(q)
(D.10)

where, for 3 ≤ i ≤ n,

M̃1i(q) = M1i(q)− M12(q)M̃2i(q)

M̃22(q)
,

D̃1(q, q̇) = D1(q, q̇)− M12(q)

M̃22(q)
D̃2(q, q̇),

K̃1(q) = K1(q)− M12(q)

M̃22(q)
K̃2(q),

τ̃2 =
M12(q)

M̃22(q)
τ2.

We now begin with the iterative part of the proof, whereby the expressions seen in
eqs. (D.9) and (D.10) are substituted into the remaining equations of motion. Upon
performing this on the first two equations, however, we find a pattern in the torque
expressions, allowing for this proof to be completed by induction.
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Substituting eqs. (D.9) and (D.10) into eq. (D.7c) produces

τ3 = M̂33(q)v3 + · · ·+ M̂3n(q)vn + D̂3(q, q̇) + K̂3(q) + τ̂3

where, for 3 ≤ j ≤ n,

M̂3j(q) = M3j(q)− M̃1j(q)M31(q)

M11(q)
− M̃2j(q)M32(q)

M̃22(q)

and

D̂3(q, q̇) = D3(q, q̇)− M31(q)

M11(q)
D̃1(q, q̇)− M32(q)

M̃22(q)
D̃2(q, q̇),

K̂3(q) = K3(q)− M31(q)

M11(q)
K̃1(q)− M32(q)

M̃22(q)
K̃2(q),

τ̂3 =
M32(q)

M̃22(q)
τ2 −

M31(q)

M11(q)
τ̃2.

Similarly, if we were to substitute eqs. (D.9) and (D.10) into eq. (D.7c) we find that

τn = M̂n3(q)v3 + · · ·+ M̂nn(q)vn + D̂n(q, q̇) + K̂n(q) + τ̂n

where, for 3 ≤ j ≤ n,

M̂nj(q) = Mnj(q)− M̃1j(q)Mn1(q)

M11(q)
− M̃2j(q)Mn2(q)

M̃22(q)

and

D̂n(q, q̇) = Dn(q, q̇)− Mn1(q)

M11(q)
D̃1(q)− Mn2(q)

M̃22(q)
D̃2(q),

K̂n(q) = Kn(q)− Mn1(q)

M11(q)
K̃1(q)− Mn2(q)

M̃22(q)
K̃n(q),

τ̂n =
Mn2(q)

M̃22(q)
τ2 −

Mn1(q)

M11(q)
τ̃2.

Therefore, we prove by induction that

τi = M̂i3(q)v3 + M̂i4(q)v4 + · · ·+ M̂in(q)vn + D̂i(q, q̇) + K̂i(q) + τ̂i (D.11)
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represents the FBL torques required to implement MCPFL on a PAn−1 robot, where,
for 3 ≤ i ≤ n, 3 ≤ j ≤ n and 2 ≤ k ≤ n,

M̂ij(q) = Mij(q)− M̃1j(q)Mi1(q)

M11(q)
− M̃2j(q)Mi2(q)

M̃22(q)
,

D̂i(q, q̇) = Di(q, q̇)− Mi1(q)

M11(q)
D̃1(q, q̇)− Mi2(q)

M̃22(q)
D̃2(q, q̇),

K̂i(q) = Ki(q)− Mi1(q)

M11(q)
K̃1(q)− Mi2(q)

M̃22(q)
K̃2(q),

τ̂i =
Mi2(q)

M̃22(q)
τ2 −

Mi1(q)

M11(q)
τ̃2,

τ̃2 =
M12(q)

M̃22(q)
τ2

and

M̃2k(q) = M2k(q)− M1k(q)M21(q)

M11(q)
, M̃1j(q) = M1j(q)− M12(q)M̃2i(q)

M̃22(q)
,

D̃2(q, q̇) = D2(q, q̇)− M21(q)

M11(q)
D1(q, q̇), D̃1(q, q̇) = D1(q, q̇)− M12(q)

M̃22(q)
D̃2(q, q̇),

K̃2(q) = K2(q)− M21(q)

M11(q)
K1(q), K̃1(q) = K1(q)− M12(q)

M̃22(q)
K̃2(q).

This form of linearisation results in a set of equations of motion for the MC-ROPAn−1

robot described by

q̈1 =
−M̃13(q)v3 − M̃14(q)v4 − · · · − M̃1n(q)vn − D̃1(q, q̇)− K̃1(q)

M11(q)
,

q̈2 =
τ2 − M̃23(q)v3 − M̃24(q)v4 − · · · − M̃2n(q)vn − D̃2(q, q̇)− K̃2(q)

M11(q)
.

Additionally, we must select a set of physical parameters that will ensure that

M11(q) 6= 0 ∀q. (D.12)
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D.3 Noncollocated Partial Feedback Linearisation

We have included the already derived dynamical equations of the PAn−1 robot,
whereby

M11(q)q̈1 +M12(q)q̈2 + · · ·+M1n(q)q̈n +D1(q, q̇) +K1(q) = 0,

M21(q)q̈1 +M22(q)q̈2 + · · ·+M2n(q)q̈n +D2(q, q̇) +K2(q) = τ2,

M31(q)q̈1 +M32(q)q̈2 + · · ·+M3n(q)q̈n +D3(q, q̇) +K3(q) = τ3,

...
Mn1(q)q̈1 +Mn2(q)q̈2 + · · ·+Mnn(q)q̈n +Dn(q, q̇) +Kn(q) = τn.

Conversely to the CPFL technique, the objective of the NCPFL technique is to negate
the nonlinear dynamics of the n− 1 most proximal pendulums and have it assigned
to a newly defined input, where

q̈1 = v1,

q̈2 = v2,

...
q̈n−1 = vn−1.

The new input vn cannot be assigned to q̈n despite the fact that the most distal
joint is actuated since the system only contains n − 1 actuators. The linearisation
responsibilities of the actuator found on the nth joint are, in this case, transferred to
the most proximal joint, thus resulting in the internal dynamics represented by q̈n.
We now need to solve for the FBL torques that will realise the newly defined system
dynamics. Substituting these new inputs into the dynamical equations of the PAn−1

robot produces

M11(q)v1 + · · ·+M1n−1(q)vn−1 +M1n(q)q̈n +D1(q, q̇) +K1(q) = 0, (D.13a)
M21(q)v1 + · · ·+M2n−1(q)vn−1 +M2n(q)q̈n +D2(q, q̇) +K2(q) = τ2, (D.13b)
M31(q)v1 + · · ·+M3n−1(q)vn−1 +M3n(q)q̈n +D3(q, q̇) +K3(q) = τ3, (D.13c)

...
Mn1(q)v1 + · · ·+Mnn−1(q)vn−1 +Mnn(q)q̈n +Dn(q, q̇) +Kn(q) = τn. (D.13d)

We will now solve for q̈n since it represents the internal dynamics of the linearised
system. Therefore, rearranging eq. (D.2a) results in

q̈n =
−M11(q)v1 −M12(q)v2 − · · · −M1n−1(q)vn−1 −D1(q, q̇)−K1(q)

M1n(q)
. (D.14)
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Solving for necessary FBL torque τ2 requires the substitution of eq. (D.14) into eq.
(D.13b), which produces

τ2 = M̂21(q)v1 + M̂22(q)v2 + · · ·+ M̂2n−1(q)vn−1 + D̂2(q, q̇) + K̂2(q)

where, in the NCPFL case and for 1 ≤ j ≤ n− 1,

M̂2j(q) = M2j(q)− M21(q)M1j(q)

M1n(q)
,

D̂2(q, q̇) = D2(q, q̇)− M2n(q)

M1n(q)
D1(q, q̇),

K̂2(q) = K2(q)− M2n(q)

M1n(q)
K1(q).

The solving of each FBL thus becomes an iterative process, occurring next for the
FBL torque τ3. The expression for q̈n found in eq. (D.14) is thus substituted into eq.
(D.13c), which produces

τ3 = M̂31(q)v1 + M̂32(q)v2 + · · ·+ M̂3n−1(q)vn−1 + D̂3(q, q̇) + K̂3(q)

where, for 1 ≤ j ≤ n− 1,

M̂3j(q) = M3j(q)− M3n(q)M1j(q)

M1n(q)
,

D̂3(q, q̇) = D3(q, q̇)− M3n(q)

M1n(q)
D1(q, q̇),

K̂3(q) = K3(q)− M3n(q)

M1n(q)
K1(q).

A similar result can be seen with the substitution of eq. (D.14) into eq. (D.13d),
whereby

τn = M̂n1(q)v1 + M̂n2(q)v2 + · · ·+ M̂nn−1(q)vn−1 + D̂n(q, q̇) + K̂n(q)

and where, for 1 ≤ j ≤ n− 1,

M̂nj(q) = Mnj(q)− Mnn(q)M1j(q)

M1n(q)
,

D̂n(q, q̇) = Dn(q, q̇)− Mnn(q)

M1n(q)
D1(q, q̇),

K̂n(q) = Kn(q)− Mnn(q)

M1n(q)
K1(q).

There is a pattern that is evident in these expressions. We can thus conclude, by
induction, that the FBL torques that are required to implement NCPFL on the PAn−1
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robot must have the following form

τi = M̂i1(q)v1 + M̂i2(q)v2 + · · ·+ M̂in−1(q)vn−1 + D̂i(q, q̇) + K̂i(q)

for 1 ≤ i ≤ n− 1, where

M̂ij(q) = Mij(q)− Min(q)M1j(q)

M1n(q)
,

D̂i(q, q̇) = Di(q, q̇)− Min(q)

M1n(q)
D1(q, q̇),

K̂i(q) = Ki(q)− Min(q)

M1n(q)
K1(q)

for 1 ≤ j ≤ n − 1. Choosing vm = −kDm q̇m − kPmqm for 1 ≤ m ≤ n − 1, the
application of these FBL torques on the PAn−1 robot results in a set of equations for
the NC-ROPAn−1 robot described by

q̈1 = −kD1 q̇1 − kP1q1, (D.15a)
q̈2 = −kD2 q̇2 − kP2q2, (D.15b)

...
q̈n−1 = −kDn−1 q̇n−1 − kPn−1qn−1, (D.15c)

q̈n =
−M11(q)v1 − · · · −M1n−1(q)vn−1 −D1(q, q̇)−K1(q)

M1n(q)
. (D.15d)

Additionally, a specific set of physical parameters must be selected to guarantee that

M1n(q) 6= 0 ∀q. (D.16)
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Appendix E

Convergence Algorithm Simulink
Models

This appendix serves to demonstrate the structure of the Simulink models used in
the convergence algorithm. The general Simulink model layout for the Acrobot that is
used for both the swing-up and balance test segments of the convergence algorithm is
demonstrated in figure E.1.

Each system contains four subsystems, namely the Natural dynamics, Friction (R1),
Friction (R2), and the Controller subsystems. The natural dynamics subsystem is
demonstrated in figure E.2. This subsystem houses the state-space of the simulated

In1Torque1

Controller

In1

Theta_Dot_Out

Alpha_Dot_Out

Theta_Out1

Alpha_Out_1

Natural Dynamics

alpha_dot Out

Friction (R2)

Theta_dot Out

Friction (R1)

F I G U R E E . 1 : The high-level overview of the Simulink model of the
Acrobot used in the convergence algorithm.
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1
s

Theta_Dot

1
s

Alpha

1
s

Theta

1
s

Alpha_Dot

Theta

Theta_Out

Theta_Dot

Theta_Out2

Alpha_Dot

Alpha_Out1
Alpha

Alpha_Out

4

Alpha_Out_1

3

Theta_Out1

2

Alpha_Dot_Out

1

Theta_Dot_Out

f(u)

Fcn1

1

In1

f(u)

Fcn

Time

Time

Scope2

F I G U R E E . 2 : The Natural Dynamics subsystem of the Simulink
model of the Acrobot used in the convergence algorithm.

pendulum systems, which include the equations of motion and respective integra-
tors. This subsystem produces the states q1 (Theta), q2 (Alpha), q̇1 (Theta_Dot), and
q̇2 (Alpha_Dot) of the NC-ROPAn−1 model as outputs.

The Friction subsystems are demonstrated in figures E.3 and E.4. These systems
encompass the viscous damping torque function for the passive joint (R1) and the
active joint (R2).
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1

Theta_dot

C11*u(1)

Viscous Damping

R1_Out

To Workspace

1

Out

Scope3

F I G U R E E . 3 : The Friction (R1) subsystem of the Simulink model of
the Acrobot used in the convergence algorithm.

1

alpha_dot

C21*u(1)

Viscous Damping

R2_Out

To Workspace

Scope1

1

Out

F I G U R E E . 4 : The Friction (R2) subsystem of the Simulink model of
the Acrobot used in the convergence algorithm.

The Controller subsystem is demonstrated in figure E.5. This subsystem houses
the relevant torque expression for the operation. The Simulink systems for the
Swing-up and LQR simulations are identical in structure, with the only fundamental
difference being the torque expression that is stored in the Torque block. The Energy
block calculates the mechanical energy of the system at any time.
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1

Torque1

f(u)

Torque

f(u)

Energy

1

In1

Energy

Energy_Out

Scope4

Torque

Torque_Out

Scope1

F I G U R E E . 5 : The Controller subsystem of the Simulink model of
the Acrobot used in the convergence algorithm.
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Appendix F

Publications

Two papers, which contain work produced during this research project, have been
submitted and accepted for inclusion in the IEEE AFRICON17 conference and the
IFAC Control Conference Africa respectively. These papers, which have the titles:

1. Gain selection criteria for the swing-up control of the Acrobot using collocated partial
feedback linearisation [110].

2. Swing-up control of the Acrobot using noncollocated partial feedback linearisation: an
iterative approach [111].

have been appended to this dissertation.
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Abstract—A novel set of feedback gain selection conditions
pertaining to the swing-up control of the Acrobot using collocated
partial feedback linearisation is derived and presented in this
research. This set of conditions, collectively known as the gain
selection criterion, highlights a region of possible feedback gain
combinations, known as the region of appropriate gains (RAG),
that will guarantee the unstable response of the Acrobot when
initialised approximately near the fully-pendant equilibrium
point. The criterion is derived using the Routh-Hurwitz stability
criterion applied on the characteristic equation of the system
linearised about the fully-pendant equilibrium point. Only one
left-column coefficient, known as the critical Routh coefficient,
demonstrates the potential of influencing the stability of the
system. The boundaries of the RAG are defined from the analysis
of the critical Routh coefficient. The gain selection criterion will
prevent the unintended selection of a combination of feedback
gains that will cause a stable response about the fully-pendant
equilibrium point, preventing the satisfactory execution of swing-
up control on the Acrobot from the fully-pendant equilibrium
point. This criterion may, more conveniently, be applied to
specific types of multi-link pendulum system that approximate
the behaviour of the partially linearised Acrobot.

Keywords—Mechatronic systems, Mechatronics and Robotics,
Nonlinear Systems

I. INTRODUCTION

The Acrobot is a double-pendulum system that is commonly
used as a simplified modelling tool for robotic manipulators
[1]. The Acrobot is underactuated, having only one actuator
in the second joint that is responsible for controlling the two
angular degrees of freedom [1]. A common objective for the
Acrobot is swing-up control, whereby the Acrobot is swung
from its conventional fully-pendant equilibrium point into
a complete upright orientation, i.e. stabilising the Acrobot
about the upper equilibrium point (UEP) [2]–[6]. A number
of contributions in the field of swing-up controlled Robotics
were presented by Spong, who introduced the concept
of partial feedback linearisation (a variation of feedback
linearisation) [7], [8].

Feedback linearisation involves the transformation of
non-linear systems into equivalent linear representations
[9]. The most notable feature of the feedback linearisation

technique is its ability to simplify system dynamics [9]. This
presents an opportunity for the application of conventional
linear control techniques on a previously nonlinear system
[9]. The implementation of full-state feedback linearisation
produces a fully transformed set of dynamical equations,
but this is only realisable if the number of actuators equal
the number of degrees of freedom of the system [1]. An
underactuated system does not satisfy this condition, and
therefore full-state linearisation is not feasible for the
Acrobot [1]. There is, however, an opportunity to reduce the
complexity of the system through the linearisation of only
a portion of the system’s dynamics where possible [1]. This
is known as Partial Feedback Linearisation (PFL), where
the linearisation of the pendulum associated with the active
joint is known as Collocated PFL (CPFL) with the converse
procedure known as Noncollocated PFL (NCPFL) [1], [7].
An appropriate swing-up controller can thus be designed to
control the linearised pendulum whilst indirectly influencing
the other [1]. The resulting internal and zero dynamics of
the system can then be analysed to determine the behaviour
of the system [7], [9]. This has been performed with notable
success in [7], [8].

Despite the success of this technique, the necessary
internal and zero dynamics are generally difficult to evaluate
analytically, and can only, therefore, be evaluated through
simulation. These dynamics are directly influenced by the
magnitude of the linear feedback gains kp and kd. These
gains can only be chosen through trial-and-error, which is
evidently time consuming and laborious. In this paper, we
derive an analytical proof of the gain selection criterion
for the CPFL related swing-up control of the Acrobot. This
criterion specifies a set of boundaries that enclose a region
of possible feedback gain combinations (referred to as the
the region of appropriate gains, or RAG) that are guaranteed
to produce a locally unstable response of the Acrobot when
its states are initialised approximately near the fully-pendant
equilibrium point (FPEP). This criterion eliminates a set of
gain combinations that are guaranteed to produce a stable
response when the system is approximately near the FPEP,



which is undesirable in the case of the swing-up objective.
This criterion thus provides a general guideline for feedback
gain selection.

The remainder of the paper is structured as follows. A
model of the Acrobot is explicitly defined for the purpose
of the linearisation and control law formulation. The CPFL
technique is performed on the Acrobot, followed by the
formulation of the swing-up control law using the energy-
pump method demonstrated in [7]. The gain selection
criterion is derived analytically using the Routh-Hurwitz
stability criterion. Certain gain combinations are tested to
demonstrate the concurrence between the predicted and
simulated results. The swing-up control of the Acrobot is also
demonstrated with the implementation of a gain combination
found within the RAG. A short discussion on the limitations
of the criterion, and implications of the gain selection
criterion on multi-body pendulum systems is included along
with concluding comments.

II. MODEL

A. Physical Model

Fig. 1. The Acrobot model.

The Acrobot model depicted in Figure 1 is adapted from
[2], [7], [8]. The model is constrained to a 2-D plane with the
position of the pendulums being described at any time t by the
angular degrees of freedom q1(t) (for the proximal pendulum
(i)) and q2(t) (for the distal pendulum (ii)). The masses of
the pendulums m1 and m2 are point masses that represent
each pendulum’s centre-of-mass (COM). The pendulums are
assumed to be stiff rods with lengths L1 and L2, COM lengths
l1 and l2, and moments of inertia I1 and I2. The torque τ is
exerted by an actuator that is fixed to the distal actuated joint
(b). The proximal joint (a) remains unactuated.

B. Mathematical Model
The generalised equation of motion for an undamped rota-

tional mechanical system can be collectively represented by
the prototypical

M(q)q̈ + C(q, q̇) +K(q) = G(q)u (1)

where M(q) represents the mass matrix, C(q, q̇) collectively
represents the Coriolis and Centrifugal forces, K(q) represents
the gravitational torques, and G(q)u represents the system
actuation [10]. The motion vectors for the Acrobot are derived
from the generalised coordinates

q =

[
q1
q2

]
, q̇ =

[
q̇1
q̇2

]
, q̈ =

[
q̈1
q̈2

]
.

The matrices included in the prototypical form are structured
as

M(q) =

[
M11(q) M12(q)
M21(q) M22(q)

]

=

[
α1 + α2 + 2α3 cos(q2) α2 + α3 cos(q2)

α2 + α3 cos(q2) α2

]
,

C(q, q̇) =

[
C1(q, q̇)
C2(q, q̇)

]
= α3

[
−2q̇1q̇2 − q̇22

q̇1
2

]
sin q2,

K(q) =

[
K1(q)
K2(q)

]
=

[
−β1 sin q1 − β2 sin(q1 + q2)

−β2 sin(q1 + q2)

]

where

α1 = m1l1
2 +m2L1

2 + I1, α2 = m2l2
2 + I2,

α3 = m2L1l2, β1 = g(m1l1 +m2L1),

β2 = gm2l2

and where g represents the gravitational acceleration constant.
As previously mentioned, the Acrobot model is an underactu-
ated mechanical system, with actuation occurring only at the
distal joint [7]. It is evident, therefore, that

G(q)u =

[
0
τ

]

III. COLLOCATED PARTIAL FEEDBACK LINEARISATION

The objective of the application of this technique is
to reduce the complexity of the system by linearising the
dynamics of one of the pendulums to accommodate the swing-
up control of the Acrobot. The results in this investigation are
generated with the form of PFL that involves the linearisation
of the distal pendulum (CPFL). More information on NCPFL
can be found in [7]. The consequence of this technique is the
lack of direct control of the first pendulum. A control method
must be carefully designed to accommodate this limitation,
allowing for the transfer of mechanical energy from the
distal pendulum into the proximal pendulum. The details of
the CPFL technique included in this section are compiled
according to the work presented in [7].

The input-output feedback linearisation technique is applied
to the output equation

y2 = q2.

This output is found on the actuated joint. The dynamical
equations of the Acrobot, derived from the prototypical form
seen in eq. (1), are described as

M11q̈1 +M12q̈2 + C1 +K1 = 0 (2)
M21q̈1 +M22q̈2 + C2 +K2 = τ (3)



The term M11 in eq. (2) is a single entry, and can therefore
be divided through in the equation, which produces

q̈1 =M11
−1(−M12q̈2 − C1 −K1). (4)

Substituting eq. (4) into eq. (3) produces

M22q̈2 + C2 +K2 = τ (5)

where

M22 =M22 −M11
−1M21M12 C2 = C2 −M11

−1M21C1

K2 = K2 −M11
−1M21K1.

The control input τ may now be used to produce a linearising
controller. This is done through the substitution of a new
control input v2, whereby

τ =M22v2 + C2 +K2 (6)

Enforcing this input produces newly defined system dynamics
represented by

M11q̈1 + C1 +K1 = −M12v2, (7)
q̈2 = v2, (8)
y2 = q2. (9)

The nonlinear dynamics of the second pendulum have been
replaced with the desired input v2. A linear feedback controller
may now be designed for this desired input as seen in [7],
whereby

v2 = kp(q
d
2 − q2)− kdq̇2 (10)

with kp and kd representing positive feedback gains. The
desired distal angle qd2 is defined as

qd2 =

[
2a

π

]
arctan(q̇1). (11)

This input will cause the controller to swing the distal
pendulum towards the set point angle found at the bounds
±a. The pendulums will be swung in phase as dictated by
the arctan function, thus generating an unstable response,
contingent on the values of the gains kd and kp and on the
initial conditions of the system [7].

The most extreme case of swing-up control would involve
swinging the Acrobot up from a position that is approximately
near the fully-pendant position (where q1 = π± 2kπ, q2 = 0,
q̇1 = 0 and q̇2 = 0, k ∈ Z). Substituting the values of
these states into eqs. (7) and (8) reveals that this position
is an equilibrium point. This equilibrium point cannot,
therefore, be asymptotically stable if swing-up control is
to be performed when the Acrobot is initialised within an
approximate neighbourhood of this position.

IV. LINEARISATION ABOUT FULLY-PENDANT
EQUILIBRIUM POINT

The Acrobot is linearised according to Lyapunov’s lineari-
sation method highlighted in [9]. The linear representation of
a system’s dynamics, when converted to state-space linearly
approximated form, may be represented as

ẋ ≈
(
∂f

∂x

∣∣∣∣
x=x∗

)
x = Ax.

The system dynamics of the partially linearised Acrobot may
be represented in state space form through the transformation

[
q1 q̇1 q2 q̇2

]T
=
[
x1 x2 x3 x4

]T
.

Therefore
[
ẋ1 ẋ2 ẋ3 ẋ4

]T
=
[
x2 f1(x) x4 f2(x)

]T
,

[
x∗
1 x∗

2 x∗
3 x∗

4

]T
=
[
π ± 2kπ 0 0 0

]T

where

f1(x) =M−1
11 (x)

[
−M12(x)v2(x)− C1(x)−K1(x)

]
,

f2(x) = v2(x).

The A matrix may now be represented as

A
∣∣∣
x=x∗

=




0 1 0 0
a21 a22 a23 a24
0 0 0 1

0
2kpa
π −kp −kd


 (12)

where

a21 =
β1 + β2

α1 + α2 + 2α3
, a22 =

2akp(α2 + α3)

π(α1 + α2 + 2α3)
,

a23 =
kp(α2 + α3 − β2)
α1 + α2 + 2α3

, a24 =
kd(α2 + α3)

α1 + α2 + 2α3
.

V. GAIN SELECTION CRITERION

The feedback gains kp and kd, used to enforce the newly de-
signed input v2, must now be selected to complete the swing-
up control formulation. As mentioned before, these gains are
typically selected through a process of trial-and-error, which is
evidently not ideal (see [7]). The key contribution of this paper,
the Gain selection criterion, is derived in this section through
the implementation of the Routh-Hurwitz stability criterion,
which requires the completion of the following steps:

(i) Derivation of the characteristic equation about the FPEP.
(ii) Definition of the Routh-Array coefficients.

(iii) Analysis of first-column Routh-Array coefficients.
(iv) Derivation of the boundaries of the region of appropriate

gains.

Steps (i)-(iii) are typically followed when executing the Routh-
Array stability algorithm, but these seemingly trivial steps lead
to the novel contribution of this research, which is derived in
step (iv).



A. Derivation of characteristic equation

The characteristic equation of the partially linearised Ac-
robot approximated about the FPEP is calculated with

λ(s) = det(sI2 −A) = 0

= a0s
4 + a1s

3 + a2s
2 + a3s+ a4

using the A matrix found in eq. (12), where

a0 = π(α1 + α2 + 2α3),

a1 = πkd(α1 + α2 + 2α3) + 2kpa(α2 + α3),

a2 = π
[
β1 + β2 + kp(α1 + α2 + 2α3)

]
,

a3 = π
[
kd(β1 + β2) + 2kpaβ2

]
,

a4 = πkp(β1 + β2)

B. Defining the Routh-Array coefficients

The poles of the characteristic equation, which dictate the
stability of the Acrobot when found approximately near the
FPEP, are determined with the use of the Routh-Hurwitz
stability criterion [11]. The coefficients of the characteristic
equation are populated in a Routh-Hurwitz array, which is
structured as

s4 a0 a2 a4
s3 a1 a3 0
s2 b1 b2 0
s1 c1 0 0
s0 d1 0 0

The new Routh coefficients that are introduced in the Routh
array are calculated using

bi =
a1a2i − a0a2i+1

a1
with i = 1, 2;

c1 =
b1a3 − a1b2

b1
,

d1 = b2.

The implementation of these equations results in

b1 =
πkp(w0kp + w1kd + w2)

πkd(α1 + α2 + 2α3) + 2akp(α2 + α3)
,

b2 = d1 = πkp(β1 + β2),

c1 =
w2(m0k

2
p +m1kdkp +m2kd +m3kp)

w0kp + w1kd + w2

where

w0 = 2a(α2
2 + 2α2

3 + α1α2 + α1α3 + 3α2α3),

w1 = π(α2
1 + α2

2 + 2α1α2 + 4(α2
3 + α1α3 + α2α3)),

w2 = 2a(α2β1 − α1β2 + α3β1 − α3β2)

and

m0 = −2a(α2 + α3), m1 = −π(α1 + α2 + 2α3),

m2 = π(β1 + β2), m3 = 2β2a.

C. Analysis of first-column Routh-Array coefficients
According to the Routh-Hurwitz stability criterion, the

system will have all of its poles found in the left-hand half of
the complex pole-zero plane if the first-column Routh-Array
coefficients are found to be either all negative or all positive
[11]. Any sign change between the coefficients represents the
presence of a pole in the right-hand half of the complex pole-
zero plane [11]. It is evident that the coefficients a0 and a1,
and the newly formed coefficients b1, b2, and d1 are all found
to be positive and non-zero for the following reasons:
(1) kp > 0 and kd ≥ 0.
(2) The physical parameters of the system (the masses,

lengths and moments of inertia) must also be positive
and non-zero.

(3) The coefficient w2 is positive and non-zero due to the
findings of Lemma 2.1 seen in [2].

For this reason, the unstable poles of the system can only be
introduced into the system through the Routh coefficient c1,
referred to as the critical Routh coefficient. The boundaries of
the RAG are thus constructed through the evaluation of the
critical Routh coefficient.

D. The region of acceptable gains: Evaluation of critical
Routh coefficient

The system will have two poles in the right-hand plane if
c1 < 0. It is evident that the above listed properties cause
the denominator of c1 to be positive and non-zero. Therefore,
c1 < 0 when

c1n = m0k
2
p +m1kdkp +m2kd +m3kp < 0. (13)

Once evaluated, the inequality shown in eq. (13) can be
summarised with the following conditions:

(1) For
β2

α2 + α3
< kP <

β1 + β2

α1 + α2 + 2α3
,

0 ≤ kD <
2αkP
π

[
[α2 + α3] kP − β2

β1 + β2 − kP [α1 + α2 + α3]

]
.

(2) For kP ≥
β1 + β2

α1 + α2 + 2α3
, kD ≥ 0.

These conditions represent the Gain selection criteria for
any particularly configured Acrobot. These constraints are
demonstrated in Figure 2 for an Acrobot described by the
parameters seen in the next section, where the shaded area
represents the RAG, a collection of gain selection options
that will induce an unstable response when the states of the
Acrobot are initialised within an approximate neighbourhood
of the FPEP.

VI. RESULTS

The gain selection criteria was tested on the Acrobot con-
taining the dimensions

m1 = 1 kg, L1 = 1 m, m2 = 1 kg,

L2 = 2 m, l1 = 0.5 m, I1 = 0.083 kg.m,2

l2 = 1 m, I2 = 0.33 kg.m2.
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Fig. 2. The Gain selection criteria for the Acrobot, whose parameters are
described in section VI.
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Fig. 3. Unstable mechanical energy response (Top) when gains are chosen
within region of appropriate gains (Bottom).

as seen in [7] and [2]. A number of gain selections, both
inside and outside the RAG, were chosen and their effect
on the Acrobot’s mechanical energy was simulated using the
Dormand-Price (ode8) fixed-step solver with a resolution of
0.001s. The Acrobot was initialised with the conditions

q1(0) = −
101

100
π, q2(0) = 0, q̇1(0) = 0, q̇2(0) = 0.

in each experiment. Each result produced the expected be-
haviour, with an increasing mechanical energy seen when
gains found within the RAG were chosen and vice-versa.
Examples of these tests are demonstrated in Figures 3 and 4.
The swing-up of the Acrobot with a gain combination found

within the RAG (kp = 100, kd = 7.55482, and a = π/40) is
demonstrated in Figure 5. The CPFL controller is subsequently
switched for an LQR controller once the Acrobot is found
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Fig. 4. Stable mechanical energy response (Top) when gains are chosen
outside of the region of appropriate gains (Bottom).

approximately near the UEP. The gains for the LQR controller
are found using the MATLAB LQR designer, where

K1 = −246.2160, K2 = −98.5841, (14)
K3 = −106.3313, K4 = −50.0957. (15)

Details on the formulation of the LQR controller can be found
in [8]. The swing-up demonstrated in Figure 6 is performed
in the instance where the gains kp and kd are constrained to
fall within the region described by condition (1) of the gain
selection criteria, whereby

kd = 1.128022, kp =
β1 + β2

α1 + α2 + 2α3
= 5.2554.

It is apparent that such a constraint will result in a significantly
slower swing-up time, but we demonstrate that successful
swing-up control from the FPEP can be performed despite
this constraint using the gain selection criteria.

VII. DISCUSSION

The gain selection criterion provides a useful guideline
to gain selection, which can guarantee swing-up control of
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Fig. 5. The Swing-up and Balancing control of the Acrobot from the FPEP.



Fig. 6. The Swing-up and Balancing control of the Acrobot from the FPEP
using a more gentle swing-up approach.

the Acrobot. It is, however, apparent that faster swing-up
control can be achieved when a larger gain value for kp
is implemented. Additionally, the gain selection criteria may
be analytically true for Acrobots with any combination of
physical parameters (so long as the values of these parameters
are positive, non-zero, and the values of the moments of inertia
comply with the necessary and sufficient condition outlined in
eq. (2.76) of [2]), but the performance of the swing-up control
may vary greatly between Acrobots with different physical
parameter values. One may imagine, for example, that an
Acrobot whose proximal pendulum is much longer and heavier
than its distal counterpart will require more effort to swing-
up. This occurs intuitively because the physical parameters
of the proximal pendulum will influence the dynamics of the
system to a greater degree as compared to the distal pendulum.
These limitations may affect the performance of the swing-up
control, but, at the very least, the gain selection criterion will
exclude a range of gain selections that will enforce a stable
response in the region that is approximately near the FPEP,
which is not compatible with swing-up control. Additionally,
if one is presented with a n-link pendulum system with n− 1
number of actuators (with the first joint being unactuated),
the application of partial feedback linearisation to the n-
link pendulum system will effectively negate the nonlinear
dynamics of the actuated pendulums. The n-link pendulum
system’s behaviour will, therefore, approximate the behaviour
of the Acrobot. In this case, the gain selection criteria can not
only theoretically predict what feedback gains are required to
produce unstable behaviour of the Acrobot about the FPEP, but
may also be used to determine this region of appropriate gains
for the n-link pendulum system. This result is not proven in
this paper and is left for future research, but the implications
are clear since the criterion may also be valid not only for the
Acrobot, but also when considering the swing-up control of
multi-body systems.

VIII. CONCLUSION

In this paper, we analytically introduced a novel design
principle relating to the swing-up control of the Acrobot
using collocated partial feedback linearisation known as the
gain selection criterion. This criterion was derived using the

Routh-Hurwitz stability criterion, which was applied on a
linear approximation of the system about the fully-pendant
equilibrium point. The criterion highlights a region of possible
feedback gain selections (for gains kp and kd) that will
guarantee the unstable response of the Acrobot when it is
initialised approximately near the fully-pendant equilibrium
point. The contribution is seen as significant because the
inadvertent selection of a gain combination outside the region
of appropriate gains will guarantee a stable response about
the fully-pendant equilibrium point, which predictably will not
accommodate the swing-up control objective. The swing-up
control of the Acrobot using gain selections from within the
region of appropriate gains is demonstrated in this paper to
support the analytical results. The performance of the swing-
up controller is, however, dependent on the dimensions of
the Acrobot itself, as it will intuitively experience greater
difficulty when the dimensions of the unactuated pendulum
have a greater influence over system dynamics as compared
to the actuated pendulum. The authors propose that the gain
selection criterion may be applied to partially linearised multi-
link pendulum systems, which are described by an unactu-
ated most proximal joint (the only joint that is unactuated
in the system). Hypothetically, if the linear feedback gains
implemented in the swing-up control are sufficiently large
and non-oscillatory, the behaviour of the partially linearised
n-link pendulum system will approximate the behaviour of
an Acrobot, thus falling within the applicable realm of the
gain selection criteria derived in this paper. These results must,
however, be confirmed in future research.
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Abstract: The swing-up control of the Acrobot using noncollocated partial feedback linearisa-
tion (NCPFL) has been demonstrated extensively in existing literature, whereby a linear state
feedback control law which tracks the upright equilibrium point is designed for the linearised
proximal pendulum. This control law cannot be designed for the distal pendulum since the
Acrobot is underactuated. The distal pendulum will, however, follow a desirable trajectory
towards the upright state so long as the initial angular condition of the distal pendulum (q2(0))
and the frequency response of the existing actuator (ωn) are finely tuned. There is currently
no formalised method of tuning these properties for any specifically configured Acrobot. We
thus present a novel approach of determining these properties using an adapted binary search
algorithm designed to converge on an appropriate set of angular initial conditions for a specified
range of ωn. We demonstrate that selecting a sufficiently large ωn accommodates a full range
of swing-up for the proximal pendulum. The relationship between q1(0) and q2(0) becomes
nonlinear towards the acceptable limits of q1(0). Satisfactory NCPFL-related swing-up control
is thus demonstrated on an Acrobot described by one specific set of parameters.

Keywords: Robotic systems, Novel control theory and techniques

1. INTRODUCTION

The field of underactuated robotics involves the control
of mechanical systems that are characterised by n degrees
of freedom using < n actuators (Spong, 1998). The Ac-
robot is a two degree of freedom (DOF) underactuated
robotic model that has been explored significantly in ex-
isting literature, especially in the topic of swing-up control
(Xin and Liu, 2014; Chaudhari and Kar, 2017; Akiyama
et al., 2017; Horibe and Sakamoto, 2016). The earliest
contributions were presented by Spong, who demonstrated
the successful swing-up control of underactuated robotic
systems through the implementation of partial feedback
linearisation (PFL), an adaptation of the traditional feed-
back linearisation technique (Spong, 1994, 1995).

Feedback linearisation is a technique used to linearise the
dynamics of complex systems, transforming the nonlinear
state-space into an equivalent linear representation (Slo-
tine and Li, 1991). This is advantageous since the imple-
mentation of complicated nonlinear control techniques are
no longer necessary (Slotine and Li, 1991). This can only
be done, however, if the entire state-space is linearised,
thus preventing the execution of the exact feedback lineari-
sation technique on underactuated systems (Slotine and
Li, 1991). Despite this constraint, the actuators that are
present in the system can be used to linearise a portion
of the system’s dynamics using PFL (Spong, 1998). In
the case of a two DOF system, the linearisation of the
dynamics of the active joint is known as Collocated PFL

(CPFL), and the linearisation of the dynamics of the
passive joint is referred to as Noncollocated PFL (NCPFL)
(Spong, 1998, 1994). Once the system has been partially
linearise, a linear feedback controller can be designed for
the newly derived input, allowing the controller to track a
desirable objective for the controllable dynamics (Spong,
1998). Spong also demonstrated that the behaviour of
the system can be observed through the analysis of the
system’s internal and zero dynamics (Spong, 1994, 1995).

It has been shown in Spong (1994, 1995) that the CPFL-
related swing-up control of the Acrobot can only be per-
formed by choosing an angular trajectory that steadily
introduces energy into the system. This results in the
gentle swing-up of the Acrobot, the behaviour of which
can be compared to that of a playground swing being
swung-up from a resting position. The control may be
switched to a LQR controller when the Acrobot is found
to be approximately upright. Whilst the objective can be
achieved in this manner, this gentle swing-up method is
time consuming, with many repetitions required to ap-
proximately reach an upright position. The implementa-
tion of a less-gentle swing-up approach may cause the
Acrobot to overshoot the equilibrium point, making it
difficult for the LQR controller to regulate its behaviour
around the desired trajectory. This is explained by the
balancing fitness function seen in Xue et al. (2011); Brown
and Passino (1997). Noncollocated feedback linearisation
provides a work-around solution for this limitation. Lin-
earising the dynamics of the proximal pendulum allows



for the implementation of linear control techniques which
will cause the proximal pendulum to track the desired
trajectory in a stable and exponential manner regardless
of the proximal pendulum’s initial angular condition, thus
eliminating the presence of the necessary swing-up cycles
seen in the CPFL control. The solution is limited, however,
by the lack of observed feedback of the distal pendulum’s
dynamics. The desired swing-up of the distal pendulum
thus requires fine-tuning of the outer-loop gains used to
control the proximal pendulum as well as the angular
initial conditions of both pendulums (Spong, 1994, 1995).
Successful NCPFL-related swing-up control of the Acrobot
has been demonstrated in Spong (1994, 1995), although
Spong does not sufficiently explain how he managed to
choose appropriate initial conditions and outer-loop gains
to ensure satisfactory control. We thus present a novel
algorithmic approach to iteratively determine these appro-
priate outer-loop gains and the distal pendulum’s angular
initial condition, referred to as the Convergence Algorithm
(CA).

The remainder of the paper is structured as follows. A
model of the Acrobot is explicitly defined is section 2 for
the purpose of the linearisation and control law formula-
tion. The NCPFL technique is subsequently performed on
the Acrobot using the Lie derivative method in section
3, followed by the formulation of the NCPFL tracking
swing-up control law in section 4. The structure of the CA
is described in section 5, which is subsequently executed
on an Acrobot described by a specific set of parameters,
the results of which are described in section 6. Concluding
remarks are included in section 7.

2. MODEL

2.1 Physical Model

Fig. 1. The Acrobot model.

The Acrobot model depicted in fig. 1 is adapted from
Spong (1994, 1995); Xin and Liu (2014). The model
is constrained to a 2-D plane with the position of the
pendulums being described at any time t by the angular
degrees of freedom q1(t) (for the proximal pendulum (i))
and q2(t) (for the distal pendulum (ii)). The masses of the
pendulums m1 and m2 are point masses that represent
each pendulum’s centre-of-mass (COM). The pendulums
are assumed to be stiff rods with lengths L1 and L2, COM
lengths l1 and l2, and moments of inertia I1 and I2. The

torque τ is exerted by an actuator that is fixed to the
distal actuated joint (b). The proximal joint (a) remains
unactuated.

2.2 Mathematical Model

The generalised equation of motion for an undamped ro-
tational mechanical system can be collectively represented
by the prototypical form seen in eq. (1) (Naude, 2012),
where

M(q)q̈ + C(q, q̇) +K(q) = G(q)u (1)
and where M(q) represents the mass matrix, C(q, q̇) collec-
tively represents the Coriolis and Centrifugal forces, K(q)
represents the gravitational torques, and G(q)u represents
the system actuation (Naude, 2012). The motion vectors
for the Acrobot are comprised of the generalised coordi-
nates, where

q =

[
q1
q2

]
, q̇ =

[
q̇1
q̇2

]
, q̈ =

[
q̈1
q̈2

]
.

The matrices included in the prototypical form are struc-
tured as

M(q) =

[
M11(q) M12(q)
M21(q) M22(q)

]

=

[
α1 + α2 + 2α3 cos(q2) α2 + α3 cos(q2)

α2 + α3 cos(q2) α2

]
,

C(q, q̇) =

[
C1(q, q̇)
C2(q, q̇)

]
= α3

[
−2q̇1q̇2 − q̇22

q̇1
2

]
sin q2,

K(q) =

[
K1(q)
K2(q)

]
=

[
−β1 sin q1 − β2 sin(q1 + q2)

−β2 sin(q1 + q2)

]

where

α1 = m1l1
2 +m2L1

2 + I1, α2 = m2l2
2 + I2,

α3 = m2L1l2, β1 = g(m1l1 +m2L1),

β2 = gm2l2
and where g represents the gravitational acceleration con-
stant. As previously mentioned, the Acrobot model is an
underactuated mechanical system, with actuation occur-
ring only at the distal joint (Spong, 1994). It is evident,
therefore, that

G(q)u =

[
0
τ

]
(2)

The angular displacement of the most proximal pendulum

y = q1
was chosen as the output of interest in this application.

3. NONCOLLOCATED PARTIAL FEEDBACK
LINEARISATION

The states of the Acrobot are chosen as

x = [x1 x2 x3 x4]
T

= [q1 q̇1 q2 q̇2]
T
. (3)

Portions of the state-space companion form representation
of the Acrobot’s nonlinear dynamics are produced by
inverting the M(q) matrix in eq. (1), resulting in

ẋ = f(x) + g(x)u (4)

where

f(x) =




x2
1

4 [−M22(C1 +K1) +M12(C2 +K2)]

x4
1

4 [M21(C1 +K1)−M11(C2 +K2)]




(5)



and where
4 = M11M22 −M12M21. (6)

The input coupling matrix is represented by

g(x) =

[
0
−M12

4 0
M11

4

]T
. (7)

The output of the system is selected as

h(x) = h1 = x1 = q1(t). (8)

The NCPFL procedure is executed using the input-output
feedback linearisation (IOFBL) method, which is repre-
sented with

y
(ri)
i = Lf

rihi +
m∑

j=1

Lgj
Lf

ri−1hiuj (9)

where m = 1 and i = 1 for the Single-Input Single-Output
(SISO) Acrobot (Slotine and Li, 1991). Additionally, ri
represents the relative degree of the ith output. The
equation provides a means of determining the behaviour
of each particular output through the use of repeated Lie
derivatives. The Lie derivative is repeatedly applied until
an input appears in the resultant expression (Slotine and
Li, 1991). We thus simplify eq. (9) as

y
(r1)
1 = Lf

r1h1 + LgLf
r1−1h1u. (10)

If r1 = 1, equation (10) is represented as

y
(1)
1 = Lfh1 + Lg(x)h1u. (11)

This is equivalent to

y
(1)
1 = Lfx1 + Lg(x)x1u. (12)

Solving for each term in (12) results in

Lfx1 = ∇x1f(x)

= x2, (13)

Lgx1 = ∇x1g(x)

= 0.

Therefore
y
(1)
1 = x2. (14)

No control input is found in equation (14). The procedure
must, therefore, be repeated with an increased value of ri.

Choosing r1 = 2 results in

y
(2)
1 = Lf

2x1 + LgLfx1u. (15)

This expression is adjusted to reveal the expanded format
of the repeated Lie derivative, whereby

y
(2)
1 = Lf[Lfx1] + Lg[Lfx1]u. (16)

Substituting eq. (13) into eq. (16) results in

y
(2)
1 = Lfx2 + Lgx2u. (17)

We thus solve each term separately, whereby

Lfx2 = ∇x2f(x)

=
1

4 [−M22(C1 +K1) +M12(C2 +K2)], (18)

Lgx2 = ∇x2g(x)

=
−M12

4 . (19)

Substituting these newly calculated terms into eq. (17)
produces the result seen in eq. (20), with

y
(2)
1 =

1

4 [−M22(C1 +K1) +M12(C2 +K2)]− (20)

M12

4 u.

The newly derived expression y
(2)
1 may now be equated to

a desired control input v. The actuated torque required to
achieve this linear result is represented by u when chosen
as the subject of the formula, as shown in eq. (20), whereby

u =
1

M12
[−M22(C1 +K1) +M12(C2 +K2)−4v]. (21)

Substituting this expression back into eq. (20) produces

y
(2)
1 = ẍ1 = v. (22)

The dynamics of the proximal pendulum may now be
specifically defined to accommodate a linear feedback
control law as shown in (Slotine and Li, 1991), whereby

v = ẋd2 + kd
(
xd2 − x2

)
+ kp

(
xd1 − x1

)
. (23)

The transformation of the system may be illustrated
through the definition of new state variables, described
by

η1 = x1 − xd1 η2 = x2 − xd2,

z1 = x3 z2 = x4

with the output error defined as ỹ1 = x1−xd1. The resulting
transformed state space equations are represented as

η̇1 = η2, η̇2 = −kpη1 − kdη2, (24)

ż1 = z2, ż2 = − 1

M12
(C1 +K1), (25)

ỹ1 = η1. (26)

The aformentioned expressions may be represented in
matrix form as

η̇ = Aη, ż = ζ(η, z, t), ỹ1 = Cη. (27)

The system is partially linearised as made evident by the
system’s internal dynamics (represented by ż). Full-state
feedback linearisation only occurs when the total relative
degree of the procedure

∑n
i=1 ri = r = n (Slotine and Li,

1991). This condition is obviously not satisfied in this case,
where r = 2 and n = 4 (r < n).

4. SWING-UP CONTROL FORMULATION

The newly transformed NCPFL-related state-space dy-
namics seen in eqs. (24) and (25) represent the behaviour
of the linearised proximal pendulum and the nonlinear
internal dynamics of the distal pendulum respectively. The
time-domain response of q1(t) is determined by taking the
Laplace transform and, subsequently, the inverse Laplace
transformations of the state-related dynamics in eq. (24).
Applying the Laplace transformation on this equation
produces

ñ1(s)(s2 + kds+ kp) = ñ1(0)(s+ kd) + ˜̇n1(0). (28)

The expression simplifies when enforcing the condition
q̇(0) = 0, with

ñ1(s) = ñ1(0)
s+ kd

s2 + kds+ kp
. (29)

Choosing kp = kd
2
/4 and applying the inverse Laplace

transform results in

ñ1(t) = ñ1(0)e0.5kdt(1 + 0.5kdt) (30)



where 0.5kd = ωn, the natural frequency of the actuator.
This damped response is thus guaranteed when

kd = 2ωn kp = ωn
2

provided that ωn 6= 0. The response of the proximal
pendulum is damped and will tend exponentially towards
the desired trajectory as time tends towards infinity.
Choosing a greater value for ωn will increase the rate at
which the trajectory of the proximal pendulum converges
within a sufficiently close neighbourhood of the desired
trajectory. It is uncertain, however, if the dynamics of
the distal pendulum will converge within a sufficiently
close neighbourhood of its desired trajectory (ie. x3 = 0,
x4 = 0) since the internal dynamics of the system is
not directly observable and controllable. It is evident in
Spong (1994), however, that choosing a perfectly tuned
set of initial conditions and feedback gains (kp and kd)
will ensure this convergence, since the distal pendulum will
coincidently approach the desired trajectory through the
indirect influence of the feedback control on the proximal
pendulum. There is currently no solution present in ex-
isting literature that assists in determining the necessary
initial conditions and feedback gains that will result in
the satisfactory NCPFL-related swing-up control of the
Acrobot. We therefore present the following contribution,
referred to as the Convergence Algorithm (CA), to address
the following concerns:

(i) If the linear state feedback control law for the proxi-
mal pendulum is swung-up with a response frequency
ωn and an initial angular condition q1(0), what angu-
lar position q2(0) must the distal pendulum be ini-
tialised with to accommodate the satisfactory swing-
up control of the Acrobot?

(ii) What is the minimum response frequency ωn that
must be used to produce satisfactory swing-up control
if the proximal pendulum is initialised at any angular
position q1(0) within the range q1 ∈ [−π, π]?

5. CONVERGENCE ALGORITHM

5.1 Preliminaries

Despite there being no known analytical method that
addresses the concerns highlighted in (i) and (ii), it is pos-
sible to perform an iterative series of purposely configured
simulations that will converge upon a desirable solution,
thus preventing the need for guesswork. The basic premise
of this algorithm is highlighted as follows:

(1) Choose an actuator response frequency ωn that will
dictate the behaviour of the linear control law de-
scribed in eq. (23). Additionally, select a value for
q1(0) from which you wish to swing the Acrobot
from. It is assumed that the initial angular velocities
q̇1(0) = q̇2(0) = 0.

(2) Select a value for q2(0).
(3) Perform the swing-up control simulation and deter-

mine what changes to the initial condition of the
distal pendulum need to occur to accommodate the
conditions q2 ≈ 0 and q̇2 ≈ 0. This can be intuitively
derived by determining:
(i) The sign of the region the pendulum was ini-

tialised in (sgn{q2(0)}).

(ii) Whether the distal pendulum undershot or over-
shot the UEP (sgn{q2(T )}sgn{q2(0)} = ±1 re-
spectively).

The sign of the next iteration change (δ) is deter-
mined by

sgn{δ} = −sgn{q2(0)}sgn{q2(T )}sgn{q2(0)}
= −sgn{q2(T )}.

(4) Alter the value of q2(0) according to this result
(q2i+1 = q2i ± δ).

(5) Repeat the simulation until an adequately tuned
value of q2(0) is determined.

The alteration to the value of q2(0) is based on the idea of
convergence, as shown by the convergent series

2π

(
lim
n→∞

n∑

i=1

(
1

2

)i)
= 2π (31)

where i represents the number of iterations performed.
Therefore, using an infinite number of iterations will allow
us, in one extreme, to circle around the entire range of
q2(0), where q2(0) ∈ [−π, π]. The difference is halved
with each iteration. It is evidently impossible to iterate
an infinite number of times to determine the exact value
of q2(0), but one can expect the system to converge within
an approximate neighbourhood of the most appropriate
value of q2(0). This error is represented as

ε = ±2π

(
n∑

i=1

(
1

2

)i)
rads

where n = kmax, the total number of iterations that are
performed (also referred to as the maximum convergence
index ). The result of this algorithm is thus represented by
the

q2d(0) = π

(
±1

2
± 1

4
± · · · ±

(
1

2

)kmax
)

(32)

which either subtracts or adds a difference depending on
whether the distal pendulum undershoots or overshoots.
This algorithm effectively represents an adaptation of the
binary search algorithm.

5.2 Algorithm Structure

The flow-chart demonstrated in Figure 2 represents a
high-level interpretation of the Convergence Algorithm.
An explanation for each step in the algorithm (which is
numerically ordered in the flow-chart) is provided in this
section.

1 Declare the necessary input variables, ie. system pa-
rameters (A), actuator response frequency maximum
index (B), gain multiplication factor (C), resolution
of q1 within the range [−π, π] (D), maximum conver-
gence index (E), filename prefix of output file (F),
and filename of the appropriate Simulink model (S).

2 Initialise the relevant input parameters to the system
parameters (SP), the actuator response frequency
maximum index KD, and the gain multiplication
factor (GM).

3 Iterate through each possible actuator response index
from 1 to KD.

4 Set the actuator response frequency Wn.



Fig. 2. A high-level flow chart of the Convergence algo-
rithm.

5 Initialise the number of divisions of q1(0) that will
be iterated through within the range [−π, π] (iD)
using the appropriate input variable D. The angular
resolution of this procedure is thus 2π/iD.

6 Iterate through each possible index between 1 and iD
so that each possible configuration of q1(0) may be
populated in an array.

7 Populate the Initial Theta Array (ITA) with all
possible values of q1(0) ∈ [−π, π] using iD (Theta
represents q1 in this instance).

8 Iterate through each possible index between 1 and iD
so that each of the possible configurations of q1(0)
within ITA may be tested with respect to Wn.

9 Initialise the angular difference value δ to π. Initialise
the maximum convergence index CI to the variable
E.

10 Iterate through each index between 1 and CI to
generate a converged solution for qn(0).

11 Configure the Acrobot by initialising the Initial Theta
(IT, which represents q1(0)) to the ith entry of ITA
and the Initial Alpha (represents q2(0)) to 0. Initialise
the MODEL variable to the appropriate filename of
the Simulink model that will be simulated (S).

12 Load the appropriate Simulink model into MATLAB
and simulate. This generates the results of the swing-
up control using the currently selected q1(0), q2(0),
and Wn. These results are stored in the form of the
following arrays: Theta Array (TA, which represents
the time-dependent values of q1), Alpha Array (AA,

representing q2), Theta Dot Array (TDA, represent-
ing q̇1), and Alpha Dot Array (ADA, representing q̇2).

13 Check the end-state value of AA (the last value in the
array). Is the end-state of AA > 0 or is the end-state
of AA < 0? The success of this step is contingent on
the selection of appropriate values for the simulation
end-time (T ) and the fixed-time resolution 4t.

14 Alter the value of q2(0) by δ according to whether the
distal pendulum had overshot or undershot the UEP.

15 Half δ for the next iteration so that a solution may
be converged upon, as highlighted by the convergence
series in eq. (31).

16 Populate the output arrays TAO (Theta Array Out-
put), TDAO (Theta Dot Array Output), Alpha Ar-
ray Output (AAO), and Alpha Dot Array Output
(ADAO) with the resultant outputs of the simulation,
namely TA, TDA, AA, and ADA respectively.

17 Create a file with the chosen filename prefix F and
merge it with the suffix Wn to give the file a unique
identification. Save the file.

18 The outputs of this procedure are thus TAO, TDAO,
AAO, and ADAO.

6. RESULTS & DISCUSSION

The following parameters are selected for the Acrobot
(referred to as SP in the algorithm):

Table 1. Parameter Values

m1 m2 L1 L2 l1 l2 I1 I2 g

1 1 1 2 0.5 1 0.083 0.333 9.81

Table 2. Parameter Values

KD GM iD CI 4t (s) T (s)

50 0.5 128 25 π
500k

12π
k

The results of the convergence algorithm executed on
an Acrobot described by the parameters found in table
1 using the algorithmic parameters seen in table 2 are
demonstrated in Figures 3 and 4, with k representing
the counter used in the algorithm. Successful swing-up,
as defined in this research, occurs when

|q2 (t∗)| ≤ |q∗1 ± ε1| , |q̇2 (t∗)| ≤ |q̇∗2 ± ε1|
whereby ε1 = 1 × 10−4 rads of the UEP (described by
q∗1 = q∗2 = 0), and when q̇2(t∗) is found within ε2 = 0.1
rad.s−1 of q̇∗1 = 0 (time t∗ refers to the instances where
|q1(t)| < ε1). The maximum angular displacement of q1(0)
is demonstrated in Figure 3 whereby the Acrobot can
be swung-up satisfactorily using NCPFL with varying
values of actuator response frequency ωn. It is evident that
actuators that have a sufficiently large response frequency
will accommodate the NCPFL-related swing-up control
of Acrobots with a larger range of proximal pendulum
displacements (ie. as q1(0) → ±π, a larger ωn must be
selected). Therefore, actuators that are constrained with
ωn < 33 rad.s−1 in this particular instance will not be able
to accommodate a full-range of NCPFL-related swing-up
control. This is demonstrated in Figure 4. It is also evident
that the relationship between the appropriate values of
q1(0) and q2(0) is linear when a sufficiently large value
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Fig. 3. The minimum gain requirements for satisfactory
swing-up control when considering q1(0).
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Fig. 4. The initial condition requirements for satisfactory
swing-up demonstrated for ωn = 5rad.s−1 (red), ωn =
10rad.s−1 (blue), and ωn = 25rad.s−1 (black).
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Fig. 5. The NCPFL swing-up control of the proximal
pendulum (blue) and the distal pendulum (red) of
the Acrobot. Angles represented in radians.

of ωn is selected. This relationship becomes nonlinear
towards the limits of acceptable values of q1(0). This
curvature in the relationship between q1(0) and q2(0) is
evident when selecting ωn = 5 rad.s−1 or ωn = 10 rad.s−1,
as shown in Figure 4. We thus demonstrate the satisfactory
swing-up control of the Acrobot initialised with ωn =
10 rad.−1, q1(0) = −2.3071 rad, and q2(0) = 5.8562
rad (Figure 5). These values were selected according to
the results shown in the previous figures. A regulating
controller can be designed to ensure that the Acrobot
remains at this equilibrium point as t→∞.

7. CONCLUSION

In this paper, a novel method of determining the most
appropriate values for the angular initial conditions of
the Acrobot to ensure satisfactory NCPFL-related swing-
up control for a range of actuator response frequencies

through the implementation of an adapted binary search
algorithm was described. A linear feedback control law is
designed to ensure that the proximal pendulum tracks the
upright position. The distal pendulum will thus follow a
trajectory toward its own upright state if an appropriate
value for q2(0) is selected. We found that satisfactory
swing-up control can be achieved for q1(0) ∈ [−π : π] if
a sufficiently large actuator response frequency is chosen.
The relationship between q1(0) and q2(0) will be linear
throughout this region in this case. If a sufficiently large
value for ωn cannot be selected, then the possible range
of satisfactory values of q1(0) will tend to 0 as ωn → 0.
Additionally, the relationship between q1(0) and q2(0)
becomes evidently nonlinear towards the limits of the
possible range of q1(0). Satisfactory swing-up control for
one particular configuration of the Acrobot using the
algorithm was demonstrated, but it is suggested that the
robustness of this algorithm must be tested on Acrobots
with varying parameters in future research. Additionally,
the use of other established algorithm structures, such as
Newton’s method, must also be explored.
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