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Abstract

This thesis is an accumulation of the work and that was carried out and published as two articles

and two book chapters. Throughout the thesis, we develop and present theoretical as well as

numerical model to extend the existing techniques to study the optical properties of photonic

crystals, plasmonic photonic crystals and photonic quasicrystals.

We start with a background review, where we cover the theoretical aspects of light–matter

interaction. That is followed by a review of the physics of photonic crystals. In that chapter, we

discuss the different properties of photonic crystals, plasmonic photonic crystals as well as the

topic of localization. We then delve into the numerical aspects of the subject. We provide a

review on the frequency domain method and the finite–differences–time–domain methods which

they are both used in the work to perform different types of simulations.

The frequency domain method is, then, extended to enable the numerical analysis of the optical

properties in plasmonic photonic crystals. We use first order perturbation theory to study the

effect of surface plasmon polaritons on the photonic band structure of plasmonic photonic crystals.

We developed a simple numerical tool that extends the standard frequency domain methods to

compute the photonic band structure of plasmonic photonic crystals.

We then employ the two stage cut and project scheme to generate a dodecagonal two–dimensional

quasiperiodic structure. The finite-differences-time–domain method is applied to simulate the

propagation of electromagnetic modes in the system. We compute the transmission coefficients

as well as the inverse participation ratio for a quasicrystal consisting of dielectric cylindrical rods.

The analysis has shown that crystal has critical states. Furthermore, we apply the frequency

domain method to quantify the localized modes in the vicinity of defects in a two–dimensional

photonic crystal. We compute the intensity of those modes in the surroundings of the defects sites

to identify their nature. Finally, we use the finite–differences–time–domain method to provide a

second example of a quasicrystalline structure, where the states are localized.
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1. Introduction

The control over the properties of materials has always been a topic of interest to mankind, which

often culminated in tools and devices of great benefits. The transistor, for instance, emerged from

the ability to control the electrons in specific systems at the microscopic scale. The development

of such devices resulted in highly sophisticated technologies that became an essential part of our

lives.

On the other hand, the control over the optical properties has not been as successful as its

electronic counterpart for various reasons. Following the first breakthrough in the field of photonic

crystals in 1987 by Eli Yablonovitch [1], the fabrication of new structures that exhibit desired

properties such as photonic band gaps was not a trivial task, hence the numerical simulations

came in as a major player in the development of the field of photonic crystals.

The numerical methods in general played a critical role in advancing the natural as well as the

applied sciences. In particular methods such as the finite–differences–time–domain and frequency–

domain helped in understanding the optical characteristics of systems such as photonic crystals

and optical waveguides. Moreover, the giant leap in computer hardware made it possible to

efficiently run massive simulations in shorter periods of time with high accuracy. The work

carried out in this thesis focuses on the development of different numerical methods as well as

extending existing techniques to study the optical properties of photonic crystals. Some of the

developments are included in appendix A.

Through the different chapters of the thesis, we provide a cumulative summary of different

numerical schemes that have been developed and tested to study the different properties of

photonic crystals. The work carried out in this thesis has been published in different journals

[2, 3, 4, 5], see appendices B, C, D and E.

In chapter 2 we review some of the core concepts used throughout this work such as light–matter

interactions and the frequency dielectric function. We further provide a simple derivation of

Drude–Lorentz model using the Ehrenfest theorem. As part of this chapter, we shed light on

plasmons and their different types which are linked to the study carried out in a future chapter.

In chapter 3 we review the physics of photonic crystals in addition to plasmonic photonic crystals,
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and photonic quasicrystals. The chapter serves as an introduction to the three main topics studied

in the thesis; photonic crystals, plasmonic photonic crystals and optical localization in photonic

systems. That is followed by a chapter dedicated to the discussion of the numerical methods

used in the simulations.

In chapter 5 we shift the attention to the topic of plasmonic photonic crystals where we develop a

simple perturbation theory to calculate the impact of surface plasmon polaritons on the photonic

band structure.

The topic of optical localization is addressed in chapter 6, where we develop a scheme to compute

the optical properties of photonic quasicrystals. Finally, in chapter 7 we present different schemes

to identify localized states in optical systems. We provide two different examples where we study

the states formed in the vicinity of defects in a regular photonic crystal, as well as the optical

modes in a photonic quasicrystal.



2. Light–Matter Interactions

The electronic properties of any material depend on the nature of the chemical bonds at its atomic

level. Electrons that are strongly bound to the ions lead to insulating or semiconducting systems.

Electrons that move freely throughout the structure result in metallic systems. Regardless of

the nature of the system, photons may interact with these electrons leading to a new set of

phenomena. This chapter will serve as an introduction to the resulting light–matter interactions.

In the following sections we will cover the theoretical background to understand the interaction

between light and matter within the framework of Drude–Lorentz model [6]. In the first part of

this chapter we will discuss the Ehrenfest theorem due to its importance and the fundamental

role it plays in developing the Drude–Lorentz model. The second part will shed some light on the

different types within interaction between light and electron gas called plasmons. The content of

this chapter was published in [4, 5].

2.1 Frequency Dependent Dielectric Functions

The predictions made by the Drude–Lorentz model are formally based on a classical oscillator

model. In order to justify such an approach, the basic equations of motion that characterize the

microscopic properties may be understood in the theoretical framework of the Ehrenfest theorem

[7].

2.1.1 Ehrenfest Theorem

Consider a nucleus uniformly charged with an elementary positive charge e located at the centre

of a sphere with radius R. In a classical picture the charge density %, which is localized, is simply

the result of the division of the total charge by the volume of the sphere

% = − 3e

4πR3
. (2.1)

Now assume there is a charged test particle that moves within that charged sphere. Such motion

can be induced by an external electromagnetic field. The problem in hand also represents the

3
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motion of an electronic cloud around a fixed charge. According to Gauss law, the force exerted

on the charged particle is radially symmetric:

F (r) =
e2

4πε◦

r

R3
≡ −kr , (2.2)

where ε◦ is the vacuum permittivity. This force is a harmonic restoring force with spring constant

k =
e2

4πε◦

1

R3
(2.3)

and angular frequency

ω2
◦ =

k

me

, (2.4)

where me is the mass of an electron. According to the Ehrenfest theorem, ~r is the quantum

mechanical expected value of the position operator 〈~r|, such that ~r ≡ 〈~r〉 and 〈F (~r)〉 ≡ F (~r).

This leads to the classical equation of motion as described in the following.

Applying an oscillating electric field ~E(t) = ~E◦ exp(iωt) will lead to the following equation of

motion:

me
d2r

dt2
+meγ

dr

dt
+meω

2
◦r = −eE(t) (2.5)

where γ is a damping rate which describes energy loss. It can be thought of as the damping

originating from the classical radiation of a moving electric charge. However, a better picture is

that of a solid material with the oscillators coupled to a heat bath that drains out the energy.

Moreover, the damped oscillation of the electronic cloud around the nucleus forms a local dipole

moment. The value of the local electric field interacting with the local dipole is usually treated

as the contribution of the applied electric fields added to that of the dipole–dipole interactions.

To find the solution of Eq. 2.5, the ansatz ~r(t) = ~r◦ exp(iωt) can be used to compute the

amplitude ~r◦ as well as the macroscopic polarization ~P , which represents the dipole moment per

unit volume. Assume that N is the number of atoms per unit volume in the system, then

~P = −Ne~r =
Ne2

me

1

(ω2
◦ − ω2 − iγω)

~E (2.6)

2.1.2 Drude–Lorentz Model

The model described above deals with the interaction between electrons in a bulk material and

an externally applied electromagnetic field. From basic electrodynamics one can calculate the
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dielectric displacement ~D:

~D = ε◦ ~E + ~P ≡ ε◦εr(ω) ~E ≡ ε◦(1 + χ(ω)) ~E , (2.7)

where χ(ω) is the electric susceptibility of the system. Using the expression obtained in Eq. 2.7,

the complex relative dielectric function of the Drude–Lorentz model is

εr(ω) = 1 +
Ne2

meε◦

1

(ω2
◦ − ω2 − iγω)

(2.8)

Note that the core assumption used to derive this formula states that the electrons are tightly

bound to the nucleus, which is valid for insulators and semiconductors. For metals, however, the

electrons are required to be free which requires the radius of the charged sphere to be very large,

and consequently the spring constant in Eq. 2.3 and the value of the plasma frequency in Eq.

2.4 approaches zero. Thus, for a metallic system the dielectric function reads:

εr(ω) = 1− Ne2

meε◦

1

(ω2 + iγω)
= 1− ω2

p

(ω2 + iγω)
, (2.9)

where ωp =
√

Ne2

meε◦
is the plasma frequency.

The model described by Eqs. 2.8 and 2.9 can be further refined and even parametrized using

quantum mechanical data [8], which makes it useful to model the optical properties of insulators

and metals at least over certain frequency ranges. Nowadays ab initio methods can be used to

evaluate εr(ω) on the entire frequency range from ω = 0 to ω =∞ [4, 9, 10].

2.2 Plasmons and Plasmonics

The Drude–Lorentz model provides a framework for studying the interaction between electrons

and electromagnetic waves, whereby the electrons could be a single electron or a group of isolated

electrons bound to a central charged ion. However, in metallic systems electrons roam freely

without any noticeable force binding them to the positively charged nucleus, which makes their

properties remarkably different. For instance, the periodic oscillation of the whole electron gas in

a solid around the skeleton of the ions gives rise to a number of interesting physical phenomena

such as the collective optical excitations of a solid known as plasmons. Furthermore, the existence
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of evanescent surface waves known as surface plasmon polaritons (SPPs) lead to a new type of

subwavelength optics, opening the possibility to bridge optics and electronics [11, 12].

In this section we discuss bulk and surface plasmons as well as the absorption and scattering

processes for metallic nanoparticles, which are also caused by plasmonic resonance effects. As an

example we will show calculated data for silver nanoparticles based on a suitably parametrized

Drude–Lorentz model.

A proper analysis or simulation of these phenomena would require the knowledge of fundamental

electron gas properties and/or fundamental dielectric properties. This information can be supplied

by experimental data as explained in Ref [4, 5].

2.2.1 Bulk Plasmons

Within a metal a cloud of electrons surrounds a fixed skeleton of ions such that the repulsive

forces on each ion are minimized. Applying an external electric field distorts the picture and

cause local fluctuations in the electron gas, which ultimately lead to collective oscillations called

plasmons.

Despite the rapid fluctuation of the electron gas, the overall charge density of the system remains

zero. However, at locations where the electrons are oscillating, a local electronic current ~j arise.

The continuity equation relates the current ~j to the electronic density %e and the electric field ~E

by:

~∇ ·~j = −∂%e
∂t

= −ε◦
∂(~∇ · ~E)

∂t
(2.10)

Assume that N is the number of charge carriers per unit volume involved in the local electronic

current ~j, then the current reads

~j = −Ne~v , (2.11)

where ~v is the velocity of the electrons in the current.

In the presence of such a current ~j, the wave equation has the form [8]:

∂~j

∂t
+ ε◦

∂2 ~E

∂t2
= − 1

µ◦
~∇× (~∇× ~E) (2.12)
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We can further determine ∂~j
∂t

by going back to Eq. 2.5, which yields

∂~j

∂t
= −Ne∂~v

∂t
=
Ne2 ~E

me

(2.13)

Finally the general plasmon equation is obtained;

ω2
p
~E +

∂2 ~E

∂t2
= −c2~∇× (~∇× ~E) , (2.14)

where ωp is the plasma frequency of Eq. 2.9.

To further analyse the fields associated with the plasmon oscillations, one can split ~E into a

longitudinal and transverse component since plasmons are collective excitations, and hence one

is dealing with matter waves, i.e. ~E = ~El + ~Et.

The longitudinal component ~El originates from the charge displacement, which causes the total

charge distribution to deviate from its equilibrium value. That results in a new electric field

source. Therefore ~∇× ~El = 0 and ~∇ · ~El 6= 0. The plasmon equation becomes:

ω2
p
~El +

∂2 ~El
∂t2

= 0 (2.15)

which is the wave equation of a harmonic oscillator. Hence one can quantize the longitudinal

oscillations accordingly [8].

A plane wave ansatz ~El = ~E◦ exp
(
i~k · ~r − iωt

)
for the oscillating electric field of the longitudinal

plasmons shows that these modes are actually dispersionless (i.e. ωp is independent of ~k). This

is indeed an artefact of the simplifications that were initially made to derive this equation. For

instance, a more realistic scenario would include effective masses m∗(~k) and general permittivities

εr(~k, ω) in the expression for ωp, instead of using me and ε◦ [10].

Furthermore, the appearance of longitudinal bulk plasmon oscillations depends on some criteria

that is derived from the previous equations. For example, the average charge density in the system

is zero, which implies that:

~∇ · ~D = ~∇ · (εrε◦ ~E) = 0 (2.16)

Hence, for longitudinal plasmons with ~∇· ~El can only happen if εr = 0. This criteria also remains

valid for the most general types of plasmons based on relative permittivities εr(~k, ω). Moreover,

values that approach zero in εr lead to peaks in the loss function − Im
(

1

εr(~k,ω)

)
.
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Note that a longitudinal plasmon oscillation cannot be directly excited by light, which is a trans-

verse electromagnetic wave. However particle beams like the electron beam in an electron micro-

scope can knock off plasmon oscillations, and the resulting plasmon resonances can be used for

diagnostic purposes, a technique called electron energy loss spectroscopy (EELS). The probabil-

ity P (~q, ω) per unit time that a scattered electron transfers momentum ~q and energy ~ω to the

electron gas is given by [13]:

P (~q, ω) = 2π

(
4πe2

q2

)2

S(~q, ω) = −8πe2

q2
Im

(
1

ε(~q, ω)

)
(2.17)

Here S(~q, ω) is the structure factor for the scattering of the incoming electron by the electron

gas of the bulk solid. Consequently a peak in the loss function corresponds to a large probability

of momentum and electron transfer by the incoming electrons, which is exactly what happens

during a collective excitation of the electron gas.

For the transverse bulk plasmons, which originates from a charge motion in a fixed background

field, ~Et has ~∇× ~Et 6= 0 and ~∇ · ~Et = 0. In this case Eq. 2.14 takes the form:

ω2
p
~Et +

∂2 ~Et
∂t2

= −c2~∇× (~∇× ~Et) (2.18)

Using a plane wave ansatz similar to the one used for longitudinal modes ~Et = ~E◦ exp
(
i~k · ~r − iωt

)
,

one obtains the following dispersion relation:

c2k2 = ω2 − ω2
p (2.19)

It is implied that there will be no plasmon oscillations for ω < ωp. The transverse nature of these

plasmon oscillations ~∇× ~Et = 0 = ~∇×((εrε◦)
−1 ~D) also mean that plasmonic modes correspond

to poles εr =∞ in the dielectric function εr(~k, ω). Finally as transverse waves, they can directly

be excited by light.

2.2.2 Surface Plasmon Polaritons

The interface between a regular dielectric material (such as semiconductors or insulators) and a

metal could witness the formation of evanescent surface charge density waves. These waves are

strongly coupled photon–plasmon excitations known as polaritons [14].
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To theoretically analyse the system, it is assumed that the dielectric function varies along dif-

ferent directions. In other words, the dielectric function depends on the direction on which it is

considered. Mathematically, such dielectric is represented as a tensor εr,d(ω) where r, d ≡ x, y, z

axis, and similarly for a metal εr,m(ω). However, to simplify the problem it is often assumed that

the dielectric function is uniform and independent of the direction in which the field is propa-

gated. For the case of polaritons the strong interaction between the electromagnetic field and

the polarizable matter is characterized by a dielectric constant εr(ω). Then, the wave equation

is obtained from Maxwell’s equations:

εr(ω)
∂2 ~E

∂t2
= −c2~∇× (~∇× ~E) (2.20)

Following the same approach described in the previous section, and applying a plane wave solution

one can reach at a general polariton dispersion relation

c2k2 = εr(ω)ω2 . (2.21)

Surface waves combined with polaritons result into evanescent surface waves called surface–

plasmon polaritons (SPPs). The SPP is supposed to propagate into the positive x-direction,

where it will decay over time. It will also decay along the z-direction into both materials.

The light-matter interaction can be described on each side of the interface by a general polariton

dispersion relation:

k2
x,i + k2

z,i = εr,i

(
ω2

c2

)
i = d,m (2.22)

where d represents the material side, and m is the metallic side. Due to the evanescent nature of

the SPPs, the components of ~k are assumed to be complex in both media. At the interface the

tangential components of ~E, ~H and the normal components of ~D and ~B have to be continuous

at each point along the surface [15]. This strongly restricts the components of ~k [8] according to

kx,d = kx,m = kspp,
kz,d
εr,d

+
kz,m
εr,m

= 0 (2.23)

These restrictions can further be used to eliminate the z-components in Eq. 2.22, and then obtain

the dispersion relation for the propagation of SPPs in the x-direction:

kspp = kspp,1 + ikspp,2 =
ω

c

√(
εr,dεr,m
εr,d + εr,m

)
= k◦

√
εeff(ω) (2.24)
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where k◦ is the scalar wave vector of an electromagnetic wave in vacuum.

The general analysis of Eq. 2.24 is not trivial due to the presence of the square root of a complex

number. However, to simplify the analysis we assume that the imaginary part of the dielectric

function on the material side ε2,d is zero. On the metal side we assume that the real part ε1,m is

negative, and that the imaginary part ε2,m is very small. The square root in Eq. 2.24 can then

be expanded as follow:

kspp = kspp,1 + ikspp,2 = k◦

√(
ε1,dε1,m

ε1,d + ε1,m

)
+ i

k◦
2

(
ε1,dε1,m

ε1,d + ε1,m

)3/2
ε2,m

ε2
1,m

+ . . . (2.25)

A real kspp,1 will result in a propagating surface wave which can be avoided by putting ε1,m <

−ε1,d. However, the latter assumption leads to kspp,1 > k◦, which means that for a given

frequency ω, SPPs have a smaller wavelength than the corresponding electromagnetic wave in

vacuum, and therefore the SPP needs an extra momentum to be kicked off. For more details see

[4] and the references therein.

It is worth noting that SPPs cannot be directly excited by light due to their evanescent character.

In fact light has to be coupled into an SPP using a prism or a surface grating since extra

momentum is necessary to kick off an SPP and boost the modes frequency to match the light

frequency [16]. Once the SPPs have been excited, they give rise to an interesting type of surface

optics called plasmonics, which bridges the fields of optics and electronics [17, 18, 16]. In chapter

5 we will study the impact of surface plasmons polaritons on two–dimensional photonic crystals.

2.2.3 Localized Plasmons

The interaction between light and metallic nanoparticles results in a third type of plasmonic

phenomena known as localized surface plasmon resonances (LSPRs), or more generally known as

localized plasmons (LPs). The interaction of light with metallic nanoparticles with irregular shapes

is complex, and modelling the resulting resonances can be quite challenging [19]. Numerical

solutions of this problem generally require the use of Finite Difference Time Domain (FDTD)

methods explained in Sect. 4.1.2.

Experimentally the formation of localized plasmonic surface waves enhances the field intensity

around these metallic nanoparticles. These field enhancements can be quite substantial, and the



Section 2.2. Plasmons and Plasmonics Page 11

frequency ranges for the corresponding plasmonic resonances are strongly dependent on the size,

the shape of the particle as well as the dielectric properties of the surrounding medium [16].

In this section we will only focus on spherical nanoparticles in order to simplify the mathematical

description of localized plasmons in such systems. Such a spherical metallic particle has a radius

R and a relative dielectric function εr,m. Furthermore it is embedded into a surrounding dielectric

material with relative dielectric function εr,d. The system is excited by a constant electric field

~E, which induces a dipole moment ~p = α~E into the nanosphere. The system is equivalent to a

point dipole ~p at the center of the spherical nanoparticle with the following polarizability [6]:

α =
4πR3

3

εr,m − εr,d
εr,m + εr,d

(2.26)

In order to quantify plasmonic field enhancements by such a particle, one can extend the simple

dipole picture to the standard scattering scenario of incoming light with frequency ω and wave

vector ~k being scattered by a point dipole. The scattering process can be summarized as extinction

= scattering + absorption + luminescence, which in terms of cross sections reads

σext = σscatt + σabs + σlum (2.27)

Obtaining analytical expressions for the cross sections is not a trivial exercise [19, 16]. However,

leaving luminescence effects aside one can obtain formulas for the scattering and absorption cross

sections [16]:

σscatt =
8π

3
k4R6

(
εr,m − εr,d
εr,m + 2εr,d

)2

(2.28)

σabs = 4πkR3 Im

(
εr,m − εr,d
εr,m + 2εr,d

)
(2.29)

For the proper range of validity of these expressions with respect to the optical theorem see

[19]. The approach is a good approximation to observe a general trend; for particles with a large

radius R, Eqs. 2.28 and 2.29 indicate that scattering process will dominate over absorption. On

the other hand, particles with small radius R tends to enhance the absorption over scattering.

This is demonstrated in the FDTD simulation presented in Fig. 2.1b, where a dielectric function

was represented using the sum of Lorentzian resonances with parameters ω1 = 0.065815, γ1

= 0.31343, σ1 = 7.9247, ω2 = 0.36142, γ2 = 0.036456, σ2 = 0.50133, ω3 = 0.66017, γ3 =
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0.0052426, σ3 = 0.013329, ω4 = 0.73259, γ4 = 0.07388, σ4 = 0.82655, ω5 1.6365, γ5 = 0.19511

and σ5 = 1.1133. Further details and mathematical models for different geometries can be found

in [19].

Example: Determine Cross Sections Using FDTD
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Figure 2.1: In (a) we show the absorption cross–section and the scattering cross–section in (b) for

a simple two-dimensional plane surface with silver sphere positioned in its centre. The simulation

is performed using the FDTD method. Three different radii of the sphere, 15, 25 and 70 nm are

considered during the simulation.

The computation of the cross section is one of the important aspects of FDTD methods. The

cross section is related to the power transmitted through a unit surface area, and it is defined as

the ratio between the power P and the field intensity. In terms of units, the cross secion has the

units of area; cross section = power
intensity

(units: J/S
J/S.m2 = m2).

The power P that goes through a surface S is given by the real part of the integral of the Poynting

vector over the surface S

P (ω) = Re

‹

S

~E(ω,~r)× ~H(ω,~r) · d ~A , (2.30)

where the fields ~E and ~H are specified at a given spatial point ~r and frequency ω.

One problem is the fact that the FDTD technique simulates the propagation of the fields in space

and time. In order to calculate the power spectrum P (ω), the fields have to be transformed into
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to the frequency domain. To perform the calculations one has to use a short–pulse source, which

covers the range of the frequencies at which the cross sections are required to be calculated.

Then the fields that propagate out of the surface S are stored for each time step. Then one can

perform a Fourier transformation according to

~̃E(ω) =
1√
2

∑

n

eiωn∆t ~E(n∆t)∆t , (2.31)

which is known as discrete–time Fourier transformation. It is the preferred technique used by

MIT Electromagnetic Equation Propagation (MEEP), but other methods to extrapolate Fourier

transforms can be used as well. For details and further references see [20].

2.3 Summary

In this chapter we reviewed the aspects of light–matter interactions. We covered the frequency–

dependent dielectric function and provided a derivation of the Drude–Lorentz model within the

framework of Ehrenfest theorem. Furthermore, the interaction between electromagnetic waves

and electrons was discussed in metallic systems where the electrons move freely around positively

charged ions, which results in the bulk plasmon excitations.

At the interface between a metal and a dielectric material a new class of plasmons known as

surface plasmon polaritons exist, which opens the door for a new set of applications that bridges

the field of optics and electronics.

Moreover, the topic of localized surface plasmon resonances was covered in this chapter, where we

finally presented a simple numerical simulation to compute the scattering as well as the absorption

cross sections for a spherical silver nanoparticle. In the following chapter we lay the foundation

of the numerical techniques used throughout this work.



3. Photonic Crystals

The ability to control fundamental forces and the flow of their elementary particles has always

been a desire for mankind as it give rise to important technological application. For example,

semiconductors control the flow and the propagation of electrons in materials [21]. They allow

electrons with certain energies to flow through a device and block other electrons, as discussed

in the previous section. The ability to control electrons has lead to an industrial revolution and

resulted in manufacturing very sophisticated semiconductor technologies.

On the other hand, understanding the optical properties of materials that have the ability to

control the propagation of photons has received much less attention. The fascination with the

electronic properties of solids and the search for materials that exhibit novel properties has been

in the front for long time. However, in 1987 Eli Yablonovitch and Sajeev John published two

ground breaking papers that highlight the link between semiconductors and photonic crystals

(PCs) [22, 23]. The term photonic crystals was coined by Yablonovitch himself.

For the past three decades the field of photonic crystals (PCs) is growing almost exponen-

tially. The fabrication techniques have improved dramatically, which opens the doors for a lot of

interesting practical applications. Photonic band gaps play a central role in a wide range of ap-

plications such wavelength selective filters, mirrors, optical resonators, point defect laser, optical

waveguides, optical multiplexer and optical fibres. Moreover, PCs are used for optical time delay

devices, dispersion compensation, distributed feedback laser and negative refractive index lenses

[24, 25, 26, 27, 28].

3.1 Photonic Band Gap

The periodic arrangement of dielectric elements in bulk materials in 1D, 2D and 3D forms photonic

crystals (PCs) in a manner similar to that of atoms and molecules in solids. This periodicity of

dielectric elements in PCs makes them similar to their electronic counterparts in many ways. One

of the most interesting properties of photonic crystals is the opening of a photonic band gap due

to the specific geometry and the dielectric properties of the dielectric components.

14
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The quantum theory of solids assumes that the atoms and the molecules in a crystal can be

replaced by a potential that repeats itself periodically across the lattice. The propagation of the

electrons in such media is ruled by different factors that include the geometry of the lattice struc-

ture and the type of the potentials involved. Conductors, for example, have electrons that move

freely like electrons in a free electron gas, while semiconductors limit the motion of conducting

electrons to those that acquire certain energies within a specific range. Usually the semiconduct-

ing materials have a prohibited range of energies where, electronic states do not exist, which is

known as the electronic band gap [29].

In analogy to solids, dielectric elements like spheres or rods correspond to the atomic constituents

of solids. Due to translational symmetry, the solution of Maxwell’s equations yields photonic

bands similar to those of the electronic systems. In other words, PCs form photonic states where

photons are allowed to propagate through the entire PC and photonic band gaps where photons

with the frequencies that fall in the range of the band gap may not propagate in all directions, if

allowed to propagate at all [30].

The photonic band gap is at the core of every search for dielectric structures that can potentially

be used in different photonic applications. For instance, 1D photonic crystals that consist of

layers that are made of two different dielectric materials, will always have a band gap as long as

the two layers have different dielectric functions with a suitable contrast. Such crystals can act

as a Bragg mirror for frequencies within the gap [31]. It also has the ability to localize modes

when defects are present. A multilayer film made of GaAs alternating with air layers has a wide

band gap which makes it a suitable structure for filtering devices [30].

In two–dimensions things are slightly different. A key difference is the fact that 1D structures are

periodic along one axis (say z-axis for example). The 2D crystals, on the other hand, are periodic

in a plane (say x-y plane in this case) which adds additional constraints on the wave vector ~k.

To demonstrate those constraints, a 1D multilayer film would have a restriction on the ~kz. In

the 2D PCs the wave vectors parallel to the plane ~k‖ are restricted to the Brillouin zone which

is the periodicity direction, however, the ~kz vector has no restrictions and modes along that axis

propagate freely.

Moreover, the mirror symmetry in such systems allows the separation of the electromagnetic
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modes into two components; transverse–electric (TE) and transverse–magnetic (TM) modes.

The former has the magnetic field ~H perpendicular to the plane, while the later has the electric

field ~E perpendicular to the plane. That gives higher dimensional crystals the advantage of

forming band gaps for a specific polarization as shown in Fig. 3.1a, where only TM modes have

a band gap.
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Figure 3.1: (a) TM modes in units of (2πc)/α for a honeycomb photonic crystal. In (b) we show

the corresponding scaled density of states (DoS).

Fig. 3.1a depicts the transverse magnetic mode (TM) band structure for a two dimensional

honeycomb lattice. The lattice points are populated with cylindrical objects of radius 0.2α,

where α is the lattice constant. It is quite convenient to represent all bands in Fig. 3.1a in units

of α, which stems from the fact that Maxwell’s equations for systems with frequency–independent

dielectric functions are scale–invariant [30]. The cylindrical objects on the lattice consist of a

dielectric material of dielectric constant 13. The background medium is air (i.e. dielectric constant

equal to 1). The bands are obtained using the frequency domain method implemented in MPB

[32].

Band gaps are observed between ω ∼ 0.24 [(2πc)/α] and 0.35 [(2πc)/α], and ω ∼ 0.46 [(2πc)/α]

and 0.55 [(2πc)/α], which can also be seen in the density of states related to the band structure

in Fig 3.1b.

The scale–invariant character of Maxwell’s equations makes PCs distinct from other solids in the

sense that PCs maintain the same optical properties for different scales. To elaborate, a crystal
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with a band gap at frequency ω will maintain the band gap and all band structure characteristics

when the size of the lattice unit vector changes. That is mainly the reason why frequencies

are usually given in terms of the lattice unit vector α as we saw in the previous examples. This,

however, breaks down when the crystal building blocks do not have a constant dielectric function,

in other words, the dielectric functions depends on the frequency. Such a case is addressed in a

separate chapter.

3.1.1 Photonic Band Gap and the Colours of the Chameleon

Photonic crystals also appear in nature. Here we give a very illustrative example, which is the

changing colours of the chameleon. The ability of the chameleon to change colours has always

been a topic of great interest. A recent study proposed a model, where a three–dimensional

photonic crystal was used to explain the different colours seen at different angles [33]. The

authors suggested that the chameleon gets and changes its colours by controlling the dimensions

of skin cells, which form a photonic crystal. Similar to a complete band gap, photonic band

gaps along certain directions can also act as mirrors, which filter out electromagnetic modes with

specific frequencies along that particular direction.

Figure 3.2: A chameleon displaying a fascinating range of colours. The image was taken from

Pixabay and it is licensed under Creative Commons CC0.

To model the problem, the chameleon’s skin is considered to be a dielectric structure, which

http://www.pixabay.com
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consist of spheres lined up side by side, which forms a 3D opal crystal. The radius of each of the

spherical objects in the crystal is fixed, but the lattice constant of the opal itself varies. This is

a simulation of a chameleon which relaxes or stretches its skin. A relaxed skin would correspond

to a smaller lattice constant, while stretching the skin is effectively the equivalent of increasing

the lattice constant.
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Figure 3.3: The band structure for 3D opal lattice with spherical objects. The spheres have a

dielectric constant of 3.35 and radii of 0.76 µm. The background dielectric constant is 1.77. In

(a) the band structure is computed for a lattice constant α = 1.88 µm while (b) is for α = 2.55

µm.

In Fig. 3.3, we show the photonic band structure for an opal lattice with spheres of dielectric

constant 3.35 and background material of dielectric 1.77. The spheres have a radius of 0.76

µm. In Fig. 3.3a the lattice constant is 1.88 µm, which corresponds to a chameleon with a

relaxed skin. In Fig. 3.3b we present the band structure for lattice constant α = 2.55 µm, which

represent a chameleon with a stretched skin [33].

Although both structures in Fig. 3.3 do not demonstrate a complete band gap, they have

directional band gaps. For example in Fig. 3.3a one of the directional band gaps appear along

the U – L axis at approximately 0.58 – 0.62 2πc/α. In terms of metric units, these frequencies

are equivalent to 581.2 – 621.1 THz for a lattice constant 1.88 µm. That means along the U – L

axis the colours reflected are cyan – blue. Changing the lattice size results in a shift in the bands

to lower frequencies as well as the closure of the band gap as seen in Fig. 3.3b. This method
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gives a rough estimate of the colours of the chameleon. A better approach will be the calculation

of the reflectance and CIE values [34] in colour spaces to identify the colours perceived by the

human eye, which gives more realistic predictions. However, the topic is beyond the scope of this

thesis.

3.2 Plasmonic Photonic Crystals

The interaction between the free electrons and the optical electromagnetic waves at the interface

between a metal and a dielectric material results in evanescent electromagnetic waves known as

surface plasmon polaritons. Due to their evanescent character the wavelength of SPP can be

shorter than the wavelength of their optical counterparts in the dielectric medium [35, 12, 36, 11].

Similar to light, the surface plasmons can also be manipulated by a photonic crystal placed on

a metallic surface, a system better known as plasmonic photonic crystal. The decaying surface

plasmon polaritons at the interface between the heterogeneous dielectric metamaterial and the

metal influence the dielectric properties of photonic crystals by introducing non-linearities [37],

which can localize certain photonic modes. Furthermore, the plasmonic photonic crystals can

enhance the optical properties of a regular photonic crystal [36].

SPP waves play an important role in the field of photonics due to their potential applications and

interesting physics. In previous studies Raman scattering is enhanced using the localized surface

plasmon resonance [38]. Also surface plasmons can enhance the absorption of light which can be

used to improve the efficiency of solar cells [39]. For plasmonic photonic crystals a band gap is

found to open at a specific frequency range in periodic structures due to Bragg resonance at the

boundaries of the Brillouin zone, leading to the development of waveguides [40, 41], high efficiency

Bragg reflectors and resonators [42, 43]. Moreover, a one-way waveguide can be achieved under

static magnetic fields [44].

In chapter 5, a particular case of plasmonic photonic crystals is examined. The problem is

treated using perturbation theory whereby a brief description of a suitable perturbative scheme is

developed. Then the results of the photonic band structure of a 2D dielectric honeycomb crystal

placed on an aluminium surface are presented.
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3.3 Localization in Photonic Crystals

In a seminal work published in 1958 by P. Anderson [45], the author argued that for a highly dis-

ordered crystal the electronic states can be confined in a particular region due to wave scattering.

Such a localized wave will decay exponentially over space. Consequently, a metallic system can

turn into an insulator, because its conduction electrons become localized. This is not really cov-

ered by Blochs theorem, which would still postulate extended states under the same conditions.

Although localization was initially proposed as a phenomena associated with electronic systems,

it turned out to be a generic wave phenomena, which can be observed in other wave systems

including optical materials [46].

To understand the origin of the localization phenomena one has to understand the physics of

waves. In a medium with scatterers such as atoms in the case of solids or dielectric elements in

the case of photonic crystals, waves can not propagate freely without encountering a scatterer.

The distance travelled by the wave before being scattered is known as the mean free path. The

size and the density of the scatterers in addition to the wavelength of the wave in the media are

essential in determining the type of the scattering; weak scattering occurs when the density is low

and the scatterer–scatterer separation is large compared to the wavelength, and strong scattering

occurs when the separation between the scatterers is small compared to the wavelength [46].

Scattering can be characterized by two different types. Elastic scattering refers to the scattering

of waves that preserve their frequency but not their direction after being scattered. Inelastic

scattering deals with scattering processes that alter both, the frequency and the direction of

propagation of a scattered wave.

Scattering where the frequency is maintained but the direction is reversed is called coherent

backscattering, and its phase is preserved in that particular direction, which usually leads to

an enhancement in the backscattering by constructive interference. Such enhancement in turn

impacts the diffusive wave transport negatively. To further clarify the concept, a medium with

a long mean free path has weak scattering, and hence a weak backscattering. Short mean free

path corresponds to an enhanced backscattering, which can cease the waves from propagating

leading to mode localization.
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To quantify localization, one has to consider the size of the sample since the backscattering is

dependant on the distance between the scatterers as well as the wavelength. Thus, for a sample

with a high density of scatterers and a large size, the wave propagation in such media is likely to

slow down, and measurable quantities such the transmission coefficients will decay exponentially.

For smaller samples the wave diffusion will decrease but a complete freeze out of the wave motion

will not be reached. The correlation between size and localization introduces a new fundamental

length known as the localization length (ξ) which plays an important role in the transport theory

in solids [47].

For example, in a 1D multilayer film the transmission coefficients τ can be modelled using the

transfer matrix method. The transmission coefficients are the product of all transmission coeffi-

cients for the segments forming the film [46],

τ =
N∏

i=1

τi (3.1)

where N is the index of the last segment. Moreover, one can infer from the relationship in

Eq. 3.1 that each scattering event is independent and hence ln |τi| is additive. In terms of the

localization length the transmission function is expressed as:

|τ |2 = e−2L/ξ (3.2)

where L is the thickness of the film. The localization length ξ is then written as:

ξ =
−2L

N∑
i=1

ln |τ |2
. (3.3)

Statistically speaking, the term ln |τ |2 has a Gaussian distribution, since it is independent of any

particular scattering and it essentially varies as a random variable. That impacts the computed

value of ln |τ |2, and high accuracy is achieved for film with L −→∞.

Introducing localization brings forward the dimensionality of the structure as a major player in

quantifying all measurable quantities. This is in contradicting to diffusive transport, where the

transmission is completely independent of the size of the sample.
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In photonic crystals disorder can cause the optical modes to be trapped at sites containing the

defects. In 2D crystals such defects are found to play a critical role in tuning their properties;

in the case of linear defects the modes can be trapped along the defects direction creating

guided bands. Point defects have the ability to trap photons with frequencies close the band gap

frequencies without accounting for the direction of the incident wave. The later case is examined

and analysed in chapter 7.

On the other hand, aperiodic structures such as photonic quasicrystals (PQCs) are found to

have richer properties, due to the abundant number of geometries and the breaking of lattice

symmetries. With that, however, comes another computational difficulty. Later in chapter 6

we will discuss the development of numerical techniques to compute and quantify the optical

localization of 2D PQCs.

In the next chapter we review the numerical foundations of computational electromagnetism with

focus on the two major techniques; the finite–differences–time–domain method (FDTD) and the

frequency–domain method (FD). The mathematical details of each method are described in some

details with simple examples illustrating the technical background.



4. Numerics

The physics of real systems often requires the solution of very complex equations. For most of

these systems analytical solutions do not exist, and the need for accurate numerical solutions

arises. Numerical methods have played a major role in the development of all applied sciences,

and not only for Physics. Alongside the development of powerful computers it was also the

development of new algorithms that allowed for us to tackle very complex tasks efficiently, and

with very high accuracy [48].

For systems that are described by partial differential equations, such as electronic (Schrödinger

equation) and photonic (wave equation derived from Maxwell’s equations) systems, different

numerical techniques have been developed in order to make accurate predictions about their

physical properties. In the following sections we summarize some of the most popular numerical

techniques used to simulate photonic systems on various length and time scales. Further details

on the topic can be found in [5] and the references therein.

4.1 Basic Techniques

We start with mesoscopic/macroscopic optical systems. The numerical simulation of such systems

is based on wave equations, which can directly be derived from Maxwell’s equations. Knowing the

properties of the basic materials forming a given system in terms of their relative permittivities and

permeabilities, one can make very precise predictions even for relatively complex optical systems,

because the underlying equations are mostly linear. The most popular numerical techniques in this

area are the finite–differences–time–domain method [49], spectral methods [50], block iterative

methods [32] and block-pseudospectral methods [51], just to name a few. Each of these methods

has its advantages and disadvantages. We will limit our discussion to only two methods, which

are the frequency domain method described in Sec. 4.1.1, and the finite-differences time-domain

(FDTD) method described in Sec. 4.1.2.

Permeabilities and permittivities have their origin in light-matter interactions at the atomic level

(i.e. nanoscale). In order to make accurate predictions about plasmonic systems on the nanoscale,

23
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simple models like the Drude–Lorentz model described in Sec. 2.1 cannot be used any more. One

has to solve the many–body Schrödinger equation for a bulk system excited by electromagnetic

radiation. Although these basic equations can be formulated quite easily, it is also well known

in quantum mechanics that they will not have analytical solutions for even the simplest type of

nano–systems or molecules. Numerical solutions are a formidable challenge as well, due to the

non–linear nature of the effective one–particle equations derived from the many–body Schrödinger

equation [52, 53].

4.1.1 Frequency Domain Methods for Periodic Systems

Periodic systems such as photonic crystals, waveguides and resonant cavities give rise to electro-

magnetic modes that have analytical properties similar to electronic states in periodic solids [30].

They are described by a general wave equation, which can be directly derived from Maxwell’s

equations.

A fundamental technique in understanding the optical properties of these particular modes is a

decomposition into harmonic time–dependant eigenmodes. Frequency domain (FD) methods as

a special case of these decomposition methods will expand electromagnetic fields into Fourier

eigenmodes, which is often sufficient to understand the characteristics of optical materials in

the absence of non–linear effects [32]. FD methods usually start from basic photonic systems

with translational symmetry, for which the solution of Maxwell’s equations and the derived wave

equations will give rise to electromagnetic Bloch states and related photonic band structures [30].

In the following we will discuss the numerical details for computing the photonic band structures

using FD schemes. We will show that under the particular assumptions of the FD schemes, the

solution of the wave equation will become equivalent to a matrix eigenvalue problem, which is one

of the standard problems of numerics, and for which there are very powerful numerical methods

available [32]. Some of the technical problems of the FD scheme will be pointed out as well.
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Photonic Band Structures

To find the eigenmodes using the frequency domain method, a general equation describing the

propagation of electromagnetic waves in matter has to be mapped onto an eigenvalue problem.

For a linear dielectric function ε(~r) we may derive general wave equations for the electric and

magnetic components of the propagating waves, which of course follow from Maxwell’s equations

[30]. For the magnetic field ~H the corresponding wave equation will be

∇× 1

ε
×∇× ~H =

1

c2

∂2

∂t2
~H , (4.1)

The solution ~H is constrained by the transversality condition

∇ · ~H = 0 . (4.2)

For the solution of Eq. 4.1 and Eq. 4.2 we only consider time–dependant periodic solutions ~H(t).

Taking into account the translational symmetry of a periodic photonic system described by ε(~r),

the magnetic modes represents the eigenstates of Eq. 4.1. That is similar to the Bloch states of

electrons in a solid [29], as explained in the following.

For magnetic modes the corresponding electromagnetic Bloch states are

~H(~k, ~r) = ei(
~k·~r−ωt) ~H~k(~r) , (4.3)

where ~k is a Bloch wavevector (which is a pseudomomentum [29]), and ~H~k is an amplitude factor

that gains its periodicity from the periodicity of the underlying photonic system. Substituting the

Ansatz of Eq. 4.3 into Eq. 4.1 results in

(
∇+ i~k

)
×
(

1

ε

(
∇+ i~k

)
× ~H~k

)
=
(ω
c

)2
~H~k . (4.4)

The operator on the left hand side of Eq. 4.4 is a positive semi–definite Hermitian operator,

and Eq. 4.4 is a typical Hermitian eigenvalue problem with eigenvalues
(
ω
c

)2
. By introducing a

complete set of basis states
{
~Ψi(~r)

}
i

and using ~H~k =
∑
i

hi~Ψi(~k), we can map this eigenvalue

problem on a standard (Hermitian) matrix eigenvalue problem:

A ~h~Ψ =
(ω
c

)2

B ~h~Ψ (4.5)
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where A is the Hermitian operator on the left hand side of Eq. 4.4 and ~h represents the coefficient

vectors (h1, h2, . . . hm). The matrix operator A is a result of the discretization of the momentum

space used in the simulation. The matrix element Alm is given by ~Ψ†lA
~Ψm and Blm is ~Ψ†l

~Ψm.

These products involve integration over the configuration space, in analogy to matrix elements

in quantum mechanics [30].

Note that due to the ~k dependence of the Bloch states ~H~k(~r), the frequencies ω derived from

the eigenvalue problem are also ~k dependent, i.e. ω = ω(~k). One usually solves the eigenvalue

problem for a series of selected ~k vectors, and then interpolates in between these points to obtain

the photonic band structure. See Fig. 3.1a as an example.

Numerical Details

The fields ~H~k in Eq. 4.4 can be written as a linear expansion of basis vectors ~Ψi [32]

~H~k =
∞∑

i=1

hi~Ψi , (4.6)

where hi represents the expansion coefficients, which form a column vector ~h in the matrix

formulation of the eigenvalue problem of Eq. 4.5. From a computational point of view, it is

impossible to calculate every single coefficient in the infinite sum that represents the field ~H~k.

Therefore this sum must be truncated at a sufficiently small number N , which should still yield

a very good approximation to the exact ~H~k .

Terminating the sum in Eq. 4.6 at a number N of basis functions also reduces the size of the

column vectors and of the matrix operators to finite sizes of N × 1 for the column vector and

N×N for the matrix sizes. But this mapping on a matrix eigenvalue problem does not necessarily

provide a solvable problem in practice; in particular when a traditional linear algebra approach

is used to solve the matrix eigenvalue problem. The matrices involved could just be too large,

which requires enormous amounts of computer memory, and the algorithms involved will basically

never finish.

Fortunately, in most cases only a few lower eigenvalues or photonic bands are necessary to

understand the interesting physics behind periodic optical systems like photonic crystals [30].

Then one does not have to solve for the entire spectrum of the eigenvalue problem, and the
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interesting bands are computed using a suitable iterative method. This approach also has a very

positive impact on the computer memory needed by a typical FD scheme.

The iterative solution of the eigenvalue problem starts off with an initial guess of the eigenvector

~H (neglecting all labels for the moment being). Then one iteratively improves this guess, based

on the fact that for all Hermitian operators the smallest eigenvalue λ satisfies

λ = min
~H

~H†A~H

~H†B ~H
. (4.7)

This type of problems is better known as the Rayleigh-quotient, which can perfectly be solved

using a preconditioned conjugate–gradient method [54]. The best description of this technique

would be band–by–band minimization. It has been applied quite extensively in the study of

electronic solids [55]. An interesting aspect of this method is the fact that we do not have to

store the full matrices A and B in order to solve the minimization problem of Eq. 4.7. In fact the

conjugate gradient method only requires the storage of the products A~Ψ and B~Ψ, which saves a

lot of computer memory.

The minimization of Eq. 4.7 leads to the determination of an eigenvalue λ and the related

frequency ω, and we also obtain an eigenvector ~H. This is the lowest band at a given ~k point.

To obtain the next band values for the following frequency, we repeat the minimization in Eq. 4.7,

but for a new trial eigenvector ~H ′, which is constrained to be transverse and orthogonal to the

lowest eigenvector ~H. Hence the band structure may be obtained on the basis of a band-by-band

minimization technique using the preconditioned conjugate–gradient method.

At this point it is worth noting that due to the periodicity of the photonic system, a plane wave

basis ~Ψi seems to be a natural choice. To elaborate, for a periodic system Bloch theorem states

that the eigenstate ~H can be expressed as a product of a plane wave and a function with the

periodicity of the lattice:

~Ψ(~r + ~R) = e(i ~G·~r)~Ψ(~R) (4.8)

where ~G is a wave vector, ~R and ~r are vectors that represent two points in the real (configuration)

space They are usually expressed in terms of a fundamental set of vectors known as the unit vectors

r̂j and an integer nj,

~r =
3∑

j=1

nj r̂j . (4.9)
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At the boundaries of a lattice, periodic boundary conditions are often imposed on the wave

function, which leads to the conclusion that the exponent exp
(
i ~G · ~r

)
= 1. For this condition

to be satisfied, ~G · ~r has to equal 2πn where n = 0, 1, 2, . . . [29].

The vectors ~G are related to the fundamental lattice vectors Ĝi in reciprocal space by

~G =
3∑

i=1

miĜi , (4.10)

where mi are integers. One can easily switch between the grid in real and reciprocal space

using Fast Fourier Transform (FFT) routines [30], which is also useful for evaluating the vector

operators in Eq. 4.4. By switching from real to reciprocal space, the curl operator ~∇ becomes

~k + ~G. Switching back from reciprocal to real space, one can easily carry out the successive

multiplication by ε−1. Given the speed of the standard FFT routines, the operations on the left

hand side of Eq. 4.4 can actually be carried out very efficiently.

The simplification of Eq. 4.4 by putting the modes on a grid in real space comes with its own

problems, which are related to the inverse dielectric function ε−1. The later has to be evaluated

on a real space grid as well, and irregular geometries at the interface between two dielectric

media might not be covered by a moderate discretization grid in real space, leading to all sorts

of numerical artefacts.

In order to avoid such problems, the dielectric function close to the interface has to be averaged.

The most successful procedure is based on effective–medium theory [56]. If n̂ is taken as the

vector normal to the surface and P is the projection operator onto n̂, then the effective inverse

dielectric constant ε̃−1 for one unit of a cubic discretization grid is given by:

ε̃−1 = ε−1P + (ε̄)−1(1− P ) (4.11)

where the first term on the right hand side of Eq. 4.11 is the average of the inverse dielectric

function projected onto the surface normal. That term is the dominant term when the incident

field is parallel to the surface normal. The second term is the inverse of the averaged dielectric

function, and this contribution dominates when the field is perpendicular to the normal of the

surface. Other than for the dielectric media, this averaging plays no role, and we can just take

the usual inverse of the dielectric constant at a particular grid point. For further details see [32].
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4.1.2 Time Domain Methods

The finite difference time domain method (FDTD) is a grid–based method similar to finite differ-

ence approaches [57] used to solve partial differential equations. In FDTD, Maxwell’s equations

are discretized using central differences with respect to the space and time derivatives. The

resulting set of equations are solved in a leapfrog manner on a staggered grid, a technique which

is also quite popular in fluid dynamics [48].

For the sake of simplicity, we will only describe the basic mathematical formalism and some of

the numerical details in one spatial and one temporal dimension. The corresponding formalism

in four dimensional space–time can be found in [49].

Outline of the FDTD method

The frequency–domain methods are very successful to understand the properties of periodic

systems like photonic crystals. But in order to examine a finite system, one has to use a supercell

approach, which easily becomes very expensive from a numerical point of view. In such cases

one needs a more robust numerical technique suitable for such systems, which is provided by the

finite difference time domain method (FDTD).

In general, FDTD has some distinct advantages over the frequency–domain scheme. For instance,

FDTD simulates the propagation of the electromagnetic wave in the dielectric medium itself,

rather than going over a linear algebra problem. That way it becomes much easier to simulate

very complex geometries, as well as non–linear media, in contrast to the FD scheme.

The key idea of the FDTD is the staggering of the vector components for the electric fields ~E and

the magnetic fields ~H . This is called a Yee lattice being a tribute to Kane Lee, who pioneered

the method [58]. The Yee lattice represents the physical space where the electromagnetic waves

propagate, and a 2D example is shown in Fig. 4.1 . In order to describe the wave propagation

on this grid, Maxwell’s equation have to be discretized as well.

Let us base our analysis on a very general version of Maxwell’s equations. As we are interested

in wave phenomena, we can assume that there are no source terms. However, there could be

electric and (artificial) magnetic currents characterized by electrical conductivities σ and magnetic
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Figure 4.1: Two-dimensional Yee lattice. The solid points represent the electric field ~E and the

× points represent the magnetic field ~H. The electric field propagates in the x-y plane while

the magnetic field is perpendicular to ~E. At the bottom left we refer to the coordinates of the

magnetic field as i, j. The neigbouring solid point in the y direction represents an electric field,

which has coordinates i, j + 1/2.

resistivities %. Thus:

∂ ~H

∂t
= − 1

µ
∇× ~E − %

µ
~H (4.12)

∂ ~E

∂t
=

1

ε
∇× ~H − σ

ε
~E (4.13)

where ε is the electrical permittivity, and µ is the magnetic permeability.

Let us simplify Eqs. 4.12 and 4.13 by restricting the field propagation to the z-direction. Then
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for the different allowed vector components of ~E and ~H these equations will simplify to

∂Ex
∂z

= −µ∂Hy

∂t
− %Hy (4.14)

∂Ey
∂z

= µ
∂Hx

∂t
+ %Hx (4.15)

and

∂Hx

∂z
= ε

∂Ey
∂t

+ σEy (4.16)

∂Hy

∂z
= −ε∂Ex

∂t
+ σEx , (4.17)

Although the fields ~E and ~H retain their vector character in 3 dimensions, the problem is now

effectively one-dimensional, because the fields can only vary in time, and in the z direction. We

now introduce the general notation for the discretization scheme used in FDTD, and formulate

our simplified numerical setting in this form. Let the indices i, j and k represent the increments

in the three spatial coordinates as depicted in Fig. 4.1. Then for a point on the grid the x-

coordinates is given by i∆x where i takes an integer value and ∆x is the size of the grid cell

in that particular direction. Furthermore, the fields are time-dependant and they have to be

discretized accordingly. For this purpose, we take the time increment to be n and the time step

to be ∆t. The discretized Eqs. 4.14 – 4.17 read

E
i,j,k+1/2
x − Ei,j,k−1/2

x

∆z
= −µ

ijk
xy

c◦

H i,j,k
y |n+1/2 −H i,j,k

y |n−1/2

∆t

− %xyH i,j,k
y |n−1/2

−E
i,j,k+1/2
y − Ei,j,k−1/2

y

∆z
= −−µ

ijk
xx

c◦

H i,j,k
x |n+1/2 −H i,j,k

x |n−1/2

∆t

+ %xyH
i,j,k
x |n−1/2

and similarly for the magnetic field

−H
i,j,k
y |n+1/2 −H i,j,k−1

y |n+1/2

∆z
=
−εijkxx
c◦

E
i,j,k−1/2
x |n+1 − Ei,j,k−1/2

x |n
∆t

+ σxxE
i,j,k−1/2
x |n

H i,j,k
x |n+1/2 −H i,j,k−1

x |n+1/2

∆z
= −−ε

ijk
yy

c◦

E
i,j,k−1/2
y |n+1 − Ei,j,k−1/2

y |n
∆t

+ σyyE
i,j,k−1/2
y |n
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Obviously only k is incremented, since it represents the propagation along the z-axis. The fields

are also temporally staggered in a way that ~E is computed at a point in time n∆t, then ~H is

computed at (n+ 1/2)∆t instead of (n+ 1)∆t, which is where the next value of ~E is computed.

Numerical details

The solution of the equations starts with an initial value of the electric field on a Yee lattice.

From the equations above, the temporal variation of ~E depends on the spatial variation of ~H, and

vice versa. Thus, propagating the initial values of ~E in space and time will update the following

values of ~H. After that propagating ~H will update ~E, and so on. It is essential to choose a

proper discretization grid; a grid that is too large will propagate the solutions over small distances

and time intervals which negatively impacts the efficiency of the algorithm, whereas a grid that

is too small will lead to numerical instabilities [48].

The fields are updated in the above fashion until they reach the boundaries of the Yee lattice.

At that point special assumptions have to be made in order to truncate the simulation. That

is usually achieved via absorbing boundaries that force all outgoing or reflected fields to decay.

From a numerical point of view, an artificial absorbing material is introduced and it is known

as perfectly matched layers (PML) [59]. Details of this procedure are discussed in [49]. The

introduction of such a hypothetical material has to be done very carefully, in order to ensure

that the material really absorbs all outgoing waves, and does not generate any strange numerical

artefacts [60].



5. Plasmonic Photonic Crystals

In Sec. 2.2.2 and 3.2 the properties of surface plasmon polaritons (SPPs) were discussed in

detail. However, the computational details of the photonic band structure under the influence

of plasmonic surface waves were not covered as part of the general discussion. In this chapter

we present a perturbative approach to numerically compute the effect of SPP on photonic crys-

tals characteristics, which leads to a systematic correction of the band structure of a reference

dielectric photonic crystal.

In the following we will briefly describe the theoretical background of the first-order perturbation

method used in this study. The next section contains some numerical results obtained for a two-

dimensional honeycomb plasmonic photonic crystal. We will close with a short discussion of our

results. The core numerical calculations are performed using the MIT Photonic Bands (MPB)

code. which is a frequency–domain solver [32]. The extensions that deal with the perturbation

of the bands are developed in the python programming language, see appendix A. The results as

well as the discussion in this section were originally published in [3].

5.1 Perturbation theory

In contrast to textbook examples of standard photonic crystals, the variation of the dielectric

function at a given frequency is crucial for the description of plasmonic photonic crystals, since

the frequency dependency introduces non-linearities, which in turn modify the resulting band

structures. Within the framework of perturbation theory, the change in the band structure ∆ω

is related to the change in the dielectric function ∆ε, as well as to the electric field ~E(~r) itself,

see [30]:

∆ω = −ω
2

´

d3r∆ε| ~E(~r)|2
´

d3r ε| ~E(~r)|2
. (5.1)

Here we have neglected the ~k dependence of the band structure ω(~k) and of the fields ~E(~k, ~r).

The metallic substrate alters the dielectric function of a photonic crystal, which leads to different

33
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effective dielectric functions εspp at both sides of the interface [37]

εspp(ω) =
εm(ω)εd(~r)

εm(ω) + εd(~r)
. (5.2)

Here εd(~r) is the composite dielectric function of the materials forming the photonic crystal

(silicon and air for example), and εm(ω) is the metallic dielectric function, which can be modelled

using a standard formula such as the Drude model as shown in chapter 2:

εm = 1− ω2
p

ω2 − iωγ . (5.3)

Remember that ωp is the plasma frequency of the metal and γ is a damping constant. It is also

worth mentioning that for simulations of the plasmonic photonic band structures, only the real

part of εspp will be of interest. The presence of the complex part does not influence the features

of the band structure, it only leads to a gradual decay of the surface waves [61].

We now have a very interesting theoretical, numerical and experimental setting. We can also

systematically introduce disorder into the photonic crystal component, which leads to the local-

ization of photonic Bloch states. On top of that the imaginary part of εspp leads to an evanescent

character of the Bloch-like states in a plasmonic photonic crystal anyway. A detailed study of

such models is likely to tell us something fundamental about the character of optical localization

[46], and how we can actually manipulate it in practice.

To compute the correction in the harmonic mode numerically we use first order (self-consistent)

perturbation theory. In other words, we first compute the band structure using a suitable dielectric

constant for the regular photonic crystal. Then, within a small window of frequencies, ω to

ω + ∆ω, we compute the change in the frequency using a standard frequency domain code [32].

We thus assume that within the small frequency window chosen, the effective dielectric function

will not fluctuate very wildely, and therefore the resulting band structures are approximately

self-consistent.

For this to work, we have to ensure that for a given range of frequencies, the relative change in

the dielectric constant (∆ε/ε) is less than 1%, such that Eq. 5.1 will give the main perturbative

corrections. Under such conditions a first order perturbation theory is sufficient. However, larger

fluctuations in the dielectric function might require higher order perturbation theories, or even

iterative schemes.
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5.2 The Plasmonic Band Structure

We compute the photonic band structure for a two-dimensional honeycomb lattice consisting of

cylinders of radius r = 0.2α, where α is the lattice constant, see Figs. 5.1a and 5.1b. The

cylindrical rods are made of silicon with dielectric constant of 13, and they are embedded in

vacuum. Such high dielectric contrast increases the chances of forming a photonic band gap

(a)

h

Incident SPP

d
α

y
z

x

(b)

Figure 5.1: (a) A schematic diagram for a 2D honeycomb photonic crystal, and the corresponding

schematic 3D plasmonic photonic crystal in (b).

In Fig. 5.2a we show the TM mode photonic band structure in units of 2πc
α

, where c denotes the

speed of light. The density of photonic states is shown in Fig. 5.2b. This photonic crystal has

a photonic band gap of width 0.14 2πc
α

appearing between frequencies 0.28 2πc
α

and 0.42 2πc
α

. A

smaller band gap of width 0.02 2πc
α

is observed at higher bands.

To study the effect of the plasmons on the band structure, we used a Drude model for aluminium

with a plasma frequency ωp = 2.24×1016 rad/sec and a damping constant γ of 1.22×1014

rad/sec [24]. To evaluate the effective frequency–dependant dielectric function, we increment

the range of frequencies presented in the original band structure (Fig. 5.2a). Then, we iterate

over all increments and determine the effective dielectric function for each frequency in the band

structure that falls within the particular increment using Eq. 5.2. It is important to mention

that prior to the calculation of the effective dielectric function, the units of the frequencies have

to be converted to rad/sec, which involve the lattice constant. Thus, the resulting solutions

of Maxwell’s equations are no longer scale-invariant, and the band structure will depend on the
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Figure 5.2: (a) TM modes in units of 2πc
α

for a honeycomb photonic crystal The. In (b) we show

the corresponding scaled density of states (DoS).

dimensions of a given plasmonic system. In other words, scale invariance requires frequency–

independent dielectric constants, which may be justified for a typical photonic crystal, but not

for plasmonic photonic crystals any more.
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Figure 5.3: (a) The plasmonic band structure computed using perturbation theory. The metallic

surface consists of aluminium with ωp = 2.24×1016 rad/sec and γ = 1.22×1014 rad/sec. The

lattice constant α is taken to be 500 nm. The frequencies are again represented in units of 2πc
α

.

In (b) we show the corresponding scaled density of states (DoS).

In Fig. 5.3a the band structure for a honeycomb photonic crystal placed on an aluminium
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substrate is shown for lattice constant α = 500 nm. For lower bands the effect of the plasmons

is not evident, due to the small change in the dielectric function at low frequencies. Moreover,

the lowest band appears to be almost flat along M-K vectors, which is an indication of localized

states. The higher bands, however, have shifted their positions and a wider band gap is reported.

For instance, the band gap between the first and the second band has increased to 0.17 2πc
α

, which

corresponds to an increase of approximately 13% . However, the bands at higher frequencies do

not change in width.

5.3 Summary

We have developed a numerical tool based on first-order perturbation theory to study the photonic

band structure of surface plasmon polaritons at the interface between a honeycomb photonic

crystal and a metallic substrate. The metallic dielectric function is modelled using a Drude

function, and only the real part of the resulting effective dielectric function for the plasmonic

surface waves is used to compute the corresponding plasmonic photonic band structure.

According to our treatment, the surface plasmon waves break the scale invariance of Maxwell’s

equations. That could be of great interest, since one geometry with different lattice sizes can

now control the flow of light quite differently. Moreover we noticed an increase in the size of

the band gap at low frequencies. However, the Drude approach might be largely misleading in

this aspect, since the overall change in the dielectric function at such frequencies can be quite

remarkable, and the change in the band structure will be much larger. A treatment using tabulated

metallic dielectric data as a function of frequency might be a better a approach, together with

tabulated data of the dielectric components of the photonic crystals. Such data can be taken

from experiment, or obtained from numerical studies using ab initio methods based on density

functional theory [62].



6. Critical States In Photonic

Quasicrystals

Quasiperiodic crystals (quasicrystals) are structures that demonstrate certain geometrical patterns

but have no translational symmetry. The construction of quasicrystals involves non-trivial math-

ematical modelling, for example methods such as cut and project are used to build quasiperiodic

structures, where a higher dimensional periodic lattice is sliced irrationally using a set hyperplanes

and projected into a lower dimensional space under certain restrictions [63]. Such restrictions

result quasiperiodic structures. In this work, the two–stage–projection method is employed to

generate quasiperiodic lattices [64]. The two–stage–projection method is a special case of the

cut and project scheme, but with the distinct advantage that only one-dimensional acceptance

domains (i.e. intervals) are necessary in the first step, whereas the second projection step is

usually trivial (i.e. choosing a layer), see Sec. 6.1.

The unique properties of photonic quasicrystals such as a complete band gap at low index contrast

[65, 66] are attributed to high structural symmetries [67]. The richness comes with the complexity

of the mathematical modelling of quasicrystalline structures, in particular their relations to higher

dimensional lattices. Quasicrystals are generated systematically using different mathematical

techniques, with the cut and project technique being the most prominent one [63]. Although it is

hard to find all of the resulting quasiperiodic structures in nature in the form of intermetallic alloys,

a large number of quasicrystalline structures may easily be realized as photonic quasicrystals.

Therefore the cut and project scheme allows us to construct whole families of easy-to-generate,

but sufficiently complex, quasiperiodic lattices to systematically study photonic band gaps and

optical localization.

In this chapter we present the model and the findings published in [2]. We investigate the optical

properties of two-dimensional (2D) photonic quasicrystals. Our aim is to quantify the localization

of the photons in the novel 2D dodecagonal lattice, using the standard time domain methods to

evaluate the transmission coefficients. Optical localization itself is determined using the analytical

concept of an inverse participation ratio (IPR), which quantifies the number of states over which

38
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photons are distributed at a given frequency [46].

In the following sections we discuss the details of generating the quasicrystalline structure used

in the simulation. The method is described in Secs. 6.1 and 6.2. That is followed by the

transmission spectrum analysis, and the discussion of optical localization in such systems.

6.1 Two–stage–projection

For the cut and project scheme we consider a periodic structure in a higher dimensional space

RD, where D represents the dimensions of the space. If we try to project all of the lattice points

into a lower d-dimensional subspace Rd‖ known as parallel or physical space, we will simply end

up with a periodic or a dense set of lattice points, both of which will be of little use. In order

to produce a discrete and aperiodic set of points in Rd‖, we introduce an intermediate subspace

known as the perpendicular space Rc⊥ with dimensionality equal to c where RD = Rd‖ × Rc⊥. We

then define an acceptance domain Γ in Rc⊥, which is simply the projection of a unit cell of RD

onto Rc⊥. Next we project the points of the RD lattice whose projection onto Rc⊥ falls into the

acceptance domain Γ [63].

The so–called two-stage projection method employs cut and project techniques to map higher-

dimensional lattices onto lower-dimensional laminar (i.e. layered) structures, using only one-

dimensional acceptance domains [64]. This has a clear numerical advantage over other schemes,

which have to fallback on quite complicated and even fractal acceptance domains [63].

In principle the two stage projection method consists of two cut and project steps. The tricky

step is the former, which will project a higher-dimensional lattice in RD onto a lattice in RD−1
‖ ,

using a 1D acceptance domain in R1
⊥. Assuming that RD−1

‖ = Rδ × Rγ, we can apply the cut

and project scheme a second time in order to generate the final aperiodic structure in Rδ, where

the structure usually represents a stack of quasiperiodic planes, which can be projected further.

Examples are given in [64].

In the following section we map a lattice from 4-dimensional space onto a laminar structure in

3-dimensional space. Each layer contains 2-dimensional quasiperiodic structures, and the second

application of the cut and project scheme is rather trivial, as discussed above. We then extract



Section 6.2. Finite Difference Time Domain Method Page 40

the quasiperiodic structures from all the layers that are periodically spanned along the z-axis.

Finally we collapse the layers onto a 2-dimensional x-y plane, which forms the basis of patches

used for our simulations.

6.2 Finite Difference Time Domain Method

A finite–difference–time–domain solver (FDTD) [20] is used to characterize the localized optical

modes in a 2D quasicrystal. The samples are patches from QC’s, as discusses above. The

smaller the window, the fewer the points mapped, and hence a smaller QC lattice is produced.

The patches generated have a length l and a width w. All dimensions are given in terms of a

characteristic length scale α.

However, to run the simulation and achieve stable results, we introduce a simulation cell that

has dimensions greater than those of the generated quasicrystal, so that it fits the QC as well

as the perfectly matched layers (PML). The QC was then placed at the center of the simulation

cell. The gap between the edges of the crystal and the borders of the simulation cell is filled with

PML. We ensured that the thickness of the PML is sufficient for the electromagnetic modes to

decay and that no backward reflection is encountered during our simulations.

A Gaussian source is positioned at the center of the simulation cell. The source center frequency

is 0.5, and it has width of 0.55 both in units of 2πc/α where c is the speed of light. The

outgoing flux is measured in a direction perpendicular to the y-axis at a surface of length l. The

flux quantifies the amount of energy transmitted through the surface of the structure, and it is

given by:

P (ω) = n̂ ·
˛

~E(ω)× ~H(ω) dA (6.1)

where the surface integral is the Poynting vector, and n̂ is the surface normal. Given the flux

computed by Eq.6.1, the transmission coefficients can be obtained as the ratio between the

outgoing flux in the presence of the QC and the flux measured in its absence.
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6.3 Dodecagonal Quasicrystal

In order to generate a dodecagonal quasiperiodic structure in 2D using the two–stage–projection

method, we begin with a higher dimensional face-centred lattice D4 [64]. This lattice has much

higher symmetries than lattices in three-dimensions and two–dimensions (i.e. up to 12 fold

symmetry) [68, 69], which makes it a potential candidate for forming photonic structures with

particular optical properties, such as a complete band gap for relatively low index contrast.

The two-stage projection for the dodecagonal 2D quasiperiodic structure is based on the following

orthonormal vectors [64]

~e1 =

[
a

2
,
a

2
, 0,

b√
2

]
~e2 =

[
a

2
,−a

2
,
b√
2
, 0

]

~e3 =

[
b√
2
, 0,−a

2
,−a

2

]
~e4 =

[
0,

b√
2
,
a

2
,−a

2

]

where a2 = 1 + 1√
3
, b2 = 1 − 1√

3
. The vectors ~e1, ~e2 and ~e3 represent the basis for the parallel

space R3
‖ and ~e4 is the base of R1

⊥. We project the lattice onto parallel space using an acceptance

domain in the half open interval
(
−
(
a
2

+ b√
2

)
,+
(
a
2

+ b√
2

)]
. The projected set of points is then

represented in these transformed coordinates, and it forms a laminar 3D structure, where each

layer contains a quasiperiodic dodecagonal structure, as described in [64].

Each point in the cell is then taken to represents the center of a cylindrical object with radius r =

0.2α and dielectric constant ε = 12.4, corresponding to the dielectric constant of silicon. These

cylindrical objects are surrounded by air which has a dielectric constant of 1. The height of the

cylinders is set to 0.8α. The FDTD simulation is run until the field decays close to the borders

of the cell and the values of the field at each point in the QC is stored for every 0.05 time unit.

In Fig. 6.1 the transmission coefficients reaches a minimum value of zero in the relative frequency

range 0.59 – 0.649, which indicates that the propagation of states within that frequency range is

forbidden, and a band gap has opened. The formation of such states is be attributed to Bragg

scattering [70], where the interference of extended states at the band gap can also lead to the

formation of new states in the range [46]. However the states at the mobility edges (close to the

band gap) are likely to be localized.

To further understand the nature of the band edge states, we gradually increase the size of the
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(a) (b)

Figure 6.1: In (a) we plot the transmission coefficients as a function of the frequency for the

crystal shown in (b). The frequencies are given in units of 2πc/α and the lattice has dimensions

of 1.5 × 1.
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Figure 6.2: In (a) and (c) we plot the transmission coefficients that corresponds to crystals shown

in (b) and (d) respectively. The crystal (b) has dimensions of 6 × 4 and (d) is 8.58 × 5.72.

window used in mapping the quasiperiodic structure points. In Fig. 6.2 the transmission coeffi-

cients exhibit the formation of new states at the band gap due to the constructive interference
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between the neighbouring states formed by the presence of new scatterers. In contrast to a 1D

case where the transmission decays exponentially as a function of the crystal size [46], the results

presented in Fig. 6.2a and 6.2d show an enhancement in the transport around the band gap

frequency. In a 2D world, the scaling theory is a bit more complex, and such changes in the

transmission could belong to either localized or critical states. We hence plot the field profiles

for different cell sizes as a function of the frequency. To this end, we accumulate the Fourier

transformations of the fields at each point in space, and plot a contour of the field profiles in the

lattice.
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Figure 6.3: The contour represents the field profiles for a Gaussian source at the center of QC

patches with dimensions (a) 3 × 2, (b) 6 × 4 (c) 8.58 × 5.72 and (d) 10.1 × 6.74. in units of

α2. Only modes with frequencies near the band gap are presented. The colour-map shows the

intensity distribution in the crystal.

For a crystal with dimension 3 × 2 [α2] the fields tend to spread across the lattice and position

themselves around regions with high dielectric as shown in Fig. 6.3a. As the QC size increases,
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Figs. 6.3b – 6.3d, we observe strong attenuation of the fields in regions that previously had high

intensity which is due to the scattering from the extra lattice points. However, for the larger cells

presented in Figs. 6.3c and 6.3d, the profile patterns do not vary remarkably and the modes are

trapped at the vicinity of the Gaussian source. Some of these patterns are a visual indication that

there are localized states forming in parts of the structure. Having in mind the enhancement in

light propagation near band gap as seen in Figs. 6.2a and 6.2c, we further identify these modes

as resonant modes.

Finally we perform the inverse participation ratio IPR analysis to identify localized states. The

inverse participation ratio is given by

IPR(ω) =

∑
~r

|Ψ(ω,~r)|4

[
∑
~r

|Ψ(ω,~r)|2
]2 (6.2)

where the sum runs over all the points in real space. The localized states are identified by an

IPR that is proportional to exp(−2ζL) where L is the size of the sample in the direction of the

modes propagation. In other words, a localized state shows an exponentially decaying inverse

participation ratio with increasing the system size. As the system size approaches the infinity, the

IPR for localized states becomes constant.

In Fig. 6.4 we present the inverse participation ratio of the modes near the mobility edges as a

function of the lattice size L. We use a least-squares fitting to determine the localization length

ζ from the IPR around the band gap edges. We estimate that the localization length for the QC

to be ∼ 0.3207[α−1].

6.4 Summary

We have investigated the localization of electromagnetic modes in a 2D quasiperiodic photonic

crystal. The sample structure was generated using a two stage projection scheme leading to a

laminar three-dimensional QC, where we map all layers into a single dodecagonal QC. The number

of points mapped from a higher dimension space was systematically increased leading to larger

and larger patches. The lattice points were taken as centres of cylindrical objects of radius 0.2
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Figure 6.4: The decay of the inverse participation ratio as a function of the lattice size. The IPR

values were extracted at frequencies between 0.59 – 0.649 (in units of 2πc/α) and averaged out.

The error bars shown in the figure represent the deviation between each data point and the value

obtained from the fitting.

α where α is a characteristic lattice length. These cylinders have a dielectric constant of 12.4,

whereas the surrounding media has a dielectric constant of 1.

Performing finite–differences-time-domain simulations, we observed a photonic band gap at fre-

quencies 0.59 – 0.649 (in units of 2πc/α). Increasing the size of the QC patches, we observed the

formation of new states at the band gap. Such states are a result of a constructive interference

of states at the band gap.

Plotting the field profiles showed that field intensities are diminishing at intermediate frequencies

as the size of the crystal increased, and hence the number of the scatterers. The inverse par-

ticipation ratio showed that some states near the mobility edges are localized. The localization

length is estimated from the scaling theory to be around 0.3207[α−1]. An interesting open prob-

lem remains the appearance of critical states in 2D and 3D disordered structures [46]. It can be

answered by carrying out more systematic studies, where the analytical tools presented in this

study should be of great use.



7. Optical Localization In Photonic

Crystals

Localization as presented in Sec. 3.3 was initially proposed as a phenomenon that is associated

with electronic waves. Later on, it turned out to be a wave characteristic that extends to all

forms of waves. In the field of optics, however, the concept of solitons localization in waveguide

arrays was proposed in the year 1988 [71]. The system is formed of a structure that is uniform

in one direction and has defects (disorder) in the transverse direction and that is why it is also

known as transverse localization. Such structures are perfect for the formation of discrete soliton

which can hence be modelled under certain approximation using a Schrdinger-like equation.

Experimentally, the observation of transverse localization was not easy, for various reason including

the fact that the theoretical aspects of localization in the physics solitons were not well understood.

It was only in the year 2007 that transverse localization was seen in experiments [72, 73]. On

the other hand, the study of localization in paraxial disordered photonic systems faced some

difficulties due to other factors. For example obtaining sensible results that assures the existence

of localized modes require the averaging over multiple defect configurations [74]. Moreover

different analytical approaches can be followed to determine weather or not an optical mode is

localized.

One of the approaches that can be used to analyse localized modes is the study of the behaviour

of the transmission spectrum, which predicts that for localized modes the transmission function

tends to decay exponentially as the size of the sample increases. Moreover, the mode intensity

over a distance L also reflects their localized nature [46]. Localized photons have high densities

over a short distance, while extended ones are spread over longer distances [30]. Finally the scaling

of the inverse participation ratio for localized states also decays exponentially as the sample size

increase [75].

In this chapter we will explore two different examples of photonic structures with the aim of

covering the different approaches to understand localization. In the first example we present a

periodic photonic crystal with multiple defects (disordered photonic crystal). We focus on the

46
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analysis of the mode intensities related to defect sites in order to show the localization effect. In

the second example we demonstrate the localization effect in two-dimensional quasicrystals using

the technique developed in chapter 6.

7.1 Localization in Photonic Crystals

The experimental observation of localization in photonic crystals was always related to disorder,

where the backscattering effect in highly disordered dielectric media will always lead to localiza-

tion. In this section we start off with a simple 2D triangular lattice with defects located at a

well–defined lattice sites. As presented previously in Sec. 5.2, this crystal has a photonic band

gap (TM bands) between ω ∼ 0.28 and ω ∼ 0.42 in units of c/α where c is the speed of light

and α is the lattice constant.

To introduce a single defect in the crystal with radius 0.2 α, one has to increase the size of the

unit cell used for the computations. Initially the structure is a simple triangular lattice spanned by

the unit vectors ~a1 =
√

0.75αx̂+ 0.5αŷ and ~a2 =
√

0.75αx̂− 0.5αŷ. Adding the defect requires

the lattice to be bigger, which makes a supercell approach more suitable. Thus, we replicate the

cell five times along both directions ~a1 and ~a2 to generate a supercell. Then a single lattice point

at the origin (0, 0, 0) is removed which breaks the symmetry of the lattice and form a defect,

see Fig. 7.1a.

Instead of performing a full band structure calculation on the crystal, we rather focus on the

modes formed at the defect site, which hence makes the simulation independent of the reciprocal

lattice vectors. It was found that new bands appear at frequencies ω ∼ 0.391397 c/α which

was previously a forbidden frequency (band gap). In Fig. 7.1b we show the modes formed at

the defect site. To understand the nature of the newly formed band we calculate the energy

intensity within the vicinity of the defect. It was found that approximately 62.05% of the bands

are localized in the surroundings of the defect.

To further understand the physics of the defects, we introduce three more defects at randomly

selected sites on a much larger cell (10 × 10). The field profiles shown in Fig. 7.2 represent

two different geometries with five defects (Fig. 7.2a) and six in Fig. 7.2b. To analyse the newly
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(a) (b)

Figure 7.1: (a) A 2D triangular photonic crystal with a single defect at the center of its unit cell

and (b) is the localized field intensity around the defect.

formed bands we study ten different realizations of each lattice. It was found that the new states

occur at ω ∼ 0.3584 c/α. For the geometry presented in Fig. 7.2a, 71.4 % of the fields intensity

is localized in the vicinity of a single defect.

(a) (b)

Figure 7.2: In (a) the field intensity of the localized modes is shown around the defects for a

photonic crystal with five defects in the unit cell, where (b) represents a crystal with six defects

in the unit cell. Only a limited size is shown in each figure.

As the number of defects increase, the behaviour of the optical modes change, which justifies

why the average has to be considered. For instance, adding one more defect does not change

much rather than a slight fluctuation in the intensity of the fields at the defect sites. However,
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adding additional defects may impact that percentage noticeably, and it changes the distribution

of the optical modes. For the structure shown in Fig. 7.2b 49.8 % of the modes are localized

around one defect while 21.5 % are found in the surroundings of another defect. In a different

geometry that contained the same number of defects but distributed differently, the percentages

of the field intensities at two defect sites varied from 58.6 % to 12.6 %.

7.2 Localization in Photonic Quasicrystals

In the field of photonics the search for novel types of band gap materials has been a major

motivation for scientists to explore a large variety of different structures. Periodic structures, for

instance, have interesting properties and a wide range of applications (see [76] and [77] for review).

However, only a limited number of basic photonic geometries has allowed for the formation of

photonic band gaps. This has culminated in the growing interest in aperiodic structures, as

a result of a wide variety of different candidate geometries for photonic band gap materials,

and hence a much richer physics. Of particular interest are quasicrystals (QCs), which are well

organized structures that lack translational symmetry at a short range [63]. But they obviously

display some aperiodic long range order, as suggested by their sharp and unusual diffraction

patterns [78].

Photonic quasicrystals (PQCs) have been shown to give rise to photonic band gaps formed via

Bragg scattering [70]. In 1D, band gaps have been found in Fibonacci-like QCs [79, 80], and the

higher dimensional octagonal quasicrystals were also shown to form a band gap [66]. Interestingly,

a band gap for a very low refractive index contrast has been reported for dodecagonal QCs [65].

Moreover, related effects such as field enhancement and slow modes at the band edge were

observed in various experimental studies [81]. In addition to that, photonic modes were found to

be localized in ten-fold Penrose tiling. In such structures localized modes were associated with

the tunnelling phenomena and the presence of fast light [82]. Experimentally, the localized states

were observed in Fibonacci sequences where the transmission scales and the light propagation is

enhanced due to resonant localized states [83, 2].

In this section we follow the scheme developed previously in chapter 6 to generate a quasiperiodic
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structure from a four–dimensional (4D) square lattice, and investigate its optical characteristics.

In contrast to the results presented in the Sec. 6.3, we show that states formed in the quasiperiodic

layer are localized.

7.3 Octagonal Quasicrystal

The structure used to study the optical localization is a quasiperiodic lattice generated using the

technique described in Sec. 6.1. Initially we start with a 4D square lattice [64] with a set of unit

vectors

~e1 = [2, 0, 0, 0] ~e2 = [0, 2, 0, 0]

~e3 = [0, 0, 2, 0] ~e4 = [0, 0, 0, 2]

The lattice is spanned over the 4D space using the unit vectors as basis. The resulting set of

vectors is then projected onto the following orthogonal vectors:

~p1 = [1, 0, 0, 0] ~p2 =

[
0, 0,

1√
2
,

1√
2

]

~p3 =

[
0,

1√
2
,
1

2
,−1

2

]
~p4 =

[
0,− 1√

2
,
1

2
,−1

2

]

which generates a set of dense points. However, only those points whose projection onto the

perpendicular space fall into the 1D acceptance domain
[
−1− (3×

√
2/2), 1− (

√
2/2)

]
, are

projected. The resulting crystal is a 3D quasicrystal periodic in one direction. In contrast to

the crystal modelled in chapter 6, a single layer of the three–dimensional structure is considered.

In Fig. 7.3b we show the smallest generated crystal that represented the basis of the FDTD

simulation.

Similar to the simulation of the dodecagonal lattice in Sec. 6.3, the lattice points generated here

also represent the center of cylindrical objects with dielectric function 12.6, radius of 0.25 α and

height of 0.8 α where α is a lattice constant. The default dielectric constant (background) is

taken to be 1.

The transmission spectrum obtained for the geometry in Fig. 7.3b is presented in Fig. 7.3a does

not demonstrate any band gaps, however, a small resonance peak appears at ω ∼ 0.42 c/α.



Section 7.3. Octagonal Quasicrystal Page 51

0.2 0.3 0.4 0.5 0.6 0.7 0.8
ω [c/α]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr

(a) (b)

Figure 7.3: (a) The transmission coefficients for a photonic quasicrystal with the geometry

depicted in (b). The crystal is of dimensions 17× 13.1 in the units of the lattice constant α and

it represents a single layer in a 3D octagonal quasicrystal.

To analyse the behaviour of the transmission coefficients we further increase the number of the

mapped points in the quasicrystal lattice, and hence the size of the crystal.

In Fig. 7.4 we show the transmission coefficients as well as the corresponding field profiles for

three different crystal sizes; 25.5× 19.5, 34× 25.3 and 42.4× 31.4 where all values are given in

terms of the lattice constant α.

The spectrum observed in Fig. 7.4a shows that the transmission coefficients in the frequency

window ω = 0.42 – 0.5 c/α are decreasing as the size of the lattice increases. The depletion

of the transmission function highlights the possibility for the formation of a band gap. In Fig.

7.4c a clear evidence that a band gap is forming in the same frequency range. Moreover, the

continuous decrease in the transmission coefficients as a function of the lattice size suggests the

presence of localized modes.

The evolution of the field profiles as a function of the lattice size is presented in Figs. 7.4b –

7.4f. In Fig. 7.4d evidences for the formation of localized modes appear as the fields tend to

concentrate themselves around the edges of the structure in a low dielectric region. The field

profiles shows a prominent increase in the intensity around the edges as depicted in Fig. 7.4f

which serves as a clear indication of the nature of the modes.

In Fig. 7.5 the inverse participation ratio near the band gap is plotted against the crystal size L.
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Figure 7.4: The transmission coefficients and the corresponding field profiles for crystals with

dimensions (a, b) 25.5× 19.5, (c, d) 34× 25.3 and (e, f) 42.4× 31.4 in units of α.
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Figure 7.5: The decay of the inverse participation ratio as a function of the lattice size. The

IPR values were extracted at frequencies between 0.44 – 0.50 (in units of 2πc/α) and averaged

out. The error bars shown in the figure represent the deviation between the data points and the

fitting.

In contrast to the IPR presented in Fig. 6.4, we notice that the exponential decay is slower, which

is attributed to the higher density of scatterers in the lattice. In turn, that leads to a smaller

localization length ζ. For the lattice modelled here the value obtained for the localization length

is approximately 0.023 [α−1], which is an order of magnitude smaller than that computed in Sec.

6.3.

7.4 Summary

In this chapter we explored different approaches to qualitatively understand light localization

phenomenon. In the first part of the chapter we studied the localization of optical modes around

defects in a two–dimensional triangular photonic crystal. The defects were gradually introduced

to the structure. In all geometries new states usually form in the band gap and those states

tend to be concentrated around the defects. As the number of defects as well as the size crystal
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increase, a single configuration may not reflect the true nature of the optical modes. Thus the

energy intensity has to be averaged over multiple configurations.

In the second part of the chapter we studied the localization of light in octagonal quasicrystalline

layers. The crystal was generated by applying the two–stage cut and project approach on a

periodic four–dimensional lattice. Then a single layer of the resulting crystal was used as the

basis for the computational unit cell. To identify localized modes the scaling of the evolution of

the transmission coefficients as a function of the lattice size was used. As the size of the crystal

increases, and hence the number of scatterers, the transmission spectrum corresponding to the

localized states exponentially decreases with the increase in the dimensions of the lattice. In

contrast to the states presented previously in chapter 6, these localized modes formed resonant

peaks that became prominent as the size of the lattice increased, which is considered to be an

indication of critical states [46].



8. Conclusive Remarks

The control over the properties of materials at all scales is a key in advancing new technologies.

The development of sophisticated photonic technologies is a rich field of science due to many

facts. For instance, in the field of solar cells, the control over the photons can help improve the

performance of the cell in two different ways; filtering out photons with undesired frequencies

[84] and enhance the absorption of photons within a certain range of frequencies [85]. Moreover,

optical fibres can perform better in guiding beams of light when the fibre core is surrounded by

carefully designed photonic crystals clad [86].

The difficulty in the field of photonics arises from the fact that manufacturing devices can some-

times be sophisticated, but there is absolutely no guarantee that the desired results will be

obtained. Here the numerical simulations play an important role in bridging the gap between

theoretical equations and experiments carried out in the lab. The simulations often make useful

predictions about the properties of the systems prior to fabrication, which cuts the financial costs

and saves a lot of time.

The work carried out in this thesis primarily aimed at developing new types of numerical tools and

methods to compute the optical properties of photonic crystals. A first study focused on analysing

the effect of surface plasmon polaritons in photonic crystals [3]. In a two–dimensional photonic

crystal with an initial photonic band gap, evanescent surface waves affects the dielectric function

of the material and transform a regular, constant dielectric function into a frequency–dependent

counterpart. A simple perturbation theory was developed to study the resulting photonic band

structure. It turned out that the band gap in a simple photonic crystal was enhanced.

The topic optical localization in photonic crystals and quasicrystals then became the main focus

for the rest of this work [2]. Two different cases of photonic quasicrystals were demonstrated.

A technique to identify and quantify the localized states was developed using the transmission

spectrum, as well as the inverse participation ratio. A first example characterized some states

created in a dodecagonal quasiperiodic structure to be critical, although the inverse participation

ratio did scale exponentially as the size of the lattice increased. However, the transmission

spectrum shows the appearance of resonant states, which is a feature associated with critical
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states. Furthermore, we provided another example where we demonstrate a method to identify

localized states formed at defect sites in regular photonic crystals. The technique quantifies the

density of the states in the vicinity of a defect site and use it as a measure of localization. Finally

we analyse the states in a different quasicrystalline structure, and showed that the transmission

spectrum for such structure also decays exponentially.

In the analysis carried out in this work two types of dielectric functions were used; a uniform

constant dielectric function and frequency–dependent dielectric constant. The latter was modelled

using a Drude–Lorentz model. Despite the success of the formula, it has some limitations when

dealing with realistic structures, where other methods such as ab initio yield much better results

compared to a simple model such as Drude–Lorentz [4, 5, 62]. However, the numerical tools as

they stand are limited to these well defined formulas and can not deal with tabulated data and

random dielectric function. They will have to be added to the newly developed libraries in the

future.

Another problem with the current techniques is the numerical stability of some of the vital

methods used. For instance, the finite–differences–time–domain method is coupled to the so–

called perfectly matched layers and the results of the simulations can be affected by the values

chosen for these layers. The perfectly matched layer is an imaginary material that is introduced

in order to mimic the behaviour of the real system during a numerical simulation, and absorb all

outgoing waves at the boundaries. A better approach should treat the boundaries as a genuine

part of the system, which would improve the accuracy of the algorithm, reduce numerical errors

and decouple the simulation from any artificial material.



Appendix A. The Program Design

The calculations in this work are performed using scripts written in the python programming

language. These scripts extended the functionalities of the standard packages of MIT Photonic

Bands (MPB) 1 for calculating the electromagnetic modes in periodic dielectric systems, and

MIT Electromagnetic Equation Propagation (MEEP) 2, which implements the finite–difference–

time–domain method. The main reason python scripts were developed is to use the power of

python to build numerical libraries that are easy to maintain and extend. Moreover, the ultimate

goal would be to develop a transparent software that offers an application programming interface

(API) rather than a black box that encapsulate all the logic and offers limited entry points.

The package consists of modules where each module is meant to do a specific task. The base li-

braries used in the work are: python 2.7.7, python-unit, python-mockito, numpy, scipy, matplotlib,

MPB and MEEP.

At a higher level, MIT packages (MPB and MEEP) play the role of the engine that performs

the actual simulations, either as frequency–domain method for band structure calculation or as

finite–differences–time–domain method for computational electrodynamics. The input required

by those packages (control files) is provided via special python modules that build and ensure the

validity of those inputs. Then, the data produced by MPB/MEEP is sent to output–processing

modules for further treatment. Eventually, the resulting data is stored in binary format for future

use.

In the following sections we present each of the main modules in addition to a brief description of

its role with code snippets. The code is hosted on bitbucket.org which offers private free hosting

for code repositories.

1http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands
2http://ab-initio.mit.edu/wiki/index.php/Meep
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A.1 The Modules

A.1.1 MIT Package

This modules wraps the object needed by both MPB and MEEP. It has a material, lattice, objects,

control file and fields submodules. All of the mentioned submodules except the fields submodule

are responsible for creating the input needed by the core engine as described in more details

below. For example, the lattice module has two methods that return a string representing the

lattice objects needed by MPB and MEEP:

from s r c . m i t p a c k a g e s . o b j e c t s import O b j e c t s

c l a s s L a t t i c e ( O b j e c t s ) :

def i n i t ( s e l f , p o s i t i o n s , e p s i l o n i n f , omega = [ ] , gamma= [ ] , s igma = [ ] ) :

O b j e c t s . i n i t ( s e l f , e p s i l o n i n f , omega , gamma , s igma )

s e l f . p o s i t i o n s = p o s i t i o n s

def s p h e r e s ( s e l f , r a d i u s ) :

o b j e c t s = ’ ’

f o r p o s i t i o n i n s e l f . p o s i t i o n s :

o b j e c t s += s e l f . s p h e r e ( p o s i t i o n , r a d i u s )

return o b j e c t s

def c y l i n d e r s ( s e l f , r a d i u s , h e i g h t ) :

o b j e c t s = ’ ’

f o r p o s i t i o n i n s e l f . p o s i t i o n s :

o b j e c t s += s e l f . c y l i n d e r ( p o s i t i o n , r a d i u s , h e i g h t )

return o b j e c t s

where Objects is used as a base class that abstract out the creation of a single object (sphere

or cylinder). Each object consist of a material that has certain properties such polarization and

dielectric function. The material is represented in the material class within the same package.



Section A.1. The Modules Page 59

Finally, the control file module has one method that creates the physical control file needed

to execute the simulation. The control file is generated from a basic template, which contains

variable that will simply be substituted with the values generated by the other modules;

c l a s s C o n t r o l F i l e :

def i n i t ( s e l f , f i l e n a m e , template , r e p l a c e m e n t d i c t ) :

C o n t r o l F i l e . c r e a t e ( f i l e n a m e , template , r e p l a c e m e n t d i c t )

@ s t a t i c m e t h o d

def c r e a t e ( c t l f i l e , template , r e p l a c e m e n t d i c t ) :

c o n t r o l f i l e = open ( c t l f i l e , ’w ’ )

t e m p l a t e = open ( t e m p l a t e )

f o r l i n e i n t e m p l a t e :

f o r key , v a l u e i n r e p l a c e m e n t d i c t . i t e r i t e m s ( ) :

l i n e = l i n e . r e p l a c e ( key , v a l u e )

c o n t r o l f i l e . w r i t e ( l i n e )

c o n t r o l f i l e . c l o s e ( )

t e m p l a t e . c l o s e ( )

On the other hand, the fields submodule is responsible for processing the fields produced in

MEEP calculations. It has special functions to find the field profiles and compute the inverse

participation ratio.

A.1.2 Perturbation Package

The perturbation package is responsible for performing the band structure calculations using the

perturbation theory developed in chapter 5. The results presented in Ref. [3] are produced using

the same modules. The package has different classes that have different tasks; the single input

module in the package is the dielectric class that computes the metallic as well the effective

dielectric functions. Here is a sample of the routines, where the methods that compute the

different types of dielectric functions are presented:

from f u t u r e import d i v i s i o n

import numpy as np

import s r c . p e r t u r b a t i o n . base as base
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def drude ( omega , e p s i l o n , sigma , omega p , gamma ) :

return e p s i l o n + ( sigma ∗ omega p ∗∗ 2 / (− omega ∗∗ 2 + 1 j ∗ gamma ∗ omega ) )

def o s c i l l a t o r ( e p s i l o n , gamma k , omega k , omega p , s igma k , w ) :

return e p s i l o n + np . sum(

( ( s igm a k ∗ omega p ∗∗ 2) / ( omega k ∗∗ 2 − w ∗∗ 2 + 1 j ∗ gamma k ∗ w) ) )

def l o r e n t z ( omega , e p s i l o n , omega p , s igma k , omega k , gamma k ) :

omega = np . a r r a y ( omega )

d i e l e c t r i c = [ ]

i f omega . s i z e > 1 :

f o r w i n omega :

d i e l e c t r i c . append (

o s c i l l a t o r ( e p s i l o n , gamma k , omega k , omega p , s igma k , w) )

return np . a r r a y ( d i e l e c t r i c )

e l s e :

return o s c i l l a t o r ( e p s i l o n , gamma k , omega k , omega p , s igma k , omega )

def e f f e c t i v e ( e p s i l o n , e p s i l o n m e t a l ) :

Prior to processing the output from the engine which is normally a plain text we have to manipulate

the result to extract the data needed. The external data gets passed on to the bands class where

most of the plasmonic band structure calculations are carried out. The module contains most of

the logic described in Sec. (5.1) Finally, the package also has a special module to compute the

density of plasmonic states.

import numpy as np

import os

import s y s

from s r c . p e r t u r b a t i o n . d i e l e c t r i c import D i e l e c t r i c

import s r c . p e r t u r b a t i o n . base as base
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c l a s s Bands :

def i n i t ( s e l f , f i l e n a m e , from , to , d e f a u l t e p s , m a t e r i a l e p s ) :

s e l f . f rom = from

s e l f . t o = t o

s e l f . i n i t i a l = base . f r e q u e n c i e s ( f i l e n a m e , from , t o )

s e l f . n o o f k p o i n t s = s e l f . i n i t i a l . shape [ 0 ]

s e l f . n o o f b a n d s = s e l f . i n i t i a l . shape [ 1 ]

s e l f . d e f a u l t e p s = d e f a u l t e p s

s e l f . m a t e r i a l e p s = m a t e r i a l e p s

def minimum ( s e l f ) :

m i n f r e q s = [ ]

f o r i n d e x i n range ( s e l f . n o o f b a n d s ) :

m i n f r e q s . append ( min ( s e l f . i n i t i a l [ : , i n d e x ] ) )

return min ( m i n f r e q s )

def maximum ( s e l f ) :

m a x f r e q s = [ ]

f o r i n d e x i n range ( s e l f . n o o f b a n d s ) :

m a x f r e q s . append (max( s e l f . i n i t i a l [ : , i n d e x ] ) )

return max( m a x f r e q s )

def f r e q u e n c i e s ( s e l f , s t e p s ) :

m a x f r e q = s e l f . maximum ( )

m i n f r e q = s e l f . minimum ( )

s t e p = ( m a x f r e q − m i n f r e q ) / s t e p s

s h i f t = 2 ∗ s t e p

return np . a r ang e ( m i n f r e q , m a x f r e q + s h i f t , s t e p ) . t o l i s t ( )

def p h o t o n i c ( s e l f ) :

return s e l f . i n i t i a l

@ s t a t i c m e t h o d

def a n y ( bands , l o w e r f r e q , u p p e r f r e q ) :

i n d i c e s = [ ]
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e l e m e n t s = np . where ( ( bands >= l o w e r f r e q ) & ( bands < u p p e r f r e q ) )

f o r i n d e x i n range ( l en ( e l e m e n t s [ 0 ] ) ) :

i n d i c e s . append ( [ e l e m e n t s [ 0 ] [ i n d e x ] , e l e m e n t s [ 1 ] [ i n d e x ] ] )

return i n d i c e s

@ s t a t i c m e t h o d

def u p d a t e b a n d s ( bands , index , p l a s m o n i c b a n d s , i s v a l i d ) :

p l a s m o n i c b a n d s [ i n d e x [ 0 ] , i n d e x [ 1 ] ] = bands [ i n d e x [ 0 ] , i n d e x [ 1 ] ]

i s v a l i d [ i n d e x [ 0 ] , i n d e x [ 1 ] ] = True

def c o m p u t e b a n d a t ( s e l f , c t r l f i l e , sigma , p l a s m a f r e q , omega , gamma ) :

a r g s = ” p l a s m o n i c D e f a u l t D i e l e c t r i c ={0} p l a s m o n i c M a t e r i a l D i e l e c t r i c ={1} ”

d e f a u l t s p p = D i e l e c t r i c . e f f e c t i v e (

s e l f . d e f a u l t e p s , sigma , p l a s m a f r e q , omega , gamma)

m a t e r i a l s p p = D i e l e c t r i c . e f f e c t i v e (

s e l f . m a t e r i a l e p s , sigma , p l a s m a f r e q , omega , gamma)

os . system ( ( ’mpb ’ + a r g s + c t r l f i l e + ’ > tmp output ’

) . format ( d e f a u l t s p p , m a t e r i a l s p p ) )

os . system ( ’ w a i t ’ )

return base . f r e q u e n c i e s ( ’ tmp output ’ , s e l f . f rom , s e l f . t o )

def p l a s m o n i c b a n d s ( s e l f , l o w e r f r e q , u p p e r f r e q ,

c t r l f i l e , sigma ,

p l a s m a f r e q , gamma ,

p l a s m o n i c b a n d s , i s v a l i d ) :

i n d i c e s = Bands . a n y ( s e l f . i n i t i a l , l o w e r f r e q , u p p e r f r e q )

i f i n d i c e s :

f o r i n d e x i n i n d i c e s :

omega = s e l f . i n i t i a l [ i n d e x [ 0 ] , i n d e x [ 1 ] ]

bands = s e l f . c o m p u t e b a n d a t (

c t r l f i l e , sigma , p l a s m a f r e q , omega , gamma)

Bands . u p d a t e b a n d s ( bands , index , p l a s m o n i c b a n d s , i s v a l i d )
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@ s t a t i c m e t h o d

def s t o r e ( f i l e n a m e , data ) :

np . s a v e ( f i l e n a m e , data )

@ s t a t i c m e t h o d

def l o a d ( f i l e n a m e ) :

return np . l o a d ( f i l e n a m e )

def p l a s m o n i c ( s e l f , c t r l f i l e , sigma , p l a s m a f r e q , gamma , s t e p s ) :

p l a s m o n i c b a n d s = np . z e r o s (

( s e l f . n o o f k p o i n t s , s e l f . n o o f b a n d s ) , dtype=f l o a t )

i s v a l i d = np . z e r o s ( ( s e l f . n o o f k p o i n t s , s e l f . n o o f b a n d s ) , dtype=bool )

f r e q u e n c i e s = s e l f . f r e q u e n c i e s ( s t e p s )

s t e p s += 2

f o r s t e p i n range ( l en ( f r e q u e n c i e s ) − 1 ) :

l o w e r f r e q = f r e q u e n c i e s [ s t e p ]

u p p e r f r e q = f r e q u e n c i e s [ s t e p + 1 ]

s e l f . p l a s m o n i c b a n d s ( l o w e r f r e q , u p p e r f r e q ,

c t r l f i l e , sigma ,

p l a s m a f r e q , gamma ,

p l a s m o n i c b a n d s , i s v a l i d )

i f np . any ( i s v a l i d i s F a l s e ) :

s y s . e x i t ( ’ Some f r e q u e n c i e s were not c o n s i d e r e d i n th e p r o c e s s ! ’ )

e l s e :

return p l a s m o n i c b a n d s

A.1.3 Lattice Package

In this package we gather the modules responsible for creating lattice points. For the first release,

there is a single module, quasicrystals, that takes a higher dimensional vector and carries out the

cut and project scheme to produce a quasicrystalline structure in lower dimensions.

from f u t u r e import d i v i s i o n
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from s r c . h e l p e r s import gram schmidt

import numpy as np

import s y s

import i t e r t o o l s

c l a s s Q u a s i c r y s t a l :

def i n i t ( s e l f , l a t t i c e v e c t o r s , p r o j e c t i o n v e c t o r s ) :

s e l f . u n i t v e c t o r s = l a t t i c e v e c t o r s

s e l f . p r o j e c t i o n v e c t o r s = p r o j e c t i o n v e c t o r s

def i s o r t h o g o n a l ( s e l f ) :

t r a n s p o s e = s e l f . p r o j e c t i o n v e c t o r s . t r a n s p o s e ( )

p r o d u c t = np . dot ( s e l f . p r o j e c t i o n v e c t o r s , t r a n s p o s e )

d i a g o n a l = p r o d u c t . d i a g o n a l ( )

i d e n t i t y = d i a g o n a l ∗ np . i d e n t i t y ( s e l f . p r o j e c t i o n v e c t o r s . shape [ 0 ] )

i f np . a l l c l o s e ( product , i d e n t i t y ) :

return True

return F a l s e

def o r t h o g o n a l i z e b a s i s ( s e l f ) :

vec1 = np . dot ( s e l f . u n i t v e c t o r s [ 0 ] ,

s e l f . p r o j e c t i o n v e c t o r s . t r a n s p o s e ( ) ) [ 0 : 3 ]

vec2 = np . dot ( s e l f . u n i t v e c t o r s [ 1 ] ,

s e l f . p r o j e c t i o n v e c t o r s . t r a n s p o s e ( ) ) [ 0 : 3 ]

vec3 = np . dot ( s e l f . u n i t v e c t o r s [ 2 ] +

s e l f . u n i t v e c t o r s [ 3 ] ,

s e l f . p r o j e c t i o n v e c t o r s . t r a n s p o s e ( ) ) [ 0 : 3 ]

p r o j e c t e d v e c t o r s = np . a r r a y ( [ vec1 , vec2 , vec3 ] )

return gram schmidt . o r t h o g o n a l i z e ( p r o j e c t e d v e c t o r s )

def f i r s t p r o j e c t i o n ( s e l f , g e n e r a t o r ) :

return np . dot ( g e n e r a t o r , s e l f . u n i t v e c t o r s )

def s e c o n d p r o j e c t i o n ( s e l f , c r y s t a l v o r t e x , window=None ) :
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norm = np . l i n a l g . norm ( c r y s t a l v o r t e x )

i f window i s None or norm <= window :

return ( c r y s t a l v o r t e x ∗ s e l f . p r o j e c t i o n v e c t o r s ) . sum( a x i s =1)

return None

def m a p v e r t i c e s ( s e l f , f rom , to , p r o j e c t e d v e r t i c e s , window=None ) :

d i m e n s i o n s = l en ( s e l f . u n i t v e c t o r s )

f o r g e n e r a t o r i n i t e r t o o l s . p r o d u c t ( range ( from , t o ) , r e p e a t=d i m e n s i o n s ) :

c r y s t a l v o r t e x = s e l f . f i r s t p r o j e c t i o n ( g e n e r a t o r )

p r o j e c t e d v e r t i c e s . append (

s e l f . s e c o n d p r o j e c t i o n ( c r y s t a l v o r t e x , window ) )

def p r o j e c t ( s e l f , f rom , to , window=None ) :

p r o j e c t e d v e r t i c e s = [ ]

i f s e l f . i s o r t h o g o n a l ( ) :

s e l f . m a p v e r t i c e s ( from , to , p r o j e c t e d v e r t i c e s , window )

p r o j e c t e d p o i n t s = f i l t e r ( lambda e l em en t : e l em en t i s not None ,

p r o j e c t e d v e r t i c e s )

return np . a r r a y ( p r o j e c t e d p o i n t s )

s y s . e x i t ( ’ P r o j e c t i o n v e c t o r s a r e not o r t h o g o n a l ’ )

def l a y e r ( s e l f , f rom , to , window , d e l t a ) :

l a y e r = [ ]

l a t t i c e = s e l f . p r o j e c t ( from , to , window ) [ : , : 3 ]

b a s i s = s e l f . o r t h o g o n a l i z e b a s i s ( )

l a y e r d i r e c t i o n = b a s i s [ 0 ]

z e t a = np . l i n a l g . norm ( l a y e r d i r e c t i o n )

min = d e l t a

max = z e t a + d e l t a

f o r v e c t o r i n l a t t i c e :

base3norm = np . dot ( v e c t o r , l a y e r d i r e c t i o n )

i f min < base3norm <= max :

vec1 = np . dot ( v e c t o r , b a s i s [ 0 ] )

vec2 = np . dot ( v e c t o r , b a s i s [ 1 ] )

vec3 = np . dot ( v e c t o r , b a s i s [ 2 ] )

l a y e r . append ( [ vec1 , vec2 , vec3 ] )
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i f l a y e r :

return np . a r r a y ( l a y e r )

e l s e :

s y s . e x i t ( ’ There i s no l a y e r at th e p r o v i d e d c o o r d i n a t e s ’ )

@ s t a t i c m e t h o d

def s c a l e ( s c a l i n g v e c t o r , p r o j e c t e d p o i n t s ) :

return s c a l i n g v e c t o r ∗ p r o j e c t e d p o i n t s

@ s t a t i c m e t h o d

def s t o r e ( f i l e n a m e , data ) :

np . s a v e ( f i l e n a m e , data )

@ s t a t i c m e t h o d

def l o a d ( f i l e n a m e ) :

return np . l o a d ( f i l e n a m e )

The package played the central role in providing input points for the lattice module presented in

Sec A.1.1.

A.2 Summary

The package is evolving rapidly however we are limited by the capabilities of the core engine.

Some of these features can be extended outside the core engines by writing routines to process the

output. Unfortunately, even those extendible features can not go much beyond what is supported

by MPB and MEEP. For instance, the types of dielectric functions supported by both MIT pack-

ages is very limited; MPB accepts only constant dielectric functions and that was the main reason

for developing the perturbation technique, while MEEP somehow supports frequency–dependent

dielectric function, but they have to be in a specific format. In the future we are considering the

removal of third party dependencies and write our own python–based core engines.



Appendix B. A Simple Perturbative Tool

To Calculate Plasmonic Photonic

Bandstructures

In this appendix we attach our work that has been cited in [3]. It is co-authored by Alex Quandt.

The content as well as the results are summarized in chapter 5.
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a b s t r a c t

We use first order perturbation theory to study the effect of surface plasmon polaritons on the photonic
band structure of plasmonic photonic crystals. Our results are based on a simple numerical tool that we
have developed to extend the standard frequency domain methods to compute the photonic band struc-
ture of plasmonic photonic crystals. For a two-dimensional honeycomb photonic crystal with a lattice
constant of 500 nm placed on an aluminium substrate, we show that the band gap for TM modes is
enhanced by 13%. Thus a slight variation in the effective dielectric function results in a plasmonic band
structure that is not scale-invariant, which is reminiscent of the inherent non-linear properties of the
effective dielectric constant.
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1. Introduction

The interaction between the free electrons and the optical
electromagnetic waves at the interface between a metal and a
dielectric material results in evanescent electromagnetic waves
known as surface plasmon polaritons (SPP). Due to their
evanescent character the wavelength of SPP can be shorter than
the wavelength of their optical counterparts in the dielectric med-
ium [1–4]. Similar to light, the surface plasmons can also be
manipulated by a photonic crystal placed on a metallic surface, a
particular case that will be examined in this study.

SPP waves play an important role in the field of photonics due
to their potential applications and interesting physics. In previous
studies Raman scattering is enhanced using the localised surface
plasmon resonance [5]. Also surface plasmons can enhance the
absorption of light which can be used to improve the efficiency
of solar cells [6]. For plasmonic photonic crystals a bandgap is
found to open up at a specific frequency range in periodic struc-
tures due to Bragg resonance at the boundaries of the Brillouin
zone leading to the development of waveguides [7,8], high effi-
ciency Bragg reflectors and resonators [9,10]. Moreover, a one-
way waveguide can be achieved under static magnetic fields [11].

In order to predict the optical properties of such devices, one
needs the systematic analytical methods similar to the plane wave
expansion method [12] and multiple scattering theory [13]. In this
paper we present a perturbative approach to numerically compute
the effect of SPP on photonic crystals characteristics, which leads to
a systematic correction of the band structure of a reference
dielectric photonic crystal. In the following section we will briefly
describe the theoretical background of the first-order perturbation
method used in this study. The last section contains some numer-
ical results obtained for a two-dimensional honeycomb plasmonic
photonic crystal. We will close with a short discussion of our
results.

2. Perturbation theory

A slight variation of the dielectric function necessary to
describe plasmonic photonic crystals might introduce non-
linearities as well as absorption [14]. Such slight modifications
will lead to a slight modification of the resulting band structures.
For such cases the change in frequency Dx as a function of the
frequency x, the change in the dielectric function De and the
electric field EðrÞ is:

Dx ¼ �x
2

R
d3rDe j EðrÞj2
R
d3re j EðrÞj2

: ð1Þ
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Placing the photonic crystal on a metallic substrate alters the
dielectric function, yielding an effective dielectric function espp [15]

esppðxÞ ¼ emðxÞeðrÞ
emðxÞ þ eðrÞ ð2Þ

where eðrÞ is the composite dielectric function of the photonic
crystal and emðxÞ is the metallic dielectric function. The latter is
modelled using a Drude formula

em ¼ 1� x2
p

x2 � ixc
ð3Þ

where xp is the plasma frequency of the metal and c is a damping
constant. However, for our simulation we only consider the real

part of the dielectric function, owing to the fact that the band struc-
ture is not affected by the imaginary part [16], which only leads to a
gradual decay of the surface waves.

To compute the correction in the harmonic mode numerically
we use a first order (self-consistent) perturbation theory. In other
words, we first compute the band structure using a suitable dielec-
tric constant for the regular photonic crystal. Then, within a small
window of frequencies, x to xþ Dx, we compute the change in
the frequency using a standard frequency domain code [12]. We
thus assume that within the small frequency window chosen, the
effective dielectric function will not fluctuate very wildly, and
therefore the resulting band structures are approximately self-
consistent.

For this to work, we have to ensure that for a given range of fre-
quencies, the relative change in the dielectric constant (De=e) is
less than 1%, such that Eq. (1) will give the main perturbative cor-
rections. Under such conditions a first order perturbation theory is
sufficient. However, larger fluctuations in the dielectric function
might require higher order perturbation theories, or even iterative
schemes.

3. Results

We compute the photonic band structure for a two-dimensional
honeycomb lattice consisting of cylinders of radius r = 0.2a, where
a is the lattice constant, see Fig. 1. The cylindrical rods are made of
silicon with dielectric constant of 13, and they are embedded in

Fig. 1. A schematic diagram for a 2D honeycomb photonic crystal.

Fig. 2. (a) TM modes in units of a
2pc for a honeycomb photonic crystal. In (b) we show the corresponding scaled density of states (DoS).

Fig. 3. (a) The plasmonic band structure computed using perturbation theory. The metallic surface used is Aluminium withxp ¼ 2:24� 1016 rad/s and c ¼ 1:22� 1014 rad/s.
The lattice constant a is taken to be 500 nm. The frequencies are again represented in units of a

2pc. In (b) we show the corresponding scaled density of states (DoS).
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vacuum. Such high dielectric contrast increases the chances of
forming a photonic band gap.

In Fig. 2a we show the TM mode photonic band structure in
units of a

2pc, where c denotes the speed of light. The density of pho-
tonic states is shown in Fig. 2b. This photonic crystal has a photonic
band gap of width 0.14 a

2pc appearing between frequencies 0.28 a
2pc

and 0.42 a
2pc. A smaller band gap of width 0.02 a

2pc is observed at
higher bands.

To study the effect of the plasmons, we use a Drude model for
aluminium with a plasma frequency xp = 2.24 � 1016 rad/s and a
damping constant c of 1.22 � 1014 rad/s [17]. The metallic dielec-
tric function at a given frequency x in Eq. (3) requires a specifica-
tion of realistic plasma frequencies. We then have to match those
frequencies to the general band structure presented in Fig. 2a,
which is scale-invariant. As a result the dielectric function becomes
frequency-dependent (Eq. (2)). More importantly, the resulting
solutions of Maxwell’s equations are no longer scale-invariant,
and the band structure will depend on the dimensions of a given
plasmonic system.

In Fig. 3a the band structure for a honeycomb photonic crystal
placed on an aluminium substrate is shown for lattice constant
a = 500 nm. For lower bands the effect of the plasmons is not
remarkable, due to the small change in the dielectric function at
low frequencies. Moreover, the lowest band appears to be flat
along M–K vectors, which is an indication of localised states. The
higher bands, however, have shifted their positions and a wider
band gap is reported. For instance, the band gap between the first
and the second band has increased to 0.17 a

2pc, which corresponds
to an increase of approximately 13% . However, the bands at higher
frequencies do not change in width.

4. Conclusion

We have developed a numerical tool based on first-order per-
turbation theory to study the photonic band structure of surface
plasmon polaritons at the interface between a honeycomb pho-
tonic crystal and a metallic substrate. The metallic dielectric func-
tion is modelled by a Drude function, and only the real part of the
resulting effective dielectric function for the plasmonic surface
waves is used to compute the corresponding plasmonic photonic
band structure.

According to our treatment, the surface plasmon waves break
the scale invariance of Maxwell’s equations. That could be of great
interest since one geometry with different lattice sizes can control
the flow of the light quite differently. Moreover we noticed an
increase in the size of the band gap at low frequencies. However,
the Drude approach might be largely misleading in this aspect,
since the overall change in the dielectric function at such frequen-
cies can be quite remarkable. A treatment using tabulated metallic
dielectric data as a function of frequency might be a better a
approach, together with tabulated data of the dielectric compo-
nents of the photonic crystals. Such data can be taken from

experiment, or obtained from numerical studies using ab initio
methods based on density functional theory [18].
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Appendix C. About Optical Localization

In Photonic Quasicrystals

This appendix includes the work that has been cited in [2], and presented in chapter 6. The

technique developed throughout the work is also used in the simulations carried out in Sec. 7.2.

It is co-authored by Alex Quandt.
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1 Introduction

In the field of photonics the search for novel types of band gap materials has been a major

motivation for scientists to explore a large variety of different structures. Periodic struc-

tures, for instance, have interesting properties and a wide range of applications (see

Vardeny et al. 2013; Jin et al. 2013 for review). However, the limited number of allowed

geometries has culminated in the growing interest in aperiodic structures with a wide

variety of different candidate geometries for photonic band gap materials, and hence a

much richer physics. Of particular interest are quasicrystals (QCs), which are well orga-

nized structures that lack translational symmetry on the short range (Janot 1994). But they

obviously display some aperiodic long range order, as suggested by their sharp and unusual

diffraction patterns (Shechtman et al. 1984).

Photonic quasicrystals (PQCs) have been shown to give rise to photonic band gaps

formed via Braag scattering (Edagawa 2014). In one-dimension (1D) band gaps have been

found in Fibonacci-like QCs (Gellermann et al. 1994; Hattori et al. 1994), and the higher

dimensional octagonal quasicrystals were also shown to form a band gap (Zhang et al.

2001). Interestingly, a band gap for a very low refractive index contrast has been reported

for dodecagonal QCs (Zoorob et al. 2000). Moreover, related effects such as field

enhancement and slow modes at the band edge were observed in various experimental

studies (Dal Negro et al. 2003). In addition to that, photonic modes were found to be

localized in tenfold Penrose tiling. In such structures localized modes were associated with

the tunnelling phenomena and the presence of fast light (Neve-Oz et al. 2010). Experi-

mentally, the localized states were observed in Fibonacci sequences where the transmission

scales and the light propagation is enhanced due to resonant localized states (Kohmoto

et al. 1987).

In this study we investigate the optical properties of two-dimensional (2D) photonic

quasicrystals. Our aim is to quantify the localization of the photons in the novel 2D

dodecagonal lattice, using the standard time domain methods to evaluate the transmission

coefficients. Optical localization itself is determined using the analytical concept of an

inverse participation ratio (IPR).

In the following section we first describe the two-stage-projection method to construct

quasicrystalline structure, and then give the technical details of the time domain simula-

tion. Thereafter, the presentation of our findings will proceed.

2 Modelling

Unique properties of PQCs such as a complete band gap at low index contrast (Zoorob

et al. 2000; Zhang et al. 2001) are attributed to high statistical symmetries (Della Villa

et al. 2006). The richness comes with the complexity of the mathematical modelling of

quasi-crystalline structures, in particular their relations to higher dimensional lattices.

Quasicrystals are generated systematically using different mathematical techniques, with

the cut and project technique being the most prominent one (Janot 1994). Although it is

hard to find all of the resulting structures in nature in the form of intermetallic alloys, the

various quasicrystalline structures that can be generated by the cut and project method may

easily be realized as photonic quasicrystals. Therefore the cut and project scheme allows us

to construct whole families of easy-to-generate but sufficiently complex quasiperiodic

lattices to systematically study photonic band gaps and optical localization.
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2.1 Two-stage-projection

For the cut and project scheme we consider a periodic structure in a higher dimensional

space RD, where D represents the dimensions of the space. If we try to project all of the

lattice points into a lower d-dimensional subspace Rd
k known as parallel or physical space,

we will simply end up with a periodic or a dense set of lattice points, both of which will be

of little use. In order to produce a discrete and aperiodic set of points in Rd
k , we introduce

an intermediate subspace known as the perpendicular space Rc
? with dimensionality equal

to c where RD ¼ Rd
k � Rc

?. We then define an acceptance domain C in Rc
?, which is simply

the projection of a unit cell of RD onto Rc
?. Next we project the points of the RD lattice

whose projection onto Rc
? falls into the acceptance domain C (Janot 1994).

The so called two-stage projection method employs cut and project techniques to map

higher-dimensional lattices onto lower-dimensional laminar (i.e. layered) structures, using

only one-dimensional acceptance domains (Ben-Abraham 2007). This has a clear

numerical advantage over other schemes, which have to fallback on quite complicated and

even fractal acceptance domains (Janot 1994).

In principle the two state projection method consists of two cut and project steps. The

tricky step is the former, which will project a higher-dimensional lattice in RD onto a lattice

in RD�1
k , using a 1D acceptance domain in R1

?. Assuming that RD�1
k ¼ Rd � Rc, we can apply

the cut and project scheme a second time in order to generate the final aperiodic structure in

Rd, using Rc as acceptance domain. Examples are given in (Ben-Abraham 2007).

In the following section we map a lattice from 4-dimensional space onto a laminar

structure in 3-dimensional space. Each layer contains 2D quasiperiodic structures, hence

the second application of the cut and project scheme is rather trivial. We then extract the

quasiperiodic structures from all the layers that are periodically spanned along the z-axis.

Finally we collapse the layers onto a 2D x-y plane forming the basis of the lattice used for

our simulations.

2.2 Finite difference time domain method

In this report a finite-difference-time-domain solver (FDTD) (Oskooi et al. 2010) is used to

characterize the localized optical modes in a 2D quasicrystal. The samples are patches

from QC’s which are generated using a specific window size to limit the number of the

mapped points. The smaller the window, the fewer the points mapped, and hence a smaller

QC lattice is produced. The patches generated have a length L and a width W. All

dimensions are given in terms of a characteristic length scale a.
However, to run the simulation and achieve stable results, we introduce a simulation

lattice that has dimensions greater than those of the generated quasicrystal. The QC was

then placed at the center of the simulation lattice. The gap between the edges of the crystal

and the borders of the simulation cell is filled with perfectly matched layers (PML). We

ensured that the thickness of the PML is sufficient for the electromagnetic modes to decay

and that no backward reflection is encountered during the simulations.

A Gaussian source is positioned at the center of the simulation cell. The source center

frequency is 0.5, and it has width of 0.55 both in units of a=2pc where c is the speed of

light. The outgoing flux is measured in a direction perpendicular to the y-axis at a surface

of length L. The flux quantifies the amount of energy transmitted through the surface of the

structure, and it is given by:
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PðxÞ ¼ n̂ �
I

EðxÞ �HðxÞdA ð1Þ

where the surface integral is the Poynting vector, and n̂ is the surface normal. Given the

flux computed by Eq. (1), the transmission coefficients can be obtained as the ratio

between the outgoing flux in the presence of the QC and the flux measured in a vacant

simulation lattice.

3 Dodecagonal quasicrystal

In order to generate a dodecagonal quasiperiodic structure in 2D using the two-stage-

projection method, we begin with a higher dimensional face-centred lattice D4 (Ben-

Abraham 2007). This lattice has much higher symmetries than lattices in three-dimensions

and two-dimensions (i.e. up to twelvefold symmetry) (Baake et al. 1991; Conway and

Sloane 1999), which makes it a potential candidate for forming photonic structures with

particular optical properties such as complete band gap for relatively low index contrast.

The two-stage projection for the dodecagonal 2D quasiperiodic structure is based on the

following orthonormal vectors (Ben-Abraham 2007)

e1 ¼
a

2
;
a

2
; 0;

bffiffiffi
2

p
� �

e3 ¼
bffiffiffi
2

p ; 0;� a

2
;� a

2

� �

where a2 ¼ 1þ 1ffiffi
3

p ; b2 ¼ 1� 1ffiffi
3

p . The vectors e1; e2 and e3 represent the basis for the

parallel space R3
k and e4 is the base of R

1
?. We project the lattice onto parallel space using

an acceptance domain in the half open interval � a
2
þ bffiffi

2
p

� �
;þ a

2
þ bffiffi

2
p

� �� i
. The projected

set of points is then represented in these transformed coordinates, and it forms a laminar

3D structure, where each layer contains a quasiperiodic dodecagonal structure, as described

in Ben-Abraham (2007).

(a) (b)

Fig. 1 In a we plot the transmission coefficients as a function of the frequency for the crystal shown in (b).
The frequencies are given in units of a=2pc and the lattice has dimensions of 1:5� 1. The localized states
falls into the frequency region with lighter shades
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Each point in the cell is then taken to represents the center of a cylindrical object with

radius r = 0.2a and dielectric constant e = 12.4, corresponding to the dielectric constant of

silicon. These cylindrical objects are surrounded by air which has a dielectric constant of 1.

The height of the cylinders is set to 0.8a. The FDTD simulation is run until the field decays

and the values of the field at each point in the QC is stored for every 0.05 time unit.

In Fig. 1 the transmission coefficients reaches a minimum value of zero in the frequency

range 0.59–0.649 which indicates that the propagation of states within that frequency range

is forbidden, and a band gap has opened. The formation of such states is be attributed to

Braag scattering (Edagawa 2014), where the interference of extended states at the band gap

can also lead to the formation of new states in the range (Sheng 2006). However the states

at the mobility edges (close to the band gap) are likely to be localized.

To further understand the nature of the band edge states, we gradually increase the size

of the window used in mapping the quasiperiodic structure points. In Fig. 2 the trans-

mission coefficients exhibit the formation new states at the band gap due to the con-

structive interference between the neighbouring states formed by the presence of new

scatterers. In contrast to a 1D case where the transmission decays exponentially as a

function of the crystal size (Sheng 2006), the results presented in Fig. 2a, d show an

enhancement in the transport around the band gap frequency. In a 2D world, the scaling

theory is a bit more complex, and such changes in the transmission could belong to either

localized or critical states. We hence plot the field profiles for different cell sizes as a

(a) (b)

(c) (d)

Fig. 2 In a and c we plot the transmission coefficients that corresponds to crystals shown in (b) and (d)
respectively. The crystal (b) has dimensions of 6� 4 and d is 8:58� 5:72

About optical localization in photonic quasicrystals Page 5 of 8 380

123



function of the frequency. To this end, we accumulate the Fourier transformations of the

fields at each point in space, and plot a contour of the field profiles in the lattice.

For a crystal with dimension 3� 2½a2] the fields tend to spread across the lattice and

position themselves around regions with high dielectric as shown in Fig. 3a. As the QC

size increases, Fig. 3b–d, we observe strong attenuation of the fields in regions that pre-

viously had high intensity which is due to the scattering from the extra lattice points.

However, for the larger cells presented in Fig. 3c, d, the profile patterns do not vary

remarkably and the modes are trapped at the vicinity of the Gaussian source. Some of these

patterns are a visual indication that there are localized states forming in parts of the

structure. Having in mind the enhancement in light propagation near band gap as seen in

Fig. 2a, c, we further identify these modes as resonant modes.

Finally we perform the inverse participation ratio IPR analysis to identify localized

states. The inverse participation ratio is given by

IPRðxÞ ¼
P

r jWðx; rÞj4

P
r jWðx; rÞj2

h i2 ð2Þ

where the sum runs over all the points in real space. The localized states are identified by

an IPR that is proportional to expð�2fLÞ where L is the size of the sample in the direction

(a) (b)

(c) (d)

Fig. 3 The contour represents the field profiles for a Gaussian source at the center of QC patches with

dimensions a 3� 2, b 6� 4, c 8:58� 5:72 and d 10:1� 6:74 in units of a2. Only modes with frequencies
near the band gap are presented. The colour-map shows the intensity distribution in the crystal
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of the modes propagation. In other words, a localized state shows an exponentially

decaying inverse participation ratio with increasing the system size. As the system size

approaches the infinity, the IPR for localized states becomes constant.

In Fig. 4 we present the inverse participation ratio of the modes near the mobility edges

as a function of the lattice size L. We use a least-squares fitting to determine the local-

ization length f from the IPR around the band gap edges. We estimate that the localization

length for the QC to be � 0:3207 a�1½ �.

4 Summary

We have investigated the localization of electromagnetic modes in a 2D quasiperiodic

photonic crystal. The sample structure was generated using a two stage projection

scheme leading to a laminar three-dimensional QC, where we map all layers into a single

dodecagonal QC. The number of points mapped from a higher dimension space was

systematically increased leading to larger and larger patches. The lattice points were taken

as centres of cylindrical objects of radius 0.2 a where a is a characteristic lattice length.

These cylinders have a dielectric constant of 12.4, whereas the surrounding media has a

dielectric constant of 1.

Performing finite-differences-time-domain simulations, we observed a photonic band

gap at frequencies 0.59–0.649 (in units of a=2pc). Increasing the size of the QC patches,

we observed the formation of new states at the band gap. Such states are a result of a

constructive interference of states at the band gap.

Plotting the field profiles showed that field intensities are diminishing at intermediate

frequencies as the size of the crystal increased, and hence the number of the scatterers. The

inverse participation ratio showed that some states near the mobility edges are localized.

The localization length is estimated from the scaling theory to be around 0:3207 a�1½ �. An
Interesting open problem like the appearance of critical states in 2D and 3D disordered

structures (Sheng 2006) could be answered by carrying out more systematic studies, where

the analytical tools presented in this study should be of great use.

Fig. 4 The decay of the inverse
participation ratio as a function
of the lattice size. The IPR values
were extracted at frequencies
between 0.59 and 0.649 (in units
of a=2pc) and averaged out. The
error bars shown in the
figure represent the deviation
between the data points and the
fitting
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Appendix D. Computational Plasmonics:

Theory and Applications

In this appendix, we include the reference cited in [4]. It is co-authored by Robert Warmbier and

Alex Quandt. The content of the chapter is summarized in the sections of chapter 2.
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Abstract. In two Chapters we will give a detailed introduction into the field of com-
putational plasmonics. The present Chapter covers the essential theoretical back-
ground of modern plasmonics, based on simple models of light-matter interactions.
We will focus on the physical properties of bulk plasmons, surface plasmon polaritons
and localized plasmons, and give a number of analytical and numerical examples.
As a motivation for more the detailed numerical studies described in Chapter 12,
and as an example for new types of technological applications, we also present the
field of plasmon enhanced solar cells and other exciting new research directions.

11.1 Introduction

Plasmonics is a branch of modern nano-optics that studies the interaction of
electromagnetic waves with free charge carriers. For a typical bulk material,
these free charge carriers are the electrons in the conduction band. Many light-
matter interaction processes only involve the creation of a single electron-hole
pair due to an incoming photon. But in the case of plasmonics we are dealing
with collective excitations, i.e. processes that involve a large number of charge
carriers.

This large number of charge carriers is of course a fundamental problem of
plasmonics. The charge carriers that contribute to these collective phenom-
ena will not all act as if they were part of an ideal solid, but they will also be
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influenced by structural defects and large-scale features of a solid like dislo-
cations and grains. Ultimately they may even be influenced by the shape of a
nanoparticle containing these charge carriers. Therefore a typical approach to
model a plasmonic system will involve multi-scale modeling at various levels
of structural complexity, starting from the atomic structure of a solid. This is
what the following Chapters is all about.

But it will not be a typical review article about plasmonics. Trying to put the
vast literature about plasmonics into a single document will lead to a very
superficial type of literature survey. The problem starts with the fact that
there are several different types of plasmonic excitations in a bulk material,
namely bulk plasmons, surface plasmon polaritons and localized plasmons in
metallic nanoparticles. Furthermore there is a large variety of technological
applications based on each of these various plasmonic excitations. And also
the various theoretical and numerical methods involved in a typical multi-scale
approach have their own extended literature.

In order to avoid the style of a typical literature review we will focus here
and in Chapter 12 on the practice of computational plasmonics, and with
some major goals: First we want to collect in one compact document the
most important facts about plasmonics in general, which is the topic of the
present Chapter. But we also want to present the most important facts about
the various numerical techniques of computational plasmonics, which is the
topic of Chapter 12. Another goal is to illustrate the practice of computational
plasmonics based on a number of examples. For many readers unfamiliar with
plasmonics, this hands-on approach could actually provide a better jump start
than a typical extended literature survey with only cryptic explanations.

We have organized this Chapter as follows: In Sec. 11.2 we will give a general
overview of light-matter interactions, where the material aspects will enter
the theoretical formalism mainly through the complex dielectric tensor ε(ω)
(“dielectric function”). We will content ourselves with a simple Drude–Lorentz
type of mode to get some insight into the basic light-matter interaction pro-
cesses in plasmonics, some of them leading to the formation of bulk plasmons,
surface plasmon polaritons and localized plasmons in metallic nanoparticles.

In Sec. 11.3 we will provide more details about the application of plasmonic
technologies in the field of photovoltaics. This topic is of great technological
relevance, and (computational) plasmonics could make major contributions
to this field in the near future.

In Sec. 11.4 we will give a brief survey of some of the most exciting new
research directions in (computational) plasmonics. And finally in Sec. 11.5 we
will close this Chapter with a short summary, and an outlook on the more
technical Chapter 12.
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11.2 Theoretical Background

We aim at a more intuitive approach to understand the basic concepts and
phenomena of plasmonics, and therefore we will base our discussions of the
fundamental dielectric properties of solids entirely on the Drude–Lorentz
model, which is also the proper theoretical background for the most popu-
lar textbooks in the field of plasmonic nanoparticles [1, 2]. In Sec. 11.2.1 we
will describe the basic dielectric properties of metals and insulators, and derive
some related optical properties, which may be used to characterize plasmons.
An example will illustrate the use of some of these derived optical properties.

The second part, Sec. 11.2.2, will be devoted to bulk and surface plasmons,
where we will use the Drude–Lorentz model to describe the basic dielectric
properties of various model systems. Furthermore we will describe the main
optical properties of localized plasmon resonances in metallic nanoparticles,
and as an example we will analyse the basic optical properties of gold nanopar-
ticles.

11.2.1 Optical Properties of Solids

Light can interact with matter in various ways, some of which can actually be
quite complex. Nevertheless we may start with a general picture of a chunk of
matter, which consists of a skeleton of positively charged ions, held together
by a negatively charged electron glue.

Depending on the nature of the chemical bond in such a chunk of matter,
electrons can be strongly bound to certain types of ions, leading to an insu-
lating or semiconducting optical material. Or the glue electrons may travel
more or less freely throughout the whole bulk, which leads to a metallic sys-
tem. This behaviour is covered by one of the simplest models of light–matter
interactions, which is the so-called Drude–Lorentz model [3].

In the following we will develop the theoretical background to model impor-
tant types of light–matter interactions, and we will also discuss some of its
implications for optics and plasmonics. As we will see in Chapter 12, the more
advanced approaches to model and analyse plasmonic resonances still have
important features, which are already covered by the much simpler Drude–
Lorentz model.
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Fig. 11.1: Schematic band structures for semiconductors and insulators (left),
as well as for metals (middle and right). semiconductors and insulators are
marked by a band gap between a fully occupied valence band shown in grey,
and an empty conduction band shown in white. metals are characterized
by partially filled bands (middle), or by overlapping valence and conduction
bands (right).

11.2.1.1 Metals and Insulators

For a solid with perfect translational symmetry there is a continuum of energy
eigenstates described by general dispersion relations Ei(k). The vectors k
from reciprocal space are the so-called crystal momenta, which label electronic
Bloch states as eigenstates of a crystal Hamiltonian. As shown schematically
in Fig. 11.1 the difference between a semiconductor (insulator) and a metal
is the location of the so-called Fermi level EF , which separates occupied from
unoccupied bands. As a basic mechanism of light–matter interactions, photons
of energy h̄ω can be absorbed by an electron, if that particular electron is able
to make a transition from an occupied state characterized by Ei(k) into an
unoccupied electronic state characterized by Ej(k

′). For the energy difference
∆E between those two states we must have ∆E = h̄ω. The transition can
happen at the same point k′ = k in reciprocal space (direct transition), or
at different points k′ 6= k in reciprocal space (indirect transition). In the
latter case the electronic transitions will need some extra momentum, which
is usually contributed by phonons.

As indicated in Fig. 11.1 all the Bloch states in the valence band are filled for a
semiconductor or insulator, and there is a band gap that separates the valence
band from the conduction band. This means that only photons with energies
bigger than the band gap can be absorbed, and therefore semiconductors and
insulators are often transparent. metals have either wide bands that are only
partially filled, or they are characterized by two wide bands that actually
overlap. In such a case photons can be absorbed by electrons over a large
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frequency range, and an applied electric field can easily set the band electrons
in motion, which makes the system a conductor.

On a more fundamental level the Bloch states for semiconductors/insulators
and metals show different analytical behaviour, due to the properties of the
corresponding crystal Hamiltonian and of the corresponding one-electron en-
ergies. For each of these band electrons there is always a competition between
two energy terms. On one hand there is the kinetic energy which favours delo-
calization and thus a metallic behaviour, but there is also the potential energy
term, which favours localization and thus an insulating behaviour.

In this chapter we will not consider the peculiar nature of highly correlated sys-
tems such as NiO, where band structure theory breaks down; NiO is obviously
an insulator, whereas the band structure predicts that the material should be
metallic. The reason for this breakdown of band theory is the electron–electron
repulsion, which is not very well represented by the standard crystal Hamil-
tonians (for a nice elementary discussion see [4]). In this context we also want
to point out the new field of topological insulators [5], where spin–orbit cou-
pling in an insulating material can give rise to topologically protected edge
states, which are chiral and conducting. We will simply assume that the band
structure concept works fine, and that the Bloch states for insulators tend to
be localized around certain atoms or certain regions within a solid, whereas
the Bloch electrons for metals would like to go everywhere.

11.2.1.2 Frequency Dependent Dielectric Functions

The predictions made by the Drude–Lorentz model are formally based on a
classical oscillator model. But they also refer to microscopic properties like
electronic dipole moments , which are fundamentally quantum mechanical
in nature. In order to justify such an approach, the basic equations of mo-
tion that characterize the microscopic properties must be understood in the
theoretical framework of the Ehrenfest theorem [6], which states that quan-
tum mechanical expectation values essentially obey the classical equations of
motion.

Now let us build an Ehrenfest type of semi-classical oscillator model for the
general interaction of electrons with photons in a solid. To this end, we start
with a simple insulator model, where a nucleus with elementary charge e is
located at the centre of a sphere of radius R, and this sphere is uniformly
charged with the negative elementary charge of an electron. This model de-
scribes at least to some extent the localized charge densities % characteristic
of insulators or semiconductors, where
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% = − 3e

4πR3
(11.1)

We now assume that the nucleus is a test particle, which moves within that
charged sphere. Such a motion could be induced by an external electromag-
netic field. The movement of the test charge gives rise to the same forces as
if the electron cloud within the sphere would move around a fixed nucleus.
Using Gauss law we obtain a radially symmetric force law of the kind

F (r) =
e2

4πε0

r

R3
≡ −kr , (11.2)

where ε0 is the vacuum permittivity. This is obviously a harmonic restoring
force with “spring constant”

k =
e2

4πε0

1

R3
(11.3)

The corresponding motion of the electron cloud around a nucleus (in the quasi-
classical sense of the Ehrenfest theorem) would then correspond to radial
harmonic oscillations with a (squared) angular frequency

ω2
0 =

k

me
, (11.4)

where me is the mass of an electron. Note that for a metal, where the electrons
would like to go everywhere inside the bulk material, we have to assume that
R actually goes to infinity, which implies that the spring constant k will go
to zero.

Now let the electron cloud of our insulator model be excited by an oscillating
electric field E(t) = E0 exp(iωt). That will lead to the following equation of
motion:

me
d2r

dt2
+meγ

dr

dt
+meω

2
0r = −eE(t) (11.5)

Note that γ is a damping rate. We could picture this damping as classical
radiation damping of a moving charge, but a better picture would be the
model of a solid, where each oscillator in the bulk is coupled to some sort
of heat bath, through which it could loose some of its energy. The driven
and damped oscillations of the electron cloud around the nucleus will lead
to the formation of a local dipole moment. It must be pointed out that the
driving electric field E is usually a local field, which comprises the applied
electric field plus contributions from dipole–dipole interactions with all the
other dipoles in the bulk. Using the ansatz r(t) = r0 exp(iωt) one can easily
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calculate the amplitude r0 and the corresponding macroscopic polarization P
(dipole moment per unit volume), assuming that there are N atoms per unit
volume in the bulk:

P = −Ner =
Ne2

me

1

(ω2
0 − ω2 − iγω)

E (11.6)

The equations derived so far obviously describe the interaction of matter (elec-
trons) with an external electromagnetic field. On the other hand macroscopic
electrodynamics tells us that the corresponding dielectric displacement can be
written as

D = ε0E + P ≡ ε0εr(ω)E ≡ ε0(1 + χ(ω))E , (11.7)

where χ(ω) is the (electric) susceptibility of the system.

Using these definitions we obtain the complex relative dielectric function of
the Drude–Lorentz model:

εr(ω) = 1 +
Ne2

meε0

1

(ω2
0 − ω2 − iγω)

(11.8)

The dielectric constant for a metallic system follows from Eq. (11.8) by as-
suming that ω0 = 0, which leads to

εr(ω) = 1− Ne2

meε0

1

(ω2 + iγω)
= 1− ω2

p

(ω2 + iγω)
, (11.9)

where ωp =
√

Ne2

meε0
is the so-called plasma frequency.

The model described by Eqs. (11.8) and (11.9) can be further refined (and even
parametrized) using quantum mechanical data [7], which makes it a useful
qualitative and quantitative model for the optical properties of insulators and
metals at least over certain interesting frequency ranges. Details of such an
approach can be found in Ref. [7]. Furthermore we may assume that the
electron cloud oscillates with different frequencies along different directions
within the crystal, and in such a case the dielectric function actually becomes
a dielectric tensor being diagonal in the main axis system of the crystal [7].
In Chapter 12 we will describe some proper ab initio quantum mechanical
calculations of these general (tensorial) dielectric functions εr(ω). It will turn
out that the resulting dielectric functions still contain many of the features of
the analytical Drude–Lorentz model.
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11.2.1.3 Derived Properties: Kramers–Kronig Relationships,
Complex Refractive Index, Loss Function

Let us denote a general complex dielectric function as εr = ε1 + iε2. There is
the well-known relationship between the real part ε1 and the imaginary part
ε2:

ε1(ω)− ε0 =
1

π
P

ˆ ∞

−∞
dω′

ε2(ω′)
ω′ − ω =

2

π
P

ˆ ∞

0

dω′
ω′ε2(ω′)

ω′2 − ω2
(11.10)

ε2(ω) = − 1

π
P

ˆ ∞

−∞
dω′

ε1(ω′)
ω′ − ω = −2ω

π
P

ˆ ∞

0

dω′
ε1(ω′)− ε0

ω′2 − ω2
(11.11)

The symbol P refers to a Cauchy principal value integral. The reader unfa-
miliar with such integrals is referred to Ref. [3] for mathematical details, and
for a number of carefully worked–out examples of such integrals.

The Kramers–Kronig relationships have a much more general validity than
just relating the components of a complex dielectric function. The underly-
ing mathematics with the necessary requirements of linearity, analyticity and
causality is very well explained in Ref. [8], and a nice, but not uncritical his-
torical account is given in Ref. [9]. The Kramers–Kronig relationships can
also be of great value for numerical calculations, in particular when ε2 is very
similar to a form, where the Cauchy principal value integral is already known
analytically. Then a useful estimate for ε1 can be obtained from just applying
Eq. (11.10), and complicated numerical calculations ε1 must lead to similar
results.

In a real experiment one usually measures the refractive index n(ω), or the
optical absorption α(ω) related to Beer’s law. By introducing the extinction

coefficient κ(ω) = cα(ω)
2ω we can define the complex refractive index N = n+iκ,

which is related to the complex dielectric constant εr = ε1 + iε2 as follows:

ε1 = n2 − κ2 (11.12)

ε2 = 2nκ (11.13)

N =
√
εr (11.14)

Again, the refractive index n and the extinction coefficient κ are related by a
Kramers–Kronig relationship [8, 7]. The square roots of the complex numbers
appearing in Eqs. (11.12 – 11.14) are special cases of de Moivre’s formula [7]:

n =

√
ε1 +

√
ε2

1 + ε2
2

2
(11.15)

κ =
ε2

|ε2|

√
−ε1 +

√
ε2

1 + ε2
2

2
(11.16)
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It follows from the right hand side of Eq. (11.16) that κ and ε2 must have the
same sign.

The last derived property that we want to present in this section is the loss
function. It is defined as follows [8]:

−=
(

1

εr(ω

)
=

ε2

ε2
1 + ε2

2

(11.17)

As we will see in more detail below, peaks in the loss function correspond to
longitudinal plasmon oscillations.

11.2.1.4 Example: Dielectric Properties from Reflectance
Measurements

It will be instructive to see how complex dielectric functions can be extracted
from optical experiments. The technique goes back to Philipp and Taft [10],
and it is also described in Ref. [8].

Light at normal incidence to the smooth surface of a solid with complex
dielectric constant N is reflected with a complex amplitude [11]

r =
N − 1

N + 1
= |r|eiη(ω) (11.18)

This equation actually pre-supposes that no light will be able to pass the solid.
Under these conditions, an experimentalist usually measures the reflected in-
tensity

R(ω) = |r|2 =
(n− 1)2 + κ2

(n+ 1)2 + κ2
, (11.19)

but not the phase factor η(ω). However the related complex number ln(r) =
1
2 ln(R)+iη gives rise to a Kramers–Kronig relationship, from which the phase
factor η can be determined as follows [8]:

η(ω) = − 1

2π
P

ˆ ∞

−∞
dω′

ln(R(ω′))
ω′ − ω (11.20)

With the measurement of the reflectance R, and after the determination of
the phase factor η, one can reconstruct the complex reflection amplitude r.
The complex refractive index N then follows from:

N =
1 + r

1− r = n+ iκ (11.21)

Finally the dielectric properties ε1 and ε2 can be calculated using Eqs. (11.12
– 11.14).
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11.2.2 Plasmons and Plasmonics

After familiarizing ourselves with a simple model for the basic dielectric prop-
erties of a material, we want to change our focus now on collective optical
excitations of a solid called plasmons. For such a plasmon the whole electron
gas of a solid can oscillate periodically around the skeleton of the ions, which
gives rise to a number of interesting physical phenomena.

Furthermore it is possible to kick off evanescent surface waves called sur-
face plasmon polaritons (SPPs), which lead to a new type of subwavelength
optics, opening a possibility to bridge optics and electronics. We will also
discuss absorption and scattering processes for metallic nanoparticles, which
are also caused by plasmonic resonance effects. And as an example we will
show calculated data for gold nanoparticles, based on a suitably parameter-
ized Drude–Lorentz model.

A proper analysis or simulation of these phenomena requires the knowledge
of fundamental properties of the electron gas and/or fundamental dielectric
properties. This information can be supplied by experimental data, as ex-
plained in the previous section, or it could be provided by numerical data
from ab initio calculations, as explained in Chapter 12.

11.2.2.1 Bulk Plasmons

In a solid a local surplus of electronic charge caused by fluctuations will be
subject to a net repulsive force from the other electrons. The surplus electronic
charge will then overshoot its original location, while being repelled by the
electron cloud on the other side, which pushes the charge cloud back towards
its original location, and so forth. This instability will lead to local oscillations
of the electron gas.

Despite the resulting rapid charge density fluctuations of the electron gas, the
overall charge density of the solid will be zero. The electrons that slosh around
will give rise to a local electronic current j, with a related continuity equation
that involves the electronic charge density %e and the corresponding electric
field E:

∇ · j = −∂%e
∂t

= −ε0
∂(∇ ·E)

∂t
(11.22)

Assuming that there are N charge carriers per unit volume involved in this
local electronic current j, the current may be specified as

j = −Nev , (11.23)
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where v is the velocity of the electrons in the current.

It is a standard exercise in electrodynamics to derive a general wave equation
in the presence of such a current j [7]:

∂j

∂t
+ ε0

∂2E

∂t2
= − 1

µ0
∇× (∇×E) (11.24)

We can further determine ∂j
∂t by going back to Eq. (11.5), which leads to:

∂j

∂t
= −Ne∂v

∂t
=
Ne2E

me
(11.25)

Then we finally obtain the general plasmon equation

ω2
pE +

∂2E

∂t2
= −c2∇× (∇×E) , (11.26)

where ωp is the plasma frequency of Eq. (11.9). As we are dealing with matter
waves, one may assume that the electric field related to the plasmon oscilla-
tions has a longitudinal and transverse component E = El + Et, leading to
two separate equations for longitudinal and transverse bulk plasmons.

For the longitudinal component El with ∇ × El = 0 and ∇ · El 6= 0 the
resulting plasmon equation is:

ω2
pEl +

∂2El

∂t2
= 0 (11.27)

This is obviously the wave equation of a harmonic oscillator, and we can
quantize the longitudinal oscillations accordingly [7]. A plane wave ansatz
El = E0 exp(ik · r − iωt) for the oscillating electric field of the longitudinal
plasmons shows that these oscillating modes are actually dispersionless (i.e.
ωp is independent of k). This of course is an artefact of the many idealizations
that we made to finally arrive at this equation. For example it will be much
more realistic to include effective masses m∗(k) and general permittivities
εr(k, ω)ε0 in the expression for ωp, instead of using me and ε0, see Ch. 12,
Sec. 12.4.

We can actually derive some criteria for the appearance of longitudinal bulk
plasmon oscillations, based on the theory developed up to now. Let us recall
that for plasmon oscillations, the overall charge density of the bulk is zero on
average, which according to Gauss’ law implies that:

∇ ·D = ∇ · (εrε0E) = 0 (11.28)

For longitudinal plasmons with ∇ · El 6= 0 this can only happen if εr = 0,
and this criteria also remains valid for the most general types of relative
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permittivities εr(k, ω). Furthermore (approximate) zeros in εr lead to peaks

in the loss function −=
(

1
εr(k,ω)

)
.

We can also give a physical meaning to this statement: a longitudinal plasmon
oscillation cannot be directly excited by light, because the latter is a trans-
verse electromagnetic wave. However particle beams like the electron beam in
an electron microscope can knock–off plasmon oscillations, and the resulting
plasmon resonances can be used for diagnostic purposes, which is a technique
called electron energy loss spectroscopy (EELS). The probability P (q, ω) per
unit time that a scattered electron transfers momentum q and energy h̄ω to
the electron gas is given by [11]:

P (q, ω) = 2π

(
4πe2

q2

)2

S(q, ω) = −8πe2

q2
=
(

1

ε(q, ω)

)
(11.29)

Here S(q, ω) is the structure factor for the scattering of the incoming electron
by the electron gas of the bulk solid. Consequently a peak in the loss function
corresponds to a large probability of momentum and electron transfer by
the incoming electrons, which is exactly what happens during a collective
excitation of the electron gas.

Let us finally carry out a similar analysis for the transverse bulk plasmons Et

with ∇×Et 6= 0 and ∇ ·Et = 0. In this case Eq. (11.26) takes the form:

ω2
pEt +

∂2Et

∂t2
= −c2∇× (∇×Et) (11.30)

Using a plane wave ansatz Et = E0 exp(ik · r − iωt) we obtain the following
dispersion relation:

c2k2 = ω2 − ω2
p (11.31)

There will be no plasmon oscillations for ω < ωp. Furthermore as a result of the
transverse nature of these plasmon oscillations ∇×Et = 0 = ∇×((εrε0)−1D),
which implies that transverse plasmon modes correspond to poles εr =∞ in
the dielectric function εr(k, ω). Being transverse waves they can directly be
excited by light.

11.2.2.2 Surface Plasmon Polaritons

Evanescent surface charge density waves can be generated at the interface
between a regular dielectric with dielectric constant εr,d(ω), and a metal with
dielectric constant εr,m(ω). In general, both dielectric constants describing the
materials at the interface are tensors with complex entries. Standard cases are



11 Computational Plasmonics: Theory and Applications 13

interfaces between air and a homogeneous bulk metal, where the correspond-
ing dielectric functions, and thus the general theoretical analysis, are largely
simplified.

Surface charge density waves are strongly coupled photon–plasmon excita-
tions described by quasiparticles called polaritons. For polaritons the strong
interaction between the electromagnetic field and the polarizable matter is
characterized by a dielectric constant εr(ω). From Maxwell’s equations we
then obtain a corresponding wave equation of the type:

εr(ω)
∂2E

∂t2
= −c2∇× (∇×E) (11.32)

Using the standard plane wave ansatz Et = E0 exp(ik · r − iωt) we derive a
general polariton dispersion relation

c2k2 = εr(ω)ω2 (11.33)

Let us now combine the general polariton concept with the concept of a surface
wave, leading to evanescent surface waves called surface–plasmon polaritons
(SPPs).

Fig. 11.2: Surface plasmon polariton wave at the interface between a dielectric
and a metal. The electric field lines related to the surface charge density
wave are indicated at both sides of the interface. The resulting evanescent
surface wave is supposed to propagate in the x-direction, where it decays over
time, and it will also decay into both materials along the z-direction. The
corresponding magnetic fields have only components in the y-direction.

The general set-up is shown in Fig. 11.2. The SPP propagates into the positive
x direction, where it will decay over time. It will also decay along the z-
direction into both materials. Let us then assume that we can describe the
light-matter interaction by a polariton dispersion relation on each side of the
interface:

k2
x,i + k2

z,i = εr,i

(
ω2

c2

)
i = d,m (11.34)
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Here d labels the dielectric side, and m labels the metallic side. Due to the
evanescent character of the SPPs, we must assume that the components of k
are complex within both media.

Furthermore we must apply the usual boundary conditions for general elec-
tromagnetic fields, which state that the tangential components of E and H
and the normal components of D have to be continuous when crossing the
interface at any point. This leads to following restrictions for the components
of k [7]:

kx,d = kx,m = kspp
kz,d
εr,d

+
kz,m
εr,m

= 0 (11.35)

We can use these restrictions to eliminate the z-components in Eq. (11.34),
and then we obtain the important dispersion relation for the propagation of
SPPs in the x-direction:

kspp = kspp,1 + ikspp,2 =
ω

c

√(
εr,dεr,m
εr,d + εr,m

)
= k0

√
εeff(ω) (11.36)

Note that k0 denotes the scalar wave vector of an electromagnetic wave in
vacuum.

There is a lot of important physics hidden behind this equation. Although
a general analysis will much more involved due to the appearance of the
square root of a complex number, let us assume that the imaginary part of
the dielectric function on the dielectric side ε2,d is zero. Furthermore let us
assume that the real part on the metal side ε1,m is negative, and that the
imaginary part ε2,m is very small. Then we can expand the square root in Eq.
(11.36) to obtain:

kspp = kspp,1 + ikspp,2

= k0

√(
ε1,dε1,m

ε1,d + ε1,m

)
+ i

k0

2

(
ε1,dε1,m

ε1,d + ε1,m

)3/2
ε2,m

ε2
1,m

+ . . .
(11.37)

Obviously there can be no real kspp,1 (and thus a propagating surface wave!)
unless ε1,m < −ε1,d. But then kspp,1 > k0, which means that the SPP for a
given frequency ω has a smaller wavelength than the corresponding electro-
magnetic wave in vacuum, and therefore the SPP needs an extra momentum
to be kicked off.

We can also define a propagation length δspp = 1
2kspp,2

, which can reach up

to 1 mm for the coupling of infrared light with wavelength 1.5 µm into a
silver/vacuum interface [12]. By plugging our expressions for kspp back into
Eq. (11.34), we can analyse the propagation of SPPs along the z-direction,
and it predicts decaying behaviour away from the interface [7].
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From a practical point of view SPPs cannot be directly excited by light, due to
their evanescent character. In fact the incoming light has to be coupled into an
SPP using a prism or a surface grating, because extra momentum is necessary
to kick off an SPP [12]. Once the SPPs have been excited, they give rise to
an interesting type of surface optics: due to their subwavelength character
the SPPs are actually forming the basis of a new branch of optical technology
called plasmonics, which bridges the fields of optics and electronics [13, 14, 12].

11.2.2.3 Localized Plasmons

The third type of plasmonic phenomena that we want to discuss in this Sec-
tion are localized plasmons (LPs), or localized surface plasmon resonances
(LSPRs), to be more specific. localized plasmons or localized surface plasmon
resonances (LPs/LSPRs) are caused by the interaction of light with metallic
nanoparticles. In particular the interaction of light with irregularly shaped
metallic nanoparticles can be quite complicated [2], and a numerical solution
of this problem generally requires the use of finite difference time domain
method (FDTD) methods, which are explained in Chapter 12.

What one generally observes in an optical experiment on metal nanoparticles
is an enhancement of the field intensity around these metallic nanoparticles,
which is caused by the formation of localized plasmonic surface waves. These
field enhancements can be quite substantial, and the frequency ranges for the
corresponding plasmonic resonances are strongly dependent on the size, the
shape and the dielectric properties of the surrounding medium. This leads to
a number of interesting practical applications [12].

In this Section we will only focus on spherical nanoparticles. Let us assume a
simplified situation like in Fig. 11.3, where we see a spherical metallic particle
with radius R and relative dielectric function εr,m, which is embedded into a
surrounding dielectric material with relative dielectric function εr,d.

The system is excited by a constant electric field E, which induces a dipole
moment p = αE in the nanosphere. It is one of the standard exercises of
electrodynamics to show that this system is equivalent to a point dipole p at
the centre of the spherical nanoparticle, and with the following polarizability
[3]:

α =
4πR3

3

εr,m − εr,d
εr,m + 2εr,d

(11.38)

In order to quantify the plasmonic field enhancements by such a particle, one
can extend the simple dipole picture to the standard scattering scenario of
incoming light with frequency ω and wave vector k being scattered by a point
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Fig. 11.3: A spherical metallic nanoparticle of radius R and with dielectric
constant εparticle is embedded in a surrounding medium with dielectric con-
stant εmedium. Furthermore the particle is excited by a constant electric field
E, which induces a dipole moment within the nanoparticle.

dipole. The scattering process can be summarized as extinction = scattering +
absorption + luminescence, which in terms of cross sections reads as follows:

σext = σscatt + σabs + σlum (11.39)

It is a non-trivial exercise to actually obtain analytical expression for these
cross sections [2, 12]. Leaving luminescence effects aside one can just concen-
trate on scattering and absorption processes [12]:

σscatt =
8π

3
k4R6

∣∣∣∣
εr,m − εr,d
εr,m + 2εr,d

∣∣∣∣
2

(11.40)

σabs = 4πkR3=
(
εr,m − εr,d
εr,m + 2εr,d

)
(11.41)

For the proper range of validity of these expressions with respect to the optical
theorem see [2]. But as approximate as this approach may be, we can already
clearly see a general trend from these two equations: For particles with a large
radius R, Eqs. (11.40) and (11.41) tell us that scattering will largely dominate
over absorption. For particles with small radius R we expect that absorption
will largely dominate over scattering.

There are ways to extend the model presented in this Section to more general
cases, e.g. elliptic particles of different shapes [2]. For more irregular shapes
and coupled systems it is better to actually calculate the cross sections from
the components of the Poynting vector, based on FDTD methods described
in Chapter 12.
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11.2.3 Example: Gold Nanoparticles

We have already guessed from Eqs. (11.40) and (11.41) that for particles with
small radius R:

σabs ∼ R3 >> σscatt ∼ R6 (11.42)

For particles with large radius R it should be exactly the other way round.

Furthermore both cross sections depend on the frequency ω of the incoming
light through k, through the relative dielectric function εr,m(ω) of the metallic
nanoparticle, and also through the relative dielectric function εr,d(ω) of the
surrounding medium. Given the resonant character of the Drude-like dielectric
functions discussed in Sec. 11.2.1 we would therefore expect peaks in the
absorption and scattering cross sections within certain frequency ranges. Fig
11.4 shows the scattering and absorption cross sections for light scattering
by gold nanoparticles embedded in air. A parametrized Drude–Lorentz model
εr,m is used for gold, which contains an additional term describing interband
transitions.
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Fig. 11.4: Scattering and absorption cross sections as a function of the fre-
quency ω of scattered light for a series of gold particles of various sizes em-
bedded in air.

We clearly observe the expected resonance effects within certain frequency
ranges, where light of a certain frequency ω will be strongly absorbed or scat-
tered by the gold nanoparticle. We also see that some of the cross sections
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can largely surpass the geometrical cross sections of the particles, which is in-
dicative of the field enhancements around the plasmonic nanoparticles during
resonance. And the numerical data confirms the predicted trend, that small
particles absorb and large particles scatter.

The domestic tool to generate these plots was written in Python, and it is
available from the authors. One should expect to see similar trends when
using ab initio dielectric functions, which may be generated by the methods
described in Chapter 12.

11.3 Applications in Photovoltaics

It has been realized in recent years that the Shockley–Queisser limit for single-
junction solar cell efficiencies [15] is more of a design problem than a real
fundamental limit [16]. In particular when it comes to cheap and robust aug-
mentations of standard organic and inorganic solar cells, the light trapping
and light scattering properties of plasmonic nanoparticles could play a very
important rule [17]. Plasmon enhanced solar cells should allow for efficiencies
similar to multi-junction and concentrator technologies [16], but based on a
much simpler design, and at a fraction of their productions costs. In order to
achieve high efficiencies, it will be necessary to understand in detail the com-
plicated interactions between free charge carriers or bound electron-hole pairs
(excitons) and the localized plasmons in metallic nanoparticles, where com-
putational methods will play a very important role. In the following we will
discuss some of these novel approaches to increase the efficiency of standard
solar cells, and hopefully we will stimulate some interest among our readers
to tackle some of these design problems themselves, using the theoretical and
numerical methods presented in Chapter 12.1 .

Let us point out in this context that for us (and many other researchers), solar
cell design does not necessarily consist of beating world records in solar cell
efficiency. An equally important goal is the development of cheap and reliable
solar cell technologies for the benefit of the most disadvantaged members of
our society, who are often disconnected from the main power grid, but urgently
need stand–alone solutions to produce their own energy.

Research to develop useful photovoltaic devices for off-grid rural communities
requires the sort of technological compromises, where computation tools play
a very important role. Here a very crucial step is to get at least a rough idea
about the underlying physical processes, or just an overview over a plethora of
potential materials and technologies. As a practical example that falls under
this particular category, we will present a numerical study of heat generation
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by arrays of spherical plasmonic nanoparticles, which is one of the basic design
problems for cheap and efficient plasmon enhanced solar cells.

11.3.1 Solar Cell Design

Solar energy is the most abundant source of energy available, and it is usually
harnessed in terms of electricity, fuels and heat [18]. At the moment solar
energy only makes up for a tiny fraction of the total energy production world-
wide, but with the long term prospect of very limited resources of fossil fuels,
research on photovoltaics and on other solar technologies is certainly a good
investment into a sustainable future.

Fig. 11.5: Left: Anatomy of a typical solar cell. The basic layout is that of
a p-n junction. Right: Light absorption in a solar cell. Photons with energy
larger than the band gap Egap create a electron–hole pair, but the electron
will have lost part of its energy due to thermalization. Note that the much
smaller separation between the real electron and hole Fermi levels qVOC is
caused by entropic effects, see [16].

The key technologies of photovoltaics are solar cells made of monocrystalline
and polycrystalline silicon [19]. They are basically p-n junctions between p-
doped and n-doped silicon. As in all p-n junctions a depletion layer will form
around the interface between the two doped layers, leading to a strong electric
field across this depletion layer. An incoming photon will directly create free
charge carriers (i.e. electrons and holes), or it may form a loosely bound
electron–hole pair called exciton within the active material(s) of the solar cell
device. Excitons may diffuse towards the depletion layer, where the strong
electric fields will separate them into an electron and a hole.
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The n-layer will allow for the easy passage of electrons but not for holes,
whereas the p-layer will allow for the easy passage of holes but not for elec-
trons. So rather than annihilating each other, electrons and holes will migrate
to separate contacts at the front and at the back of the solar cell, where they
create a potential difference VOC (the so-called open–circuit voltage), which
is similar to the band gap of the active semiconductor layer. In a closed cir-
cuit attached to the contacts current will start to flow, and the cell will act
as an electrical power source. In Fig. 11.5 we show the anatomy of a typical
commercial solar cell.

For such a standard solar cell, one can expect an efficiency of about 18%
[19]. The theoretical limit for the efficiency of a standard single junction cell
without concentrated illumination was predicted to be around 31% [15]. The
main problems leading to low efficiency are indicated in Fig. 11.5. Photons
with energies larger than the band gap Egap will create hot electrons, which
loose a serious fraction of their energy due to thermalization. This problem
is largely avoided in multi–junction cells, but they are very expensive and
difficult to fabricate.

Furthermore there are a number of entropic effects that reduce the open circuit
voltage VOC to a value smaller than Egap/q, where q is the charge of the
carrier. As discussed in [16], one can in principle bring the efficiency up to
50–70% by using light–trapping technologies and surface light directors, both
of which can be produced using standard nanofabrication technologies. Some
of these light trapping strategies are nicely described in [20], where many of
the numerical techniques described in this Chapter as well as in Chapter 12
are applied to show how to find the most promising technological solutions.
Another big problem is the passage of photons with energies smaller than
Egap. These photons will not be able to create free charge carriers within
the active layer of the solar cell. Therefore a considerable part of the solar
spectrum cannot be used by a conventional solar cell. However as originally
suggested in [21], one could use up- and down-conversion to harvest these
“lost” photons.

For down-conversion an additional conversion layer has to be put on top of a
standard solar cell, where high energetic photons will be transformed into two
lower-energetic photons, whose energies are close to the band gap energy. For
up-conversion a conversion layer together with a reflector are attached to the
bottom of the cell, where two low-energetic photons passing the solar cell will
generate a higher energetic photon, whose energy will be close to the band
gap energy. For a survey of recent progress in up- and down-conversion for
solar cell technologies see [22].
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11.3.2 Plasmon Enhanced Solar Cells

The various strategies to improve the efficiency of conventional solar cells may
profit considerably from the application of plasmonic technologies. This has
been pointed out in two recent review articles [17, 23].

Fig. 11.6: Plasmon enhanced solar cell that shows several of the advanced
plasmonics features discussed in [17]: (i) Metal nanoparticles at the surface
of the cell collect photons, trap photons and scatter photons into the active
layer. (ii) Metal nanoparticles in the active layer generate a larger number of
electron–hole pairs via strong plasmon–exction coupling. (iii) Light trapping
and guiding at metal–semiconductor interfaces. (iv) Enhanced up-conversion
within the upconverter layer, due to the presence of metallic nanoparticles.

The essence of these new approaches is summarized in Fig. 11.6. Each of
these suggestions will provide a fascinating playground for the computational
methods described in Chapter 12. The expected improvements in solar cell
efficiency are based on the light trapping, scattering and field enhancement
properties of plasmons, as discussed in Sec. 11.2.2.

The first improvement in efficiency based on plasmonic nanoparticles would
happen at the top of the solar cell. Here the nanoparticles are supposed to
be partially embedded in a medium with larger permittivity εr below the
interface. With their large scattering cross sections (in particular close to res-
onance), the nanoparticles will harness a lot of the incoming photons, and
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preferentially scatter them into the dielectric with the larger relative permit-
tivity εr. The latter is the active layer of the solar cell, where these photons
will be converted into electron–hole pairs, thus increasing the efficiency of the
solar cell.

The second improvement would come from the embedding of metallic nanopar-
ticles within the active layer itself. There is some evidence that the enhanced
electromagnetic field around the nanoparticles will also enhance the formation
of excitons, which would again add to the efficiency of the solar cell, see Sec.
11.4 below. The fundamental mechanisms of this plasmon–exciton coupling
are largely unexplored [17].

The third improvement would come form the fabrication of patterned backside
contacts, which lead to the coupling of light into surface plasmon polaritons at
the metal–semiconductor interface, provided one can equip the contacts with
some grating structures in order to let the photons couple into the SPP modes.
These plasmonic interfaces might also act as a traps for long–wavelength pho-
tons, which would usually pass through the cell without being harnessed.

Finally the fourth improvement would come from the embedding of metal
nanoparticles into an upconverter layer at the back of the solar cell. Here the
emission and also the excitation processes during up-conversion can be en-
hanced through plasmonic coupling. The details of this coupling are not fully
understood, see Sec. 11.4 below. But it seems that the plasmonic nanoparticles
actually enhance both, the absorption as well as the emission strength [22].

Each of these four improvements will offer new challenges and possibilities
for the computational methods discussed in Chapter 12.1. The goal is to find
the optimum shape, location and material for the plasmonic features described
above. Furthermore a fundamental theory of plasmon enhanced solar cells will
also require the combination of the standard computation methods described
in Chapter 12.1 with other computational methods used to describe particle-
hole and up-/down-conversion processes, in order to get some deeper insight
into the coupling between these various processes.

11.3.3 Example: Heating of Plasmonic Layers

Despite the fact that light trapping by plasmonic nanoparticles might have
many beneficial effects for the photon conversion efficiency of solar cells, it
must also be pointed out that the local heating of the active layers by em-
bedded plasmonic nanoparticles can actually lead to a largely reduced per-
formance of such devices. It is therefore important to predict and analyse the
heat generation for a given solar cell prototype.
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Fig. 11.7: Lateral temperature map for an array of 16 gold nanoparticles.

Heating by plasmonic nanoparticles is a phenomena that has already been
studied for some time, because it leads to important applications in medicine
[24]. Apart from their usage as diagnostic tools, plasmonic nanoparticles also
play an important role in thermotherapy. After successfully attaching plas-
monic nanoparticles to cancer cells, one can irradiate the tumor with light.
Due to the resulting heating of the nanoparticles, one can kill the cancer
cells without damaging the surrounding tissue [12]. There is a huge and es-
tablished literature that deals with this processes [12, 25], and therefore we
can fall back on this knowledge in order to simulate heating by plasmonic
nanoparticles embedded in solar cells.

First of all we need a proper description of how incoming light of frequency
ω will be turned into heat. This process can be quantified by the power of
heat generation Q(ω) (in W), which is related to the absorption cross section
σabs(ω) (in m2) and the irradiance I(ω) (in W/m2) of the incoming light:

Q(ω) = σabs(ω)I(ω) ∼ σabsE
2
loc (11.43)

The proportionality sign on the right side of this equation should remind us,
that the heating of the nanoparticles is caused by the local field, which is
the field of the incoming radiation plus the field due to dipole–dipole interac-
tions with other nanoparticles. The correct way to calculate this local field is
worked–out in [8].
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Fig. 11.8: Temperature difference as a function of incoming wavelength for a
single gold nanoparticle, and for an array of gold nanoparticles. Local field
effects have not been taken into account.

In order to calculate the absorption cross sections in Eq. (11.43), we can either
use FDTD methods described in Chapter 12 , or we can use the expressions in
Eqs. (11.40) and (11.41), either based on ab initio dielectric functions, or based
on parameterized Drude–Lorentz models . Physically speaking Q describes the
power generated within each nanoparticle, which will lead to a heating of that
nanoparticle. Mathematically speaking Q gives rise to a source term in the
heat transfer equation, which can be solved analytically for spherical particles
with radius R. This leads to the following radial temperature profile outside
the spherical nanoparticles [25]:

T (r, ω) = T0(ω)
R

r
=

Q(ω)

4πRκmed

R

r
(11.44)

where κmed is the thermal conductivity of the surrounding medium. For an
ensemble of spheres, it actually makes sense to work out a temperature profile
by adding up all the contributions from the different spheres, and implement
their thermal coupling over the local field in Eq. (11.43).

The results of such a simulation are shown in Figs. 11.7 – 11.8. Again a domes-
tic Python based tool was used, where the dielectric data for gold nanopar-
ticles was calculated using a Drude–Lorentz model. The resulting heating
effects for an array of 16 nanoparticles are comparable to previous studies in
the field [26]. The tool can also deal with local field effects (usually resulting
in red shifts of the resonance frequencies), and with random arrangements of
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spherical nanoparticles of different sizes. Those are all typical scenarios, which
might also be encountered in real plasmon enhanced solar cells.

11.4 New Research Directions

The development of theoretical concepts and computational methods in ma-
terials science is always driven by interesting new applications. In this section
we will present some interesting new directions within the field plasmonics,
which are the subject of intense current research. We will look at research
about the interactions of plasmons with other types of electronic excitations
and transition processes, like excitons and up/down-conversion processes.

11.4.1 Plasmonic Resonances in Non-Metallic Nanostructures

localized surface plasmon resonances are usually associated with metallic
nanoparticles, see Sec. 11.2.2. However starting with the rather surprising
measurement of plasmonic resonances for nanoparticles of the semiconductor
Cu2−xS [27], a whole series of nanocrystalline systems have been discovered
up to date, which show a similar optical behaviour [28]. Therefore it has
been gradually realized, that LSPRs might not be a specific optical feature of
metallic nanoparticles.

The LSPRs in semiconductor nanocrystals have a number of very distinct
properties, which are nicely summarized in a recent review article [28]: The
LSPRs can be excited based on just a handful of free charge carriers per
nanoparticle. This is quite different from metallic nanoparticles. It makes these
systems very sensitive to electron or hole transfer reactions, unlike metallic
plasmonic nanoparticles. Furthermore the peak of the plasmon resonances can
be shifted by manipulating the carrier densities, something that is not possible
for metallic nanoparticles.

Sophisticated theoretical approaches as well as numerical simulations will be
needed to fully understand the physics behind these phenomena. Together
with progress being made on the experimental side, the surprising properties
of these new types of plasmonic nanostructures could then be used for optical
sensors and switches.
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11.4.2 Interactions of Plasmons With Other Electronic Transition
Processes

In Sec. 11.3 we described the use of plasmonic nanoparticles to enhance the
efficiency of solar cells [17]. Furthermore we have pointed out the possibility
of extending the spectral range of conventional inorganic and organic solar
cells using up- and down-conversion [21].

A high efficiency for a conventional solar cell requires the absorption of most
incoming photons, followed by a proper charge separation of electrons and
holes before they actually recombine. For organic solar cells this process also
involves the formation of bound electron-hole pairs called excitons [11]. The
question is how the presence of plasmonic nanoparticles might influence the
rate of exciton creation, the exciton diffusion length, and ultimately the life-
time of these excitons.

A strong coupling between surface plasmons and excitons has been observed in
experimental studies (e.g. see [29]). Theoretical studies of the same phenom-
ena have been made as well [30]. Furthermore studies of the related photon
conversions processes have been carried out in Ref. [31]. One explanation for
the reported interactions between excitons and plasmons may be the coupling
of a single mode to a continuum, which should give rise to a (nonlinear) Fano
effect [32].

A related topic are coherently coupled excitons and plasmons, forming a new
type of quasiparticle called plexciton [33]. The basic processes of this coupling
between excitons and plasmons are still not fully understood, and progress
could be made by a proper multi-scale computational approach, based on the
tools described in Chapter 12 .

Furthermore up- and down-conversion processes are mediated by electronic
transitions within rare earth ions. These are mostly transitions between atomic
states (in a crystal field), which are usually well separated from the surround-
ing bulk. The rate w at which these processes take place are strongly influenced
by the photon flux Φ, according to the well-known relation:

w = σlum(Φ) Φ (11.45)

Here σlum is the luminescence cross section, see Eq. (11.39), which is supposed
to be flux dependent for a typical two-photon process. It can be expected
that the modification of local photon fluxes by an enhanced electromagnetic
field around plasmonic nanoparticles will be very useful to increase the basic
conversion rates, and indeed a thorough description of this effect can be found
in Ref. [34].
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11.5 Concluding Remarks

We gave a brief survey of light-matter interactions based on the Drude–
Lorentz model. We used this approach to describe the basic properties of
bulk plasmons, surface plasmons and localized plasmons. We also described
recent efforts to enhance the efficiency of solar cells, based on the implemen-
tation of plasmonic nanoparticles and plasmonic nanostructures in the active
layers of such a device. And we pointed out a number of interesting optical
phenomena, which are caused by complex interactions between plasmons and
other optical excitations. These phenomena not fully understood up to now.

In order to gain a much deeper understanding of the various plasmonic phe-
nomena and their applications presented in this Chapter, it will be necessary
to go beyond analytical models and the simplest model dielectric functions
based on the Drude–Lorentz model. In Chapter 12 we will have a look at some
of the major computational methods used to model and analyse the various
plasmonic phenomena. We will then see how the basic dielectric properties
of a given material may be calculated ab initio, i.e. from first principles. In
Chapter 12 we will also present ways to combine ab initio methods with a
proper electrodynamical modelling of non-idealized plasmonic nanostructures
and plasmonic nano-particles.
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Abstract. This is the second Chapter in which we give a detailed introduction into
the field of computational plasmonics. While Chapter 11 covered the theoretical
background of modern plasmonics, this Chapter provides describtions of the the
numerical methods involved in computational plasmonics. To this end we use modern
ab initio methods, the standard frequency-domain and time-domain methods of
computational electromagnetics. Finally we show some applications in the fields of
photovoltaics and plasmonic–photonic crystals and close with a discussion of open
problems.

12.1 Introduction

The Physics of real systems requires the solution of very complex basic equa-
tions where analytical solutions do not exist. From this follows the need for
accurate numerical solutions. Numerical methods have played a major role in
the development of all applied sciences, and not only of Physics. Alongside
the development of powerful computers it was also the development of new
algorithms that allowed us to tackle very complex tasks efficiently, and with
very high accuracy [1].

For systems that are described by partial differential equations, such as elec-
tronic (Schrödinger equation) and photonic (wave equation derived from
Maxwell’s equations) systems, different techniques have been developed to
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solve these equations for a given system, and to make accurate predictions
about their properties. In the following Sections we will describe some of the
most popular numerical techniques used to simulate plasmonic systems on
various lengthscales and timescales.

We will start with mesoscopic/macroscopic optical systems. The numerical
simulation of such systems is based on wave equations, which can be derived
from Maxwell’s equations. Knowing the properties of the basic materials in
terms of their relative permittivities and permeabilities, one can make very
precise predictions even for relatively complex systems, because the underlying
equations are mostly linear. The most popular numerical techniques are the
finite-difference time-domain method [2], spectral methods [3], block iterative
methods [4] and block-pseudospectral methods [5], just to name a few. We will
limit our discussion to only two methods, which are the frequency domain
method (FD) described in Sec. 12.2, and the finite-difference time-domain
(FDTD) method described in Sec. 12.3.

Permeabilities and permittivities have their origin in light-matter interactions
at the atomic level (i.e. nanoscale). If we want to make accurate predictions
about plasmonic systems on the nanoscale, then we cannot use simple models
any more, like the Drude–Lorentz model described in Sec. 11.2. We have
to solve the many-body Schrödinger equation for a bulk system excited by
electromagnetic radiation. Although this equation can be written down quite
easily, it is well–known in quantum mechanics that it will not have analytical
solutions for even the most simple nanosystems. Numerical solutions are a
formidable challenge as well, due to the non-linear nature of the effective one-
particle equations derived from the many-body Schrödinger equation. We will
limit our discussion to density functional theory (DFT) [6, 7] described in Sec.
12.4.

In this Chapter we will have a look at some of the major computational meth-
ods used to model and analyse the various plasmonic phenomena. Based on
the assumption that we somehow dispose of a sufficiently precise dielectric
function, we will first discuss the standard frequency and time domain meth-
ods of computational plasmonics and their practical applications. Then we
will go into the details of determining the dielectric function ab initio (i.e.
from first principles) using (time-dependent) DFT.

In Sec. 12.5 we will present the development of the numerical techniques re-
quired to understand the physics of plasmonic photonic crystals, where one
tries to control the flow of surface plasmon polaritons using photonic super-
structures. We will show how to model the corresponding photonic band struc-
tures, and also motivate for more extended studies of disordered or aperiodic
photonic systems.
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Finally in Sec. 12.6 we will give a short summary and discuss a number of
open questions. First we will discuss some important numerical tools, which
have not been developed or implemented in the standard numerical packages
up to now. Second we will give an outlook on some of the most exciting new
research directions in (computational) plasmonics.

Note that all three Sections 12.2 - 12.4 contain worked–out examples to il-
lustrate the practice of the numerical methods, and to illustrate the physical
interpretation of numerical results for each of these methods.

12.2 Frequency Domain Methods for Periodic Systems

Periodic systems like photonic crystals, waveguides and resonant cavities lead
to electromagnetic modes, which have analytical properties similar to elec-
tronic states in periodic solids [8]. A fundamental technique in understanding
the optical properties of these particular electromagnetic modes is the decom-
position into harmonic time–dependent eigenmodes. frequency domain (FD)
methods as a special case of these decomposition methods will expand electro-
magnetic fields into Fourier eigenmodes, which is often sufficient to understand
the characteristics of optical materials in the absence of non-linear effects [4].
frequency domain methods usually start from basic photonic systems with
translational symmetry, for which the solution of Maxwell’s equations and
the derived wave equations will give rise to electromagnetic Bloch states and
photonic band structures [8].

In the following we will discuss the numerical details for the computing of
these photonic band structures using FD schemes. We will show that under
the particular assumption of the FD schemes, the solution of the wave equa-
tion will become equivalent to a matrix eigenvalue problem, which is one of
the standard problems of numerics, and for which there are very powerful
numerical methods available. We point out some of the technical problems
of the FD scheme, and show an example of a photonic band structure for a
two–dimensional honeycomb lattice. These numerical results were obtained
using the standard software MPB [4], and they were visualized using Python
modules written by the authors.

12.2.1 Photonic Band Structures

To find the eigenmodes using a frequency domain method, the general equa-
tion describing the propagation of electromagnetic waves in matter has to be
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mapped onto an eigenvalue problem. For a linear dielectric function ε(r) we
may derive general wave equations for the electric and magnetic components of
the propagating waves, which are of course related by Maxwell’s equations [8].
For the magnetic field H the corresponding wave equation will be

∇× 1

ε
×∇×H =

1

c2
∂2

∂t2
H , (12.1)

which is constrained by the transversality condition

∇ ·H = 0 (12.2)

Taking into account the periodicity and translational symmetry of a dielectric
system described by ε(r), we only consider time–dependent periodic solutions
H(t) for the eigenvalue problem in Eq. (12.1) and Eq. (12.2). In analogy to
the Bloch states of electrons in a solid [9], the corresponding electromagnetic
Bloch states are

H(k, r) = ei(k·r−ωt)Hk(r) , (12.3)

where k is Bloch’s wavevector (which is a pseudomomentum [9]), and Hk is
an amplitude factor periodic with the periodicity of the underlying photonic
system. Substituting the ansatz of Eq. (12.3) into Eq. (12.1) results in

(∇+ ik)×
(

1

ε
(∇+ ik)×Hk

)
=
(ω
c

)2

Hk (12.4)

The operator on the left hand side of Eq. (12.4) is a positive semi–definite
Hermitian operator, and Eq. (12.4) is a typical Hermitian eigenvalue prob-
lem. By introducing a complete set of basis states {Ψ i(r)}i we can map this
eigenvalue problem onto a standard (Hermitian) matrix eigenvalue problem:

AHk =
(ω
c

)2

BHk (12.5)

where A is the Hermitian operator on the left hand side of Eq. (12.4). The

matrix element Alm is given by Ψ †lAΨm and Blm is Ψ †lΨm. These products
involve integration over the configuration space, in analogy to matrix elements
in quantum mechanics [8].

Note that due to the k dependence of the Bloch states Hk(r), the frequencies
ω derived from the eigenvalue problem are also k dependent, i.e. ω = ω(k).
One usually solves the eigenvalue problem for a series of selected k vectors,
and then interpolates in between these points to obtain the photonic band
structure. See Fig. 12.1 as an example.

12.2.2 Numerical Details

The fields Hk in Eq. (12.4) can be written as a linear expansion of basis
vectors Ψ i [4]
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Hk =

∞∑

i=1

hiΨ i , (12.6)

where hi represents the expansion coefficients, which form a column vector in
the matrix formulation of the eigenvalue problem of Eq. (12.5). From a com-
putational point of view, it is impossible to calculate every single coefficient
in the infinite sum that represents the field Hk. Therefore this sum must be
truncated at a sufficiently small number N , which should still yield a very
good approximation to the exact Hk.

Terminating the sum in Eq. (12.6) at a number N of basis functions also
reduces the size of the column vectors and of the matrix operators to finite
sizes of N ×1 for the column vector and N ×N for the matrix sizes. But even
this mapping onto a matrix eigenvalue problem does not necessarily provide
a directly solvable problem in practice. In particular when a traditional linear
algebra approach is used to solve the matrix eigenvalue problem. The matrices
involved could just be too large, requiring enormous amounts of computer
memory, and the algorithms involved will basically never finish.

Fortunately, in most cases only a few lower eigenvalues or photonic bands
are necessary to understand the interesting physics behind periodic optical
systems like photonic crystals [8]. Then we do not have to solve for the entire
spectrum of the eigenvalue problem, and the interesting bands are computed
using a suitable iterative method. This approach also has a very positive
impact on the computer memory needed by a typical FD scheme.

The iterative solution of the eigenvalue problem starts off with an initial guess
of the eigenvector H (neglecting all labels for the moment being). Then one
iteratively improves this guess, based on the fact that for all Hermitian oper-
ators the smallest eigenvalue λ satisfies

λ = min
H

H†AH
H†BH

(12.7)

This type of problem is better known as the Rayleigh-quotient, which can
perfectly be solved using a preconditioned conjugate–gradient method [8]. An
interesting aspect of this method is the fact that we do not have to store
the full matrices A and B in order to solve the minimization problem of Eq.
(12.7). In fact the conjugate gradient method only requires the storage of the
products AΨ and BΨ , which saves a lot of computer memory.

The minimization of Eq. (12.7) leads to the determination of an eigenvalue
λ and the related frequency ω, and we also obtain an eigenvector H. This is
the lowest band at a given k point. To obtain the next band values for the
following frequency, we repeat the minimization in Eq. (12.7), but for a new
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trial eigenvector H ′, which is constrained to be transverse and orthogonal
to the lowest eigenvector H. Hence the band structure may be obtained on
the basis of a band-by-band minimization technique using the preconditioned
conjugate–gradient method [8].

At this point we have to say something about the basis functions Ψ i. Due
to the periodicity of the photonic system, a plane wave basis seems to be a
natural choice. Then the eigenvectors H are expanded into basis functions
ΨG = exp(iG · r) where G is a reciprocal lattice vector, and r is a vector
in real (configuration) space. The vectors G are related to the fundamental
lattice vectors Ĝi in reciprocal space by

G =
3∑

i=1

miĜi , (12.8)

where mi are integers. We can further simplify our numerics by taking only
vectors r from a grid in real space, i.e.

r =

3∑

j=1

nj r̂j , (12.9)

where the vectors r̂j are integer fractions of the fundamental lattice vectors

R̂j in real space determined by the grid size, and nj are integers. Then we can
easily switch between the two grids in real and reciprocal space using Fast
Fourier transform (FFT) routines [8], which is also useful for evaluating the
vector operators in Eq. (12.4) . By switching from real to reciprocal space,
the curl operator ∇ becomes k +G. Switching back from reciprocal to real
space, we can easily carry out the successive multiplication by ε−1. Switching
to reciprocal space again, we can again easily carry out the last curl operation.
Given the speed of the standard FFT routines, the operations on the left hand
side of Eq. (12.4) can actually be carried out very efficiently.

The simplification of Eq. (12.4) by putting the modes on a grid in real space
comes with its own problems, which are related to the inverse dielectric func-
tion ε−1. The latter has to be evaluated on a real space grid as well, and
irregular geometries at the interface between two dielectric media might not
be covered by a moderate discretization grid in real space, leading to all sorts
of numerical artefacts.

In order to avoid these problems, the dielectric function close to the inter-
face has to be averaged. The most successful procedure is based on effective–
medium theory [8]. If we take n̂ as the vector normal to the surface and P is
the projection operator onto n̂, then the effective inverse dielectric constant
ε̃−1 for one unit of a cubic discretization grid is given by:

ε̃−1 = ε−1P + (ε̄)−1(1− P ) (12.10)
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where the first term on the right hand side of Eq. (12.10) is the average of
the inverse dielectric function projected onto the surface normal. That term
is the dominant term when the incident field is parallel to the surface normal.
The second term is the inverse of the averaged dielectric function, and this
contribution dominates when the field is perpendicular to the normal of the
surface. Away from the dielectric media this averaging plays no role, and we
can just take the usual inverse of the dielectric constant at a particular grid
point. For further details see Ref. [4].

12.2.3 Example: Honeycomb Lattice

Γ M K Γ
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0.3
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ω
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(a)

0.0 0.2 0.4 0.6 0.8 1.0
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ω
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(b)

Fig. 12.1: (a) TM modes in units of α
2πc for a honeycomb photonic crystal. In

(b) we show the corresponding scaled density of states (DoS).

In Fig. 12.1 we show the transverse magnetic mode (TM) band structure
for a two dimensional honeycomb lattice. The lattice points are populated
with cylindrical objects of radius 0.2α, where α is the lattice constant. It
is quite convenient to represent all bands in Fig. 12.1a in units of α, which
stems from the fact that Maxwell’s equations for systems with frequency-
independent dielectric functions are scale–invariant. The cylindrical objects
on the lattice consist of a dielectric material of dielectric constant 13. The
background medium is air (i.e. dielectric constant equal to 1). Band gaps are
observed between ω ∼ 0.24 α

2πc and 0.35 α
2πc , and ω ∼ 0.46 α

2πc and 0.55 α
2πc ,

which can also be seen in the density of states related to the band structure.
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12.3 Time Domain Methods

The finite difference time domain method (FDTD) is a grid–based method
similar to finite difference approaches [10]. In FDTD, Maxwell’s equations
are discretized using central differences with respect to the space and time
derivatives. The resulting set of equations are solved in a leapfrog manner on
a staggered grid, a technique which is also quite popular in fluid dynamics [1].

For the sake of simplicity, we will describe the basic mathematical formalism
and some of the numerical details in one spatial and one temporal dimension,
only. The corresponding formalism in four dimensional spacetime can be found
in Ref. [2]. Although the FDTD method has a wide range of applications,
we will provide one particular example that demonstrates the calculation of
absorption and scattering cross sections, which are very useful in the context
of plasmonic nanoparticles, see Ch. 11, Sec. 11.2.2 and Ch. 11, Sec. 11.3.
These simulations were performed using the standard package MEEP [11], in
combination with Python modules written by the authors [12].

12.3.1 Outline of the FDTD method

The frequency–domain methods are very successful in describing the prop-
erties of periodic systems like photonic crystals. But in order to examine a
finite system, one has to use a supercell approach, which easily becomes very
expensive from a numerical point of view. In such cases one needs a more
robust numerical technique suitable for such systems, which is provided by
the finite difference time domain method (FDTD).

The FDTD method simulates the propagation of the electromagnetic wave
in the dielectric medium itself, rather than taking a deviation over a linear
algebra problem. That way it becomes much easier to simulate very complex
geometries, and non–linear media are not a problem for the FDTD method,
in contrast to the FD scheme. We will come back to this problem in Sec. 12.5.

The key idea of the FDTD method is the staggering of the vector components
for the electric fields E and the magnetic fields H . This is called a Yee lattice
as a tribute to Kane Yee, who pioneered the method [13]. The Yee lattice
represents the physical space where the electromagnetic waves propagate, and
an example is shown in Fig. 12.2. In order to describe the wave propagation
on this grid, Maxwell’s equation have to be discretized as well.

Let’s base our analysis on a very general version of Maxwell’s equations. As
we are interested in wave phenomena, we must assume that there are no
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Fig. 12.2: Two-dimensional Yee lattice. The solid points represent the electric
field E and the × points represent the magnetic field H. The electric field
propagates in the x-y plane while the magnetic field is perpendicular to E. At
the bottom left cell the magnetic fieldH coordinates are i, j. The neighbouring
solid point in the y direction represents an electric field with coordinates
i, j + 1/2.

source terms. But there could be electric and (artificial) magnetic currents
characterized by electrical conductivites σ and magnetic resistivities %. Thus:

∂H

∂t
= − 1

µ
∇×E − %

µ
H (12.11)

∂E

∂t
=

1

ε
∇×H − σ

ε
E (12.12)

where ε is the electrical permittivity, and µ is the magnetic permeability.

Let us simplify Eqs. (12.11) and (12.12) by restricting the field propagation to
the z-direction. Then for the different vector components of E and H these
equations will simplify to

∂Ex
∂z

= −µ∂Hy

∂t
− %Hy (12.13)

∂Ey
∂z

= µ
∂Hx

∂t
+ %Hx (12.14)
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and

∂Hx

∂z
= ε

∂Ey
∂t

+ σEy (12.15)

∂Hy

∂z
= −ε∂Ex

∂t
+ σEx , (12.16)

Although the fields E andH retain their vector character in 3 dimensions, the
problem is now effectively one-dimensional, because the fields can only vary in
time, and in the z direction. We now want to introduce the general notation
for the discretization scheme used in FDTD, and formulate our simplified
setting in this form. Let the indices i, j and k represent the increments in
the three spatial coordinates as depicted in Fig. 12.2. Then for a point on
the grid the x-coordinates is given by i∆x where i takes an integer value and
∆x is the size of the grid cell in that particular direction. Furthermore, the
fields are time-dependant and they have to be discretized accordingly. For this
purpose, we take the time increment to be n and the time step to be ∆t. The
discretized Eqs. (12.13) – (12.16) read

E
i,j,k+1/2
x − Ei,j,k−1/2

x

∆z
= −µ

ijk
xy

c◦

Hi,j,k
y |n+1/2 −Hi,j,k

y |n−1/2

∆t

− %xyHi,j,k
y |n−1/2

−E
i,j,k+1/2
y − Ei,j,k−1/2

y

∆z
= −−µ

ijk
xx

c◦

Hi,j,k
x |n+1/2 −Hi,j,k

x |n−1/2

∆t

+ %xyH
i,j,k
x |n−1/2

and similarly for the magnetic field

−H
i,j,k
y |n+1/2 −Hi,j,k−1

y |n+1/2

∆z
=
−εijkxx
c◦

E
i,j,k−1/2
x |n+1 − Ei,j,k−1/2

x |n
∆t

+ σxxE
i,j,k−1/2
x |n (12.17)

Hi,j,k
x |n+1/2 −Hi,j,k−1

x |n+1/2

∆z
= −−ε

ijk
yy

c◦

E
i,j,k−1/2
y |n+1 − Ei,j,k−1/2

y |n
∆t

+ σyyE
i,j,k−1/2
y |n (12.18)

Obviously only k is incremented, since it represents the propagation along the
z-axis. The fields are also temporally staggered in a way that E is computed at
a point in time n∆t, then H is computed at (n+1/2)∆t instead of (n+1)∆t,
where the next value of E is computed.

12.3.2 Numerical details

The solution of the equations starts with an initial value of the electric field
on the Yee lattice. From the equations above, the temporal variation of E
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depends on the spatial variation of H, and visa versa. Thus, propagating the
initial values of E in space and time will update the following values of H.
Then propagating H will update E and so on. It is essential to choose a
proper discretization grid. A grid spacing that is too small will propagate the
solutions over extremely small distances and time intervals, whereas a grid
spacing that is too large will lead to numerical instabilities [1].

The fields are updated in the above fashion until they reach the boundaries of
the Yee lattice. At that point special assumptions have to be made in order to
truncate the simulation. That is usually achieved via absorbing boundaries,
that force all outgoing or reflected fields to decay. From a numerical point
of view, an artificial absorbing material will be introduced called a perfectly
matched layer (PML) [14]. Details of this procedure are discussed in Ref. [2].
The introduction of such a hypothetical material has to be done very carefully,
in order to ensure that the material really absorbs all outgoing waves, and does
not generate any strange numerical artefacts [15].

12.3.3 Example: Cross Sections Using FDTD

The computation of the scattering, as shown in Fig. (12.3b), as well as the
absorption cross sections, as shown in Fig. (12.3a), is one of the important
aspects of FDTD methods. The cross section is defined as the power trans-
mitted through a unit surface area. The power P that goes through a surface
S is given by the real part of the integral of the Poynting vector over the plane

P (ω) = Re

‹

S

E(ω, r)×H(ω, r) · dA , (12.19)

where the fields E andH are specified at a given spatial point r and frequency
ω.

One problem is the fact that the FDTD technique simulates the propagation
of the fields in space and time. In order to calculate the power spectrum P (ω),
the fields have to be transformed into the frequency domain. To perform the
calculations one has to use a short–pulse source, which covers the range of
the frequencies at which the cross sections are required to be calculated. With
this the fields that propagate out of the surface S are stored for each time
step. Then one can perform a Fourier transformation according to

Ẽ(ω) =
1√
2

∑

n

eiωn∆tE(n∆t)∆t , (12.20)

which is known as discrete–time Fourier transformation. It is the preferred
technique used by MEEP, but other methods to extrapolate Fourier transform
can be used as well. For details and further references see Ref. [11].
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Fig. 12.3: In (a) we show the absorption cross–section and the scattering cross–
section in (b) for a simple two-dimensional plane surface with silver sphere
positioned in its centre. The simulation is performed using the FDTD method.
Three different radii of the sphere, 15, 25 and 70 nm are considered during
the simulation.

12.4 Ab Initio Dielectric Functions

A proper description of the plasmonic behaviour of a material largely depends
on the knowledge of the frequency–dependent dielectric function, which is a
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characteristic of the excited electronic states of a material. It is therefore
necessary to determine the ground state and the excited electronic states of
the system, and to compute the properties of optical transitions between those
states. This may be based on a non-relativistic Schrödinger equation.

In the following we will briefly introduce the theoretical background of the
most relevant ab initio numerical techniques which require no empirical in-
formation. Many of these methods can be applied to extended and isolated
systems alike. However the numerical effort can be enormous in some cases.
We will focus here on density functional theory [6, 7] and related methods,
which are the methods of choice for extended systems and large isolated sys-
tems like clusters.

12.4.1 Density Functional Theory

density functional theory (DFT) is one of the standard methods of compu-
tational physics and chemistry for several decades. Detailed descriptions can
be found in many books [16, 17, and others], and these details need not be
repeated here. The N -body Schrödinger equation depends on 3N variables,
or 4N if spin is included. This quickly leads to infeasible system sizes, and
therefore approximations and reformulations have to be found to solve the
corresponding quantum mechanical N -body problem also for larger systems.
In almost all applications of ab initio methods, it is assumed that the Born–
Oppenheimer approximation [18] holds, which is also called adiabatic approx-
imation. The nuclei of a molecule, cluster or solid are much heavier than the
electrons, and therefore it can be assumed that the motions of the nuclei are
largely decoupled from the motion of the electrons, such that for any given
nuclear configuration the electrons will be in their respective ground states.
We are now left with the task to solve the electronic Schrödinger equation.

The basic idea of density functional theory goes back to Hohenberg and
Kohn [6]. It can be described as follows: For a quantum mechanical system
the ground state of the system is completely determined by the ground state
charge density. In other words there is a unique mapping between the charge
density % and the total energy E of the system via a charge density dependent
energy functional E[%]. Knowledge of the charge density allows us to dramat-
ically reduce the number of spatial degrees of freedom from 3N to 3, which
also reduces the computational complexity quite substantially. According to
Hohenberg–Kohn the unknown charge density dependent energy functional
E[%] should look like this:

E[%] = T [%] +

ˆ

dr vext%(r) + EH [%] + Exc[%] (12.21)
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Here T stands for the functional of electronic kinetic energy, vext are exter-
nals potentials like the nucleus–electron interaction, EH is the functional of
a classical Hartree/Coulomb interaction and Exc is the exchange-correlation
functional.

In order to make density functional theory useful for everyday numerical sim-
ulations, and in order to implement it in existing ab initio program packages,
another ansatz was very important. Kohn and Sham [7] showed, that there is
a non-interacting reference system, whose one-particle Schrödinger equation
takes the form

(T + veff(r))ψi(r) = εi(r)ψi(r) , (12.22)

with an effective potential veff that yields the same ground state density % as
the real interacting system. Then the charge density % is given by the indepen-
dent particle orbitals ψi, which are eigenstates of the one-particle Schrödinger
equation (12.22), i.e.

% =
N∑

i

|ψi(r)|2 (12.23)

This Kohn–Sham approach together with the idea of a charge density de-
pendent energy functional leads to the Kohn–Sham density functional theory
(KS-DFT):

E[%] =
N∑

i

εi − EH [%] + Exc[%]−
ˆ

dr
δExc[%]

δ%(r)
%(r) (12.24)

The one-particle Schrödinger equation (12.22) follows from the minimization
of the KS energy functional E[%] with respect to the set of orbitals ψi.

In principle the KS–DFT allows for an exact solution for the ground state of
the electronic Schrödinger equation. However, while it has been proven that
there exists an exchange–correlation functional Exc[%], which yields the cor-
rect electronic ground state, this functional has never been found, and there
is no guarantee that such a functional would have an analytic form. Nev-
ertheless, a large number of approximate functionals are known and widely
used with great success. The available functionals are grouped according to
their analytic form, and there has even been assigned a Jacob’s ladder for
the different levels of approximation [19, 20]. The simplest approximation is
the local density approximation (LDA) [21], where the exchange–correlation
is directly dependent on the value of the charge density in space. LDA func-
tionals can in principle be derived without empirical parameters, constraint
by the requirement that they must reproduce the properties of the homo-
geneous electron gas. The next level of approximations are the Generalized
Gradient Approximations (GGA) [22, 23], which depend on the charge den-
sity and its spatial derivatives. GGA functionals have already a lot of degrees
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of freedom in their construction. They are the most common functionals for
ground state calculations. The third step on the ladder are the metaGGAs,
which also depend on the second derivatives of the charge density and/or on
the kinetic energy density. Despite some promising efforts, metaGGAs have
not become numerical standard yet, because of the difficulties implementing
them for perturbation theory and linear response equations.

The KS–DFT in itself is not suited to describe excited state properties as the
orbitals are generally not related to the physical one-electron states (quasi-
particles!), and therefore the predicted band gaps are generally largely under-
estimated. There are a few common approaches being pursued to overcome
those short–comings of DFT.

One is to use highly parametrized metaGGAs or even more complex function-
als, which deliver improved band structures and band gaps [24]. While these
functionals have little numerical overhead, their complicated structures and
high levels of parametrization have two distinct disadvantages. First it is dif-
ficult to derive some analytical properties like the elastic strain, which limits
their usability and makes the implementation of metaGGAs less straightfor-
ward. Second it is difficult to anticipate when the functionals actually fail to
describe a system properly.

Another promising approach is to mix DFT with Hartree–Fock theory. For
these so called hybrid functionals [25] a certain part of the DFT exchange–
correlation functional is mixed with the Hartree–Fock potential. While these
hybrid functionals tend to give much better results than the normal DFT
functionals, the theoretical motivation for the specific mixing of different func-
tionals is very difficult. Furthermore most hybrid functionals increase the nu-
merical effort quite dramatically.

The third promising approach is to use the Green’s function methods as part
of a general quasi-particle approach to improve the band gaps and band struc-
tures compared to DFT. The most common implementation of the Green’s
function method is Hedin’s GW method [26]. The GW method is in princi-
ple exact, but numerous approximations must be made to achieve acceptable
numerical effort.

Besides the proper choice of the exchange–correlation functionals, at least two
other important technical choices have to be made, concerning the represen-
tation of the Kohn-Sham wave functions. In principle these electronic wave
functions can be expanded in any complete set of basis functions. However for
the purpose of numerical simulations only truncated sets can be handled, and
the size of these restricted basis sets will directly influence the overall compu-
tational effort. For isolated systems one uses a Gaussian basis set or the Linear
Combination of Atomic Orbitals (LCAO) approach, because these basis func-
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tions are close to be molecular orbitals. Extended periodic systems however
exhibit electronic Bloch states, which are best described by a plane–wave ba-
sis set. It is always up to the user to decide, how many basis functions should
be included in a given simulation run, based on accuracy and speed/memory
requirements.

For extended periodic systems one is not only concerned with the real space
properties of the system, but also with the reciprocal space (or k-space) prop-
erties related to the electronic Bloch states. The reciprocal space is dual to
the real (physical) space, and lattices embedded in both spaces are related via
a Fourier transform [9]. One usually chooses a point mesh to sample the recip-
rocal space. The denser the resulting meshes the higher the accuracy, and un-
fortunately also the larger the computational effort, because the Schrödinger
equation has to be solved at each of those mesh points in reciprocal space.

12.4.2 Linear Response and the Time Dependent Density
Functional Theory

In order to calculate the dielectric function, we have to evaluate the response
of a material to an external perturbation in terms of an applied electromag-
netic field. If this perturbation is weak compared to the internal electric fields
caused by the ions, then the induced fluctuations in the charge density can
be described within the framework of time–dependent perturbation theory,
where these charge densities fluctuations will be linearly dependent on the
applied perturbation. In the following we will give a brief summary of the lin-
ear response time dependent density functional theory (LRTDDFT) approach,
which can be used to calculate the dielectric function from first principles. A
more detailed description of this method can be found in [27].

Within LRTDDFT the response of the systems can be expressed in different
but closely related forms, which are the dielectric response, the polarization or
the density response. For example an incident beam of electromagnetic waves
causes a change in the external electric field and therewith in the external
potential vext of the excited system. The density response function

χ(r, r′, t− t′) =
δn(r, t)

δvext(r′, t′)
(12.25)

is the reaction of the electron density n to this perturbation. The density re-
sponse is directly related to the relative dielectric function εr by the Coulomb
kernel ν:

ε−1
r = 1 + νχ (12.26)

We have seen in the previous Section that we can use the Kohn–Sham DFT
to calculate the ground state charge densities, but not under time–dependent
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perturbations. Here the more general framework of time–dependent density
functional theory (TDDFT) [28] must be used. Then the time independent
Schrödinger equation is replaced by a time dependent equation, and all physi-
cal quantities become time dependent. Also instead of determining the lowest
energy solution, the quantum mechanical action integral will be minimized.

For the time evolution of isolated systems TDDFT can basically simulate ar-
bitrary types of perturbations, including strong laser fields. But in practice
the simulation of perturbed extended periodic systems is limited to the fre-
quency domain linear response TDDFT method. Then one can express the
density response χ in terms of the independent particle response χ0 using a
Dyson equation approach:

χ(r, r′, ω) = χ0(r, r′, ω)

¨

Ω

dr1dr2 χ0(r, r1, ω)K(r1, r2)χ(r2, r
′, ω),

(12.27)
Here K is the exact Coulomb and exchange–correlation kernel

K(r1, r2) =
1

|r1 − r2|
+
∂Vxc[n]

∂n
(12.28)

Electromagnetic waves are periodic phenomena, and therefore we easily switch
from to the time to the frequency domain. The independent particle, or non-
interacting, response function can be readily computed from the KS-DFT
eigenvalues εnk and eigenfunctions ψnk(r):

χ0(r, r′, ω) =
BZ∑

k,q

∑

n,n′

fnk − fn′k+q

ω + εnk − εn′k+q + iη
ψ∗nk(r)ψn′k+q(r)ψnk(r′)ψ∗n′k+q(r′)

(12.29)
The fnk are the Fermi occupation numbers of the eigenstates. In the case
of extended systems one has to consider the whole Brillouin zone in order to
determine the response of such a system. Therefore the sum in Eq. (12.29) runs
over all the points k in first Brillouin zone. This also means that the possible
momentum transfer q by the perturbation must be taken into account. In the
case of light as a source for perturbations of the system we are always operating
in the optical limit of q = 0, because the moment of electromagnetic plane
waves is very small.

For spatially periodic extended systems, a formulation of the independent
particle response function in reciprocal space will be more useful than a real
space description. A Fourier transform of Eq. (12.29) will generate the ex-
pression for the independent particle response in terms of the wave vectors
q of the incoming wave, and of the reciprocal lattice vectors G. The Fourier
coefficients, derived by Adler [29] and Wiser [30], are written as
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χ0
GG′(q, ω) =

1

Ω

BZ∑

k

∑

n,n′

fnk − fn′k+q

ω + εnk − εn′k+q + iη
〈ψnk|e−i(q+G)·r|ψn′k+q〉Ωcell

×

〈ψnk|ei(q+G′)·r′ |ψn′k+q〉Ωcell

(12.30)
The full interacting density response is then given by

χGG′(q, ω) = χ0
GG′(q, ω) +

∑

G1G2

χ0
GG1

(qω)KG1G2(q)χG2G′(q, ω) (12.31)

In this notation the (microscopic) inverse dielectric function is given as (see
Eq. (12.26))

ε−1
GG′(q, ω) = δGG′ +

4π

|q +G|2χGG′(q, ω) (12.32)

In most practical cases one is interested in the related macroscopic dielectric
function εM (= εr), which can be obtained as follows:

εM (q, ω) =
1

ε−1
00 (q, ω)

(12.33)

In principle Eq. (12.31) is exact. However up to this point it has not been
possible to derive accurate time dependent exchange correlation kernels. The
popular ALDA (adiabatic local density approximation) kernel does not cor-
relate different times t, and it diverges with 1/q2, which means it does not
contribute to the optical limit. Therefore this kernel is also not able to de-
scribe excitonic effects, for which the more cumbersome Bethe–Salpeter equa-
tion [27] has to be solved. This problem does not occur for isolated systems,
where TDDFT is reported to give very good results.

In addition to the challenge of finding good exchange–correlation kernels, a
number of other approximations are commonly used. The simplest approxi-
mation is the independent particle approximation, which uses χ0 instead of
χ in Eq. (12.32). Random phase approximations consists of neglecting the
exchange-correlation part of the kernel in Eq. (12.31). Neglecting local field
effects leads to an approximation, which ignores the change in screening due
to local dipole interactions that are represented by the off-diagonal elements
in χGG′ . The impact of these different approximations on the accuracy of the
numerical results will be illustrated in the following Section.

With the knowledge of the dielectric function calculated in Eq. (12.33), de-
rived properties like the electron energy loss spectrum (EELS) can be easily
obtained using the relation given by Eq. (11.17). In contrast to the analytic
Lorentz model, ab initio dielectric functions can also be computed for non-
zero momentum transfer q. The relevance of this feature can be seen in the
loss function of graphene, which is shown in Fig. 12.4 [31]. Graphene has
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two (bulk) plasmons, where the π plasmon is located around 5 eV, and the
π + σ plasmon is located around > 15 eV. Both resonances show up as peaks
in the electron energy loss function of Fig. 12.4. One can also see that both
plasmons experience strong dispersion, and that they have their maxima for

‖q‖ ≈ 0.2 Å
−1

, i.e. some distance away from the limit described by analytical
dispersionless models of the Drude–Lorentz type, and at higher energies.

Fig. 12.4: electron energy loss spectrum of graphene as calculated on the
LRTDDFT level of theory. Reprint from [31] Fig. 3.

In this Section we have limited ourselves to contributions for the dielectric
function, which stem from interband transitions only, which limits the validity
of this approach to semiconductors and insulators. It is however possible to
add the intraband contributions to the dielectric function in an ad hoc fashion.
To this end a term corresponding to the Drude model in Eq. (11.9) is added
to the dielectric function. The plasma frequency ωp can easily be calculated
from the ab initio data, but unfortunately the damping constant γ must be
guessed, which adds some uncertainty to the final results. As the Drude model
does not depend on q, such an ad hoc treatment to describe metallic systems
can ony be used for calculations in the optical limit of q = 0.
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12.4.3 Example: ZnO

In this Section we illustrate the numerical procedures to calculate dielectric
functions, and we give optical evidence to the advantages and short-comings
of the different methods and approximations described above. We chose ZnO
as an example for this Section, because it is a common direct band gap semi-
conductor used in photovoltaics. It has the advantage of a relatively small
unit cell with only four atoms, which allows people to reproduce the present
calculations even without access to a super computing facilities. The ground
state DFT calculations were performed using the Quantum Espresso pack-
age [32], and the linear response and GW calculations were performed using
the Yambo package [33].

Ab initio simulations of dielectric functions always refer to the mono–crystalline
phase. ZnO has a hexagonal unit cell of the wurtzite type. As a first step the
numerical parameters of the DFT calculations have to be converged. These are
usually the size of the basis set into which the wave functions are expanded,
and the number of points to sample the Brillouin zone in k-space. Secondly,
it is often prudent to relax the structures taken from databases. DFT delivers
only approximate numerical solutions, where the global minimum of the equi-
librium energy functional in terms of cell parameters and atomic positions is
slightly different from a real structure.

The next step is to calculate the ground state charge density and electron
wave functions within DFT, which are then taken as input for the linear re-
sponse LRTDDFT. ZnO has a direct band gap of about 3.34 eV, however
DFT estimates the band gap to be as small as 0.82 eV. This leads to consid-
erable errors in the dielectric response. In Fig. 12.5 we compare the dielectric
function of ZnO computed in different numerical ways with the experimental
results by Gori et al. [34]. The experimental curve shows a strong onset in
the real and imaginary parts of the dielectric function at the position of the
band gap, which is possibly caused by an exciton. For the rest of the spectrum
the curves are flat without any prominent peaks. The computed curves are
all much more wobbly than the experimental results, which is a numerical
artefact caused by the limited size of the grid covering the first Brillouin zone
(15× 15× 9). It is often not possible to sufficiently increase the grid density
in order to obtain a clean picture.

Let us comment on the different approximations used in Fig. 12.5. The sim-
plest approximation in the computation of the linear response is the indepen-
dent particle model (IP). It directly uses the KS-DFT orbitals and calculates
transitions between occupied and unoccupied bands without any further cor-
relations. This model shows an onset in the absorption at a DFT band gap of
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Fig. 12.5: Real (a) and imaginary (b) part for the dielectric function of zinc
oxide calculated at different levels of approximation.

0.8 eV, which is much too low, and therefore the whole dielectric function is
heavily red shifted.

The next level of approximation consists of introducing the Hartree kernel into
the response function (RPA), and to calculate the response for a number of
G vectors. This will introduce the local field (LF) corrections to the response
function. This level of approximation could be considered fairly accurate, but
it does not correct the band gap problem, and it does not take into account
excitonic effects. The RPA+LF model can be expected to produce accurate
static limits ε∞ of the dielectric function. If one imagines these curves to be
rigidly blue shifted they reproduce the experimental curves reasonably well,
except the excitonic peak at the band gap energy. Therefore one can introduce
a scissor operation to blue shift all unoccupied bands, such that the desired
band gap is obtained. This however means, that energy eigenvalues and the
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corresponding wavefunctions are no longer consistent. Then the real part of
the dielectric function is severely underestimated, especially below the band
gap, but the imaginary part can be quite reasonable.

In order the reproduce all the features of the experimental dielectric function,
one has to solve the Bethe–Salpeter equation (BSE), which then includes
excitonic effects. As can be seen in Fig. 12.5 the BSE dielectric functions
matches the experimental one quite well. There are however a few set-backs.
The BSE is numerically much more cumbersome than the LRTDDFT, which
practically forbids well-resolved curves to be computed by this method. In
addition, the real part of the dielectric function is underestimated. As can be
seen form Eq. (12.29) or Eq. (12.30), the density response (and therefore also
the dielectric function) has a form which can be described by a sum of Lorentz
oscillators. In those the real part on the side of ω0 does not approach zero, but
a constant value. Therefore one needs to include all oscillators up to very high
energies in this sum of Lorentz oscillators just to compute converged absolute
values of the real part of the dielectric function. This however is prohibitively
expensive in the BSE framework, and only a small number of transitions are
included in the graph.

Better curve shapes might be obtained after we base the BSE calculation on
eigenvalues and functions calculated using the GW method. This provides
reasonable band gaps and also reasonable quasi-particle energies.

12.5 Plasmonic Photonic Crystals

In this Section we examine the optical properties of periodic arrays of dielectric
elements placed on a metal substrate, and thus introduce the concept of a
photonic crystal [8] into the field of plasmonics. This is a very interesting
theoretical and experimental scenario, where one can study the formation of
photonic band gaps for evanescent surface plasmon polariton waves. Even
more interesting is the further localization of these evanescent Bloch waves
after introducing varying degrees of structural disorder. The conditions under
which a Bloch-like SPP will be either localized, extended or even form a critical
state are not clear a priori [35]. It is also not clear how optical localization
can be separated from the evanescent character of an SPP. Being of mainly
fundamental interest at the moment, the topic of plasmonic photonic crystals
could nevertheless have important implications for the future development
of nanoscale plasmonic devices, where the localized, extended or evanescent
character of SPPs can be controlled and manipulated. Computational methods
will certainly play a very distinct role in the development of basic theoretical
and practical concepts for this field.
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Photonic crystals provide control over the flow of electromagnetic waves. They
can stop the propagation of light with certain frequencies, forming photonic
band gaps as the one shown in Fig. 12.1. These unique optical properties of
photonic crystals have their origin in the translational symmetry of their di-
electric structures [8]. One can tune the optical properties of photonic crystals
by introducing dielectric point defects, or by tuning the dielectric contrast.

More interestingly, the presence of surface plasmons polaritons (SPP) can
have a quite similar effect, and enhance these optical properties even fur-
ther [36]. Placing a photonic crystal on a metallic surface leads to surface
plasmon polaritons [37] at the interface between the heterogeneous dielectric
metamaterial and the metal, see Ch. 11, Sec. 11.2.2. SPP modes are decaying,
and they influence the dielectric properties of photonic crystals by introducing
non-linearities [38], which can localize certain photonic modes.

In the following Section, plasmonic photonic crystals are treated using per-
turbation theory. We start with a brief description of a perturbative scheme
developed by us to study plasmonic photonic crystals. We then give an ex-
ample of the photonic band structure for a 2D honeycomb crystal placed on
an aluminium surface. The core numerical calculations are performed using
MPB [4], while the extension that deals with the perturbation of the bands
was developed by ourselves using Python.

12.5.1 Perturbation Theory

In contrast to textbook examples of standard photonic crystals, the variation
of the dielectric function at a given frequency is cucial for the description of
plasmonic photonic crystals, and it will also introduce non-linearities. Such
changes will modify the resulting band structures. Within the framework of
perturbation theory [39], the change in the band structure ∆ω is related to
the change in the dielectric function ∆ε, as well as to the electric field E(r)
itself, see [8]:

∆ω = −ω
2

´

d3r∆ε|E(r)|2
´

d3r ε|E(r)|2 (12.34)

Here we have neglected the k dependence of the band structure ω(k) and of
the fields E(k, r). The metallic substrate alters the dielectric function of a
photonic crystal, which leads to different effective dielectric functions εspp at
both sides of the interface [38]

εspp(ω) =
εm(ω)εd(r)

εm(ω) + εd(r)
(12.35)

Here εd(r) is the composite dielectric function of the material forming the
photonic crystal (silicon and air for example), and εm(ω) is the metallic di-
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electric function, which can be modelled using a standard formula such as the
Drude model:

εm = 1− ω2
p

ω2 − iωγ (12.36)

Remember that ωp is the plasma frequency of the metal and γ is a damping
constant. It is also worth mentioning that for simulations of the plasmonic
photonic band structures, only the real part of εspp will be of interest. The
presence of the complex part does not influence the features of the band
structure, it only leads to a gradual decay of the surface waves [40].

We now have a very interesting theoretical, numerical and experimental set-
ting. We can now systematically introduce disorder into the photonic crystal
component, which leads to the localization of photonic Bloch states. On top
of that the imaginary part of εspp leads to an evanescent character of the
Bloch-like states in a plasmonic photonic crystal anyway. A detailed study of
such models is likely to tell us something fundamental about the character of
optical localization [35], and how we can actually manipulate it in practice.
The following example will hopefully wet the appetite of some of our read-
ers to dig deeper into this fascinating subject, and to improve the necessary
numerical tools as well.

12.5.2 Example: Plasmonic Photonic Band Structure
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Fig. 12.6: (a) TM modes in units of α
2πc for a plasmonic photonic crystal. In

(b) we show the corresponding scaled density of states (DoS).

To compute the perturbative correction of the harmonic modes (Bloch states),
we use first order (self–consistent) perturbation theory [39]. An unperturbed
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band structure is computed first, using a constant dielectric function for the
feature of a regular photonic crystal. Then within a small window of frequen-
cies ω to ω + ∆ω, the small perturbative change in the (average) frequency
is computed. We thus assume that within this small frequency window, the
effective dielectric function will not remarkably deviate from its initial value,
and therefore the resulting band structures are approximately self–consistent.
This of course is just an idealized assumptions, and larger deviations cannot
be treated by this method. In the following we require that relative changes
in the dielectric constant (∆εε ) have to be less than 1%, and therefore a first
order perturbation theory for small deviations should be sufficient. Larger
fluctuations in the dielectric function might require higher order perturbation
theories, or even iterative schemes.

For a sample calculation of a plasmonic photonic band structure we essentially
use the same model as for Fig. 12.1a in Sec. 12.2, which is the honeycomb lat-
tice. This lattice is placed on aluminium substrate, and the dielectric function
for the metallic component is described by the Drude model in Eq. (12.36).
The presence of SPP also influences the dielectric constant of the cylindrical
objects and of the background, which are modified according to Eq. (12.35).

The plasma frequency of aluminium is taken to be 2.24 × 1016 rad/sec, γ =
1.22× 1014 rad/sec [41]. In order to compute the effect SPP on the dielectric
function, the frequency units have to be converted to match the units of ωp
and γ. The substitution of real values for the lattice constants influences the
resulting band structure, and it removes the scale–invariance of Maxwell’s
equations. Moreover, it is also important for the validity of our numerical
approach. In Fig. 12.6 a plasmonic photonic band structure is shown for α
= 500 nm. The lower band gap for the plasmonic photonic crystal is wider
compared to its photonic counterpart shown in Fig. 12.1.

12.6 Open Questions

In this final Section we briefly want to emphasize some of the most recent
developments in the field of (computational) plasmonics, together with some
new challenges. In Sec. 12.6.1 we will discuss some numerical problems, where
proper solutions could have a major impact on the field of computational
plasmonics.
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12.6.1 Missing Numerical Tools

As we have already pointed out several times that the numerical approach
to many interesting plasmonics phenomena and the modeling of derived ap-
plications is basically multi-scale. The numerical methods described in Sec.
12.1 are certainly the most powerful tools on an atomic to mesoscopic level
(ab initio methods like TD-DFT, see Sec. 12.4), or from a microscopic to
macroscopic level (FD and FDTD methods, see Sec. 12.2 and 12.3).

However, each of these methods has conceptional limitations. Even within
their usual range of validity these methods tend to become very inefficient,
whenever the systems under consideration become very heterogeneous. Fur-
thermore if we want to treat a typical multi-scale problem in plasmonics with
sufficient accuracy, then we often have to extend the range of validity for
each these methods by combining them with other types of numerical tools,
a general procedure that does not always work very well, nor is it really well
understood from a mathematical point of view [1].

Classical electrodynamics has circumvented many of these fundamental prob-
lem by introducing light-matter interactions simply through the permittivity
ε(ω) and the permeability µ(ω). But nowadays we have the possibility to de-
termine these materials properties for idealized systems using first principles
numerical methods, as discussed in Sec. 12.4. This raises the question, whether
the resulting optical properties can also be extended to describe imperfect sys-
tems.

In the following we will briefly discuss some ideas concerning the implemen-
tation of ab initio optical properties in the standard FD and FDTD methods.

12.6.1.1 Implementation of Tabulated Data for ε(ω)

A lot of simulations in this Chapter have been carried out using model di-
electric functions. Although such an approach often often lead to very good
results, it also has its limitations. A better and more realistic approach would
be based on tabulated data, generated using ab initio methods described in
Sec. 12.4.

Unfortunately most of the available numerical tools in computational elec-
tromagnetics are not designed to accommodate tabulated data. In fact most
of them are only designed to cater for user–defined functions. For example
MEEP, which is a very sophisticated finite difference time domain solver, on
one hand offers the interesting possibility to solve Maxwell’s equations for
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systems that have frequency-dependent dielectric functions, but that choice
is limited to a certain number of model dielectric functions of Drude–Lorentz
type. The popular frequency domain solver MPB does not have any support
for frequency dependent dielectrics.

Handling tabulated ab initio data for some these numerical tools will not be
an easy task. One possible way of managing tabulated data is to load the data
directly into a routine, whose task will be to generates model dielectric data
for the standard routines of a given package. One will of course be left with
the difficulty of interpolating values, which do not exist among the tabulated
raw data. Another problem is the structure of some the standard numerics
packages, which have grown over years or decades, and which have not always
been documented very well during that time. This often makes the imple-
mentation of new features into an existing code a rather painful programming
exercise.

12.6.1.2 TDDFT for Extended Systems

time–dependent density functional theory is without any doubt an excellent
tool to predict the spectroscopic properties of isolated systems like molecules
and small clusters. Here the linear response scheme (LRTDDFT) can be used
to calculate the frequency–dependent spectrum. Alternatively, laser excita-
tions can be simulated using time evolution schemes, which allow to capture
non-linear behaviour as well.

Unfortunately for extended systems the situation is more complicated [27].
The linear response scheme suffers from two major problems. First it is not
a self-consistent scheme. Moreover it relies on the band–structures calculated
on the KS-DFT level, which are known to underestimate the band . This is
a severe flaw, which cannot be corrected by the correlated density response
alone (see Sec. 12.4). Second it is extremely difficult to find a good time–
dependent density functional, even more difficult than for the Kohn–Sham
case. In fact the most commonly used adiabatic LDA (ALDA) functional is
not even frequency-dependent. No functional has been found up to now, which
would reliably mimic the excitonic effects, and therefore the Bethe–Salpeter
equation remains the only decent approach to study excitons using ab initio
methods.

Besides linear response, the non-linear effects can be observed using laser
excitation simulations. While this has been implemented for isolated systems
in several program packages, it is still not available for extended systems. The
difficulty stems from the periodic boundary conditions of the extended system
[27]. Some fixes have been suggested, but their numerical implementations are
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not stable enough to be implemented in any of the standard ab initio codes
yet, in particular not without causing more damage than good.

12.6.1.3 Multi-Scale Tools

A straightforward multi-scale approach based on the numerical methods de-
scribed in Sec. 12.1 would consist of tabulated dielectric data ε(ω) obtained
with the help of ab initio methods described in Sec. 12.4, which is then either
plugged into the analytical expressions of Ch. 11, Sec. 11.2.2. Or it could be
plugged into a FD or FTDT solver (see Sec. 12.2 and 12.3) as dielectric data
points on a grid. A typical example of such an approach would be our study of
surface plasmon polaritons in graphene [42]. Methods of this kind would fall
under the category of heterogeneous multi-scale methods, where one combines
different numerical and analystical models [1]. For heterogeneous systems on
the FDTD level it is sometimes necessary to work with finer meshes in certain
regions (for a review see Ref. [43]). This type of multi-scale approach would
fall under the category of multi-grid methods [1]. Unless we are able to solve
the Schrödinger equation on the same type of spatio-temporal grid that we use
to solve Maxwell’s equations on a FDTD level, then the multi-grid approach
will not be suitable for a multi-scale modeling of a plasmonic structure, which
starts from the atomic structure of the basic materials.

Concerning the implementation of the more promising heterogeneous multi-
scale methods in computational plasmonics, one would not really take advan-
tage of their full potential by simply operating with tabulated ab initio data
on a FD or FDTD level, or by plugging ab initio data into analytical models.
Whenever we are interested in the coupling of optical phenomena between
different mesoscopic systems as described in Ch. 11, Sec. 11.4, then it will
be necessary to combine detailed atomistic simulations and coarse grained
electromagnetic simulations much more directly.

For example, as long as we are in the usual linear-response regime to calcu-
late the basic dielectric properties of a material using ab initio methods, the
expressions for the determination of the dielectric function will always refer
to a homogeneous external electric field, see Sec. 12.4. But these expressions
are just a special case of a more general linear response formalism, which is
nicely described in Ref. [44]. Note that a heterogeneous electric field like a
sharp pulse, or the electric field in the vicinity of a plasmonic nanoparticle,
could also modify the dielectric function on an atomic level, or they might
even give rise to nonlinear effects. The resulting modified dielectric function
will be fed back into the spatio-temporal grid used for the FDTD simulations,
where the updated fields will back-react with the system on an atomic level
again, etc.
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Another example are interfaces or grain boundaries, where a simple mixing
of dielectric functions will not always be sufficient. Therefore it might be
necessary to fall back on atomistic models in order to understand the optical
response around interfaces or surfaces. The optical properties of nanocrystals
in particular are dominated by surface effects, and conventional methods are
unlikely to describe the corresponding dielectric and optical properties, see
Ch. 11, Sec. 11.4.

The best strategy to combine different numerical methods in a heterogeneous
multi-scale approach is in general not known, because the choice and the
combination of various numerical methods strongly depends on the nature of
the problem that one wants to examine. This can be understood as follows
[1]: Let us describe our system on a macro-level by a model F (U,D) = 0,
where U is a macroscopic variable, and D the data needed to parameterize
this model. On the micro-level we have a model f(u, d) = 0, where u is
a microscopic variable, and d is the data needed to set up the microscopic
model (e.g. constraints).

The biggest problem will not necessarily be the numerical solution of both
models, where we in most cases one could easily find efficient numerical solvers.
The more important problems will be the mappings u ↔ U , which require
compression u ← U or reconstruction u → U schemes over the configura-
tion space. The second big problem are the mappings d ↔ D, which require
constraints d ← D and data estimation d → D schemes. Further complica-
tions arise, when one tries to impose some of these mappings over boundary
conditions.

For a survey and nice examples see Ref. [1], where it becomes quite clear that a
proper multi-scale modeling is still more of an artwork than a straightforward
numerical procedure. Nevertheless we think that computational plasmonics
would be a perfect playground to explore and further develop multi-scale
modeling: The basic numerical methods are already well-established, and now
it is time to put them all together.

12.7 Concluding Remarks

In this Chapter we had a look at some of the major computational methods
used to model and analyse the various plasmonic phenomena. We showed
how the basic dielectric properties of a given material may be calculated from
first principles. We also presented ways to combine ab initio methods with a
proper electrodynamical modelling of non-idealized plasmonic nanostructures
and plasmonic nano-particles.
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Combining the available methods complex systems can be evaluated, which
is an extremely helpful addition to the more analytical tools and methods
described in Chapter 11. The field of computational plasmonics has still many
construction sides, as described in Section 12.6, which leaves room for many
new and exciting methods and discoveries in the future.
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