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Abstract

The aim of this study was to investigate the relationship and direction between electric-
ity consumption and gross domestic product including energy infrastructure as a third
variable in South Africa using the time series data from 1993 to 2015. The relationship
was modelled in South Africa focusing on the industry sectors that influence economic
growth and using techniques such as ARIMA model, Multivariate Regression Analy-
sis, Vector Autoregressive and Granger Causal Test. The Vector Autoregressive model
performed better than Multivariate Regression analysis in modelling the relationship
between consumption and economic growth in South Africa. The Granger causal ef-
fect illustrated a direction from consumption to economic growth and again Granger
cause effect from infrastructure to economic growth.
The results from these models revealed that there was a relationship between electricity
consumption and economic growth, as well as electricity infrastructure. South Africa
supports a growth hypothesis meaning that South Africa is energy dependent.
The results of the study signals that the electricity consumption of South Africa have
an effect on the economic growth.
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Chapter 1

Introduction

1.1 Introduction

According to the World Bank, one of the economic growth indicators for a country is
electricity consumption. South Africa has been facing power shortages since 2008 and
the majority power producer Eskom started projects that will help the energy status
of the country. In the year 2000, South Africa agreed on goals which were initiated
by the United Nations. The Millennium Development Goals will assist the country in
planning and development. One of the eight goals that the country has to achieve is the
improvement of infrastructure and adequate maintenance programs for these construc-
tions projects National Development Plan 2030 (National Development Plan 2030 -
The Presidency, 2009). The latter is the challenge that South Africa’s energy industry
is facing and the reason why the electricity consumption has been decreasing, since the
generating capacity is decreasing (Economist Intelligence Unit, 2015).

This research will investigate the relationship between electricity consumption, eco-
nomic growth and energy infrastructure in South Africa. The economic growth will
consist of the different economic sectors (South African Reserve Bank, 2016).

According to Chouaibi and Abdessalem (2011), page 2) “Energy is an essential part

of life. It is indispensable to factories, commercial establishments, household. . . . Lack
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of energy causes not only difficulty, but also economic loss due to reduced industrial

production” . This is reason why we need to establish what the relationship and the
direction of the causal effect between electricity consumption and economic growth
is. The South African economy is dependent on mineral resources and manufacturing.
According to the South African Reserve Bank (2016) this means we need more elec-
tricity generation in order to meet the electricity demand of companies in the mineral
resources and manufacturing.

The research report is structured as follows: Section 1.2 outlines the background of
South African economy and energy status. Section 1.3 describes the problem state-
ment and Section 1.4 outlines the aims and objectives of this study. Section 1.5 out-
lines the limitations and assumptions and Chapter 2 reviews the literature concerning
simple regression analysis, econometric modelling and the ARIMA models. Chapter
3 outlines the methodology of the regression model, econometric model, Box Jenkins
modelling, the data and the evaluation of results. Finally, Chapter 4 and 5 outline the
analysis and conclusion of the study.

1.2 Background

South Africa is part of Sub-Saharan Africa and has agreed to take part in the Millen-
nium Development Goals which is an African forum initiative to improve most critical
issues such as poverty, infrastructure, inequality and education. The purpose of this
section is to illustrate what happened in South Africa between 2007 and 2015. It il-
lustrate how power shortage affected the economic growth and outlines the electricity
history.

The South African state owns the power institution ESKOM (Electricity Supply Com-
mission) which has been the major provider for most of South Africa’s electricity. The
energy problem started in 2007 but it was at its worst from late 2007 to late 2008 and
mid-2014 to 2015. Eskom’s power is mostly generated from coal power stations and
one nuclear power station. Africa (2012) announced that manufacturing and mining
consume above 60% of the electricity produced in the country, and the addition of busi-
ness takes this figure to nearly 75%. This proves that our mining sector and industrial
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sector make use of most of the power. Africa (2012) also stated that the mining sector
was using 14.3% by 2011.

Eskom focused more on providing electricity to all citizens than improving energy
infrastructure and maintaining the existing energy power stations. Studies such as (So-
larin, 2011) have shown that African countries are energy dependent in order to sustain
or increase the current economic growth and that is when all factors that influence eco-
nomic growth are held constant. Why is economic growth so important? It measures
the stability of the country’s national accounts, the demographics of the citizens and
businesses wellbeing.

Eskom had unstable power and power shortages from late 2007 to 2015. The most vul-
nerable years for South Africa in terms of electricity supply to sectors such as mining
and manufacturing was 2008 and 2015. In 2008 there were many hikes in tariffs in
order for Eskom to remain in business. These hikes in tariffs make electricity expen-
sive and mining produces less output at the end of the day (Muller, 2008). Eskom also
stopped exporting power to our neighbouring countries (Fin24, 2008) and power ra-
tioning was started in July (Muller, 2008). Both these last mentioned actions assisted
Eskom in managing limited electricity generation. According to (News24, 2008b)
South Africa’s state-owned power utility was not able to supply mines and other in-
dustrial customers with more than 90% of their electricity needs until 2012. These
were signals of the uncertain energy status in South Africa, and the slow pace of new
developments made the 2015 energy status more difficult. When load shedding started,
mining and manufacturing companies suffered as production decreased and they had to
start using expensive alternative power supply systems like generators. Load shedding
is a term that is used to describe rotation of electricity supply in South Africa.

1.3 Statement of the Problem

The importance of this study is quite evident from the events that occurred during the
period 2007 to 2015 as it helps with planning, which will ameliorate power production
planning. South Africa has been facing a number of blackouts in the past few years
and this surely will affect its economic growth. Economic growth is a measure of a
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country’s growth, that is, this is done by looking at the national accounts of the coun-
try, that is, all import, expenditures, exports and investments. The World Bank looks
at other factors too among others its infrastructure, production levels (labour rate), and
standard of living.

Considering the importance of electricity to GDP, we need to investigate how such
factors as electricity consumption, energy infrastructure and GDP influence each other.
This should help South Africa’s electricity provider to strengthen policy and put more
focus on energy infrastructure.

1.4 Aims and Objectives

1.4.1 Aims

The main aim of this investigation is to study the relationship between gross domes-
tic product and independent variables which are electricity consumption and energy
infrastructure.

1.4.2 Objectives

This study will answer the following questions;

1. Is there a relationship between electricity consumption, energy infrastructure and
GDP?

2. Which direction does this relationship follow?

3. What is the current state of this relationship in SA?

4. How effective are the three methods for describing the relationship:

(a) Regression Analysis,

(b) Box Jenkins (ARIMA) models, and

(c) Econometric models – Vector Autoregressive model
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5. Which of the three methods in 4. is the most efficient that is, analise the required
efficiency statistics?

1.5 Limitations and Assumptions

This section will outline the assumptions and limitations of this study.

1. This study is only limited to South Africa.

2. We assume the data is complete and the series is for the period 1993 to 2015.

3. Electricity infrastructure is an annual series divided by four because the other
two series are in quarterly manner.

4. We assume the responses are normally distributed.



Chapter 2

Literature Review

2.1 Introduction

This section features the background of the problem, the history and developments
in modelling the relationship between economic growth and electricity consumption.
Time series analysis (econometric model and Box Jenkins model) is also reviewed.
There are several studies on the relationship between economic growth and electricity,
most of them analyse a specific country and focus primarily on the residential electric-
ity consumption or both residential and industrial electricity consumption. This study
focuses on the industry sector electricity consumption as I believe that industries such
as mining and manufacturing are mostly influenced by electricity production.

2.2 Contributors of Economic Growth

The World Bank identified indicators that influence the economic growth of a country.
The contributors are inflation, exchange rate, the living standards of the population,
unemployment rate, transport, buildings and energy infrastructure, investments and
savings. All of these factors influence economic growth, however, this study will focus
on the energy infrastructure and consumption.
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Inflation is determined by the consumer price index (CPI) and producer price index
(PPI). The CPI and PPI determine the standard of life of each citizen and business in
a country, respectively. The exchange rate is all about the strength of a country’s cur-
rency against the global exchange rate usually the United States (US) dollar. This will
influence the imports and exports of a country and in return it will impact on the eco-
nomic growth. Living standards of a population have to do with the health standards
and social services. Unemployment rate is also an indicator of economic growth. It
indicates the state of the national accounts as the majority of the government’s revenue
comes from the working class taxes (Abel et al., 2008).

A country’s infrastructure plays a role in their economic status. Energy infrastruc-
ture is very important for all sub-Saharan countries as it harvests our most valuable
asset, mineral resources. It is better to manufacture the product inland since we can
charge for the raw material, labour and the final product which we can export. Mineral
resources are in the earth and to get to them we need machinery to extract and melt
them. This machinery needs electricity to operate (Economist Intelligence Unit, 2015).

According to the South African Reserve Bank (2016) the sectors that contributes to
economic growth are as follows:

1. Agriculture, forestry and fishing

2. Mining and quarrying

3. Manufacturing

4. Electricity and water

5. Construction (contractors)

6. Wholesale and retail trade, catering and accommodation

7. Transport, storage and communication

8. Finance and insurance, real estate and business services

9. Personal services
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10. General government services

These are summarised in Figure 2.1. The major contributing sectors except the govern-

Figure 2.1: Segmentation 2015

mental services are finance and insurance, real estate and business services at 20.9%,
Wholesale and retail trade, catering and accommodation at 15.1% and Manufacturing
at 13%.

2.3 Events that occurred in South Africa between 2007

and 2015

In the 1990’s Eskom supplied energy to over 97 percent of South Africa(SA) as a whole
and only 40 percent was assigned to residents. After 1994 the state decided to provide
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energy to all residents in SA, they also exported a portion to neighbouring countries
(Central Intelligence Agency, 2016). Eskom decided that some municipalities should
stop supplying their own electricity because of a surplus of electricity (Vermeulen,
2015).

Maintenance and expansion of new projects did not occur as regularly as was expected.
In late 2006 trouble started when one of the Koeberg station reactor units was shut
down causing some blackouts (News24, 2006). Eskom was finally alerted in 2007
when demand of electricity peaked and electricity tariffs increased to help with the
nuclear bill (Fin24, 2007). Eskom started planning and constructing new stations to
provide power and by 2008. The electricity demand was outstripping electricity supply
and Eskom had to implement load shedding to prevent a national blackout. Construc-
tion of Medupi and Kusile only began in 2007 and 2008, respectively when the power
system was already under strain. Eskom stopped supplying electricity to neighbouring
countries and power rationing impacted Eskom’s industrial, commercial and residen-
tial customers (Muller, 2008).

The supply strains facing Eskom were well exposed, with the effects of load shedding
having placed a significant amount of pressure on the entire South African economy.
Business was worried about growth in the country. President Mbeki announced in the
state of nation address that the government would focus on reducing consumer demand
while investing in the longer-term in new generation capacity (News24, 2008c). The
commercial capital Johannesburg took the hardest hit, and analysts warned of foreign
investors taking flight as factory production was being affected. Gold and platinum
production were halted when power to the mines could not be guaranteed (News24,
2008c) and businesses were forced to shut down for few days (News24, 2008a).

Private companies approached Eskom with new strategies to assist Eskom during its
time of stress. There were initiatives and solutions to aid in the crisis but these solu-
tions could only be achieved after a longer timeframe. According to the Economist
Intelligence Unit (2015), power shortages played a big role in the year 2015 apart
from the other factors. Mining contracted year-on-year and manufacturing stagnated.
The government has injected more funds into the parastatal Eskom to improve and
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develop new power stations. Eskom were importing gas from Mozambique and hy-
dropower from the Democrtic Republic of Congo. The mining sector struggled from
the 2007 crisis and load shedding heavily affected industries until the year 2015. Power
rationing was occurring frequently in South Africa and a fearof Eskom being down-
graded to junk status would have worsened the country’s energy crisis. Load shedding
came under control when one silo of the new power stations came online(Economist
Intelligence Unit, 2015). The country still faces a demanding market for electricity as
our industries need sufficient energy to operate at its maximum.

This analysis is important because South Africa has been suffering from electricity
shortages and one should understand the implications it has on the industry sectors
and economic growth. Section 2.4 highlights the theoretical methods that are used to
analyse the relationship of economic growth, electricity consumption and electricity
infrastructure. It will also showcase the historical papers and the methods used and the
conclusions they drew.

2.4 Background of Causality between Electricity Con-

sumption and Economic Growth

There are several studies that test the causal effect of economic growth and electric-
ity consumption. Chouaibi and Abdessalem (2011) in the Tunisian context studied
the relationship between Electricity Consumption and the GDP. They used the Aug-
mented Dickey Fuller and Phillips-Perron test to test for stationarity, they also used
the Johansen and Juselius Methodology to test for cointegration. They concluded
that there exists a unidirectional causality effect running from electricity consumption
to economic growth when examined in a bivariate vector autoregressive framework.
Nondo, Kahsai and Schaeffer (2010) have studied the relationship between electricity
consumption and economic growth of the Common Market for Eastern and Southern
Africa (COMESA). They used the Levin, Lin and Chu panel unit root test, the Pe-
droni’s methodology for panel cointegration and investigate the direction of causal ef-



16

fect by using the error correction model. The conclusion they reached from this study
was that a reduced electricity consumption could lead to a decline in the economic
growth. Both these latter studies concluded that if there is an increase in electricity
consumption then the economic growth will also increase and vice versa. All these
countries are within Africa. This illustrates the causal relationship as expected since
African countries are highly reliant on revenue generated from mineral resources to
boost economic growth.

According to Kraft and Kraft (1978) conservative hypothesis is when Gross Domestic
Product is less dependent on electricity consumption and growth hypothesis exist when
a country’s growth is energy dependent and a conservation hypothesis occur when a
country’s growth is less energy dependent.
Several countries such as South Africa, United Kingdom, Canada, Japan, China, Brazil,
Italy, France and Turkey have studied the relationship between the GDP, electric-
ity consumption, industrial output, industrial electricity consumption, electricity con-
sumption per capita and gross domestic product per capita (Bildirici, Bakirtas and
Kayikci, 2012). Autoregressive distributed lag methodology was used to examine sta-
tionarity and cointegration and it was concluded that there was a growth hypothesis
for the following countries; US, China, Canada and Brazil. Countries such as India,
Turkey, SA, Japan, UK, France and Italy supports a conservation hypothesis which
means that economic growth is less dependent on the energy consumption (Bildirici
et al., 2012). According to Bildirici et al. (2012) South Africa’s economic growth is
less affected by electricity consumption but it is still affected. Solarin (2011) in the
context of Botswana studied the relationship between electricity consumption, eco-
nomic growth and capital formation. The study used the augmented Dickey-Fuller
and the Phillips-Perron tests to examine stationarity, the autoregressive distributed lag
model to test for cointegration and the unrestricted error correction model to assess the
long run relationship. The paper concluded that electricity consumption has a posi-
tive relationship with gross domestic product in the long run. Both Solarin (2011) and
Bildirici et al. (2012) made use of the autoregressive distribute lag technique which
include all series that are integrated in I(1) and I (0) and there is no need to test for unit
roots.
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Babatunde and Shuaibu (2009) studied the relationship between electricity consump-
tion, real income and electricity price in the context of Nigeria. The technique used
was the autoregressive distributed lag with an advantage that it does not require mak-
ing use of prior unit root tests and the conclusion reached was that in the long run
the real income, the price of the substitute appears as the main determinant of elec-
tricity demand in Nigeria, while electricity price is insignificant. Pradhan (2010) in
the context of India studied the relationship between the electricity consumption, eco-
nomic growth and transport infrastructure. This study used the Phillips-Perron test for
stationarity, Johansen technique to test for cointegration and vector error correction
representation technique to test for the direction of the causality effect. The study con-
cluded that energy and transportation policies should recognise the transport- energy
consumption- growth nexus in order to maintain sustainable economic growth in the
country. The contrast between the last two mentioned studies is that Babatunde and
Shuaibu (2009) focuses on demand of residential electricity and which variables are
significant whereas Pradhan (2010) studies the causality relationship between the vari-
ables mentioned above.

There are similarities between all studies except in studies such as Solarin (2011),
Nondo et al. (2010), Bildirici et al. (2012) and Babatunde and Shuaibu (2009) on
applying the unit root tests such as Augmented Dickey and Phillip-Perron. Together
the studies by Solarin (2011), Bildirici et al. (2012) and Babatunde and Shuaibu (2009)
made use of the ADL technique and one of the advantage of this technique is that one
don’t need to test for unit roots. Nondo et al. (2010) analysed the COMESA countries
and made use of the Levin, Lin and Chu panel unit root test to investigate the stationary
status. There exist a common response variable, electricity consumption and one com-
mon predictor, economic growth throughout the studies with some studies having more
than one predictor. The causality effect between electricity consumption and economic
growth differs from country to country. According to the studies most of the African
countries economic growth are energy dependent except in the study by Bildirici et al.
(2012). It shows that South Africa supports a conservation hypothesis.
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2.5 Theoretical Review

In this section we will review the theory behind these techniques that will be being
used.

2.5.1 Multiple Linear Regression

Multiple linear regression is a technique that investigate the relationship of a phe-
nomena with more than one independent variables. The dependent variable should
be numeric and continuous. The independent variable(s) can be either categorical or
numeric. Regression analysis make use of cross sectional data and identify the signifi-
cant variable that shows a dependency between the dependent variable and independent
variable. The basic form of a multiple regression model according to Santana (2009)
is:

Yi = β0 +β1X1,i+β2X2,i+ . . .+βpXp−1,i+ei i = 1, 2, . . . , n ; p = 1, 2, . . .

(2.1)
Where
Yi is the random response
Xk,i is the kth predictor variable and ith observation
βk is the kth parameter
ei is the ith random error term (identical independent distributed (iid))

2.5.1.1 Parameters estimation

The significance of the estimates will be tested by using F-tests. The hypothesis that is
tested is the following;

H0 : β1 = β2 = . . . = βp−1 = 0

versus

HA : Not all βi is zero

Let the test statistic to test the significance of the coefficient b and the sum of squares
be;

SSR = b
′
X

′
Y − 1

n
Y

′
Y (2.2)
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SSE = Y
′
Y − b

′
X

′
Y (2.3)

where b
′

=
[
β̂1, .., β̂1p

]
the vector of the regression coefficients, X is the predictor

vector, Y is the response vector. Equations (2.2) and (2.3) are respectively the regres-
sion sum of squares and the error sum of squares;

MSR =
SSR

p− 1
(2.4)

and
MSE =

SSE

n− p
(2.5)

, where, MSR and MSE is the regression mean sum of squares and error mean sum
of squares, p number of coefficients. The final equation (2.6) will be then the F-test.
(Santana, 2009)

Fr =
MSR

MSE
. (2.6)

H0 is rejected if Fr > Fp−1,n−p (1− α)

2.5.1.2 Diagnostic Checks of Residuals

In the multiple regression analysis we will assess the assumptions that need to hold
that is normal error term, constant variance, no multicollinearity, influential values and
no outliers.

• Normality
H0 : Residuals are normally distributed

versus

HA : Residuals are not normally distributed

One can assess this assumption by plotting residuals on a Quantile-Quantile Plot (QQ-
Plot). QQ-Plot is a quantiles vs residuals of a sample plot, normality exists if the errors
are along the straight line.

The Shapiro-Wilk test is defined as the ratio of the best estimator of the variance
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(based on the square of a linear combination of the order statistics) to the usual cor-
rected sum of squares estimator of the variance (Santana, 2009).

W =

(∑n
i=1 aiX(i)

)2∑n
i=1

(
Xi −Xn

) (2.7)

where,X(i) is the ith order statistics andXn = 1
n

∑n
i=1Xi. The constants ai are defined

as;

a = [a1, a2, . . . , an] =
m′V−1

(m′V−1V−1m)1/2
, (2.8)

where mi is the expected value of the ith order statistic from a sample of n indepen-
dent identically distributed standard normal random variables, Z1, Z2, . . . , Zn and V =

Cov( Z(1), Z(2), . . . , Z(n)). The distribution of the test statistics is only known for n =

3. The following statistic however, has an approximate standard normal distribution
and is used to estimate the p-values:

SZ =

{
−log (γ − log (1−W ) ) − µ/σ, if 4 ≤ n ≤ 11

log (1−W ) − µ)/σ, if 12 ≤ n ≤ 2000
, (2.9)

where γ, µ and σ are functions of n and are obtained through simulation ((Santana,
2009); (Shapiro and Wilk, 1965)). Normality exists when the p-value is greater than
the significant value alpha (0.05) where one does not reject the null hypothesis.

• Homoscedasticity

One can use the Breusch-Pagan Test, a large-sample test,

H0 : Residuals are homoscedastic

versus

HA : Residuals are not homoscedastic

assume that the error terms are independent and normally distributed and that the vari-
ance of the error term ei denoted by s2i is related to the level of X in the following
way:

loges
2
i = γ0 + γ1Xi. (2.10)

Note that equation (2.10) implies that s2i either increases or decreases with level X
depending on the sign of γ1. Constant variance corresponds to γ1 = 0. The test of
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H0 : γ1 = 0 versus Ha : γ1 6= 0, is achieved by means of regressing the squared
residuals e2i against Xi and obtaining the regression sum of squares (SSR∗) which
leads to the test statistics X2

BP ;

X2
BP =

SSR∗

2
÷
(
SSE

n

)2

, (2.11)

where, SSR∗ is the regression sum of squares when regressing e2 on X (SSE =∑n
i=1

(
Ŷi − Y

)2
) and SSE the error sum of squares when regressing Y on X (SSE =∑n

i=1

(
Yi − Ŷi

)2
. X2

BP ∼ χ2
1, follows a chi-squared distribution with one degree

of freedom (Neter, Kutner, Nachtsheim and Wasserman, 1996). When p-values are
greater than alpha the significance level then constant variance exists.

• Influential Values and Outliers

The residual can be used to identify outlying observations. The residual ei is defined
as the difference between the observed value Yi and the fitted value Ŷ i;

ei = Yi − Ŷ i. (2.12)

The studentized deleted residuals are defined as:

Rstudenti =
ei√

MSE(i) (1− hii)
(2.13)

where i = 1, 2, 3, . . . , n, hii is the ith diagonal of the ˆ matrix X
(
X

′
X
)−1

X
′ and

MSE(i) is mean squared error calculated with the ith observation deleted, MSE(i) =
1

n−p SSE(i) . The rule of thumb is that an Rstudent value greater than 2 in abso-
lute value might indicate an influential outlier (Santana, 2009). Influential outlier is a
datapoint that pulls the regression line towards it.
The difference between fitted values measures the distance between fitted values and
the fitted values when ith observation is deleted.

DFFITSi =
Ŷi − Ŷi(i)√
MSEihii

(2.14)

where Ŷi(i) is the ith predicted value where the ithcase was deleted,
√
MSEi is Mean

Squared Error with ith observation deleted and hii is the ith diagonal of the ‘Hat’
matrix. The influential values are identified when the DFFITSi value is larger than
2
√
p/n where p is the number of parameters (Santana, 2009).
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2.5.1.3 Assumptions of Normal Regression Analysis versus Regression Analysis

of Time Series Data

There are certain assumptions one needs to test under a normal cross sectional data
regression analysis, one also needs to test the same assumption under time series data
for regression analysis. We need to focus on the large sample analysis in the time series
context. The classical assumptions are;

1. The model needs to be linear in its parameters. The stochastic process
{(Xt1, Xt2, . . . , Xtk) : t = 1, 2, . . . , n} follows the linear model yt = β0+β1xt1+

. . . + βkxtk + ut where {ut : t = 1, 2, . . . , n} the sequence of errors or distur-
bances is N (0, σ2) and n is the number of observations (time period).

2. There exists no perfect collinearity which means there is no constant independent
variable or a perfect linear combination of any of the other independent variables.

3. The expected value of the error ut, given the predictors variables for all time
periods, is zero. E (ut | X) = 0 where t = 1, 2, . . . , n.

4. Under the assumptions mentioned before, the OLS estimators are unbiased con-
ditional on X.

5. The variance of ut conditional on X, is constant for all t : V ar (ut | X) =

V ar (ut) = σ2, t = 1, 2, . . . , n.

6. There exist no serial correlation in the uts.

The following assumptions need to be tested in the time series context. These assump-
tions are exactly the same but require a few adjustments since the large sample analysis
is important in time series data.

1. The regression analysis with time series model is exactly the same as assumption
1 in the classical assumption but one need to assume that {(xt, yt) : t = 1, 2, . . .}
is stationary and weakly dependent, the law of large numbers and central limit
theorem can be applied to sample averages.
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2. There exists no perfect collinearity which means no independent variable is con-
stant nor has a perfect linear combination of the others.

3. The explanatory variables xt = (Xt1, Xt2, . . . , Xtk) are contemporaneously ex-
ogenous. Contemporaneously exogenous holds when the expected value of the
error ut, given the predictor variables for all time periods, is zero.

4. Under the latter assumptions (1,2,3), the OLS estimators are consistent: proba-
bility limit β̂j = βj, j = 0, 1, . . . , k.

5. The errors are contemporaneously homoscedastic, that is V ar (ut | xt) = σ2 for
all t.

To be able to apply regression analysis on time series data, one must ensure that the
classic assumptions discussed above, are met. Weak dependences are necessary for
applying the standard large sample results on the time series context (Wooldridge,
2015).

2.5.2 Background of Econometric Modelling

Econometrics is the combination of statistics, mathematics and economics. Econo-
metrics was developed because economy theory needed to be quantified, necessary
predictions of the economic trends needed to be explained to assist in decision making
in the public sector and private sector.

According to Hansen (2000) ;(Frisch, 1933, p. 1-4) “The Econometric Society is an
international society for the advancement of economic theory in its relation to statis-
tics and mathematics.... Its main objective shall be to promote studies that aim at a
unification of the theoretical quantitative and the empirical-quantitative approach to
economic problems”

A model is a simplified representation of a real world process. Models assist one to
display the relationship between variables. A model should have at least one response
variable and one independent variable to be classified as a model. Models can assist us
in predicting, drawing conclusion from a real life situations and improving the world’s
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decision making. The model can only be created when one has an underlying phenom-
ena to analyse or investigate. An economic model is a set of assumptions that describes
the behaviour of an economy or more generally a phenomenon (Baltagi, 2008).

Econometrics primarily uses linear regression models. Regression modelling is the un-
derlying model for analysing relationships and predicting behaviours of certain studies.
In this study, we will explore either of the following techniques to build economet-
ric models namely, 1. Autoregressive distributed lag model and the 2. Johansen and
Juselius Methodology and the Engle and Granger Methodology. Both these approaches
will help us to find the direction of the relationship if any exists, either between elec-
tricity consumption and economic growth or electricity infrastructure. The Granger
causality effect tests for four hypotheses according to Kraft and Kraft (1978) seminal
work. The neutral hypothesis is when none of the variables have a causal effect on one
another. The growth hypothesis occurs when a country’s growth is energy dependent
and a conservation hypothesis occur when a country’s growth is less energy depen-
dent. The bi-directional hypothesis assumes an increase in energy consumption and
stimulates economic growth, and vice-versa. The following section will explore the
techniques on testing stationarity and cointegration.

2.5.2.1 Stationarity

Consider a finite set of random variables {Zt1 , Zt2 , . . . , Ztn} from a stochastic process
{Z (ω, t) : t = 0,±1,±2, . . .}. The n-dimensional distribution function of the Zi is
defined by;

FZT1
,...,ZTn

(x1, . . . , xn) = P {ω : Zt1 ≤ x1, . . . , Ztn ≤ xn} , (2.15)

where xi, ( i = 1, . . . , n) are any real numbers.

A process is said to be first-order stationary in distribution if its one-dimensional dis-
tribution function is time invariant, that is if FZt1

(x1) = FZt1+k
(x1) for any inte-

gers ti, k and t1 + k and second-order stationary in distribution if FZt1 ,Zt2
(x1, x2) =

FZt1+k,Zt2+k
(x1, x2) for any integers t1, t2, k, t1+k and t2+k; and nth-order stationary
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in distribution if

FZt1 ,...,Ztn
(x1, . . . , xn) = FZt1+k,...,Ztn+k

(x1, . . . , xn) , (2.16)

for any n-tuple (t1, . . . , tn) and k integers. A process is said to be strictly stationary if
equation (2.16) is true for any n = 1, 2, . . .

A stochastic process is a set of time indexed random variables defined on a sample
space. We usually suppress the variable ω and simply state Z (ω, t) as Z (t). For a
given real-valued process {Zt : t = 0,±1,±2, . . .}, we define the mean function of
the process;

µt = E (Zt) . (2.17)

The variance function of the process

σ2
t = E (Zt − µt)2. (2.18)

The covariance function between Zt1and Zt2 is given by;

γ (t1, t2) = E (Zt1 − µt1) (Zt2 − µt2) (2.19)

And the correlation function between Zt1and Zt2 given by;

ρ (t1, t2) =
γ (t1, t2)√
σ2
t1

√
σ2
t2

(2.20)

For a strictly stationary process, the mean µt = µ is constant given that E (|Zt|) <
∞ and if E (|Z2

t |) < ∞ thenσ2
t = σ2, for all t hence also a constant. (Wei, 1994)

Moreover, since FZt1 ,Zt2
(x1, x2) = FZt1+k,Zt2+k

(x1, x2) for any integer t1, t2 and k we
have

γ (t1, t2) = γ (t1 + k, t2 + k) , (2.21)

and
ρ (t1, t2) = ρ (t1 + k, t2 + k) . (2.22)

Letting t1 = t− k and t2 = t , we get

γ (t1, t2) = γ (t, t+ k) = γk, (2.23)

and
ρ (t1, t2) = ρ (t, t+ k) = ρk. (2.24)

Therefore, for a strictly stationary process with first finite two moments the covariance
and the correlation between Zt and Zt+k depends on the time difference k (Wei, 1994).
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2.5.2.2 Autocorrelation Functions

For a stationary process {Zt}, we have E (Zt) = µ and V ar (Zt) = E (Zt − µ)2 = s2

which is constant and the covariance between Zt and Zt+k is;

γk = Cov (Zt, Zt+k) = E (Zt − µ) (Zt+k − µ) . (2.25)

We define autocorrelation function (acf) equation (2.26) and partial autocorrelation
function equation (2.27) as follow;

ρk =
Cov (Zt, Zt+k)√

V ar(Zt)
√
V ar(Zt+k)

=
γk
γ0
, (2.26)

where we note that V ar (Zt) = V ar (Zt+k) = γ0. The estimate of the autocorrelation
function can also be defined as rk = ρ̂k,

rk =

∑T−k
i=1 (yi − y1) (yi+k − y2)√∑T−k

i=1 (yi − y1)
2∑T−k

i=1 (yi − y2)
2
, (2.27)

where, y1is the mean of the first T −k observations and y2 is the mean of the last T −k
observations. A simplified version of equation (2.27) y1 and y2 is replaced by y with
the summation being taken over the full range 1, 2, . . . , T so that;

rk =

∑T−k
i=1 (yi − y) (yi+k − y)∑T−k

i=1 (yi − y)2
, (2.28)

The partial autocorrelation function (pacf) is the conditional correlation. The partial
autocorrelation function between Zt and Zt+k is;

Pk =
Cov

[(
Zt − Ẑt

)
,
(
Zt+k − Ẑt+k

)]
√
V ar

(
Zt − Ẑt

)√
V ar

(
Zt − Ẑt+k

) , (2.29)

Where V ar
(
Zt − Ẑt+k

)
= E

[
(Zt+k − aZt+k−1 − . . .− ak−1Zt+k)2

]
=

V ar
(
Zt − Ẑt

)
= γ0 − a1γ1 − . . .− ak−1γt+1 and ai = βi (1 ≤ i ≤ k − 1) we have

Cov
[(
Zt − Ẑt

)
,
(
Zt+k − Ẑt+k

)]
= γk − a1γk−1 − . . .− ak−1γ1.
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2.5.2.3 Autoregressive Distributed lag (ADL)

The lag operator L or B is defined for a time series yt by Lyt = yt−1. The operater can
be defined for linear combinations by,

B (a1yt1 + a2yt2) = a1yt1−1 + a2yt2−1. (2.30)

An alternative test for cointegration is to estimate the Autoregressive Distributed Lag
(ADL) model where, we consider the simple ADL(1, 0) in equation (2.47) as model
containing I(1) regressors and a linear trend,

φ (L) yt = a0 + a1t+ β′xt + µt, (2.31)

where, t = 1, . . . , T , {yt : t = 0, 1, . . .} , φ (L) = 1 − φL with L being the one
period lag operator, xt is a k × 1 vector of regressors assumed to be integrated of
order 1: xt = xt−1 + et and β is a k × 1 vector of unknown parameters (Pesaran
and Shin, 1998). One can choose the lag length such that the residual is a white noise.
This model can be rewritten as an error correction model yt = φ (1)−1B (1) where
B (1) = a0 + a1t + β′xt represents the long-run steady state solution of the model
(Sjö, 2008). Cointegration exist when polynomial φ (L) do not contain any unit roots.

2.5.2.4 Autoregressive Integrated Moving Average Model (ARIMA)

Firstly we will define the autoregressive (AR) model and the moving average (MA)
model. The Autoregressive AR(p) model is known as;

zt = φ1zt−1 + φ2zt−2 + . . .+ φpzt−p + ut,

where ut is iid N(0, s2u) , µ is assumed to be 0, ut independent of zt−1, zt−2, . . . , zt−p
and zt = zt − µ

The Moving average MA(q) model is defined as;

yt = µ+ θ1at−1 + θ2at−2 + . . .+ θqat−q + ut

The Box-Jenkins Approach is a combination of the AR and MA models which is in-
tegrated. Most economic series needs to be differenced once or several times before
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process is stationary in which case we will have an ARIMA (p, d, q) model with pth

order AR and qth order MA and d number integrated. Therefore, ARIMA (p, d, q) can
be written as f(B)(1−B)dzt = φ(B)ut, when we replace zt = zt−µ then, the model
is as follows (Chimedza and Galpin, 2004);

φ(B)[(1−B)d(zt − µ)] = θ(B)ut. (2.32)

2.5.2.5 Unit Root Tests

The two techniques one can use to test for stationarity are the Dickey Fuller test and
Augmented Dickey Fuller test. When a unit root exist in a series it refer that the series
is unpredictable and the series can exhibit non-stationary. The Augmented Dickey is
used when series or models are more complex.

2.5.2.6 Dickey-Fuller Test

The Dickey Fuller test is based on the AR(1) model, where,

AR (1) = yt = ρyt−1 + et, t = 1, 2, . . . , (2.33)

where y0 is the observed initial value and et is the random error. Equation (2.33) has
a unit root if a = 1. If a = 0 and ρ = 1 then yt follows a random walk without a
drift, and if a 6= 0 then yt follows a random walk with a drift. The drift a will be left
unspecified under the null hypothesis.
The null hypothesis is that {yt} has a unit root:

H0 : ρ = 1, (2.34)

versus

H1 : ρ < 1. (2.35)

The alternative H1 : ρ > 1 will never be considered since it will state that ρ is explo-
sive. When |ρ| < 1, then {yt} is a constant AR (1) process which means it is weakly
dependent. Thus, testing equation (2.34) in (2.33), with the alternative given by equa-
tion (2.35) is actaully testing of whether {yt} follows I(1) versus the alternative that
{yt} follows I(0). A time series {yt} is intergrated of order 1 I(1) if {yt} is not
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stationary but its first difference yt− yt−1 is stationary. When carrying out the unit test
one need to subtract yt−1 from both side of equation (2.33) and define θ = ρ− 1:

4yt = a+ θyt−1 + et (2.36)

where, 4 = yt − yt−1. Since the central limit theorem does not apply in testing
θ = 1, we will use the Dickey- Fuller distribution (Wooldridge, 2015). We reject the
null hypothesis H0 : θ = 1 against H1 : θ < 0 if tθ̂ < c where c is one of the negative
values from an output table.

2.5.2.7 Augmented Dickey-Fuller Test

There is an extended version of the Dickey-Fuller test which is the augmented Dickey
Fuller test. When {yt} follows equation (2.33) with ρ = 1 then 4yt is serially un-
correlated. One can allow {4yt} to follow an autoregressive model by augmenting
equation (2.36) with additional lags. For illustration, let

4yt = a+ θyt−1 + γ14yt−1 + et, (2.37)

where, |γ1| < 1 this ensures that, under H0 : θ = 0, {4yt} follows a constant
autoregressive of order 1 model. Under the alternative H1 : θ < 0, it can be shown
that {4yt} follows a constant autoregressive of order 1 model. Adding p lags of 4yt
to the equation to justify for dynamics in the process. The approach we take to test for
the null hypothesis is the same as before. One will run the regression of

4yt , yt−1,4yt−1, . . . ,4yt−p, (2.38)

and carry out the t test on θ̂, the coefficient of yt−1 just as before. Equation (2.38) is the
augmented Dickey-Fuller test because the regression has been augmented with lagged
changes. The critical value and rejection rule is the same as in the Dickey Fuller test
However, under H0, yt is non-stationary, so conventional normal asymptotics are in-
valid. An alternative asymptotic framework has been developed to deal with non-
stationary data (Hansen, 2000).

In the above paragraph we mentioned the Augmented Dickey-Fuller test for the unit
root test which is derived from the normal Dickey-Fuller test. These tests have the same
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asymptotic distribution as the corresponding Dickey-Fuller test and the same critical
values can be used (Baltagi, 2008). The only difference is that with the Augmented
Dickey-Fuller test one can make use of more lags in order to reduce the term et.

2.5.2.8 Cointegration

Cointegration is defined as follows: If {yt : t = 0, 1, . . .} and {xt : t = 0, 1, . . .} are
two I(1) processes then yt− βxt is an I(0) integrated of order 0 process for number β.
(Wooldridge, 2015) There are several techniques that can be used to test for cointegra-
tion, the next few sections will illustrate a few of these techniques.

The idea behind cointegration is to see whether there co-exists stationarity between
the response variable and the predictor(s) (Baltagi, 2008). The same level of co inte-
gration is useful to validating the F-statistics showing that one can trust the regressed
model and the long run relationship of the phenomena under study. According to (Bal-
tagi, 2008) the theory of cointegration tries to estimate this long-run relationship using
the nonstationary series themselves, rather than their first differences.

2.5.2.9 Johansen and Juselius Methodology

Johansen (1988); (Österholm and Hjalmarsson, 2007) make use of eigenvalues and
trace statistics for testing cointegration. Johansen’s methodology takes its starting
point in the equation (2.39) of pth order Österholm and Hjalmarsson (2007) that is;

yt = µ+ A1yt−1 + . . .+ Apyt−p + et, (2.39)

where, yt is a n× 1 vector of variables that are integrated of order one which is gener-
ally denoted I(1), A is a n×n matrix of parameters and et is a n× 1 vector of errors.
This vector autoregressive can be transcribed as

yt = µ+ Πyt−1 +

p−1∑
i=1

Γ4yt−i + et, (2.40)

where,

Π=

p∑
i=1

Ai − I and Γ= −
p∑

j=i+1

Aj, (2.41)
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There are two different likelihood ratio tests that are recommended by Johansen. There
is a reduced rank for the Π matrix. The trace test and maximum eigen value test are
shown in equations (2.42) and (2.43);

Jtrace = −N
n∑

i=r+1

ln
(

1− λ̂i
)
, (2.42)

Jmax = −Nln
(

1− λ̂r+1

)
, (2.43)

where, N is the sample size and λ̂i is the ith biggest canonical correlation. The trace
test null hypothesis is that there exists r cointegrating vectors versus the alternative hy-
pothesis of only n cointegrating vectors.The maximum eigenvalue test investigate the
null hypothesis of a number r cointegrating vectors versus the alternative hypothesis
of r +1 cointegrating vectors. According to Österholm and Hjalmarsson (2007) to be
able to trust the Johansen test one needs to first test if the unit root test of the series is
integrated order I(1) or I(0). When the test statistics is greater than some of the critical
values you can reject the null at that significance level.
The Johansen tests are likelihood-ratio tests which is the maximum eigenvalue test
and the trace test. For both test statistics, the initial Johansen test is a test of the null
hypothesis of no cointegration against the alternative of cointegration.

2.5.2.10 Engle and Granger’s Two-Step Procedure

Engle and Granger (1987) formulated one of the first tests of cointegration. This test
has the advantage that it is intuitive and easy to perform. It has two steps namely
the estimation of the co-integrating regression equation where we assume all variables
are integrated to order 1, I(1) and might integrate to from a stationary relationship
and testing the unit root test in the residual process of the cointegrating regression in
equation (2.44). Suppose the regression equation is

y1,t = β1 + β2x2,t + . . .+ βpxp,t + et (2.44)

where, p is the number of variables, y1,t is the response variables, et is the residual
term. The equation represents an assumed economically steady state among the vari-
ables. If the variables are cointegrated then they follow a common trend and form a
stationary relationship in the long run (Sjö, 2008).
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If this is the case then, the estimates can be viewed as correct for the long run state
and the residuals can be used as errors for the error correction term in the error correc-
tion model. The second step of this procedure is that one needs to test the unit root test
on the residuals by using the Augmented Dickey-Fuller test (Sjö, 2008).

According to Sjö (2008) there are three main problems with the two-step procedure.
Firstly one needs to determine the number of lags in the augmentation. Secondly, the
test is based on the assumption of one cointegrating vector and care must be taken when
applying the test to models with more than two variables. Lastly, the test assumes a
common factor in the dynamics of the system. To test for cointegration, suppose we
have this model;

ŷt = â+ β̂xt (2.45)

where {ŷt : t = 0, 1, . . .} and {xt : t = 0, 1, . . .} are two processes.
Under the null hypothesis;

H0 : yt and xi are not cointegrated

versus

H1 : yt and xi are cointegrated

When one runs a regression test of 4µ̂t = µ̂t − µ̂t−1 on µ̂t−1 and the critical value
of model is below the critical values of Davidson, MacKinnon et al. (1993) then the
series are cointegrated.

2.5.3 Information Criteria

Akaike’s information criterion (AIC), Schwarz’ Bayesian criterion and Hannan-Quinn
are model selection criteria that measures the quality of a statistical model for a given
data set. The smallest values of the criteria are chosen where these criteria are given
by;

AICp = n ln SSEp − n ln p+ 2p ; BICp = n ln SSEp − n ln p+ [ln n]p (2.46)
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where p number of parameters. According to (Neter et al., 1996) if n ≥ 8 then the
value for BICp is greater than AICp.
For a certain lag order Hannan-Quinn is given by;

HQp = −2 (
lnL

n
) + 2p

ln(ln n)

n
(2.47)

where p number of parameters.



Chapter 3

Methodology

3.1 Introduction

The following section will discuss how the different techniques chosen are applied.
Since the data is of time series nature and one of the variables is of an economic
nature, the most appropriate techniques used to analyse the data are mentioned in the
literature review. All these technique can describe the relationships in the data but the
most applicable techniques are the econometric model and the ARIMA model.

3.2 Data

The data used in this study were collected from various sources from the year 1993 to
2015. The data was collected from the South African Reserve Bank and Statistics SA.
The electricity consumption and economic growth, are measured in Kilowatt per hour
(kWh) and local currency (Rand) respectively. GDP is the sum of gross value added by
all local producers in the economy plus any product taxes and minus any grants which
is exempt from the value of the products (World Bank, 2008). The amount invested
in the energy infrastructure measured in rands was obtained from Eskom. The type of
data that was used is time series data.
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The variables that will be used are as follows:

1. Electricity consumption

2. Gross domestic product

3. Electricity infrastructure

Electricity consumption which will be the response variable and the predictors are the
eleven sectors which sum up to gross domestic product and energy infrastructure.

The model that we need to fit is as follow:

Electricity Consumption = β0 + β1gdp+ β2Energy infrastructure+ ε

3.3 Descriptive Statistics

The following statistics and descriptive plot will assist in describing the variables used.

In this study we will explore the maximum, minimum, median, kurtosis, skewness and
mean of each variable. The boxplot will assist in this regard. A scatterplot of economic
growth and electricity consumption to see the relationship between the two variables
will be done. Histograms to determine the distribution of each variable will also be
done. In addition times series plots will be shown.

3.4 Regression Model

In the multiple regression analysis we will assess the assumptions that need to hold that
is normal error terms, constant variance, no multicollinearity, influential values and no
outliers. Table 3.1 summarise the tests that will be used;
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Table 3.1: Tests to be used
Assumption Graphical Formal statistical test

Normality QQ Plots Shapiro Wilk

Constant Variance Residual Plots Bartlett test

Outliers Studentized deleted residuals /Residual

Influential Values Difference between fitted values and fitted value

where the ith observation was deleted.

The ANOVA test analyses the significant parameters and the overall model evaluation.
Hypothesis is shown below (Santana, 2009)

H0 : β1 = β2 = . . . = βp−1 = 0 vs Hi : βi 6= βj for atleast one pair i 6= j

Assumptions To Be Check
Regression model assumptions that would be tested in this study (Santana, 2009)

1. The error terms have zero expected value.

2. The error terms are normally distributed.

3. The error terms are independently distributed.

4. The error terms are homoscedastic (constant variance).

There should be an investigation of influential values, outliers and regressor variable
that may correlated with one another.

3.5 Econometric Model

The econometric model will be assessed in the follow manner;

1. Check the stationarity status using Augmented Dickey-Fuller test. The null hy-
pothesis is the series is not stationary.
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2. The next step is to analyse the cointegration between the series. We will make
use of the Johansen and Juselius Methodology. If the test statistic is greater than
critical values, we reject the null hypothesis at that level of significance.

3. Granger causality effect will be tested for and if present one of the four hypoth-
esis will be chosen.

3.6 Box-Jenkins Model

The Autoregressive Integrated Moving Average model will be determined as follows;

Stationary will be investigated using plots such as Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF). If the series is not stationary, the data would
be differenced or transformed and the series are again plotted. These plots can also
assist in identifying the possible model that the series depicts.

The different models under ARIMA will be assessed and the model with the smallest
Akaike Information Criterion chosen.

The future values for the time series is predicted using the forecast package (Hyndman,
2008) in R.

3.7 Evaluation

The most efficient model will be the one that exhibits the following traits:

1. The highest coefficient of determination that is the adjusted R-squared compares
the explanatory power of regression models that contain different numbers of
predictors.

2. The smallest information criteria either Schwartz Bayesian Criterion or Akaike
information Criterion.

3. The model that gives a sensible and realistic predictive values.



Chapter 4

Analysis

4.1 Introduction

This chapter presents the results of the techniques discussed in Chapter 2, that is, the
Box Jenkins model, the regression model and the econometric model.

4.2 Description of the Data

In this section the data is described using bar graphs and summary tables that show-
case the mean, maximum, minimum, 75th percentile and 25th percentile. Figure 4.1
presents the pairs plot of each variable against another. There is a positive linear re-
lationship between GDP and electricity infrastructure (CapExpenditure) whereas GDP
and electricity consumption have no linear relationship but more of a quadratic rela-
tionship. There seems to be a weak quadratic the relation between electricity consump-
tion and electricity infrastructure.
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The following figures that is, Figure 4.2, 4.3 and 4.4 are the histogram graphs of elec-
tricity consumption, economic growth and electricity infrastructure respectively. They
will showcase the distribution of these variables. Electricity consumption is skewed
to the left, economic growth is skewed to the right as well as the variable electricity
infrastructure which are shown in Figure 4.2, 4.3 and 4.4 respectively.
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Figure 4.2 shows the histogram of the electricity consumption variable and it is skewed
to the left. The most frequent electricity consumption amount is 4 500 KWh units.

Figure 4.3 shows that the histogram of the gross domestic product variable is skewed to
the right. Note that the most frequent gross domestic product value is 200 000 million
rands.

Figure 4.4 below shows the histogram of the electricity infrastructure variable and it is
skewed to the right.
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Table 4.1 depicts the mean for electricity consumption, gross domestic product and
electricity Infrastructure are 3 965 KWh, R 448 565 million and R 5 655.20 million
respectively. The latter are the average amount South Africa’s quarterly GDP and
electricity infrastructure since year 1993.

Table 4.1: Descriptive Statistics of variables

Variable Min 1st Quartile Median Mean 3rd Quartile Max

Electricity 2,802 3,579 4,146 3,965 4,419 4,833

Consumption

Gross 100,787 195,366 369,613 448,565 659,443 1,027,026

Domestic

Product

Electricity 202.0 263.8 1,519.5 5,655.2 13,864.2 18,179

Infrastructure

Note in Table 4.2 the GDP and electricity infrastructure distribution is skewed to the
right where electricity consumption is skewed to the left. All of these variables are
kurtosis value is less than 3, therefore the distribution of the data is platykurtic.
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Table 4.2: Kurtosis and Skewness
Variable Kurtosis Skewness

Electricity 1.99 -0.467

Consumption

Gross 1.979 0.55

Domestic

Product

Electricity 1.928 0.8197

Infrastructure

4.3 Time Series Analysis

Time series analysis primarily assists in investigating the trends of a phenomena and
what the effect of time has on trends. The following analysis will assist in determining
the causal effect between consumption/electricity consumption, electricity infrastruc-
ture and growth/economic growth (GDP).

4.3.1 Analysing the Three Variables Separately

4.3.1.1 Electricity Consumption

Figure 4.5 is a graphical display of the quarterly electricity consumption (EC) series
from 1993 to 2016. Figure 4.5 shows that the series is not stationary in the mean. In
the earlier years the consumption was much lower as the normal mean.
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Figure 4.6 explores the stationarity status of the series and illustrate the correlation
between the different lags. Remember that the ACF is the Autocorrelation function
and PACF is the Partial Autocorrelation Function which just show us the correlation
between the lags. Note that the ACF in Figure 4.6 shows a slowly decaying trend and
seems to have a seasonal component and PACF lags off with a seasonal component.
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A change either in the variance or the mean of the series will assist in determining the
stationarity. Firstly, an attempt of seasonal difference will be performed. Applying
a seasonal differencing on the original time series to see whether there is any change
in the stationarity status showing that the differenced series changed the stationarity-
status from nonstationary to stationary in the mean.

Figure 4.7 show that semi - stationarity has been reach after a seasonal difference has
been taken.

Note that the ACF has a decaying trend which is the first indication of working with an
autoregressive model and there is seasonal component. The PACF cut off at lag 1 and
the seasonality effect cuts off at lag 2. The possible model that can be derived from Fig-
ure 4.8 isARIMA(1, 0, 0)(P, 1, Q) or another consideration isARIMA(1, 0, 0)(2, 1, 0)4.
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Note that when exploring a regular differenced seasonal differenced series, the station-
ary status has been reach as shown on Figure 4.9.

Figure 4.9 shows a constant mean over time a low seasonal variation, between 2005
and 2009 is low as well as for 2012 to 2015. The ACF and PACF of the seasonally and
regularly differenced electricity consumption are shown in Figure 4.10.
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The ACF show a cut off at lag 1 with a seasonal component cutting at lag 2 and
the PACF has a decaying trend. The possible model that Figure 4.10 depicts is a
ARIMA(0, 1, 1)(0, 1, 2)4 model.

4.3.1.1.1 Estimating the model fit, estimates and forecasting - Electricity Con-
sumption

This section will showcase the different possible models that the consumption time
series data follow, present the graphical and table format forecast of the next three
quarters and the optimal model for consumption series.

Exploring the possible models that were manually identified and the other two will be
identified by the auto.arima (Hyndman, 2008) built-in function in R software. Note that
these two model were manually identified, ARIMA(1,0,0)(2,1,0) and ARIMA(0,1,1)(0,1,2).
These fitted model are shown in Appendix A, A1 to A6. The model with the smallest
Akaike Information Criteria will be the optimal model which was produced by the auto
arima function (Hyndman, 2008).
Note that the snapshot of all the possible models identified are in Table 4.3. Note that
Θ denotes the use of seasonal.
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Table 4.3: Possible Models - Electricity Consumption

Description AIC

1 ARIMA(0,1,1)(0,0,1) 1143.45

2 ARIMA(3,1,0)(2,0,0) 1163.41

3 ARIMA(1,0,0)(2,1,0) 1155.62

4 ARIMA(0,1,1)(0,1,2) 1148.66

Note that Table 4.3 show all the possible model that were studied for a possible descrip-
tion model of the consumption series. The optimal model is the model that present the
smallest Akaike Information criteria which is model ARIMA(0, 1, 1)(0, 0, 1)4 with
criteria 1143.45.

Table 4.4: ARIMA(0,1,1)(0,0,1) model

Value Standard Error z value p value

θ1 -0.3636 0.099 -3.672727 0.0002399756

Θ θ1 -0.8677 0.1007 -8.616683 6.892147e-18

AIC 1143.45

The model ARIMA(0, 1, 1)(0, 0, 1)4 has a AIC of 1143.45 which is shown in Table
4.4. The criterion is the smallest among the several model identified. The significant
values on modelARIMA(0, 1, 1)(0, 0, 1)4 are 0. -0.3636 and -0.8677 since the p value
is smaller than alpha of 0.05 therefore the model is yt = −0.3636θ1−0.8677seasonalθ1

Forecasting the next three values of the consumption series which displayed in Fig-
ure 4.11. There are two methods to forecast these values namely Holt-Winters and
ARIMA function. Note that Table 4.5 depicts these values of the different methods
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and compares them to the actual consumption.

The Holt-Winter (Hyndman, 2008) predicted the following estimates for the model,
depicted in Table 4.5.

Table 4.5: HoltWinters Estimates

α β γ a b Θ1 Θ2 Θ3 Θ4

Value 0.604 0 0.237 4323.798 25.588 -195.289 14.108 126.487 -84.975

Note that Table 4.6 shows the predicted values of consumption using ARIMA and
Holtwinter models for the next three quarter. Comparing the two methods, both meth-
ods overestimate the consumption of the next two quarters. The average difference
between actuals and ARIMA predictions is 108 whereas the average difference be-
tween actuals values and HoltWinters is 168 which higher than the average difference
of the ARIMA prediction. The ARIMA method has shown to be the method that is
closer to the actual values. In this ease , more observations are needed to have a more
accurate conclusion.
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Table 4.6: Predictors for the next three quarters in year 2016 - Electricity Consumption

Quarter 1 Quarter 2 Quarter 3

Holt-Winters 4154.097 4389.082 4527.048

ARIMA 4154.077 4269.499 4299.411

Actual 4056 4151 N/A

Figure 4.12 show the graphical forecast of the model ARIMA(0, 1, 1)(0, 0, 1)4. The
rest of the graphical Figures and Tables for electricity consumption are in Appendix A,
A1. that is, Table A.1 to A.3.

Figure 4.13 shows the goodness of fit for the chosen model ARIMA(0, 1, 1)(0, 0, 1)4.
The residuals are randomly around zero and the ACF show only one significance at lag
0 proofing that the residuals are not related. The Ljung box statistics have a null hy-
pothesis of the model does not exhibit a lack of fit. There is no significance lags which
at lag 0, 7 and 8 and the rest of the lags depicts are lack of fit as shown at the Ljung
statistics.
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4.3.1.2 Electricity Infrastructure

The second variable that is being investigated is the electricity infrastructure variable.
Figure 4.14 shows a trend and shift in mean of the series. This shows that the series is
not stationary and the stationarity status of electricity infrastructure needs to be inves-
tigated. Note how variability starts off almost constant and increases over time.
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Figure 4.15 shows that the ACF has a slow decaying trend showing that Electricity
infrastructure is not stationary.

The variability of the series is investigated to see whether the stationarity status will
change. Figure 4.15 shows that the variability has stabilise after taking logs not change
but the series is still not stationary. The next step is to stabilise the mean by differenc-
ing the series in order to reach stationarity.
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Note that Figure 4.16 has made the seasonal fluctuation more regular over time The
series is still not stationary.

Note that Figure 4.17 shows the ACF and PACF of the logged electricity infrastruc-
ture(EI). It represent a ARIMA(1, 0, 0) but this observation is not trustworthy since
the series is not stationary.

Applying seasonal differencing on the logged series to see if there is any change in the
stationarity status.
Figure 4.18 shows a constant mean and stationarity status is reached.
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The ACF cut off after lag 2 and the PACF shows a slow decaying trend in Figure 4.19.
The auto.arima() (Hyndman, 2008) estimated an SARIMA(2, 1, 2)(P,D,Q). The
moving averaged by two period, differenced logged series has reach constant mean
and variability.

4.3.1.2.1 Estimating the Model Fit, Estimates and Forecasting - Electricity In-
frastructure
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This section will present the different possible models that the electricity infrastructure
time series data follow, present the graphical and table format forecast of the next three
quarters and the optimal model for electricity infrastructure series. The possible model
for this series are shown in Table 4.7.

Note that Table 4.7 show all the possible model that were studied for a possible descrip-
tion model of the infrastructure series. The optimal model is the model that present the
smallest Akaike Information criteria which is model SARIMA(2, 1, 2)(0, 1, 0)4 with
criteria -254.05.

Table 4.7: Possible Models - Infrastructure

Description AIC

1 SARIMA(2,1,2)(0,1,0) -254.05

2 ARIMA(0,0,0)(0,1,1) -162.63

Note Table 4.8 show optimal model with AIC of -254.05. The significant parameters
are all of the above because they are smaller than alpha 0.05 and the null hypothesis is
rejected. The null hypothesis is β0 = β1 = βr = 0.

Table 4.8: SARIMA(2,1,2)(0,1,0) model

Value Standard Error z value p value

ϕ1 0 0.1064 0 1

ϕ2 -0.4132 0.1058 -3.905 9.4038e-05

θ1 0 0.0823 0 1

θ2 -0.8113 0.0835 -9.716 2.57283e-22

AIC -254.05
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The graphical forecast is shown in Figure 4.23. It shows the prediction of next three
values.

The Holt winter (Hyndman, 2008) predicted the following estimates for the model,
depicted in Table 4.9.

Table 4.9: HoltWinters Estimates - Electricity Infrastructure

α β γ a b Θ1 Θ2 Θ3 Θ4

Value 0.88 0.053 0.957 17932.507 274.918 685.726 357.749 -41.556 -263.941

Note that Table 4.10 show the prediction values of consumption through using methods
such as ARIMA and Holt-Winter for the next three quarter. Comparing the two meth-
ods prediction with the actual values and both methods underestimate the infrastructure
of the next quarters. The average difference between actual and ARIMA predictions
is 1158.74 whereas the average difference between actual values and Holt-Winters is
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1011.68 which is smaller than the average difference of the ARIMA prediction. Holt-
Winters method has shown to be the method that predicts the estimates which are closer
to the actual values.

Table 4.10: Predictors for the next three quarters in year 2016 - Infrastructure

Quarter 1 Quarter 2 Quarter 3

HoltWinters 18893.152 18840.093 18715.707

ARIMA 18669.264 18669.264 18669.264

Actual 19828 19828 19828

Figure 4.21 shows the goodness of fit for the chosen model SARIMA(2, 1, 2)(0, 0, 0)4.
The residuals are randomly around zero and the ACF show only one significance at lag
0 proofing that the residuals are not related. The Ljung box statistics have a null hy-
pothesis of the model that does not exhibit a lack of fit. All the lag are significant since
all p values are greater than the 0.05 therefore the model does fit the data.

4.3.1.3 Economic Growth (GDP)

The third variable to analyse is the quarterly GDP (economic growth) variable. There
is an increasing trend shown in Figure 4.22 which means that the series is not station-
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ary. There is also evidencce of increasing variability over time.

Figure 4.23 shows evidence of the series not being stationary as the ACF has a slow
decay trend.

The sereis is logged to stabilise the variability but the series is still not stationary in the
mean as shown in Figure 4.24 and the variability of the series seems to increase over
time.
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Another way to reach stationarity in the mean is to difference the series. The ACF and
PACF suggest a ARIMA(1,0,0) model in Figure 4.25.

Note that Figure 4.26 show the differenced logged economics series which has constant
mean and variabilty overtime. The Figure 4.26 presenting a stationary time series.
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Note that Figure 4.27 shows the ACF and PACF of the differenced logged series and
suggest a ARIMA(0, 1, 0)(0, 0, 1) model. The model shows a strong seasonal pattern
but the series is still stationary. There periodical changes within the series due to cer-
tain economic events.

Note that the ACF show alternative decaying trend and PACF cut off at lag 2.
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4.3.1.3.1 Estimating the Model Fit, Estimates and Forecasting -Economic Growth

This section will present the optimal model that the economic growth time series data
follow, present the graphical and table format of the predictives capabilities of the next
three quarters and the optimal model for economic growth series. The possible model
for this series are shown in Table 4.11.

Table 4.11: ARIMA(0, 1, 0)(0, 0, 1)4 model

Value Standard Error z value p value

Θθ1 -0.8078 0.0871 -9.274 1.786261e-20

AIC -493.25

Note that it is found ARIMA(0, 1, 0)(0, 0, 1)4 to be the optimal model shown Table
4.11. The final model is yt = −0.8078Θθ1 because all of these coefficients are signifi-
cant base on the p values being smaller than significant level 0.05.
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Figure 4.28 shows the forecast of few quarters of GDP from ARIMA(0, 0, 0)(0, 1, 1)4
model. Note that the graphical prediction follows the past trend.

ARIMA(1, 0, 0)(1, 0, 0) is another possible model for the economic series shown in
Table 4.12.

Table 4.12: ARIMA(1, 0, 0)(1, 0, 0) model

Value Standard Error z value p value

ϕ1 -0.4547 0.0932 -4.879 1.0675e-06

Θϕ2 0.7092 0.0725 9.782 1.344339e-22

AIC -440.81

Model ARIMA(1, 0, 0)(1, 0, 0) have a significant model of ,

yt = −0.4547ϕ1 + 0.7092Θϕ1 (4.1)

since all these p values are smaller than alpha 0.05 percent. The null hypothesis is that
all ϕ1 = ϕ2 = 0.
The possible models that this series depicts is shown in Table 4.13 and the chosen
model has an AIC criteria of -493.25.

Table 4.13: Possible Models - Economic growth

Description Model AIC

1 ARIMA(0,1,0)(0,0,1) yt = −0.8078Θθ1 -493.25

2 ARIMA(1,0,0)(1,0,0) yt = −0.4547ϕ1 + 0.7092Θϕ1 -440.81

The Holt winter (Hyndman, 2008) predicted the following estimates for the model,
depicted in Table 4.13.
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Table 4.14: HoltWinters Estimates - Economic growth

α β γ a b Θ1 Θ2 Θ3 Θ4

Value 0.744 0.165 0.964 1012996 14096 -9060 5262 11164 -13982

Note that Table 4.15 show the prediction values of consumption through using methods
such as ARIMA and Holt-Winter for the next three quarter. Comparing the two meth-
ods prediction with the actual values and both methods underestimate the economic
growth of the next quarters. The average difference between actual and ARIMA pre-
dictions is -21849.11 whereas the average difference between actual and Holt-Winters
is -23590.73 which is greater than the average difference of the ARIMA prediction.
ARIMA method has shown to be the method that predicts the estimates closer to the
actuals.

Table 4.15: The Predictors for the next three quarters in year 2016 - Economic growth

Quarter 1 Quarter 2 Quarter 3

HoltWinters 1018031.586 1046450.142 1066448.382

ARIMA 1020273.924 1047691.046 1066640.465

Actual 1043132 1068531.1801 N/A

Figure 4.29 shows the goodness of fit for the chosen model ARIMA(0, 1, 0)(0, 0, 1)4.
The residuals are randomly around zero and the ACF show only one significance at lag
0 proofing that the residuals are not related. The Ljung box statistics have a null hy-
pothesis of the model does not exhibit a lack of fit. All the lag are significant since all
p values are greater than the 0.05 therefore the model does fit the data.
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4.3.2 Summary: Univariate Time Series

We have reach stationarity in all variable and the optimal models for GDP, Electricity
infrastructure and Electricity consumption are ARIMA(0, 1, 0)(0, 0, 1)4,
SARIMA(2, 1, 2)(0, 0, 0)4 and ARIMA(0, 1, 1)(0, 0, 1)4 respectively. The predic-
tive capabilities are quite good and each respective models fits the data well.

Note that there were other possible models for each variable that were derived. These
are shown in the Appendix A, A3 as Figure 4.13.1.A, 4.13.2.B and 4.13.3.C for con-
sumption; Figure 4.21.1.A for infrastructure and Figure 4.29.1.A for economic growth.
Figure 4.13.2.B and Figure 4.13.3.C show that the model do not fit the data. The sec-
ond model on infrastructure series do not show a good fit as well as the second model
on economic growth do not show a good fit.

4.4 Multivariate Time Series

The next section will discuss the results on all the three variables. A similar thought
process to the one used in Section 4.3 will be applied, where one will determine sta-
tionarity of the data. When the series is not stationary, differencing or transforming
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the data is done. Thereafter, the model is determined and forecasting will be applied
to predict the values.
Figure 4.30 illustrate the three variables trend over a period of time.

Figure 4.30 illustrate the three variables trend over a period of time. The stationarity
check was done in the univariate tests and stationarity was reach when all three se-
ries were differenced. Figure 4.31 is a plot of the three variables from using the zoo

package (Zeileis and Grothendieck, 2005). The series is plotted against the time index
observations.

Figure 4.31 is a plot of the three variables from using the mvtsplot package (Peng,
2008). The series is plotted against the vector time series. Showing the three time
series over time the of 94 quarters.
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The purple colour represents the low values, grey colour middle values and green the
high values. The Figure 4.31 shows where all the values of the three times series lie
if they categorized. Economic growth and electricity infrastructure categories do not
overlap with each other over time and the consumption categories do overlap over time,
showing that consumption does change over time.

The stationarity status was reached when the three series were differenced and trans-
formed respectively. Applying the vector autoregressive function will assist in the
study of time series model which will be presented later. The Varselect (Pfaff, 2008)
function in R will give the most optimal lag in the different information criteria.

Table 4.16 show that the optimal lag for a VAR model will be 9 using the AIC and
5 for both Hannan-Quin and final prediction error criteria. The optimal lag is the lag
at which each criteria illustrate the smallest information criteria.

Table 4.16: The optimal Lag

AIC(n) HQ(n) SC(n) FPE(n)

9 5 1 5
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The Akaike information criteria says that the optimal lag is 9 whereas Hannan-Quin
and Final Prediction Error say is 5. The Bayesian Schwarz criteria shows the smallest
criteria at lag 1.
Note that Table 4.17 shows the detailed minimum values of each information criteria
which is shown in lag 9 for AIC criteria.

Table 4.17: Information Criteria Values - Test for Optimal Lag

Criteria 1 2 3 4 5 6 7 8 9

AIC(n) 42.344 42.203 41.941 41.948 41.675 41.743 41.907 41.766 41.663

HQ(n) 42.485 42.449 42.293 42.404 42.237 42.411 42.68 42.644 42.646

SC(n) 42.694 42.815 42.816 43.084 43.074 43.404 43.831 43.952 44.111

An investigate whether the residuals are uncorrelated using the Portmanteau test was
done for the null hypothesis of no serial correlation in residuals is not rejected in
V AR(5) and rejected in V AR(9). Since serial correlation is not a desired trait V AR(5)

model estimators will have the following properties such as unbiasedness and effi-
ciency when there is no autocorrelation. There is a fine line between bias error and the
power of the test when it comes to the lenght of the lag. When the lag length is too
small, the remaining serial correlation will bias the test and when the lag is too large
then the power of the test will suffer.
Note that model 1: ÊCt = −0.8395ECt−1 + 0.8302EI t−1 + 0.02821GDP t−2 −
0.03345GDP t−4 with lag 5 does not reject the null hypothesis since the p value, 0.3166
is greater than significance level alpha 0.05 and model 2 ÊCt = 0.6216ECt−1 −
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Table 4.18: Portmanteau (asymptotic) Test

Chi-Squared df p-value

ECt = −0.8395ECt−1 + 0.8302EI t−1 +

0.02821GDP t−2 − 0.03345GDP t−4 with lag 5

105.18 99 0.3166

ECt = 0.6216ECt−1 − 0.009052GDP t−5 −

0.07709EI t−5with lag 9

83.335 63 0.04413

0.009052GDP t−5−0.07709EI t−5with lag 9 will reject the null hypothesis of no serial
correlation.

Figure 4.32 display the forecasted values of the electricity consumption, economic
growth and electricity infrastructure.

The model where consumption is the dependent variable is of interest and will be
presented in the economic modelling section and the other two models are depicted in
Table A.6 and Table A.7 in Appendix A (A.4).
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4.5 Econometric Models

In this section the econometric model will be discussed. The relationship between the
three variables causal effects on each other, the direction of this causal effect is also
studied and will be investigated for. The model that were derived from the multivariate
approach will now be tested. The ADF (Augmented Dickey Fuller) test will be used to
test for stationarity. The null hypothesis of ADF is that the series is not stationary.

4.5.1 ADF for each of the Variables; Electricity Consumption, Elec-

tricity Infrastructure and Economic Growth

The stationarity status of the three variables electricity consumption, electricity in-
fratructure and economic growth series are investigated using the Augmented Dickey
Fuller test.

Table 4.19 shows the differenced consumption series is stationary because the p value
0.01 is smaller than significance level of 0.05, rejecting the null hypothesis of no sta-
tionary.

Table 4.19: Augmented Dickey-Fuller Test - Consumption

Value

Critical Value -5.3922

Lag order 4

p-value 0.01

Alternative Hypothesis stationary

Table 4.20 shows the differenced economic growth series is stationary because of the
p value 0.01 is smaller than significance level 0.05.
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Table 4.20: Augmented Dickey-Fuller Test - Economic Growth

Value

Critical Value -3.7301

Lag order 4

p-value 0.02622

Alternative Hypothesis stationary

Table 4.21 shows that the infrastructure series is stationary because of the p value 0.01
is smaller than significance level 0.05.

Table 4.21: Augmented Dickey-Fuller Test - Infrastructure

Value

Critical Value -6.2104

Lag order 4

p-value 0.01

Alternative Hypothesis stationary

4.5.2 Cointegration Granger Engle-Test

We make use of the linear model function in R to determine the cointegration of the
three variables. In the following paragraphs, cointegration are being tested through
two step. Firstly the relationship is determined and then the residuals are investigated
whether they constant overtime.

Since the relationship between consumption and economic growth is quadratic, the
economic growth variable are squared. The appropriate model for consumption is
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̂consumption = 2559 + 0.0055 GDP − 3.837e − 09 GDP 2 with a adjusted R-
squared of 83 percent. In Table 4.22 the overall model is significant because the p-value
is smaller than 0.05. The null hypothesis of there is no relationship between consump-
tion and infrastructure is rejected. The residual plots in Figure 4.33 shows that the
residuals are stationary. The latter proves that economic growth is cointegrated with
consumption.

Table 4.22: Granger Engle Test - Consumption ˜ Economic growth

Estimates Standard Error t value p-value(>|t|

Intercept 2559 80.68 31.72 < 2e-16 ***

GDP 0.005529 0.0003821 14.47 < 2e-16 ***

GDP 2 -3.837e-09 3.549e-10 -10.81 < 2e-16 ***

Adjusted R-squared 0.8309

Overall Model P-value < 2e-16

Signif. codes 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05

The consumption vs economic growth variables are investigated for cointegration. Fig-
ure 4.33 shows the residuals are stationary therefore there exist a cointegration between
the two variables. The ADF test illustrated that the cointegration was possible at I(0)

and I(1).
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Table 4.23 shows that the overall model is significant since the p-value is smaller than
0.05. The null hypothesis of there is no relationship between consumption and infras-
tructure is rejected.

Table 4.23: Granger Engle Test - Consumption ˜ Energy Infrastructure

Estimates Standard Error t value p-value(>|t|

Intercept 4095 76.95 53.217 < 2e-16 ***

Electricity infrastructure 0.02345 0.006757 3.47 0.000804 ***

1/Electricity infrastructure 167000 24070 -6.938 6.15e-10 ***

Adjusted R-squared 0.6288

Overall Model P-value < 2e-16

Signif. codes 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05

Figure 4.34 is used to investigate if there is cointegration between consumption and
electricity infrastructure. It shows the relationship residuals are not stationary there-
fore, according the Granger Engle test the two variables are not cointegrated.
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4.5.3 Cointegration: Johansen Test

The Johansen test is another cointegration test, the next function will illustrate it. The
output that Johansen procedure investigate 3 types of hypothesis, one to test whether
the needs r = 0,1,2 unit root to be cointegrated with each other.
Johansen procedure shows that the series is cointegrated in r = 0 since the test statistic
of 223.91 exceeds the 1 percent significance level. This is also true for r<= 1 and r<=2
since the test statistics is greater than the 1 percent significance level. Cointegration
exist between the series.

Table 4.24: Johansen-Procedure

test 10pct 5pct 1pct

r <= 2 55.27 6.5 8.18 11.65

r <= 1 115.23 15.66 17.95 23.52

r = 0 223.91 28.71 31.52 37.22
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4.6 Granger Causality Test

The Granger Causality effect tells us whether there is a causal effect between the
two variables. Using the package lmtest (Zeileis and Hothorn, 2002);Note that EC
= Electricity Consumption, GDP is Economic growth GDP and EI is Electricity in-
frastructure. The output shows the two models; Model 1 the unrestricted model that
includes the Granger-causal terms, Model 2 the restricted model where the Granger-
causal terms are omitted. The Wald test that assesses whether the restricted Model 2 is
the same as unrestricted Model 1.

In order to proceed with the Granger test, the series need to be stationary or cointe-
grated which was proven by the previous paragraphs.
The null hypothesis states that consumption does not Granger cause economic growth.
Table 4.25 analyses the causality relationship of electricity consumption and GDP. The
significance level chosen is 5 percent. The null hypothesis will be rejected since the p
value is less than 0.05. Therefore there exists a Granger causal relationship between
electricity consumption and economic growth (GDP).

Table 4.25: Granger causality test - Electricity consumption ˜ GDP

Res.Df Df F Pr(>F)

Model 1: EC ˜ Lags(EC, 1:1) + GDP, 1:1) 88

Model 2: EC ˜ EC, 1:1) 89 -1 4.1228 0.04533 *

Table 4.26 analyse whether GDP Granger causality Electricity consumption. The null
hypothesis is that economic growth does not granger cause consumption and the p
value is greater than alpha thus we will not reject the null hypothesis. The latter is
evident that no granger causal relationship exists between economic growth and elec-
tricity consumption.
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Table 4.26: Granger causality test - GDP ˜ Electricity consumption

Res.Df Df F Pr(>F)

Model 1: GDP ˜ Lags(GDP, 1:1) + Lags(EC, 1:1) 88

Model 2: GDP ˜ Lags(GDP, 1:1) 89 -1 0.8911 0.3478

Table 4.27 analyses whether there esixts a granger causal relationship between GDP
and electricity infrastructure. The p-value is greater than significance level 0.05 thus
we will not reject the null hypothesis. Therefore no Granger causal relationhip exists
between GDP and electricity infrastructure.

Table 4.27: Granger causality test - GDP ˜ Electricity infrastructure

Res.Df Df F Pr(>F)

Model 1: GDP ˜ Lags(GDP, 1:1) + Lags(EI, 1:1) 88

Model 2: GDP ˜ Lags(GDP, 1:1) 89 -1 0.542 0.4636

Table 4.28 analyses whether there is a relationship between electricity infrastructure
and GDP. The p-value is smaller than alpha thus we will reject the null hypothesis.
Thus there exists a granger causal relationship between electricity infrastructure and
economic growth.

Table 4.28: Granger causality test - Electricity Infrastructure ˜ GDP

Res.Df Df F Pr(>F)

Model 1: EI ˜ Lags(EI, 1:1) + Lags(GDP, 1:1) 88

Model 2: EI ˜ Lags(EI, 1:1) 89 -1 8.5413 0.004412 **

Table 4.29 analyses whether there exists a Granger causality electricity consumption
and electricity infrastructure. The p-value is greater than alpha thus we will not reject
the null hypothesis. Electricity consumption does not have a causal relationhip with
electricity infrastructure.
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Table 4.29: Granger causality test - Electricity Consumption ˜ Electricity Infrastructure

Res.Df Df F Pr(>F)

Model 1: EC ˜ Lags(EC, 1:1) + Lags(EI, 1:1) 88

Model 2: EC ˜ Lags(EC, 1:1) 89 -1 3.0435 0.08455

Table 4.30 analyses whether there exists a Granger causal relationship between elec-
tricity infrastructure and electricity consumption. The p-value is greater than signifi-
cance level thus we will not reject the null hypothesis. Electricity infrastructure does
not have a granger causal relationship with electricity consumption.

Table 4.30: Granger causality test - Electricity Infrastrucutre ˜ Electricity Consumption

Res.Df Df F Pr(>F)

Model 1: EI ˜ Lags(EI, 1:1) + Lags(EC, 1:1) 88

Model 2: EI ˜ Lags(EI, 1:1) 89 -1 1.545 0.2172

According to Jinke, Hualing and Dianming (2008) when one tests whether electricity
consumption causes economic growth then we would achieve a unidirectional growth
hypothesis. According to Table 4.25 there exists a causal effect running from electric-
ity consumption to economic growth. Table 4.29 shows that there also exists a causal
effect running from electricity consumption to electricity infrastructure. It can be con-
cluded that there exists a growth hypothesis in South Africa.

The optimal econometric model was derived in the multivariate Section 4.4. The model
is shown in Table 4.31, it only shows the significant coefficients. The consumption lag
4 coefficient is significant on significant level of 0.1 and the rest are significant base
on significance level of 0.05. The models where the growth and electricity infras-
tructure variable are the dependent variable will be shown in the Appendix A (A.4),
Table A.5. The significant variables when electricity consumption is the dependent
variable are electricity consumption in lag 1,3,4 and 5 and growth in lag 4 and 5 since
the p-value is smaller than the significant value alpha. The final model is as follow
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ÊC = 0.647817ECt−1 + 0.261885ECt−3 + 0.008378GDP t−4 + 0.221899ECt−4 −
0.250573ECt−5 − 0.008329GDP t−5.

Table 4.31: Optimal model of Econometric model

Estimate Std. Error t value Pr(>|t|)

Consumption1 0.647817 0.110498 5.863 1.32e-07 ***

Consumption3 0.261885 0.123830 2.115 0.03795 *

Growth4 0.008378 0.003076 2.723 0.00812 **

Consumption4 0.221899 0.126812 1.750 0.08447 .

Consumption5 -0.250573 0.111585 -2.246 0.02784 *

Growth5 -0.008329 0.002796 -2.979 0.00396 **

Adjusted R-squared 0.8911

AIC 1149.379

The impulse response analysis is an exogenous shock to one variable not only directly
affects this variable but is also transmitted to all of the other endogenous variables
through the dynamic (lag) structure of the VAR. An impulse response function traces
the effect of a one standard shock to one of the innovations on current and future values
of the endogenous variables. In order to interpret the model over time we need to in-
vestigate the impulse responses (Brandt and Appleby, 2007) of each variable overtime.
The Figure 4.35 shows each response shock experience by the variables. The shock
of consumption with itself is positive and has a declining trend overtime. Note that
after quarter 4 it started to diminish. The shock effect between consumption and GDP
flunctuate are around zero. South Africa growth is dependent on consumption and it
appear to slighty affect the growth depending specific times. It appears that growth has
a alternate shock effect with consumption and quarter 4 and 8 have a positive shock
effect with consumption. The electricity infrastructure starts off with a positive shock
effect and decline from quarter 3 and onwards.
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4.7 Regression Analysis

The overall aim for analysing time series data is to investigate the time effect on a
study. This study also looks at the effect of economic growth and electricity infrastruc-
ture. In this section regression analysis is used to model the nature of the relationship
between the variables electricity consumption, GDP and electricity infrastructure.

A scatterplot of the relationship between electricity consumption and economic growth
is shown in Figure 4.36. The relationship is not linear and suggest a quadratic model
may best describe the relationship or a change of regime model.
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Figure 4.37 shows a scatterplot analysis of electricity consumption versus electricity
infrastructure which suggest a hyperbolic model.

The model results are shown in Table 4.32. The significant variables are the intercept
and economic growth, that is, GDP is significant at 0.05 significant level.
We however noted that the model has an adjusted R-squared of 39 percent, meaning
the model does not fit the data very well.
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Table 4.32: Regression Analysis of Model 1 - Electricity Consumption ˜ GDP + Elec-

tricity Infrastructure

Estimates Standard Error t value p-value(>|t|

Intercept 3014.882 187.4073 16.087323 4.437728e-28

GDP 0.002923763 0.0007741674 3.776655 0.0002865813

Electricity Infrastructure -0.05537457 0.03291619 -1.68229 0.0960182

Adjusted R-squared 0.3921537

We now explore nonlinear models, the quadratic and hyperbolic model. We first trans-
form the variables economic growth by squaring and electricity infrastructure by ap-
plying multiplicative inverse. Thereafter a model selection is executed and the optimal
model with a minimised Akiake Criterion Information is chosen. Two models are fitted
that is, Model 2 is

EC = β0 + β1GDP + β2GDP
2 + β3EI + e (4.2)

in Table 4.32 and Model 3

EC = β0 + β1GDP + β2GDP
2 + β3EI + β4EI

−1 + e (4.3)

shown in Table 4.33.

Model 2 in Table 4.33 has an AIC of 991.35 with a very high adjusted R-squared show-
ing that the model fits the data well explaining most of the electricity consumption.

Model 3 in Table 4.34 has an AIC of 978.86 and the overall Adjusted R-squared 87
percent indicating that the model fits the data very well.

The model assumptions were analysed in Figure 4.38, Table 4.35 and 4.36.
Figure 4.38 shows that the residuals are normally distributed as seen in the Normal
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Table 4.33: Model 2 - Electricity Consumption ˜ GDP + I(GDP 2) + Electricity Infras-

tructure

Estimates Standard Error t value p-value(>|t|

Intercept 2501 81.97 30.506 <2e-16***

GDP 0.005773 0.000386 14.954 <2e-16***

GDPˆ2 -3.312e-09 3.917e-10 -8.455 5.42e-13 ***

Electricity Infrastructure -0.03344 0.01353 -2.472 0.0154 *

Adjusted R-squared 0.8451

AIC 991.35

Table 4.34: Model 3 - Electricity Consumption ˜ GDP + I(GDP 2) + Electricity Infras-

tructure + I(ElectricityInfrastructure−1)

Estimates Standard Error t value p-value(>|t|

Intercept 1837 188.4 9.751 1.30e-15 ***

GDP 0.007783 0.0006333 12.29 <2e-16 ***

GDPˆ2 -4.484e-09 4.744e-10 -9.451 5.36e-15 ***

Electricity Infrastructure -0.04542 0.01295 -3.506 0.000721 ***

Electricity Infrastructureˆ-1 100400 26060 3.853 0.000223 ***

Adjusted R-squared 0.8662

AIC 978.86

Q-Q plot and have a constant variance as seen in the residuals vs fitted plot. The in-
fluential datapoints are 33, 19 and 37 as shown in the Residuals vs Leverage plot in
Figure 4.38.
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The outlier that have a large negative residual is observation 33 as seen on Figure 4.38.
This outlier do not affect the regression slope coefficient since the slope is not pull
towards the datapoint, see Figure 4.39.

The Breusch Pagan test in Table 4.35 shows that the variance can be assumed to be con-
stant as the null hypothesis is not rejected since p value is greater than 0.05. Although
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Model 3 is a better model in terms of the AIC and R2, we support the justification of
the extra term EI−1 as the increases by 3 percent. We ideally would be happier with
a parsimonious model. Note that the Breush-Pagan test measures how errors increase
across the explanatory variable. The test assumes the error variances are due to a linear
function of one or more explanatory variables in the model.

Table 4.35: Breusch-Pagan

Test statistic Degree of freedom p-value

Values 6.3067 4 0.1774

The Shapiro Wilk test in Table 4.36 shows that the residuals are normally distributed
as the null hypothesis is not rejected since p value is greater than significance value
0.05.

Table 4.36: Shapiro-Wilk

Test statistic p-value

Values 0.99225 0.9356

Note that in Table 4.37 show that there exist multicollinearity and removing the vari-
ables with high variance inflation factors made the model trustworthy. The rule of
thumb to assess whether multicollinearity exist is sqaure root of the variance infla-
tion factor is greater than 2. Multicollinearity do not exist in the model and it is
shown (only showing the signifcant values) with an adjusted r of 63% as, ÊC =

4081 + 5.194e − 10GDP 2 − 165900EI−1. The coefficient of the the GDP has a
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positive direction toward the consumption whereas coeffiecient of the multiplcative in-
verse of infrastructure have a negative direction from consumption.

Table 4.37: Variance inflation factors

GDP GDPˆ2 EI EIˆ-1

GDP + I(GDPˆ2) + EI + I(EIˆ-1) 73.42 47.77 16.9 5.42

I(GDPˆ2)+I(EIˆ-1) N/A 1.725141 N/A 1.725141

In order to trust the new model, the assumptions such as normality and constant vari-
ance are again tested. Table 4.38 shows that both assumptions exist.

Table 4.38: Assess Residual normality and constant variance

Test statistic p-value

Breusch-Pagan 5.9855 0.05015

Shapiro Wilk 0.97567 0.08273

4.8 Conclusion

There is a growth hypothesis as electricity consumption Granger cause economic growth.
The growth hypothesis just states that electricity consumption granger cause economic
growth which means the country’s economy is energy dependent. It is as expected that
South Africa is energy dependent. There was also found that the electricity infrastruc-
ture causal effect on electricity consumption which was expected. The country needs
appropriate structures to ensure sustainable electricity supply and consumers should be
more prudent in their consumption of electricity since strains the available structures.
The economic model derived from multivariate time series have an Akaike information
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criteria of 1149.379.

The possible models for the univariate economic growth, electricity infrastructure and
electricity consumption are ARIMA(0, 1, 0)(0, 0, 1)4,SARIMA(2, 1, 2) and

ARIMA(0, 1, 1)(0, 0, 1)4 respectively. According to the AIC these last mentioned
models are the most optimal. The Akaike information criteria for the electricity con-
sumption, electricity infrastructure and economic growth are 1143.45, -254.05 and
-493.25 respectively.

The regression analysis depicts a model with AIC of 1068.17 with economic growth
squared and the reciprocal of electricity infrastructure as significant variables and per-
fect fit of 62 percent. When a unit of EI−1 is present then EC decreases whereas a
GDP 2 increases.

The overall model that will be chosen is the economic model which was derive from
the multivariate time series. The model takes in account the seasonality factor and
it has the capabilities to answer the main question of the report appropriately. The
model also present the second best Akaike information criteria but with best adjusted
R-squared of 89 percent.



Chapter 5

Summary and Conclusion

5.1 Introduction

This study investigated the use of the statistical techniques to model the causal effect
or relationship between consumption, economic growth and electricity infrastructure
by using time series data, which was collected by Statistics South Africa. The interest
for the relationship investigation originated from the fact that South Africa lack of
adequate electricity supply for the past years. The models that were used for this study
are the ARIMA models, vector autoregressive models and multiple regression models.
This chapter presents the summary, discussion, recommendations and conclusion of
the study.

5.2 Summary

All available times series data were extracted from the Statistics South Africa and Es-
kom databases. Data credibility is guaranteed as the data is governed and monitored
according to the internal, national and international standards. Data preparation in-
cluded preparing the data in a quarterly format since electricity consumption was a
monthly series and the electricity infrastructure was an annual series. Electricity in-
frastructure annual series was divided by 4 thus each quarter received equal allocations.
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Descriptive analysis was used to visualise each variable and investigate each distribu-
tion. All variables consumption, economic growth and infrastructure are skewed to
the left. The descriptive plots also showed that the relationship between electricity
consumption and economic growth is a non-linear relation which is a quadratic form.
The relation between electricity consumption and electricity infrastructure indicate a
non-linear relation which is reciprocal form.

The ARIMA approach has been used to predict each variable with possible models
that describe the series. The partial autocorrelation function and autocorrelation func-
tion graph assisted in the manual investigation of the possible models each variable
followed.

Consumption had an optimal ARIMA model shown in Table 4.3 which produced an
Akaike Information Criteria of 1143.45. The other possible models produced Akaike
information criteria greater than the optimal model. The forecast capability of the
ARIMA model produce an average deviation of 108. The model did not exhibit a lack
of fit means the model fits the data.

Economic growth has an optimal ARIMA model in Table 4.12 which produced an
Akaike Information Criteria of -493.25. The other possible produced an Akaike infor-
mation criteria greater than the optimal model. The forecast capability of the ARIMA
model produced an average deviation of 21 849. This suggested that the model fits the
data well.

Electricity infrastructure has an optimal ARIMA model in Table 4.7 which produced
an Akaike Information Criteria of -254.05. The other possible model produced an
Akaike information criteria greater than the optimal model. The forecast capability of
the additive seasonal model produced an average deviation of 1012. The chosen model
did not exhibit a lack of fit on the data.

The descriptive analysis from the multiple regression analysis showed a quadratic re-
lationship between electricity consumption and economic growth whereas the reverse
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hyperbolic relationship between electricity consumption and electricity infrastructure.

This is clearly a non-linear relationship with an adjusted R-squared of 62 percent which
is evidence that the model fits the data well and that the new term improves the model
more than would be expected by chance. The Akaike information criteria is 978.56
with the assumptions being valid. The normality assumption of residuals was con-
firmed in Table 4.38 by using the Shapiro-Wilk test as well as the constant variance by
the Breusch-Pagan test.

The econometric model was created using the vector autoregressive model. The Aug-
mented Dickey Fuller in Tables 4.19, 4.20 and 4.21 showed that all variables are sta-
tionary. The second step of the analysis was to investigate cointegration and the tech-
niques used were the Granger Engle and Johansen tests. Granger Engle test exhibited
a cointegration between electricity consumption and economic growth. The Johansen
test concluded that the series is cointegrated. The final stage of the procedure was
to investigate the Granger causality effect. There was a causal effect from electricity
consumption to economic growth and also a granger causal effect from electricity con-
sumption to infrastructure shown in Table 4.25 and Table 4.29 respectively. There was
also a causal effect from electricity infrastructure to GDP which was shown in Table
4.28. The vector autoregressive model has an Akaike information criteria of 1149.4
and the model fits data well as shown by the adjusted R-squared of 89.9%.

The ideal technique that is chosen is the vector autoregressive model that has coeffi-
cient of determination of 62%. The latter shows that the model closely fits the data
and also the model can be trusted since the technique describes the time series data the
best. The chosen model is sensible and describe the relationship between electricity
consumption and economic growth as expected.

5.3 Recommendation

The South African economy primary drivers are mining and quarrying and manufac-
ture. These sectors need sufficient electricity supply to operate to their maximum there-
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fore, Eskom needs to have the necessary structures in place for an uninterrupted elec-
tricity supply.

The rules and policies needs to be tighten to ensure a regular and continuous mainte-
nance of the current and future infrastructure of electricity. Continuous development
of sustainable and environment friendly structure need to be built to ensure electricity
supply since South African supports a growth hypothesis.

Eskom needs their analytics team to monitor the frequency of maintenance and inves-
tigations in order for them to meet Eskom’s targets. The team should also liaise with
Stats SA to understand the impact sufficient electricity has on the South Africa econ-
omy. Since the study has proven that there is a relationship the next step can be for the
team to study each sector in order to understand characteristics of this relationship.

There are other factors that influence the South African economy these include politics
and employment rates but the wellbeing of the country is also important ??. Therefore,
frequent analysis or monitoring needs to be a priority to recognise the dangers/prob-
lems before they get out of hand.

Monitoring the consumption of each sector and doing research on what the consump-
tion limits are per sector in order not to abuse the electricity consumption. These
recommendations will surely be a start to steer our economy in the right direction. The
impact of electricity consumption may be a small but it is significant.

5.4 Conclusion

The results of this study confirmed that both the time series and regression analysis
approach in modelling of time series performs well when the series are stationary. In
the event of non- stationary series, time series will be able to analyse the relationship
over a long period of time. Also that the large sample analysis is important in the time
series data. Researches consider to use ARIMA models, vector autoregressive models
and Granger causal test to analyse time series model when they want to understand the
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developments overtime and the causal effect, respectively.

Therefore, the vector autoregressive model in conjunction with Granger causal effect
will answer the question adequately. It shows the second lowest Akaike Information
Criteria when comparing the models and the best Coefficient of determination proving
the model is the best in predicting capability. Although AIC is considered as a decision
measure, note that the paper weigh more on the adjusted R-squared for final decision
of measure. The Granger causal test concluded that South Africa supports a growth
hypothesis.

The growth hypothesis is when electricity consumption granger causal effect on eco-
nomic growth meaning that South Africa is energy dependent. This is true because of
South Africa’s primary sectors such as mining and manufactures are energy dependent.
The results also illustrate that electricity infrastructure has a Granger causal effect on
economic growth. This effect is as expected since electricity consumption and energy
infrastructure go hand in hand.

As mentioned before, the most effective method is the vector autoregressive technique
in conjunction with Granger causal effect. The technique cover the time factor and the
Granger causal test support the causal effect study well. Further area of study can be of
each sector in order to understand characteristics of this relationship. The policy mak-
ers should make use of the vector autoregressive method in conjunction with Granger
causal test.

We conclude that there is a relationship between electricity consumption and economic
growth. The economic growth is significant in lag 4 and 5 and the economic growth
coefficient has alternate contributions towards consumption as seen in the impulse re-
sponse graphs. From the result the study has provided useful information for possible
policy amendments to ensure that South Africa is equip to assist in the country’s well-
being.
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Appendix A

Extra Results

A.1 Electricity Consumption Series – Possible Models

Table A.1: ARIMA(3,1,0)(2,0,0) model

Value Standard Error z value p value

ϕ1 0.5393 0.1109 4.86294 1.156552e-06

ϕ2 0.1271 0.1255 1.012749 0.3111801

ϕ3 0.1906 0.1061 1.796418 0.07242799

Θϕ1 -0.5076 0.1041 -4.876081 1.082144e-06

Θϕ2 -0.3761 0.1122 -3.35205 0.0008021556

AIC 1163.41
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Table A.2: ARIMA(1,0,0)(2,0,0) model

Value Standard Error z value p value

ϕ1 -0.3276 0.1064 -3.078947 0.002077334

Θϕ1 -0.5223 0.1008 -5.181548 2.200524e-07

Θϕ2 -0.3917 0.1059 -3.698772 0.0002166447

AIC 1155.62

Table A.3: ARIMA(0,1,1)(0,0,2) modell

Value Standard Error z value p value

θ1 -1 0.0469 -21.32196 7.101842e-101

Θθ1 -0.7629 0.1344 -5.676339 1.376077e-08

Θθ2 -0.1495 0.1137 -1.314864 0.1885557

AIC 1148.66

A.2 Electricity infrastructure – Possible models

Table A.4: ARIMA(0,1,1)(0,0,0)

Value Standard Error z value p value

Θθ1 -1 0.0287 -34.84 5.396097e-266

AIC -162.63

A.3 Diagnostic Plots

These are the diagnostic plots for all different models of consumption.
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These are the diagnostic plots for all different models of electricity infrastructure.

The diagnostic plots for all extra model of economic growth.

A.4 Economic models
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Table A.5: Optimal model of Econometric model

Estimate Std. Error t value Pr(>|t|)

Consumption.l1 0.647817 0.110498 5.863 1.32e-07 ***

Growth.l1 0.001514 0.002481 0.610 0.54378

Expenditure.l1 0.004897 0.028024 0.175 0.86177

Consumption.l2 -0.052569 0.127578 -0.412 0.68154

Growth.l2 -0.003288 0.002809 -1.171 0.24570

Expenditure.l2 0.011820 0.036560 0.323 0.74741

Consumption.l3 0.261885 0.123830 2.115 0.03795 *

Growth.l3 0.001920 0.002960 0.649 0.51855

Expenditure.l3 -0.015578 0.036854 -0.423 0.67379

Consumption.l4 0.221899 0.126812 1.750 0.08447 .

Growth.l4 0.008378 0.003076 2.723 0.00812 **

Expenditure.l4 0.033863 0.036838 0.919 0.36108

Consumption.l5 -0.250573 0.111585 -2.246 0.02784 *

Growth.l5 -0.008329 0.002796 -2.979 0.00396 **

Expenditure.l5 -0.043554 0.028374 -1.535 0.12923

constant 568.554006 263.075678 2.161 0.03406 *

Adjusted R-squared 0.8911

AIC 1149.379
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Table A.6: Optimal model of Econometric model - Electricity Infrastructure

Estimate Std. Error t value Pr(>|t|)

Consumption.l1 -0.8395 0.4773 -1.759 0.0829

Growth.l1 -0.007446 0.01072 -0.695 0.4895

Expenditure.l1 0.8302 0.1211 6.858 2.14e-09 ***

Consumption.l2 0.3455 0.5511 0.627 0.5327

Growth.l2 0.02821 0.01213 2.324 0.0230 *

Expenditure.l2 0.232 0.1579 1.469 0.1462

Consumption.l3 -0.2956 0.5349 -0.553 0.5822

Growth.l3 -0.001335 0.01278 -0.104 0.9171

Expenditure.l3 -0.1857 0.1592 -1.167 0.2472

Consumption.l4 0.1751 0.5478 0.32 0.7502

Growth.l4 -0.03345 0.01329 -2.517 0.0141 *

Expenditure.l4 0.1295 0.1591 0.814 0.4183

Consumption.l5 0.6419 0.482 1.332 0.1872

Growth.l5 0.01619 0.01208 1.34 0.1844

Expenditure.l5 -0.09922 0.1226 -0.81 0.4209

constant -446 1136 -0.392 0.6959

Adjusted R-squared 0.989

AIC 1403.971
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Table A.7: Optimal model of Econometric model - Economic Growth

Estimate Std. Error t value Pr(>|t|)

Consumption.l1 9.933 4.99 1.99 0.050397

Growth.l1 0.7161 0.1121 6.39 1.51e-08 ***

Expenditure.l1 0.6852 1.266 0.541 0.589958

Consumption.l2 -4.403 1.266 -0.764 0.447292

Growth.l2 0.1296 0.1269 1.021 0.310668

Expenditure.l2 -0.2225 1.651 -0.135 0.893214

Consumption.l3 1.316 5.593 0.235 0.814613

Growth.l3 0.04135 0.1337 0.309 0.757933

Expenditure.l3 -0.0578 1.664 -0.035 0.972397

Consumption.l4 7.12 5.727 1.243 0.217867

Growth.l4 0.4949 0.1389 3.562 0.000662 ***

Expenditure.l4 -2.734 1.664 -1.643 0.104798

Consumption.l5 -5.404 5.04 -1.072 0.287187

Growth.l5 -0.3856 0.1263 -3.053 0.003184 **

Expenditure.l5 2.75 1.281 2.146 0.035304 *

constant -22530 11880 -1.896 0.061995

Adjusted R-squared 0.9993

AIC 1812.368



Appendix B

Data
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Consumption GDP Infrastructure

2802 100786.9 287

3156 107839.2 287

3130 113811 287

2869 116447 287

2909 117123.5 202

3194 122177.4 202

3261 125829.2 202

3050 131102.6 202

3179 132452 263.75

3011 137940.2 263.75

3015 145466 263.75

3105 148011.4 263.75

3486 148737.7 262.25

3589 158072.8 262.25

3641 162896.8 262.25

3593 164903.6 262.25

3706 166191.4 216.75

3737 174990.7 216.75

4017 179978.2 216.75

3611 181956.1 216.75

3569 180609.8 211.25

3812 190870.9 211.25

3700 194211.2 211.25

3313 195967.9 211.25

3519 195750.7 212.5

3489 204169.7 212.5

3642 215428.3 212.5

3494 219403.7 212.5

3414 219943.1 841.75

3800 231799.5 841.75
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Consumption GDP Infrastructure

3747 245382.7 841.75

3620 249198.2 841.75

3017 250192.1 910.75

3486 258654.4 910.75

3776 264961.8 910.75

3343 272334 910.75

3198 283675 1346.25

3753 302366.2 1346.25

3736 313138.9 1346.25

3582 318084.2 1346.25

3740 317548 1519.5

4076 327703.3 1519.5

4342 337179.3 1519.5

4086 343335.1 1519.5

4073 349753.8 1373.5

4433 362514.7 1373.5

4490 376710.2 1373.5

4189 387645.3 1373.5

4092 383581.9 2249.75

4233 401384.9 2249.75

4338 422127 2249.75

4225 432160.6 2249.75

4262 426598.3 2716.75

4309 444554.1 2716.75

4580 480215.2 2716.75

4418 488033.4 2716.75

4422 498347.9 4426.75

4534 512943.8 4426.75

4833 539780.5 4426.75

4546 558428.9 4426.75
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Consumption GDP Infrastructure

4407 559861.1 6191

4423 586568.6 6191

4581 612848.9 6191

4330 609784.4 6191

4114 599459.3 11774.75

4385 616828.2 11774.75

4682 641247 11774.75

4202 650142.3 11774.75

4345 643098.1 14250.75

4434 687346.6 14250.75

4630 699822.2 14250.75

4661 717741.3 14250.75

4352 721162.3 13864.25

4567 745483.4 13864.25

4669 768367.9 13864.25

4546 789936.9 13864.25

4314 777098.8 15838.5

4439 813259.1 15838.5

4642 827779.6 15838.5

4475 844405 15838.5

4337 842183.7 15261.5

4591 877188.9 15261.5

4510 899130.6 15261.5

4246 915822.6 15261.5

4179 917849.2 18179

4541 937528.7 18179

4488 962934.1 18179

4315 978755.6 18179

4189 964816 17668.25

4288 992388 17668.25
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Consumption GDP Infrastructure

4377 1006723 17668.25

4246 1027026.1 17668.25



Appendix C

Code

C.1 R Code

The following functions are written as part of the research project.

1 #Descriptive Analysis

2 #Load Data

3 require(Gmisc)

4 dataCd <- read.table("C:/Time Series/All.csv",sep = ",",header = T)

5 Cons <- dataCd [,1:3]

6 #Multiple Scatterplots and histograms per variable

7 pairs(Cons ,main = "")

8 title(sub = "Figure 4.1: Scatterplot of all pairs")

9 hist(Cons[,1],col = "lightblue",xlab = "Electricity Consumption",main ="")

10 title(sub = "Figure 4.2: Histogram for Electricity Consumption")

11 hist(Cons[,2],col = "lightblue3",xlab = "Gross Domestic Product",main ="")

12 title(sub = "Figure 4.3 Histogram for Gross Domestic Product")

13 hist(Cons[,3],col = "lightgray",xlab = "Electricity Infrastructure",main ="")

14 title(sub = "Figure 4.4: Histogram for Electricity Infrastructure")

15 #Summary Statistics

16 htmlTable(summary(Cons),header = c("Electricity Consumption","Gross Domestic

Product","Electricity Infrastructure"),caption = paste("Table 4.1 :

Descriptive Statistics of variables"))

17 #kurtosis and skewness

18 require(moments)

19 #consumption
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20 skewness(Cons [,1])

21 kurtosis(Cons [,1])

22 #gross domestic product

23 skewness(Cons [,2])

24 kurtosis(Cons [,2])

25 #EI

26 skewness(Cons [,3])

27 kurtosis(Cons [,3])

28 # Electricity Consumption

29 dataC <- read.table("C:/Time Series/All.csv",sep = ",",header = T)

30 myvars <- c("ElecConsumption")

31 Cons <- dataC[myvars]

32 consts <- ts(Cons ,start=c(1993 ,1),frequency = 4)

33 plot.ts(consts ,xlab = "Time",ylab="Consumption in Kwh",main ="")

34 title(sub = "Figure 4.5: Time series of electricity Consumption")

35 plot.new()

36 par(mfrow=c(2,1))

37 acf(consts ,main="ACF of electricity Consumption",lag.max = 100)

38 pacf(consts ,main="PACF of electricity Consumption",lag.max = 100)

39 title(sub = "Figure 4.6: The ACF and PACF of electricity Consumption",outer =

TRUE)

40 mtext("Figure 4.6: The ACF and PACF of electricity Consumption",outer = T,side =

1,line = -1)

41 #Seasonal difference

42 par(mfrow=c(1,1))

43 DiffConsts <- diff(consts ,4)

44 plot.ts(DiffConsts ,xlab = "Time",ylab="Difference(Consumption) in Kwh")

45 title(sub = "Figure 4.7: Differenced electricity Consumption")

46 par(mfrow=c(2,1))

47 acf(DiffConsts ,main="ACF of differenced electricity Consumption",lag.max = 100)

48 pacf(DiffConsts ,main="PACF of differenced electricity Consumption",lag.max =

100)

49 title(sub = "Figure 4.8: The ACF and PACF of differenced electricity Consumption

",outer = TRUE)

50 mtext("Figure 4.8: The ACF and PACF of differenced electricity Consumption",

outer = T,side = 1,line = -1)

51 #Difference on top of seasonal difference

52 par(mfrow=c(1,1))

53 DiffDiffConsts <- diff(DiffConsts)

54 plot.ts(DiffDiffConsts ,xlab = "Time",ylab="Difference Differenced(Consumption)

in Kwh",main="")
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55 title(sub = "Figure 4.9: Differenced (difference(electricity Consumption))")

56 par(mfrow=c(2,1))

57 acf(DiffDiffConsts ,main="ACF of differenced( differenced(electricity Consumption

))",lag =100)

58 pacf(DiffDiffConsts ,main="PACF of differenced (differenced(electricity

Consumption))",lag =100)

59 title(sub = "Figure 4.10: The ACF and PACF of differenced (differenced(

electricity Consumption))",outer = TRUE)

60 mtext("Figure 4.10: The ACF and PACF of differenced (differenced(electricity

Consumption))",outer = T,side = 1,line = -1)

61 #Estimating the model fit , estimates and forecasting - Consumption

62 require(forecast)

63 fit <- HoltWinters(DiffDiffConsts , beta=FALSE , gamma=FALSE)

64 fitD <- HoltWinters(DiffConsts , beta=FALSE , gamma=FALSE)

65 fitO <- HoltWinters(consts)

66 AfitC = auto.arima(consts)

67 #tabled the predicted values

68 t42=matrix(c(round(forecast(fitO , 3)$mean ,3),round(forecast(AfitC , 3)$mean ,3)

,0,0,0),byrow = T,nrow = 3,dimnames = list(c("HoltWinters","ARIMA","Actual")

))

69 htmlTable(t42 ,header = c("Quarter 1","Quarter 2","Quarter 3"),caption = paste("

Table 4.2 :Predictors for the next three quarters in year 2016"))

70 #holtwinter

71 hw = matrix(c( 0.6042009 ,0 ,0.2367775 ,4323.79837 ,25.58750 , -195.28920 ,14.10826

72 ,126.48665 , -84.97475) ,nrow = 9,ncol = 1,byrow = T,

73 dimnames = list(c("alpha","beta","gamma","a","b",

74 "seasonal1","seasonal2","seasonal3","seasonal4"),c("Value")))

75 htmlTable(hw ,caption = paste("HoltWinters model"))

76

77 require(forecast)

78 #predict next three future values

79 par(mfrow=c(1,1))

80 plot(forecast(fitO , 3),main = "")

81 title(sub = "Figure 4.11: Forecasting - Consumption next three values")

82 #Goodness of fit

83 require(forecast)

84 plot.new()

85 par(mfrow=c(1,1))

86 Autofit <-auto.arima(DiffDiffConsts)

87 plot(forecast (( Autofit)),main="")

88 title(sub = "Figure 4.12: Forecasts from ARIMA (0,1,1)(0,0,1)")
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89 AutofitD <-auto.arima(DiffConsts)

90 plot(forecast (( AutofitD)),main="")

91 title(sub = "Figure 4.12.1: Forecasts from ARIMA (3,1,0)(2,0,0)")

92 #Diagnostics

93 #Appendix - A,B and C

94 tsdiag(Autofit ,main="")

95 title(sub = "Figure 4.13: Diagnostics of Electricity Consumption ARIMA (0,1,1)

(0,0,1)")

96 tsdiag(AutofitD ,main="")

97 title(sub = "Figure 4.13.1.A: Diagnostics of Electricity Consumption ARIMA

(3,1,0)(2,0,0)")

98

99 #Difference seasonal

100 a3 = matrix(c( 0.5393 ,0.1109 ,4.86294 ,1.156552e

-06 ,0.1271 ,0.1255 ,1.012749 ,0.3111801 ,0.1906 ,0.1061 ,1.796418 ,0.07242799

101 , -0.5076 ,0.1041 , -4.876081 ,1.082144e

-06 , -0.3761 ,0.1122 , -3.35205 ,0.0008021556 ,1163.41 ,"","",""),nrow = 6,ncol =

4,

102 byrow = T,dimnames = list(c("phi_1","phi_2","phi_3","seasonal phi_1","seasonal

phi_2","AIC"),

103 c("Value","Standard Error","z value","p value")))

104 htmlTable(a3 ,caption = paste("Table 4.3.1.A: ARIMA (3,1,0)(2,0,0) model"))

105 #Diff on topDifference seasonal

106 a4 = matrix(c( -0.3636 ,0.0990 , -3.672727 ,0.0002399756 , -0.8677 ,0.1007 , -8.616683 ,

6.892147e-18 ,1143.45 ,"","",""),nrow = 3,ncol = 4,byrow = T,dimnames = list(c

("theta_1","seasonal theta_1","AIC"),c("Value","Standard Error","z value","p

value")))

107 htmlTable(a4 ,caption = paste("Table 4.3: ARIMA (0,1,1)(0,0,1) model"))

108 #Manual Difference seasonal

109 a = matrix(c( -0.3276 ,0.1064 , -3.078947 ,0.002077334 , -0.5223 ,0.1008 , -5.181548 ,

2.200524e -07 , -0.3917 ,0.1059 , -3.698772 ,0.0002166447 ,1155.62 ,"","",""),nrow =

4,ncol = 4,byrow = T,dimnames = list(c("phi_1","seasonal phi_1","seasonal

phi_2","AIC"),c("Value","Standard Error","z value","p value")))

110 htmlTable(a,caption = paste("Table 4.3.2.A: ARIMA (1,0,0)(2,0,0) model"))

111 a1=arima(DiffDiffConsts ,order =c(0,1,1),seasonal = c(0,0,2) )

112 a2=arima(DiffConsts ,order =c(1,1,0),seasonal = c(2,0,0))

113 #Appendix

114 par(mfrow=c(1,1))

115 tsdiag(a1 ,main="")

116 title(sub = "Figure 4.13.2.B: Diagnostics of Electricity Consumption ARIMA

(1,0,0)(2,0,0)")
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117 par(mfrow=c(1,1))

118 tsdiag(a2 ,main="")

119 title(sub = "Figure 4.13.3.C: Diagnostics of Electricity Consumption ARIMA

(0,1,1)(0,0,2)")

120 #Manual diff on top of seasonal difference

121 b = matrix(c( -1.0000 ,0.0469 , -21.32196 ,7.101842e-101 , -0.7629 ,0.1344 ,

-5.676339 ,1.376077e -08 , -0.1495 ,0.1137 , -1.314864 ,0.1885557 ,1148.66 ,"","",""),

nrow = 4,ncol = 4,byrow = T,dimnames = list(c("theta_1","seasonal theta_1","

seasonal theta_2","AIC"),c("Value","Standard Error","z value","p value")))

122 htmlTable(b,caption = paste("Table 4.3.3.A: ARIMA (0,1,1)(0,0,2) model"))

123 optimalmodel = matrix(c("ARIMA (0,1,1)(0,0,1)" ,0,0,"ARIMA (3,1,0)(2,0,0)" ,0,0,"

ARIMA (1,0,0)(2,0,0)" ,0,0,"ARIMA (0,1,1)(0,0,2)" ,0,0),nrow = 4,ncol = 3,byrow

= T,dimnames = list(c("1","2","3","4"),c("Description","Model","AIC")))

124 htmlTable(optimalmodel ,caption = paste("Table 4.4: Possible Models"))

125

126 # Electricity infrastructure

127 par(mfrow=c(1,1))

128 Consi=scan("C:/Time Series/ElecInfrastructure.csv",skip = 1,sep = ",")

129 constsi <- ts(Consi ,frequency = 4,start=c(1993) ,end =c(2015 ,4))

130 plot.ts(constsi ,xlab = "Time",ylab="R'million",main="")

131 title(sub = "Figure 4.13: Electricity infrastructure(Capital infrastructure)")

132 par(mfrow=c(2,1))

133 acf(constsi ,main="ACF of Electricity infrastructure",lag.max = 100)

134 pacf(constsi ,main="PACF of Electricity infrastructure",lag.max = 100)

135 title(sub = "Figure 4.14: The ACF and PACF of electricity infrastructure",outer

= TRUE)

136 mtext("Figure 4.14: The ACF and PACF of electricity infrastructure",outer = T,

side = 1,line = -1)

137 #Logarithm transformation

138 par(mfrow=c(1,1))

139 logconstsi <- log(constsi)

140 plot.ts(logconstsi ,xlab = "Time",ylab="Log R'million",main="")

141 title(sub = "Figure 4.15: Time series of log(electricity infrastructure)")

142 par(mfrow=c(2,1))

143 acf(logconstsi ,main="ACF of log(electricity infrastructure",lag.max = 100)

144 pacf(logconstsi ,main="PACF of log(electricity infrastructure)",lag.max = 100)

145 title(sub = "Figure 4.16: The ACF and PACF of log(electricity infrastructure)",

outer = TRUE)

146 mtext("Figure 4.16: The ACF and PACF of log(electricity infrastructure)",outer =

T,side = 1,line = -1)

147 # Difference logged series
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148 par(mfrow=c(1,1))

149 DiffConstsi <- diff(logconstsi)

150 v = as.matrix(DiffConstsi)

151 which.max(na.omit(v))

152 m2015=mean(na.omit(v))

153 v[28] <-m2015

154 which.min(na.omit(v))

155 min_=mean(na.omit(v))

156 v[4] <-min_

157 vr = ts(v,frequency = 4,start=c(1993) ,end =c(2015 ,4))

158 #Apply moving average of 2

159 require("TTR")

160 vr2 = SMA(diff(vr),n=2)

161 a = which(vr2 < -0.15)

162 a1 = as.matrix(a)

163

164 vr2[a1[1,1]] = -0.08

165

166 vr2[a1[2,1]] = -0.08

167

168 vr2[a1[3,1]] = -0.08

169

170 b = which(vr2 > 0.15)

171 b1 = as.matrix(b)

172 vr2[b1[1,1]] = -0.13

173

174 vr2[b1[2,1]] = -0.13

175

176 vr2[b1[3,1]] = -0.13

177

178 c = which(vr2 > 0.05)

179 c1 = as.matrix(c)

180 vr2[c1[1,1]] = 0.05

181

182 vr2[c1[2,1]] = 0.05

183

184 vr2[c1[3,1]] = 0.05

185

186 vr2[c1[4,1]] = 0.05

187

188 vr2[c1[5,1]] = 0.05
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189

190 vr2[c1[6,1]] = 0.05

191

192 vr2[c1[7,1]] = 0.05

193

194 vr2[c1[8,1]] = 0.05

195 #Plot the final dataset

196 d = diff(vr2 ,2)

197 plot.ts(d,xlab = "Time",ylab="Difference logged in R'million")

198 #ACF and PACF of differenced logged

199 title(sub = "Figure 4.18: Differenced logged electricity infrastructure")

200 par(mfrow=c(2,1))

201 acf(na.omit(d),main="ACF of differenced electricity infrastructure",lag.max =

100)

202 pacf(na.omit(d),main="PACF of differenced electricity infrastructure",lag.max =

100)

203 title(sub = "Figure 4.19: The ACF and PACF of differenced logged electricity

infrastructure",outer = TRUE)

204 mtext("Figure 4.19: The ACF and PACF of differenced logged electricity

infrastructure",outer = T,side = 1,line = -1)

205

206 # Estimating the model fit , estimates and forecasting - Infrastrucuture

207 require(forecast)

208 require(htmlTable)

209 par(mfrow=c(1,1))

210 Autofiti <-auto.arima(d)

211 plot(forecast (( Autofiti)),main="")

212 title(sub = "Figure 4.20: Forecasts from ARIMA (2,1,2)")

213 #Diagnostic

214 tsdiag(Autofiti ,main="")

215 title(sub = "Figure 4.21: Diagnostics of Electricity Infrastructure - ARIMA

(2,1,2)")

216 #Results

217 di = matrix(c(0 ,0.1064 ,0 ,1 , -0.4132 ,0.1058 , -3.905482 ,9.403774e-05 ,0 ,0.0823 ,0 ,1

218 , -0.8113 ,0.0835 , -9.716168 ,2.57283e-22,-254.05,"","",""),nrow = 5,ncol = 4,

219 byrow = T,dimnames = list(c("phi_1","phi_2","theta_1","theta_2","AIC")

220 ,c("Value","Standard Error","z value","p value")))

221 htmlTable(di ,caption = paste("Table 4.5: ARIMA (2,1,2) model"))

222 #Manual identification

223 d1=arima(d,order =c(0,1,1),seasonal = c(0,0,0) )

224 di3 = matrix(c( -1 ,0.0287 , -34.84321 ,5.396097e-266 , -162.63 ,"","",""),nrow = 2,
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225 ncol = 4,byrow = T,dimnames = list(c("theta_1","AIC")

226 ,c("Value","Standard Error","z value","p value")))

227 htmlTable(di3 ,caption = paste("Table 4.5.1.A: ARIMA (0,1,1)(0,0,0) model"))

228 tsdiag(d1 ,main="")

229 title(sub = "Figure 4.21.1.A: Diagnostics of Electricity Infrastructure ARIMA

(0,1,1)")

230 #Forecast

231 optimalmodel1 = matrix(c("ARIMA (2,1,2)" ,0,0,"ARIMA (0,1,1)(0,0,0)" ,0,0),nrow = 2,

232 ncol = 3,byrow = T,dimnames = list(c("1","2"),c("Description","Model","AIC")))

233 htmlTable(optimalmodel1 ,caption = paste("Table 4.6: Possible Models"))

234 fitInfrastructure <-auto.arima(constsi)

235 fitInH <-HoltWinters(constsi)

236 t46=matrix(c(round(forecast(fitInH , 3)$mean ,3),round(forecast(fitInfrastructure ,

3)$mean ,3) ,0,0,0)

237 ,byrow = T,nrow = 3,dimnames = list(c("HoltWinters","ARIMA","Actual")))

238 htmlTable(t46 ,header = c("Quarter 1","Quarter 2","Quarter 3"),

239 caption = paste("Table 4.7 :Predictors for the next three quarters in year 2016

- Infrastructure"))

240 #holtwinter

241 hwi = matrix(c( 0.8796561 ,0.05256674 ,0.9574244 ,

242 17932.5072 ,274.9185 ,685.7262 ,357.7488 , -41.5558 , -263.9407) ,

243 nrow = 9,ncol = 1,byrow = T,dimnames = list(c("alpha","beta",

244 "gamma","a","b","seasonal1","seasonal2",

245 "seasonal3","seasonal4"),c("Value")))

246 htmlTable(hwi ,caption = paste("HoltWinters model - Infrastructure"))

247

248 # Economic growth (GDP)

249 par(mfrow=c(1,1))

250 dataC2 <- read.table("C:/Time Series/All.csv",sep = ",",header = T)

251 #GDP -Univariate Time series Quarterly

252 myvars <- c("GDP")

253 Cons2 <- dataC[myvars]

254 consts2 <- ts(Cons2 ,start=c(1993 ,1),frequency = 4)

255 plot.ts(consts2 ,xlab= "Year",main="")

256 title(sub = "Figure 4.22: Time Series of Quarterly Economic Growth")

257 #PACF and ACF

258 par(mfrow=c(2,1))

259 acf(consts2 ,main="ACF of Economic Growth",lag.max = 100)

260 pacf(consts2 ,main="PACF of Economic Growth",lag.max = 100)

261 title(sub = "Figure 4.23: The ACF and PACF of Economic Growth",outer = TRUE)

262 mtext("Figure 4.23: The ACF and PACF of Economic Growth",outer = T,side = 1,line
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= -1)

263 #Logarithm transformation

264 par(mfrow=c(1,1))

265 logconsts2 <- log(consts2)

266 plot.ts(logconsts2 ,ylab="Log(GDP)",main="")

267 title(sub = "Figure 4.24: Time series of Log Economic Growth")

268 par(mfrow=c(2,1))

269 acf(logconsts2 ,main="PACF of log Economic Growth",lag.max = 100)

270 pacf(logconsts2 ,main="PACF of log Economic Growth",lag.max = 100)

271 title(sub = "Figure 4.25: The ACF and PACF of log Economic Growth",outer = TRUE)

272 mtext("Figure 4.25: The ACF and PACF of log Economic Growth",outer = T,side = 1,

line = -1)

273 #Difference logged transformation

274 par(mfrow=c(1,1))

275 DiffConsts5 <- diff(logconsts2)

276 plot.ts(DiffConsts5 ,ylab="Difference Logged GDP")

277 title(sub = "Figure 4.26: Differenced Logged Economic Growth")

278 par(mfrow=c(2,1))

279 acf(DiffConsts5 ,main ="",lag.max = 100)

280 pacf(DiffConsts5 ,main="",lag.max = 100)

281 title(sub = "Figure 4.27: The ACF and PACF of differenced Logged Economic Growth

",outer = TRUE)

282 mtext("Figure 4.27: The ACF and PACF of differenced Logged Economic Growth",

outer = T,side = 1,line = -1)

283

284 #Goodness of fit and Forecast

285 require(forecast)

286 par(mfrow=c(1,1))

287 Autofitgdp <-auto.arima(DiffConsts5)

288 plot(forecast (( Autofitgdp)),main = "")

289 title(sub = "Figure 4.28: Forecasts from ARIMA (0,0,0)(0,1,1)")

290 #True value of next three quarters

291 Autofitgdp <-auto.arima(consts2)

292 #Auto.arima

293 tsdiag(Autofitgdp ,main="")

294 title(sub = "Figure 4.29: Diagnostics of Economic Growth (ARIMA (0,0,1)(0,1,1))")

295 e = matrix(c( -0.8078 ,0.0871 , -9.274397 ,1.786261e-20,-493.25,"","",""),nrow = 2,

ncol = 4

296 ,byrow = T,dimnames = list(c("Theta_theta","AIC"),c("Value","Standard Error","z

value","p value")))

297 htmlTable(e,caption = paste("Table 4.8: ARIMA (0,0,0)(0,1,1) model"))
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298

299 #Manual

300

301 f1=arima(DiffConsts5 ,order =c(1,1,0) ,seasonal = c(1,0,0))

302 #Appendix

303 tsdiag(f1 ,main="")

304 title(sub = "Figure 4.29.1.A: Diagnostics of Economic Growth (ARIMA (1,0,0)

(1,0,0))")

305 #Tabled results

306 f = matrix(c( -0.4547 ,0.0932 , -4.878755 ,1.067574e-06,

307 0.7092 ,0.0725 ,9.782069 ,1.344339e-22,-440.81,"","","")

308 ,nrow = 3,ncol = 4,byrow = T,dimnames = list(c("phi_1","sphi_1","AIC"),

309 c("Value","Standard Error","z value","p value")))

310 htmlTable(f,caption = paste("Table 4.9: ARIMA (1,0,0)(1,0,0) model"))

311 optimalmodel1 = matrix(c("ARIMA (0,0,1)(0,1,1)" ,0,0,"ARIMA (2,0,0)" ,0,0),nrow = 2,

ncol = 3,

312 byrow = T,dimnames = list(c("1","2"),c("Description","Model","AIC")))

313 htmlTable(optimalmodel1 ,caption = paste("Table 4.10: Possible Models"))

314 #Forecast

315 fitgdpvalue <-auto.arima(consts2)

316 fitgdpH <-HoltWinters(consts2)

317 htmlTable(t411 ,header =

318 c("Quarter 1","Quarter 2","Quarter 3"),

319 caption = paste("Table 4.11 :Predictors for the next three quarters in year 2016

- Economic growth"))

320

321 ## Multivariate time series

322

323 dataC3 <- read.table("C:/Time Series/All.csv",sep = ",",header = T)

324 myvars <- c("ElecConsumption","GDP","CapExpediture")

325 Cons3 <- dataC3[myvars]

326 consts3 <- ts(Cons3 ,start=c(1993 ,1),frequency = 4)

327 consMat <-as.matrix(consts3)

328 zt<-cbind(consMat [,1],consMat[,2],consMat [,3])

329 colnames (zt) <-c("Consumption", "Growth","Expenditure")

330 consMat <-as.matrix(Cons3)

331 #Multiple graph

332 require (zoo)

333 name.zoo <-zoo(cbind(consMat[, 1], consMat[, 2], consMat[, 3]))

334 colnames (name.zoo) <-c("Consumption", "Growth","Expenditure")

335 plot(name.zoo ,main = "")
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336 title(sub = "Figure 4.30: Time Series of Electricity Consumption ,

337 Electricity Infrastructure and Economic Growth")

338 #Descriptive plot

339 require(mvtsplot)

340 par(mfrow=c(1,1))

341 mvtsplot (name.zoo ,main = "")

342 title(sub = "Figure 4.31: Multivariate of all three(Consumption ,Infrastructure ,

Growth) variables")

343

344 #Optimal Lag

345 #Choosing the number of lag with information criteria

346 ztF <- na.omit(zt)

347 require(vars)

348 require(Gmisc)

349 htmlTable(VARselect(ztF , lag.max=9, type="const")$selection ,caption = paste("

Table 4.12: The optimal Lag"),header = c("AIC(n)","HQ(n)","SC(n)","FPE(n)"))

350 htmlTable(round(VARselect(ztF , lag.max=9, type="const")$criteria ,3),caption =

paste("Table 4.13: The optimal Lag(Values)"),header = c("1","2","3","4","5",

"6","7","8","9"))#,rowlabel = c("AIC(n)","HQ(n)","SC(n)","FPE(n)"))

351 #Var - Choosing optimal model

352 #Model1

353 require(vars)

354 zvar1 <-VAR(ztF , p = 5, type = "const")

355 #testing whether residuals are correlated

356 serial.test(zvar1 , lags.pt=16, type="PT.asymptotic")

357 #Model2

358 zvar2 <-VAR(ztF , p =9, type = "const")

359 #testing whether residuals are correlated

360 serial.test(zvar2 , lags.pt=16, type="PT.asymptotic")

361 #summary(zvar2)

362 #put in the appendix

363 #stepAIC(zvar1)

364 g = matrix(c(105.18 , 99 ,0.3166 ,83.335 ,63 ,0.04413) ,nrow = 2,ncol = 3,byrow = T,

dimnames = list(c("Model1 with lag 5","Model2 with lag 9"),c("Chi -Squared","

df","p-value")))

365 htmlTable(g,caption = paste("Table 4.14: Portmanteau (asymptotic) Test"))

366 #Forecast

367

368 require(forecast)

369 fcst <- forecast(zvar1)

370 plot(fcst , xlab="Year",main="")
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371 title(sub = "Figure 4.32: Forecasts from Model 1 with lag 5")

372

373 #explaining the results

374 require(MSBVAR)

375 rf.var <- reduced.form.var(ztF , p=3)

376 plot(irf(rf.var , nsteps = 12))

377

378 ## Econometric Model

379

380 require(vars)

381

382 dataC4 <- read.table("C:/Time Series/All.csv",sep = ",",header = T)

383 myvars <- c("ElecConsumption","GDP","CapExpediture")

384 Cons4 <- dataC4[myvars]

385 consts4 <- ts(Cons4 ,start=c(1993 ,1),frequency = 4)

386 consMat <-as.matrix(consts4)

387 zt1 <-cbind(diff(na.omit(diff(consMat[, 1],4))), diff(log(consMat[, 2]) ,1),na.

omit(d))

388 colnames (zt1) <-c("Consumption", "EcononmicGrowth","CapExpediture")

389

390 #ADF for each of the variables; electricity consumption , electricity

infrastructure and economic growth

391 #Consumption

392 require(tseries)

393 #adf.test(na.omit(zt1[,1]),k=4)

394 j = matrix(c( -5.3922 ,4 ,0.01 ,"stationary"),nrow = 4,ncol = 1,byrow = T,dimnames =

list(c("Critical Value","Lag order","p-value","Alternative Hypothesis"),c("

Value")))

395 htmlTable(j,caption = paste("Table 4.15: Augmented Dickey -Fuller Test -

Consumption"))

396 #0.01 smaller than 0.05 so the series is stationary

397

398 #EcononmicGrowth

399 #adf.test(na.omit(zt1[,2]))

400 m = matrix(c( -3.7301 ,4 ,0.02622 ,"stationary"),nrow = 4,ncol = 1,byrow = T,

dimnames = list(c("Critical Value","Lag order","p-value","Alternative

Hypothesis"),c("Value")))

401 htmlTable(m,caption = paste("Table 4.16: Augmented Dickey -Fuller Test - Economic

Growth"))

402 #P-value = 0.05, 0.08 <0.05 then Series is stationary

403
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404 #CapExpediture

405 #adf.test(na.omit(zt1[,3]))

406 s = matrix(c( -6.2104 ,4 ,0.01 ,"stationary"),nrow = 4,ncol = 1,byrow = T,dimnames =

list(c("Critical Value","Lag order","p-value","Alternative Hypothesis"),c("

Value")))

407 htmlTable(s,caption = paste("Table 4.17: Augmented Dickey -Fuller Test -

Infrastructure"))

408

409 #Cointegration Granger Engle -Test

410 Engle <-lm(ElecConsumption ~ GDP + I(GDP^2) ,data = consts4)

411 #summary(Engle)

412 r = matrix(c(2.559e+03 ,8.068e+01 ,31.72 ,"< 2e-16 ***" ,5.529e-03 ,3.821e-04 ,14.47 ,"

<2e-16 ***" ,-3.837e-09 ,3.549e-10,-10.81," <2e-16 ***",

413 0.8309 ,"","","","< 2.2e-16","","","","0 '***'","0.001 '**'","0.01 '*'" ,0.05),

nrow = 6,ncol = 4,byrow = T,

414 dimnames = list(c("Intercept","GDP","I(GDP^2)","Adjusted R-squared","Overall

Model Pvalue","Signif. codes")

415 ,c("Estimates","Standard Error","t value","p-value(>|t|")))

416 htmlTable(r,caption = paste("Table 4.18: Granger Engle Test - Consumption ~

Economic growth"))

417

418 #Overall model is significant because of p-value that smaller than 0.05

419 residual <- resid(Engle)

420 year <-ts(start=c(1993 ,1),end=c(2015 ,4),frequency = 4)

421 ts.plot(year ,residual , gpars=list(main="", xlab="year", ylab="residuals"))

422 title(sub="Figure 4.33 Electricity Consumption vs. Economic growth: Is there

cointegration?")

423

424 Engle1 <-lm(ElecConsumption~CapExpediture+I(CapExpediture ^-1),data = consts4)

425 #summary(Engle1)

426 t = matrix(c(4.095e+03 ,7.695e+01 ,53.217 ,"< 2e-16 ***" ,2.345e-02 ,6.757e-03 ,3.470 ,

"0.000804 ***"

427 ,-1.670e+05 ,2.407e+04 , -6.938 ,"6.15e-10 ***",

428 0.6288 ,"","","","< 2.2e-16","","","","0 '***'","0.001 '**'","0.01 '*'" ,0.05),

nrow = 6,ncol = 4,byrow = T

429 ,dimnames = list(c("Intercept","EI","1/EI","Adjusted R-squared","Overall Model

Pvalue","Signif. codes"),c("Estimates","Standard Error","t value","p-value

(>|t|")))

430 htmlTable(t,caption = paste("Table 4.19: Granger Engle Test - Consumption ~

Energy Infrastructure"))

431 #Overall model is significant because of p-value that smaller than 0.05
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432 residual1 <- resid(Engle1)

433 plot.new()

434 year <-ts(start=c(1993 ,1),end=c(2015 ,4),frequency = 4)

435 ts.plot(year ,residual1 , gpars=list(main="", xlab="year", ylab="residuals"))

436 title(sub="Figure 4.34 Electricity Consumption vs.Electricity Infrastructure :

Is there cointegration?")

437 #Cointegration: Johansen Test

438 require(urca)

439 coi <- ca.jo(zt1 ,type="trace",K=2,ecdet ="none",spec ="longrun")

440 #summary(coi)

441 w = matrix(c(55.27 ,6.50 ,8.18 ,11.65 ,

115.23 ,15.66 ,17.95 ,23.52 ,223.91 ,28.71 ,31.52 ,37.22) ,nrow = 3,ncol = 4,byrow =

T,dimnames = list(c("r <= 2","r <= 1","r = 0"),c("test","10pct","5pct","1

pct")))

442 htmlTable(w,caption = paste("Table 4.20: Johansen -Procedure"))

443

444 #Granger Causality Test

445 require(lmtest)

446 #Test 1

447 #grangertest(consMat [,1]~consMat[,2],order =1)

448 t1 = matrix(c(88,"","","" ,89,-1,4.1228,"0.04533 *"),nrow = 2,ncol = 4,byrow = T,

dimnames = list(c("Model 1: consMat[, 1] ~ Lags(consMat[, 1], 1:1) + Lags(

consMat[, 2], 1:1)","Model 2: consMat[, 1] ~ Lags(consMat[, 1], 1:1)"),c("

Res.Df","Df","F","Pr(>F)")))

449 htmlTable(t1 ,caption = paste("Table 4.21: Granger causality test - Electricity

consumption ~ GDP"))

450 #Test 2

451 #grangertest(consMat [,2]~consMat[,1],order =1)

452 t2 = matrix(c(88,"","","" ,89 , -1 ,0.8911 ,0.3478),nrow = 2,ncol = 4,byrow = T,

dimnames = list(c("Model 1: consMat[, 2] ~ Lags(consMat[, 2], 1:1) + Lags(

consMat[, 1], 1:1)","Model 2: consMat[, 2] ~ Lags(consMat[, 2], 1:1)"),c("

Res.Df","Df","F","Pr(>F)")))

453 htmlTable(t2 ,caption = paste("Table 4.22: Granger causality test - GDP ~

Electricity consumption"))

454 #Test 3

455 #grangertest(consMat [,2]~consMat[,3],order =1)

456 t3 = matrix(c(88,"","","" ,89 , -1 ,0.542 ,0.4636),nrow = 2,ncol = 4,byrow = T,

dimnames = list(c("Model 1: consMat[, 2] ~ Lags(consMat[, 2], 1:1) + Lags(

consMat[, 3], 1:1)","Model 2: consMat[, 2] ~ Lags(consMat[, 2], 1:1)"),c("

Res.Df","Df","F","Pr(>F)")))

457 htmlTable(t3 ,caption = paste("Table 4.23: Granger causality test - GDP ~
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Electricity infrastructure"))

458 #Test 4

459 #grangertest(consMat [,3]~consMat[,2],order =1)

460 t4 = matrix(c(88,"","","" ,89,-1,8.5413,"0.004412 **"),nrow = 2,ncol = 4,byrow =

T,dimnames = list(c("Model 1: consMat[, 3] ~ Lags(consMat[, 3], 1:1) + Lags(

consMat[, 2], 1:1)","Model 2: consMat[, 3] ~ Lags(consMat[, 3], 1:1)"),c("

Res.Df","Df","F","Pr(>F)")))

461 htmlTable(t4 ,caption = paste("Table 4.24: Granger causality test - Electricity

Infrastrucutre ~ GDP"))

462 #Test 5

463 #grangertest(consMat [,1]~consMat[,3],order =1)

464 t5 = matrix(c(88,"","","" ,89,-1,3.0435,"0.08455 ."),nrow = 2,ncol = 4,byrow = T,

dimnames = list(c("Model 1: consMat[, 1] ~ Lags(consMat[, 1], 1:1) + Lags(

consMat[, 3], 1:1)","Model 2: consMat[, 1] ~ Lags(consMat[, 1], 1:1)"),c("

Res.Df","Df","F","Pr(>F)")))

465 htmlTable(t5 ,caption = paste("Table 4.25: Granger causality test - Electricity

Consumption ~ Electricity Infrastrucutre"))

466 #Test 6

467 #grangertest(consMat [,3]~consMat[,1],order =1)

468 t6 = matrix(c(88,"","","" ,89 , -1 ,1.545 ,0.2172),nrow = 2,ncol = 4,byrow = T,

dimnames = list(c("Model 1: consMat[, 3] ~ Lags(consMat[, 3], 1:1) + Lags(

consMat[, 1], 1:1)","Model 2: consMat[, 3] ~ Lags(consMat[, 3], 1:1)"),c("

Res.Df","Df","F","Pr(>F)")))

469 htmlTable(t6 ,caption = paste("Table 4.26: Granger causality test - Electricity

Infrastrucutre ~ Electricity Consumption"))

470 require(Gmisc)

471

472 #Optimal Model -Var

473 zvar1V = matrix(c( -8.395e-01 ,4.773e-01,-1.759,"0.0829 ." ,-7.446e-03 ,1.072e

-02 , -0.695 ,0.4895 ,8.302e-01 ,1.211e-01 ,6.858 ,"2.14e-09 ***" ,3.455e-01 ,5.511e

-01 ,0.627 ,0.5327 ,2.821e-02 ,1.213e-02 ,2.324 ,"0.0230 *" ,2.320e-01 ,1.579e

-01 ,1.469 ,0.1462 , -2.956e-01 ,5.349e-01 , -0.553 ,0.5822 , -1.335e-03 ,1.278e

-02 , -0.104 ,0.9171 , -1.857e-01 ,1.592e-01 , -1.167 ,0.2472 ,1.751e-01 ,5.478e

-01 ,0.320 ,0.7502 , -3.345e-02 ,1.329e-02,-2.517,"0.0141 *" ,1.295e-01 ,1.591e-01

,0.814 ,0.4183 ,6.419e-01 ,4.820e -01 ,1.332 ,0.1872 ,1.619e-02 ,1.208e

-02 ,1.340 ,0.1844 , -9.922e-02 ,1.226e-01 , -0.810 ,0.4209 , -4.460e+02 ,1.136e

+03 , -0.392 ,0.6959 ,0.989 ,"","","" ,1149.379 ,"","",""),nrow = 18,ncol = 4,byrow

= T,dimnames = list(c("Consumption.l1","Growth.l1","Expenditure.l1","

Consumption.l2","Growth.l2","Expenditure.l2","Consumption.l3","Growth.l3","

Expenditure.l3","Consumption.l4","Growth.l4","Expenditure.l4","Consumption.

l5","Growth.l5","Expenditure.l5","constant","Adjusted R-squared","AIC"),c("
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Estimate","Std. Error","t value","Pr(>|t|) ")))

474 htmlTable(zvar1V ,caption = paste("Table 4.27 Optimal model of Econometric model"

))

475

476 #Appendix

477 zvar1A = matrix(c( -8.395e-01 ,4.773e-01,-1.759,"0.0829 ." ,-7.446e-03 ,1.072e

-02 , -0.695 ,0.4895 ,8.302e-01 ,1.211e-01 ,6.858 ,"2.14e-09 ***" ,3.455e-01 ,5.511e

-01 ,0.627 ,0.5327 ,2.821e-02 ,1.213e-02 ,2.324 ,"0.0230 *" ,2.320e-01 ,1.579e

-01 ,1.469 ,0.1462 , -2.956e-01 ,5.349e-01 , -0.553 ,0.5822 , -1.335e-03 ,1.278e

-02 , -0.104 ,0.9171 , -1.857e-01 ,1.592e-01 , -1.167 ,0.2472 ,1.751e-01 ,5.478e

-01 ,0.320 ,0.7502 , -3.345e-02 ,1.329e-02,-2.517,"0.0141 *" ,1.295e-01 ,1.591e

-01 ,0.814 ,0.4183 ,6.419e-01 ,4.820e -01 ,1.332 ,0.1872 ,1.619e-02 ,1.208e

-02 ,1.340 ,0.1844 , -9.922e-02 ,1.226e-01 , -0.810 ,0.4209 , -4.460e+02 ,1.136e

+03 , -0.392 ,0.6959 ,0.989,"","","" ,1403.971 ,"","",""),nrow = 18,ncol = 4,

byrow = T,dimnames = list(c("Consumption.l1","Growth.l1","Expenditure.l1","

Consumption.l2","Growth.l2","Expenditure.l2","Consumption.l3","Growth.l3","

Expenditure.l3","Consumption.l4","Growth.l4","Expenditure.l4","Consumption.

l5","Growth.l5","Expenditure.l5","constant","Adjusted R-squared","AIC"),c("

Estimate","Std. Error","t value","Pr(>|t|) ")))

478 htmlTable(zvar1A ,caption = paste("Table 4.27.1 Optimal model of Econometric

model - Electricity Infrastructure"))

479 zvar1G = matrix(c(9.933e+00 ,4.990e+00 ,1.990 ,"0.050397 . " ,7.161e-01 ,1.121e

-01 ,6.390 ,"1.51e-08 ***" ,6.852e-01 ,1.266e+00 ,0.541 ,0.589958 , -4.403e+00 ,1.266

e+00 , -0.764 ,0.447292 ,1.296e-01 ,1.269e-01 ,1.021 ,0.310668 , -2.225e-01 ,1.651e

+00 , -0.135 ,0.893214 , 1.316e+00 ,5.593e+00 ,0.235 ,0.814613 ,4.135e-02 ,1.337e

-01 ,0.309 ,0.757933 , -5.780e-02 ,1.664e+00 , -0.035 ,0.972397 ,7.120e+00 ,5.727e

+00 ,1.243 ,0.217867 ,4.949e-01 ,1.389e-01 ,3.562 , "0.000662 ***" ,-2.734e

+00 ,1.664e+00 , -1.643 ,0.104798 , -5.404e+00 ,5.040e+00 , -1.072 ,0.287187 , -3.856e

-01 ,1.263e-01,-3.053,"0.003184 **" ,2.750e+00 ,1.281e+00 ,2.146 ,"0.035304 *"

,-2.253e+04 ,1.188e+04,-1.896,"0.061995 ." ,0.9993,"","","" ,1812.368 ,"","","")

,nrow = 18,ncol = 4,byrow = T,dimnames = list(c("Consumption.l1","Growth.l1"

,"Expenditure.l1","Consumption.l2","Growth.l2","Expenditure.l2","Consumption

.l3","Growth.l3","Expenditure.l3","Consumption.l4","Growth.l4","Expenditure.

l4","Consumption.l5","Growth.l5","Expenditure.l5","constant","Adjusted R-

squared","AIC"),c("Estimate","Std. Error","t value","Pr(>|t|) ")))

480 htmlTable(zvar1G ,caption = paste("Table 4.27.2 Optimal model of Econometric

model - Economic Growth"))

481 summary(zvar1)

482 #AIC(zvar1$varresult$Consumption)

483 #AIC(zvar1$varresult$Growth)

484 #AIC(zvar1$varresult$Expenditure)
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485

486 ## Regression Analysis

487

488 dataC1 <- dataCd [,1:3]

489 #model

490 fitreg <- lm(ElecConsumption ~ GDP + CapExpediture , data=dataC1)

491 #plotting the EC vs GDP and passing a straight through the datapoints to

estbablish a relationship

492 plot(ElecConsumption ~ GDP , data=dataC1 ,

493 ylab="Electricity consumption",main="")

494 title(sub = "Figure 4.39: Electricity Consumption vs growth")

495 plot(ElecConsumption ~ CapExpediture , data=dataC1 ,

496 ylab="Electricity consumption",main = "")

497 title(sub = "Figure 4.40: Electricity Consumption vs Electricity Infrastructure"

)

498 #Showcase the model estimates and model statistics

499 #l=summary(fitreg)

500 l1 = matrix(c(3.014882e+03 ,1.874073e+02 ,16.087323 ,4.437728e -28 ,2.923763e

-03 ,7.741674e -04 ,3.776655 ,2.865813e-04 , -5.537457e -02 ,3.291619e

-02 , -1.682290 ,9.601820e-02 ,0.3921537 ,"","",""),nrow = 4,ncol = 4,byrow = T,

dimnames = list(c("Intercept","GDP","Electricity Infrastructure","Adjusted R

-squared"),c("Estimates","Standard Error","t value","p-value(>|t|")))

501 htmlTable(l1 ,caption = paste("Table 4.28: Regression Analysis of model -

ElecConsumption ~ GDP + CapExpediture"))

502 #polyniam model

503 require(MASS)

504 require(stargazer)

505 fitl = lm(ElecConsumption ~ GDP + I(GDP^2) + CapExpediture ,data = dataC1)

506 #infrastructure look like a hyperbolic reltionship

507 fitl2 = lm(ElecConsumption ~ GDP + I(GDP^2) + CapExpediture + I(CapExpediture

^-1),data = dataC1)

508 #AICmin = stepAIC(fitl)

509 #AICmin2 = stepAIC(fitl2)

510 fl1 = matrix(c(2.501e+03 ,8.197e+01 ,30.506 ,"<2e-16***" ,5.773e-03 ,3.860e

-04 ,14.954 ,"<2e-16***" ,-3.312e-09 ,3.917e-10,-8.455,"5.42e-13 ***" ,-3.344e

-02 ,1.353e-02,-2.472,"0.0154 *" ,0.8451,"","","" ,991.35,"","",""),nrow = 6,

ncol = 4,byrow = T,dimnames = list(c("Intercept","GDP","GDP^2","Electricity

Infrastructure","Adjusted R-squared","AIC"),c("Estimates","Standard Error","

t value","p-value(>|t|")))

511 htmlTable(fl1 ,caption = paste("Table 4.29: ElecConsumption ~ GDP + I(GDP ^2) +

CapExpediture"))



124

512 fl2 = matrix(c(1.837e+03 ,1.884e+02 ,9.751 ,"1.30e-15 ***" ,7.783e-03 ,6.333e

-04 ,12.290 ,"<2e-16 ***" ,-4.484e-09 ,4.744e-10,-9.451,"5.36e-15 ***" ,-4.542e

-02 ,1.295e-02,-3.506,"0.000721 ***" ,1.004e+05 ,2.606e+04 ,3.853 ,"0.000223 ***"

,0.8662,"","","" ,978.86,"","",""),nrow = 7,ncol = 4,byrow = T,dimnames =

list(c("Intercept","GDP","GDP^2","Electricity Infrastructure","Electricity

Infrastructure ^-1","Adjusted R-squared","AIC"),c("Estimates","Standard Error

","t value","p-value(>|t|")))

513 htmlTable(fl2 ,caption = paste("Table 4.30: ElecConsumption ~ GDP + I(GDP ^2) +

CapExpediture + I(CapExpediture ^-1)"))

514 #Testing the assumptions

515 par(mfcol=c(2,2))

516 plot(fitl2)

517 title(sub = "Figure 4.41: Model Assumptions",outer = TRUE)

518 mtext("Figure 4.41: Model Assumptions",outer = T,side = 1,line = -1)

519 #constant variance

520 #bptest(fitl2)

521 #DNR null hypothesis = constant variance hold

522 bp = matrix(c(6.8163 ,4 ,0.1459) ,nrow = 1,ncol = 3,byrow = T,dimnames = list(c("

Values"),c("Test statistic","Degree of freedom","p-value")))

523 htmlTable(bp ,caption = paste("Table 4.31: Breusch -Pagan"))

524 #normality

525 #shapiro.test(fitl2$residuals)

526 #DNR Null hypothesis= normality holds

527 sw = matrix(c(0.99348 ,0.9356) ,nrow = 1,ncol = 2,byrow = T,dimnames = list(c("

Values"),c("Test statistic","p-value")))

528 htmlTable(sw ,caption = paste("Table 4.32: Shapiro -Wilk"))

529

530 #Multicollinearity

531 require(car)

532 require(lmtest)

533 require(forecast)

534 #outliers

535 outlierTest(fitl2)

536

537 leveragePlots(fitl2 ,main = "")

538 title(main ="",sub = "Figure 4.39: Leverage Plots",outer = TRUE)

539 mtext("Figure 4.39 : Leverage Plots",outer = T,side = 1,line = -1)

540 #Influential

541

542 cutoff <- 4/((nrow(dataC1)-length(fitl2$coefficients) -2))

543 plot(fitl2 , which=4, cook.levels=cutoff)
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544

545 vif(fitl2) # variance inflation factors

546 sqrt(vif(fitl2)) > 2

547 #redo it after multicollinearity with appropriate model

548 fitl3 = lm(ElecConsumption ~ I(GDP^2) + I(CapExpediture ^-1),data = dataC1)

549 vif(fitl3) # variance inflation factors

550 sqrt(vif(fitl3)) > 4

551 summary(fitl3)

552 bptest(fitl3)

553 shapiro.test(fitl3$residuals)

554 extractAIC(fitl3)

555 stepAIC(fitl3)
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