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Abstract

The utility of lectures is directly related to the engagement of the students therein. To ensure the value

of lectures, one needs to be certain that they are engaging to students. In small classes experienced

lecturers develop an intuition of how engaged the class is as a whole and can then react appropriately

to remedy the situation through various strategies such as breaks or changes in style, pace and content.

As both the number of students and size of the venue grow, this type of contingent teaching becomes

increasingly difficult and less precise. Furthermore, relying on intuition alone gives no way to recall and

analyse previous classes or to objectively investigate trends over time. To address these problems this

thesis presents the WITS INTELLIGENT TEACHING SYSTEM (WITS) to highlight disengaged students

during class.

A web-based, mobile application called Engage was developed to try elicit anonymous engagement

information directly from students. The majority of students were unwilling or unable to self-report their

engagement levels during class. This stems from a number of cultural and practical issues related to

social display rules, unreliable internet connections, data costs, and distractions. This result highlights

the need for a non-intrusive system that does not require the active participation of students. A non-

intrusive, computer vision and machine learning based approach is therefore proposed.

To support the development thereof, a labelled video dataset of students was built by recording a

number of first year lectures. Students were labelled across a number of affects – including boredom,

frustration, confusion, and fatigue – but poor inter-rater reliability meant that these labels could not be

used as ground truth. Based on manual coding methods identified in the literature, a number of actions,

gestures, and postures were identified as proxies of behavioural engagement. These proxies are then

used in an observational checklist to mark students as engaged or not.

A Support Vector Machine (SVM) was trained on Histograms of Oriented Gradients (HOG) to clas-

sify the students based on the identified behaviours. The results suggest a high temporal correlation of

a single subject’s video frames. This leads to extremely high accuracies on seen subjects. However,

this approach generalised poorly to unseen subjects and more careful feature engineering is required.

The use of Convolutional Neural Networks (CNNs) improved the classification accuracy substantially,

both over a single subject and when generalising to unseen subjects. While more computationally ex-

pensive than the SVM, the CNN approach lends itself to parallelism using Graphics Processing Units

(GPUs). With GPU hardware acceleration, the system is able to run in near real-time and with further

optimisations a real-time classifier is feasible.

The classifier provides engagement values, which can be displayed to the lecturer live during class.

This information is displayed as an Interest Map which highlights spatial areas of disengagement. The

lecturer can then make informed decisions about how to progress with the class, what teaching styles to

employ, and on which students to focus. An Interest Map was presented to lecturers and professors at

the University of the Witwatersrand yielding 131 responses. The vast majority of respondents indicated

that they would like to receive live engagement feedback during class, that they found the Interest Map

an intuitive visualisation tool, and that they would be interested in using such technology.

Contributions of this thesis include the development of a labelled video dataset; the development

of a web based system to allow students to self-report engagement; the development of cross-platform,

open-source software for spatial, action and affect labelling; the application of Histogram of Oriented

Gradient based Support Vector Machines, and Deep Convolutional Neural Networks to classify this

data; the development of an Interest Map to intuitively display engagement information to presenters;

and finally an analysis of acceptance of such a system by educators.
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Chapter 1

Introduction

1.1 Introduction

S
TUDENT engagement is a pivotal concept when considering the utility of lectures. In an age

where even tertiary level content is available online, it becomes important for instructors

to differentiate themselves from online content sources. This is particularly true when teaching

large classes where interaction with the presenter is already limited.

Disengagement and boredom are fundamental and chronic problems with traditional modes

of instruction that effect up to 60% of students (Astin 1984; Larson and Richards 1991; MacHardy

et al. 2012; Shernoff et al. 2003). While research into student engagement originally focussed

on concerns relating to large drop-out rates, it should now be considered in relation to new

teaching modes that have emerged as a result of modern technology. As class and venue sizes

grow, the ability of the presenter to engage with the entire audience diminishes. In extreme

cases, the value of an expert lecturer can be lost completely if students are unable to interact

with him or her. In such cases, the efficacy of chalk-and-talk lectures over video and online

systems becomes questionable.

Online tutoring systems can provide video lectures, animations, spot tests with immediate

feedback, and custom lesson paths to each student. This is in stark contrast with lectures that

often degrade into frantic transcription or sleeping sessions.

The committed lecturer need not despair, however, as there are many examples of highly

effective lectures. Expert teachers and lecturers are able to gauge the emotional state of the

class and take steps to positively impact learning (Kapoor et al. 2007). A passionate lecturer’s

enthusiasm in class is contagious and can help instil a curiosity and excitement in learners

that may not be present through newer teaching modes (Picard 1995). Furthermore, lecturers

practising contingent teaching scaffold their classes in such a way that they go ‘off-script’ to

cater to the current state of the class (Draper and Brown 2004). This is considered by many

to be the definition of good teaching, albeit scarce and difficult to perform (van de Pol et al.

2011). This type of teaching is particularly difficult in large classes where just keeping track of

all the students can become a challenge.

The purpose of this thesis and through it the WITS INTELLIGENT TEACHING SYSTEM
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(WITS) is to support both lecturers and institutions in understanding and improving the qual-

ity of their lectures. WITS uses computer vision and machine learning techniques to monitor

students and report back about their engagement during class. Such a system could be used live

in class to assist lecturers with contingent teaching or as a self-evaluation tool with which they

can retrospectively assess how well they managed to engage their students. It could be used

when training new lecturers, or to understand the intuition developed by already established

ones. WITS may be able to identify students that are ‘at risk’ or even venues that show consis-

tent spatial patterns of disengagement that may be a result of some physical problem such as

lighting, acoustics or airflow. Finally, as a tool to support research, WITS can be used to assess

teaching strategies and to understand when students disengage and re-engage.

1.2 Contributions

This work contributes a number of novel aspects to the literature.

• A system to perform real-time analysis of students in large classes is proposed. Based on

a survey of the literature, it is believed that this is the first work to deal with the topic of

affect detection in a wild learning environment where subjects are not seated in front of

a computer.

• Engage, a web-based, open-source system to allow real-time, anonymous feedback about

interest during class, was developed and released (Klein and Celik 2017a).

• The WITS ANNOTATION TOOL (WITSAT) was developed and released. It is new cross-

platform and open-source software that allows the user to label videos along spatial,

action, and affective axes (Klein and Celik 2017d).

• The WITS DATABASE (WITSDB) was constructed and is a database of lecture videos

where students were labelled using WITSAT (Klein and Celik 2017d).

• Histograms of Oriented Gradients with Support Vector Machines were applied to WITSDB

to recognise an approximation of Interest (Klein and Celik 2017c).

• Convolutional Neural Networks with GPU hardware were used to improve accuracy and

achieve near real-time performance (Klein and Celik 2017b).

• An Interest Map to visualise the feedback was proposed, implemented and its accep-

tance by educators at the University of the Witwatersrand was assessed (Klein and Celik

2017c).

1.3 Overview

Chapter 2 presents background in Computer Science and Mathematics relating to the methods

used in this work. This primarily encompasses a discussion of Computer Vision and Machine

Learning, as well as their respective techniques. Chapter 3 presents related work in Affective

Computing and Education.
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Chapter 4 presents Engage, a web-based tool for real-time feedback from students and

discusses the problems associated with intrusive approaches like this. In Chapter 5 the need for

an automatic, non-intrusive approach to monitoring interest is argued, which also discusses the

development and creation of WITSAT and WITSDB. Chapter 6 applies Histogram of Oriented

Gradient features and Support Vector Machines to the labelled image sequences in WITSDB

and presents results thereof. Chapter 7 then documents the application of Convolutional Neural

Networks to the data which vastly improves accuracy, generalisation, and performance.

Chapter 8 focuses on the definition of interest using an observational checklist, as well as

the development of an Interest Map to visualise and report this information to the lecturer.

Responses from educators at the institution regarding the use and acceptance of the system are

also discussed.

Finally, Chapter 9 concludes with a discussion of the system in its entirety. This includes

ethical and practical aspects that should be considered when deploying the system, interpreting

the results of previous sections, and finally future work is proposed.
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Chapter 2

Background

2.1 Introduction

2.1.1 Computer Vision

Arguably one of the most impressive abilities of humans is our ability to almost effortlessly

perceive the world around us. While a young child can describe a scene or count the objects

in it, it is over thirty years since the inception of computer vision and the same is not (yet) a

solved problem for computers. The goal of computer vision is to imitate the human ability to

interpret and extract information from images and image sequences (Mallat 1990).

The difficulty of computer vision is that it is an inverse problem. Given a detailed model

of the world, computers can generate hyper-realistic images. Driven by the gaming and movie

industries, the field of computer graphics is mature and generates spectacular results that can be

unsettling in their realism. We understand how light interacts with different surfaces and how

lenses work to focus it on a retina or hardware sensor. Computer graphics can be considered

the forward problem, and computer vision the inverse.

Computer graphics aims to take a model and render it as an image. Conversely, computer

vision aims to take an image and construct a model of the world. The difficulty here is that

it must take incomplete data and build a solution. Given this incomplete data, often the need

arises for physics-based and probabilistic models (Szeliski 2010).

Computer vision already finds real-world applications in optical character recognition, ma-

chine inspection, retail checkout lanes, photogrammetry (building 3D models from aerial pho-

tographs), medical imaging, automotive safety (a fundamental aspect for self-driving cars), mo-

tion capture, surveillance, biometrics, remote sensing, robot guidance, and many more (Rosen-

feld 1988; Szeliski 2010). Disciplines of computer vision include image processing, feature de-

tection and mapping, segmentation, alignment, structure from motion, sparse and dense motion

estimation, image stitching, stereo correspondence, 3D reconstruction, rendering, and recogni-

tion techniques (Szeliski 2010).

In contexts like facial recognition, companies like Facebook are starting to approach human-

level performance with unprecedented accuracies of up to 97.35% over a dataset with four mil-
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lion images and over 4000 identities (Taigman et al. 2014). For facial recognition problems,

this means that over the last 20 years error rates will have decreased by well beyond three orders

of magnitude (Phillips et al. 2011).

Traditional recognition approaches such as Eigenfaces (Turk and Pentland 1991) used math-

ematical and statistical techniques to find patterns in pixel values over a database of images.

These approaches did not necessarily make use of the strong spatial correlations identified in

images. New features, such as wavelets, local binary patterns, histograms of oriented gradients,

and custom convolutional filters were developed to make use of the local and global spatial cor-

relations and to extract features that better describe the aspects that make up an image – such

as edges, gradients, textures, highlights and others.

These features are then usually the input into some machine learning process that uses

techniques such as support vector machines, linear or logistic regression, decision trees, and

neural networks. In recent years, new breakthroughs in deep learning have propelled computer

vision forward particularly with regard to object recognition and classification (Krizhevsky et

al. 2012). In deep learning, many-layer neural networks are used, often in conjunction with

convolutional and pooling layers, where the learning agent itself is responsible for learning

features that encapsulate the spatial information found in images.

Modern methods of recognition are primarily built upon machine learning approaches. Ma-

chine learning is considered in the following section.

2.1.2 Machine Learning

The fundamental goal of machine learning is to use experience to improve performance in some

way (Langley 1996; Shavlik and Dietterich 1990).

Learning involves. . .

“ . . . changes in a system that. . . enable it to do the same task or tasks

drawn from the same population more efficiently and more effectively the next

time. Simon (1983)

The idea is that by using prior experience, the machine itself updates its approach so that similar

problems can be solved in the future. It is inherently related to data analysis and statistics.

Primarily a science driven by data, the machine must use various computer science, statistics,

and optimisation techniques to identify patterns in a large data repository (Mohri et al. 2012).

The important aspects of learning include remembering, adapting, and generalising (Marsland

2015).

Generally computers can only do what they are told to do: step-by-step recipes or algo-

rithms are required to solve a problem. In contrast, the learning machine is not told how to

represent data, concepts, or even how to solve the problem at hand. It is presented with data

and must develop its own internal representation of knowledge based on what it sees and the

underlying model of the method. This approach is particularly useful when we do not know
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how to solve a problem, so the computer is programmed to explore some larger search space to

find a solution (Minsky 1961).

There are three main groups of machine learning algorithms: supervised, unsupervised, and

semi-supervised. In supervised approaches, the method is presented with data features, xi ∈ X ,

and labels, yi ∈ Y , and must learn some function, f : X → Y , that satisfies f(xi) = yi∀i.
In essence f must learn to capture the general patterns in the dataset so that it can be applied

to predict labels (y values) for new, unseen data (x values)(Shavlik and Dietterich 1990). The

structure of the model, f , is usually chosen beforehand according to the method used and

learning involves finding or optimising parameters for the function that best represents the data

by minimising some cost or loss function.

The second approach to machine learning is unsupervised learning or density estimation.

In this paradigm the process searches for similarities in the dataset and, based on its findings,

clusters data points into similar groups. No labels are presented to the system in this approach

and the algorithms rely purely on the identification of similar traits in each datum. This type of

learning is useful for clustering data where there are no labels or when doing feature selection

for other approaches (Marsland 2015).

The final paradigm is a semi-supervised approach where the system is given incomplete

feedback about its performance. The primary candidate for semi-supervised learning is called

Reinforcement Learning in which the system has probabilistic knowledge about the state of the

world and performs actions which probabilistically alter that state and produce some penalty

or reward. An agent’s goal is to take actions or make decisions that maximise the expected

reward. The agent is never told which actions to take, so this approach is not supervised,

but is given incomplete information about how its actions affected the world and is provided

some penalty or reward. Reinforcement learning was originally coined by Minsky (1961), but

remained largely dormant until the early 1980’s (Sutton and Barto 1998).

This work makes use of supervised learning approaches to vision. In all cases the approach

follows the same pipeline:

1. Labelled images undergo feature extraction to develop a data representation that empha-

sises the high spatial correlation thereof.

2. This feature representation undergoes dimensionality reduction to more compactly ex-

press the information in the feature vectors.

3. The reduced dimensionality feature vectors along with the corresponding labels are pre-

sented to the system and some numerical optimisation technique is used to find the set of

parameters, p, so that the model, f , best describes the data.

2.1.3 Overview

The rest of this chapter presents techniques from computer vision and machine learning that

are used later in this work. Section 2.2 shows some common vision and feature extraction

methods. These include convolutional filtering, optical flow, Haar Wavelets, Histogram of

Oriented Gradients (HOG), and Local Binary Patterns (LBP). Section 2.3 then presents some
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machine learning techniques including Support Vector Machines (SVM), the Viola-Jones Cas-

caded Classifier, and Deep Convolutional Neural Networks. Section 2.4 considers how to use

multi-sensor and/or temporal data with methods that do not explicitly support it. Section 2.6

presents the validation techniques that are used to report accuracy and examine generalisability.

2.2 Computer Vision Techniques

2.2.1 Convolution and Linear Filtering

A pervasive technique in computer vision and signal processing is linear filtering or convolu-

tion. A convolution kernel linearly combines the local neighbourhood of a pixel to produce a

response. By placing the kernel over each pixel in the original image, all the responses together

form the filtered image. Formally, the convolution (g) of an image, signal or function (f ), and

a kernel (h), is

g(i, j) =
∑

k,l

f(i− k, j − l) · h(k, l), (2.1)

where g is the filtered output. This can be written using the convolution operator (∗) as

g = f ∗ h. (2.2)

This linear convolution is illustrated in Figure 2.1 on the following page. The centre of the

kernel (0.62) is placed over the 87 in the second row of the image. The values in the image are

multiplied with the corresponding values in the kernel and the response is calculated as

g(1, 1) = 70 · 0.01 + 245 · 0.08 + 129 · 0.01 (2.3)

+173 · 0.08 + 87 · 0.64 + 178 · 0.08
+167 · 0.01 + 149 · 0.08 + 227 · 0.01

= 121.

The strategy to handle borders varies between implementations. Often the filtered image is

smaller than the original image as pixels where the kernel goes outside the image are excluded.

Other approaches calculate the response based on the numbers that are available (as illustrated

in Figure 2.1), otherwise the neighbourhood around the border can be repeated or mirrored

beyond the image boundary as well.

The filter in Figure 2.1 is a smoothing filter that performs a Gaussian blur over the image.

Filters can perform a number of different functions based on the weights of the kernel. The

results of a Gaussian blur and Laplacian edge detector are shown in Figures 2.2b and 2.2c.

2.2.2 Optical Flow

Optical flow tracks the perceived motion of objects relative to the image coordinates. This mo-

tion may be apparent due to movement of the camera or of the object itself. By allowing the
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70 245 129 38 237 90

173 87 178 66 89 212

167 149 227 214 50 149

41 57 245 65 64 140

30 192 140 208 157 234

127 65 35 62 121 73

∗

0.01 0.08 0.01

0.08 0.64 0.08

0.01 0.08 0.01

=

79 183 121 62 172 94

141 121 161 90 107 165

137 145 211 175 78 129

50 92 204 106 82 127

49 151 146 172 154 181

91 72 48 72 105 77

Figure 2.1: Linear Convolution

(a) Original Image (b) Gaussian Blur Filter (c) Laplacian Filter

Figure 2.2: Convolution Filters
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tracking of pixels’ trajectories through consecutive frames, optical flow is used in a number of

applications. Structure from motion uses monocular vision to build a 3D reconstruction based

on camera movement – this is similar to the way that humans detect depth when one eye is

closed (Koenderink 1986). Video compression codecs, such as h264, track the movement of

objects to minimise the number of pixel values to be stored for frame reconstruction (Richard-

son 2004). Video stabilisation can be performed using optical flow to estimate shaking of the

camera (Chang et al. 2002; Liu et al. 2014). Optical flow has even been used to perform action

recognition by tracking dense trajectories of pixels (Wang et al. 2011).

Optical flow algorithms generally make two assumptions (OpenCV 2015):

1. The pixel intensities of objects do not change between consecutive frames.

2. Neighbouring pixels have similar motion paths.

Points are tracked using the flow velocity equations. The derivation of the flow velocity

equation, shown in Equation (2.6), is based on Horn and Schunck (1981). A similar derivation

based on the Taylor series expansion can be found in OpenCV (2015).

Let the intensity of a point (x, y) in the image at time t be I(x, y, t). Based on the first

assumption, the pixel intensity of the point does not change between consecutive frames, there-

fore:

dI

dt

∣

∣

∣

∣

(x,y,t)

= 0. (2.4)

x and y are functions of t as the point is moving in the image over time, so applying the chain

rule yields:
∂I

∂x
· dx
dt

+
∂I

∂y
· dy
dt

+
∂I

∂t
= 0 (2.5)

This can be rewritten as

Ixu+ Iyv = −It, (2.6)

where u = ẋ = dx
dt

, v = ẏ = dy

dt
, and Ix, Iy, It are the partial derivatives of intensity with

respect to x, y, and t respectively at position (x, y). This is a linear equation in two unknowns

and to solve this equation a second constraint is required. Various approaches are considered

in literature, but this work makes use of the Lucas-Kanade (LK) algorithm (Lucas et al. 1981).

The LK algorithm uses pixels in the neighbourhood of the current one to provide the missing

information. If the second assumption holds, then the neighbouring 8 pixels will move in the

same way. The image brightness gradients (Ix, Iy, and It) can be calculated at each of the nine

points. This creates Equation (2.7), a set of nine linear equations with two unknowns.















Ix1
Iy1

Ix2
Iy2

...
...

Ix8
Iy8

Ix9
Iy9















[

u
v

]

= −















It1
It2
...

It8
It9















(2.7)
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To solve this overdetermined linear system a linear least squares fit is used. For some

overdetermined linear system,

Ab = y, (2.8)

the linear least squares fit is given by (Strang et al. 1993)

b = (ATA)−1ATy. (2.9)

Substituting Equation (2.7) into Equation (2.9) gives:

[

u
v

]

=

[
∑

i I
2
xi

∑

i Ixi
Iyi

∑

i Ixi
Iyi

∑

i I
2
yi

]−1 [ ∑

i Ixi
Iti

∑

i IyiIti

]

(2.10)

where i ∈ {1, 2, . . . , 9}. This system yields values for u and v which in turn describe the

movement of the point being tracked across frames.

This method can be used with image pyramids to efficiently handle movement over multiple

scales (Bouguet 2001). The base of the pyramid is the original image and the width and height

of the image is halved on subsequent levels. This is the method used for optical flow throughout

this work.

2.2.3 Histogram of Oriented Gradients (HOG)

When performing machine learning over images or image sequences, features that take into

account the high spatial correlations of visual data should be used. In particular, gradients

in local neighbourhoods of an image often prove useful. Dalal and Triggs (2005) developed

the Histograms of Oriented Gradients (HOG) feature descriptor for use identifying pedestrians

through computer vision.

At a high level, to calculate the HOG feature the image is divided into cells. Gradients over

the different pixels within each cell are calculated and a histogram of the directions is built. The

histograms are then normalised over larger regions called blocks. These normalised histograms

are known as the HOG descriptors. These features are then presented to machine learning

methods (such as support vector machines) which then learn to classify the image according to

given labels. A more detailed description of process is given below.

First, the image colour is normalised. Performing convolution using the filters in Equa-

tion (2.11) yields the image gradients in the x and y directions respectively. This method

resembles the Laplacian operator from Figure 2.2c. Other gradient detecting operators such as

the Sobel operator could also be used. Based on the original image in Figure 2.2a, Figure 2.3

shows the horizontal and vertical gradient responses.

[−1, 0, 1]T and [−1, 0, 1] (2.11)

The gradient can be converted from Cartesian coordinates to polar coordinates by com-

bining the x and y derivatives (gx, gy) as shown in Equations (2.12) and (2.13). The gradient

magnitude image is shown in Figure 2.3c.
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(a) Horizontal Edges (gy) (b) Vertical Edges (gx) (c) Gradient Magnitude (g)

Figure 2.3: Gradient Detection

g =
√

g2x + g2y (2.12)

θ =arctan
gy
gx

(2.13)

Once in polar coordinates, each pixel corresponds to both a magnitude (Equation (2.12))

and direction (Equation (2.13)). The gradient directions can range from 0 to 2π radians or can

be converted to range between 0 and π. These correspond to signed and unsigned approaches.

Figure 2.4 shows a small region of the same image with the gradient vector field superimposed.

Experimental analysis by Dalal and Triggs (2005) showed that the unsigned approach provides

better results when detecting humans.

These gradient directions are then quantised into 9 bins. The image is divided into cells that

are each 8 × 8. Each pixel in the cell has a vote to that cell’s overall histogram binned by its

quantised direction and weighted by its magnitude. Four neighbouring cells are then used to

form 2 × 2 overlapping blocks. Using the L2 norm, the 4 histograms that make up block are

normalised.

Finally, the histograms over the entire image are concatenated into a single feature vec-

tor which can be used for training and testing. The histograms of each cell are illustrated in

Figure 2.5. An example of the HOG descriptor over a larger 256 × 256 image is provided in

Figure 2.6.
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Figure 2.4: Gradient Vectors

Figure 2.5: HOG Feature Descriptor
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Figure 2.6: HOG Feature Descriptor Over a 256× 256 Image

2.2.4 Local Binary Patterns

Originally proposed by Ojala et al. (1996), Local Binary Patterns (LBP) are used as texture

descriptors. They work well for unsupervised segmentation tasks (Ojala and Pietikäinen 1999)

and as features for face detection (Ahonen et al. 2006).

The original formulation uses 3×3 neighbourhoods. To calculate the response of the current

pixel, its eight neighbours are thresholded using the current pixel’s intensity. For the pixel at

(x, y) consider its eight neighbours, (xi, yi), by moving around the centre pixel in a circle.

s(z) =

{

1, if z ≥ 0
0, otherwise

(2.14)

LBP =
7
∑

i=0

s(I(x, y)− I(xi, yi)) · 2i (2.15)

This is illustrated in Figure 2.7. The current pixel has an intensity of 87. Each neighbour with

a value greater than 87 is considered a 1, otherwise a 0. Moving circularly around the centre

pixel starting at the top left, the eight neighbours are written to build an 8-bit binary number.

This number is the LBP descriptor for the centre pixel.

LBPs were later extended to support multiple size neighbourhoods (Ojala et al. 2002). A

circle is still traced around the centre pixel, but at some radius, r, and with p sampling points

13



170 245 129

64 87 178

40 149 80

→

1 1 1

0 87 1

0 1 0

→ 11110100(2) → 244(10)

Figure 2.7: Local Binary Patterns

rather than eight. Bilinear interpolation is used to calculate the intensity where the sample point

along the circle does not land directly on a pixel.

Once a local binary pattern is calculated for each pixel, they are grouped into cells and

blocks just as the HOG features were. A normalised histogram over the different blocks can be

calculated, which in turn can be used as the feature descriptor for subsequent machine learning

methods.

Note that the HOG and LBP feature descriptors are neither scale nor rotationally invariant.

2.2.5 Haar-like Features

Haar-like features are based on the Haar Wavelet which can be used to represent a function as

a decomposition of orthonormal functions in a manner analogous to a Fourier decomposition.

The Haar wavelet is the discrete step function on a fixed interval shown in Equation (2.16).

ψ(t) =







1 0 ≤ t < 0.5,
−1 0.5 ≤ t < 1,
0 otherwise.

(2.16)

Viola and Jones (2001) used Haar-like features for the purpose of face detection. These

features involve a number of rectangles as seen in Figure 2.8. The black and white areas

correspond to values of −1 and 1 in a convolutional kernel. In general they make use of

three types of features: 2-rectangle, 3-rectangle, and 4-rectangle type features. They used the

boosting machine learning technique in conjunction with many cascaded weak classifiers to

design a real-time face detector that has become the standard in face detection.

Importantly, Viola and Jones (2001) introduced the concept of an integral image. The

integral image can be computed once for an image in O(wh) operations where w is the width

and h is the height. Once the integral image is available, the rectangular Haar-like features can

be calculated at any location, over any scale in constant time – O(1).

Given some image, I, the integral image, II, at some point (x, y) is defined as the sum of

all the pixels above and to the left of (x, y) inclusive:

II(x, y) =
∑

x′≤x
y′≤y

I(x′, y′). (2.17)
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Figure 2.8: Haar-Like Features (Viola and Jones 2001)

C

A

D

B
p1 p2

p3 p4

Figure 2.9: Integral Image Regions

It can be implemented using a dynamic programming approach with the following two recur-

rence relations:

S(x, y) = S(x, y − 1) + I(x, y) (2.18)

II(x, y) = II(x− 1, y) + S(x, y). (2.19)

S is the cumulative row sum and using these two formulae, the full integral image is computed

from a single pass over the image.

The rectangular features are all constructed using blocks of ±1. Contrary to normal convo-

lution, the rectangular filter is convolved with the image at a particular position only and each

position of the filter is considered a different feature. When performing convolution with these

filters, it is sufficient to sum all the pixels in the positive region, all the pixels in the negative

region, and then subtract the two subtotals. Using the integral image, the sum for each region

can be computed in constant time by looking at the locations of the four corners.
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70 245 129 38 237 90

173 87 178 66 89 212

167 149 227 214 50 149

41 57 245 65 64 140

30 192 140 208 157 234

127 65 35 62 121 73

(a) Original Image

70 315 444 482 719 809

243 575 882 986 1312 1614

410 891 1425 1743 2119 2570

451 989 1768 2151 2591 3182

481 1211 2130 2721 3318 4143

608 1403 2357 3010 3728 4626

(b) Integral Image

Figure 2.10: Using the Integral Image

Consider Figure 2.9: the value at point p1 contains the sum of region A, the value at p2
contains A+B, point p3 contains A+C, and point p4 contains A+B+C+D. To get the sum over

D only the formula is p4 − p3 − p2 + p1

Figure 2.10 shows an image and its corresponding integral image. The sum over the high-

lighted region is just 2721 − 481 − 482 + 70 = 1828. Summing the 12 pixel values from the

original image results in the same value but takes linear time in the number of pixels being

summed.

The Cascade Classifier detection algorithm from Viola and Jones (2001) is based on these

features and is presented in detail, in Section 2.3.5.

2.3 Supervised Machine Learning Techniques

There are primarily two applications of supervised machine learning techniques: regression and

classification (Marsland 2015). Regression focuses on function approximation or interpolation:

fit a curve through the data so that it passes as close as possible to each point. For example,

given a number of points generated by some linear function with noise, linear regression will

try to learn coefficients for a straight line that best describes the data.

On the other hand, classification aims to divide the data into discrete categories. Based on

the features presented to it, the system tries to learn boundaries between the different classes of

data. For example, in Figure 2.11 there are three different classes. When learning, the system

tries to find the parameters of a curve, hyperplane, or surface that best separates the different

categories. A datum is then classified according to its position above or below these boundaries.

This work aims to classify students into a number of categories, therefore the focus is on

classification and not regression. This section presents a number of classification techniques

that are used in the rest of the thesis.

16



Figure 2.11: Classification Boundaries (Marsland 2015)

2.3.1 Feature Vectors

As discussed in the previous sections, machine learning algorithms perform learning, classifi-

cation and regression on some feature vector. The feature vector is some numerical encoding of

the original data which is the input into the classification or regression. The features can map

directly onto the input data, or can provide statistical or summary information that encodes

more abstract concepts.

For example, suppose a system is being trained to recognise South African bank notes as

seen in Figure 2.12. A nı̈ave way to pass the data to the system is to present a vector of

the raw pixel intensities. This approach presents a challenge to the system due to the high

dimensionality of the input. Because of this, the classifier will take longer to train, will need

significantly more samples, and may not work as accurately or as fast as it otherwise could.

Figure 2.12: South African Rands (South African Reserve Bank 2017)
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Looking at the notes, it is immediately evident that the notes could be easily classified by

looking at the colour and shape only. By extracting the average colour or hue and measuring

the length of the note, the classifier could be trained based on these two features only. Such

a classifier will need fewer training samples and parameters which means it will both train

and classify faster. It is likely that such a classifier will achieve a higher accuracy as a fewer

number of parameters make it less prone to over-fitting where the classification boundary more

resembles an interpolation of the points rather than finding overall trends in the data.

In general the selected features should be fast to compute, and should separate the data in

a manner that the learning algorithm will be able to classify. For example, if the classifier can

only differentiate between linearly separable input vectors then the features must represent the

data in a way that supports this model. Poor feature selection may mean that the classifier is

unable to accurately represent the underlying structure and it will perform poorly regardless of

the number of training samples and training time.

Common features used in computer vision applications include the responses of various

convolutional filters, edge detectors, Laplacian of Gaussians, Local Binary Patterns, and Haar-

like features.

2.3.2 Linear Separability and Kernel Functions

Linear classifiers learn the parameters or weights of a straight line (2D), plane (3D), or hyper-

plane (higher dimensionality) that separates the different categories of data. For example, in

Figure 2.13 there are two categories of data and the classifier has learnt to separate them using

the straight line

y(x) = w · x+ b, (2.20)

where w is the weight vector, x is the input feature vector, and b is some constant bias. Classi-

fication on some input vector, xi, is performed by

L(x) =

{

1, if w · x+ b > 0
0, otherwise.

(2.21)

Training the classifier focuses on finding the best weight vector w so that Equation (2.21)

classifies optimally.

As alluded to in the previous section, for this kind of classifier to work the feature vectors

representing the data must be linearly separable. The data shown in Figure 2.13 on the next

page is indeed linearly separable as it is possible to draw a straight line that correctly divides the

data into the relevant categories. In many real-world examples the data is not linearly separable

as seen on the left-hand-side of Figure 2.14.

In such cases a linear classifier will fail as no hyper-plane exists that correctly partitions the

data. Alternative features should be considered and added to the representation. If there is no

alternative data available, kernel methods can be used to help embed the features in a higher

dimensional space.

As seen in Figure 2.14, by adding features corresponding to a second degree polynomial

over the original values, the data now becomes linearly separable and a separating hyper-plane
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Figure 2.13: Linearly Separable Data (Kiyoshi Kawaguchi 2000)

Figure 2.14: Adding Features for Linear Separability (Friedman et al. 2001)
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can be found. The problem now is that the dimensionality of the feature space explodes in size

and the algorithms generally become computationally expensive.

For the original 3D feature, [x1, x2, x3], the second degree polynomial feature Φ(x) be-

comes:

Φ(x) = [1,
√
2x1,
√
2x2,
√
2x3, x

2
1, x

2
2, x

2
3,
√
2x1x2,

√
2x1x3,

√
2x2x3]. (2.22)

The size of the feature vector has gone from 3 to 10 dimensions. The number of dimensions

is O(ds) where d is the original number of dimensions and s is the degree of the polynomial.

The feature vector can be transformed using polynomials of degree s, sigmoid functions with

parameters κ and δ, or with radial basis functions with parameter σ. Other transformations can

even map the features to an infinite number of dimensions. In general the amount of work done

increases exponentially or in the infinite case numerically considering these vectors becomes

impossible (Marsland 2015).

In these cases the computational costs are too high and the methods fail. However, in linear

classification the fundamental operation is usually the dot product of two vectors. To calculate

the dot product of vectors of length n,O(n) multiplications and additions are performed. Using

the extended basis shown in Equation (2.22) this results in O(ds) operations. For example,

using the second degree polynomial above, the dot product of two transformed vectors, Φ(x)
and Φ(y), is:

Φ(x) · Φ(y) = 1 + 2
d
∑

i=1

xiyi +
d
∑

i=1

x2i y
2
i + 2

d
∑

i=2

i−1
∑

j=1

xixjyiyj, (2.23)

where d is the dimensionality of the original feature vector x (Marsland 2015). This results in

O(d2) operations.

However, a kernel function that yields the same result can be used to replace the original

dot product. Using the binomial theorem, or the multinomial theorem for higher degrees, the

kernel, K, is

Φ(x) · Φ(y) = K(x,y) = (1 + x · y)s (2.24)

In the polynomial kernel in Equation (2.24), not only is the number of operations reduced

from O(d2) to O(d), but the extra values in the extended basis need not be calculated or stored

at all. The kernel provides an efficient method to calculate the dot product of an extended

feature set, without even having to calculate the extended features.

Equivalent kernels for the sigmoid (Equation (2.25)) and radial basis function (RBF, Equa-

tion (2.26)) expansions are provided below.

K(x,y) = tanh(κx · y − δ) (2.25)

K(x,y) = exp(−(x− y)2/2σ2). (2.26)

In summary, for a linear classifier to function, the data must be linearly separable. If it is

not, expanding the feature set using polynomial, sigmoid, and radial basis functions can often

provide the required separability. However, these expansions introduce a large number of extra

dimensions to the feature space which can have a significant impact on the computational costs.
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In linear classifiers the main operation is usually the dot product of vectors. Kernel functions

provide an efficient way to calculate dot products over the extended feature vectors without

needing to evaluate or even store the extended features.

2.3.3 A Linear Classifier: The Neuron

In the previous section, linear classifiers were briefly introduced alongside the importance of

the linear separability of data. Kernel functions provide an efficient mechanism to deal with

data that is not linearly separable and are used extensively by Support Vector Machines (SVMs)

which are discussed in Section 2.3.4. Before considering the SVM, however, this section in-

troduces the simplest linear classifier, known as the McCulloch and Pitts (1943) neuron. The

neuron is illustrated in Figure 2.15 and is a simplified mathematical model of an actual neuron.

There are three parts to the neuron:

1. n input weights, labelled wi, that correspond to the synapses that connect real neurons,

2. an adder that sums the weighted input, just as a neuron cell’s membrane would accumu-

late an electrochemical charge, and

3. an activation function that decides whether the cell fires based on its input.

The features, xi, are presented as input to the neuron and the neuron calculates the weighted

sum as

h(x) =
n
∑

i=1

wi · xi = w · x (2.27)

This value goes into the activation function, gθ(h),

gθ(h) =

{

1 if h > θ
0 if h ≤ θ,

(2.28)

which decides whether the neuron fires or not. This is equivalent to the linear classifier from

Equation (2.21) where b = −θ. This threshold or bias allows the adjustment of the neuron’s

response when the input values are all 0. Training the neuron involves the iterative adjustment

of both the weights and the bias until the neuron classifies the data optimally.

To simplify the training process, the bias can be folded into the weights with a bias node

that always has an input value of 1 as illustrated in Figure 2.16. w0 corresponds to the bias

weight, but can be trained exactly the same as the other weights.

The weights can be updated using the following rule:

wi ← wi + η(t− y) · xi, (2.29)

where t is the target output, y is the actual output, and η is a parameter called the learning

rate which is equivalent to the step size in numerical optimisation. If t = y then the input is

correctly classified and no adjustment is made. If t = 1 and y = 0 then the neuron did not fire

when it should have. This means that the weighted sum of the inputs was not large enough and

each weight is increased by some proportion, η, of the corresponding input. If the input for xi
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Figure 2.15: McCulloch and Pitts (1943) Neuron
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Figure 2.16: Neuron with Bias
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was 0, then it did not contribute to the summation and the relevant weight is left unchanged.

Contrastingly, if t = 0 and y = 1 then the neuron did fire when it should not have. In this case,

the rule decreases the weight of all contributing synapses.

Performing this procedure over all the training samples corresponds to a single epoch. Mul-

tiple training epochs should be done, usually with a decreasing learning rate, until some maxi-

mum number of iterations or the required accuracy is reached.

The neuron finds a linear hyperplane to classify the data into one of two categories – where

the neuron fires, and where it does not. However, there are no constraints on the actual hy-

perplane that separates the data. The SVM considered in the following section imposes an

optimality constraint on the hyperplane that separates the two classes.

2.3.4 Support Vector Machines

The Support Vector Machine (SVM) is one of the most popular algorithms in modern machine

learning. It was introduced by Vapnik (1995) and in its simplest form is a linear classifier

that attempts to place a hyperplane between two categories of data. The neuron update rule

in Equation (2.29) iteratively updates the decision boundary until an acceptable number of

data points are correctly classified. The SVM, on the other hand, attempts to find a decision

boundary that is optimal in some way.

Figure 2.17 illustrates three hyperplanes, H1, H2, and H3. The first hyperplane, H1, is

obviously a bad choice as it incorrectly classifies most of the black circles. Both H2 and H3,

however, classify all the data points correctly. This invites the question whether one plane is

better than the other and if so, by what criteria are they are judged.

“ However, if you had to pick one of the lines to act as the classifier for a set of

test data, I’m guessing that most of you would pick the line shown in the middle

picture. It’s probably hard to describe exactly why you would do this, but somehow

we prefer a line that runs through the middle of the separation between the data

points from the two classes, staying approximately equidistant from the data in both

classes. Marsland (2015)

This intuition stems from a sense that if the training data truly indicates some underlying

process, then when new points are drawn some will be closer the decision boundary. Without

more information there is no way of knowing where the actual dividing line sits, but by placing

the separator down the middle of the gap it minimises the probability that new points will fall

on the wrong side of the line and therefore be incorrectly classified. By building in an equal

sized margin on each side, it also ensures that small variations in the features do not cause

unintended misclassifications.

By requiring the margin to be maximal, it decreases the number of ways the decision bound-

ary can be placed. As a result, the memory capacity of the model is decreased which can lead to

a decrease in over-fitting and an increase in generalisability due to the bias-variance trade-off

(Manning et al. 2008). This optimal hyperplane is illustrated in Figure 2.18.
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Figure 2.17: Separating Hyperplanes (Weinberg 2012)

The following derivation of the optimal hyperplane is based on those in Friedman et al.

(2001), Manning et al. (2008), and Marsland (2015) and assumes that the data is linearly sepa-

rable. Notation is similar to that of Manning et al. (2008).

Let the decision surface be the hyperplane, 〈w, b〉 defined by

w · x+ b = 0. (2.30)

Let the linear classification, g(x), for the SVM be

g(x) = sign(w · x+ b), (2.31)

where w contains the parameters of the decision boundary and the intercept, b, is some bias

that is not folded into the weight parameters. g yields values from {−1, 1} that correspond to

each of the two classes. This differs from conventional linear classifiers that use {0, 1}.
Let the set of data points D = {(xi, yi)}, where xi ∈ Rl is the input vector, yi ∈ {−1, 1} is

the label and l is the length of the input features.

Define the functional margin of the ith data point, xi, with respect to 〈w, b〉, to be

mi = yi · (w · x+ b). (2.32)

The functional margin of the entire dataset is then

m = min
i
(2mi), (2.33)
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Figure 2.18: Optimal Separating Hyperplane

which is twice the minimum functional margin over all the points. The factor of 2 comes from

measuring the width of the margin on each side of the hyperplane. At this stage there is still an

unconstrained degree of freedom in the hyperplane – and therefore in the functional margin –

as a constant scaling factor can be applied to w and b without changing the plane, i.e. 〈w, b〉
and 〈αw, αb〉 are equivalent hyperplanes, but result in different functional margins. Because of

this, a constraint on the size of w is required.

Let r be the Euclidean distance from some point x to the decision boundary. The shortest

path is the line that passes through x perpendicular to the plane. The unit vector in this direction

is w
||w||

. Let x′ be the intersection of the decision boundary and this line. Therefore,

x′ = x− yr w

||w|| (2.34)

where multiplying by y swaps the sign for when the point is above or below the decision

boundary. Because x′ is on the decision boundary,

w · x′ + b = 0. (2.35)

25



Substituting Equation (2.34) into Equation (2.35) gives the following formula for r:

w·(x− yr w

||w||) + b = 0 (2.36)

w · x− yrw ·w||w|| + b = 0 (2.37)

w · x− yr ||w||
2

||w|| + b = 0 (2.38)

w · x− yr||w||+ b = 0 (2.39)

yr||w|| = w · x+ b (2.40)

r =
w · x+ b

y||w|| (2.41)

r = y

(

w · x+ b

||w||

)

. (2.42)

In the final line, y can be moved from the denominator as its value can be only −1 or 1.

The data points with a minimal distance between them and the decision surface are termed

support vectors and these vectors are ultimately responsible for the placement of the decision

surface. The geometric margin is the maximum width of the band that can separate the support

vectors in each class and is independent of the scaling mentioned earlier due to the normalising

||w|| term in r. Because of the independence of the geometric margin on scale, any scaling

constraint can be imposed on w. Therefore, we can choose to require that the functional margin

of each point in the dataset is at least 1, and for at least one datum in each category to equal 1.

In other words,

yi(w · xi + b) ≥ 1 (2.43)

∃ support vectors S ⊂ D, such that (xi, yi) ∈ S ⇒ yi(w · xi + b) = 1. (2.44)

To calculate r for the support vectors, substitute Equation (2.44) into Equation (2.42):

ri =
yi(w · xi + b)

||w|| (2.45)

=
1

||w|| . (2.46)

Hence, the geometric margin, ρ, is

ρ =
2

||w|| =
2√

w ·w . (2.47)

The aim of training the SVM is to find the decision surface that maximises this geometric

margin. Therefore, training the SVM involves maximising ρ subject to the condition that

∀(xi, yi) ∈ D, yi(w · xi + b) ≥ 1. (2.48)

It is easy to see that the maximisation problem is solved by minimising the objective func-

tion L(w), subject to the same condition.

L(w) = w ·w (2.49)
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The solution can be found through the dual problem using Lagrange multipliers. A La-

grange multiplier, αi is associated with each constraint in Equation (2.48) and the problem

becomes:

max
ai

(

∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyjxi · xj

)

(2.50)

such that
∑

i

αiyi = 0, and αi ≥ 0 ∀αi (2.51)

The SVM parameters are then:

w =
∑

i

αiyixi (2.52)

b = yk −w · xk, for any k where ak 6= 0, (2.53)

and the support vectors, xi, are those that correspond to ai 6= 0. This shows how the placement

of the decision boundary relies on the support vectors only.

To handle cases where the SVM may have misclassified some data points because the data

is not linearly separable, the objective function can be updated to:

L(w) = w ·w + λ

R
∑

i=1

ǫi, (2.54)

where ǫi is the distance to the correct side of the margin known as the slack variable and R is

the number of incorrect classifications (Marsland 2015; Ramanan 2008). λ is then a parameter

that controls the trade-off between a large geometric margin and a misclassified data point. This

is called a soft margin SVM and αi from Equation (2.51) is now bounded above by λ:

0 ≤ αi ≤ λ ∀αi. (2.55)

Note that the only computation that ever involves x is the dot product seen in Equa-

tion (2.50). This means that while the method is fundamentally designed for data that is linearly

separable, it lends itself to the types of kernel functions discussed in Section 2.3.2. By including

polynomial, radial-basis, or sigmoid functions, data that is not linearly separable can be em-

bedded in higher dimensional spaces. When using the data directly, this results in an explosion

in the number of dimensions and therefore the storage and computational costs. However, the

kernels provide a way to calculate the dot product of the extended feature vectors without ever

having to construct them, and therefore retain the original computational complexity. Using the

kernel trick in this way, SVMs can be used successfully in a number of cases where the data is

otherwise not suitable to linear classification.

2.3.5 Boosting and Viola-Jones

Ensemble Learning is an approach where a number of classifiers are used to construct a single,

strong, highly accurate classifier. The idea behind ensemble learning is that classification or
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regression is made by votes cast by a committee of predictors. Boosting is an ensemble learning

approach where multiple weak classifiers are trained in this way. Each weak classifier need only

perform slightly better than chance. When querying the system, the response from each of these

weak learners is then combined to form a composite predictor (Friedman et al. 2001; Marsland

2015).

Adaboost (Freund and Schapire 1995) is the most popular boosting algorithm. In Adaboost,

some number, m, of weak classifiers, Gi, are trained on weighted data points. At the end of the

algorithm the final output is the sign of the weighted sum of the classifiers.

At the start of the algorithm the observation weights, wi, i = 1, 2, . . . , n, are initialised to
1
n

. The first classifier, G1, is trained on the data and its error rate is calculated. The weight,

wi, of each incorrectly classified data point or observation is then increased while the weights

corresponding to incorrectly classified points are decreased. The next classifier, G2, is then

trained on the data so that it more carefully focuses on observations with a heavier weight, i.e.

those that were misclassified by the previous stage. The error rate of this stage is calculated

and the observations’ weights are updated accordingly. The process repeats until all classifiers

have been trained.

The final output is then:

G(x) = sign

(

m
∑

i=1

αiGi(x)

)

(2.56)

where the coefficients αi are related to the error rate of the classifier. By adjusting the weights at

each level, the classifiers are forced to focus their attention on data points that were incorrectly

classified on previous levels (Friedman et al. 2001).

The Viola and Jones (2001) algorithm performs visual object detection in images and uses

the Haar-like features and integral image discussed in Section 2.2.5. They note that with a

24 × 24 base resolution, the exhaustive set of rectangle features has over 180,000 members.

An algorithm would need to calculate these features for each position of a sliding window over

multiple image scales. This is unsuitable for any real-time system and a more efficient approach

was needed in spite of the dramatic performance improvements due to the integral image.

Inspired by the Adaboost method, they hypothesised that even with only a few the avail-

able features an effective classifier could be constructed. The challenge was finding the useful

features in the set and constructing a strong classifier to use them. A weak classifier, hj(x),
is defined that consists of a single feature, fi, a threshold, θj and a parity, pj , that adjusts the

direction of the inequality:

hj(x) =

{

1 if pjfj(x) < pjθj,
0 otherwise,

(2.57)

where x is a 24 × 24 image-patch and a fi is a feature (2/3/4-rectangle Haar-like feature)

in a specific position and scale. In practice none of these weak classifiers can function with

significant accuracy, but through boosting significant improvements are found.

Viola and Jones (2001) propose an adaptation to the Adaboost approach where they use

a degenerate decision tree in a cascade as illustrated in Figure 2.19. The cascade works by

28



Input Sub-Windows

G1 G2 G3 Further Processing

Reject Reject Reject

T T T

FFF

Figure 2.19: Cascade Classifier

identifying classifiers that are able to reject negative samples accurately, while still allowing all

the potential positive candidates through. The idea is that a simple classifier can quickly reject

image-patches or sub-windows that are definitely negative allowing the algorithm to focus in-

stead on more probable candidates. In such a case, each stage of the process should prioritise

a low false negative rate, over a false positive rate. This means that the classifier would rather

pass a negative image on to the following stage than to accidentally reject a positive image.

Viola and Jones (2001) show that for the first stage a two-feature strong classifier can be

built using Adaboost. The threshold can then be adjusted to minimise the false negatives at the

expense of more false positives. They were able to get their classifier to detect 100% of faces,

with a false positive rate of 40%. Suppose a hypothetical dataset of 50 faces and 50 non-faces:

such a classifier would accept all 50 faces as well as 20 of the non-faces. By performing two

extremely simple, constant time feature calculations this classifier is able to reject 30% of that

hypothetical data which means that a more complicated classifier can be implemented for the

second stage that needs to check fewer images.

The cascade design exploits the fact that the vast majority of image-patches are non-faces

and should be rejected early. With each layer of the cascade, a stronger but more computation-

ally expensive classifier is used. Training a cascade classifier is computationally expensive as

the best weak classifiers need to be identified and then merged into a number of strong clas-

sifiers – this involves a lot of time spent training classifiers that are ultimately discarded. The

trade off is that when correctly configured, such a classifier is able to work with very high

reliability and in real-time.

2.3.6 Deep Learning and Convolutional Neural Networks (CNN)

The final approaches to machine learning presented in this work are related Artificial Neural

Networks. Section 2.3.3 presented an artificial model of the neuron. The following methods all
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Figure 2.20: Single Layer Perceptron

use collections of these neurons together in some way to try improve the learning abilities of

the overall algorithm.

The Perceptron

The Perceptron is simply a collection of multiple independent neurons. As shown in Figure 2.20

the feature vector presented to the network is augmented with an input that is always 1 – this

bias node allows the threshold of the neurons in the output layer to be trained as a weight. The

inputs are connected to a number of separate output neurons so that input xi is linked to output

yj by weight wij . Together the output neurons form a vector y, that is used to predict some

target vector t.

As each neuron is independent of the others, training is performed using the same rule as

for a single neuron:

wij ← wij + η(ti − yi) · xi, (2.58)

where the initial weights are randomly initialised to small values and η is the learning rate.

Training continues until some acceptable accuracy or maximum number of iterations, T , is

achieved. The complexity of the training algorithm is O(Tmn).

Once trained, the weights can be represented in a matrix, W ∈ Rm×(n+1), and the output

vector y, is the activation function applied to the multiplication of W and augmented input

feature vector:

y = sign(Wx). (2.59)

Just as the neuron by itself is a linear classifier, the perceptron is also a linear classifier.

It tries to find a hyperplane that separates the data for each output neuron. As such, a major

limitation of the perceptron is that the data needs to be linearly separable.
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Neural Networks and The Multilayer Perceptron

A fundamental issue with the perceptron is the requirement of linearity in the data. However, by

stacking neurons in multiple layers the model is able to represent more complex patterns and,

given enough neurons and layers one can build a universal approximator that is able to represent

any function. When stacking these layers, the model is called a Multilayer Perceptron (MLP)

or Artificial Neural Network (ANN). As seen in Figure 2.21 the network is separated into the

input layer, the hidden layer(s) and the output layer.

The input layer represents the feature vector, augmented with a 1 which acts as a bias for

the activation function. Each input is connected to every neuron in the first layer. Each neuron

in that layer is connected to every neuron in the following layer, and this pattern continues until

the output layer is reached. Note that each hidden layer is also augmented with a bias node that

always fires.

1Bias x0

Input x1

Input x2

Input xn

...
...

1
Output y1

Output y2

Output y3

Output ym

...
...

Hidden

layer

Input

layer

Output

layer

Figure 2.21: Neural Network/Multi Layer Perceptron

There are two aspects to the training algorithm, the forward propagation of activations and

the backward propagation of error. In the forward part of the algorithm, the feature vector is

presented at the input layer and the activation of each neuron in the hidden layer is calculated.

These activations are propagated forward through each of the following layers until it reaches

the output layer. The error, E ∈ R, between the actual output, y, and the target output, t, is

calculated using the sum of the square error at each neuron:

E(t,y) =
1

2

m
∑

i=1

(ti − yi)2, (2.60)

where m is the number of neurons in the output layer. The goal of training is to minimise

this function using some numerical optimisation technique – usually (stochastic) gradient de-

scent with momentum. The process of updating weights to account for errors is called back-

propagation. The derivation of the back-propagation algorithm given below extends that pre-

sented in Marsland (2015).
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Figure 2.22: Activation Function Candidates

In the version of the MLP described above there is a discontinuity at each node due to the

threshold activation function. This threshold can be replaced by either the sigmoid or hyper-

bolic tan functions which are both smooth, continuous, and can be used to approximate the

threshold step function. The curves of each function are shown in Figure 2.22 with definitions

in Equations (2.61) and (2.62). Note that the range of tanh(·) is (−1, 1) and should be scaled

to (0, 1).

g(x) = sig(x) =
1

1 + e−βx
, (2.61)

g(x) = tanh(x) =
ex − e−x

ex + e−x
(2.62)

Now that the activation function at each node, g(·), is continuous and differentiable, so is the

error function. As the error function is also convex, usual numerical optimisation techniques

can be used.

Note that the derivative of the sigmoid activation function, g(x), is:

dg

dx
= g(x) · (1− g(x)) (2.63)

and that the descent direction of a convex function, f , is −∇f .

The standard back-propagation algorithm is based primarily on the chain rule from calculus.

Suppose that we are training an MLP with Ni inputs labelled xi, Nh hidden neurons labelled

Hi, and No output neurons labelled Oi where neurons use the sigmoid activation function.

Let vij be the weight connecting the ith input and the j th hidden neuron. Let wjk be the

weight connecting the j th hidden neuron and the kth output neuron.
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In the forward pass, the activation of each hidden neuron, hj , and output neuron, yk, is:

hj = g

(

∑

i

vijxi

)

=

(

1 + exp(−β
∑

i

vijxi)

)−1

(2.64)

yk = g

(

∑

j

wjkhj

)

=

(

1 + exp(−β
∑

j

wjkhj)

)−1

(2.65)

Using the chain rule, the derivative of the error function (Equation (2.60)) with respect to

wjk is:

∂E

∂wjk

= −(tk − yk) · yk · (1− yk) · hj = −δoutk · hj (2.66)

where the error contribution for output k is

δoutk = (tk − yk) · yk · (1− yk). (2.67)

The weights between the hidden and output layer, w, are adjusted by taking a small step in

the descent direction:

w ← w − η∇wE (2.68)

wjk ← wjk + η · (tk − yk) · yk · (1− yk) · hj, (2.69)

wjk ← wjk + η · δoutk · hj, (2.70)

where η is the learning rate that adjusts the step size and ∇w is the gradient operator with

respect to w only.

Using the chain rule, the change in error with respect to the first layer weights is:

∂E

∂vij
=
∑

k

(tk − yk)(−1)(yk)(1− yk)(wjk)(hj)(1− hj)(xi) (2.71)

= −
∑

k

(δoutk )(wjk)(hj)(1− hj)(xi) (2.72)

= −δhiddenj xi (2.73)

where error attributed to each hidden neuron can be calculated as the weighted sum of its

connections to the output nodes:

δhiddenj = hj · (1− hj)
∑

k

δoutk wjk. (2.74)

Again, the weights between the input and hidden layer, v, are adjusted by taking a small

step in the descent direction:

v← v − η∇vE (2.75)

vij ← vij + η
∑

k

(δoutk )(wjk)(hj)(1− hj)(xi) (2.76)

vij ← vij + ηδhiddenj xi, (2.77)

33



where ∇v is the gradient operator with respect to v only.

In general, if the neuron layers of the network are numbered from 0 to N where layer 0
corresponds to the input values and N the output values. Let hlj be the activation of neuron j in

layer l. Let wl
ij be the weight of the connection from hl−1

i to hlj . Let the error contribution of

hlj be δlj . Then:

δNj = (tk − hNj ) · hNj · (1− hNj ) (2.78)

δlj =
∑

k

δl+1
k wl+1

jk (2.79)

where l ∈ {1, 2, . . . , N − 1}. The update rule for wl
ij becomes:

wl
ij ← wl

ij + ηδljh
l−1
i , (2.80)

for l ∈ {1, 2, . . . , N}.
This allows training of the weights in a network with an arbitrary number of layers and

neurons per layer. The order in which training samples are presented to the network should

be randomised and the network should train on each data point multiple times throughout the

training phase. If the dataset is very large, random subsets or batches of the data can be used

for each epoch and the optimisation step becomes stochastic. It is useful to add momentum to

the optimisation to help avoid local minima, in this case the update rule becomes:

wl,t+1
ij ← wl,t

ij + ηδljh
l−1
i + α∆wl,t−1

ij , (2.81)

for l ∈ {1, 2, . . . , N}, t represents the current training update, ∆wl,t−1
ij represents the previous

update, and α ∈ [0, 1] is a parameter affecting the influence of momentum.

Given the activation functions above, enough layers and enough neurons, the MLP is able

to approximate any function and is known as a universal approximator. This means that is has

significant learning capacity, even for data that is not linearly separable, but that it potentially

suffers from over-fitting. This causes poor generalisation on new data because the network

has enough parameters to simply interpolate the training data. In this case, it does not have

to identify the underlying process that generated the data. When using neural networks with

many parameters, one should be cautious to employ proper validation techniques to ensure that

the model is not over-fitting the data.

Deep Learning with Neural Networks

For a long time the number of layers in neural networks were limited to only a few. The field

of deep learning focuses on the use of networks with many layers. In such networks, each

subsequent layer is forced to learn more and more abstract concepts in some hierarchy. In

general, machine learning techniques are extremely sensitive to the representation of the data.

For example, in some representations the data may not be linearly separable, but by performing

some transformation of the data it could be represented in a way that was. This fundamentally

changes what methods will be effective when trying to classify such data.
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Figure 2.23: Feature Learning (Goodfellow et al. 2016)

In deep learning approaches, the idea is that the learning system must learn to extract the

features themselves. This is known as representation learning (Goodfellow et al. 2016). In a

deep neural network, for example, the first layers must learn to extract low level features from

the raw data, while the latter layers each build a progressively more abstract representation

based on these features.

Figure 2.23 shows how a deep neural network may learn to classify images into different

types of objects. The raw image pixels are used as input into the network. In this case, the

first layer has learned to recognise various types of edges – discontinuities in colour and bright-

ness. These edges are then passed to the second layer which has learnt to identify corners and

contours from them. While the first layer may only be able to recognise horizontal and vertical

edges, the second layer is able to merge them together into some more abstract concept, namely

contours. The next layer then takes the contours and starts to look for parts that correlate with

the objects it is trying to recognise. In this case, it will have learnt that contours in a specific

pattern usually indicate that the image is a person rather than a car.

A number of different approaches to deep learning exist. This work makes use of Deep

Convolutional Neural Networks (CNNs) which are popular in computer vision.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were first introduced by LeCun et al. (1989). They

noticed that feature maps based on convolutional filtering were popular and effective choices

when engineering features for use with MLPs on computer vision problems. They proposed

that by forcing hidden neurons to use only local sources of information at lower levels, local
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features could be extracted from the underlying image. At the same time, these features could

often be found in multiple places in the image, so by using weight sharing between the nodes in

the layer, the layer would be able to recognise these local features at any location in the input.

This approach effectively means that all the neurons in a hidden layer are forced to use

the same weights and that the connections of these weights to the input data are local only.

In practice, a convolutional layer was designed. Each node in the hidden layer uses the same

linear convolution kernel, which is applied over all the pixels in the input data. Training the

layer means adjusting the weights inside the kernel so that it produces the best possible feature

map across the input image. This architectural change means that the layer is forced to try

learn features of the image that the other layers can use to build more abstract representations

for classification. Over time different ways of applying the filter have been identified. Some

parameters of a convolutional kernel include its size (width and height) and stride (apply the

filter every n pixels). A number of different types of layers have since been developed and are

used to build different CNN architectures. Some of these layer types are discussed below.

Layer 2.1. Convolution

This is the primary vision oriented layer. A convolution layer contains a number of learnable

filters that each produces a feature map. Parameters include: the number of filters, the kernel

width and height, and the stride.

Layer 2.2. Pooling

Pooling layers down-sample neighbourhoods of neurons in a feature map produced by con-

volution. The layer applies a pooling unit that returns a single number as a summary of

that neighbourhood. Different types of pooling layers include max-pooling, min-pooling, and

average-pooling. These layers return the maximum, minimum and average of the values in the

neighbourhood. Parameters include: the width and height of the pooling units, a stride, and

a pooling type. Traditionally the pooling unit size and the stride are equal. Krizhevsky et al.

(2012) found that by having a smaller stride, and therefore overlapping pooling, networks were

less prone to over-fitting, meaning accuracy and generalisation improved.

Layer 2.3. Rectified Linear Unit (ReLU)

The ReLU is an activation layer that transforms some input through the following activation

function:

a(x) =

{

αx if x ≤ 0,
x otherwise,

(2.82)

where α is the negative slope parameter. When α is 0 the unit is an ReLU, otherwise it is a

Leaky-ReLU. The unit passes positive input to the next layer, but generally forces the network

to ignore input values that are negative. This increases non-linearity and sparsity in the network

which also assist with generalisation. This type of layer uses only the one parameter.

Layer 2.4. Local Response Normalisation (LRN)

Local response normalisation performs lateral inhibition which is exhibited by real neurons in

the human brain. Adjacent neurons must compete with each other where highly active layer
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inputs inhibit others. The normalisation output is

bix,y = aix,y ·
(

k + α
∑

j

(ajx,y)
2

)−β

, (2.83)

where the sum runs over the adjacent kernel maps at position (x, y), k, α, and β are hyper-

parameters, aix,y is the response of kernel i at (x, y) and b is the output of the LRN. Over the

ImageNet database, Krizhevsky et al. (2012) found k = 2, α = 10−4, and β = 0.75 worked

well after applying an ReLU to the input first. They suggest that neighbourhoods of 5 consecu-

tive feature maps should be used for the sum, where the order of the maps is arbitrarily chosen

and fixed before training begins.

Layer 2.5. Dropout

Dropout can substantially help to avoid over-fitting. A dropout layer works by randomly setting

the value of each input neuron to zero, with probability of 0.5. This means that roughly half

of the neurons in the layer are ignored during a training pass (both forwards and backwards).

This results in a number of architectures being trained simultaneously as neurons are forced

to learn to represent features without relying on the credibility of other neurons. By forcing

the system to learn features with random subsets of neurons, co-adaptations of neurons can be

avoided which helps stop over-fitting (Hinton et al. 2012). When actually using the network,

the neurons’ activations are all multiplied by 0.5 to approximate the geometric mean of all the

random subsets of neurons used throughout training, but in this case neurons are not zeroed.

Layer 2.6. Softmax

Softmax normalises the values of the inputs so that the sum is one. It is usually used as the final

layer in a network where each of the output neurons correspond to a specific category. In this

way, the output of each neuron can be considered to be the probability of the input belonging

to each trained class. Where ai is the ith input, Softmax applies the following normalisation:

bi =
ai
∑

i ai
. (2.84)

Layer 2.7. Fully Connected

The fully connected layer is the standard neuron layer illustrated in Figure 2.21. If there are n
inputs and m neurons, then m(n + 1) weights, W ∈ Rm×(n+1), are learned and the output, y,

is

y = Wx, (2.85)

where x is the input vector augmented with a 1 at the front to handle the bias.

The layers introduced above were used in the AlexNet CNN and achieved ground break-

ing accuracy on the ImageNet database which consists of 1.3 million high-resolution images

(Krizhevsky et al. 2012). When predicting the top five labels for an image from a pool of 1,000

options, they achieved an error rate of 18.9% – which considerably outperformed the state of

the art. AlexNet itself consists of 60 million parameters (weights) and 500,000 neurons. There

are five convolutional layers, each followed by pooling and normalisation layers, which feed

into two layers of fully connected neurons. Finally a Softmax layer normalises the output over
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Figure 2.24: AlexNet Architecture (Krizhevsky et al. 2012)

1,000 output neurons that each correspond to a different category of image. This is the foun-

dation of the Deep Convolutional Neural Network in Chapter 7. The AlexNet architecture is

illustrated in Figure 2.24.

2.4 Incorporating Multi-Sensor Data

There are three primary approaches that can be used to merge data from multiple sensors.

Specifically these are Data Fusion, Feature Fusion and Decision Fusion (Sharma et al. 1998).

If the selected learning algorithm and feature representation does not support temporal data

directly, these approaches can be used to merge temporal data as well. This section explains

these different approaches to multi-sensor and temporal learning.

In the sections that follow, the methods will be illustrated using an image sequence, Is,

where s is a student or subject. Is(n) is then a specific frame in Is, where n is the frame

number in the video. x = [x1, x2, . . . , xl]
T ∈ Rl is then a feature vector of length l. The

methods each describe how to fuse m video frames to produce an output.

2.4.1 Data Fusion

If the sensors have common temporal resolutions, the raw data of the one sensor can simply

be appended to the raw data of the other. For example, the information about pixels in a video

frame could be appended to information from a physiological sensor that provides data at the

same time frequency. This is termed Data Fusion. The same approach can also be used to

handle video information with features that do not directly support temporal information.

For example, temporal information can be included by concatenating consecutive frames

and then calculating the HOG features over the resulting image. Let Ims (n) be the image from

which to extract features:

Ims (n) = [Is(n); Is(n− 1); . . . ; Is(n−m− 1)]. (2.86)
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A feature vector, x, for training and classification can then be constructed by calculating the

HOG features over the image Ims (n). Images and feature vectors resulting from this equation

are illustrated in Figure 2.25 for m = 1 (Figure 2.25a) and m = 4 (Figure 2.25b). A careful ex-

amination of the features at the top of Figure 2.25a and the corresponding cells in Figure 2.25b,

show immediate issues with data fusion in this context.

Consider the cell in the top right of Figure 2.25a. This cell indicates a strong horizontal

gradient in that area, shown by the dominant vertical green lines. Once the previous frames

are concatenated the HOG response in that area changes substantially. The HOG features

are now strongly influenced by the discontinuity in the gradients over the image seam. The

classification method must now learn to ignore the noise introduced by these gradients which

in turn may influence the training time and classification accuracy.

(a) 1 Frame (b) 4 Frames

Figure 2.25: HOG Features with Data Fusion
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2.4.2 Feature Fusion

In the feature level approach, the features are calculated over each sensor input or video frame

separately and then concatenated.

Let the feature vector of each frame be x̃(n) ∈ Rl̃, the final feature vector x ∈ Rl is then

x = [x̃(n); x̃(n− 1); . . . ; x̃(n−m− 1)] (2.87)

where l = l̃ ·m where ; indicates concatenation of the column vectors.

Feature fusion helps to avoid problems that are caused by data concatenation when em-

ploying features that make use of spatial information. By concatenating the features, artificial

discontinuities in the data are not introduced.

2.4.3 Decision Fusion

When using decision fusion the data from separate sensors or temporal measurements are each

classified separately first and then joined in some logical way. This is a common approach in

Human Computer Interaction (HCI) research.

Using this approach, each frame of a video may be processed independently both for feature

extraction and classification. Once each frame is classified, the results may be merged in some

logical or statistical way. For example, to detect engagement, the system may classify each

frame individually and then use a rolling average over the last m frames to construct a sensible

output.

Other more sophisticated techniques such as Hidden Markov Models (HMMs) may be used

to merge the independent classifications. For example an HMM could track the state of a

subject over time and then view the next frame as a new observation to update the current state.

2.5 Dimensionality Reduction

An image consisting of 4 frames, such as Figure 2.25b, generates a HOG feature vector of

length 44,100. For 80,000 images this results in 52GB of data, which is not feasible for off-line

machine learning methods like Support Vector Machines (SVM), that require all training data

be loaded into memory at once.

Most interesting problems in data mining and machine learning involve the use of data

with very high dimensionality (a large number of measurements per record). While more mea-

surements often mean more information, the state/search/parameter space of many methods

increases exponentially in the number of dimensions. This means that to adequately cover the

space more records are required for both training and testing, which has implications for train-

ing and testing times, as well as the storage and memory requirements. This is known as the

curse-of-dimensionality (Vlachos et al. 2002).
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In many cases the measurements in the various dimensions are highly correlated meaning

that there is a lower dimensional subspace that effectively captures the true variance in the data.

In this event, dimensionality reduction techniques can project the data onto this subspace in a

way that keeps only the important information. This yields a more compact representation of

the underlying structure of the data (Witten et al. 2016).

Vlachos et al. (2002) identify both non-linear and linear methods which can be classified

into two categories:

1. Local / Shape preserving

2. Global / Topology preserving

The former category attempts to find a simpler representation of each record in the dataset

by retaining the most important information for each record. For example, a Fourier (Agrawal

et al. 1993; Faloutsos et al. 1994) or wavelet (Chan and Fu 1999) decomposition of a signal

can discard the high frequency coefficients while preserving most of the original energy. The

latter category focuses on finding a minimal subspace that preserves the overall variance in the

dataset. The most common approach in this category is Principal Component Analysis (PCA).

This work makes use of PCA for dimensionality reduction. An explanation of the method

is presented in the next section.

2.5.1 Principal Component Analysis (PCA)

Figure 2.26 shows a number of highly correlated 2D data points. While this data initially looks

like 2D data, the majority of the variance is accounted for by the green line. By rotating and

translating the axes to the green and red lines, the data can be perfectly represented. However,

by only looking at the value along the green-axis, one can approximate the position of each

data point with high accuracy. By doing so, the 2D data has been reduced to 1D data. In fact,

by making the proposed projection of each point onto the green-axis, 98.94% of the variance

in the dataset is retained, while the size of each data point has been halved.

The goal of PCA is to final a new orthonormal basis set for the given data. This is done

by finding the principal components that best describe the points. In the example above, the

first principal component corresponds to the green line, while the second principal component

corresponds to the red one. The components are the eigenvectors of the covariance matrix

and the variance accounted for by each one is proportional to the size of the corresponding

eigenvalue. Figure 2.27 shows the eigenvalues corresponding to the first (green) and second

(red) principal components. The rest of this section provides a mathematical definition of the

principal components.

PCA aims to find the orthonormal transformation A ∈ Rl×k that maps between a data point

or feature vector x ∈ Rl and the reduced vector y ∈ Rk, where k is the dimensionality of the

reduced feature space. The forward mapping is performed using

y = ATx. (2.88)
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As A is orthonormal (ATA = I) it is its own inverse, so the inverse mapping becomes

x̃ = Ay (2.89)

where x̃ is the closest reconstruction of x given the basis. A is calculated according to the

following steps.

Suppose you have r feature vectors, xi ∈ Rl. Let these vectors form the columns of the

data matrix D ∈ Rl×r. The mean feature vector, x̄, is

x̄ =
1

r

r
∑

i=1

xi. (2.90)

Let X ∈ Rl×r be the mean centred dataset so that each column, x′
i, satisfies

x′
i = xi − x̄. (2.91)

The covariance matrix, C ∈ Rl×l, of D is given by

C =
1

r − 1
XXT. (2.92)

The eigenvectors, vi ∈ Rl, and eigenvalues, λi ∈ R, of C are then calculated. Let V ∈ Rl×l

be the matrix where column i is the unit length eigenvector that corresponds to the ith largest

eigenvalue. As the columns of V are both orthogonal (vi · vj = 0, ∀i 6= j) and unit length

(vi · vi = 1), V is orthonormal.

Because there are only r images, there will be at most r meaningful eigenvectors. As l
can be quite large in comparison to r, calculating the eigenvectors of the covariance matrix can

be time consuming. Turk and Pentland (1991) show how to speed up the process, by rather

calculating the eigenvalues and eigenvectors of XTX ∈ Rr×r and then using them in a linear

combination with X to get to the original r eigenvectors.

To choose a subspace that retains θ proportion of the variance, k ∈ N should be chosen as

the first integer such that,
∑k

i=0 λi
∑l

i=0 λi
≮ θ, (2.93)

where the eigenvalues are summed in decreasing order of magnitude.

The first k columns form the columns of A. If all columns of V were used then A would

be exactly orthonormal and the transformation would retain all of the data’s variance. As only

the first k columns are used, the columns A are orthonormal (ATA = I) but the rows are not

(AAT 6= I). For this reason the inverse reconstruction becomes less precise as k is reduced.
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2.6 Accuracy Measures and Validation

2.6.1 Classification Validation

When learning to perform some classification task, it is important to be able to validate the

accuracy of the model given its learned parameters. Upon each iteration of the learning algo-

rithm the model parameter values are updated so that it better reflects the underlying structure

in the training data. It is expected that a model with sufficient degrees of freedom will be able

to classify the training data with very high accuracy. This is primarily because the training

process itself updates the model parameters so that they correctly classify the training samples.

Measuring the classification accuracy over the training dataset gives no indication as to the

generalisation capabilities of the of model.

Therefore, it is important to consider how the model performs on new data that was not seen

during training. To measure this generalisation, the full dataset should be partitioned into two

mutually exclusive groups of data: one group for training, another group for testing. During the

training phase, the model parameters are optimised so that the classifier represents the training

data as best as possible. Following this phase, the testing data is presented to the model to assess

how well the classifier works on unseen data. In many algorithms, this process is repeated and

the accuracy over the unseen data is reported at the end of each of these epochs.

Furthermore, if the model has hyper-parameters, then a third partition is required and is

called the validation set. In this case, the model is trained on the training data multiple times

with different hyper-parameters. The accuracy over the test set is used to establish the best set

of hyper-parameters. This approach however, allows the system to learn aspects of the test set

through the hyper-parameters, so to be sure that the model generalises, the accuracy over the

completely unseen validation set is calculated at the end.

Partitioning the data into three separate sets, however, can decrease number of samples that

can be used for actual learning. To overcome this problem, n-fold cross validation divides the

data into n different partitions or folds. Training is then performed on n − 1 partitions and

testing on the remaining one. As the algorithm proceeds, it rotates through the different fold

combinations so that each fold is used for testing once. The final accuracy is then the average

accuracy over all iterations. While this approach is computationally expensive, the process

ensures that the training data is not wasted.

Formally, suppose that there is a dataset that contains k images.

X = {x1, x2, . . . , xk} (2.94)

The data can be randomly partitioned into nmutually exclusive sets of images, X1, X2, . . . , Xn

so that

Xi ∩Xj = ∅ where i 6= j, (2.95)
n
⋃

j=1

Xj = X. (2.96)
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In each iteration, i, of 5-fold cross validation the training (Ti) and testing/validation (Vi) sets

are

Ti =
5
⋃

j=1
j 6=i

Xj, (2.97)

Vi = Xi (2.98)

2.6.2 Cross-Subject Validation

As this work focuses primarily on the use of video, it is important to consider the content of

each frame within an image sequence. The students are seated in a lecture venue, therefore

the background does not change and students’ range of movement is relatively limited so the

difference between consecutive frames can be fairly small. For example, consider the image

sequence in Figure 2.25b.

While the student moves between frames, his head and shoulders, neighbour, and the back-

ground barely move at all. For a system learning to recognise some action or affect on a single

subject, it can easily learn what parts of the image are important and what parts are not. In

an image of another student, however, the background may be significantly different, as well

as the position of the head, shoulders etc. A different student will have different skin tones,

clothes, and mannerisms. The student may sit completely differently, may be viewed from a

different angle and may write in a completely different way.

This indicates that there are two important factors to consider when validating generali-

sation accuracy, namely intra-subject and inter-subject variation. By performing n-fold cross

validation and partitioning over all the video frames in the dataset, the reported accuracy will

primarily reference intra-subject generalisation. This speaks to the system’s ability to classify

the subjects that it has already seen as all subjects are likely to be part of the training set.

To measure the system’s ability to classify subjects that it has not seen before requires a

different approach. In this case, rather than randomly partitioning over the video frames the

partition lines should be drawn between the students themselves. This means that to measure

inter-subject generalisation, hold-one-out validation or cross-subject validation is appropriate.

This approach takes the entire set of students/subjects, S, and selects one. That subject’s

data is used for testing/validation purposes, while all other frames are used for training. For-

mally, the training and validation sets at iteration i become

Ti =
⋃

sj∈S\{si}

Sj, (2.99)

Vi = Si, (2.100)

where si ∈ S is the subject being considered and Si is the set of images relating to that subject

specifically.

Due to the increased variation seen between subjects it is expected that when holding out a

subject, the accuracy values will be lower than when validating across frames.
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2.6.3 Imbalanced Datasets

The number of training samples in a category is an important factor when considering any

machine learning technique. For example, the action of yawning is infrequent relative to not

yawning. Therefore, if one records a video of a subject in class and labels each frame accord-

ingly the latter category will be significantly under-represented. In a five minute recording (300

seconds), the subject may only spend a few frames actually yawning. Being generous, assume

a yawn takes 10 seconds. Suppose the student yawns 5 times in those 5 minutes (50 seconds of

yawn) that means that only 16.7% of the time recorded will be of the student yawning.

A classifier that decides to classify every image as not yawning immediately has an accu-

racy of 83.3% accuracy. This is an extremely misleading number that speaks to the distribution

of the data more than the abilities of the classifier. For this reason, the balance of samples in

the dataset should be carefully considered alongside the reported validation accuracy. The per-

formance of a random classifier called chance is usually presented to benchmark what happens

when there is ‘no learning’ taking place.

One way to prevent this bias from effecting the system is to construct a balanced dataset by

re-sampling the original one so that there are an equal number of positive and negative exem-

plars from which the system can learn. With such a 50:50 split of data, one expects a classifier

that is randomly guessing to get an accuracy of 50%. Any accuracy that is significantly above

this should be due to some learning effect in the algorithm.

This approach, however, discards information about the representation of categories in the

data. In the case where 90% of the data belongs to a specific category, it means that it is more

important to predict one category correctly than the other. Stratification ensures that the differ-

ent categories of data are represented according to their presence in the original data (Witten

et al. 2016). When performing n-fold cross validation, stratification can be used to ensure a

balance of data over the partitions. In this case the methods can be referred to as stratified n-

fold cross validation or stratified holdout validation. In this case, it is important to examine the

accuracy of chance, the confusion matrix which shows how labels were categorised, and even

a reliability metric such as Cohen’s Kappa (Cohen 1960) which relates the expected number of

agreements due to chance and the observed number of agreements. Landis and Koch (1977)

provide general guidelines to interpret various κ values as shown in Table 2.1.

Table 2.1: Interpretation of Cohen’s κ Scores

κ Agreement

< 0.00 worse than chance

0.00 – 0.20 slight

0.21 – 0.40 fair

0.41 – 0.60 moderate

0.61 – 0.80 substantial

0.81 – 1.00 near perfect

Another approach that can be used is to penalise the learning algorithm for getting the

classification wrong in the minority set more than in the other. In such a case, the predictor will

46



learn that it is more important to classify the one group correctly even though it has seen more

samples from the larger one. This is called cost sensitive learning but requires that the learning

method’s objective function is adjusted to consider this penalty.

Finally, the last approach considered here is to present samples from the smaller category

to the system multiple times. The danger of this approach, however, is that the model may

have issues with over-fitting. An approach that is used in a number of systems to prevent this

is to pre-process the data differently before it is presented multiple times. This is context and

method dependant. For example, when training the OpenCV (Bradski 2000) cascade classifiers

for face detection (Lienhart et al. 2003; Viola and Jones 2001 2004) the training utility takes

the face samples and performs a number of affine transformations (linear transformations such

as rotation, scaling and 2D perspective warp) to the positive training set to increase the number

of samples without causing over-fitting.

2.6.4 Approaches Used

This work uses stratified n-fold cross validation over the full set of labelled video frames as

well as stratified and balanced holdout over the subjects (cross-subject validation). In all cases

the stratification performed ensures that the proportion of samples representing each category

is the same in both the testing and training sets. A random classifier (chance) is also provided

in each case to provide a benchmark from which to measure accuracy. This is considered the

standard approach when reporting error rates (Witten et al. 2016).

In many experiments, a balanced dataset is used. In this case, each category in the full

dataset is randomly sub-sampled to build training and testing sets that have equal proportions

of each category. This means that the probability of a sample belonging to any category is

uniform and the expected accuracy of the random classifier is 1
c

where c is the number of

categories.
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Chapter 3

Related Work

3.1 Contingent Teaching

Contingent teaching focuses on the ability of the teacher to scaffold the class in such a way that

the presentation of material depends on the actions of the students. When applied, contingent

teaching allows the teacher to go ‘off script’ and cater to the current state of the class more

effectively (Draper and Brown 2004). There are arguments that this form of teaching reflects

what good teaching actually is:

“ Although scaffolding is considered an effective teaching method, it ap-

pears to be rather scarce in classrooms, mainly because it is so difficult to

perform... Scaffolding presumably reflects what good teaching is: being respon-

sive to a learner and supporting a student within his/her ZPD [Zone of Proximal

Development]. van de Pol et al. (2011)

In education generally, large class lecturing is often identified as a weak point. Common

diagnoses include the lack of interactivity which is often manifested as an inability to get dis-

cussion going. The lecturer therefore loses the sense of how well the material sits with the

audience (Draper and Brown 2004).

In large classes contingent teaching is difficult for two primary reasons. As there are more

students in the class, the current state with regard to both content and affect becomes less

homogeneous, which means that it becomes more challenging for interventions by the lecturer

to focus on the issues of the individual student. On the other hand, as the numbers increase, it

can also become more difficult to elicit responses from the students that the lecturer can use to

effectively gauge understanding and sentiment.

The effect on student morale can be disproportionately positive when the student sees their

response having a direct impact and the teacher responds on the spot to their specific learning

needs (Draper and Brown 2004). This raises the question of how to effectively extract this

information from a class, particularly in cases where the students may be reluctant to overtly

provide it, or where the number of students makes direct questioning infeasible.
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Literature identifies the use of clickers and SMS as ways of interacting with students in

large classes or in cases where the students may be unwilling to directly engage. This work

terms these approaches intrusive as they intrude into the class and require active responses

from the students. This is discussed more completely in Chapter 4.

On the other hand we propose a non-intrusive approach based on computer vision that can

be used in the general classroom to automatically assess students. Current approaches to this all

make use of a webcam where the student is interacting with a computer and these are discussed

in Sections 3.4 to 3.6.

3.2 Affective Computing

“ Can machines think? Turing (1950)

Whether machines will ever be able to really think or have some form of consciousness is

a controversial philosophical debate that continues even today. Answering the question itself

requires a practical definition of ‘thinking’ that is decidable – a definition that for which some

test can yield a yes or no answer. Turing (1950) proposes a test based on imitation: if an

interrogator cannot tell the difference between a computer and a human, then the computer can

be considered intelligent.

Turing (1950) proposed the original Imitation Game and what has come to be known as

the Turing Test. The Turing Test considers the text of a conversation between a human and an

unknown agent. The test is ultimately about whether the human can tell if he is talking to a

computer or another human. If he is unable to distinguish the two, then the machine can be

considered intelligent.

Figure 3.1: Specimen Questions for the Turing Test (Turing 1950)

Illustrations provided by Turing are shown in Figure 3.1 and immediately highlight the type

of problems that an intelligent machine must be able to solve. There are straightforward ques-

tions such as add 34957 to 70764, where the machine can simply perform the calcula-

tion and return it after some time delay to obfuscate how long the computation took. Problems
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such as chess illustrate how the machine must be able to solve logical problems in varying

problem domains. Current artificial intelligence systems are able to produce world champion

level play in games like Checkers (Schaeffer et al. 2007), Chess (Hsu 1999), and Go (Silver

et al. 2016) and significant work has been done on developing AI methods to apply to many

varying real-world problem domains. In the first question posed however, we see that the agent

opts out of a meaningful response.

While this may be acceptable in the conversation illustrated by Turing, it is easy to imagine

situations where an intelligent machine must be able to converse with creativity and emotions

in mind. For example, to pass the test while in a discussion of the latest music or responding to

good or bad news, the system must at the very least be able to recognise, express and respond

to some level of emotion. The Turing Test attempts to limit the effect of sensory expression by

working through a textual conversation, but in spite of this, emotions can still be recognised and

expressed in text (Cooper 1960). To pass the test, the computer’s responses should be indis-

tinguishable from a human’s, and therefore to truly pass the test for intelligence, the machine

must be able to perceive and express emotions (Picard 1995).

Beyond the Standard Turing Test, a modern intelligent system interacting with humans may

be required to understand the state of the user, or even moderate its expression to effectively

convey information. Consider a video game that can detect the player’s emotional state. When

frustration is detected it may moderate the difficulty to ensure that the game is not too hard,

on the other hand if it detected confidence, then it could increase the difficulty to make sure

the user is challenged. In the same vein, one might consider an Intelligent Tutoring System

(ITS) that monitors your affect throughout an online learning episode. It should present work

that is hard enough to be engaging, but not so hard that the student becomes demoralised and

defeated (D’Mello et al. 2007). A piano teaching system should go even further: in addition to

detecting interest, pleasure, and distress in its users, it should be able to recognise expression

and phrasing within the music being played (Picard 1995).

Affective Computing is the field of computing that aims to solve these problems and re-

duce the gap between technology and emotionally driven human beings. The intention is to

allow computers to recognise and respond to users’ affective states during interactions in a way

that increases usability, efficacy, and user enjoyment (Calvo and D’Mello 2010). The book,

Affective Computing (Picard 1997) was instrumental in the inception of the area.

Picard (1997) outlines three main spheres of affective computing: affect detection, expres-

sion, and engenderment. Affect detection allows the computer to recognise the various affective

states observed in humans. Expression allows a computer to convey emotion in a way that a

human would intuitively understand, for example through the use of an avatar with facial ex-

pressions, gestures on physical robots, or even through natural language processing and speech

synthesis. Finally, the last area considers whether computers can ‘have’ feelings. It is argued

that emotion plays a number of important roles in intelligent human functioning, and if com-

puters are to achieve comparable abilities they will need to be endowed with them in some way.

Picard (1995 1997 2003b) strongly argues this case, and considers the effect of the limbic brain

on perception.
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“ All sensory inputs, external and visceral, must pass through the emotional

limbic brain before being redistributed to the cortex for analysis, after which they

return to the limbic system for a determination of whether the highly-transformed,

multi-sensory input is salient or not. Cytowic (1996)

The limbic parts of the brain responsible for emotion, are also largely responsible for percep-

tual processing: signals are processed by it before and after being processed by the more logical

cortex. It is hypothesised that when faced with an infinite number of logical conclusions, emo-

tion assists to bias the governing analytical process. This is supported by research on patients

with frontal-lobe disorders and their impaired ability to make decisions (Damasio 1994). Pi-

card (1995) expresses ‘serious doubt’ about its feasibility of computers that feel, but also draws

parallels with debates surrounding machines and consciousness.

Minsky (2007) considers emotion to be a substantial part of what we call intelligence but

rather than considering it an influencing factor, he considers emotion “not especially different

from the processes that we call thinking.” Rather emotions are “ways of thinking” that increase

a person’s resourcefulness. The implication is that by understanding a concept in multiple ways

– through the lens of multiple emotions – then when one approach fails, frustration grows and

you switch between the different points of view. This results in a diversity of thinking that

should be incorporated into Artificial Intelligence:

“ Accordingly, when we design machines to mimic our minds – that is, to create

Artificial Intelligences – we’ll need to make sure that those machines, too, are

equipped with sufficient diversity... Minsky (2007)

Whether computers will ever be able to feel remains a mystery for now. However, machines

with affective abilities – including recognizing, expressing, modelling, communicating and

responding to emotion – have been built. There has been progress in all three key areas of

affective computing (Calvo and D’Mello 2010; Zeng et al. 2009).

Affect detection is considered the primary goal of this research and the other areas of Af-

fective Computing will not be considered further.

3.3 Emotions

3.3.1 What to Measure?

Emotions are constructs with fuzzy boundaries and are considered conceptual quantities that

cannot be directly measured. Although this implies that there is often no absolute ground truth

even among human experts, there is consensus that affect detection does not need to be perfect

but rather approximately as good as humans (Calvo and D’Mello 2010).

In general, it is easy to identify big outbursts of emotion, such as swearing at your computer
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and hitting the mouse on the desk out of frustration. However, if you were asked to write down

the emotional state of the person sitting next to you right now, you would probably find this

extremely challenging (Picard 2003a). In many cases people would even struggle to label their

own feelings in various states. Kagan (1984) expresses this eloquently:

“ The term emotion refers to relations among external incentives, thoughts, and

changes in internal feelings, as weather is a superordinate term for the changing

relations among wind velocity, humidity, temperature, barometric pressure, and

forms of precipitation. Occasionally, a unique combination of these meteorological

qualities creates a storm, a tornado, a blizzard, or a hurricane – events that are

analogous to the temporary but intense emotions of fear, joy, excitement, disgust,

or anger. But wind, temperature, and humidity vary continually without producing

such extreme combinations. Thus meteorologists do not ask what weather means,

but determine the relations among the measurable qualities and later name whatever

coherences they discover. . . Kagan (1984)

With this analogy in mind, the reason one often struggles to articulate emotions, is because

of a failure to recognise emotion as the combination of many different factors. Just as there are

many different weather states for which we do not have labels that we simply refer to as ‘fine,

OK or bad,’ there are many different emotional states that are difficult to articulate because

the labels have only been defined for discrete points in some large continuous space. For this

reason, not all aspects of one’s affective state will be relevant or useful to observers (Picard

2003a). Therefore, it is reasonable to simply identify with equivalents to ‘fine, OK or bad’ with

regards to different aspects of a subject’s affective state.

Furthermore, it is possible that there are combinations of affect with labels for which we

have no use and conversely, there are combinations that are useful but not labelled. In this

case, rather than specifically looking for states like pleasure, anger, or joy one should, for

example, attempt to identify “the state you are in when all is going well with the computer”

versus “the state you are in when encountering annoying usability problems” (Picard 2003a).

Within this framework, the definition of ‘engagement’ that is used throughout in this work

primarily considers whether the student is in “a state where the student is registering, listening

to and considering information provided by the lecturer” versus “a state where the student is

distracted, sleeping, or otherwise no longer focused on the lecturer.” These ideas are further

discussed in Section 8.3.

3.3.2 Perspectives on Emotion

Primarily in the realm of philosophers and psychologists, founding theories of emotion origi-

nate from Charles Darwin (Darwin 1872) and William James (James 1884). In the 1980’s and

1990’s the idea of using computation to study emotion came to the fore, and the first expert

systems were developed. Amongst discussions of machine intelligence the idea of including

affective capabilities in systems developed and in the mid 90’s Affective Computing was born.

Much of the literature in affective computing is driven primarily by computer scientists and
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artificial intelligence researchers. Because of this, much of the work in the field is agnostic to

debates and controversies in the underlying psychological theory (Calvo and D’Mello 2010).

There is danger in this, as all systems – usually implicitly – make assumptions about the various

underlying models of emotion.

Within a specific emotional theory or framework, there are important concepts that should

be considered. For example, in a system detecting frustration it is important to consider whether

all users exhibit the same set of behaviours when frustrated. The universality of specific emo-

tions and resulting behaviours should be established not only for multiple individuals within a

population, but especially when considering different populations with different cultural stan-

dards. These considerations are even more important when considering machines that could

express or even feel various emotions.

The remainder of this section briefly summarises six perspectives on emotion identified

in the literature by Calvo and D’Mello (2010). The purpose of this section is to convince

oneself, that regardless of the underlying philosophy of emotion, there are physiological and

behavioural signals that indicate different aspects of emotion.

Emotions as Expressions

Among the first to scientifically explore emotions, Darwin (1859 1872) noticed similarities in

the facial and body expressions of humans and animals. His conclusion was that these be-

havioural correlates of emotional experience were the result of evolutionary processes. He

presented “serviceable associated habits,” which evolved not for the primary purpose of ex-

pressing emotion, but were rather associated with other important actions. For example, a

disgusted face would have been associated with the rejection of an offensive object and indeed

communicates this message effectively.

This theory of emotion does not explain a large number of other emotional expressions,

although there is some evidence that there are some universal facial expressions. This view

has been challenged (Ortony and Turner 1990; Russell et al. 2003a; Russell 1994), but there

is indication that at the very least there are six ‘basic’ emotions in the way they that they are

innate and cross-cultural (Ekman and Friesen 2003; Ekman 1971; Izard 1971 1994; Tomkins

1962). These are anger, disgust, fear, joy, sadness, and surprise.

“ . . . the young and the old of widely different races, both with man and animals,

express the same state of mind by the same movements. Darwin (1859)

Frijda (1987) noted the concept of “action tendencies.” These are states of readiness to act

in a particular way when confronted with an emotional stimulus. It is primarily linked to our

need to solve problems in the environment, for example, “desire” makes us want to approach

something while “fear” makes us want to avoid it.

There is considerable research that identifies facial correlates of emotion and this line of

thinking has given rise to many affective computing systems based on facial expressions as a

way to detect emotion. Most of this type of work is performed using camera. Other systems use
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alternate channels such as voice, body language and posture and gestures. (Calvo and D’Mello

2010)

Emotions as Embodiments

James (1884) proposed that both expression and physiology play a vital role in our experience

of emotion. His model put forward that the physiological changes experienced by the body

actually are the emotion, rather than just its expression.

“ If we fancy some strong emotion, and then try to abstract from our consciousness

of it all the feelings of its characteristic bodily symptoms, we find that we have nothing

left behind. . .

. . . We feel sad because we cry, angry because we strike, afraid because we

tremble, and neither we cry, strike, nor tremble because we are sorry, angry, or

fearful, as the case may be. James (1884)

An example of this theory in action, would be that one experiences some emotion-evoking

stimulus such as seeing a predator. Immediately the body triggers physiological responses

(such as releasing adrenalin, increased heart rate, faster breathing) that the brain then interprets

or labels as fear. It is generally accepted that the body influences emotions, but here the primary

issue is that of causation. The question is whether the brain experiences fear that then causes

these changes in the body, or whether these changes in the body are what the brain interprets

as fear.

Independently, Lange (1885) put forward a similar model. Their work is together consid-

ered the ‘James-Lange Theory’ and focuses on the changes in the Sympathetic Nervous System

as part of the Autonomic Nervous System, which controls bodily functions such as breathing

and heart beats.

Dalgleish (2004) notes that, while in its original form it has been abandoned, the theory

has remained influential and “most contemporary neuroscientists would endorse a modified

James-Lange view in which bodily feedback modulates the experience of emotion.” This theory

implies that emotional experience is embodied in peripheral physiology and that by analysing

these physiological changes one may be able to find a typical physiological response for each

emotion. (Calvo and D’Mello 2010)

Historically, sensors to measure these physiological changes have been intrusive making

the collection of natural data difficult. With the improvements in wearable sensors, however,

in the future there may be large banks of data measured in real-world contexts. With the recent

improvements in statistical data mining and machine learning techniques, these sensors may

offer exciting research avenues in the future. For this work’s purpose and in their current form,

these sensors are too intrusive and expensive. The possibility of incorporating thermal imaging

to try detect some of these physiological signals offers a potentially significant increase to what

may be possible in the future.
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Cognitive Approaches to Emotions

Probably the leading view of cognitive psychologists, this model states that for an emotion to

be experienced, the object of some event should be appraised as directly affecting the person

in some way based on their experience, goals and opportunity for action (Roseman et al. 1990;

Schachter and Singer 1962; Scherer et al. 2001; Smith and Ellsworth 1985). This appraisal

is considered to be an unconscious process evaluating the events based on “novelty, urgency,

ability to cope, consistency with goals etc.” Cognitive-motivational-relational theory states that

to predict a person’s reaction in a situation, that one must know their expectations and goals in

relation to that situation. (Calvo and D’Mello 2010)

Roseman et al. (1990); Roseman (1984) describes 14 emotions and associates them with a

cognitive appraisal process that models events based on five dimensions:

1. Consistency Motives, beneficial versus harmful

2. Probability, how likely is it that the event will actually occur?

3. Agency, who causes the event?

4. Motivational State, appetitive (rewarding) versus aversive (punishment)

5. Power, is the subject in control of the situation?

Ortony (1990) presents a model with four sources of evidence to test emotional theories:

language, self-report, behaviour, and physiology. These two models both agree that there is

some appraisal process and provide a framework in which to predict the emotional state of

a person as a point in the respective appraisal space. The computational models that follow

from these works have proven useful in developing affective computing systems. (Calvo and

D’Mello 2010)

Emotions as Social Constructs

Averill (1980) argues that emotions are social constructs and cannot be explained only on the

basis of physiological or cognitive terminology. The language of emotion is considered a vi-

tal part of its experience. Glenberg et al. (2005) stress the importance of language to emo-

tion. There are even researchers who question the universality of Ekman’s studies (Ekman and

Friesen 2003; Ekman 1971) arguing that the labels used to code emotions were not universal

labels, but rather labels used in the US. There are cultures where labels cannot be literally

translated, and it is argued that in these cultures different emotions are associated with different

social connotations, thus creating a different experience.

Reinforcing these arguments, Stets and Turner (2008) reviewed how each society has dis-

play rules which dictate when and how we express our emotions.

Gendron et al. (2012) and Lindquist et al. (2006) present experiments where they found that

when interpreting emotion the “perceiver unknowingly contributes to emotion perception with

emotion word knowledge.” This output reinforces the notion that our vocabulary to describe

emotions certainly affects the way we perceive it in others, and potentially even ourselves. With
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this in mind, it is important to consider how the language used in a study or survey affects the

subjects as they read/hear the various labels.

As mentioned in Section 3.2 humans tend to label a large continuous space of emotions

using a small number of discrete names. By providing subjects with a list of these discrete

labels, the researcher is encouraging them to ‘round off’ to some nearest label, rather than

consider where they sit on some multidimensional spectrum.

Calvo and D’Mello (2010) note that little work in affective computing has focused on this

social constructionist approach to emotions. Most researchers seem to prefer the approaches

outlined in Sections 3.3.2 to 3.3.2 on pages 53–55, as they lead to a more practical list of

features for computer scientists.

Neuroscience

Only in the past two decades has neuroscience become part of the study of emotional phenom-

ena. In this time, new techniques have been developed to study emotional processes and their

neural correlates. This is the birth of affective neuroscience, and is the study of the neural cir-

cuitry that underlies emotional experience. (Dalgleish et al. 2009; Damasio 2000; Davidson et

al. 2003; Panksepp 1998)

The advances in neuroscience now provide alternate data sources for affective computing,

rather than relying solely on facial expressions and self-reporting. The methods developed

include brain imaging (fMRI), lesion studies, genetics and electro-physiology (EEG). These

provide data about the physiological processes never before available to researchers.

One important development is the large body of evidence which suggests that the neural

layers of cognition and emotion overlap substantially (Dalgleish et al. 2009). Cognitive pro-

cesses such as memory encoding and retrieval, causal reasoning, deliberation, goal appraisal,

and planning operate continually throughout the experience of emotion. (Calvo and D’Mello

2010)

Another important discovery is that emotional learning can occur without awareness and

elements of emotional behaviour do not require explicit processing (Calvo and Nummenmaa

2007; Öhman and Soares 1998). It suggests that some emotional phenomena are not con-

sciously experienced, but still influence memory and behaviours. This indicates that studies

based solely on self-reports may not give thought to more subtle phenomena.

Recent evidence from the field aligns with a modified version of the Emotion as Embodi-

ments theory outlined in Section 3.3.2, although with a lower level approach. There is a grow-

ing interest in emergent variable models where emotions can be considered the labels given to

certain neural states, rather than emotion causing these states.

Core Affect and Psychological Construction of Emotion

Russell (2003) argues that there are so many different emotional theories because there are

multiple facets to emotion. This is in contrast to the argument that these theories describe the

same thing from different points of view. He puts forward the idea that if emotion is a
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“ . . . heterogeneous cluster of loosely related events, patterns and dispositions,

then these diverse theories might each concern a somewhat different subset of events

of different aspects of those events. Russell (2003)

One of the main features of his theory centres around the idea of a core affect, which

is a consciously accessible neuro-physiological state which sits as a two dimensional point

between pleasure and displeasure (valence), and sleepy and activated (arousal). He realises

that emotions are not exact and produced by programs, but are rather the result of loosely

coupled components. These components need not be coherent or in agreement, but a person is

generally able to make sense of the different sources of information. The prototypical case of

an emotion occurs when all these sources are coherent.

3.4 Affect Detection

Affect Detection and its associated methods are of primary interest to this work. In the previous

section, underlying theories of emotion were briefly considered and hinted to the way that

features may emerge from the different subsets thereof. In this section we examine different

behavioural and physiological modalities through which emotions may be indicated. There are

four important considerations when examining the value of a modality (Calvo and D’Mello

2010):

1. Validity

2. Reliability

3. Time Resolution

4. Cost and Intrusiveness

Validity focuses on the natural ability of the measured signal to identify or discriminate an

affective state. Reliability looks at the signal in real-world environments; it considers whether

the signal generalises outside of the lab and in what situations it is actually valid. Time res-

olution of the signal as it relates to the relevant application should be considered. Potentially

valid and reliable methods might have resolutions too coarse to be useful. Finally, the cost of

the equipment and the intrusiveness of the sensors is the final important factor. For example,

an fMRI machine is too expensive, intrusive, and distracting to use in a classroom, a camera is

not.

The rest of this section outlines a number of different detection modalities as well as some of

the systems that use them. This list is based primarily on Calvo and D’Mello (2010) and men-

tions facial expressions, paralinguistic features of speech, body language and posture, physiol-

ogy and multi-modal approaches. Other methods where the equipment is either too intrusive or

not applicable to a live lecture venue are excluded. Finally, a brief consideration of real versus

posed data for ground truth is presented, and some last remarks on affective computing and

necessary assumptions are made.
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3.4.1 Facial Expression

This modality encompasses the majority of affect detection research. Its is based on the view

from Section 3.3.2 that basic emotions are associated with expressions. A system that detects

these expressions is then able to infer affect.

Ekman and Friesen (1978) developed the Facial Action Coding System (FACS). This system

codes the independent motions of the face as Action Units (AUs) which then make up basic ex-

pressions. There are 6 basic expressions, namely anger, disgust, fear, joy, sadness, and surprise.

(Ekman 1992). This system has become the de facto standard for classifying facial expressions

in the behavioural sciences. Donato et al. (1999) are mindful that manually encoding a video is

an extremely expensive task, where a human encoder can spend up to an hour encoding a single

minute of video. There has been much progress in getting computers to automatically encode

AUs, but their reliability is not yet comparable to human encoders (Asthana et al. 2009; Brick

et al. 2009; Calvo and D’Mello 2010; Hoque et al. 2009). El Kaliouby and Robinson (2005ab)

have used the FACS method for some basic affect detection and achieve accuracies in between

60% and 90%.

There is a large amount of work in the development of Intelligent Tutoring Systems (ITS)

that use webcams to recognise facial expressions – not necessarily with FACS – to adjust the

content and questioning the student receives based on the student’s affective state. Some of

these works include Arroyo et al. (2009) and McDaniel et al. (2007). For more work on ITSs

see D’Mello et al. (2006).

Zeng et al. (2009) reviewed 29 vision-based affect detection systems. Most of the research

focuses on detecting the six basic emotions listed above and not necessarily those emotions

that are required for general affective systems. Most of the systems are trained based on posed

facial expressions as opposed to natural or spontaneous data. This has implications for the

reliability of these methods in real-world settings. Only 6 of the 29 systems were able to

operate in real-time on single faces. This indicates the difficulty of achieving a real-time system

for affect detection – heavy use of parallelisation and high performance computing techniques

are necessary to achieve real-time performance.

3.4.2 Paralinguistic Speech Features

When speaking, one transmits affect information both explicitly and implicitly. Explicit in-

formation is transmitted by what is said, while implicit information is transmitted through

volume, rhythm, intonation/pitch, and stress. These are also known as prosody. While the all

mechanisms are not fully understood, it appears that listeners can decode many emotions from

prosody and other non-linguistic vocalizations, such as laughing and crying. This establishes a

feasible level of validity.

Surveys and research conducted by Johnstone and Scherer (2000); Juslin and Scherer (2005);

Russell et al. (2003b); Zeng et al. (2009) outline a number of important results. The most

reliable finding, according to this analysis, is the link between pitch and arousal – sleepi-

ness/fatigue versus activation/excitement (Calvo and D’Mello 2010). Detection rates of sad-

ness, anger and fear are best, while disgust is the worst. Across the board, however, accuracy
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rates are lower than those of facial expression based systems.

Although less reliable, the cost is low both in monetary terms and the amount of training

required. Calvo and D’Mello (2010) note that 16 of the 19 systems surveyed were trained on

spontaneous speech. Couple this with its non-intrusive nature and fine resolution, paralinguistic

features are considered a useful feature which may provide useful information in the future.

The difficulty of speech based features in a lecture venue is that most of the time, it is only

the lecturer talking. If the students are talking they are often whispering to one another, which

masks the useful features. If the students are all talking then unmixing the voices is a non-

trivial task, but more importantly, this is something the lecturer will definitely notice without a

computer. Finally, if a single student is talking then that student is likely interacting with the

lecturer already. For these reasons, paralinguistic features of speech specifically do not appear

useful as the primary data source for large scale monitoring of classes and this feature is not

currently used in the system.

There may be useful information in this medium and audio should be considered as a sup-

plementary modality in the future. Work should be done to analyse audio recordings of lecture

venues, where volume and dominant frequencies may provide useful information. For exam-

ple, increased high frequency noise in an area might indicate that students are whispering to

each other.

3.4.3 Body Language and Posture

The signals examined by methods in the previous two sections are by far those most commonly

used in affective computing in spite of the fact that many theories regarding expressions, in-

cluding Darwin’s, focused heavily on body language. Body language and posture have been

overlooked in state-of-the-art detection systems (Calvo and D’Mello 2010).

Body language appears to be a valid and useful approach for affect detection primarily due

to the relatively large size of the human body and the high number of degrees of freedom. This

allows the body to exhibit a large number of different positions and movements. These factors

are considered to make body posture a potentially ideal affective communication channel. (Bull

1987; Coulson 2004; De Meijer 1989; Mehrabian 1977; Montepare et al. 1999)

Particularly, the size of the body makes posture an ideal channel to detect affect over longer

distances as it requires much less detail than facial expressions (Walk and Walters 1988).

D’Mello and Graesser (2009) note that the “greatest advantage to posture based affect de-

tection is that gross body motions are ordinarily unconscious, unintentional, and thereby not

susceptible to social editing, at least compared to facial expressions, speech intonation and

some gestures.”

This is an extremely important issue when attempting to detect what society considers to

be negative feelings. The theory of Social Display Rules put forward by Ekman and Friesen

(1969) is consistent with the findings of D’Mello and Graesser (2009), that students “do not

readily display frustration on the face, perhaps due to the negative connotations associated with

this emotion.” Ekman and Friesen (1969) refer to non-verbal leakage, which alludes to the

difficulty liars face when disguising deceit through channels usually controlled subconsciously.
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A large body of research uses the Tekscan Body Pressure Measurement System (BPMS)

which is a thin film with a matrix of pressure sensors that can be placed on the horizontal and

vertical surfaces of a chair. Mota and Picard (2003) were the first to use such a system to

detect the affective states of a student working in front of an ITS. By analysing the spacial and

temporal pressure maps produced by the BPMS, they were able to classify nine postures with

an accuracy of 87%. Following this, the system recognised three levels of interest: high, low

or taking a break. The system analysed postures over three second intervals and was accurate

to 82%.

D’Mello and Graesser (2009) extended the work above to predict engagement/flow, bore-

dom, confusion, frustration and delight of a student during a session with their ITS, AutoTutor.

Their experiments yielded positive results with accuracies of about 75% when predicting these

outcomes.

Posture based detection is quickly gaining traction (Bianchi-Berthouze and Lisetti 2002;

Castellano et al. 2008b) and is a big, open field that has largely remained unexplored.

Most of the work in posture detection in affective computing seems to focus on the use

of pressure sensors in chairs of some sort. In this work, it is proposed that the gross posture

detection is done through vision, as pressure sensors on each seat in a large classroom would

be prohibitively expensive.

This method of posture tracking will be closely related to gesture detection and the system

will track the gross body position and movements, rather than the slight movements detected

in the pressure plates.

3.4.4 Physiology

While the three modalities outlined above primarily relate to the expression perspective of emo-

tion, physiology and brain imaging relate primarily to the embodiment perspective of emotion.

The aim using this approach, is to find physiological patterns that correlate with the various

relevant emotions. There are two underlying psychological fields from which this body of

work draws: physiological psychology and psychophysiology. These relate to investigations of

how behaviour changes based on forced physiological changes, and how physiological factors

change when different stimuli are presented. These fields attempt to understand both the physi-

ological effects of behaviour and the behavioural effects of physiology. Behaviour, in this case,

refers to both emotional and cognitive processes. (Calvo and D’Mello 2010)

Physiological measurement techniques relating to affective computing include:

1. Electromyogram (EMG) - Muscle Activity

2. Electrodermal Activity / Galvanic Skin Response (EDA/GSR) - Skin Conductivity due

to Sweat

3. Electrocardiogram (EKG / ECG) - Heart Activity

4. Electroencephalography (EEG) - Brain Activity

5. Electrooculogram (EOG) - Eye Movement
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6. Magnetic Resonance Imaging (MRI) - Brain Imaging

7. Functional Magnetic Resonance Imaging (fMRI) - Blood Flow in the Brain

While non-invasive or non-surgical in nature, these sensors are often intrusive, in that the

individual needs to wear or sit inside the sensors, this makes them less useful to a classroom

setting. There seems to be a growing body of work that is focusing on the use of infra-red

or thermal imaging techniques. For example, Sun et al. (2005) had success when detecting a

subject’s pulse using a sensitive thermal imaging system. Shastri et al. (2009) found that they

were able to detect peripheral sympathetic responses using only imaging techniques with an

accuracy comparable to those found using GSR sensors. Puri et al. (2005) found a correlation

between times of increased stress and blood flow in the frontal vessel of the forehead. This

increased flow dissipates convective heat and can be monitored through the use of thermal

imaging. Their system was able to successfully detect stress in the 12 subjects they evaluated.

Of most importance to this work, is that of Merla and Romani (2007). Through the use of

thermal imaging and the change of thermal patterns exhibited over a subject’s face, they were

able to detect stress, fear and emotional arousal. They note how the topographic distribution of

cutaneous (skin) temperature on the face provides an alternative to the standard sensors and is

a touchless method for assessing a subject’s emotional arousal.

At the current time, high resolution thermal imaging technology is prohibitively expensive.

A typical thermal camera can be used to track one or two students at a resolution high enough

for facial analysis; however, when considering a small classroom of even 50 students, the

expense is too restrictive. As technology advances the feasibility of thermal methods may

increase, but currently it appears that while there may be significant amounts of useful data, it

is infeasible to roll out the technology on a large scale. For these reasons, thermal imaging is

not considered further in this work.

3.4.5 Multimodality

The psychological theories for expressions and embodiments both suggest that for some emo-

tional episode, there will be changes to both expressions and physiology. Calvo and D’Mello

(2010) use anger to illustrate this concept. When angry one expects standard manifestations

through facial, vocal and body language. At the same time, a rise in heart rate is likely to occur.

By monitoring all of these channels of communication, a system can detect this affect more

reliably. Some may consider it surprising that, while multimodal affect detection systems have

been widely advocated, they are rarely implemented. This is largely because challenges in the

single modal setting become exponentially more difficult to deal with in multi-sensory envi-

ronments. In general, however, researchers seem to agree that multimodal sensor environments

will ultimately be part of a comprehensive affective computing solution (Calvo and D’Mello

2010; Jaimes and Sebe 2007; Sharma et al. 1998).

Calvo and D’Mello (2010) analyse only two systems that use three or more modalities.

These are Scherer and Ellgring (2007b) and Castellano et al. (2008a). The former uses a mix-

ture of facial features, vocal features and body movements to discriminate among 14 emotions.

With classification based on only facial or vocal features, the system performed at 52% each
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time. When using the combined 37 channel model, this accuracy increased to 79%. The lat-

ter used a mixture of facial features, speech contours and gestures. For single modal cases

the accuracy of the system was 48%, 67% and 57% for each feature respectively. When used

together, the system’s accuracy increased to 78%.

Using facial features, posture features and context from an ITS, Kapoor and Picard (2005)

were able to infer the level of interest of a child. Using the upper face, lower face, context

and posture yielded accuracies of 64%, 53%, 57% and 82% respectively. When combining all

the modalities, their system performed at 86% accuracy. This suggests that their other features

were mostly redundant when taken alongside posture.

Calvo and D’Mello (2010) present a number of other cases where multimodal sensory data

outperforms the corresponding single channel system. In spite of these results, they warn

against making the assumption that there is coherence among multiple components of emo-

tion. A common assumption made by researchers working in affective computing is that the

emotional response to some stimulus is synchronized over the different communication chan-

nels. There is evidence that – other than the prototypical cases – there is actually low correlation

between the signals and it is important to identify when these signals are strongly and loosely

coupled. (Barrett 2006; Calvo and D’Mello 2010; Castellano et al. 2008a; Russell et al. 2003a;

Scherer and Ellgring 2007a)

3.4.6 Real versus Posed Data

Literature shows that there are important differences between real and posed data. Afzal and

Robinson (2009); Cohn and Schmidt (2004); Ekman et al. (1990); Pantic and Patras (2006)

show how systems trained on posed expressions do not generalise to real-world contexts. One

primary difference is seen in the synchronicity of multimodal responses mentioned in the pre-

vious section. Castellano et al. (2008a); Scherer and Ellgring (2007a) find that across different

channels, the responses of posed emotions align more than those exhibited in real life. It may

be interesting future work for deception experts, but based on the literature, real data should be

used to train the system where ever possible.

3.4.7 Ground Truth

Establishing ground truth with regards to the fuzzy borders of affect is a challenge. Whitehill

et al. (2014) note that the current popular methods are self-reporting, observational checklists

and automated measurements. Each method has its own limitations.

One major drawback of self-reporting is that students may be influenced by the same pres-

sures associated with social display rules. These rules tell students that it is not acceptable to

be bored in class and that you certainly would not want the lecturer to know that you are bored.

This is considered in more detail in Chapter 4.

A second major problem is the definition of ‘being engaged.’ As students assess themselves

based on different factors, they are likely to come up with arbitrary levels of engagement that
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do not necessarily generalise between them and other students. Considering the temporal na-

ture of engagement and other affects, the best way to asses through self-reporting may be to

measure levels of engagement over time and assess the relative changes reported by a subject.

As long as a subject is consistent in their reporting of their own state, it may be possible to gen-

eralise results more easily. In this case, direct claims such as “slumped posture correlated with

high boredom levels” should be replaced with claims focusing on the changes over time: “as

boredom levels increased from some initial level, more slumped postures were observed.” The

emphasis is on the relative change in current levels, rather than the absolute levels themselves.

Observational checklists, on the other hand, require that some observer checks for certain

behaviours. Whitehill et al. (2014) notes questions such as whether the students sit quietly, do

their homework, ask questions and are punctual. These checks, however, are only tangentially

related to the students emotional engagement as a compliant student may check all the boxes,

but remain emotionally disengaged.

The third method examined by Whitehill et al. (2014) relates to Automated measurement,

which is the purpose of this research, but requires that we already have a ground truth database

on which to train. Automated tools can rely on features such as context in ITSs, physiological

signals, facial expression, and body posture.

This work presents work in both self-reporting (Chapter 4)and an observational checklist

(Section 8.3) and discusses benefits and problems with each approach in the relevant sections.

3.4.8 General Remarks on Affective Computing and Assumptions

There are many open questions in the affective sciences. For example there are many ques-

tions surrounding the use of labels like anger, shame, joy or sleepiness versus points in some

continuous space, like valence and arousal. A pragmatic approach by researchers has lead to a

fast expansion in Affective Computing, but practitioners should always bear in mind what their

fundamental assumptions are when developing affect sensitive systems.

One assumption of interest to these systems is the internal representation of emotion within

a subject. If the research tries to impose a representation – such as labels and scales – the

outcome of self-reporting is influenced. These representations are not necessarily global and the

language with which subjects are provided influences their ability to report. For example, when

not provided with labels, Lindquist et al. (2006) found subjects did not necessarily identify the

same emotions that they did when labels were provided.

Another fundamental assumption in many systems is that when provided with a stimulus,

subjects express their experienced emotion. There are two aspects to consider that are important

to this work. On the one hand, social display rules mean that subjects filter what expressions

they show, particularly when experiencing negative emotions (Ekman and Friesen 1969). This

was explicitly validated in Schneider and Josephs (1991) with school children, where they

find that learners try to appear fine even when they are not. The other important aspect to be

considered is that of emotional regulation, where the subject might find a way to offset their

experience of a negative emotion, such as boredom, by showing interest in something else –

such as the environment or through doodling.
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Doodling, for instance, may help offset boredom and can actually lead to an increase in cog-

nitive performance over time. Andrade (2010) found this in an experiment with recollection

of information from telephone calls. Maclay et al. (1938) found that doodles were produced

during states of “idleness, boredom, leisure, meditation, and affective tension – indecision,

concentration, expectation, and impatience.” Note the appearance of both boredom and con-

centration in that list. Scott (2011) notes that doodling happens when the individuals focused

attention is partly or completely elsewhere.

Regulation, such as this, may make a subject appear bored, disinterested or disengaged,

when the opposite is actually true. Care must be taken when building an ‘observational check-

list’ to ensure that the items being checked do indeed correspond to the affect being measured.

3.5 Affective Computing in Education

3.5.1 Affect in Education

The importance of affect during learning episodes has been established in literature. Picard

(1997) asserts that the reason humans are so good at many tasks, is because we process data

through the lens of emotion, particularly when it comes to perception. Learning is significantly

enhanced when students feel empathy from their teacher (Graham and Weiner 1996; Zimmer-

man 2000). The interpersonal relationships between teachers and students are linked to long

term increases in motivation (Royer and Walles 2007; Wentzel and Asher 1995). D’Mello and

Graesser (2009); D’Mello et al. (2006); Graesser et al. (2006); Kort et al. (2001) argue that

emotions play a significant role in the deep learning of conceptual information.

Figure 3.2: Proposed Emotional Framework for Learning (Kort et al. 2001)

Figure 3.2 provides a framework for the assessment of student affect during learning episodes.

While there are a number of ‘negative emotions,’ the proposed model of learning has learners

cyclically moving between a number of different stages, such as curiosity to confusion, to frus-

tration and ultimately hopefulness. This cycle of positive and negative affect is supported by

Shute et al. (2015).

General affect detection focuses on anger, fear, sadness, happiness, disgust, and surprise,

but these basic emotions are infrequent in the learning context (Bosch et al. 2015b). Rather,

students’ experiences during learning episodes centre around engaged concentration, boredom,

confusion, frustration, happiness, and anxiety (DMello 2013). Although they are not exactly
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the same, the affects listed by Kort et al. (2001) and DMello (2013) are fundamentally in

agreement.

The universality of facial expressions and mappings with the basic emotions were largely

established by Ekman et al. (1980) and Reisenzein et al. (2013). The same process is still under

way for the learning centred affects (McDaniel et al. 2007). As such, there is very little work

done detecting the students’ affects during learning episodes using vision and most systems

primarily rely on contextual and other sensor information. Current systems are discussed in the

next section.

3.5.2 Detection of Affect for Educational Purposes

Bosch et al. (2015b) present one of the first works detecting learning-centred affective states in

the wild using vision. They perform supervised learning on data collected from 137 students

in 8th and 9th grade computer laboratories. The students each sat at a computer and played a

physics based computer game while being recorded by webcams. The students were coded

using the five affects shown in Table 3.1 as well as being on-task or off-task. Being off-task

involved watching other students, using a cellphone, or having unrelated conversation. They

use the area under receiver operating characteristic curve (AUC) to measure accuracy and

achieve impressive results considering the challenges. Their results are reported in Table 3.1.

Table 3.1: Classification Accuracies in Bosch et al. (2015b)

State AUC

Off task behaviour 0.816

Boredom 0.610

Confusion 0.649

Delight 0.867

Engagement 0.679

Frustration 0.631

5-way classification accuracy 0.655

Commercial software was used to extract the likelihood estimates for the presence of 19

action units (AUs), as well as head pose, orientation and position information. Poor lighting,

extreme head pose or position, occlusions from hand-to-face gestures, and rapid movements

resulted in 25% of data being discarded. Using clustering and Bayesian approaches, the ex-

tracted features were used to classify the relevant affects. The work by Bosch et al. (2015b) is

the most similar to the work presented in this thesis and will be used a benchmark for results.

Problems identified primarily related to issues with noisy data, which was a problem for the

work presented in this thesis as well. As data was collected using webcams on computers in

front of the students it provided an unoccluded, consistent, frontal view of the subjects. The data

presented in this thesis is more challenging as it considers students sitting in a lecture theatre

viewed from a single camera at the front of the class. This means that there is significantly

more variation due to occlusions, background changes, resolution, angle from the camera to

the student, and others. Kai et al. (2015) expands upon Bosch et al. (2015b) and again notes
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problems with video based approaches and noisy classroom environments. Again the students

were playing the physics-based game and were recorded from cameras on the machines in front

of them. The issues related to poor video data are discussed further in Chapter 5.

Raca and Dillenbourg (2013); Raca et al. (2015) focus on the use of head motion to identify

students that are paying attention. They show that head pose can be used to approximate eye

gaze and, in turn, use that to analyse whether students are behaviourally engaged in the class.

They also make use of optical flow to track how much the student is moving. Their work gives

accuracies between 61.86% and 65.72% classifying students on a 3-point scale of attention.

The data was collected in a manner similar to this work, but on a smaller scale. Attention was

labelled with students self-reporting their attention levels periodically using a questionnaire

during class.

A further literature survey was unable to find any work seeking to apply vision based affect

detection methods to real-life ‘wild’ learning environments where subjects were not seated in

front of a computer. It is believed that this is the first work to focus on issues of affect detection

in the wild, without subjects seated in front of computers. However, there has been a lot of

work in the creation of Intelligent Tutoring Systems (ITSs) in order to make an affect-aware

online tutor. This was proposed by Kort et al. (2001) and the research groups of D’Mello and

Picard have contributed much literature towards the development of ITSs to maximise learning.

A system that responds appropriately to negative affective states is more likely to re-engage

the student (Kapoor et al. 2007). The work already done in this field is very promising (Alyuz

et al. 2016; Arroyo et al. 2007; Conati and Maclare 2004; D’mello and Graesser 2007; D’Mello

et al. 2007 2010; Graesser et al. 2007; Johns and Woolf 2006; Kapoor et al. 2007; McQuiggan

and Lester 2006). AutoTutor has received the most attention recently. Systems like this use

a combination of hardware monitors and contextual information from the current activity to

predict the student’s current affect.

In these settings, the researchers have used various methods and sensors to detect emotions

such as boredom, fatigue, joy, surprise, anger, disgust, and interest while the student works on

problems with the ITS. It then adjusts both the difficulty of the problems as well as the phrases it

uses to respond to the user. The ITS applications developed so far have been based primarily on

vision for facial expressions. Other sensors, including a Body Pressure Measurement System

(BPMS) (D’Mello and Graesser 2009) and skin conductance sensors (Arroyo et al. 2009) have

been used. Almost all of the current systems use a pressure sensitive mouse which provides

vast information about frustration (Dennerlein et al. 2003).

The ITS developed in Arroyo et al. (2004 2007 2009) was equipped with mouse pressure,

posture, video, and skin conductance sensors. It was then applied in both High School and Un-

dergraduate settings. They used self-reported student data as ground truth. A major component

of the system was the use of MindReader which performs facial expression recognition to infer

aspects of a subject’s state of mind (El Kaliouby and Robinson 2005a). They found that the

extra sensors improved the predictive power of the system. They also identified correlations be-

tween Sitting Forward and both frustration and excitement. With contextual information from

the online tutor, they are able to differentiate between the two. Confidence and concentration

were strongly correlated and were well predicted by the facial expression software.

In D’Mello and Graesser (2009), the AutoTutor ITS was equipped with the BPMS pressure
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system to measure posture. The BPMS system is placed on the horizontal and vertical parts of

a chair, it then feeds pressure information to the system that can be used to infer posture. Based

on posture alone, machine learning experiments found detection accuracies of 73%, 72%, 70%,

83% and 74% when differentiating boredom, confusion, delight, flow and frustration from

neutral affects. When differentiating between two, three, four and five of the states, accuracies

of 71%, 55%, 46% and 40% were achieved respectively. Although facial expressions were once

considered the gold standard for emotional expression, they argue that “there is converging

evidence that disputes the adequacy of the face in expressing affect. . . at the very least, it is

reasonable to operate on the assumption that some affective states are best conveyed through

the face, while others are manifested through other non-verbal channels.” Of interest to this

research, D’Mello and Graesser (2009) note the face is particularly sensitive to social display

rules when dealing with negative emotions, such as frustration and boredom.

Still applicable to education, but with many other uses, MacHardy et al. (2012) and Ben-

zaid and Dewan (2010) look to detect the affect of subjects in the audience of a distributed

presentation. When live streaming a presentation over the Internet, presenters have no way to

assess the interest levels of their audience. Some new online presentation tools allow audience

members to indicate their level of interest, but this feature is both rare and can be distracting for

the user. Their work looks to use built-in webcams in the computers of each audience member

to perform facial expression recognition and report levels of interest back to the main server.

Aggregate information could then be supplied to the presenter automatically to assist presenters

in understanding their audience.

Their system was trained on self-reported data, where a user would watch a video while

being recorded. They would then review the video afterwards and tag sections as bored or

engaged. They were unable to detect frustration better than chance. The studies were too small

to be of statistical significance, with only five subjects in Benzaid and Dewan (2010) and twenty

in MacHardy et al. (2012). In spite of this, their results show promise, in that a simple SVM

trained only on the pixel values of the mouth, eyes and nose was able to distinguish between

the two affects.

More recently work has focused on the development of affect detection for distance learning

systems (Gogia et al. 2016). Their goal was to detect and report affect of remote learners. A

multi-modal approach was developed based on a EEG hardware worn by the participants as

well as a facial tracker based on the Kinect camera. While the results are promising and show

the power of a single user system, the hardware constraints are unsuitable for large scale roll-

out. Poulsen et al. (2017) show that EEG sensors can be used to reliably recognise engagement

and that subjects in classroom settings exhibit reliable neural responses that were correlated

across both subjects and experiments. This shows that EEG sensors are a potentially feasible

way to collect ground truth data in the future. The idea of providing EEG sensors to all students

in a large class could be problematic and will likely introduce issues practical when scaling up

even if students were prepared to wear the equipment for extended periods of time.

Paquette et al. (2016) use a mix of the Kinect, software logs and quantitative field obser-

vations for subjects in front of a computer based learning game. Their field observations were

made using the Baker-Rodrigo Observation Method Protocol (BROMP) (Ocumpaugh 2012)

where a certified coder is used to provide labels. To be BROMP certified, the new coders must

have a Cohen’s κ score of 0.6 when compared with other previously certified coders. Unfortu-
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nately such coders were not available for this research. Paquette et al. (2016) found issues with

subject posture and interaction-based (software interaction logs) detectors, but ultimately found

that the interaction-based detectors perform better. Conversely, Bosch et al. (2015a) found that

face detector based systems functioned better than the interaction-based systems, although the

latter suffered less from missing data. They note the difficulty of feature engineering and how

it is difficult to know a priori which features will prove effective.

3.6 Prediction and Detection of Affect

The previous sections identified a number of learning-centred affects from the literature, some

of which include: engaged concentration, boredom, confusion, frustration, and fatigue. It is

useful for a teacher to be able to track all of these affects during class as the intervention

required when a student is disengaged and anxious will be different from when the student is

disengaged and confident. This section surveys some work on detecting these affects. Other

affects such as happiness and anxiety are not considered in this work.

3.6.1 Boredom and Engagement

Engagement can be organised into three primary categories: behavioural, emotional and cog-

nitive (Whitehill et al. 2014). Behavioural Engagement refers to a student’s willingness to

participate: Will they submit work? Will they attend class? Will they follow directions? Emo-

tional Engagement concerns the students’ emotional attitude towards the task at hand. This

could be a student fulfilling all the requirements, but disliking or being bored by the task. Cog-

nitive Engagement relates to the way in which the students’ cognitive abilities are being used.

These focus on attention, memory and creative thinking. In this first research endeavour, WITS

is interested primarily in identifying lapses in cognitive engagement.

Whitehill et al. (2014) labelled users of an ITS as engaged or not-engaged using several

untrained assessors. They were given specific instructions about labelling, using features like

blinks and eye gaze. 10 second clips were labelled by the observers. The assessors had very

high agreement labelling engagement as high or low, with a Cohen’s Kappa (Cohen 1960) value

of κ = 0.96. When discriminating between 4 levels of engagement, the reliability decreased

to κ = 0.56. Frame-by-frame recognition was used to classify the video frames, which over

time contribute to an engagement score for the segment. For classification they used Gentle-

Boost with Box Filter features from Viola and Jones (2004). Support Vector Machines (SVM)

with Gabor features, as well as Multinomial Logistic Regression (MLR) were used for emo-

tion detection. When performing binary classification on high versus low engagement labels,

the classifier accuracy was comparable to that of humans. The work reinforces the idea that

automatic recognition of student engagement is possible.

The Augmented Multi-party Interaction (AMI) Consortium is a community looking to im-

prove the effectiveness of meetings by creating software to properly support and regulate them.

Kroes (2007) used the AMI video database of meetings to perform boredom analysis. He notes
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three primary uses of such a system: assessing general efficacy of meetings, assessing com-

munication skills of meeting participants, and generating meeting annotations that allow for

sorting and searching based on participant boredom or interest. These uses naturally translate

from the meeting setting to a lecture venue.

Kroes (2007) makes a number of interesting observations applicable to boredom in meet-

ings, that apply more generally as well. He notes the temporal nature of boredom, that one

should not be interested in just a single value, but rather a range of values over time. He also

notes the existence of some mutually exclusive states – for example, excitement which can

serve as a counter-indication of boredom.

Boredom specifically can be defined as follows:

“ Boredom is a state of mental weariness and dissatisfaction produced by lack of

interest or activity. Blaszczynski et al. (1990)

“ Boredom is a state of relatively low arousal and dissatisfaction, which is

attributed to an inadequately stimulating environment.

Mikulas and Vodanovich (1993)

There are two components that are observed to create what is termed boredom: low arousal

and dissatisfaction. These two-dimensional axes correspond to the valence-arousal axes men-

tioned previously and referenced throughout literature. The alternatives within these axes cor-

respond to:

• Low arousal & Satisfaction: relaxation and peacefulness

• High arousal & Dissatisfaction: anger or fear

• High arousal & Satisfaction: excitement

It is important to distinguish between different causes of the state of ‘low arousal and dis-

satisfaction’. The definitions above both note that this feeling is a result of lack of stimulation.

This is an important consideration as an affect detection system will not be able to tell the dif-

ference between apathy towards the subject or lecturer induced boredom. It is important that

any user ultimately using the system is properly informed of these nuances.

By viewing the video corpus from AMI, Kroes (2007) identified a number of common signs

of boredom in meetings. This was performed by untrained assessors. The assessors watched the

videos and determined when a subject was bored. They then compared all the video segments

of bored subjects against the video segments of engaged subjects. This resulted in a number of

observations listed below which relate to either low arousal (relaxation) or dissatisfaction.

The identified signs are grouped into postural, facial and social signs. The postural signs

include:

1. Slumped posture, which indicates low arousal as muscles are relaxed. This leads to a

decrease in stature as the shoulders, back and head are slouched. The shoulders and head
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are usually pointed forwards while the subject leans back into their chair.

2. Attentive subjects generally showed higher levels of movement than bored subjects. Low

levels of movement with periodic, sudden changes was typical of both low arousal and

dissatisfaction.

3. Some bored subjects let their hands lay idle, but most tended to use their hands to sup-

port their head, rub or clutch their face or placed them on their neck or behind their

head. These are known as hand-over-face gestures and can be interpreted as signs of

low arousal, but not necessarily dissatisfaction. Attentive subjects tended to place their

hands on the table or somewhere in front of them, which may be a counter-indication of

boredom.

The second group is made up of facial signals.

1. The amount that one’s eyes open is an important indicator of arousal. Low arousal is

typically evidenced by partially closed eyes and an increase in blinking.

2. Subject’s gaze is indicative of arousal. Subjects who are bored tend to stare and generally

show more attention to the surroundings of the room than to the speaker. It is also noted

that attention is shifted more frequently between note taking and the speaker when the

subject was engaged.

3. Someone who is bored tends to keep their mouth closed more except for possibly the

occasional yawn. Periods of time without smiling may be an indicator of dissatisfaction.

Finally, Kroes (2007) mentions social signs:

1. Talking, writing, typing and other activity may be an indication of attentiveness, lack

thereof may indicate low arousal or even boredom.

2. Acknowledging peers when they speak is an indication of attentiveness. This acknowl-

edgement may take the form of looking at them, nodding/shaking ones head in agree-

ment/disagreement or other facial cues to indicate focus.

In particular, the observations on posture and head movements are strongly supported by

Wallbott (1998), who found a raising of the chin, tilting back and sideways of the head, lack of

erect body posture and low movement all indicative of boredom.

Kroes (2007) made use of a Mean Shift Embedded Particle Filter (MSEPF) to track objects,

such as hands, in real time. This performed well even when the object was in a cluttered envi-

ronment and moving rapidly. He used AdaBoost, Support Vector Machines (SVMs) and Linear

Discriminant Analysis (LDA) to classify Gabor wavelet representations of the video frames to

detect facial expressions. This classifier worked with 93% accuracy to classify among neutral,

anger, disgust, fear, joy, sadness and surprise. The classifier was trained on 626 examples from

AMI, it ran in real time and required that subjects were in frontal positions to the cameras.

Fatigue detection was performed using pupil shape, frequency of eye blinking and yawning

and a model based on Jin et al. (2007). To do this a neural network was trained using the three

dimensions as input and the desired output as calculated in the model. Gabor filters were used

to find the position of the facial features which were then monitored over time to detect blinks
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and yawning. Context in the meeting was also considered but was detected with very high error

rates.

Postural signs were detected by using naı̈ve methods. Based on the fact that the cam-

eras were stationary and that the background was unchanging, to detect a slumped posture,

background subtraction was performed and the hight of the remaining object in the scene was

measured. Similarly, detecting the average movement over a portion of the video allows the

system to detect low or high periods of movement. Hand usage was tracked using the object

tracking mentioned above. More sophisticated methods based on thermal imaging, stereo vi-

sion, Haar-like features and LDA are seen in Iwasawa et al. (1997); Jeong et al. (2008); Van

den Bergh et al. (2008). Alternate methods can be found in surveys by Moeslund et al. (2006)

and Gavrila (1999). Using segmentation, silhouettes and heuristic rules based on body shape

characteristics, Juang et al. (2009) have created an efficient and effective posture estimator.

The detection of other facial and social signs, and actually detecting boredom were not

done in his work. Gaze was not detected, and Kroes (2007) notes that this is a very difficult

problem to solve accurately. Significant, successful work has since been done on tracking head

poses and detecting the visual focus of attention with Gaussian Mixture Models (GMMs) and

Hidden Markov Models (HMMs) (Ba and Odobez 2009 2011; Ba 2007; Smith et al. 2008), this

is still a complex problem and in a lecture theatre where the camera is far from the subject it is

difficult to establish student focus from their eyes. In this case, using the face is an acceptable

approximation. Of particular interest is a survey on head pose estimation by Murphy-Chutorian

and Trivedi (2009).

Work in boredom detection for the AutoTutor ITS is found in D’Mello and Graesser (2010)

and much of the other work by D’Mello’s group. These works are broad and primarily rely on

multimodal approaches including conversational cues, gross body language and facial features.

D’Mello and Graesser (2010) makes use of LDA to classify between a number of emotions,

including boredom. They found that facial features and context were sufficient to detect bore-

dom. Craig et al. (2008) found a strong correlation with AU 43 (eye closure) as well as general

eye and mouth movement which supports the observations made above.

3.6.2 Confusion

Comparatively little work has been done in the detection of confusion. D’Mello and Graesser

(2010) accurately used facial features to detect confusion. They found that the inclusion of dis-

course enabled the detection of confusion independently; when using the two signals together,

their accuracy decreased. This is probably due to the curse of dimensionality. McDaniel et al.

(2007) found correlations with AU 4 (lowered brow), 7 (tightening of the eye lids) and a lack

of 12 (lip corner puller). This conflicts with D’Mello et al. (2006) who found a correlation with

the presence of AU 12, rather than the lack thereof. Craig et al. (2008) established that AU 1,

2, 4 and 7 strongly correlate with confusion and frustration with near perfect scores.

Murphy-Chutorian and Trivedi (2009) note the use of head pose in conveying emotions

such as confusion. While this seems intuitive, they do not specifically cite any literature or

experiments to support their claim.
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3.6.3 Frustration

As part of Picard’s research group at the MIT Media Laboratory, working on an Intelligent

Tutoring System, Kapoor et al.’s (2007) work specifically looks to detect frustration. Their

research methodology is of particular interest. They note that self-reported feelings at the end

of a task are “notoriously unreliable,” while the use of external coders can quickly become an

enormous and expensive task. They admit that less is known about the reliability of labelling

by a subject in the heat of the moment, but giving them a way to indicate that they are – in this

case – frustrated appears more reliable than self-reporting after the fact.

Their work involved the creation of a system that asks subjects aged 12 – 13 to solve the

Towers of Hanoi problem on a computer. While solving the problem, a number of sensors mon-

itored the students. They used a camera, a pressure sensing chair, a pressure sensing mouse and

a wrist band to monitor skin conductance. While solving the problem, there was also a button

on the screen that says “I’m Frustrated.” They acknowledge that there may be learners that are

frustrated but do not click the button. They argued, however, that prior studies from human

computer interaction suggest that collecting self-perceived negative information by a computer

in this way is at least more accurate than collecting the same information through trained ex-

perts. They cite Card et al. (1974); Lucas et al. (1977); Robinson and West (1992), drawing

comparisons of computers and doctors taking embarrassing medical histories. A button click

can then be interpreted as an indication of a subject being both frustrated and aware of it.

When a user clicks the button, the period leading up to the click is marked as frustrated.

The machine learning system then used a number of features to track the subject. They used the

IBM Blue-Eyes camera to track pupils based on the red-eye effect (Haro et al. 2000). A Hidden

Markov Model (HMM) from Kapoor and Picard (2001) was then used to detect head nods and

shakes. The system from Kapoor and Picard (2002) was used to detect shape information about

the eyes and eyebrows. Based on the location of the eyes, a Support Vector Machine (SVM)

was used to differentiate between ‘fidgets’ and ‘smiles.’ This vision system was able to run in

real time at 27–29 frames per second on a 1.8GHz Pentium 4 machine.

The pressure on the chair was processed with the use of a mixture of Gaussians and a feed

forward neural network which classified postures. Pressure on the mouse and skin conduc-

tance were also included. Data were classified using 5 methods: random (control), 1-nearest

neighbour, SVM (radial basis function kernel), Gaussian process, and SVM (kernel of Gaus-

sian process). Accuracies when predicting periods of frustration were 58% for control, 67%,

71%, 79% and 79% respectively.

This approach to real-time self-reporting is investigated further in Chapter 4.

3.6.4 Fatigue

All works found relating to fatigue detection were in the context of driving. The most accurate

techniques for doing this are through the use of physiological sensors monitoring brain waves,

heart rate, pulse rate and respiration (Healey and Picard 2000). These methods are not feasible

for driver fatigue detection as it requires the use of distracting equipment.
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For these reasons, Devi and Bajaj (2008) advocate the use of non-intrusive methods using

video cameras to detect changes in eye blinking, sagging posture, leaning of the driver’s head

and the open/closed state of the eyes. Horng et al. (2004), Dong and Wu (2005) and Devi and

Bajaj (2008) rely on eyelid movement to detect fatigue. They note that eye blink frequency

increases beyond the normal rate when the subject is in a fatigued state. They also consider

the notion of micro sleeps, which are short periods of sleep lasting 3 to 4 seconds. These

are good indications of fatigue and can be detected by lengthened periods of closed eyes in

subjects. They use skin tone to detect the face, and template matching to detect the eyes on the

face. They monitor the number of consecutive frames in which the subject’s eyes are closed by

looking at the average intensity of the frames. If 5 consecutive frames are found, then a micro

sleep is detected and the system alerts the driver of fatigue.

Another visual technique for detecting drowsiness is the detection of yawning. The inte-

gration of a number of signals such as eye blinks and yawning can produce a robust fatigue

detection system (Wang and Shi 2005). Active Shape Models for this purpose are functional,

but computationally intensive and therefore not practical for real-time implementations. Wang

and Shi (2005) first use the Viola and Jones (2001) real-time face detection algorithm along

with a Kalman filter to locate the face. Using template matching as well as colour, they then

detect the mouth. By using the aspect ratio of the bounding box around the mouth as an esti-

mator of openness, they consider any opening above some threshold to be a yawn.

Wang et al. (2006) present a survey of driver fatigue detection techniques. The only other

visual methods surveyed include the direction of gaze, blinking rate, eye closure, mouth shape

and head position. Other approaches rely on physiological sensors, such as EEG, and driver

specific performance, both of which are not relevant to this work.

3.7 Conclusion

This chapter presented an overview of affective computing, emotions, and affect detection.

Affective computing is the field of computing that aims to give machines affective abilities

such as detection and expression. There are debates surrounding whether computers will ever

be able to have feelings and if so, whether that is even desirable. There are arguments that

emotions provide a bias when searching for logical conclusions in infinite search spaces, that

they relate to multiple ways of thinking and even play a significant role on our perceptual

abilities. The debate contends that for machines to reach human levels of intelligence, there

must be some level of emotional intelligence.

Regardless of whether machines will ever be able to feel, literature already indicates that

they can be endowed with skills in recognition and expression. Recognition can be used to

improve human computer interactions so that computers can moderate work flows based on

the user’s current emotional state. Among others, this has implications for gaming, education,

safety, and therapy. Affect expression may allow a computer to act as a proxy or even express

itself to humans in a way that is intuitive and allows for more natural working environments. For

example a long distance therapist may talk to a rendered avatar with realistic facial expressions,

or a robot may show expressions that indicate its intentions to those around it.
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Much work has now been done in understanding the physiological and expressive re-

sponses to a number of basic emotions, like anger, disgust, fear, joy, sadness, and surprise.

These emotions, however, do not always relate directly to an educational context where one is

more interested in engagement/concentration, boredom, confusion, frustration, fatigue, satis-

faction/happiness, and anxiety. Understanding these emotions is the focus of ongoing work in

the field of affective computing.

This chapter identified intrusive, in-the-moment, self-reporting as well as observational

checklists to measure and asses these learning centred affects. Based on the work discussed

here, Chapter 4 presents an investigation into a self-reporting and problems are identified. Fol-

lowing that, Chapter 5 presents the process of constructing a labelled dataset using assessors

and then considers how this dataset can be used as an observational checklist to construct labels

relating to engagement.
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Chapter 4

The Intrusive Approach:

Live Self-Reported Engagement

4.1 Introduction

The previous chapters outlined the importance of student affect in relation to learning and

highlighted the need to be able to monitor and report this information to the lecturer. This

chapter presents a web-based system called Engage, to allow students to self-report engage-

ment levels, provide comments, and vote on questions using their smart phones. The system

then presents a graph to the lecturer in real time that allows the lecturer to better understand the

current affective state of the students in class.

There are a number of requirements for such a system, the most important of which is that

is does not further distract students that may already be struggling to concentrate. The student

interface must be simple and easy to navigate. It should not require any substantive reading,

should not require in-depth instructions, and should not have any functionality beyond what is

necessary.

In this chapter two main types of disengaging students are identified: those that think the

presenter must speed up, and those that think the presenter should slow down. Students that

quickly understand what is going on generally disengage from the lecture as the lecturer may

be teaching at a pace suited to the average student in the class. While this is not a fundamental

problem as those students now understand what is happening, there are dangers that these

students become restless and disturb others in the class. These students may disengage and

start playing on their mobile device, but then not notice the point where their initial level of

understanding runs out.

On the other hand, there are students that may disengage because they do not understand

what is going on. These students initially try to focus on the content, but if they have missed a

fundamental building block they may find it difficult to catch up with the rest of the class. Over

time these students become despondent and disengage with the lecture.

These two types of students are considered in terms of positive sentiment and negative sen-

timent. Considering the affects shown in Figure 3.2 the first case corresponds to students who
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have gone through a cycle of affect including enlightenment and confidence, after which the

lecturer remained on the topic for too long which then resulted in boredom. In the second case,

students experience confusion, discomfort, and worry which eventually leaves them dispirited

and frustrated. Ultimately both of these students disengage and boredom sets in.

The system caters for these two types of students with two buttons on the main interface.

The buttons were labelled Faster and Slower and the explanation given to the students is

paraphrased below:

“ If you feel bored because you understand what the lecturer is presenting and you

want the lecturer to move on, then you should click Faster.

If you feel bored because you’ve lost track of what the lecturer is presenting

and you want the lecturer to re-explain something, then you should click Slower.

Instructions to students.

In both cases, the system targets students who are already losing focus on the lecture.

Whether the student falls into the first or second category, the student is starting to opt out

of the lecture and at this stage it becomes useful for the lecturer to intervene if possible. Stu-

dents that are concentrating are not encouraged to pick up their phone and respond as this may

itself be a distraction.

Literature surrounding online classrooms finds that shy students are more likely to partici-

pate online than in a physical environment (Palloff and Pratt 1999; Vonderwell 2003). To cater

for these students in a physical classroom where they would otherwise disengage, the system

provides a text field where a student can post messages that appear for the lecturer in the same

way as a twitter feed, but anonymous. This allows more reserved students to comment or ask

questions where they are shy or believe that other students would consider something a ‘stupid

question.’

Due to the real-time nature of the system, however, it is important that the students do not

spend too much time typing the messages, and that the lecturer does not have to spend too much

time reading them. If the lecturer feels that the messages take too much time to digest, he will

simply stop reading them or will read them less frequently by which time the information may

be out of date. For this reason the message box is limited to 140 characters.

Allowing students to comment in this way not only allows them to succinctly communicate

with the presenter, but if their comments are related to the current topics, it provides text data

that can be mined for further information. For example, if suddenly the number of ‘slow clicks’

increase one might be able to look at the comments to see more specifically what the problem

was. If a large enough corpus were constructed, there may be scope to mine for sentiment in the

text in the same vein as Go et al. (2009); Kouloumpis et al. (2011); Pak and Paroubek (2010).

A number of the students reported that they would prefer labels such as I Understand

and I don’t Understand. For these students the original labels were viewed as a criti-

cism of the lecturer, rather than as a report of their current state. In a set up where the students

like or dislike the lecturer, factors like this may heavily influence the responses. This is par-

ticularly important when considering the culture and social display rules that may be in play
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during such an exercise. Fundamentally, changing the labels does not have an effect on what

the system is trying to measure, as long as the meaning of the buttons is such that it separates

the aforementioned groups of students.

The remainder of this chapter is organised as follows. Section 4.2 introduces background

and work related to live reporting during class. Section 4.3 and Section 4.4 discuss the design

and architecture of the implemented system: Engage. Section 4.5 presents the results of us-

ing the system during a number of first and fourth year classes. These results are considered

in terms of both uptake and a questionnaire that was administered after using the system. Fi-

nally, Section 4.6 considers the results and presents a discussion thereof. Proposed future work

relating directly to this portion of the research is presented towards the end of the thesis in

Section 9.4.1 on page 179.

4.2 Related Work

4.2.1 Introduction

A survey of the literature identifies two primary methods of eliciting these responses using

mobile devices. Specifically researches focusing on the use of SMS to receive comments and

questions, or through the use of physical ‘clickers’ where the students can vote for solutions to

problems or to vote as formative feedback for the lecturer (Boyle and Nicol 2003; Draper and

Brown 2004; Lau et al. 2014; Lindquist et al. 2007; Markett et al. 2006; Patten et al. 2006).

This section provides an overview of this literature, starting with SMS communication (Sec-

tion 4.2.2), and followed by approaches that make use of clicker hardware (Section 4.2.3).

Section 4.2.4 concludes the survey with comments regarding the lack of available systems to

provide formative lecturer feedback specifically.

4.2.2 SMS in and out of the Classroom

A number of works have focused on the use of Short Message Service (SMS) technology for

teaching. Many of these works make use of SMS or even Rich Site Summary/Really Simple

Syndication (RSS) as a way for teachers to send messages outside of class times as a means

to motivate students, answer questions and handle class administration (Brett 2011; Faure and

Orthober 2011; Lan and Sie 2010; Lau et al. 2014; Rau et al. 2008; Tarhini et al. 2015). These

works are beyond the scope of this research, where the focus is instead on works where students

are able to send messages to the lecturer in real-time during the class.

The first such system appears in Markett et al. (2006) where they developed a system for

students to SMS their thoughts to the lecturer in real time. These comments would then be

accessible to the lecturer both during and after class. They identified a number of different

types of comments: Clarifying, Administrative, Content Comments, Greetings/Jokes, Direct

Questions, and Spurious Comments. Using the system resulted in a more interactive learning

environment where there was more opportunity for greater and ongoing feedback. The students
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in the study reported an increase in both interest and motivation. The authors reported that the

system gave people who were normally shy, the chance to have their say and that a number

of issues were raised that usually would not have been if the student asking had been publicly

identified. These results are supported in literature that followed their study (Huang et al. 2008;

Lau et al. 2014; Lindquist et al. 2007). In these systems, the sender of the SMS is anonymised,

and the papers do not report displaying the messages to other students in the class. In the works

cited, a common issue raised by students is the recurring cost of messaging. This is especially

relevant to this work as South African SMS text messages are considered to be prohibitively

expensive and are rarely used in comparison to data based messaging services. South African

students are unwilling to spend prepaid credit to send any messages for the purpose of class. A

system that works over the internet allowing the use of the university’s Wi-Fi or comparatively

cheaper data bundles is vital.

There are works that make use of Twitter to allow students to comment and speak to presen-

ters. In many cases the classes are run with a hashtag to which students can tweet. Two issues

immediately come to light: anonymity and the separation of social and academic lives. Unless

the student signs up for a new Twitter account specifically for the class at hand, there are issues

that these comments are both public and no longer anonymous. Even then, a thorough analysis

of tweets may give away a student’s identity. If a student is hesitant to ask a ‘stupid’ question

in class, one can be sure that the same student will not want to broadcast that same question to

the whole world.

There are also issues involving the separation between the students’ studying and social life

raising ethical issues of displaying or reading their feeds during the class (Lowe and Laffey

2011). For example, if the lecturer projects the feeds onto a screen during the class, or if one

student follows another’s private account, then there may be personal issues that arise. At the

same time, a public platform such as Twitter is open to tweets from outside parties that may

disrupt proceedings.

These issues inform the decision to build a web-based system completely separate from the

normal social networking of students and lecturers. The comment system of Engage specifi-

cally avoids the use of SMS technology, optionally allowing real-time display to all users while

also anonymising all the displayed data.

4.2.3 Clickers in the Classroom

Other works make use of specific hardware to allow students to vote on questions during the

class. Literature contains multiple examples where this is beneficial to learning (Draper and

Brown 2004). It seems that these approaches are especially adept at providing an upward shift

for the tail end of mark distributions (Boyle and Nicol 2003).

The idea of voting in class primarily replaces instances where the lecturer might ask for

a show of hands to gauge how students respond to a question. Issues with asking for a show

of hands primarily involve anonymity and the inability to actually count the number of votes

in a reasonable amount of time (Boyle and Nicol 2003; Draper and Brown 2004; Huang et al.

2008; Lau et al. 2014). The introduction of clicker based voting systems effectively solve these

problems.
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The clicker systems usually provide the students with a ‘Who wants to be a millionaire?’

type multiple choice interface. A number of effective uses of these devices are outlined in

literature. The most effective of theses approaches appears to be one where the students vote

on the answer to a question, the result of the vote is displayed and students then discuss with

their neighbour whether they agree with the answer that emerged. Following this discussion, a

second vote is held after which the lecturer discusses the solution with the class. This mix of

peer-instruction and class-instruction shows positive results when measuring both class inter-

action, student engagement and summative marks (Boyle and Nicol 2003; Draper and Brown

2004).

Complications with these systems, however, involve the use of custom hardware that stu-

dents or universities must purchase and maintain. These systems often involve hardware that

requires support staff or lecturer training to operate in classes.

A final issue with these systems is the lack of flexibility as the clicker hardware is designed

with a very specific use case in mind. For example, they do not allow for text messaging that

has been positively considered in literature above. As modern students are part of a generation

that has grown up in a world of pervasive digital technology (Jones et al. 2009), there is a

strong argument that the use of mobile phones allows for significantly greater flexibility and

that future exploration should take advantage of this. A mobile phone based system can easily

provide the functionality of both a text comment system and custom clicker hardware.

4.2.4 Systems for Real-Time Formative Lecturer Feedback

A review of the literature returned only one case of the research using the real-time feedback

mechanism for formative lecturer feedback. The idea of using the clicker system to provide

formative feedback on teaching is mentioned as a use case in Draper and Brown (2004), but

is suggested as a vote in the same way a lecturer would stop and ask students to vote on a

question. No continuous real-time manual systems for this purpose were found nor any further

discussions regarding its use in education.

It is presented as the primary purpose and novelty of Engage, with voting and commentary

as secondary applications. Throughout class Engage allows the students to provide formative

feedback regarding their sentiment, and optionally comments and questions as necessary. The

system can easily be changed into a voting mode to allow clicker type functionality. After

the voting is complete, then Engage goes back to requesting and providing feedback for the

lecturer.

4.3 Design

As discussed above, in the South African context it is imperative to avoid using costly SMS

messaging and rather to use a purely internet based approach. This left the options of develop-

ing a smart phone app or a mobile site. A responsive mobile website was more popular with

students as they did not have to install anything, did not have to allow an app any permissions

on their phone, and for those with older feature phones a website was actually the only option.
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(a) Landing Screen (b) Main Student Screen

Figure 4.1: Student Views of the Engage System

When students first visit the site, they are shown the screen in Figure 4.1a which asks them

to select their current lecture from a dropdown box. Only lectures taking place at that current

time (with a small margin before the lecture starts) will be displayed.

When the student selects an option, the system displays the main student screen seen in

Figure 4.1b. This screen shows two buttons and a text field. The main screen shows the

Faster and Slower buttons already discussed, although these captions can be customised

by the lecturer prior to use. The text box provides space for the student to enter a comment of

up to 140 characters. The character limit can also be customised by the lecturer beforehand.

The presenter dashboard is shown in Figure 4.2. The dashboard displays a graph that tracks

the responses submitted by students. These responses are placed into a number of bins, which

allow the lecturer to adjust how the system displays information on the graph. The time reso-

lution of the bins should be coarse enough that the graph is not just showing individual student

clicks. But also fine enough that one can see responses while still discussing a single topic.

Bins of 10 to 30 seconds seem appropriate. The lecturer can also select a specific starting time

and session length to display. This allows the lecturer to go back and review previous presenta-
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Figure 4.2: Instructor Dashboard

tions. To view live information, the lecturer should set the starting time, and the length should

be set to Now. The dashboard graph will then update every 5 seconds to display new data as it

arrives.

The graph itself displays 3 values. The blue and orange graphs display Button0 (Faster/I

Understand) and Button1 (Slower/I Don’t Understand) clicks respectively. The

blue graph always grows upwards with the number of clicks in the current bin, while the orange

graph grows downwards. A green graph displays the difference between the two types of clicks.

Specific graphs can be turned on and off by clicking on the legend of the graph. Figure 4.2, for

example, has the sum deactivated, and the two buttons shown.

Underneath the graph, the lecturer can choose a number of display settings. The lecturer

can choose which lecture to display by setting the session. The start value allows the user to

select a specific time to start; this is useful when one may want to display data from halfway
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through a session. The length to display can be set to a specific time or one of two special

values: End which shows data up until the scheduled end of the lecture or Now which shows

all information up until the current time – this is the best view for live display of the graph.

Other values of length can be selected from 10m, 30m, 60m, 90m, 120m. The bin’s setting

adjusts the length of each time bin and adjusts the resolution of the graph, which is effectively

a histogram showing the number of clicks in a bin. This setting can be selected from 1s, 5s,

10s, 30s, 1m and 5m.

The remaining two settings allow scaling of the graph and rate limiting of users. In large

classes the presenter may be more interested in the log scale of clicks, which is easier to read in

some cases. Let U be the set of all unique users using the system. Let fu
i and sui be the number

of times that user u ∈ U clicked faster and slower in time period i. Let Fi, Si and Σi be the 3

plots.

With log scale and user limiting turned off, graphs are just the total number of clicks in the

relevant time period:

Fi =
∑

u∈U

fu
i , (4.1)

Si = −
∑

u∈U

sui . (4.2)

When log scale is on and user limiting is off the system just scales everything by log2:

Fi = log2(1 +
∑

u∈U

fu
i ), (4.3)

Si = − log2(1 +
∑

u∈U

sui ). (4.4)

These two approaches, however, allow a single student clicking n times to shift the graph

as though n different students had each clicked once. These are two very different situations

from the perspective of the lecturer, and so user limiting allows one to get a better sense of how

the class is feeling. When log scaling is off, and user limiting is on, then each unique user may

only contribute 1 click per bin, i.e.,

δ(x) =

{

1 x > 0
0 otherwise,

(4.5)

Fi =
∑

u∈U

δ(fu
i ), (4.6)

Si = −
∑

u∈U

δ(sui ). (4.7)

Finally, if both log scaling and rate limiting are on, then every click that a student makes is

logarithmically scaled. So a single student clicking 8 times is counted as though log2(8) = 3
unique users had each clicked once.
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Fi =
∑

u∈U

log2(f
u
i ), (4.8)

Si = −
∑

u∈U

log2(s
u
i ). (4.9)

In all cases, the third sum graph is defined as:

Σi = Fi + Si. (4.10)

Finally, the dashboard also shows the presenter the comments that are arriving from the

students in real time. If a student clicks Faster when entering a comment, it will appear in

blue. If the student clicks Slower, it will appear in orange. The comments appear with the most

recent comment on the top as well as a time stamp.

4.4 Architecture

The server is implemented with a restful web interface over three PHP pages. The first,

index.php, handles interaction with the students. The page checks for a cookie contain-

ing a sequential user id and lecture id. If this is not found then there is a new user and the

landing screen (Figure 4.1a) is displayed for them to select a lecture. Once this is done, the

user is directed to the main student page (Figure 4.1b) which shows the two buttons along with

the lecturer specified captions, or multiple buttons if the system is in voting mode. When the

student clicks a button, the form is submitted using http POST.

The lecturer dashboard, dash.php, is built using the C3 JavaScript library1 and Twit-

ter Bootstrap2. JavaScript updates the graph and comment box once every five seconds, by

invoking an AJAX call to data.php.

data.php accepts the following GET variables:

• lecture - The lecture id. Only clicks that correspond to the specified lecture are con-

sidered. If set to -1 or if it is missing, then clicks across all lectures during the specified

times are displayed.

• start - The start date and time as “YYYY-MM-DD HH:mm”. For example, 12 Septem-

ber 2016 at 15:20 is formatted as 2016-09-12 15:20. Only clicks after this time are con-

sidered. This field may be omitted if a lecture is provided, as each lecture in the

system is loaded with a specified start time.

1c3js.org
2getbootstrap.com
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• len - Length of time, in seconds, to fetch. If this is set to -1 (Now), then the server will

respond with all data from the start until the current server time. If set to 0 (End), then

the server will calculate the length using the scheduled end time for the lecture.

• div - The length of each bin, in seconds.

• logscale - If set to 1, then log scale is activated.

• user - If set to 1 then users are rate limited.

When visiting data.php, the server will respond with a JSON object of the following form:

{

"data": {

"t" : [0,1,2...],

"Button0Caption": [1,0,2...],

"Button1Caption": [0,-1,-1...],

"Sum":[1,-1,1...]

},

"comments": {

"t" : ["TimeStamp1","TimeStamp2"],

"button" : [0,1],

"comment" : ["Comment1","Comment2"]

}

}

The response contains data and comments. The data field contains the number of times

each button was clicked in a given time period, where Button0Caption and Button1Caption

are replaced by the actual captions. Values associated with the second button are always re-

ported as negative so that the data object can be plotted directly by C3. The comments

object contains the all comments sorted by the comment time with most recent comments first

as well as which button was pressed when the student submitted the comment.

Figure 4.3 shows a schematic representation of the system along with a login module that

integrates with the university course management software. Lecturers can create new lectures,

or automatically pull information about lectures from the university database. Lecturers can

add private notes about the class, set start and end times, and customise the button captions.

The lecturer can also decide whether non-authenticated users can see the graph, the comments,

or both.

4.5 Results

4.5.1 Uptake

The implemented system was used in a number of Computer Science lectures at the university.

In these lectures the system was explained to the students as a way that they could report their

engagement and understanding to the lecturer that was both live and anonymous. Table 4.1
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Engage Server
PHP, MySQL

University
Database

Engage Database
MySQL

Client (Student)
Bootstrap Form

Client (Lecturer)
JavaScript Graphing (C3)

HTTP HTTP + JSON

LDAP Authentication
Lecture Details

Figure 4.3: System Architecture

Table 4.1: Student Responses Using Engage in Live Lectures

# Year Class Size Total Clicks Total Users Live Feedback

1 First 120 40 3 None

2 First 200 46 12 Lecturer Only

3 First 200 364 21 Projected for Students

4 First 200 1068 26 Projected for Students

5 First 200 638 20 Projected for Students (comments on)

6 First∗ 35 94 10 Projected for Students (comments on)

7 First† 24 74 11 Students on home computers

8 Fourth 18 131 16 Lab computers available

9 Fourth∗ 12 17 7 Lecturer Only, 45 minute lecture
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shows the lectures in which the system was used and reports on the number of students that

used the system in each class. All lectures took place as two 45 minute sessions with a 15

minute break in between. This means that for some time t ∈ [0; 45], a lecture was in progress.

For t ∈ (45; 60) the students were on break and for t ∈ [60; 105] the second half of the lecture

was in progress.

Due to protest action on campus, some live classes had significantly decreased numbers

(marked by *). Classes presented through live streaming on YouTube are marked with a dagger

(†). There was no graph for Experiment 1. Experiments 2 to 7 (inclusive) were a single first year

cohort and Experiments 8 and 9 were a fourth year cohort. The graphs for the experiments are

shown in Figures 4.4 to 4.11. The x-axis of the graphs corresponds to the number of minutes

since the start of the lecture. The graphs exclude ‘testing clicks’ when the users were first

introduced to the system.

Experiment 1 (120 First Years)

Originally the system was launched in a Computer Science class of approximately 120 first

year students. The experiment was run in such a way that neither the lecturer nor the students

had live access to the responses during the lecture, but that the lecturer would have access to

this data afterwards. There was an extremely low uptake of the system with only 3 students

using it for the first 25 minutes, after which even they stopped using it. Given that the lecturer

would only be made aware of student problems after the class, the students lacked motivation

to report anything during the class. Generally students preferred directly asking the lecturer

questions during the class. The students were not interested in using this system unless the

results were immediate.

Experiment 2 (200 First Years)

Subsequent experiments were performed with the next year’s cohort of first year Computer

Science students. There were approximately 200 students attending this class. This time the

graph was loaded and displayed to the students once at the start of the lecture as the system was

first introduced. Following that the graph was visible to the lecturer but not the students.

In this experiment, there were 68 clicks in total, made by 12 different students (6% of

students). When the system was first explained to the students there was an initial rise in the

number of clicks in both faster and slower directions as students tested the system. After the

initial experimentation died down and the lecture began, there were 46 clicks during the lecture

itself. Every user that experimented made at least 1 further click once the lecture started. All

but two of the clicks took place in the first half of the double lecture. After the 15 minute

break, most students had closed the browser on their phone and did not visit the program again.

There were 4 clicks during the break and 2 clicks after it. Students’ interest in using the system

diminished over time as they had no feedback to see that their specific clicks were visible to

the lecturer. The graph for experiment 2 is shown in Figure 4.4 and shows how the number of

clicks were heavily weighted towards the start of the lecture.
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Figure 4.4: Experiment 2: First Years, feedback to lecturer only.

Experiment 3 (200 First Years)

In the third experiment, the graph was projected above the chalk board throughout the entire

lecture. The graph updated once every 5 seconds and the students were able to see for them-

selves that their click affected the graph in real-time. In this experiment there were 364 clicks

in total, made by 21 different students (11%). These numbers exclude experimental clicks that

preceded the start of the actual lecture. Now that students were able to see their clicks affecting

the graph immediately, they were more likely to click multiple times as they could see their

influence over the graph increase. This time there were an average of 17 clicks per student, and

a median of 7. The 4 students with the most number of clicks had 87, 70, 64, and 53 clicks

respectively, while the remaining 17 students clicked on average 5.3 times (ranging between 1

and 10).

There was a large downward spike just before the 105 minute mark (45min lecture + 15min

break + 45min lecture = 105 min) which was caused by 3 students obviously ready for the

lecture to finish. These results are shown in Figure 4.5.

Figure 4.5: Experiment 3: First Years, feedback projected for all students.

Experiment 4 (200 First Years)

The fourth experiment was done in the same way as experiment three. This time there were

1216 clicks from 26 different students (13%). The average number of clicks per student was 46

with a median of 14 clicks. The top 2 students clicked 336 and 236 times. The remaining click

counts were fairly evenly distributed between 1 and 70 clicks per student. There are generally

more clicks where the students ask the lecturer to go slower. While these clicks are still skewed
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towards the first half of the lecture, we see that they are more spread out over those first 45

minutes. It appears that this skew still occurs as students do not go back into the system after

the break (between minutes 45 and 60).

Of interest in this lecture, is that for the first 35 minutes, there were between 6 and 10 unique

users clicking at least once every 5 minutes. These students were using the system correctly as

requested and the feedback was incorporated into the lecturer’s decisions during class. Later

on, there was a downward spike just before the break as students anticipate it coming. There is

no spike at the end of the lecture as all students had stopped using the system by that time.

Figure 4.6: Experiment 4: First Years, feedback projected for all students.

Experiment 5 (200 First Years)

This experiment was run in the same way as the previous one except that the comment system

was now enabled. Comments would appear projected above the blackboard in real-time. There

were 638 clicks in total made by 21 different students (11%). At 37 minutes into the lecture,

there is a large downward spike of 122 slower clicks over 3 minutes. These clicks were all done

by a single user that asked a question using the comment box, and continued clicking slower

until the question was answered. Figure 4.7a and Figure 4.7b show the original and log scale

graphs for this lecture. When there are large spikes in the number of clicks, the log scale helps

maintain the usefulness of the graph as the y-axis rescales.

Over the course of the lecture there were 35 comments typed into the box. Thirty-three (33)

were jokes and unrelated comments and two serious questions for the lecturer.

Experiment 6 (35 First Years*)

In this week student unrest erupted on campus and only 34 students attended the lecture. In

this lecture 10 students used the system. Interestingly, the clicks were spread out fairly evenly

across the lecture. There were 42 comments throughout the lecture. 8 comments were directly

related to work being covered, while the remaining 34 were unrelated.
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(a) Original Graph

(b) Log Scale Graph

Figure 4.7: Experiment 5: First Years, feedback projected for all students with comments

enabled.

Figure 4.8: Experiment 6: First Years, feedback projected for all students with comments

enabled.*
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Figure 4.9: Experiment 7: First Years, lecture streamed on YouTube feedback and comments

available on students’ devices at home.†

Experiment 7 (24 Remote First Years†)

With protests in full swing campus was closed. The opportunity was taken to live stream a

lecture over YouTube while the students solely used Engage to communicate with the lecturer.

Students were able to stream the live video from home and were told to use Engage to com-

municate with the lecturer. Before the lecture began and for the first time, the students were

explicitly asked to keep the comments focused as it was the only channel with which students

could ask questions and provide feedback. There were 74 clicks in total with 11 different

students using the system. There were 24 comments throughout the lecture and all of them

were directly related to content the lecturer was talking about in real time. The clicks were

very evenly spread as students responded when the lecturer asked if students understood the

concepts being presented.

Experiment 8 (18 Fourth Years)

The following two experiments were conducted with a class of fourth year Computer Science

students. Experiment 8 was a 2 hour lecture that took place in a computer lab. The students

were able to have Engage and the graph open on the computer in front of them. The graph

was shown on an iPad to the lecturer; this was not the first year lecturer from the previous

experiments. In this class the lecturer used the projector for slides. 16 different students clicked

a total of 131 times. There were 7 comments in total and all of them were directly related to

what was being discussed in class at the time. In this case the students were not specifically

prompted to stay on topic, and this may be an indicator of the maturity of the older students.

Experiment 9 (12 Fourth Years*)

This experiment took place in the week when protests had broken out on campus, the class size

was smaller than usual and the students were forced to move to a different lecture theatre. The

lecture ran for only a single 45 minute session. The graph could not be shown to students live

as they were not in front of computers and the lecturer was using the projector for slides. There

were 17 clicks in total by 7 unique users out of the 12 that came to the lecture.
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Figure 4.10: Experiment 8: Fourth Years, feedback accessible through lab computers with

comments enabled.

Figure 4.11: Experiment 9: Fourth Years, feedback to lecturer only.*

4.5.2 Student Comments

Students were asked to fill out a brief anonymous survey about their attitudes towards the

system.

First Year Students

After using Engage a few times (after Experiment 5), the first year students were presented

with the following questionnaire.

Table 4.2: Did you use Engage to report distraction during the lecture?

Answer Responses

Yes I used it a lot 0/9 0 %

Yes I used it once or twice 6/9 67 %

No I didn’t feel comfortable using it 0/9 0 %

No I was trying to focus on the lecture 2/9 22 %

Other 1/9 1 %
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Table 4.3: Do you think the lecturer was responsive to the information received?

Answer Response

Yes 10/10 100 %

No 0/10 0 %

Table 4.4: Would you like to use this app in all your classes?

Answer Response

Yes 8/9 89 %

No 1/9 11 %

Table 4.5: When asking short questions do you prefer...

Answer Response

... using the comment box on engage 6/9 67 %

... raising my hand to ask the question 3/9 33 %

Table 4.6: Did you find the program distracting?

Answer Response

Yes 2/9 22 %

No 7/9 78 %

Table 4.7: What buttons should the program display?

No responses

Table 4.8: Please provide any further comments you might have.

Comments

Worked really well in terms of how quickly the feedback responded

Comments can be completely unrelated to class due to their anonymity

Comment box should be bigger

Fourth Year Students

After their first time using it (Experiment 6), fourth year students were presented with the ques-

tionnaire.
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Table 4.9: Did you use Engage to report distraction during the lecture?

Answer Responses

Yes I used it a lot 1/10 10 %

Yes I used it once or twice 7/10 70 %

No I didn’t feel comfortable using it 0/10 0 %

No I was trying to focus on the lecture 2/10 20 %

Other 0/10 0 %

Table 4.10: Do you think the lecturer was responsive to the information received?

Answer Response

Yes 9/10 90 %

No 1/10 10 %

Table 4.11: Would you like to use this app in all your classes?

Answer Response

Yes 9/10 90 %

No 1/10 10 %

Table 4.12: When asking short questions do you prefer...

Answer Response

... using the comment box on engage 7/10 70 %

... raising my hand to ask the question 3/10 30 %

Table 4.13: Did you find the program distracting?

Answer Response

Yes 5/10 50 %

No 5/10 50 %

Table 4.14: What buttons should the program display?

Response

I understand / I don’t understand

Vote buttons

Same as it is currently, but better worded.

What is shown now.
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Table 4.15: Please provide any further comments you might have.

Comments

The section covered should be represented in the graph (i.e. capture

when a section is started and when a section is ended)

I like it’s fun

4.6 Conclusion

This chapter presented Engage which allows students to report live their engagement levels to

the lecturer during class. An engagement graph is presented to the lecturer in real time allowing

lecturers to adjust their teaching styles to better cater to the current state of the class.

Unfortunately experiments were interrupted by unrest on campus and lectures were either

poorly attended or cancelled altogether. In all the lectures that did take place during the unrest,

the uptake of Engage was higher. This suggests a correlation between the students who attend

lectures during protests and those that are likely to make use of such a self-reporting system.

Unfortunately the cookies identifying a user expire after a few hours so there was no way to

track whether the students using Engage in the normal lectures were the same as those using

them during the protests. However, this seems like a reasonable assumption and has important

ramifications. It suggests that the students using the system are the more committed students.

This raises questions about whether the students that are prepared to use a self-reporting system

are indeed the one’s disengaging and if they are the ones that the lecturer needs to know about.

In all experiments, students used the system significantly more if they were able to see the

graph updating in real time. This was true for the first years, where they went from not seeing

the graph (3/120 and 12/200) to seeing the graph (21/200, 26/200, 21/200, 10/35), as well as

the fourth years, where the graph was available in the first lecture (16/18) not available in the

second lecture (7/12).

In general, the mature fourth year students only used the comment section seriously, whereas

the first year students appeared more distracted by it. When asked to keep it focused, however,

the students took it seriously or did not post. While this was a concern beforehand, no students

used the comment section to post any offensive material. In classes where there is breakdown

in the lecturer–student relationship or where the comments are all spurious, it may be wise not

to show posted comments to the students.

Based on lecturer feedback, students preferred asking short, off-topic or ‘silly’ questions

using the comment box. This meant that the questions could be queued up and the lecturer

would deal with them once the current train of thought was finished. This was very convenient

for the lecturer as it was easier to work through the queue of questions at the end of a concept.

Often if students needed the lecturer to repeat something, they asked using the comment box.

Students preferred asking complicated or mathematical questions by raising their hands.

The fourth year students reported higher levels of distraction, although when asked whether

they’d like to use the system in other classes the majority said yes. The few first year students

that responded to the questionnaire said they did not find the program distracting. However, a

94



reading of the comment feeds generated in their classes show that they were indeed distracted

by the ability to post arbitrary anonymous text to the projector during the lecture. When specif-

ically asked to stay on topic, there was not a single spurious comment. This indicates that the

students were largely operating with the boundaries of the student–lecturer relationship. This

suggests that if the lecturers encourage meaningful use of the comment section, then as the

novelty of being able to post to the projector wears off, and as the students further mature, this

will become less of a distraction.

The experiments presented in this chapter showed that in the larger first year class only

about 20 of the 200 (10%) students were consistently interested in using the system. While this

number may seem fairly low, this was the first time the students were exposed to the system

and effect of aspects such as the student–lecturer relationship (approachability, formality, etc),

subject difficulty, and cohort should be considered in a longer study.

The system presented to the students only showed the positive and negative sentiment but-

tons. This could mean that students that were concentrating or engaged in flow were willing to

use the system but did not need to. Asking these students to use the system will interrupt that

flow, and potentially cause more distractions to those that are legitimately concentrating. How-

ever, a voting system has been incorporated into the system to allow the lecturer to use Engage

in two modes: reporting engagement or as a traditional clicker for voting. This provides a way

to more accurately measure how many students are willing to use the system, but do not feel

that the current captions describe them.

As the system is used in more contexts, one may be able to identify whether the uptake will

increase through mere exposure over different subjects, with different lecturers, and for longer

periods of time. The almost universally positive feedback from the admittedly small number of

respondents about the system indicate its utility, especially for students that would otherwise

avoid speaking up in lectures.

As the number of students using the system was low it is difficult to take the results as

representative of the entire class. There may be significant bias in the type of student that is

willing to use such a system and if so, they may be the kind of students that engage well during

lectures. It might be the case that the disengaged students that the system is trying to identify

are not the students that would report that information. Ultimately it may be that the majority

of students are just unwilling or unable to self-report on their engagement during the class and

if that is the case, then non-intrusive engagement monitoring tools that do not require student

intervention should be developed.
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Chapter 5

The Non-Intrusive Approach:

The Wits Intelligent Teaching System

5.1 Introduction

In the previous chapters the importance of being able to assess the affective state of a class was

established. In the preceding chapter, a system was developed to allow students to self-report

their affect using their mobile device. The system then displayed the data to the teacher live

during class.

It is believed to be the first system designed specifically to provide formative lecturer feed-

back during the class and its effect on teaching and learning should be considered in the future.

The method outlined above however, has a number of drawbacks. The first of which is the

reliability of the data. Even if the majority of students bought into the idea and reported their

affect, literature suggests that while further study is warranted, the results can be very unreli-

able (Kapoor et al. 2007). In many cases students are unable to reflect on their current state

adequately. For example, asking a student to report in each time he is distracted may be a fruit-

less exercise as the student is not directly aware of the number of times he checks his cellphone

messages or talks to a friend. On the other hand, asking another student to report that she is

concentrating is self-defeating in that it breaks the train of thought and introduces a high level

of distraction.

The low response rate is also a concern. While it is difficult to draw significant conclusions

from the data collected thus far, the numbers in the previous chapter suggest that the majority

of students simply opt not to use the system at all. A primary argument for this is the numbers

of ‘test clicks’ at the start of a lecture. As only about 10% to 20% of the class even seem to test

the system at the beginning, it indicates that the remaining 80% or 90% have no intention of

using the system regardless of their affective state. Future work using alternative presentations

of the system or encouraging some kind of gamification that ties into the lecture may encourage

more students to make use of it and be able to draw in more support.

The majority of students appear either unwilling or unable to report their affect, and there-

fore at this stage Engage is not able to collect enough data to make informed decisions about
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the class as a whole. Because the system is intrusive by nature, it means that for it to work

properly there must be buy-in from the students and it needs to be setup in such a way that it

does not cause distractions. In this light, the need for a non-intrusive automatic mechanism

becomes apparent.

The WITS INTELLIGENT TEACHING SYSTEM (WITS) is proposed as a smart lecture the-

atre to meet this need. WITS provides an intelligent learning environment that automatically

monitors the students in the class during each teaching episode. Using computational vision

and machine intelligence approaches, the system monitors students and reports to the lecturer

about their affective state. The system presented in this work is based entirely on vision data,

but should also be extended to monitor other sensor feedback as well. Currently vision is used

to perform inferences about the students based on common actions or gestures, body posture,

and facial expression. In the future, physiological, audio, and environmental sensors could

ultimately augment such a system and improve the overall accuracy.

Ideally a non-intrusive smart lecture theatre such as this should be able to report to the

lecturer about the affective state of the class in real-time. It should also allow the lecturer to

review the captured data in more detail after the class has finished. By generating feedback live

during class, the system enables contingent teaching on an unprecedented level. By allowing

review of the data after the class, the system allows self-evaluation and reflection by a teacher

where one can assess the overall efficacy of his or her teaching methods and how well certain

content was received by the students.

It is already established that expert teachers are able to asses the state of the class to a large

degree (Kapoor et al. 2007), but this is largely based on intuition. New lecturers are usually

left to develop this intuition and experienced lecturers work on the basis that their intuition is

correct. WITS can be used to train new staff members and assist them in knowing what to look

for and where to focus their attention. On the other hand, experienced lecturers can use the

system to objectively confirm their intuition, to identify ‘blind spots’ and to better understand

how the classes behave when one’s back is turned.

Assessing the state of large classes in-the-moment is a difficult task, and while the intuition

of what makes for an engaged student may be straight forward to some, the experiences in this

work show that even just looking back and reviewing a recorded video can yield surprising

revelations. Reviewing every student in a video after class is an arduous task that any busy

academic would consider laughable if asked to do frequently.

Furthermore, understanding the correct strategy to combat different patterns of disengage-

ment may not be a straight forward task. Some patterns may indicate that there are problems

with a specific group of students, while others may indicate that there was a party the night

before. By recording these patterns over time and then analysing them, a smart lecture theatre’s

AUTOMATIC TEACHING ASSISTANT (AUTOTA) may one day be able to actually suggest hints

to the lecturer in a pedagogically sound way based on the efficacy of strategies tested over time.

The remainder of this chapter is organised as follows. Section 5.2 presents the architecture

of the WITS system. Section 5.3 explains the development of a database to support the machine

learning process. Specifically, Sections 5.3.1 to 5.3.4 describe the cross-platform, open-source

WITS ANNOTATION TOOL (WITSAT) that was developed to support data annotation and

Section 5.3.5 outlines the WITS DATABASE (WITSDB) of labelled video sequences. This
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data forms the foundation upon which Chapters 6 and 7 train and test a number of SVMs and

CNNs. Section 5.4 outlines the training and testing process and Section 5.5 briefly concludes

the chapter.

5.2 Architecture

The ultimate goal of WITS is a smart lecture theatre equipped with video, audio, environmental,

and other sensors that can be used to monitor students during lectures. Video cameras should be

placed throughout the room at a high enough elevation that occlusions caused by student seating

arrangements are minimised. The cameras should directly face the students and provide as

frontal a view as possible. The feeds from these cameras should be live streamed to the central

servers to allow for real-time processing. Ideally the view and resolution should allow for body

posture, classroom actions, and facial expression analysis. These are all modes of expression

identified in Chapter 3.

Microphones placed throughout the room should be used to monitor noise levels in various

frequency bands. Recording actual voice may prove an invasion of privacy, but by rather track-

ing the amplitude of only a few wide frequency bands, the system could detect periods where

students are whispering to one another (high frequency), where a student is asking a question

(voice frequencies in the student group), or where the lecturer is speaking (voice frequencies

at the front of the hall). On the other hand, detecting levels of ambient noise itself may prove

a useful feature when considering the likelihood of distraction. Infrasonic noise (7–20Hz) is

known to cause drowsiness and discomfort (Fecci et al. 1971; Landström and Byström 1985;

Landstrom et al. 1991; Leventhall et al. 2003), and severely hinders task performance (Kyri-

akides and Leventhall 1977; Landstrom et al. 1991; Persson Waye and Rylander 2001; Persson

Waye et al. 1997). Using audio sensors to check for environmental distractions, as well as to

establish what is happening in the room may assist the system in monitoring the students.

Other environmental factors such as CO2 levels, temperature and humidity should also be

considered and monitored as these are known to negatively effect students’ concentration, per-

formance, and even attendance (Heudorf et al. 2009; Mendell and Heath 2005; Shendell et al.

2004).

Other specialised hardware such as thermal infra-red cameras have shown success moni-

toring various physiological phenomena such as the cutaneous temperature on the face or even

heart rate. Other sensors such as body pressure monitoring systems or galvanic skin response

bands may be useful, but ultimately require significant hardware investment on a per student or

seat basis and start to require student participation again.

These sensors should be installed throughout a venue such as that shown in Figure 5.1

to achieve the best coverage possible. The sensors should feed information back to a server

that extracts relevant features and classifies students along the various axes of interest. This

information should be available to the lecturer in real-time during the lecture and for review

afterwards. The presentation and acceptance of this information is discussed in Chapter 8.

In the current study, however, no secure permanent facility was available in which to install

the hardware. For this reason, the work focuses on the use of a single camera system placed at
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Figure 5.1: Standard Lecture Venue

the front of the class that, if replicated in parallel, could be expanded to properly monitor the

entire venue.

A system level schematic of the system is provided in Figure 5.2. The various sensor

modules connect through to the main WITS server, which then pre-processes the data, and

then performs feature extraction and classification on a per student basis. Once a student is

given an Interest Value by the classifier, that value is passed to the data presentation system that

prepares the data for display. This may be recorded along with video for later review. It may

be rendered live as an Interest Map (Chapter 8) or passed to a secondary classification system

– termed an Automatic Teaching Assistant (AutoTA) – that can provide the lecturer with hints

about how best to re-engage the audience based on previous data.

Figure 5.2: System Level View of WITS
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5.3 Data Collection

For the development of a supervised learning based computer vision system, a large database

of labelled video sequences is required. It was originally hoped that if accepted by students

Engage could be used to construct a labelled dataset where the self-reports and the student’s

position in the lecture venue would be saved alongside a video of the class. This would have

allowed the relatively easy construction of a self-labelled dataset. Unfortunately, as the students

did not take to the system en masse, this was not an option.

Instead, a number of first year Computer Science lectures were recorded and then manually

labelled by untrained assessors. Cross-platform, opensource software was developed to support

the data labelling process and is called the WITS ANNOTATION TOOL (WITSAT). WITSAT

is presented in Sections 5.3.1 to 5.3.4. The full database of labelled video frames is called the

WITS DATABASE (WITSDB) and is described in Section 5.3.5.

5.3.1 WITS Annotation Tool (WITSAT)

To support the creation of a labelled video database, a cross-platform video data labelling pro-

gram called the WITS ANNOTATION TOOL (WITSAT) was developed. A screenshot is shown

in Figure 5.3 on the next page. Although the software was developed for labelling students

in this case, it can be used for other object labelling purposes with arbitrary videos. Pro-

grammed in C++11, it is based on the Qt (The Qt Company 2016) and OpenCV (Bradski 2000)

frameworks and allows the user to label multiple aspects of a captured video frame-by-frame.

WITSAT stores both spatial and affect/action labels on a per frame basis which can then be

saved to either a text or binary JSON file, or exported to an SQLite database. It can also store

some meta-data such as a subject and labeller/rater name.

Spatial labels include the position of a subject’s face as well as a rectangular bounding box

around the entire subject. These are set by dragging the circle/rectangle markers over the video.

The affect/action labels are stored as integer values between -1 and 1 (3 options) or -2 and 2

(5 options) which are adjusted using sliders to the right of the video. In general 0 is treated as

unlabelled, which allows one to exclude frames that should be skipped or were unclear to the

labeller.

As the user steps through the video, the UI updates with the correct spatial and affect/action

labels for the current frame. The user can override any values by repositioning the spatial

markers or moving the labelling sliders. There are record buttons next to each slider which

automatically overwrite the current labels with the previous frame’s – this allows the user to

play the video forward at normal or fast speeds and only update the labels when there are

changes. The software allows for spatial zooming and panning, as well as playback modes at

frame rates between 1 and 40 frames per second.

The user can plot the current labels (both spatial and/or affect) underneath the video. For

example, in Figure 5.3 the red graph shows where the subject was occluded by the lecturer, and

the green graph shows when the subject was writing.
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Figure 5.3: Annotation Tool

Robust Semi-Automatic Face Labelling

The first step in the labelling process is to place a face marker, followed by a bounding box.

Once these have been placed, the software can automatically track the subject’s face within

the bounding box. A schematic representation of the algorithm is shown in Figure 5.4. If

tracking is turned on, then the software will overwrite the current subject’s face label with

the detected position inside the bounding box. The user can overwrite the spatial labels if the

system makes an error, by dragging the marker to the correct location. WITSAT uses a number

of the OpenCV face detectors – based on cascades of Haar-like and LBP features – as well as

optical flow. These methods were discussed in Chapter 2.

If the frontal detector returns any faces, the face with a centre closest to that of the previous

frame is considered (Figure 5.5a). If the distance between the previous face centre and the

new one is below some threshold, θ, then the position on the current frame is updated. If the

distance is too large, then the face is rejected and the process is repeated with the left and right

face detectors (Figure 5.5b). Finally, if a valid face has not been found, then the previous frame

with spatial labels is loaded and interest points within the face area are detected. Using optical

flow, the system tracks the interest points to the current frame and uses the mean position with

an offset as the new face centre (Figure 5.5c). The threshold can be updated in real time, and
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Figure 5.4: Automated Face Labelling

(a) Frontal Face (b) Profile Face (c) Optical Flow

Figure 5.5: Face Detectors
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the system uses colour to show whether a face was detected or whether tracking was used. This

approach provides robust face labelling that can run at up to 20 frames per second1 on a single

subject and only requires user intervention in the event that the face disappears or is occluded.

5.3.2 Data Export

WITSAT can export labels and image sequences for training. The content of each subject’s

bounding box is exported as a sequence of png files. Settings such as size and grey scale can

be set by the user. The labels are exported to an SQLite file as shown in Figure 5.6. Column

names correspond to the number of options on the slider (3 or 5) followed by the label name.

This allows the user to easily generate datasets of different labels. For example, the query in

Listing 5.1 will generate a list of all unoccluded images with valid labels for Writing.

SELECT filename, ‘3Writing‘ == 1 as Writing

FROM data

WHERE ‘3Occluded‘ == -1 /* Must not be occluded */

AND ‘3Occupied‘ == 1 /* Must be occupied */

AND ‘3Writing‘ != 0; /* Must be labelled */

Listing 5.1: SQL Statement to Export a Label

The face position labels, x, y, r ∈ [0, 1] are given as a proportion of the image width, height,

and width respectively. So to calculate the pixel position of the face in the image x̃, ỹ, r̃ where

w and h are the image width and height:

x̃ = w · x, (5.1)

ỹ = h · y, (5.2)

r̃ = w · r. (5.3)

5.3.3 Classification

The software interfaces with libSVM (Chang and Lin 2011) and Caffe (Jia et al. 2014) to per-

form live classification. After exporting data and training the SVM (libSVM) or Convolutional

Neural Network (Caffe), WITSAT can load the model to perform classification on new image

sequences. The predicted labels can be saved into new or old subjects either as new labels or

overwriting previous ones.

1On an i7 4790K without parallelism or hardware acceleration.
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Figure 5.6: Label Export Format as an SQLite Table.

5.3.4 Label Comparisons

The program also allows the user to merge different label files, allowing multiple raters to label

a single subject. Figure 5.7 shows how the differences between the labels can be displayed. The

user can select two raters in the top left, and the affect/actions in the top right. After clicking

the plot button, the first two plots show the graphs for the two raters, while the graph at the

bottom shows where they differ. A dialog is displayed that shows the confusion matrices and

Cohen’s Kappa (Cohen 1960) so that Inter-Rater reliability can be established.

5.3.5 WITS Database (WITSDB)

Recordings

Two cohorts of first year students were recorded in two different years. Students were given

two ways to opt out of being recorded - these included sitting in areas not monitored by the

camera or by briefly holding up a QR code at the beginning of class that meant they would

be automatically blurred from the recordings later on. In the first year, students were recorded

using a GoPro camera. Unfortunately due to bad lighting and poor views of the students due

to a flat lecture theatre the first set of videos were not usable. However, the recordings were

continued to see how the presence of the camera affected the students.

Throughout the six weeks of recordings (one session per week), not a single student ever

opted out or indicated that they would prefer not to be recorded. However, for the first 3 weeks

exactly, the students were visibly aware of the fact the camera was watching them. Particularly

in the first recording, when students became tired or were distracted from the lecture, they

looked directly into the camera. By counting the number of times students looked at the camera

one is able to get a sense of how aware they are of the recordings taking place. Interestingly,

by the fourth encounter with the camera the students stopped caring and stopped looking at

it completely. At the same time, students went back to playing games, using their phones,

sleeping, etc. Students were possibly worried about getting caught doing these things when

the camera was first introduced but as they became comfortable with the fact that the lecturer
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Figure 5.7: Compare Labels

was not reviewing their activity after each session, and they were not getting in trouble, they

stopped worrying about it.

The following year, the recordings were performed in a raised lecture theatre where the

students were on multiple levels. This class is shown in Figure 5.3. Just like the year before

them, not a single student opted out of the recordings, and after the third week of recordings

the students were comfortable. This time a Basler acA4600-10uc was placed at the front of the

class and captured frames at between 5 and 10 frames per second which were saved as PNG

image files. Theses were later merged into 4096x1080 resolution videos. These recordings

were higher quality and while there were still issues with lighting and occlusion, these videos

were used to build a labelled dataset.

The first three weeks of recordings were excluded so that students natural states in class

could be identified. There were then five lectures recorded. The dataset is built of three lectures.

Lecture 1 and 2 took place on the same day in consecutive lectures with the same class. Lecture

3 took place in the same class, but on a different day.

Students that were not heavily occluded by those in front of them were labelled spatially

using the methods outlined in the previous sections. Each subject in the recordings was labelled

by at least three raters. The Cohen’s Kappa scores were calculated to identify raters with
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poor quality labels. Those with poor labels were discarded. Once the high quality raters were

identified, the author manually made decisions about where these raters disagreed. This leaves

one set of labels per subject.

Labelling was a time consuming and expensive process, which is why only three of the five

lectures were used for the final dataset.

Labels

The labels in the dataset are broken up into four categories: validity, actions, pose, and affect.

There are two labels relating to validity:

• Occupied • Occluded

Labels relating to actions include:

• Writing

• Cellphone

• Laptop

• Talking

• Raised Hand

• Yawning

• Head on Desk

Labels relating to pose include:

• Horizontal Head Pose

• Vertical Head Pose

• Upper Body Posture

Finally, the affect labels are:

• Bored vs Interested

• Distracted vs Attentive

• Tired vs Energetic

• Confused vs Understanding

The labels of validity are illustrated in Figure 5.8, while the action labels are illustrated

in Figure 5.9. In both cases there are three possible values: −1 means false, 0 means

unlabelled, and 1 means true. When referring to a frame with a false label it is writ-

ten as ¬Label. The labels relating to pose have five possible values ranging from−2 to 2 where

each number corresponds to a specific pose or posture. These are outlined below and shown in

Figure 5.11. Finally, the affect labels also take five possible values ranging from −2 to 2 but

these values indicate the extent of the affect in question where 0 is neutral.

In general, a frame may be unlabelled because the rater was unsure, or because a label

did not make sense in that circumstance. For example, when a subject is not present, the rater

may have marked Writing as unlabelled. In general unlabelled frames should be excluded from

the data for both training and testing.

Validity Labels

An Occupied value of true indicates that the subject is present inside the bounding box. This

assists in knowing if the subject arrives late to or leaves early from the class. Figure 5.8a
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(a) ¬Occupied (b) Occluded (c) Occluded

Figure 5.8: Invalid Frames

shows a frame marked as Not Occupied (or in short ¬Occupied). All frames in Figure 5.9 are

Occupied.

An Occluded value of false (¬Occluded) means that the subject is visible inside the bound-

ing box. If the subject is marked as Occluded, then the view of the subject is obstructed in some

way. This may be because the lecturer stepped between the camera and the subject or another

student sits or walks in front. Figures 5.8b and 5.8c show frames marked as Occluded while all

frames in Figure 5.9 are ¬Occluded.

When considering the remaining labels, only frames marked as Occupied and ¬Occluded

are used. Due to the uncertainty of the occluded region, aspects may be unlabelled (0) if the

subject is not visible. These frames are included in the dataset however, so that arbitrary length

image sequences can still be extracted to support temporal data processing.

Action Labels

With examples in Figure 5.9 on page 109, the action labels are defined as follows:

• Writing – The subject is currently writing. In many cases a subject will write, then stop

and look at the lecturer while still holding the pen to paper. If a subject is in this writing

position, but the pen is not moving, then the subject is marked as ¬Writing.

• Cellphone – The subject’s focus is on their cellphone. In some cases the cellphone is not

visible as it is either under or flat on the desk, these cases are still marked positive as in

Figure 5.10a. In cases where the subject is holding their phone, but are focused on the

lecturer, they are labelled with ¬Cellphone.

• Laptop – This case is dealt with in the same way as the Cellphone case above. This also

includes large tablets or other mobile devices other than phones.

• Talking – Students that are communicating with their peers are labelled as talking. This

may involve actually talking, or just listening to the peer.

• RaisedHand – If a student raises their hand to ask/answer a question then they are
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marked with this label. A student touching their face or performing a hand-over-face

gesture as seen in Figure 5.10b is marked false (¬RaisedHand).

• Yawning – If a student is yawning, with or without covering their mouth they are marked

as such.

• Head on Desk – If a student puts their head on the desk looking forward (Figure 5.9m)

or as if sleeping (Figure 5.9n) they are marked with this label.

Pose and Posture Labels

Illustrated in Figure 5.11, upper body posture was labelled with values between −2 and 2
according to the following categories:

-2. Leaning Left

-1. Leaning Back

0. Sitting Upright

1. Leaning Forward

2. Leaning Right

The head pose was labelled according to horizontal and vertical focus with exemplars in Fig-

ure 5.12:

-2. Far Left

-1. Slightly Left

0. Forward

1. Slightly Right

2. Far Right

-2. Below the desk

-1. On the desk

0. Unlabelled

1. Forward

2. Up

Affect Labels

Two attempts were made to label data along affective axes directly. In the first case, 3 students

in fourth year Psychology labelled a single lecture. In the second case, around 20 fourth year

Computer Science and Applied Mathematics research assistants labelled a single lecture. In

both attempts the raters’ pairwise κ scores were between 0.03 (extremely poor reliability) and

0.3 (fair).

This result is in contrast to the results of Whitehill et al. (2014) that found their raters were

able to distinguish between high and low degrees of interest with high reliability (κ = 0.56 for

four-way classification and up to κ = 0.96 for binary classification). In these experiments, the

raters were told to label the students along the axes given and very little guidance was given.

Future research may achieve reliable results if the raters are given a detailed checklist.

The initial labelling sprints focused on affect labels, but given the poor inter-rater reliabil-

ity in both attempts, it was decided to continue to label the students for validity, action, and
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(a) Writing (b) ¬Writing (c) Cellphone (d) ¬Cellphone

(e) Laptop (f) ¬Laptop (g) Talking (h) ¬Talking

(i) RaisedHand (j) ¬RaisedHand (k) Yawning (l) ¬Yawning

(m) HeadOnDesk (n) HeadOnDesk (o) ¬HeadOnDesk

Figure 5.9: Action Labels
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(a) Cellphone (b) ¬RaisedHand

Figure 5.10: Action Labels – Special Cases

(a) Leaning Left (b) Leaning Back (c) Upright

(d) Leaning Forward (e) Leaning Right

Figure 5.11: Subject Postures
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(a) Far Left (b) Far Right (c) Under desk

(d) On desk (e) Forward

Figure 5.12: Subject Head Poses

pose rather than affect directly. Later, in Section 8.3, these labels are used in an observational

checklist to construct a dataset of interest.

Summary

Table 5.1 shows the number of valid (Occupied and ¬Occluded) frames across all the lectures.

Table 5.2 then gives the number of valid frames for each action label. Tables 5.3 and 5.4 give

the breakdown of frames by posture and head pose. Note that the number of valid frames are

not the same between action labels and postures as the number of students that were labelled

differ.

WITSDB presents a number of unique challenges due to the acquisition conditions. There

are significant variations in the resolution of the images as students were seated near or far from

the camera. There are large differences in angle – both horizontal and vertical – as students

were seated around the lecture venue. Variations involving gender, race, posture, clothing,

and handedness are present in the dataset. Instances with poor lighting occur, and in many

cases, students sitting in front of others partially or entirely occlude each other. Similarly,

neighbouring students enter and leave the sides of the frame while other students often appear

over a subject’s shoulder in the background. Finally, changes in the position of the students’

books, stationery and other belongings introduce further complications.
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Table 5.1: Number of Valid Frames in WITSDB

Lecture 1 Lecture 2 Lecture 3 Total

Total Frames 275,712 157,625 44,824 478,161

Occupied 256,512 154,325 44,823 455,660

¬Occluded 244,232 155,459 41,032 440,723

Valid 229,921 153,202 41,031 424,154

Extensions to the dataset should look to balance the representation of gender, race, view-

point, and pose. Note that there are very few frames for the Laptop, Talking, Raised Hand,

Yawning, and Head On Desk labels. There was only one student that used his laptop through-

out the recordings. Unfortunately this makes the laptop labels unusable for now. The Raised

Hand labels are minimal because students only raise their hand for brief periods during the

class. Similarly, there are only about 5 students in this category.

The Yawning, Head On Desk, and Talking categories are also relatively small and with

fewer students represented. In Lecture 2, the majority of the positive Head on Desk labels

come from the same person. The only categories that were well represented across all students

and all lectures were the Writing and Cellphone categories.

It should be a priority of future work to capture enough data for the rarer action and posture

labels such as laptop use, raised hands and yawning.

5.4 Computational Pipeline for Training and Testing

The real-time pipeline presented in Figure 5.2 assumes that a classification system is available

to monitor students. In order to create such a system a classifier needs to be trained and tested

based on the collected data.

A pipeline for training and testing a computer vision based classification system is shown

in Figure 5.13. In the training stage, labelled RGB frames from the videos are utilised to extract

features upon which to train a classifier.

WITSAT extracts the bounding box content from each subject in a frame and saves it to

disk as a 64 × 64 image. The files are labelled sequentially and each subject is saved to its

own folder. The labels and filenames are written to an SQLite database. A file list of valid

(Occupied and ¬Occluded) positive and negative samples is exported by using an SQL query

based on that from Section 5.3.2. For example, Listing 5.2 shows a script that extracts a list of

filenames and labels for Writing and saves them to files.csv.

For training purposes, the data is partitioned based on either the cross-subject validation

(hold-one-out) or cross frame validation (n-fold cross validation) strategies. If desired, temporal

information is included using either data or feature fusion. Features are extracted using the

relevant method and if necessary, dimensionality reduction is performed before the data is
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Table 5.2: Number of Valid Frames by Action Labels in WITSDB

Lecture 1 Lecture 2 Lecture 3 Total

Valid Frames 229,921 153,202 41,031 424,154

Writing 26,384 25,022 829 52,235

¬Writing 203,511 128,180 40,202 371,893

Cellphone 42,615 12,711 6,941 62,267

¬Cellphone 187,305 140,491 140,491 361,886

Laptop - 0 3,788 3,788

¬Laptop - 153,202 37,243 190,445

Talking - 5,421 2,169 7,590

¬Talking - 147,781 38,862 186,643

RaisedHand - 118 3 121

¬RaisedHand - 153,084 41,028 194,112

Yawning 2,383 3,356 - 5,739

¬Yawning 315,743 330,607 - 646,350

HeadOnDesk 3,275 25,165 - 28,440

¬HeadOnDesk 298,159 305,741 - 603,900

Table 5.3: Number of Valid Frames by Posture in WITSDB

Lecture 1 Lecture 2 Lecture 3 Total

Valid Frames 414,515 359,847 212,430 986,792

-2 Leaning Left 20,087 19,271 13,845 53,203

-1 Leaning Back 64,949 61,971 43,701 170,621

0 Upright 239,666 161,031 68,630 469,327

1 Leaning Forwards 73,595 92,463 64,715 230,773

2 Leaning Right 16,218 25,111 21,539 62,868
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Table 5.4: Number of Valid Frames by Head Pose in WITSDB

Lecture 1 Lecture 2 Lecture 3 Total

Valid Frames 414,515 359,847 212,430 986,792

Horizontal Head Pose

-2 Looking Far Left 1,457 923 566 2,946

-1 Looking Left 11,467 15,604 10,005 37,076

0 Looking Forward 374,002 294,912 175,125 844,039

1 Looking Right 25,554 46,537 25,752 97,843

2 Leaning Far Right 2,035 1,871 982 4,888

Vertical Head Pose

-2 Looking Below Desk 36,232 20,870 15,500 72,602

-1 Looking On Desk 97,780 63,920 52,839 214,539

1 Looking Forward 190,777 164,394 117,058 472,229

2 Looking Up 369 5,520 2,681 8,570

Figure 5.13: Training and Testing Methodology

presented to the classifier for training. Once the classifier is trained, the testing data is presented

to the classifier and accuracy is calculated. These steps are repeated according to the validation

strategy.

Note that for the CNN based classifier the feature extraction and dimensionality reduction

steps are part of the CNN itself and are not performed as separate steps as they are in the HOG

SVM method.
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/* Extract images where subject is present, and not occluded

Extract 1⇒Writing and 0⇒ ¬Writing */

.mode csv

.output files.csv

SELECT filename,‘3Writing‘ = 1 as Writing

FROM data

WHERE ‘3Occupied‘ == 1

AND ‘3Occluded‘ == -1

AND ‘3Writing‘ != 0;

.output stdout

Listing 5.2: Extract File List from SQLite

Chapters 6 and 7 present the results of training and testing a machine learning system based

on Support Vector Machines and Convolutional Neural Networks respectively. Both are trained

on the same sets of data, as presented above. The various normalisation, feature extraction,

dimensionality reduction, and different neural network architectures are considered in those

chapters.

5.5 Conclusion

While the previous chapter presented an intrusive approach to measuring interest, this chap-

ter proposes a non-intrusive approach based on computer vision and machine learning. An

architecture for a real-time system is proposed that uses sensor data from video, audio, envi-

ronmental, and other specialised sensors as input to a live machine learning based system that

is trained to recognise interest.

To facilitate the development of such a system a labelled dataset is required. The WITS

ANNOTATION TOOL (WITSAT) was developed using C++11, Qt, and OpenCV. WITSAT al-

lows users to label subjects in a video. Firstly, students are labelled spatially. A subject is given

a bounding box and the face is identified. WITSAT uses the Viola-Jones Cascade Classifier

based on Haar-like or LBP features (Sections 2.2.4, 2.2.5 and 2.3.5) along with optical flow

(Section 2.2.2) to robustly detect and track faces. Following spatial labelling WITSAT allows

the user to apply labels using a slider. The bounding box images and corresponding labels can

then be exported to image files and an SQLite database.

This process was followed to develop the WITS DATABASE (WITSDB). Recordings of

students from three lectures were used to build the dataset. While the students were concious

of the camera at first, they were not negatively affected by the presence of the camera after three

exposures. The students in the recordings were first labelled by untrained assessors according

to affect. These labels included Boredom, Confusion, Frustration, and Arousal. In contrast

with Whitehill et al. (2014), the labels showed poor reliability with Cohen’s Kappa results well

below their 0.56.

It was then decided that an approach based on observational checklists should be employed.

The assessors were then asked to label the video according to gestures and postures that could
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be used as proxies for interest. Writing, cellphone use, laptop use, talking, raised hand, yawn-

ing, and head-on-desk actions were identified for use in an observational checklist. Vertical and

horizontal head pose, as well as upper body posture were also labelled.

In the two chapters that follow, a Support Vector Machine (Chapter 6) and a Convolutional

Neural Network (Chapter 7) are trained and tested on the data extracted from WITSDB. In

Chapter 8 these proxies are combined to create a classifier that recognises and reports interest.
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Chapter 6

Non-Intrusive Approach using Engineered

Visual Features

6.1 Introduction

In Chapter 2, kernel methods and the Support Vector Machine (SVM) were introduced. This

chapter uses SVMs along with Histograms of Oriented Gradient (HOG) features to recognise

the classroom actions and postures that were identified and labelled in the previous chapter.

In each case the system is trained as a binary classifier that indicates whether the specific

label is present in the input image or not. Each label is considered separately in the sections that

follow and both cross frame and cross-subject validation are performed. Invalid (¬Occupied or

Occluded) frames are excluded from both testing and training when dealing with the classroom

actions and postures.

The next section considers whether the validity of frames can be automatically classified.

Following that, Section 6.3 considers the classification of the action labels. Section 6.4 con-

siders the classification of the posture and head pose labels. Finally, Section 6.5 concludes the

chapter.

6.2 Validity

To recognise if frames are valid, a dataset was extracted using the code shown in Listing 6.3.

This yielded 473,786 images of which 424,154 (89.5%) were valid and 49,632 (10.5%) were

invalid.
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Table 6.1: HOG SVM Validity Results: 5-Fold Cross Validation on 10,000 Frames

Kernel Type 1 Frame 2 Frame (FF) 2 Frame (DF) 4 Frame (FF)

PCA: × 0.8 0.9 × 0.8 0.9 × 0.8 0.9 × 0.8 0.9

Features (l): 1,764 160 336 3,528 185 432 15,876 190 427 7,056 214 546

Linear 97 95 96 97 96 96 97 95 96 98 97 96

Polynomial 89 90 89 89 90 90 90 90 90 90 90 90

Radial Basis 89 90 90 90 95 90 90 97 95 90 96 90

Sigmoid 89 90 90 90 93 90 90 94 92 90 95 90

.mode csv

.output valid.csv

SELECT filename, (‘3Occupied‘ = 1 AND ‘3Occluded‘ = -1) as Valid

FROM data

WHERE ‘3Occupied‘ != 0 AND ‘3Occluded‘ != 0;

.output stdout

Listing 6.3: SQL Statement to Export Validity Data

A random sample of 10,000 images were drawn which had the same proportions in each

class as the original data. HOG features were extracted for image sequences of length 1, 2, and

4 frames. To merge multiple frames, both feature fusion (FF) and data fusion (DF) were used.

5-fold validation across frames was performed. Linear, polynomial, radial basis, and sigmoid

kernel functions were used. The results are presented in Table 6.1.

In all experiments the linear SVM outperformed the other kernels both in terms of training

speed, testing speed, and accuracy. The second best performing kernel was the radial basis

function. The extremely high accuracies of these tests indicate the ease with which this label

can be detected. This result makes sense as the colour gradients and edges of the chairs are

relatively simple in comparison to the many varying gradients that are seen when a subject

is seated – this accounts for being able to easily recognise unoccupied seats. Similarly, with

occlusions the image gradients differ drastically from those that are unoccluded.

Including more temporal frames in the data increased the accuracy in all cases, but also

substantially increases the number of features. More features take longer to compute and in-

crease the training and testing time. Of interest is the number of extra features calculated when

performing data fusion, but without any accuracy gains over the feature fusion. The feature

space increases as there are now features that correspond to blocks that cover the seams where

the frames are joined. Comparable accuracy with the feature fusion approach indicates that the

SVM is not finding new information in these areas. The data fusion approach yields a five-fold

increase in the number of features compared to the feature fusion approach without a related

increase in the size.

Performing PCA makes a large difference to the number of features needed. Given that the

linear SVM performs well on the original data, it is unsurprising that the linear transformations

from PCA are able to successfully capture a significant amount of variation in relatively few

parameters. PCA was performed on a random subset of 3,000 image sequences drawn from
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Table 6.2: Validity Results: 5-Fold Cross Validation on 50,000 Frames

Frames Features (l) Kernel

Linear Radial Basis

1 Frames 1002 95 91

2 Frames 1521 98 94

4 Frames 1959 98 95

8 Frames 2263 98 96

the 10,000 sequences. Principal components were then included to retain 80% or 90% of

the variance in the data. All 10,000 HOG feature vectors were projected onto the reduced

dimensional space and used for the cross validation tests. While calculating the PCA basis

itself took up to 7 minutes due to the numerical inversion of the 3000 × 3000 matrix, it only

needs to be done once. Training the SVM on feature vectors of length 214 takes approximately

8 seconds, while training it on 7,056 took about 1 minute. On a reduced size dataset these

numbers are small, but when training on the full set, the computation time and required memory

increase substantially. The training time is O(n2l), where n is the number of samples and l is

the length of the feature vector (Chapelle 2007).

With sequence lengths of four frames and making use of data fusion, the 10,000 feature

vectors take up 6.2GB of storage. An increase in data size makes training such sets infeasible.

By using PCA, this problem is overcome and the larger datasets can still be considered.

One further experiment was run using a balanced training set of 50,000 samples and PCA

was used to retain at least to 99% of the variance. Based on the previous experiments only linear

and radial basis function SVMs were trained. The data was presented using feature fusion and

sequence lengths of 1, 2, 4, and 8. The results are presented in Table 6.2.

Again the linear SVM outperforms the radial basis function kernel. It appears that the RBF

kernel’s accuracy increases with more frames, although the linear SVM still outperforms it in

all cases.

The increase in the number of PCA bases has caused a decrease in accuracy for both the

linear and RBF SVMs in the single frame case. When using longer sequences, the accuracy

reaches a maximum of 98%.

Validation across subjects was not performed for these frames as they are not explicitly part

of the interest definition presented later in Section 8.3.

6.3 Classroom Actions

6.3.1 Writing

This section focuses on experiments to recognise writing actions. A dataset was extracted using

the code shown in Listing 6.4. This yielded 424,128 images of which 371,893 (87.7%) were

¬Writing and 52,235 (12.3%) were Writing.
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.mode csv

.output writing.csv

SELECT filename, ‘3Writing‘ == 1 as Writing

FROM data

WHERE ‘3Occupied‘ == 1

AND ‘3Occluded‘ == -1

AND ‘3Writing‘ != 0;

.output stdout

Listing 6.4: SQL Statement to Export Writing Data

Preliminary tests were run by extracting balanced datasets of 20,000, 40,000, and 80,000

images. These sets each contained positive and negative images in equal proportions. Using

data fusion and principal component analysis retaining various levels of variance, a number of

experiments were run. The results of 2-fold validation across frames are shown in Table 6.5 on

page 122.

These results indicate that the information about writing is encoded temporally and more

than one frame is required. Both the number of features and the size of the data are also

provided. It indicates a trade-off between the size when using a single frame, and the size

when using multiple frames. When using multiple frames with data fusion, the data size grows

drastically and again PCA is required.

These results indicate that the larger datasets provide better accuracy. This is a reasonable

result as the larger datasets are more likely to contain images that are similar. Also of interest

is that in all cases, PCA provided an increase in accuracy. This is indicative of the curse of

dimensionality and shows how high dimensional data can make learning more difficult.

These results inform the experiments that follow. The next tests aimed to see how the

number of frames and the variance retained affect the results. Tables 6.3 and 6.4 show the

results of the different kernels for image sequences of length 1, 2, 4, and 8. Feature fusion is

used and PCA retains 90% and 99% of the data’s variance. The datasets were stratified and the

expected accuracy due to chance is 78%.

Interestingly, the accuracy of the linear kernel with 8 frames and 664 features, is equivalent

to that of the single frame with 1,047 features. A further run was performed with PCA retaining

90% variance when using 16 frames, this meant using 1,328 features – roughly similar to the

number of features for a single frame in 99% PCA. The 5-fold cross validation yielded an

accuracy of 92% (linear kernel) and 91% (RBF kernel). This suggests that for writing, when

talking about a similar number of features, it is better to take them from multiple frames rather

than a single one – particularly when making use of the RBF kernel.

Due to the similarity of image sequences when looking at a single subject in a single lecture,

performing cross validation across the subjects provides more insight into how well the system

generalises to new subjects.

The images were separated by subject and a dataset was sampled where a subject had the

same number of positive and negative images based on the number available for each subject.

A subject with 500 positive images and 5000 negative images would contribute 500 images
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Table 6.3: Writing Results: 5-fold Validation on Stratified Datasets, PCA Retains 90% Vari-

ance.

Frames Features (l) Kernel

Linear Radial Basis

1 333 90 88

2 425 91 88

4 535 91 88

8 664 92 90

Table 6.4: Writing Results: 5-fold Validation on Stratified Datasets, PCA Retains 99% Vari-

ance.

Frames Features (l) Kernel

Linear Radial Basis

1 1,047 92 88

2 1,514 92 88

4 1,915 93 87

8 2,256 92 87

121



Table 6.5: Cross Validation Results Over Frames – Writing

2-Fold Validation Accuracy

Frames: 1 Frame 4 Frames

PCA Variance: 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 No PCA 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 No PCA

Images Accuracy (%)

20 000 71 75 77 77 76 76 75 72 69 89 92 94 94 95 94 92 86 70

40 000 73 78 79 80 78 77 77 75 72 92 95 96 96 96 96 95 90 -

80 000 75 79 81 82 81 80 79 78 77 93 95 97 97 97 97 96 93 -

Features per Image

8 15 26 45 75 131 254 675 1 764 8 16 29 51 89 165 388 831 44 100

Data Size (MB)

20 000 2 4 6 11 19 34 69 192 482 2 4 7 12 22 42 89 226 13 GB

40 000 4 7 13 22 38 69 138 383 965 3 7 13 24 43 84 178 452 26 GB

80 000 7 14 25 43 73 131 264 730 1.9 GB 7 14 26 47 85 165 352 903 52 GB

1
2
2



from each set, resulting in 1000 images. This was done for all 65 different subjects resulting in

a dataset with an equal number of positive and negative samples. There were 21 subjects with

more than 1000 positive frames. These were used for hold-one-out validation.

A subject was selected from the set of 21, the system was trained on the remaining 64

subjects and tested on the excluded one. A number of different pre-processing steps were

considered to assist learning. The parameters of these approaches along with their results are

presented in Table 6.6. The various parameters include:

• the number of training images randomly sampled from the remaining subjects (10,000

or 80,000),

• mirroring the image with probability 0.5,

• randomly cropping up to 5% off the width and height of the images (jitter),

• treating previous images in the sequence as difference images, where In is the nth, con-

catenating frames would yield: [In; In − In−1; In−1 − In−2; In−2 − In−3 ]),

• Principal Component Analysis performed over the same set of frames with the above

methods applied.

80,000 training images were randomly sampled from the remaining subjects for training.

Table 6.6 shows the results. In most cases the prediction accuracy was in the low 60%’s, and

as the stets were balanced, an accuracy of 50% is expected by chance alone. Just like the

cross validation over frames above, learning with PCA out performed learning without it in

terms of speed and almost always in terms of accuracy. Training on a dataset of 80,000 images

without PCA took up to 6 hours meaning that 5-fold cross validation took over a day. The same

training with PCA took about 35 minutes and 5-fold cross validation took only 3 hours per

run. In the experiments run, it appears that applying jitter to the image assists in generalisation.

Performing the tests with Feature Fusion yields similar results.

As seen in Figure 6.1 and Table 6.6, the performance of the different configurations is signif-

icantly worse when validating across the subjects rather than across the frames. As recordings

were taken during lectures, the students were mostly still. Thus, there is not a lot of movement

between frames which makes consecutive frames similar. This means that when randomly

selecting training and testing sets from the frames, the accuracy rate is inflated due to these

similarities. In order to perform well, the system only needs to recognise similar frames.

When validating across subjects, the differences between the training and testing images is

much greater. In order to perform well here, the system must generalise to subjects that it has

never seen before. This task is more difficult and is expressed through the decreased accuracy.

Of interest is that regardless of the parameters of the test, the performance on a single spe-

cific subject was relatively consistent. A subject that performed poorly in the first test, was

likely to perform poorly in all the tests. For example, Subject 34’s accuracy in the first experi-

ment was 45%, indicating that the system was unable to generalise to this subject and performed

worse than chance. Regardless of the parameters in the other experiments the accuracy for that

subject remained below 50%. Looking at the raw data, the subject is found at a wide angle and

is often partially occluded by his neighbour. This is illustrated in Figure 6.2, which contrasts

Subject 51 (Figure 6.2a) with a good view and Subject 34 (Figure 6.2b) with a poor view.
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Figure 6.1: Cross Validation Results Over Subjects – Writing

It may be necessary to handle wide angles or cases of partial occlusions separately in an-

other more robust classifier. The better option is probably to use multiple cameras that are

installed throughout the room that can provide frontal views of each student. Elevating the

hight of the cameras along with these more frontal views can assist avoiding the partial occlu-

sions that are interfering with good results.

(a) Subject 51 Frontal View With No Occlusions

and Minimal Interference From Other Students.

(b) Subject 34 view from a wide angle and partial

occlusion.

Figure 6.2: Good (a) and Bad (b) Subject Views.
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Table 6.6: Cross Validation Results Over Subjects – Writing

NoPCA J+PCA JM*+PCA PCA JD+PCA JM+PCA PCA80k

Training Images 80,000 10,000 10,000 10,000 10,000 10,000 80,000

Mirror - - 0.5* - - 0.5 -

Jitter - 0.05 0.05 0.05 - 0.05 -

Previous as Diff - - - Y - - -

PCA Retained Variance - 0.9 0.9 0.9 0.9 0.9 0.9

PCA Items - 3000 3000 3000 3000 3000 3000

Subject Testing Images Accuracy (%)

18 4816 68 71 63 73 68 64 69

43 4724 78 85 83 78 87 83 85

20 4690 60 68 67 60 65 69 81

15 4392 71 81 80 80 76 77 82

53 3930 69 76 71 74 76 69 58

39 3828 56 72 61 60 76 64 78

09 3506 45 47 47 48 47 47 49

54 3446 47 67 72 52 67 69 71

00 3374 76 67 75 73 76 74 69

34 3300 41 42 52 46 45 50 44

44 3174 72 72 61 73 67 62 64

38 3088 62 72 65 72 74 66 72

13 3068 58 66 68 58 67 68 63

36 3014 70 67 56 69 63 58 63

37 2864 37 46 48 38 42 49 47

51 2852 90 88 75 90 91 82 77

02 2652 54 64 51 59 63 56 55

32 2630 58 66 53 63 70 52 73

19 2566 37 41 59 38 43 63 42

16 2432 50 54 41 56 52 38 50

01 2386 48 59 58 63 62 56 57

Mean 61 65 62 63 65 63 64

Median 59 67 61 63 67 64 64

Min 37 41 41 38 42 38 42

Max 90 88 83 90 91 83 85

* Mirroring applied to training data only.
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6.3.2 Cellphone Use

Using the process outlined previously, subjects with at least 1,000 positive frames were se-

lected. This yielded 23 subjects. Cross-subject validation was performed incorporating PCA,

jitter and mirroring. The system based on the PCA, HOG and SVM was unable to learn to

recognise this label with the mean and median accuracy sitting close to 54% in most config-

urations. This indicates the classifier accuracy matches that of random chance in most cases.

Engineering features that focus on the areas around the hand and desk may produce better re-

sults. Subjects where the classifier performed best for cellphone recognition had frontal views

without occlusions, generally had clothing that offered high contrast with their skin and back-

ground, and the background of the subjects was not cluttered which helps the HOG features

capture the subject pose more efficiently - this is illustrated in Figure 6.3. Table 6.7 and Figure

6.4 present the results of validation over the remaining subjects.

(a) Subject 16 (b) Subject 18 (c) Subject 49

Figure 6.3: High Performing Subjects for Cellphone Recognition.
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Figure 6.4: Cross Validation Results Over Subjects – Cellphone Use
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Table 6.7: Cross Validation Results Over Subjects – Cellphone Use

J+PCA5k JM+PCA5k J+PCA10k J+PCA10k J+PCA80k

Training Images 5,000 5,000 10,000 10,000 80,000

Mirror - 0.5 - - -

Jitter 0.05 0.05 0.05 0.05 0.05

Subject Testing Images Accuracy (%)

23 12,494 43 47 44 45 56

29 11,822 63 63 63 62 57

57 7,588 49 50 51 52 58

48 6956 53 60 50 54 65

27 6696 63 58 59 57 52

07 5866 50 50 50 50 50

19 5592 57 68 58 62 61

15 5072 51 62 51 50 50

49 4874 71 68 73 74 74

42 3530 57 59 57 55 52

50 3480 67 62 65 71 66

21 3384 48 46 48 48 51

16 3322 72 57 55 50 50

28 3032 50 50 50 50 50

11 3016 62 50 56 57 54

01 2882 50 49 50 50 50

25 2876 53 55 54 59 53

60 2798 52 50 50 50 50

14 2746 51 46 52 52 60

22 2624 50 47 54 51 54

18 2314 55 56 89 55 53

30 1912 50 41 50 50 50

26 1910 50 50 50 49 49

Mean 55 54 55 54 55

Median 52 50 52 52 53

Min 43 41 44 45 49

Max 72 68 89 74 74

* Mirroring applied to training data only.
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6.3.3 Laptop Use

Unfortunately there was only a single subject in the dataset that made use of a laptop in the

labelled lectures. Performing 5-fold cross validation over the frames for that subject yields

89% accuracy. Validation across subjects was not possible for this label as there are no others.

6.3.4 Talking

The system was also unable to recognise subjects that were talking. The results are shown in

Table 6.8 and Figure 6.5, with most accuracy values close to 54%. These results are comparable

with chance indicating that the classifier is unable to learn adequately with the current features.

This is mainly due to the fact that the head occupies a relatively small area within the

image. The HOG features are calculated on the entire image, rather than just the head region.

The system may perform better in identifying talking action if HOG features localised around

the head are used.

0 10 20 30 40 50 60 70 80 90

Accuracy (%)

J+PCA80k

J+PCA40k

J+PCA5k

Figure 6.5: Talking Recognition

6.3.5 Raised Hand

There were only 121 frames where the subject was labelled as having a raised hand. This is

generally not a large enough number on which to perform machine learning and results should

be considered with extreme caution. Results are on par with that of chance, and more data

for this label should be collected before making any conclusions. These results are shown in

Table 6.9 on page 130.
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Table 6.8: Cross Validation Accuracy Over Subjects – Talking

J+PCA J+PCA J+PCA

Training Images 5000 10000 80000

Mirror - - -

Jitter 0.05 0.05 0.05

Subject Testing Images Accuracy (%)

14 1163 55 56 54

30 961 71 73 71

18 952 48 50 48

26 927 58 60 55

08 921 48 51 50

03 437 51 53 57

12 400 49 57 53

20 359 49 51 52

17 259 49 51 50

10 238 59 55 63

21 180 53 56 53

06 153 59 53 56

27 125 53 54 51

15 114 50 52 51

32 90 30 40 39

07 74 55 51 57

05 69 53 54 58

31 66 52 51 51

09 47 77 41 61

16 33 60 55 57

00 13 23 31 38

01 9 44 83 78

Mean 52 54 55

Median 52 53 54

Min 23 31 38

Max 77 83 78
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Table 6.9: Cross Validation Accuracy Over Subjects – Raised Hand

J+PCA JM+PCA

Training Images 242 242

Mirror - 0.5

Jitter 0.05 0.05

Subject Testing Images Accuracy (%)

18 90 77 89

08 74 50 51

07 20 50 48

06 12 50 50

13 10 50 50

20 10 60 60

21 8 50 38

10 6 50 50

12 6 100 100

30 6 50 50

Mean 59 59

Median 50 50

Min 50 38

Max 100 100

6.3.6 Yawning

The yawning action suffers from the same problem as the raised hand action above. In total

there are 34 subjects that are labelled as ever yawning and each contributes roughly 30 to 100

frames. Cross-subject validation performs no better than chance and more data is needed to

train the system to recognise this action.

6.3.7 Head on Desk

The head on desk action is also under-represented in the dataset. Across the entire dataset there

are only 16 students that perform the action; all except one contribute fewer than 800 frames.

Cross-subject validation performs no better than chance and more data is needed to train the

system to recognise this action.
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6.4 Posture

A stratified set of 60,000 sequences was built from the valid posture labels in the dataset. Re-

call that there are five options corresponding to sitting upright or leaning left, back, forwards or

right. The set is stratified rather than balanced as the number of samples in the five categories

are highly skewed to those sitting upright. 5-fold cross validation over frames yielded an accu-

racy of 80.8% across the five categories. With the stratified unseen testing set the SVM achieves

an accuracy of 81.4% with κ = 0.68, which indicates significant agreement as accuracy due to

chance is approximately 43%.

Cross-subject validation over stratified validation sets yielded 41.6% accuracy with κ =
−0.01 indicating no agreement and the SVM is acting worse than chance which expects ap-

proximately 42% accuracy. Equivalent results were found when detecting both vertical and

horizontal head pose; indicating that the SVM is completely unable to generalise to postures

and head poses of unseen subjects.

6.5 Conclusion

Validation across frames produced accuracies often in the high 90%’s for binary classification

and in the 80%’s for five-way classification, but in general the HOG SVM was unable to gen-

eralise to unseen subjects. On balanced testing and training sets, it was able to recognise when

unseen students were writing with mean and median accuracies of 65% and 67% respectively.

When recognising cellphone use of unseen students, the HOG SVM performed poorly overall

with mean and median accuracies of 55% and 52% respectively.

The remaining classroom action labels did not have enough exemplars to adequately test.

Unsurprisingly, in all cases the system was unable to outperform chance when viewing new

subjects which indicates that the system was unable to learn to recognise the gestures based on

the current feature set.

The fact that the HOG SVM was able to perform very well on validation across frames

but not on validation across subjects indicates that it was not learning the correct patterns in the

data. Consecutive frames of the same subject are very similar to each other. The high values for

frame validation mean that the SVM is just looking for similar frames, rather than interpreting

features within the frame.

Performing feature engineering, focusing on specific areas of the image, explicitly remov-

ing the background, and potentially trying a different set of features altogether may improve

accuracy and allow the SVM to correctly classify the actions and postures. However, this re-

quires manual intervention without a guarantee of results. The SVM also struggles with issues

relating to large datasets as the training time is quadratic in the number of samples presented.

This means that it is infeasible, for example, to train on the entire database.

Based on these issues the HOG SVM is not recommended for WITS and in the following

chapter, CNNs are used to try automatically learn good feature representations for classifica-

tion, rather than using the HOG features from this chapter.

131



Chapter 7

Non-Intrusive Approach using Automated

Visual Features

7.1 Introduction

In Chapter 2, Convolutional Neural Networks (CNNs) were introduced as a method whereby

a neural network classifier is built upon a number of other convolution, pooling, drop-out, and

normalisation layers. The convolution layers learn the weights of a number of linear convolu-

tion kernels to produce feature maps that are passed as input into the next layer. Pooling layers

summarise neighbouring groups of input neurons. For example, max-pooling takes the max-

imum value as the summary of some neighbourhood. By using overlapping neighbourhoods,

over-fitting in the CNN is often reduced. Normalisation layers can perform global, local, or

lateral normalisation while drop-out layers help avoid over-fitting by stochastically deactivat-

ing neurons during the training process. These layers are all used in conjunction with the fully

connected layers typical of neural networks and training is performed using the usual back

propagation algorithm.

AlexNet (Krizhevsky et al. 2012) is a CNN architecture that performed exceptionally well

on the ImageNet database. AlexNet’s architecture is shown in Figure 2.24. The work in this

chapter uses AlexNet to perform binary classification on the various labels discussed in the

previous sections. The final AlexNet softmax layer of 1,000 neurons is replaced with a two or

five neuron softmax layer where each neuron corresponds to one of the categories being learnt.

The category corresponding to the neuron with the largest activation is used as the output of the

network.

Image sequences are presented to the network as multiple channels of a single image. This

makes an image of 3k channels, where k is the number of frames in the sequence. So where

Ri,Gi,Bi ∈ Rw×h are the intensities of each channel at frame i, then the input to the network,

Iki ∈ R3k×w×h, is

Iki = [Ri,Gi,Bi,Ri−1,Gi−1,Bi−1, . . . ,Ri−(k−1),Gi−(k−1),Bi−(k−1)] (7.1)

By concatenating along channels, pixels in the same location are ‘above’ each other in the

image cube and a kernel is able to compare pixels that correspond spatially.
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Section 7.2 illustrates the first major benefit of the CNN based approach – speed. Sec-

tion 7.3 briefly considers the detection of valid and invalid frames. Section 7.4 looks into the

detection of the different action labels and Section 7.5 presents the detection of the various

postures and head poses. In each case, validation across frames is performed first, followed

by validation across subjects, and then across lectures. When performing cross-subject vali-

dation, only the frames from Lecture 1 are considered to prevent the accidental inclusion of

subjects that were present across multiple lectures. Cross-lecture validation involves training

on a held-out lecture and testing on the remaining two for all the combinations.

7.2 Hardware Acceleration

The CNN method lends itself to hardware acceleration. The convolutional and other local

region based operations in the CNN are embarrassingly parallel and are easily accelerated us-

ing General Purpose Graphics Processing Units (GPGPUs). Specifically, the use of NVIDIA’s

CUDA framework (Nickolls et al. 2008) allows the user to offload computation to the GPU and

make use of the massively parallel facilities of modern graphics cards. NVIDIA also provide

cuDNN (Chetlur et al. 2014), a CUDA accelerated library of deep learning primitives.

This work makes use of the Caffe CNN library (Jia et al. 2014) that leverages these re-

sources to provide significant performance improvements over the standard CPU approaches.

Termed an “irresponsible amount of performance” by the manufacturer, an NVIDIA Titan X

with 3,584 CUDA cores, 12GB of on-board GDDR5 RAM, and capable of 11 TFLOPs was

used for the training and testing in the rest of this chapter (NVIDIA 2015).

Training a CNN on the CPU can take days or weeks, while training on a GPU takes only a

few hours. To briefly illustrate the improvement over the CPU approach, AlexNet was trained

on 50,000 image sequences for 5,000 iterations using the CPU and then GPU respectively. The

CPU training took 9 hours 41 minutes. In contrast, the GPU training took 4 minutes 20 seconds.

This significantly impacts the number of experiments that could be run.

For classification, the CNN was used to classify 50 subjects per frame. The CPU classi-

fier worked at 0.23 frames per second, while the GPU classifier did 7 frames per second. For

comparison, the 8-core parallel CPU based HOG SVM runs at 1.6 frames per second. Run-

ning the GPU based CNN significantly improves the performance of WITS, making real-time

processing a possibility.

7.3 Validity

7.3.1 Cross-Frame Validation

From all three lectures there are 424,154 valid and 49,632 invalid frames. Recall that a frame

is valid if the subject is both present and unoccluded. A balanced dataset of 15,000 positive

and 15,000 negative image sequences was sampled to build a training set. A balanced test set

was sampled that contained 5,000 positive and 5,000 negative image sequences. A stratified
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validation set of 100,000 frames was created using 88,532 valid and 11,468 invalid frames of

the remaining unused ones.

Table 7.1: CNN Accuracy Detecting Validity

Sequence Test Set Accuracy (%)

Length Peak 10,000 Iterations 20,000 Iterations

1 98.6 98.6 98.6

2 98.7 98.4 98.6

4 98.8 98.6 98.7

Table 7.1 shows the accuracy values for image sequences built from 1, 2, and 4 frames.

Figure 7.1 on the next page provides the loss value during each training epoch as well as the

accuracy over the test set after every 1,000 training epochs. The results show how the CNN can

easily learn to differentiate between frames with unoccluded students and those that are either

occluded or empty. The accuracy is not sensitive to the number of input frames and based on

the accuracy curves in Figures 7.1a, 7.1c and 7.1e, the network quickly learns to understand the

frames regardless of the sequence length.

The network trained on single-frame sequences was then run on the validation set to under-

stand how the classifier would function in unbalanced sets. The classifier achieved an accuracy

of 98.9% (chance expects 79.2%) and the confusion matrix is given in Table 7.2. This leads to

κ = 0.95 which is extremely high indicating near-perfect agreement.

Table 7.2: CNN Confusion Matrix for the Validation Set (Validity)

Actual Predicted

Invalid Valid

Invalid 11,258 210

Valid 871 87,661

These results agree with those in Chapter 6 and indicate that the large spatial changes that

occur in the image make it easy to tell whether the current frame is valid or not.

7.3.2 Cross-Subject Validation

There are 50 subjects in lecture 1. Cross-subject validation was performed by constructing

a balanced training set of 30,000 valid and 30,000 invalid frames randomly selected from all

subjects except for the current holdout subject. An equal number of valid and invalid frames

were then randomly selected from the holdout subject for a testing set based on the number

available for that subject. A validation set was constructed by using all frames from the relevant

subject.

Over the balanced testing sets the minimum and maximum accuracies for different subjects

were 53.1% and 99.9%. The mean and median accuracies were 82.4% and 85.7% respectively.

Over the validation set, an accuracy of 81.6% (chance gives 54.7%) with κ = 0.6 was achieved
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(a) 1 Frame Sequences - CNN Accuracy (Validity) (b) 1 Frame Sequences - CNN Loss (Validity)

(c) 2 Frame Sequences - CNN Accuracy (Validity) (d) 2 Frame Sequences - CNN Loss (Validity)

(e) 4 Frame Sequences - CNN Accuracy (Validity) (f) 4 Frame Sequences - CNN Loss (Validity)

Figure 7.1: CNN Accuracy and Loss (Validity)
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over the validation frames. The confusion matrix for the predictions over the validation set is

shown in Table 7.3. This confusion matrix is built by summing the relevant items from the

confusion matrices for each of the 50 pairs made of a validation set and a trained CNN. This

indicates substantial agreement with the labelled data even for unseen subjects.

Table 7.3: CNN Confusion Matrix for Cross-Subject Validation (Validity)

Actual Predicted

Invalid Valid

Invalid 154,969 42,252

Valid 70,440 344,075

7.3.3 Cross-Lecture Validation

The previous section showed that the CNN was able to generalise well to unseen subjects. This

section aims to test how well the CNN generalises to subjects that have potentially been seen

before, but in different lectures.

Cross-lecture validation was performed by training on two lectures and testing on the re-

maining one. Recall that lectures 1 and 2 contained roughly the same students on the same

day and therefore had similar views of the students wearing the same clothes. Lecture 3 was

a different day and while students usually sit in similar places, clothing and camera placement

varied.

Validation was performed by holding out a lecture and selecting a balanced training set of

80,000 images from the other two lectures. A balanced test set was built with 10,000 random

images from the held-out lecture. If there were not enough frames, then a balanced set was

constructed using what was available. The validation set was all the held-out lecture frames.

Accuracy over the balanced test set for holding out lectures 1, 2, and 3 were 70.8%, 85.7%, and

86.5% respectively.

Over the full validation sets, the accuracies were 85.4%, 83.5%, 89.4%, with κ values of

0.41, 0.24, 0.5 respectively. Accuracy expected due to chance is approximately 72%. While

accuracies are high, the κ values indicate only moderate agreement – this is due to the large

imbalance in the dataset as it has mostly valid frames.

It is interesting to note that the system learns better on different subjects in the same lecture,

than on the same subjects over different lectures where the camera placement and lighting may

be different, as well as the student positions and clothing.

7.4 Classroom Actions

The following sections consider the accuracy of the CNN over the classroom actions. Only the

actions with sufficient training data are considered.
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Table 7.4: CNN Accuracy Detecting Writing

Sequence Test Set Accuracy (%)

Length Peak 10,000 Iterations 20,000 Iterations

1 96.9 96.4 96.9

2 97.0 96.2 96.6

4 96.9 96.1 96.4

Table 7.5: CNN Confusion Matrix for the Validation Set (Writing)

Actual Predicted

¬Writing Writing

¬Writing 84,699 2,986

Writing 361 11,954

7.4.1 Writing

Cross-Frame Validation

From all three lectures, there were 424,128 valid writing labels. These consisted of 52,235

positive labels (Writing) and 371,893 negative labels (¬Writing). Using the same adjustments

to AlexNet as in the previous section, a CNN was trained on a balanced dataset containing

15,000 image sequences corresponding to each label. The balanced test set contained 5,000

unseen examples from each category. A stratified validation set of 100,000 frames was created

using 87,685 positive and 12,315 negative frames from the remaining unused ones.

The accuracy and loss graphs are presented in Figure 7.2 and results in Table 7.4. Surpris-

ingly, the CNN is largely unaffected by the sequence length – this is in contrast to the HOG

SVM that performed better with more frames even when using the same number of features.

Calculating accuracy over the validation set yielded an accuracy of 96.7% with the confu-

sion matrix shown in Table 7.5. The corresponding κ = 0.858, which indicates extremely good

agreement.

Cross-Subject Validation

Cross-subject validation was performed over lecture 1. There were 50 subjects in the lecture, of

which 30 provided more than 1,000 frames from each category. Validation sets were built using

all frames from the held-out subject. These were used to perform cross-subject validation.

Over the 30 CNNs that were trained, the minimum and maximum accuracies were 50%

and 97.9%. The mean and median accuracies were 72.1% and 70.3% respectively. On the

validation sets the CNNs scored an accuracy of 82.7% (chance 74.4%) which gives κ = 0.326.

The relevant confusion matrix is shown in Table 7.6 on page 139. Just like the HOG SVM,

the CNNs were able to learn to recognise when unseen students were writing. However, where

the SVM approach did so with accuracies in the low to mid 60%’s, the CNNs accuracy is

approximately 10% higher in the low 70%’s.
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(a) 1 Frame Sequences - CNN Accuracy (writing) (b) 1 Frame Sequences - CNN Loss (writing)

(c) 2 Frame Sequences - CNN Accuracy (writing) (d) 2 Frame Sequences - CNN Loss (writing)

(e) 4 Frame Sequences - CNN Accuracy (writing) (f) 4 Frame Sequences - CNN Loss (writing)

Figure 7.2: CNN Accuracy and Loss (Writing)
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Table 7.6: CNN Confusion Matrix for the Cross-Subject Validation Sets (Writing)

Actual Predicted

¬Writing Writing

¬Writing 217,014 20,909

Writing 28,183 18,270

Table 7.7: CNN Confusion Matrix for the Cross-Lecture Validation Sets (Writing)

Actual Predicted

¬Writing Writing

¬Writing 217,014 20,909

Writing 28,183 18,270

Cross-Lecture Validation

Cross-lecture validation was performed over the three lectures. Balanced training sets of 50,000

to 60,000 images were used based on the availability of frames from the lectures. Balanced test

sets of 20,000 images from the held-out lecture were used as a testing set. Validation sets were

made from all frames in the held-out lecture.

Holding out lectures 1, 2, and 3 yielded accuracies of 70.0%, 69.5%, and 54.0% on the

balanced testing sets. On the validation sets 88.4% (chance 82%), 86.5% (chance 79%), and

91% (chance 91%). These give κ scores of 0.35, 0.35, and -0.03 respectively. Over all the

validation sets, the accuracy was 88.1% (chance 82.6%) and κ = 0.314. The confusion matrix

is shown in Table 7.7. Lecture 1 and 2 could be classified with fair accuracy, but the CNN did

not generalise to lecture 3 at all. Note that the number of labels available in lecture 3 were very

limited with fewer than 1,000 positive samples. More data should be collected from a number

of different lectures and these tests should be repeated.

7.4.2 Cellphone

Cross-Frame Validation

The same process was followed for the Cellphone labels for which there are 424,153 frames in

total. There are 361,886 negative (¬Cellphone) labels and 62,267 positive (Cellphone) ones.

A CNN was trained on a balanced dataset containing 15,000 image sequences corresponding

to each label. The balanced test set contained 5,000 unseen examples from each category.

A stratified validation set of 100,000 frames was created using 85,320 positive and 14,680

negative frames from the remaining unused ones.

The accuracy and loss graphs are presented in Figure 7.3 and results in Table 7.8. Sur-

prisingly, the CNN is largely unaffected by the sequence length – again this is in contrast to

the HOG SVM that performed better with more frames even when using the same number of

features.
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(a) 1 Frame Sequences - CNN Accuracy (cellphone) (b) 1 Frame Sequences - CNN Loss (cellphone)

(c) 2 Frame Sequences - CNN Accuracy (cellphone) (d) 2 Frame Sequences - CNN Loss (cellphone)

(e) 4 Frame Sequences - CNN Accuracy (cellphone) (f) 4 Frame Sequences - CNN Loss (cellphone)

Figure 7.3: CNN Accuracy and Loss (Cellphone)
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Table 7.8: CNN Accuracy Detecting Cellphone

Sequence Test Set Accuracy (%)

Length Peak 10,000 Iterations 20,000 Iterations

1 97.6 97.0 97.6

2 97.5 96.6 97.0

4 97.6 96.4 97.4

Table 7.9: CNN Confusion Matrix for the Validation Set (Cellphone)

Actual Predicted

¬Cellphone Cellphone

¬Cellphone 82,610 2,710

Cellphone 294 14,386

Calculating accuracy over the validation set yielded an accuracy of 97.0% (chance 73%)

with the confusion matrix shown in Table 7.9. The corresponding κ = 0.888, which indicates

extremely good agreement.

Cross-Subject Validation

Cross-subject validation was performed over lecture 1. There were 50 subjects in the lecture,

of which 18 provided more than 1,000 frames from each category. All frames from the held-

out subject were used to construct a validation set. These were used to perform cross-subject

validation.

Over the 18 CNNs that were trained, the minimum and maximum accuracies were 50%

and 99.7%. The mean and median accuracies were 76.5% and 75.6% respectively. Over all

the validation sets, the CNNs scored an accuracy of 83.2% (chance 65.2%) with κ = 0.516.

The confusion matrix is shown in Table 7.10. Unlike the HOG SVM, the CNNs were able to

learn to recognise when unseen students were on their cellphone in spite of the small number

of subjects in the training set.

Table 7.10: CNN Confusion Matrix for the Cross-Subject Validation Sets (Cellphone)

Actual Predicted

¬Cellphone Cellphone

¬Cellphone 134,058 14,667

Cellphone 17,990 27,180

Cross-Lecture Validation

Cross-lecture validation was performed over the three lectures. Balanced training sets of 80,000

images were used when holding out either lecture 2 or 3. Based on the availability of frames

when holding out lecture 1, a balanced training set of only 39,900 images was possible. Bal-

anced test sets of 20,000 images were used as a testing set from the held-out lecture, except
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when holding out lecture 3 where a balanced set of only 13,944 images was available. Valida-

tion sets were made from all frames of the held-out lecture.

Holding out lectures 1, 2, and 3 yielded accuracies of 66.9%, 80.1%, and 71.7% on the

balanced testing sets. The validation sets returned accuracies of 87.0% (chance 78%), 89.6%

(chance 82.1%), and 77.0% (chance 72.2%). These give κ scores of 0.382, 0.42, and 0.172

respectively. Over all the validation sets, the accuracy was 86.2% (chance 79.1%) with κ =
0.343. The relevant confusion matrix is shown in Table 7.11. Lecture 1 and 2 could be classified

with fair accuracy. While still beating chance, generalisation to lecture 3 was poor.

Table 7.11: CNN Confusion Matrix for the Cross-Lecture Validation Sets (Cellphone)

Actual Predicted

¬Cellphone Cellphone

¬Cellphone 134,058 14,667

Cellphone 17,990 27,180

7.5 Posture

Cross-Frame Validation

Based on the previous tests, only single frames were tested for the posture. For posture there

are five categories, so training was performed using both a balanced training set and a stratified

training set.

For the stratified test, a training set was built using random images from each respective

category in proportions similar to the original data. There were 75,000 images in the training

set. Similarly, the stratified testing set was built with 25,000 images and a validation set of

100,000 images. The network was trained and provided an accuracy of 89.5% (chance 31.6%)

on the stratified test set. On the stratified validation set, the network achieved an accuracy of

84.8% (chance 31.8%) with κ = 0.777.

For the balanced test, a training set was built using equal numbers of images from each

category. There were 75,000 images in the training set, corresponding to 15,000 from each

label – which is the same as the experiments for the previous labels. Similarly, a balanced

testing set was built with 25,000 images. Once again, a stratified validation set of 100,000

images is used. The trained network had an accuracy of 90.6% (chance 20%) on the balanced

test set. On the stratified validation set, the network achieved an accuracy of 89.9% (chance

25.5%) with κ = 0.798. The validation set’s confusion matrix for the CNN trained on the

balanced data is given in Table 7.12. The corresponding accuracy and loss curves are shown in

Figure 7.4.

These results indicate that for the five-category data the best course is to continue using

balanced datasets although the difference is small.
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Table 7.12: CNN Confusion Matrix for the Validation Set (Posture)

Actual Predicted

Left Back Upright Forward Right

Left 6,197 49 30 24 15

Back 657 18,244 608 446 549

Upright 1,230 3,246 29,449 3,392 2,506

Forward 152 546 1,124 23,695 298

Right 14 64 65 54 7,346

(a) 1 Frame Sequences - CNN Accuracy (posture) (b) 1 Frame Sequences - CNN Loss (posture)

Figure 7.4: CNN Accuracy and Loss (Posture)

Cross-Subject Validation

Cross-subject validation was performed over lecture 1. There were 50 subjects in the lecture,

of which 45 provided more than 1,000 frames from each category. All frames from the held-

out subject were used to construct a validation set. These were used to perform cross-subject

validation. Both stratified and balanced training sets were tested.

Over the 45 CNNs that were trained on stratified datasets, the minimum and maximum

accuracies were 19.3% and 99.9%. The mean and median accuracies were 59.8% and 62.7%

respectively. Over the validation sets, the CNNs scored an accuracy of 47.2% (chance 41.9%)

with κ = 0.092 which indicates that while some subjects are being recognised correctly, overall

the network is not generalising.

The same tests were run using balanced training sets which used equal proportions of im-

ages from each category. Over the 45 CNNs that were trained on balanced datasets, the min-

imum and maximum accuracies over the balanced testing sets were 17.3% and 94.3%. The

mean and median accuracies were 54.6% and 53.5% respectively. Over the stratified validation

sets, the overall accuracy was 43.8% (chance 40.6%) with κ = 0.053, which indicates very

poor agreement. The confusion matrix is shown in Table 7.13.

In this case the balanced training data decreased the performance overall – although in both

cases the system generalised very poorly to unseen students.
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Table 7.13: CNN Confusion Matrix for the Cross-Subject Validation Sets (Posture)

Actual Predicted

Left Back Upright Forward Right

Left 487 2845 13,279 2,440 723

Back 3,389 11,596 34,079 8,180 2,499

Upright 12,885 25,574 139,746 42,956 9,564

Forward 2,319 6,107 40,646 19,498 2,858

Right 732 3,080 8,503 1,556 1,377

Cross-Lecture Validation

Cross-lecture validation was performed over the three lectures. Stratified training sets of 80,000

images were used when holding out either lecture 2 or 3. Based on the availability of frames

when holding out lecture 1, a balanced training set of only 39,900 images was possible. Bal-

anced test sets of 20,000 images were used as a training set from the held-out lecture, except

when holding out lecture 3 which was a balanced set of 13,944 images. Validation sets were

made from all frames of the held-out lecture.

Holding out lectures 1, 2, and 3 yielded accuracies of 49.3%, 73.3%, and 80.2% on the

balanced testing sets. The validation sets returned accuracies of 43.1% (chance 38.3%), 72.7%

(chance 26.4%), and 79.8% (chance 26.8%). These give κ scores of 0.126, 0.63, and 0.724

respectively. Over all the validation sets, the accuracy was 63.1% (chance 30.7%) with κ =
0.467. The relevant confusion matrix is shown in Table 7.14. Lecture 2 and 3 could be classified

with fairly good accuracy. While still beating chance, generalisation to lecture 1 was poor –

this may be due to the relatively small number of frames in lectures 2 and 3 in comparison to

lecture 1.

Table 7.14: CNN Confusion Matrix for the Cross-Lecture Validation Sets (Posture)

Actual Predicted

Left Back Upright Forward Right

Left 13114 3274 5945 3806 264

Back 2582 49926 22340 7560 2602

Upright 8112 23176 148311 42471 13011

Forward 1357 3617 27187 81979 1364

Right 302 2444 8263 2617 17771

7.6 Horizontal Head Pose

Cross-Frame Validation

Approximately 90% of the data has students looking forward with 9% looking slightly left or

right and only 1% looking completely sideways. Through all three lectures, there were only

2,787 frames of students looking far left and a similar amount looking far right.
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To construct a balanced training set would result in a set of only 25,000 images, which is

too small for training. Therefore, to construct a balanced dataset it was decided to reuse im-

ages from the under-represented categories, but with arbitrary cropping and rescaling. 20,000

images in each category were used to create a balanced training set of 100,000 images. Train-

ing on the balanced set provided 89.6% accuracy over a stratified validation set of 100,000

images. Removing the repeated images and using the resulting set as a stratified training set

resulted in an accuracy of 90.3%. The accuracy of chance over the validation set was 66.6%

and κ = 0.709.

In both cases the network was able to accurately categorise new image frames. The confu-

sion matrix from the stratified test is given in Table 7.15. It appears that even with the different

pre-processing, repeating images did not help provide the system with more information.

Table 7.15: CNN Confusion Matrix for the Validation Set (Horizontal Head Pose)

Actual Predicted

Far Left Left Forward Right Far Right

Far Left 348 20 7 0 1

Left 28 3,741 66 110 9

Forward 225 2,979 76,078 5,072 316

Right 8 344 326 9,562 131

Far Right 2 8 10 47 562

Cross-Subject Validation

Cross-subject validation was performed over lecture 1. All frames from the held-out subject

were used to construct a validation set. These were used to perform cross-subject validation.

Both stratified training sets were tested.

The minimum, maximum, mean and median accuracies are not reported as they are mis-

leading without comparing each individual result with chance. Over all the validation sets,

the CNNs scored an accuracy of 83.91% (chance 83.5%) with κ = 0.025 which indicates that

the network is not generalising to recognise the horizontal head pose of unseen subjects. The

confusion matrix is given in Table 7.16. The confusion matrix shows how the CNN is heavily

biased towards the forward-facing label and against the left and right extremes, getting none of

those correct. Even when combining the moderate and far labels (e.g. far left and left become

one category), κ remains low at 0.028.

Table 7.16: CNN Confusion Matrix for the Cross-Subject Validation Sets (H. Head Pose)

Actual Predicted

Far Left Left Forward Right Far Right

Far Left 0 9 130 5 0

Left 0 76 956 101 0

Forward 46 669 34157 1961 82

Right 3 82 2323 125 17

Far Right 0 15 174 13 0
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Cross-Lecture Validation

Cross-lecture validation was performed over the three lectures. Stratified training sets of 200,000

images were used. Validation sets were made from 100,000 frames of the held-out lecture with

categories represented proportionally.

Holding out lectures 1, 2, and 3 for training and then testing on them yielded accuracies

of 79.9% (chance 79.4%), 74.9% (chance 75.4%), and 66.1% (chance 65.7%). These give κ
scores of 0.023, -0.021, and 0.011 respectively. Over all the validation sets, the accuracy was

73.7% (chance 74.1%) with κ = −0.019. The relevant confusion matrix is shown in Table 7.17.

The κ scores indicate that the network is performing poorly and is unable to generalise between

lectures.

Table 7.17: CNN Confusion Matrix for the Cross-Lecture Validation Sets (H. Head Pose)

Actual Predicted

Far Left Left Forward Right Far Right

Far Left 5 180 1014 129 5

Left 41 1008 12823 388 40

Forward 435 6274 218405 17989 959

Right 46 976 35528 1455 92

Far Right 9 31 2023 144 1

7.7 Vertical Head Pose

Cross-Frame Validation

There were four possible categories for vertical head pose. A stratified training set of 100,000

images was used for training and another 100,000 for validation. The network achieved 88.6%

(chance 46.7%) accuracy with κ = 0.785. The confusion matrix from the stratified validation

is given in Table 7.18.

Table 7.18: CNN Confusion Matrix for the Validation Set (V. Head Pose)

Actual Predicted

Below Desk On Desk Forward Up

Below Desk 7893 374 826 3

On Desk 575 24254 5514 13

Forward 467 3439 55963 19

Up 18 54 126 462

Cross-Subject Validation

Cross-subject validation was performed over the vertical head pose labels across all 50 subjects

in lecture 1. Because of the limited number of upward exemplars, balanced test sets were not
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considered – only stratified validation sets. As such the individual accuracies are not provided

as each would need to be compared to chance.

Over all validation frames, however, the accuracy was 60.5% (chance 50.9%) with κ =
0.195, which indicates fairly poor agreement overall, but much better than for horizontal clas-

sification. The confusion matrix is provided in Table 7.19. It is evident that there were not

enough labels of students looking upwards in the training set and the CNN has learnt to never

predict that label in favour of the others.

Table 7.19: CNN Confusion Matrix for the Cross-Subject Validation Sets (V. Head Pose)

Actual Predicted

Below Desk On Desk Forward Up

Below Desk 302 727 1134 0

On Desk 469 3159 4221 0

Forward 793 3469 13131 0

Up 0 3 29 0

Cross-Lecture Validation

Cross-lecture validation was performed over the three lectures. Stratified training sets of 50,000

images were used. Validation sets were made from 100,000 frames of the held-out lecture with

categories represented proportionally.

Holding out lectures 1, 2, and 3 for training and then testing on them yielded accuracies

of 66.2% (chance 50.0%), 60.5% (chance 47.3%), and 51.4% (chance 44.5%). These give κ
scores of 0.325, 0.250, and 0.125 respectively. Over all the validation sets, the accuracy was

59.38% (chance 47.6%) with κ = 0.225. The relevant confusion matrix is shown in Table 7.20.

The κ scores indicate that the network is still not performing well; it is generalising better

between lectures than between students.

Table 7.20: CNN Confusion Matrix for the Cross-Lecture Validation Sets (V. Head Pose)

Actual Predicted

Below Desk On Desk Forward Up

Below Desk 6383 9418 12283 35

On Desk 6679 38562 47703 45

Forward 7568 35926 133147 47

Up 267 296 1630 11

7.8 Conclusion

This chapter applied the AlexNet CNN architecture to classify the various labels in WITSDB.

In general the CNN out-performed the HOG SVM in terms of absolute accuracy, training time,
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classification time1, and generalisation abilities.

For the various labels cross-frame, cross-subject and cross-lecture validations were per-

formed. In all cases, the cross-frame validation yielded accuracies in the high 80%’s and 90%’s.

This indicates low intra-subject variation – that the frames of a single subject in a single lecture

are quite similar – and the system is able to easily remember similar frames from training to

perform the classification.

In all cases this accuracy drops when dealing with cross-subject and cross-lecture valida-

tion, i.e. there is larger inter-subject variation. Cross-subject validation assess how well the

system is able to generalise its knowledge to unseen students, while cross-lecture validation

assess students that have possibly been seen before but at different lecture times.

Lectures 1 and 2 were recorded on the same day, with the same group of students in the

same lecture venue. However, the camera was moved slightly between the lectures and all

students stood up and repositioned themselves. Lecture 3 was recorded in the same venue, but

on a different day. This means that students were seated differently and wore different clothes.

Due to time and cost constraints, there are fewer action labels for lecture 3 than lectures 1 and

2.

The cross-subject validation for all the writing and cellphone labels produced κ values of

0.326 (fair agreement) and 0.516 (moderate agreement) respectively. For writing, this means

an accuracy of 82.7% where chance expects an accuracy of 74.4%, and for cellphone, this was

an accuracy of 83.2% with a chance accuracy of 65.2%. The HOG SVM completely failed to

generalise across subjects for the cellphone labels while the CNN performed relatively well.

On the writing labels, the CNN outperformed the SVM by approximately 10%.

Cross-lecture validation showed that in general training on lecture 1 resulted in fair agree-

ment when classifying lecture 2, and vice versa. This is as students were largely seated in the

same places, and were wearing similar clothes. Training on lectures 1 and 2, however, gener-

ally resulted in very poor classification on lecture 3 where students wore different clothes and

had changed seats more than in the other two. In this light – considering a subject on a different

day is seemingly equivalent to viewing a completely unseen subject and previous training on

that specific person does not translate.

Similar results were seen in the cases where four- and five-way classification was performed

for posture and head pose. Generally the system performed better when trained on stratified

data sets, although large balanced datasets were impossible in situations where some labels

were severely under-represented. By training on the stratified sets, the networks learned to bias

their results, and were more likely to misclassify minority labels into the majority ones. This is

evidenced by the distribution of predictions shown in the confusion matrices above.

In cross-frame validation, posture was classified with an accuracy of approximately 90%,

while vertical and horizontal head pose were classified at 88.6% and 90% accuracy with κ
scores indicating very high to almost perfect agreement. Again, the cross-frame validations are

high because frames containing the same subject are generally fairly similar.

1Using GPU hardware acceleration
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The generalisation to unseen subjects and different lectures gives more insight into the

system’s ability to actually recognise the different postures and head poses. In all three cases

the CNN outperformed the HOG SVM which failed to generalise entirely. Even though it

outperformed the HOG SVM, the CNN generally yielded low κ scores indicating only poor to

fair generalisation.

This low generalisation may stem from limitations in the dataset and is considered further

in Chapter 9.
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Chapter 8

Interest and Visualisation:

The Interest Map

The CNN aspects of this chapter are published in Klein and Celik (2017b), and the proposed

interest map and lecturer acceptance are published in Klein and Celik (2017c).

8.1 Introduction

Throughout this work, the focus has been on generating the interest information for the lec-

turer. In Chapters 4 and 5, it was found that gathering interest labels directly from subjects or

external raters was unreliable and those approaches were abandoned in favour of observational

checklists. The idea behind observational checklists is to focus on aspects that are more mea-

surable than the less easily defined emotions. By recognising when students are distracted or

when they are showing common postural traits, an Interest Value can be constructed based on

predefined rules.

Once an interest value is calculated for each visible student in the class, this information

should be available to the presenter in a way that one can gauge both the mood of the class as

Figure 8.1: Interest Map
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a whole and identify specific issues. This chapter proposes an Interest Map where the system

overlays engagement information on either a static image or a live video feed of the venue.

Figure 8.1 provides an example of this. An interest map is a heat map that displays the relevant

metric in a way that the presenter can gauge the overall level and spatial spread of engagement at

a glance. It is updated during the lecture to indicate which students are disengaged at different

times throughout. For example, Figure 8.2 on the next page shows 4 frames from different

times during a lecture where the red highlights indicate disengagement.

The colour scheme can be customised, but the feedback needs to be clear and concise so that

a presenter can glance at the map and immediately know where attention should be focused.

A general spread of red over the map may indicate that a concept needs to be covered again

or that the audience needs a break. On the other hand, a group of students that consistently show

up red over time or even across lectures may indicate that some other specific intervention is

needed. While this work focuses on creating the interest map, future work should also focus on

identifying patterns within the interest map and suggest interventions that are known to help in

specific instances.

8.2 The Interest Map Computational Pipeline

There are two possible ways to build such a system based on observational checklists. On the

one hand, the system can be built to independently recognise each of the previously identified

behaviours and then merge them together using predefined rules. On the other, the labelled data

can be used to construct a dataset of engaged and disengaged students. This dataset can then

be used to train a single classifier. The system itself is never actually shown the observational

checklist, but instead must learn the characteristics from the dataset by itself.

The previous chapters focused on individually recognising each of the identified actions

and postures. Using the rules developed in Section 8.3 this work can be extended easily to

return an interest value based on the individual observations. This chapter instead focuses on

using the observations to construct a single dataset of interest that can then be used to train and

test a single classifier. A benefit of this approach is that the overall computational cost of a

prediction is limited to a single classifier rather than having to run multiple classifiers at each

stage – although that could surely be parallelised to increase speed.

Based on the single classifier design, Figure 8.3 on page 153 shows a pipeline for creating

and testing an interest map. There are two main concerns for the process: training the classifier,

and displaying the interest map to the user. The pipeline for training resembles those in the

previous sections. The image sequences are first extracted from the video and saved as image

files alongside a database of labels.

If using an SVM, the HOG features are extracted from the relevant frames and dimension-

ality reduction is performed. The SVM is then trained as a binary classifier. Using Platt’s

method, one can calculate the probability of an observation belonging to a specific class based

on its distance to the support vectors (Chang and Lin 2011; Lin et al. 2007; Platt and others

1999). In this case, the SVM provides the probability that a subject is interested or not, which

is termed the interest value, I(s, t) ∈ [0, 1], for subject, s at frame, t.
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(a) Frame 2000

(b) Frame 2500

(c) Frame 3000

(d) Frame 3500

Figure 8.2: Temporal Interest Map
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Figure 8.3: Computational Pipeline for Interest Map Creation

Alternately, if a CNN is used as the classification agent, then the feature extraction and

dimensionality reduction steps are encoded into the network itself and the training process

occurs over the images directly. The output of the CNN should use a softmax layer as the

output which has two neurons. One neuron signals interest and the other disinterest. As the

sum of the neurons must be one, the values of the outputs can be interpreted as the probability

of the subject belonging to each class. Once again, let the interest value be I(s, t) ∈ [0, 1], for

subject, s at frame, t where the interest value is the probability of the subject being interested.

WITSAT was extended to display an Interest Map as seen in Figure 8.2. Circles tracking

subjects’ faces are rendered along with Gaussian shaped highlights. The shape, colour blend-

ing, and transparency can be customised. The colour and transparency are adjusted according

to each subject’s interest value. In Figure 8.2, the highlight is opaque red when interest is low

at 0, with the transparency increasing linearly from [0,1].

This means that disinterested students are highlighted in red while interested students are

not highlighted at all. This makes its easier for the presenter to quickly assess where and to

what extent their attention is required. The software can also vary the display between two

colours, blending them so that an interested student is highlighted in blue as seen in Figure 8.1,

for example.

8.3 Defining Interest: The Observational Checklist

To actually define interest, the actions, posture, and head pose of the students from Chapter 5

are all considered in the definition that follows. Images where a subject is present and not

occluded are labelled as valid (1) – only these valid images are considered and images that

classified as invalid (0) are automatically excluded. Let the label ‘Interest’ indicate that a
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student is interested or engaged, and ‘¬Interest’ indicate that the student is not interested or

disengaged. The assumptions listed below are based on the literature surveyed in Chapter 3

as well the experience developed during data labelling and lecturing in general. Limitations

are discussed where appropriate. The assumptions that follow form a sieve – the rule either

causes a student to be marked (¬)Interested or it has no effect. If a student passes through all

the rules without being explicitly marked one way or another, then the student is considered to

be engaged.

There are seven actions identified in the database: writing, cellphone use, laptop use, talk-

ing, raised hand, yawning, and head-on-desk. These are defined in Section 5.3.5 and illustrated

in Figure 5.9.

The following rules about actions are considered:

Writing⇒ Interest

Cellphone⇒ ¬Interest

Talking⇒ ¬Interest

Raised Hand⇒ Interest

Yawning⇒ ¬Interest

Head on Desk⇒ ¬Interest

The fundamental assumption is that a student that is writing is actually taking notes and not

just drawing or playing ‘Dots and Boxes’ with a friend. A student with a raised hand is either

asking a question or responding to one and therefore engaging with the lecturer. On the other

hand, a student that is on a cellphone or that has put their head on the desk is considered to have

disengaged and lost interest. Yawning is considered to be a symptom of fatigue that ultimately

leads to disinterest. A student talking to a friend may be discussing work, asking a question,

or talking about an upcoming party. WITS is unable to tell the difference between these cases,

so the assumption is that they are just chatting and therefore disengaging. It is unclear whether

laptop use implies interest or not. In many real-life cases the students are taking notes, and in

many others the students are playing games or browsing the internet. As only one subject in

the dataset used a laptop, for the purposes of this research the debate can be avoided and laptop

use is ignored completely.

There are five labelled upper body postures that correspond to the images shown in Figure

5.11. Specifically, these postures correspond to leaning left, right, backwards, forwards or

sitting upright.

The following rules about posture are considered:

Left⇒ ¬Interest

Right⇒ ¬Interest

A student that is leaning far to either side is always disengaged. This behaviour co-occurs

with talking to friends, sleeping and cellphone use. Those leaning only moderately to the

side still exhibit a closed body posture that is identified in literature to occur with combative

(resistance and aggression) or fugitive (withdrawal, defensive, boredom) stances. In both cases,

this implies disinterest or disengagement on the part of the student. Those students with an
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open posture are usually sitting upright, leaning forwards or backwards. Whether this indicates

interest or not, largely depends on a student’s head pose and actions. Therefore, there are no

rules that specifically deal with these poses, but if the student is not excluded in the steps that

follow, they will still be marked as interested.

For example, in Figure 5.11b on page 110, the student is leaning back while watching

the lecturer with an open body position and a frontal head pose – this student is evidently

concentrating on the class. Figure 5.12c, on the other hand, shows a student leaning back so

that he can see the cellphone under the desk – in this case the student is obviously disengaged

from the class and trying to hide it. In the latter case, the student will pass through the rules

relating to body posture, but will be excluded by either the cellphone use or because is head

pose focuses his attention under the desk.

The head pose labels are illustrated in Figure 5.12 and mostly corresponds to a student’s

focus of attention – unfortunately the resolution of the images does not allow for eye tracking.

The horizontal labels correspond to far left or right, moderately left or right, or forwards. Ver-

tical labels correspond to looking below the desk, on the desk, forwards, or upwards. These

labels lead to the following rules involving head pose:

Far Left⇒ ¬Interest

Far Right⇒ ¬Interest

Up⇒ ¬Interest

Below Desk⇒ ¬Interest

Students looking to the far left, far right, or up at the roof are not focusing on the lecturer or

their notes. They are either looking at a friend, or looking around the lecture venue. Sometimes

it is the case that they are focusing on another student that is asking a question. Detecting this

would require a global consideration of the students in the video and should be the subject of

future work. Those that are looking below the desk are almost always distracted by something

that they are trying to hide from the lecturer – usually a cellphone as illustrated in Figure 5.12c.

Altogether these rules can be considered in a manner similar to the cascade classifier.

Firstly, the Writing and Raised Hand labels are checked – if either is true, the student is marked

interested. The remaining rules are all used to reject students and mark them as ¬Interested. If

a student successfully passes through all ‘weak rules’ without being rejected then the student

is labelled as Interested.

8.4 Recognising Interest

8.4.1 Direct and Indirect Interest Classification

Based on the rules above, two primary approaches to interest recognition are apparent. In

the first approach, a number of individual proxy classifiers can be used first and using the

rules above for decision fusion they can be merged into final interest labels. The previous two

chapters examined the feasibility of recognising the individual proxy labels and while the CNN

is seen to vastly outperform the HOG SVM on all metrics, there are still generalisation issues
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Figure 8.4: Extract of SQLite Database of Labels

Table 8.1: Interest Frames per Lecture

Lecture ¬Interested Interested Total

1 102,402 (25%) 312,113 (75%) 414,515

2 66,219 (31%) 146,339 (69%) 212,558

3 68,705 (27%) 187,083 (73%) 255,788

237,326 (27%) 645,535 (73%) 882,861

that should be addressed. Once the proxy classifiers have adequate accuracy on unseen subjects,

then they could be used to build a system to recognise interest using the rules above. The second

approach is to use these rules to build a dataset of students that are labelled according to interest

and then train a classifier on this data without ever explicitly presenting the other labels.

The benefit of the first approach is that the system can report to the users in detail about why

the system believes the student is engaged or not, based on the individual proxy responses. On

the other hand, it would require that a number of separate classifiers are running simultaneously

which has implications for run-time performance. The first approach also suffers from issues

where classification errors are potentially compounded by the accept/reject nature of the interest

rules.

8.4.2 Data Export

Subjects that were missing either posture or action labels were given the missing labels using

the CNNs from cross-frame validations in the previous chapters. WITSAT was used to export

all the data labels to an SQLite database, such as the one in Figure 8.4, along with the cor-

responding images. Based on the rules discussed in the previous section, the SQL query in

Listing 8.5 allows the construction of an interest dataset.

The query produced 882,861 valid frames of which 237,326 (27%) are ¬Interested and

645,535 (73%) Interested. The number of frames in each lecture is shown in Table 8.1.

3,000 image sequences were randomly sampled to have the same proportions of each class

as the original data. These 3,000 sequences were used to construct a PCA basis that retains

90% of the variance.
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SELECT filename,

‘3Writing‘ == 1 /* Both actions mean the subject is interested */

OR ‘3RaisedHand‘ == 1 /* regardless of the other labels */

OR

( ‘3Cellphone‘ != 1 /* Not Cellphone */

AND ‘3Talking‘ != 1 /* Not Talking */

AND ‘3Yawning‘ != 1 /* Not Yawning */

AND ‘3HeadOnDesk‘!= 1 /* Not Head on Desk */

AND ‘5Posture‘ NOT IN (-2, 2) /* Neither left nor right */

AND ‘5HHeadPose‘ NOT IN (-2, 2) /* Neither far left nor right */

AND ‘5VHeadPose‘ NOT IN (-2, 2) /* Neither below desk nor up */

) AS Interest

FROM data

WHERE ‘3Valid‘ == 1; /* Occupied and Not Occluded */

Listing 8.5: SQL Statement to Export a Label

A HOG SVM (with PCA) and a CNN are trained as binary classifiers on the input image

sequences. Based on the results of previous chapters, the focus is primarily on the CNN based

approach although HOG SVM experiments are also presented for completeness.

8.4.3 Cross-Frame Validation

From all available data, a stratified training set of 80,000 images was sampled. A separate

validation set of 100,000 images was sampled from the remaining one. The network was able

to classify the validation set with 93.0% accuracy (60.8% chance) with κ = 0.820, which

indicates extremely good agreement. The confusion matrix is given in Table 8.2. Training on a

balanced set of the same size yielded similar results.

Table 8.2: CNN Confusion Matrix for the Validation Set

Actual Predicted

¬Interested Interested

¬Interested 23,199 3,807

Interested 3,227 69,767

For comparison, a HOG SVM was trained on the same dataset. Performing 5-fold cross

validation over the training set provided an accuracy of 72.6%. When learning on the entire

training set, the SVM yielded 73.0% accuracy on the stratified validation set. Again, the CNN

significantly outperforms the HOG SVM.
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8.4.4 Cross-Subject Validation

Just as in the earlier tests, to avoid inadvertently repeating subjects, cross-subject validation

was performed on lecture 1 only. There are 50 labelled subjects in lecture 1. For a selected

test subject, the CNN was trained on the remaining 49 subjects. A balanced training set would

be built from 60,000 images selected at random from the 49 subjects so that there were 30,000

images in each category. A balanced testing set was then built using an equal number of positive

and negative images based on the number that were available for the current test subject. A

validation set was built using all frames from the test subject.

50 CNNs (one for each subject holdout) were trained in this way to test how well the system

generalised to unseen subjects. On the balanced test sets, the minimum accuracy was 50.0%

(equivalent to chance), while the maximum was 91.5%. The mean and median accuracies

were 65.6% and 63.6% respectively. These accuracies are similar to the 61.86% - 65.72%

accuracies attained in Raca et al. (2015), although it should be noted that the ground truth labels

in that work are not necessarily comparable to those used here as the labelling methodology

was different.

Classification on the unbalanced validation sets resulted in an accuracy of 59% (chance

50%, κ = 0.163) over all frames with the confusion matrix shown in Table 8.3.

Table 8.3: CNN Confusion Matrix for cross-subject validation on all lecture 1 frames

Actual Predicted

¬Interested Interested

¬Interested 100,535 83,135

Interested 88,095 141,141

The HOG SVM trained and tested on the same data gives minimum and maximum accura-

cies of 22.5% and 77.8%. The mean and median accuracies are 49.4% and 51.3% respectively.

Accuracy over the entire validation set is 53.5%. This is about 6% lower than the CNN ap-

proach.

8.4.5 Sequence Length

The previous two experiments used single images of students as the input to the classifier. The

experiment in Section 8.4.3 is repeated for sequences of 2 and 4 frames. The results shown in

Table 8.4 show no significant improvement over the single frame case, indicating that the CNN

is able to extract the relevant information from a single frame already or that the kernels are

unable to capture adequately the information from multiple frames.

8.4.6 Image Size

The previous experiments were all performed on 64 × 64 images. Using single frame image

sequences, a number of larger image sizes were considered for the training, testing, and vali-
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Table 8.4: CNN Test Set Accuracy by Sequence Length

Number of Testing Validation

Frames Accuracy Accuracy

1 89.8 89.6

2 89.7 89.4

4 90.0 89.7

Table 8.5: CNN Test Set Accuracy by Image Size

Image Testing Validation

Size Accuracy Accuracy

64× 64 89.8 89.6

96× 96 88.0 87.9

128× 128 85.0 85.4

dation sets from Section 8.4.3. The results are shown in Table 8.5. Interestingly, the increased

image size causes a decrease in accuracy. The cause is likely to be two-fold. On the one hand,

the kernel size remains the same, so it can now only find smaller features relative to the whole

image. On the other hand, as the size of the image increases the size of the feature maps does

too. This means the number of parameters in the model increases. Even with larger training

sets of up to 240,000 images, the accuracy using larger images remains equivalent to those

above.

8.4.7 Recognising New Subjects

The results in the previous section indicate that in its current form the system does not gener-

alise well to new subjects. Further experiments were run to understand how much information

the CNN needed about a subject before it would achieve acceptable accuracies.

Adding 1,000 Random Frames – Cross-Subject Validation

The cross-subject validation experiment from Section 8.4.4 was repeated, but this time 1,000

random frames were moved from the validation set to the training set. This meant that the

training set now contained 1,000 random frames of the new subject. The CNNs were trained

and validated in the same way as before, although subjects with fewer than 1,000 validation

frames left were now excluded from the analysis – leaving behind 45 students for validation.

By including the 1,000 frames of each holdout, the accuracy over the validation set in-

creased from 59.0% to 89.6%. The size of the validation set was 391,769. This is comparable

to the results when just randomly selecting frames over the entire set – as in Section 8.4.3. This

strongly supports the idea that relatively few frames are actually needed per subject in order

to accurately detect a subject’s interest. It is particularly salient when considering that 1,000

frames is only 2–5 minutes in total.
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These minutes, however, were spread out over the entire lecture, which makes it more

representative than if only taken from the start of a lecture.

Training on the start of a lecture – Cross-Subject Validation

The previous finding suggests that a relatively small proportion of frames for a subject are

actually needed to achieve good accuracy. This experiment repeats the previous one, but takes

the 1,000 frames from the start of the lecture specifically instead of using random frames.

This is comparable to performing some kind of calibration step for an unseen student, but

then monitoring that student for the rest of the lecture. This time the network achieves 88.8%

accuracy (chance 50.36%) with κ = 0.774, which still indicates an extremely high agreement.

The confusion matrix is shown in Table 8.6.

Table 8.6: CNN Confusion Matrix for Cross-Subject Validation with 1,000 Frame Bootstrap

Actual Predicted

¬Interested Interested

¬Interested 146,780 18,787

Interested 22,168 178,020

8.4.8 Cross-Lecture Validation

Section 8.4.4 aimed to assess how well the CNN generalised to new, unseen subjects. Sec-

tion 8.4.7 then investigated how well the CNN handled new subjects with minimal training

data. These tests were run using only a single lecture so that students were not inadvertently

repeated.

This section aims to understand how well the CNN generalises to subjects that it has poten-

tially seen before, but in different lectures.

As mentioned previously, lectures 1 and 2 took place on the same day and captured more

or less the same group of students, sitting in similar places, wearing the same clothes. Lecture

3 took place on another day, but again with the same class of students.

A balanced testing set of 20,000 images was built from the current hold-out lecture. A strat-

ified training set was built using 60,000 images from the remaining two lectures. A stratified

validation set was built using 100,000 images from the hold-out lecture.

On the balanced test sets, the networks achieved accuracies of 63.4%, 64.6%, and 61.4%

for each hold-out lecture. On the validation sets the network achieved 72.7% (chance 65.9%),

69.12% (chance 59.4%), 61.1% (chance 55.4%) with κ values of 0.199, 0.239, and 0.126 re-

spectively. Over all the validation sets, this yields an accuracy of 67.6% (chance 60.2%) with

κ = 0.187. The confusion matrix is provided in Table 8.7.
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Table 8.7: CNN Confusion Matrix for Cross-Lecture Validation (Interest)

Actual Predicted

¬Interested Interested

¬Interested 33,719 49,202

Interested 47,964 169,115

8.5 Acceptance

8.5.1 Respondents

To assess the acceptance of this technology, two videos1 displaying an Interest Map were gen-

erated. The CNN from Section 8.4.3 was used to generate the Interest Map. The accuracy of

the classifier is inflated from what it would be on an unseen class, but it was done this way so

that an accurate output could be generated to show to lecturers and other teaching experts at the

institution. The intention was to get feedback from lecturers and professors regarding the use

of an interest map, not whether they thought the interest map was accurate.

A questionnaire was created using Google Forms and a link sent out to staff across the five

faculties at the university. The first page of the questionnaire had an introduction of 233 words

that introduced the author and briefly explained the idea of the system. This introduction is

shown in Figure 8.5a.

After the introduction, the respondents were asked about their qualifications and what class

sizes they taught (Figure 8.5b). Following that they were shown the videos and then asked about

their impression of the system (Figure 8.5c). The full set of anonymised results is provided in

Appendix A.

Overall, there were 131 respondents across the five faculties at the institution. The re-

spondent disciplines per faculty are broken down in Table 8.8. Of the respondents, 74 (56%)

hold specialist or doctoral degrees (PhD), 49 (37%) hold Masters degrees (MSc, MA, MCom,

LLM), 7 (5%) respondents had 4-year undergraduate degrees (BSc, BA, BCom) and 1 (0.7%)

had a diploma (Figure 8.6a). There were 43 professors (33%) and 82 lecturers (63%), while the

remaining 6 (5%) respondents were registrars that have teaching experience, academic develop-

ers with teaching experience, or computer technicians involved with e-learning (Figure 8.6b).

50% of respondents teach classes that are larger than 100 students, with 25% of all respondents

teaching classes larger than 250 (Figure 8.6c). This information is summarised in Figure 8.6

on page 163.

1https://youtu.be/rV_Ax8Q6yL0

https://youtu.be/7m5vyxKK1Oc
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(a) Introduction

(b) Biographical Questions

(c) Interest Map Response

Figure 8.5: Interest Map Questionnaire
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25.2%

34.4%

(c) Largest Class Size

Figure 8.6: Respondent Information
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Table 8.8: Respondent Disciplines

Humanities (14) Health Science (50) Science (48)

Arts Biological Anthropology Actuarial Science

Education Clinical Coding Applied Mathematics

English Clinical Medicine Archaeobotany

Film Dentistry Archaeology

International Relations Epidemiology Astronomy

Italian Family Medicine Biological Sciences

Linguistics Nursing Chemistry

Literary Studies Occupational Therapy Computer Science

Performance Pathology Environmental Science

Psychology Physiotherapy Geosciences

Education Psychiatry Mathematics

Social Sciences Public Health Physics

Sociology Surgery Pure Mathematics

Theatre Unspecified Health Science Statistics

Engineering (10) Commerce (9) Science Education

Aeronautical Engineering Accounting

Electrical Engineering Information Systems

Mechanical Engineering Insurance & Risk Management

Industrial Engineering Law

Unspecified Engineering Management

8.5.2 Response to the Interest Map

After watching the videos of an interest map of a class, the respondents were asked to indicate

their attitude towards such a system. When asked if they would like to get live visual feedback

of student engagement during class, 106 (81%) said yes and 25 (19%) said no.

82 (63%) respondents indicated that they found the Interest Map to be ‘Intuitive’ or ‘Very

Intuitive’ with only 8 (6%) reporting that they did not. 86 (66%) respondents indicated that

they believed such an interest map would be useful to their teaching while 16 (12%) said that it

would not be useful. The rest of the responses were neutral. These responses are summarised

in Figure 8.7 on the next page.

8.6 Respondent Comments

The final part of the questionnaire was open-ended and asked the respondent to provide any

other feedback they might have about the system. Some representative comments from respon-

dents that addressed various aspects of the system are provided in the sections that follow. The

full set of comments are provided in Appendix A.
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(c) Do you think that an Interest Map would be useful to your teaching?

Figure 8.7: Responses to the Interest Map
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“ Richard, this is truly a fascinating opportunity to get “feedback” from students

over which they have little “control”, which can highlight for lecturers how what

they are doing is genuinely being received. Some comment / questions that spring to

mind which may be useful for you to consider are: this ‘pilot’ has been done with a

small cohort of students, yet your intention is that it should be used in large classes.

If it operates in real time for a lecturer, how would you plan to give supportive

feedback for someone who is just dismayed by the levels of disengagement in large

classes, for example chemistry 1 where the disparity of prior knowledge and ability

in students is known to be huge? How would you be able to use this to support the

development of teaching proficiency, and keep it out of the hands of managers who

are on the prowl for evidence of “poor teaching” - recognising that you can take a

horse to water but you can’t make it drink? There is HUGE research potential in this,

in tracking what is going on between student and lecturer and what it is that engages

contemporary students . Happy to chat further and keep in touch. [NameRemoved]

Figure 8.8: Comment from a Teaching & Learning Expert

8.6.1 Comments from a Teaching & Learning Expert

This first comment considered is shown in Figure 8.8 and was provided by a teaching and

learning expert that works in an academic support unit. The respondent holds a Ph.D in science

education and touches upon a number of aspects that are now briefly discussed.

The respondent notes that this is a good way to get objective feedback about the quality of

lectures. Often when students fill out lecturer evaluations, they are seen to be a comment on

how much the students like the lecturer rather than the quality of the lectures themselves. A

system like WITS can be used to objectively track and analyse trends in one’s teaching without

using student feedback that is often biased by their opinions of the lecturer.

Next, the respondent notes how the project introduction refers to potential use in large

classes while the videos show only a relatively small section of a class. As each student is

monitored independently, scaling up to a large class only requires having enough correctly

placed cameras and enough computational power in the room. In its current form, the system

lends itself to data parallelism where each compute node monitors a portion of the class. The

calculated interest values could then be merged into a single interest map for display. As the

number of students that are tracked increases, the relative importance of errors for individual

students decreases. So the more students the system tracks, the better the system-wide feedback

to the lecturer will be.

Another important point is raised by the respondent relating to demoralising lecturers and

performance management. Consider some potential causes of disengagement:

1. The lecturer is boring.

2. The content is boring.

3. The student understands the work but the lecturer is moving slowly to cater for other
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students in the class.

4. The student does not understand the work and has given up listening to the lecturer for

this topic.

5. The student is tired, has a test coming up in another subject, has personal problems that

are distracting.

6. The lecture is at an inopportune time like first thing in the morning or last thing on a

Friday afternoon.

7. The lecture venue is uncomfortable, the chair might be skew, and the lighting, airflow, or

acoustics might be wrong.

There are many reasons that a student may be disengaged, and the system is unable to tell these

apart. In some cases it may well be the lecturer’s fault in that the presentation is not well put

together, but in others the distraction may have nothing to do with the lecturer’s presentation

itself and rather be a symptom of something else. Those using the system should consider its

purpose not to show that so many students are disengaged, but rather to provide information

with which the lecturer can scaffold their next move.

A lecturer presenting to disengaged students is not necessarily a bad lecturer, but consider

that a lecturer that does not do anything about it might be. As such, the data reported by the

system should be explained to and carefully considered by those using it. Providing carefully

worded hints to lecturers rather than showing the raw interest information may ultimately pro-

vided a better experience and avoid causing feelings of hopelessness for lecturers. Such an

Automatic Teaching Assistant (AutoTA) is indeed the ultimate goal, but requires a working

classification system first.

Finally, the respondent alludes to the potential for future research into student behaviour

supported by the system. WITS provides large opportunity to study how students interact with

lecturers, how they engage and disengage, and in general how they behave during lectures. This

should indeed be the focus of future work.

8.6.2 Performance Monitoring

A number of other respondents touched on the fact that the system could be used for perfor-

mance monitoring as well. It was generally seen in a positive light, although this should be

approached with extreme caution. As mentioned in Section 8.6.1, there are many factors that

affect engagement that are beyond the control of lecturers. For example, a student thinking

about personal problems, or one that was at last night’s vodka party is unlikely to engage re-

gardless of what the lecturer does. An analysis of the system’s output should always consider

the class as a whole or at least groups of students together, and even then, the changes in interest

values over time are probably more important than the actual values themselves.

It is recommended that the system is not used for performance appraisals at least until

common patterns and responses are properly understood.
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“ Excellent idea - this could be incorporated into lecturer performance appraisals

as well to support how well some lecturers get students to engage.

“ The tech seems more useful for performance monitoring of teaching, or to

remote monitor classroom settings. It might also be useful for new lecturers who

are only starting out and wanting to review their teaching performance in class

sessions. . .

Figure 8.9: Comments Regarding Performance Monitoring

8.6.3 Summative Feedback

A number of respondents – such as those in Figure 8.10 – said that they would like to be able

to see summary statistics to get an overall impression of the lecture. This would be useful

to see how the engagement levels have changed over some time period. The graph could be

generated in a way similar to those created by Engage in Chapter 4. This allows the lecturer to

compare current engagement levels with levels earlier on in class, or even from other classes.

The lecturer should be able to annotate the graph so that one can understand how some topic

was received.

Even with this information, it is useful to still have the 2D interest map so that the lecturer

can get a sense of the spatial spread of engagement as this helps make informed decisions about

what the best course of action is. For example, if half the class is disengaged it is still important

to be able to distinguish between the case where it is the whole left side of the class, or if it

is every second person distributed evenly. The former might indicate a venue problem or that

the lecturer ignores the one side, while the latter may indicate that generally the students are

getting tired regardless of where they sit and who their neighbour is.

The specific summative measures that lecturers find useful should be investigated and im-

plemented into the production system.

8.6.4 Definition of Engagement and Accuracy

A number of respondents commented on the accuracy of the system. Sample comments are

presented in Figure 8.11. Specifically, a number of respondents disagreed with the definition

of interest that the system had learnt. Some pointed to misclassifications, but most focused on

aspects that the system does not currently monitor or students that the system considered to be

occluded (for example the student with the white t-shirt from the last comment in Figure 8.11).

The definition of engagement presented in this work is provided as first step towards designing

and learning more general rules. The definition is limited by the data that is currently available

to train the system.

Lecturers should be surveyed to establish an agreed upon definition and those using the
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“ Is there no way to condense the videos so an overall impression can be made?

“ I would like if it has a quantitative measure of responsiveness from the students.

“ Need to summarise the system. E.g., proportion of class currently disengaged,

particularly dense areas of the class disengaged, what part of the lecture timewise

had the highest disengagement. As it stands, the red hot spots are difficult to interpret

from a total class perspective.

“ Incredible idea! This technology could be a methodological tool in determining

ideal break times or lecture lengths, even cohort specifically! I would be very

interested to view a percentage/graph of ”attention” alongside a lecture itself,

possibly allowing an accurate reference to where most were engaged or not.

Figure 8.10: Comments Regarding Summative Feedback

system should be aware of what the system can and cannot measure. One respondent noted

that it would be useful to see, perhaps using colours, why the system was labelling a student in

a certain way. Using more colours allows the interest map to differentiate between disengaged

students that are talking and those that are sleeping.

In future work the definition should be expanded by including more proxies that can con-

tribute to a final interest value and generally to build a more reliable dataset of interest.

8.6.5 Teachers Do This Already

A number of respondents felt that they were already able to accurately assess the level of

engagement in the class. Most such responses were on smaller classes, although even when the

class sizes were large there were lecturers who felt they did not need the technology. Consider

the comments shown in Figure 8.12.

A large difficulty here is that we all think that our intuition is correct, but have no real way

to test this in-the-moment intuition until one goes back and reviews the students after the class.

From experience manually labelling the dataset, students are always less engaged than origi-

nally anticipated – they try not to get caught when being mischievous and sometimes they’re

quite good at it. Indeed, there are probably many teachers that can keep track of everything,

but when training new teachers or testing and improving one’s own skills, it is important to be

able to look back and analyse data objectively.
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“ System misses some students who are patently disengaged - needs to be tuned

up somewhat for better accuracy.

“ It would be useful to get the definition of ”engagement in class” as far as this

system is concerned. I observed a student who was fanning himself almost through-

out, not taking down any notes, and yet the system identified him as ”engaged”. On

the other hand, a student sitting at the front of the class, who seemed to be engaged,

was marked as ”not engaged” for a few seconds when she turned away to look at

something/someone in the audience - maybe listening to an answer or a question

from a fellow student? From my experience, I have had a student who would be

looking at the front of the class (correct posture, eyes open, etc.) but could be miles

away, and upon asking them a question, only then do you find out that they were

not following anything in the lecture at all. I found the system however very good

in picking out those who were asleep, or otherwise not looking at the front of the

class/had their earphones on.

“ For me, the greatest weakness of this system, is that it seems to record a lack

of engagement when students look down. This is particularly noticeable in students

taking notes. I agree that eye contact often implies interest, but there was also one

candidate, who seemed to be asleep looking at the lecturer. the system identified the

individual as interested throughout, but I am not convinced that he actually was.

I think there is an amount of resolution loss towards the back of the room

(smaller heads).

My comments notwithstanding, I think the system is very cleverly coded and

even if some entropy exists on the individual level, as a system, I think it gives an

amazing insight into the systemic dynamic in a class.

“ The student with white T shirt - left in frame 3rd row was also disengaged and

system did not identify him. A lecture identify these students. this system is however

good for feedback to the student if one follows that up with the student in order to

identify problems early on

Figure 8.11: Comments Regarding Accuracy
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“ I do feel that I can tell how engaged a class is on my own assessment even

though as many as 350. But I may need to see a different view! I might be

surprised.

“ I think the system is very helpful in helping me with my blind spots or selective

observations and selective recollections.

Figure 8.12: Comments Regarding Teachers’ Abilities

“ It would be useful as a ‘self-evaluation’ tool after lecture, but it would be

distracting to be getting the information live while lecturing.

Figure 8.13: Comment Regarding Lecturer Distraction

8.6.6 Lecturer Distraction

In contrast to some of those asking for more colour and detail, some respondents felt that live

feedback during the class would be too distracting for the lecturer. One such a comment is

shown in Figure 8.13.

This may indeed be the case, particularly with inexperienced and nervous lecturers. Investi-

gations into the effect of this information on lecturers should be established. Once a live system

is working, pilot studies should be done to assess how much or how little information should

be provided during the class. There should be enough information to inform decisions during

class, but not so much that the lecturer is overwhelmed.

8.6.7 Student Privacy, Discomfort and the Hawthorne Effect

While some comments related to lecturer distraction and discomfort, a number of comments

considered student discomfort as shown in Figure 8.14. The classes that took part in the re-

“ . . . it could however give ethical problems and ‘violate’ students privacy . . .

“ . . . based on the Hawthorne effect, just monitoring it will also change student

behaviour.

Figure 8.14: Comments Regarding Student Discomfort
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search were given multiple ways to opt out of being recorded. In early recordings, a substantial

section of the class was not covered by the camera, or if a student still wanted to sit in their nor-

mal place they could opt out by lifting their book or a QR code over their face briefly at the start

after which they could be blurred from the recordings. The students agreed to the terms before

recording was started and throughout a semester of recordings, not a single student ever opted

out. In many circumstances the students pointed out that there were already CCTV cameras in

some venues.

The Hawthorne effect (Adair 1984) is the change in a subject’s behaviour caused by the

knowledge that they’re part of an experiment. As the students know they are being recorded, it

potentially alters their behaviour during class. Once the students had agreed to be recorded, the

camera was placed at the front of the class. Initially the students were very aware of the camera,

indicated by the number of times a student looked at the camera. By the fourth lecture with a

camera, students were visibly more relaxed and stopped looking at the camera completely. At

this stage, students were completely comfortable with the camera: glances in its direction had

stopped, and cellphone use, nose scratching, and sleeping resumed. Anecdotally, when asked

about how they felt about the recordings during consultations, the students reported they were

neither directly aware nor uncomfortable any more. In anonymous lecture evaluations at the

end of the course the camera was not mentioned at all.

This initial work indicates that the recording does not adversely affect the students after a

few encounters, particularly when they realise they will not get in trouble and that the lecturer

is not specifically looking through the video to catch them doing something bad. However, the

full impact of the cameras on the students should be formally studied in future work.

8.6.8 Resolution

Resolution was mentioned a number of times, often in conjunction with accuracy. Poor res-

olution of students seated at the back of the class is indeed a problem, but it could be solved

through the use of multiple consumer-grade cameras focused on smaller sections of the class.

This will also provide more frontal views of the students and if mounted correctly could min-

imise occlusions as well.

8.6.9 Display Colours

“ Instead of shading the face of the students, change the colour of the ring from

blue ( I prefer green) to red and thickens the border. 2. Use additional colours for

measuring the intensity of the engagement i.e. colour between blue (green) and

red. . .

Figure 8.15: Comment Regarding Display
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A number of respondents indicated that they would prefer multiple colours, like green and red,

to indicate interest and disinterest. The software already supports this and it can be set before

displaying the Interest Map.

8.6.10 Temporal Considerations

“ During a 45-minute [lecture] you expect every student, even the most attentive,

to disengage for short periods. I think a disengagement time threshold (possibly user

set) would be useful.

Figure 8.16: Comments Regarding Interest Over Time

Currently, the system shows an interest value based on the last 1 to 4 frames. This means that

the display at any time is effectively live. This has two main implications: 1) small insignificant

lapses in engagement are always displayed, and 2) any disengagements when the lecturer is

not watching the screen will be missed. The user should be able to adjust how much time is

considered in the calculation of the interest value – short lapses in attention are expected and

should be ignored, while longer ones are then highlighted more predominantly. This could be

easily achieved by incorporating some type of moving average such as those in Equations (8.1)

and (8.2).

V (s, t) = α · V (s, t− 1) + (1− α) · I(s, t), (8.1)

V (s, t) =
1

n

t
∑

i=t−n

I(s, t), (8.2)

where V (s, t) is the value used for the interest map display, I(s, t) is the interest value predicted

by the classification system, s is a subject, t is the frame number, α ∈ [0, 1] is a parameter that

sets the importance of previous frames for the exponential average and n is the number of

previous frames to consider in the average of a sliding window. Using such an approach, the

system can be forced to vary more slowly over time, ignore brief disengagements, and rather

focus on those that show disengagement over time.

8.7 Conclusion

This chapter used the proxy behaviours labelled in WITSDB (Chapter 5) to define an approx-

imation of interest. WITSAT was used to extract labelled image sequences and students that

exhibited the relevant characteristics were labelled as Not Interested while the others were con-

sidered Interested. Using the computer vision and machine learning technologies considered in
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Chapter 2 and tested in Chapters 6 and 7, a classifier was built to detect students that are inter-

ested and to produce a Interest Value score. This interest value is then displayed as a heat map

or Interest Map that can be used during class by presenters to better understand the affective

state of their audience.

Again, the CNN out-performed the HOG SVM in both absolute accuracy and generalisa-

tion. The CNN performed very well over cross-frame validation. When considering the cross-

subject and cross-lecture validation, the system shows similar results to those of the previous

chapters – the CNN performs worse on students it has not seen before, but still out-performs

chance and the HOG SVM.

This section also showed that by bootstrapping the classifier with even a small proportion

of frames from a new subject, the accuracy rises substantially. The system is able to classify

new subjects very well after seeing only a few frames from that subject. This means that the

introduction of a short calibration step could be introduced to drastically improve performance.

The current definition of interest is limited by the labels available in the dataset. The dataset

should be expanded with new labels to better represent the behaviours of students as they

(dis)engage with lecturers.

A video of the interest map was provided to lecturers and professors at the university. The

lecturers overwhelmingly supported the idea of such a system with the vast majority (81%) of

respondents saying that they would like to have live feedback about the state of their audience

during class. The respondents found the interest map visualisation scheme intuitive and effec-

tive, but many noted that they would like to be able to access summary data as well. A number

of lecturers felt that it might be distracting to get the feedback live during class, but noted that

they would make use of a system that provided review capabilities afterwards.
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Chapter 9

Conclusion

9.1 Summary

Engagement is a central issue in education and impacts student learning significantly. ‘Good

teachers’ perform contingent teaching and are able to scaffold their classes around a theme,

but go off-script in order to cater to the current state of the students. This type of teaching

is difficult in ideal circumstances, but becomes progressively harder as class sizes and venues

grow. Large class lecturing is often criticised as lecturers become less responsive to individual

student needs.

While expert teachers develop an intuition regarding the state of the class, this takes time to

establish, is highly subjective, and does not allow for systematic self-evaluation. At the same

time, new lecturers lack experience and therefore the intuition necessary to effectively track

what is happening in the class. Over and above the issues relating to intuition itself, practically,

even experienced lecturers cannot keep track of the class while their back is turned or when

students actively hide negative sentiments due to social display rules.

Overall the problem is two-fold: 1) as a lecturer it is difficult to keep track of all the students

in a large class, and 2) different groups of students emerge with competing needs.

This thesis proposes the WITS INTELLIGENT TEACHING SYSTEM (WITS) to help deal

with the former, and proposes that WITS be used to assess strategies to help deal with the

latter. A system like WITS provides lecturers and presenters with feedback about the affective

state of their audience. With this information, the lecturer can then moderate their teaching

style, speed, content, venue, or schedule to help the audience better engage with the concepts

under discussion.

In Chapter 4, ENGAGE, was developed to allow students to self-report their engagement lev-

els during class for the purpose of live, formative, lecturer feedback. This information would

be presented to the lecturer using simple graphs that updated in real-time. In spite of reporting

that students found the lecturers responsive to their feedback, the uptake of the system was ex-

tremely low. When the system allowed students to see the graphs updating the uptake increased,

but remained only a fraction of the entire class. It is unclear to what extent the students using

the system provided accurate feedback, but at 10% uptake it is unlikely to be representative of

175



the entire class. It appears that there is also a bias in the type of student that would actually

consider using the system. The group of students that are prepared to self-report their engage-

ment overlaps substantially with the group of students that are prepared to come to lectures in

the middle of violent student protests. These traits indicate a high level of commitment to their

classes and if the students are reporting engagement they are at least aware of it and may self-

regulate to some extent. This raises the question of whether these are the students that require

re-engagement in the first place, and whether it is pedagogically sound to make decisions based

on their feedback alone. The remaining students are either unwilling or unable to report this

information. In either case, the intrusive approach fails to gather sufficient data to be valuable

to the presenter.

A non-intrusive approach is therefore needed. WITS aims to detect and provide engage-

ment information non-intrusively through the use of multiple sensors around the lecture venue.

These sensors provide data to a central system that, based on machine learning techniques,

monitors audience interest. A computational pipeline for live audience monitoring and lecture

feedback is proposed and a computer vision based subset thereof is tested in this work. The

system and the pipeline are discussed in Chapter 5.

The first step in the creation of such a system is the collection of data. No such dataset

existed, so one was created. Originally it was hoped that Engage could be used to help build a

self-labelled dataset, but due to the low uptake by students this was not possible. The WITS

ANNOTATION TOOL (WITSAT) was created and released to facilitate the video annotation

process. Psychology, Computer Science, and Applied Mathematics honours and masters stu-

dents assisted in the labelling process over two separate labelling sprints of one to two weeks

each. At first, raters were asked to label students along affect axes involving boredom, interest,

confusion, and frustration. Minor guidance was given, but not in the form of an observational

checklist. The data returned by both the Psychology students in the first sprint, and the Mathe-

matical Science students in the second sprint had extremely low inter-rater reliability scores. It

was decided to abandon the process of training directly on interest labels and rather focus on the

construction of an observational checklist that could be used to infer interest and engagement,

or lack thereof.

Undergraduate students across 3 lectures were labelled with a number of classroom actions,

postures, and head poses. These labels make up the WITS DATABASE (WITSDB), which was

released for research purposes. WITSDB consists of about 65–80 unique subjects labelled

across three lectures each with about 10 different labels. Its creation was an arduous process

and it is hoped that its release will support future research in this area.

Chapter 6 focuses on the application of Support Vector Machines (SVM) and Histogram of

Oriented Gradients (HOG) to classify the labels in WITSDB. The experiments found that while

the HOG SVM was good at recognising similar frames, it was unable to generalise to unseen

students. This is evidenced by the vast difference in the accuracies of cross-frame and cross-

subject validations. Generally the HOG SVM performed equivalent to or worse than chance

when performing cross-subject validations. More careful feature engineering or different fea-

tures entirely may improve the accuracy of the SVM approach. Background removal and image

segmentation may also provide large performance gains. In spite of this, the SVM’s memory

requirements and computational complexity make it difficult to train on very large datasets. In

general, the HOG SVM approach appears unsuited to the task at hand.
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Chapter 7 presents the application of Deep Convolutional Neural Networks (CNNs) to ac-

complish the same task but with significant accuracy, generalisation, and performance improve-

ments. WITSAT was extended to interface with both libSVM and Caffe to allow classification

using SVMs and CNNs. The performance boost is entirely due to GPU hardware acceleration

using CUDA. A parallel CPU HOG SVM is able to classify 50 subjects at 1.6 frames per sec-

ond while the CPU CNN did the same in 0.23 frames per second. However, once accelerated

by CUDA, the CNN was able to classify the same 50 subjects at 7 frames per second which

is almost real-time for the current recordings. The current system does not optimise the trans-

fer of data over the hardware bus that connects to the GPU – this is a known bottleneck and

preliminary tests indicate that with sufficient parallelism and general memory optimisation, a

real-time system is well within reach.

Computational performance aside, the CNN outperformed the HOG SVM on all tests that

were run. While it is able to scale to significantly larger datasets, even on similar size data sets

the CNN outperforms the SVM. The CNN was able to classify the writing and cellphone actions

at about 10% better accuracy than chance and the HOG SVM when examining generalisation

to unseen subjects.

Finally, in Chapter 8 the proxy labels in WITSDB were put together in an observational

checklist to build a dataset of student interest. Both the SVM and CNN based systems were

trained and achieved peak accuracies of 71% and 93% respectively in cross-frame validation.

When considering generalisation to unseen subjects the SVM performed at 54% and the CNN

at 60%.

Further tests also indicate the CNN requires only a small number of frames before it is able

to generalise to previously unseen subjects. This means that the introduction of a calibration

step at the start of the process can drastically improve the system’s performance. When boot-

strapping the system by including a few frames from the start of the lecture, the accuracy of the

CNN increased to 88.8% which is an extremely high accuracy.

Using Platt’s method for SVMs and Softmax for CNNs, an interest probability or interest

value is generated. The interest value is overlaid on the video as a heat map or interest map

for visualisation. The interest map for a lecture was generated and shown to lecturers and

professors at the university. The overwhelming majority, 81% of the 131 respondents, said

they would like to have live interest feedback during class and that they would make use of

such a system.

9.2 Accuracy and Generalisation

Aspects such as race, gender, clothing, handedness, and viewing angle play an important role,

as does their representation and variation in the dataset. High cross-frame validation accuracies,

even when trained on relatively small proportions of the overall data, indicate that only a few

frames of a specific subject in a specific lecture are required to perform well, indicating low

intra-subject variation. This conclusion is also supported by the fact that in general, lecture 1

data could be used to accurately predict lecture 2 data, but often failed with lecture 3.

This information, coupled with the poor to fair cross-subject validation scores, means that
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when building future datasets for this purpose, it is more important to record a larger number

of different students with different clothing and backgrounds for short periods of time, than to

record fewer students for longer periods (as was done in this work). Doing so forces the system

to focus more on inter- rather than intra-subject variation.

Other than the need for an increased number of different students and backgrounds in the

recordings, the under-representation of a number of useful labels is a problem. For example,

when a student is looking up at the roof, they are certainly disengaging from the lecture. How-

ever, in natural circumstances, this occurs infrequently and surprisingly few students perform

this action. This means that there were not enough instances of students looking up to be able

to adequately classify it, even though it appears to be an extremely valid feature to use in an

observational checklist.

Literature indicates that for the purpose of direct affect labelling, it is best to use natural

data rather than posed data. For this reason, the students were recorded naturally in lectures.

However, once the raters failed to provide sufficiently reliable affect labels, the students were

rather labelled according to the actions and poses identified. For this reason the natural videos

were used as training data. Based on the low intra-subject variance, it likely that for postures

and actions, posed data will provide a meaningful way to collect more balanced and reliable

data.

In light of these findings, students should be recorded and asked to write, use their cellphone

above and below the desk, to look at each other and specific areas of the room, and to assume

a number of common upper body postures. It appears that collecting lots of short sequences

over many days, venues, and subjects will provide better data than considering natural videos

taken during lectures. With more subjects in different venues (different backgrounds), and more

balanced datasets, generalisation to new subjects should improve as the networks are forced to

learn features that work across subjects rather than just the few in the current dataset.

9.3 Computational Performance

As it stands currently, the system is able to handle up to 50 students per frame at 7 frames per

second when using an NVIDIA Titan X graphics card. With a restructuring of the code, it is

believed that this number can be improved as the code does not currently optimise the transfer

of data between the main memory and the graphics card. Preliminary tests indicate that by

doing so the expected classification time of the system can be decreased by 50 times.

However, even if this were not the case, the problem in general is embarrassingly parallel –

different subjects can be classified completely independently. Once each subject is classified,

the data can be merged to form a single interest map to show to the lecturer. In either case, the

path to real-time performance is clear.
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9.4 Future Work

9.4.1 Engage

Overall there was a very low percentage of the total class reporting back with the system.

Future work can focus on methods to increase uptake during classes, and to analyse the impact

on concentration that the program has. Specifically, using the system as a traditional clicker for

voting can help identify students that are willing to use the system, but do not feel the current

captions describe them. At the same time, using the system for voting before trying to get the

students to report engagement may get them more excited about trying out the system. The

system is currently capable of handling voting, but this was implemented based on feedback

from the original system and has not been tested with students. At that time it was infeasible to

run more experiments with the students due to ongoing protests followed by exams. The effect

of voting on the system’s uptake should be examined in depth.

Another avenue of future research using Engage should analyse the bias inherent in the

system based on the type of student that would use it. The numbers in Chapter 4 hinted that the

students using the system originally were probably the same students that used it in the lectures

that took place during the protests. It would be useful to know whether a general trend emerges

that may indicate that the students that use the system are not actually the students that the

lecturer should be primarily focusing on engaging. These students may already have enough

self-awareness to regulate themselves.

There is scope for future work in automatically analysing the textual comments using nat-

ural language processing. This kind of automated analysis would allow the system to build its

own model of the kind of comments posted by the students (off topic, questions, comments,

etc). Textual analysis might even be able to monitor the sentiment based on the comments

alone.

A button allowing students to report concentration and flow may be useful to asses uptake,

but this will certainly distract more students in the long run. Research into the accuracy of the

reported data should be performed.

9.4.2 WITS Database

Currently the dataset is limited by a number of factors. There are only three labelled lectures,

all with roughly the same group of students. To improve generalisability across new students,

the system should be able to train on as many different students as possible. This work has

also shown that relatively few representative samples of a subject are required. In this light, the

database should be expanded to include many shorter labelled segments of lots of different stu-

dents, rather than labelling single subjects across entire lectures. There should also be a focus

on balancing the representation of subject demographics across gender, race, and handedness.

New recordings should limit the horizontal angle from which subjects are viewed by placing

multiple cameras that each monitor smaller areas, rather than a single camera at the front.

Cameras should be mounted in a way that minimises occlusions.
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The collection of less common classroom actions and postures should be a priority. Includ-

ing yawn and raised hand information in the system may provide significantly more information

about the student, even though it may be a challenge to collect images of these less common

actions. Posed data can be considered, but generalisation to real data should be verified.

Collecting affect labels directly would be an interesting way to verify the correctness of

the observational checklist. However, work needs to be done to establish how to get raters to

accurately label these aspects without necessarily resorting to the extremely expensive process

using expert Facial Action Coding System (FACS) or Baker-Rodrigo observation method pro-

tocol (BROMP) coders. Presenting two subjects at a time and asking raters which one is more

engaged may be a better way to establish a ranking among short video segments. This infor-

mation could then be merged to try build a ‘ranked scoreboard’ of interest that could be used

for training. This process may provide more reliable data and should be considered.

Including other labels in the dataset means that the observational checklist used to ‘define’

interest can be updated to better reflect what experts consider to be the signs of engagement.

Work should asses what expert lecturers look for when assessing students and whether these

aspects can be measured by the system.

9.4.3 Classifiers

HOG SVM

The HOG SVM approach could not generalise to unseen students during cross-subject valida-

tion. Compared to the high validation accuracies across frames, this indicates that the system

was learning to recognise similar frames rather than learning the structure of the action or pos-

ture in question.

This may be due to complicated backgrounds with too much noise in the gradient features.

Future work should consider emphasising foreground information by first applying a back-

ground removal or segmentation processes. Focusing on more relevant parts of the image may

also help. For example, writing may be better recognised by looking only at the desk where

books are placed. Using a different feature descriptor entirely may improve the results as well.

CNN

Overall the CNN performed significantly better than the HOG SVM and should be the focus

of future work. Trying architectures other than AlexNet should be a focus in order to see if

there is room for improvement. Currently, all the networks were trained on single labels –

writing, cellphone, posture etc. In a true deep learning style, an architecture that incorporates

all of these aspects should be considered. For example, if a common set of convolutions feed

into a number of layers that allow the detection of posture, head pose and actions, these layers

can then form the basis of a layer specifically designed to assess interest. In doing so, a single

network is able to provide both the interest score and underlying reasoning to the lecturer.
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9.4.4 Interest Map

Currently the definition of interest used in the interest map is based on the available labels in

WITSDB. Work should be done to establish whether expert lecturers agree with the current

definition and if not, what aspects should be added or removed. This work showed that lec-

turers are generally supportive of using a system to produce live feedback about the audience.

The system should be run in a number of live classes with lecturers to establish whether this

enthusiasm translates into lecturers actually making use of the system. Aspects relating to the

lecturer’s state of mind should also be considered to assess whether WITS distracts and demor-

alises lecturers, or whether it legitimately provides insight that they start to incorporate into

their classes.

As mentioned previously, the ultimate goal of WITS is to have a real-time system to provide

feedback during lectures. The current processing pipeline is very close to real-time and with an

efficient, parallel re-implementation it should be possible to build a system that runs fast enough

for live lecture feedback. Finally, once the system is able to perform in a live environment with

acceptable accuracy, its effect on both students, lecturers and ultimately teaching should be

investigated.

9.4.5 Automatic Teaching Assistant (AutoTA)

Work should be done to generate a number of interest maps across multiple classes, disciplines,

venues, lecturers, and students. Different strategies should be tested and the resulting changes

in the interest map recorded. With a large enough dataset, it may be possible to build an

Automatic Teaching Assistant that recommends specific strategies to the lecturer that are known

to re-engage students based on patterns identified in the interest map.

9.4.6 Educational Research

Further to the questions already raised, there are a number of applications to general educa-

tional research. Understanding how students react to different stimuli and teaching styles is

important when considering what teaching strategies work best in the classroom. Monitoring

actions, postures, and affect in relation to timing and style may provide useful information to

the education community and teachers specifically.

9.5 Conclusion

This thesis provides the foundational work upon which to build a live, student affect monitoring

system. It shows that with sufficiently representative data such a system is indeed possible and

its realisation is close at hand. It is hoped that in time this work leads to the development of

useful tools to improve teaching and learning in areas where it has traditionally been difficult

due to practical constraints. The system should be used to produce better teachers, benefit

students, and ultimately improve education.
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Appendix A

Questionnaire Results

This appendix provides the responses from the questionnaire in Chapter 8. To maintain re-

spondent anonymity the demographic information is presented separately to the Interest Map

response questions. In the previous analysis, respondents were categorised into Professor, Lec-

turer, or Other. For that analysis, equivalent academic ranks were merged – for example, a

senior tutor is considered to be a lecturer as the ranks are equivalent but on different career

tracks in the university.

Table A.1: Raw Demographic Responses

Highest Qualification Position Discipline

BA Hons Senior Tutor Applied maths course for first year Commerce

Bachelor of medicine

and surgery

Lecturer Health sciences

BCur (Nursing Ed &

Admin et al)

Lecturer Nursing

BSc Lecturer Industrial Engineering

BSc Honours Lecturer Actuarial Science

BSc Hons Lecturer Mathematics

BSc(Eng) Lecturer Aeronautical Engineering

BSc(Eng) - elec Lecturer Engineering

Chartered Accountant Lecturer Financial Accounting

Diploma IT Technician Computer Science

Doctorate Lecturer Nursing Education

doctorate Professor Physics & Astronomy

FC Path Professor Anatomical Pathology

FCP (SA) Specialist Physician Health Sciences

FCPath (SA) Anat Anatomical Pathologist Health Sciences

FCPath Micro Specialist Microbiolo-

gist

Health Sciences & School of pathology

FCPHM Lecturer Health Sciences

FCPSYCH PGDHSE Lecturer Psychiatry / neuropsychiatry

FCS (SA) Lecturer Surgery
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Highest Qualification Position Discipline

FCS (SA) Professor Health Sciences

Hons - Currently doin

MA

Lecturer Art - Film - Post production

LLM Professor Law

M Sc Lecturer Health Sciences

Master of Arts Lecturer Language; Linguistics

Master of Dramatic Art Lecturer Theatre and Performance

Master of Science in

Nursing

Lecturer Nursing Education

Masters Data Scientist, Re-

seaercher, Lecturer,

Data science, Demography, GIS, Statistics

Masters Lecturer Applied Mathematics

Masters Lecturer Health Sciences

masters Lecturer theatre and performance

Masters Professor Health Sciences

masters registrar Dentistry

Masters Degree Professor Oral Health Sciences

Masters Degree Registrar Public Health

Masters in Italian Lecturer Italian Studies

Masters in Law Lecturer Law

MBA Lecturer Clinical Coding

MBChB Lecturer Health Sciences

MCom Lecturer Insurance and Risk Management

MMed Professor Internal Medicine

MMed (Fam Med) &

MBA

Lecturer Family Medicine

MMed (Family

Medicine)

Lecturer Family Medicine and Primary Care

MMed and PG Dip Lecturer Health sciences

MSC Lecturer Applied Mathematics

MSc Lecturer Computer Science

MSc Lecturer Computer Science

MSc Lecturer Dentistry

MSc Lecturer Electrical Engineering

MSc Lecturer Engineering

MSc Lecturer Engineering

MSc Lecturer Engineering

MSc Lecturer Engineering

MSc Lecturer Health Sciences

MSc Lecturer Mathematics

MSc Lecturer Nursing education

MSc Lecturer Statistics

MSc Senior Tutor Physics Education

MSc Senior Tutor Statistics
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Highest Qualification Position Discipline

MSC (Computer Sci-

ence)

Lecturer Computer Science

MSc Degree Lecturer Education English Academic Reading/Writing

MSc OT Lecturer Health Sciences

MSc Psyc Lecturer Social science in medicine

MSc. Eng Lecturer Industrial Engineering

PhD Academic Developer T&L in Higher Education

PhD Associate Professor Information Systems

PhD Lecturer Anatomy and Forensic Anthropology

PhD Lecturer Applied Mathematics

PhD Lecturer Archaeobotany

PhD Lecturer Arts

PhD Lecturer Biochemistry

PhD Lecturer Biological Sciences

PhD Lecturer Chemistry

PhD Lecturer Chemistry

PhD Lecturer Computer Science

PhD Lecturer Geosciences

PhD Lecturer Health Sciences

PhD Lecturer Health Sciences

PhD Lecturer Health Sciences

PhD Lecturer Health Sciences

PhD Lecturer Health Sciences - Molecular Biology

PhD Lecturer Health Sciences (basic)

PhD Lecturer Health Sciences & Cell Biology

PhD Lecturer Humanities and Social Sciences

PhD Lecturer Linguistics

PhD Lecturer Mathematics

PhD Lecturer Physics

PhD Lecturer Physics

PhD Lecturer Physiology

PhD Lecturer Public Health

PhD Lecturer Public Health

PhD Lecturer sciences

PhD Lecturer Sociolgy

PhD Professor Accounting

PhD Professor Applied Mathematics

PhD Professor Applied Mathematics

PhD Professor archaeology

PhD Professor Biology

PhD Professor Biology

PhD Professor Chemistry

PhD Professor Clinical Medivine

PhD Professor Computer Science

PhD Professor Computer Science
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Highest Qualification Position Discipline

PhD Professor Computer Science

PhD Professor Engineering

PhD Professor Environmental Science

PhD Professor Epidemiology

PhD Professor health sciences

PhD Professor Health Sciences

PhD Professor International Relations

PHD Professor LAW

PhD Professor Literary studies

PhD Professor Management education; research methodology

PhD Professor Mathemaitcs

PhD Professor Medical

PhD Professor Musculoskeletal physiotherapy

PhD Professor Occupational Therapy

PhD Professor Physics

PhD Professor Physics

PhD Professor Physics and Physcis Education

PhD Professor Physiology

PhD Professor Psychology

PhD Professor Pure Mathematics

PhD Professor Science Education

PhD Professor Social Sciences

PhD Senior Re-

searcher/lecturer

Law

PhD Software Engineer Computer Science

PhD Researcher Health Sciences

Professional Actuarial

Qualification: Fellow

Lecturer Actuarial Science

Professional Master Professor Health Sciences

Specialist in anaesthe-

sia

Lecturer Health sciences

Sub-specialist Certifi-

cate

Lecturer Health sciences

Table A.2: Raw Interest Map Responses

Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

100-250 No 2 1 System misses some students who are patently disen-

gaged - needs to be tuned up somewhat for better accu-

racy.

100-250 No 2 2 Not very accurate
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

100-250 No 3 2 I worry about the level of distraction of the lecturer using

the system. Rather than focusing on the lecture, he/she

would be concentrating on the students who aren’t pay-

ing attention, rather than on those who are. In a large

class (of say more than 200 students), there will always

be students who aren’t interested, who are easily dis-

tracted etc. In my opinion, it is not possible to get a

whole class to concentrate, no matter how hard you try.

Perhaps that is why the world is moving to online lec-

tures. I think the coding you have done to get this system

to work is amazing. I’m just not sure how many lecturers

would find this useful in a real world situation.

100-250 No 3 3 The system appears too sensitive to minor disengage-

ments. During a 45-minute you expect every student,

even the most attentive, to disengage for short periods. I

think a disengagement time threshold (possibly user set)

would be useful. Also, as class size increases, monitor-

ing individual students becomes meaningless. The sys-

tem would be me useful if it gave real-time summative

feedback (e.g. proportion of class disengaged, regions of

the lecture theatre with the greatest level of disengage-

ment).

100-250 No 3 3

100-250 No 4 2 Teaching in amphitheatres shows the lecturer which stu-

dents are engaged or not. The interest Map is very accu-

rate but would not be useful to me as I already can detect

this with my large classes.

100-250 No 4 2

100-250 No 4 3
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

00-250 No 5 1 I do not have much time in the lecture to pay attention

to every student. There is usually a lot of content to get

through and I cannot stop to make sure every single per-

son is engaged. Students are constantly being distracted

by cellphones, friends etc. Would this not be just another

distraction? It would also be a distraction for me as a

lecturer to have to constantly be paying attention to how

many red dots are in my class. I think intuitively lec-

tures are already aware that many students do not stay

fully engaged throughout the whole lecture and have al-

ready factored that into their lecturing. This study will

perhaps serve to reinforce that intuition. However it does

not provide suggestions or recommendations on ways to

re-engage the student. What I would find beneficial is to

also see which students are engaging - perhaps they can

be shown in green?”

100-250 Yes 2 2 Does writing show engagement? Arguably it is not re-

lated - easy to be tired and still writing

100-250 Yes 3 3 It would be useful to get the definition of “engagement

in class” as far as this system is concerned. I observed

a student who was fanning himself almost throughout,

not taking down any notes, and yet the system identified

him as “engaged”. On the other hand, a student sitting

at the front of the class, who seemed to be engaged, was

marked as “not engaged” for a few seconds when she

turned away to look at something/someone in the audi-

ence - maybe listening to an answer or a question from

a fellow student? From my experience, I have had a stu-

dent who would be looking at the front of the class (cor-

rect posture, eyes open, etc.) but could be miles away,

and upon asking them a question, only then do you find

out that they were not following anything in the lecture

at all. I found the system however very good in picking

out those who were asleep, or otherwise not looking at

the front of the class/had their earphones on.

100-250 Yes 3 4 Facial expression alone may not be a strong indicator of

interest.

100-250 Yes 3 4 I think this is something which certainly bears closer

scrutiny

100-250 Yes 3 4

100-250 Yes 3 4

100-250 Yes 3 5
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

100-250 Yes 4 4 ”For the system indicates what I observe each time I

teach. I can ‘see’ and ‘feel’ when students are engaged

or disengaged. I also make it a point that I approach stu-

dents who seem to be disengaged for more than 3 lec-

turers. However, because of big class sizes, I think the

system is very helpful in helping me with my blind spots

or selective observations and selective recollections.”

100-250 Yes 4 4 I would be interested in a few things. First, the algo-

rithm appears to favor frontward facing students. This

assumes that the lecturer is the one imparting knowledge

and the student is a (rather) passive listener to what the

lecturer says. A student who spends too long looking

down or looking away from the front seems to be identi-

fied as disengaged. For many of the students/instances I

saw in the videos this seems a fair assumption (one stu-

dent appeared to be looking at their phone for example).

In other instances this could be misleading - for exam-

ple if the lecturer moves around the classroom and up

the aisles, if a student asks a question then other engaged

students would turn round to face them. Students who

are taking notes, comparing notes with another student,

or simply thinking about a problem posed by the lecturer

will be coded as disengaged. Second, I noticed that some

students never seemed to be tagged although they seemed

obviously disengaged (e.g. sitting behind a laptop screen,

standing up, walking around, etc.). Third, I would be in-

terested to understand how the live feedback would influ-

ence my own attention while trying to lecture. Anyway,

a very interesting idea. All the best.

100-250 Yes 4 4 presumably if the live feed comes to a computer that I can

see, if there are several students who appear disengaged,

it might alert me to the possibility of changing tack to

increase interest or actively engage the disinterested stu-

dents.
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

100-250 Yes 4 4 Sometimes it looks like students are disengaged when

they seem only to be writing notes. Also sometimes

when a student does not move much, it appears that they

are engaged (no red highlight) but they may well be “off

somewhere in their mind”? In the second longer version

the red highlights went up considerably at about 11:30 -

some of the student postures after that were “similar” to

when students were engaged before then but the highlight

was now red? Body language? Crossed arms in front row

at 9:24 - no red highlight? Writing with head up - no red

highlight but when students write with their heads down

- red highlight what is the difference? It appears as if stu-

dents in light or white shirts were more prevalent in the

red highlights - noticeably so in the second longer piece

but also in the short piece. Male to female ratio? Were

the students aware that the Interest Map was running? ”

100-250 Yes 4 4 Very helpful to see how engaged students are during lec-

tures

100-250 Yes 4 4

100-250 Yes 4 4

100-250 Yes 4 4

100-250 Yes 4 4

100-250 Yes 4 5 Incredible idea! This technology could be a method-

ological tool in determining ideal break times or lecture

lengths, even cohort specifically! I would be very inter-

ested to view a percentage/graph of “attention” alongside

a lecture itself, possibly allowing an accurate reference to

where most were engaged or not.

100-250 Yes 4 5 It seems interesting. However, I worry about the fact that

the system highlights in red all students whose focus are

off the teacher. It could be that a student is listening to the

lecturer while also solving a problem on a paper. It does

not mean that a students is distracted and not following

when they have their attention off the lecturer

100-250 Yes 5 4 Looks fantastic Rich! I think working on a laptop also

counts at not engaged. Also, perhaps add a low pass filter

/ delay of some sort to prevent the red flashing on and

off. Finally, some sort of time/moving average would be

pretty handy as a lecturer only really has time to glimpse

at the screen. [NameRemoved]

100-250 Yes 5 4
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

100-250 Yes 5 5 I would like if it has a quantitative measure of respon-

siveness from the students.

100-250 Yes 5 5 The first focus group all are male participants I person-

ally felt the female students tended to pay more attention.

100-250 Yes 5 5 What have you recommended thus far in your lectures

to ensure more engagement? Has this been tested and

are the results any different from the Interest Map above

(many factors will influence this though). Further where

the students highlighted interviewed to ensured that they

were not engaged?

100-250 Yes 5 5

20-100 No 2 3 It would be a steep learning curve using this

20-100 No 3 2 In my opinion, not really relevant to classes of 70 or less,

since you could very quickly assess this without technol-

ogy (especially if you know students by name). Could

see the use for very big classes.

20-100 No 3 2 Need to summarise the system. E.g. proportion of class

currently disengaged, particularly dense areas of the class

disengaged, what part of the lecture timewise had the

highest disengagement. As it stands, the red hot spots

are difficult to interpret from a total class perspective.

20-100 No 3 3

20-100 No 3 3

20-100 No 4 4

20-100 No 4 4

20-100 No 5 4 Obtaining feedback after a session would be helpful

rather than during a session. How useful would this be

if other teaching methods are being employed e.g. small

group discussions?

20-100 Yes 2 3 The videos are out of context to the viewer so it is re-

ally difficult to judge if what you are looking at is good

engagement or bad engagement relative to what is hap-

pening: recapping versus teaching new material. teach-

ing is hard work while this kind it may be valuable you

don’t want to have a tool that interferes with the teach-

ing process that you have to concentrate on (divide your

attention)

20-100 Yes 3 1
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

20-100 Yes 3 2 The student with white T shirt - left in frame 3r row was

also disengae and system did not identify him. A lecture

identify these students. this system is however good for

feedback to the student if one follows that up with the

student in order to identify problems early on

20-100 Yes 3 3 I feel like I need more information to explore the pros

and cons of using such a system and how it could / would

affect / assist my development as a teacher.

20-100 Yes 3 3 I love the application of the technology, and the idea to

use it in the lecture context is really innovative. How-

ever, we already get our own live (low-tech) visual feed-

back of student engagement while teaching. You get a

sense of the room, and adjust interaction with students

accordingly. The relative advantage of this technology

solution over our existing low-tech approach to looking

around the room and getting our own feel for student en-

gagement is unclear. Would this technology beat an ex-

perienced lecturer in detecting student (dis)engagement?

That would be a cool experiment. The tech seems more

useful for performance monitoring of teaching, or to re-

mote monitor classroom settings. It might also be useful

for new lecturers who are only starting out and wanting

to review their teaching performance in class sessions, or

the extent to which their students become more or less

engaged in different areas of the curriculum. But for

experienced teachers who do this all the time anyway,

I’m not sure that I’m sold yet on the usefulness of this

high-tech approach. And what are the unintended conse-

quences of lecturers looking at screens and video feed-

back instead of at their class?

20-100 Yes 3 3 I would like to pilot this in one of my class

20-100 Yes 3 3

20-100 Yes 3 3

20-100 Yes 3 4 Has the interest map been validated with anonymous stu-

dent feedback from the lecture?

20-100 Yes 3 4 Is there no way to condense the videos so an overall im-

pression can be made?

20-100 Yes 3 4 It is quite dramatic.

20-100 Yes 3 4

20-100 Yes 3 4

20-100 Yes 3 4

20-100 Yes 3 4
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

20-100 Yes 4 2 For me generally you know your if you class is engaged

or not, its what you do about it that’s a problem. would be

cool to try/experiment and see. based on the Hawthorne

effect, just monitoring it will also change student behav-

ior.

20-100 Yes 4 3 I do interactive class work in groups during which I move

around the class. Not sure whether this system works in

that type of environment but would be interested to try

20-100 Yes 4 3 I don’t think it will be worth spending thousands on such

a system, if you just take a video and watch afterwards

you will be clearly able to see who you are engaging and

who not.

20-100 Yes 4 3

20-100 Yes 4 3

20-100 Yes 4 4 I can imagine the system to give valuable data when more

developed, it could however give ethical problems and

‘violate’ students privacy. E.g. when they are not looking

up it does not mean they are not paying attention etc So,

there one should be careful.

20-100 Yes 4 4 Include detection of late coming more than 2min (impli-

cation this lecture was not important enough to them to

be on time...), include detection of eye movement - even

though head is up there is one or two droopy eyes not

being highlighted as red

20-100 Yes 4 4 The back left student was constantly chatting to and dis-

tracting his neighbour but wasnt picked up by the system.

Interesting idea - good luck with the PhD

20-100 Yes 4 4

20-100 Yes 4 4

20-100 Yes 4 4

20-100 Yes 4 4

20-100 Yes 4 4

20-100 Yes 4 4

20-100 Yes 4 4
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

20-100 Yes 4 5 For me, the greatest weakness of this system, is that it

seems to record a lack of engagement when students look

down. This is particularly noticeable in students taking

notes. I agree that eye contact often implies interest, but

there was also one candidate, who seemed to be asleep

looking at the lecturer. the system identified the individ-

ual as interested throughout, but I am not convinced that

he actually was. I think there is an amount of resolution

loss towards the back of the room (smaller heads). My

comments notwithstanding & I think the system is very

cleverly coded and even if some entropy exists on the in-

dividual level, as a system, I think it gives an amazing

insight into the systemic dynamic in a class.

20-100 Yes 4 5

20-100 Yes 5 4

20-100 Yes 5 5

20-100 Yes 5 5

20-100 Yes 5 5

20-100 Yes 5 5

More

than 250

No 1 2 While novel, I think that at the university level this sys-

tem will have little impact since engagement can’t be

forced and lecturers differ too much in their strategies.

More

than 250

No 2 3

More

than 250

No 3 2

More

than 250

No 4 3 In some cases students appear to be “flagged” as not en-

gaged however they appear to be taking notes... Maybe

students can be “flagged” if they are not engaged for an

extended period of time so that is will be easier to iden-

tify students not engaged at all

More

than 250

No 4 4 Would be useful as a “self-evaluation” tool after lecture,

but it would be distracting to be getting the information

live while lecturing.
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

More

than 250

Yes 1 4 Your class size question only allows one answer. Many

of us teach from one person to over 250, depending on

which class we are teaching. The analysis seems to use

face posture to make the attention decision? This is

highly variable. Sometimes head down means writing

and taking notes - an ancient and disappearing art. Dis-

tance from the camera also seems to affect the “attention”

decision. Your analysis didn’t highlight the male student,

top left back, in the close-up, and top left at 11 o’clock,

next to the aisle, in the whole calss view, who is chat-

ting to and disturbing his buddies to his left, in the back

row. I’m not sure the red dots will outdo my current,

real time sensor - the basic human ability to engage with

each other, face-to-face. Also the red dots completely

obscure the miscreants faces. How can I really verify

the programmes analysis if I can’t see what it is seeing?

Nevertheless. Nice idea.”

More

than 250

Yes 3 3 For your question on class size, allow an option to se-

lect more - our sizes are variable depending on course.

End result - how could we engage students more in larger

classes. In the classes I hold, of the size in your video, I

have never noticed this level of disengagement - is this a

lecture or tutorial?

More

than 250

Yes 3 3 There are students that are not identified because their

use of gesturing etc. seems to flag them as active. That

said, a reduction of the visualisation to a smaller map

for larger classes would be useful as it could be used

to assess overall percentage engagement. Regarding the

quick assessment of the map, use of a two-colour or

multi-colour scheme (in which engaged students are e.g.

green) would also make such an assessment much easier

especially in allowing new lecturers to train themselves

to recognise patterns of engagement or disengagement.

Fascinating work overall and perhaps more useful once

lecturers start using wearable augmentation technologies.

More

than 250

Yes 3 4 I have never heard of this until now
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

More

than 250

Yes 3 4 ”This is a helpful idea in assisting lecturers in under-

standing their teaching methods and efficacy. Although,

the challenge with such a system is that it provides pre-

sumed information. That is, disengagement is presumed

by physical characteristics. What if one of the teaching

strategies is to get students to utilise technology in the

class. According to WITS, cell phone use presumes dis-

engagement. Such a system/study would benefit from

including some qualitative feedback about how students

perceived their engagement - to do some cross referenc-

ing to see how effective such technology really is. Well

done on this research, really fascinating work.”

More

than 250

Yes 3 4

More

than 250

Yes 3 4

More

than 250

Yes 4 3 I am not sure if students would like to be observed per-

manently during the lecture.

More

than 250

Yes 4 3 I think it’s fairly easy to get a feeling whether many stu-

dents aren’t following the class without technology. But

if they know, they are tracked, it might motivate them to

pay more attention.

More

than 250

Yes 4 3

More

than 250

Yes 4 4 I am ambivalent about the live feedback during class be-

cause it could be very distracting, perhaps better would

be on demand, e.g. when I am having trouble with rest-

lessness and/or noise.

More

than 250

Yes 4 4 I do feel that I can tell how engaged a class is on my own

assessment even though as many as 350. But I may need

to see a different view! I might be surprised. I realise

that big classes have a percentage of fall-out in terms of

engagement that is unavoidable but I try to minimise this.

More

than 250

Yes 4 4 i think it would be interesting to see if there is a correla-

tion with where people wit in large venues so one could

target these for class input, questions etc

More

than 250

Yes 4 4

More

than 250

Yes 4 4
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

More

than 250

Yes 4 5 After a difficult 2016, to be made aware of this innova-

tive, interesting and exciting system is a welcome boost!

At first glance, the Interest Map appears to be quite for-

mulaic. I realise, however that the level of analysis is

appropriately complex. Interest Map differentiates be-

tween looking down (only) and looking down with head

in hand, and looking down at a cellphone! This is great

work!

More

than 250

Yes 4 5 Excellent idea - this could be incorporated into lecturer

performance appraisals as well to support how well some

lecturers get students to engage.

More

than 250

Yes 4 5 Would it be possible to have this ‘live’, as I teach the

class? That would be really useful

More

than 250

Yes 5 5 Great concept!

More

than 250

Yes 5 5

More

than 250

Yes 5 5

More

than 250

Yes 5 5

More

than 250

Yes 5 5

More

than 250

Yes 5 5

More

than 250

Yes 5 5

More

than 250

Yes 5 5

More

than 250

Yes The videos didn’t work but I’d be interested in seeing

how the system works.

Not

currently

teaching

Yes 3 4

Not

currently

teaching

Yes 4 4 I am impressed that you have moved so far

Not

currently

teaching

Yes 4 4 I like the idea. It will take some practice to use it in

real-time, especially if you use other interactive teaching

techniques, such as clickers.
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

Not

currently

teaching

Yes 4 4 If students are aware of the recording, does that impact

the numbers?

Not

currently

teaching

Yes 4 4 Richard, this is truly a fascinating opportunity to get

“feedback” from students over which they have little

“control”, which can highlight for lecturers how what

they are doing is genuinely being received. Some com-

ment / questions that spring to mind which may be use-

ful for you to consider are: this ‘pilot’ has been done

with a small cohort of students, yet your intention is that

it should be used in large classes. If it operates in real

time for a lecturer, how would you plan to give supportive

feedback for someone who is just dismayed by the levels

of disengagement in large classes, for example chemistry

1 where the disparity of prior knowledge and ability in

students is known to be huge? How would you be able

to use this to support the development of teaching pro-

ficiency, and keep it out of the hands of managers who

are on the prowl for evidence of “poor teaching” - recog-

nising that you can take a horse to water but you can’t

make it drink? There is HUGE research potential in this,

in tracking what is going on between student and lec-

turer and what it is that engages contemporary students

. Happy to chat further and keep in touch. [NameRe-

moved]”

Not

currently

teaching

Yes 4 4

Under 20 No 3 2 In small classes such as mine, the system is not necessary

because the lecturer can gauge the situation and adapt. I

can imagine that in bigger classes, the system would be

useful. A second point is that I could not always clearly

see the expressions on the students’ faces, so I was not

sure how accurate the system was, hence my score of

three on the intuitive question.

Under 20 No 5 1

Under 20 No 5 4 I think it’s a great system and idea. Not likely to be useful

in small group setting where I do most of my teaching.

Will be great in the large class, my only concern is that

it may be a bit of a distraction to the lecturer, something

one would need to get used to.

Under 20 Yes 3 3
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Largest

Class

Size

Do you

want live

feed-

back?

Intuitive

(1-5)

Useful

to me

(1-5)

Comments

Under 20 Yes 3 3

Under 20 Yes 3 4 The Interest Map would be useful to chart students en-

gagement with particular material and courses - so would

be beneficial to have a series of maps to analyse

Under 20 Yes 3 5

Under 20 Yes 4 3 I teach a small group so this system not very helpful. Is

there a link between the disengaged students and their

exam marks, i.e. low marks as compared to the engaged

students?

Under 20 Yes 4 3 Less useful in small groups

Under 20 Yes 4 4

Under 20 Yes 4 4

Under 20 Yes 4 4

Under 20 Yes 4 5 1. Instead of shading the face of the students, change

the colour of the ring from blue ( I prefer green) to red

and thickens the border. 2. Use additional colours for

measuring the intensity of the engagement i.e. colour

between blue (green) and red 4. Make provision for time

in terms of disengagement intensity 3. Motivate for big

TV screen so that the students can monitor themselves

i.e. it will be too tedious for the lecturer. In general, this

is a nice project. You can Get in touch with me for more

comments [NameRemoved].

Under 20 Yes 4 5 Looks very impressive, Richard!

Under 20 Yes 4 5

198



References

[Adair 1984] John G Adair. The Hawthorne effect: A reconsideration of the methodological

artifact. Journal of applied psychology, 69(2):334, 1984.

[Adiv 1985] Gilad Adiv. Determining three-dimensional motion and structure from optical

flow generated by several moving objects. IEEE transactions on pattern analysis and

machine intelligence, (4):384–401, 1985.

[Afzal and Robinson 2009] Shazia Afzal and Peter Robinson. Natural affect data—collection

& annotation in a learning context. In Affective Computing and Intelligent Interaction

and Workshops, 2009. ACII 2009. 3rd International Conference on, pages 1–7. IEEE,

2009.

[Agrawal et al. 1993] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient simi-

larity search in sequence databases. In International Conference on Foundations of Data

Organization and Algorithms, pages 69–84. Springer, 1993.

[Ahonen et al. 2006] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local

binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 28(12):2037–2041, Dec 2006.

[Alyuz et al. 2016] Nese Alyuz, Eda Okur, Ece Oktay, Utku Genc, Sinem Aslan, Sinem Em-

ine Mete, David Stanhill, Bert Arnrich, and Asli Arslan Esme. Towards an emotional

engagement model: Can affective states of a learner be automatically detected in a 1: 1

learning scenario. In Proceedings of the 6th Workshop on Personalization Approaches

in Learning Environments (PALE 2016). 24th conference on User Modeling, Adaptation,

and Personalization (UMAP 2016), CEUR workshop proceedings, this volume, 2016.

[Anderson et al. 2004] Amy R Anderson, Sandra L Christenson, Mary F Sinclair, and

Camilla A Lehr. Check & Connect: The importance of relationships for promoting en-

gagement with school. Journal of School Psychology, 42(2):95–113, 2004.

[Andrade 2010] Jackie Andrade. What Does Doodling do? Applied Cognitive Psychology,

24:100–106, February 2010.

[Arroyo et al. 2004] Ivon Arroyo, Carole Beal, Tom Murray, Rena Walles, and Beverly P

Woolf. Web-based intelligent multimedia tutoring for high stakes achievement tests.

In Intelligent Tutoring Systems, pages 468–477. Springer, 2004.

199



[Arroyo et al. 2007] Ivon Arroyo, Kimberly Ferguson, Jeffrey Johns, Toby Dragon, Hasmik

Meheranian, Don Fisher, Andrew Barto, Sridhar Mahadevan, and Beverly Park Woolf.

Repairing disengagement with non-invasive interventions. In AIED, volume 2007, pages

195–202, 2007.

[Arroyo et al. 2009] Ivon Arroyo, David G Cooper, Winslow Burleson, Beverly Park Woolf,

Kasia Muldner, and Robert Christopherson. Emotion Sensors Go To School. In AIED,

volume 200, pages 17–24, 2009.

[Asthana et al. 2009] Akshay Asthana, Jason Saragih, Michael Wagner, and Roland Goecke.

Evaluating aam fitting methods for facial expression recognition. In Affective Computing

and Intelligent Interaction and Workshops, 2009. ACII 2009. 3rd International Confer-

ence on, pages 1–8. IEEE, 2009.

[Astin 1984] Alexander W Astin. Student involvement: A developmental theory for higher

education. Journal of college student personnel, 25(4):297–308, 1984.

[Averill 1980] J.R Averill. A constructivist view of emotion. In R. Plutchik and H. Kellerman,

editors, Emotion: Theory, research and experience, pages 305–339. Academic Press,

1980.

[Ba and Odobez 2009] Sileye O Ba and J-M Odobez. Recognizing visual focus of attention

from head pose in natural meetings. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, 39(1):16–33, 2009.

[Ba and Odobez 2011] Sileye O Ba and J Odobez. Multiperson visual focus of attention from

head pose and meeting contextual cues. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 33(1):101–116, 2011.

[Ba 2007] S. Ba. Joint Head Tracking and Pose Estimation for Visual Focus of Attention
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rand, and William T Freeman. Eulerian video magnification for revealing subtle changes

in the world. ACM Trans. Graph., 31(4):65, 2012.

[Yeasin et al. 2006] M. Yeasin, B. Bullot, and R. Sharma. Recognition of facial expressions

and measurement of levels of interest from video. IEEE Transactions on Multimedia,

8(3):500–508, June 2006.

[Zeng et al. 2009] Zhihong Zeng, Maja Pantic, Glenn I Roisman, and Thomas S Huang. A sur-

vey of affect recognition methods: Audio, visual, and spontaneous expressions. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 31(1):39–58, 2009.

[Zimmerman 2000] Barry J Zimmerman. Self-efficacy: An essential motive to learn. Contem-

porary educational psychology, 25(1):82–91, 2000.

219


	Preface
	Abstract
	Declaration
	Acknowledgements
	Publications
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature

	Introduction
	Introduction
	Contributions
	Overview

	Background
	Introduction
	Computer Vision
	Machine Learning
	Overview

	Computer Vision Techniques
	Convolution and Linear Filtering
	Optical Flow
	Histogram of Oriented Gradients (HOG)
	Local Binary Patterns
	Haar-like Features

	Supervised Machine Learning Techniques
	Feature Vectors
	Linear Separability and Kernel Functions
	A Linear Classifier: The Neuron
	Support Vector Machines
	Boosting and Viola-Jones
	Deep Learning and Convolutional Neural Networks (CNN)

	Incorporating Multi-Sensor Data
	Data Fusion
	Feature Fusion
	Decision Fusion

	Dimensionality Reduction
	Principal Component Analysis (PCA)

	Accuracy Measures and Validation
	Classification Validation
	Cross-Subject Validation
	Imbalanced Datasets
	Approaches Used


	Related Work
	Contingent Teaching
	Affective Computing
	Emotions
	What to Measure?
	Perspectives on Emotion

	Affect Detection
	Facial Expression
	Paralinguistic Speech Features
	Body Language and Posture
	Physiology
	Multimodality
	Real versus Posed Data
	Ground Truth
	General Remarks on Affective Computing and Assumptions

	Affective Computing in Education
	Affect in Education
	Detection of Affect for Educational Purposes

	Prediction and Detection of Affect
	Boredom and Engagement
	Confusion
	Frustration
	Fatigue

	Conclusion

	The Intrusive Approach: Live Self-Reported Engagement
	Introduction
	Related Work
	Introduction
	SMS in and out of the Classroom
	Clickers in the Classroom
	Systems for Real-Time Formative Lecturer Feedback

	Design
	Architecture
	Results
	Uptake
	Student Comments

	Conclusion

	The Non-Intrusive Approach: The Wits Intelligent Teaching System
	Introduction
	Architecture
	Data Collection
	WITS Annotation Tool (WITSat)
	Data Export
	Classification
	Label Comparisons
	WITS Database (WITSdb)

	Computational Pipeline for Training and Testing
	Conclusion

	Non-Intrusive Approach using Engineered Visual Features
	Introduction
	Validity
	Classroom Actions
	Writing
	Cellphone Use
	Laptop Use
	Talking
	Raised Hand
	Yawning
	Head on Desk

	Posture
	Conclusion

	Non-Intrusive Approach using Automated Visual Features
	Introduction
	Hardware Acceleration
	Validity
	Cross-Frame Validation
	Cross-Subject Validation
	Cross-Lecture Validation

	Classroom Actions
	Writing
	Cellphone

	Posture
	Horizontal Head Pose
	Vertical Head Pose
	Conclusion

	Interest and Visualisation: The Interest Map
	Introduction
	The Interest Map Computational Pipeline
	Defining Interest: The Observational Checklist
	Recognising Interest
	Direct and Indirect Interest Classification
	Data Export
	Cross-Frame Validation
	Cross-Subject Validation
	Sequence Length
	Image Size
	Recognising New Subjects
	Cross-Lecture Validation

	Acceptance
	Respondents
	Response to the Interest Map

	Respondent Comments
	Comments from a Teaching & Learning Expert
	Performance Monitoring
	Summative Feedback
	Definition of Engagement and Accuracy
	Teachers Do This Already
	Lecturer Distraction
	Student Privacy, Discomfort and the Hawthorne Effect
	Resolution
	Display Colours
	Temporal Considerations

	Conclusion

	Conclusion
	Summary
	Accuracy and Generalisation
	Computational Performance
	Future Work
	Engage
	WITS Database
	Classifiers
	Interest Map
	Automatic Teaching Assistant (AutoTA)
	Educational Research

	Conclusion

	Questionnaire Results
	References

