
NON-LINEAR INTEGER PROGRAMMING

FLEET ASSIGNMENT MODEL

Prince Lerato Phokomela

A dissertation submitted to the Faculty of Engineering and

the Built Environment, University of the Witwatersrand,

Johannesburg, in fulfilment of the requirements for the

degree of Master of Science in Engineering.

Johannesburg, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/188769333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I declare that this dissertation is my own unaided work. It is submitted for

the degree of Master of Science to the University of the Witwatersrand, Jo-

hannesburg. It has not been submitted before for any degree or examination

to any other University.

...

(Signature of Candidate)

................day of...year............

1

Abstract

Given a flight schedule with fixed departure times and cost, solving the fleet

assignment problem assists airlines to find the minimum cost or maximum

revenue assignment of aircraft types to flights. The result is that each flight is

covered exactly once by an aircraft and the assignment can be flown using the

available number of aircraft of each fleet type.

This research proposes a novel, non-linear integer programming fleet assign-

ment model which differs from the linear time-space multi-commodity network

fleet assignment model which is commonly used in industry. The performance

of the proposed model with respect to the amount of time it takes to create a

flight schedule is measured. Similarly, the performance of the time-space multi-

commodity fleet assignment model is also measured. The objective function

from both mathematical models is then compared and results reported.

Due to the non-linearity of the proposed model, a genetic algorithm (GA)

is used to find a solution. The time taken by the GA is slow. The objective

function value, however, is the same as that obtained using the time-space

multi-commodity network flow model.

The proposed mathematical model has advantages in that the solution is

easier to interpret. It also simultaneously solves fleet assignment as well as

individual aircraft routing. The result may therefore aid in integrating more

airline planning decisions such as maintenance routing.

2

In memory of my mother

Emily Thoko Phokomela

3

Acknowledgements

My deepest gratitude goes to:

My supervisors, Dr Ian Campbell and Prof. M. Ali for agreeing to assist me

produce this body of work. Without their depth of knowledge and constant

motivation, I would not have been able to finish such an arduous task of

producing this document.

Fujitsu for inspiring the problem and providing the data for testing.

My wife, Akhona Phokomela for her patience, understanding and for

consistently spurring me on during this endeavour.

My brother, Mandla Mashaba and the rest of my family for the constant

support.

My friend, Sefako Tholo for all the technical assistance.

My Lord, Jesus Christ, through whom all things are possible.

4

Contents

Page

Declaration 1

Abstract 2

Acknowledgements 4

1 Introduction 15

1.1 Dissertation outline . 18

2 Literature Review - Airline Planning Process 20

2.1 Network design . 20

2.2 Operational planning . 23

2.2.1 Fleet planning . 24

2.2.2 Schedule planning . 25

2.2.3 Revenue management . 29

2.2.4 Crew scheduling . 32

2.2.5 Airport resource planning 33

3 Fleet Assignment 34

3.1 Fleet assignment overview . 34

3.2 Fleet assignment during disruptions 39

3.3 Fleet assignment meta-heuristics 40

5

3.4 Integrated fleet assignment models 41

3.5 Time-space multi-commodity network flow model 42

3.5.1 Notation . 44

3.5.2 Mathematical model . 45

3.6 Conclusion . 47

4 Proposed Non-linear Integer Programming Fleet Assignment

Model 48

4.1 Proposed fleet assignment model 48

4.1.1 Notation . 50

4.1.2 The mathematical model for fleet assignment 55

4.1.3 Mathematical model comparison 56

4.1.4 Explanation of the mathematical model 57

4.2 Mathematical model characteristics 63

5 Methodology - Genetic algorithm overview 64

5.1 Algorithm overview . 64

5.2 Chromosome structure . 65

5.3 Genetic algorithm parameters 66

5.3.1 Population size . 67

5.3.2 Mutation and crossover rates 67

5.3.3 Number of generations 68

5.4 Genetic algorithm operators . 68

5.4.1 Selection . 69

5.4.2 Mutation . 71

5.4.3 Crossover . 71

6 Methodology - Model Testing 76

6.1 Performance measures . 76

6.2 Input data . 77

6

6.2.1 Flight schedule . 77

6.2.2 Fleet types and flight costs 78

6.3 Implementation of the genetic algorithm 79

6.3.1 Solution method preparation 81

6.3.2 Initialisation of population 84

6.3.3 Implementation of GA 90

6.3.4 Constraint satisfaction in GA 108

6.4 Time-space multi-commodity fleet assignment model (MCNF

FAM) . 108

6.5 Fleet assignment and aircraft rotation: An example 110

7 Observations from the results obtained 116

7.1 Performance comparison: Fleet assignment 116

7.2 Performance comparison: Fleet assignment and aircraft routing 117

7.3 Objective function comparison 118

8 Discussion 119

8.1 Discussion of results . 119

8.1.1 Model robustness . 121

8.1.2 Optimisation of solution time 122

8.2 Implications of proposed fleet assignment model on additional

airline decision processes . 125

8.2.1 Maintenance scheduling 125

8.2.2 Departure time flexibility 133

9 Conclusion and Recommendations 141

9.1 Conclusion . 141

9.2 Recommendations . 142

References 142

7

A Data set sample 151

B Input data flight network 152

C Flight duration summary 153

D Flight duration percentage summary 154

E Java code for creating CPLEX LP file 155

F LP CPLEX file 157

G Java code of the genetic algorithm heuristic 160

H Java code of the quicksort algorithm 163

I Java code for converting time-space line fleet assignment to

the aircraft-time line 166

J Data set 1 solution results 167

K Data set 2 solution results 168

L Data set 3 solution results 169

M Data set 4 solution results 170

N Data set 5 solution results 171

O Data set 6 solution results 172

P Data set 7 solution results 173

Q Data set 8 solution results 174

R Data set 9 solution results 175

8

S GA solver compliance with all NLIP FAM constraints 176

T Glossary 177

9

List of Figures

Page

2.1 The number of active point-to-point air services by year (Pearce

2013) . 21

2.2 An example of a typical hub-and-spoke network (Flynn 2016) . 22

2.3 Overview of airline planning process (Lohatepanont 2002) 24

2.4 The Domestic Airline Scheduling Process at a major US airline

(Goodstein 1997) . 28

3.1 Research published for airline scheduling decisions 42

3.2 A representation of a time-space multi-commodity network flow

fleet assignment model (MCNF FAM) 43

4.1 A graphical depiction of the proposed fleet assignment model

with parameter descriptors . 49

4.2 Flights sorted by departure time 55

5.1 An example of a chromosome with no flights assigned 66

5.2 Example of mutation operator 71

5.3 Example of the single point crossover operator 72

5.4 Example of the double point crossover operator 73

5.5 Example of the uniform crossover operator 74

5.6 Example of the changed uniform crossover operator 75

10

6.1 Process flow for the non-linear integer programming fleet

assignment model using GA . 80

6.2 An example of a chromosome with 3 aircraft and 5 flights 85

6.3 An example of a chromosome with assigned flights for each

aircraft stored as a linked list for program execution 85

6.4 Chromosome with aircraft one below the other to explain GA

mechanics . 86

6.5 Random flight assignment process for each aircraft in the

population . 88

6.6 An example of aircraft shift mutation 95

6.7 An example of aircraft exchange mutation 96

6.8 An example of flight exchange mutation 98

6.9 An example of populate open spaces operators 99

6.10 Uniform crossover example . 101

6.11 Single point crossover example 103

6.12 Double point crossover example 105

6.13 Process flow for the genetic algorithm solver 106

6.14 Process flow for creating a CPLEX LP file from flight data . . . 109

6.15 Process flow for converting results from the time-space model

to an aircraft-time line . 112

6.16 Flight representation for aircraft 1 using the NLIP FAM 114

6.17 Flight representation for aircraft 1 using the MCNF FAM 115

8.1 An example of two solutions with the same objective function . 120

8.2 MCNF FAM for flights in Table 6.3 123

8.3 Maintenance for time-space fleet assignment model 125

8.4 NLIP FAM with maintenance 126

8.5 Flight connection flexibility . 133

11

B.1 Input data flight network . 152

D.1 Flight duration percentage summary 154

J.1 Data set 1 solution results . 167

K.1 Data set 2 solution results . 168

L.1 Data set 3 solution results . 169

M.1 Data set 4 solution results . 170

N.1 Data set 5 solution results . 171

O.1 Data set 6 solution results . 172

P.1 Data set 7 solution results . 173

Q.1 Data set 8 solution results . 174

R.1 Data set 9 solution results . 175

12

List of Tables

Page

4.1 Decision variables and their effect on minimum ground time

ol1,l2 for each element xl1,pol1,l2xl2,p 60

4.2 Decision variables and their effect on fl1,l2 and hl1,l2 values for

each element fl1,l2(1−hl1,l2) . 62

6.1 Data set information . 78

6.2 Fleet types utilised by airline with aircraft allocation and

associated hourly flying costs 79

6.3 Sample airline schedule . 83

6.4 Creation of the Γ matrix ensuring minimum ground time and

conservation of aircraft flow constraints for the flights in Table

6.3 . 84

6.5 An example of an adjacency list for 4 flights 84

6.6 Demonstration of how flights can be left out in initial solution

for a single aircraft . 89

6.7 Genetic algorithm standard operators and when they are executed107

6.8 Aircraft allocation for each fleet type 111

6.9 MCNF FAM and NLIP FAM results for the aircraft data in

Table 6.8 . 112

13

6.10 MCNF FAM and NLIP FAM results when using 5 Airbus A319

aircraft . 113

6.11 Common flights found for each aircraft in solutions for the

MCNF FAM and NLIP FAM 113

7.1 Performance comparison: MCNF FAM vs NLIP FAM 117

7.2 Performance comparison for fleet assignment and aircraft

routing: MCNF FAM vs NLIP FAM 118

7.3 Assignment cost comparison: MCNF FAM vs NLIP FAM 118

8.1 Γ matrix ensuring minimum ground time and conservation of

aircraft flow constraints for the flights in Table 6.3 123

8.2 An example of an adjacency list for 4 flights 124

8.3 Decision variables and their effect on bl1,l2 and gl1,l2 values for

each element bl1,l2(1−gl1,l2) . 132

8.4 Flight details and copies for MCNF FAM and NLIP FAM in

Figure 8.5 . 134

8.5 Decision variables xl1,p,n1 and xl2,p,n2 and their effect on the

ol1,l2,n1,n2 values . 139

8.6 Decision variables xl1,p,n1 and xl2,p,n2 and their effect on

fl1,l2,n1,n2 and hl1,l2,n1,n2 values 139

A.1 Data set sample . 151

C.1 Flight duration summary . 153

S.1 The time taken by GA solver to obtain first solution complying

with all constraints of NLIP FAM for each data set 176

14

Chapter 1

Introduction

In airline passenger transportation, profitability is influenced by an airline’s

planning mechanism and market access. Thus airlines engage in a complex

process of airline schedule planning.

Aircraft seats are a perishable product for an airline. A larger quantity

secures more sales but also incurs costs (Du & Pardalos 2013). It is therefore

incumbent for any airline to ensure that they have the correct fleet for each

market.

While financially rewarding, Du & Pardalos (2013) indicate that the nature

of the airline business can be characterised by the following attributes:

• Severe competition among airlines.

• Large operational scale and scope.

• Tight coupling of resources such as aircraft, crew, maintenance facilities

and airports.

• Active interactions and dependencies for all involved components.

• A dynamic environment that is prone to disruptions.

• Sophisticated customers and customer requirements.

15

• Complex policies, business rules and tight control by the aviation au-

thorities.

• Complex scheduling of routes and tasks.

• Real-time and mission-criticality of decisions.

Some of the above attributes can be solved through techniques of opera-

tions research. Lohatepanont (2002) identifies the airline scheduling processes,

which require operations research, as:

• Schedule design, which is responsible for the creation of an optimal sched-

ule.

• Fleet assignment for assigning fleet types to flights.

• Aircraft rotation for the optimal routing of specific aircraft in the sched-

ule interspersed by the maintenance of each aircraft.

• Crew scheduling, which pertains to optimally assigning airline crew to

flights in order to minimise costs.

The focus of this dissertation is on the fleet assignment process. This is

a process that airlines use to assign aircraft fleet types to flights in order to

maximise revenue and minimise operating cost. By using fleet assignment

models, major airlines have reported significant profits. The model by Abara

(1989) resulted in a 1.4% improvement in operational cost margins at Ameri-

can Airlines. Similarly, Rushmeier & Kontogiorgis (1997) reported an annual

profit increase of at least $15 million at US Airways through the use of fleet

assignment models.

The fleet assignment process is part of a multi-step sequential process in-

volving schedule design, fleet assignment, aircraft rotation and crew scheduling.

The quality of the fleet assignment plan can have a major impact on airline

16

profitability. Particularly if the assignment of aircraft is able to anticipate air-

craft rotation and crew scheduling requirements as well as conform to a flexible

schedule. The sequential execution of this multi-step process may result in the

following disadvantages:

• Executing fleet assignment after schedule design, may result in an airline

missing out on connections which improve revenue and similarly reduce

cost.

• An airline may incur unnecessary layover costs in which the crew has to

sleep over at their destination due to unconsidered flying time require-

ments in the schedule.

• Assigning fleet types to flights and then performing maintenance routing,

may result in the connection time between flights being insufficient to

ensure consistent maintenance of all aircraft after the required number

of flying hours.

Therefore, the objective of this research is to develop an alternative fleet as-

signment model and compare it with the time-space multi-commodity network

model proposed by Hane et al. (1995). The proposed fleet assignment model is

designed to potentially allow easy integration with other airline decision pro-

cesses resulting in improved profitability. To achieve this objective, it is shown

how the proposed model can integrate with maintenance scheduling and air-

craft routing. It is also shown how this model can be changed to allow for

departure time flexibility.

The proposed mathematical model provides a solution to a problem put

forward at a conference by a company which designs flight scheduling software

called Fujitsu. The brief indicated that a mathematical model was required

which would provide the following two advantages:

17

1. It needs to easily integrate fleet assignment and other airline decision

processes such as aircraft routing and maintenance scheduling.

2. It needs to be easy to interpret and implement for commercial airlines.

Fujitsu also made available schedule data from a French commercial airline to

allow for testing. To maintain the anonymity of the airline in this dissertation,

this airline shall be referred to as Airline A.

1.1 Dissertation outline

1. An overview of the airline planning process is conducted in Chapter

2 and the importance of the fleet assignment process is indicated. This

overview is followed by a literature review of the fleet assignment process

which is given in Chapter 3.

2. In Chapter 4, the proposed non-linear fleet assignment model is pre-

sented.

3. The proposed model is solved using a meta-heuristic, the genetic algo-

rithm (GA). Chapter 5 is used to give an overview of this algorithm.

The details of how this algorithm is used for the proposed mathemati-

cal model is shown in Chapter 6. In Chapter 7, the performance with

respect to time and cost of assignment between the proposed model and

the multi-commodity model is shown.

4. A discussion of the test results is presented in Chapter 8. This is fol-

lowed by a consideration of how the meta-heuristic can be optimised to

generate solutions faster. Although not tested in this dissertation, the

benefit of using the proposed model is discussed in Chapter 8 through

the introduction of departure time flexibility. The changes required on

the model to accommodate maintenance scheduling are also discussed.

18

The fleet assignment experimentation is conducted on a flight schedule

provided by Airline A. This schedule has 21 384 flights for a period of 5 months.

Each flight in the data set has a departure airport, arrival airport, departure

time and arrival time. A data set sample is provided in Appendix A, Table

A.1.

19

Chapter 2

Literature Review - Airline

Planning Process

In this chapter, we will provide an overview of the the airline planning process

which can be summarised into:

• Network design, and

• Operational planning

2.1 Network design

The focus of the network design stage in the airline industry is primarily to

find the optimal network structure and optimal routes to carry the targeted

passenger flow at the lowest total transportation cost. This objective was not a

priority prior to the Airline Deregulation Act of 1978 as the routes of US airlines

were controlled by the Civil Aeronautics Board (CAB). The CAB required that

airlines needed to show that proposed services would benefit the public and

would not adversely affect current competitors in the market. Therefore, using

long point-to-point routes was the norm (Du & Pardalos 2013).

20

Airline deregulation brought about significant changes to even the most

basic of airline operations, including fares, services, quality and safety. Du

& Pardalos (2013) noted that 18 months after deregulation, 106 000 city-pair

authorisations were approved compared to 24 000 granted 18 months before

deregulation resulting in an increase in active point-to-point routes. The graph

below shows growth in the number of active point-to-point routes from 1980

to 2010 which have more than doubled from 6 000 to over 15 000:

Figure 2.1: The number of active point-to-point air services by year (Pearce
2013)

A significant development for the airline industry was the adoption of hub-

and-spoke networks. With this type of network, an airline would have a central

hub and multiple non-hub airports. Services would be offered between the hub

airport and other non-hub airports. An example of such a network is shown

in Figure 2.2 below where Denver is the hub for all the other airports in the

network.

21

Figure 2.2: An example of a typical hub-and-spoke network (Flynn 2016)

According to Du & Pardalos (2013), significant research has been conducted

on hub-and-spoke networks. This research either assessed the advantages of

such networks in terms of airline economics or focused on mathematical mod-

els to identify optimal hub locations. This can be seen in research by McShan

& Windle (1989) who measured competitiveness in the airline industry after

deregulation. McShan & Windle (1989) concluded that hub-and-spoke net-

works would likely result in frequent flights and therefore an improved service.

A further conclusion from their research is that total distance travelled by

airlines utilising a hub-and-spoke network is reduced. O’Kelly et al. (1996)

showed that, for airlines using a hub-and-spoke network, costs increase at a

decreasing rate as passenger flow increases. This is in contrast to point-to-point

routes, which do not take advantage of economies of scale from added passen-

gers at the hub airport. Bailey et al. (1985) concluded that the hub-and-spoke

network allows airlines to have more frequent flights with larger aircraft and a

higher percentage of seat occupancy. Morrison & Winston (1986) investigated

the benefit for passengers who use airlines which utilise hub-and-spoke net-

works. They concluded that passengers benefit from hub-and-spoke networks

as they have lower fares and shorter travel times.

Other research on the airline network design focused on the number of

stops. Jaillet et al. (1996) conducted work on policy classification and defined

several classifications, namely, “one-stop”, “two-stop” and “all-stop”. For “one-

22

stop” routes, an aircraft would fly passengers from one airport directly to

another. A “two-stop” route happens when an airline provides an additional

connection. An “all-stop” route which is an assumed policy in a monopolistic

market happens when an airline caters for the maximum number of stops.

According to Du & Pardalos (2013), most airlines in the US provide at most

two stops for some routes. The rationale is that it is more profitable for airlines

and does not make air travel too undesirable for passengers. The conclusion

from Jaillet et al. (1996) is that a cost effective network design appears to

be hub-and-spoke structured. They further recommended that airlines should

adopt a “one-stop” policy. This is to provide for social factors such as passenger

arrival time and to reduce the length of trips.

2.2 Operational planning

Operational planning involves the sequential steps shown in Figure 2.3. Strate-

gic decisions require a few years to be executed while other tactical decisions

are taken on a daily basis. The long-term decisions involve the mix of aircraft

utilised which is decided on during the Fleet Planning stage. This is followed

by Schedule Planning in which airlines determine the routes they will fly and

the development of a schedule which encompasses schedule design, fleet as-

signment and aircraft rotation. Near the time of flying, Revenue Management

which involves prices of seats and seat inventory control is implemented. Rev-

enue Management is conducted simultaneously with crew scheduling for each

flight and scheduling of airport resources. All these steps which are shown in

the figure below are explained in the sections that follow:

23

T
im

e
H

or
iz

on

T
yp

e
of

de
ci

si
on

L
O

N
G

SH
O

R
T

ST
R

A
T

E
G

IC
T

A
C

T
IC

A
L

Fleet Planning

Schedule Planning
- Route development
- Schedule development

* Schedule design
* Fleet Assignment
* Aircraft rotation

Revenue
Management
- Pricing
- Seat inventory
control

Crew Scheduling

Airport Resource
Planning

Figure 2.3: Overview of airline planning process (Lohatepanont 2002)

2.2.1 Fleet planning

Fleet planning is a process whereby an airline decides how many and what

type of fleet types it should acquire or lease. This is a strategic decision which

may involve a huge capital investment. A major re-vamp of a fleet or major

changes in the fleet are done infrequently by airlines as each decision has a

long-lasting impact on profitability. According to Belobaba (2009), there are

two major approaches to fleet planning, namely:

• “Top-Down” approach, and

• “Bottom-Up” approach.

The “Top-Down” approach involves a system wide financial analysis and

normally uses market information to estimate demand, revenue and costs. The

“Bottom-Up” approach however simulates the “to-be” airline operations. The

24

success of the “Bottom-Up” approach is dependent on the richness of data

especially for detailed forecasts and future operational scenarios.

In the recent past, a combination of high fuel costs as well as competition

has led to the introduction of low-cost carriers. These “no frills” airlines have

fewer fleet types, plan for high aircraft utilisation and target specific point-to

point routes. The level of competition is exacerbated by the manufacturing of

long-range, minimum-stops passenger aircraft.

Once the fleet has been selected by an airline, there is a long-term commit-

ment. Thus, all other planning processes will take the fleet family as given.

Decisions made at this level significantly affect down-stream decision processes.

2.2.2 Schedule planning

The schedule planning step begins at least 12 months before the schedule

goes into operation. Airlines use the current schedule as a base and make

modifications to account for market changes.

The three major activities of schedule planning are:

• Schedule design,

• Fleet assignment, and

• Aircraft routing with maintenance scheduling.

Schedule design

To increase revenue, airlines have to optimise the use of given resources. The

airline schedule is drafted a few months before it is executed. This complex

stage can be broken down into two steps, namely:

• Frequency planning, and

• Timetable development.

25

For frequency planning, it is the duty of planners to determine the appro-

priate service frequency in a market. Once flying frequency is determined, a

timetable is developed. According to Du & Pardalos (2013), the factors that

must be considered to draft an effective schedule are:

• Passenger demand at each airport in conjunction with the level of com-

petition.

• Route features such as distances, operational restrictions, aircraft char-

acteristics, flying speed and fuel cost.

Since profit is dependent on market share, maximisation of market share

with limited aircraft capacity is the goal of an airline. Teodorovi (1988) showed

that market share on routes with a large number of competitors is determined

largely by flight frequency. Another important consideration is passenger seg-

mentation. If the market is a long-haul international destination, the airline

might be able to only offer a limited number of daily flights. A market domi-

nated by business travellers requires frequent flight availability and convenience

to perform connections at hub airports. Teodorović & Krcmar-Nozić (1989)

presented a multi-criteria model that aims to incorporate the major consider-

ations for a good flight schedule in a competitive environment. These criteria

focused on the following elements:

• Profit maximisation,

• Minimisation of passenger delays, and

• Maximisation of the number of passengers captured.

After the airline decides the number of flights it wants to offer in a market,

the timing of those flights is determined. The main dependencies are market

characteristics which include business, leisure or international travellers. Other

26

dependencies are informed by schedule constraints such as airport constraints,

personnel constraints (airport and crew) and market peak-period considera-

tions (Lohatepanont 2002).

The time-line diagram in Figure 2.4 shows the domestic aircraft scheduling

process at a major US airline. Between 5 and 10 years before departure, the

airline engages in a fleet and route development process. The period between

1 year and immediately before departure can be summarised into the following

activities:

• Schedule planning (365 days to 90 days before departure), which has an

output of the desired schedule.

• Intermediate scheduling (90 days to 75 days before departure), where

demand which affects frequency is revised.

• Current scheduling (75 days to 45 days before departure), which takes

market factors into consideration. After this point the schedule is fixed

and only aircraft could be changed due to unavailability and aircraft

maintenance.

All other scheduling after this time considers other elements of the airline

planning process which are crew scheduling, airport resource planning and

marketing activities (Goodstein 1997). The cost of each flight is also deter-

mined and profitability maximising strategies are implemented. Parking for

each aircraft is also arranged and the schedule communicated. Below is the

time-line for the airline with all the milestones mentioned above for schedule

planning, intermediate planning, current scheduling as well as crew and airport

resource planning:

27

365 90 75 45 30 0
Time (days before departure)

Profit focus

Feasibility focus

Schedule
planning

Intermediate
planning

Current
scheduling

Crew scheduling
Airport resource planning

Departure

Figure 2.4: The Domestic Airline Scheduling Process at a major US airline
(Goodstein 1997)

Fleet assignment

During the fleet assignment activity, airlines assign available fleet types to

every flight leg such that seating capacity on the aircraft closely matches the

demand. A comprehensive literature study of the fleet assignment process is

included in Chapter 3 of this dissertation.

Aircraft rotation and maintenance scheduling

Aircraft rotation and maintenance scheduling involves the compilation of a

maintenance feasible routing of aircraft. Traditional fleet assignment models

follow a sequential process in that flights are assigned to fleet types according

to the number of available aircraft per fleet. Thereafter, the aircraft routing is

determined for each aircraft in the fleet. Lohatepanont (2002) therefore high-

lights that for many fleet assignment models including those by Hane et al.

(1995), and Clarke et al. (1996), maintenance scheduling is approximated.

In this approximation, airlines ensure a sufficient number of maintenance op-

portunities are available for each fleet type. While this may ensure that on

average, all fleet types are in maintenance every night, it does not guarantee

that individual aircraft are treated equally (Lohatepanont 2002).

28

Since airlines must meet the required standards for maintenance of air-

craft, Sriram & Haghani (2003) indicate that there are normally three types of

maintenance checks performed. These checks range from pilot inspections after

each flight to type C checks during which each aircraft is rebuilt from scratch

every few years. According to Sriram & Haghani (2003), type A checks are the

shortest in duration and they normally take 4 hours. Sriram & Haghani (2003)

further note that type A checks are performed every 40 to 65 flight hours and

involve inspection of all major systems such as landing gear, engines and con-

trol surfaces. Type B checks are performed every 300 to 600 flight hours and

entail a thorough visual inspection plus the lubrication of all moving parts

such as horizontal stabilisers. These type B checks normally require 15 hours

for each aircraft. Sriram & Haghani (2003) indicate that the type C check is

done on each aircraft once every 4 years and requires each aircraft being ser-

viced not to be scheduled for a period of up to a month. According to Sriram

& Haghani (2003), the principal requirement for optimising maintenance for

airlines is in meeting type A checks and type B checks.

2.2.3 Revenue management

Given a schedule, the objective during the revenue management activity is to

use optimization tools to maximise profitability. The fare levels offered for a

flight are affected by market factors such as competitor fares. In order to be

effective in a competitive environment, many airlines offer a wide variety of

fares. Belobaba (1987) identifies two distinct but closely related components

for revenue management, namely:

• Differential pricing, and

• Seat inventory control.

29

Pricing

Many airlines use differential pricing, that is, offering different fare products

with different restrictions and services at different prices. According to Belob-

aba (1987), this concept takes advantage of the customers’ willingness to pay.

The result is that the same product is sold at different prices to customers,

depending on the customers’ perception of value. The objective of differential

pricing is to stimulate demand with low-fare offerings and to capture the will-

ingness to pay of high-fare passengers. Thus an aspect of revenue management

is to balance the number of discount and full-fare reservations accepted for a

flight. The need to balance this aspect of pricing comes from the result that

lower fares attract more passengers, thus creating greater load factors. How-

ever, they also take away seats which could have been sold at a higher margin.

Fare restrictions are used to prevent demand dilution from diversion, which

happens when existing high-fare passengers opt to take advantage of low fare

offerings.

Seat inventory control

With seat inventory control, airlines limit low-fare seats and protect high-fare

seats for later booking passengers. According to The revenue enhancement po-

tential of airline yield management systems (1992), several methods are utilised

by airlines to achieve this objective, namely:

• Overbooking: acceptance of bookings in excess of capacity.

• Fare class mix: limiting the availability of seats sold at various price

levels on a flight leg.

• Itinerary control: discrimination of passengers depending on their itineraries.

Most airlines manage seat allocation on a flight-by-flight basis. This is

due to the complexity of the seat inventory control process. If we consider

30

an airline with a hub-and-spoke network, every flight from the hub can have

passengers going to any of the spoke airports. Every flight to the hub can

have passengers from all of its spoke airports. In addition, every flight has

several fare levels and this is over and above the issue of passenger demand

which is not deterministic. Thus Du & Pardalos (2013) conclude that to build

and solve a model optimising seat utilisation, which covers all the decisions

for all the combinations of flights, and also fully address the issue of customer

demand for each flight is impossible. Thus all seat inventory models have

built-in assumptions which make modelling possible.

Strategic alliances

Strategic alliances are used to maximise profitability for an airline. They allow

airlines to provide a service beyond the major city in another country. Accord-

ing to Whalen (2007), this partnership can take on several forms depending

on integration between airlines, namely:

• Code-sharing alliance, and

• Antitrust immunised alliance.

Pierce & Doernhoefer (2011) indicate that the benefit for airlines and cus-

tomers due to code-sharing are:

• A seamless booking experience as the marketing airline puts its ticket

code on a connecting flight operated by another airline.

• A much more coordinated service in terms of flight times between mul-

tiple airlines.

• Interline passengers benefit from lower fares behind and beyond interna-

tional hub airports.

31

• Feeder routes allow airlines to operate larger aircraft in city pairs which

would otherwise not have the required demand.

2.2.4 Crew scheduling

In crew scheduling, an airline’s objective is to find a minimum cost assign-

ment of flight crew (pilots and/or attendants) to flight legs. This process

is subject to restrictions on qualified pilots to fly only a certain aircraft type,

maximum time-away-from-base requirement and maximum flying time require-

ment. Coupled with these restrictions are union contract considerations and

provision of rest time for personnel. For most airlines, the crew expense is

the second largest cost component, second only to the fuel expense, thus a

small improvement in crew scheduling can lead to millions in savings. This

has driven a lot of focus on finding optimal ways to schedule airline crews.

Barnhart & Talluri (1997) break crew scheduling into the following elements:

• Crew-pairing problem, and

• Crew assignment problem.

The objective during crew pairing is to find work schedules that cover

each flight and also minimises total crew cost. A pairing is made up of duties

segmented by rest periods where a duty is a consecutive number of flights flown

on a single day which satisfies all work rules. Sometimes, a crew member need

not be assigned to a connected sequence of flights. The disconnection is fixed

by dead-heading where a flight crew member is repositioned by flying as a

passenger. Barnhart & Talluri (1997) showed the advantages of dead-heading

especially in long-haul crew pairing problems.

In crew assignment, a crew schedule is combined manually with rest pe-

riods, training and vacations to create an extended plan for each individual.

Lohatepanont (2002) classified the traditional methods for crew assignment as:

32

• Rostering, and

• Bid-line generation.

With rostering, which is mainly used in Europe, schedules are constructed

for specific individuals with a subset of schedules selected so that each indi-

vidual is assigned to a schedule. For bid-line generation, an airline assigns

crew according to preferences from a bidding process with senior staff getting

priority.

2.2.5 Airport resource planning

Airport resource planning is an operational process in which the airline al-

locates gates for aircraft and schedules ground personnel. Gates would be

allocated to arriving and departing aircraft. The allocation also ensures that

all flight legs are covered, aircraft maintenance is conducted and passenger

connections can be made within reasonable time Lohatepanont (2002).

33

Chapter 3

Fleet Assignment
In the airline planning process from Chapter 2, it was shown that fleet assign-

ment is one of four operational planning processes executed by airlines. The

focus of this chapter is to delve into this process. This is done by provid-

ing a historical overview of research relating to the fleet assignment process

and indicating how disruptions affect fleet assignment planning. A synopsis of

meta-heuristics used for solving the fleet assignment problem is also provided

as the proposed solution will also use meta-heuristics. The time-space multi-

commodity network fleet assignment model which is the basis for most fleet

assignment models is also presented.

3.1 Fleet assignment overview

The earliest application of operations research techniques for airline scheduling

was shown by Dantzig & Ferguson (1954). They considered fleet assignment

for non-stop routes. These are pre-defined routes between multiple airports

which equal the number of available aircraft. In their model, a case study with

69 aircraft of four fleet types, catering to a demand of 124 000 passengers was

conducted. The solution approach involved assigning each aircraft to a route

until all aircraft in the fleet are utilised or all passengers are served. After

the system cost is determined, an iterative process of shifting aircraft between

34

routes was adopted until there were no more opportunities for cost saving.

Daskin & Panayotopoulos (1989) proposed an integer linear programming

model that assigns aircraft to routes. Their formulation depends on a two-step

process to identify feasible routes from the hub to multiple cities and back to

the hub for a specific time-frame. This is followed by the assignment of the

available aircraft to those routes while maximising profitability. They used a

Lagrangian relaxation technique to obtain a solution.

Abara (1989) presented an integer programming model that uses underly-

ing connection arcs as decision variables to assign fleet types to flights legs.

This was applied to a daily schedule which ensured that the same number of

aircraft of a specific fleet type were available every morning. Abara (1989)

proposed a penalty on the objective function which is related to the shortage

of originating and terminating fleet types at each airport. Because this model

is dependent on available connections for each fleet type, the number of vari-

ables could easily grow to an unmanageable size due to the number of possible

connections. According to Sherali et al. (2006), another limitation is that dif-

ferent flying times and turn around times (minimum ground service times) are

not allowed with the model presented by Abara (1989). Abara (1989) counters

the explosion of variables by specifying a limit on the number of connections.

The model utilised by Abara (1989) resulted in a 1.4% reduction in cost at

American Airlines.

In airline scheduling, profitability is enhanced by the number of passen-

gers carried. In order to maximise profitability, Berge & Hopperstad (1993)

developed an approach known as Demand Driven Dispatch (D3) that identi-

fies capacity reassignments as a departure date approaches. This model takes

advantage of a demand forecast near departure in order to effect aircraft and

crew swaps without affecting operations. For their data sets, this lead to cost

savings of between 1% and 5%. Other research on this topic includes the work

35

done by Sherali and Zhu (2008) who model stochastic passenger demand. Sher-

ali et al. (2013a) also presented a model which uses optional flight legs in order

to maximise profitability. For this model, the flight leg to be flown is selected

while addressing recapture of customers and fleet assignment.

Hane et al. (1995) modelled the fleet assignment problem as a time-space

multi-commodity network flow fleet assignment model (MCNF FAM). In this

model, fleet types are assigned to flight legs in the network using the available

fleet of aircraft. In comparison with the “connection network” model presented

by Abara (1989), this model focused on representing flight legs in a time-space

network. The number of decision variables was reduced as the number of flight

legs is normally far less compared to the number of connections. However,

Rushmeier & Kontogiorgis (1997) pointed out that the MCNF FAM is not

able to distinguish between aircraft that are on the ground. Therefore, this

model has limited usability especially for aircraft routing.

Hane et al. (1995) also introduced pre-processing techniques which reduce

the network size. The first pre-processing technique takes advantage of the

observation that as long as the correct connections are represented, consecu-

tive arrivals and subsequent consecutive departures can share a single node. In

the experiments conducted by Hane et al. (1995), this technique, called node

aggregation, reduced the number of rows by a factor of 3 to 6 and the number

of columns by a factor of 1 to 3. The second pre-processing technique assumes

that for hub-and-spoke networks, there are times, especially at the spoke air-

port with sparse flight activity where there are no aircraft on the ground at

that airport. These ‘zero-valued’ flows with no aircraft on the ground are

nominated for deletion from the network. This simplification results in the

creation of islands so that some nodes would have the same number of arrival

and departure flights. The third pre-processing technique eliminates missed

connections where two flights that are assigned to the same fleet type cannot

36

connect due to longer turn around times for that fleet type. Hane et al. (1995)

utilised these pre-processing techniques on a specific problem instance. They

reported a reduction in the problem size from 48 982 rows and 66 942 columns

to 7 703 rows and 20 464 columns.

Rushmeier & Kontogiorgis (1997) used the same model as Abara (1989)

with added pre-processing to create connection complexes with an equal num-

ber of arrival and departure legs representing possible connections. They

demonstrated that these complexes reduce the solution time substantially with-

out an adverse effect on accuracy or profit. Rushmeier & Kontogiorgis (1997)

reported an annual saving of at least $15 million at US Airways.

The MCNF FAM optimises profitability for each flight leg, however, many

customers fly multiple legs. The flight legs in this model are independent, thus

many airlines lose revenue due to spilled passengers. These are passengers

who cannot be accommodated in subsequent flights due to capacity constraints.

Jacobs et al. (1999) derived an iterative method for solving the fleet assignment

model that enhances the spill estimation process which is static in the model

presented by Hane et al. (1995). The algorithm proposed by Jacobs et al.

(1999) begins by solving a special relaxation of the fleet assignment model on

an instance of estimated passenger flow. The results are then used to revise

passenger flow in the network. The algorithm keeps on iterating until all

constraints are satisfied and an integer solution is obtained.

In order to improve profitability, Rexing et al. (2000) took an approach that

considered integrating fleet assignment with other airline decision processes.

They presented an expanded fleet assignment model, based on the model by

Hane et al. (1995). Their expanded fleet assignment model allows for re-

timings of nodes within small time windows. The result is the integration of

flight scheduling and fleet assignment, which is restricted by the time window

between legs. For this model, the set of departure and arrival times is specified

37

for a particular time window. Each possible departure node is connected to

an aligned arrival node by copies of flight legs. Only one of these copies needs

to be flown. Rexing et al. (2000) reported that this extra departure time

flexibility resulted in a cost saving of over $67 000 per day for 10 minute time

windows at a major US airline.

According to Belanger, Desaulniers, Soumis & Desrosiers (2006), the model

proposed by Rexing et al. (2000) at times generates slightly inaccurate prof-

itability due to departure times of flights with the same origin-destination (O-

D) pairs being too close. The result is an overestimation in passenger demand

and overstated pricing as those flights effectively compete for customers. Be-

langer, Desaulniers, Soumis & Desrosiers (2006) thus proposed a periodic fleet

assignment model with time windows and used branch-and-bound as well as

column generation to obtain a solution. In this model, penalties are introduced

for short spacings for flights with the same O-D pairs.

For increased profitability, Barnhart et al. (2002) showed that there is an

increased improvement in profitability from including network effects which

approximate the number of spilled passengers in the fleeting process. They also

concluded that there is an even bigger improvement by including recapture

where passengers are redirected from their desired itinerary to an alternate

itinerary. They observed that with the fleet assignment model proposed by

Hane et al. (1995), network effects cannot be determined and passengers on

multi-leg itineraries can be spilled from one flight leg but not the others. Their

extended version of the fleet assignment model is called the Itinerary-Based

Fleet Assignment Model (IFAM). It was shown that the IFAM model is better

able to make fleeting decisions that allow high revenue passengers to be carried

and low revenue passengers to be spilled. It is worth noting that opportunities

for successful recapturing diminish as capacity on alternate itineraries becomes

more fully assigned.

38

3.2 Fleet assignment during disruptions

Flight delays not only increase operational costs of the delayed flight, but

sometimes affect downstream flights. They also inconvenience passengers and

the airline’s credibility is damaged. The most common factor causing delays is

inclement weather and since airlines cannot control the weather, they have to

create strategies to minimise the impact. According to Du & Pardalos (2013),

there are two types of delays, which are ground delays and airborne delays.

Ground delays affect airlines before take-off and airborne delays are caused by

a delay in landing an aircraft due to unforeseen circumstances at an airport.

When there are delays, airlines are faced with a decision of cancelling several

flight legs.

One solution to manage disruptions is swapping aircraft at specific air-

ports to cater for changed load factors and disruptions due to mechanical

faults. Clarke & Laporte (1997) however indicates that swapping aircraft dur-

ing disruptions is problematic as it affects the crew, as the specifications of the

aircraft being swapped may not be the same. A different strategy for swap-

ping aircraft has been suggested by Ageeva & Clarke (2000) where routes are

overlapped within an aircraft rotation at hubs. This gives an opportunity to

swap aircraft should there be a disruption affecting a specific aircraft. In or-

der to minimise the swapping of the crew when aircraft are swapped, Smith &

Johnson (2006) showed that aircraft swaps can be effectively done by imposing

station purity. For effective station purity, the number of fleet types serving

a given station should not exceed a specified limit, and the fleet types in the

model are defined as crew-compatible families.

Rosenberger et al. (2002) described a way in which airlines can recover

operations by cancelling a minimum number of flights during disruptions. This

is done by the creation of short-cycles within fleet assignment for each aircraft

path. With this string-based fleet assignment model, airlines are able to cancel

39

a minimum number of flights while an aircraft remains at an airport only to

depart from that airport later. This model is better executed in hub-and-spoke

networks. The other possibility, according to Rosenberger et al. (2004), is for

airlines to ferry the aircraft to the next airport without passengers. This is

normally the last option due to cost implications.

Rosenberger et al. (2004) provided another strategy for airlines to recover

operations and minimise the impact to downstream flights by isolating hubs.

This is effected by adding a constraint within fleet assignment such that flights

from one hub to another are minimised so that a disruption at a single hub

does not affect other connected hubs.

3.3 Fleet assignment meta-heuristics

Meta-heuristics have been widely used for airline schedule planning. For fleet

assignment, the genetic algorithm has been used extensively in optimising

a given schedule. This can be observed in the contribution by Lee et al.

(2007) where a given schedule is optimised in order to minimise the impact

of disruptions from delays. This is done by re-timing of departure times for

all flights in order to minimise losses from disruptions. A similar objective

is achieved by Burke et al. (2010) who pro-actively monitor disruptions for a

given airline and use the genetic algorithm to create departure time flexibility

by re-timing flights. The recovery strategies used in both models involved

swapping aircraft, cancelling flights and accepting delays. For both models,

the genetic algorithm is applied to an already defined schedule which has been

constructed using the MCNF FAM proposed by Hane et al. (1995).

Other uses of the genetic algorithm for airline scheduling are observed in

contributions by Christou et al. (1999) and Ozdemir & Mohan (2001). For

both contributions, genetic algorithms are used to schedule flight crews.

40

3.4 Integrated fleet assignment models

The latest work on airline fleet assignment is focused mainly on the integra-

tion of fleet assignment with other airline scheduling decisions. A notable

integrated model is provided by Barnhart et al. (1998). In this model, “flight

strings” which are the flights in a schedule are assigned to specific aircraft. The

result is the creation of a routing for each aircraft which minimises cost. This

mathematical model is solved using a two-step process of identifying all po-

tential routes and thereafter assigning “strings” of routes to each aircraft. The

model used a “depth-first-best-bound-depth-first” node choice rule to find an

optimal solution. This rule ensured that the next node chosen is one with the

best bound with a limitation of 1000 searched nodes set. This model therefore

combined both fleet assignment as well as aircraft routing even though 90%

of the solution time was spent in string generation for some cases. It was

shown that for 190 flights, more than 500 million strings were generated. The

solution times of up to 10 hours were observed, with the best solution time

of 5 hours and 27 minutes for a tolerance of 1.00% compared to the MCNF

FAM. This was obtained for 1 124 flights visiting 40 cities with 9 fleet types.

The benefit of such a model was shown to be improved aircraft utilisation,

the determination of aircraft rotation and the augmenting of maintenance to

“strings” of flights so that all aircraft are adequately maintained.

Other integrated models are models by Rexing et al. (2000) which has been

explained earlier. Sherali et al. (2013b) performed fleet assignment while con-

sidering flight re-timing and the use of optional legs for flight flexibility. Pita

et al. (2012) considered integrated flight scheduling and fleet assignment under

airport congestion. Liang & Chaovalitwongse (2012) performed fleet assign-

ment with maintenance routing. The bar graph in Figure 3.1 is created from

the papers used to perform a literature study for this dissertation. It shows

a summary of research for airline scheduling decisions. As can be seen, the

41

number of publications focusing on integrated models has increased signifi-

cantly. Fleet assignment and aircraft routing have also remained a focus for

cost saving in airline scheduling:

Figure 3.1: Research published for airline scheduling decisions

3.5 Time-space multi-commodity network flow

model

According to Lohatepanont (2002), the basis for several fleet assignment mod-

els used in industry is the MCNF FAM proposed by Hane et al. (1995). The

objective of this model is to assign aircraft types to flight legs based on a fixed

schedule while maximising revenue or minimising cost. Figure 3.2 shows a

graphical representation of the model with diagonal lines between airports in-

dicating the flights. Ground arcs are represented by the dashed lines and the

points where each arc ends and others start are the nodes:

42

A

B

C

08:00 09:00 10:00 11:00

ground arcs

flight arcs

Time (hrs)

A
ir

po
rt

Figure 3.2: A representation of a time-space multi-commodity network flow
fleet assignment model (MCNF FAM)

The MCNF FAM is defined as follows (Lohatepanont 2002):

Given a flight schedule with fixed departure times and cost (fleet

and flight specific operating and spill costs), find the minimum cost

assignment of aircraft types to flights, such that (1) each flight is

covered exactly once by a fleet type, (2) flow of aircraft by type is

conserved at each node, and (3) only the available number of aircraft

of each type are used.

While fleet assignment can also be analysed using maximisation of profit,

minimising cost provides for an easier model which does not take into consider-

ation fill factors and competition. Therefore, minimisation is also adopted for

this paper so that only the cost of each flight and not profitability is considered.

43

3.5.1 Notation

Sets

E : The set of airports indexed by e.

L : The set of flight legs in the flight schedule indexed by l.

K : The set of different fleet types indexed by k.

T : The set of all event times (departure or arrival with minimum
ground service time) at all airports, indexed by t. The event at time
t occurs before the event at time t+ 1.

N : The set of nodes in the time-line network indexed by k,e,t.

CL(k) : The set of flight legs flown by fleet type k during a nominated time
defined as the count time.

I(k,e,t) : The set of inbound flight legs to node (k,e,t).

O(k,e,t) : The set of outbound flight legs to node (k,e,t).

Decision variables

y(k,e,t+) : The number of aircraft of fleet type k ∈K that are on the ground
at airport e ∈ E immediately after time t ∈ T .

y(k,e,t−) : The number of aircraft of fleet type k ∈K that are on the ground
at airport e ∈ E immediately before time t ∈ T .

y(k,e,tm) : The number of aircraft of fleet type k ∈K aircraft that are on the
ground at airport e ∈ E during the nominated count time tm.

xk,l =

1 If flight leg l ∈ L is assigned to fleet type k ∈K
0 Otherwise

Parameters

qk : The number of aircraft of fleet type k,∀k ∈K.

ck,l : The assignment cost when fleet type k ∈K is assigned to flight leg
l ∈ L.

44

3.5.2 Mathematical model

The mathematical model is formulated as follows:

Min
∑
l∈L

∑
k∈K

ck,lxk,l (3.1)

Subject to:

∑
k∈K

xk,l = 1, ∀l ∈ L (3.2)

y(k,e,t−) +
∑

l∈I(k,e,t)
xk,l−y(k,e,t+)−

∑
l∈O(k,e,t)

xk,l = 0, ∀(k,e, t) (3.3)

∑
e∈E

y(k,e,tm) +
∑

l∈CL(k)
xk,l ≤ qk, ∀k ∈K (3.4)

xk,l ∈ {0,1}, ∀k ∈K, ∀l ∈ L (3.5)

y(k,e,t+),y(k,e,t−),y(k,e,tm) ≥ 0, ∀(k,e, t) (3.6)

Constraints (3.2) are cover constraints and they ensure that each flight is

covered once by a fleet type. This attribute is made certain by equating the

summation of each flight assignment for each fleet type to 1 and this is repeated

for each leg. Therefore, only a single fleet type assignment can be performed for

each flight leg. Constraint (3.3) conserves aircraft flow. For this constraint, the

number of fleet types on the ground as well as fleet type arrivals immediately

before each node are added. The number of fleet types on the ground as well as

fleet type departures after the said node are also added. Balance is maintained

for each node by calculating the difference between the summation of fleet type

arrivals and ground fleet types before the node and the summation of fleet type

departures with fleet types on the ground after the node. Constraints (3.4) are

count constraints and ensure that only the available number of each aircraft

45

for each fleet type are used in the assignment.

The objective function in equation (3.1) is made up of operating costs which

include the cost of fuel, gate rental as well as airport costs. These costs are

calculated for each flight and fleet type combination. For more advanced fleet

assignment models, passengers who cannot be accommodated due to capacity

constraints are spilled. A cost is estimated based on the number of spilled pas-

sengers. Furthermore, an estimation can be determined for spilled passengers

who are recaptured and flown on itineraries other than their desired itineraries

Barnhart et al. (2002).

According to Lohatepanont (2002), the characteristics of this model are:

• The optimal assignment of fleet types to the available flights.

• Flight leg independence: The choice of one flight leg is not influenced by

another.

• Equal fare allocation: because the MCNF FAM assumes flight leg inde-

pendence, fare allocation for passengers flying multiple legs is the same

as for passengers flying a single flight leg. No optimisation scheme is

used to determine differences.

• Spill estimation: the way to determine spilled revenue is deterministic

and it uses unconstrained demand to determine if all passengers have

been carried.

• Individual aircraft utilisation is not accounted for as fleet types are as-

signed and the route per aircraft is not established. Only the overall

aircraft utilisation is accounted for.

46

3.6 Conclusion

The MCNF FAM proposed by Hane et al. (1995) has led to many advances in

fleet assignment modelling. These advances include:

(a) The pre-processing steps used by Hane et al. (1995) to reduce the number

of variables.

(b) The introduction of flight copies to improve the number of potential flight

connections proposed by Rexing et al. (2000).

(c) An extension of the flight copies model from Rexing et al. (2000) by Be-

langer, Desaulniers, Soumis & Desrosiers (2006). They introduced penal-

ties for short spacings for flights with the same O-D pairs in order to

minimise impact of overestimated passenger demand.

(d) An extension of the MCNF FAM from Hane et al. (1995) by Jacobs et al.

(1999) to improve the spill estimation of customers.

(e) An extension of the MCNF FAM from Hane et al. (1995) by Barnhart

et al. (2002) who modelled the spill and recapture of customers.

The model by Hane et al. (1995) assigns aircraft fleet types to flights.

Therefore, the route taken by each aircraft is not modelled. This extension

was introduced by Barnhart et al. (1998) who used “flight strings” to model

both the fleet assignment as well as aircraft routing. The “flight strings” model

resulted in the simultaneous solution of fleet assignment and aircraft rotation

which includes maintenance.

47

Chapter 4

Proposed Non-linear Integer

Programming Fleet Assignment

Model

As shown in Chapter 3, the MCNF FAM proposed by Hane et al. (1995)

(Chapter 3, Section 3.5) can be used or integrated with more elements or

decisions of airline scheduling. In this chapter, we propose a non-linear integer

programming fleet assignment model (NLIP FAM). An explanation as well as

validation of this model is presented and its characteristics are provided.

4.1 Proposed fleet assignment model

Figure 4.1 shows a representative example of the proposed fleet assignment

model. In this example, there are two aircraft, an Airbus A330 (aircraft 1)

and an Airbus A320 (aircraft 2). According to Figure 4.1, the A330 aircraft

will fly “flight 1” departing from “airport B” and arriving at “airport C”. It

thereafter flies “flight 2” from “airport C” to “airport B”. The length of each

flight represents the duration of the flight irrespective of the aircraft used. The

time between “flight 1” and “flight 2” is denoted as the minimum ground time.

48

This is the minimum time that each aircraft has on the ground for airline

personnel to prepare the aircraft before departing on the next flight and it

is the same for all aircraft. Similarly, the Airbus A320 aircraft departs from

“airport A” at 08:00 flying “flight 3” and arrives at “airport B” at 09:00. This

flight is followed by “flight 4” from “airport B” to “airport A”. Thereafter,

“flight 5” from “airport A” to “airport C” is flown.

As can be seen from the example in Figure 4.1, unlike the MCNF FAM, the

NLIP FAM provides a schedule for each aircraft and not for each fleet type.

The proposed NLIP FAM thus has to be understood from the perspective that

all aircraft belonging to an airline are part of its fleet. It is in this context that

this model is also a fleet assignment model. This is also the reason why this

model not only provides fleet assignment, but simultaneously solves aircraft

routing. The NLIP FAM may be represented by an aircraft-time graph as

seen in the example in Figure 4.1 below. This is different from the time-space

representation of the MCNF FAM shown in Figure 3.2:

(2)A320

(1)A330

08:00 09:00 10:00 11:00
Time (hrs)

A
irc

ra
ft

A B3 B A4 A C5

B C1 C B2

Departure airport for flight 1
represented by parameter d1
or more generally dl where
l is the flight leg.

Arrival airport for flight 2
represented by notation a2
or more generally al where
l is the flight leg.

Flight 1 and flight 2 adhere to the
minimum ground time (gtmin)
and conservation of aircraft flow
at airport C.

Departure time of flight 3
represented by parameter s3
or more generally sl where
l is the flight leg.

Arrival time of flight 4
represented by parameter t4
or more generally tl where
l is the flight leg.

Figure 4.1: A graphical depiction of the proposed fleet assignment model
with parameter descriptors

49

The proposed mathematical model can be defined as follows:

Given a flight schedule with fixed departure times and cost per flight,

find the minimum cost of flights assigned to aircraft, such that (1)

each flight is covered exactly once by an aircraft, (2) aircraft depart

from the last airport which they landed on and (3) minimum ground

time between flights is maintained for each aircraft

4.1.1 Notation

Sets

P : The set of all aircraft indexed by p. |P | is the number of aircraft in
P . For the example in Figure 4.1, |P | = 2. Dissimilar to the MCNF
FAM which assigns flights to fleet types, the NLIP FAM assigns the
flights to the actual aircraft and therefore an index for each fleet
type is not required.

L : The set of all flight legs in a schedule indexed by l. This set is sim-
ilar to that used for the MCNF FAM. |L| is the number of flight legs
in L. For the example in Figure 4.1, |L|= 5.

Parameters

dl : Departure airport of flight leg l ∈ L.
al : Arrival airport of flight leg l ∈ L.
tl : Arrival time of flight leg l ∈ L.
sl : Departure time of flight leg l ∈ L.
gtmin : Required minimum ground time between any pair of flights flown

by the same aircraft p ∈ P . This time allows for passengers to get off
and flight crew to prepare an aircraft for the next flight.

λ : An all-one vector such that λ ∈ R|P |.
τ : An all-one vector such that τ ∈ R|L|.
η : An all-one vector such that η ∈ R|L|

2 .
cl,p : The cost of flight l ∈ L flown by aircraft p ∈ P . C = (cl,p), ∀l ∈ L,

∀p ∈ P , and C ∈ R(|L| × |P |).
ol1,l2 : The parameter that ensures minimum ground time between flights.

O = (ol1,l2), ∀l1, l2 ∈ L and O ∈ R(|L| × |L|).
fl1,l2 : The parameter that ensures conservation of aircraft flow between

flights. F = (fl1,l2), ∀l1, l2 ∈ L and F ∈ R(|L| × |L|).

50

Flight cost coefficients

For each aircraft p ∈ P and flight l ∈ L, the matrix C ∈R(|L| × |P |) stores each

flight and aircraft cost element cl,p ∈C. Here, l = 1 , 2 , 3 , · · · , |L| and

p= 1 , 2 , 3 , · · · , |P | and the matrix

C =

c1,1 c1,2 · · · c1,|P |

c2,1 c2,2 · · · c2,|P |
...

c|L|,1 c|L|,2 · · · c|L|,|P |

.

We now construct the vector c by vectorising the columns of C. Hence,

vec(C) = c =
(
c1,1 · · ·c|L|,1 c1,2 · · · c|L|,2 · · ·c1,|P | · · ·c|L|,|P |

)T
, where c∈

Rr, for r= |L| × |P |. When |L|= 3 and |P |= 2, c =
(
c1,1 c2,1 c3,1 c1,2 c2,2 c3,2

)T
.

Minimum ground time parameter

The parameter ol1,l2 is used to check if a pair of flights l1, l2 ∈ L comply with

the minimum required ground time when flown by any aircraft p∈P . If l1 = l2,

ol1,l2 refers to the same flight and its value is made equal to 0. The values of

this parameter are shown as:

ol1,l2 =

0 If (sl2− tl1 ≥ gtmin) or (l1 = l2),

1 Otherwise.
(4.1)

The matrix O ∈ R(|L| × |L|), is shown for all flights l1, l2 ∈ L. Each element

ol1,l2 ∈O indicates whether flights l1 and l2 comply with the minimum ground

time. Since l1, l2 ∈ L, the matrix is given by

51

O =

o1,1 o1,2 · · · o1,|L|

o2,1 o2,2 · · · o2,|L|
...

o|L|,1 o|L|,2 · · · o|L|,|L|

.

Therefore, each element of matrix O will either be 0 or 1 based on the calcu-

lated parameter in equation (4.1). The diagonal elements of O are zeros.

Conservation of aircraft flow parameter

The parameter fl1,l2 is used to calculate conservation of aircraft flow from flight

leg l1 ∈ L to flight leg l2 ∈ L. An IF-THEN statement showing the values of

this parameter is shown in equation (4.2). In cases where l1 = l2, fl1,l2 refers

to the same flight. For this case, the value of fl1,l2 is equal to 0. Hence,

fl1,l2 =

0 If (dl2 = al1) or (l1 = l2),

1 Otherwise.
(4.2)

The matrix F ∈ R(|L| × |L|) shows each element fl1,l2 ∈ F for all combinations

of flights l1, l2 ∈ L. The definition for “conservation of aircraft flow” from

the MCNF FAM meant that for each node, the summation of the number of

flights arriving at a node with flights on the ground before that node needed

to equal the summation of the number of flights departing from the same node

with flights on the ground after that node. Since there are no such nodes

in the NLIP FAM, “conservation of aircraft flow” means that for any pair of

consecutive flights, the arrival airport of the flight flown first is the same as

the departure airport of the next flight. This result is ensured by the use of

the parameter in equation (4.2) for any pair of flights l1, l2 ∈ L. A vector f is

formed from the columns of matrix F such that f ∈ R|L|
2 . Therefore,

52

vec(F) = f =
(
f1,1 · · · f|L|,1 f1,2 · · · f|L|,2 · · · f1,|L| · · · f|L|,|L|

)T
, for

F =

f1,1 f1,2 · · · f1,|L|

f2,1 f2,2 · · · f2,|L|
...

f|L|,1 f|L|,2 · · · f|L|,|L|

.

For an example where |L|= 3, f =
(
f1,1 f2,1 f3,1 f1,2 f2,2 f3,2 f1,3 f2,3 f3,3

)T
.

Therefore each element of vector f will either be 0 or 1 based on the calculated

parameter in equation (4.2).

Decision variables

The decision variable xl,p is used to determine if flight l ∈L is flown by aircraft

p ∈ P . This decision variable is defined as follows:

xl,p =

1 If flight leg l ∈ L is assigned to aircraft p ∈ P ,

0 Otherwise.
(4.3)

We introduce the matrix X = (xl,p) ∈ R(|L| × |P |) for all l ∈ L and p ∈ P such

that

X =

x1,1 x1,2 · · · x1,|P |

x2,1 x2,2 · · · x2,|P |
...

x|L|,1 x|L|,2 · · · x|L|,|P |

.

The vector x is constructed from the columns of X. Hence, as before, x ∈Rr,

for r = |L| × |P |. Hence, for each flight l ∈ L and each aircraft p ∈ P ,

vec(X) = x =
(
x1,1 · · · x|L|,1 x1,2 · · · x|L|,2 · · · x1,|P | · · · x|L|,|P |

)T
.

53

For an example where |L|= 3 and |P |= 2, x =
(
x1,1 x2,1 x3,1 x1,2 x2,2 x3,2

)T
.

Quantities for constraint satisfaction

The quantity hl1,l2 is introduced to check if flights l1, l2 ∈ L flown by aircraft

p ∈ P are consecutive. This quantity is introduced because consecutive flights

need to have conservation of aircraft flow. The definition of hl1,l2 is as follows:

hl1,l2 =

0 If ((1−xl1,pxl2,p) +

|L|∑
l=1

xl,pzl) = 0,

1 Otherwise.
(4.4)

Here, the variable zl shown in equation (4.5) is used to identify all the flights

between l1 and l2. These are the only flights which could interrupt flight l1

and flight l2 from being consecutive. Hence,

zl =

1 If [min(sl1, sl2)≤ sl ≤max(sl1, sl2)] and [(l 6= l1) and (l 6= l2)],

0 Otherwise.
(4.5)

The effect of zl is demonstrated with the example in Figure 4.2. This example

has 5 flights which are sorted by departure time. Flight 1 from airport C to

airport B has a departure time of 08:00, flight 2 from airport D to airport

B has a departure time of 09:00, flight 3 from airport B to airport C has a

departure time of 11:00, flight 4 from airport B to airport D has a departure

time of 12:00 and flight 5 from airport C to airport B has a departure time

of 14:00. If l1 is flight 2 and l2 is flight 4 (or l1 is flight 4 and l2 is flight 2),

using equation (4.5), zl equals 1 only for l = 3 and 0 for all the other flights.

This is because the departure time of flight 3 is between the departure time of

the flight represented by l1 as well as the flight represented by l2 and flight 3

is neither of those flights. This effect is shown below:

54

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00

Time

C B1 D B2

flight l1

B C3 B D4

flight l2

C B5

Figure 4.2: Flights sorted by departure time

Hence, the first expression in (4.4) which is 1− xl1,pxl2,p is used to deter-

mine if flights l1 and l2 for l1, l2 ∈ L are flown by aircraft p ∈ P . When

that is the case, this expression will have a value of 0, otherwise, it will

have a value of 1. The second expression
|L|∑
l=1

xl,pzl calculates a summation

of all flights between l1 and l2 flown by aircraft p. If the summation of both

expressions equals 0, then flight l1 and flight l2 follow each other and they

are flown by the same aircraft p. As before, we introduce the matrix H =

(hl1,l2) ∈R(|L| × |L|) and construct the vector h ∈R|L|
2 such that vec(H) = h

=
(
h1,1 · · · h|L|,1 h1,2 · · · h|L|,2 · · · h1,|L| · · · h|L|,|L|

)T
. For an exam-

ple where |L|= 3, h =
(
h1,1 h2,1 h3,1 h1,2 h2,2 h3,2 h1,3 h2,3 h3,3

)T
.

4.1.2 The mathematical model for fleet assignment

We now use the parameters, cost coefficients, decision variables and other

defined quantities to present the proposed mathematical model for the fleet

assignment problem, namely:

Min cTx s.t (4.6)

Xλ= τ (4.7)

tr(XTOX) = 0 (4.8)

fT(η−h) = 0,∀p ∈ P (4.9)

55

Equation (4.6) is the objective function that minimises the assignment cost for

each aircraft and flight combination. Dissimilar to the cover constraint for the

MCNF FAM which ensures the assignment of flights to fleet types, constraints

(4.7) is a cover constraint for the NLIP FAM and it ensures that each flight

leg is assigned to a single aircraft. The non-linear constraint (4.8) ensures

minimum ground time between flights. This is ensured through the use of

the parameter ol1,l2 ∈O in equation (4.1) and the decision variables xl,p ∈X

described in (4.3). Conservation of aircraft flow is ensured through constraint

(4.9). This constraint is implemented by the use of the parameters fl1,l2 ∈ f in

equation (4.2) and quantities hl1,l2 ∈ h in equation (4.4) so that all consecutive

flights have conservation of aircraft flow. All constraint equations (4.7) - (4.9)

contain the decision variable xl,p for each flight l ∈ L and aircraft p ∈ P .

4.1.3 Mathematical model comparison

In comparing the MCNF FAM presented in Section 3.5.2 of Chapter 3 and the

NLIP FAM above, the following observations are made:

(i) The MCNF FAM is modelled on the fleet type and the NLIP FAM is

modelled on the aircraft. Therefore, the number of decision variables in

the objective function is |K| × |L|, for |K| equal to the number of fleet

types for the MCNF FAM. For the NLIP FAM, this number is |P | × |L|.

Therefore the NLIP FAM has more decision variables.

(ii) There are |K| × |L| cover constraints in the MCNF FAM. The NLIP

FAM has |P | × |L| cover constraints.

(iii) The number of conservation of flow constraints in MCNF FAM is based

on the number of nodes in the problem, while for the NLIP FAM, it is

based on the number of arrival and departure airports for consecutive

flights. If we assume a problem where each flight arc in the MCNF FAM

56

has its own departure and arrival node, the number of rows created for

constraint (3.3) is 2|N | for |N | equal to the number of nodes. Each

row has 4 columns thus totalling 2|N | × 4 variables. The NLIP FAM

constraint (4.9) has |P | aircraft and for each aircraft there are
|L|−1∑
w=0

w

variables for each pair of flights, totalling |P |
|L|−1∑
w=0

w variables. Therefore

the NLIP FAM has more constraints.

(iv) The count constraint (3.4) for the MCNF FAM has |K| rows for each fleet

type with each row having 2 decision variables, one variable for flights

on the ground and the other for flights in the air. There are therefore

2|K| decision variables in total. The NLIP FAM does not have the count

constraint.

(v) The minimum ground time constraint (4.8) for the NLIP FAM only has

a single row, however it has |P | × |L|2 constraint elements, with each

element of the form xl1,pol1,l2xl2,p. This constraint is not present in the

MCNF FAM as turn-around time is added to the arrival time of each

flight.

4.1.4 Explanation of the mathematical model

We now use our fleet assignment example presented in Figure 4.1 for model

explanation. In this example, we have |L|= 3 and |P |= 2.

(a) The objective function is given by the multiplication of the transposed cost

vector and the flight vector so that:

57

cTx =
(
c1,1 c2,1 c3,1 c1,2 c2,2 c3,2

)

x1,1

x2,1

x3,1

x1,2

x2,2

x3,2

= c1,1x1,1 + c2,1x2,1 + c3,1x3,1 + c1,2x1,2 + c2,2x2,2 + c3,2x3,2.

For a general case, (4.6) is given by

Min c1,1x1,1 + · · ·+ c|L|,1x|L|,1 + · · ·+ c1,|P |x1,|P |+ · · ·+ c|L|,|P |x|L|,|P |

(b) The constraints (4.7) are given by

x1,1 +x1,2 + · · ·+x1,|P |

x2,1 +x2,2 + · · ·+x2,|P |
...

x|L|,1 +x|L|,2 + · · ·+x|L|,|P |

=

1

1
...

1

, which for our example reduces to

x1,1 +x1,2

x2,1 +x2,2

x3,1 +x3,2

 =

1

1

1

.

It is clear that each flight will thus be assigned to exactly one unique

aircraft.

(c) The constraint (4.8) is a quadratic constraint and can be expanded as fol-

lows:

58

XTOX =

x1,1 x2,1 · · · x|L|,1

x1,2 x2,2 · · · x|L|,2
...

x1,|P | x2,|P | · · · x|L|,|P |

o1,1 o1,2 · · · o1,|L|

o2,1 o2,2 · · · o2,|L|
...

o|L|,1 o|L|,2 · · · o|L|,|L|

x1,1 x1,2 · · · x1,|P |

x2,1 x2,2 · · · x2,|P |
...

x|L|,1 x|L|,2 · · · x|L|,|P |

The result of XTOX forms a square matrix so that XTOX ∈R(|P | × |P |).

Therefore, the result matrix XTOX =

|L|∑
l2=1

|L|∑
l1=1

xll,1oll,l2xl2,1
|L|∑
l2=1

|L|∑
l1=1

xll,1oll,l2xl2,2 · · ·
|L|∑
l2=1

|L|∑
l1=1

xll,1oll,l2xl2,|P |

|L|∑
l2=1

|L|∑
l1=1

xll,2oll,l2xl2,1
|L|∑
l2=1

|L|∑
l1=1

xll,2oll,l2xl2,2 · · ·
|L|∑
l2=1

|L|∑
l1=1

xll,2oll,l2xl2,|P |

...
|L|∑
l2=1

|L|∑
l1=1

xll,|P |oll,l2xl2,1
|L|∑
l2=1

|L|∑
l1=1

xll,|P |oll,l2xl2,2 · · ·
|L|∑
l2=1

|L|∑
l1=1

xll,|P |oll,l2xl2,|P |

.

Taking a trace of XTOX by doing a summation of the diagonal elements

yields the equation tr(XTOX) = ∑
p∈P

∑
l1,l2∈L

xll,poll,l2xl2,p = 0, ∀l1, l2∈L,∀p∈

P . This equation expands to∑
p∈P

∑
l1,l2∈L

xll,poll,l2xl2,p = ∑
l1,l2∈L

xll,1oll,l2xl2,1 +· · ·+ ∑
l1,l2∈L

xll,|P |oll,l2xl2,|P |=

0.

Each element of the above summation is of the form in equation (4.10)

and each one of these elements needs to be made 0 for the constraint to

be satisfied. Hence,
xl1,pol1,l2xl2,p = 0,∀l1, l2 ∈ L,∀p ∈ P. (4.10)

Therefore, Table 4.1 provides the value of the decision variables xl1,p and

xl2,p with the implied values for ol1,l2 that satisfy the equality in (4.7).

Each row of Table 4.1 is explained below.

59

(i) For the first row where xl1,p = 0 and xl2,p = 0, flight l1 and flight l2

are not assigned to aircraft p. The parameter ol1,l2 is relaxed as no

conclusion can be made with regards to the minimum ground time

between these flights. Hence ol1,l2 = 0 or ol1,l2 = 1.

(ii) For the second row where xl1,p = 0 and xl2,p = 1, since only flight l2

is assigned to aircraft p, minimum ground time is not relevant and is

therefore relaxed so that ol1,l2 = 0 or ol1,l2 = 1.

(iii) The third row where xl1,p = 1 and xl2,p = 0 is similar to the second

row as only flight l1 is assigned to aircraft p. Therefore minimum

ground time is relaxed so that ol1,l2 = 0 or ol1,l2 = 1.

(iv) In the fourth and last row, xl1,p = 1 and xl2,p = 1, therefore flight l1

and flight l2 are assigned to the same aircraft p. For this case, l1 and

l2 need to comply with the required minimum ground time, hence

ol1,l2 = 0.

Value of the decision
variables ol1,l2 value

xl1,p = 0 and xl2,p = 0 ol1,l2 = 0 or ol1,l2 = 1

xl1,p = 0 and xl2,p = 1 ol1,l2 = 0 or ol1,l2 = 1

xl1,p = 1 and xl2,p = 0 ol1,l2 = 0 or ol1,l2 = 1

xl1,p = 1 and xl2,p = 1 ol1,l2 = 0

Table 4.1: Decision variables and their effect on minimum ground time ol1,l2
for each element xl1,pol1,l2xl2,p

(d) The equation in (4.9) expands to

60

(
f1,1 · · · f|L|,1 · · · f1,|L| · · · f|L|,|L|

)

1
...

1
...

1
...

1

-

h1,1
...

h|L|,1
...

h1,|L|
...

h|L|,|L|

 = 0.

Therefore, f1,1(1−h1,1)+f2,1(1−h2,1)+ · · ·+f|L|,|L|(1−h|L|,|L|) = 0. Since

fl1,l2,hl1,l2 ∈ {0,1}, this equation implies that fl1,l2(1−hl1,l2) = 0,∀l1, l2 ∈

L. Table 4.2 provides the value of the decision variables xl1,p and xl2,p for

the same aircraft p ∈ P with the implied fl1,l2 and hl1,l2 values making up

the equation fl1,l2(1−hl1,l2) which needs to equal to 0. Each row of Table

4.2 is explained below.

(i) For row 1 and row 2 where xl1,p = 0 and xl2,p = 0, conservation of

aircraft flow is relaxed so that fl1,l2 = 0 or fl1,l2 = 1 as both flights

l1, l2 ∈ L are not assigned to aircraft p ∈ P . For both cases, hl1,l2 =

1 as the first expression in equation (4.4) equals 1. The elements

fl1,l2(1−hl1,l2) are thus 0 for both cases.

(ii) For row 3 and row 4 where xl1,p = 0 and xl2,p = 1, flight l2 is assigned

to aircraft p while flight l1 is not. Similar to row 1 and row 2,

conservation of aircraft flow is relaxed so that fl1,l2 = 0 or fl1,l2 = 1.

However, hl1,l2 = 1 due to the first expression of equation (4.4) which

equals 1. The elements fl1,l2(1−hl1,l2) are thus 0 for both cases as

with row 1 and row 2.

(iii) Row 5 and row 6 for xl1,p = 1 and xl2,p = 0 have a similar result for

fl1,l2, hl1,l2 and fl1,l2(1−hl1,l2) as row 3 and row 4 as only one of the

the flights is assigned to aircraft p.

61

(iv) For row 7, xl1,p = 1 and xl2,p = 1 indicate that flights l1, l2 ∈ L are

assigned to aircraft p∈ P . If conservation of aircraft flow is complied

with for both flights and l1 as well as l2 are consecutive, fl1,l2 = 0

and hl1,l2 = 0 respectively. Thus the element fl1,l2(1−hl1,l2) equals

0.

(v) For row 8 and row 9 where xl1,p = 1 and xl2,p = 1, flight l1 and flight

l2 are assigned to the same aircraft p. However since l1 and l2 are not

consecutive, hl1,l2 = 1 as the second expression of equation (4.4) is

greater than 0. The conservation of aircraft flow is therefore relaxed

so that fl1,l2 = 1 or fl1,l2 = 0 respectively. The implication is that

fl1,l2(1−hl1,l2) equals 0.

Value of the
fl1,l2

hl1,l2
fl1,l2(1−hl1,l2)

decision variables Value COFa

xl1,p = 0 and xl2,p = 0 0 Yes 1 0(1 - 1) = 0

xl1,p = 0 and xl2,p = 0 1 No 1 1(1 - 1) = 0

xl1,p = 0 and xl2,p = 1 0 Yes 1 0(1 - 1) = 0

xl1,p = 0 and xl2,p = 1 1 No 1 1(1 - 1) = 0

xl1,p = 1 and xl2,p = 0 0 Yes 1 0(1 - 1) = 0

xl1,p = 1 and xl2,p = 0 1 No 1 1(1 - 1) = 0

xl1,p = 1 and xl2,p = 1 0 Yes 0 0(1 - 0) = 0

xl1,p = 1 and xl2,p = 1 1 No 1 1(1 - 1) = 0

xl1,p = 1 and xl2,p = 1 0 Yes 1 0(1 - 1) = 0

aConservation of aircraft flow

Table 4.2: Decision variables and their effect on fl1,l2 and hl1,l2 values for
each element fl1,l2(1−hl1,l2)

In summary, conservation of aircraft flow does not matter when none or

only one of the flights is assigned to aircraft p as the flights cannot be

consecutive. For the case when both flights are assigned to the same

62

aircraft, conservation of aircraft flow needs to be maintained if the flights

are consecutive and it is irrelevant if the flights are not consecutive.

4.2 Mathematical model characteristics

• The model is a non-linear binary integer programming problem.

• During fleet assignment, aircraft routing is simultaneously calculated so

the location of each aircraft can be determined at any point in time.

• Dissimilar to the MCNF FAM, the NLIP FAM does not assign flights to

fleet types. Flights are assigned to actual aircraft.

63

Chapter 5

Methodology - Genetic

algorithm overview

The motivation for using a genetic algorithm for the NLIP FAM presented in

Chapter 4 is that the decision variables xl,p are binary and the constraints

non-linear. Thus, a solution can be obtained much quicker when using a ge-

netic algorithm. As mentioned in the literature review in Chapter 3, genetic

algorithms have been widely used in airline planning. In this chapter, a typical

genetic algorithm and its operators are described.

5.1 Algorithm overview

The genetic algorithm is an optimisation technique that mimics natural evolu-

tion using binary strings. It maintains a population of chromosomes for each

generation, with each chromosome representing a potential solution. Each

chromosome is represented as some data structure representative of the solu-

tion, and its “fitness”, which is a measure of how optimal the solution is, can

be evaluated. For the NLIP FAM, fitness is calculated using a summation of

the cost coefficients for each flight assigned to an aircraft. This calculation

is further explained in Section 6.2.2 of Chapter 6. Three operators which are

64

explained later are utilised by the algorithm, namely:

• Selection,

• Mutation, and

• Crossover.

The algorithm is initiated by determining the initial population of chromo-

somes. After that, a predefined number of iterations, called generations, is

executed. At each iteration, a “new generation” is formed by more “fit” chro-

mosomes compared to the previous generation. After some time, the algorithm

is expected to converge to a near optimal solution. It is expected that the

chromosomes with the best “fitness” would form the population. According to

Roeva et al. (2013), a typical genetic algorithm has the following pseudocode:

begin
i= 0
Initial Population P (0)
Evaluate each chromosome fitness from P (0)
while (not done) do
(test for termination criteria)
begin

i= i+ 1
Perform selection
Perform mutation
Perform crossover
Evaluate each chromosome fitness from P (i)

end
end

5.2 Chromosome structure

The genetic algorithm uses chromosomes which store information on the flights

assigned to each aircraft. The diagram in Figure 5.1 shows the structure

65

of a single chromosome for the NLIP FAM. In the diagram, each flight is

represented by a bit. Each aircraft is a collection of bits which is equal to the

number of flights to be assigned. Thus each aircraft in the problem will have

the same number of bits that are equal to the total flights. For the diagram

in Figure 5.1, none of the flights are assigned to any aircraft, hence the value

of each bit is 0. When a flight is assigned to an aircraft, a bit representing

that flight in the aircraft is changed to 1. Since the number of flights is |L|

and the number of aircraft is |P |, each chromosome will have |L| × |P | bits.

For all examples in this chapter, the manipulation of bits will be shown for

a single aircraft unless otherwise stated. It should be assumed that the same

operations being done on a single aircraft can be executed for other aircraft of

the same chromosome in cases when there are more aircraft provided, as is the

case with Airline A. The diagram below shows a chromosome with attributes

as described above:

aircraft 1 aircraft 2 aircraft |P |

flight 1

0 0

flight |L| flight 1

0 0

flight |L| flight 1

0 0

flight |L|

Figure 5.1: An example of a chromosome with no flights assigned

5.3 Genetic algorithm parameters

The genetic algorithm utilises the following parameters:

• Population size,

• Mutation and crossover rates, and

• Number of generations.

66

5.3.1 Population size

Each solution of the genetic algorithm is stored in a single chromosome, with

several chromosomes making up the population. In a test to determine the

impact of population size on a set problem, Roeva et al. (2013) found that:

(a) Increasing the size of the population from 5 to 100 chromosomes signifi-

cantly improves the objective function value of the problem.

(b) Further increases of the population size did not yield an improvement in

the results. The subsequent increase in the population size leads only to an

increase in computational time without improving the objective function.

In general, Roeva et al. (2013) found that a small population size could guide

the algorithm to a poor local optimum solution and a bigger population size

could make the algorithm expend more computation time in finding a solution.

The genetic algorithm created uses a population size of 50 chromosomes. The

reason for using 50 chromosomes is that through multiple executions of the

algorithm, we observed that the optimal number of chromosomes is between

30 and 50. Using less than 30 chromosomes lead to sub-optimal results and

using more than 50 chromosomes did not improve the objective function value,

but it lead to a significant increase in execution time.

5.3.2 Mutation and crossover rates

The genetic algorithm operates mainly on binary strings with bits as shown in

Figure 5.1. The mutation rate is a parameter that is used to change some of

the bits with probability Pm. Deb et al. (2002) indicates that the mutation rate

is kept low (Pm is equal to or below 0.05) in order to minimise the probability

of changing “good” solutions which are near the optimal value. In a typical

genetic algorithm, the mutation rate is applied on each bit. If a randomly

generated number is below the mutation rate, the bit in the string is flipped

67

to 0 if it was a 1 and vice versa. We have used a mutation rate of 0.05 in the

genetic algorithm created. The crossover rate allows for chromosomes to share

genetic material in order to breed improved chromosomes (Roeva et al. 2013).

The crossover rate (Pc) utilised is 1.0.

5.3.3 Number of generations

This is the number of iterations to be executed by the algorithm and is depen-

dent on the problem. The number of generations could be used as a stopping

criteria for genetic algorithms. In the ideal genetic algorithm, each generation

will generate chromosomes with an improved fitness. In the genetic algorithm

used, the number of generations is used as a stopping criteria. Each test was

conducted using 15 000 generations. The reason for using 15 000 generations

is that through multiple executions of the algorithm for the data provided, a

lower number of generations resulted in suboptimal solutions. A higher num-

ber of generations increased the execution time and the marginal improvement

in the objective function value had significantly deteriorated for each next gen-

eration after 15 000 generations.

5.4 Genetic algorithm operators

The genetic algorithm utilises the following operators:

• Selection,

• Mutation, and

• Crossover.

68

5.4.1 Selection

Selection is a method used to find chromosomes with the best “fitness” and

duplicating them while discarding solutions with a poor “fitness” in a popula-

tion. Several methods are used for finding “best solutions” which are carried

to the next generation while identifying “worst solutions” with poor “fitness”

which are discarded. Five main selection methods are:

(a) Roulette-wheel selection,

(b) Stochastic universal sampling,

(c) Tournament selection,

(d) Ranking selection, and

(e) Elitism.

Roulette-wheel selection

In roulette-wheel selection, as in all selection methods, the fitness function

assigns a fitness value to all solutions or chromosomes. This fitness value is used

to associate a probability of selection with each individual chromosome. If fi is

the fitness of chromosome i in the population, its probability of being selected

is Pi = fi

ΣN
j=1fj

, where N is the number of chromosomes in the population. The

disadvantage of this method is that it can lead to bad performance in cases

where a single member has a really large fitness (Goldberg & Deb 1991).

Stochastic universal sampling

Stochastic universal sampling uses a single random value to sample all of the

solutions by placing them at evenly spaced intervals. This gives weaker mem-

bers of the population (according to their fitness) a chance to be chosen and

69

thus reduces the unfair nature of fitness-proportional selection methods like

ranking selection or roulette-wheel selection (Goldberg & Deb 1991).

Tournament selection

Goldberg & Deb (1991) state that tournament selection is a method which is

executed by choosing some number of individual chromosomes randomly (with

or without replacement). The best individual from the group is selected for

further processing or the next generation. In many genetic algorithms, tour-

nament selection is performed for a pair of randomly selected chromosomes.

Ranking selection

In ranking selection, the population is sorted from best to worst fitness. There-

after the number of copies that each chromosome should receive are assigned

according to a non-increasing function (Goldberg & Deb 1991). The same

number of chromosomes with poor fitness are discarded. Our algorithm uses

ranking selection.

Elitism

Sometimes good candidates can be lost when crossover or mutation results in

offspring with a weaker “fitness” than their parents. Often the genetic algo-

rithm will rediscover these lost chromosomes in a subsequent generation but

there is no guarantee. To combat this, a feature known as elitism can be

utilised (Goldberg & Deb 1991). Elitism involves copying a small proportion

of the fittest candidates, unchanged, into the next generation. This can some-

times have a dramatic impact on performance by ensuring that the genetic

algorithm does not waste time rediscovering previously discarded solutions.

Elitism has been implemented for our algorithm.

70

5.4.2 Mutation

Mutation is used to make sure all the elements in a population are not homo-

geneous and diversity is maintained (Deb et al. 2002). Mutation thus explores

the search space for better solutions by “flipping” bits in a binary string based

on the mutation rate. The chromosome should still yield a valid solution after

mutation takes places.

Figure 5.2 shows a chromosome before mutation and after mutation when

a single bit has been flipped from 0 to 1 because its random number is below

the mutation rate (Pm = 0.05).

0 0 0 1 1 0 1 0 0 1 1 chromosome before mutation

0.5 0.6 0.6 0.1 0.4 0.0 0.6 0.7 0.8 0.1 0.5 random number

0 0 0 1 1 1 1 0 0 1 1 chromosome after mutation

Figure 5.2: Example of mutation operator

Four kinds of mutation operators are used for our algorithm and the me-

chanics of each mutation operator are described in Chapter 6. They are:

(a) Aircraft shift,

(b) Aircraft exchange,

(c) Flight exchange, and

(d) Populate open spaces.

5.4.3 Crossover

According to Roeva et al. (2013), the crossover operator exploits the current

solutions to obtain a better solution. Three forms are noted:

(a) Single point crossover,

71

(b) Double point crossover, and

(c) Uniform crossover.

Single point crossover

Magalhaes-Mendes (2013) defines a single point crossover method as an oper-

ator where chromosomes are randomly paired. Thereafter, an integer position

k̂ between 1 and chromosome length l̂ along the chromosome is randomly se-

lected. Two offspring chromosomes are created for the next generation by

exchanging all the genes between positions k̂+ 1 and l̂. For the NLIP FAM,

single point crossover is done for randomly paired aircraft of the same chromo-

some. The crossover point is determined using a selection method outlined in

Chapter 6. The exchange of bits is only done when the offspring will still yield

a chromosome which complies with minimum ground time and conservation

of aircraft flow constraints. An example of this process is shown in Figure 5.3

for a single chromosome with two aircraft so that the second aircraft known

as “Parent 2” is shown below the first aircraft, known as “Parent 1”. The bits

from position 4 of each aircraft are exchanged from the one aircraft to the

other in order to form Offspring 1 and Offspring 2. The result of the above

scenario is shown below:

crossover point

Parent 1 0 0 0 1 1 0 0 0 0 1 1

Parent 2 0 1 0 0 0 1 1 1 0 0 0

Swapping of genes between positions 4 and 11

Offspring 1 0 0 0 0 0 1 1 1 0 0 0

Offspring 2 0 1 0 1 1 0 0 0 0 1 1

Figure 5.3: Example of the single point crossover operator

72

Double point crossover

Double point crossover is similar to single point crossover except that two

crossover points are found instead of one. For the NLIP FAM, how these

crossover points are selected is explained in Chapter 6. Similar to the single

point crossover, offspring from the double point crossover method need to result

in a chromosome that complies with minimum ground time and conservation

of aircraft flow constraints for all flights. An example of this operator is shown

in Figure 5.4 where bits in positions 4 to 7 are exchanged between two aircraft

from the same chromosome delineated by “Parent 1” and “Parent 2”. The

result is saved in “Offspring 1” and “Offspring 2” as shown below:

crossover points

Parent 1 0 0 0 1 1 0 0 0 0 1 1

Parent 2 0 1 0 0 0 1 1 1 0 0 0

Swapping of genes between positions 4 and 7

Offspring 1 0 0 0 0 0 1 1 0 0 1 1

Offspring 2 0 1 0 1 1 0 0 1 0 0 0

Figure 5.4: Example of the double point crossover operator

Uniform crossover

Magalhaes-Mendes (2013) defines uniform crossover as a process whereby a

bit from the first parent’s gene is assigned to the second offspring and a bit

of the second parent’s gene is assigned to the first offspring with a probability

value Pb. This process is demonstrated in Figure 5.5 for 2 randomly paired

parent chromosomes. Each chromosome has 2 aircraft and for each aircraft, 5

flights are present. For the Parent 1 chromosome, flight 1, 4 and flight 5 are

assigned to aircraft 1 and flight 2 is assigned to aircraft 2. For the Parent 2

73

chromosome, flights 4 and 5 are assigned to aircraft 1 and flights 1, 2 and 3

to aircraft 2. Assuming Pb = 0.7, if a random generated number is below Pb,

there is an exchange in the bits between the two parents. Otherwise, there is

no exchange in the genes. The result is demonstrated below:

Aircraft 1

Parent 1 1 0 0 1 1 0 1 0 0 0

Aircraft 2

Parent 2 0 0 0 1 1 1 1 1 0 0

Random nr 0.32 0.45 0.89 0.12 0.51 0.93 0.45 0.77 0.19 0.82

Exchange of genes based on random number <= probability (Pb = 0.7)

Offspring 1 0 0 0 1 1 0 1 0 0 0

Offspring 2 1 0 0 1 1 1 1 1 0 0

Figure 5.5: Example of the uniform crossover operator

For our model, using the probability method to exchange bits is problem-

atic as it may lead to some of the constraints being violated. This can be

observed in Figure 5.5 for flight 1. Offspring 2 shows a conflict for flight 1

which is flown by both aircraft. Thus a change has been made to the uniform

crossover method. With this change, flight 3 which is flown by aircraft 2 from

the parent 2 chromosome is copied to aircraft 2 of the parent 1 chromosome.

Provided that minimum ground time and conservation of aircraft flow are en-

sured between flight 2 and flight 3, this change will ensure that all flights are

flown by the aircraft in offspring 1 while offspring 2 remains unchanged. This

method therefore ensures that more flights up to the maximum available are

flown by offspring 1. This effect can be seen in Figure 5.6 below:

74

Aircraft 1

Parent 1 1 0 0 1 1 0 1 0 0 0

Aircraft 2

Parent 2 0 0 0 1 1 1 1 1 0 0

Flight 3 in parent 2 aircraft 2 is copied to the offspring of parent 1

Offspring 1 1 0 0 1 1 0 1 1 0 0

Offspring 2 0 0 0 1 1 1 1 1 0 0

Figure 5.6: Example of the changed uniform crossover operator

75

Chapter 6

Methodology - Model Testing

In this chapter, the MCNF FAM (Chapter 3, Section 3.5.2) as well as the

proposed NLIP FAM (Chapter 4, Section 4.1.2) are tested for a schedule from

Airline A. A quantitative comparative study is conducted. The benchmark

results from the MCNF FAM are compared with results obtained from the

proposed NLIP FAM. The following testing conditions are used:

(a) The MCNF FAM is solved using IBM ILOG CPLEX Optimization Studio

V12.6.0.

(b) The NLIP FAM is solved using a genetic algorithm solver as described in

Chapter 5 which is written in Java Version 7 Update 80.

(c) A Windows i7 computer with 2.93 GHz processor for each cpu and 8.0 GB

of RAM is used.

6.1 Performance measures

The following performance measures are compared:

(a) The time taken by each model to solve, and

(b) The optimised objective function for each model.

76

6.2 Input data

The fleet assignment model uses a flight schedule, fleet types and costs as

well as the number of available aircraft per fleet type to construct an optimal

timetable. A turn around time of 30 minutes has been decided on for the

MCNF FAM. This turn around time is added to the arrival time for each

flight. Similarly, an equivalent minimum ground time (gtmin) decided on is 30

minutes between flights flown by the same aircraft for the NLIP FAM.

6.2.1 Flight schedule

Fujitsu provided 5 months data from Airline A which uses a hub-and-spoke

network (Appendix B, Figure B.1) and has a single hub and performs trips to

41 other airports. Both local and overseas flights are included in the schedule

(Appendix C, Table C.1) and 77% of flights have a duration which is less than

5 hours as shown in Figure D.1 of Appendix D.

Each flight from Airline A’s schedule has the following attributes, which

are shown in the dataset sample in Table A.1 of Appendix A:

• Departure airport,

• Arrival airport,

• Departure time, and

• Arrival time.

The provided schedule has been broken down into 9 data sets spanning a

period of two weeks for each data set. This has been done due to the cyclic

nature of the data. This means that a majority of the flight are repeated on

a week by week basis with frequency increased for some routes. Therefore,

similar routes are represented in the data sets with minor route frequency

77

changes to provide for peak and trough periods. In a real setting, both the

MCNF FAM and NLIP FAM would need to consider the initial location of

each aircraft which has not been considered in all our tests. Table 6.1 below

provides the number of flights in each data set:

Data set # Flight legs
1 1 954
2 2 131
3 2 611
4 2 455
5 2 636
6 2 286
7 2 286
8 2 426
9 2 599

Table 6.1: Data set information

6.2.2 Fleet types and flight costs

A summary of the fleet type and aircraft utilised by Airline A is provided

in Table 6.2. Operating costs were not provided by the airline. Therefore,

operating costs for each fleet type for each hour of flight have been decided

on based on the size of the fleet type and the projected fuel requirement. The

cost of each flight is calculated by multiplying the fleet type hourly flying cost

with the duration of each flight. Therefore, a 3 hour flight flown by an Airbus

A319 aircraft is expected to cost $30 000 (cost = duration × hourly flying

cost). This expected cost is used for the cost coefficient variable ck,l for each

flight l ∈ L and fleet type k ∈K in the MCNF FAM. For the NLIP FAM, the

cost for each flight is calculated in the same way. This expected cost is used

for the cost coefficient variable cl,p for each flight l ∈ L and aircraft p ∈ P .

The summation of the cost coefficient (cl,p) is also used as a fitness value for

each chromosome for flights assigned to aircraft in the genetic algorithm. As

78

discussed, Table 6.2 below shows each fleet type used, the number of seats

available, the number of aircraft allocated and the cost for each hour of flight:

Fleet type # Seats # Aircraft Costs for each
hour of flight

Airbus A319 120 10 $10, 000
Airbus A320 148 10 $12, 000
Airbus A332 222 10 $15, 000
Airbus A343 253 10 $18, 000
Airbus A336 317 5 $20, 000
Boeing 737 147 1 $12, 500

Table 6.2: Fleet types utilised by airline with aircraft allocation and associ-
ated hourly flying costs

The number of aircraft owned or leased by Airline A was not provided.

Therefore, the benchmark MCNF FAM was executed multiple times with a

different number of aircraft for each fleet type for each data set. This was

done to determine the minimum number of aircraft required for each data set

in order for all flights in the data set to be assigned to a fleet type. The result

is that for the 9 data sets being tested, a minimum of 45 aircraft are required

for all data sets except the 9th data set which needed 46 aircraft. Therefore 46

aircraft are used for all data sets. An allocation of the number of aircraft for

each fleet type has also been arbitrarily decided for both mathematical models

and it is shown in Table 6.2 above.

6.3 Implementation of the genetic algorithm

The computer implementation of genetic algorithm (GA) solver used consists

of the following 3 steps:

(a) Solution method preparation and inputs to the program;

(b) Generate initial population; and

79

(i) Create data structures for storing flights, aircraft and chromosomes;

and

(ii) Initialise population.

(c) Execution of genetic algorithm solver program which is written in Java

(Appendix G).

The above three steps are presented in the flow chart in Figure 6.1 with the

solution method preparation executing methods to read the GA input param-

eters, sorting flights by departure time and executing flight preprocessing to

determine valid flight connections. This step is followed by the generation of

an initial population and execution of the GA solver:

Start

Read GA input
parameters

Sort flights by
departure time

Execute flight
preprocessing

Generate initial
population

Execute GA solver

End

Solution method preparation

Figure 6.1: Process flow for the non-linear integer programming fleet assign-
ment model using GA

80

6.3.1 Solution method preparation

This method in Figure 6.1 is executed only once, at the beginning of the meta-

heuristic. The first step is the reading in of three text files containing the

following information:

(a) A flight schedule with the departure airport, arrival airport, departure

time and arrival time for each flight(Appendix A, Table A.1).

(b) Aircraft data with all fleet types used by the airline, the number of aircraft

for each fleet type and the hourly flying cost for each fleet type as shown

in Table 6.2.

(c) A file with parameters for the population size, the mutation and crossover

rates, the number of iterative generations to be executed and the allow-

able minimum ground time between consecutive flights flown by the same

aircraft.

For the second step of preparation, the flight schedule in (a) is sorted by

ascending departure time using a quicksort algorithm which is written in Java

(Appendix H). This algorithm accepts as input a list of all flight departure

times and outputs a sorted list of departure times which are rematched with

the rest of the flight information.

The third preparation step is preprocessing which involves the creation of

the following parameters from the NLIP FAM in Section 4.1.2 of Chapter 4:

• The matrix O∈R(|L| × |L|): The calculation of each parameter ol1,l2 ∈O

is determined using equation (4.1). The result is stored in a matrix with

rows representing “from flights” and columns representing “to flights”

for ol1,l2 ∈ {0,1} ∀l1, l2 ∈ L. This means that if minimum ground time

from flight 1 to flight 2 is complied with, row 1 column 2 will have a 0.

Hence each element is used to determine if flight l1 and flight l2 comply

with the minimum ground time for all flight pair combinations.

81

• The matrix F∈R(|L| × |L|): The calculation of each parameter fl1,l2 ∈ F

is determined using equation 4.2. The result is stored in a matrix for

rows representing “from flight” and columns representing “to flight” for

fl1,l2 ∈ {0,1} ∀l1, l2∈L. Here, each element is used to determine if flight

l1 and flight l2 comply with the conservation of aircraft flow for all flight

pair combinations.

• A third matrix which we call Γ is created from results in matrices O

and F. For each element of Γ ∈ R(|L| × |L|), each row (from flight) and

column (to flight) entry is made 0 if the same row and column entries

from matrices O and F is 0. Otherwise, the row and column entry is made

1. The matrix Γ for γl1,l2 ∈ {0,1} and γl1,l2 ∈ Γ ∀l1, l2 ∈ L shows which

pairs of flights comply with minimum ground time and conservation of

aircraft flow.

An example of the above steps is shown in Table 6.4 for matrix O, matrix F and

the resultant matrix Γ which are matrices for 4 flights from the sample schedule

in Table 6.3. In this example, the following flights from matrix O comply with

the minimum ground time based on equation (4.1) for all ol1,l2 ∈O:

(i) Flight 1 to flight 2 (row 1, column 2),

(ii) Flight 1 to flight 3 (row 1, column 3),

(iii) Flight 1 to flight 4 (row 1, column 4),

(iv) Flight 2 to flight 3 (row 2, column 3),

(v) Flight 2 to flight 4 (row 2, column 4),

(vi) Flight 3 to flight 4 (row 3, column 4), and

(vii) All diagonal elements as l1 = l2.

82

The following flights from matrix F comply with the conservation of aircraft

flow based on equation (4.2) for all fl1,l2 ∈ F:

(i) Flight 1 to flight 2 (row 1, column 2),

(ii) Flight 1 to flight 4 (row 1, column 4),

(iii) Flight 2 to flight 1 (row 2, column 1),

(iv) Flight 2 to flight 3 (row 2, column 3),

(v) Flight 3 to flight 2 (row 3, column 2),

(vi) Flight 3 to flight 4 (row 3, column 4),

(vii) Flight 4 to flight 1 (row 4, column 1),

(viii) Flight 4 to flight 3 (row 4, column 3), and

(ix) All diagonal elements as l1 = l2.

The result is that elements γl1,l2 ∈ Γ will have a 0 where the same flights (row

and column positions) have a 0 in matrix O and F. Therefore the position in

Γ from flight 1 to flight 2 (row 1, column 2) will have a 0 element as flight 1

to flight 2 has a 0 in matrices O and F for the same row and column position.

The same applies to flight 1 to flight 4, flight 2 to flight 3, flight 3 to flight

4, and all diagonal elements. All other elements of Γ will have a 1. Below is

Table 6.3 and Table 6.4 described above:

Flight Departure
airport

Arrival
airport

Departure
time

Arrival
Time

1 1 10 08:00 09:30

2 10 1 10:30 12:00

3 1 10 13:30 15:00

4 10 1 16:30 18:00

Table 6.3: Sample airline schedule

83

O =

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

F =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

Γ =

0 0 1 0
1 0 0 1
1 1 0 0
1 1 1 0

Table 6.4: Creation of the Γ matrix ensuring minimum ground time and
conservation of aircraft flow constraints for the flights in Table 6.3

The final activity in this preparation step is the creation of an adjacency

list. For each flight which is represented by the row of the Γ matrix, the set of

neighbours is found by identifying columns for which the element in the row

and column is 0. For this step, the diagonal of the Γ matrix is ignored. An

example of an adjacency list is shown in Table 6.5 for the 4 flights above. This

adjacency list shows valid connections as depicted by the Γ matrix:

Source flight (from flight) Neighbour flights (to flights)
1 2, 4
2 3
3 4
4

Table 6.5: An example of an adjacency list for 4 flights

6.3.2 Initialisation of population

Data structure creation

In order to describe how the initial population is created, it is worthwhile

explaining how each chromosome is stored and tracked in order to make the

mechanics of the GA easier to implement. The example in Figure 6.2 has a

84

single chromosome with 3 aircraft and 5 flights. According to this example,

aircraft 1 will fly flight 1 and then flight 3, aircraft 2 will fly flight 2 and

then flight 4, and aircraft 3 will fly flight 5. In order to make GA operators

easier to execute, the unassigned flights for each aircraft (flights where the

bits are 0 in the chromosome string) are ignored as shown in the diagram in

Figure 6.3 which is based on the chromosome in Figure 6.2. Therefore, for each

chromosome, a linked list of aircraft is maintained such that flights assigned to

an aircraft are slotted in the index of the aircraft in the linked list as shown in

the example in Figure 6.3. In order to explain each GA operator, the aircraft

will be shown one below the other as seen in Figure 6.4 for the chromosome in

6.2. This also allows departure and arrival times to be shown for each example.

All chromosomes shown in Figure 6.3 are stored in a global linked list making

up the population:

aircraft 1 aircraft 2 aircraft 3

1 0 1 0 0 0 1 0 1 0 0 0 0 0 1

Figure 6.2: An example of a chromosome with 3 aircraft and 5 flights

aircraft 1

C B1 B D3

aircraft 2

C B2 B C4

aircraft 3

B D5

Figure 6.3: An example of a chromosome with assigned flights for each air-
craft stored as a linked list for program execution

85

aircraft 3

aircraft 2

aircraft 1

16:00 18:00 20:00 22:00 00:00

Time

A
ir

cr
af

t

C B1 B D3

C B2 B C4

B D5

Figure 6.4: Chromosome with aircraft one below the other to explain GA
mechanics

A matrix Ω ∈ R(|V | × |L|), for |V | which is the number of chromosomes, is

used to keep track of assigned flights in each chromosome irrespective of the

aircraft a flight has been assigned to. The row index of Ω is for the chromosome

number and the column index is for the flights. For example, row 1 column 1 in

Ω is for flight 1 in chromosome 1. If a value in Ω is 0, then the flight identified

by the column index of that value has not been assigned in the chromosome

identified by the row index of the same value. If a value in Ω is 1, then the

flight identified by the column index for the chromosome identified by the row

index has been assigned. All elements of Ω are 0 when no flights are assigned

in all chromosomes. Thus the matrix Ω is changed every time there is a flight

assignment in a specific chromosome to reflect this change.

Initialise population

The initialise population process is executed only once. The objective is to

assign flights to aircraft for all chromosomes. The following steps are performed

for each aircraft in a chromosome using the process shown in Figure 6.5:

1. A random flight “A” which is not flown by any other aircraft in a chro-

mosome is selected. This selection is thus based on available flights for

each chromosome from checking the flight tracking Ω matrix. Once se-

86

lected, the Ω matrix is updated in the index of the chromosome and

flight. Flight “A” is labelled “current flight” and is slotted into the air-

craft linked list of the chromosome.

2. The next flight which is labelled “nominated flight” is selected randomly

from neighbours of the “current flight” in the adjacency list. Therefore

the “current flight” and “nominated flight” observe the minimum ground

time and conservation of aircraft flow constraints as per the rules of the

adjacency list. If no neighbour is available, move to the next aircraft or

stop if last aircraft.

3. A check is performed from the Ω matrix to determine if the “nominated

flight” has been assigned to another aircraft in the chromosome.

4. Should the “nominated flight” be assigned to another aircraft in the chro-

mosome, another neighbour of the “current flight” from the adjacency

list is selected at random. A search for a connection is conducted in the

adjacency list until all neighbours are exhausted should an unassigned

flight not be found, after which no more flights can be assigned to the

aircraft. At this point the program moves to the next aircraft in the

chromosome and the process is restarted from step 1.

5. In the case where the “nominated flight” has not been assigned to another

aircraft in the chromosome, it is slotted in the last position of the aircraft

and its label is changed to “current flight”. At this point, the process is

restarted from step 2.

87

Start

Select initial
random flight

Is flight
assigned to any
other aircraft?

All flights
tested?

Assign flight
to aircraft

Any more
connections? Stop

randomly select next
connected flight

Is flight
assigned to any
other aircraft?

All next connected
flights tested?

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

Figure 6.5: Random flight assignment process for each aircraft in the popula-
tion

The minimum ground time constraints in equation (4.8) and the conservation

of aircraft flow constraints in equation (4.9) are maintained between flights as-

signed to an aircraft. The reason for this is that only legitimate flight connec-

tions are considered using the adjacency list created. However, the constraint

in equation (4.7) is violated for most chromosomes as not all flights will be

88

assigned in the initial solutions. An example of this effect is shown in Table

6.6 for the adjacency list shown in Table 6.5. For this adjacency list created

from the Γ matrix in Table 6.4, flight 1 is neighbour to flight 2 and flight 4,

flight 2 is neighbour to flight 3, flight 3 is neighbour to flight 4, and flight

4 does not have any next connections. All these flights could be assigned to

the same aircraft for an airline with a single aircraft. This however can only

happen if flight 1 is selected first followed by flight 2, then flight 3 and the last

flight being flight 4. However, as shown in Table 6.6, flight 2 and flight 3 will

not form part of the initial solution for the single aircraft in the example when

using the process in Figure 6.5 to perform the flight assignment:

Step Activity Current
flight

Nominated
flight

Ω
Tracking
matrix
status

Assigned
flights

1 Randomly select flight 1. [0 0 0 0]

1 Name flight 1 as “current
flight” and change Ω track-
ing matrix.

1 [1 0 0 0] 1

2 Randomly select flight 4
which is neighbour of flight
1 and give it label of “nomi-
nated flight”.

1 4 [1 0 0 0] 1

3 Check if “nominated flight”
has been assigned in Ω
tracking matrix.

1 4 [1 0 0 0] 1

5 Assign “nominated flight”
to aircraft and change flight
4 to “current flight”. Also
change Ω to reflect the as-
signment.

4 [1 0 0 1] 1, 4

2 Randomly select “nominated
flight” from neighbours of
“current flight”.

4 None:
STOP [1 0 0 1] 1, 4

Table 6.6: Demonstration of how flights can be left out in initial solution for
a single aircraft

89

Due to the random selection of the “nominated flight”, this flight assign-

ment process ensures the diversity of the initial population. The results of the

initial solutions are used as input for the initial population in the GA solver.

6.3.3 Implementation of GA

The created genetic algorithm solver uses the randomly created population

as input. The population size for all the data sets is 50 chromosomes. Each

chromosome contains the aircraft used by the airline, and each aircraft has its

assigned flights which are ordered based on the departure time of each flight.

The assigned flights for each aircraft are read from left to right. It is this

attribute which provides routing for each aircraft. Probabilities Pm = 0.05 and

Pc = 1.0 were used and the metaheuristic was executed for 15 000 generations.

The solver utilises the standard genetic algorithm operators as presented in

Chapter 5 to generate and optimise solutions. A technique for solution preser-

vation is also used to preserve the optimal solution of a chromosome should

genetic algorithm operators degrade the current solution. This method is ex-

ecuted during mutation or crossover where all the flights have been assigned.

If the changed solution from mutation or crossover methods yields a fitness

function (flight assignment cost) that is higher than the previous fitness func-

tion for the chromosome, the decision to keep the new permutation of flights is

made with a probability of 50%. Thus, a random number is generated and if

it is below 0.5, the change is allowed. This ensures a 50% probability of main-

taining the previous flight assignments for the selected chromosome if there is

no improvement in fitness function.

In this section, the mechanics of the GA are explained using the structure

of a chromosome presented in Figure 6.4. The following GA operators are

covered after which the overall algorithm is presented:

(i) Fitness function.

90

(ii) Elitism.

(iii) Selection.

(iv) Mutation:

(a) Aircraft shift,

(b) Aircraft exchange,

(c) Flight exchange, and

(d) Populate open spaces.

(v) Crossover:

(a) Uniform crossover,

(b) Single point crossover, and

(c) Double point crossover.

(i) Fitness function

The fitness function of the genetic algorithm calculates the cost to be ex-

pected from each aircraft based on the flights that will be flown by that

aircraft. The hourly flying cost of each fleet type is known, this is multi-

plied by the flight duration to calculate the operational cost cl,p ∀l ∈L and

∀p ∈ P . The summation of all costs for all combinations of aircraft and

flights as shown in the objective function in (4.6) provides the fitness func-

tion for each chromosome. In cases where a flight is assigned to a specific

aircraft, the decision variable xl,p is 1 for the aircraft and flight combina-

tion, and the cost cl,p is activated. Otherwise in cases where the decision

variable is 0 for the flight and aircraft combination, the cost component

for that flight is not added to the fitness function.

91

To enable the fitness function calculation, the matrix C ∈ R(|L| × |P |) is

used. Each cost component cl,p ∈C for each flight l ∈ L and aircraft p ∈ P

is determined from the hourly flying cost and duration of each flight for each

aircraft. When calculating the fitness function for each chromosome, the

program iterates through each aircraft as presented in Figure 6.3. For each

aircraft, an iteration through the flights is performed and the sum costs of

the combination of the aircraft and the flights is determined from matrix

C. This cost is added to the overall fitness function for that chromosome

which started at $0.00.

(ii) Elitism

In order to perform elitism, all chromosomes are ranked from the chromo-

some with the best fitness function (least cost) to the chromosome with

the worst fitness function (highest cost). The chromosome with the least

fitness function will thus not be changed until the next generation. The

elitism effect ensures that the chromosome with the best fitness function

(lowest cost) is not changed during the execution of crossover or mutation

operations. Thus the best solution of each generation is always maintained

for future generations until a better solution is found.

(iii) Selection

The selection operation is performed at every iteration. The selection

operation used is ranking selection. In each instance, chromosomes are

ranked from best to worst using two criteria:

(a) Ranking of chromosomes by the number of assigned flights in each

chromosome. The more the number of assigned flights up to the

maximum available flights, the better the chromosome.

92

(b) Ranking of chromosomes by the fitness function of each chromosome.

The lower the fitness function, the better the chromosome.

The reason that the ranking does not only consider the fitness function

but also the number of flights assigned in a chromosome is because in

the initial population, none of the chromosomes have all flights assigned,

as shown in the example in Table 6.6. Some rows in constraint (4.7)

do not have assigned flights and therefore violate the constraint. For

these chromosomes the fitness function will automatically be lower not

because of having a more optimal solution, but because there are fewer

assigned flights. Hence the fitness function for these chromosomes is not

the correct ranking measure. Therefore in each iteration, the chromosome

with the least number of flights is designated as the “worst chromosome”.

For the case where a group of chromosomes have the same number of

flights not assigned, the “worst chromosome” is randomly selected from

the group. For the case where all flights are assigned in all chromosomes,

the “worst chromosome” is found through ranking of chromosomes by

fitness function from the best fitness (lowest cost) to the worst (highest

cost). If a group of chromosomes has the same worst fitness, the “worst

chromosome” is randomly selected from the group.

Similarly, the “best chromosome” is one which has the highest number of

assigned flights up to the maximum available. For the case where several

chromosomes have the same highest number of assigned flights, the “best

chromosome” is selected randomly from the group. For the case where

all chromosomes have all flights assigned, the “best chromosome” is one

with the lowest fitness cost. Should the lowest fitness cost be the same for

several chromosomes, the “best chromosome” is randomly selected from

that group.

93

After the “worst chromosome” and the “best chromosome” are selected,

the worst chromosome is deleted from the global linked list and it is

replaced by the “best chromosome”. The result is that the “best chro-

mosome” is duplicated. To avoid premature convergence to the current

“best chromosome” because of the duplicate solutions created, two ran-

dom aircraft are selected from the duplicate chromosome. The flights in

the selected random aircraft are deleted and randomly recreated using

steps of assigning flights to aircraft in Figure 6.5.

(iv) Mutation

This method explores the search space by changing flight assignments in

each chromosome using a mutation rate of 5%. Four kinds of mutation

operators are performed, namely:

(a) Aircraft shift

A random number is generated and should it be below the mutation

rate, the aircraft shift mutation operation is performed. When this

process is executed, all flights are moved from their current aircraft

to the next aircraft and this is done for all aircraft. The general rule

is that all flights are moved from their current aircraft to the next

aircraft except for flights in the last aircraft which are moved to the

first aircraft within the same chromosome.

This mutation process is executed at each iteration in all chromo-

somes where a randomly generated test number is below the muta-

tion rate. The exception is the chromosome with the best solution

(lowest assignment cost) which is excluded due to elitism. Since flight

routings are changed from one aircraft to another in the same chro-

mosome, the uniform crossover operator benefits. This is because

94

uniform crossover is performed at aircraft level between the same air-

craft of two chromosomes. Therefore, crossover between a pair of the

same aircraft from the same pair of chromosomes would not neces-

sarily involve the same flights in future generations.

The effect of the aircraft shift operation is shown in the example in

Figure 6.6. In this example, flight 13, flight 14 and flight 15 are moved

to the first aircraft while flight 1 and flight 2 in the first aircraft are

moved to the second aircraft and every set of flights is moved to the

next aircraft:

(6)A318

(5)A318

(4)A318

(3)A319

(2)A320

(1)A320

08:00 09:00 10:00 11:00

Time (hrs)

A
ir

cr
af

t

chromosome (before)

A B13 B A14 A C15

B C5 C B6

A B10 B A11 A C12

B C3 C B4

A B7 B A8 A C9

B C1 C B2

(6)A318

(5)A318

(4)A318

(3)A319

(2)A320

(1)A320

08:00 09:00 10:00 11:00

Time (hrs)

A
ir

cr
af

t

chromosome (after)

A B13 B A14 A C15

B C5 C B6

A B10 B A11 A C12

B C3 C B4

A B7 B A8 A C9

B C1 C B2

Figure 6.6: An example of aircraft shift mutation

(b) Aircraft exchange

For each chromosome, a random number is generated and should it be

below the mutation rate, this mutation operation is performed. An

aircraft exchange involves an exchange of all flights between two ran-

domly selected aircraft in a chromosome. This method is performed

at each iteration. When executed, two aircraft from a chromosome

are selected at random and all flights flown by the first aircraft are

moved to the second aircraft while all flights flown by the second

aircraft are moved to the first aircraft. The flight routing is main-

95

tained so that conservation of aircraft flow and minimum ground time

constraints are complied with.

Solution preservation is performed in cases when the flight assignment

cost from the fitness function of the changed chromosome is higher in

the changed chromosome. The change therefore has a 50% probabil-

ity of being allowed. If the change is not allowed, flights are moved

back to their original aircraft before the change was implemented.

Similar to the aircraft shift mutation process, the uniform crossover

operator benefits from this operation. This is because crossover be-

tween the same aircraft from the same pair of chromosomes would

not necessarily involve the same flights in future generations.

An example of the aircraft exchange mutation operation is shown

in Figure 6.7. In this example, the aircraft randomly selected to

exchange aircraft are aircraft 2 and aircraft 4. The result is that

flights 7, 8 and 9 from aircraft 2 are moved to aircraft 4. Similarly,

flights 10, 11, and 12 are moved from aircraft 4 to aircraft 2:

(6)A318

(5)A318

(4)A318

(3)A319

(2)A320

(1)A320

08:00 09:00 10:00 11:00

Time (hrs)

A
ir

cr
af

t

chromosome (before)

A B13 B A14 A C15

B C5 C B6

A B10 B A11 A C12

B C3 C B4

A B7 B A8 A C9

B C1 C B2

(6)A318

(5)A318

(4)A318

(3)A319

(2)A320

(1)A320

08:00 09:00 10:00 11:00

Time (hrs)

A
ir

cr
af

t

chromosome (after)

A B13 B A14 A C15

B C5 C B6

A B7 B A8 A C9

B C3 C B4

A B10 B A11 A C12

B C1 C B2

Figure 6.7: An example of aircraft exchange mutation

(c) Flight exchange

96

The flight exchange operation is performed for chromosomes in the

population where not all flights have been assigned to an aircraft as

shown in the example in Table 6.6. The objective of this operation is

to create diversity in flight routing for aircraft in these chromosomes.

This is done by performing an exchange between random flights that

are assigned and flights not assigned. This exchange will select a

flight that either takes place earlier or later than the assigned flight

from a list of flights with the same departure and arrival airports.

This is done while maintaining all constraints with respect to mini-

mum ground time (constraint (4.8)) and conservation of aircraft flow

(constraint (4.9)) for each aircraft in the selected chromosome. The

objective of this method is to “free up” time in the schedule for other

flights that could be assigned in the respective aircraft. Flights are

selected from each aircraft of the selected chromosomes by generating

a random number and determining if it is below the mutation rate.

An example of this operation is shown in Figure 6.8 for a chromosome

containing a single A320 aircraft. For this aircraft, flight 11 and flight

14 are exchanged. This exchange is only possible because flight 14

has not been assigned to any other aircraft in the chromosome. The

constraints for conservation of aircraft flow and minimum ground

time in the changed aircraft routing are still maintained. The result

of the example is that the time from 09:00 to 10:30 has been “freed

up”. A potential follow-on move is that flight 10 in the new flight

arrangement could be exchanged for another flight closer to flight 14.

Also, an unassigned flight that can fit between flight 10 and flight 14

while maintaining minimum ground time and conservation of aircraft

flow constraints could be identified and fitted:

97

A320

08:00 09:00 10:00 11:00 12:00 13:00

Time (hrs)

A
ir

c
r
a
ft

chromosome (before)

A B10 B A11 A C15 A320

08:00 09:00 10:00 11:00 12:00 13:00

Time (hrs)

chromosome (after)

A B10 B A14 A C15

09:00 10:00 11:00 12:00 13:00

Timeline for flights from airport B to airport A

B A11 B A14

Figure 6.8: An example of flight exchange mutation

(d) Populate open spaces

For this operation which is executed in all chromosomes for all air-

craft, flights combinations are selected with a mutation rate of 0.05%

and moved from one aircraft to another within the same chromo-

some. No exchange is performed and the aircraft where the flights

come from needs to maintain constraints (4.8) and (4.9) regarding

minimum ground time and conservation of aircraft flow.

The example in Figure 6.9 shows two aircraft, an A320 and an A330,

that are within the same chromosome. Flight 3 is moved from the

A330 (aircraft 1) to the A320 (aircraft 2) while maintaining conser-

vation of aircraft flow as well as minimum ground time between flight

3 and flight 4.

This method is effective at moving flights at the beginning of an air-

craft to another aircraft within the same chromosome. The same

applies to flights at the end of the schedule. For flights that are in

between other flights, this method moves flights so that conservation

of aircraft flow and minimum ground time are maintained in the air-

craft losing the flights as well as in the aircraft gaining the additional

flights.

98

Solution preservation is performed in cases when the flight assignment

cost of the changed chromosome is higher. In this case, the change

has a 50% probability of being allowed. If the change is not allowed,

flights are moved back to their original aircraft before the change was

implemented. Below is the populate open spaces operator described

above:

A330

A320

08:00 09:00 10:00 11:00

Time (hrs)

chromosome (before)

A
ir

cr
a
ft

A B3 B D8

B A4 A C5

A330

A320

08:00 09:00 10:00 11:00

Time (hrs)

chromosome (after)

A
ir

cr
a
ft

B D8

A B3 B A4 A C5

Figure 6.9: An example of populate open spaces operators

(v) Crossover

The crossover operator exploits combinations of flights that are currently

scheduled to enhance future solutions. Three crossover operations have

been utilised, namely:

(a) Uniform crossover

Preparation for this method is that all chromosomes in the population

need to be randomly paired where for each chromosome, another chro-

mosome is selected randomly. For an odd numbered population size,

a single chromosome would not have a partner and will thus not par-

ticipate in the process. Each pair of chromosomes is given the labels

“Parent 1” and “Parent 2”. The “Parent 1” chromosome is the one

with the least number of assigned flights if not all flights are assigned

99

as per the results obtained when initialising a population shown by the

example in Table 6.6. The objective is to copy flights from an aircraft

in the “Parent 2” chromosome to the same aircraft in the “Parent 1”

chromosome. This should be done while complying with constraints

(4.8) and (4.9) for minimum ground time and conservation of aircraft

flow. Thus the objective is to ensure that constraint (4.7) is satis-

fied and that each flight in the “Parent 1” chromosome is assigned to

exactly one aircraft.

In the case where all flights are assigned and all constraints satisfied for

both chromosomes, the uniform crossover operation is not performed

for the pair. If both chromosomes have the same number of flights

which are less than the available flights, “Parent 1” and “Parent 2”

are selected randomly. The result of the uniform crossover operation

for “Offspring 1” is the increase in the number of flights assigned up

to the maximum available so that constraint (4.7) is satisfied for each

decision variable xl,p, ∀l ∈ L and ∀p ∈ P . This operation does not

change the flights in “Parent 2” chromosome.

An example of this operation which was demonstrated in Section 5.4.3

of Chapter 5 is shown in Figure 6.10. In this example, flight 3 is

copied from an Airbus A320 aircraft in “Parent 2” chromosome to the

same aircraft in a paired “Parent 1” chromosome. The constraints of

conservation of aircraft flow and minimum ground time are maintained

after the flight is added to “Parent 1” chromosome. This operation

can thus only be performed if flight 3 was not assigned to any aircraft

in “Parent 1” chromosome. The result of this operation for “Parent

1” chromosome is an increase in the number of flight legs assigned up

to the maximum number of flights available.

The uniform crossover operator is not only performed once at each

100

iteration. It is performed whenever there are changes in flight routings

from any other GA operator such as selection, mutation, single point

or double point crossovers. Because the chromosomes are randomly

paired, each chromosome will have an opportunity to be paired with

every other chromosome over many generations. Below is the uniform

crossover example described above:

A320

08:00 09:00 10:00 11:00

A320

08:00 09:00 10:00 11:00

Time (hrs)

Parent chromosomes (before)

P
a
re

n
t

1
ch

ro
m

o
so

m
e

P
a
re

n
t

2
ch

ro
m

o
so

m
e

A B3 B D8

B A4 A C5

A320

08:00 09:00 10:00 11:00

A320

08:00 09:00 10:00 11:00

Time (hrs)

Child chromosomes (after)

O
ff

sp
ri

n
g

1
ch

ro
m

o
so

m
e

O
ff

sp
ri

n
g

2
ch

ro
m

o
so

m
e

A B3 B D8

A B3 B A4 A C5

Figure 6.10: Uniform crossover example

(b) Single point crossover

For each chromosome, the single point crossover operation is per-

formed at each iteration on random paired aircraft in the same chro-

mosome. This is done by randomly pairing all aircraft in each chro-

mosome. From each pair, one aircraft is named “Parent 1” and the

other aircraft is named “Parent 2”. From each “Parent 1” aircraft,

flights with multiple neighbours in the adjacency list are identified.

This is done by iterating through all flights in “Parent 1” and deter-

mining the number of neighbours for each flight from the adjacency

list. From these flights, a random selection is performed so that only

one of the flights is selected. The point after the selected flight before

the next flight is a potential crossover point in “Parent 1”. In order

101

to explain the single point crossover operation, the flight before the

potential crossover point in “Parent 1” is named “1a” and the flight

after this point is named “1b”. A potential crossover point is found

in “Parent 2” such that the flight before this point is named “2a” and

the flight after this point is named “2b. We can perform a single point

crossover operation only if the minimum ground time and conserva-

tion of aircraft flow constraints are maintained for the following pairs

of flights:

• Flight “1a” and flight “2b”, and

• Flight “1b” and flight “2a”.

Should one of the requirements above not be met, the single point

crossover operation cannot be performed. If all these requirements

are met the crossover point is valid, and an exchange of flights is

performed at the crossover points. This is done by moving flights

after the crossover point in “Parent 2” to “Parent 1”. Simultaneously,

the flights after the crossover point in “Parent 1” are moved to “Parent

2”.

Solution preservation is performed in cases when the flight assignment

cost of the changed chromosome is higher. Thus the change will only

be permitted with a probability of 50%, otherwise the flights are moved

back to their original aircraft.

An example of this operation is shown in Figure 6.11 where a crossover

point is found in “Parent 1” between flight 2 and flight 4 which is

complimented by a crossover point in “Parent 2” between flight 3 and

flight 8. The flights after flight 2 in “Parent 1” are moved to “Parent

2”. Simultaneously, the flights after flight 3 in “Parent 2” are moved to

“Parent 1” thereby changing the chromosome and making “Offspring

1” and “Offspring 2” for the next generation:

102

A330

A320

08:00 09:00 10:00 11:00

Time (hrs)

P
a
r
e
n
t

1
a
ir

c
r
a
ft

P
a
r
e
n
t

2
a
ir

c
r
a
ft

crossover point

A B3 B D8

A B2 B A4 A C5

A330

A320

08:00 09:00 10:00 11:00

Time (hrs)

O
ff

s
p
r
in

g
1

a
ir

c
r
a
ft

O
ff

s
p
r
in

g
2

a
ir

c
r
a
ft

Parent chromosome (before) Child chromosome (after)

A B3 B A4 A C5

A B2 B D8

Figure 6.11: Single point crossover example

(c) Double point crossover

For each chromosome, the double point crossover operation is per-

formed at each iteration on random paired aircraft in the same chro-

mosome. This is done by randomly pairing all aircraft in each chro-

mosome. From each pair, one aircraft is named “Parent 1” and the

other aircraft is named “Parent 2”. From each “Parent 1” aircraft,

flights with multiple neighbours in the adjacency list are identified.

This is done by iterating through all flights in “Parent 1” and deter-

mining the number of neighbours for each flight from the adjacency

list. From these flights, a random selection is performed so that only

two of the flights are selected. The point after the selected flight with

an earlier departure time is a first potential crossover point in “Par-

ent 1”, similarly, the point after the second selected flight is a second

potential crossover point in “Parent 1”. In order to explain the double

point crossover operation, the flight before the first potential crossover

point is named “1a” and the flight after this point is named “1b”. Sim-

ilarly, the flight before the second potential crossover point is named

“1c” and the flight after this point is named “1d”. Two points are

found in “Parent 2” such that the flight before the first point is named

103

“2a” with the flight after this point named “2b” and the flight before

the second point is named “2c” with the flight after the second point

being named “2d”. We can perform a double point crossover only if

the minimum ground time and conservation of aircraft flow constraints

are maintained for the following pairs of flights:

• Flight “1a” and flight “2b”,

• Flight “1b” and flight “2a”,

• Flight “1c” and flight “2d”, and

• Flight “1d” and flight “2c”.

Should one of the requirements above not be met, the double point

crossover operation cannot be performed. If all these requirements are

met, all flights from “2b” to “2c” are moved to “Parent 1”. Simulta-

neously, all flights from “1b” to “1c” are moved to “Parent 2”.

Solution preservation is performed in cases when the flight assignment

cost of the changed chromosome is higher. Thus the change will only

be permitted with a probability of 50%, otherwise all the flights are

moved back to their original aircraft.

An example of this operation is shown in Figure 6.12 where crossover

points are found in “Parent 1” between flight 2 and flight 4 as well

as between flight 5 and flight 9. Similarly, crossover points are found

between flight 3 and flight 8 as well as flight 8 and flight 11 in “Parent

2”. Double point crossover is performed so that flight 4 and flight 5

in “Parent 1” are moved to “Parent 2” and simultaneously flight 8 is

moved to “Parent 1” thereby changing the chromosome and forming

“Offspring 1” and “Offspring 2”:

104

A330

A320

08:00 09:00 10:00 11:00 12:00

Time (hrs)

P
a
re

n
t

1
a
ir

c
ra

ft
P

a
re

n
t

2
a
ir

c
ra

ft
crossover point 1 crossover point 2

A B3 B C8 C A11

A B2 B A4 A C5 C A9

A330

A320

08:00 09:00 10:00 11:00 12:00

Time (hrs)

O
ff

sp
ri

n
g

1
a
ir

c
ra

ft
O

ff
sp

ri
n
g

2
a
ir

c
ra

ft

Parent chromosome (before) Child chromosome (After)

A B3 B A4 A C5 C A11

A B2 B C8 C A9

Figure 6.12: Double point crossover example

The full coded algorithm is shown in Figure 6.13 and it uses the pseudocode

presented in Section 5.1 of Chapter 5. This algorithm uses as input the initial

population (Section 6.3.2). It is then determined whether the initial popula-

tion has chromosomes that are solutions where all constraints (4.7) to (4.9) are

satisfied. For such chromosomes, the assignment cost is determined and the

chromosome with the best solution (lowest cost) is saved. Should all genera-

tions be executed, the algorithm stops. Otherwise the selection operation is

performed where the “worst chromosome” is found and replaced by the “best

chromosome”. Thereafter, uniform crossover is executed so that chromosomes

with missing flights can copy the missing flights from other chromosomes they

are paired with. Mutation is executed by starting with the aircraft shift op-

eration followed by uniform crossover; aircraft exchange operation is executed

followed by uniform crossover; flight exchange is executed followed by uniform

crossover; and populate open spaces is executed followed by uniform crossover.

After this, the single point crossover operation is executed followed by uni-

form crossover. Then double point crossover is executed followed by uniform

crossover. Then the program restarts by find the best solution and saving it

in the place of the previous best solution found. This algorithm is executed

for 15 000 generations after which it stops.

105

Below is a figure for the process described above:

Start

Solution
found?

max
generations?

Selection

Uniform
crossover

Aircraft shift

Aircraft exchange

Flight exchange

Populate
open spaces

Single point
crossover

Double point
crossover

Uniform
crossover

Stop

Store best
solution

Yes

No
Restart
iteration

No

Yes

1

2

3

4

5

6

7

8

9
10

11

12

Figure 6.13: Process flow for the genetic algorithm solver

A summary of the standard genetic algorithm iterative operators is pro-

vided in Table 6.7 with an indication of when they are executed. The chro-

mosomes and aircraft processed with exclusion conditions is also included. An

indication of whether elitism and solution preservation is performed for each

operator is provided:

106

GA Operator When executed? Elements processed Solution
preservation

Elitism Conditions

Uniform crossover Each iteration every time
there is a change in flights

Same aircraft from ran-
domly paired chromosomes

No No Not all flights assigned in
secondary chromosome

Single-point
crossover

Once at each iteration Randomly paired aircraft in
same chromosome

Yes No All chromosomes

Double-point
crossover

Once at each iteration Randomly paired aircraft in
same chromosome

Yes No All chromosomes

Aircraft shift mu-
tation

Once at each iteration Each chromosome No Yes Random test number î is less
than the mutation rate

Aircraft exchange
mutation

Once at each iteration Each chromosome Yes No All chromosomes

Flight exchange
mutation

Once at each iteration Each chromosome where
not all flights are assigned

No No Random test number î is less
than the mutation rate

Populating open
spaces

Once at each iteration A pair of randomly selected
aircraft in a chromosome

Yes No All chromosomes

Table 6.7: Genetic algorithm standard operators and when they are executed

107

6.3.4 Constraint satisfaction in GA

From an iteration to the next:

(a) New set of chromosomes are created through the operations (i, ii, iii, iv

and v) of GA.

(b) Each chromosome is a solution of objective function (4.6) and constraints

(4.7) to (4.9).

(c) All chromosomes created in each iteration satisfy constraint (4.8) and con-

straint (4.9) because of the use of the adjacency list when initiating the

population and through all GA operations (i, ii, iii, iv and v). Over several

generations of the GA, some chromosomes would also satisfy constraint

(4.7) through the use of the selection operation which discards the chro-

mosome with the least number of assigned flights. This chromosome is

replaced by the chromosome with the most number of assigned flights in

the population. The uniform crossover operator also increases the number

of chromosomes which satisfy constraint (4.7) by exploiting combinations

of flights assigned in some chromosomes but not the others.

(d) Once satisfied for a chromosome, constraint (4.7) ensures that all flights are

assigned to a single aircraft. Constraint (4.8) ensures that the minimum

ground time is complied with for all flights and constraint (4.9) ensures

conservation of aircraft flow for consecutive flights in each chromosome.

6.4 Time-space multi-commodity fleet assign-

ment model (MCNF FAM)

The MCNF FAM is solved with the mixed integer optimiser in CPLEX. A

CPLEX LP file is created using code written in Java (Appendix E) for each

108

data set using the process in Figure 6.14. An example LP file created is shown

in Appendix F for a data set with 10 flights flown by 3 aircraft types between

3 airports.

Once the file is created, CPLEX is executed from the command prompt

using the command “cplex”, and the created LP file is read into CPLEX using

the command “read cplexFile.lp”, where “cplexFile.lp” is the file converted

into LP format. This is followed by the optimisation process which is executed

using the command “opt” which executes the CPLEX mixed integer optimiser

to generate a solution. Below is the process flow for creating a CPLEX LP

file:

Start

read data set information,
and fleet information

Sort all flight by
departure time

Cost calculation for each
flight and fleet
type combination

Add turn around time to
arrival time

Create decision variables

Create objective function

Create cover constraints

Create flow balance
constraints for each node

Aircraft count time
decision

Print to LP file

End

Figure 6.14: Process flow for creating a CPLEX LP file from flight data

109

6.5 Fleet assignment and aircraft rotation: An

example

A test was conducted to determine solution time, flight assignment cost and

routing differences for each aircraft between the MCNF FAM which was pre-

sented using equations (3.1) to (3.6) and the NLIP FAM which was defined

by equations (4.6) to (4.9). This test is done for a subset of 168 flights which

are taken from data set 9 which has 2 599 flights. A minimum ground time

and turn-around time of 30 minutes was used in the test. The MCNF FAM

solution is obtained using the mixed integer programming solver from CPLEX

and the NLIP FAM is executed using the GA solver presented earlier. The

following steps for this test are undertaken:

(a) The MCNF FAM is executed for the subset of data.

(b) The results of the MCNF FAM are converted to an approximate aircraft-

time representation using the process in Figure 6.15 in order to determine

aircraft routing.

(c) The NLIP FAM is executed for the subset of data.

(d) The flight assignment costs, solution time and flight routing are compared.

A decision to use five aircraft was taken because any lower number of

aircraft would not provide a solution which assigns all 168 flights to aircraft.

Two tests were conducted for each model. The first test uses the fleet types and

aircraft shown in Table 6.8. The second test uses five aircraft from the Airbus

319 family. These two tests are done in order to determine the uniqueness

of the aircraft routing found for each group of aircraft. Below is the aircraft

allocation for the first test:

110

Fleet type # Seats # Aircraft Costs for each
hour of flight

Airbus A319 120 1 $10, 000
Airbus A320 148 1 $12, 000
Airbus A332 222 1 $15, 000
Airbus A343 253 1 $18, 000
Airbus A336 317 1 $20, 000

Table 6.8: Aircraft allocation for each fleet type

After the result is obtained for the MCNF FAM, it is converted to an

aircraft-time representation as indicated in step (b) using the process shown

in Figure 6.15 which is coded in Java (main class in Appendix I). The conver-

sion of the MCNF FAM to aircraft-time representation creates aircraft routing

which is similar to results obtained from the NLIP FAM. The steps for the

conversion process which are shown in the flow chart in 6.15 are below:

1. The MCNF FAM solution file, the data set file (file with departure air-

port, arrival airport, departure time and arrival time for each flight) and

a file with information on each fleet type with the number of aircraft are

read in.

2. Sort flights by departure time from the earlist to the latest flight.

3. Add the assigned fleet type from the solution file to each flight. Thus

each flight will have departure airport, arrival airport, departure time,

arrival time and assigned fleet type.

4. Iterate through all flights. In each instance, the fleet type to which the

flight is assigned is determined. This is followed by the allocation of the

flight to a random aircraft of that fleet type so that minimum ground

time and conservation of aircraft flow are observed.

111

Start

Read data set information,
fleet information and
timespace solution

Sort all flights by
departure time

Match assigned fleet type
to each flight

Iterate through flights
and assign each flight to
aircraft of fleet type
complying to constraints

Stop

Figure 6.15: Process flow for converting results from the time-space model to
an aircraft-time line

Table 6.9 shows that the flight assignment cost for the MCNF FAM is the same

as that obtained for the NLIP FAM for the aircraft data in Table 6.8 for the

168 flights being tested. It is observed that the non-linear integer programming

fleet assignment model is significantly slower. An analysis of the difference in

aircraft routing showed that there were no differences in aircraft routing from

both models.

MCNF FAM:
Objective function

NLIP FAM:
Objective function

MCNF FAM:
Solver time (sec)

NLIP FAM:
Solver time (sec)

$ 5, 129, 900 $ 5, 129, 900 0.19 8

Table 6.9: MCNF FAM and NLIP FAM results for the aircraft data in Table
6.8

The above test was repeated for both the GA solver and the mixed integer

programming solver in CPLEX. The same data set of 168 flights was used, the

only difference being that instead of using a single aircraft for each fleet type

as in Table 6.8, 5 aircraft of the same fleet type (Airbus A319) were utilised.

Results obtained are shown in Table 6.10. The flight assignment cost for the

112

MCNF FAM is the same as that obtained for the NLIP FAM. It is observed

that the NLIP FAM solver is slower.

MCNF FAM:
Objective function

NLIP FAM:
Objective function

MCNF FAM:
Solver time (sec)

NLIP FAM:
Solver time (sec):

$ 3, 911, 640 $ 3, 911, 640 0.14 0.21

Table 6.10: MCNF FAM and NLIP FAM results when using 5 Airbus A319
aircraft

An analysis of the difference in aircraft routing showed that the same air-

craft from each model had different flight routing. This result is shown in Table

6.11 which shows the number of common flights between the two models for

each aircraft. In total, only 29 out of the 168 flights were assigned the same

aircraft between the two models. This is an indicator of multiple optimal so-

lutions. From this result, it can be deduced that if there is more than a single

aircraft for each fleet type, the NLIP FAM could have multiple solutions.

Aircraft Fleet type # Common flights
1 Airbus A319 1
2 Airbus A319 4
3 Airbus A319 11
4 Airbus A319 12
5 Airbus A319 1

Table 6.11: Common flights found for each aircraft in solutions for the
MCNF FAM and NLIP FAM

The fleet assignment results which include aircraft routing from the second

test for the MCNF FAM and NLIP FAM are shown for the first aircraft in

Figure 6.16 and Figure 6.17. There were 42 airports used in the data set

which are shown vertically. The flights assigned to the first aircraft are shown

with the departure and arrival time for each flight. Dissimilar to the aircraft-

time representation shown in Figure 4.1, the flight lines in Figure 6.16 and

Figure 6.17 are shown vertically in order to show all flights flown by the first

aircraft from both models. The length of each flight line does not show the

duration of the flight as only the departure airport and arrival airport are

113

shown. These also determine where each flight line starts and where it ends.

The descriptors for each flight, departure time and arrival are aligned to each

flight line. These descriptors are also put one below the other to ensure all

flights flown are shown. Two observation are made from both figures, the first

is that only flight 137 is common for this aircraft in both models. The second

is that airport 1 is a hub in the data set because of the number of arrivals and

departures. Because of the number of common flights for each aircraft, it can

be deduced that no aircraft from the results of the MCNF FAM is the same

as that of the NLIP FAM.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A
ir

po
rt

s

Flights

Dep Time

Arr Time

Departure airport

Arrival airport

18

22

23

25

28

30

33

35

37

42

46

51

54

60

64

66

72

76

77

80

84

88

92

95

99

103

108

131

137

18:00

05:00

07:40

09:45

11:50

13:30

15:40

17:20

19:00

06:00

08:30

11:00

13:20

18:00

19:15

20:55

07:40

09:45

11:50

13:30

17:30

04:30

07:40

09:45

11:55

14:45

18:30

19:45

07:10

19:00

06:10

08:45

10:55

13:00

14:40

16:50

18:30

21:10

08:00

10:10

12:50

14:50

18:45

20:25

21:55

08:45

10:55

13:00

14:40

18:40

05:40

08:45

10:55

14:05

16:45

05:15

06:30

09:20

day1 day14

Figure 6.16: Flight representation for aircraft 1 using the NLIP FAM

114

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A
ir

p
o

rt
s

Flights

Dep Time

Arr Time

Departure airport

Arrival airport

1

3

7

10

11

16

19

38

43

47

49

52

55

58

62

85

91

96

101

105

107

112

115

118

123

126

129

135

137

142

144

150

151

153

154

156

162

166

04:00

05:20

10:10

11:55

13:40

16:30

19:25

19:50

06:55

08:45

10:55

12:45

14:55

16:40

18:30

19:45

07:10

10:00

12:50

15:20

17:40

05:20

07:50

10:40

13:05

14:55

17:00

04:40

07:10

10:00

12:35

18:15

20:20

22:25

04:10

06:20

08:30

11:20

04:45

09:00

11:20

13:05

15:50

18:30

06:00

06:25

08:08

09:55

12:05

13:55

16:05

17:50

05:15

06:30

09:20

12:00

14:30

17:10

19:20

07:10

09:50

12:30

14:15

16:05

18:30

06:10

09:20

12:00

17:30

19:15

21:20

03:15

05:50

08:00

10:30

13:25

day1 day14

Figure 6.17: Flight representation for aircraft 1 using the MCNF FAM

115

Chapter 7

Observations from the results

obtained

The results for the following tests performed using the GA solver for the NLIP

FAM and the mixed integer programming solver for the MCNF FAM are shown

for the 9 data sets under review:

(a) Execution times of MCNF FAM and NLIP FAM;

(b) Execution time of MCNF FAM and NLIP FAM where approximated air-

craft routing has been performed for the MCNF FAM. The results are also

compared to the “flight strings” model presented in Chapter 3; and

(c) Flight assignment cost comparison for the MCNF FAM and NLIP FAM.

7.1 Performance comparison: Fleet assignment

In this section, the execution times of both models are compared. Table 7.1

shows the cpu times for both models on the 9 data sets tested. From Table

7.1, it is observed that the MCNF FAM is significantly faster than the GA

solver for the NLIP FAM for all data sets tested. This is because CPLEX is a

116

well developed software with optimal strategies infused into the software, on

the other hand, the GA is a direct search method.

Data set MCNF FAM:
Solver time (sec)

NLIP FAM:
Solver time (sec)

1 3 1 361
2 3 1 320
3 4 1 238
4 5 1 397
5 7 1 234
6 6 1 450
7 5 1 045
8 4 1 561
9 9 1 911

Table 7.1: Performance comparison: MCNF FAM vs NLIP FAM

7.2 Performance comparison: Fleet assignment

and aircraft routing

The performance of the conversion of results obtained from the MCNF FAM

to include aircraft routing is shown in Table 7.2 for each data set. This per-

formance is a summation of the time taken by the mixed integer programming

solver in CPLEX (Table 7.1) for fleet assignment and the aircraft routing con-

version time using the process in Figure 6.15. The sum of the fleet assignment

and conversion time is faster than the results obtained with the GA solver.

In Section 3.4 of Chapter 3, an overview of the “flight strings” model pro-

posed by Barnhart et al. (1998) was presented. In their model, Barnhart

et al. (1998) proposed a model which simultaneously solves fleet assignment

and aircraft routing. In their results, Barnhart et al. (1998) obtained fleet

assignment and aircraft routing for 1 124 flights in a solution time of 5 hours

and 27 minutes, with a tolerance of 1.00% in assignment cost compared to the

MCNF FAM. Thus the GA solver proposed for the NLIP FAM is faster than

the “flight strings” model from Barnhart et al. (1998) as their model has a

117

solution time which equates to 19 620 seconds.

Data set Number of
flights

MCNF FAM:
Solver time (sec)

NLIP FAM:
Solver time (sec)

1 1 954 7 1 361
2 2 131 8 1 320
3 2 611 9 1 238
4 2 455 11 1 397
5 2 636 9 1 234
6 2 286 9 1 450
7 2 286 9 1 045
8 2 426 8 1 561
9 2 599 12 1 911

Table 7.2: Performance comparison for fleet assignment and aircraft routing:
MCNF FAM vs NLIP FAM

7.3 Objective function comparison

It can be observed from Table 7.3 that the NLIP FAM has an assignment cost

which is slightly higher than the solution of the MCNF FAM. The highest

assignment cost difference is observed in results for data set 7 with a difference

of 1.48%, and all other assignment cost differences are below 1%. The evolution

of genetic algorithm solutions with respect to time for each data set are shown

in Appendices J, K, L, M, N, O, P, Q and R.

Data set MCNF FAM:
Assignment cost ($)

NLIP FAM:
Assignment cost ($)

%diff

1 86, 960, 371 87, 260, 532 0.35%
2 94, 404, 328 94, 781, 898 0.40%
3 116, 113, 177 117, 150, 020 0.89%
4 109, 141, 381 109, 741, 270 0.55%
5 116, 837, 542 117, 893, 820 0.90%
6 101, 649, 443 102, 166, 160 0.51%
7 101, 721, 794 103, 226, 040 1.48%
8 108, 144, 351 108, 636, 259 0.45%
9 114, 613, 175 115, 107, 082 0.43%

Table 7.3: Assignment cost comparison: MCNF FAM vs NLIP FAM

118

Chapter 8

Discussion

In this chapter, we consider the small example presented in Chapter 6 and its

results. We also discuss the execution time and assignment cost presented in

Chapter 7, after which a method of optimising the solution time for the NLIP

FAM is introduced.

Our purpose is to show if NLIP FAM can integrate additional airline plan-

ning decisions. This has been achieved as the NLIP FAM integrates fleet

assignment and aircraft routing. Integration of fleet assignment with other

airline decisions other than aircraft routing is also discussed. This is done

particularly for maintenance scheduling and the flexibility of departure time.

8.1 Discussion of results

With the example of 168 flights shown in Chapter 6, it was shown that while

the objective functions for the MCNF FAM and NLIP FAM are the same, the

GA solver used for the NLIP FAM was slower. It was also shown using the

number of common flights for each aircraft that multiple aircraft of the same

fleet type in a fleet assignment problem could result in more than one optimal

solution for the NLIP FAM. This effect is demonstrated with an example shown

in Figure 8.1 for two A320 aircraft and 5 flights. In the first solution, flights

119

3, 4 and 5 are assigned to aircraft 1 while flights 1 and 2 are assigned to

aircraft 2. The second solution has the opposite result where flights 1 and 2

are assigned to aircraft 1 and flights 3, 4 and 5 are assigned to aircraft 2. The

objective functions of both solutions will be the same since the aircraft types

being scheduled are the same.

A320(2)

A320(1)

0800 0900 1000 1100

Time

A
ir

c
ra

ft

A B3 B A4 A C5

B C1 C B2

(a) Solution 1

A320(2)

A320(1)

0800 0900 1000 1100

Time

A
ir

c
ra

ft
A B3 B A4 A C5

B C1 C B2

(b) Solution 2

Figure 8.1: An example of two solutions with the same objective function

The execution time for the NLIP FAM was slower compared to the MCNF

FAM execution time as shown in Table 7.1. Two reasons can be attributed to

this:

1. The time it takes the GA solver to get the first valid solution which

satisfies constraints (4.7) to (4.9); and

2. The mechanics of each GA operator.

With regards to the first reason, it was shown in Section 6.3.2 of Chapter

6 that none of the solutions satisfied all constraint (4.7) to (4.9) from the

NLIP FAM after the initial population is created. The reason for this is the

random selection of the next neighbour flight for each assigned flight from the

flight adjacency list. Only constraint (4.8) for ensuring minimum ground time

between flights and constraint (4.9) for ensuring conservation of aircraft flow

120

were satisfied for all generations. The algorithm however performed selection

and uniform crossover such that constraint (4.7) for ensuring each flight is

assigned to a single aircraft, is also satisfied with time. This can also be seen

in Appendices J, K, L, M, N, O, P, Q and R which show the evolution of the

solutions produced by GA with respect to time for each data set. In these

appendices, recording the solution time is only performed when all constraints

are satisfied. Therefore, a sizeable amount of time (Appendix S, Table S.1)

elapsed before recording the first solution with all constraints satisfied.

The second reason for the NLIP FAM being slow is that the GA solver

is non-deterministic and the optimisation process is merely guided to better

solutions. This is achieved through the use of the mutation process which

explores the search space and crossover which exploits found combinations

of flights to generate other combinations closer to the solution. While the

solution time of the GA for the NLIP FAM was slower than the mixed integer

programming solver in CPLEX for the MCNF FAM, it was shown that it was

significantly faster than that achieved by Barnhart et al. (1998) for the “flight

string” model.

The optimal solution found using the GA solver is dependent on the stop-

ping criteria which for our solver is the number of generations. Therefore, the

objective function found using the GA solver is slightly higher than that of

the mixed integer programming solver from CPLEX. The NLIP FAM not only

determined fleet assignment, but also determined aircraft routing.

8.1.1 Model robustness

The availability of aircraft routing makes the proposed model highly robust.

This is because should an aircraft need to undergo last minute maintenance,

the impact can easily be determined and the required flights easily cancelled

without impacting flights flown by other aircraft.

121

Further to the above, the departure time of flights can also be moved for

each aircraft without affecting other flights flown by other aircraft. Because of

this, an airline can introduce regular stops for each aircraft which are longer

than the minimum ground time. This will create flexibility so that departure

time of flights can be easily moved.

8.1.2 Optimisation of solution time

The GA solver used for the NLIP FAM is significantly slower than the mixed

integer programming solver in CPLEX used for the MCNF FAM (Table 7.1).

Preprocessing techniques for node aggregation and deletion of “zero-flow” lines

for the MCNF FAM have resulted in significant time saving (Hane et al. 1995).

It is therefore worthwhile to determine if this may be achieved for the NLIP

FAM.

For the MCNF FAM, preprocessing where ground arcs with zero-flows are

deleted as there are no aircraft on the ground is included (Sherali et al. 2006).

This is normally the case in the spoke airports of hub-and-spoke networks. An

example of this effect is shown for four flights in the sample airline schedule

in Table 6.3. Each flight in the schedule has a departure airport, an arrival

airport, departure time and an arrival time.

The MCNF FAM for the flights in Table 6.3 is shown in Figure 8.2. For

this example, we assumed that the airline has a single aircraft. This means

that flight 1, flight 2, flight 3 and flight 4 are flown by the single aircraft. For

the MCNF FAM, the time between flight 1 and flight 2 at airport 1 will not

have any aircraft on the ground and that “zero-flow” can be deleted. The same

applies for the time between flight 3 and 4 at airport 1 and that “zero flow”

can also be deleted. For airport 10, the time before flight 1 arrives is also a

“zero-flow” as well as the time after the departure of flight 2 before the arrival

of flight 3 and after the departure of flight 4. According to Hane et al. (1995),

122

all these “zero-flows” which are represented by dashed lines can be deleted.

The effect on the MCNF FAM is the reduction of columns and therefore the

problem size as reported in the literature review.

10

1

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00

1 2 3 4

Time

zero-flow zero-flow zero-flow

zero-flow zero-flow

A
ir

p
o
r
t

Figure 8.2: MCNF FAM for flights in Table 6.3

For the NLIP FAM, the Γ matrix for the flights in Table 6.3 is found in

Table 6.4 and repeated in Table 8.1 for ease of reference. The adjacency list

shown in Table 6.5 for this Γ matrix is also repeated in Table 8.2 for ease of

reference. As shown in Chapter 6, the row-column positions of 0 elements for

the following flights in the Γ matrix indicate a valid connection which comply

with minimum ground time and conservation of aircraft flow (the diagonal is

excluded as it refers to the same pair of flights):

• From flight 1 to flight 2 (row 1 column 2),

• From flight 1 to flight 4 (row 1 column 4),

• From flight 2 to flight 3 (row 2 column 3), and

• From flight 3 to flight 4 (row 3 column 4).

Γ =

0 0 1 0
1 0 0 1
1 1 0 0
1 1 1 0

Table 8.1: Γ matrix ensuring minimum ground time and conservation of air-
craft flow constraints for the flights in Table 6.3

123

Source flight (from flight) Neighbour flights (to flights)
1 2, 4
2 3
3 4
4

Table 8.2: An example of an adjacency list for 4 flights

The following observations are noted from the Γ matrix in Table 8.1 and

the adjacency list in Table 8.2:

(a) Flight 1 is connected to both flight 2 and flight 4. Therefore, the aircraft

flying flight 1 should fly flight 2 or flight 4 as the next flight.

(b) Flight 2 is connected to flight 3.

(c) Flight 3 is connected to only flight 4.

(d) Flight 4 does not have any future flight connections.

Excluding the diagonal, an analysis of row 2 and column 3 in the Γ matrix

in Table 8.1 indicates that there is only a single connection to flight 3 and it

is from flight 2. This can also be observed from the adjacency list in Table

8.2 as flight 3 is only a neighbour to flight 2. Therefore, the aircraft flying

flight 2 would also need to fly flight 3. In order to ensure that all flights from

Table 6.3 are flown using a single aircraft as assumed for the MCNF FAM,

the aircraft that will fly flight 4 needs to fly flight 3 as well. This means that

the connection from flight 1 to flight 4, while valid, may result in suboptimal

solutions which require two aircraft. Hence it is proposed that the connection

from flight 1 to flight 4 be deleted.

We therefore propose that by first deleting “redundant connections” sim-

ilar to how “zero-flow” lines are deleted in the MCNF FAM, the NLIP FAM

will have a reduced number of connections and therefore the search space is

reduced. This may result in obtaining a solution faster.

124

8.2 Implications of proposed fleet assignment

model on additional airline decision pro-

cesses

8.2.1 Maintenance scheduling

As discussed in the literature review in Chapter 2, the MCNF FAM approxi-

mates maintenance (Lohatepanont 2002). This is because individual aircraft

are not treated equally because of fleet type scheduling. Therefore, while main-

tenance opportunities may be created for each fleet type, there is no guarantee

that all aircraft will be treated the same.

This effect is shown in the example in Figure 8.3 where both the aircraft

that fly flight 1 and flight 2 are eligible for flying flight 3. If both aircraft are

of the same fleet type, for example a Boeing 737, and airport “B” provides

an opportunity for maintenance for that fleet type from 18:00 to 22:00, it

is not immediately clear which aircraft should be sent for maintenance. For

the aircraft that is not sent for maintenance, it is difficult to know whether

there will be another opportunity for it to undergo maintenance during the

stipulated FAA regulations.

1

2

3

A

B

C

16:00 18:00 20:00 22:00 00:00

Time (hrs)

A
ir

p
o
rt

Figure 8.3: Maintenance for time-space fleet assignment model

125

The same flights as shown in Figure 8.3 are shown in Figure 8.4 for the

NLIP FAM. Flight 4 is a maintenance leg and it is clear that aircraft 1 will go

for maintenance between 18:00 and 22:00 and aircraft 2 will go for maintenance

earlier or later as long as FAA regulations for maintenance are complied with.

737(2)

737(1)

16:00 18:00 20:00 22:00 00:00

Time (hrs)

A
ir

cr
a
ft

Maintenance

A B2

C B1 B B4 B C3

Figure 8.4: NLIP FAM with maintenance

Therefore, maintenance for the NLIP FAM is more explicit. This is done

by creating legs for maintenance. Flight legs for maintenance have the same

departure and arrival airport as shown in the maintenance leg in Figure 8.4.

The maintenance legs created will cover both type A maintenance and type B

maintenance with the differentiator being the duration and frequency of each

maintenance type.

Changes are implemented in the original NLIP FAM presented in Chapter

4 to accommodate type A and type B maintenance checks as follows:

Notation

The following additional parameters are used to distinguish between type A

and type B maintenance legs:

126

ul : The duration of each flight leg l ∈ L. ul = 4 hours for type A main-
tenance leg and ul = 15 hours for type B maintenance leg. For other
flight legs, ul = tl− sl.

mintypeA : The minimum utilisation required for each aircraft before type A
maintenance can be performed. This is 40 flight hours (Sriram &
Haghani 2003).

maxtypeA : The maximum utilisation for each aircraft before which type A main-
tenance must be performed. This variable is set at 65 flight hours (Sri-
ram & Haghani 2003).

mintypeB : The minimum utilisation required for each aircraft before type B
maintenance can be performed. This is 300 flight hours (Sriram &
Haghani 2003).

maxtypeB : The maximum utilisation for each aircraft before which type B main-
tenance must be performed. This variable is set at 600 flight hours
(Sriram & Haghani 2003).

Maintenance parameter

A new parameter bl1,l2 is used to determine if a pair of flight legs l1 ∈ L and

l2 ∈ L are maintenance legs of the same type. This is done by checking if the

arrival airport is the same as the departure airport for each leg and whether

the duration of both legs is the same. An IF-THEN statement showing the

results of this parameter is shown in equation (8.1). Here,

bl1,l2 =

1 If (al1 = dl1) and (al2 = dl2) and (ul1 = ul2),

0 Otherwise.
(8.1)

The matrix B ∈ R(|L| × |L|) shows all combinations of legs l1, l2 ∈ L. Each

element bl1,l2 ∈B for bl1,l2 ∈ {0,1} indicates whether flight l1 and flight l2 are

maintenance legs. Similar to the matrix F in constraint (4.9),

B =

b1,1 b1,2 · · · b1,|L|

b2,1 b2,2 · · · b2,|L|
...

b|L|,1 b|L|,2 · · · b|L|,|L|

.

127

A vector b is formed from columns of B such that

vec(B) = b =
(
b1,1 · · · b|L|,1 b1,2 · · · b|L|,2 · · · b1,|L| · · · b|L|,|L|

)T
.

For |L|= 3, b =
(
b1,1 b2,1 b3,1 b1,2 b2,2 b3,2 b1,3 b2,3 b3,3

)T
.

Minimum ground time parameter

The minimum ground time parameter ol1,l2 should be changed so that main-

tenance legs are excluded from the minimum ground time requirement for all

legs l1, l2 ∈ L. This change is reflected in equation (8.2) for the case where

at least one of the legs is a maintenance leg. The added check determines if

al1 = dl1 or al2 = dl2 such that,

ol1,l2 =

0 If (sl2− tl1 ≥ gtmin) or (l1 = l2) or (al1 = dl1) or (al2 = dl2),

1 Otherwise.
(8.2)

Quantity for constraint satisfaction

The quantity gl1,l2 determines if two flight legs l1, l2 ∈ L flown by the same

aircraft p ∈ P are the same maintenance type and comply with the required

utilisation between them. The matrix G ∈R(|L| × |L|) shows all combinations

of legs l1, l2∈L inclusive of maintenance legs. Each element gl1,l2 ∈G indicates

whether l1 and l2 are maintenance legs and these elements are calculated using

equation (8.3).

For each pair of legs l1, l2∈L, a vector g is formed by vectorising matrix G:

vec(G) = g =
(
g1,1 · · · g|L|,1 g1,2 · · · g|L|,2 · · · g1,|L| · · · g|L|,|L|

)T
. There-

fore, for (|L|= 3), g =
(
g1,1 g2,1 g3,1 g1,2 g2,2 g3,2 g1,3 g2,3 g3,3

)T
.

128

Below is the explanation of the conditions for the quantity gl1,l2 in equation

(8.3):

(i) If l1, l2 ∈ L are type A maintenance legs and xl1,p = xl2,p = 1 for p ∈ P ,

utilisation of all flights assigned to aircraft p which are between l1 and l2

needs to be within type A maintenance range of mintypeA = 40 hours and

maxtypeA = 65 hours. This is ensured by the parameter ml in equation

(8.6) which ensures that only the correct legs are considered. Therefore,

ml has the same function as the parameter zl in quantity (4.5). The

parameter ul provides the duration of each selected leg so that flight

utilisation can be determined.

(ii) If l1, l2 ∈ L are type B maintenance legs and xl1,p = xl2,p = 1 for p ∈ P .

The utilisation of all flights assigned to aircraft p which are between l1

and l2 needs to be within type B maintenance range of mintypeB = 300

and maxtypeB = 600 hours. This condition is ensured by the parameter

ml similar to type A legs above.

(iii) If l1, l2 ∈ L are type A maintenance legs and xl1,p = xl2,p = 1 for p ∈ P .

The utilisation of all flights assigned to aircraft p which are between l1

and l2 can be above the maintenance threshold only if there are other

maintenance legs of the same type between l1 and l2. This condition is

ensured by the quantity jl. Similar to ml, the parameter jl is used to

select only the maintenance legs between l1 and l2 inclusive.

(iv) If l1, l2 ∈ L are type B maintenance legs and xl1,p = xl2,p = 1 for p ∈ P .

The utilisation of all flights assigned to aircraft p which are between l1

and l2 can be above the maintenance threshold only if there are other

maintenance legs of the same type between l1 and l2. This condition is

ensured by the quantity il which has the same function as jl.

129

(v) The fifth condition is for the case when one or both legs l1, l2∈L are not

assigned to the same aircraft p ∈ P .

(vi) The sixth condition is for other permutations such as when l1, l2 ∈ L

are legs with different maintenance types or when they are the same

maintenance type but do not have the required utilisation between them.

The quantities gl1,l2 are calculated as,

gl1,l2 =

1 If (ul1 = ul2 = 4) and [(al1 = dl1) and (al2 = dl2)] and

(mintypeA ≤
|L|∑
l=1

xl1,pxl2,pulml ≤maxtypeA),

1 If (ul1 = ul2 = 15) and [(al1 = dl1) and (al2 = dl2)] and

(mintypeB ≤
|L|∑
l=1

xl1,pxl2,pulml ≤maxtypeB),

1 If (ul1 = ul2 = 4) and [(al1 = dl1) and (al2 = dl2)] and

(
|L|∑
l=1

xl1,pxl2,pulml >maxtypeA) and
|L|∑
l=1

jl > 2,

1 If (ul1 = ul2 = 15) and [(al1 = dl1) and (al2 = dl2)] and

(
|L|∑
l=1

xl1,pxl2,pulml >maxtypeB) and
|L|∑
l=1

il > 2,

1 If xl1,pxl2,p = 0,

0 Otherwise.

(8.3)

In the above equation, the quantities il, jl and ml are calculated as:

il =

1 If (min(sl1, sl2)≤ sl ≤max(sl1, sl2)) and

(al = dl) and (ul = 15) and (xl,p = 1),

0 Otherwise.

(8.4)

130

jl =

1 If (min(sl1, sl2)≤ sl ≤max(sl1, sl2)) and

(al = dl) and (ul = 4) and (xl,p = 1),

0 Otherwise.

(8.5)

ml =

1 If (min(sl1, sl2)≤ sl ≤max(sl1, sl2)) and (al 6= dl),

0 Otherwise.
(8.6)

Constraints

The following constraints are added to accommodate maintenance scheduling:

bT(η−g) = 0,∀p ∈ P (8.7)

For each p∈ P , the added constraint in (8.7) determines if maintenance legs of

the same type share an aircraft and utilisation from one maintenance leg to the

next is within the required range. Similar to constraint (4.9), this constraint

results in elements of the form in equation (8.8). Each one of these elements

needs to be made equal to 0 in order for the constraint to be satisfied. Hence,

bl1,l2(1−gl1,l2) = 0,∀p ∈ P. (8.8)

The value of the decision variables xl1,p and xl2,p for the same aircraft p ∈ P

with the implied bl1,l2 and gl1,l2 values making up the equation bl1,l2(1−gl1,l2)

which needs to equal 0 are provided in Table 8.3. An explanation of each row

in Table 8.3 is provided below:

(i) For the case where xl1,p = 0 and xl2,p = 0 in row 1 and row 2, the param-

eter bl1,l2 is relaxed as l1 and l2 could be maintenance legs of the same

type (row 1) or they could be normal flight legs. Either way, the quan-

131

tity gl1,l2 = 1 as both legs are not assigned to aircraft p ∈ P . Therefore,

bl1,l2(1−gl1,l2) = 0 in both cases.

(ii) If xl1,p = 0 and xl2,p = 1 or xl1,p = 1 and xl2,p = 0 as shown in rows 3, 4,

5 and 6. The parameter bl1,l2 is relaxed as above because only one of the

legs is assigned to aircraft p ∈ P . Similar to row 1 and row 2, gl1,l2 = 1,

therefore bl1,l2(1−gl1,l2) = 0 in all cases.

(iii) If xl1,p = 1 and xl2,p = 1 as in row 7, for maintenance legs of the same type

l1, l2 ∈ L, the parameter bl1,l2 = 1. If l1 and l2 are within maintenance

range or outside the maintenance threshold with other maintenance legs

of the same type in between, the quantity gl1,l2 = 1 making bl1,l2(1−

gl1,l2) = 0. Therefore if the legs do not meet the utilisation requirements,

this constraint would not be complied with as gl1,l2 = 0 making bl1,l2(1−

gl1,l2) = 1.

(iv) If xl1,p = 1 and xl2,p = 1 as in row 8, where l1, l2 ∈ L are either not

maintenance legs or if they are, they are not the same maintenance type.

In this case, bl1,l2 = 0 and gl1,l2 = 0 making bl1,l2(1−gl1,l2) = 0.

Value of the
bl1,l2

gl1,l2
bl1,l2(1−gl1,l2)

decision variables Value Ma

xl1,p = 0 and xl2,p = 0 1 Yes 1 1(1 - 1) = 0
xl1,p = 0 and xl2,p = 0 0 No 1 0(1 - 1) = 0
xl1,p = 0 and xl2,p = 1 1 Yes 1 1(1 - 1) = 0
xl1,p = 0 and xl2,p = 1 0 No 1 0(1 - 1) = 0
xl1,p = 1 and xl2,p = 0 1 Yes 1 1(1 - 1) = 0
xl1,p = 1 and xl2,p = 0 0 No 1 0(1 - 1) = 0
xl1,p = 1 and xl2,p = 1 1 Yes 1 1(1 - 1) = 0
xl1,p = 1 and xl2,p = 1 0 No 0 0(1 - 0) = 0

al1, l2 ∈ L are maintenance legs of the same type.

Table 8.3: Decision variables and their effect on bl1,l2 and gl1,l2 values for
each element bl1,l2(1−gl1,l2)

132

8.2.2 Departure time flexibility

Rexing et al. (2000) presented an expanded fleet assignment model based on

the model by Hane et al. (1995). This model allows for re-timing of nodes

within small time windows. Rexing et al. (2000) reported that this extra

departure time flexibility added a cost saving of over $67 000 per day for 10

minute time windows and even more for 40 minute time windows at a major

US airline. For this model, flight copies are created immediately before the

actual flight or immediately after the flight. The model indicates that only one

of those copies can be flown. Because of the created copies, each schedule thus

has more connection opportunities for each flight. The result is the creation

of better connections which may lead to a reduction in the number of aircraft

required by an airline (Rexing et al. 2000).

An equivalent model can be devised for the NLIP FAM proposed in Chapter

4. Figure 8.5 shows an example for a MCNF FAM and an equivalent NLIP

FAM flown by a Boeing 737 aircraft. It is shown that by creating a time

window, flight 1 would be able to connect with flight 2 for the MCNF FAM

through the blue flight lines, and the NLIP FAM using the flights in blue

blocks. The black and the red flight lines in the MCNF FAM overlap and

therefore would not connect. The same applies with the flights in red lines for

the NLIP FAM. The original flights shown in black lines in the NLIP FAM

do not have the required minimum ground time and therefore would also not

connect. The flights with valid connections are highlighted in Table 8.4.

1a b 2c d
A

B

08:00 09:00 10:00

Time (hrs)

A
irp

or
t

original flight
flight copy
flight copy

(a) MCNF FAM with departure time
flexibility

737

08:00 09:00 10:00

Time (hrs)

A
irc

ra
ft

A B1 B A2

(b) NLIP FAM with departure time
flexibility

Figure 8.5: Flight connection flexibility

133

Flight descrip-
tion

Model Departure
time

Arrival
time

Required min
ground time

1(black line) MCNF
FAM 08:00 09:00 NA

2(black line) MCNF
FAM 08:50 10:00 NA

a(blue line) MCNF
FAM 07:55 08:55 NA

d(blue line) MCNF
FAM 08:55 10:05 NA

b(red line) MCNF
FAM 08:05 09:05 NA

c(red line) MCNF
FAM 08:45 09:55 NA

1(black flight) NLIP
FAM 08:00 08:45 20 min

2(black flight) NLIP
FAM 08:45 09:50 20 min

blue flight copy NLIP
FAM 07:55 08:25 20 min

blue flight copy NLIP
FAM 08:50 10:00 20 min

red flight copy NLIP
FAM 08:05 08:50 20 min

red flight copy NLIP
FAM 08:30 09:45 20 min

Table 8.4: Flight details and copies for MCNF FAM and NLIP FAM in Fig-
ure 8.5

In order to enable departure time flexibility as shown in the example from

Figure 8.5 and Table 8.4, the NLIP FAM is changed to accommodate the flight

copies.

Notation

The set to be added is:

Nl : The set of flight copies for each flight leg l ∈ L indexed by n. The
total number of flight copies for each flight is denoted by |Nl|.

134

The parameters to be added are:
dl,n : Departure airport of flight copy n ∈Nl for flight l ∈ L.
al,n : Arrival airport of flight copy n ∈Nl for flight l ∈ L.
tl,n : Arrival time of flight copy n ∈Nl for flight l ∈ L.
sl,n : Departure time of flight copy n ∈Nl for flight l ∈ L.
cl,p,n : The assignment cost when flight copy n ∈Nl of flight l ∈ L is assigned

to aircraft p ∈ P .

Cost coefficient parameter

For each aircraft p ∈ P and flight l ∈ L, the variable cl,p,n stores for each flight

copy n∈Nl of flight l∈L the assignment cost. Here, n= 1 , 2 , 3 , · · · , |Nl|.

Minimum ground time parameter

The parameter ol1,l2 is changed to ol1,l2,n1,n2. The new parameter is used to

determine if two flights copies n1,n2∈Nl from flights l1, l2∈L comply with the

minimum required ground time. An IF-THEN statement showing the results

of this parameter is shown in equation (8.9). This equation tests whether the

difference between the departure time of flight copy n2 and the arrival time of

flight copy n1 of flights l1, l2∈L complies with minimum ground time (gtmin).

The case where l1 = l2 and n1 = n2 refers to the same flight. For this case,

ol1,l2,n1,n2 is made to equal to 0. The calculation is as follows:

ol1,l2,n1,n2 =

0 If (sl2,n2− tl1,n1 ≥ gtmin) or [(l1 = l2) and (n1 = n2)],

1 Otherwise.
(8.9)

Conservation of aircraft flow parameter

The parameter fl1,l2 is changed to fl1,l2,n1,n2. The new parameter is used to

determine if there is conservation of aircraft flow from flight copy n1 ∈ Nl of

flight l1 ∈ L to flight copy n2 ∈ Nl of flight l2 ∈ L. An IF-THEN statement

showing the results of this parameter is shown in equation (8.10). This equa-

135

tion shows the results when the arrival airport of flight copy n1 is the same

as the departure airport of flight copy n2. In cases where l1 = l2, fl1,l2,n1,n2

refers to the same flight. For this case, fl1,l2,n1,n2 is made to equal 0. The

calculation of fl1,l2,n1,n2 is,

fl1,n1,l2,n2 =

0 If (dl2,n2 = al1,n1) or (l1 = l2),

1 Otherwise.
(8.10)

Decision variables

The decision variable xl,p is changed to xl,p,n to include the flight copy n ∈Nl

of l ∈ L. Therefore, xl,p,n is a decision variable which is used to determine if

flight copy n ∈Nl of flight l ∈ L is flown by aircraft p ∈ P . The results of this

decision variable are shown in equation (8.11) below:

xl,p,n =

1 If copy n ∈Nl of flight l ∈ L is assigned to aircraft p ∈ P,

0 Otherwise.
(8.11)

Quantities for constraint satisfaction

The quantity hl1,l2 is changed to hl1,l2,n1,n2. The new quantity is used to

calculate if two flight copies n1 ∈Nl and n2 ∈Nl from flights l1, l2 ∈ L flown

by the same aircraft p ∈ P are consecutive. Equation (8.12) shows the results

for this quantity. Equation (8.13) for zl,n is used to find flights between the

two flight copies. It has the same function as zl in quantity (4.5) for the NLIP

FAM. The two calculations are:

hl1,l2,n1,n2 =

0 If ((1−xl1,p,n1xl2,p,n2) +

|L|∑
l=1

|Nl|∑
n=1

xl,p,nzl,n) = 0,

1 Otherwise.
(8.12)

136

zl,n =

1 If [min(sl1,n1, sl2,n2)≤ sl,n ≤max(sl1,n1, sl2,n2)] and

[(l
n
6= l1
n1) and (l×n 6= l1×n1) and (l

n
6= l2
n2) and (l×n 6= l2×n2)]

0 Otherwise

(8.13)

Mathematical model

The changed parameters, cost coefficient, decision variables and other defined

quantities are now used to write the mathematical model which is:

Min
∑
n∈Nl

∑
p∈P

∑
l∈L

cl,p,nxl,p,n (8.14)

Subject to:∑
n∈Nl

∑
p∈P

xl,p,n = 1,∀l ∈ L (8.15)

∑
n2∈Nl

∑
n1∈Nl

∑
p∈P

∑
l2∈L

∑
l1∈L

xl1,p,n1ol1,l2,n1,n2xl2,p,n2 = 0 (8.16)

∑
n2∈Nl

∑
n1∈Nl

∑
l2∈L

∑
l1∈L

fl1,l2,n1,n2(1−hl1,l2,n1,n2) = 0,∀p ∈ P (8.17)

xl,p,n ∈ {0,1},∀l ∈ L,∀n ∈Nl,∀p ∈ P. (8.18)

ol1,l2,n1,n2 ∈ {0,1},∀l1, l2 ∈ L,∀n1,n2 ∈Nl,∀p ∈ P (8.19)

fl1,l2,n1,n2 ∈ {0,1},∀l1, l2 ∈ L,∀n1,n2 ∈Nl,∀p ∈ P (8.20)

hl1,l2,n1,n2 ∈ {0,1},∀l1, l2 ∈ L,∀n1,n2 ∈Nl,∀p ∈ P (8.21)

The objective function (8.14) minimises the assignment cost for each air-

craft and flight combination. Constraint (8.15) is a cover constraint and en-

sures that only a single flight copy of each flight is assigned to a single aircraft.

137

The non-linear constraint (8.16) applies the minimum ground time between

flights. This is ensured by the binary parameter ol1,n1,l2,n2. Conservation of

aircraft flow is ensured through the non-linear constraint (8.17). This con-

straint is implemented by the use of binary parameters fl1,l2,n1,n2 which deter-

mines if an aircraft departs from a previous airport it has landed at and the

quantity hl1,l2,n1,n2 which determines if the tested pair of flights are consecu-

tive. All constraints (8.15) to (8.17) have decision variables xl,p,n ∀l ∈L,∀p∈P

and ∀n ∈Nl.

Impact of changes on the model

Below is the impact of the changes on the model:

(a) For the objective function, the number of decision variables to be calcu-

lated is increased by the number of copies per flight. The result is that

each cost coefficient parameter for each flight copy is multiplied by the

xl,p,n decision variable.

(b) Only a single flight copy from every flight can be flown by an aircraft p∈P .

(c) The minimum ground time constraint is ensured for all pairs of flight

copies. The effect on the model is an increase in the number of decision

variables by the square of the number of copies for each flight. Each

decision variable of the constraint is of the form in equation (8.22) which

has to be equal to 0 in order for the constraint to be satisfied. Hence,

xl1,p,n1ol1,l2,n1,n2xl2,p,n2 = 0,∀l1, l2 ∈ L,∀p ∈ P,∀n1,n2 ∈Nl. (8.22)

A summary of the decision variables xl1,p,n1 and xl2,p,n2 as well as the

implied ol1,l2,n1,n2 parameter to satisfy the equality are shown in Table

8.5. The outcome is similar to the result obtained for the NLIP FAM

which is shown in Table 4.1.

138

Value of the decision
variables ol1,l2,n1,n2 value

xl1,p,n1 = 0 and xl2,p,n2 = 0 ol1,l2,n1,n2 = 0 or ol1,l2,n1,n2 = 1
xl1,p,n1 = 0 and xl2,p,n2 = 1 ol1,l2,n1,n2 = 0 or ol1,l2,n1,n2 = 1
xl1,p,n1 = 1 and xl2,p,n2 = 0 ol1,l2,n1,n2 = 0 or ol1,l2,n1,n2 = 1
xl1,p,1 = 1 and xl2,p,n2 = 1 ol1,l2,n1,n2 = 0

Table 8.5: Decision variables xl1,p,n1 and xl2,p,n2 and their effect on the
ol1,l2,n1,n2 values

(d) The conservation of aircraft flow constraint has elements which are of the

form in equation (8.23), and each element needs to be made equal to 0 so

that the constraint is satisfied. Hence,

fl1,l2,n1,n2(1−hl1,l2,n1,n2) = 0,∀l1, l2 ∈ L,∀p ∈ P,∀n1,n2 ∈Nl. (8.23)

A summary of the decision variables xl1,p,n1 and xl2,p,n2 as well as the

implied parameter fl1,l2,n1,n2 and the quantity hl1,l2,n1,n2 which satisfy the

equality are shown in Table 8.6. The outcome is similar to the result

obtained for the NLIP FAM which is shown in Table 4.2.

Value of the
fl1,l2,n1,n2

hl1,l2,n1,n2 fl1,l2,n1,n2(1−hl1,l2,n1,n2)

decision variables Value COFa

xl1,p,n1 = 0 and xl2,p,n2 = 0 0 Yes 1 0(1 - 1) = 0
xl1,p,n1 = 0 and xl2,p,n2 = 0 1 No 1 1(1 - 1) = 0
xl1,p,n1 = 0 and xl2,p,n2 = 1 0 Yes 1 0(1 - 1) = 0
xl1,p,n1 = 0 and xl2,p,n2 = 1 1 No 1 1(1 - 1) = 0
xl1,p,n1 = 1 and xl2,p,n2 = 0 0 Yes 1 0(1 - 1) = 0
xl1,p,n1 = 1 and xl2,p,n2 = 0 1 No 1 1(1 - 1) = 0
xl1,p,n1 = 1 and xl2,p,n2 = 1 0 Yes 0 0(1 - 0) = 0
xl1,p,n1 = 1 and xl2,p,n2 = 1 1 No 1 1(1 - 1) = 0
xl1,p,n1 = 1 and xl2,p,n2 = 1 0 Yes 1 0(1 - 1) = 0

aConservation of aircraft flow

Table 8.6: Decision variables xl1,p,n1 and xl2,p,n2 and their effect on
fl1,l2,n1,n2 and hl1,l2,n1,n2 values

139

Model characteristics

• The model is a non-linear integer program.

• Aircraft routing is calculated simultaneously with fleet assignment and

the location of each aircraft can be determined at any point in time.

• Similar to the model by Rexing et al. (2000), departure time flexibility

is created for each flight with the result that better connections will be

found and it may reduce the number of aircraft utilised.

140

Chapter 9

Conclusion and

Recommendations

9.1 Conclusion

A non-linear integer programming fleet assignment model has been proposed.

A comparison of the solution for this model and the multi-commodity fleet

assignment model was performed and the following was observed:

(a) It has been shown that the proposed mathematical model is non-linear and

was solved using a novel GA solver which does not only modify a feasible

solution, but generates it from scratch.

(b) While slower than the MCNF FAM, the proposed NLIP FAM does not

degrade the solution. Further to this, it has been shown that the proposed

model is faster than the “flight strings” model proposed by Barnhart et al.

(1998).

(c) Because aircraft routing is performed simultaneously with fleet assignment

in the proposed NLIP FAM, maintenance can be added to the NLIP FAM

for all aircraft.

(d) It has been shown that flight schedule flexibility could be achieved in

141

the NLIP FAM. This may result in connections which reduce the flight

assignment cost and the number of aircraft required.

(e) Deleting redundant connections similar to the “zero-flow” lines in the

MCNF FAM will resulted in a significant reduction of the time to solve

for the NLIP FAM.

9.2 Recommendations

The following future work can be performed based on the proposed model:

(a) The NLIP FAM was solved using a GA solver. Other solvers can be tried

with the objective of improving the performance time.

(b) Testing of the NLIP FAM by integrating maintenance and departure time

flexibility could be conducted.

(c) Other airline planning decisions like network effects and crew scheduling

could be integrated with the proposed NLIP FAM.

(d) The heuristic for the proposed solution time optimization which deletes

unnecessary connections can be performed with the objective of improving

performance.

142

Bibliography

Abara, J. (1989), ‘Applying integer linear programming to the fleet assignment

problem’, Interfaces 19(4), 20–28.

Ageeva, Y. & Clarke, J.-P. (2000), ‘Approaches to incorporating robustness

into airline scheduling’.

Ahuja, R. K., Liu, J., Orlin, J. B., Goodstein, J. & Mukherjee, A. (2004), ‘A

neighborhood search algorithm for the combined through and fleet assign-

ment model with time windows’, Networks 44(2), 160–171.

Ahuja, R. K. & Orlin, J. B. (2002), ‘Very large-scale neighborhood search in

airline fleet scheduling’, SIAM News 35(9), 1–4.

Bailey, E. E., Graham, D. R. & Kaplan, D. P. (1985), Deregulating the airlines,

Vol. 10, MIT press.

Barnhart, C., Belobaba, P. & Odoni, A. R. (2003), ‘Applications of operations

research in the air transport industry’, Transportation science 37(4), 368–

391.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. & Vance,

P. H. (1998), ‘Branch-and-price: Column generation for solving huge integer

programs’, Operations research 46(3), 316–329.

Barnhart, C., Kniker, T. S. & Lohatepanont, M. (2002), ‘Itinerary-based airline

fleet assignment’, Transportation Science 36(2), 199–217.

143

Barnhart, C. & Smith, B. (2012), Quantitative Problem Solving Methods in

the Airline Industry, Springer.

Barnhart, C. & Talluri, K. (1997), ‘Airline operations research’, Design and

Operations of Civil and Environmental Engineering Systems pp. 435–469.

Belanger, N., Desaulniers, G., Soumis, F. & Desrosiers, J. (2006), ‘Periodic

airline fleet assignment with time windows, spacing constraints, and time de-

pendent revenues’, European Journal of Operational Research 175(3), 1754–

1766.

Bélanger, N., Desaulniers, G., Soumis, F., Desrosiers, J. & Lavigne, J. (2006),

‘Weekly airline fleet assignment with homogeneity’, Transportation Research

Part B: Methodological 40(4), 306–318.

Belobaba, P. (2009), ‘The airline planning process’, The Global Airline Industry

pp. 153–181.

Belobaba, P. P. (1987), ‘Survey paper-airline yield management an overview

of seat inventory control’, Transportation Science 21(2), 63–73.

Berge, M. (1994), Timetable optimization: Formulation, solution approaches,

and computational issues, in ‘AGIFORS proceedings’, Vol. 341, p. 357.

Berge, M. E. & Hopperstad, C. A. (1993), ‘Demand driven dispatch: A method

for dynamic aircraft capacity assignment, models and algorithms’, Opera-

tions research 41(1), 153–168.

Burke, E. K., De Causmaecker, P., De Maere, G., Mulder, J., Paelinck, M. &

Berghe, G. V. (2010), ‘A multi-objective approach for robust airline schedul-

ing’, Computers & Operations Research 37(5), 822–832.

Christou, I. T., Zakarian, A., Liu, J.-M. & Carter, H. (1999), ‘A two-phase

144

genetic algorithm for large-scale bidline-generation problems at delta air

lines’, Interfaces 29(5), 51–65.

Clarke, L. W., Hane, C. A., Johnson, E. L. & Nemhauser, G. L. (1996), ‘Main-

tenance and crew considerations in fleet assignment’, Transportation Science

30(3), 249–260.

Clarke, M. D. D. & Laporte, G. (1997), ‘The airline schedule recovery problem’,

Diss. Univ. of Montreal .

Dantzig, G. & Ferguson, A. (1954), The problem of routing–a mathematical

solution, Technical report, Technical Report AD604395, Federal Clearing-

house, Washington, DC.

Daskin, M. S. & Panayotopoulos, N. D. (1989), ‘A lagrangian relaxation ap-

proach to assigning aircraft to routes in hub and spoke networks’, Trans-

portation Science 23(2), 91–99.

Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002), ‘A fast and elitist

multiobjective genetic algorithm: Nsga-ii’, Evolutionary Computation, IEEE

Transactions on 6(2), 182–197.

Du, D.-Z. & Pardalos, P. M. (2013), Handbook of combinatorial optimization:

supplement, Vol. 1, Springer Science & Business Media.

El Moudani, W. & Mora-Camino, F. (2000), ‘A dynamic approach for air-

craft assignment and maintenance scheduling by airlines’, Journal of Air

Transport Management 6(4), 233–237.

Flynn, C. (2016), ‘Hub & spoke vs. point to point networks in the 787 dream-

liner production’.

URL: http://arachne.cc/issues/00/hub-and-spoke flynn-casey.html#index

145

Goldberg, D. E. & Deb, K. (1991), ‘A comparative analysis of selection schemes

used in genetic algorithms’, Foundations of genetic algorithms 1, 69–93.

Goodstein, J. B. (1997), Re-fleeting applications at united airlines, in ‘AGI-

FORS Proceedings.–’.

Hane, C. A., Barnhart, C., Johnson, E. L., Marsten, R. E., Nemhauser, G. L. &

Sigismondi, G. (1995), ‘The fleet assignment problem: Solving a large-scale

integer program’, Mathematical Programming 70(1-3), 211–232.

Ioachim, I., Desrosiers, J., Soumis, F. & Bélanger, N. (1999), ‘Fleet assignment

and routing with schedule synchronization constraints’, European Journal of

Operational Research 119(1), 75–90.

Jacobs, T. L., Johnson, E. & Smith, B. (1999), O&d fam: Incorporating pas-

senger flows into the fleeting process, in ‘Thirty-Ninth Annual AGIFORS

Symposium, New Orleans’.

Jaillet, P., Song, G. & Yu, G. (1996), ‘Airline network design and hub location

problems’, Location science 4(3), 195–212.

Jarrah, A. I., Goodstein, J. & Narasimhan, R. (2000), ‘An efficient airline re-

fleeting model for the incremental modification of planned fleet assignments’,

Transportation Science 34(4), 349–363.

Lan, S., Clarke, J.-P. & Barnhart, C. (2006), ‘Planning for robust airline oper-

ations: Optimizing aircraft routings and flight departure times to minimize

passenger disruptions’, Transportation science 40(1), 15–28.

Lee, L. H., Lee, C. U. & Tan, Y. P. (2007), ‘A multi-objective genetic algo-

rithm for robust flight scheduling using simulation’, European Journal of

Operational Research 177(3), 1948–1968.

146

Liang, Z. & Chaovalitwongse, W. A. (2012), ‘A network-based model for the

integrated weekly aircraft maintenance routing and fleet assignment prob-

lem’, Transportation Science 47(4), 493–507.

Lohatepanont, M. (2002), Airline fleet assignment and schedule design: inte-

grated models and algorithms, PhD thesis, Massachusetts Institute of Tech-

nology.

Lohatepanont, M. & Barnhart, C. (2004), ‘Airline schedule planning: Inte-

grated models and algorithms for schedule design and fleet assignment’,

Transportation Science 38(1), 19–32.

Magalhaes-Mendes, J. (2013), ‘A comparative study of crossover operators for

genetic algorithms to solve the job shop scheduling problem’, WSEAS Trans.

Comput 12(4), 164–173.

McShan, S. & Windle, R. (1989), ‘The implications of hub-and-spoke routing

for airline costs’, Logistics and Transportation Review 25(3), 209–230.

Morrison, S. & Winston, C. (1986), The economic effects of airline deregula-

tion, Brookings Institution Press.

O’Kelly, M. E., Bryan, D., Skorin-Kapov, D. & Skorin-Kapov, J. (1996), ‘Hub

network design with single and multiple allocation: A computational study’,

Location Science 4(3), 125–138.

Ozdemir, H. T. & Mohan, C. K. (2001), ‘Flight graph based genetic algorithm

for crew scheduling in airlines’, Information Sciences 133(3), 165–173.

Papadakos, N. (2009), ‘Integrated airline scheduling’, Computers & Operations

Research 36(1), 176–195.

Pearce, B. (2013), ‘Profitability and the air transport value chain’, IATA Eco-

nomics Briefing (10).

147

Pierce, B. & Doernhoefer, G. (2011), ‘Iata economics briefing: The economic

benefits of airline alliances and joint ventures’.

Pita, J. P., Barnhart, C. & Antunes, A. P. (2012), ‘Integrated flight schedul-

ing and fleet assignment under airport congestion’, Transportation Science

47(4), 477–492.

Rexing, B., Barnhart, C., Kniker, T., Jarrah, A. & Krishnamurthy, N.

(2000), ‘Airline fleet assignment with time windows’, Transportation Sci-

ence 34(1), 1–20.

Reynolds-Feighan, A. J. (2012), The effects of deregulation on US air networks,

Springer Science & Business Media.

Roeva, O., Fidanova, S. & Paprzycki, M. (2013), Influence of the popula-

tion size on the genetic algorithm performance in case of cultivation process

modelling, in ‘Computer Science and Information Systems (FedCSIS), 2013

Federated Conference on’, IEEE, pp. 371–376.

Rosenberger, J. M., Johnson, E. L. & Nemhauser, G. L. (2004), ‘A robust

fleet-assignment model with hub isolation and short cycles’, Transportation

science 38(3), 357–368.

Rosenberger, J. M., Schaefer, A. J., Goldsman, D., Johnson, E. L., Kleywegt,

A. J. & Nemhauser, G. L. (2002), ‘A stochastic model of airline operations’,

Transportation science 36(4), 357–377.

Rushmeier, R. A. & Kontogiorgis, S. A. (1997), ‘Advances in the optimization

of airline fleet assignment’, Transportation science 31(2), 159–169.

Sherali, H. D., Bae, K.-H. & Haouari, M. (2013a), ‘A benders decomposition

approach for an integrated airline schedule design and fleet assignment prob-

148

lem with flight retiming, schedule balance, and demand recapture’, Annals

of Operations Research 210(1), 213–244.

Sherali, H. D., Bae, K.-H. & Haouari, M. (2013b), ‘An integrated approach

for airline flight selection and timing, fleet assignment, and aircraft routing’,

Transportation Science 47(4), 455–476.

Sherali, H. D., Bish, E. K. & Zhu, X. (2006), ‘Airline fleet assignment con-

cepts, models, and algorithms’, European Journal of Operational Research

172(1), 1–30.

Sherali, H. D. & Zhu, X. (2008), ‘Two-stage fleet assignment model considering

stochastic passenger demands’, Operations Research 56(2), 383–399.

Smith, B. C. (2004), ‘Robust airline fleet assignment’.

Smith, B. C. & Johnson, E. L. (2006), ‘Robust airline fleet assignment: Im-

posing station purity using station decomposition’, Transportation Science

40(4), 497–516.

Sriram, C. & Haghani, A. (2003), ‘An optimization model for aircraft mainte-

nance scheduling and re-assignment’, Transportation Research Part A: Pol-

icy and Practice 37(1), 29–48.

Talluri, K. T. (1996), ‘Swapping applications in a daily airline fleet assignment’,

Transportation Science 30, 237–248.

Teodorovi, D. (1988), ‘Matching of transportation, capacities and passenger

demands in air transportation’, Civil Engineering Practice pp. 365–392.

Teodorović, D. & Krcmar-Nozić, E. (1989), ‘Multicriteria model to determine

flight frequencies on an airline network under competitive conditions’, Trans-

portation Science 23(1), 14–25.

149

The revenue enhancement potential of airline yield management systems

(1992).

Whalen, W. T. (2007), ‘A panel data analysis of code-sharing, antitrust im-

munity, and open skies treaties in international aviation markets’, Review of

Industrial Organization 30(1), 39–61.

150

Appendix A

Data set sample

Departure airport Arrival
airport departure time Arrival time

DDD AAA 2013/11/06 03:45 2013/11/06 07:25
CCC AAA 2013/11/06 03:45 2013/11/06 05:45
CCC AAA 2013/11/06 04:00 2013/11/06 06:00
AAA CCC 2013/11/06 04:00 2013/11/06 06:10
AAA BBB 2013/11/06 04:00 2013/11/06 05:10
KKK JJJ 2013/11/06 04:00 2013/11/06 04:45
EEE AAA 2013/11/06 04:10 2013/11/06 08:20
AAA QQQ 2013/11/06 04:10 2013/11/06 05:50
QQQ AAA 2013/11/06 04:10 2013/11/06 05:50
CCC AAA 2013/11/06 04:15 2013/11/06 06:15
AAA SSS 2013/11/06 04:20 2013/11/06 05:50
UUU AAA 2013/11/06 04:30 2013/11/06 13:20
BBB AAA 2013/11/06 04:40 2013/11/06 05:40
SSS AAA 2013/11/06 04:55 2013/11/06 06:10

AAA BBB 2013/11/06 05:00 2013/11/06 06:05
CCC AAA 2013/11/06 05:00 2013/11/06 07:00
AAA CCC 2013/11/06 05:00 2013/11/06 07:10
BBB AAA 2013/11/06 05:15 2013/11/06 06:10

WWW AAA 2013/11/06 05:20 2013/11/06 07:05
XXX AAA 2013/11/06 05:20 2013/11/06 07:10
CCC AAA 2013/11/06 05:20 2013/11/06 07:20
YYY AAA 2013/11/06 05:20 2013/11/06 07:25
JJJ AAA 2013/11/06 05:40 2013/11/06 09:00

BBB AAA 2013/11/06 06:00 2013/11/06 06:50
CCC AAA 2013/11/06 06:00 2013/11/06 08:00
AAA BBB 2013/11/06 06:20 2013/11/06 07:10
QQQ AAA 2013/11/06 06:20 2013/11/06 08:00
SSS AAA 2013/11/06 06:25 2013/11/06 07:50

AAA CCC 2013/11/06 06:40 2013/11/06 08:35
BBB AAA 2013/11/06 06:50 2013/11/06 07:50
CCC AAA 2013/11/06 06:55 2013/11/06 08:50

Table A.1: Data set sample

151

Appendix B

Input data flight network

Figure B.1: Input data flight network

152

Appendix C

Flight duration summary

Flight Data set:1 Data set:2 Data set:3 Data set:4 Data set:5 Data set:6 Data set:7 Data set:8 Data set:9
duration Flights Flights Flights Flights Flights Flights Flights Flights Flights
0 - 1 hr 14 15 18 17 18 16 16 18 18
1 - 2 hrs 798 882 1 074 1 008 1 092 938 938 990 1 058
2 - 3 hrs 591 638 785 739 793 688 688 729 785
3 - 4 hrs 90 99 126 115 121 108 108 115 124
4 - 5 hrs 115 123 148 142 150 132 132 143 151
5 - 6 hrs 14 15 18 17 19 16 16 18 19
6 - 7 hrs 34 37 46 43 45 40 40 42 45
7 - 8 hrs 12 13 16 15 16 14 14 15 16
8 - 9 hrs 55 60 73 45 48 42 42 53 67
9 - 10 hrs 40 44 55 99 105 92 92 66 62
10 - 11 hrs 67 72 89 60 64 56 56 83 90
11 - 12 hrs 66 70 86 82 87 76 76 81 87
12 - 13 hrs 0 0 0 0 0 0 0 0 1
13 - 14 hrs 24 26 32 30 32 28 28 30 31
14 - 15 hrs 17 19 23 22 23 20 20 22 22
15 - 16 hrs 5 5 6 6 7 6 6 6 7
16 - 17 hrs 12 13 16 15 16 14 14 15 16

Table C.1: Flight duration summary

153

Appendix D

Flight duration percentage

summary

Figure D.1: Flight duration percentage summary

154

Appendix E

Java code for creating CPLEX

LP file

This is the main class for the Java code used to create an LP file. import

java.io.*;
import java.util.*;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
import static java.util.Arrays.asList;
@SuppressWarnings({ “unchecked”, “deprecation”})

public class Cplex {

public static void main(String[] args){
System.out.println(“1 - 11: read data”);
globalcplex.create Legs Array();
System.out.println(“2 - 11: sort legs”);
globalcplex.sortLegs();
System.out.println(“3 - 11: create revenue”);
globalcplex.createCosts();
System.out.println(“4 - 11: create X constraints”);
globalcplex.createXConstraints();
System.out.println(“5 - 11: create objective function”);
globalcplex.createObjectiveFunction();
System.out.println(“6 - 11: create cover constraints”);
globalcplex.createCoverConstraint();
System.out.println(“7 - 11: create nodes”);
globalcplex.createNodes();
System.out.println(“8 - 11: find nr of nodes”);

155

globalcplex.findNrofNodes();
System.out.println(“9 - 11: create master table”);
globalcplex.createMasterTable();
System.out.println(“10 - 11: create connections”);
globalcplex.findConnections();
System.out.println(“11 - 11: Printing”);
globalcplex.print();
}
}

156

Appendix F

LP CPLEX file

Minimize
obj:900 X11 + 750 X12 + 1050 X13 + 3300 X21 + 2750 X22 + 3850 X23 +
3300 X31 + 2750 X32 + 3850 X33 + 900 X41 + 750 X42 + 1050 X43 + 900
X51 + 750 X52 + 1050 X53 + 900 X61 + 750 X62 + 1050 X63 + 3300 X71
+ 2750 X72 + 3850 X73 + 3300 X81 + 2750 X82 + 3850 X83 + 900 X91 +
750 X92 + 1050 X93 + 900 X101 + 750 X102 + 1050 X103
Subject To
cover1: X11 + X12 + X13 = 1
cover2: X21 + X22 + X23 = 1
cover3: X31 + X32 + X33 = 1
cover4: X41 + X42 + X43 = 1
cover5: X51 + X52 + X53 = 1
cover6: X61 + X62 + X63 = 1
cover7: X71 + X72 + X73 = 1
cover8: X81 + X82 + X83 = 1
cover9: X91 + X92 + X93 = 1
cover10: X101 + X102 + X103 = 1
Bal1: Y11 - X11 - Y21 = 0
Bal2: Y12 - X12 - Y22 = 0
Bal3: Y13 - X13 - Y23 = 0
Bal4: X11 + Y81 - Y91 = 0
Bal5: X12 + Y82 - Y92 = 0
Bal6: X13 + Y83 - Y93 = 0
Bal7: Y171 - X21 - Y181 = 0
Bal8: Y172 - X22 - Y182 = 0
Bal9: Y173 - X23 - Y183 = 0
Bal10: X21 + Y101 - Y111 = 0
Bal11: X22 + Y102 - Y112 = 0
Bal12: X23 + Y103 - Y113 = 0
Bal13: Y181 - X31 - Y191 = 0
Bal14: Y182 - X32 - Y192 = 0

157

Bal15: Y183 - X33 - Y193 = 0
Bal16: X31 + X51 + Y121 - Y131 = 0
Bal17: X32 + X52 + Y122 - Y132 = 0
Bal18: X33 + X53 + Y123 - Y133 = 0
Bal19: Y91 - X41 - Y101 = 0
Bal20: Y92 - X42 - Y102 = 0
Bal21: Y93 - X43 - Y103 = 0
Bal22: X41 + Y31 - Y41 = 0
Bal23: X42 + Y32 - Y42 = 0
Bal24: X43 + Y33 - Y43 = 0
Bal25: Y21 - X51 - Y31 = 0
Bal26: Y22 - X52 - Y32 = 0
Bal27: Y23 - X53 - Y33 = 0
Bal28: Y111 - X61 - X71 - Y121 = 0
Bal29: Y112 - X62 - X72 - Y122 = 0
Bal30: Y113 - X63 - X73 - Y123 = 0
Bal31: X61 + Y41 - Y51 = 0
Bal32: X62 + Y42 - Y52 = 0
Bal33: X63 + Y43 - Y53 = 0
Bal34: X71 + Y191 - Y201 = 0
Bal35: X72 + Y192 - Y202 = 0
Bal36: X73 + Y193 - Y203 = 0
Bal37: Y131 - X81 - Y141 = 0
Bal38: Y132 - X82 - Y142 = 0
Bal39: Y133 - X83 - Y143 = 0
Bal40: X81 + Y201 - Y211 = 0
Bal41: X82 + Y202 - Y212 = 0
Bal42: X83 + Y203 - Y213 = 0
Bal43: Y51 - X91 - Y61 = 0
Bal44: Y52 - X92 - Y62 = 0
Bal45: Y53 - X93 - Y63 = 0
Bal46: X91 + Y151 - Y161 = 0
Bal47: X92 + Y152 - Y162 = 0
Bal48: X93 + Y153 - Y163 = 0
Bal49: Y141 - X101 - Y151 = 0
Bal50: Y142 - X102 - Y152 = 0
Bal51: Y143 - X103 - Y153 = 0
Bal52: X101 + Y61 - Y71 = 0
Bal53: X102 + Y62 - Y72 = 0
Bal54: X103 + Y63 - Y73 = 0
Avail1: Y71 + Y161 + Y211 ¡= 1
Avail2: Y72 + Y162 + Y212 ¡= 2
Avail3: Y73 + Y163 + Y213 ¡= 2
General
Y11 Y21 Y12 Y22 Y13 Y23 Y81 Y91 Y82 Y92 Y83 Y93 Y171 Y181 Y172
Y182 Y173 Y183 Y101 Y111 Y102 Y112 Y103 Y113 Y191 Y192 Y193 Y121

158

Y131 Y122 Y132 Y123 Y133 Y31 Y41 Y32 Y42 Y33 Y43 Y51 Y52 Y53 Y201
Y202 Y203 Y141 Y142 Y143 Y211 Y212 Y213 Y61 Y62 Y63 Y151 Y161 Y152
Y162 Y153 Y163 Y71 Y72 Y73
Binary
X11 X12 X13 X21 X22 X23 X31 X32 X33 X41 X42 X43 X51 X52 X53 X61
X62 X63 X71 X72 X73 X81 X82 X83 X91 X92 X93 X101 X102 X103
End

159

Appendix G

Java code of the genetic

algorithm heuristic

This is the main class of the Java code for the genetic algotithm used for
solving the non-linear integer programming fleet assignment model. import

java.io.*;
import java.util.*;

public class parallelGA
public static void allocateAircraft()
readGlobalData.initialise();
globalVariables.initialise();

System.out.println(“POPULATION SIZE: ”+globalVariables.getPopSize());
System.out.println(“NR OF LEGS: ”+globalVariables.getFlightNr());
System.out.println(“NR OF AIRCRAFT: ”+globalVariables.getAircraftNr());
System.out.println(“NR OF FLEET TYPES: ”+globalVariables.getFleetTypeNr());
System.out.println(“GTMin: ”+globalVariables.getGTMin());
System.out.println(“MUTATION RATE: ”+globalVariables.getMutationRate());

//START
nPopulation myPop = new nPopulation();
myPop.createIndividuals();
myPop.initialisePopulation();
int best, worst;
for (int i = 0;i < globalVariables.getGenerations();i++){
System.out.println(”Generation: ”+i);

160

best = globalVariables.getBest(myPop);
globalVariables.printUpdate(best, myPop);
globalVariables.printSolution(myPop, best);

worst = globalVariables.getWorst(myPop);
globalVariables.selection(best, worst, myPop);
globalVariables.storeSolution(myPop);

globalVariables.changeCrossoverPair2();
myPop.copyFlights();
myPop.crossOver();
globalVariables.storeSolution(myPop);

best = globalVariables.getBest(myPop);
myPop.aircraftShift(best);
globalVariables.storeSolution(myPop);

globalVariables.changeCrossoverPair2();
myPop.copyFlights();
myPop.crossOver();
globalVariables.storeSolution(myPop);

myPop.swopAircraft();
globalVariables.storeSolution(myPop);

globalVariables.changeCrossoverPair2();
myPop.copyFlights();
myPop.crossOver();
globalVariables.storeSolution(myPop);

best = globalVariables.getBest(myPop);
myPop.outsideCopy(best);
globalVariables.storeSolution(myPop);

globalVariables.changeCrossoverPair2();
myPop.copyFlights();
myPop.crossOver();
globalVariables.storeSolution(myPop);

best = globalVariables.getBest(myPop);
myPop.bounceSpaces(best);
globalVariables.storeSolution(myPop);

globalVariables.changeCrossoverPair2();
myPop.copyFlights();
myPop.crossOver();

161

globalVariables.storeSolution(myPop);

best = globalVariables.getBest(myPop);
myPop.singlePointCrossover(best);
globalVariables.storeSolution(myPop);

globalVariables.changeCrossoverPair2();
myPop.copyFlights();
myPop.crossOver();
globalVariables.storeSolution(myPop);

myPop.singlePointCrossoverExtra();
globalVariables.storeSolution(myPop);

best = globalVariables.getBest(myPop);
myPop.doublePointCrossover(best);
globalVariables.storeSolution(myPop);

globalVariables.changeCrossoverPair2();
myPop.copyFlights();
myPop.crossOver();
globalVariables.storeSolution(myPop);

myPop.doublePointCrossoverExtra();
globalVariables.storeSolution(myPop);

}
best = globalVariables.getBest(myPop);
myPop.checkCorrectness(0, “END”);
globalVariables.printLocation(best);
globalVariables.printLegsInfo();

}
public static void main(String[] args) {
allocateAircraft();
}
}

162

Appendix H

Java code of the quicksort

algorithm

import java.io.*;
import java.util.*;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
import static java.util.Arrays.asList;

public class QuickSortByForkJoinPool extends RecursiveAction {

private final int SPLIT THRESHOLD = 3;
private static float[] sortArray;
private int iStart = 0;
private int iEnd = 0;

public QuickSortByForkJoinPool(float[] inList,int start, int end) {
this.sortArray = inList;
this.iStart = start;
this.iEnd = end;
}

@Override
protected void compute()
// System.out.println(iStart + “ ” + iEnd);
doQuickSort(sortArray,iStart,iEnd);
}

private void doQuickSort(final float inList[], int start, int end) {

163

// System.out.println(“In quick sort”);
float pivot = inList[start]; // consider this as hole at inList[start],
int leftPointer = start;
int rightPointer = end;
final int LEFT = 1;
final int RIGHT = -1;
int pointerSide = RIGHT; // we start with right as pivot is from left

while (leftPointer != rightPointer) {
if (pointerSide == RIGHT) {
if (inList[rightPointer] < pivot) {
inList[leftPointer] = inList[rightPointer];
leftPointer++;
pointerSide = LEFT;
} else {
rightPointer–;
}
} else if (pointerSide == LEFT) {
if (inList[leftPointer] > pivot) {
inList[rightPointer] = inList[leftPointer];
rightPointer–;
pointerSide = RIGHT;
} else {
leftPointer++;
}
}
}

//put the pivot where leftPointer and rightPointer collide
inList[leftPointer]=pivot;

if((leftPointer - start) > 1) {
if ((leftPointer - start) > SPLIT THRESHOLD) {
invokeAll(new QuickSortByForkJoinPool(inList, start, leftPointer-1));
} else {
doQuickSort(inList, start, leftPointer-1);
}
}

if((end - leftPointer) > 1)
if ((end - leftPointer) > SPLIT THRESHOLD) {
invokeAll(new QuickSortByForkJoinPool(inList, leftPointer+1, end));
} else {
doQuickSort(inList, leftPointer+1, end);

164

}
}

}

public static float[] createSort(float[] Number) {

sortArray = Number;
ForkJoinPool pool = new ForkJoinPool();
pool.invoke(new QuickSortByForkJoinPool(sortArray , 0, sortArray .length-
1));

return sortArray;
}
}

165

Appendix I

Java code for converting

time-space line fleet assignment

to the aircraft-time line

This is the main class for converting fleet assignment results from a time-space
line to an aircraft-time line used by the non-linear integer programming fleet
assignment model. import java.io.*;

import java.util.*;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
import static java.util.Arrays.asList;
@SuppressWarnings({ ”unchecked”, ”deprecation” })

public class recreateResult {

public static void main(String[] args) {
System.out.println(“1 - 11: read data”);
globalcplexRecreate.create Legs Array();
System.out.println(“2 - 11: sort legs”);
globalcplexRecreate.sortLegs();
System.out.println(“3 - 11: create solution container”);
globalcplexRecreate.createFlightsContainer();
System.out.println(“4 - 11: Insert legs”);
globalcplexRecreate.insertLegs();
globalcplexRecreate.printAircraft();
}
}

166

Appendix J

Data set 1 solution results

Figure J.1 is a graph representing the evolution of the non-linear integer

programming (IP) fleet assignment model (FAM) solution using data set 1.

The solution for the multi-commodity network flow (MCNF) fleet assignment

model (FAM) for the same data set is provided as a benchmark.

Figure J.1: Data set 1 solution results

167

Appendix K

Data set 2 solution results

Figure K.1 is a graph representing the evolution of the non-linear integer

programming (IP) fleet assignment model (FAM) solution using data set 2.

The solution for the multi-commodity network flow (MCNF) fleet assignment

model (FAM) for the same data set is provided as a benchmark.

Figure K.1: Data set 2 solution results

168

Appendix L

Data set 3 solution results

Figure L.1 is a graph representing the evolution of the non-linear integer

programming (IP) fleet assignment model (FAM) solution using data set 3.

The solution for the multi-commodity network flow (MCNF) fleet assignment

model (FAM) for the same data set is provided as a benchmark.

Figure L.1: Data set 3 solution results

169

Appendix M

Data set 4 solution results

Figure M.1 is a graph representing the evolution of the non-linear integer

programming (IP) fleet assignment model (FAM) solution using data set 4.

The solution for the multi-commodity network flow (MCNF) fleet assignment

model (FAM) for the same data set is provided as a benchmark.

Figure M.1: Data set 4 solution results

170

Appendix N

Data set 5 solution results

Figure N.1 is a graph representing the evolution of the non-linear integer

programming (IP) fleet assignment model (FAM) solution using data set 5.

The solution for the multi-commodity network flow (MCNF) fleet assignment

model (FAM) for the same data set is provided as a benchmark.

Figure N.1: Data set 5 solution results

171

Appendix O

Data set 6 solution results

Figure O.1 is a graph representing the evolution of the non-linear integer

programming (IP) fleet assignment model (FAM) solution using data set 6.

The solution for the multi-commodity network flow (MCNF) fleet assignment

model (FAM) for the same data set is provided as a benchmark.

Figure O.1: Data set 6 solution results

172

Appendix P

Data set 7 solution results

Figure P.1 is a graph representing the evolution of the non-linear integer

programming (IP) fleet assignment model (FAM) solution using data set 7.

The solution for the multi-commodity network flow (MCNF) fleet assignment

model (FAM) for the same data set is provided as a benchmark.

Figure P.1: Data set 7 solution results

173

Appendix Q

Data set 8 solution results

Figure Q.1 is a graph representing the evolution of the non-linear integer

programming (IP) fleet assignment model (FAM) solution using data set 8.

The solution for the multi-commodity network flow (MCNF) fleet assignment

model (FAM) for the same data set is provided as a benchmark.

Figure Q.1: Data set 8 solution results

174

Appendix R

Data set 9 solution results

Figure R.1 is a graph representing the evolution of the non-linear integer

programming (IP) fleet assignment model (FAM) solution using data set 9.

The solution for the multi-commodity network flow (MCNF) fleet assignment

model (FAM) for the same data set is provided as a benchmark.

Figure R.1: Data set 9 solution results

175

Appendix S

GA solver compliance with all

NLIP FAM constraints

Table S.1 shows the time taken by the GA used for the NLIP FAM to obtain

a solution for each data set. In each case, the time when all constraints of the

NLIP FAM are complied with is shown.

Data set Time for first solution (sec)
1 361
2 567
3 960
4 673
5 991
6 511
7 982
8 823
9 804

Table S.1: The time taken by GA solver to obtain first solution complying
with all constraints of NLIP FAM for each data set

176

Appendix T

Glossary

airline schedule planning : a four-step process undertaken by airlines which

includes (1) schedule design, (2) fleet assignment (3) aircraft routing, and (4)

crew scheduling.

copy interval : the time allowed between flight copies in the fleet assignment

with time windows.

crew assignment : a process of pairing crew pairings with rest periods which

is communicated to all personnel of an airline.

crew-pairing : a process of linking crew members to flights which minimises

costs.

deadheading : process used to reposition crew from one station to another

where their next flight will depart from.

demand dilution : an act where existing high-fare passengers opt to take ad-

vantage of low fare offerings.

demand driven dispatch : process of reassigning aircraft capacity as the

departure date approaches.

differential pricing : offering different fare products with different restric-

tions and services at different prices.

fleet assignment process : optimally assigning fleet types or specific aircraft

177

to flight legs in order to maximise revenue.

fleet planning : a process of determining an airline’s particular requirements

for each route and aligning that with capital expenditure in terms of fleet types

acquired.

flight leg duration : the duration of a flight from an origin station to a

destination station.

frequency planning : the act of determining the number of times a partic-

ular flight will be offered in a defined period.

itinerary control : selection of passengers by an airline based on their

itinerary.

maintenance feasible rotation : the routing of an aircraft that respects the

maintenance rules.

minimum ground time : the maximum amount of time an aircraft is al-

lowed to be on the ground.

network planning : process that involves making decisions on the network

that will yield higher profit for an airline.

overbooking : acceptance of bookings in excess of capacity in order to min-

imise empty seats.

pay and credit : guaranteed hours of pay minus hours actually flown by

airline crew.

ready-time : when aircraft turn-time is added to an aircraft arrival time for

a particular flight.

seat inventory control : determining the price for each seat in a particular

flight.

time-away-from-base : time spent by crew away from their home base.

time window width : time where multiple copies of flight legs with the same

origin, destination and duration are created.

178

	Declaration
	Abstract
	Acknowledgements
	Introduction
	Dissertation outline

	Literature Review - Airline Planning Process
	Network design
	Operational planning
	Fleet planning
	Schedule planning
	Revenue management
	Crew scheduling
	Airport resource planning

	Fleet Assignment
	Fleet assignment overview
	Fleet assignment during disruptions
	Fleet assignment meta-heuristics
	Integrated fleet assignment models
	Time-space multi-commodity network flow model
	Notation
	Mathematical model

	Conclusion

	Proposed Non-linear Integer Programming Fleet Assignment Model
	Proposed fleet assignment model
	Notation
	The mathematical model for fleet assignment
	Mathematical model comparison
	Explanation of the mathematical model

	Mathematical model characteristics

	Methodology - Genetic algorithm overview
	Algorithm overview
	Chromosome structure
	Genetic algorithm parameters
	Population size
	Mutation and crossover rates
	Number of generations

	Genetic algorithm operators
	Selection
	Mutation
	Crossover

	Methodology - Model Testing
	Performance measures
	Input data
	Flight schedule
	Fleet types and flight costs

	Implementation of the genetic algorithm
	Solution method preparation
	Initialisation of population
	Implementation of GA
	Constraint satisfaction in GA

	Time-space multi-commodity fleet assignment model (MCNF FAM)
	Fleet assignment and aircraft rotation: An example

	Observations from the results obtained
	Performance comparison: Fleet assignment
	Performance comparison: Fleet assignment and aircraft routing
	Objective function comparison

	Discussion
	Discussion of results
	Model robustness
	Optimisation of solution time

	Implications of proposed fleet assignment model on additional airline decision processes
	Maintenance scheduling
	Departure time flexibility

	Conclusion and Recommendations
	Conclusion
	Recommendations

	References
	Data set sample
	Input data flight network
	Flight duration summary
	Flight duration percentage summary
	Java code for creating CPLEX LP file
	LP CPLEX file
	Java code of the genetic algorithm heuristic
	Java code of the quicksort algorithm
	Java code for converting time-space line fleet assignment to the aircraft-time line
	Data set 1 solution results
	Data set 2 solution results
	Data set 3 solution results
	Data set 4 solution results
	Data set 5 solution results
	Data set 6 solution results
	Data set 7 solution results
	Data set 8 solution results
	Data set 9 solution results
	GA solver compliance with all NLIP FAM constraints
	Glossary

