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Abstract 

 

Accuracy of the load forecasts is very critical in the power system industry, which is the 

lifeblood of the global economy to such an extent that its art-of-the-state management is the 

focus of the Short-Term Load Forecasting (STLF) models. 

In the past few years, South Africa faced an unprecedented energy management crisis that 

could be addressed in advance, inter alia, by carefully forecasting the expected load demand. 

Moreover, inaccurate or erroneous forecasts may result in either costly over-scheduling or 

adventurous under-scheduling of energy that may induce heavy economic forfeits to power 

companies. Therefore, accurate and reliable models are critically needed. 

Traditional statistical methods have been used in STLF but they have limited capacity to 

address nonlinearity and non-stationarity of electric loads. Also, such traditional methods 

cannot adapt to abrupt weather changes, thus they failed to produce reliable load forecasts in 

many situations. 

In this research report, we built a STLF model using Artificial Neural Networks (ANNs) to 

address the accuracy problem in this field so as to assist energy management decisions makers 

to run efficiently and economically their daily operations. ANNs are a mathematical tool that 

imitate the biological neural network and produces very accurate outputs. 

The built model is based on the Multilayer Perceptron (MLP), which is a class of feedforward 

ANNs using the backpropagation (BP) algorithm as its training algorithm, to produce accurate 

hourly load forecasts. We compared the MLP built model to a benchmark Seasonal 

Autoregressive Integrated Moving Average with Exogenous variables (SARIMAX) model 

using data from Eskom, a South African public utility. Results showed that the MLP model, 

with percentage error of 0.50%, in terms of the MAPE, outperformed the SARIMAX with 

1.90% error performance. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background 

Accurate Load Forecasting (LF) is very important in the electric power industry. It is useful in 

power factory macroeconomic control and the power exchange plan, stated Bagnasco et al., 

(2014). Accurate LF can also assist to make the best decision on the optimised coordination 

and scheduling of generators (unit commitment problem), production and maintenance 

planning. 

Gupta (2012) added that forecasting the electric load is a critical process in the management of 

utilities. One has to make sure that the energy produced meets the demand. The author also 

emphasised the fact that LF is massively crucial for power producers and stakeholders in the 

energy management system (EMS) where it is used to monitor daily operations, such as 

dispatch and fuel allocation. Well-timed and relevant decisions regarding LF result in a 

profitable and reliable network, reduce machine breakdowns and avoid blackouts. 

Hedden (2015) underlined the fact that South Africa suffered from heavy power cuts caused 

by a supply shortage. This was an unprecedented energy crisis that damaged the South African 

economy to the core. The aforementioned author added that fixing this problem was not just a 

matter of generating more electricity. On the contrary, this required decision makers in the 

energy management to anticipate rather than to react. Among other means, this problem could 

be addressed by building models that could give accurate forecasts so as to attain a planned, 

efficient and smarter grid in the short-term. 

In the STLF literature, various researchers (Momoh, Wang and Elfayoumy, 1997; da Silva and 

Moulin, 2000; Amral, King and Ozveren, 2008; Buhari and Adamu, 2012; Kumar, 2014, 

among others) corroborated emphatically that accuracy in the LF is very crucial in the power 

industry because of important various influential factors that often lead to erroneous load 
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forecasts. A high forecasting error rate may result in either costly over-scheduling or 

adventurous under-scheduling of energy inducing heavy economic forfeits to power 

companies. Therefore, there is a strong need for accurate and reliable LF models. 

The literature states that the nature of the link or the relationship between the load and its 

affecting factors is composite and nonlinear, making it difficult to model by means of 

conventional or traditional statistical methods. 

Buhari and Adamu (2012) stated that conventional methods were not robust enough, noise 

tolerant, and they failed to give accurate forecasts when quick weather changes occurred. These 

traditional statistical methods may have their own advantages, but they have limited capacity 

to take control of nonlinear and non-stationary attributes of the hourly load series. 

On the other hand the ANN methods have been successfully applied to deal with the 

nonlinearity in load forecasting and produced very accurate and reliable forecasts as reported 

in the literature (Park, El-Sharkawi and Marks II, 1991; Lee, Cha and Park, 1992; 

Papalexopoulos et al., 1994; Khontazad et al., 1996; Yoo and Pimmel, 1998; Senjyu, Takara, 

Uezato, and Funabashi, 2002).  

ANN is a mathematical tool that imitates biological neural networks. ANNs are able to extract 

more complex relationships among input patterns by learning from training data. ANNs can 

learn the load patterns that would otherwise require highly complex statistical analysis methods 

to find. These are properties that allow the ANNs to obtain more accurate forecasts than 

traditional methods, and this is the reason why we used and applied them to forecast the South 

African power system. 

To obtain better results on forecasts, we used an MLP, which is a feedforward ANNs class 

using the BP algorithm during its training phase, to produce accurate hourly load forecasts each 

time new data are available. 

In this research work, we use “neural networks” to refer to ANNs or interchangeably make use 

of the term “network” as is done in most of the surveyed literature that also reported the use of 

the word ‘load’ meaning electric load. We did the same in this research report using 

interchangeably load or electric load. 

Hong and Fan (2016) highlighted that the forecasting of the electric load and the forecasting of 

other utilities such as water and gas shared a lot of common properties in terms of forecasting 

techniques and principles. Let us then underline that “load forecasting” in this research report 

refers to “electric load forecasting”. 
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The literature and in particular Murto (1998) divided the LF methods into three groups, 

depending on the length of the forecasting time period, namely short-term, medium-term and 

long-term forecasting.  

Short-term load forecasting (STLF) normally goes from one hour up to a week. Medium-term 

forecasting deals with the load from seven to thirty days, and long-term forecasting often 

predicts the electric load from one year to a few years or even up to several decades.  

This research report is focused on the STLF, which is mainly used to schedule maintenance, 

assist in unit commitment, control the power system distribution and security, giving 

information to dispatchers and market operators, as pointed out by Ramezani et al. (2005). 

  

1.2 The Electric Load 

The electric load is the consumption of power energy by any piece of equipment, or anything 

that has a strictly positive current flow from an electric source, which is an element capable of 

providing electricity under right conditions. LF is a method used in the power energy 

management to predict the energy consumption needed by a power utility. 

Murto (1998) defined the electric load of a utility as being constituted of complex consumption 

units. A big portion of the power energy is used by industrial companies, another portion is 

consumed by public services, such as traffic lights and street lighting, railway traffic, to name 

only a few. Private consumers use another part for daily household activities, such as cooking, 

lighting, ironing, etc., including appliances of agricultural irrigation. 

The electric load we are talking about in this research report is the load provided by Eskom. 

This is, in fact, the hourly aggregated load data. In other words, this is a sequence of aggregated 

real numbers, the average load consumptions of hour by hour each day for eleven years.  

 

1.2.1 The Source of the Data  

The data used in this research report are hourly, aggregated load and temperature data from 

2000 to 2010, provided by Eskom, a South African public utility. 
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1.2.2 Overview of Eskom 

In 1923 the government of South Africa founded the Electricity Supply Commission (ESCOM) 

with regard to the Electricity Act (1922). The Afrikaans equivalence of ESCOM is 

Elektrisiteitsvoorsieningskommissie (EVKOM). In 1986, the fusion of ESCOM and EVKOM 

gave Eskom. 

Eskom uses quite a number of remarkable power stations among which is the Koeberg nuclear 

power station (the unique nuclear power plant in Africa). The company has three main 

branches: Generation, Transmission, and Distribution division. In total, Eskom contributes 

roughly 95% of electricity in South Africa, and more than 45% in Africa. Generation’s total 

installed capacity is about 45145 MW besides the 61 MW from Colley Wobbles, First Falls, 

Ncora and Second Falls hydro station managed by the Distribution Division (Eskom Holdings 

SOC Limited Integrated Report, 2013). 

 

1.2.3 Factors Affecting Load Forecasting Accuracy 

The LF literature points out that accuracy of the load forecasts has considerable effects on the 

economy since the control of the Energy Management System (EMS) may be quite sensitive 

to erroneous forecasting. High forecasting error rate will have a negative impact on daily EMS 

operations and the economy. 

Hamid and Rohman (2010) claimed that factors influencing the LF accuracy depend on the 

specific unit of consumption. In the industrial companies, the load is generally determined by 

the production capacity. In this category, the load is steady most of the time. Uncertainty in the 

forecasting of the load of this nature comes from unexpected events, such as production 

equipment failure or strikes resulting in serious unpredictable turbulence in the load. 

Murto (1998) argued that for the private consumers, it is quite difficult to identify precisely the 

factors influencing the load, since each household behaves in their own particular way. 

Parameters such as human psychology, social events, seasons of the year, etc. are included in 

the consumption decision. To reduce the number of factors influencing the load, the aggregated 

load of the entire utility is usually considered. This is the angle from which we looked at the 

load of Eskom utility in this research report. 

Gross and Galiana (1987) stated that there are four main factors that influence load forecasting 

techniques as described below. 

http://en.wikipedia.org/wiki/Power_station
http://en.wikipedia.org/wiki/Koeberg_nuclear_power_station
http://en.wikipedia.org/wiki/Koeberg_nuclear_power_station
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 Weather factors: Kothanzard et al. (1996) acknowledged that this is the most important 

individual factor since there is a correlation between weather and the load. Changes in 

the meteorological conditions affect the behaviour of consumers in the sense that 

weather-sensitive loads due to Heating Ventilation and Air-Conditioning (HVAC) tend 

to have a great impact on the power system. In the regions where there is a huge 

difference between summer and winter weather, load patterns will exhibit an irregular 

curve. Regarding forecasted weather variables, the most important ones in STLF are 

the temperature, humidity, and wind speed. 

 Time factors: Gupta (2012) pointed out that from the forecasting angle, time factors are 

very essential. These include various seasonal effects and cyclical behaviours like daily 

and weekly oscillations, as well as the occurrence of public holidays. There is a 

difference between weekdays and weekend loads (the weekend or holiday load curve 

is lower than the weekday curve). The load variation with time reflects people’s lives, 

like working time, leisure time and sleeping time. 

 Random factors: all other factors causing disturbances, such as strike, inclement 

weather, or even popular TV-programs, are classified as random factors. They add 

uncertainty in the forecasts that cannot be explained by the previous three factors and 

making prediction very difficult. 

 

1.2.4 Overview of Load Forecasting Methods 

According to Alfares and Nazeeruddin (2002) the LF methods and models can be classified 

into nine categories as follows:  

1. Multiple linear regression, 

2. Exponential smoothing, 

3. Iteratively reweighted least-squares, 

4. Stochastic time series, 

5. Autoregressive moving average model with exogenous inputs (ARIMAX), 

6. Models based on genetic algorithm, 

7. Fuzzy logic, 

8. Neural networks and 

9. Expert systems. 

Some of the most popular methods in LF such as multiple linear regression, stochastic time 

series, knowledge-based expert system, and fuzzy logic will be explored further. The NNs 
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technique is described in detail in chapter 3. The first five categories are considered as statistical 

methods and the remainder categories are data mining or machine learning techniques, a 

particular approach of Artificial Intelligent (AI). 

 

1.3 Aims and Objectives of the Study 

1.3.1 Aims 

The principal aim of this research report is to construct a reliable NN-based model that 

produces hourly load forecasts up to 24 hours ahead.  

After constructing such an LF NN-based model, the subsequent aims are to: 

 Provide decision makers with necessary information regarding the load demand to help 

them run their daily operations more efficiently and economically, 

 Solve the unit commitment problem and minimise the operating costs, 

 Prevent overloading and reduce occurrence of equipment failures, 

 Schedule spinning reserve (back-up energy production) allocation properly and 

 Schedule routine maintenance. 

 

1.3.2 Objectives 

This research report should constitute the basis for an MLP model application to predict 

accurately the electric load in a real-time environment. The specific objectives of this study are 

mainly to accredit the built MLP model with the following important properties: 

 Accuracy: model should be very accurate as required in the literature and compared 

favourably to a benchmark model (SARIMAX), 

 Robustness and adaptability: the model should adapt to quick changes in the load 

consumptions (due to whimsical weather, for example), 

 Reliability: unpredictable events should not result in highly erroneous forecasts, and 

 Up to date: the model should be able to forecast with new available data. 
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1.4 Organisation of the Research Report 

Chapter 1 gives the background of the LF and enumerates its major techniques. This chapter 

also states the aims and objectives of this research report, describes the data and gives a brief 

overview of Eskom; 

Chapter 2 outlines the common methods and surveys the literature on the STLF; 

Chapter 3 introduces and describes the neural networks method; 

Chapter 4 is about the materials and methodology used to build the proposed MLP model; 

Chapter 5 analyses the load profile, presents and discusses the load forecasting results; 

Chapter 6 is dedicated to conclusions and recommendations. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Introduction 

The STLF literature is focused on different aspects of the problem as a whole, with some 

literature covering statistical approaches, and some looking at ANNs as a Data Mining or 

Machine Learning technique. A number of techniques developed for LF were surveyed and the 

most common are presented below. 

 

2.2 Load Forecasting Techniques 

There are several techniques developed for LF in the literature, but in this report, we only 

looked at a few of them. 

 

2.2.1 Multiple Linear Regression (MLR) 

Papalexopoulos and Hesterberg (1990) stated that regression is one of the most widely used of 

the statistical techniques, which assumes that there is a linear dependence between the load 

components and some explanatory variables. This approach uses weather and non-weather 

variables, such as temperature, humidity, day types, and customer class as predictors of the 

load at a particular time. The model can be written as follows. 

                              𝑧(𝑡) = 𝑎0 + 𝑎1𝑥1(𝑡) + ⋯ + 𝑎𝑛𝑥𝑛(𝑡) + 𝑎(𝑡),                                 (2.1) 

where 𝑧(𝑡) is the electric load, 𝑎(𝑡) is a white noise component with zero mean and constant 

variance, 𝑥𝑖(𝑡) are the explanatory variables, and 𝑎0 and 𝑎𝑖 are regression coefficients, with     

i = 1, …, n.  
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In general, to choose the most typical explanatory variables of this model, we use the 

correlation analysis. Estimation of the regression parameters is carried out by means of least-

squares technique. MLR can be easily implemented and updated, but its typical sensitivity 

serial correlation of weather variables disturbances can be a major problem as highlighted by 

Murto (1998). 

 

2.2.2 Stochastic Time Series 

Cabrera, Guiterrez-Alcaraz and Gil (2013) claimed that the stochastic time series approach is 

one of the very popular LF models. The method is based on the assumption that the data is 

structured in a way that exhibits autocorrelation, trend and/or seasonal patterns. Historical data 

are used to forecast the future. The literature of this type of techniques, such as ARMA 

(Autoregressive Moving Average), ARIMA (Autoregressive Integrated Moving Average), the 

Box and Jenkins method and their seasonal versions abounds in the LF field. Janacek and Swift 

(1993) discussed most of these classical time series methods in detail. The philosophy of these 

methods lies in the fact that the load time series is first transformed into a stationary load by a 

differencing operator and/or a Box-Cox transformation. Then the newly obtained stationary 

series is modelled as the output of a linear filtered model with a white noise input, claimed 

Murto (1998). The ARIMA model can be written as follows. 

         ∅(𝐿)∇𝑑𝑧𝑡 = 𝜃(𝐿)𝑎𝑡,                                              (2.2) 

where 𝑧𝑡 is the time series to model and 𝑎𝑡 is the white noise process, L is the lag operator or 

backward shift and ∇ is the difference operator such that ∇= 1 − 𝐿, and t = 1, …, N. The 

Autoregressive (AR) process is given by the following expression. 

                    ∅(𝐿) = 1 − ∅1𝐿 − ⋯ − ∅𝑝𝐿𝑝,                                         (2.3)            

and the Moving Average process can be expressed as follows. 

                     𝜃(𝐿) = 1 − 𝜃1𝐿 − ⋯ − 𝜃𝑞𝐿𝑞,                                           (2.4) 

where 𝜃 𝑎𝑛𝑑 ∅ are constant parameters. The two processes above can be combined to form an 

Autoregressive Moving Average (ARMA) process. But researchers, in general, and in 

particular Paretkar et al. (2010) agreed that this ARMA model is not convenient to describe 

properly the load time series, which includes seasonal patterns due to hourly, weekly and 

monthly behaviours. To deal with the seasonal patterns in the load time series we resorted to a 

Seasonal Autoregressive Moving Average (SARMA) process, which, most of the time, causes 

the series to be nonstationary. Therefore, we modified, beforehand, the ARMA model by a 
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differencing process to obtain an Autoregressive Integrated Moving Average (ARIMA) model 

in equation (2.2). To cater for the seasonal patterns, the new model is known as the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model as developed by Box and 

Jenkins in 1970s. The SARIMA model can be expressed as follows.  

                                   ∅(𝐿)Φ𝑠𝐿𝑠∇𝑑∇𝐷
𝑠 𝑧𝑡 = 𝜃(𝐿)𝜃𝑠(𝐿𝑠)𝑧𝑡,                                         (2.5)  

where ∇𝐷
𝑠 = (1 − 𝐿𝑠)𝐷, d is the order of differencing, s is the seasonal period variation (per 

week, month, year, etc.), and D is the order of seasonal differencing. When this SARIMA 

model is applied to load forecasting with data including weather variables such as the 

temperature, which is seen as an external input variable, the model is called SARIMAX. 

Besides the given equation in (2.2), we explored the ARIMAX model as a transfer function 

model which assumes two time series denoted 𝑌𝑡 and 𝑋𝑡, to be both stationary. Then the transfer 

function model (TFM) is given by 

  𝑌𝑡 = 𝐶 + 𝑣(𝐵)𝑋𝑡 + 𝑁𝑡 ,                                                               (2.6) 

where: 𝑌𝑡 is the output series (dependent variable), 

𝑋𝑡 is the input series (independent variable), 

C is a constant term, 𝑁𝑡 is the stochastic disturbance, 

𝑣(𝐵)𝑋𝑡 is the transfer function (or impulse response function), which allows X to influence Y 

via a distributed lag. 

B is the backshift operator. 

When 𝑋𝑡 and 𝑁𝑡 are assumed to follow ARMA model, equation (2.6) is known as the ARMAX 

model. 

The transfer function can be written as the rational polynomial distributed lag model of finite 

order as the ratio of a low order polynomial in B: 

𝑣(𝐵)𝑋𝑡 =
𝜔ℎ(𝐵)𝐵𝑏

𝛿𝑟(𝐵)
𝑋𝑡  ,                                                          (2.7)      

where, 𝜔ℎ(𝐵) = 𝜔0 + 𝜔1𝐵 + ⋯ + 𝜔ℎ𝐵ℎ;       𝛿𝑟(𝐵) = 1 − 𝛿1𝐵 − ⋯ − 𝛿𝑟𝐵𝑟. The function 

𝜔ℎ(𝐵) and 𝛿𝑟(𝐵), and parameter b are then determined from the cross-correlation between 𝑌𝑡 

and 𝑋𝑡. 

The weakness of this class of SARIMA models lies in failing to adapt to some quick changes 

of the load behaviour during a year. Since ARIMA models forecast is a function of all the 
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previous loads, then it would be very difficult for them to adapt quickly to new conditions that 

occurred in the interim, even if the models are updated regularly as pointed out by Cabrera et 

al. (2013).  

Yang et al. (2013) and Mohamed et al. (2011) analysed the SARIMA models more in depth 

with additional scope such as mathematical relationships and interpretation. 

The application of the SARIMA model used in the auto.arima function was established in four 

main steps as pointed out by Yang et al. (2013) as follows. 

1) Identification structure of the SARIMA (p,d,q) (P,D,Q): the autocorrelation function 

(ACF) and the partial autocorrelation function (PACF) are used to build the rough 

function. At this stage, different models are built and appropriate models are chosen. 

This identification step is principally to determine the adequate AR, MA, or ARMA 

processes and their respective orders. 

2) Estimation of parameters: this phase consists of determining the unknown parameters 

through ordinary least squares (OLS) or sometimes via other means such as nonlinear 

estimation methods. The AR and MA processes parameters obtained through ARIMA 

model should determine whether these processes are stationary and invertible or not, 

respectively. 

3) Goodness-of-fit tests applied on the estimated residual: in this phase, estimated ARIMA 

models are analysed to determine whether they harmonized or not by diagnostic 

checking. 

4) Data driven forecasting: determining the future outcomes of the estimated ARIMA 

models that the derived AR and MA observe the unit circle and normality assumptions. 

 

2.2.3 Expert Systems 

Expert Systems or Knowledge-Based Expert Systems (KBES) as pointed out by Taylor (2013) 

are recent heuristic techniques resulting from progress in the artificial intelligence (AI) field. 

The basic idea consists of trying to emulate the reasoning of an expert operator in power 

industry, but keeping track of reducing the analogical thinking supporting the intuitive 

forecasting. This imitation process can then be converted into formal logical steps that can be 

automated and form an expert system. The system is basically constructed based on the 

knowledge of the expert, the load, and the relevant weather variables as stated by the 

aforementioned author who, furthermore, added that KBES is a computer program that is not 

characterised as being based on any algorithm. In the same line of thought, Moghram and 
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Rahman (1989) defined the KBES as a program that “can reason, explain, and have its 

knowledge basis expanded as new information becomes available”. Gupta (2012) contributed 

to the establishment of expert systems in underlying the fact that once the load and the factors 

affecting it are known and extracted, a parameter-based rule can be implemented. This rule is 

of the form “IF THEN”, plus some mathematical expressions. This rule can be used on a daily 

basis to generate the forecasts. 

Expert systems and their heuristic approach to find solutions make them promising; however, 

the knowledge of the expert might not always be consistent and the reliability of such ideas 

may be questionable. 

 

2.2.4 Fuzzy Logic 

Rouse (2006) defined fuzzy logic as a computing technique based on “degrees of truth” instead 

of the well-known Boolean logic “true or false” (1 or 0). Fuzzy logic is rather a generalisation 

of this Boolean logic on which modern computers are based. Ranaweera, Hubele and Karady 

(1996) described fuzzy logic models as a function that links a set of input variables to a set of 

output variables; these input variable values do not need to be numerical. They just need to be 

transcribed in a natural language. For example, a weather parameter such as the temperature 

may take on the “fuzzy” instances such as “low”, “medium” and “high”. The literature adds 

that very often fuzzy logic models incorporate a mapping of input and output values via a 

simple “IF THEN” logic statement. “IF the temperature is very low, THEN the load demand 

will be very high”, is an example of this logic statement given in the Ranaweera et al. (1996) 

paper. The authors further reiterated that this is a type of mapping and logic that allows a 

combination of the expert knowledge with fuzzy logic models. In many instances when precise 

outputs are needed, such as point estimates for forecast values, a reverse mapping called 

“defuzzification” process can be undertaken to produce those desirable outputs. Advantages of 

this method over traditional ones can be found in Gupta (2012). The drawbacks of the fuzzy 

logic models are that they are time consuming and lack of guarantees to obtain optimal fuzzy 

rules and membership functions since this process is based on trial and error. 

 

2.3 Neural Networks Literature Survey on STLF 

The literature on STLF, especially the one based on NNs, is very extensive proving that NN 

power systems models have not become a ‘passing fad’ as apprehended Chatfield (1993). 
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In the early beginning of the ascension of NN, Park, El-Sharkawi and Marks II (1991) built 

and proposed a merged time series and NN BP model to predict future load based on the Puget 

Sound Power and Light (PSPL) company data. The built model took into account the 

temperature and excluded weekends and was trained to recognise particular characteristics of 

the load, such as hourly load, peak and total load of the day. Obtained results compared 

favourably with less than 3% of error over the prediction made by PSPL using the same data. 

However, the authors posited that additional weather components should yield even better 

results. 

Lee, Cha and Park (1992) constructed an NN model based on the backpropagation algorithm 

to forecast 24 hours ahead without including the temperature. The week was divided into two 

parts regarding load patterns: weekdays and weekend. In this paper, two different techniques 

of using NN were presented: the first technique was a static approach that forecasted the 24-

hour-load at a time, whereas the second technique was a dynamic approach forecasting the one-

day-load hour by hour using the previous hour forecast. The performance of the model was 

tested through the two techniques using an illustrative example based on the Korea Electric 

Power Company data. Various structures of NN with constant learning rate and momentum 

parameters were tested. Results showed that the dynamic technique performed better than the 

static one with an error less than 2%, which seems to be good according to the literature. The 

authors concluded that including the weather variables, some additional parameters, such as 

the sigmoid function would increase the forecasting accuracy. 

Peng, Hubele, and Karady (1992) proposed a modified NN approach by implementing a novel 

strategy to select weather variables and relevant load patterns using the smallest distance 

measurement during the training phase, so as to improve the network accuracy. The 

implemented NN structure was very flexible, it could adjust to an hourly, peak load or multiple 

days ahead forecasting. The authors used two-year utility normalised data to test the proposed 

search strategy and algorithm; the obtained results were reported in a new measure of 

performance using a cumulative errors distribution plot in addition to reporting the Absolute 

Percentage Error (APE), and summary statistics. These results were satisfactory as less than 

2.5% of error, compared to those reported previously in the literature. 

Papalexopoulos, Hao and Peng (1994) developed and implemented an NN-based LF model 

with particular attention given to accurately forecasting unusual days like public holidays, very 

hot or cold successive days and other weather conditions that perturb the electric load common 

features. Energy control centre, Pacific Gas & Electric Company (PG&E) data from 1986 to 

1990 were used to train and test the model. The performance of the model was compared to an 
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existing regression model using the same data. The NN-based model produced more accurate 

results in terms of forecast errors, and was robust, adaptive to weather changing conditions. 

According to Hong and Fan (2016), one of the most successful implementations of NN models 

for STLF was developed by Khotanzad et al. (1997) and sponsored by the Electric Power 

Research Institute (EPRI). The authors nevertheless admitted that a couple of conventional 

techniques were used previously with varying degrees of satisfaction, but not as accurate as 

would be desired. Besides, most of these models could not be used elsewhere, but at the built 

site. This paper investigated several types of NN architecture such as recurrent NN and radial 

basis NN, and came to a conclusion that there was no major advantage of these architectures 

over the MLP in terms of the load forecasting problem. This NN Short-Term Load Forecaster 

(ANNSTLF) constructed by the aforementioned authors, was subjected to different 

comparative studies using various methods as well as other NN-based models. The accuracy 

of the load forecasts was evaluated and expressed in terms of the MAPE. The ANNSTLF 

yielded very good results and induced its acceptance across Canada and USA. 

Unlike all the previous authors, Yoo and Pimmel (1998) used NN with a self-supervised 

adaptive algorithm to build an STLF model to forecast a one-hour-ahead and a one-day-ahead 

power load. The authors defined the self-supervised adaptive algorithm to be a self-organising 

or topological neighbourhood learning algorithm providing a topological ordering by updating 

the weights and the nearest neighbour neurons. The paper further showed how the built 

algorithm could obtain correlation patterns between weather variables, such as temperature and 

load data by means of one-hour delay function. Next, the authors pre-processed the data, 

structured the architecture and implemented the model, which was tested on a power plant’s 

actual data in 1993. The test results showed that day-ahead model with 1.92% errors average 

performed better than the 3% errors average reported in the literature using the BP algorithm. 

Hippert, Pedreira, and Souza (2001) presented the state-of-the-art of the NN method applied to 

STLF in a review that massively surveyed about 40 papers on the application of the NN to LF 

published in globally well-known journals in electrical engineering, for almost ten years (1991-

1999). The authors explained why there was a strong hesitation among experts to admit the 

success of ANNs compared to standard load forecasting methods. They also underlined two 

major shortcomings that probably led to that scepticism. Firstly, many of the ANN proposed 

architectures seemed too large for the data samples to model resulting in overfitting that may 

have produced inaccurate out-of-sample results. Secondly, in most of the published works in 

this field, the authors noticed that models were not consistently evaluated, to an extent that test 

results were not always adequately presented. Furthermore, the authors criticised the fact that 

models were not even compared to the benchmark standard models. Finally, the review 



LITERATURE REVIEW 

15 

suggested four different stages: data pre-treatment, design of the network, its realisation and 

validation to deal with STLF designing issues. 

Senjyu, Takara, Uezato, and Funabashi (2002) proposed a one-hour-ahead LF using NN to 

minimise its learning time and size structure. Indeed, the authors strongly criticised the use of 

similar day’s data to learn the shape of the curve of similarity as this is too complex and not 

suited for the NN approach. The paper justified the use of its approach on the fact that in most 

of the literature, they used 24-hour-ahead LF and forecasted temperature information; but if 

the weather changed abruptly on the forecasting target day, load energy forecast error would 

dramatically increase. In that case, the paper suggested to retrain the NN to allow the re-

learning of the relationship between temperature and load. An illustration of the effectiveness 

of the proposed approach was carried out through Okinawa Electric Power (Japan) case study. 

Taylor and Buizza (2002) investigated the use of weather ensemble predictions to improve 

accuracy in the NN load forecasts. Indeed, the authors used 51 ensemble members for the 

weather variables (temperature, wind speed and cloud coverage) in different scenarios to build 

the load density function and obtained its mean that they used to forecast the load. Next, the 

weather ensembles were used to estimate the load forecasts error variance through a naïve 

method, an exponential smoothing method, and a rescaled variance of NN load scenarios to 

take control of the uncertainty generated by the residual error and parameters estimation error. 

Based on the same weather ensembles reasoning, load prediction intervals were constructed. 

Finally, the paper compared the proposed approach to a traditional method, the Box and Jenkins 

procedure, for lead times from 1 to 10 days ahead, in terms of the MAPE, and the results were 

satisfactory allowing the authors to conclude that using weather ensemble predictions in NN 

load forecasting were promising. 

Mandal et al. (2006) proposed an NN-based several-hour-ahead load forecasting model 

applying similar days approach and used the temperature as a weather variable to detect the 

trend of similarity. In fact, the authors, in this paper, used the Euclidean norm combined with 

weighted factors, obtained via the least squares method, to determine the similarity between 

the forecasting target day and past days, in a specific season. These similar days load were 

averaged to enhance the forecasting precision. The proposed NN structure could easily deal 

with non-linearity part of the load and special days and weekend problems. Hourly load and 

temperature data from 1999 to 2000 from the Okinawa Electric Power Company, in Japan, 

were used to train and test the network. The authors carried out six case study simulations (one 

to six-hour-ahead) to assess the predictive capacity of the proposed method. Results gave 

0.98% for one-hour-ahead in terms of MAPE. Since there was a growing trend with increasing 

hour ahead, this figure raised up to 2.43% of MAPE for over six-hour-ahead forecasting. In the 
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light of this behaviour (increasing average error with increasing hour ahead), it turns out that 

the proposed model could perform better only for few-hour-ahead (less than six). 

Amral et al. (2008) developed and evaluated a 24-hours-ahead model. In fact, they 

implemented three NN different models: the first model was of 24 output nodes forecasting 24 

hours at once, the second model forecasted the maximum and minimum power, and lastly a 

model with 24 individual NNs for 24 hours of the day working together to forecast the energy 

demand. The three MLP based models were examined and compared to each other, using the 

South Sulawesi (Indonesia) hourly load and temperature data for 2005-2006. The MAPE was 

used to evaluate the models. The last model performed much better than the two others. 

Osman, Awad, and Mahmoud (2009) proposed a one-hour-ahead NN-based model in STLF to 

complement NN-based models with a 24-hour-ahead shortcoming in case of abrupt changes in 

the weather that could lead to erroneous forecasts. The authors underlined the fact that the NN 

structure is strongly system dependent and thus, thoroughly studied the characteristics of the 

Egyptian Unified System (EUS) power load profile. The authors used the correlation analysis 

to select the input variables. They also used a “minimum distance” between inputs and target 

data to select appropriate training vectors and eliminated the special days such as public 

holidays and weekends. Next, the authors built four models for each season to test the 

possibility of application of the proposed approaches based on the national grid in Egypt, using 

actual 2004 EUS data. In terms of the MAPE, the proposed model realised better results with 

2.2% compared to other some complex regression benchmark models. 

Qingle and Min (2010) constructed a Very Short-Term (a couple of dozen minutes) Load 

Forecasting (VSTLF) model that combined rough set theory, a computer science 

approximation method based on set theory by Pawlak (1982), and NN to improve forecasting 

accuracy. Basically, in this paper, an MLP model was used to perform the load forecasting, and 

the input variables consisted of the load of the target time, the load of the previous time, and 

the load of the difference between the target and the previous time. The authors used 10 neurons 

in the first hidden layer, 5 neurons in the second hidden layer, and one node at the output layer. 

The outputs of the MLP model were adjusted by the rough set theory to yield even more precise 

load forecasts. 

In most of the latest work we surveyed, researchers revisited the merits and advantages of NN 

method in highlighting its ability to capture the non-linear relationships between the load and 

the weather variables, and over and above its ability to learn from past load patterns and adapt 

to new data during the training and validation phases. 
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An ANN forecaster based on the Matlab-R2008b Levenberg-Marquardt BP algorithm was built 

by Buhari and Adamu (2012) using load data from the Kano Power Utility (Nigeria). 

Hernandez et al. (2013) applied an STLF model based on NN to microgrids scenarios and 

showed that on small geographical areas, NN models could yield even very accurate results. 

The philosophy developed in this paper converges with many ideas or suggestions made by 

Hedden (2015) on the World Economic Forum website as some of the solutions to the South 

African energy crisis. 

In the work proposed by Reddy and Momoh (2014), a new way to formulate load forecasting 

models using NN-BP based on different mathematical models for STLF was born. In this paper, 

the authors emphasised the fact that access to historical load data on the utility makes ANN 

implementation extremely convenient to the LF field. A marriage of several input parameters, 

such as load inertia, autocorrelation, number of time lags in the data, and short-term trends 

were used to construct these mathematical models so as to produce reasonably accurate results. 

The structure of the BP algorithm was constantly updated so as to find an optimal model able 

to meet the demands of large utilities for the hourly load forecasting one-day-ahead. 

Al-Subhi and Ahmad (2015) used the NN technique applied to STLF on an industrial 

residential area, in Saudi Arabia, by proposing two different models, the next hour and the next 

day load forecasting models. The proposed next day LF model was just an extension of the 

next hour iterated 24 times. These models were based on two-layer and three-layer feedforward 

networks, respectively. The authors insisted on the importance of the factors affecting the load 

demand, such as weather conditions, religious behaviours, and official calendar on which basis 

they built their models. Three year-data (2009-2011) were used to train and forecast the models 

and the MAPE was calculated to evaluate the performance of the models. The results were very 

accurate with the errors ranging between 0.35% and 0.49% for the next hour model and 1.48% 

to 2.58% for the next day model. The authors, finally, compared their proposed models to a 

published work by Abdel-Aal (2004) to get a good opinion on the effectiveness of the proposed 

models, and the result was satisfactory. 

 

2.4 Summary 

In the first part of this chapter, we outlined the most commonly used NN methods, and surveyed 

the STLF literature in the second part. 

In most of the papers on the STLF literature that we surveyed in this chapter, they used the 

feedforward MLP for its backpropagation algorithm good performance. Authors could be 
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divided into two groups, namely, those who built their models based on forecasting the whole 

day or 24 hours at a time, and those whose models were constructed based on the idea of 

forecasting the load curve hourly recursively up to 24 hours. But in reporting the effectiveness 

of their models, most of the authors used only one error metric, the MAPE. Some of them did 

not even compare their models to well established benchmark models, while Hippert et al. 

(2001) underlined that this fact led to the scepticism reigning among experts as to the advantage 

of using NN in load forecasting. This is the reason why we undertook to build an hourly NN 

model that minimise errors hour by hour so as to get a much more accurate model and compared 

it to a SARIMAX model using the MAPE, the MSE, the MAE, the APE and the Daily Peak 

Error to assert its validity.
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CHAPTER 3  

NEURAL NETWORKS 

 

3.1 Introduction 

Historically, the neurologist Warren McCulloch and the logician Walter Pits are considered as 

fathers of the NN method as they designed and produced the first neural network in 1943. 

However, they could not go further as the technology available at that time was not able to 

facilitate practical research work. Wasserman (1989) underlined that researchers lost all 

interest in theory and applications of  NN in the 1970’s. Ten years later, in the early 1980’s, 

NN started to grow massively. 

Zhang, Patuwo and Hu (1998) defined NN as a biologically inspired mathematical means of 

computation. NNs are structured in a way that their components perform similarly to the most 

basic functions of the biological neuron in a human brain. NNs have many characteristics of 

the brain; they can be taught and can learn from previous experience, generalise to new ones. 

 

 3.2 Why use Neural Networks?  

In a conservative way, Buhari and Adamu (2012) highlighted what is essentially emphasised 

in the literature by many authors. They claimed that statistical and expert system techniques 

failed to solve the nonlinearity problems related to the factors affecting the load demand, such 

as the weather variables, human and industrial activities. 

In a more conciliatory way, Kumar (2014) admitted that some of the conventional approaches 

to solve the above mentioned problems yielded satisfactory results in some well constrained 

domains but still none of them was flexible enough as the NN techniques. 

Kumar (2009) pointed out that NNs have an extraordinary capacity to obtain and make sense 

of very complex or imprecise data. He added that NNs are useful in detecting trends and 
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abstracting patterns that are too complicated to be identified by either humans or other 

computer means. The author referred to a trained neural network as an “expert” who has been 

given information to analyse. In some new cases of interest, this expert should be able to 

provide reasonable projections and answer the “what if” questions. 

In the literature, NNs are said to be very good at performing human-like tasks in the fields such 

as pattern recognition, speech processing, image recognition, machine vision, classification, 

system identification, control system, etc. 

The so-called universal approximation theorem replicated by Kalogirou (2001), Zhang, Patuwo 

and Hu (1998) states that: “ANNs are able to numerically approximate any continuous function 

to the desired accuracy”. The authors added that NNs can be seen as nonlinear and 

nonparametric multivariate methods. For NN models it is not required to formulate any 

tentative model and then estimate its parameters. Provided with a set of input vectors, an NN 

can be taught, can learn and map the relationship between inputs and outputs of a network. 

NNs are model free estimators and data-driven. Rewagad and Soanawane (1998) stated that 

NNs are mostly used because of the following properties seen as big advantages compared to 

other techniques: 

 Auto-coordination: NNs are able to generate their own structure of the information 

extracted during the training phase. 

 Robustness: NNs have the ability to recover from a major damage of their components 

and be still usable 

 Parallelism: different real time operations can be performed at the same time in NNs 

 

3.3 Neural Networks and Statistics 

Sandoval (2002) claimed that statistics and NNs do not compete but complement each other. 

A table of similarities is given in Table 3.1 below. 
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Table 3.1 Similarity between NNs and statistics 

Neural Networks Statistics 

Learning Model estimation 

Supervised Learning Nonlinear Regression 

Weights Parameters 

Inputs Independent variables 

Outputs Dependent variables 

Unsupervised Learning Cluster Analysis 

 

 

3.4 Neural Networks Architecture  

Haykin (1999) defined a neuron as the fundamental building piece of any NN architecture. He 

added that a neuron is taken as a data treatment unit that is critical to the NN operation. Inputs 

come from some other different neurons, in some cases from an external source. According to 

the author the three fundamental components of a neuron-based model are: 

1. A collection of weights, each of which is described by its own ability. 

2. An adder for adding information, balanced by the individual weights of the unit. 

3. An activation function to restrict the size of the output of a neuron. This activation 

function is also called a transfer function. There are many distinctive sorts of transfer 

functions, but the most widely used are the logistic sigmoid and tangent hyperbolic 

functions. Haykin (1999) represented both functions as given below in Figures 3.1 (a) 

and 3.1 (b). 

 

 

Figure 3.1 (a) Log-Sigmoid 

Transfer Function 

Figure 3.1(b) Tan-Sigmoid Transfer 

Function 
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The author further stated that, in general, NN architecture can be categorised in different 

essential classes given below. 

i. Single Layer Feed forward Network  

In a basic form of an NN with different layers, there is an input layer of source 

nodes that casts forward directly onto computational nodes. This is referred to as a 

“single layer” network because only the computational layer counts as can be seen 

in Figure 3.2 below: 

                                                                  

 

 

 

                                  Input Layer                                  Output Layer                                                                               

                                    Figure 3.2 Single layer network 

ii. Multilayer Feedforward Networks 

The multilayer feedforward NN has one or more hidden layers. The hidden neurons 

facilitate the NN to learn complex tasks. Neurons in a layer are projected forward 

onto the contiguous layer, but not in the opposite direction. The source nodes 

provide information to the neurons in the next layer; the outputs of this layer are the 

inputs to the adjacent layer, and so on for the remaining network. The final signal 

from the output layer constitutes the general response of the network.  

A drawn example of a multilayer feedforward network is given in Figure 3.3 below. 

 

 

 

 

 

 

 

Figure 3.3 Multilayer Feedforward network 
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iii. Hopfield Network 

The Hopfield network is a model comprising a number of neurons and a related set 

of unit-time delays, constituting an ensemble of multiple-loop self-input. There are 

as many neurons as the signal loops. The individual neuron signal is essentially 

sustained back to each of the alternate units in the network through a unit-time delay 

component. There is no self-input in the model, in a sense. 

iv. Recurrent Networks 

There is at least one feedback loop in a Recurrent Neural Network (RNN). This 

model may comprise a unique layer of neurons, each of which sustaining its signal 

back to the remaining units in the network. In some cases, the network does not 

have any self-feedback loops. When the signal of a neuron is sustained back to 

itself, this is what is called self-feedback. There are two categories of RNN; one 

with and another without any hidden neuron. 

 

3.4.1 Neural Networks Topology 

There are different ways to construct an NN, but deciding on its structure and the number of 

neurons in its layer(s), specifically the hidden one(s), is the most important aspect, thus in the 

construction of an NN we need to determine: 

a) Number of neurons in the output layer 

The question of how many neurons to use in the final layer dependents on one case to 

another; one should first think of the intended use of the NN. If the NN is used in 

classification, then one output neuron for each class of input items is sufficient. In some 

other cases, like the error reduction on a signal, the number of input and output neurons 

is exactly the same. 

b) Number of hidden layers and hidden neurons 

At the current state of the science, there is not any exclusive rule to determine the exact 

number of hidden layers. However, an NN with two hidden layers is able to describe 

functions with any shape. 

These hidden layers are very important, they have an extremely strong influence on the 

final output. Deciding on how many hidden neurons should be used so that to obtain 

the best results is very crucial but system dependent. Charytoniuk and Chen (2000) 

underlined the point that not enough neurons in the hidden layer will produce an 
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underfitting network, and too many neurons can have consequences such as very long 

training time or an overfitting of the network. Besides, the network may perform poorly 

on unforeseen input patterns. In most cases, the selection is performed by trial and error. 

 

3.5 Learning Processes 

Learning in NNs means that weights are able to adjust their values according to the 

modifications undergoing in the network. Of all the intriguing characteristics of NNs, their 

ability to learn is the most attractive. The NNs’ self-organisation also plays an important role 

in their good reputation. Given a set of inputs, they can self-adjust and yield accordant outputs. 

A lot of learning algorithms have been created; however, every learning algorithm involves the 

learning process as described above. Neurons that constitute the network are interconnected 

through their synaptic weights, allowing communication between themselves as the data are 

proceeded. Weights, in the network, are not evenly assigned to neuron connections. If there is 

not any communication between two neurons, then the weight is zero.  

Training is the phase where these weights are assigned to neuron connections. Most of the 

training algorithms initialise weight matrices with random small numbers, generally between 

[-1, 1]. Next, the weights are adjusted based on how well the network performs. The structure 

of the NN is directly related to the learning algorithm used to train it. In a broad sense, there 

are two forms of the learning process, supervised learning (learning with a teacher) and 

unsupervised learning (learning without a teacher). 

 

3.5.1 Supervised Learning 

The supervised learning or learning with a teacher necessitates the input dataset together with 

the desired output or target values for its training. During the training stage, the outputs from 

the NN are compared to the target and the difference or error is reduced by using a training 

algorithm. As the process of learning carries on under supervision, the NN is taken through a 

number of iterations, or epochs, until its outputs match the target or reach some reasonable 

small error rate. Supervised learning is the learning technique used in this project because we 

have been provided with the desired outputs (targets) in the data, so that we can ready the pairs 

consisting of input object and target value needed for the training phase. 
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3.5.2 Unsupervised Learning 

In unsupervised learning or learning without a teacher or simply self-organized learning, there 

is no target provided. The quality metrics for the task that the network has to learn is provided, 

and the neuron weights are optimized according to that measure. Unsupervised learning is 

mostly used to train NNs in classification problems. A set of input patterns is presented to the 

input nodes, then they are processed in the hidden layer generating a firing neuron on the output 

layer. This firing neuron gives a classification of the input patterns and indicates to which class 

they are to be allocated. 

 

3.5.3 Learning Rules 

Haykin (1999) defined a learning rule as a mathematical formal system or just a technique that 

iteratively enhances the NN performance over the training phase. Numerous learning rules are 

commonly applied, but many of them are just an approximate modifications of the best known 

one, the Hebb’s Rule. Some of the major rules are: 

a) Hebb’s Rule 

This rule is probably one of the well-known learning rules developed by Donald Hebb 

in 1949 and mostly used in unsupervised learning, claimed Heaton (2008). Its basic 

principle states that if two unit neurons are connected and both have similar activations, 

then the weight between them should be increased. This is sometimes summarised by 

“Neurons that fire together, wire together” (Heaton, 2008). Symbolically the rule is 

given below. 

         𝑤𝑖𝑗 =
1

𝑛
∑ 𝑥𝑖

𝑘𝑦𝑗
𝑘

𝑛

𝑘=1

,                                                           (3.1) 

where 𝑤𝑖𝑗 is the weight from neuron j to neuron i, n is the size of the sample of training 

input data and 𝑥𝑖
𝑘 the kth input for neuron i, 𝑦𝑗

𝑘 the kth input for neuron j. 

b) The Delta Rule 

Heaton (2008) stated that the Delta rule is just a transformation of the Hebb’s Rule, also 

referred to as the Least Mean Square (LMS) learning rule. The author described this 

rule as built on a basic idea of regularly updating the synaptic weights of the input 

patterns so as to minimise the error (called delta), which is the difference between the 

target value and the output signal of the network. The resultant delta is back propagated 
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into prior layers one by one until the first layer is reached. The Delta rule can be written 

as follows. 

 ∆𝑤𝑗𝑖 = 𝛼(𝑡𝑗 − 𝑦𝑗)𝑥𝑖  ,                                                      (3.2) 

where α is the learning rate, 𝑡𝑗 is the target output, 𝑦𝑗 is the jth output and 𝑥𝑖  the ith 

input. 

c) The Gradient Descent Rule 

In this rule, the derivative of the activation function is used to update the delta, as 

described in the previous section, before using it on the connection weights. 

Algebraically we have:                      ∆𝑤𝑖𝑗 = 𝜂
𝜕𝐸

𝑤𝑖𝑗
  ,                                                        (3.3) 

where η is the learning rate and 
𝜕𝐸

𝑤𝑖𝑗
 is the derivative of the error gradient w.r.t. the weight 

𝑤𝑖𝑗 from neuron j to neuron i. 

 

3.5.4 Learning Rates and Momentum 

The learning rate is a parameter that specifies the speed at which the NN will learn. Whereas 

the momentum keeps track and quantifies the effect of previous training iteration on the current 

one. 

The learning rate depends on many factors affecting the network. Choosing an appropriate 

learning rate is not an easy task. A very small rate implies learning at slower pace and the 

smoother will be the curve trajectory but the process will take a long time to accomplish and 

produce a suitable trained NN. With a big learning rate to speed up the learning pace, the 

learning algorithm can easily exceed the limit in updating the weights and the network will 

swing back and forth. Usually the learning rate is a positive constant between zero and one, 

and the momentum is usually a positive value close to one. 

 

3.6. Training Algorithms 

During the training phase, neuron weights are updated to reach desirable outputs as the error is 

minimised. The function that seeks for weights that will reduce the error rate can be the gradient 

descent, among others, and the function that evaluates the NN error rate is the learning rule or 

training algorithm. Many common training algorithms are used, such as the genetic algorithm, 
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the simulated annealing, the evolutionary methods, gene expression programming, etc. 

However, one of the most popular algorithms used in the literature, and the one we used in this 

research report, is the BP algorithm. 

 

3.6.1 The Backpropagation Algorithm 

Wasserman (1989) pointed out that the advent of the BP algorithm has catalysed the NN 

resurgence interest. He added that BP is a very powerful technique used to train MLP-networks, 

and it is mathematically very strong and highly practical. Although it is not a panacea; the BP 

algorithm has also massively expanded the NN domain and demonstrated its success and due 

power, says the author. The BP algorithm proceeds in two phases in a supervised manner as 

described below. 

The Forward Phase 

In the forward phase, the input patterns are introduced into the network and after processing 

the outputs are produced. The synaptic weights of the network do not undergo any change; the 

input patterns are fed forward through the network, layer by layer until they reach the output 

layer. During this phase, changes are restricted to the activation functions and potential neuron 

outputs.  

The Backward Phase 

In the backward, the error signal resulting from comparing the network output against the 

desired response is propagated through the network, again, layer by layer, but this time in the 

backward direction. In this back course, successive adjustments are made to the synaptic 

weights to adapt the network and produce desirable outputs. 

The BP algorithm can be summarised in these few steps by Wasserman (1989): 

1. Selection of the paired input-target vectors from the training dataset; and application to 

the NN input nodes 

2. Process the network output 

3. Compute the errors between the network output and the target 

4. Minimise the errors by adjusting the neuron weights connection 

5. Iterate 1 to 4 for all the paired input-target vectors in the training set until a reasonable 

error is reached for the entire set. 
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Momoh et al. (1997) described the BP algorithm as follows: the weights 𝑤𝑖𝑗 of the network are 

adapted so as to minimise the error of the output; the ith output oi from neuron i is linked to the 

jth input neuron by the interconnection weight 𝑤𝑖𝑗. If the neuron k is not an input neuron then 

its state is given as follows: 

  𝑂𝑘 = 𝑓(∑ 𝑤𝑖𝑗𝑂𝑖𝑖 ) ,                                                            (3.4)                                                                                                                                                                

where 𝑓(𝑥) = 1/(1 + 𝑒−𝑥) is the sigmoid activation function; the summation is done in the 

entire contiguous layer over all the neurons. 

If t is the target then the output neuron may be specified as follows. 

𝐸𝑘 =
1

2(𝑡𝑘−𝑂𝑘)2
  ,                                                                  (3.5) 

where E is the error and k is the output neuron. The gradient descent algorithm adjusts the 

synaptic weights depending on the gradient error, that is: 

∆𝑤𝑖𝑗 = − (
𝜕𝐸

𝜕𝑂𝑗
) × (

𝜕𝑂𝑗

𝜕𝑤𝑖𝑗
) = − (

𝜕𝐸

𝜕𝑤𝑖𝑗
) ,                              (3.6) 

 and 𝛿𝑗 = − (
𝜕𝐸

𝜕𝑂𝑗
)  is the signal of the error so that 

∆𝑤𝑖𝑗 = 휀𝛿𝑗𝑂𝑖 ,                                                                  (3.7) 

where 휀 is the learning rate parameter and 𝛿𝑗 is calculated according to the state of the neuron 

j being or not in the output layer. If it is in the output layer then we have 

𝛿𝑗 = 𝑂𝑗(1 − 𝑂𝑗) ∑ 𝛿𝑘
𝑘

𝑤𝑗𝑘  .                                            (3.8) 

To ameliorate convergence properties, the momentum rate 𝛼 is included in the process so that 

∆𝑤𝑖𝑗(𝑛 + 1) = 휀𝛿𝑗𝑂𝑖 + 𝛼∆𝑤𝑖𝑗(𝑛) ,                                       (3.9) 

where n is the number of epochs or iterations. 

 A BP flow chart proposed by Moghadassi, Parvizain and Hosseini (2009) is given in Figure 

3.4 below. 
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                                                           Figure 3.4 Backpropagation flow chart 

 

3.6.2 Generalisation 

The network can learn over the training phase, but the most important thing is that it should be 

able to generalise. Generalisation implies that the network can produce an output as close 

enough to the target as possible for a set of input patterns that have not been used during the 

training phase. The aim of generalisation is to reduce the error of the network output as much 

as possible with regard to out-of-sample input data. 

 

3.7 Neural Networks Models in STLF 

According to Kumar (2014), there are three categories of STLF NN models based on the 

forecasting target. These models are generally intended to forecast the load of the next hour, 

the daily maximum, the average load of the day, or just the complete daily load at one time. 
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Amral et al. (2008) added another classification according to the number of nodes in the input 

and output layers. According to this classification, NN models are categorised as either having 

many inputs and only one output or multiple inputs and multiple outputs as described below. 

 

3.7.1 Multi-Input Single-Output Models (MISO) 

In the work of Momoh et al. (1997), a MISO model is used, characterised by a simple 

feedforward MLP. The MISO model was the first NN model to be experimented and used in 

STLF. The network in this MISO model had a single output node providing the forecast for the 

peak (maximum) for the next 24 hours, the next day’s total or average load, or the next hour’s 

load. For a forecasting lead-time greater than one, Park et al. (1991) and Chen et al. (1992) 

used the forecasted output to feed back the same network together with the original input 

variables, in a dynamic recurrent manner. In fact, by doing so, the forecast of any arbitrary 

number of lead-time can be obtained. 

 

3.7.2 Multi-Input Multi-Output Models (MIMO) 

In this category Amral et al. (2008) proposed an NN model with 24 output nodes to predict a 

series of 24-hour-electric power at once in a 24-dimensional vector of output representing each 

hourly profile. 

Murto (1998) built a variety of models based on MISO and MIMO topology and compared 

them one to another. He even constructed a Single-Input Single-Output (SISO) model, one 

network for each hour of the day. Results from this work, and as corroborated by Reddy and 

Momoh (2014), showed that the best NN model for STLF is the hourly model for forecasting 

an arbitrary lead-time one up to 24 hours. 

 

3.8 Summary 

We firstly introduced and defined the NN technique. Secondly, a parallelism was established 

between NN and statistical techniques. Thirdly, we explored NN architecture and topology. 

Next, we went through all the major learning processes and different learning rules. We 

lingered a little on the BP algorithm as this is the core of the MLP built model, and finally, the 

STLF NN-based models classification was elaborated on. 
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CHAPTER 4  

METHODOLOGY 

 

4.1 Introduction 

In this chapter, we go through different steps necessary for building an STLF model using NN 

so as to make accurate predictions of hourly load forecasts up to 24 hours ahead. We started 

by the input data and input variables selection in which we looked at the correlation analysis 

and time lags. Next we went through the proposed model and looked at the design of the NN, 

the implementation of the model, the evaluation of the prediction performance of the model 

through different error metrics, the validation of NN, and finally we investigated the MLP built 

model in four different cases and compared it to a SARIMAX model. 

 

4.2 Input Data 

Eleven-year-load data, spanning from January 1rst 2000 to August 30th  2010, and temperature 

data were imported from Eskom databases, loaded in a Microsoft Excel spreadsheet and 

exported to MATLAB for the construction of the MLP model.  

In the Excel spreadsheet, the data were organised in nine columns and 93480 rows or 

observations. The columns are: the day in format dd-m-yy, the hour coded as 0 to 23, the load 

in Megawatt, the year in format yyyy, the numerical months of the year, days of week coded 

as 1 to 7, South African public holidays, and the date in format ddmyy:hh:mm:ss. 

The data were pre-processed in Excel prior to their exportation into Matlab. We checked for 

missing values, irregular values such as negative numbers and zeros, which do not make sense 

in this situation, and checked for some potential outliers.  
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4.3 Input Variables Selection 

One of the most challenging tasks in constructing an NN is the selection of suitable network 

inputs. Since the dynamic behaviour of the network is highly dependent on the chosen input 

variables, the load must be highly correlated with these variables. It is also very important that 

the set of input patterns adequately represents all the factors influencing the system load. Thus, 

the process of selecting the relevant network inputs has to be guided by an intuitive knowledge 

of all the different factors affecting the load, along with a careful numerical validation of these 

assumptions. 

In constructing the MLP model the input variables were selected based on the correlation 

analysis as suggested by Sinha (2000) and Taylor (2013). The temperature was added and used 

as a factor affecting the load. Some variables such as “day”, “date” and “year” were simply 

discarded since they added little or no information.  Hence, we retained the following variables 

from the original data: the temperature, the lagged load, the hour, days of week, the months of 

year, and public holidays. 

 

4.3.1 Correlation Analysis 

Based on the correlation analysis, we could identify the relevant input data variables. These are 

the variables that are highly correlated with the load data of the target hour and used in our 

model. This correlation analysis also allowed us to select the number of time-lags needed for 

the target hour load data since the previous hours load data have a strong influence on it (Lee 

et al., 1992) 

 

4.3.2 Time Lags 

It is demonstrated in the literature that loads of previous hours for a particular target have a 

strong impact on the load forecasts. But, “how far back in time are those loads” is determined 

by the correlation analysis, which we ran on the data, and noticed that the load inputs are highly 

correlated (more than 0.8) up to three lag times to the target hour load. The time lagged load 

data and temperature are given in Table 4.1 below. 
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Table 4.1 Time lagged input load and temperature 

Target day One – Day  Lag One – Week Lag 

L(t) NA L(d-1, t) T(d-1, t) L(d-7, t) T(d-7, t) 

L(d, t-1) T(d, t-1) L(d-1, t-1) T(d-1, t-1) L(d-7, t-1) T(d-7, t-1) 

L(d, t-2) T(d, t-2) L(d-1, t-2) T(d-1, t-2) L(d-7, t-2) T(d-7, t-2) 

L(d, t-3) T(d, t-3) L(d-1, t-3) T(d-1, t-3) L(d-7, t-3) T(d-7, t-3) 

 

In Table 4.1 above L(t) is the target hour load to be forecasted. 

L(d, t) corresponds to the load on day d and target hour t 

L(d, t – p), where p = 1, 2, 3 (for 1, 2, 3 hours before the target hour) 

L(d-1, t), previous day same hour as the target hour 

L(d-1, t – p)  p =1, 2, 3 (for 1, 2, 3 hours before the target hour) 

L(d-7, t), previous week same hour as the target hour 

L(d-7, t – p)  p =1, 2, 3 (for 1, 2, 3 hours before the target hour) 

 

4.3.3 Model Input Variables 

The input variables of the model are one to three hours before the target load and temperature 

data, same hour as the target and one to three hours before the target hour load and temperature 

data of the day before, same hour as the target and one to three hours before the target load and 

temperature data of the week before. In short the input variables consist of historical load and 

temperature data, the type of the day, the months of the year, and public holidays (South 

African public holidays) were taken into account to improve the accuracy of the load 

forecasting. Most of the input variables were selected based on the autocorrelation apart from 

the calendar variables. The structure of all input variables used in our model is given in Table 

4.2 below. 

Table 4.2 List of input variables 

Load Temperature Date 

L(d, t-1) T(d, t-1) Hour of day 

L(d, t-2) T(d, t-2) Day of Week 

L(d, t-3) T(d, t-3) Month of year 

L(d-1, t) T(d-1, t) Pub. Holiday 

L(d-1, t-1) T(d-1, t-1)  
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L(d-1, t-2) T(d-1, t-2)  

L(d-1, t-3) T(d-1, t-3)  

L(d-7, t) T(d-7, t)  

L(d-7, t-1) T(d-7, t-1)  

L(d-7, t-2) T(d-7, t-2)  

L(d-7, t-3) T(d-7, t-3)  

Avg[L(d – 1)]  

 

Avg [L(d – 1)] is the average of the load of the day before the target day  

T(d, t) corresponds to the temperature on day d at hour t, and the same applies here as in load 

data. 

The days of the week were coded as 1 to 7, with 1 for Sunday and 7 for Saturday. The public 

holidays were coded as 1 and working days as 0. Table 4.3 below shows only the days of week 

and their coding values. 

Table 4.3 Days of Week Coding Values 

Days of  Week Sunday Monday Tuesday Wed Thursday Friday Sat. 

Coding Value 1 2 3 4 5 6 7 

 

4.4 Proposed Model 

4.4.1 Model Design 

The model we built, in this research report, consisted of a feedforward MLP network using a 

BP algorithm with the gradient delta learning rule, a nonlinear sigmoid function as a transfer 

function in the hidden layer and the Purelin function at the output layer to allow the network to 

produce a wide range of output. The MATLAB R2015b NN package with its built-in learning 

function (Levenberg-Marquardt) was used because it has the best learning rate.  The steepest 

gradient function and a momentum were also used and the learning rate set to the default value 

with the possibility to adjust automatically along the training process. One hidden layer was 

used, but different numbers of hidden neurons were carried out based on trial and error, before 

retaining 25 hidden neurons as a structure that produced the minimum error.  

 

4.4.2 Cross-Validation 

During the training phase, we used the cross-validation technique to prevent the fall into one 

of the drawbacks of NN models, such as overparameterization that results in overfitting 
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because of the model complexity. Overfitting occurs when a model fits the data so well to an 

extent it includes the noise and ends up by yielding inaccurate forecasts. At this stage of 

knowledge, the adequate training sample size proportional to the number of network weights 

has not been formally established so that it is difficult to tell how many parameters are too 

many for a given number of data points in the sample. However, to avoid overfitting, we used 

the cross-validation method, which consists of splitting the data into a training, validation and 

test sets. 

 

4.4.3 Evaluation of Prediction Performance 

After the designing procedure and running the MLP model, the forecasting performance of the 

trained network could be assessed by calculating the prediction error on samples other than 

those used during the training phase. Various error metrics between the actual and forecasted 

loads are presented and defined in the literature, but the most commonly adopted by load 

forecasters are the Mean Absolute Percentage Errors (MAPE), the Absolute Percentage Errors 

(APE), the Mean Absolute Error (MAE) and the Mean Squared Error (MSE) or Root Mean 

Squared Error (RMSE). 

 𝑴𝑨𝑷𝑬 =
𝟏

𝒏
∑

|𝒂𝒄𝒕𝒖𝒂𝒍𝑳𝒐𝒂𝒅(𝒊) − 𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕𝒆𝒅𝑳𝒐𝒂𝒅(𝒊)|

(𝒂𝒄𝒕𝒖𝒂𝒍𝑳𝒐𝒂𝒅)(𝒊)
× 𝟏𝟎𝟎

𝒏

𝒊=𝟏

,           (𝟒. 𝟏) 

𝑨𝑷𝑬 =
|𝒂𝒄𝒕𝒖𝒂𝒍𝑳𝒐𝒂𝒅 − 𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕𝒆𝒅𝑳𝒐𝒂𝒅|

(𝒂𝒄𝒕𝒖𝒂𝒍𝑳𝒐𝒂𝒅)
× 𝟏𝟎𝟎 ,                                    (𝟒. 𝟐) 

𝑴𝑨𝑬 =
𝟏

𝒏
∑

|𝒂𝒄𝒕𝒖𝒂𝒍𝑳𝒐𝒂𝒅(𝒊) − 𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕𝒆𝒅𝑳𝒐𝒂𝒅(𝒊)|

(𝒂𝒄𝒕𝒖𝒂𝒍𝑳𝒐𝒂𝒅)(𝒊)

𝒏

𝒊=𝟏

    ,                       (𝟒. 𝟑) 

𝑴𝑺𝑬 =
𝟏

𝒏
∑(𝒕𝒊 − 𝑶𝒊)

𝟐

𝒏

𝒊=𝟏

  𝒐𝒓 √𝑴𝑺𝑬    ,                                                                  (𝟒. 𝟒) 

where n is the number of the data points and i is the period at which the load is produced or 

forecasted, t is the target and O the NN output. 

To make sure that the system is accurate, the relative error is retained on the hourly basis. In 

the case of positive error, it means the forecasted load is greater than the actual consumption 

load, and the opposite is true when the forecasted load was less than the actual load. 

Besides the error metric to evaluate the performance of the NN models, a particular attention 

was given to different plots generated by the training process such as the regression plots, the 
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performance function versus epochs (number of times training vectors were used to update the 

weights), the training state plot, and the forecast and actual data comparison plot as suggested 

by Buhari and Adamu (2012).  

 

4.4.4 Neural Networks Validation 

Sandoval (2002) suggested a couple of methods to validate an NN model. He stated that the 

performance of an NN model must be compared to that of some well accepted techniques such 

as in the following manner:   

a) Compare the performance of the NN model with some ‘naïve’ method considered as a 

benchmark, or good standard method such as fuzzy engines, regression, ARIMAX, or 

other NN, etc. 

b) Comparison must be based on test samples performance. 

c) Test samples must be representative enough to allow inferences to be drawn. 

d) Evaluate the error by using standard metrics such as the MAPE, MSE, APE, and the 

MAE among others. 

In this research work we compared our MLP model to a SARIMAX model in terms of the 

MAPE, MAE, MSE, APE and Daily Peak Error. 

 

4.5 Model Investigation 

We first started by analysing the load profiles so as to get a good sense of the shape of the load 

curve and draw some characteristics of the load profile. To do so, we took one year-data (data 

for the year 2000), at the beginning of our data collection, and plotted it against the time. Next 

we investigated four different cases in different seasons of the year to test the proposed model 

and report the results. Finally, to validate the NN technique we compared the built MLP model 

to a SARIMAX model constructed using the entire and same training and testing datasets and 

reported the results. 

 

4.6 Summary 

In this methodology chapter, we presented the techniques and material used to build the MLP 

model and how we used them
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CHAPTER 5  

LOAD PROFILE ANALYSIS - RESULTS 

AND DISCUSSION                                                      

 

5.1 Characteristics of the Load Profile 

Before we ran our MLP model on the data, we looked at the characteristics of the load profile 

since this constitutes the uniqueness of every power utility. 

First, we displayed all the data as a time series from 2000 to 2010 in Figure 5.1 so as to get a 

sense of the general shape of the electricity consumption in South Africa during this time. This 

data represents the aggregate quantity of electricity that was consumed hour by hour in South 

Africa. 

 

                                   Figure 5.1 Electric load in Megawatts from 2000 to 2010 

It can be seen that the load was very low in 2005 comparatively to other years reported in 

Figure 5.1 above. Next, in Figure 5.2 below, we focused on one-year data for a more detailed 

description of the characteristics of the load variations against the time.  
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Figure 5.2 Electric load in Megawatts from 1st Jan – 31st Dec 2000 

It can be seen in Figure 5.2 that the load profile curve starts at a low point because the first day 

in 2000 was a weekend and a public holiday. On weekends and public holidays, generally, 

industrial and social activities are at low levels. Then the curve goes up and reaches a sort of 

steady cycle. Then comes a break in the patterns (trough) around 2500 hours, which 

corresponds to a transition season (March-April) in South Africa. The curve drops significantly 

down during this transition season and then resumes its shape going up steadily again with 

small breaks in the patterns here and there, between 4000-5000 hours, during winter, and 

starting to drop down slowly until the end of the year, and the same patterns repeat. That is, the 

load profile exhibits seasonality and cycles.  

We also displayed the load autocorrelation charts in Figure 5.3 to get the sense of the 

dependency at different time lags. 

 

Figure 5.3 Electric load sample autocorrelation for the first 500 lags 
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We can see from the graph in Figure 5.3 that there are seasonal effects regularly shaped with 

peaks at 24, 48, 72, … corresponding to the daily activities, and similar patterns at the multiples 

of 168 for weekly activities. These weekly seasonal effects come from working days as 

industrial activities are at high level. If we could display more lags, then we would also observe 

the monthly seasonal effects. 

The temperature as a weather variable and the load profile for a period of two weeks are 

respectively displayed in Figure 5.4 and Figure 5.5 below for a good parallelism. 

 

Figure 5.4 Temperature during 15th – 30th Jan 2000 

 

 

Figure 5.5 Load profile during 15th to 30th Jan – 2000 

Indeed, a comparison of Figure 5.4 and Figure 5.5 gives an interesting picture regarding the 

behaviour of these two curves (load and temperature). Observation can be made that for the 

first two days of this period (around 50 hours), when the temperature is relatively high, around 
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24ºC, the load curve corresponding to the same time is low. After a day drop in temperature, it 

can be seen that from then onward the two curves vary in the same direction, meaning that 

when the temperature goes up, the load also goes up, when down, they both go down. But it 

should be borne in mind that the load curve does not always behave in this way. The load curve 

can go down when the temperature curve is up, as it can be seen at the beginning of the period 

15th – 30th Jan 2000, but this same curve will raise up if the temperature keeps going down 

(because more heating will be needed). The load curve will go up when the temperature is up 

because of VAC (Ventilation and Air-Conditioning) needed. 

The first day in Figure 5.4 is a Saturday. It can be clearly seen that the curve starts at a low 

point since it is a weekend during which activities are very low, that explains why the two first 

portions patterns of the curve are similar. Then comes Monday when activities tend to get back 

to normal, i.e. normal working days, normal behaviours meaning high-level of activities. For 

this particular week after the summer holiday, the first Monday seems to start a bit slowly 

compared to the Monday of the week after where the five working (Monday to Friday) days 

exhibit quite high similar patterns. These weekly similar patterns are then repeated through the 

succeeding weeks. 

As to the daily working pace, things are almost the same because different activities take place 

synchronically. Working hours, lunch time, leisure time are the same for the majority of people, 

and they all sleep at night. This is the reason why the load will be high during the day and 

significantly low during the night. However, it should be noticed that this pace of life varies 

throughout the year and impacts the load profile as shown in Figures 5.6 (a-d) below. 

 

Figure 5.6 (a) Load profile on Wednesday, 19th April 2000 



LOAD PROFILE ANALYSIS - RESULTS AND DISCUSSION 

41 

 

Figure 5.6 (b) Load profile on Wednesday, 21st June 2000 

 

Figure 5.6 (c) Load profile on Wednesday 11th October 2000 

 

 

Figure 5.6 (d) Load profile on Wednesday, 13th December 2000 
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In Figures 5.6 (a-d) we chose the load profile on a Wednesday because Chikobvu and Sigauke 

(2012) showed that Wednesdays have the highest index of the daily demand seasonal indices, 

plus they are not influenced by the weekend. We kept the same day of the week in all different 

seasons so as to make consistent comparisons. We also made sure that the chosen day was not 

a public holiday as this gives a particular load profile similar to a weekend one. 

These four graphs displayed in Figure 5.6 are clearly different, despite the fact that a 

conciliatory opinion may classify the first two load profiles in one category and the other two 

in another, based on their shapes. This fact demonstrates sufficiently that there are differences 

in the same day load profile in different seasons, and there are of course differences between 

days of the week in the same season. This is why it is advised, in the literature, to classify days 

of the week into different types in the load forecasting area, since each day has its own 

characteristic load patterns. This is especially true on Saturdays and Sundays and public 

holidays, which tend to have their own particular load profile. 

If we go back to Figure 5.5 and take a close look at the five working days load profiles, we can 

see that although they all tend to be similar, Mondays and Fridays have a slightly different 

profile than the other working days. These two days of the week are closed to the weekend and 

may undergo its effects. 

In short, we can see that our load profile exhibits some seasonality behaviours and cycles 

patterns. It can also be noticed that the load is strongly positively correlated with the 

temperature during summer hot days and the opposite, i.e. negatively correlated with 

temperature, in winter cold days. 

 

5.2 Load Forecasting Results and Discussion 

In this section we focused on the results of hourly load forecasts obtained by using a trained 

NN and designed as follows: ten input nodes, one hidden layer with 25 neurons obtained by 

trial and error, and one output layer. Real time data that includes historical hourly load 

consumption and temperature data collected from Eskom over eleven years from 2000 to 2010 

were used to train and test an hourly load forecasting MLP model. The data was randomly 

partitioned with 70% used to train the model and 30% of the data used in the validation and 

testing phases of the model. The NN model was trained using an MLP using Matlab R2015b. 

The Matlab code used in this research report was inspired by Ameya (2010) and can be found 

in appendix A.  

In the next few lines, we summarised the training process and presented its results. Basically, 

after the division of the data, the training phase took place during which the bias and weights 
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were produced.  During the training phase, Matlab displayed the NN toolbox (Figure 5.7) to 

inform us of what was going on behind the scenes. 

 

Figure 5.7 Matlab NN toolbox during the training phase of our MLP model 

Figure 5.7 shows that the NN toolbox is divided into four parts: 

a. The first part shows a schematic structure of NN model as it is designed, the inputs 

variables as given in Table 4.2, 25 hidden neurons and one output node forecasting one 

hour at a time; 

b. The second part, algorithms, shows all the algorithms that are involved in the data 

division, network training, training performance evaluation and derivative 

computation; 

c. The third part is where we can see the progress of the training mechanisms, i.e. the 

number of epochs, the elapsed time, the performance (how well is the training going), 

the gradient function value and validation checks; 

d. The last part offers a possibility to monitor the network performance graphically. 
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After a successful accomplishment of the training stage, three plots were produced by the 

Matlab NN toolbox namely, the regression plots, the performance function versus epochs plot, 

and the training state plot. 

i. The regression plot 

 

Figure 5.8 NN Toolbox Regression plots of the MLP model 

 

The four plots in Figure 5.8 showing the output of the training data set against the 

target, the output of the validation data set versus the target, the test data output 

versus the target, and the overall network output data against the target. These plots 

from Figure 5.8 show how strong the data output and the target are correlated and 

how accurate the trained network model were able to forecast after learning some 

complex relationships between the input variables and the target. 

 

ii. The performance function (MSE) versus the number of epochs plot 
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Figure 5.9 NN Toolbox Performance function of our MLP model 

Figure 5.9 shows a plot of the performance function, which is the Mean Squared Error (MSE) 

by default in Matlab NN toolbox, versus the number of epochs or iterations. A stopping 

criterion that can spot a change in the course of the learning algorithm is used by using the data 

from a test-set after every ten iterations (epochs). Whenever the fit error minima for the test-

samples is detected, the learning algorithm is stopped to avoid overfitting the model. This error 

minima may signal the transition between under-fitting and overfitting of the model. 
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iii. The training state plot 

 

Figure 5.10 NN Toolbox Training state plot of our MLP model 

 

Figure 5.10 has three different plots consisting of a first plot of the learning function 

against the number of epochs for essentially displaying the development of the 

gradient function values as the number of iterations increases. The next plot consists 

of the learning rate (mu) versus the number of iterations (epochs) to keep under 

observation the learning rate trend so as to see when the network error decreases 

along the training process. Finally the plot of validation checks, which is 

implemented automatically for whenever an abrupt modification occurs in the 

gradient function computation. 

 

5.2.1 Case Studies 

Four arbitrary cases in different four seasons of the year were investigated to test and validate 

the proposed MLP model.  The forecasts of one hour up to 24 hours were performed based on 

the daily, hourly data without using the target hour load data. Then, we ran the MLP built model 

on the data to forecast one hour at a time and 24 times recursively for a day ahead. The obtained 

forecasts were compared to the real load data and the relative errors were calculated. 
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Case I: Hourly Forecasting in August 2009 

Figures 5.11 through 5.14 show the actual and forecasted load (FL) profiles of the days in Table 

B1 in Appendix B. 

 

Figure 5.11 Actual Load and FL on Sunday 2nd August 2009 

 

 

Figure 5.12 Comparison of actual load and FL on Monday 3rd August 2009 

Figures 5.11 and 5.12 above establish a comparison between the actual load and the FL curves 

in terms of their shapes. It can be seen, in the first graph that the FL failed to map the actual 

load curve shape, in the early hours of the day, at the peak hours of the day and at the valley of 

the curve between 13h and 16h. In the second graph, the FL was a little bit poor from 7h up to 

the peak time around 19h, with a big gap, meaning large errors, occurred around this time of 

the day. 
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Figures 5.13 and 5.14 below display a comparison of the actual load and FL curves during 

same month of August 2009 but this time for a Wednesday in the middle of the week and on 

Saturday, a weekend. 

 

Figure 5.13 Actual Load and FL on Wednesday 5th August 2009 

 

 

Figure 5.14 Actual Load and FL, Saturday, August the 7th 2009 

In this first case study, from Figures 5.11 to 5.14, we can see that the MLP curve performed 

poorly following the shape of the actual load curve around the peak hours, i.e. when the load 

demand is high (7h – 10h, 19h – 20h), especially at night when the difference between the two 

curves is relatively noticeable except for Wednesday (5th August 2009), Figure 5.13. 

Figure 5.15 below gives a superimposed view of the load behaviour during the first week of 

the month of August 2009. 
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Figure 5.15 Actual Load and FL for a week: 1st – 7th August 2009 

It can be seen in Figure 5.15 above that in general, the MLP model performed well as the gap 

between the actual and forecasted load curves is relatively small, except for some cases during 

the peak hours at the beginning of the week until Tuesday, but could easily recover from 

Wednesday onward up to Saturday. 

The recorded MAPE (0.77%) in this first case study is less than the one obtained in (Park et 

al., 1991; Lee et al., 1992; Yoo and Pimmel, 1998), and the other error metrics are as follow: 

the RMSE is 292.29 MW and the Daily Peak Error varied between 0.08% and 1.85%. 

 

Case II: Hourly Forecasting in October 2009 

Table B2 in Appendix B gives one way of looking at the MLP model hour by hour, through its 

outputs (FL), the actual load compared to the FL, and the resulting APE. Whereas the 

corresponding Figures 5.16 through 5.19 give yet another way of looking at the shape of the 

forecasted and actual load curves so as to see their differences. 
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Figure 5.16 Actual Load and FL, Sunday, October 4th 2009 

In Figure 5.16 above, it can be noticed that the separation between the actual load and the FL 

curves is very big around the peaks and the valley of the two curves, and almost reasonably 

confound elsewhere, providing evidence that the FL is performing well in forecasting at these 

intervals in time. The subsequent graphs are telling another story in terms of the performance 

of the FL. There is a lot of fluctuations as can be seen in Figures 5.17 through 5.19 below. 

 

 

Figure 5.17 Actual Load and FL on Monday the 5th October 2009 

 

 

 

 

 



LOAD PROFILE ANALYSIS - RESULTS AND DISCUSSION 

51 

 

Figure 5.18 Actual Load and FL on Wednesday, October 7th 2009 

 

 

 

Figure 5.19 Actual Load and FL, Friday 9th October 2009 

In the second case study, Figures 5.16 through 5.19 depict the behaviour of the MLP model 

during four randomly chosen days in October 2009. Here, it can be noticed that the MLP model 

has some shortcomings in forecasting during the peak hours, the profile curves are not as 

smooth as the previous ones in the month of August for the same corresponding days of the 

week. There is a lot of fluctuations of the load curve that the MLP model could not track, 

especially in Figures 5.17 through 5.19 (5th, 7th and 9th of Oct. 2009). The huge fluctuations of 

the load profile might have been due to the fact that October is during a transition season in 

South Africa as stated Banda and Folly (2007). During this period of time the mornings and 

evenings are very cold and the afternoons are very hot on some days. 

Figure 5.20 below gives a global picture of the forecasting behaviour during a week in October 

2009.  
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Figure 5.20 Actual Load and FL, week 11th – 17th October 2009 

The FL profile has a good shape as it closely traces the load profile during weekdays but some 

irregularities of the curve at the beginning of the week during peak hours can be observed in 

Figure 5.20 above. 

Once again we compared the forecasted and actual load curves on different days of the week 

during this month of October throughout Figures 5.16 to 5.20, and results showed that the 

MAPE is 0.80%, the RMSE is 295.006 MW and the Daily Peak Error ranges between 0.15% 

and 3%. These results are more accurate than the 2.2% of MAPE achieved in the work of 

Osman, Awad and Mahmoud (2009). 

 

Case III: Hourly Forecasting in December 2009 

Four different days in December 2009 were arbitrarily selected to compare the actual and 

forecasted load based on their day of the week profile. The corresponding hourly load, FL and 

APE are given in Table B3 in Appendix B. 

Results in the aforementioned table show that the APE is very small on average for the Sunday 

6th December profile as can be corroborated in the corresponding Figure 5.21 below with a 

satisfactory forecasting shape following the actual load curve. 
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Figure 5.21 Actual Load and FL, Sunday, Dec 6th 2009 

Figure 5.22 to Figure 5.24 below depict the forecasting model behaviour on some particular 

days given in Table B3 in Appendix B.  

 

Figure 5.22 Actual Load and FL on Monday 7th Dec 2009 

 

Figure 5.23 Actual Load and FL on Wednesday 9th Dec 2009 
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Figure 5.24 Actual Load and FL on Friday 11th Dec 2009 

The third case study, in the month of December 2009, depicts the forecasting model behaviour 

on some randomly chosen days given in Table B3. It can be seen in Figures 5.22 and 5.24 that 

the forecast MLP model on Monday and Friday, respectively, performed poorly in forecasting 

the actual load profile at the peak hours. Table B3 gives two higher APE values, on average, 

for these days. Figure 5.23 corresponding to Wednesday shows that the model did not perform 

well during the peak hours and Table B3 gives a couple of higher APE values of this profile 

for this particular day. 

Figure 5.25 below gives a sense of how well the MLP model performed on the global point of 

view for seven days period of time in December 2009. 

 

Figure 5.25 Actual Load and FL for 6th – 12th Dec 2009 
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From a superimposed view, Figure 5.25 shows that the MLP model has some shortcomings 

during the working days from Tuesday to Thursday but did better from Friday and all the 

weekend long through Monday. 

The forecasted and actual load curves were compared in this case study, and results were 0.90% 

of the MAPE, the RMSE is 315.209 MW, the Daily Peak Error between 0.18% and 2.66% for 

December 2009. The performance errors of this case study is the poorest compared to other 

cases, but still less than the results reported in most of the literature on STLF we surveyed. 

 

Case IV: Hourly Forecasting in March 2010 

Hourly load, FL and APE of four arbitrary selected days in March 2010 are given in Table B4 

in Appendix B, which gives various APE values and Figures 5.26 through 5.29 below give 

graphical views from which we can trace the performance of the MLP model. 

 

Figure 5.26 Actual Load and FL on Monday 8th March 2010 
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Figure 5.27 Actual Load and FL on Wednesday 10th March 2010 

 

 

 

Figure 5.28 Actual Load and FL on Friday 12th March 2010 
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Figure 5.29 Actual Load and FL on Sunday 14th March 2010 

In this last case study in March 2010, Table B4 shows that there are a very few higher APE 

values on average and Figures 5.26 through 5.29 show that the forecast profile curve follows 

smoothly the actual load profile shape testifying that the forecasting model is performing very 

well. 

Figure 5.30 below gives another way to compare the shape of these two curves, the forecasted 

and actual load, on a period of seven days in March 2010. 

 

 

Figure 5.30 Actual Load and FL for 7th – 13th March 2010 

On the global point of view Figure 5.30 above gives also a satisfactory picture of a forecasting 

model that performed well as the gap between the two curves is relatively small. 

The forecasted and actual load curves were compared once again in this last case study, and 

results showed that the MAPE is 0.77%, the RMSE is 295.867 MW, the Daily Peak Error 

ranged between 0.07% and 1.34% for March 2010. The recorded MAPE in this case is equal 
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to the one in the first case, and the Daily Peak Error is even more accurate than what was 

recorded in case I. It is a very good performance regarding to the results reported in the 

literature. 

Table B5 Appendix B gives the average error on a daily basis in terms of the MAPE, MAE and 

the Daily Peak Error of randomly chosen days in August 2009 and October 2010. 

Besides the four analysed scenarios above, we then took a look at the MLP model performance 

during the FIFA World cup (11th June – 11th July 2010) so as to obtain more insight of its 

robustness. 

The set of graphs below, from Figures 5.31 to 5.41, and Table B6 are dedicated to a period of 

time when took place the FIFA World Cup in South Africa, from June 11th to July 11th 2010.  

 

 

Figure 5.31 Actual Load and FL from 11th June to 11th July 2010 
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Figure 5.32 Actual Load and FL for 20th – 26th June 2010 

 

 

Figure 5.33 Actual Load and FL for 4th – 10th July 2010 

 

Figure 5.34 Actual Load and FL on Friday 11th June 2010 
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Figure 5.35 Actual Load and FL on Monday 21st June 2010 

 

Figure 5.36 Actual Load and FL on Wednesday 23rd June 2010 

 

Figure 5.37 Actual Load and FL on Friday 25th June 2010 
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Figure 5.38 Actual Load and FL on Sunday 27th June 2010 

 

Figure 5.39 Actual Load and FL on Saturday 3rd July 2010 

 

Figure 5.40 Actual Load and FL on Sunday 4th July 2010 
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Figure 5.41 Actual Load and FL on Sunday 11th July 2010 

Daily average errors for four weeks during the FIFA World Cup 2010 are given in Table B6. 

From Figure 5.31, we expected to see some uptrend in the load consumption due to the World 

Cup, but nothing more than those daily and weekly seasonal patterns that the MLP forecasting 

model could easily track. Figures 5.32 and 5.33 zoom in the picture in depicting two different 

weeks during this football festive time. Figure 5.32 for a week in June and Figure 5.33 a week 

in July. From these graphs, we can deduce that the MLP model, in general, could easily trace 

the shape of the actual load profile curve despite a few higher Daily Peak error values here and 

there. In Figure 5.34 we can see that the gap between the two curves is noticeable, especially 

around the peak hours. The results in Table B6 for this particular day can confirm this fact. Not 

surprising that the forecasted loads on this day recorded a higher MAPE and a higher MAE 

values because this day was the game opening day. There was a high level of activities and 

high energy demand that the forecasting model could not track. 

Figures 5.35 through 5.41 show that the load forecasts curve can smoothly follow the path 

trajectory of the consumption load profile and the error metrics are all small on average, except 

some few Daily Peak errors, which are high values. It can also be noticed that the forecasting 

is more accurate (with a MAPE less than 1% on average) during this period of time because it 

is winter in South Africa and the load consumption is less unpredictable in general. 

In a nutshell, the implemented forecasting model performed reliably and with a satisfactory 

accuracy. Table B5 gives some daily error metrics corroborating this performance with a daily 

MAPE ranging from 0.50% to 0.90%, which is less than the 3% recommended in the literature  

by Khotanzad et al., (1997), the Daily Peak Error is between 0.01% and 3%, and the MAE is 

between 133.12 and 314.35 MW. 
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5.2.2 Comparison between MLP Model and SARIMAX Model 

Hippert et al. (2001) discussed some guidelines to evaluate the “effectiveness of validation” of 

NN models. They strongly discouraged to evaluate a model by only looking at the goodness of 

fit statistics and examining in-sample errors instead of the out-of-sample errors, i.e., samples 

other than those used to fit the model during the training phase. These authors strongly 

supported the idea that the proposed technique should be compared to some benchmark models, 

such as ARIMAX or regression models but not to another NN model or to some fuzzy engine 

because they believed that these are not yet considered as standard or well accepted methods. 

So, to get a good idea of our model, a seasonal ARIMAX (SARIMAX) model was trained and 

run on the same training and testing datasets as in the MLP case. This SARIMAX model was 

briefly discussed in chapter 3. We included the temperature variable as an exogenous variable 

in the ARIMA model, hence we have a seasonal ARIMAX that can be written as follows. 

(1 − 𝜙1𝐿 − 𝜙2𝐿2)𝑍𝑡  =  (1 − 𝜃1𝐿 − 𝜃2𝐿2)(1 − 𝜃24𝐿24)(1 − 𝜃168𝐿168)𝑎𝑡  

                                    +  (1 − 𝜃1𝐿 − 𝜃2𝐿2)𝑣𝑡.                                                                             (5.1) 

Equation (5.1) can be rewritten as follows. 

𝑌𝑡 = (1 − 𝐿)(1 − 𝐿24)(1 − 𝐿168)𝑧𝑡  

    = 𝑦𝑡 − 𝑦𝑡−1 − 𝑦𝑡−24 + 𝑦𝑡−25 − 𝑦𝑡−168 + 𝑦𝑡−169 − 𝑦𝑡−192 + 𝑦𝑡−193 ,                               (5.2) 

𝑣𝑡 = (1 − 𝐿)(1 − 𝐿24)(1 − 𝐿168)𝑥𝑡  

     = 𝑥𝑡 − 𝑥𝑡−1 − 𝑥𝑡−24 + 𝑥𝑡−25 − 𝑥𝑡−168 +𝑥𝑡−169 − 𝑥𝑡−192 + 𝑥𝑡−193  ,                               (5.3)                                                              

where 𝑦𝑡 is the load at hour t, 𝑣𝑡 is the temperature at the corresponding hour t and L is the lag 

operator. The free parameters 𝜙1, 𝜙2, 𝜃1, 𝜃2, 𝜃24, 𝜃168 were estimated from the model. 

We used the “auto.arima” function included in the ‘forecast’ R-package via step wise algorithm 

suggested by Hyndman and Khandakar (2008) to construct automatically the seasonal ARIMA 

model and forecast the load 24 hours at a time for exactly the same days used in testing the 

MLP model as to obtain comparable results. The pre-processing of the data was carried out as 

suggested by Yang et al. (2013). 

The MAPE, MAE, MSE and Daily Peak error for both SARIMAX and MLP model on some 

randomly chosen days are presented in Table 5.1 below. 
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Table 5.1 SARIMAX and NN Model Average Errors 

 

Date Day of the Week MAPE (%) Daily Peak Error (%) MAE (MW) MSE (MW2) 

 NN SARIM NN SARIM NN SARIM NN SARIM 

01/08/2009 7 0.95 1.82 3.00 5.08 276.08 532.06 140832.173 465990.173 

02/08/2009 1 1.15 2.55 2.82 7.66 314.36 732.56 144436.50 866825.391 

03/08/2009 2 0.88 3.16 1.07 9.82 263.84 939.73 109514.401 1551814.833 

04/08/2009 3 0.64 2.81 1.87 9.86 188.47 850.99 60242.006 1368772.003 

05/08/2009 4 0.72 2.82 0.08 10.28 208.03 845.20 64915.675 1360569.797 

06/08/2009 5 0.85 2.84 0.42 9.63 245.61 839.55 87455.709 1252119.395 

07/08/2009 6 0.67 2.50 0.96 8.61 197.96 733.43 76037.02 1018168.534 

11/10/2009 1 0.78 1.99 0.85 7.65 204.04 529.90 56662.554 523753.067 

12/10/2009 2 0.98 2.32 1.10 8.59 282.44 646.04 127902.083 729734.430 

13/10/2009 3 1.05 2.21 1.85 7.55 289.75 621.53 146581.887 810203.271 

14/10/2009 4 0.67 2.33 0.15 8.69 192.82 657.70 62457.346 821348.247 

15/10/2009 5 0.59 2.17 0.25 7.89 170.33 620.95 51144.378 745283.478 

16/10/2009 6 0.69 1.76 1.24 7.19 200.14 500.87 68617.493 484193.128 

17/10/2009 7 0.81 1.72 1.37 6.92 220.49 473.35 81948.284 447276.119 

06/12/2009 1 0.57 1.65 0.68 5.34 148.63 441.70 36702.882 350357.747 

07/12/2009 2 0.86 1.98 0.43 5.87 248.27 557.36 116679.053 555109.068 

08/12/2009 3 0.71 1.70 0.87 5.92 201.50 478.45 65451.678 425979.794 

09/12/2009 4 0.83 1.58 1.24 5.05 238.51 445.15 108362.873 324780.045 

10/12/2009 5 0.75 1.65 0.36 5.86 211.61 451.19 78145.906 382109.605 

11/12/2009 6 0.93 1.61 1.34 4.17 256.40 445.75 127082.888 352222.468 

12/12/2009 7 0.80 1.93 0.07 6.78 213.81 525.44 124277.167 499913.070 

07/03/2010 1 0.68 2.09 0.42 10.10 179.02 558.57 57888.614 691767.600 

08/03/2010 2 0.74 2.41 2.66* 8.41 211.07 683.72 87603.624 948044.574 

09/03/2010 3 0.76 1.98 0.49 7.60 221.32 565.60 96874.632 666602.500 

10/03/2010 4 0.89 2.00 2.45* 9.05 259.45 581.76 97867.046 735472.646 

11/03/2010 5 0.64 2.12 1.02 7.40 187.36 614.83 65954.955 707314.314 

12/03/2010 6 0.67 2.08 0.96 6.93 188.11 599.93 57544.278 723023.773 
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13/03/2010 7 0.84 1.58 0.18 7.67 231.25 442.44 66777.556 448911.616 

20/06/2010 1 0.64 2.41 0.01 6.31 179.22 709.88 51347.561 823418.186 

21/06/2010 2 0.85 2.11 0.46 6.12 270.99 648.74 146121.946 697030.514 

22/06/2010 3 0.92 2.11 0.68 8.42 290.51 655.34 163716.149 883247.716 

23/06/2010 4 0.81 2.01 0.17 6.20 257.26 618.93 132997.467 627686.571 

24/06/2010 5 0.63 2.15 0.93 6.01 200.55 664.18 68937.790 737511.662 

25/06/2010 6 0.77 2.11 0.89 6.67 241.93 641.75 107103.355 808137.416 

26/06/2010 7 0.86 2.12 2.42* 7.46 251.05 619.27 97036.056 761234.503 

04/07/2010 1 0.50 2.39 1.07 7.56 133.12 672.85 31074.404 773798.453 

05/07/2010 2 0.84 2.09 0.36 6.10 254.50 628.41 139255.083 681638.675 

06/07/2010 3 0.87 1.90 0.45 7.06 266.17 571.82 107929.055 702226.793 

07/07/2010 4 0.93 2.02 1.18 5.54 272.94 605.78 11668.996 560770.396 

08/07/2010 5 0.64 2.29 1.02 7.44 190.72 683.32 70841.625 798688.717 

09/07/2010 6 0.60 2.03 0.78 7.12 184.07 607.62 58304.925 690398.443 

10/07/2010 7 0.71 2.28 1.01 8.59 190.87 659.86 71370.948 799242.195 

 

 

Table 5.1 above displays the outputs of a comparison between the MLP and SARIMAX models in terms of different error metrics. 

Figures 5.42 and 5.43 below give the outputs of the performance of the SARIMAX model run on the same training and testing datasets used to 

build the MLP model. 
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Figure 5.42 Actual Load and FL with SARIMAX, 6th – 12th Dec 2009 

 

 

Figure 5.43 Actual Load and FL with SARIMAX, 20th – 26th June 2010 

Comparison of the performance of the MLP and the SARIMAX models in terms of the APE 

is displayed on Figures 5.44 and 5.45 below, on arbitrarily chosen days in August 2009 and 

June 2010, respectively. 
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Figure 5.44 APE of SARIMAX and MLP model on 1st August 2009 

 

 

Figure 5.45 APE of SARIMAX and NN model during 20th – 26th June 2010 

It can be seen in Table 5.1 (comparison table) and in Figures 5.42 through 5.45 that the 

SARIMAX model presented much larger errors than the MLP model. Figures 5.42 and 5.43 

showed two different weeks of forecasts with SARIMAX, which was not too bad as to judge 

on these graphs, but not as good as the MLP as show the respective MAPEs below. In Figure 

5.44 it can be clearly seen that the MLP model is superior to the SARIMAX with a MAPE of 

0.50% and 1.90% respectively 
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The MLP model presented in this research report performed better at forecasting recursively 

hourly load 24 hours ahead as shown in the results for all the different error metrics used in 

this work to evaluate the performance of LF models. Through the four case studies we tested 

and validated the proposed model, but to get its overall performance error, we ran the MLP 

model through all the entire training and testing datasets at once and obtained its overall MAPE 

of 0.50% and MSE of 5.32e+08 as can be seen in Figure 5.1. It should not be a surprise that 

the built NN model improved its results because it is well known in the literature and in 

particular as emphasised Park et al. (1991) that the NN technique performs very well when the 

training data is widely spread in the feature space. These results compared favourably to most 

of those reported in the STLF literature we consulted and the 3% of the MAPE recommended 

by Khotanzard et al. (1997). Besides the built NN model accuracy, it has also proven to be 

robust and adjustable to changing conditions as proved by its performance during the 2010 

FIFA World Cup period. In fact, this performance is a welcome surprise as the LF curve could 

follow and track properly the shape of the real load curve without any major discrepancy as 

can be seen in Figures 5.31 through 5.41. 

However, the built MLP model was inferior to the NN-based model constructed by Reddy and 

Momoh (2014), which achieved an impressive accuracy of 0.004% in terms of MAPE, and Al-

Subhi and Ahmad (2015) with the MAPE ranging between 0.35% and 0.49%. Nevertheless, 

we strongly believe that introducing other weather variables such as wind speed, cloud 

coverage, humidity, and rainfall will produce even better results in terms of accuracy for the 

MLP model built in this research report. 

 

5.3 Summary 

In the first part of this chapter, we produced the distribution of the data, analysed the Eskom 

load profile and highlighted its characteristics. Next, we displayed the Matlab NN toolbox to 

give an idea of what was going on during the training phase of the network according to how 

we structured and designed it. We also presented a couple of different plots giving some 

measures of performance, goodness of fit of the data to the MLP built model, and a validation 

check. More importantly, in the second part of the chapter, we presented and discussed the 

results of four different case studies to investigate our MLP built model. In the last part of the 

chapter, we tested a SARIMAX model and compared it to our MLP model so as to have an 

opinion on the validity of the latter built model. 



 

69 
 

 

 

CHAPTER 6  

SUMMARY - CONCLUSIONS AND 

RECOMMENDATIONS 

 

6.1 Summary 

We used the NN technique in the STLF area and built an MLP model using eleven years (2000 

- 2010) load data and corresponding temperature from Eskom. We investigated the MLP built 

model through four different case studies and presented the results that showed a satisfactory 

performance and achieved a sensible prediction accuracy. The forecasting accuracy was 

evaluated by calculating different error metrics such as the MAPE, the MAE, the APE, the 

Daily Peak error, and the MSE or the derived RMSE. The range of some error metrics lies 

between 11 668.996 MW2 and 163 716.149 MW2 for the MSE, 0.01% and 3.58% of the Daily 

Peak error, and 0.50% and 0.90% for the MAPE. These ranges of error are very consistent with 

the results obtained in the literature on STLF. To have an opinion of our MLP model, we 

compared it to a benchmark SARIMAX model and the results showed that the MLP model 

performed better. In addition to accuracy, the model has proven to be robust and adjustable to 

changing conditions as proved its performance during the 2010 FIFA World Cup. Moreover, 

the model proved to be also reliable as it could forecast reasonably the first day of this big event 

with a lot of unpredictable activities. As an hourly model, the built MLP model can be up to 

date as it performs dynamically by using new available data as they come in. 

 

6.2 Conclusions  

STLF can assist electric power management decision makers to operate and secure their power 

system efficiently and economically 24 hours ahead. The electric power management is very 

challenging in South Africa. There is a need for accurate techniques to support power system 

managers in the performance of their daily duties. The LF field has plenty of methods to build 
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accurate models for such purposes but the NN technique has a couple of advantages that we 

outlined in this research work that justified their preference. 

We applied the NN technique to STLF and built an MLP model that produced an overall MAPE 

of 0.50% error and MSE performance of 5.32e+08 that compared favourably to most of the 

error rates reported in the STLF literature we consulted or the utmost 3% of the MAPE expected 

in general. Indeed, these results are highly accurate and further reinforces the capability of NN 

models in forecasting the electric load. Therefore, the model can assist decision makers in the 

EMS with needed information to perform their workday more efficiently and economically by 

minimising the operating costs, planning routine maintenance, preventing the overloading and 

reducing the occurrence of equipment failures. 

However, we have to admit that the NN technique is not a panacea in STLF area, since it has 

some limitations or drawbacks when it comes to interpretation of the models and a high risk of 

overfitting of models if not carefully designed. Still, the MLP model we built in this research 

report demonstrated a lot of interesting properties reported in the literature. Therefore, it is a 

very suitable MLP model that can assist decision makers in the EMS with the necessary 

information in their daily operations. 

 

6.3 Recommendations 

Since the MLP model was built based on only one site (Eskom), more evidence on other electric 

utilities is required so as to ensure its portability. Otherwise, the model must be re-trained every 

time it is run on a new site. We also believe that introducing other weather variables such as 

wind speed, cloud coverage, and humidity would yield better results for our MLP model. 

Given that the built MLP model performance was inferior to some of the models in the 

literature, a hybrid model, SARIMA-MLP, with SARIMA handling the linearity of the load 

series and the MLP dealing with nonlinearity of the load, will yield better results. 

Another point to be taken into account is the reliability of the MLP models. The way NNs 

perform the forecasts is rather complicated and very difficult to understand, that is why they 

call them “black box”, and therefore some abnormal behaviour may unexpectedly occur in 

unusual conditions. This is one of the drawbacks of how the NN models operate. Hence, a 

detailed online testing is recommended so as to insure NN models reliability in different 

situations. 

In building the MLP model, we took into account the load of special days such as public 

holidays that we treated as Sundays. This is a simplistic solution to handle public holidays, but 
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in order to obtain more accurate results, some more appropriate techniques should be 

considered for future refinements of the built MLP model. 
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Appendix A Matlab® Code 

 

Import Weather & Load Data 

The data set used is a table of historical hourly loads and temperature observations from Eskom 

for the years 2000 to 2010. The weather information includes the dry bulb temperature only. 

The dataset is imported from an excel file using an auto-generated function fetchDBLoadData. 

data = fetchDBLoadData('2000-01-01', '2010-08-31'); 

 

Import list of holidays 

A list of South African public holidays that span the historical date range is imported from an 

Excel spreadsheet. 

[num, text] = xlsread('..\Data\Holidays.xls'); 

holidays = text(2:end,1); 

 

Generate Predictor Matrix 

The function genPredictors generates the predictor variables used as inputs for the model. 

% Select forecast horizon 

term = 'short'; 

 

[X, dates, labels] = genPredictors(data, term, holidays); 

 

Split the dataset (cross-validation) 

% Create training set 

net.divideParam.trainRatio = 70/100 

trainInd = net.divideParam.trainRatio; 

trainX = X(trainInd,:); 

trainY = data.SYSLoad(trainInd); 

 

% Create validation set 

net.divideParam.valRatio = 15/100; 

valInd = net.divideParam.valRatio 

valX = X(valInd, :); 

valY = data.SYSLoad(valInd); 

 

% Create test set and save for later 

net.divideParam.testRatio = 15/100; 

testInd = net.divideParam.testRatio; 
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testX = X(testInd,:); 

testY = data.SYSLoad(testInd); 

testDates = dates(testInd); 

 

save Data\testSet testDates testX testY 

clear X data trainInd testInd term holidays dates ans num text 

 

Build the Load Forecasting Model 

reTrain = false; 

if reTrain || ~exist('Models\NNModel.mat', 'file') 

    net = newfit(trainX', trainY', 25); 

    net.performFcn = 'mae'; 

    net = train(net, trainX', trainY'); 

    save Models\NNModel.mat net 

else 

    load Models\NNModel.mat 

end 

 

load Data\testSet 

forecastLoad = sim(net, testX')'; 

 

err = testY-forecastLoad; 

fitPlot(testDates, [testY forecastLoad], err); 

 

errpct = abs(err)./testY*100; 

 

fL = reshape(forecastLoad, 24, length(forecastLoad)/24)'; 

tY = reshape(testY, 24, length(testY)/24)'; 

peakerrpct = abs(max(tY,[],2) - max(fL,[],2))./max(tY,[],2) * 100; 

 

MAE = mean(abs(err)); 

MAPE = mean(errpct(~isinf(errpct))); 

 

fprintf('Mean Absolute Percent Error (MAPE): %0.2f%% \nMean Absolute Error 

(MAE): %0.2f MWh\nDaily Peak MAPE: %0.2f%%\n',... 

    MAPE, MAE, mean(peakerrpct)) 
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Appendix B Tables of Error Different Metrics 

 

Table B1 Hourly Actual Load, FL and APE  

 02/08/2009 03/08/2009 05/08/2009 07/08/2009 

Hour Load FL APE Load FL APE Load FL APE Load FL APE 
1 23704 24046.50 1.44 22960 23105.78 0.63 24437 24336.00 0.41 24215 24135.45 0.33 
2 22928 23150.84 0.97 22632 22476.73 0.69 23852 23933.78 0.34 23835 23717.39 0.49 
3 22565 22666.26 0.45 22513 22512.89 0.00 23599 23631.81 0.14 23671 23623.43 0.20 
4 22527 22555.72 0.13 22842 22675.30 0.73 23978 23657.65 1.34 23873 23761.27 0.47 
5 22447 22975.92 2.36* 23868 23689.92 0.75 25132 24777.60 1.41 24869 24590.40 1.12 
6 22880 22539.91 1.49 27041 26812.67 0.84 28068 28455.04 1.38 27857 27767.84 0.32 
7 23929 24171.91 1.02 31436 30852.81 1.86 31969 31737.02 0.73 31537 31665.05 0.41 
8 26824 25867.07 3.57* 31825 31846.20 0.07 31816 32349.32 1.68 31746 32026.74 0.88 
9 29573 29452.55 0.41 32010 32104.24 0.29 31609 31751.09 0.45 31784 31827.81 0.14 

10 31118 30837.71 0.90 31776 31897.79 0.38 30992 31462.22 1.52 31511 31692.13 0.57 
11 31274 31059.88 0.68 32034 31536.06 1.55 31155 30843.77 1.00 31646 31324.55 1.02 
12 31037 30751.79 0.92 31710 31695.42 0.05 30894 31083.33 0.61 31159 31362.60 0.65 
13 30639 30357.92 0.92 30891 31128.73 0.77 30301 30526.10 0.74 30256 30588.69 1.10 
14 29957 29939.38 0.06 30397 30081.48 1.04 29730 29687.73 0.14 29414 29434.54 0.07 
15 28863 29588.37 2.51* 30042 30174.81 0.44 29689 29487.35 0.68 29045 28990.07 0.19 
16 28495 28623.97 0.45 30372 30128.97 0.80 29923 29932.45 0.03 28720 29025.67 1.06 
17 28684 29083.37 1.39 30571 31026.81 1.49 30287 30267.04 0.07 28853 28752.50 0.35 
18 30426 30665.44 0.79 32248 32222.04 0.08 31518 31879.70 1.15 30112 30088.08 0.08 
19 32890 32560.46 1.00 34733 34085.18 1.87 33898 34041.31 0.42 31986 32850.76 2.70* 
20 32912 32372.67 1.64 34517 34044.61 1.37 33389 33512.75 0.37 31597 32146.11 1.74 
21 31181 31522.21 1.09 33529 33002.73 1.57 32217 32216.20 0.00 30730 30754.13 0.08 
22 28706 28805.17 0.35 30858 31025.04 0.54 29718 30071.08 1.19 28679 28959.20 0.98 
23 25834 26345.58 1.98 27183 27812.87 2.32* 27157 27308.74 0.56 26704 26728.49 0.09 
24 24002 24269.67 1.12 25169 25439.72 1.08 25232 25436.35 0.81 24892 25179.12 1.15 

*higher error value 

 

Table B2 Actual Load, FL and APE for October 2009 

 04/10/2009 05/10/2009 07/10/2009 09/10/2009 

Hour Load FL APE Load FL APE Load FL APE Load FL APE 
1 22689 22790.48 0.45 22292 22364.98 0.33 24172 24178.15 0.03 24525 24222.53 1.23 
2 22197 22210.58 0.06 22041 21916.02 0.57 23735 23788.28 0.22 24119 24075.51 0.18 
3 21716 21931.00 0.99 22022 21969.35 0.24 23734 23560.07 0.73 23882 23920.94 0.16 
4 21676 21589.04 0.40 22238 22201.28 0.17 23855 23831.08 0.10 24246 23931.95 1.30 
5 21882 21957.28 0.34 23152 22984.83 0.72 24681 24571.28 0.44 25129 25063.65 0.26 
6 22290 22573.24 1.27 26531 25805.22 2.74* 27864 27133.63 2.62* 27963 27558.72 1.45 
7 23601 23532.04 0.29 29269 29979.55 2.43* 30131 30134.16 0.01 30364 30245.83 0.39 
8 25801 25693.98 0.41 29308 29712.60 1.38 29791 30261.37 1.58 30404 30455.72 0.17 
9 27617 27490.53 0.46 29805 29488.96 1.06 30202 30111.93 0.30 31136 30526.27 1.96 

10 28628 27966.82 2.31* 29864 29795.01 0.23 29938 30557.96 2.07* 30896 31129.94 0.76 
11 28759 28301.18 1.59 30280 29738.44 1.79 30451 30131.48 1.05 31183 30902.42 0.90 
12 28629 28224.55 1.41 30388 30084.53 1.00 30306 30540.04 0.77 31235 31067.62 0.54 
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13 28034 27937.66 0.34 29825 30064.89 0.80 30196 30130.51 0.22 30858 30945.36 0.28 
14 27218 27122.18 0.35 29535 29330.78 0.69 29647 29939.01 0.98 30034 30394.56 1.20 
15 26486 26364.10 0.46 29595 29559.52 0.12 29875 29491.15 1.28 30181 29691.95 1.62 
16 26037 26079.63 0.16 29995 29828.15 0.56 30261 30055.22 0.68 29950 30214.93 0.88 
17 26383 26019.45 1.38 30306 30354.09 0.16 30401 30306.20 0.31 30006 29693.86 1.04 
18 27319 27470.94 0.56 30734 30857.25 0.40 30832 30445.85 1.25 29893 30025.00 0.44 
19 29416 29424.73 0.03 31817 32088.82 0.85 31616 32117.83 1.59 30789 30990.91 0.66 
20 29940 29242.44 2.33* 32138 31844.56 0.91 32113 32243.55 0.41 31165 31726.13 1.80 
21 28530 28438.68 0.32 30889 30677.56 0.68 30822 30917.95 0.31 29704 30140.53 1.47 
22 26263 26383.45 0.46 28610 28424.24 0.65 28751 28724.10 0.09 28135 28091.51 0.15 
23 24282 24470.08 0.77 25967 26319.49 1.36 26485 26723.75 0.90 26478 26492.88 0.06 
24 23059 23068.51 0.04 24399 24527.51 0.53 25185 25095.99 0.35 25205 25183.06 0.09 

*higher error value 

Table B3 Hourly Actual Load, FL and APE of December 2009 

 06/12/2009 07/12/2009 09/12/2009 11/12/2009 

Hour Load FL APE Load FL APE Load FL APE Load FL APE 
1 23252 23414.40 0.70 23278 23146.95 0.56 24279 24369.19 0.37 23768 23992.16 0.94 
2 22812 22741.53 0.31 22773 22933.44 0.70 23850 23933.80 0.35 23367 23430.46 0.27 
3 22479 22538.12 0.26 22641 22643.55 0.01 23570 23708.56 0.59 22900 23243.71 1.50 
4 22389 22385.30 0.02 22972 22746.41 0.98 23655 23643.22 0.05 23269 22945.78 1.39 
5 22744 22621.56 0.54 23783 23750.82 0.14 24450 24331.84 0.48 24274 24163.08 0.46 
6 23265 23709.72 1.91 25765 26049.73 1.11 26074 26683.75 2.34* 26138 27140.35 3.83* 
7 24543 24585.39 0.17 27585 27779.29 0.70 27745 28051.46 1.10 28104 28327.71 0.80 
8 26383 26473.66 0.34 28968 28576.27 1.35 29048 29078.73 0.11 29308 29240.32 0.23 
9 27677 27703.58 0.10 30479 29364.36 3.66* 29926 29598.02 1.10 30245 29792.90 1.49 

10 28085 27880.18 0.73 30575 30734.60 0.52 30080 30093.05 0.04 29992 30353.74 1.21 
11 27895 27958.57 0.23 30948 30763.45 0.60 30684 29998.32 2.23* 30383 30098.64 0.94 
12 27873 27634.90 0.85 31199 31005.83 0.62 30648 30383.10 0.86 30390 30369.77 0.07 
13 27563 27508.22 0.20 30888 31117.19 0.74 30366 30248.95 0.39 29859 30207.12 1.17 
14 26873 27001.12 0.48 30494 30667.33 0.57 29836 29850.06 0.05 29624 29439.05 0.62 
15 26318 26236.08 0.31 30446 30438.86 0.02 30133 29517.47 2.04* 29467 29537.10 0.24 
16 25858 26108.64 0.97 30459 30441.74 0.06 30115 30141.84 0.09 29335 29500.84 0.57 
17 26102 25806.65 1.13 30090 30342.70 0.84 30192 30064.16 0.42 29267 29321.86 0.19 
18 26615 26555.00 0.23 30148 29688.69 1.52 29794 30365.60 1.92 29256 29422.48 0.57 
19 27709 27825.76 0.42 30006 30358.85 1.18 29759 30482.52 2.43* 29053 30013.53 3.31* 
20 29114 28988.69 0.43 31389 30852.38 1.71 30484 30793.75 1.02 29958 30218.10 0.87 
21 28703 28236.72 1.62 30690 30712.14 0.07 29866 29706.28 0.53 29450 29304.07 0.50 
22 26994 26756.61 0.88 29085 28630.54 1.56 27960 28157.46 0.71 27944 27848.38 0.34 
23 25248 25058.43 0.75 26540 26879.27 1.28 26115 26183.90 0.26 26429 26215.44 0.81 
24 23866 23898.01 0.13 25067 25106.67 0.16 24672 24782.84 0.45 25094 25084.08 0.04 

*higher error value 

Table B4 Hourly Actual Load, FL and APE for March 2010 

 08/03/2010 10/03/2010 12/03/2010 14/03/2010 

Hour Load FL APE Load FL APE Load FL APE Load FL APE 
1 22931 22855.53 0.33 24625 24835.78 0.86 25077 25116.51 0.16 23540 23431.70 0.46 
2 22890 22569.56 1.40 24422 24250.96 0.70 24495 24684.26 0.77 22974 23138.62 0.72 
3 22779 22766.81 0.05 24171 24263.84 0.38 24660 24318.26 1.39 22945 22691.55 1.10 
4 22930 22836.89 0.41 24384 24204.75 0.74 24428 24781.99 1.45 22776 22913.61 0.60 
5 23821 23610.94 0.88 25484 25226.39 1.01 25240 24851.61 1.54 22938 22983.04 0.20 
6 26606 26409.32 0.74 27941 28521.61 2.08* 27791 27514.73 0.99 23280 23462.86 0.79 
7 29224 29153.89 0.24 30647 29888.35 2.48* 30273 30059.22 0.71 24016 24540.58 2.18* 
8 28888 29435.31 1.89 30087 30780.26 2.30* 30206 30668.73 1.53 26602 25724.31 3.30* 
9 29969 29059.05 3.04* 30589 30252.67 1.10 30982 30546.83 1.40 28225 28112.16 0.40 

10 30363 30129.64 0.77 30810 30798.71 0.04 31156 31188.25 0.10 28597 28302.67 1.03 
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11 30718 30507.05 0.69 31104 30845.32 0.83 31463 31206.00 0.82 28671 28340.31 1.15 
12 31029 30762.16 0.86 31173 30962.48 0.68 31483 31382.28 0.32 28511 28234.57 0.97 
13 30554 30944.52 1.28 31079 30886.59 0.62 31276 31262.52 0.04 28431 27974.24 1.61 
14 30263 30347.62 0.28 30958 30696.60 0.84 30959 30943.11 0.05 27650 27834.88 0.67 
15 30351 30328.14 0.08 31152 30885.59 0.86 30804 30837.97 0.11 26995 26969.03 0.10 
16 30550 30552.86 0.01 31414 31179.73 0.75 30527 30668.87 0.46 26830 26681.30 0.55 
17 30531 30596.63 0.21 31477 31309.29 0.53 30180 30190.07 0.03 26839 26813.40 0.10 
18 30192 30256.06 0.21 31102 31302.38 0.64 30022 29788.01 0.78 27122 27092.70 0.11 
19 30620 30348.23 0.89 31444 31583.41 0.44 30243 30286.28 0.14 28718 28544.22 0.61 
20 31893 31737.59 0.49 32071 32399.55 1.02 31459 31539.24 0.26 30051 29585.96 1.55 
21 30617 31047.15 1.40 31081 31232.99 0.49 30327 30746.72 1.38 28685 28811.39 0.44 
22 28360 28394.98 0.12 29030 29127.63 0.34 28638 28709.19 0.25 26414 26675.56 0.99 
23 26372 26385.20 0.05 26901 27105.78 0.76 26830 26917.94 0.33 24718 24750.24 0.13 
24 25430 25046.85 1.51 25327 25547.98 0.87 25784 25511.71 1.06 23529 23504.89 0.10 

*higher error value 

Table B5 Daily FL errors 

Date Day of the 

Week 

MAPE (%) Daily Peak Error 

(%) 

MAE (MW) 

01/08/2009 7 0.95 3.00* 276.08 

02/08/2009 1 1.15 2.82* 314.36 

03/08/2009 2 0.88 1.07 263.84 

04/08/2009 3 0.64 1.87 188.47 

05/08/2009 4 0.72 0.08 208.03 

06/08/2009 5 0.85 0.42 245.612 

07/08/2009 6 0.67 0.96 197.96 

11/10/2009 1 0.78 0.85 204.04 

12/10/2009 2 0.98 1.10 282.44 

13/10/2009 3 1.05 1.85 289.75 

14/10/2009 4 0.67 0.15 192.82 

15/10/2009 5 0.59 0.25 170.33 

16/10/2009 6 0.69 1.24 200.14 

17/10/2009 7 0.81 1.37 220.49 

06/12/2009 1 0.57 0.68 148.63 

07/12/2009 2 0.86 0.43 248.27 

08/12/2009 3 0.71 0.87 201.50 

09/12/2009 4 0.83 1.24 238.51 

10/12/2009 5 0.75 0.36 211.61 

11/12/2009 6 0.93 1.34 256.40 

12/12/2009 7 0.80 0.07 213.81 

07/03/2010 1 0.68 0.42 179.02 

08/03/2010 2 0.74 2.66* 211.07 

09/03/2010 3 0.76 0.49 221.32 

10/03/2010 4 0.89 2.45* 259.45 

11/03/2010 5 0.64 1.02 187.36 

12/03/2010 6 0.67 0.96 188.11 

13/03/2010 7 0.84 0.18 231.25 

20/06/2010 1 0.64 0.01 179.22 

21/06/2010 2 0.85 0.46 270.99 

22/06/2010 3 0.92 0.68 290.51 

23/06/2010 4 0.81 0.17 257.26 
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24/06/2010 5 0.63 0.93 200.55 

25/06/2010 6 0.77 0.89 241.93 

26/06/2010 7 0.86 2.42* 251.05 

04/07/2010 1 0.50 1.07 133.12 

05/07/2010 2 0.84 0.36 254.50 

06/07/2010 3 0.87 0.45 266.17 

07/07/2010 4 0.93 1.18 272.94 

08/07/2010 5 0.64 1.02 190.72 

09/07/2010 6 0.60 0.78 184.07 

10/07/2010 7 0.71 1.01 190.87 

*higher error value 

 

Table B6 Daily errors from June 11th to July 11th 2010 

Date Day of the 

Week 

MAPE (%) Daily Peak Error 

(%) 

MAE (MW) 

11/06/2010 6 1.47 1.50 441.19 

12/06/2010 7 0.67 0.11 187.68 

13/06/2010 1 0.77 0.32 206.15 

14/06/2010 2 0.97 0.58 295.53 

15/06/2010 3 1.08 0.34 349.39 

16/06/2010 4 1.13 2.49* 339.35 

17/06/2010 5 1.00 0.91 310.64 

18/06/2010 6 0.71 2.00* 226.02 

19/06/2010 7 0.71 0.79 207.70 

20/06/2010 1 0.64 0.01 179.22 

21/06/2010 2 0.85 0.46 270.99 

22/06/2010 3 0.92 0.68 290.51 

23/06/2010 4 0.81 0.17 257.26 

24/06/2010 5 0.63 0.93 200.55 

25/06/2010 6 0.77 0.89 241.93 

26/06/2010 7 0.86 2.42* 251.05 

27/06/2010 1 0.69 1.98 186.11 

28/06/2010 2 0.96 0.13 291.59 

29/06/2010 3 0.90 0.36 281.18 

30/06/2010 4 0.72 2.88* 217.31 

01/07/2010 5 0.89 0.74 264.39 

02/07/2010 6 0.83 0.75 250.13 

03/07/2010 7 1.08 1.61 299.51 

04/07/2010 1 0.50 1.07 133.12 

05/07/2010 2 0.84 0.36 254.50 

06/07/2010 3 0.87 0.45 266.17 

07/07/2010 4 0.93 1.18 272.94 

08/07/2010 5 0.64 1.02 190.72 

09/07/2010 6 0.60 0.78 184.07 

10/07/2010 7 0.71 1.01 190.87 

11/07/2010 1 0.90 0.14 249.47 

*higher error value 



References 

78 

 

References 

Abdel-Aal, R. E. (2004) Short-Term Hourly Load Forecasting Using Abductive Networks, 

 IEEE Transaction on Power Systems, Vol. 19, no 1, pp. 164 – 173. 

Alfares, H. K. and Nazeeruddin, M. (2002) Electric Load Forecasting: Literature survey and 

classification of methods, International Journal of Systems Science, Vol. 33, pp. 23-34. 

Al-Subhi, A. and Ahmad, C. B. (2015) Short Term Load Forecasting using Artificial Neural 

Networks for a Residential Area in an Industrial City, International Journal of 

Engineering Research and Technology (IJERT); Vol. 4, pp. 307-314. 

Ameya, D. (2010) Electricity Load and Price Forecasting Webinar Case Study, [online] 

available from: http://www.mathworks.com/matlabcentral/fileexchange/28684-

electricity-load-and-price-forecasting-webinar-case-

study/content/Electricity%20Load%20&%20Price%20Forecasting/Load/html/LoadSc

riptNN.html [Accessed: 3rd March 2015]. 

Amral, N., King, D., and Ozveren C. S. (2008) Application of Artificial Neural Network for 

Short-Term Load Forecasting, IEEE 43rd International Universities Power 

Engineering Conference, UPEC - 2008. pp. 1-5. 

Banda, E. and Folly, K. A. (2007) Short-Term Load Forecasting Using Artificial Neural 

Network, IEEE Power Tech. Lausanne, pp. 108 – 112. 

Bagnasco, A., Saviozzi, M., silverstro, F., Vinci, A., Grillo, S., and Zennaro, E. (2014) 

Artificial Neural Network Application to Load Forecasting in a Large Hospital Facility, 

IEEE International Conference on Probabilistic Method Applied to Power System, pp. 

1-6. 

Buhari, M. and Adamu, S.S. (2012) Short-Term Load Forecasting Using Artificial Neural 

Network, Proceedings of the MultiConference of Engineers and Computer Scientists 

(IMECS) Vol 1. Hong-Kong: 14-16 March, pp. 1-4. 

Cabrera, N. G. , Guiterrez-Alcaraz, G. and Gil, E. (2013) Load Forecasting Assessment Using 

SARIMA Model and Fuzzy Inductive Reasoning, IEEE International Conference on 

Industrial Engineering and Engineering Management, pp. 561-565. 

http://www.mathworks.com/matlabcentral/fileexchange/28684-electricity-load-and-price-forecasting-webinar-case-study/content/Electricity%20Load%20&%20Price%20Forecasting/Load/html/LoadScriptNN.html
http://www.mathworks.com/matlabcentral/fileexchange/28684-electricity-load-and-price-forecasting-webinar-case-study/content/Electricity%20Load%20&%20Price%20Forecasting/Load/html/LoadScriptNN.html
http://www.mathworks.com/matlabcentral/fileexchange/28684-electricity-load-and-price-forecasting-webinar-case-study/content/Electricity%20Load%20&%20Price%20Forecasting/Load/html/LoadScriptNN.html
http://www.mathworks.com/matlabcentral/fileexchange/28684-electricity-load-and-price-forecasting-webinar-case-study/content/Electricity%20Load%20&%20Price%20Forecasting/Load/html/LoadScriptNN.html
http://0-ieeexplore.ieee.org.innopac.wits.ac.za/xpl/mostRecentIssue.jsp?punumber=4638685
http://0-ieeexplore.ieee.org.innopac.wits.ac.za/xpl/mostRecentIssue.jsp?punumber=4638685


References 

79 

Charytoniuk, W. and Chen, M.S. (2000) Very Short-Term Load Forecasting Using Artificial 

Neural Networks, IEEE Transactions on power Systems, Vol. 15, no 1, pp. 263-268. 

Chatfield, C. (1993) Neural Networks: Forecasting Breakthrough or Passing Fad?  

International Journal of Forecasting, Vol. 9, no 1, pp. 1-3. 

Chen, S. –T., Yu, D. C. and Moghaddamjo, A. R. (1992) Weather Sensitive Short-Term Load 

Forecasting Using Non-fully Connected Artificial Neural Network, IEEE Transactions 

on Power Systems, Vol. 7, no 3, pp. 1098-1105. 

Chikobvu, D. and Sigauke, C. (2012) Regression-SARIMA modelling of daily peak electricity 

 demand in South Africa, Journal of Energy in Southern Africa, Vol. 23, no. 3, pp. 23-

30 

da Silva, P. A. and Moulin, L. S. (2000) Confidence Intervals for Neural Network Based Short-

Term Load Forecasting, IEEE Transactions on Power Systems, Vol. 15, no 4, pp. 1191-

1196. 

Eskom Holdings SOC Limited Integrated Report (2013) GX 0001 revision 14 May 2014. 

[Online] Available from http://www.eskom.co.za [Accessed: 22nd February 2015]. 

Gross, G. and Galiana F.D. (1987) Short-Term Load Forecasting, Proceedings of IEEE, vol. 

75, no. 12 pp. 1558-1573. 

Gupta, M. (2012) Weather Sensitive Short-Term Load Forecasting Using Non-fully connected 

Feedforward Neural Network, Master’s Thesis in Engineering, Thapar University, 

Patiala (India). 

Hamid, M.B.A and Rohman, T.K.A (2010) Short – Term Load Forecasting Using an Artificial 

Neural Network Trained by Artificial Immune System Learning Algorithm, IEEE, 12th 

International Conference on Computer Modelling and Simulation (UKSim), 24 – 26 

March, Cambridge, pp. 408 – 413. 

Haykin, S. (1999) Neural Networks: A Comprehensive Foundation. 2nd Ed. Prentice Hall, 

Upper Saddle River (New Jersey), 842 pages.  

Heaton, J. (2008) Introduction to Neural Networks for Java. 2nd Ed. St. Louis: Heaton Research 

 Research, 438 pages. 

Hedden, S. (2015) How do we solve South Africa’s energy crisis, World Economic Forum 

[Online] Available from: https://www.weforum.org/agenda/2015/09/how-do-we-

solve-south-africas-energy-crisis/ [Accessed: 15th December 2015]. 

http://www.eskom.co.za/
https://www.weforum.org/agenda/2015/09/how-do-we-solve-south-africas-energy-crisis/
https://www.weforum.org/agenda/2015/09/how-do-we-solve-south-africas-energy-crisis/


References 

80 

Hernandez, L., Carlos, B., Javier, M.A., Carro, B., Sanchez-Esguivillas, A.J, and Lloret, J. 

(2013) Short-Term Load Forecasting for Microgrids Based on Artificial Neural 

Networks, Energies, Vol. 6, pp. 1385 – 1408. 

Hippert, S. H., Pedreira, C. E., and Souza, R. C. (2001) Neural Networks for Short-Term Load 

Forecasting: A Review and Evaluation, IEEE Transaction on Power Systems, Vol. 16, 

no. 1, pp. 44-55. 

Hong, T. and Fan, S. (2016) Probabilistic Electric Load Forecasting: A Tutorial Review, 

International Journal of Forecasting, Vol. 32, no. 3, pp. 914 – 938. 

Hyndman, R. J. and Khandakar, Y. (2008) The Forecast Package for R, Journal of Statistical 

Software, Vol. 27, no. 3, pp. 1-22. 

Janacek, G. and Swift, L. (1993) Time Series: Forecasting, Simulation, Applications, West 

Sussex: Ellis Horwood Ltd, 331 pages. 

Kalogirou, S.A., (2001) Artificial Neural Networks in Renewable Energy Systems 

Applications: A Review, Renewable and sustainable energy reviews, Vol. 5, no. 4, 

pp.373-401. 

Khotanzad, A., Davis, M. H. and Abaye, A. and Maratukulam, D. J. (1996) An Artificial Neural 

Network Hourly Temperature Forecaster with application in Load Forecasting, IEEE 

Transactions on Power Systems, Vol. 11, no. 2, pp. 870-876. 

Khotanzad, A., Afkhami-Rohani R., Lu, T., Abaye A., Davis, M. and Maratukulam, D. J. 

(1997) ANNSTLF – A Neural-Network-Based Electric Load Forecasting System, IEEE 

Transactions on Neural Networks, Vol. 8, no. 4, pp. 835-846. 

Kumar, B. S. (2014) Short Term Load Forecasting Using Artificial Neural Networks, 

International Journal of Research and Communication Technology, Vol. 3, no. 2, pp. 

247-255. 

Kumar, M. (2009) Short-Term Load Forecasting Using Artificial Neural Networks, B. Tech, 

National Institute of Technology, Rourkela. 

Lee, K. Y., Cha, Y. T., Park, J. H. (1992) Short-Term Load Forecasting Using an Artificial 

Neural Network, IEEE Transactions on Power Systems, Vol. 7, no. 1, pp. 124-132. 

Mandal, P., Senjyu, T, Urasaki, N., and Funabashi, T. (2006) A Neural network based several-

hour-ahead electric load forecasting using similar days approach, Electrical Power and 

Energy System, Vol. 28, pp. 367 – 373. 



References 

81 

Moghram I. and Rahman S. (1989) Analysis and Evaluation of five Short-Term Load 

Forecasting Techniques, IEEE Transactions on Power Systems, Vol. 4, no. 4, pp. 

1484-1491. 

Moghadassi, A. R., Parvizian, F., Hosseini, S. M. and Fazlali, A. R. (2009) A New Approach 

for Estimation of PVT Properties of Pure Gases Based on Artificial Neural Networks, 

Brazilian Journal of Chemical Engineering. [Online], Vol. 26, no. 1 available from 

http://www.scielo.br/scielo.php?pid=S0104-66322009000100019&script=sci_arttext 

[Accessed: 2nd February 2015]. 

Mohamed, N., Ahmad, M. H., Suhartono and Ismail, Z. (2011) Improving Short Term Load 

Forecasting Using Double Seasonal Arima Model, World Applied Science Journal, Vol. 

15, no. 2, pp. 223 – 231. 

Momoh, J. A., Wang, Y. and Elfayoumy, M. (1997) Artificial Neural Network Based Load 

Forecasting. IEEE International Conference on Computational Cybernetics and 

Simulation. Vol. 4, pp. 3443-3451. 

Murto, P. (1998) Neural Network Models for Short-Term Load Forecasting, M.Sc., Helsinki 

University of Technology, Helsinki. 

Osman, H.Z., Awad, L.M., Mahmoud, K.T. (2009) Neural Network Based Approach for Short-

Term Load Forecasting, IEEE/PES Power System Conference and Exposition, Seattle, 

WA, 15-18 March, pp. 1-8. 

Papalexopoulos, A, Hesterberg, T. C. (1990) A Regression Based-Approach to Short-Term 

System Load Forecasting, IEEE Transactions on Power Systems, Vol. 5, no. 4, pp. 

1535-1547. 

Papalexopoulos, A. D., Hao, S., and Peng T.-M. (1994) An Implementation of a Neural 

Network Based Load Forecasting Model for the EMS, IEEE Transactions on Power 

Systems, Vol. 9, no. 4, pp.1956-1962. 

Paretkar, P. S., Mili, L., Centeno, V., Jin, K. and Miller, C. (2010) Short-Term Forecasting of 

Power Flows over Major Transmission Interties: Using Box and Jenkins ARIMA 

Methodology, IEEE Power and Energy Society General Meeting, Minneapolis, 25 – 29 

July, pp. 1 – 8. 

Park, D.C., El-Sharkawi, M.A. and Marks II, R.J. (1991) Electric Load Forecasting Using an 

Artificial Neural Network. IEEE Transactions on Power Systems, Vol. 6, no. 2, pp. 442-

449. 

http://www.scielo.br/scielo.php?pid=S0104-66322009000100019&script=sci_arttext


References 

82 

Park, J. H., Park, Y. M. and Lee, K. Y. (1991) Composite Modeling for Adaptive Short-Term 

Load Forecasting, IEEE Transactions on Power Systems, Vol. 6, no. 2, pp. 450-457.  

Pawlak, Z. (1982) Rough sets, International Journal of Parallel Programming, Vol. 11, no. 5, 

pp. 341–356. 

Peng, T.M.; Hubele, N.F. and Karady, G.G. (1992) Advancement in the Application of Neural 

Networks for Short-Term Load Forecasting, IEEE Transactions on Power System, Vol. 

7, no. 1, pp. 250-257. 

Qingle, P. and Min, Z. (2010) Very Short-Term Load Forecasting Based on Neural Network 

and Rough Set, IEEE International Conference on Intelligent Computation Technology 

and Automation, ICICTA – 2010, Vol. 3, pp. 1132 – 1135. 

Ramezani, M., Falaghi, H., Haghifam, M.-R. and Shahryari, G. (2005) Short-Term Electric 

Load Forecasting Using Neural Networks, IEEE International Conference on 

Computer as a Tool, Belgrade, 21 – 24 November, Vol. 2, pp. 1525 – 1528. 

Ranaweera D.K., Hubele, N. F., and Karady, G.G. (1996) Fuzzy logic for Short-Term Load 

Forecasting, IEEE Electrical Power and Energy System, Vol. 18, no. 4, pp. 215-222. 

Reddy, S. S. and Momoh, J. A. (2014) Short-Term Electrical Load Forecasting Using Back 

Propagation Neural Networks. IEEE North American Power Symposium, 2014. pp. 1-

6. 

Rewagad, A. P. and Soanawane, V. L. (1998) Artificial Neural Network Based Short-Term 

Load Forecasting, IEEE Region 10 International Conference on Global Connectivity in 

Energy, Computer, Communication and Control, New Delhi, 17 – 19 November, Vol. 

2, pp. 588 – 595. 

Rouse, M. (2006) Fuzzy Logic (programming glossary) [online] available from: 

http://whatis.techtarget.com/definition/fuzzy-logic [Accessed on 3rd March 2015] 

Sandoval, F. (2002) Short-Term Load Forecasting Using Artificial Neural Networks.  

Available from: https://samos.univparis1.fr/archives/ftp/preprints/samos160.pdf 

[Accessed: 2nd February 2015] 

Senjyu, T., Takara, H., Uezato, K., and Funabashi, T. (2002) One-Hour-Ahead Load 

Forecasting Using Neural Network, IEEE Transactions on Power Systems, Vol. 17, no. 

1, pp. 113-118. 

http://whatis.techtarget.com/definition/fuzzy-logic
https://samos.univparis1.fr/archives/ftp/preprints/samos160.pdf


References 

83 

Sinha, A. K. (2000) Short-Term Load Forecasting Using Artificial Neural Networks. 

Proceedings of IEEE International Conference on Industrial Technology, 2000. Vol. 2, 

pp. 548-553. 

Taylor, E. L. (2013) Short-term Electrical Load Forecasting for an Institutional/Industrial 

Power System Using an Artificial Neural Network, M. Sc., University of Tennessee, 

Knoxville. 

Taylor, J.W., Buizza, R. (2002) Neural Network Load Forecasting with Weather Ensemble 

Predictions, IEEE Transaction on Power System, Vol. 17, pp. 626 – 632. 

Wasserman, P. D. (1989) Neural Computing: Theory and Practice, New York: Van Nostrand 

Reinhold, 230 pages. 

Yang, Y., Wu, J., Chen, Y. and Li, C. (2013) A New Strategy for Short-Term Load Forecasting, 

Hindawi Publishing Corporation, Abstract and Applied Analysis, Vol. 2013, pp. 1 – 9. 

Yoo, H. and Pimmel, L. R. (1998) Short-Term Load Forecasting Using a Self-Supervised 

Adaptive Neural Network, IEEE Transactions on Power Systems, Vol. 14, no. 2, pp. 

779-784. 

Zhang, G., Patuwo, B.E. and Hu, M.Y., (1998) Forecasting with Artificial Neural Networks: 

The state of the art, International journal of forecasting, Vol. 14, no. 1, pp. 35-62. 

 

 

 


