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Abstract

Curved shock waves, particularly converging shock waves, have applications in a wide variety

of fields, yet they are severely under-represented in the literature. Shock reflection is typically

categorised in terms of the shock Mach number and incident angle, but these parameters both

vary with time for a curved shock wave.

A facility capable of producing shock waves with an arbitrary two-dimensional profile was

designed and manufactured. A planar shock from the end of a conventional shock tube is

passed through a narrow slit and turned through a 90◦ bend, generating a shock with an

initial shape matching the profile of the slit.

The facility was first used to study the propagation of shock waves of arbitrary shape. This

included a brief computational fluid dynamics (CFD) study of the interaction between straight

and concave segments on a shock front, followed by CFD and experimental studies into the

propagation of shock waves consisting of both concave and convex segments, with initially

sharp and rounded profiles. Shocks with Mach numbers between 1.2 and 1.45 were generated,

and the behaviour of the shock waves produced by the experimental facility agreed favourably

with the CFD simulations, particularly for the higher Mach numbers.

A detailed study into the reflection of converging cylindrical shock wave segments was then

carried out. CFD simulations for Mach numbers at the apex of the wedge varying from 1.2

to 2.1, for wedge angles between 15◦ and 60◦, and experiments with apex Mach numbers

between 1.5 and 2.1 and wedge angles between 15◦ and 50◦ were carried out. The sonic

condition usually used for predicting the planar shock reflection configuration was successful

at predicting the initial reflection configuration. If the initial reflection was regular, then the

shock was cleanly reflected off the surface, with no discontinuities in the reflected shock front.

However, if the initial reflection was a Mach reflection, this would inevitably transition into

a transitioned regular reflection, with the residual Mach stem and shear layer still present

behind the reflection point. Collision of the Mach stem with the corner at the end of the

wedge generated a small region of very high pressure, which lasted for several microseconds.
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A simple theoretical model was developed for estimating the Mach stem height and transition

point for a converging cylindrical shock segment encountering a straight wedge. The model

gives reasonable predictions for shocks of moderate strength and wedge angles below 40◦, but

deviates from experimental results for wedges at 40◦ and above.
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Scope and Contribution

The primary objective of this research was to investigate the behaviour of shock waves of

arbitrary profiles, using experimental and numerical techniques. The contributions to the

field of gas dynamics can be summarised as follows:

• The design and testing of a unique facility capable of producing shock waves of an

arbitrary two-dimensional profile in a repeatable manner.

• A preliminary investigation into the propagation of various shock wave shapes,

including shapes consisting of interacting converging and diverging segments.

• An investigation into the reflection patterns that occur when a propagating cylindrical

shock segment encounters an inclined wedge. This includes classification of the initial

reflection type and comparison of the later transition points with the conditions

currently used with planar shocks. A fast numerical technique for predicting the Mach

stem height and transition point was also developed.
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1. Introduction

This document details an investigation that was undertaken into the propagation and reflec-

tion behaviour of curved shock waves. The background and motivation for this research is

given below.

1.1 Background

A fluid that experiences significant changes in density when forces are applied to it is referred

to as a compressible fluid. One distinctive characteristic of compressible fluids is that infor-

mation is transmitted through the fluid in the form of waves of finite velocity (Anderson,

2007). The speed at which these waves propagate depends on the fluid’s properties, and is

referred to as the acoustic velocity, or the speed of sound. If the passing of one of these

waves decreases the pressure of the fluid, then it is referred to as an expansion or rarefaction

wave. If it leads to an increase in pressure, then it is referred to as a compression wave.

A compression wave also leads to an increase in the local speed of sound; thus subsequent

waves travel faster. This can lead to a series of compression waves coalescing such that there

is a finite discontinuity in the fluid’s properties. This discontinuity is called a shock wave

(Anderson, 2004).

Fluid passing through a stationary shock wave always experiences a decrease in velocity and

an increase in pressure. By changing to an alternate reference frame, it may be deduced that

a shock propagating into a stationary fluid accelerates the flow, and results in an increase

in pressure (Anderson, 2004). The shock strength is often defined as this change in pressure

(Prasad, 1982).

Guderley (1942) investigated the behaviour of cylindrical and spherical shock waves, and

found that the strength of a curved shock varied in relation to its radius of curvature. Specif-

ically, he proposed that as a curved shock converges, the shock strength increases according
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to a simple power law. Because of this, it is possible to generate very high pressures using

focussed shock waves.

However, the production of curved shock waves, particularly shock waves with non-uniform

curvature, has proved challenging. Recently, conceptual designs for hardware capable of

producing a shock wave of arbitrary profile were carried out by Skews and Beharie (2009),

and Skews and Daya (2009). The hardware attaches to the end of an existing shock tube

and the shock generated by the bursting of the diaphragm travels down the tube and is

passed through a curved slit. This shock is then allowed to propagate in a chamber that runs

perpendicular to the original shock tube. Using apparatus such as these, it is possible to

generate shocks of a wide variety of profiles, and investigate their propagation and reflection

behaviour.

1.2 Motivation

Extensive experimental research has been carried out into the behaviour of planar shock

waves. However, there is little experimental data available on the behaviour of curved shock

waves. In particular, the reflection of curved shock waves is poorly understood.

Accurate methods for predicting of behaviour of such waves are currently limited to com-

putational fluid dynamics (CFD), which is computationally expensive and time-consuming,

and geometrical shock dynamics (GSD) which has limited accuracy. A deeper understanding

of the mechanisms governing the behaviour of these shock waves would be extremely useful

in a range of scientific fields, such as supersonic aerodynamics and blast mechanics, amongst

others.

Of particular interest are converging shock waves. Due to the relative ease with which high

pressures can be achieved by focusing a shock wave at a point, shock focusing has a wide

variety of applications, including the creation of diamonds, production of rare reaction prod-

ucts and the detonation of explosives (Grönig, 1986). Production of precisely shaped curved

shock waves with well-behaved post-shock flow is necessary to initiate a reaction an inertial

confinement fusion target, which is an important milestone for achieving fusion power (Lindl

et al., 1992). There are also several applications of shock waves in medicine, one of which is

extracorporeal shock wave lithotripsy (ESWL), which makes use of focused underwater shock

waves to break up and remove kidney or gall bladder stones without the need for any inva-

sive surgical procedure (Takayama and Saito, 2004). There is also a possibility that focused

shock waves may also be used to aid the delivery of anticancer drugs directly into cancer cells

(Kambe et al., 1996).
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2. Literature Review

This chapter gives a review of the current state of the field regarding the behaviour of curved

shock waves. After an overview of one-dimensional gas dynamics and shock waves, shock

wave reflection and curved shock waves will be described separately.

2.1 Overview of gas dynamics

The behaviour of an ideal gas in a one-dimensional channel is well defined in the literature. A

summary, largely adapted from Anderson (2004) is given here. The behaviour is governed by

the ideal gas law, the continuity equation, the momentum equation, and the energy equation.

If the flow is both adiabatic (i.e. no energy is added or removed from the flow) and reversible

(i.e. there is no net change in entropy within the flow), then the flow is known as isentropic

flow. The propagation speed a of an acoustic wave in a fluid (assuming no heat addition) is

the speed of sound. For an ideal gas with constant specific heats, this is given by

a =
√
γRT (2.1)

where γ is the ratio of specific heats, R is the ideal gas constant, and T is the absolute

temperature of the fluid. It is convenient to express the velocity of the fluid in a dimensionless

form known as the Mach number, which is defined

M ≡ u

a
(2.2)

where u is the fluid velocity.

Any disturbance in the flow will cause a wave to propagate out at the local sound speed.

These waves cause a pressure variation in the fluid they pass. A compression wave will cause

the pressure in a fluid to increase, whereas an expansion (or rarefaction) wave will cause the

pressure to decrease.
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Since a compression wave increases the pressure, and therefore temperature of the fluid that

it passes, the local sound speed at the rear of the wave will be higher than the sound speed

at the wave front. This causes the width of the compression wave to decrease over time. The

length of the compression reaches a minimum when viscous effects prevent it from decreasing

further. Once this happens, the compression propagates at a speed higher than the sound

speed in the fluid in front of it, is no longer isentropic, and has a width that is typically much

smaller than other length-scales in the system. Such a compression is referred to as a shock

wave.

2.2 Normal and oblique shock waves

Using the laws of one-dimensional gas dynamics, the simple case in which supersonic flow

passes through a stationary shock wave may be analysed, and relationships between the

thermodynamic properties of the fluid on either side of the shock may be derived. The

general case where a normal shock is moving into a non-stationary fluid may be treated by

adjusting the reference frame to one in which the shock is stationary. This is achieved by

subtracting the velocity of the shock from the velocities of the fluid before and after a shock

(Anderson, 2004).

Most relevant to the current study is the case in which a shock wave is moving with some

Mach number Ms into stationary flow. In this case, the shock strength is given as

z ≡ p2
p1

= 1 +
2γ

γ + 1

(
M2
s − 1

)
(2.3)

where p is the pressure and subscripts 1 and 2 represent the conditions before and after the

shock. The Mach number of the flow behind the shock wave is then

M2 =

[
2 + (γ − 1)M2

s

2γM2
s − (γ − 1)

] 1
2

(2.4)

If the oncoming flow encounters the shock at some angle, it is referred to as an oblique shock

wave. An oblique shock may be analysed using the normal shock relationships by changing

the reference frame. Consider the general case of a plane shock moving into a fluid moving

with an angle of incidence to the shock. By applying a Galilean transformation (by rotating

and imposing a velocity vector on the reference frame) one can change to a reference frame in

which the shock is stationary and the flow is perpendicular to the shock. The normal shock

relations may then be applied.

The pressure ratio across the shock, Mach number of the flow behind the shock, and the

angle through which the flow is deflected, θ, are then given by Anderson (2004) as:
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p2
p1

=
2γ

γ + 1
M2

1 sin2 β − γ − 1

γ + 1
(2.5)

M2
2 sin

2 (β − θ) =
γ + 1 + (γ − 1)

(
M2

1 sin2 β − 1
)

γ + 1 + 2γ
(
M2

1 sin2 β − 1
) (2.6)

tan θ = 2 tanβ

[
M2

1 cos2 β − cot2 β

2 +M2
1 (γ + cos 2β)

]
(2.7)

where β is the angle of incidence between the shock and the oncoming flow.

2.3 Shock tubes

In experimental gas dynamics, a common apparatus for studying the behaviour of shock

waves is the shock tube. There are a number of means by which a shock tube may generate

a shock wave, including the rapid motion of a piston, the opening of a quick acting valve, or

the bursting of a diaphragm. A schematic diagram of this last case is shown in in Figure 2.1.

A high pressure driver section (region 4) is separated from the low pressure driven section

(region 1). Rapid removal of the diaphragm will allow the high pressure gas to flow out of

region 4, which will drive a shock wave through region 1.

(4) (1)

Diaphragm

Driver section Driven section

High pressure Low pressure

(a) Initial conditions in the shock tube

(4) (1)(3) (2)

Expansion wave Shock waveContact surface

(b) Conditions at some time after the removal of the diaphragm

Figure 2.1: Formation of a shock wave in a shock tube
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Typically, the diaphragm is broken either by some external trigger (such as a mechanical

device or an electric current) or by natural failure. When this happens, an expansion wave

propagates into the driver section. The wave front will propagate at the sound speed of

region 4, whereas the rear of the wave will propagate at the sound speed of region 3 (which

is lower than that in region 4), thus the length of the expansion wave will increase with time.

A compression is generated over the length of time it takes for the diaphragm to break. This

rapidly steepens into a shock wave, which propagates into region 1 at some speed higher than

the sound speed in region 1. The speed at which this shock propagates is entirely a function of

the initial pressure ratio across the diaphragm, p4/p1. A contact surface separating regions

2 and 3 follows the shock wave at the local gas velocity. The gas in region 2 is gas that

was originally in the driven section, where as the gas in region 3 was originally in the driver

section. Even though the gases in regions 2 and 3 have the same pressure and velocity, the fact

that they have different stagnation pressures means that there is a significant temperature

and density difference across the contact surface. If regions 1 and 4 are both initially at the

ambient room temperature (which is often the case), region 2 will be at a temperature higher

than this, and region 3 will be at some temperature lower than this.

It is a simple matter to calculate the conditions in each region. However, of primary interest

to the current research is the initial pressure ratio across the diaphragm required to generate

a shock of a given strength. This is given by Anderson (2004) as

p4
p1

=
p2
p1

1−
(γ4 − 1)(a1a4 )(p2p1 − 1)√

2γ1

[
2γ1 + (γ1 + 1)(p2p1 − 1)

]


−2γ4
γ4−1

(2.8)

where the shock strength p2
p1

may be calculated from the desired shock Mach number using

equation (2.3).

2.4 Shock wave reflection

If flow travelling parallel to a surface (or a symmetry plane) encounters an oblique shock,

then the flow will be deflected toward the surface. However, since no fluid can actually flow

through the surface, the flow behind the shock must also be parallel to the surface in order

to meet boundary conditions. If, in a shock-fixed reference frame, the flow behind the shock

is supersonic, then at least one additional shock wave (referred to as a reflected shock wave)

must form in order to deflect the flow and meet these conditions.
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Depending on the flow conditions, several types of reflection are possible. Some of these are

discussed in this section.

2.4.1 Types of shock reflection

In the simplest case, a single reflected shock which meets the incident shock at the surface

deflects the flow so that it is parallel to the wall, as in Figure 2.2(a). Such a two shock system

is referred to as a regular reflection (RR) (Ben-Dor, 2007).

However, it is often the case that no shock wave exists that is capable of turning the flow

through the necessary angle (Hornung, 1986). In these cases, the reflected shock intersects

the incident shock some distance away from the wall. A third shock (which is approximately

normal to the oncoming flow) referred to as the Mach stem forms between this intersection

point (now referred to as the triple point) and the wall. Since the velocities of the fluid

behind the reflected shock and Mach stem are not equal, a shear layer is also present. This

shear layer seperates two regions of equal pressure in which the fluid is flowing in the same

direction, but with different velocities, densities and temperatures. This three shock system

is referred to as a Mach reflection (MR), and is shown in Figure 2.2(b). von Neumann (1943a)

analysed the flow through regular and Mach reflections, leading to the two and three shock

theories.

i r

(0)

(1)
(2)

i r

(0)

(1)
(2)

(3)

s
m

(a) Regular Reflection (b) Mach Reflection

Figure 2.2: Diagram showing types of reflection possible in steady flow. The incident shocks (i),

reflected shocks (r), Mach stem (m) and shear layer (s) are shown. In a shock-fixed reference frame,

the flow is moving through the system from left to right, and the arrows represent streamlines

In steady and pseudosteady flows, the Mach stem is concave toward the oncoming flow, and

the shear layer is furthest from the reflection surface at the triple point. In the case of a shock

moving into a stationary medium that encounters a wedge, the reflection is self-similar, and

the triple point follows a linear trajectory away from the wedge. This type of MR is referred to

as a direct Mach reflection (DiMR). Smith (1945) carried out a thorough experimental study

of shock reflection in a shock tube and measured various geometric parameters of DiMRs,
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including the angle between the triple point trajectories and the surface for a range of Mach

numbers and wedge angles. These trajectory angles are summarised in Figure 2.3.
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Figure 2.3: Triple point trajectory angles in Mach reflections measured by Smith (1945)

In unsteady flows, it is possible for changes in flow conditions to cause the triple point

trajectory to be directed back toward the wedge. In these cases, the Mach stem becomes

convex. This is referred to as an inverse Mach reflection (IMR), as shown in Figure 2.4(a).

Since the triple point in an IMR moves back toward the reflection surface, it will eventually

reattach, resulting in an RR. The shear layer is still present, however, and interacts with the

reflected shock, forming a Mach stem and a new triple point on the reflected shock. This

structure is referred to as a transitioned regular reflection (TRR), as shown in Figure 2.4(b).

i
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(0)
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(2)

(3)

s
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i

r2

(0)

(1)
(2)
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r1

(a) Inverse Mach Reflection (b) Transitioned Regular Reflection

Figure 2.4: Some reflection configurations possible in unsteady flow. The incident shocks (i), re-

flected shocks (r), Mach stems (m) and shear layers (s) are shown. In a shock-fixed reference frame,

the flow is moving through the system from left to right
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It should be mentioned that many other reflection types are possible. These include those re-

flections associated with weak shock waves and small wedge angles (namely the von Neumann,

Guderley, and Vasilev reflections), and those associated with strong shocks in pseudosteady

flows (including transitional and double Mach reflections). These are beyond the scope of

this text.

2.4.2 Reflection transition criteria for planar shocks

Several criteria have been proposed for predicting whether specific conditions will give rise to

RR or MR in steady and pseudosteady flows. Most notable are the detachment, sonic, and

mechanical-equilibrium criteria, all of which were originally put forward in some form by von

Neumann (1943a,b), and are summarised by Ben-Dor (2007). Unsteady flow (such as that

which occurs when the reflection surface is curved) introduces new factors which need to be

considered. These cases are discussed below.

2.4.2.1 Transition criteria in steady and pseudosteady flows

The maximum-deflection condition

As mentioned in section 2.4.1, RR cannot occur if no reflected wave exists that is capable of

reflecting the flow so that it is parallel to the boundary. This is referred to as the maximum-

deflection condition, or detachment condition, and represents the largest incident angle at

which a RR is possible.

The sonic condition

The sonic condition states that MR will occur if corner signals travelling at the local sound

speed are able to catch up to the reflection point. This is only possible if the flow behind the

reflected shock is subsonic relative to the reflection point. If the flow is supersonic, then the

reflection point is isolated from the corner, and RR will occur.

Since the detachment and sonic points lie relatively close to each other, it is difficult to

distinguish between the two experimentally. However, experiments designed by Lock and

Dewey (1989) to distinguish between the two cases suggest that in pseudosteady reflection,

the sonic criterion is the one that applies.
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The mechanical-equilibrium condition

Experiments by Henderson and Lozzi (1975) showed several cases where the above two cri-

terion were violated. In order to address this, they proposed the mechanical-equilibrium

condition to account for this difference. In many cases, the maximum-deflection or sonic

criteria require there to be a discontinuous pressure change in the region behind the reflected

shock. Such a discontinuous pressure change would need to be supported by additional

pressure waves in order to maintain mechanical equilibrium, but such waves had never been

experimentally observed. To account for the absence of these pressure waves, the mechanical-

equilibrium condition requires that transition occurs at the critical angle at which the two

and three shock theories coincide. In order for this to occur, the shear layer in the vicinity

of the triple point must be parallel to the reflection surface, and the Mach stem must be

straight and perpendicular to the surface.

A number of criticisms of the mechanical-equilibrium condition have been raised (Hornung,

1986; Ben-Dor, 2007). Firstly, there is a critical Mach number below which the mechanical

equilibrium condition cannot be satisfied. For a diatomic gas with γ = 1.4, this occurs for

Mach numbers below 2.202. Secondly, the basis of the transition criterion — that there cannot

be a discontinuous pressure change during transition — is unfounded, and such discontinuous

pressure changes during transition, especially in MR to RR, are in fact commonly observed,

and give rise to the Mach stem in the TRR shown in Figure 2.4. Finally, experimental results

for pseudosteady reflections do not agree with the mechanical-equilibrium condition. Hen-

derson and Lozzi (1975) proposed that this was because many RRs observed in pseudosteady

flows were actually underdeveloped MRs that were not resolved, but experiments involving

very long wedges (allowing the MR ample time to grow) do not support this hypothesis.

However, the mechanical-equilibrium condition does have some use. The point at which the

two- and three-shock theories coincide also predicts the smallest possible incident angle at

which a DiMR is possible. For any incident angle below the mechanical-equilibrium condi-

tion, any MR that occurs must be an IMR. This is significant for the length-scale condition

described below.

The length-scale condition

Hornung et al. (1979) introduced the length-scale condition, or information condition. The

basis of this criterion is that an RR has no length scale, whereas the Mach stem of an

MR inherently does. The length-scale condition states that in order for an MR to form, it

requires some information regarding the length scale of the system as a whole. This condition

differs from the others in that it applies differently in steady and pseudosteady flows. In
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pseudosteady flows, corner signals are generated as the flow turns at the wedge apex. If these

waves catch up to the reflection point, then they transmit information about the length scale

from the corner, and MR can occur. This can only happen if the flow behind the reflected

shock is subsonic relative to the reflection point, which corresponds with the sonic condition.

In steady flows, however, the information about the length scale does not come from the

wedge apex, but rather from the end of the wedge. Expansion waves will be generated by the

trailing edge of the wedge, and these will be refracted by the reflected shock and strike the

wall some distance behind the reflection point. MR can occur only if a path exists between

this point and the reflection point. Hornung et al. (1979) argue that in an MR, the flow

between the shear layer and the wall is always subsonic, so a path always exists if MR is

possible. In other words, if MR is possible in a steady flow, then it will occur. The earliest

point at which an MR is possible is given by the mechanical-equilibrium condition. At low

Mach numbers for which the mechanical-equilibrium condition cannot be satisfied, the length

scale condition predicts transition at the sonic condition.

In summary the length-scale condition states that transition is predicted by the mechanical-

equilibrium condition in steady flows above a critical Mach number, and the sonic criterion

in pseudosteady flows, and steady flows below that critical Mach number. This hypothesis is

well supported by experimental evidence (Ben-Dor, 2007).

2.4.2.2 Transition criteria in unsteady flows

The analytical treatment of unsteady shock reflection is a little more complicated, as the

variation of flow conditions over time need to be considered. In the above section, transition

criteria were determined as a function of the shock Mach number and incident angle. If either

of these varies with time, then the shock is unsteady, and additional factors need to be taken

into account for the transition. The first of these cases — that of a shock with non-constant

velocity — corresponds to a curved shock wave, and this will be discussed in section 2.5.4.

The case in which the incident angle varies as a shock of constant velocity propagates past

an obstacle will be considered here. This corresponds to a planar shock in a shock tube

encountering a curved surface, which may be either concave or convex.

Concave cylindrical walls

For concave surfaces, the conditions may pass from the MR domain into the RR domain.

In this case, the pressure behind the reflected wave is not continuous during transition, and

the Mach stem of the TRR discussed in section 2.4.1 forms as a result. Because of this
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discontinuity, it is clear that the conditions proposed by Henderson and Lozzi (1975) for the

mechanical-equilibrium condition are not applicable in this case.

Ben-dor and Takayama (1985) proposed applying the length-scale criterion of Hornung et al.

(1979) in order to analytically predict the MR→TRR transition over a concave cylindrical

wedge. As in the pseudosteady case, they proposed that the MR would terminate once corner

signals from the start of the wedge could no longer reach the reflection point.

The transition point depends on the path that the corner signals take. Without doing a full

computation, there is no simple way of knowing what path the corner signals follow. Ben-dor

and Takayama (1985) propose two possibilities. The first possibility is that the corner signals

follow a path that closely approximates the wall shape. This may be justified by assuming

that the signal propagates along the side of the slip stream, and observing that the Mach

stem is typically short compared to the radius of curvature of the wall.

The resulting transition criteria is thus

sin θw
θw

=
Ms

U10 +A10
(2.9)

where θw is the effective wedge angle at which transition takes place, Ms is the shock Mach

number, and U10 and A10 are the flow velocity and speed of sound behind the incident shock,

normalized by the speed of sound ahead of the shock, and are given by the following relations:

U10 =
2
(
M2
s − 1

)
(γ + 1)Ms

(2.10)

A10 =
γ − 1

γ + 1

1

Ms

[
2γ

γ − 1

(
M2
s − 1

)(
M2
s +

1

γ − 1

)] 1
2

(2.11)

The second possibility is that the corner signals propagate along a straight path. Using the

same method, one may obtain the criteria

cos
θw
2

=
Ms

U10 +A10
(2.12)

Comparison with experimental results by Ben-dor and Takayama (1985) and numerical results

by Taieb et al. (2010) show that equation 2.9 gives reasonable predictions in the range of

Mach 1.25 to Mach 2.0. Equation 2.12 gives good predictions in the range of Mach 1.0 to

Mach 1.1, but becomes wildly inaccurate for larger Mach numbers.

Ben-dor and Takayama (1985) do note that these models have several limitations. Both

models predict that the radius of curvature of the wall does not affect the transition point,

but experimental results show that it does play a role. Ben-Dor (2007) states that attempts

at developing a more accurate model that takes radius into account require more information
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about the reflection, and have not yet been successful. Skews and Kleine (2007) point out

that the model only takes into account disturbances produced at the inlet, and does not

account for the disturbances generated along the rest of the wall.

Skews and Kleine (2007) studied the reflection of shock off a concave cylindrical wall using

a high-speed video camera. They used a test piece with a small ramp at the entrance to

produce a corner signal, which follows behind the reflected shock at the local sound speed.

They identified that the corner signal falls behind the reflection point before transition occurs.

This implies that the actual transition will occur slightly later than predicted by Ben-dor and

Takayama (1985), and this is likely because of the effect on the wall shape on the triple point

trajectory. Skews and Kleine (2009) tracked perturbations generated along the wall, and

found that some of the disturbance waves generated along the wall intersect the incident

shock above the triple point, implying that the incident shock’s strength is not constant near

the triple point. This raises questions as to whether three-shock theory is applicable in these

cases.

In another analysis by Ben-dor et al. (1987), three shock theory is used with a number of

assumptions that are only applicable to very weak shocks to predict the trajectory of the

triple point of a shock wave reflecting off a concave cylindrical wedge. The Mach reflection

terminates once the triple point trajectory intersects the reflecting surface. The predicted

triple point trajectories match those measured from experiments for a Mach 1.10 shock, but

deviate at higher Mach numbers.

Convex cylindrical walls

For a convex wall, the shock passes from the RR domain into the MR domain. The primary

assumption made when treating concave walls — that the reflected shock is very weak —

is not valid in the case of a convex cylinder. As such, no direct analytical models exist yet.

However, several numerical methods have been applied to predict transition lines (Ben-Dor,

2007).

Some of the more successful models use geometrical shock dynamics (see section 2.5.3) in

order to predict the transition point. One such model is that of Itoh et al. (1981), who

proposed that the transition line would be given by

Mw

M
sin θw = tan θw (2.13)

where θw is the wedge angle at transition, M is the Mach number of the incident shock,

and Mw is the Mach number of the Mach stem at the wall, which may be calculated using

geometrical shock dynamics. This model shows reasonable agreement with experimental
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results for lower Mach numbers, but disagreement becomes significant for Mach numbers

greater than 2.

Experimental studies (Skews and Kleine, 2009) suggest that visible MR begins at angles about

10◦ greater than the angle at which corner signals reach the reflection point. Kleine et al.

(2014) attempt to estimate the transition point by extrapolating the triple point trajectory

back to the wedge from both experimental and numerical data. Although they do acknowledge

that this approach may not be accurate, they do find that the angle at which transition occurs

for inviscid flows matches that of a straight wedge, but is delayed by between 1◦ and 3◦ for

Reynolds numbers in the order of 105 and 106, and up to about 10◦ as the Reynolds number

is decreased to 103.

2.4.2.3 Summary of transition criteria

Figure 2.5(a) shows the transition lines for some of the above conditions in steady flows as

a function of Mach number and complementary angle (given by 90◦ − β, where β is the

incident angle of the shock). Between the maximum-deflection condition (the point below

which which RR is no longer possible) and the mechanical-equilibrium condition (the point

at which MR first becomes possible), there exists what is referred to as the “dual solution

domain”. Usually, an MR will occur in this region, however, if conditions change such that

the flow moves into the RR domain and back, an RR will occur in the dual solution domain

(Ben-Dor, 2007).

Figure 2.5(b) shows the transition criteria for unsteady flows, with the Mach number trans-

formed from a shock fixed reference frame to a lab fixed frame Although the mechanical-

equilibrium criterion is not typically used in pseudosteady flows, it is included here as it

predicts the theoretical transition between DiMR and IMR. Ben-Dor’s concave wall model,

given by equation (2.9) is included for comparison.

2.5 Curved shock waves

The above mentioned criteria consider a shock wave of a specific Mach number. Introducing

curvature along a shock front will cause the speed of the shock to vary as it propagates. In

addition, as a curved shock wave propagates along a straight surface, the angle of incidence

of the shock varies. These factors have a significant effect on the behaviour of the shock

wave. Some previous work on the behaviour of such shock waves is discussed in the following

sections.
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Figure 2.5: Theoretical transition lines for steady and unsteady flows. Mach number and incident

angle combinations that lie above the transition lines fall in the RR domain, whereas points below

the transition lines fall in the MR domain

. The maximum deflection and mechanical equilibrium conditions, while not criteria in

pseudosteady and unsteady flows, are included for reference and comparison
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2.5.1 Production of curved shock waves

There have been a number of attempts at producing curved shock waves, which have acheived

varying levels of success. One of the simplest methods is to reflect the blast waves generated

by a detonation off concave reflectors, but this has the major disadvantage that the flow

through which the resulting wave propagates is not uniform, and it does not allow for any

investigation into the interaction between the shock wave and solid objects.

The method used by Perry and Kantrowitz (1951), whereby the planar wave from a standard

shock tube was directed through an axisymmetric chamber which turned the flow inward to

form a converging cylindrical wave (see Figure 2.6), proved effective, but compromises had

to be made in flow visualisation. The method has been used with some success in studies

into the stability of converging cylindrical shocks such as that carried out by Watanabe and

Takayama (1991). An improvement to the design was implemented by Wu et al. (1980),

who replaced the tear-drop shaped centre body with a segmented axisymmetric contraction,

made up of three straight segments, to turn the shock wave through 90◦. While each corner

initiates an MR, the angles are specially chosen so that these MRs partially cancel each other

out as the shock enters the convergence chamber.

Figure 2.6: Converging shock generation using an annular chamber (Perry and Kantrowitz, 1951)

Similar annular facilities have also been used to produce shock waves with a non-circular

shape. Eliasson et al. (2006) replaced the circular outer wall of the convergence chamber

with octagonal and pentagonal boundaries to modify the shape of the converging shock wave.

Further work by Eliasson et al. (2007) kept the circular boundary, but modified the shape of

the shock wave using various inserts inside the convergence chamber to produce polygonal and

other converging shock wave shapes. This work was taken further by Kjellander et al. (2011),

who carried out numerical simulations into the formation of a two-dimensional converging

shock front in the convergence chamber of the facility, the results of which are shown in

Figure 2.7. The shock wave is reflected back and forth between the walls of the chamber.

The primary shock front strengthens and becomes plane, while the reflected shock waves
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behind it diminish in strength. A standing shock system is formed some distance from the

corner.
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Figure 2.7: Numerical schlieren of the formation of a two-dimensional shock front after an axisym-

metric corner (Kjellander et al., 2011)

In order to address some of the stability problems with the above design, Dumitrescu (1992)

proposed applying geometrical shock dynamics (see section 2.5.3) to determine the wall shape

required to bend the shock into the desired shape, as in Figure 2.8. The primary disadvantage

of this design is that a different wall shape is required for each initial shock velocity. Nonethe-

less, this method has been applied with some success to produce converging cylindrical shocks

(Zhai et al., 2010) and spherical shocks (Apazidis et al., 2013).

Figure 2.8: Generation of a converging shock by means of wall shaping (Dumitrescu, 1992)
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Another method for producing shock waves of arbitrary shape is to use the rapid motion of

a specially shaped piston to generate the shock wave, as proposed and studied analytically

by Van Dyke and Guttmann (1982), although this method would require relatively complex

machinery, and is difficult to implement.

The gas lensing technique developed by Dimotakis and Samtaney (2006) provides a repeatable

means of producing a converging shock wave of arbitrary shape (see Figure 2.9). A thin

membrane of a certain shape separates two gases of different densities. When a planar shock

passes through the membrane, its shape is deformed. However, this technique is extremely

challenging to implement. One major challenge lies in finding a membrane that is rigid

enough to maintain its shape before the arrival of the shock wave, yet flexible enough to

allow transmission of the shock wave without significantly impeding its passage. Biamino

et al. (2013) have experimented with using a thin wire mesh to hold the membrane in place.

This does maintain the membrane shape, but has a detrimental effect on the quality of the

post-shock flow.

Figure 2.9: Converging shock generation by means of gas-lensing (Dimotakis and Samtaney, 2006)

2.5.2 Propagation of curved shock waves

Curved shock waves are unsteady phenomena, and it is not possible to reduce the problem

into a pseudosteady problem by applying a Galilean transformation, since the strength of

the shock wave varies with time. One of the first attempts at mathematically describing the

behaviour of a cylindrical shock wave was made by Guderley (1942), who proposed a power

law as a first order approximation for the propagation of a converging shock wave. This may

be expressed as

r = Ctn (2.14)

where r is the distance from the centre, C is an arbitrary constant that depends on the initial

conditions, t is the duration of time before the shock reaches the centre, and n is a constant

exponent which depends on the shape of the shock. Several studies have used analytical,
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numerical and empirical approaches to obtain values for the exponent n. A review of several

of these studies by Ponchaut et al. (2006) gives values of 0.835 for cylindrical shocks and

0.717 for spherical shocks.

This relation may be rewritten with the time variable redefined such that it runs forward as

the shock wave propagates. The equation may be manipulated in order to determine how

the shock Mach number, M , varies as the shock propagates, by taking the time derivative of

both sides, and dividing through by the speed of sound a. The variation in the Mach number

of the shock front at any given position is thus

M

M0
=

(
r

r0

)n−1
n

(2.15)

Where M0 and r0 are the Mach number and radius of the shock wave at some previous point

in time.

The stability of these converging shocks has been of much interest. Experiments by Perry and

Kantrowitz (1951) showed that converging cylindrical shock waves are inherently unstable,

and any disturbance along the shock front will result in a local increase in curvature, and even-

tually cause the formation of reflected waves behind the original shock front. Schwendeman

and Whitham (1987) determined both analytically and numerically that such a disturbance

would form an MR, and showed that a converging cylindrical shock wave exposed to a series of

regularly spaced disturbances would eventually result in a series of repeating polygons. This

unstable behaviour was confirmed by experiments carried out by Watanabe and Takayama

(1991). Figure 2.10 shows the resulting shape of a converging cylindrical shock wave some

time after encountering four small, evenly-spaced disturbances. Schwendeman (2002) later

showed that this behaviour also occurs in three dimensions, and that imploding spherical

shocks exposed to regular disturbances would result in a series of repeating polyhedra.

The majority of the research that has been carried out into the propagation of shocks of

non-constant curvature has been into the focusing of shocks of various shapes, produced by

reflecting a planar shock off of a concave cavity at the end of a shock tube. Grönig (1986)

gives a summary of the earlier works in this field. One of the first of such studies was carried

out by Sturtevant and Kulkarny (1976), who investigating the focus of shock waves produced

by planar incident shocks of Mach 1.005 to Mach 1.5 reflected off shallow cavities. Five of

their six models had sharp corners at the cavity inlet, and their study found that the flow

in these profiles was dominated by the interaction between the converging incident shock,

and what Sturtevant and Kulkarny (1976) termed diffracted expansions, which were actually

most likely the Mach stems of a TRR pair (MacLucas, 2012).
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Figure 2.10: A converging cylindrical shock some time after encountering four small, evenly-spaced

disturbances (Watanabe and Takayama, 1991)

The sixth profile of Sturtevant and Kulkarny (1976) was designed with a curved entry with

flat ends, so that the reflected shock front would not contain any discontinuities. Results

obtained from these profiles at various Mach numbers are shown in Figure 2.11.

Each of the four cases shown undergo distinctly different behaviour. As the shock propagates,

two points along the shock front undergo a local increase in curvature, forming a pair of

kinks which develop into the triple points of an MR. At the acoustic limit, this occurs on

the symmetry axis at the geometrical focal point of the cavity profile. For strong shocks,

the triple points follow divergent trajectories. For weak and moderately weak shock waves,

the triple points converge, and for initial incident Mach numbers of about 1.2 and below, the

triple points cross, resulting in what Sturtevant and Kulkarny (1976) referred to as a “crossed

and folded” shock front, which resembles the reflection pattern that was later named TRR.

Several studies have expanded the work of Sturtevant and Kulkarny (1976), such as those

of Izumi et al. (1994), Skews and Kleine (2007), Taieb et al. (2010) and MacLucas (2012).

It is important to note that the curved wave propagates into flow that has already been

disturbed by the incident shock, and for all but the shallowest profiles, the shock will interact

with reflected shocks from the cavity entrance. This limits the insight that these studies can

provide into the propagation of a curved shock into stationary flow.

There exist some means of treating the propagation of an arbitrarily-shaped shock front

analytically, and these will be described in the next section.

20



(a) (c)

(b) (d)

Figure 2.11: Schematic of shock positions at various times after reflecting off a shallow concave

cavity for (a) sound pulses, (b) weak shocks (M ∼ 1.1), (c) moderately weak shocks (M ∼ 1.3), and

(d), moderate shocks (M ∼ 1.5) (Sturtevant and Kulkarny, 1976)

2.5.3 Geometrical shock dynamics

Whitham (1957, 1959) developed an approximate theory of shock propagation, referred to as

geometrical shock dynamics (GSD), by treating disturbances in the flow as waves propagating

along the shock front. The theory considers a set of successive shock positions as a shock

moves into a uniform medium. It then introduces a set of orthogonal trajectories, called

“rays” between the shock positions, as shown in Figure 2.12. Chester (1954) developed

an expression for the strength of a shock undergoing a small area change, which was later

expanded by Chisnell (1957). Whitham applied these expressions to each ray to determine

the propagation of the shock front. The summary below is primarily adapted from Whitham

(1974).

The change in Mach number of the shock as it propagates along a ray may be found by

solving the so-called A-M relation

A

A0
=

f(M)

f(M0)
(2.16)
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Figure 2.12: A sketch showing successive shock front positions A, B, and C, and orthogonal rays

D, E, and F

where A0 and M0 represent the initial cross-sectional area of the ray and Mach number

respectively. The function f(M) is given by

f(M) = exp

(
−
∫
Mλ(M)

M2 − 1
dM

)
(2.17)

with

λ(M) =

(
1 +

2

γ + 1

1− µ2

µ

)(
1 + 2µ+

1

M2

)
(2.18)

and

µ2 =
(γ − 1)M2 + 2

2γM2 − (γ − 1)
(2.19)

Note that equation (2.19) is equivalent to equation (2.4), so µ represents the Mach number

of the flow behind the shock wave, measured relative to the shock wave.

While a few problems do have analytical solutions, the equations of GSD usually need be

solved numerically. Popular approaches include the method of characteristics, as used by

Bryson and Gross (1961), front tracking methods, such as the one proposed by Henshaw

et al. (1986), and finite-difference schemes, such as the one developed by Cates and Sturtevant

(1997).

GSD does have some limitations, and many of these arise when dealing with the reflection

of a shock by a wedge. GSD predicts MR at all angles (Henderson, 1980). In addition,

it only predicts the behaviour of the incident shock, although the presence of a reflected

shock and shear layer may be inferred from discontinuities along the shock front — what

Whitham (1957) referred to as shock-shocks. Whitham believed that tracking the trajectory

of these shock-shocks would give the triple point trajectory of an MR. However, the predicted

trajectory angles severely under- or overestimate the actual trajectory angle for most wedge

angles and Mach numbers.
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One likely reason for this is that GSD neglects the effect of disturbances behind the shock on

the shape of the shock front, yet such disturbances play a significant role in the formation of

an MR. In order to address this, Milton (1975) proposed modifying the area change function

in equation 2.17, by including an additional term as follows:

f(M) = exp

[
−
∫ (

Mλ(M)

M2 − 1
+

η

M

)
dM

]
(2.20)

where

η =
1

2γ

[√
γ(γ − 1)

2
+ 1

] [
1− M2

0

M2

]
+

1

2
ln
A0

A
(2.21)

Duong and Milton (1985) give the following approximate expression for this integral

A

A0
=

(
M0 − 1

M − 1

)2(M0 + 1

M + 1

)α(M0 − δ
M − δ

)β (M0

M

)η
(2.22)

where α = 2.719, β = 0.354, and δ = 0.493 for a gas with γ = 1.4.

This modification gives better predictions for the triple point trajectory angle for strong

shocks for wedge angles below 40◦, after which it begins to deviate as the RR domain is

approached. For weaker shocks, the range of Mach number over which the model gives

reasonable predictions is reduced. At a Mach number around 1.7, Milton (1975) shows that

the range of good agreement with experiment is reduced to wedge angles between 30◦ and

40◦, and at Mach 1.5, the range reduces to just 32◦ to 37◦. However, Milton does note that

strong shock approximations were made when calculating these ranges, and that slightly more

accurate results could possibly be obtained using exact relations.

2.5.4 Reflection of curved shock waves

There has not been much previous work into the reflection of curved shock waves. Very little

research into the behaviour of two-dimensional shock waves could be found, and the majority

of research into spherical waves involved the reflection of blast waves off the ground.

Some of the original work into blast wave reflection was carried out by Dewey et al. (1977).

Their results show a reflection that is initially regular, but transitions to an MR as the

incident angle increases. A theoretical treatment of blast wave reflection transition was

developed by Hu and Glass (1986), and is shown in Figure 2.13. Their analysis shows that

the initial reflection will fall into the RR domain, but as the blast wave expands, the Mach

number and effective wedge angle decrease, moving through the double Mach reflection, and

transitional Mach reflection domains, and finally into the single Mach reflection domain.

Once the instantaneous Mach number, wedge angle and reflection configuration are known,

the flow properties behind the blast wave may be calculated using standard shock relations.
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Figure 2.13: Incident angle and Mach number locii for a spherical blast wave encountering a planar

surface (Hu and Glass, 1986). x and HOB are the horizontal distance from the centre of the blast

and height of burst, non-dimensionalised by a reference weight of TNT W0, and reference pressure p0.

The height of the triple point YT is also predicted

Comparison with experiments by Wisotski et al. (Ben-Dor, 2007) show that the transition

angle predicted by theory may be out by as much as 10◦ in some cases, and in fact, the theory

predicts that the transition angle will decrease with Mach number, whereas experimental

results show an increasing trend.

Takayama and Sekiguchi (1981a,b) generated spherical shock waves from the end of a shock

tube and studied the reflection of these shocks over flat surfaces and cones. They developed

a simple analytical method for predicting the triple point trajectory of the resulting MR,

which showed good agreement with their own experiments, as well as experiments involving

blast waves by Dewey et al. (1975).

Numerical simulations have also been carried out on cylindrical (Liang et al., 2001) and spher-

ical (Liang et al., 2002) blast waves encountering a flat plate. In the case of cylindrical and
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weak spherical blast waves, the initially regular reflection transitioned directly into a single

Mach reflection for all cases simulated. However, in strong spherical blast wave reflection,

the initial reflection can be a double Mach reflection if the height of burst is low enough.

This results in a complex system of shocks behind the wave front as the Mach number slows

and effective wedge angle decreases, which persists into what Hu and Glass (1986) predicted

would be the single Mach reflection domain.
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3. Research Objectives

Following on from the introduction given, the objectives for the investigation may be defined.

The primary objective of this research was the design, manufacture and validation of a new

facility for the production of shock waves of an arbitrary two-dimensional profile. Additional

objectives are as follows:

• Investigate the propagation of shock waves of arbitrary profiles.

– To use the newly constructed facility to experimentally produce and photograph

successive positions of shock waves with various two-dimensional profiles.

– Compare the wave shapes and speeds produced by the experiments to computa-

tional results.

• Investigate the reflection behaviour of converging shock wave segments of constant

curvature.

– Carry out experimental, computational and analytical studies into the interaction

between converging cylindrical shock wave segments and an inclined wedge.

– Determine the effect of the shock Mach number, initial radius of curvature and

wedge incidence angle on the type of reflection and the transition conditions.

26



4. Facilities

The research involved both computational and experimental aspects. The facilities used for

these are described in the following sections.

4.1 Computational facilities

Various analysis, post-processing and graph plotting tasks were carried out by means of

scripts written in Python 2.7.5 using the NumPy 1.7.0 extension, and the Matplotlib 1.3.0

plotting library (Hunter, 2007).

Computational Fluid Dynamics (CFD) simulations were used to analyse the flow behaviour

for various cases. Two solvers were readily available, namely ANSYS® Fluent and Wits

University’s Flow Research Unit’s in-house Euler solver. In both cases, post-processing was

carried out using TecPlot 360™. More details of each of these solvers are given in the following

sections.

4.1.1 Simulations using the in-house solver

The University of Witwatersrand’s in-house solver is a vertex centred finite volume flow

solver written in C++ by Felthun (2002), and has been adapted and added to by a number

of authors in subsequent years. Since the code was developed for use with moving boundaries,

it includes a very robust meshing scheme that is ideally suited for resolving transient flow

features. The primary advantage of using the in-house solver is that the source code may be

readily edited, and the workings of the solver are transparent.

The geometry is specified by a series of edges, which may be straight, or defined by piecewise

cubic splines. The solver then uses a built-in robust meshing scheme to generate an unstruc-

tured triangular mesh across the domain. This mesh is then adapted and refined throughout
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the simulation if the normalised density gradient within a cell exceeds a specified limit. Near

the boundaries, the adapted mesh is adjusted to conform to the curves specifying the original

geometry, rather than the mesh that it was adapted from. This ensures that the shape of

the domain is maintained, even in regions where the initial mesh may have been relatively

coarse. Typical initial and adapted meshes are shown in Figure 4.1.

(a) Initial mesh (b) Adapted mesh

Figure 4.1: Typical meshes used by the in-house Euler solver

The initial shape of the shock wave was configured as a pressure inlet, with the conditions

at the inlet set to match the velocity and stagnation pressure and temperature behind the

shock wave to be generated. For straight sections of the inlet, the direction of the flow was

defined to be perpendicular to the inlet. Curved inlets were divided into segments defined by

cubic splines, with each segment having a locally defined flow direction that was normal to

the boundary. The limitation of this approach is that the flow direction will not be exactly

normal to the boundary at any specific point, but will be normal to the boundary when

averaged over a small region, and there are finite changes in flow direction where two splines

meet. However, this should not significantly affect results as long as the change in flow

direction between two adjacent nodes on the boundary is of similar or smaller magnitude to

changes in flow direction between two adjacent nodes away from the boundary. All other

boundaries were treated as solid walls.

Specific configuration of the solver varied from simulation to simulation. Where necessary,

these will be discussed in the relevant sections.
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4.1.2 Simulations using ANSYS Fluent

Three-dimensional and two-dimensional axisymmetric numerical simulations were carried out

for the facility design, and pure two-dimensional simulations were carried out for the case

of a curved shock impinging on a wedge. These simulations were carried out in ANSYS

Fluent using an inviscid, density-based finite difference solver, with second order implicit

time formulation. The flow was modelled using the third order Monotonic Upstream Centred

Schemes for Conservation Laws (MUSCL) with Roe’s Flux-Difference Splitting (FDS) scheme,

and least squares, cell-based spatial discretisation.

The meshes were generated using ANSYS Meshing. For the 2D cases, mapped face meshing

was used to generate structured quadrilateral mesh conforming to the domain. The size of

the cells were controlled by specifying the number of divisions along each edge, with a slight

bias to smaller cells closer to the wedge apex. In the 3D cases, the mesh was generated based

on proximity and curvature, with a curvature normal angle of 10◦, a minimum of five cells

across gaps, and a growth rate of 1.06.

During all of the simulations, cells with normalised density or Mach number gradients ex-

ceeding certain limits were refined up to five times, and cells in regions of approximately

uniform flow were combined to optimise the computation time needed. The thresholds for

determining whether to coarsen or refine the mesh in a region depended on Mach number. For

a weak initial shock, features in the flow are more difficult to resolve, and thus the threshold

needs to be set lower. Much higher gradients occur for a stronger initial shock, and these

simulations are susceptible to noise if the threshold is set too low, resulting in excessively long

computation times. To overcome this, cells were refined if the normalised density or Mach

number gradient exceeded 2% for initial shocks less than Mach 1.7, 3% for shocks between

Mach 1.7 and 1.9, and 8% for shocks stronger than Mach 1.9, and cells were coarsened if

these gradients were less than 1%, 3% and 12% in each of the above Mach number ranges.

Typical initial and adapted meshes for the 2D and 3D simulations are shown in Figure 4.2.

The air inside the domain was modelled as an inviscid ideal gas, and initialised with a pressure

of 101325 Pa and a temperature of 300 K. The inlet was set as a pressure inlet, with the

flow conditions set to the conditions behind the shock of the desired strength, and the flow

direction was set to be normal to the boundary. This produces an initial shock wave that

closely conforms to the shape of the inlet. For the cases where the inlet was curved, the shock

wave needed to be resolved sufficiently within a small distance, which required a relatively

small initial time step. A time step of 1× 10−7s was found to be suitable, and is equivalent

to a CFL number less than 0.1 for a Mach 2.0 shock wave, based on the initial cell size.
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(a) Initial 2D mesh (b) Adapted 2D mesh

(c) Initial 3D mesh (d) Adapted 3D mesh

Figure 4.2: Typical meshes used by ANSYS Fluent

4.2 Experimental facilities

Experiments were carried out in the Flow Research Unit, located in the Barloworld Labora-

tories at the University of the Witwatersrand, Johannesburg.

An experimental apparatus for the production of curved shock waves was designed. Rather

than designing and building a complete new facility, a device which may be attached to the

end of a conventional shock tube was designed. The design of this apparatus is covered in

more detail in Chapter 5, but descriptions of the rest of the equipment used are given below.
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4.2.1 Shock tube

The shock tube used was the Large Scale Diffraction Shock Tube (LSDST), colloquially

referred to as the “Blue Tube”. The shock tube was originally designed by Lacovig (2011)

and consists of:

• a cylindrical driver section, approximately 2m long, capable of reaching pressures of up

to 10 bar (shown in Figure 4.3(a)),

• a plastic diaphragm, and

• a driven section consisting of three 2m long sections with a rectangular internal cross

section with internal dimensions of 450mm and 100mm, held together with M14 bolts

(shown in Figure 4.3(b)).

The research apparatus consists of an end-piece which attaches to the end of the expansion

chamber of the above shock tube. Due to the small size of the test section compared to the

driver capacity, modifications were made to the driver in order to reduce its capacity in the

interests of safety. Details of these modifications are given in Appendix A.

4.2.2 Flow visualisation

Schlieren flow visualisation was used to capture the behaviour of the shock waves. The

schlieren technique takes advantage of the fact that the refractive index in a medium increases

approximately linearly with density (Settles, 2001). The system is configured such that

parallel light passes unaffected through a flow field of uniform density. This parallel light is

then focused onto a knife edge, such that approximately half of the light is cut off uniformly

across the flow field. If a density variation is introduced in the flow field, then the path of

the light through the density variation is deflected toward the side with the higher density.

Depending on the orientation of the knife edge, this may result in the light being deflected

slightly away from or toward the knife edge, resulting in a brighter or darker region at a point

in the image. As a result, the intensity of light reaching any point on the image is directly

proportional to the density gradient in the direction perpendicular to the knife edge of the

corresponding point in the flow field.

In this particular study, a Z-configuration schlieren system such as the one in Figure 4.4 was

used. The system was made up of the following components:

31



(a) Driver and first driven section of the LSDST

(b) All three driven sections of the LSDST

Figure 4.3: Isometric view of existing shock tube driver and driven sections (Lacovig, 2011)
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Figure 4.4: Schematic diagram of the schlieren configuration used

• A light source — For single shot photography, a xenon flash lamp was used, with an

equivalent exposure time of approximately 1.5 µs. For high speed photography, a Canon

Speedlite 430EX II camera flash served as the light source.

• Condenser lens with a focal length of approximately 85 mm.

• Slit — A pair of adjustable knife edges served as the slit. Black insulation tape was

applied on either side of the slit to ensure that a circular beam of uniform intensity

emerged on the other side.

• Cylindrical lens — This was necessary to correct astigmatism and ensure a point focus

on the camera-side knife edge.

• Schlieren mirrors — Two 350 mm diameter parabolic mirrors with focal lengths of 1836

and 1841 mm respectively were used. Parabolic mirrors ensure that the light passing

through the test section is truely parallel, however, using parabolic mirrors off axis

inherently introduces coma into the system. Using two almost identical mirrors in a Z

configuration effectively cancels this coma (Merzkirch, 1987).
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• Knife edge — A razor blade mounted on an adjustable stand served as the knife edge.

The orientation of the knife edge varied between tests, depending on the features that

needed to be resolved.

• Focusing lens with a focal length of approximately 75 mm for low magnification, or 165

mm for higher magnification.

• Camera — For single shot photography, a Nikon D40X 10.2 megapixel camera was

used. High-speed photography was carried out using a Photron FASTCAM SA5 camera

running at either 20 000 or 100 000 frames per second and the minimum shutter speed

of 1 µs.

4.2.3 Instrumentation and facility layout

The layout of the instrumentation used to operate the shock tube is shown in Figure 4.5.
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Diaphragm

Driver

Test Section

Delay

Box

Figure 4.5: Schematic diagram of instrumentation layout

A 15 bar air supply was used to pressurise the driver. A pair of ball valves mounted onto

the control board allowed switching between pressurising and venting the driver. A pressure

gauge was also mounted to the control board, and this gave a reading of the pressure inside

the driver.

Controlled bursting of the diaphragm was achieved by means of a spring loaded pin. A catch

was used to hold the pin in place while the driver was pressurised. When the driver reached

the desired pressure, the operator could release the catch using a pull cord to fire the pin into

the diaphragm. By leaving the pin latched, a natural burst could also be achieved.
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Pressure measurements were taken by a pair of PCB pressure transducers embedded in the

wall of the driven section. The signal from these transducers was recorded by an oscilloscope,

which was used to generate a trigger signal when the shock reached the transducers, and also

measure of the time taken for the shock to pass between the two transducers. The signal was

first passed through a delay box, and then sent to trigger the light source, and, in the case

of high-speed photography, the camera. For single shot photography, the lights in the room

were switched off, and the shutter was manually held open for the duration of the test, with

the length of the pulse from the light source determining the effective exposure time.
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5. Test Facility Design

The design of the apparatus used to generate the curved waves is largely based on previous

conceptual work. The existing concepts were combined and adapted to produce a suitable

design which is capable of producing waves of an arbitrary shape and strength in a repeatable

manner, but without overly complicating the manufacture, assembly and operation of the

facility. The design process is described in the following sections.

5.1 Summary of previous design work

Two conceptual designs were carried out at the University of the Witwatersrand, Johannes-

burg in 2009. The first of these designs (Skews and Daya, 2009) is shown in Figure 5.1.

The facility develops a cylindrical wave by passing the planar shock wave from the end of

the shock tube through a curved slit of constant radius, and allowing the resulting wave to

propagate in a chamber that runs perpendicular to the original shock tube. The concept

was developed using a CFD study into the effect of various configurations on the shape and

stability of the resulting wave. Results for one case are shown in Figure 5.2.

Figure 5.1: The design concept of Skews and Daya (2009)

The study found that the most stable shock for a variety of inlet curvatures occurred when

the walls of the propagation chamber were perpendicular to the curve profile. This prevented

unwanted expansion which interfered with the shape of the shock. The shock also stabilised
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Figure 5.2: CFD results for a shock turning through a cylindrical slit - quality of transmitted shock

(Skews and Daya, 2009)

into an approximately two-dimensional wave faster as the thickness of the propagation cham-

ber was decreased. However, while decreasing the thickness of the slit improved the overall

quality of the shock, it had a negative effect on the quality of the wave at the edges.

The design of Skews and Beharie (2009) follows on from the previous design. The principle of

its operation is the same, but the design takes manufacture and customisability concerns into

account. The design, shown in Figure 5.3(a), consists of three plates that are attached to the

end of the shock tube. The first and third plates make up the side walls of the propagation

chamber, while the second plate makes up the profile of the expansion chamber. The first

plate has a slit cut out that determines the initial profile of the shock wave, and the third

can be modified to include rails which accommodate removable sliding panels, which may be

used to position viewing windows or pressure transducers wherever necessary, as in Figure

5.3(b).

Once the shock passes through the slit, it is turned through a 90◦ angle. The study considers

the effect of the shape of this corner on the resulting shock wave. Low resolution CFD

simulations were carried out for three cases: the original case had both the inside and outside

edges of the corner as sharp 90◦bends, and then the effect of having a gentle radius as first

the inside corner only, and then both corners was considered. A selection of the results from

this study are shown in Figure 5.4. It was found that having both walls as sharp corners

resulted in the formation of both low and high pressure regions as the shock was transmitted

through the corner. Adding a radius to the inside corner reduced the low pressure region,

resulting in a slight increase in the strength of the transmitted shock. However, adding a

radius to both walls reduced the high pressure region as well, resulting in no increase in shock
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(a) Original three plate design

(b) With modifications for a variable viewing port.

Figure 5.3: The design concept of Skews and Beharie (2009)

strength. However, curving both walls did help the shock to maintain it’s shape around the

corner, and the resulting wave stabilised within a slightly shorter distance.

Figure 5.5 shows the formation of the shock wave after turning the corner. The original inci-

dent shock that passes through the slit is reflected off the back wall. The shock strengthens,

and appears to form a planar shock front, which strengthens as it propagates into the test

section. One point of concern is the low resolution of the simulations. The shock is relatively

thick compared to the width of the test section, and flow features in the vicinity of the corner

are not very well resolved. These results do however show that a shock wave is transmitted

38



Figure 5.4: CFD results for a shock turning through a cylindrical slit - effect of corner shape (Skews

and Beharie, 2009)

Figure 5.5: CFD results for a shock turning through a cylindrical slit - formation of the shock front

(Skews and Beharie, 2009)

around the corner into the test section, and this shock appears to strengthen as expected for

a converging cylindrical shock wave.

The findings of these two projects provide enough information to begin the detailed design

of the facility to be used in the current investigation. Further numerical analysis, the design

process, and a description of the configuration of the final facility are discussed in the following

sections.
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5.2 Preliminary design concept and sizing

In order to accommodate future research that may be undertaken into the behaviour of waves

of arbitrary profile, a modular design was used for the apparatus. The concept of arranging

a series of plates to form the necessary shape for the facility was borrowed from Skews and

Beharie (2009). It was decided that rounding the corners of the slit would make the apparatus

unnecessarily complicated to manufacture, with no noticeable affect on the later shock quality,

and so it was decided that the sides of the slit would be sharp 90◦ corners.

The apparatus consists of a profiled propagation chamber sandwiched between two outer

plates, in which windows are embedded. The outer plate on the side of the shock tube’s

expansion chamber (referred to as the back of the apparatus for convenience) is cut short

to make space for a fourth removable plate which contains the profiled slit. This plate sits

between the end of the expansion chamber of the shock tube and the focusing apparatus.

Various calculations were carried out to ensure that the components of the apparatus would

be able to withstand the loading of a passing shock wave. In particular, the thickness of

the profile plate and viewing windows needed to be determined, and the bolts between the

apparatus and the shock tube needed to be sized. Details of these calculations are described

in Appendix B.

A profile plate thickness of 15 mm was chosen, and it was concluded that the facility would

be attached to the shock tube by seven M14 bolts. Viewing windows with a thickness of 33

mm and a diameter of 350 mm were used, but would be held in place by a clamping ring,

leaving a effective viewing region 330 mm in diameter.

5.3 Extension of numerical analysis

Before deciding on a final design configuration, some further numerical work was carried

out into the behaviour of the flow inside the facility. Using the configuration and sizing

information in the previous section, it is possible to set some of the dimensions of the final

design, such as the width and depth of the slit.

There are also some issues arising in the results of Skews and Daya (2009) and Skews and

Beharie (2009), which warrant further investigation. In frames 7 to 9 of Figure 5.2, a contact

surface is visible some distance behind the shock wave. This contact surface has little effect

on the flow ahead of it, but it does affect the accuracy of the solution in the region behind

it. It is caused by a stagnation temperature mismatch between the inlet and the flow behind
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the shock wave, and can be avoided by ensuring that the stagnation temperature at the inlet

is set correctly. In addition, the shock in the results of the three-dimensional simulations

shown in Figure 5.4 is not very well resolved, and it is likely that other flow features present

as the shock turns the corner would not be resolved by these simulations. A higher resolution

simulation is required to ensure that the flow is modelled as accurately as possible.

Two further sets of simulations were carried out using ANSYS Fluent. The first simulation

was a full three-dimensional analysis of a planned geometry for the facility, and the second

was a higher resolution two-dimensional axisymmetric simulation of the flow through the slit.

The solver configuration described in section 4.1.2 was used, and the results obtained in these

simulations are discussed in following sections.

5.3.1 Low resolution 3D model

In order to save on computational time, only half of the facility was modelled, and the lower

boundary of the geometry was set as a symmetry plane. The geometry consisted of three

sections. The first was a 225 mm high by 100 mm wide by 150 mm long rectangular section

representing the final portion of the shock tube’s driven section. This was followed by a 15

mm wide arc with an internal radius of 450 mm spanning the height of the test section, which

extends 15 mm from the end of the shock tube, making up the slit. Finally, there was a 15

mm wide cylindrical segment, which represents the propagation chamber. These dimensions

are shown in Figure 5.6.

Simulations were carried out for an initial shock in the shock tube moving at Mach 1.4.

Contours of constant pressure are shown in Figure 5.7 at six different times. A preliminary

qualitative analysis of the results show that the initial front is reflected off of the end wall of

the shock tube, which forms a high pressure supply region at the entrance of the slit. The

shock front that enters the propagation chamber initially has a similar strength to that of the

original shock in the shock tube, as in Figure 5.7(b). From Figure 5.7(b) to (c) we see that

the strength of the shock front increases rapidly as the shock front forms. After this initial

formation period, the shock increases in strength only gradually between Figure 5.7(c) and

(e), but the strength begins to increase at a much greater rate as the shock approaches the

centre of the arc.

The first rapid strengthening phase as the shock enters the chamber is caused by compressions

generated as the initial shock reflects back and forth between the walls of the propagation

chamber. The strength of these compressions diminish rapidly as the shock moves further

into the propagation chamber. The second phase of rapid strengthening occurs as the shock

approaches the geometric centre of the slit, and is caused by gas dynamic focus as the radius of
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Figure 5.6: Dimensions of the domain used for 3D CFD simulations

the shock decreases. This second phase resembles the behaviour expected for a 2D converging

cylindrical shock according to Guderley’s power law given in equation (2.14).

The distance of the shock from the geometric centre of the slot at various times may be

directly measured from the CFD and compared with Guderley’s power law, which allows a

more direct quantitative comparison to be made. An exponent n of 0.835 was used, which

corresponds to a cylindrical shock wave. The shock reached the focal point at 1123 µs after

the start of the simulation, which was 813 µs after entering the slit. The constant C was

calculated at eight intermediate points between the times t = 240 µs and t = 590 µs after

the shock entered the slit, and the average of these was used in the equation. This gave a

value for C of 1.80. The shock radius in the CFD results is compared to the curve predicted

by equation (2.14) in Figure 5.8(a).

The increasing pressure across the shock that is observed in Figure 5.7 should cause the

shock to accelerate, introducing some curvature into the radius-time plot, but this is not very

apparent until the last two data points. To ensure that the shock was indeed accelerating,

the Mach number was calculated by numerically differentiating the radius with respect to

time using a central difference formula. The resulting Mach number is shown together with
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(a) t = -10 µs (d) t = 290 µs

(b) t = 90 µs (e) t = 490 µs

(c) t = 190 µs (f) t = 690 µs

Pressure

450 kPa

100 kPa

Figure 5.7: Results from a 3D simulation of a converging cylindrical shock wave segment with an

initial radius of 450 mm, generated from an initial Mach 1.4 planar shock wave. The time is measured

from the instant at which the shock front first reaches the end wall of the shock tube and enters the

slit

the Mach number predicted by equation (2.15) in Figure 5.8(b). In this figure, both the

initial strengthening due to reflected compressions catching up to the shock, and the later

strengthening caused by the shock curvature are apparent, and for times greater than 300 µs

after entering the slit, adhere closely to the expected power law behaviour. This suggests that

the resulting shock front closely approximates the behaviour of a two-dimensional converging

cylindrical shock wave.
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Figure 5.8: Comparison of the variation of shock radius (a) and Mach number (b) with time to the

3D simulations. The time is measured from the moment the shock first enters the slit

Although the initial formation of the shock front was modelled by the 3D simulation, some

of the features responsible for this were not very well resolved. Since a higher resolution

3D simulation would require additional computational resources, and provide little more
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information than a high resolution 2D simulation, it was decided that a 2D simulation would

be carried out instead. Details of this simulation are given in the following section.

5.3.2 High resolution 2D axisymmetric model

Instead of modelling the slit as an arc, it was modelled as an axisymmetric domain with the

axis located at the geometric centre of the slit. One disadvantage of this approach is that it

fails to account for the edges of the slit, and that the rectangular cross section of the shock

tube is not taken into account. However, since much higher resolutions can be achieved at a

fraction of the computational cost of a full 3D model, and since the previous 3D simulations

showed that these effects are minimal, 2D axisymmetric simulations were deemed sufficient.

The domain was set up as shown in Figure 5.9, with the shock initially generated by the

pressure inlet on the left. The shock is allowed to propagate along the 150 mm length of

a hollow cylinder with a thickness 100 mm. The shock then passes through a 15 mm wide

circular slit with a 400 mm inner radius, and then turns through the 90◦ corner, and is allowed

to propagate toward the centre of a disk shaped propagation chamber.

Density contours of the simulation of a shock initially moving at Mach 1.4 at six different

times are shown in Figure 5.10. From Figure 5.10(b), it can be seen that the shock strength

is not significantly affected as it passes through the slit. However, a pair of vortices are

formed as the shock diffracts around the corners of the slit. A third vortex is formed as

the shock passes the inside edge of the 90◦ bend in Figure 5.10(c), and the shock front, and

the signifficantly weaker curved portion of the diffracted front begins to propagate into the

propagation chamber. When the original front reaches the opposite wall, it is reflected back,

producing a region of very high pressure. A regular reflection is formed on the wall, but

this very quickly transitions to a Mach reflection, which propagates through the propagation

chamber, as in Figure 5.10(d). The triple point of this Mach reflection is reflected back

and forth between the walls, and the shock front gradually strengthens and straightens as

transverse waves catch up. By the time shown in Figure 5.10(f), the converging shock front

has reached a strength close to that of the original shock, and is very close to plane. The

quality of the shock front improves further as it strengthens and propagates inward.

The diffraction vortices are still present with trapped shocklets, and do follow behind the

shock, but at a much slower velocity. This leaves a large region of approximately uniform

flow immediately behind the shock. This phenomenon is analogous to the contact surface of

a diaphragm burst, in that there is a uniform region of the fluid for some distance behind the

shock that was originally in the propagation chamber, and did not have to turn the corner.

Following behind this is fluid that was originally upstream from the slit, which turned through
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Figure 5.9: Domain used for CFD of a shock turning a 90◦ corner after passing through a circular

slit

the corner, gaining a rotational component, resulting in non-uniform flow in the propagation

chamber.

Figure 5.11 shows Mach number contours and velocity vectors for the time shown in Figure

5.10(f). Although there are large variations in flow direction and velocity immediately after

the corner, the flow in the upper portion of the propagation chamber is uniform, and flowing

in the correct direction.

The simulations show that within a distance of 120 mm, the shock stabilises to an acceptable

level (that is, the density change across the transverse waves was less than 1% of that across
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(a) t = -45 µs (b) t = 15 µs (c) t = 55 µs

(d) t = 115 µs (e) t = 165 µs (f) t = 235 µs

Density

3 kg/m3

1 kg/m3

Figure 5.10: Density contours for for a Mach 1.4 incident shock turning a 90◦ corner after a 15 mm

circular slit with an inner radius of 400 mm. The time is taken such that the shock first enters the

slit at t = 0µs

the shock front). After this distance, the shock front is a close approximation of a two-

dimensional shock wave.
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Figure 5.11: Mach number contours and velocity vectors for a Mach 1.4 incident shock turning a

90◦ corner after a 15 mm circular slit with an inner radius of 400 mm, 235µs after the shock passed

through the slit

5.4 Description of final design

An exploded view of the final design is shown in Figure 5.12, and a photograph of the facility

attached to the end of a shock tube is shown in Figure 5.13. Detailed engineering drawings

of this design may be found in Appendix C, and instructions for assembly and disassembly

are included in Appendix D.

In summary, the apparatus consists primarily of four main plates arranged in three layers.

Starting from the side opposite the shock tube, the first layer is the large outer plate, with

an embedded glass window. The second layer is the propagation plate, and an optional test

model. The third and final layer contains the back plate, in which the second window is

embedded, and the profile plate.
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Figure 5.12: Exploded view of the final design, with a profile plate, propagation plate, and test

wedge for studying the reflection of a converging cylindrical shock wave segment

An adequate seal between the profile and the back plate is obtained using a 4 mm O-ring

cord, which is fitted into a 3 mm deep by 5 mm wide groove cut in the side of the profile

plate. Paper gaskets are also inserted where necessary between each layer, and between the

profile plate and the end of the shock tube.

The removable test model may be bolted with six M6 bolts to the front plate only. This

allows just the back plate to be removed to clean out pieces of trapped diaphragm without

having to disassemble the entire apparatus. With the back plate removed, the wedge piece

may be changed with relative ease.

Although all of the components are light enough to be lifted, the combined mass of the

outer plates is great enough that this cannot be done without some difficulty. In order to

aid with adjusting the configuration of the apparatus, tabs were included so that a hook

from an overhead gantry may be attached to prevent the plates from falling. This allows the

configuration to be changed by a single operator (although it may be considerably faster with

the aid of an assistant).

49



Figure 5.13: Photograph of the facility attached to the shock tube

The windows are fixed in place, and were were sized and positioned so as to maximise the

viewing area. The diameters of the window frames are oversized by 4 mm, allowing space

for epoxy, and to aid in installing the windows so that they lie flush with the inner surface

of the outer plates. The inside rim of the window has a 3 mm chamfer, which ensures that

the window will be unable to fall into the propagation chamber. A steel frame on the outside

clamps the window in place and prevents the internal pressure from pushing the window out of

position. The 2 mm gap between the window and the frame was filled with 3M Scotch-Weld™

2216 B/A epoxy adhesive.
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6. Propagation of Shock Waves of

Arbitrary Profiles

This chapter describes a general overview of the propagation of shock waves of arbitrary two-

dimensional profile. In particular, it focuses on shock waves with an initial shape consisting

of a combination of straight segments, and convex and concave cylindrical arcs.

Purely convex shock waves will be considered only briefly, followed by a short numerical inves-

tigation into the propagation of purely concave shock waves. The chapter will be concluded

with a comparison between an experimental and purely two-dimensional numerical investi-

gation into the behaviour of two compound shock wave profiles — that is, profiles consisting

of both concave and convex segments. This will establish to what degree the experimental

facility models the propagation of a two-dimensional shock wave.

It is important to note that all of the shock waves considered in this chapter contain at least

one discontinuous jump in the radius of curvature along the shock front. By equation 2.15,

this implies that there will be a discontinuous jump in shock speed along the shock. This will

distort the shock wave’s shape in the region of the curvature discontinuity, possibly forming

additional shock waves and shear layer in the flow behind the shock wave.

6.1 Propagation of convex shock waves

In general, any convex shock wave propagating into an open space will tend toward a spherical

shape (Takayama and Sekiguchi, 1981a). When constrained to two dimensions, the shape of

the shock wave will tend toward a cylindrical shape. Unless discontinuities are present when

the shock wave is formed, no additional discontinuities in the shock shape will be introduced,

and the shape of the shock front will remain smooth and continuous.
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Consider a shock wave profile that initially consists of a convex arc and a straight segment.

The convex section of the shock wave slows down as it propagates, and the pressure behind

it decreases. If the curved segment were not present, the straight section would propagate

at a constant speed, and the pressure behind it would remain constant. This generates a

pressure imbalance immediately behind the shock front at the point where the two segment

meet. This results in a series of expansion waves which propagate into the flow behind the

straight segment of the shock, and slow that part of the shock down. This causes the straight

section to gradually curve into a convex shape. At the same time, a series of compression

waves propagate into the flow behind the segment of the shock that was initially convex.

These prevent the shock from slowing down as much as it would have in the absence of the

straight segment, and cause the radius of curvature to increase at a greater rate.

The net result is that the sharp discontinuous jump in the radius of curvature of the initial

shock wave becomes a gradual rise in radius of curvature as one moves from the curved

segment into the straight segment, as shown in Figure 6.1.

(i)

(ii)

Cylindrical

shock

segment

Straight

shock

segment

Region of

gradually

changing

curvature

Figure 6.1: Schematic diagram showing the shape of an initially straight-convex shock wave (i) in

it’s original position, and (ii) after having propagated some distance

A shock front consisting of two straight shock segments meeting with an initially sharp convex

corner may be considered to be the extreme of the above case, for which the initial radius of

curvature of the cylindrical segment is zero. Complications that shock waves of this shape

introduce will be discussed in section 6.3.1.2, but a preliminary consideration could be arrived

at using same argument used above. The resulting shock shape will consist of a curved shock

segment between the two straight segments, and the radius of curvature will vary along the

length of the curved segment. The radius will reach a minimum on the symmetry line, which

will bisect the angle formed by the two original straight segments.
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6.2 Propagation of concave shock waves

For a concave shock wave, the simplest case to consider is that of two straight shock segments

that meet at a sharp concave corner. Using symmetry, it may be argued that a sharp concave

90◦ corner on a shock front is analogous to a shock encountering a 45◦ wedge. As a result,

the shock will reflect off of the symmetry plane, forming a pair of Mach reflections (MRs)

(although a regular reflection could form if the Mach number of the shock is very low, or

if the angle is much smaller than 90◦). The MR would expand, but remain approximately

self-similar, with the triple points following diverging straight paths, as in Figure 6.2(a).

If the corner is rounded with some radius, then the shock front will briefly undergo focusing

before the MR pair forms. In this case, the curved portion of the shock increases in strength

(as described in section 2.5.2), whereas the fluid behind the straight portion of the shock front

does not. This produces compressive waves which move into the region behind the straight

shock. These compressive waves gradually distort the shock front, producing a kink in the

shock front on either side of the symmetry plane at which the curvature of the shock front

is higher than at those points around it. As the shock propagates, this effect is magnified,

until the compressive waves coalesce into a pair of reflected shocks, and the kinks form a pair

of finite discontinuities along the shock front, which become the triple points of an MR pair.

After this point, the MR pair expands self-similarly, as in the case with a sharp corner. This

behaviour is shown in Figure 6.2(b).

(i)

(ii)

(iii)

(i)

(ii)

(iii)

(a) (b)

Figure 6.2: Schematic diagrams showing the shape of initially sharp (a) and rounded (b) converging

shock waves at three times
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In order to gain some insight into the formation of these reflections, a brief numerical inves-

tigation into the interaction between straight and curved shock segments were carried out.

These are discussed in the following section.

6.2.1 Interaction between concave and straight shock segments

The CFD simulations were carried out in ANSYS Fluent using the configuration described

in section 4.1.2. These simulations aimed to further investigate the interaction between the

concave and straight segments of a shock front.

A total of four initial shock wave shapes were tested, which each consisted of a cylindrical arc

spanning some angle, placed in between a pair of straight shock segments. These shapes were

chosen so that they would fit within the constraints of the experimental facility designed in

Chapter 5. The radii of the cylindrical segments were chosen so that the estimated location

of the transition from compression waves to reflected shocks would occur within or close to

the viewing region of the experimental facility. The straight section was then selected so

that it would be as long as possible, whilst still fitting within the geometrical constraints set

by the shock tube exit. Table 6.1 gives a summary of the geometries used. To reduce the

required computational time, the region that would fall to the right of the viewing windows

was truncated from the domain.

Table 6.1: Cases used for numerical simulation of straight-concave compound shocks

Convergence Radius of Length of Mach

angle concave segment straight segments number

50◦ 145 mm 130 mm 1.40

37◦ 235 mm 145 mm 1.40

35◦ 175 mm 160 mm 1.40

20◦ 185 mm 175 mm 1.40

In all cases, a Mach 1.4 initial shock was generated, and allowed to propagate between a pair

of straight converging walls. Figures 6.3 to 6.6 show contours of constant density taken from

the results of the simulations for the four cases at various points in time.

While a concave shock front on its own tends to decrease in radius, the results show that the

opposite behaviour occurs in the presence of an adjacent straight section. A series of com-

pressions forms behind the curved section, which propagate outward, distorting the straight

segments into slightly concave shapes. These compressions gradually coalesce in the region

where the curved and straight shocks meet, eventually forming an additional shock wave, and

a sharp kink in the shock front (see Figure 6.3(b)). When this shock wave forms, the resulting
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(a) 250 µs (d) 700 µs

(b) 500 µs (e) 750 µs

(c) 600 µs

Figure 6.3: Numerical results for the propagation through a 50◦ converging channel, for an initially

Mach 1.4 compound shock front with a straight-concave-straight initial shape. The radius of the

cylindrical arc is 145 mm, and the straight segments are each 130 mm long
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(a) 299 µs (d) 899 µs

(b) 599 µs (e) 1019 µs

(c) 799 µs

Figure 6.4: Numerical results for the propagation through a 37◦ converging channel, for an initially

Mach 1.4 compound shock front with a straight-concave-straight initial shape. The radius of the

cylindrical arc is 235 mm, and the straight segments are each 145 mm long
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(a) 250 µs (d) 850 µs

(b) 600 µs (e) 950 µs

(c) 750 µs

Figure 6.5: Numerical results for the propagation through a 35◦ converging channel, for an initially

Mach 1.4 compound shock front with a straight-concave-straight initial shape. The radius of the

cylindrical arc is 175 mm, and the straight segments are each 160 mm long
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(a) 200 µs (d) 900 µs

(b) 500 µs (e) 1050 µs

(c) 700 µs

Figure 6.6: Numerical results for the propagation through a 20◦ converging channel, for an initially

Mach 1.4 compound shock front with a straight-concave-straight initial shape. The radius of the

cylindrical arc is 185 mm, and the straight segments are each 175 mm long
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mismatch in flow properties between the original and new shock waves causes a shear layer to

form behind the kink (visible in Figure 6.3(d) and 6.5(d)). Meanwhile, the originally curved

shock straightens and its velocity tends toward a constant value. This new configuration is

essentially a symmetric pair of MRs, with the original straight segments forming the incident

shock waves, and the original curved segment forming the Mach stem. Eventually, the triple

points and reflected shocks reflect off the walls of the domain. When the reflected shocks

intersect, this produces a localised high pressure region in the flow along the symmetry plane

at some distance behind the shock front (see Figure 6.5(e)). This high pressure region ex-

pands, eventually catching up to the shock front when the triple points meet (as in Figure

6.4(e)). The maximum pressure reached in this high pressure region increased as the angle

of convergence of the initial shock was increased.

With this basic qualitative understanding of some of the mechanisms involved in the propa-

gation of shock waves with both curved and straight segments, it is possible to begin to study

shock waves that consist of both concave and convex segments mixed with straight segments.

This is dealt with in the following section.

6.3 Propagation of compound shock waves

Although the preliminary computational studies mentioned in the previous chapters sug-

gested that the shock would take on any shape defined by the slit, this needed to be verified

experimentally. In order to evaluate the sensitivity of the apparatus to the slit shape, an

investigation was carried out into the propagation of shocks of compound profiles - that is,

profiles consisting of both a converging and a diverging section. This involved carrying out

CFD simulations into the behaviour of shock waves with two similar initial shapes, identify-

ing the similarities and differences between the two shapes, and noting whether or not these

similarities and differences are also present in experimental results.

The profiles consisted of three straight sections, separated by one converging and one diverging

section. It would be preferable that the propagation chamber have parallel walls, as this plate

would be useful for a wide variety of studies. In order to maintain a symmetry between the

converging and diverging sections, it was decided that these would each span an angle of 90◦.

The first chosen profile chosen consisted of a pair of concave and convex arcs, arranged in an

S shape. The second profile was obtained by replacing the two arcs with sharp 90◦ corners,

forming a step shape. However, the problem of determining the size and position of the

profile relative to the shock tube exit and viewing windows remained.
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This was done by considering the behaviour of the converging and diverging sections sepa-

rately, and then estimating the combined effect. The behaviour of the combined effect was

then confirmed using CFD, and this information was used to design the profile plates for the

experimental study.

6.3.1 Preliminary numerical investigation

If a shock front initially consists of both concave and convex segments, then there will be some

interaction between the two segments. Prior to any analysis, the results of these interactions

for a pair of 90◦ corners may be considered qualitatively.

When a triple point of the MR from the concave segment first encounters the convex segment,

the incident angle for the MR will increase slightly in magnitude, which will result in a weaker

incident shock, and a steeper triple point trajectory. This will cause the triple point to move

even further into the convex segment, and the Mach stem will be longer than in the case of

a purely concave initial shock. The curved triple point trajectory will also cause the slope of

the Mach stem to move toward that of the planar wave segment, and alter the curvature of

the Mach stem, taking it from its initial concave shape into a slightly convex shape. Over

time, the entire shock front is expected to tend toward a planar shape.

In order to validate this analysis, CFD simulations were carried out for each of the two shock

shapes, arbitrarily using a step length of 100 mm for the sharp profile, and radii of 50 mm

for the rounded profile. The simulations were run using the in-house solver, using the config-

uration described in section 4.1.1. Several difficulties were encountered, particularly with the

sharp profile, which limited the maximum time that could be reached by the simulations. The

results obtained from the preliminary model are given in section 6.3.1.1, and the challenges

encountered are discussed in section 6.3.1.2.

6.3.1.1 Results

In spite of these challenges, results were obtained for early times for shock waves with initial

Mach numbers of Mach 1.4 and 1.8. These are shown in Figure 6.7 and 6.8.

Although the mechanism of the initial formation of the MR differs between the sharp and

rounded profiles, the shape of the shock fronts begin to resemble each other after a relatively

short distance (within about 1.5 times the step length).
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(a) t = 90µs (d) t = 90µs

(b) t = 180µs (e) t = 180µs

(c) t = 320µs (f) t = 320µs

Figure 6.7: Preliminary CFD results for the behaviour of a compound shocks with rounded (a-c)

and sharp (d-f) initial profiles. The shocks are moving from left to right in a 400 mm high section,

with an initial Mach number of 1.4
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(a) t = 70µs (d) t = 70µs

(b) t = 130µs (e) t = 130µs

(c) t = 210µs (f) t = 210µs

Figure 6.8: Preliminary CFD results for the behaviour of a compound shocks with rounded (a-c)

and sharp (d-f) initial profiles. The shocks are moving from left to right in a 400 mm high section,

with an initial Mach number of 1.8
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For both profiles, the Mach stem bows slightly outwards, and gradually changes in angle

toward the vertical. The upper triple point follows a trajectory that is directed at just above

45◦ to the horizontal, which curves very slightly downward as the shock propagates. The

curvature of the lower triple point trajectory is initially much more severe, and although it

is also initially directed at just below 45◦ to the horizontal, the expanding convex section

deflects it downward, so that it the trajectory is almost horizontal by the time the shock has

travelled 1.5 step lengths. As the convex section straightens out, the effect on the lower triple

point diminishes.

6.3.1.2 Challenges in the simulation of convex corners

When modelling a sharp convex corner, a discontinuity in flow direction along the inlet causes

a relative vacuum region around a singularity in the vicinity of the corner. Initial attempts

at modelling the propagation of compound shocks in ANSYS Fluent using the configuration

described in section 4.1.2 failed due to rapid temperature divergence within this singularity.

Several attempts at tweaking the model were made in order to overcome this, including

refining the mesh around the corner, rounding the corner slightly, and modelling a small trip

wire just before the corner. All of these came at a great cost in computational time, and only

served to delay the divergence.

The in-house Euler solver features a more robust numerical method than ANSYS Fluent,

although this comes at a small cost of increased numerical noise. The flow was modelled using

the in-house solver in the hopes that the solution divergence would be delayed sufficiently

long that useful results would be obtained. However, a major disadvantage of the Euler

solver is that it requires a single velocity vector with a constant direction to be specified

along the length of an inlet. This is overcome by specifying multiple inlet curves. Initially,

the sharp inlet was specified by three individual curves, and the rounded inlet was specified

as six individual curves.

In the Euler solver, the discontinuity at the corner generated a shocklet, which delayed the

onset of the temperature divergence long enough to get some useful results. This shocklet

expands to a significant size, and is visibly interfering with the reflected shock emanating

from the lower triple point in Figure 6.8(f). A closer investigation showed that, in a reference

frame fixed relative to the shocklet, flow passing through it was being accelerated from locally

subsonic speeds to supersonic speeds. Although the Euler equations do allow this behaviour

(since they are time reversible), these flows are not physically possible as they violate the

second law of thermodynamics (Anderson, 2004). This is a clear indication that this shocklet

and vacuum region are numerical artefacts, and would not be present in a physical flow.
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Due to the discrete manner in which velocity vectors were applied to the curved inlet, shocklets

are also present near the inlet in the results for the rounded profile. The same argument

applies in this case. As a result, all of the results in the preliminary study have limited

accuracy. However, they are still somewhat useful for gaining a qualitative understanding of

the behaviour of the shock front, which was used in the design of the profile plate for the

experimental investigation.

A change in approach was required to overcome these challenges for later simulations. The

methods used for this are described in section 6.3.4.1, but these preliminary results were still

useful for drawing some simple qualitative conclusions regarding the shock behaviour. These

were used to aid in the design of the profile plates.

6.3.2 Profile plate design

The biggest challenge in selecting a profile is to position the slit such that as many significant

features as possible are visible in the viewing window. The most obvious feature in the results

shown in section 6.3.1 is the triple point pair, and the shear layers that follow them. Although

the actual trajectories vary with Mach number, general qualitative trends may be identified.

The upper triple point follows a trajectory that starts off just above 45◦ from the horizontal,

but quickly curves to a trajectory below 45◦. From the preliminary results, the lower triple

point trajectory is initially directed upward at an angle just below 45◦ from the horizontal,

but turns to follow an approximately horizontal trajectory.

Using this information, it is possible to set very rough limits for the trajectories of the triple

points — a horizontal line and a 45◦ originating from the concave corner. These can be

used to position the slit such that these limits lie within the window, as shown in Figure 6.9.

Using the slit width of 15 mm as chosen in chapter 5, the final slit dimensions were chosen

to be those shown in Figure 6.10. More detailed drawings of the profile plates, including the

precise position of the slit, are included in section C.4 of Appendix C.

6.3.3 Experimental results

The two profiles were manufactured, and experiments were carried out at various Mach

numbers between Mach 1.2 and 1.4 for each of the two profiles. There was little discernible

difference between the images captured under different conditions, so further analysis was

limited to the tests shown in Table 6.2. These tests were chosen as they were at opposite

ends of the Mach number range tested, and similar Mach numbers were obtained for both

profiles. The results from these four experiments are shown in Figures 6.11 to 6.14.
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Figure 6.9: Positioning the slit based on expected limits for the upper and lower triple point trajec-

tories

(a) (b)

Figure 6.10: The profile plates used to produce the sharp (a) and rounded (b) compound profiles

in the facility

Although the preliminary CFD results were for much earlier times, the experimental results

reveal that the basic shock structure - at least in the vicinity of the upper triple point, remains

stable as the shock wave propagates. As the shock front first enters the viewing window, the

shear layer and reflected shock of the upper MR are clearly visible, and the triple point
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(a) 390 µs after passing through the slit

(b) 590 µs after passing through the slit

(c) 790 µs after passing through the slit

Figure 6.11: Schlieren photographs of the

shock front generated by the rounded profile

with an initial Mach number of 1.21

(a) 430 µs after passing through the slit

(b) 580 µs after passing through the slit

(c) 680 µs after passing through the slit

Figure 6.12: Schlieren photographs of the

shock front generated by the rounded profile

with an initial Mach number of 1.41
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(a) 430 µs after passing through the slit

(b) 630 µs after passing through the slit

(c) 830 µs after passing through the slit

Figure 6.13: Schlieren photographs of the

shock front generated by the sharp profile with

an initial Mach number of 1.20

(a) 430 µs after passing through the slit

(b) 630 µs after passing through the slit

(c) 730 µs after passing through the slit

Figure 6.14: Schlieren photographs of the

shock front generated by the sharp profile with

an initial Mach number of 1.42
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Table 6.2: Conditions for the compound shock propagation experiments

Case number Profile Driver Pressure Mach number

4 Sharp 50 mm step 150 kPa 1.20

9 Sharp 50 mm step 410 kPa 1.42

11 Rounded 25 mm radius 150 kPa 1.21

14 Rounded 25 mm radius 410 kPa 1.41

propagates toward the upper right corner of the viewing window. The triple point of the

lower MR was not visible in any of the images captured.

In the tests carried out at the higher Mach number (M ≈ 1.4), the flow behind the inital

shock front is significantly more disturbed than at lower Mach numbers (M ≈ 1.2), and for

the upper portion of the incident shock wave in the same position, the triple point is lower

at lower Mach numbers.

In the M ≈ 1.2 tests, the upper MR is the only clearly discernible flow feature, although

some weak acoustic disturbances are present, and a discontinuity of some sort is visible in

the lower left corner at later times. At M ≈ 1.4, two distinct flow discontinuities are present

in the lower left corner of the images, most obvious in Figures 6.12(b) and (c). These would

appear to be the reflected shock and shear layer emanating from the lower MR, but it is not

entirely clear which is which. A vortex structure is present where one of these discontinuities

interacts with the shear layer of the upper MR, which would suggest that this discontinuity

is the shear layer of the lower MR. However, the triple point of the lower MR would need to

be visible in order to confirm this.

Further interpretation of the experimental results were made with the aid of more detailed

CFD simulations. These simulations are described in the following section.

6.3.4 Computational results

Further CFD simulations were carried out using the Euler solver, as described in section

4.1.1. However, before these simulations could be carried out, the issues raised in section

6.3.1.2 needed to be addressed. The measures taken are described below.
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6.3.4.1 Handling the convex corner

Three changes were made to the model in order to overcome some of the difficulties outlined

in section 6.3.1.2. For the rounded profile, the inlet was broken up into a total of eighteen seg-

ments (as opposed to six used previously), reducing the difference between the flow directions

at the joints, and more accurately describing the actual flow.

The cell size of the initial mesh was greatly reduced. Although the usual approach in simu-

lating shock waves is to start with a coarse initial mesh, and then refine it in the vicinity of

the discontinuities in the flow, it was found that a much finer initial mesh resulted in a more

stable solution at the start. Once the shock front was established, the mesh was coarsened

in regions of approximately uniform flow. It was found that a much finer mesh was required

for a stable solution for the sharp profile than for the rounded profile. The mesh was refined

in regions where the density gradient exceeded 2% of the maximum density gradient in the

flow.

Finally, the Courant number was reduced to less than 0.1. Although a Courant number

close to 1 is preferred for an accurate solution and fast convergence, reducing the Courant

number to such an extent ensures that the initial time step remains very small (in the order

of 5 × 10−8 s). This allows the solution in any given cell to be affected by the conditions

at points outside of the domain of influence for that cell (Anderson, 1995). Although this is

usually undesirable in supersonic or shock-dominated flows, as it reduces the accuracy of the

solution, it is acceptable here because all points lie either on the inlet or in the undisturbed

flow field, and the flow conditions are known exactly at both of these locations. The net

result is that it introduces a significant degree of numerical smoothing in the solution which

eliminates any discontinuities which would have formed along the inlet. Once the shock was

established, the Courant number was increased to 0.3, and was later increased to 0.6 once it

had propagated roughly one step length (in this case, 50 mm) from the inlet.

These changes resulted in a significant increase in running time for the simulations, with

the simulations for the sharp profile taking an order of magnitude longer to cover the same

distance as the simulations for the preliminary investigation. The simulations for the rounded

profile took approximately two weeks to reach completion, whereas those of the sharp corner

profile took approximately eight weeks.

6.3.4.2 Results

Figure 6.15 shows the progression of an initially Mach 1.4 shock front for both profiles. It

is immediately apparent that the shock is better resolved for the sharp profile, due to the
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finer mesh size required to handle the sharp corner. However, the sharper shock leads to

higher density gradients, which make weaker features (such as the shear layer) more difficult

to resolve.

(i) (ii) (iii) (iv) (v) (vi) (vii) (i) (ii) (iii) (iv) (v) (vi) (vii)

(a) (b)

Figure 6.15: Contours of constant density in the vicinity of the shock front from 2D numerical

simulations from Mach 1.4 shocks with initially rounded (a) and sharp (b) profiles. The images show

times at 100 µs intervals up to 700 µs after being generated at the slit

The shapes of the two shock fronts tend toward each other with time. One difference is that

the reflected shocks for the sharp profile extend all the way toward the inlet, whereas the

reflected shocks for the rounded profile break down some distance behind the shock front.

The trajectories of the upper triple points appear similar, but the triple point for the rounded

profile appears to be slightly lower than that of the sharp profile.

Contours of constant density are shown for the entire domain for the rounded profile in

Figure 6.16 and for the sharp profile in Figure 6.17. For reference, the location of the viewing

windows are indicated by a dashed circle of radius 165 mm with a centre 342 mm horizontally

and 207 mm vertically from the lower left corner of the domain.

Several notable features appear in these results. A shear layer and diffraction vortex form

after the lower reflected shock wave passes over the convex corner on the inlet, and these are

visible to the right and slightly above the corner in both profiles. The shear layers from the

MRs formed on either side of the concave portion of the shock meet at the inlet, and form a

high speed jet. This jet is present even for the sharp profile, for which the shear layers were

not well resolved. At later times, the shear layers break away from the jet, and end in what

appears to be a double vortex structure.
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(a) t =100 µs (d) t =580 µs

(b) t =200 µs (e) t =680 µs

(d) t =430 µs

Figure 6.16: Contours of constant density from numerical simulations of a Mach 1.4 shocks with

an initial profile containing a 50 mm rounded step. The dashed circle indicates the location of the

viewing window
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(a) t =100 µs (d) t =630 µs

(b) t =200 µs (e) t =730 µs

(d) t =430 µs

Figure 6.17: Contours of constant density from numerical simulations of a Mach 1.4 shocks with an

initial profile containing a 50 mm sharp step. The dashed circle indicates the location of the viewing

window
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6.3.5 Comparison and discussion

A direct comparison between the numerical and experimental results show very close agree-

ment to the extent that the numerical results may be used to fill in details in regions that fall

outside of the viewing windows, at least for the Mach 1.4 cases. Figure 6.18 shows a schlieren

photograph from the experiments inset in a numerical schlieren image from the CFD results

for the same time and Mach number. This allows some of those features that could not be

identified form the experimental results alone (such as the structures in the lower left corner

of the photographs) to be identified. The most prominent features are labelled in Figure 6.19.

Figure 6.18: Schlieren photograph from experimental results (inset) and numerical schlieren from

CFD results for a Mach 1.4 shock from the rounded profile after 680 µs

There are three notable mechanisms which generate features in the flow. The first is the

initial concave segment of the shock front, which gives rise to the MR pair, producing the

two reflected shocks and two shear layers in the flow. It also gives rise to the jet originating

on the inlet. The second mechanism is the diffraction of the lower reflected shock around the

convex corner of the inlet. This generates a shear layer which originates at the corner, and a

diffraction vortex, which propagates into the flow. The third mechanism is the reflection of

the lower reflected shock off bottom wall of the propagation chamber. This is an MR, which

produces a short Mach stem attached to the wall, and a another shear layer.

The trajectories of the upper triple point from the CFD and experiments are compared

in Figure 6.20 for two Mach numbers. In the CFD results, the triple point location was
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Figure 6.19: Schematic diagram of the features produced behind a compound shock wave

measured vertically from the bottom edge of the domain, and horizontally from the upper

straight segment in the inlet. For the experimental results, the dimensions of the window

outline were measured, and using the fact that the viewing window had a diameter of 330

mm, and its centre was known to lie 240 mm vertically from the bottom wall of the facility

and 330 mm horizontally from the centre line of the upper portion of the profile slit, the

coordinates of the triple point relative to the slit were calculated.

The initial shape of the shock wave appears to have very little effect on the trajectory of the

triple point for both the experimental and CFD results. The triple point for the stronger

shock wave followed a slightly higher trajectory, as expected from typical behaviour observed

in previous experiments (refer to Figure 2.3).

For the Mach 1.4 shocks, the agreement between the CFD and experiment is excellent, even

though the origin of the shock for the experiments lay on the centreline of the slit, whereas the

leading edge of the slit was used as the origin for the CFD. This suggests that the effective

two-dimensional profile that the facility simulates lies within the slit, rather than at the

leading edge.

The trajectory obtained from experiments for the Mach 1.2 shock lies significantly higher

than that obtained in the CFD simulations. The reason for this is uncertain, but it may have
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Figure 6.20: Comparison of the upper triple point trajectory for experimental and CFD results.

The error bars on the experimental results indicate the slit width

been caused by the fact that the strength of the transverse waves generated as the shock

turns the corner in the facility remain significant for a longer period for weaker shock waves.

A deeper understanding of the effect of Mach number and profile shape on the shape of the

shock front may be obtained by making a direct comparison of the shock shape when the

undisturbed upper straight segment of the shock front is in the same position. Figure 6.21

compares the shapes of the shock fronts produced by the sharp and rounded profiles.

The lower triple point of the rounded profile follows a slightly lower trajectory than that of

the sharp profile, and the lower incident shock of the round profile lags slightly behind that

of the sharp profile. This may be because the diverging segment of the sharp profile has a

slight head start. This will be offset slightly by the fact that the velocity of the sharp profile’s

diverging segment decays at a slightly faster rate at early times.

Although the shock fronts produced by both profiles tends toward a planar shape, this occurs

slightly faster for the rounded profile than for the sharp profile.

Even though the upper triple points are in approximately the same location for both profiles,

the upper reflected shock produced by the rounded profile lies slightly below that of the sharp

profile. However, the lower reflected shocks for the two profiles appear to coincide, and reflect
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(a) t =350 µs (b) t =700 µs

Figure 6.21: Effect of initial profile on the shape of the shock front for a Mach 1.4 shock wave. The

images show lines of constant density for the rounded (blue) and sharp (red) profiles at two different

times

off the lower wall at approximately the same place, even though they originate at different

points.

Figure 6.22 shows the effect of Mach number on the shock front shape. The lower trajectory

of the upper triple point for the lower Mach number is apparent. The lower triple point,

however, follows a higher trajectory for the lower Mach number. This is in line with the fact

that the triple point trajectory angle for a planar shock encountering a straight wedge tends

to increase with Mach number.

The velocity of the diverging section for the higher Mach number slows more rapidly, which

causes it to cover a shorter distance than the diverging section of the lower Mach number,

when the upper straight section has covered the same distance. Once again, the lower reflected

shock appears to reflect off the bottom wall of the facility at approximately the same point

for both Mach numbers.

6.3.6 Comment on sharp convex corners on a shock front

The sharp convex corner proved to be rather challenging to model. Theoretically, a sharp

convex point along a two-dimensional shock front would require a finite flow rate to emerge

from an infinitesimal volume, and is thus not possible in practice.
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(a) t =420 µs for M = 1.2 (blue), and (b) t =805 µs for M = 1.2 (blue), and

t =360 µs for M = 1.4 (red) t =690 µs for M = 1.4 (red)

Figure 6.22: Effect of Mach number on the shape of the shock front for the rounded profile. The

images show lines of constant density at the same shock positions for two Mach numbers

Sharp convex corners are however of interest from a theoretical point of view, as some three-

dimensional flows do come close to approximating a flow that would be generated by such

a shape. The three-dimensional flow through the slit of the very apparatus used in this

investigation is one such example.

The results obtained suggest that it is indeed possible to model these three-dimensional flows

using a simplified two-dimensional model, but care needs to be taken so as not to introduce

numerical artefacts in the vicinity of the corner.
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7. Reflection of Converging

Cylindrical Shock Wave Segments

The facility designed in the previous chapters provides an ideal means for a broad investigation

into the reflection of curved shock waves. As mentioned in section 2.5, the reflection of planar

shock waves is typically categorised based on the Mach number and incident angle of the

shock, but both of these parameters vary with time in the case of curved shock waves.

In the case of a converging cylindrical shock wave, the Mach number increases, and the

incident angle decreases. This means that conditions may pass from the Mach reflection (MR)

domain to the regular reflection (RR) domain. This chapter describes a computational and

experimental investigation into both the initial reflection type, and the transition between

MR and RR as converging cylindrical shock wave segments encounter wedges inclined at

various angles.

The type of shock wave considered in this chapter is one for which the radius varies with

time, but is constant along the shock at any given time. In two dimensions, the shock is in

the shape of a circular arc, which forms a segment of a cylinder when extruded into the third

dimension. The ends of this shock wave are initially perpendicular to two straight converging

walls, which would intersect at the geometric centre of the shock wave. At some distance

from the centre, one of the walls has a sharp corner, and a new wall, or wedge, continues

at some angle θw to the original wall. This is illustrated in Figure 7.1. It is clear that the

incidence angle β changes between times (ii) and (iii). This will be dealt with in the following

section.

7.1 Analytical treatment

A planar shock wave encountering a straight wedge will correspond to a single point on the

plot in Figure 2.5(b), whereas a cylindrical shock wave segment will trace a curve as the
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Figure 7.1: Schematic diagram of a converging cylindrical shock wave segment encountering a

straight wedge at three different times. The wedge apex (A), end of the wedge (B), a reflection point

(C), and the geometric centre of the shock (O) are labelled.

shock propagates along the wedge. Equations (2.14) and (2.15) give the radius r(t) and

Mach number M(t) of the shock wave at any time t. It is possible to use these equations and

the geometry in Figure 7.1 to calculate the locus of the incident angle β(t) and Mach number

for any given wedge angle θw, initial radius rw and Mach number Mw.

The radius of the shock wave is given by equation (2.14) when it is within the limits of the

wedge:

rmin ≤ r(t) ≤ rw (7.1)

where rw is the distance of the wedge apex from the geometric centre, and rmin is the radius

of the shock when it reaches the end of the wedge, which is equal to the length of the line

segment OB, and may be calculated from the geometry of the wedge:

rmin = rw sin θw (7.2)
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Since the length of OB is known from the wedge geometry, and the length of OC is simply

the radius of the shock when it reaches C, The angle of incidence β is given by

β(t) = arccos

(
rw
r(t)

sin θw +
Hm(t)

r(t)

)
(7.3)

where Hm(t) is the height of the Mach stem (which is equal to zero for RR). The Mach stem

height may be calculated iteratively using geometrical shock dynamics (as in the following

section), but no simple analytical expression may be derived.

However, progress may be made by assuming that the Mach stem is short compared to the

shock radius. If that is the case, then the Hm(t)
r(t) term in the above equation may be neglected.

This assumption is always true for RR, and it will be shown later that it is reasonable for

wedge angles greater than about 30◦. However, the assumption is certainly not valid for

wedge angles below this, and this must be considered when interpreting the results of this

derivation.

Since the length of OB is known, and the length of OC is simply the radius of the shock when

it reaches C, The angle of incidence β is given by

β(t) = arccos

(
rw
r(t)

sin θw

)
(7.4)

Equation (2.15) provides a relation between the Mach number and radius of the shock for a

given set of initial conditions:

M(t) = Ma

(
r(t)

rw

)n−1
n

(7.5)

where Ma is the Mach number of the shock when it reaches the wedge apex, and n = 0.835,

which is Guderley’s exponent for a cylindrical shock wave.

The maximum Mach number that may be reached for a given wedge angle is

Mmax = Ma (sin θw)
n−1
n (7.6)

which occurs when the shock reaches the end of the wedge, point B.

Equation (7.4) may be expressed in terms of Mach number:

β(M) = arccos

[(
Ma

M

) n
n−1

sin θw

]
(7.7)

The complimentary angle, or effective wedge angle θC is defined as the angle between the

shock and a normal to the wedge, which is simply

θC =
π

2
− β (7.8)
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or

θC = arcsin

[(
Ma

M

) n
n−1

sin θw

]
(7.9)

Note that θC = θw at the wedge apex, but tends toward 90◦ as the shock approaches the end

of the wedge.

By substituting equation (7.6) into (7.9), the following expression may be obtained:

θC = arcsin

[(
Mmax

M

) n
n−1

]
(7.10)

This shows that the locus of Mach number and effective wedge angle is independent of the

initial conditions of the shock, and depends only on the maximum Mach number that the

incident shock reaches at the end of the wedge.

Figure 7.2 (a) shows these loci for various final Mach numbers (dotted curves) together with

the regular (RR) and Mach reflection (MR) domains predicted by the sonic criterion (solid

curve). When the shock first encounters the wedge, the location on the plot will be given

by the initial conditions. As the shock propagates up the wedge, the conditions will move

upward and to the right on the figure, following the locus passing through the initial point.

Eventually, the Mach number will reach Mmax when the effective wedge angle reaches 90◦,

after which the shock wave is completely reflected, and the incident shock no longer exists.

If the initial conditions fall within the RR domain, then the reflection will remain regular

throughout the reflection process. However, if the initial conditions fall within the MR

domain, then the reflection will transition from MR to a TRR at some point along the

wedge. It is unlikely that this would happen at exactly the angle predicted by the sonic

transition line, as the sonic transition line only considers a pseudosteady process, and does

not consider unsteady effects.

An exception to the above may occur in the small region that exists for weak shock waves

encountering wedges at angles below 30◦ at speeds below about Mach 1.05. The initial

conditions for such a shock wave may fall into the shaded region in Figure 7.2 (b), which

lies in the RR domain. However, the locus of Mach number and incidence angle for such

a shock wave would take it into the irregular reflection (IR) domain (as conditions will fall

into the weak shock reflection domain), and then back into the RR domain. The reflection

would need to undergo two transitions — first from RR to IR, and then from IR back to RR.

This behaviour still needs to be verified by experiment, but this may pose some challenges.

Firstly, producing such weak converging shock waves is difficult as the shock waves strengthen

rapidly as the radius decreases, and some distance is required for the shock waves to stabilise
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Figure 7.2: Theoretical loci of Mach number and incident angle for a converging cylindrical shock

wave segment (dotted lines), compared to the sonic transition criterion (solid line)
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to a two-dimensional form in the current facility. Secondly, it will be difficult to resolve

features that occur, and many of the difficulties that have been encountered in the past

with resolving features in weak shock reflection of planar shock waves (both numerically and

experimentally) are likely to be encountered. Such an investigation is beyond the scope of

the current investigation.

7.2 Predicting the Mach stem height

It is not possible to predict the height of the Mach stem analytically, but a simple iterative

procedure using GSD has been developed. Itoh et al. (1981) derived an expression for the

derivative of Mach stem height of a planar shock encountering a concave wall, and used GSD

to find the unknown terms in the expression. The triple point trajectory was obtained by

integrating this expression. A similar approach is described here for a converging cylindrical

shock wave segment reflecting off a straight wedge.

Assume that the curvature of the Mach stem is negligible, so that the Mach stem may be

treated as if it were straight and perpendicular to the wedge. If this is the case, then the

Mach number may be assumed constant along the length of the Mach stem.

In a coordinate system measured relative to the wedge apex, as shown in Figure 7.3, the

geometric centre of the shock wave is located at the point (x0,−y0) where

x0 = r0 cos θw (7.11)

y0 = r0 sin θw (7.12)

If the triple point is located at the point (x, y), then the radius of the shock is the distance

from the centre to the triple point:

r2 = (x0 − x)2 + (y0 + y)2 (7.13)

This may be rearranged to give an expression for the Mach stem height.

y =
√

(r2 − (x0 − x)2 − y0 (7.14)

The derivative of this expression is then(
dy

dx

)
=
r
(
dr
dx

)
+ (x0 − x)

(y0 + y)
(7.15)

Integration of the above expression would give the Mach stem height y as a function of x, but

this requires the radius derivative
(
dr
dx

)
to be known at all points along the trajectory. This
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Figure 7.3: Schematic diagram showing dimensions used in predicting the Mach stem height

derivative may be calculated from the shock wave properties. The velocity of the incident

shock may be found from the Mach number:(
dr

dt

)
= −Mia0 (7.16)

where Mi is the Mach number of the incident shock, and a0 is the sound speed in the

undisturbed gas ahead of the shock. Note that the velocity is negative, because the shock

wave is converging. Similarly, for the Mach stem:(
dx

dt

)
= Mwa0 (7.17)

where Mw is the Mach number of the Mach stem.

These two give enough information to determine the unknown derivative.(
dr

dx

)
=

(
dr
dt

)(
dx
dt

) = −Mi

Mw
(7.18)
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The incident Mach number Mi depends on the current radius of the shock, and is given by

equation (2.15). The Mach number of the Mach stem may be calculated using Whitham’s

theory, equation (2.16). The line segment CT is a ray, and since rays cannot intersect, the

incident shock TE originated from the portion CD of the original shock, and the Mach stem

RT originated from the portion AC of the original shock. Therefore, all rays originating on

the arc AC, which has a total area of A0, must intersect RT , which has a total area of Aw.

These areas may be calculated per unit width from the geometry.

Aw = y (7.19)

A0 = r0φ (7.20)

where φ is the angle between the ray CT and the x-axis, and is given by

φ = arctan

(
y0 + y

x0 − x

)
− θw (7.21)

The Mach number at the wall may then be calculated using the A-M relation.

Aw
A0

=
f(Mw)

f(M0)
(7.22)

In this case, the approximate formula for Milton’s modification of f(M) given by Duong and

Milton (1985) given in equation (2.22) was used, as this incorporates a correction for reflected

disturbances behind the shock wave.

A complication that arises is the case for which φ = 0, which occurs at the beginning of the

wedge. In this case, Aw and A0 are both zero, which leads to an indeterminate form for the

area ratio. In order to resolve this, the initial triple point trajectory angle was set to be that

of a planar shock wave at a Mach number M0 and wedge angle of θw.

Equation (7.15) may be integrated numerically using a forward marching scheme to obtain

the triple point trajectory. Triple point trajectories for three Mach numbers and wedge angles

that were predicted using this method are shown in Figure 7.4.

7.3 Experimental results

A profile plate and propagation chamber were manufactured to produce converging cylindrical

shock wave segments with initial radii of 450 mm (see Figures C.5 and C.7 of Appendix C

for drawings). Straight wedges with angles varying between 15◦ and 50◦ were mounted to
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Figure 7.4: Predicted trajectories of the triple points for three different Mach numbers and wedge

angles

the lower wall of the propagation chamber such that the apex lay a distance of 100 mm from

the geometric centre of the slit.

All of the wedges were 72 mm long, which left a small exhaust area for air to escape, preventing

the build up of extremely high pressures that shock focussing could potentially produce at the

end of the wedge. The disadvantage of this is that the final portion of the reflection process

could not be visualised, but this was necessary as the walls and windows of the facility would

need to be considerably thicker to withstand these pressures. Having a fixed length for all of

the wedges simplifies the calculation of the scaling factor for each image captured.

A series of tests were carried out in the shock tube described in section 4.2.1. Initially, single

shot photography was used to capture images of the shock reflection at a single instant for

a 30◦ wedge and a limited range of Mach numbers. This was followed by a more detailed

investigation involving more wedge angles and a greater range of Mach numbers, using a high

speed camera to capture images of multiple shock positions for each test.
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7.3.1 Single shot photography

The initial study used a Nikon D40X 10.2 megapixel camera, and a xenon flash lamp with

an approximate effective exposure time of 1.5 µs to capture an image of the shock wave in a

single position for each test. The schlieren system described in section 4.2.2 was used with

the knife edge oriented perpendicular to the wedge.

Planar shock waves with Mach numbers varying between 1.2 and 1.3 were produced in the

shock tube, corresponding to estimated Mach numbers between 1.5 and 1.7 at the wedge

apex. Figures 7.5 to 7.9 show schlieren photographs taken of different shock positions in five

separate tests carried out under the same conditions, but using different delays. The wedge

angle is 30◦, and the Mach number and radius of the shock at the apex were approximately

Mach 1.5 and 100 mm. A 3.3x zoomed image of the reflection pattern is shown to the right of

each photograph. The shock wave is moving from left to right, and the time since the shock

passed the apex was estimated from the delay.

Figure 7.5: Schlieren photograph of the shock wave shortly before encountering the wedge apex

Figure 7.5 shows a well formed cylindrical shock segment, with relatively uniform flow behind

it. The shock appears much thicker toward the bottom of the test section, and even seems to

disappear toward the top. The disappearance of the shock wave toward the top of the image

is due to the knife edge orientation. At this point, the density gradients through the shock

wave are parallel to the knife edge, so they don’t cause any shadows in the image. The thicker

shock wave at the bottom of the image is due to motion blur. For the conditions under which

these tests were carried out, a Mach 1.5 shock wave moves at a velocity of 515 m/s, and covers

a distance of about 0.77 mm within the exposure time of the light source. This corresponds

to the observed shock thickness in the photographs. Features that are stationary or move

87



Figure 7.6: A direct Mach reflection (DiMR) 40µs after the apex

Figure 7.7: The triple point starts moving toward the wedge forming an inverse Mach reflection

(IMR) 60µs after the apex

slowly (such as the wedge surface and shear layers) are sharper, as they are not affected by

motion blur.

For all cases, the initial reflection was an MR, but as the shock propagated up the wedge, the

decreasing incident angle caused the triple point to turn back toward the surface. Toward

the top of the wedge, the triple point collided with the wedge, resulting in a TRR.

A regular periodic disturbance is clearly visible in the shear layers of Figures 7.7 to 7.9.

This is most likely a Kelvin-Helmholtz instability, although images with a higher resolution

and shorter exposure time are necessary in order to confirm this. It is worth noting that
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Figure 7.8: The triple point collides with the wedge, causing the onset of transitioned regular

reflection (TRR) 65µs after the apex

Figure 7.9: Transitioned regular reflection (TRR) is well established by the end of the wedge 70µs

after the apex

the instability appears to be significantly more pronounced than in shear layers resulting

from the MR of planar waves, and this is likely due to the fact that the triple point of a

converging shock reflection is accelerating along a curved trajectory, rather than propagating

at a constant velocity along a straight trajectory, as is the case for the reflection of a planar

shock wave.

Estimated incidence angles at which MR→TRR transition occurred are shown in Table 7.1.

The trend observed in the results is that transition occurs at a lower incident angle (which

occurs higher up the wedge) for higher Mach numbers. However, there is a significant degree
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of uncertainty in the measured angles for two reasons. Firstly, the previously mentioned

motion blur leads to a slight ambiguity in the shock position. Secondly, it is challenging to

determine the exact point at which the triple point collides with the wedge surface. In many

cases, the angle was obtained by interpolating between two images, such as Figures 7.7 and

7.8. Since these two images were obtained in separate tests, the conditions may not have

been identical between the two tests, introducing further uncertainty into the measurements.

Table 7.1: Estimated incident angles at TRR transition for a 100mm radius shock reflecting off a

30◦ wedge

Mach number Incident angle

at apex at TRR transition

1.5 ±0.1 30◦ ±2.5◦

1.6 ±0.1 27◦ ±2.5◦

1.7 ±0.1 25◦ ±2.5◦

The Mach number of the incident shock wave was estimated based on the set delay and

shock positions in successive tests. The resulting Mach numbers were found to fluctuate

by approximately 10% depending on which tests were used in the calculations. The values

reported in Table 7.1 are median values calculated for each set of tests.

Due to the large uncertainties, the results of the single shot experiments are primarily useful

only for a qualatative understanding of the reflection process. The images clearly show that

the shock wave encountering a 30◦ wedge forms an DiMR, which gradually inverts, and

eventually transitions to TRR

In order to improve the uncertainty of the results, another series of tests was carried out

using a high speed camera to capture multiple photographs of the same experiment. This is

described in the following section.

7.3.2 High speed photography

A Photron FASTCAM SA5 high speed camera was used with the same schlieren optics as in

the previous section, except with the knife edge oriented horizontally. Tests were carried out

for six wedge angles, and at least five different Mach numbers for each wedge. The driver

pressure was set to produce planar shock waves with Mach numbers varying between 1.2 and

1.5. These resulted in cylindrical shock wave segments at the wedge apex with Mach numbers

varying between 1.5 and 2.1.
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Table 7.2 gives a summary of the conditions tested and the resulting Mach numbers and radii

at the wedge apex. Although the facility was designed to produce shock waves with a radius

of 100 mm, the actual measured shock radii were slightly larger. Possible reasons for this will

be discussed in section 7.5.1.

Table 7.2: Conditions for experiments for converging cylindrical shock wave reflection

Wedge Driver Shock Tube Mach number Radius

angle pressure Mach number at apex at apex

15◦ 150 kPa 1.23 1.52 113.8 mm

15◦ 250 kPa 1.31 1.72 120.4 mm

15◦ 350 kPa 1.35 1.81 117.9 mm

15◦ 450 kPa 1.43 1.94 118.1 mm

15◦ 550 kPa 1.48 2.03 122.0 mm

25◦ 150 kPa 1.22 1.55 113.3 mm

25◦ 250 kPa 1.31 1.75 120.2 mm

25◦ 350 kPa 1.37 1.88 122.9 mm

25◦ 450 kPa 1.43 1.98 120.0 mm

25◦ 550 kPa 1.48 2.08 125.4 mm

30◦ 150 kPa 1.22 1.55 111.6 mm

30◦ 250 kPa 1.31 1.76 120.8 mm

30◦ 350 kPa 1.38 1.84 123.7 mm

30◦ 450 kPa 1.44 1.96 122.5 mm

30◦ 550 kPa 1.47 2.05 120.5 mm

40◦ 150 kPa 1.21 1.55 108.3 mm

40◦ 250 kPa 1.32 1.74 121.1 mm

40◦ 350 kPa 1.37 1.86 124.4 mm

40◦ 450 kPa 1.44 1.97 124.3 mm

40◦ 550 kPa 1.47 2.04 125.3 mm

45◦ 150 kPa 1.22 1.55 107.4 mm

45◦ 250 kPa 1.32 1.78 127.9 mm

45◦ 350 kPa 1.37 1.88 125.0 mm

45◦ 450 kPa 1.44 2.01 127.8 mm

45◦ 550 kPa 1.47 2.07 123.3 mm

50◦ 150 kPa 1.19 1.53 105.1 mm

50◦ 250 kPa 1.32 1.79 121.6 mm

50◦ 350 kPa 1.37 1.88 122.3 mm

50◦ 450 kPa 1.43 2.01 121.2 mm

50◦ 550 kPa 1.48 2.08 125.5 mm
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Photographs were captured at 100 000 frames per second (corresponding to one frame every

10 µs), with an exposure time of 1 µs for each frame. At these speeds, the maximum resolution

at which the camera was capable of operating was 320x192 pixels. A total of 635 photographs

were captured for various conditions and shock wave positions, and a number of these are

shown in Figures 7.10 to 7.17. In these tests, the camera was tilted to match the inclination

of the wedge in order to optimise the usage of the limited resolution available. In each of the

images, the wedge apex is just visible in the lower left corner of the images, and the end of

the wedge is visible on the far right of the image.

For the 15◦ and 25◦ wedges, the initial reflection was an MR, which persisted until the end of

the wedge. In the case of the 25◦ wedge, the triple point trajectory turned back toward the

wedge surface, but transition to TRR did not occur before the Mach stem reached the exhaust

area. For the 30◦ wedge, the initial reflection is also MR, but this transitions to TRR just

before the end of the wedge, and the transition occurs slightly earlier for slower Mach numbers

(which agrees with the behaviour observed from the single shot photography). It is difficult

to discern the Mach stem of the reflection for the 40◦ wedge, as the triple point remains close

to the surface. However, careful examination of frames around that shown in Figure 7.14(a)

suggest that the reflection is indeed an MR. Transition to TRR appears to occur between

half and three quarters of the way up the wedge, depending on the Mach number. The Mach

stem is too small to be seen for the 45◦ and 50◦ wedges, and transition occurs low down on

the wedge. The shear layer of the TRR is very weak, but is just discernible on some of the

images, for example Figure 7.17(c)

The possible Kelvin-Helmholtz instability observed in the single shot photography is not as

clearly resolved. This may be because of the change in the knife edge orientation, and the

reduced resolution of the photographs. There is, however, still a clear breakdown in the shear

layers in several of the images, particularly for stronger shock waves and lower wedges angles.

This is most noticeable in Figure 7.11.

7.4 Computational results

Simulations were carried out for a range of wedge angles between 15◦ and 60◦ in ANSYS

Fluent using the configuration described in section 4.1.2. For each wedge angle, a range of

radii between 50 mm and 400 mm, and apex Mach numbers ranging from 1.24 to 2.13 at the

apex were simulated. A summary of all of these cases is given in Table 7.3.

For all cases, the domain was bounded by three straight walls and a curved inlet, as shown

in Figure 7.18. The top and bottom walls were both perpendicular to the inlet. The wedge
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(a) t = 10.7 µs

(b) t = 30.7 µs

(c) t = 50.7 µs

(d) t = 80.7 µs

(e) t = 110.7 µs

Figure 7.10: Schlieren photographs of a

Mach 1.52, 113.8 mm radius converging cylin-

drical shock wave segment reflecting off a 15◦

wedge

(a) t = 11.3 µs

(b) t = 21.3 µs

(c) t = 41.3 µs

(d) t = 61.3 µs

(e) t = 81.3 µs

Figure 7.11: Schlieren photographs of a

Mach 2.03, 122.0 mm radius converging cylin-

drical shock wave segment reflecting off a 15◦

wedge
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(a) t =8.4 µs

(b) t =28.4 µs

(c) t =48.4 µs

(d) t =68.4 µs

(e) t =88.4 µs

Figure 7.12: Schlieren photographs of a

Mach 1.55, 111.6 mm radius converging cylin-

drical shock wave segment reflecting off a 30◦

wedge

(a) t =6.9 µs

(b) t =26.9 µs

(c) t =46.9 µs

(d) t =56.9 µs

(e) t =66.9 µs

Figure 7.13: Schlieren photographs of a

Mach 2.05, 120.5 mm radius converging cylin-

drical shock wave segment reflecting off a 30◦

wedge
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(a) t =12.8 µs

(b) t =32.8 µs

(c) t =42.8 µs

(d) t =52.8 µs

(e) t =62.8 µs

Figure 7.14: Schlieren photographs of a

Mach 1.55, 108.3 mm radius converging cylin-

drical shock wave segment reflecting off a 40◦

wedge

(a) t =6.1 µs

(b) t =16.1 µs

(c) t =26.1 µs

(d) t =36.1 µs

(e) t =46.1 µs

Figure 7.15: Schlieren photographs of a

Mach 2.04, 125.3 mm radius converging cylin-

drical shock wave segment reflecting off a 40◦

wedge
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(a) t =7.8 µs

(b) t =27.8 µs

(c) t =37.8 µs

(d) t =47.8 µs

(e) t =67.8 µs

Figure 7.16: Schlieren photographs of a

Mach 1.53, 105.1 mm radius converging cylin-

drical shock wave segment reflecting off a 50◦

wedge

(a) t =6.7 µs

(b) t =17.7 µs

(c) t =27.7 µs

(d) t =37.7 µs

(e) t =57.7 µs

Figure 7.17: Schlieren photographs of a

Mach 2.08, 125.5 mm radius converging cylin-

drical shock wave segment reflecting off a 50◦

wedge
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Table 7.3: Summary of CFD simulations for converging cylindrical shock wave reflection

Radius at apex Apex Mach number Wedge angles

50 mm 1.24 15◦, 30◦, 45◦, 60◦

50 mm 1.69 15◦, 30◦, 45◦, 60◦

50 mm 2.13 15◦, 30◦, 45◦, 60◦

100 mm 1.24 15◦, 25◦, 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦

100 mm 1.46 15◦, 25◦, 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦

100 mm 1.69 15◦, 25◦, 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦

100 mm 1.91 15◦, 25◦, 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦

100 mm 2.13 15◦, 25◦, 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦

200 mm 1.24 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦

200 mm 1.46 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦

200 mm 1.69 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦

200 mm 1.91 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦

200 mm 2.13 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦

400 mm 1.24 15◦, 30◦, 45◦, 60◦

400 mm 1.69 15◦, 30◦, 45◦, 60◦

400 mm 2.13 15◦, 30◦, 45◦, 60◦

was inclined at the desired angle to the bottom wall, and the angle of convergence between

the top and bottom walls was adjusted so that the angle between the top wall and the wedge

would always be 90◦. Because the flow was modelled as inviscid, the top wall could also be

considered a symmetry plane. The radius of the inlet was set to 1.5 times the desired shock

radius at the wedge apex, resulting in an inlet length of half the apex radius. Typical meshes

used are shown in Figure 4.2 (a) and (b).

Figures 7.19 to 7.23 show contours of constant density at selected times for shock waves with

a radius of 100 mm and Mach number of 1.46 at the wedge apex, for five different wedge

angles. The initial shock wave is moving from left to right, and the images have been rotated

so that the wedge surface is horizontal. The time is measured from the moment that the

shock passes the wedge apex.

There are two phases in the reflection process. The first is the initial reflection phase, in

which the initial cylindrical shock segment is propagating into undisturbed air. The second

phase is the post-reflection behaviour, in which the reflected shock waves propagate back into

the post-shock flow.

For the 15◦ wedge, the shock wave initially forms an MR with a weak shear layer. As the

shock propagates, the shear layer strengthens, and the triple point of the MR begins to turn
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Figure 7.18: Domain for CFD simulations into reflection of converging cylindrical shock segments

back toward the wedge. The Mach stem is significantly tilted by the time the shock wave is

halfway up the wedge. The triple point collides with the wedge about 134 µs after the shock

passed the apex, and for a very brief time, a TRR is formed. Almost immediately after this,

the incident shock reaches the end of the wedge.

At a wedge angle of 30◦, the triple point remains close to the wedge, and transition to TRR

occurs lower down the wedge than for the 15◦ wedge. For the 40◦ wedge, the Mach stem

is extremely short, and the shear layer from the initial MR remains very close to the wall.

Transition to TRR occurs approximately halfway up the wedge. The shear layer emanating

from the triple point of the TRR is relatively weak.

No shear layers or Mach stems are visible in the results for the 50◦ and 60◦ wedges at Mach

1.46, although a barely discernible shear layer and Mach stem was present for the 50◦ wedge

at higher Mach numbers. The absence of these features suggest that the reflection is initially

regular, and remains regular throughout. The final reflected shock is a smooth curve with no

discontinuities, as seen in Figure 7.23 (f).
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(a) t = 2 µs (d) t = 110 µs

(b) t = 50 µs (e) t = 130 µs

(c) t = 80 µs (f) t = 160 µs

Density

5.0 kg/m3

1.2 kg/m3

Figure 7.19: Contours of constant density for a shock encountering a 15◦ wedge with a radius of

100 mm and Mach number of 1.46 at the apex. Note that the areas shaded white briefly exceed 5.0

kg/m3, reaching a maximum of 8.7 kg/m3 at t = 150 µs after passing the wedge apex
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(a) t = 0 µs (d) t = 70 µs

(b) t = 30 µs (e) t = 82 µs

(c) t = 50 µs (f) t = 94 µs

Density

5.0 kg/m3

1.2 kg/m3

Figure 7.20: Contours of constant density for a shock encountering a 30◦ wedge with a radius of

100 mm and Mach number of 1.46 at the apex
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(a) t = 0 µs (d) t = 60 µs

(b) t = 30 µs (e) t = 68 µs

(c) t = 40 µs (f) t = 80 µs

Density

5.0 kg/m3

1.2 kg/m3

Figure 7.21: Contours of constant density for a shock encountering a 40◦ wedge with a radius of

100 mm and Mach number of 1.46 at the apex
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(a) t = 0 µs (d) t = 46 µs

(b) t = 30 µs (e) t = 60 µs

(c) t = 40 µs (f) t = 80 µs

Density

5.0 kg/m3

1.2 kg/m3

Figure 7.22: Contours of constant density for a shock encountering a 50◦ wedge with a radius of

100 mm and Mach number of 1.46 at the apex

102



(a) t = 0 µs (d) t = 24 µs

(b) t = 10 µs (e) t = 30 µs

(c) t = 18 µs (f) t = 50 µs

Density

5.0 kg/m3

1.2 kg/m3

Figure 7.23: Contours of constant density for a shock encountering a 60◦ wedge with a radius of

100 mm and Mach number of 1.46 at the apex

103



7.5 Comparison and discussion

A range of results were obtained for the analytical, experimental and computational work

described previously. These results will be compared and discussed in this section. This will

include an assessment of the quality of the shock waves generated in the experiments, followed

by discussions of the initial reflection configuration, transitions that occur along the wedge,

the effect of the initial radius on the results, and a brief discussion of the post-reflection

behaviour.

7.5.1 Assessment of experimental shock wave quality

Multiple frames of a single converging shock wave were captured using a Photron FASTCAM

SA5 high speed camera operating at 42 000 frames per second and a schleiren optical system.

This frame rate was reduced from the 100 000 fps used previously in order to obtain a higher

resolution and wider field of view. The quality of the shock wave was assessed based on how

well the shock wave maintained a cylindrical shape, and the quality of the post-shock flow.

Figure 7.24 shows a qualitative assessment of the shape of the converging cylindrical shock

wave segment as it approaches the wedge. The red lines indicate the angle of the walls,

and their intersection indicates the focal point of the shock wave. Although the facility was

designed so that the centre of the shock would lie on the end of the upper wall (see Figure

C.5 in Appendix C), it appears that the actual focal point lies slightly behind this. The

reason for this is not clear, but it could indicate a possible slight misalignment of the walls.

The green curves are circles centred on the focal point, superimposed over alternate shock

positions. These circles adhere closely to the actual shock fronts, indicating that the shock

wave is indeed close to circular.

A more quantitative assessment was also carried out. For each photograph, the radius of the

shock was estimated by fitting circles to the visible portion of the shock front such that the

sum of the squares of the errors for all photographs captured in a single test was minimised.

The details of the method developed for this are given in Appendix E. The maximum deviation

of any point on a shock front from its circle was less than 0.45 mm, which is equivalent to

the uncertainty in the point’s location.

Figure 7.25 shows the positions of the shock front for all frames in six tests, and the circles

and centres that were fitted to the shock fronts. The geometric centre of the arc that forms

the inlet is the point (100 mm, 0), which is marked with a + in the figures. This is the

intended centre of the shock wave. The actual centre is marked with an x. For all 30 tests,
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Figure 7.24: Successive frames of the same converging cylindrical shock wave segment captured by

a high speed camera. The original planar shock entered the facility at Mach 1.37. The green curves

are circles superimposed over alternate shock positions

the actual centre lay to the right and slightly below the intended centre. In addition, for

every wedge angle tested, the actual centre lay closest to the intended centre for the weakest

shocks. Once again, the reasons for this are not clear, but it supports the hypothesis that

there may be a slight misalignment in the walls.

In many of the photographs obtained, perturbation waves are visible in the flow behind the

shock waves. A large number of these perturbations were caused by a slight indent in the

top wall that was incurred during the laser cutting process, and are seen emanating from a

point near the top left corner of the photographs shown in Figure 7.11 (d) and (e). Other

perturbation waves are visible in regions of the flow, particularly behind the reflected shock.

These are generated by small imperfections in the walls of the facility and the gasket material

lining the wedge, and appeared to have no noticeable effect on the behaviour of the shock

wave.

The facility did show some sensitivity to small disturbances in the slit. For example, a small

(approximately 20 mm wide) piece of diaphragm material caught in the slit was enough to

cause the formation of a sharp corner in the shock front, and a pair of reflected shocks in the

flow behind the shock front. This is in line with the unstable nature of converging cylindrical

shocks, as first described by Perry and Kantrowitz (1951). This made it necessary to clear

the facility of any diaphragm material before each test.
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(a) Mach 1.52 shock, 15◦ wedge (b) Mach 2.03 shock, 15◦ wedge
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(c) Mach 1.55 shock, 30◦ wedge (d) Mach 2.05 shock, 30◦ wedge
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(e) Mach 1.53 shock, 50◦ wedge (f) Mach 2.08 shock, 50◦ wedge

Figure 7.25: Shock front locations captured from photographs for six tests (solid lines), with circles

fitted using a least squares approximation (dotted lines). Dimensions are in millimetres. The geometric

centre based on the wedge geometry is shown (+), together with the actual calculated centre (x) for

comparison
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The final point in assessing the shock quality was to compare the radii and Mach numbers

obtained in the facility to those predicted by the CFD simulations. Figure 7.26 shows how

these vary with time for a selection of tests. Since the Mach number of the shock in the facility

could not be accurately predicted beforehand, there is a slight difference in the conditions

between the CFD. Therefore, only cases for which there was close agreement for conditions

at the apex are shown. Although the radius-time curve for the Mach 1.52 experiments is

shown, the Mach number trend is not, as the relatively large difference in Mach number

at the apex (approximately 4%) between the experiment and CFD results makes a direct

comparison of Mach number meaningless. The method used to calculate the shock velocity

for the experiments is described in Appendix E.

The curvature of the radius-time curves caused by the accelerating shock is difficult to resolve

visually, but numerical differentiation of the results show that the Mach number of the shock

wave increases with time, as shown in Figure 7.26 (b). In the interest of having a fixed

reference Mach number for each test, the Mach number at the instant that the shock passes

the wedge apex is taken as the reference Mach number. This is also taken as the time datum.

It is important to note that numerical differentiation is sensitive to small uncertainties in the

radius measurements, resulting in an amplification of the uncertainty in the Mach number.

Figure 7.27 shows the variation of the Mach number of the shock as it propagates along the

wedge surface. The Mach number increases, but the slope of the trend decreases as the shock

moves further away from the wedge apex. The Mach number approaches a maximum value,

as predicted by equation (7.6).

7.5.2 Classification of reflection configurations

Several different reflection configurations were observed, and have already been described in

this chapter. This section discusses the criteria by which these reflection configurations may

be classified.

As with planar waves, if the reflected shock wave intersects the incident shock at some distance

away from the wedge surface, then the reflection is a Mach reflection (MR). If the incident

and reflected shocks intersect on the wedge surface, then the reflection is a regular reflection

(RR).

As mentioned in section 2.4.1, an MR may be classified as either a direct Mach reflection

(DiMR), or an inverse Mach reflection (IMR) based on whether the triple point trajectory

angle (χ) is directed toward or away from the wedge surface. Although the Mach stem of

an IMR for a planar shock wave is usually convex, this was not observed in the case of
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Figure 7.26: Comparison of the variation of radius (a) and Mach number (b) with time for exper-

imental and CFD results. The time datum is the point at which the shock has a radius of 100 mm,

and the reference Mach number is the Mach number at that time
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M0 = 1.52
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M0 = 1.86

M0 = 2.04

Figure 7.27: Variation of the incident shock Mach number with normalised distance along the

surface of the wedge

the reflection of a converging cylindrical shock segment. Rather, the shear layer, which is

concave for a DiMR, becomes convex, and the Mach stem gradually straightens. There is

also an intermediate form, a stationary Mach reflection (StMR), for which the triple point

trajectory is momentarily directed parallel to the wedge surface.

Regular reflections may also be further classified based on their history. RRs that are initiated

at the wedge apex are distinctly different from those formed after the termination of an MR

in that a residual shear layer and Mach stem are still present in the latter configuration.

Therefore, RR configurations formed by termination of an MR are classified as transitioned

regular reflections (TRRs).

A notable feature of RRs formed by converging cylindrical shock segments is that the reflected

shock consists of a convex segment, in which the curvature is caused by the shape of the

incident shock wave, and a concave segment, for which compressions generated by the corner

govern the shape of the reflected shock. The point at which the curvature of the concave

segment begins to reverse coincides with the furthest point reached by signals travelling

at the local speed of sound from the wedge apex. In a TRR, the reversal of curvature is

instantaneous, and is caused by a shock wave rather than the compressive signals.
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Figure 7.28 shows schematic diagrams of these reflection configurations for a converging

cylindrical shock wave segment of radius R1 and incident angle of β, generated by a wedge

inclined at an angle of θw.
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Figure 7.28: Schematic illustrations of the reflection configurations observed for converging cylin-

drical shock waves shock waves over a straight wedge. The labelled discontinuities are (i) incident

shocks, (r) reflected shocks, (m) Mach stems, (s) shear layers, and (c) compression waves
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7.5.3 Initial reflection configuration

For a planar shock wave encountering a wedge, the reflection configuration may be predicted

from the Mach number and angle of incidence by applying the sonic condition. If one considers

a cylindrical shock segment with a very large radius, one expects the initial behaviour to begin

to resemble that of a planar shock wave. Therefore, for any shock wave that has travelled a

distance up the wedge that is very small compared to the radius, yet still very large compared

to the shock thickness, there is no reason to expect the reflection configuration to differ from

that predicted by the sonic condition under the same conditions.

A shear layer will only form if the initial reflection is an MR, so the presence of a visible

shear layer in the flow may be used to classify the initial reflection type. However, it is not

always possible to resolve the shear layer of an MR close to transition. Because of this, the

best classification that can be made using the current results is to group reflections as either

an MR or an indeterminate reflection configuration which could be either an RR or a poorly

resolved MR. These indeterminate reflections will be grouped together and referred to as “no

visible shear layer” (NVSL) reflections.

Figure 7.29 shows the Mach number and wedge angle for each case in the experimental and

CFD results, and indicates whether or not a shear layer was visible. These are compared to

the sonic condition. For planar shock waves, one expects MR to occur for conditions lying

below the sonic condition curve, and RR to occur for conditions above it.

For all cases lying inside the RR domain for planar shock waves, no shear layers were observed.

There were some cases that fell within the MR domain for which there was no visible shear

layer, but this does not necessarily mean that these reflections are RR. It could simply mean

that the shear layers were too weak to be resolved.

From this, it appears as though the sonic condition does predict the initial reflection configu-

ration for converging cylindrical shock wave segments as well as planar shock waves. However,

further investigation is necessary to confirm this.

7.5.4 Mach reflection triple point trajectories and transition

If the initial reflection was regular, then it remained regular throughout the reflection process.

However, if the initial reflection was an MR, then transition to TRR occurred at some point

along the wedge. The shape and behaviour of the MR before transition to TRR are discussed

in this section.
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Figure 7.29: Observed reflection configuration at the wedge apex, classified as either a Mach reflec-

tion (MR) or “no visible shear layer” (NVSL)
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For those reflections with a visible shear layer, the location of the triple point in the experi-

mental and CFD results was tracked. Figure 7.30 shows the measured triple points for three

wedge angles, together with the triple point trajectories predicted by the theoretical model

described in section 7.2.

For wedge angles of 30◦ and below, the initial angle of the triple point trajectory agreed closely

with the angles observed for planar shock waves (as in Figure 2.3) for both the CFD and

experimental results. The approximate shape of the triple point trajectory in the experiments

is captured well by the model, as is the maximum Mach stem height. The transition point

predicted by the model for the 30◦ wedge lies within 5% of the transition point observed

in the experiments. For the 15◦ wedge, however, the end of the model was reached before

transition to TRR took place.

The triple point trajectories in the CFD results lie significantly higher than those of the

theoretical or experimental results. For the 15◦ wedge, the disagreement in Mach stem height

is approximately 20%, and increases to 60% for the 30◦ wedge. As a result, the height of the

Mach stem reaches a maximum later, and transition to TRR takes place much higher up the

wedge than observed in experiments. One possible reason for this could be that the resolution

of the CFD was not sufficient to accurately model the flow in the immediate vicinity of the

triple point. Because of this, care should be taken when taking quantitative measurements

from the CFD results. Qualitatively, however, the general shape of the triple point trajectory

measured in the CFD resembles that of the experiments and theoretical model.

For the 40◦ wedge, the triple point remains very close to the surface, as may be seen in

Figures 7.14, 7.15, and 7.21. In the experimental results, this led to the uncertainty in the

measured Mach stem height being larger than the Mach stem height itself in some cases.

The trajectory predicted by the theoretical model appears to lie above the actual observed

transition point at this angle, and the model overestimates the transition point by between

10% and 20%. For the 45◦ wedge, the presence of a shear layer in the flow suggests that the

initial reflection was an MR, but it is not possible to discern the height of the Mach stem

due to the resolution of the results. No comparison with the theoretical model was made for

this angle. This is because the model, being based on Whitham’s ray-shock theory, predicts

a triple point trajectory for all wedge angles, even those for which the initial reflection falls

within the RR domain. Therefore, the theory is not applicable for large wedge angles that

lie in or close to the RR domain.

The theoretical model made the assumption that the Mach stem would remain straight and

perpendicular to the wedge throughout the reflection process. However, the Mach stems
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Figure 7.30: Predicted trajectories of the triple points for three different Mach numbers and wedge

angles
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Figure 7.30: (cont.) Predicted trajectories of the triple points for three different Mach numbers and

wedge angles

observed did begin to tilt forward, particularly as transition was approached. This tilting is

clearly visible in Figure 7.10(c) and (d).

7.5.5 Effect of initial radius

When a planar shock wave propagating into stationary air encounters a straight inclined

wedge, the reflection pattern is largely independent of the size of the wedge, since there is

no way for information from the end of the wedge ahead of the shock wave to reach the flow

behind the shock wave. As a result, the reflection pattern that forms remains self-similar,

and the scale of the reflection pattern varies linearly with time.

It has already been established that the reflection pattern formed when a converging cylin-

drical shock segment encounters a straight wedge does not remain self-similar with time.

Instead, it varies as the shock wave propagates along the wedge. However, it has not yet

been established whether the shape of the reflection depends on the initial radius of the

shock wave.
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The theoretical models developed in sections 7.2 and 7.1 predict that the shock wave be-

haviour will depend only on the ratio of the current shock radius to the radius at the apex,

and not on the actual values of these radii.

Although only a single radius was tested in the experiments, CFD simulations were carried

out at various angles for 50 mm, 100 mm, 200 mm, and 400 mm radii at the wedge apex.

Contours of constant density are shown for two times for each of these radii in Figure 7.31.

(a) r0 = 50 mm, t = 70 µs (b) r0 = 50 mm, t = 80 µs

(c) r0 = 100 mm, t = 140 µs (d) r0 = 100 mm, t = 160 µs

(e) r0 = 200 mm, t = 280 µs (f) r0 = 200 mm, t = 320 µs

(g) r0 = 400 mm, t = 560 µs (h) r0 = 400 mm, t = 640 µs

Figure 7.31: Comparison of contours of constant density for a shock encountering a 30◦ wedge with

a Mach number at the apex of 1.69, for various initial radii

The results for the different radii are almost identical, not only in terms of the shock wave

positions and angles, but even in terms of the exact location of density contours. This was

true for all combinations of apex Mach number and wedge angles simulated. However, the

simulations were carried out using an inviscid model, and incorporation of a viscous model

may introduce some degree of scale dependence.
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In addition, experiments involving a range of apex radii should be carried out under a range

of conditions in order to evaluate whether or not the radius at the apex has any effect on the

resulting triple point trajectory, or the MR→TRR transition point.

7.5.6 Post-reflection behaviour

Figures 7.32 to 7.35 show contours of constant density from the CFD results for times after

the original shock wave is completely reflected by the wedge. Note that the images have been

rotated from the position shown in Figure 7.18 so that the wedge lies horizontal and the top

wall is the vertical edge on the right of each image.

The flow pattern formed after the reflection of the incident shock off the 60◦ wedge is shown

in Figure 7.32. Since the initial reflection was regular, a single shock wave is present, and

there are no curvature discontinuities along the shock front. There are, however, two distinct

regions behind this shock. In the first region, the pressure varies as pressure waves generated

at the corner travelling at the local speed of sound pass through the flow. The shock wave

in this region is convex. The flow in the second region contains flow which the corner signals

have not yet reached. The pressure in this region is approximately constant, and the shock

wave in this region is concave.

After some time, the corner signals are reflected off the top wall, resulting in compression

waves which travel from right to left. The manner in which the concave portion of the shock

wave accelerates relative to the convex segment causes the shock to begin to bulge outward.

The compression waves begin to collect, forming a sharp “kink” in the shock front. The

compressions will eventually form a reflected shock wave, and the bowed shock segment at

the top wall will become the Mach stem of an MR. This bears striking similarity to the

behaviour of a planar shock reflected from a cavity, as observed by Sturtevant and Kulkarny

(1976). In particular, it is remarkably similar to the behaviour shown in Figure 2.11 (d).

For the 40◦ wedge, a TRR is formed. Therefore, the corner signals are trapped behind the

Mach stem, which travels from left to right in Figure 7.33 (a). Ahead of the Mach stem,

there is a region of uniform pressure for which the shock front is concave, and behind the

Mach stem, the shock is convex and the pressure varies. This Mach stem is reflected off the

top wall, producing a region of very high pressure, as seen in Figure 7.33 (b). The pressure

in this region dissipates as the shock continues to propagate.

Similar behaviour is observed for the 30◦ wedge, although the shear layer is more prominent

in the high pressure region. This shear layer interacts with the top wall, and eventually meets

117



(a) t = 50 µs

(b) t = 100 µs

(c) t = 140 µs

Figure 7.32: Contours of constant den-

sity for a the post-reflection behaviour

of a shock wave after encountering a 60◦

wedge with a radius of 100 mm and Mach

number of 1.46 at the apex

(a) t = 100 µs

(b) t = 150 µs

(c) t = 200 µs

Figure 7.33: Contours of constant den-

sity for a the post-reflection behaviour

of a shock wave after encountering a 40◦

wedge with a radius of 100 mm and Mach

number of 1.46 at the apex
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(a) t = 160 µs

(b) t = 200 µs

(c) t = 240 µs

Figure 7.34: Contours of constant density

for a the post-reflection behaviour of a shock

wave after encountering a 30◦ wedge with a

radius of 100 mm and Mach number of 1.46

at the apex

(a) t = 200 µs

(b) t = 250 µs

(c) t = 300 µs

Figure 7.35: Contours of constant density

for a the post-reflection behaviour of a shock

wave after encountering a 15◦ wedge with a

radius of 100 mm and Mach number of 1.46

at the apex
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the remnants of the original shear layer near the wedge surface, which has decayed into a

mature Kelvin-Helmholtz instability, as seen in Figure 7.34 (b) and (c).

The shear layer formed in the reflection of the 15◦ wedge behaves quite differently. The

reflection of the TRR Mach stem off the top wall generates sufficiently high pressures that a

portion of the shock front propagates at velocities that are supersonic relative to the velocity

of the flow behind it. Both the upper and lower potions of the shear layer begin to wrap up

into a vortices. Figure 7.36 shows some of the features that are present in the high pressure

region. Over time, the primary reflected shock weakens, and the reflected Mach stem and

the new Mach stem approach a single expanding cylindrical shock front.

Wedge

T
op

W
all

R1

M

RM

S1

V1

S2

V2
S0

R1 Primary reflected shock

RM Reflected Mach stem

M New Mach stem

S0 Original shear layer

S1 Upper shear layer

S2 Lower shear layer

V1 Upper vortex

V2 Lower vortex

Figure 7.36: Schematic diagram of the vortex structures formed behind the reflected Mach stem at

low wedge angles
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8. Conclusions and

Recommendations

A facility that is capable of producing shock waves of arbitrary profile in a controllable

and repeatable manner was designed, manufactured, and installed onto an existing shock

tube. The facility was used in conjunction with CFD simulations to study the propagation

of arbitrarily-shaped shock waves, and the reflection of converging cylindrical shock wave

segments. The conclusions drawn from these studies are summarised in this chapter, followed

by recommendations for future work.

8.1 Propagation of arbitrarily-shaped shock waves

A brief CFD study looked at the propagation of four shock wave shapes, each consisting of

a concave cylindrical arc spanning a set angle, placed between two straight shock segments.

Although a concave cylindrical shock segment on its own decreases in radius, it was found

that the presence of the straight segments caused the radius to increase along the majority

of the shock front. The decrease in radius was limited to the two points at which the straight

and curved segments were joined. Over time, a series of compressive waves built up behind

these two points, eventually resulting in the formation of a pair of reflected shocks behind

the shock front.

The propagation of shock waves consisting of both concave and convex segments was then

studied numerically and experimentally. Two profiles were tested — the first consisting of

two 90◦ arcs, one concave and one convex, arranged in an S-shape between a pair of straight

segments. The second profile was obtained by replacing the two arcs with sharp 90◦ corners.

Several difficulties were encountered when modelling the sharp convex corner in the simula-

tions. There is a singularity at the corner which produced numerical artefacts, and in many
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cases caused the calculation to diverge. This was overcome by using a relatively fine initial

mesh, and a very small time step at the beginning of the simulation.

There was excellent agreement for the upper triple point locations obtained in the CFD and

experiments at Mach 1.4, but there was a slight discrepancy for the Mach 1.2 shock waves.

This may have been caused by the fact that three-dimensional effects from the slit remain

significant for longer at the lower Mach numbers. It was noted that the shock appeared to

originate at some point inside the slit, rather than at the leading or trailing edge.

For both profiles, the concave segment produced a pair of Mach reflections, and the convex

segment expanded, deflecting the triple point of the lower Mach reflection downward, and

bringing the Mach stem toward a vertical orientation. Over time, the differences between the

two profiles diminished, and both began to tend toward a planar shape.

8.2 Reflection of converging cylindrical shock segments

The behaviour of converging cylindrical shock wave segments encountering a straight wedge

inclined at various angles was investigated. Experiments were carried out for shock wave

segments with apex radii between 105 mm and 128 mm, apex Mach numbers between 1.52

and 2.08, and wedge angles between 15◦ and 50◦, and schlieren photographs were captured

using both single shot and high speed photography. Numerical simulations for apex radii

between 50 mm and 400 mm, apex Mach numbers between 1.26 and 2.13, and wedge angles

between 15◦ and 60◦.

The sonic condition for planar shock waves appeared to be a reasonable predictor of the

initial reflection configuration for the cylindrical shock wave segments. Although there were

some reflections in the MR domain that did not have any visible shear layer in both the

experimental and numerical results, this may simply be because the shear layer was too weak

to resolve.

Those reflections that were initially MR eventually transitioned to TRR at some point along

the wedge. A simple method for predicting the triple point trajectory and transition point

was developed.

Varying the inital radius had no effect on the resulting reflection in both the theoretical

analysis and the CFD. However, this has not yet been tested experimentally, and it is possible

that some dependence on the initial radius may be introduced through viscous effects.
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8.3 Recommendations for future work

This research has not been exhaustive by any means, and there remains plenty of room for

further work in all of fields studied. Some recommendations for improvements to the current

work and possible directions for future work are given below.

8.3.1 Facility design

Several improvements may be made to the design of the facility, both to improve its perfor-

mance, and to expand its capabilities. Some of these are listed here.

• In some of the tests involving converging cylindrical shock wave segments, the very high

pressures produced by shock focusing mechanisms caused the walls of the propagation

chamber to flex very slightly, allowing a tiny amount of air to leak past the gasket.

Although this leakage only occurred after the times of interest in the research for this

thesis, it may have a significant effect on studies involving later times after the focus.

This problem could be eliminated by reinforcing the walls of the facility.

• Keeping the facility clean and free of trapped diaphragm proved challenging. On at

least two occasions, the facility needed to be disassembled in order to removed pieces of

diaphragm material that could not be dislodged using compressed air. A diaphragmless

driver would help alleviate this issue.

• One way in which higher Mach numbers could be reached would be to modify the end

of the facility so that it may be sealed. This would be relatively easy to achieve, and

would allow the driven section of the shock tube to be evacuated using a vacuum pump

before each test. This would also allow the testing of gases other than air.

• Mounting one of the back outer plate on hinges would make it easier to open the

facility. This would allow models to be changed in less time, and make it easier to keep

the windows and test section clean.

8.3.2 Curved shock wave propagation

The study into shock wave propagation only investigated a limited range of shock wave

profiles, and only two of these were tested experimentally. Suggestions for future work include

the following.
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• An experimental investigation into the behaviours simulated in section 6.2 needs to be

carried out. A wider range of shapes also needs to be tested to isolate the effects of

initial radius, convergence angle, and the lengths of the straight segments.

• The compound shock waves tested were for a single angle and step size. These param-

eters may be varied to determine what effect they have on the shock wave shape.

• The lower wall of the facility may be raised so that it is in view of the windows. Although

this would result in a smaller test section, it would allow the interaction between the

lower Mach reflection and the bottom wall to be studied. The resulting behaviour could

be compared to that observed in the CFD simulations.

8.3.3 Curved shock wave reflection

As with planar shock waves, there is an incredible range of details that may be explored.

Some of these are mentioned below.

• While the inviscid CFD and theoretical analysis suggest that the reflection is inde-

pendent of the radius of the shock at the apex, this still needs to be verified through

CFD using an appropriate viscous model, and more importantly, through experiments

involving different radii.

• Experiments were mostly carried out at angle and Mach number combinations that put

the initial reflection type into the Mach reflection domain. Although the CFD simula-

tions in the regular reflection domain suggest that transition occurs at approximately

the same angles and Mach numbers as for planar shock waves. This still needs to be

verified by experiment, possibly by testing slightly higher wedge angles.

• Use of shorter exposure times and a higher resolution would improve the accuracy of

the results. Use of a circular aperture, particularly for the single shot test, would reduce

some of the problems related to sensitivity being direction dependent. Alternatively,

the use of shadowgraph instead of schlieren photography could be explored.

• CFD simulations were carried out at fixed 5◦ intervals, which gives an overview of the

reflection domains present. However, this does not allow the transition lines to be

located with any meaningful accuracy. A much more detailed parametric study would

be needed in order to identify the location of the transition lines, and such a study

would likely encounter many of the same difficulties that have been encountered in

studying planar shock reflection domains (Ben-Dor, 2007).
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• The Mach number range was limited by the capabilities of the shock tube used. Because

of this, the strong Mach number range in which planar shocks exhibit transitional and

double Mach reflections was barely reached. Also, shock waves weaker than about Mach

1.5 could not be produced. Studies of curved shock reflection in these Mach number

ranges would be of great interest.

• A study into the pressures generated in the post-reflection focus at low wedge angles

would be of great interest.

• Further two-dimensional shapes, such as the reflection of parabolic or hyperbolic shock

waves could be tested. This would be challenging, as the shape of the shock front would

vary as it approaches the wedge apex.

• The test facility could easily be adapted to experimentally study shock wave diffraction

around corners of various angles, or the reflection of curved shocks off curved surfaces.

• The CFD analysis may be easily extended to study the reflection of converging spherical

shock waves off flat surfaces or cones by setting either the top or bottom walls as an

axisymmetric boundary.
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Appendix A. Modifications to

Existing Shock Tube Driver

The existing shock tube driver was a cylindrical pressure vessel with an internal diameter of

438 mm, and a length of 2000 mm. The ends are sealed by circular plates, one of which has

a 100mm wide rectangular cut out across which the diaphragm is placed.

In previous experiments carried out on the shock tube, the entire cylinder was pressurised,

and the gas was allowed to expand through the entire volume. The net result was that each

test required an excessively large volume of gas, requiring a long time to fill the driver before

each test, rapidly draining the reservoir of compressed air. More importantly, there were

some safety concerns regarding the energy of such a large volume of pressurised air.

Two possible solutions to this problem were proposed. The first was to manufacture a new

rectangular driver with the correct shape; however, this solution was dismissed due to both

the cost and the complications of obtaining certification for a rectangular pressure vessel.

The second solution was to manufacture D-shaped “inserts” which would occupy the space

inside the driver and reduce its capacity. This has the advantage that the driver does not

need to be recertified.

In order to fill the driver at the lowest cost possible, 25 mm thick pine planks with standard

widths of 152 mm and 230 mm were cut to width and fitted together with cold glue and

4.0 x 40 mm screws. The planks were then cut to a length of 1990 mm in order to allow

some clearance around the ends. The inserts were then sanded into the correct shape, and

varnished. Table A.1 gives the widths required to give the correct shape, and a diagram of a

cross section through the inserts inside the driver is shown in Figure A.1.

A 0.5mm thick steel sheet was attached with 4.0 x 40 mm screws to cover the inside faces

of the driver inserts, in order to prevent the wood from splintering with repeated use. The

inserts are held in place by four lengths of L25x25x5mm angle iron which are held in place
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Figure A.1: Cross section of the driver, showing the D-shaped driver inserts

Table A.1: Plank widths for the driver insert.

Planks (Total)

230 mm + 175 mm (405 mm)

152 mm + 230 mm (382 mm)

198 mm + 152 mm (350 mm)

75 mm + 230 mm (305 mm)

152 mm + 93 mm (245 mm)

152 mm (152 mm)

by ten M6 x 12 mm bolts through the end plates of the driver. The angle iron also serves to

maintain the 100mm gap between the two inserts.

In addition to these modifications, a 24mm diameter steel tube was attached to the side of

the driven section just downstream of the diaphragm. This allows the shock tube to vent

after a test, even if the test piece at the end of the shock tube completely closes the end of

the shock tube.
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Appendix B. Design Sizing

Calculations

Sizing calculations were carried out to ensure that the thickness of the profile plate and

window would be sufficient to withstand the pressures inside the facility, and that the bolts

would be strong enough to hold the facility to the shock tube. These calculations are described

in the following sections.

B.1 Profile plate thickness

The deflection of the profile plate needs to be minimized to reduce any deformation of the

slit shape. The worst case for the profile will be when it is completely closed. This can be

modelled as a rectangular plate with clamped edges, with the pressure behind the reflected

shock acting on one side of the plate, and the atmospheric pressure on the other side.

Roark and Young (1975) gives the maximum stresses in a rectangular plate with all edges

fixed. The maximum stress in the plate will be along the edge, and is given by

σ =
−β1qb2

t2
(B.1)

and the maximum deflection in the centre of the plate is given by

y =
αqb4

Et3
(B.2)

where q is the load per unit area, b is the length of the shorter of the two sides, E is the

Young’s modulus of the plate, and t is the plate thickness. α and β1 are constants that

depend on the plate’s aspect ratio. Values of these constants are tabulated in Table B.1.

If the driver is operated at its maximum operating pressure of 1000 kPa with an atmospheric

pressure of 83.5 kPa, equation (2.8) predicts that the generated shock wave will have a Mach
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Table B.1: Constants for maximum stress formula in a flat rectangular plate with all edges fixed

(Roark and Young, 1975)

a/b 1.0 1.2 1.4 1.6 1.8 2.0 ∞
α 0.0138 0.0188 0.0226 0.0251 0.0267 0.0277 0.0284

β1 0.3078 0.3834 0.4356 0.4680 0.4872 0.4974 0.5000

number of 1.7. Once the shock has reflected off of the profile plate, a shock of this strength

will produce a maximum pressure on the profile plate of 850 kPa.

The profile plate is to cover the exit of the existing shock tube, which is a rectangle 100

mm wide, with an aspect ratio of 4.5. Constants corresponding to an aspect ratio of ∞ from

Table B.1 were used. These constants would overestimate the maximum stress and deflection,

resulting in a conservative design. The plate is made of steel, which typically has a Young’s

modulus of 200 GPa (Shigley et al., 2004). Substituting these values into equations (B.1) and

(B.2) give the maximum stresses and deflections for various plate thicknesses, as tabulated

in Table B.2.

Table B.2: Maximum stresses and deflections in the profile plate for various thicknesses

Thickness Maximum stress Maximum deflection

5 mm 170.0 MPa 96.6 µm

10 mm 42.5 MPa 12.1 µm

15 mm 18.9 MPa 3.6 µm

20 mm 10.6 MPa 1.5 µm

The stresses in the plate are relatively low for plates of 10 mm and above. For a 10 mm plate,

the deflection is approximately 0.1% of plate width, whereas the deflection of a 15 mm plate

is just 0.02% of the plate width.

For this reason, and to allow some clearance for the small outer plate to be removed, 15 mm

was chosen as the thickness of the profile plate.

B.2 Bolt sizing

The existing end section for the shock tube is attached to the rest of the shock tube by ten

M14 bolts. At least three of these bolts would need to be removed in order to attach the

apparatus. It is desirable that the same bolts be used, although the existing holes in the

shock tube are large enough that M16 bolts may be used if necessary.
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Once again, applying a constant 850 kPa pressure in the shock tube will result in a maximum

load of 38.25 kN on the profile plate, or a load of 5.46 kN on each bolt. In addition to this,

the bolts carry a preload from the initial tightening. This preload may be estimated from

the torque applied to tighten the bolt. Shigley et al. (2004) gives the preload as

Fi =
T

Kd
(B.3)

where T is the torque applied, K is the torque coefficient, and d is the nominal diameter of

the bolt. Using a torque constant of 0.2, bolt diameter of 14 mm, and a rough estimate of

the torque of 60 Nm, a preload of 21.4 kN is obtained. The maximum load on each bolt is

thus 26.9 kN, and with a tensile stress area of 115 mm2, this results in a maximum tensile

stress of 234 MPa.

Bolts of property class 8.8 are used. These bolts have a proof strength of at least 600 MPa

and an ultimate tensile strength of at least 830 MPa (Shigley et al., 2004). This gives a safety

factor under static loading of 2.6.

However, the bolts are loaded and unloaded during each test, and thus the effect of fatigue

needs to be considered. Shigley et al. (2004) uses the Goodman criterion to calculate the

safety factor of a bolt under fatigue loading, producing the following formula:

nf =
2Se (SutAt − Fi)
P (Sut + Se)

(B.4)

where Se is the endurance strength, Sut is the ultimate tensile strength, At is the tensile

stress area, and P is the external load applied to the bolt. In this case, this results in a safety

factor for fatigue of 3.6.

It was therefore concluded that seven M14 bolts would be adequate for holding the apparatus

onto the shock tube.

B.3 Viewing windows

The quality of the viewing windows is a critical factor in ensuring the accuracy of schlieren

photographs obtained from the apparatus. Foremost amongst the requirements for the cho-

sen glass are a low dispersion, low refractive index, and good mechanical properties. The

borosilicate glass Schott BK7 has the ideal properties for the viewing windows required. A

circular window was chosen for the design to avoid stress concentrations in corners. This is

especially important considering the brittleness of glasses in general, and their susceptibility

to sudden failures, and that in the case of shock focusing, high pressures can be obtained.
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For the purposes of sizing, the glass window is modelled as a rigidly supported circular

plate with an evenly distributed loading equal to the maximum internal pressure expected

in the apparatus. Since the glass will be relatively thick, the shear stress is assumed to be

negligible, and bending stress is assumed to play the primary role in fracture. The location

of the maximum bending stress depends on the properties of the glass, but will occur either

in the centre of the window, or along the edge where the frame clamps the window in place.

The magnitudes of the bending moments per unit circumference at these locations in a rigidly

supported circular plate under a constant pressure load are given by Roark and Young (1975)

as

Mc =
pr2 (1 + ν)

16
(B.5)

Mr =
pr2

8
(B.6)

where p is the pressure difference across the glass, r is the radius of the window, and ν is the

Poisson’s ratio. The subscripts c and r denote moments at the centre and edge respectively.

The stress due to bending in the glass is

σ =
6M

t2
(B.7)

where M is the maximum of Mc and Mr, and t is the plate thickness.

Fracture is assumed to occur by rapid unstable crack growth from a critical crack length, via

crack opening due to tensile loading, as is typical for brittle materials. In this case, fracture

is governed by the stress intensity factor. The Griffith-Irwin solution for the stress intensity

factor is given by Ewalds and Wanhill (1985) as

KI = σ
√
πa (B.8)

where a is the depth of a crack in the surface of the glass, and failure occurs if

KI > KIC (B.9)

where KIC is refered to as the fracture toughness.

Doyle and Kahan (2003) gives the fracture toughness of BK7 glass as 774 psi
√

in (0.85

MPa
√

m) and Präzisions Glas & Optik (2010) gives a Poisson’s ratio of 0.206.

The largest window that may be accommodated by the design has an outer diameter of 350

mm. However, a frame would need to overlap this by 10 mm in order to clamp the window

in place. This would leave an inner radius of 165 mm.

As in the previous sections, it will be assumed that a constant pressure of 850 kPa acts on

the glass, with an atmospheric pressure of 83.5 kPa on the other side. Although it is possible

that focussing phenomena may result in pressures higher than this over a small portion of the

137



window, assuming a lower constant pressure is still conservative, as any pressures the glass

does experience would be transient and would dissipate quicker than the glass would be able

to respond.

Allowing for an initial crack length of 0.5 mm, the minimum thickness of the glass required

to prevent rapid unstable crack growth may be found using an iterative method. Glass

with a thickness of 28 mm was found to be suitable, although difficulties were encountered

when cutting glass to this thickness. Glass with a thickness of 33 mm was available, which

would give a maximum stress around the circumference of 14.4 MPa. This would allow the

maximum initial crack size to be increased to 1 mm, which would be easier to find during a

visual inspection of the glass.

The final window specifications are given in Table B.3.

Table B.3: Window specifications

Material BK7 Glass

Diameter 350 mm

Thickness 33 mm

Chamfer 3 mm
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Appendix C. Engineering Drawings

The following pages contain engineering drawings of the apparatus described in chapter 5.

They have been divided as follows:

C.1 Assembly drawings page 140

C.2 Part drawings for the converging shock profile page 142

C.3 Additional wedges for the converging shock profile page 151

C.4 Part drawings for the compound shock profile page 156
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C.1 Assembly drawings

Figure C.1: Shock wave focusing facility - Assembly view
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Figure C.2: Shock wave focusing facility - Exploded view
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C.2 Part drawings for the converging shock profile

Figure C.3: Engineering drawing of the large window plate
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Figure C.4: Engineering drawing of the small window plate
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Figure C.5: Engineering drawing of the propagation plate for a 450mm initial radius converging

shock
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Figure C.6: Engineering drawing of the 30◦ test wedge
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Figure C.7: Engineering drawing of the profile plate for a 450mm initial radius converging shock
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Figure C.8: Engineering drawing of the top spacer plate
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Figure C.9: Engineering drawing of the bottom spacer plate
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Figure C.10: Engineering drawing of the window frame
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Figure C.11: Engineering drawing of the outer window clamp
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C.3 Additional wedges for the converging shock profile

Figure C.12: Engineering drawing of the 15◦ test wedge
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Figure C.13: Engineering drawing of the 40◦ test wedge
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Figure C.14: Engineering drawing of the 45◦ test wedge
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Figure C.15: Engineering drawing of the 25◦ test wedge
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Figure C.16: Engineering drawing of the 50◦ test wedge
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C.4 Part drawings for the compound shock profile

Figure C.17: Engineering drawing of the parallel wall propagation plate
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Figure C.18: Engineering drawing of the sharp compound shock profile plate
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Figure C.19: Engineering drawing of the rounded compound shock profile plate
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Figure C.20: Engineering drawing of the sharp compound shock backing plate - upper portion
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Figure C.21: Engineering drawing of the sharp compound shock backing plate - lower portion
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Figure C.22: Engineering drawing of the rounded compound shock backing plate
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Figure C.23: Engineering drawing of the profile plate end inserts
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Appendix D. Changing the Facility

Configuration

The facility consists of four plates and an optional test model. The four plates are the smaller

and larger outer plates (each fitted with a glass window in a steel frame), a profile plate, and

a centre plate. There are three ways in which the configuration may need to be changed -

these are, in increasing order of complexity, changing the test model, changing the profile

plate, and changing the centre plate.

The procedures for changing the configuration are outlined below. Changing the centre plate

requires the complete disassembly of the facility, whereas changing the test model may be

done without removing the facility from the shock tube. The profile plate may be changed by

following the disassembly procedure up to step 8, and then following the assembly procedure

from step 7.

Whenever the facility is open, it is a good idea to take the opportunity to clean away any

dust that may have settled on the windows.

D.1 Changing the test model without disassembly

1. Prepare the new test model by lining the sides with paper gasket. Use double-sided

wonder tape to ensure that it does not lift along edges exposed to the flow. Trim the

edges of the gasket so that it does not protrude into the flow.

2. Connect the hook from the overhead gantry to the tab of the smaller of the two outer

plates, and raise it until the chain is only just supporting the weight of the plate.

3. Loosen slightly, but do not remove, the seven bolts holding on the smaller outer plate.

The plate should not move, as it should be supported by the gantry.
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4. If any spacing plates were used, remove them, taking care to support them while the

bolts are being removed so that they do not slip down and scratch the windows.

5. Remove the remainder of the seven bolts, and move the outer plate away from the rest

of the facility. Support it so that it doesn’t swing.

6. Remove five of the six bolts attaching the test model to the larger outer plate. Loosen

the remaining bolt, but do not remove it.

7. Remove any bolts connecting the model to the centre plate.

8. Remove the final bolt, and remove the model from the facility. It is a good idea to

clean the windows at this point.

9. Place the new model in the facility, and use a single bolt through the outer plate to

hold it in approximately the correct position.

10. Insert and tighten all the bolts connecting the model to the centre plate, Making sure

that the edges of model are correctly aligned with respect to the centre plate.

11. Insert and tighten the six bolts connecting the model to the outer plate.

12. If necessary, adjust the O-ring cord, and carefully position the smaller outer plate.

13. Taking care not to scratch the windows or shift any of the gasket material, clamp the

smaller outer plate against the profile plate and compress the O-ring. Insert and tighten

at least two of the seven bolts to clamp the facility together.

14. If necessary, position the spacer plates (this may need to be done at the same time as

the previous step) and then insert and tighten the remainder of the seven bolts.

D.2 Disassembling the facility

1. Prepare a large table. Ideally this table should be located near the end of the shock

tube, and an overhead gantry should be positioned such that the facility can be moved

from the shock tube to the table.

2. Connect the hook from the overhead gantry to the tab of the larger of the two outer

plates, and raise it until the chain is only just taut.

3. Remove the seven bolts connecting the facility to the shock tube. If necessary, insert

temporary bolts to clamp the profile plate to the facility.

4. Move the facilty to the table. Position four blocks such that no bolt holes will be

obstructed, and lower the facility onto these.
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5. Remove the temporary bolts, and the seven bolts holding the smaller outer plate in

place.

6. Disconnect the hook from the larger outer plate, and connect it to the tab on the

smaller plate. Raise the small outer plate, and place it on the table next to the rest of

the facility. Take care not to scratch the windows.

7. Remove the O-ring cord from the groove of the profile plate.

8. Remove the profile plate.

9. Remove the spacer plates, if any.

10. Undo all of the bolts holding the test model in place, and remove the test model.

11. Remove the centre plate.

D.3 Assembling the facility

1. Prepare a large table. Ideally this table should be located near the end of the shock

tube, and an overhead gantry should be positioned such that the facility can be moved

from the table to the shock tube.

2. Lay the larger of the two outer plates with its smooth inner side facing upward. Use

blocks to support it at each corner, making sure that all bolt holes are not obstructed.

3. Prepare the centre plate and the test model (if required) by lining the sides with paper

gasket. Use double-sided wonder tape to ensure that it does not lift along edges exposed

to the flow. Trim the edges of the gasket so that it does not protrude into the flow.

4. Carefully lower the centre plate onto the outer plate, ensuring that the bolt holes line

up. If any part of the centre plate covers the window, take care while moving the plate

around to ensure that it does not scratch the window.

5. If a test model is being used, then position it now. Once it is positioned, insert the bolts

connecting it to the outer plate, but only tighten any of them until the bolts connecting

the test model to the centre plate have been tightened.

6. If any spacer plates are required between the two outer plates, position them now.

7. Lower the profile plate into position. Ensure that the edge of the slit is flush with the

back wall of the centre plate, and that all bolt holes are aligned. If necessary, insert

dowels to ensure that the profile plate cannot move relative to the centre plate. Use at

least two temporary bolts to hold it firmly in position. These temporary bolts will be

removed while the facility is being attached to the shock tube.
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8. Coat a 604mm long, 4mm diameter O-ring cord with vacuum grease, and insert it into

the groove on the side of the profile plate.

9. Lower the smaller of the outer plates into position, ensuring that the bolt holes in all

three layers are aligned. This is most easily done using an overhead gantry.

10. Taking care not to scratch the windows or shift any of the gasket material, clamp the

smaller outer plate against the profile plate and compress the O-ring. Insert and tighten

the seven M14 bolts which clamp the facility together.

11. After ensuring that all parts are either bolted or clamped in place, attach the hook of

an overhead gantry to the tab of the larger outer plate, and position the facility at the

end of the shock tube.

12. One at a time, replace the temporary bolts holding on the profile plate with bolts

passing through the end of the shock tube. Do not tighten these bolts completely

until all of the temporary bolts have been removed. If the profile plate was positioned

correctly, the O-ring should remain under compression throughout this procedure.

13. Insert the remainder of the seven bolts that connect the facility to the shock tube, and

tighten all of the bolts.
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Appendix E. Radius and Velocity of

a Converging Cylindrical Shock

Each experiment resulted in a series of between 8 and 14 images in which the shock front

was visible. The images were captured at 10 µs intervals, with a resolution of 320x192 pixels.

The following sections describe the process used to estimate the radius of the shock wave in

each image, and obtain the velocity from the change in radii of each frame.

E.1 Converting image coordinates to real coordinates

The location of any point in the image may be specified by the vertical and horizontal dis-

tances from the top left corner of the image, measured in pixels. These will be referred to as

the pixel coordinates of the point, and may be found using almost any major image editing

software. It is important to note that these coordinates are specified in a left-handed coor-

dinate system (that is, the horizontal axis is positive to the right, and the vertical axis is

positive downward), as opposed to the conventional right-handed coordinate system (in which

the horizontal and vertical axes are positive to the right and upwards). These pixel coordi-

nates need to be transformed into real coordinates, which have a common origin, orientation

and scale across all test cases.

The first step is to calculate the scale of the image, which may be used to convert measure-

ments in pixels to measurements in millimetres. Since the length of the wedge is known to be

72 mm for all of the wedges tested, the scale s may be calculated from the pixel coordinates

of the apex (xa, ya) and end of the wedge (xe, ye) in the image.

s =
72 mm√

(xe − xa)2 + (ye − ya)2
(E.1)
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Using this, any measured pixel coordinate may be transformed into a coordinate measured

in mm relative to the wedge apex as follows:

x′ = s(xi − xa)
y′ = −s(yi − ya)

(E.2)

where (xi, yi) is the pixel coordinate in the image to be transformed. Note the negative sign

in the equation for y′, which transforms the left-handed coordinate frame used in the image

to a more conventional right-handed coordinate frame.

The image is aligned with the wedge, but it is convenient to rotate the coordinate frame such

that the centre lies on the x-axis using the transformation[
x

y

]
=

[
cos(θW + θt) − sin(θW + θt)

sin(θW + θt) cos(θW + θt)

][
x′

y′

]
(E.3)

where θW is the angle of the wedge, and θt is the tilt of the image, which may be calculated

from the coordinates of the apex and end of the wedge using

θt = arctan

(
ye − ya
xe − xa

)
(E.4)

The origin of the final coordinate frame (x, y) is located at the wedge apex, and the x-axis is

aligned with the bottom wall of the test chamber, as shown in Figure E.1.

xi

yi

y

x

Wedge

B
ottom

wall

Image boundary

Figure E.1: Transformation from the original image coordinates (xi, yi) measured in pixels from the

top left of the image, to real coordinates (x, y) measured in millimetres from the wedge apex

E.2 Circle fitting and radius estimation

Initially the radius in each image was estimated by fitting a circle to three points taken across

the visible shock front. However, due to the uncertainty in the measurements, the results
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from this method showed some sensitivity to the choice of the three points, particularly for

the early and later images in each set, in which a smaller portion of the shock front was

visible. A method that used multiple points from all of the available images for each test

case was developed, which minimized the sensitivity to the chosen points.

The method makes the assumption that the shock fronts in all images from a particular

experiment share a common centre. It uses an iterative process to make gradual improvements

to an initial guess of the circle centre until the sum of the squares of the errors in radius

estimations for all images of that shock front is minimized. The time required to compute

the centre depends strongly on the quality of the initial guess.

E.2.1 Initial guess

A good approximation of the initial guess of the common centre for a particular case is to

find the centroid of the centres predicted for each image using a three point method.

The equation for a circle is

(x− xc)2 + (y − yc)2 = r2 (E.5)

where (xc, yc) is the centre of the circle, and r is the radius.

Substituting in three points (x1, y1), (x2, y2), and (x3, y3) produces three equations. By

eliminating r and expanding, the following expression for the circle centre may be derived:[
xc

yc

]
=

[
2(x2 − x1) 2(y2 − y1)
2(x3 − x1) 2(y3 − y1)

]−1 [
x22 + y22 − x21 − y21
x23 + y23 − x21 − y21

]
(E.6)

This will give a different centre for each frame. The initial guess of the centre may then be

calculated by averaging all of these centres:

xc =
1

n

n∑
i=1

xc,i

yc =
1

n

n∑
i=1

yc,i

(E.7)

E.2.2 Radius estimation and error

For any given centre, the radius of the shock in each image may be estimated by minimizing

the sum of the squares of the errors of multiple points along the shock front. It is important
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to choose an optimal number of points at which to evaluate the error. Having too many

points inflates the error due to the uncertainty in the measurements, whereas having too few

points makes the solution sensitive to which points were chosen. After some trial and error,

it was decided that points spaced roughly 20 pixels apart were optimal. Since at least three

points per image were necessary to calculate the initial guess, this meant that shock fronts

shorter than 40 pixels were excluded from the analysis. However, the shock fronts in some

images were long enough to provide as many as 18 points. The varying number of points

causes the circle fit to be biased towards images in which a larger portion of the shock front

is visible, but this is not necessarily an undesirable property.

Given a circle centre (xc, yc), the radius of the shock in a particular image may be found by

finding the radius for each image ri that minimizes the error function Ei(ri) for that image.

Ei(ri) =
m∑
j=1

(rj − ri)2 (E.8)

where m is the number of points used, and rj is the distance of a particular point (xj , yj)

from the centre, given by

rj =
√

(xj − xc)2 + (yj − yc)2 (E.9)

The error function Ei(ri) may be minimised by solving

dEi(ri)

dri
= 0 (E.10)

where the derivative may be approximated numerically using the central difference formula

dEi(ri)

dri
≈ Ei(ri + ∆ri)− Ei(ri −∆ri)

2∆ri
(E.11)

The value of ri that satisfies equation (E.10) may then be calculated using any appropriate

numerical scheme. In this case, the bisection method was used to quickly determine ri to

within 10−6 mm for each image in a set.

The total of the squared errors for all images in a set for a given centre is then given by

E(xc, yc) =

n∑
i=1

Ei(ri) (E.12)

or

E(xc, yc) =
n∑
i=1

m∑
j=1

(rj − ri)2 (E.13)
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E.2.3 Improved estimation of the circle centre

The objective is to find the circle centre that minimizes the error function E(xc, yc) given by

equation (E.13). This may be done using a modified gradient descent method. Any guess

may be improved by moving a short distance in the direction of decreasing gradient.

Therefore, given a guess ~xi = (xc, yc), a better guess ~xi+1 may be calculated from

~xi+1 = ~xi + δ~n (E.14)

where δ is the step size, or the distance by which the point is to move, and ~n is a unit vector

in the direction of decreasing gradient, and is given by

~n =
−∇E(~xi)

|∇E(~xi)|
(E.15)

where ∇ =
(
∂
∂x ,

∂
∂y

)
is the gradient operator. The components of the gradient were approx-

imated using a simple central difference scheme as follows:

∂

∂x
E(x, y) ≈ E(x+ h, y)− E(x− h, y)

2h

∂

∂y
E(x, y) ≈ E(x, y + h)− E(x, y − h)

2h

(E.16)

where h is a small step size, in this case taken to be 10−8 mm.

Initially, a step size δ of 10 mm was used. If application of equation (E.14) results in an

increase in the error function E(xc, yc), the time step has overshot the minimum, indicating

that the step size was too large. In these cases, the guess is discarded, δ is halved, and a new

guess is calculated using the reduced step size.

The process is repeated until δ becomes sufficiently small, or the change in the total squared

error becomes negligible over several iterations.

Once the process is complete, the radii of the shock fronts in each image are computed using

the final circle centre using the process described in section E.2.2.

E.3 Calculating the shock velocity

The average shock velocity between any two frames is given by

v =
∆r

∆t
(E.17)
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where ∆r is the change in radius between the two frames, and ∆t is the time interval between

the frames. This average velocity approximates the instantaneous velocity of the shock at

the midpoint of the two frames with second order accuracy.

The images are captured at 10 µs intervals, and shock velocities are typically between 400

and 700 m/s. Therefore, in the worst case, the shock moves only 4 mm between frames. The

shock wave typically has a thickness of approximately three or four pixels, so the uncertainty

in any position measured from the image may be taken as two pixels. With an average image

scale of 0.225 mm/px, this corresponds to an uncertainty of 0.45 mm in any measured point.

This means that the distance that the shock travels between consecutive frames (and hence

the velocity, if it is assumed that the time interval is known exactly) may have an uncertainty

that exceeds 10%. However, if two frames separated by 40 µs are used, this uncertainty is

reduced to 2.5%.

Therefore, it is necessary to maximize the number of frames across which ∆r is measured,

in order to minimize the uncertainty in the shock velocity. The experiment that covers the

shortest time period covers an interval of 70 µs, so an interval of 60 µs was chosen for calculat-

ing the shock velocity. This has two advantages, in that the velocity calculated corresponds

exactly to an existing frame (rather than a time in between frames, as for 70 µs), and it

allows velocities to be calculated for at least two frames per case, which allows interpolation

to estimate the velocity at other points. The uncertainty in the velocity calculated with this

method is just 1.7%.
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