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ABSTRACT 

 

 

The Karoo Supergroup represents a highly complete sedimentary succession 
that was deposited in several basins throughout southern Africa during the late 
Palaeozoic and Mesozoic (Carboniferous-Jurassic). While research in the 
Lebombo-Tshipise Basin of southern Africa has largely focused on lithological 
description of Karoo sediments or structural features of the basin, little effort has 
been made to describe the palaeoenvironments recorded in the sediments, or the 
basin fill’s response to major tectonic or climatic events.  

To address palaeoenvironmental reconstruction, lithostratigraphic analysis 
resulted in defining 11 facies associations from the Tshidize, Madzaringwe, 
Mikembeni, Fripp, Solitude, Elliot and Clarens Formations in the Pafuri sub-basin 
of the Lebombo-Tshipise Basin. Twenty boreholes drilled in Kruger National Park 
by the Council for Geoscience in 1979 record largely stable and consistent 
deposition of the Tshidize, Madzaringwe and Mikembeni Formations during the 
Permian. The Mikembeni Formation thins dramatically southwards, whereas the 
overlying Triassic successions tend to wedge out to the east. Late Triassic and 
Jurassic sediments directly overlie Precambrian basement in the southernmost 
boreholes. Significant thickness differences between the western and eastern 
boreholes indicate a large fault, which likely represents a rift shoulder.  

The palaeoenvironments in this basin are similar to those of the Main Karoo 
Basin, but quantitative analyses suggest a more humid environment in the Late 
Triassic Elliot Formation. Sauropodomorph fossils validate assignment of 
formerly mapped Solitude Formation as actually being the Elliot Formation. 
Palaeosols in the Elliot are consistent with either Oxisols or Argillisols. Wet desert 
conditions, evidenced by burrows produced by invertebrate communities, and 
tectonic activity, suggested by seismites, persist into the Early Jurassic Clarens 
Formation.  
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Chapter 1: Introduction 
The assembly of Pangaea in the Late Carboniferous (~300 Ma) marked 

the formation of the last of numerous supercontinents in Earth’s history 

(Rogers & Santosh, 2003). Long established compressive tectonic 

regimes in the south of the supercontinent caused by shallow-angle 

subduction of the palaeo-Pacific plate produced the early Late Palaeozoic, 

6000km-long, Gondwanide Orogeny (Torsvik & Cocks, 2011). Several 

large basins, including the Main Karoo Basin of South Africa, the Paraná 

Basin of South America, the Bowen Basin of Australia, and the Beacon 

Basin of Antarctica, were formed during this orogenic event (Catuneanu et 

al., 1998).  

 

The Main Karoo Basin, exposed in the Free State, Mpumalanga, KwaZulu 

Natal, Western, Eastern and Northern Cape provinces of South Africa, 

hosts the Karoo Supergroup, a Late Carboniferous-Early Jurassic (~305-

180 Ma) sedimentary sequence (Johnson, 1996; Catuneanu, 1998; 2005; 

Tankard et al. 2009). The presence of economically valuable resources 

(i.e. coal, uranium, etc.) and a rich biostratigraphic record, including a 

diverse synapsid fauna, early dinosaurs, and crocodyliformes, have 

motivated numerous studies over decades, establishing the Karoo as one 

of the best studied basins in the world (Owen, 1854; Crompton & Charig, 

1962; Crompton & Jenkins, 1968; Raath, 1969; Turner, 1977; Kitching, 

1979; Kitching & Raath, 1984; LeRoux & Hambleton-Jones, 1991; Cadle 

et al., 1993; Johnson et al., 1996; Galton et al., 1998; 2005; Gow, 2000; 

Yates, 2003; Yates & Kitching, 2003; Oesterlen, 2005; Raath and Yates, 

2005; Rubidge, 2005; Reisz et al., 2005; Yates et al., 2004; Yates, 

2005;2007; Yates, 2008; Yates et al., 2010; Yates et al., 2011; Smith et 

al., 2012; McPhee et al., 2014).   

 

Understanding palaeoenvironment is integral to palaeobiology and 

economic resource studies, as climate directly affects development of 

natural resources (e.g. coal) and has been tied to patterns in biodiversity 
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(Erwin, 2009). Palaeoenvironmental change over the Triassic-Jurassic 

boundary is of special interest to many researchers, as this is a pivotal 

time in the Mesozoic, defined by one of the five largest extinction events in 

earth’s history. The subsequent faunal turnover in Gondwana produced 

dinosaurian and crocodylomorph radiation events and the emergence of 

true mammalians like Megazostrodon rudnerae from their cynodont 

ancestors (Crompton & Jenkins, 1968). New specimens and revision of 

early sauropods, theropods, and ornithischians from the Main Karoo Basin 

are elucidating the distribution and palaeobiology of basal dinosaurs 

(Crompton & Charig, 1962; Kitching, 1979; Galton et al., 1998; 2005; Gow, 

2000; Yates, 2003; Yates & Kitching, 2003; Barrett, 2004, 2009; Raath & 

Yates, 2005; Reisz et al., 2005; Butler et al., 2007; Yates, 2007; Yates, 

2008; Yates et al., 2010; Porro et al., 2011; Yates et al., 2011; McPhee et 

al., 2014).  

 

Many penecontemporaneously formed basins across southern and central 

Africa (see Figure 1), including the Lebombo-Tshipise Basin in north-east 

South Africa, contain Karoo equivalent formations and analogous fauna, 

flora, and economic deposits (Raath, 1969; Bordy 2000; Durand 1996, 

2001); yet these have received less overall attention than the Main Karoo, 

with most research directed at recording lithostratigraphy (McCourt & 

Brandl, 1980; Johnson, 1996; Brandl, 2002; Durand, 2012; Eriksson & 

Bordy, 2015). Over the past two decades, researchers have begun 

assessing palaeoenvironmental and palaeoclimactic conditions in these 

subsidiary basins (Bordy 2000; Bordy & Catuneanu, 2002; Bordy & 

Prevec, 2008; Bordy, 2008; Bordy et al., 2010a,b; Malaza et al. 2015). 

One of the difficulties in these studies is assigning stratigraphic patterns a 

climactic or tectonic cause (Jordan et al., 1988; Leeder et al., 1998; Bordy 

et al., 2004).  

 

The similar sedimentary sequences found in these basins were theorized 

to have been deposited through comparable genetic mechanisms 
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(Johnson 1996); however, as ideas of tectonic controls on sedimentation 

in southern Africa have evolved, interpretations of the tectonic drivers of 

deposition in these basins and the Main Karoo Basin have dramatically 

changed over the past few decades (Catuneanu et al., 1998; 2005; 

Turner, 1999; Bordy et al., 2004; Tankard 2009). 

 

This project aims to characterize the palaeoenvironments of the Lebombo-

Tshipise Basin in north-eastern South Africa, and compare these results to 

the Main Karoo Basin. Facies descriptions of the entire Karoo Supergroup, 

in addition to previous work published from  the Madzaringwe Formation 

(Malaza et al., 2015), and interpretation of stacking patterns preserved in 

twenty-one boreholes will allow for discussion of the allocyclic controls on 

stratigraphy within this endorheic basin. Quantitative analysis of the Elliot 

Formation is also compared to recently published work on the same 

formation in the Main Karoo Basin (Scisicio & Bordy, 2016). 

 
1.1 Formation and Break-up of Pangaea: Basin formation in Southern 
Africa  
Early workers initially regarded all southern African basins containing 

Karoo Supergroup rocks to have been filled by a contiguous set of 

depositional environments with differences caused by variable rates of 

sedimentation and subsidence across southern Africa (Rust, 1959; 1962; 

1975; Turner, 1975; Cole, 1992). Numerous explanations have been 

invoked by subsequent authors to account for these two variables which 

largely indicate an inversion of tectonic regimes from compressive during 

the Carboniferous and Permian to extensional in the Triassic and Jurassic.  

 

Turner (1999) envisioned a polyphase basin history for the earlier Cape 

and Karoo basins with extensional regimes returning in the Late Triassic-

Early Jurassic due to a thermal anomaly or hot spot activity linked to a 

mantle plume, in the same vein as research produced by Burke & Dewey 

(1973), Cox (1989), White & McKenzie (1989), and Hawkesworth et al. 
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(1999). Tankard et al. (2009) attribute varying stratigraphy to fault 

controlled subsidence of the rigid crustal blocks underlying the basin. The 

most common explanation, however, is that the Main Karoo Basin is a 

retroarc foreland basin, with accommodation driven by compression from 

the Cape Orogeny (Lock, 1978, 1980; Winter, 1984; de Wit et al. 1988; 

Johnson, 1991; de Wit & Ransom 1992; Tankard et al. 1992; Smith, 1993; 

SOEKOR, 1996; Catuneanu et al., 1998; 2005; Bordy et al., 2004; 

Johnson et al., 2006). This interpretation is not without contention: position 

of the inferred magmatic arc is lacking in geophysical evidence (Tankard 

et al., 2009); subsidence and forward modelling curves produced by 

Cloeting et al. (1992) and Pysklywec and Mitrovica (1999) are atypical for 

foreland basins; and the earliest dated deformation event in the Cape 

Orogeny is late Permian (261 ± 3–276 ± 5 Ma) from 40Ar/39Ar ages of 

muscovite in Cape Fold Belt shear zones (Hansma et al., 2016). Additional 

factors of foreland modelling have been invoked to explain changes in 

sedimentation including tectonic loading (e.g., Smellie, 1981, Johnson, 

1991; Mpodozis and Kay, 1992; Veevers et al., 1994; Catuneanu et al., 

1997; Catuneanu et al., 1998; Pysklywec & Mitrovica, 1999; Catuneanu & 

Elango, 2001), flexure of the lithosphere and a migrating stratigraphic 

hingeline (Catuneanu et al., 1998; 2005; Bordy et al., 2004), and dynamic 

loading of the overriding plate during subduction (Catuneanu et al., 2005), 

or a combination of these factors. Additionally, the role of weaknesses in 

the basement as a corollary to foreland modelling (Catuneanu, 2004) and 

as the sole control of basin formation (Tankard et al., 2009) have been 

suggested and explored.  

 

Regardless, most authors now recognize a combination of southern 

convergent and northern divergent tectonic stresses along Gondwanan 

margins generated accommodation space in southern Africa, resulting in 

synchronous but partitioned basin formation (Wopfner, 1991; 1994; 2002; 

Bordy & Catuneanu, 2001; Bordy, 2002 a,b,c; Catuneanu, 2004a,b; 

Catuneanu et al., 2005; Hancox & Götz, 2014). This tensional stress 
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propagated gradually south during the Late Carboniferous, while Karoo 

sediments were deposited in resultant graben and rift structures; therefore, 

extensional structures in the south are inferred as younger than central 

and northern structures (Bordy & Catuneanu 2002c). Catuneanu et al. 

(2005) has assigned southern African basins to three genetic zones: 

retroarc flexural foreland-related basins formed proximal to the Cape Fold 

Belt and extending to the south of the Kalahari basin; eastern 

rift/extensional basins in the Mid-Zambezi and north east to the Tanzania 

(Wopfner, 2002); and western sag basins in the Huab (Namibia), Angola 

and Democratic Republic of the Congo. However, accommodation in the 

fault-bounded basins at the northern margins of the foreland basin zone is 

thought to have been controlled by flexural subsidence during the 

Carboniferous and Permian (Catuneanu et al., 2005), and southward-

migrating extensional regimes subsequent to the Triassic (Hancox & Götz, 

2014). 

 

The Lebombo-Tshipise Basin is a combination of two basins: the east-

west trending Tshipise-Pafuri Basin, a fault-controlled depository 

approximately 300 km long and 100 km wide (Malaza et al., 2015), which 

is posited to have been connected to the Tuli Basin in the past; and the 

Lebombo Basin, a 600 km long north-south trending basin (Brandl, 2002). 

The Tshipise basin is thus situated on the Archean Limpopo Belt, between 

the Kaapval Craton to the south and the Zimbabwe Craton to the north 

(Watkeys, 1979; van Reenen et al., 1992; Bordy, 2000). The underlying 

Limpopo mobile belt has had a tumultuous tectonic history, and an 

extended period of quiescence and erosion persisted before the onset of 

Karoo sedimentation (Cox et al., 1965). This varied topography has 

resulted in irregular thicknesses of Karoo Supergroup outcrop throughout 

the basin (Cox et al., 1965; Bordy, 2000). 

 

Accommodation in this region was originally imputed to extensional 

tectonism from a failed western arm of a triple junction rift (Vail et al., 
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1969; Burke & Dewey, 1973), however, the genesis of rifting events is 

linked to Gondwanan breakup during the Middle Jurassic near the 

termination of Karoo basin development, and is a dubious driver for 

sedimentation and basin formation in this area (Catuneanu, 2005). Bordy 

and Catuneanu (2001), and Catuneau et al. (2005) contend that 

accommodation in the Limpopo area was primarily driven by flexural 

subsidence of the back bulge province of the Karoo foreland system 

during the deposition of Carboniferous and Permian strata. Evidence of 

extensional tectonism in the upper strata of the neighboring Tuli Basin 

implicates a change in tectonic regime as initial flexural pressure inverted 

to extensional during deposition of Beaufort strata (early-mid Triassic) due 

to southwards migrating extensional regimes generated by the Tethyan 

spreading (Catuneau, 1999; Bordy & Catuneanu, 2001; 2002 a; b; c; 

Catuneanu, 2004a; b; Catuneanu et al., 2005). Palynological data from the 

Karoo Supergroup also support complex, cryptic tectonism through 

evidence of hiatuses in deposition or erosion in parts of the basin 

(MacRae, 1988; Bordy, 2000). 

 

The basin fill has been described as horst and graben structures formed 

by extensional normal faulting, as the result of either rift or intracratonic 

thermal sag processes (Watkeys and Sweeny, 1988; Groenwald et al., 

1991; Johnson et al., 1996; Malaza et al., 2015). Thus, the drivers of the 

basins’ deposition and overall history remain difficult to synthesize and 

interpret.  

 

1.2 Palaeoenvironments and deposition of the Karoo Supergroup 
The Karoo Supergroup, a nearly continuous and remarkably complete 

sedimentary megasequence, is divided into the Carboniferous-Permian 

“Dwyka Group” (300-291 Ma), Permian “Ecca Group” (291-255 Ma), Late 

Permian-Early Triassic “Beaufort Group” (255-243 Ma), and the Late 

Triassic-Early Jurassic informally named "Stormberg Group" (230-180 Ma) 

(Catuneanu, 2004; Rubidge, 2005). This sequence is capped by the 
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Drakensberg basalts in west and central southern Africa, and the 

Lebombo Group basalts and overlying rhyolites over eastern and northern 

South Africa (Duncan and Marsh, 2006), which together mark the end of 

Karoo sedimentation around 180 Ma (Aldiss et al. 1984; Allsopp et al., 

1984; Fitch & Miller 1984; Hooper et al., 1993). In the Main Karoo Basin 

this megasequence unconformably overlies the Cape Supergroup, and 

Proterozoic and Archaen strata, while in the Lebombo-Tshipise Basin it 

directly overlies Precambrian crystalline basement (Tankard et al., 1992). 

 

The Dwyka Group of the Main Karoo Basin is comprised of mudrocks, 

gritty, pebbly sandstones, conglomerates and diamictites, which are 

divided into continental inlet valley facies associations formed on 

dissected uplands, and marine platform facies associations formed in the 

southern, submerged portion of the basin (Visser, 1986; Smith et al., 1993, 

Catuneanu et al., 2005). Extensive glaciation occurred in Late 

Carboniferous, and evidence of glaciers exists in the presence of NW-SE 

trending incised valleys in the Main Karoo basin’s northern margins (Visser 

and Kingsley, 1982) and deposition of dropstones, diamictites, sandy 

proglacial outwash fans, kame and esker deposits, and fluvially reworked 

subglacial tills (Smith et al., 1993; Catuneanu et al., 2005). Clast-poor 

diamictites, sandstones and laminated mudrocks representing glacial 

advances and retreats are interpreted to have formed subaqueously 

(Visser, 1986).  

 

The Tshidize Formation, the Dwyka representative in the Lebombo-

Tshipise Basin is a poorly sorted diamictite with argillacous and sandy 

matrix, with clasts from the underlying Nzhelele Formation of the 

Soutpansberg Group (McCourt & Brandl 1980). McCourt and Brandl 

(1980) interpreted this formation as fluvio-glacial in origin. Rocks from the 

nearby Tuli and Ellisras basins are interpreted as colluvial and glacial 

outwash alluvial and fluvial facies (Faure et al., 1996; Bordy & Catuneanu, 

2002c), derived from glacial lakes and rivers (Catuneanu et al., 2005). 
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The “Ecca Group” of the Main Karoo Basin is composed of mudrocks, 

siltstones, coal, sandstones and minor conglomerates (SACS, 1980; 

Cairncross 1987; Johnson et al. 1996; Johnson et al. 1997; Catuneanu et 

al., 2005) formed in a variety of continental and marine settings during a 

cool and wet climate (Smith et al., 1993; Catuneanu et al., 2005). The 

economically valuable coal deposits in these rocks are interpreted as the 

remains of peat marshes formed on sandy outwash braidplains and lobate 

deltas (Smith et al., 1993).  

 

The Madzaringwe and Mikembeni Formations (“Ecca Group” 

representatives) are composed of feldspathic and micaceous 

conglomerate and sandstone, siltstone, shale and coal deposited in fluvial, 

swamp, and lacustrine settings (McCourt & Brandl, 1980; Catuneanu et 

al., 2005; Durand, 2012; Malaza et al., 2013). The coal seams are mostly 

found in the Madzaringwe Formation and attain a maximum thickness of 2-

3 meters (McCourt & Brandl, 1980; Malaza et al., 2013).  

 

The Beaufort Group in the Main Karoo Basin includes a wide range of red 

to purple mudrocks and sandstones interpreted to have been deposited by 

fluvial processes during the Permo-Triassic (Smith et al., 1993; Catuneanu 

et al., 2005). The presence of desiccation cracks and pedogenic nodules 

suggest that these rocks were deposited during a semi-arid climate with 

seasonal rainfall on large alluvial plains (Smith, 1990; Smith et al., 1993). 

The spectacular synapsid fauna and abundant palynological and 

palaeobotanical studies make this group the best studied in terms of 

palaeoenvironment and palaeobiology (Rubidge et al., 1995; Van der Walt 

et al., 2010; Day et al., 2015; Gastaldo et al., 2005; Bamford, 1999; 2004; 

Tohver et al., 2015).   

 

The Beaufort-equivalent Fripp and Solitude formations in the Lebombo-

Tshipise basin are composed primarily of coarse-grained, feldspathic and 
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micaceous sandstones and associated floodplain and levee siltstones and 

mudrocks, and minor shale and coal (McCourt & Brandl, 1980; Brandl, 

2002).  

 

The Stormberg Group is composed of terrestrial mudrocks, siltstones and 

sandstones that comprise a fluvial-aeolian clastic succession (Eriksson, 

1979; Visser, 1984; Catuneanu et al., 1998, 2005; Bordy et al., 2004). The 

basal-most Molteno Formation is very coarse-grained and represents 

three, thick sedimentary wedges (Smith et al., 1993), marking renewed 

tectonic activity in the basin (Catuneanu et al., 2005). These braided river 

systems were eventually replaced by meandering fluvial environments of 

the lower Elliot Formation (Smith et al., 1993; Bordy, 2004b and c). 

Throughout deposition of the overlying Elliot Formation, perennial 

meandering fluvial environments disappeared as the environment became 

more arid; relatively stable river channels were replaced with wide, 

ephemeral rivers subject to flash floods, and development of calcrete-rich 

soil profiles (Bordy, 2004). In turn, this environment was drowned by erg 

dunes of the Clarens Formation, with ephemeral rivers and playa lakes 

occupying interdune areas (Smith, 1993; Johnson, 1996; Bordy, 2004b, 

2005). These palaeohabitats hosted early dinosaurs, including 

Massospondylus (Owen, 1854; Yates & Barrett, 2010), Coelophysis 

rhodesiensis (formerly Syntarusus; Raath, 1969, 1977), and 

Heterodontosaurus (Crompton & Charig, 1962), as well as the earliest 

mammals (Crompton & Jenkins, 1968; Kitching & Raath, 1984), and the 

earliest crocodylomorphs (Whetstone & Whybrow, 1983; Gow, 2000). 

 

In the Lebombo-Tshipise Basin, the “Stormberg Group” formations were 

originally named the Klopperfontein Sandstone, Bosbokpoort/Nyoka 

formations and the Clarens Formation (de Jager, 1983a; Brandl, 2002); 

however, Bordy and Eriksson (2015) recently subsumed the Bosbokpoort 

and Nyoka formations into the Elliot Formation (Table 1-1). These 
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mudrocks, siltstones and sandstones are interpreted to have formed from 

fluvial, overbank, and aeolian processes (Brandl, 2002; Durand, 2012).  

 

 
1.3 Climate Change: Desertification during the Triassic and Jurassic 
The nearly complete Karoo Supergroup sequence in the Main Karoo Basin 

provides an ideal record to study climate change over approximately 120 

million years. Climate is an important parameter in a number of studies; 

Catuneanu et al. (2005) rank it as the second most important allogenic 

control on sedimentation in Southern Africa after tectonism, and attribute 

the similarities of sequences within penecontemporaneous basins to 

climate, while other researchers have invoked climate to explain faunal 

diversity patterns in the upper “Stormberg Group” (Kitching & Raath, 1984; 

Tucker & Benton, 1982). The general trend of aridification from wet and 

cool climates recorded in Late Carboniferous Dwyka to increasingly arid 

and hot climates of the Triassic and Jurassic Elliot and Clarens Formations 

has been noted by many authors (Smith et al., 1993; Du Toit, 1954; Visser 

Table 1-1: Stratigraphic correlation of Karoo Supergroup formations and 
units in the present study 

Period Karoo 
“Groups” 

Main Karoo Basin Lebombo-Tshipise Basin KNP 
Boreholes 
Core Logs 

(Johnson et al., 1996) (McCourt & Brandl, 1980) 

Jurassic 

"Stormberg" 

Clarens Formation 

Clarens Formation  		

Tshipise Sandstone Member 
Cave 

Sandstone 

Red Rocks Member 

Red Beds 
Elliot Formation 

Bosbokpoort Formation            
(Elliot Formation; Bordy & 
Eriksson, 2015) 

Triassic 
Molteno Formation Klopperfontein Sandstone 

  

Permian 

"Beaufort" Solitude Formation 

"Ecca" 
Fripp Sandstone 

Mikembeni Formation 

Madzaringwe Formation 

"Dwyka" Tshidize Formation 

Carboniferous 
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& Botha, 1980; Eriksson, 1983; Keyser, 1966; Johnson, 1976; Visser & 

Dukas, 1979; Stavrakis, 1980; Tankard et al., 1982; Visser, 1991a,b).  

 

During the Mesozoic, this trend is understood to be primarily driven by the 

continent’s northward drift towards the tropics, as evidenced by 

palaeomagnetic data (Parrish, 1990; Scotese et al., 1999; Bordy et al., 

2004c; Catuneanu et al., 2005). At the end of the Triassic (200 million 

years ago), Southern Africa was positioned within the 60th southern 

parallel circle, but drifted nearly 10 degrees north by the end of the Early 

Jurassic (180 million years ago) (Reeves et al., 2004). This is reflected in 

the increasing prevalence of aoelian influences in deposition of the 

uppermost Elliot Formation (e.g., Botha, 1968; Le Roux, 1974; Visser & 

Botha, 1980; Eriksson, 1983, 1985; Smith & Kitching 1997; Bordy et al., 

2004c) 

 

While climate change is a major control on erosion and sedimentation, it is 

but one of many factors in basin histories and its effect on stratigraphy is 

often difficult to differentiate from tectonism. Research published by Bordy 

et al. (2004b) found that changes in palaeocurrent directions and sediment 

sources in the Elliot Formation of the Main Karoo Basin implicated that 

tectonism heavily impacted facies distributions and stratigraphic patterns 

along with climate change.  

 

Quantitative palaeoclimate reconstructions are one solution to teasing out 

tectonic vs. climatic origins of changes in stratigraphy. Palaeosols are the 

ideal candidate from which to collect this data, as they record the 

weathering conditions present at Earth’s surface at the time of formation 

(Sheldon & Tabor, 2009). Qualitative assignment of palaeosols to a 

palaeoenvironment (e.g., mollisol, entisol, etc.) and examination of 

authigenic clay, and other quantitative proxies (major element analysis, 

Chemical Indices of Alteration, etc.) can illuminate climatic conditions more 

directly than stratigraphic studies alone (Sheldon & Tabor, 2009).  
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1.4 Aims   

The foremost aim of this project is to produce the first lithofacies 

description and palaeoenvironmental analysis of the entire suite of Karoo 

equivalent rocks in the Lebombo-Tshipise Basin. Malaza et al. (2015) 

provided a lithostratigraphic overview of the Permian-aged Madzaringwe 

Formation from outcrop in the Tshipise sub-basin (middle of the Tshipise 

Basin), whereas outcrop from this project is located in the eastern-most 

Parfuri sub-basin (Hancox & Götz, 2014). These lithofacies are compared 

and correlated with those of the Main Karoo Basin.  

 

Palaeoenvironmental reconstruction is crucial to analyzing the past 

regional climate and interpreting climatic changes reflected in the 

landscape across southern Africa and through time. While a 

comprehensive qualitative study of all the palaeoenvironments present in 

the Karoo Supergroup of the Lebombo-Tshipise Basin would be ideal, we 

have focused on the Elliot Formation from the Stormberg Group to 

address climate change during the Triassic/Jurassic. The Elliot and 

Clarens Formations record an increasingly arid environment from the 

latest Triassic to the Early Jurassic (Eriksson, 1979; Smith et al., 1993) 

within the Main Karoo Basin. Of key interest in this study is whether these 

basins preserve similar palaeoenvironments, and if evidence of climate 

change is present in Lebombo-Tshipise Basin, and, if so, how it compares 

in terms of timing and extent to that of the Main Karoo. Quantitative 

analysis and qualitative assessment of clay minerals from palaeosol 

samples are compared to preliminary quantitative palaeoclimate data from 

the Elliot Formation of the Main Karoo Basin (Sciscio & Bordy, 2016).  

 

Recovery and examination of previously discovered sauropodomorph 

materials in the Lebombo-Tshipise basin (Durand, 1996; 2001) allows us 

to comment on different preservational biases of the Elliot Formation in the 

Lebombo-Tshipise and Main Karoo Basins and briefly discuss 
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palaeogeographic distribution and faunal trends. Newly discovered trace 

fossils from our field area are described and compared to published finds 

from the Main Karoo, Tuli, and the Lebombo-Tshipise basins (Bordy, 

2008).  

 

Using a combination of palaeoenvironmental models, sediment 

provenance analysis, stratigraphy and geological mapping, the Lebombo-

Tshipise Basin’s development is modelled and interpreted.	
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Chapter 2: Materials & Methods  
2.1 Stratigraphic Sections: 
Standard field techniques were employed to measure stratigraphic units, 

strike and dip, and sedimentary structures, including the use of a Jacob’s 

staff, measuring tape, brunton compass, and laser view-finder. 

Stratigraphic sections were measured and samples from the Lebombo-

Tshipise Basin were collected from two field areas: Red Rocks (KRR 

samples) and Makanya Hill (KDC and KDS samples), mapped in Figure 2-

1. Red Rocks is an historical stop on the Red Rocks Loop (S52 road), 

north of Shingwedzi camp that is accessible to park visitors. Makanya Hill 

is a more remote field site, accessible to visitors by guided hike from 

Nyalaland Trail camp in Kruger Park. The Lower Makanya Hill area is 

composed of discontinuous outcrops of the Karoo Supergroup in a dry 

wash, marked as the ‘Matsaringwe’ (Messina 1:250,000 Map, 1981), 

which exposes approximately 300-400 m of section across 12 km, though 

the heavy vegetation obscures the majority of potential outcrop.  
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Figure	2-1:	The	Makanya	Hill	and	Red	Rocks	field	localities	(indicated	by	white	boxes)	are	
located	in	the	Kruger	National	Park	(orange).	These	localities	crop	out	in	the	Pafuri	and	
Lebombo	sub-basins	of	the	Lebombo-Tshipise	Basin;	one	of	many	Karoo	Supergroup-
containing	basins	in	southern	Africa	(see	inset	map	for	Karoo	Basins	in	southern	Africa).	
Image	credit:	Google	Maps	2017.	

	

The stratigraphic section from Red Rocks represents approximately 18 m 

(see Figure 2-2), while the stratigraphic section from upper Makanya Hill 

covering the Elliot and Clarens Formations is a composite of two 

measured sections and represents approximately 180 m (see Figure 2-3).  
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Figure	2-2:	Stratigraphic	section	from	the	Red	Rocks	field	locality	(36K	326183	7436365),	
with	identified	facies	associations	(FA),	discussed	in	Chapter	3.1.1.	See	Figures	2-1	and	2-
4	for	general	locality	map.	
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Figure	2-3:	Stratigraphic	section	from	the	Makanya	Hill	field	locality	(S	22°	29.916,	E	31°	
03.612),	with	identified	facies	associations	(FA),	discussed	in	Chapter	3.1.1.	FA	VI	
represents	palaeosols,	and	associated	sites	P-A,	P-B,	and	P-C	(see	Table	2-1	for	GPS	
coordinates	and	samples	taken)	are	indicated	in	section.	Red	numbers	to	the	right	of	the	
scale	indicate	missing	or	unexposed	strata,	while	measurements	in	parentheses	
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represent	measured	section.	Numbers	left	of	stratigraphic	marker	represent	the	total	
measurement	(unexposed	+	exposed).	See	Figures	2-1	and	2-4	for	general	locality	map.	

 

Both sites were chosen for survey because they were known to have at 

least 10 meters of outcrop, and sauropodomorph fossils were known from 

Makanya Hill (Durand, 1996). We visited Makuya Reserve to collect 

additional data, but were unable to find suitable outcrop to measure 

section due to poor exposure. 

 

2.2 Kruger National Park Boreholes 
Outcrop observations are supplemented by logs of 20 boreholes, 

representing an average of 296 m of the Karoo Supergroup (individual 

boreholes are illustrated in Appendix A). Exploration of the basin fill of the 

Lebombo-Tshipise basin was undertaken by the Council for Geosciences 

in the late 1970s, facilitated by twenty-five boreholes drilled within Kruger 

National Park (see Figure 2-4 for borehole localities).  
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Figure	2-4:	Pafuri	sub-basin	field	localities	(indicated	by	white	boxes)	and	Kruger	
National	Park	borehole	localities	on	geological	map	(modified	from	Council	for	
Geosciences	1981	Messina	Map	1:250,000).	Inset	map	shows	these	field	localities	within	
the	Kruger	National	Park	(orange)	and	Lebombo-Tshipise	Basin	(blue).	
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The strata studied in these boreholes were incorporated with field 

descriptions of outcrop into the first general lithologic descriptions of the 

Karoo Supergroup in the Parfuri sub-basin (as identified by Hancox & 

Götz, 2014, Figure 2-1) of the Lebombo-Tshipise Basin (McCourt & 

Brandl, 1980). Though the total number of boreholes is recorded as 23 

(i.e. KNP 23), two boreholes, KNP 15 and 12 had subsidiary boreholes 

drilled within very close proximity (KNP 15 “Wedge” and KNP 12A). None 

of the boreholes were published, but core logs kept at the Polokwane 

Council for Geoscience (CGS) office are included in this study to 

supplement the discussion of stratigraphy, general basin morphology, fill, 

and development. A summary of borehole location and depth is provided 

in Table 3-3. Of the total twenty-five cores drilled, five core logs (KNP 1, 2, 

3, 5, and 6) were not accessible, and are therefore not included in this 

study.  

Only one borehole core (KNP 12 and KNP12A) was available at the 

Council for Geoscience to review the information in the logs; during 

examination of this borehole several additional details were noted, such as 

evidence of subaerial exposure and weathering of the Mikembeni 

Formation before deposition of the overlying Fripp or possibly Solitude 

Formation (see Chapter 3.1.2 for borehole trends). The other core logs 

primarily identified lithological units by Group deposition (i.e. “Ecca”, 

“Beaufort”, “Red Beds”, and/or “Cave Sandstone”), and very few were 

divided into formations. 

There are several difficulties in assigning formation names and boundaries 

in these boreholes due to irregular basin fill as the result of complex 

underlying basin morphology and apparent variable rates of sedimentation 

throughout the basin’s history (Bordy, 2000). Obstacles to formation and 

boundary identification include differentiating the Fripp and Klopperfontein 

sandstone units in attenuated sequences, as both are defined as 

micaceous or felspathic and thick; marking the boundary between the 

Madzaringwe and Mikembeni formations which are lithologically similar; 
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and the lack of detail in core log unit boundary descriptions (e.g. evidence 

of erosion indicating unconformable relationships).  

In a few boreholes, core loggers identified formation contacts: the 

Madzaringwe/Mikembeni in KNP 15, 20, and 22; the Mikembeni/Fripp in 

KNP 12A, 15, 22; the Fripp/Solitude in KNP 12A, and the 

Solitude/Klopperfontein in KNP 7 and 12A. Madzaringwe identifiers 

including the “basal carbonaceous horizon”, “main [coal] seam”, and “Ecca 

middle marker” which marks the top of the Madzaringwe formation, were 

identified in KNP 4, 9, 19, 20; KNP 7, 12A, 15, 15 Wedge, 17, 19, 20, 22; 

and KNP 4, 7, 8, 10, 12A, 13, 15, 15 Wedge, 17, 19, and 20 respectively.  

 

These divisions with relevant formation identifying lithological descriptions 

(e.g. the “carbonaceous zone” and “main seam”, and “middle marker” of 

the Madzaringwe Formation) were employed in assigning formation names 

and boundaries to the borehole units. Formation boundaries and 

identifications are denoted with a “?” in borehole illustrations that were not 

identified outright or with a relevant marker (i.e. the middle marker) by core 

loggers. 

 

KNP 18 did not include any group or formation identification, however the 

presence of shale, silt, coal and sandstone allows confident placement of 

these in the Ecca Group, however, this borehole’s location (see Figure 2-

1) indicates the sequence should include the Jurassic Clarens and Letaba 

Formations. Based on its location close to KNP 17 and that “Transition 

beds” closely resembling the Tshidize Formation are present at the base 

of the borehole, we have assigned overlying sediments as the 

Madzaringwe Formation. Likewise, KNP 11 did not include any formation 

designation, but we assign its contents as belonging to the Madzaringwe 

Formation due to the contents of nearby boreholes.  
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2.3 Palaeosol samples 
Palaeosol samples from the Elliot Formation were excavated from a freshly 

eroded cliff face, at least 10 cm below the weathered surface of clay and 

mud lithologies identifiable as palaeosols by the presence of rhizoliths, 

heavy mottling, and/or soil horizons characterized by color change. One 

sample was collected from a brick-red palaeosol, approximately 1.5 meters 

thick, with bifurcated, blue rhizoliths in the Main Karoo Basin near the 

village of Blikana, Eastern Cape Province. This sample was collected to 

provide comparative data which is greatly augmented by geochemical data 

published by Sciscio and Bordy (2016) and this is discussed further in 

Chapter 4. Sample locations, stratigraphic position, and relevant analyses 

are summarized in Table 2-1. 

 
Table 2-1: Rock samples collected and analyses conducted for 

present study 

Field Site Sample ID 
GPS 
Coordinates Formation 

Facies Associations 
and Notes 

XR
D

 

SE
M

 

TS
 

XR
F 

Red Rocks 

KRR-1 36K 326183 
7436365 

Elliot/Clarens Facies VII A: 
Base of Red Rocks      x   

KRR-2 36K 326183 
7436365 

Elliot/Clarens Facies VII A: 
Base of Red Rocks      x   

KRR-3 36K 326187 
7436369 

Elliot/Clarens Facies VIII: 
Top of Red Rocks      x   

Lower 
Makanya 

Hill 

KDC-1 36K 305770 
7500260 

Soutpansberg 
Group  Precambrian Basement     x   

KDC-2 22° 34.658 
31° 6.274 

Soutpansberg 
Group Precambrian Basement      x   

KDC-3 36K 305282 
7501499 

 Madzaringwe or 
Fripp 

Facies III: Micaceous 
sandstone     x   

KDC-4 36K 305160 
7502116 

Madzaringwe or 
Fripp  

Facies III: Micaceous 
sandstone     x   

KDC-5 S 22° 35.193  
 E 31° 6.496 

Tshidize Facies I: 
Diamictite     x   

Upper 
Makanya 

Hill 

KDS-1 
S 22° 29.916    
E 31° 03.612  

Elliot Facies VI: P-A 
0.5 m above base x x   x 

KDS-2 Elliot Facies VI: P-A 
2.5 m above base x x   x 
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KDS-3 A Elliot Facies VI: P-A 
4.5 m above base       x 

KDS-3 B Elliot 
Facies VI: P-A 
4.5 m above base: 
indurated siltstone 

x x   x 

KDS-4 Elliot Facies VI: P-A 
4.5 m above base x x   x 

KDS-5 Elliot Facies VI: P-A 
5.8 m above base x x   x 

KDS-6 36K 300890 
7511640  

Elliot Facies VI: P-B x x   x 

KDS-7 36K 300892 
7511370  

Elliot Facies VI: P- C x x   x 

KDS-8 
22° 29.8536 
31° 4.08474 
356 m 

Clarens Facies III: Coarse-
grained sandstone     x   

KDS-9 
22° 29.9688 
31° 4.23402 
323 m 

Clarens Facies XI: 
Bioturbated sandstone     x   

KDS-10 36K 301105 
7510962  

Elliot Facies IV: Nodular 
mudrock x     X 

Blikana BPS-1 S 30.58213  
E 27.49694 

Elliot Blikana Field Site: 
Facies VI x x    x 

Totals: 9 8 7 10 

 

2.4 Fossil Material 
Sauropodomorph fossils have been known from the remote area outside 

of Nyalaland Trail in the north of Kruger National Park, and in Makuya 

Reserve for two decades. Mr. Bearnard O’Riain is credited with the first 

discovery of material on a hike in 1995, and numerous subsequent finds 

are attributed to park ranger Adriaan Louw (Durand, 1996). In 1996, 

Adriaan Louw, François Durand and volunteers from the South African 

Society for Amateur Palaeontologists (SASAP) undertook fieldwork to 

collect and describe this material, which was subsequently published in a 

pamphlet and two scientific publications (Durand, 1996; 2001). Durand 

(2001) assigned these fossils to ‘Euskelosaurus browni’, however, this 

wastebasket taxon has been reclassified into several currently 

diagnosable genera (Yates, 2004). 
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Three of the four sites published by Durand (2001) were revisited to 

reinvestigate fossil material left on the surface, and previously collected 

material currently stored at Berg-en-Dal camp in Kruger National Park was 

studied. Collection of two anterior caudal vertebrae and a sample of fossil 

wood was permitted from Makuya National Park to study and compare 

with specimens from the collections at the Evolutionary Studies Institute at 

the University of the Witwatersrand. Elements were found ex situ, often in 

dry washes or piles likely concentrated by modern human and ephemeral 

fluvial processes. These elements are heavily encrusted in ferricrete, 

which is a fairly common preservational state of similar material regularly 

recovered from the Main Karoo Basin. However, the extent of heavy 

encrustation is noteworthy and likely key to the long-term preservation of 

this material on the modern landscape surfaces.  

 

Previously collected material stored at Berg-en-Dal include six dorsal and 

caudal vertebrae, one sacral vertebrae, one partial ilium (postacetabular 

process), one unidentified element potentially representing pelvic material, 

one proximal fibula head, and one pedal phalanx, all from a variety of 

individuals possibly representing multiple taxa and/or ontogenetic stages. 

Unfortunately, none of these elements are usable for taxonomic diagnosis. 

Of the numerous elements rediscovered in the field, three elements from 

adult-sized individuals are taxonomically informative; one anterior caudal 

vertebra, a left proximal femur possessing a posterior tubercle, and an 

elongate first left metacarpal (see Figures 3-18, 3-19, and 3-21). 

Measurements of these specimens were taken with calipers, or where 

appropriate, a measuring ribbon. 

 

A sample of fossil wood approximately 8 cm long by 3 cm thick (Sample 

BP-16-1937) from Makuya National Reserve (near the upper Makanya Hill 

locality) was cut with a discoplan to make thin sections (Figure 3-24). 

These thin sections were polished on a Struers Acutom machine to about 

40µm thickness. Photos were taken on a Zeiss Axioskop petrographic 
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microscope with an Olympus DP72 digital camera and Olympus Stream 

Essentials® software which are depicted in Figure 3-22. Prof. M. Bamford 

identified the material. 

 

2.5 X-Ray Diffraction (XRD) 
X-ray diffraction allows for phase identification of solid, crystalline 

materials. Crystal lattices of minerals diffract x-rays from an incident beam 

in predictable patterns which are specific to crystal structure. These 

patterns can then be compared to standard mineral patterns found in the 

ICDD (International Centre for Diffraction Data) database to identify 

constituent minerals of rock samples. 

 

Interference patterns (produced in Appendix C) were produced for nine 

crushed whole rock samples –eight samples from the Elliot Formation in 

the Lebombo-Tshipise Basin (KDS1, 2, 3B, 4-7, 10), and one sample from 

Blikana field site (BPS-1) in the Main Karoo Basin– using a D2 Bruker 

instrument which employs a cobalt K-ɑ X-ray tube with an x-ray 

wavelength of 1.79026 Å, accelerating voltage of 30 kV, and a current of 

10 mA. Diffraction patterns were recorded for Bragg angles between 10 

and 90° 2θ, and these analyses were conducted without spin. The scan 

step size of 0.00200318° was applied with a scan step time of 1.3 s. The 

XRD patterns derived from the palaeosol and mudrock samples were 

compared to patterns of standard minerals known to occur in sedimentary 

rocks using JADE 9 software at TerraTek, A Schlumberger Company, by 

Susan Lutz. Major, minor, or trace peaks for these minerals’ occurrence 

are summarized in Table 3-5.  

 

As the Y axis in XRD patterns is an arbitrary measurement of counts, the 

description of peaks as major, minor or trace functions as a semi-

quantitative and imprecise indication of the amount of mineral present in 

the sample and identifiable in the XRD spectra. Individual sample XRD 

spectra are presented in Appendix C.  
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2.6Scanning Electron Microscope (SEM) 
A scanning electron microscope uses an electron beam which interacts 

with atoms within the sample to produce high resolution images on the 

scale of micrometers. This is coupled with Energy Dispersive 

Spectroscopy (EDS), which generates an X-ray spectrum reflecting 

elemental composition, to identify mineral morphologies. 

 

Scanning Electron Microscopy (SEM) was employed to examine clay 

crystal morphology to ascertain the detrital or authigenic nature of the 

species present within eight samples. Seven samples are from palaeosols 

of the Elliot Formation from the Lebombo-Tshipise Basin (KDS1, 2, 3B, 4-

7, 10; sample information is listed in Table 2-1), and the eighth is from a 

palaeosol from the Blikana field site in the Main Karoo Basin (BPS-1). This 

analysis was conducted with an FEI Quanta 200 ESEM with a voltage of 

30.00 kV and a 5.0 nm spot. All samples were coated with 10 µm of gold 

and palladium (AuPd), while samples KDS1-4 were coated with 30 µm of 

carbon (C) and then coated with an additional 10 µm of gold and 

palladium. Samples were analyzed with EDS to determine elemental 

composition and compared to spectra in Electron Microprobe Analysis and 

Scanning Electron Microscopy in Geology by Reed (2005). All sample 

images were produced by secondary electron (SE) signals and are found 

in Appendix C.  

 

2.7 Petrography 
Study of sandstone microstructure was conducted using a petrographic 

microscope. Microstructure includes grain size, rounding, and orientation, 

in addition to the nature of grain contacts, general mineralogy, 

cementation, and matrix description. Seven sandstone samples from Red 

Rocks (KRR1-3) and Makanya Hill (KDS8, 9, and KDC1-5) were collected 

from Karoo Supergroup sandstones in the Lebombo-Tshipise Basin, and 

mounted on 27 x 46 mm slides ground to 30 µm in thickness (samples in 
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Appendix B). Point counts were calculated by picking 250 grains at 

random from each slide, the results are summarized in a Q-F-L diagram 

(Figure B1, Appendix B) and photographs of the slides are found in 

Appendix B. 

 

2.8 X-ray Fluorescence (XRF) 
X-ray Fluorescence employs high energy x-rays which excite electrons in 

the material under investigation which escape in the form of radiation in 

patterns specific to the constituent atoms of the material. This allows 

quantification of major and trace elements present which are reported as 

oxide weight percentages and parts per million, respectively (see Tables 

3-6 and 3-7 for results).  

 

This analysis was conducted on ten crushed, whole rock samples- nine 

palaeosol and mudrock samples from the Elliot Formation in the Lebombo-

Tshipise Basin (KDS1-7, 10) and one palaeosol sample from the Blikana 

field site in the Main Karoo Basin (BPS-1). Analysis was conducted at the 

Earth Lab at the University of the Witwatersrand by Marlin Patchappa. 

Samples were initially ignited at 250°C and then at 1000°C to measure the 

loss of organic carbon (CO2) and carbonate (CaCO3) respectively, so that 

the amount of CaO measured in the remaining sample represented CaO 

from the silicate fraction of the sample only.  

 

Chemical Indices of Alteration (CIA) values were calculated using these 

XRF data. CIA values represent total weathering processes by quantifying 

the weathering of feldspars to clay minerals (Nesbitt & Young, 1982). This 

measurement compares amounts of insoluble Al2O3 to soluble Na2O, CaO, 

and K2O by the following equation: CIA = 100 x 

(Al2O3/(Al2O3+CaO+Na2O+K2O)). Low CIA values (<55) represent 

relatively unweathered rocks, and high values (>75) represent rocks that 

have undergone significant amounts of leaching, resulting in low amounts 

of soluble cations. CIA values are reported in Table 3-6.  
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Chapter 3: Results 
3.1 Facies Associations and Stratigraphy 
3.1.1 Facies Associations 
This section provides lithofacies assignment and facies associations to 

determine the various depositional environments encountered at the field 

sites. Facies associations consist of lithofacies assemblages that 

commonly occur together in outcrop. Interpretation of these various facies 

associations is the primary qualitative tool in reconstructing various 

depositional environments. Through this approach, tracking 

palaeoenvironmental change from the Carboniferous to the Jurassic in the 

Madzaringwe, Mikembeni, Fripp, Solitude, Klopperfontein, Elliot and 

Clarens Formations is possible.  

 

Lithofacies were classified per Miall’s (1977, 1978, 1996, 2014) lithofacies 

classification scheme, which is based on grain-size (i.e. G for gravel, S for 

sand, and F for mud and silt) and sedimentary structures. Short 

descriptions and summaries of these lithofacies are found in Table 3-1, 

and Table 3-2 summarizes facies associations. Associated photographs 

are found in Figures 3-1 through 3.4 and 3-6 through 3-11. 

Table 3-1: Lithofacies classification and descriptions (after Miall, 2014) 

Facies  
Grain 
size Description Geometry Occurrence Interpretation 

Gmm 
Massively 
bedded 
conglomerate 

Granule 
to 
cobble 

(1) Intraformational 
quartzite, black 
brecciated 
shale, quartzite, 
and bedded 
metasandstone 
clasts 1-15 cm 
in diameter, in 
grey (5GY 8/1), 
blue (5B 5/1), 
orange (10 YR 
6/6), mottled 
sandy clay. 

(2) Scour fills 
bearing angular 
to sub-rounded 
quartz pebbles 
(0.5-2cm in 
diameter). 

(1) Massive 
irregular 
beds 30-
90 cm 
thick. 
This 
facies is 
erosively 
overlain 
by Gmg. 
Contact 
with 
underlyi
ng strata 
was not 
observe
d. 

(2) Small 
(<20 cm 
long) 
scours 
at the 

(1) Tshidize 
Formation 

(2) Clarens 
Formation 

(1) Large debris 
flow 
consistent 
with fluvio-
glacial 
processes. 
Large 
cobbles 
indicate 
viscous 
flows. 

(2) Small 
channel 
scours 
indicating 
variation in 
flow velocity 
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base of 
troughs. 

 
Gmg 
Normal-
graded 
conglomerate 

Granule 
to 
pebble, 
rare 
cobbles 

Black shale clasts in 
greater abundance 
than quartz, quartzite, 
and bedded 
metasandstone clasts 
in grey (5GY 8/1), 
blue (5B 5/1), orange 
(10 YR 6/6), mottled 
sandy clay. Clasts 
decrease in size and 
abundance upwards 
and matrix becomes 
more clay-ey. 

Irregular 
beds 5-15 
cm thick. 
Erosively 
contacts 
underlying 
Gmm. 
Contact with 
overlying 
strata was 
not 
observed in 
the field. 

Tshidize 
Formation 

Mass flow 
deposit. Fining 
upwards 
character 
denotes waning 
energy. 

St 
Trough 
cross-bedded 
sandstone 

Fine to 
coarse 
sand 

Cross bedded units 
with curved bounding 
surfaces that truncate 
underlying structures.  

1) Fine-medium 
grained, well 
sorted red 
(5R 6/6, 10R 
6/6) and 
gray-white 
(N8, N9) 
sand 

2) Coarse, 
moderate to 
poorly 
sorted, 
subangular 
to 
subrounded, 
gray and 
brown (10 
YR 6/2, 5Y 
7/2) 
sandstone  

3) Coarse-
grained, 
poorly 
sorted, 
subangular 
to 
subrounded, 
micaceous, 
yellow and 
white (N9, 10 
YR 8/2) 
sandstone 

Lenticular 
beds that 
vary in 
depth 
between 
0.20-3m. 
Contacts 
are typically 
sharp, and 
often cross-
cutting.  

Madzaringwe, 
Mikembeni, 
Fripp, and 
Clarens 
Formations 
 

Upper flow 
regime structure 
representing 
dune formation 
in water or air 
flow.  

Sp 
Planar cross-
bedded 
sandstone 

Fine to 
coarse 
sand 

Cross beds are 
typically 15-30° from 
the horizontal.  

1) Fine-medium 
grained, well 
sorted red 
(5R 6/6, 10R 
6/6) and 
gray-white 
(N8, N9) 
sand 

2) Coarse, 

Typically in 
tabular, 
sometimes 
inclined 
beds. These 
are often 
stacked in 
packages of 
5-8 beds. 
Contacts 
are typically 
sharp and 

Madzaringwe, 
Mikembeni, 
Fripp, and 
Clarens 
Formations 
 

Lee-side 
deposits of 
migrating 
dunes.  
In aeolian 
settings, these 
are more 
continuous and 
thick. In fluvial 
settings, these 
can have 
coarse-grained 



30 
	

moderate to 
poorly 
sorted, 
subangular 
to 
subrounded, 
gray and 
brown (10 
YR 6/2, 5Y 
7/2) 
sandstone  

3) Coarse-
grained, 
poorly 
sorted, 
subangular 
to 
subrounded, 
micaceous, 
yellow and 
white (N9, 10 
YR 8/2) 
sandstone 

planar, 
though 
irregular 
contacts are 
also 
observed.  

forests and are 
frequently 
associated with 
conglomerates.  
 

Sb 
Bioturbated, 
sandstone 

Fine to 
medium 
sand 

Grey (N8, N9) or red 
(5R 6/6, 10R 6/6) 
massively bedded 
sandstone, preserving 
local concentrations of 
cylindrical, vertically 
oriented burrows 
which are sometimes 
paired, and semi-
undulatory, meniscate 
traces. Bedding 
features are faint, 
interrupted, or absent.  

Lenticular 
and tabular 
beds 5cm-
1m thick. 
Contacts 
are 
irregular, 
sharp and 
gradational.  

Elliot and 
Clarens 
Formation 

Bioturbated 
sandstone, 
locally 
preserving 
Planolites isp,, 
Arenicolites 
isp., 
Entradensis isp, 
and Taenidium 
isp.  

Sl 
Low-angle 
cross-bedded 
sandstone 

Fine to 
coarse 
sand 

Low-angle (<15°), 
planar beds ~5-15 cm 
thick. 

1) Coarse, 
moderate to 
poorly 
sorted, 
subangular 
to 
subrounded, 
gray and 
brown (10 
YR 6/2, 5Y 
7/2) 
sandstone  

2) Coarse-
grained, 
poorly 
sorted, 
subangular 
to 
subrounded, 
micaceous, 
yellow and 
white (N9, 10 
YR 8/2) 
sandstone 

Tabular 
beds with 
sharp 
contacts. 

Madzaringwe, 
Mikemebeni 
Formations 
and Fripp 
Sandstone 

Washed out 
dunes. 

Ss Medium Tan or beige (5Y 8/1, Lenticular Madzaringwe, Pulses of higher 
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Shallow 
scoured 
sandstone 

to 
coarse 
sand 

10 YR 7/4) sandstone 
in dish-shaped, 
typically fining 
upwards localized 
scours  

and 
localized 
with sharp, 
erosive 
contacts. 

Mikembeni 
Formations 
and Fripp 
Sandstone 

energy flows 
which scour into 
the underlying 
strata. 

Sm 
Massively 
bedded 
sandstone 

Fine to 
coarse 
sand 

Beds lacking 
sedimentary 
structures or bedding. 

1) Fine-medium 
grained, well 
sorted red 
(5R 6/6, 10R 
6/6) and 
gray-white 
(N8, N9) 
sand 

2) Coarse, 
moderate to 
poorly 
sorted, 
subangular 
to 
subrounded, 
gray and 
brown (10 
YR 6/2, 5Y 
7/2) 
sandstone  

3) Coarse-
grained, 
poorly 
sorted, 
subangular 
to 
subrounded, 
micaceous, 
yellow and 
white (N9, 10 
YR 8/2) 
sandstone 

Typically 
tabular, 
laterally 
extensive. 
Contacts 
are usually 
gradational, 
though 
sharp 
contacts are 
also 
observed. 

Madzaringwe, 
Mikembeni, 
Fripp, 
Solitude, Elliot 
and Clarens 
Formations 

Associated with 
unchannelized 
flows, and 
upper flow 
regime 
deposition in 
channel bases. 
Also produced 
by bioturbation. 

Sh 
Horizontally 
laminated 
sandstone 

Fine to 
coarse 
sand 

Laminated (<1cm) or 
thinly-bedded (>1 cm) 
strata. Fines upwards 
in some beds. 

1) Fine-medium 
grained, well 
sorted red 
(5R 6/6, 10R 
6/6) and 
gray-white 
(N8, N9) 
sand 

2) Coarse, 
moderate to 
poorly 
sorted, 
subangular 
to 
subrounded, 
gray and 
brown (10 
YR 6/2, 5Y 
7/2) 
sandstone  

Typically 
tabular and 
laterally 
extensive. 
Contacts 
can be 
sharp, 
gradational, 
and 
irregular. 

Madzaringwe, 
Mikembeni, 
Fripp, 
Solitude, and 
Clarens 
Formations 

Upper flow 
regime 
dominated 
channel 
bedforms, 
relatively 
horizontal 
interdune areas. 
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3) Coarse-
grained, 
poorly 
sorted, 
subangular 
to 
subrounded, 
micaceous, 
yellow and 
white (N9, 10 
YR 
8/2)sandston
e 

Sr 
Ripple 
laminated 
sandstone 

Fine to 
medium 

Blue-green (10G 6/2) 
or beige (10 YR 7/4) 
sandstone preserving 
ripple forms or ripple 
cross-lamination.  

Thin (<5 
cm), tabular 
beds with 
sharp or 
gradational 
contacts, 
typically 
overlain by 
fines.  

Solitude and 
Elliot 
Formations 

Low flow regime 
structures 
formed in 
unchannelized 
flows.  

Fsm 
Massively 
bedded mud 
or silt 

Clay to 
silt 

Structure-less or 
nodular siltstone and 
mudrock, often gray 
(N8), but also dull 
greens and yellows 
(5Y 7/2, 5G 7/2), red 
(5R 4/6) and blue-
green (10G 6/2). 

Tabular or 
sheet like 
beds ~10 
cm thick, 
rarely in 
lenticular 
beds. 
Contacts 
are typically 
sharp, but 
gradational 
contacts are 
also 
observed. 

Mikembeni 
and Solitude 
Formations 

Indicative of 
water-saturated 
sediments such 
as those found 
in lakes, or 
unconfined, 
viscous flows 
across the 
floodplain. 

Fl 
Finely 
laminated or 
mud or silt 

Clay to 
silt 

Finely laminated  
silt or mud in thin (~2-
8 cm thick) beds. 
Often very colourful 
including pink (5R 
8/2), purple (10R 6/2), 
blue-green (5BG 5/2) 
and yellows (10YR 
8/6, 5Y 7/2). 

Typically 
lenticular or 
sheet-like, 
commonly 
occurring 
with Fsm 
and various 
sandy 
lithofacies. 
Contacts 
are sharp. 

Mikembeni, 
Solitude, and 
Elliot 
Formations 
 

Represents low 
energy flow 
and/or sediment 
settling in 
standing water.  

P 
Palaeosol 

Clay, silt Weakly bedded clay 
and silt in a variety of 
colours including grey 
(10GY 7/2, 10YR 8/2), 
maroon (5R 2/6, 5P 
4/2), purple (5YR 7/2) 
with yellow-green 
green (10Y 6/6) sub-
vertical oriented, 
branching fractures, 
and red-orange (10R 
6/6) with yellow-green 
(5Y 7/6) mottling  

Tabular 
beds, locally 
laterally 
extensive. 
No contacts 
with under 
or overlying 
strata were 
observed.  

Elliot 
Formation 

Ancient soil 
horizons.  

C 
Coal 

Coal Bright, bituminous 
coal (N1), often 
laminated, with near-
perpendicular 

Thin, 
laminated, 
laterally 
extensive 

Madzaringwe 
and 
Mikembeni 
Formations 

Compressed 
and altered 
plant matter. 
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cleavage. beds or thin 
lenses. 
Contacts 
are 
gradational, 
but some 
sharp 
contacts are 
observed.  

	

	

Table 3-2: Karoo Supergroup Facies Associations from the Lebombo-
Tshipise Basin 

Facies 
Associations 

Lithofacies Interpretation Formation Occurrence 

I  Gmm, Gmg, St Fluvio-glacial diamictite Tshidize Formation, 
Makanya Hill 

II Sh, Sm, Fsm, Fl, C Lacustrine and swamp 
deposits 

Madzaringwe and Mikembeni 
Formations, Makanya Hill 

III Gmm, St, Sp, Sl, 
Ss, Sh 

High energy fluvial 
channels and bedforms 

Clarens, Klopperfontein, 
Fripp, Madzaringwe and 
Mikembeni Formations, 
Makanya Hill 

IV Sr, Fsm, Fl Floodplain deposits Solitude and Elliot 
Formations, Makanya Hill 

V Sh, Sm, Sr, Fl, Fsm Crevasse-splay 
sandstones 

Solitude Formation, Makanya 
Hill 

VI P Palaeosol Elliot Formation, Makanya 
Hill 

VII (A&B) Sm, St, Sb, Sl	 Bioturbated aeolian dunes Elliot/Clarens Formation, Red 
Rocks 

VIII  Sm, St Channel bedorms Elliot/Clarens Formation, Red 
Rocks 

IX Sm, Fl Overbank interdune 
deposits 

Elliot Formation/Clarens, Red 
Rocks 

X St, Sp Aeolian dunes Clarens Formation, Makanya 
Hill 

XI Sm, Sh, Sb Bioturbated, flooded 
interdunes 

Clarens Formation, Makanya 
Hill 
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Facies Association I: FA I is represented by 7.5 m of poorly sorted, 

extraformational, polymictic diamictite (Figure 3-1 A, B) of the Tshidize 

Formation. The exposure at Lower Makanya Hilll field site can be 

informally divided into two units: an upward-coarsening, massive and 

irregularly bedded, yellow-orange (5GY 8/1, 10YR 6/6) lower unit (Gmm 

and Gmg), and an upward-fining, blue-grey (5B 5/1) sandstone and sandy 

mudstone upper unit (St and Gmm). Both units have granule to cobble 

sized clasts of quartzite, bedded metasandstone, and black shale. 

 

The lower unit (Figure 3-1 A) consists of matrix-supported, brown (10YR 

5/4) and green-grey (10YR 8/2) sandy mud which coarsens upwards, 

becoming sandier and yellow-orange (10YR 6/6). Indistinct, roughly 

horizontal bedding 10-25 cm thick tops the lower unit. Granule to cobble 

sized cream (5Y 8/4) and brown (5Y 7/6) quartzite and bedded 

metasandstone clasts are angular to rounded, poorly sorted, and common, 

unaligned to rarely present bedding. Angular to rounded black, brecciated 

shale pebbles are rare. Bedded metasandstone clasts resemble the 

underlying Soutpansberg Group quartzites, which is supported by 

observations in McCourt and Brandl (1980). 

 

The lowermost third of the upper unit consists of blue-grey (5B 5/1) trough 

cross-bedded sand in 5-20 cm thick, undulatory, beds, with rare clasts 

(St), (Figure 3-1 B). This contact is sharp and irregular. The upper unit 

grades to massively bedded, mottled white (N9), black (N1) and blue-grey 

(5B 5/1) mud with quartz pebbles and black shale clasts (~4-10mm in 

diameter), with significantly fewer quartzite and metasandstone clasts than 

the lower unit, (Figure 3-1 C). The abundance of clasts decreases 

upwards in the unit, and clasts from the upper unit overall are less 

abundant and smaller than those in the lower unit. 
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Figure	3-1:	Facies	Association	I	from	the	Lower	Makanya	Hill	field	locality.	(A)	Lower	unit	
of	the	Tshidize	Formation	is	weakly	bedded	with	large	clasts	of	underlying	Soutpansberg	
quartzite	(qc);	(B)	Boundary	between	sandy,	weakly	bedded	lower	(LU)	and	trough	cross-
bedded	sandstone	of	the	upper	(UU)	units,	see	geologist	for	scale;(C)	Upper	unit	
consisting	of	grey	matrix	and	more	shale	clasts	(sc)	than	lower,	sandier	unit.	

 

Interpretation 
The two units are primarily composed of diamictite, consistent with debris 

flows. Though the lower unit is poorly stratified, the faint bedding and 

rounded clasts suggests that meltwater was a primary source of deposition 

(Boggs, 2006). The upward-coarsening trend is typical of debris flows, and 

the indistinct bedding at the top likely represents repeated flow events. As 

cross bedding or other sedimentary features indicating fluvial reworking 

are not developed, this deposit is more consistent with distal flow (i.e., 

meltwater streams) than higher energy, outwash tills (Boulton & Deynoux, 

1981).   
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The trough cross-bedded, undulating sandstone beds with fewer clasts at 

the base of the second unit show fluvial reworking of the till. The upper 

unit’s prevalence of black shale clasts may indicate a change of sediment 

source, while upward-fining beds and the increasing rarity of larger 

metasedimentary cobbles are consistent with decreasing energy over 

time.   

 

This facies association is interpreted as fluvio-glacial deposits. The lack of 

marine mud facies, dropstones or other marine features (i.e. fossils) 

support that this deposit was formed in the proximal glacial environment.  
 
Facies Association II: Finely laminated sandstones and siltstones 

interbeddded with mudrocks and coal comprise FA II (Figure 3-2 A, B, and 

C). This facies association occurs in the Madzaringwe and Mikembeni 

Formations at the Lower Makanya Hill field locality. The sandstones are 

moderately sorted, medium-grained and both the sandstones and 

siltstones are micaceous and vary in color (Figure 3-2 A), including pink 

(5R 8/2), purple (10R 6/2), blue-green (5BG 5/2) and yellow or beige 

(10YR 8/6, 5Y 7/2). Sandstones are finely laminated, low-angle planar 

cross-bedded, or massively bedded, and sharply contact underlying 

siltstone and mudrock intervals. Sandstone layers are thicker and more 

common in the Madzaringwe than in the Mikembeni Formation, which is 

dominated by siltstones, mudstones, carbonaceous shale and coal.  

 

Siltstone and sandstone units grade into interbedded mud and coal and 

contacts between the two units are typically gradual, though sharp 

contacts were also observed. Siltstone and mudrock successions 

commonly fine upwards. The carbonaceous shales and mudrocks are 

massive or poorly laminated, black in colour and interbedded with friable, 

bituminous coal (Figure 3-2 B and C). In the Mikembeni Formation, large 

(80 cm thick) ferruginous concretions within the mudstone beds are 
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common and can be laterally extensive, sometimes appearing bed-like. 

These concretions are rare in the siltstone intervals. This association 

interfingers with FA III, typically with sharp contacts (Figure 3-2 D). 

 

 
Figure	3-2:	Facies	Association	II	from	the	Lower	Makanya	Hill	field	locality.		(A)	Finely	
laminated	siltstones	and	sandstones	of	the	Mikembeni	Formation;	(B)	weakly	bedded	
coal	and	carbonaceous	mudrock	of	the	Madzaringwe	Formation;	(C)	Interbedded	coal,	
carbonaceous	mudrock	and	laminated	fines;	(D)	Laminated	silts	(Fl)	of	FA	II	overlain	by	
planar	cross-bedded	sandstone	(Sp)	of	FA	III	in	the	Madzaringwe	Formation.		

 
Interpretation 
Carbonaceous mudrocks and coal form in a low energy environment, and 

are typical components of delta plain and fluvial deposits (Miall, 1996). 

Thinly-bedded siltstones and laminated mudrocks are deposited from 

suspension in lacustrine settings (Boggs, 2006), and upward-fining 

mudrocks and silt intervals may represent ox-bow lake environments. Thin 
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sandstone lenses and beds may represent near-shore deposits including 

deltas, beaches, spits or barriers (Boggs, 2006) in shallow lakes, as 

suggested by Malaza et al. (2013). Iron-rich concretions are likely formed 

diagenetically, from concentrated ground-water interactions.  

 

FA II is interpreted as marsh or lacustrine deposits in a delta plain 

environment. The association FA II and the thick sandstone bodies of FA 

III indicate the marshy lacustrine environment was influenced by fluvial 

systems, (Figure 3-2 D). 

 
Facies Association III: FA III is composed of medium to coarse-grained, 

moderate to poorly sorted sandstone in a variety of bedding types: 

lenticular and less frequently tabular bodies of planar cross-beds; 

lenticular or irregular bodies of trough cross-beds; lenticular bodies of low-

angle planar cross beds; sheet-like or irregularly-shaped massive beds; 

and lenticular bodies of horizontal and wavy laminations (Figure 3-3 and 3-

4). This facies association occurs in the Madzaringwe, Mikembeni, Fripp, 

Solitude and Clarens Formations at the Lower and Upper Makanya Hill 

field localities. 
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Figure	3-3:	Facies	Association	III	from	the	Lower	Makanya	Hill	field	locality.	(A)	Planar	
cross-bedded	sandstone	grading	to	scoured	sandstone	(Ss)	in	the	Madzaringwe	
Formation;	(B)	Sharp	contact	between	massive	sandstone	(Sm)	and	laminated	silts	(Fl)	
with	load	cast	(lc)	in	the	Solitude	Formation;	(C)	Gradual	contact	between	laminated	
mud	and	silt	(Fl)	and	weakly	bedded,	horizontally	laminated	sandstone	(Sh)	in	the	
Madzaringwe	Formation;	(D)	Trough	cross-bedded	sandstone	(St)	and	massive	
sandstone	(Sm)	overlying	fine-grained	sandstone	of	the	Fripp	Sandstone;	(E)	Sets	of	
planar	cross-bedded	(Sp)	sandstone	gradually	overlain	by	horizontally	laminated	(Sh)	
sandstone,	and	sharp	contact	overlying	massively	bedded	sandstone	(Sm)	in	the	Fripp	
Sandstone;	(F)	Coarse,	gritty	(Gmm)	lenses,	with	large	shale	clasts	(sc)and	carbonaceous	
plant	debris	(pd)	indicate	high	energy	intervals	during	deposition	of	the	Fripp	Sandstone.		
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Figure	3-4:	Facies	Association	III	from	the	Upper	Makanya	Hill	field	locality.	(A,	B,	C)	
Coarse	lags	(Gmm)	at	the	base	of	planar	(Sp)	and	trough	cross-bedded	sandstones	(St),	
in	the	Clarens	Formation.	(D,	E)	Lags	are	very	coarse,	pebble	conglomerates	sometimes	
containing	bone	fragments	(bf).			
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Lenticular and tabular beds of planar cross-beds represent the majority 

(~65%) of this facies in outcrop (Figure 3-3 E). These beds range from 

0.25-1.5 m thick. Tabular bodies often have sharp lower contacts and 

sharp or gradual, wavy upper contacts, and some beds are inclined at low 

(<15°) angles. These bodies are commonly stacked together, though 

typically separated by beds of Sh, or Sm. In some bodies, pebble 

conglomerates armour the tops of planar cross-beds, and are aligned to 

foresets. Others have shale rip-up clasts and carbonaceous plant material 

up to 28 cm in length and coarse, basal pebble lags (Gmm; Figure 3-3 F). 

Gritty, pebble conglomerates are common, especially in the Clarens 

Formation (Figure 3-4 B, C, D, and E). 

 

Palaeocurrents from planar cross-beds are reported in Figure 3-5. These 

indicate south-southwest flows (157-238°, n=10) in the Madzaringwe 

Formation, south-southeast (93-220°, n=15) in the Mikembeni Formation, 

southeast (120-164°, n=25) flows in the Fripp Formation, southerly flows in 

the Solitude (118-210°), and easterly flows (59-104°, n=10) in the Clarens.  
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Figure	3-5:	Palaeocurrents	measured	from	planar	cross-beds	in	the	Madzaringwe	(n	=	
10),	Mikembeni	(n	=	15),	Fripp	(n	=	25),	Solitude	(n	=	5),	and	Clarens	(n	=	10)	Formations	
at	the	Makanya	Hill	field	locality.	
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Trough cross-bedded sandstones are lenticular, 15-50 cm thick beds 

which commonly contain scoured bases (Figure 3-4 A and C). Many of 

these have coarse lag deposits of quartzite pebbles (>5 mm in diameter) 

at their base. Trough cross-bedded units are commonly stacked, erosively 

cross-cutting underlying beds with sharp upper and lower contacts (Figure 

3-3 D).  

 

Low-angle (<15°) planar cross-bedded units are lenticular, 20-30 cm thick 

with sharp upper contacts and typically diffuse lower contacts. This facies 

is in many cases overlain by tabular, planar cross-bedded bodies.  

 

Massively bedded sandstone bodies are irregularly shaped and large (~1 

m thick). Massively bedded sand sheets (Ss) are typically lenticular beds 

10-40 cm thick that are amalgamated up to a meter thick (Figure 3-3 A). 

Large massive beds typically have sharp upper and lower contacts, while 

amalgamations often have diffuse or gradual upper contacts with planar or 

horizontally laminated sandstones. These bodies also share gradual and 

sharp contacts with underlying silts (Figure 3-3 B and C). 

 

Horizontally bedded or laminated sandstone (Sh) is the least common of 

the fluvial lithofacies. These beds are commonly 30-50 cm thick with 1-

3cm thick laminations, and are lenticular or irregularly shaped. 

Laminations typically fine upwards, and many of these beds are draped by 

shale and silt laminations at the top. These beds have sharp lower and 

upper contacts, and are typically erosively overlain by planar laminated, 

coarse sandstone bodies (Figure 3-3 E). 

 
Interpretation 
The prevalence of sand and grits indicate a high energy environment. 

Trough cross-bedded units represent migrating dunes in fluvial channels 

and planar cross-bedded units stacked at low angles represent 2-D dune 

formation on top of bars (Miall, 1996; Boggs, 2006). Low-angle bedded 
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units are consistent with washed out dunes formed as channel dunes are 

eroded by an increase in flow from lower to higher flow regimes (Miall, 

1996). Thus, this facies association is interpreted as dunes, bars and other 

channel bedforms from large, recurring fluvial systems.  

 

Facies Association IV: FA IV consists of blue-green (10G 6/2) siltstone 

and mudrock with rare, intraformational quartz pebbles; blue-grey (10Y 

4/2) mudrock, sometimes with orange mottles; and red (5R 4/6) massive 

mudrock.  This facies association occurs in the Solitude and Elliot 

Formations at the Lower and Upper Makanya Hill field localities.  

 

In the Solitude Formation, the mudrocks are typically interlaminated with 

blue, grey and brown siltstone, (Figure 3-6 A). These mudrocks and 

siltstones typically underlie and overlie channel bedforms of FA III (Figure 

3-6 B), or the sandstones of FA V (Figure 3-7 A) with sharp contacts.  

 

In the Elliot Formation, the mudrock is laminated, nodular, and in some 

outcrop, highly indurated (Figure 3-6 B). The weakly bedded mudrock is 

approximately 3 meters thick and thins upwards in planar beds from 

approximately 40 cm to 7 cm thick. The siltstone is weakly bedded with 

thin (~5-10 mm thick) planar laminations and ripples. The ripples measure 

~30-50 mm high, and are asymmetric, elongate, continuous and fairly 

straight crested, though some curving is observed (Figure 3-6 C). Thin 

(~3-5 cm wide) stringers of granule-sized, well-rounded, intraformational 

quartz clasts occur randomly. This facies association was only observed in 

isolation in the field area.  
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Figure	3-6:	Facies	Association	VI	from	the	Lower	and	Upper	Makanya	Hill	field	localities.	
(A)	Colourful,	weakly	bedded	mudrock	from	the	Solitude	Formation;	(B)	Nodular	
mudrock	from	the	Elliot	Formation;	(C)	Asymmetric	ripples	preserved	in	siltstone	in	the	
Elliot	Formation.		

 

Interpretation 
Ripple and horizontal lamination are hallmarks of floodplain deposits, while 

stringers of granule-sized quartz clasts could represent short-lived high 

energy traction currents, consistent with the waning energy of distal 

deposits from crevasse splays (Miall 1996). Horizontal lamination and 

ripple cross-lamination are also consistent with distal crevasse splays 

(Lang, 1993; Miall, 1996; Brierley, 1997), but the lack of developed cross 

lamination and the faint preservation of laminations suggest these 

deposits formed distal to the channel. Nodular mudrock is more commonly 

associated with distal-most floodplain deposits or stagnant, standing water 
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(Miall, 1996). This facies association is interpreted as floodplain deposits 

of fine sediments.  

 
Facies Association V: FA V is composed of medium-grained, thin (~10-

45 cm thick), wedge-shaped and lenticular sandstone beds. This facies 

association occurs in the Solitude Formation at the Lower Makanya Hill 

field locality. Lenticular bodies tend to be massive or with very faint 

bedding, while the wedge-shaped beds are horizontally and/or ripple 

cross-laminated. Lenticular bodies are thicker than the wedge-shaped 

counterparts, and have sharp basal contacts with underlying fine-grained 

components of FA IV (Figure 3-7 A). Horizontally laminated and ripple 

cross-laminated beds are usually finer grained than adjacent lenticular 

bodies and typically reach 20 cm thick at maximum, Figure 3-7 B. These 

wedge out into siltstones and mudrocks.  

 
Figure	3-7:	Facies	Association	V	from	the	Lower	Makanya	Hill	field	locality.		(A)	Lenses	of	
massively	bedded	sandstone	(Sm)	wedge	out	laterally	into	wedge-shaped	bodies	of	
ripple	cross-laminated	sandstone	(Sr);	these	sandstones	overlie	laminated	siltstones	and	
mudrocks	(Fl)	of	FA	IV	with	sharp	contacts;	(B)	Ripple	cross-laminated	sandstone	bodies	
are	thin,	typically	only	10-20	cm	thick.	

 
Interpretation 
The geometry of the massively-bedded, lenticular sandstones is consistent 

with crevasse channels; while laminated and cross-laminated beds are 

typical components of represent crevasse splay deposits (Miall, 1996). 

Thus, this facies association is interpreted as crevasse-splay deposits. 
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The lack of preserved plant matter or interrupted bedding in the banks 

consistent with bioturbation could be attributed to frequent flooding and 

rapid burial.  

 
Facies Association VI: FA VI consists of weakly-bedded mudrock in a 

variety of colours including grey (10GY 7/2), green (5Y 7/6), yellow-green, 

(10Y 6/6), red-brown (10R 6/6), and purple (5YR 7/2) mudrock (Figure 3-

8). This facies association occurs in three locations: P-A, P-B, and P-C in 

the Elliot Formation of the Upper Makanya Hill field locality.  

 

Two of the exposures (P-B and P-C) measure approximately 1.5 meters in 

height, and the other (P-A) measures 7 meters. The mineral content of all 

three exposures as determined by XRD (see section 3.2.1) primarily 

consists of illite and smectite clay, with minor amounts of plagioclase, 

quartz, and trace amounts of iron and titanium oxides. Bedding is very 

weak, though contacts between the differently coloured horizons are 

diffuse and primarily planar though minor undulations occur locally. 

Orange or yellow-green mottling occurs in many layers and is especially 

prevalent in P-B and P-C. Minor quartz pebbles (~8-10 mm in diameter) 

occur in the yellow-green horizons.  

 

At the base of P-A, there is a zone of pervasive fractures which are green 

(10Y 6/6) and blue (5B 8/2) in color, oriented sub-vertically, and connected 

by regularly occurring sub-parallel veins (Figure 3-8 A). These are distinct 

from blue (5B 7/6) bifurcating, branched, vertically oriented features which 

measure approximately 20-40 cm in length and occur in a deep purple 

horizon approximately 2 meters above the base of P-A (Figure 3-8 C). A 

vertically-oriented dolerite dyke likely has hydrothermally altered 

immediately adjacent outcrop which is green and nodular (Figure 3-8 B). 

Additionally, diagenetic white, powdery calcite veins which are closely 

associated with modern plant roots that infiltrate upper strata exposed at 

P-A approximately a meter deep.  
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Figure	3-8:	Facies	Association	VI	from	the	Upper	Makanya	Hill	field	locality.	(A)	Exposure	
of	pervasively	fractured	zone	at	the	base	of	P-A	(backpack	for	scale);	(B)	Large	dyke	(d)	
above	geologist	cross	cuts	P-A;	(C)	Bifurcating	and	branched	rhizoliths	in	horizon	of	P-A	
indicated	by	arrows;	(D)	Exposure	of	P-B	shows	weak	horizonation	in	comparison	with	P-
A.		

 
Interpretation 
The argillaceous and horizonated nature of these exposures is consistent 

with palaeosols. Bifurcating, blue features are interpreted as rhizoliths. 

Purple and maroon colouring is consistent with subsurface (Bt and Bs) 

horizons (Retallack, 1984, 1988), while grey horizons in these palaeosols 

may represent A or E soil horizons which are often light coloured due to 

abundant quartz (Retallack, 2008).  

 

These palaeosols do not preserve ped structures or burrows, and lack well 

developed O and A horizons (as defined by the USDA soil taxonomy 
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system), which suggests that subsurface portions of the ancient soil 

comprise these exposures (Retallack, 2008). Alternatively, arid conditions 

at the time of deposition might have contributed to poor or nonexistent ped 

development, or these structures may have been erased by diagenetic 

processes, though the existence of rhizoliths suggests little erasure of 

original structures and features has occurred. 

 

The organic matter content of these palaeosols is very low, ruling out 

classification as a Histosol or Spodosol (Mack et al., 1993). Low organic 

content is consistent with soils developed in arid regions (Worden & 

Morad, 2009), however, these palaeosols also lack accumulations of 

soluble minerals  

(i.e. calcite, gypsum) traditionally associated with aridisols, gypsisols, etc. 

The presence authigenic clay, sesquioxides, and traces of iron minerals as 

determined by XRD (see Chapter 3.2.1 for a more detailed discussion of 

mineral content and clay overgrowths) are consistent with both Oxisols 

and Argillisols (after Mack et al., 1993).  

 

The fractured zone in P-A may have formed during the emplacement of 

the nearby dyke, though the fractures are regular, and do not appear to be 

enlarged nor more numerous near the dyke itself. The meter-long yellow-

green and orange fractures in this purple horizon likely represent 

hydrothermal alteration subsequent to the dyke’s emplacement through 

pre-existing weak planes in the soil. The orange colour may be from infill 

of oxidised sediments, or oxidised fluids moving through permeable 

conduits.  

 
Facies Association VII A: FA VII A consists of fine-grained red to brown 

(5R 6/6, 10R 6/6), well-rounded and well-sorted sandstone which is 

heavily mottled beige and light brown (10 YR 7/4, 5 YR 7/2, 10 R 7/4; 

Figure 3-9 B). This facies association occurs in the Elliot/Clarens 

Formation at the Red Rocks field locality.  
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This facies is 4 meters thick, laterally extensive, and typically massive 

(~80% of the outcrop). Large sand bodies with relatively horizontal bases 

and undulating (~1 m, 2-3 m wavelength), sharp upper contacts and rare, 

lenticular, massive sand bodies are also present in this facies. These 

undulating surfaces strongly resemble sand dunes, and one of these 

preserved numerous, beige burrows aligned to cryptic, fairly high angle 

(~40°) foresets below the surface (Figure 3-22 C, Chapter 3.3.2). These 

dune forms represent approximately 10% of the facies association 

outcrop.  

 

The beige mottles are cylindrical and elongate, though in some instances 

bulbous, and range in size from 5-8 cm in diameter and 50 cm in length to 

0.5 cm in diameter and 5-6 cm in length (Figure 3-22 A and B, Chapter 

3.3.2). These mottles are demarcated by color and are usually much 

lighter than surrounding sediment, though darker mottles were observed 

as well. Many of these mottles contain perpendicular cracks. In thin 

section, the size of the grains does not change significantly from the 

mottles to the surrounding sediment, but the matrix-supported sandstone 

is heavily clay-enriched within the mottles (Figure B6, KRR-2, Appendix 

B).  

 

Lithic (granitic) and quartzite clasts approximately 1 cm in length, rip-up 

siliceous nodules (0.3-2 cm in length), and small spherical (<0.5 cm) 

hematite nodules demarcated from the surrounding sand by dark bands 

are common within this facies association (Figure 3-9 B, for nodules and 

lithics). These clasts represent 5-10% of the total rock, while mottles are 

locally abundant; both are found aligned to cryptic, large (~0.3-0.8 m tall), 

gently north-dipping, tangential cross-beds (~10 cm thick).  

 

FA VII A is gradationally overlain by FA VII B, and overlies Precambrian 

schist in an erosive, altered contact (Figure 3-9 A). This contact is 
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irregular, with interstratified red sandstone and siliceous, blue, altered 

beds with large, white veins. 

 

 
Figure	3-9:	Facies	Associations	from	the	Red	Rocks	Locality.	(A)	The	base	of	the	outcrop	
consists	of	interstratified	FA	VII	A	and	blue,	siliceous	layers	with	white	veins;	(B)	FA	VII	A	
contains	trace	fossils	and	silicious	nodules;	(C)	Dune	form	of	VII	A	(dashed	line	indicates	
dune	form	top)	overlying	siliceous	limestone	(sl);	(D)	FA	VII	B	contains	fewer	traces,	
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nodules	and	clasts,	and	here	overlies	discontinuous,	wedges	(outlined	by	dotted	lines)	of	
FA	VIII.	(E)	FA	IX	consists	of	laminated	silts	overlain	by	massively	bedded	sandstone.	

 
Interpretation 
The small size and well-sorted grains indicate an aeolian origin. While 

much of the facies association is massively bedded, cryptic foresets 

delimited by aligned burrows or clasts reveal dune structures present in 

the outcrop. Invertebrate burrows in the lee side foresets of dunes have 

been documented in the Navajo Formation of the western United States 

(Ekdale et al., 2007), and are well-known from dune foresets in other 

inland erg settings (reviewed by Ekdale et al., 2007, see references 

therein). The pervasive bioturbation by these invertebrates could have 

destroyed other typical dune features (e.g. wind ripple deposits, cross 

bedding, grain fall lamination, sand flow lamination). FA VII A is interpreted 

as heavily bioturbated aeolian dune deposits.  

 

The preservation of these burrows suggests fairly wet conditions were 

prevalent enough to prevent these structures from crumbling due to 

insufficient competence, and also to allow invertebrate life to thrive (Ekdale 

et al., 2007). Large communities of invertebrates, most likely arthropods, 

could survive by grazing on cyanobacteria or fungi as suggested by 

Friedmann and Galun (1974). However, the lack of evidence of 

macroscopic plants (e.g. rhizoliths) indicates these wet conditions were 

likely ephemeral, and not long-lasting enough to sustain vascular plants.  

 

Facies Association VII B: FA VII B gradationally overlies FA VII A in the 

Elliot/Clarens Formation at the Red Rocks field locality, measures 

approximately 3.5 m thick and is laterally extensive, cropping out over a 

couple of kilometers. The red to brown (5R 6/6, 10R 6/6), fine-grained, 

well-rounded and well-sorted sandstone has less beige mottling than FA 

VII A, and is distinguished from FA VII A by containing approximately 50% 

fewer siliceous nodules and quartz clasts. Rare, angular granitic lithics 

approximately 4 cm in length and small (<0.5 cm) hematite nodules also 
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occur. The clasts in FA VII B, unlike those in FA VII A, are not aligned to 

sedimentary structures, and represent approximately 3% of the total 

outcrop.  

 

Likewise, significantly fewer trace fossils are present than in FA VII A, and 

overall, these are smaller, sinuous, and more gracile than those in the 

underlying facies (Figure 3-22 F, Chapter 3.3.2). The majority of this facies 

is massively bedded, though rare, large dune forms are present, which 

measure ~0.5-1 m in height with wavelengths of ~2-3 m. A lenticular, 1 

meter-thick, pervasively altered appearing, white-gray (N8, N9) silcrete or 

siliceous limestone layer occurs locally above the base of FAVII B (Figure 

3-9 C). This siliceous limestone has undulating, uneven and irregular beds 

and has a crenulated appearance. 

 
Interpretation 
Like FA VII A, this facies is composed of fine-grained, well-rounded and 

well-sorted sandstone indicating an aeolian origin. In fact, FA VII B shares 

many similarities with FA VII A, with the exception of cryptic dune 

structures and well-preserved burrows. Rare dune forms suggest the 

presence of dunes despite a lack of bedding features, and together, these 

contrast with interdune deposits described by Loope and Row (2003) who 

describe vestiges of horizontal bedding from bioturbated interdunes.  

 

FA VII B is interpreted as aeolian dune deposits which have been 

pervasively bioturbated but unlike FA VII A, do not preserve cryptic 

bedding structures, and rarely preserve trace fossils. The lack of burrows 

or tracks is likely related to moisture, which is integral to sand competency 

and preservation of delicate invertebrate traces (Ekdale et al., 2007). 

Alternately, or in addition to less moist conditions, increased bioturbation 

of the dunes could have destroyed burrows and cross-bedding during a 

hiatus or decrease in the rate of deposition. As dunes were buried more 
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slowly, invertebrates given more time to burrow would eventually erase 

any previous structures or sedimentary beds.  

 

The silcrete layer, reported as a “siliceous limestone” by McCourt and 

Brandl (1980), may represent a spring deposit. Playa carbonates are 

known to occur in close proximity to bioturbated facies in aeolian settings 

(see Colson & Cojan, 1996; Smith & Mason, 1998). Alternatively, this 

could be a silicified calcrete, or silicified mud-rich playa deposit 

(Summerfield, 1983). 

 

Facies Association VIII: FA VIII consists of approximately 1.8 meters of 

dark brown (5R 6/6), very fine-grained, well-sorted, well-rounded, 

sandstone arranged in stacked, thin (~15-50 cm thick), wedge-shaped 

bedforms without distinctive bedding structures (Figure 3-9 D). A thin 

section sample from this facies is classified as a lithic arenite, with little to 

no matrix (Figure b8, KRR-3, Appendix B). This facies association occurs 

in the Elliot/Clarens Formation at the Red Rocks field locality. Unlike 

laterally extensive FA VII A and B, FA VIII is an isolated, vaguely channel-

shaped outcrop; measuring approximately 5-6 m sub-perpendicular to 

strike and 3 meters wide. FA VIII sharply contacts underlying massive 

beds of FA VII B, and has a sharp contact with overlying large dune forms 

(~1 m high) of FA VII B.  

 

The discontinuous lenses and wedges typically wedge out westwards 

(205-285°) and share erosive contacts with each other. These bodies are 

stacked in wavy, irregular, lenticular packages. Very rarely, tangential 

cross-bedding is visible in some of the wedges.  

 
Interpretation  
The erosive nature of the internal contacts between the lenses and 

wedges indicates a high energy environment, while the fine-grained, well-

sorted composition of the sand is identical to aeolian FA VII A and B. 
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While the well-sorted nature of the sand fits with interdunal fluvial systems 

as described by Langford (1989), Herries (1993), and Newell (2001), the 

prominent bedform development and lack of bedding structures is 

anomalous to other described aeolian fluvial deposits (see Langford & 

Chan, 1989; Scherer & Lavina, 2005). The bedforms’ resemblance to 

fluvial dunes regardless of the lack of foreset development motivates the 

interpretation that FA VIII represents channel deposits of re-worked dune 

sand. Enigmatic structureless bedforms may be the result of insufficient 

clay content to preserve foresets. Clay poor sediments could be the result 

of winnowing by wind action, sources deficient in feldspar to facilitate clay 

formation, or extremely arid environments incompatible with soil 

development. 

 

The erosive contacts of the dunes indicate fairly high energy flow 

conditions, which might have been generated by seasonal, westwards-

flowing flash-flood events. The sharp contact between overlying dune 

deposits indicates the channel was suddenly choked off by migrating 

dunes after flow in the channel slowed or ceased. 

 

Facies Association IX: FA IX consists of dark brown (5R 4/6) laminated 

silt (Fl) and massive sandstone (Sm) which crops out as a 0.5 m thick 

sheet (Figure 3-9 E). This facies association occurs in the Elliot/Clarens 

Formation at the Red Rocks field locality. The silty sandstone is generally 

finer-grained than the channel deposits of FA VIII; the lowermost 5 cm are 

silty, finely laminated and fine upwards to 35 cm of massively bedded 

sandstone. The contact between these units is planar and sharp. This 

facies association has a sharp contact with underlying dune deposits of FA 

VII B, and is truncated by overlying dolerite. This outcrop is laterally 

continuous with FA VIII as they both rest upon the continuous surface of 

FA VII B, but the contact between FA VIII and IX has been eroded.  
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Interpretation 
The laminated basal bed is consistent with suspension deposition in quiet 

waters, while the massive upper bed likely represents deposition during 

flooding, likely during high energy flows which deposited sediment rapidly 

(Miall, 1996). Alternately, the massive bed may have been bioturbated as 

overbank interdunes are frequently associated with burrowing (Langford & 

Chan, 1989), though this seems unlikely as the underlying laminated unit 

shows no indications of being disturbed from activity in the overlying, 

massive layer.  

 

FA IX is interpreted as overbank interdune deposits. These environments 

are known to form near channels (FA VIII) during flooding of the dune field. 

Channel incision into dunes re-works aeolian sediments, and interdune 

shales and sands are deposited in sheet-like or lenticular overbank 

deposits (Langford & Chan, 1989). The lack of evidence for plant life or 

bioturbation in the laminated unit could indicate that these deposits rapidly 

dried out after deposition, before invertebrate burrowing could commence 

(Miall, 1996). Limited bioturbation in the floodplain is consistent with semi-

arid setting, where organic matter incorporated into the sediment is likely 

to be oxidized and not preserved (Reading, 1986). 

 

This facies association is laterally equivalent to FA VIII which crops out 

approximately 2 meters away on top of the same FA VII B surface. This 

outcrop geometry suggests that the stacked fluvial dunes of FA VIII were 

restricted to a well-developed channel, as opposed to unchannelized 

sheet flows. 

 

Facies Association X: FA X consists of fine-grained, well-sorted grey (10 

YR 6/2, 5Y 7/2) sandstone in large, tangentially and planar cross-bedded, 

tabular cosets up to 2 m thick. This facies association occurs in the 

Clarens Formation at the Upper Makanya Hill field locality. Sets of high 

angle (>20°) cross-strata range from 5 to 20 cm thick, and share very low 



57 
	

angle (10°) contacts (Figure 3-10 A and B). Convolute bedding is also 

present in isolated beds; this can be wavy or folded bedding or large-scale 

fluid escape structures approximately 55 cm in height and 60-120 cm 

wide. These are tee-pee-shaped structures 20-80 cm in height, though 

recumbent folded convolutions are also observed (Figure 3-10 C and D). 

These units share planar, sharp boundaries with FA XI, with which they 

share an interfingering relationship.  

 
Figure	3-10:	Facies	Association	X	from	the	Upper	Makanya	Hill	field	locality.	(A)	Co-sets	
of	tabular,	trough	cross-bedded	sandstone,	typical	of	dunes;	(B)	Large	cross	beds	
typically	measure	~20	cm	thick,	while	co-sets	can	reach	2	m	thick;	(C)	Tee-pee	shaped	
structures	frequently	occur;	(D)	Convoluted	bedded	is	nearly	vertically	oriented.		

 
Interpretation 
Fine-grained sandstone bedded in large, high angle foresets is consistent 

with aeolian dunes. Planar, horizontal contacts between sets of beds 

dipping in the same direction represent 1st order bounding surfaces, while 
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inclined contacts between cosets represent 2nd order reactivation surfaces 

(Reading, 1986). The large-scale bedforms lack evidence of vegetation or 

animal life which could indicate dry conditions unable to sustain life or 

preserve trace fossils, in stark contrast to conditions at the Red Rocks 

locality. However, convoluted bedding and soft sediment deformation 

occurring in over-saturated sediments as suggested by Bordy (2008) 

would indicate periodic rises in the water table or flooding (see Strömbäck 

et al., 2005).  

Surprisingly, these kinds of soft sediment deformation features do not 

occur in the interdune facies, which is in more continuous contact with 

rising and falling water tables than large-scale dunes. The large scale fluid 

escape structures are similar to sand volcanoes and other features 

described by Montenat et al. (2007) (Figure 3-10), and could originate from 

seismic activity. 

 

Facies Association XI: FA XI is composed of grey (10 YR 6/2, 5Y 7/2), 

fine to medium-grained, well-sorted, massively bedded sandstone, in 5-40 

cm thick, irregular, laterally extensive sandstone sheets (Figure 3-11 A) 

and interfingering tabular beds that are massively bedded, or planar 

laminated and heavily bioturbated. This facies association occurs in the 

Clarens Formation at the Upper Makanya Hill field locality. Massively 

bedded sheets have erosive, wavy, basal contacts, and are typically 

uniform, without observed grading, and these are sometimes isolated, but 

are frequently stacked in packages of 2-4 beds. Beds measure up to 0.5 m 

thick and are interbedded with FA X.  

 

Planar, bioturbated layers are 10-30 cm thick, and have rare, silty lenses 

approximately 5 cm thick (Figure 3-11 B). These horizontally layered 

massive beds are frequently permeated by kidney-shaped to circular, 

vertical burrows (2-4 cm in diameter) that penetrate underlying strata up to 

8 cm deep, identified as Taenidium isp.. Other traces in include elongate, 

low-sinuosity traces approximately 15-25 mm in width, some of which are 
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meniscate (Planolites isp., Entradichnus isp); and small (1-5 cm in 

diameter) circular burrows that typically are paired (Arenicolites isp.),see 

Chapter 3.3.2 for trace fossil photos, identification and discussion. 

 
Figure	3-11:	Facies	Association	XI	from	the	Upper	Makanya	Hill	field	locality.	(A)	
Irregular,	planar	beds	of	massive	sandstone	have	erosive,	wavy	basal	contacts;	(B)	
Planar,	laminated	beds	are	interrupted	by	burrows.			

 
Interpretation 
Well-sorted, medium-grained sandstone is typical of aeolian environments, 

and vestiges of planar lamination are consistent with descriptions of 

flooded interdunes by Loope and Row (2003). FA XI is interpreted as 

flooded interdune deposits consisting of viscous flooding units and silty, 

bioturbated, marginal beds.  

 

Numerous studies have found Taenidium in association with flooded 

desert systems (Smith et al., 1993; Smith & Mason, 1998; Melchor et al., 

2012; Good & Ekdale, 2014). Abundant Arenicolites isp., Planolites isp., 

Entradichnus isp., Skolithos isp., in addition to Taenidium isp. indicate 

presence of communal arthropods (Ekdale et al. 2007). This assemblage 

of ichnofossils is consistent with both Scoyenia and Octopodichnus-

Entradichus ichnofacies, but differs from each in a paucity of arthropod 

trackways (Seilacher, 1964; Hung & Lucas, 2007), and is therefore 

consistent with freshwater lacustrine, fluvial and aeolian environments 

(Ekdale et al., 2007; Benton & Harper, 1997). 
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Massively bedded, fossil and ichnofossil-bearing strata have been 

interpreted as interdunal, non-carbonate lakes or standing bodies of water 

(Britt et al., 2016) in the Nugget Formation of western North America. 

However, the erosive bases and relative thinness of the sheets are more 

consistent with fairly viscous, sediment gravity flows (Miall, 1996). Sheets 

could have formed in response to (1) rain fall ponding in interdune areas; 

or (2) a rise in the groundwater table during long term climate change or 

temporary flooding from nearby fluvial sources (Ahlbrandt & Fryberger, 

1981; Petit-Marie et al., 1980; Ward, 1988; Langford & Chan, 1989). 

Though bioturbation is a common cause of massive bedding, these sheets 

occur in close association with obviously bioturbated (and even burrow-

bearing) strata, yet the contacts between these two lithofacies are 

undisturbed. Repetition of these sheets indicates that flooding conditions 

were fairly frequent. 
	

3.1.2 Stratigraphy  
Field Mapping 
Outcrop at the lower Makanya Hill locality was found and described from 

the “Matsaringwe” dry wash, as the dense vegetation in the area obscures 

the majority of available outcrop (Figure 3-12 shows (A) original Council 

for Geoscience Messina 1:250,000 1981 geologic map and (B) suggested 

changes; letters A-T correspond to locations depicted in Figure 3-13 and 

mapped in Figure 3-14). Most of the formations mapped are consistent 

with formation descriptions observed in the field and described by McCourt 

and Brandl (1980) with a few exceptions explained below and mapped in 

Figure 3-12 B.  
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Figure	3-12:	Geologic	Map	of	the	Makanya	Hill	field	locality,	indicated	by	red	arrow	on	
inset.	(A)	modified	from	the	1981	Council	for	Geoscience	1:250,000	map,	(B)	suggested	
changes	based	on	field	observations	in	the	present	study,	see	Figures	3-13	for	outcrop	
photos	corresponding	to	letters.	
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Figure	3-13:	Photographs	of	outcrop	mapped	in	Figures	3-12	B	and	3-14.	See	1.5	m	scale,	
scale	bar	and	geologic	hammers	for	scale.	(A)	Aeolian	sandstones	from	the	Clarens	
Formation.	(B)	Coarse-grained	fluvial	sandstone	from	the	base	of	the	Clarens	Formation	
(highlighted	in	orange	in	Figure	3-14).	(C,	D)	P-C	and	P-A	field	sites,	respectively,	
represent	palaeosols	from	the	Elliot	Formation.	(F)	Crystalline	basement	rock.	(G)	
Aeolian	sandstones	share	same	sedimentary	features	as	sandstones	in	A,	Clarens	
Formation.	(H)	Coarse-grained	fluvial	sandstones	of	the	Fripp	Sandstone.	(I)	Floodplain	
fines	overlain	by	ripple	cross-laminated	crevasse	splay	sandstones	in	the	Solitude	
Formation.	(J)	Multi-coloured	mudstones	of	the	Solitude	Formation.	(K)	Coarse-grained	
sandstone	bodies	are	rare	in	the	Mikembeni	Formation.	(L)	Interbedded	horizontally	
laminated	sandstones,	siltstones	and	mudrocks	of	the	Madzaringwe	Formation.	(M)	



63 
	

Coarse-grained	sandstones	in	the	Mikembeni	Formation	closely	resemble	the	Fripp	
Sandstone	(N),	but	are	smaller	in	scale.	(O,	P,	Q)	Interbedded	sandstones,	siltstones	and	
mudrocks	from	the	Mikembeni	Formation.	(R)	Another	large	(~10	meter	tall)	outcrop	of	
the	Fripp	Formation.	(S)	Interbedded	coal	and	mudrocks	from	the	Madzaringwe	
Formation.	(T)	Diamictite	from	the	Tshidize	Formation.		
	

A number of very resistant, large (~15 m), sandstone outcrops at R, O, N, 

and H (pictured in Figure 3-13-R,O,N, and H; mapped in Figures 3-12 B 

and 3-14), match the description of the Fripp Sandstone, instead of 

sandstone bodies from the Madzaringwe or Mikembeni Formations as 

mapped on the CGS Messina Map (Figure 3-12A). Figure 3-14 highlights 

the continuous, resistant outcrop on a satellite image which is thus 

identified as the Fripp Sandstone (Figure 3-12 B).  

 

North of location H (pictured in Figure 3-13 and mapped in Figures 3-12 

and 3-14), field observations more frequently contradict the identifications 

from the Messina Map (1981). The fine-grained, high angle cross-bedded, 

cliff-forming sandstone at G (Figure 3-13 G) and traces (Arenicolites sp.) 

observed there are typical of the Clarens Formation and do not resemble 

the largely crevasse-splay sandstones observed in the Solitude Formation 

from locations I and J.  

 

Fine-grained mudrocks, siltstones and palaeosols (Figure 3-13 C, D, and 

E) are not necessarily out of place in the Solitude Formation, but the 

mudrocks lack characteristic mottling described from Solitude overbank 

deposits (McCourt and Brandl, 1980). Ex situ sauropodomorph fossils 

resemble Elliot taxa from the Main Karoo Basin (see Chapter 3.3.1 for 

fossil descriptions) indicate these locations do not represent the Solitude 

Formation as mapped (Figure 3-12 A) but the Elliot Formation (Figure 3-12 

B).  

 

Location B is mapped as Klopperfontein Sandstone (Figure 3-12 A), 

however, Brandl (2002) notes that the Klopperfontein Sandstone does not 

tend to form large, resistant outcrops. The sandstones and grits from 
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location B (Figure 3-13 B) is lithologically consistent with the basal 

conglomerate of the Clarens Formation described by McCourt & Brandl 

(1980), and appears to form a continuous bench in the area which is 

depicted in orange in Figure 3-14.  

 

 
Figure	3-14:	Makanya	Hill	satellite	image	with	continuous,	resistant	sandstone	outcrops	
identified	in	this	study	as	the	Fripp	Sandstone	(yellow)	and	basal,	coarse-grained	Clarens	
Formation	(orange)	highlighted.	Letters	correspond	to	pictures	in	Figure	3-13.			
	

Due to heavy vegetation which obscured the majority of the outcrop, no 

formation contacts were observed but information from McCourt and 

Brandl (1980) and the Kruger National Park boreholes allow for a more 
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complete discussion of the stratigraphy and basin development of the 

Pafuri sub-basin (see following section and Chapter 4).  

Kruger National Park Boreholes 
The boreholes drilled in Kruger National Park to study the Pafuri sub-basin 

were divided by core loggers primarily into group designations (e.g. “Ecca 

Group”, “Beaufort Group”), and very occasionally into constituent 

formations. Using lithologic descriptions from the core logs, several 

formation identities are suggested in the borehole stratigraphic columns 

(which are designated with a “?” by the formation name or contact in 

borehole stratigraphic columns in Appendix A).  

 

Though none of the formations in the Lebombo-Tshipise basin have been 

studied with radiometric dating methods, correlative work by Van Eeden et 

al. (1955) between the Karoo basins has historically placed the Tshidize 

as Carboniferous/Permian in age; the Madzaringwe, Mikembeni 

Formations, and Fripp Sandstone as “Ecca Group” and Permian in age; 

the Solitude as “Beaufort Group” and Triassic in age; and the Elliot and 

Clarens Formations, and Drakensberg Group (“Stormberg Group”) as 

Triassic-Jurassic in age. The Triassic-Jurassic boundary has long been 

placed within the Elliot Formation (Smith & Kitching, 1997; Bordy et al., 

2004b). As the specific locations of the Carboniferous-Permian and 

Triassic-Jurassic boundaries are not known from the Lebombo-Tshipise 

Basin, the whole of the Tshidize and Elliot are allocated to the Permian 

and Triassic periods, respectively, in borehole, stratigraphic section and 

geologic map figures, to avoid confusion with suggested identification of 

formations (noted with a “?”).  
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Table 3-3: Summary of Kruger National Park Boreholes (drilled in 1979 by 
Council for Geosciences) 

Name Location Latitude Longitude 
Start 
(m) 

Finish 
(m) 

Total 
height 

(m) 

KNP 1 20 km N of Punda 
Milis 22° 30' 57" 31° 03' 35" - - - 

KNP 2 19 km NNE of PM 22° 32' 15" 31° 05' 56" - - - 
KNP 3 16.5 km NE of PM 22° 34' 41" 31° 07'26" - - - 
KNP 4 11 km NE of PM 22° 36' 50" 31° 05' 19" 18.00 286.70 268.70 
KNP 5 11.5 km ESE of PM 22° 42' 18"  31° 07' 44" - - - 

KNP 6 14.5 km E of PM 22° 41' 
31°" 31° 09' 33" - - - 

KNP 7 24.5 km ESE of PM 22° 48' 09" 31° 11' 22" 6.00 176.19 170.19 
KNP 8 18 km ENE of PM 22° 36' 51" 31° 10' 11"  7.17 425.51 418.34 
KNP 9 15.5 km NE of PM 22° 36' 16" 31° 03' 07" 22.91 152.68 129.77 
KNP 10 19 km ESE of PM 22° 43' 01" 31° 12' 05" 10.15 652.36 642.21 
KNP 11 10.5km ESE of PM 22° 43'18" 31° 06'53" 13.94 167.42 153.48 
KNP 12 26 km ESE of PM 22° 43'00" 31° 14' 26" 25.55 466.92 441.37 
KNP 
12A 26 km ESE of PM 22° 43'00" 31° 14' 26" 432.00 646.56 214.56 
KNP 13 22 km NE of PM 22° 33' 47" 31° 11' 06" 7.85 578.09 570.24 
KNP 14 36 km SSE of PM 22° 52' 50" 31° 12' 37" 21.94 425.34 403.4 
KNP 15 26 km NE of PM 22° 31' 03" 31° 11' 19" 6.45 773.65 767.2 
KNP 15 "Wedge" 22° 31' 03" 31° 11' 19" 459.70 750.78 291.08 
KNP 16 16 km NNE of PM 22° 32' 39" 31° 05' 42" 7.65 145.46 137.81 
KNP 17 17.5 km NE of PM 22° 33' 40" 31° 06'48" 6.10 202.03 195.93 
KNP 18 14 km NE of PM 22° 33' 40" 31° 07' 49" 6.40 55.29 48.89 
KNP 19 10.5 km NE of Punda 22° 36' 58" 31° 05' 00" 7.80 218.80 211.00 
KNP 20 10.25 km NE of PM 22° 38' 23" 31° 06' 00" 9.12 212.61 203.49 
KNP 21 10.6 km ENE of PM 22° 39' 29" 31° 07' 18" 15.90 162.36 146.46 
KNP 22 18.75 km ENE of PM 22° 38' 52" 31° 11' 41" 21.91 1200.07 1178.16 

KNP 23 13.6 km SW of 
Shingwedzi 23° 10' 44" 31° 19' 37" 41.00 167.32 126.32 

*Grey backfill indicates boreholes east of 31° 10’ 
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The trends and thicknesses of the Pafuri sub-basin’s fill are summarized 

here. 

 

The Pafuri sub-basin boreholes drilled in Kruger National Park have an 

average depth of 311.63 m. Boreholes to the east of 31° 10’ contain the 

most complete sequences of the Karoo Supergroup sediments, and are 

significantly thicker (mean = 430.64 m) than the western boreholes (mean 

= 149.55 m). Western boreholes do not preserve the Fripp Sandstone or 

subsequent formations. Though the eastern boreholes are more 

stratigraphically representative, most lack at least one formation. The only 

exception appears to be KNP 15 (767.20 m); however, the Klopperfontein 

Sandstone was not marked in the core log and the candidate sandstone 

has been identified based on lithological similarity to the formation in 

McCourt and Brandl (1980). 

 

The southernmost boreholes, KNP 23 (167.32 m) and KNP 14 (425.34 m) 

are among the shortest from the east and lack the lower Karoo sequence 

(Dwyka, Ecca and Beaufort Groups); these boreholes consist mostly of 

Letaba basalt over a thin succession of upper Karoo sandstones which 

rest on crystalline basement rock. These were identified as “Red Beds” in 

the core logs, and are described as “baked” with pervasive, large calcite 

veins. Based on proximity to the Red Rocks locality (which crops out less 

than 5 km to the west), assigning these rocks to the Clarens Formation is 

reasonable. The location of KNP 14 may have been recorded in error or 

the area mapped in insufficient detail as this borehole is located, according 

to the 1981 Messina area map, in the Palaeoproterozoic Soutpansberg 

Group.  

 
Palaeoproterozic Basement 
Less than half the studied boreholes (n = 8) intersect the Precambrian 

basement: the western boreholes KNP 4, 9, 11, and 18, and the boreholes 

at the western, eastern and southern margins of the eastern borehole 
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group, KNP 8, 12A, 14, and 23. These are among the shortest of the 

eastern boreholes.  

 
Tshidize Formation 
Ten boreholes intersect the Tshidize Formation, 3 of which also intersect 

the Precambrian basement; KNP 12 in the east and KNP 9 and 18 in the 

west. The Tshidize Formation is present in nearly all the western 

boreholes (7 of the 9), while it is more sporadic in the eastern boreholes (3 

of 7). The formation varies in thickness from ~5-20 m in the west, while the 

formation is consistently ~10 m thick in the eastern boreholes (KNP 7, 12A 

and 22).   

 

Core logs of the western boreholes KNP 16, 17, 18, 19, 20, and 21 

described Madzaringwe rocks overlying “tillite” or pebbly conglomerate. 

These strata were often identified as “Pre-Karoo” or “transition beds.” 

However, lithological descriptions from the core logs match the Tshidize 

Formation and contrast with crystallized basement rock described from 

KNP 4, 9, 11, and 18.  

 

In the east, the Tshidize Formation appears to be preferentially preserved 

in the more central boreholes (KNP 7, 12A, and 22). The northernmost 

boreholes KNP 13 and 15, and central KNP 10 are some of the deepest 

boreholes (579.09 m, 773.65 m, and 652.07 m, respectively), but none 

reach the Tshidize Formation or Precambrian basement.  

 

Madzaringwe Formation 
All of the Kruger National Park boreholes intersect the Madzaringwe 

Formation which ranges from 40 to 180 m thick. In boreholes containing 

bracketing formations (overlying Mikembeni and underlying Tshidize or 

Precambrian basement) the Madzaringwe Formation consistently 

measures ~150-170 m thick.  
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In western boreholes, the Madzaringwe consistently overlies the Tshidize 

Formation except in KNP 4 and 11 where it overlies Precambrian 

basement. In the eastern boreholes the Madzaringwe only overlies the 

basement in KNP 8, and overlies the Tshidize Formation in KNP 22, 12, 

and 7 (towards the southern end of the cluster). Underlying sediments 

were not drilled into in KNP 15, 13, and 10 in the north of the western 

borehole cluster. 

 

The Madzaringwe Formation has the most consistent thickness of the 

Karoo Supergroup in the western boreholes, ranging only ~40 m (~110 in 

KNP 21 and ~150 in KNP 19). The only exception is KNP 18 which only 

contains roughly 40 m of this formation. The core log did not identify any 

formations in this short borehole (218.80 m), nor markers of the 

Madzaringwe Formation (Carbonaceous Horizon, Main Seam, or Middle 

Marker), but 5 m of Precambrian basement, 15 m of Tshidize and 40 m of 

the Madzaringwe Formation appear to be present based on lithological 

descriptions.  

 

In the eastern boreholes the formation is thickest in the centre of the 

borehole cluster (ranging from ~150 m in KNP 8 and 13, to ~180 m in KNP 

22), while the northern and southern-most boreholes measure only ~80 m. 

This thinning trend is probably genuine southwards; the southernmost 

borehole (KNP 7) reaches the underlying Tshidize Formation, but the 

northernmost borehole (KNP 15) does not extend to underlying formations 

or crystalline basement, so the total thickness of the Madzaringwe 

Formation there is unknown. The easternmost boreholes (KNP 4, 17, 18, 

and 21) have fewer sand bodies which tend to be thinner when present, 

than western sequences. Generally, more sandy bodies are present in the 

northern boreholes than the southern, while central boreholes have many 

intrusive bodies that obscure the relative amounts of sandy and muddy 

lithologies.  
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Mikembeni Formation 
The Mikembeni Formation varies in thickness more than the Madzaringwe, 

measuring ~210 m (maximum, KNP 22 and KNP 15 “Wedge”) to ~15 m 

(minimum, KNP 7) in the eastern boreholes, and ~110 m (maximum, KNP 

21) to 20 m (KNP 17) in the western boreholes.  

 

In the east the central portion of the basin has the thickest deposits of 

Mikembeni sediments, reaching 200 m KNP 22. Towards the north, the 

Mikembeni thickens from ~110 m (KNP 8) to 130 m (KNP 15). The 

southern boreholes contain progressively more truncated sequences from 

~100 m (KNP 10) to ~15 m (KNP 7) before disappearing completely in the 

southernmost boreholes (KNP 14 and 23). This drastic shortening and the 

heavily weathered top of the Mikembeni observed in KNP 12A indicates 

erosion affecting the southern portion of the basin sometime after Permian 

deposition. 

 

In the western boreholes, the thickness of the Mikembeni is less variable, 

measuring ~20 (KNP 17) to 110 m (KNP 4). The Mikembeni Formation is 

not present in the western (KNP 9, 16), northern (KNP 18) and southern 

(KNP 11) peripheral boreholes. These are all some of the shortest 

boreholes (<155 m), yet all (excluding KNP 11) preserve thick sequences 

of the Tshidize Formation (~20 m).  

 

 Fripp Sandstone 

The western boreholes only contain Permian and older sediments, so 

discussion of the Fripp, Solitude, Klopperfontein, Elliot and Clarens 

Formations will refer only to the eastern boreholes.  

 

The most complete Triassic sequence is represented in the northernmost 

borehole KNP 15, which has nearly 200 m of Triassic strata. While core 

loggers did not identify the Fripp or Klopperfontein outright in this 

borehole, the thick bodies of white, gray and purplish sandstone 
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bracketing green, red and gray mudrocks are good candidates for these 

formations. In fact, the Klopperfontein is only positively identified by core 

loggers in KNP 12A, which contains only ~35 m of Triassic sediment. 

 

The Fripp was identified by core loggers in KNP 12A, 15, and 22; however, 

in KNP 12A the Fripp is tentatively identified as a 2 meter interval of 

coarse-grained sandstone and siltstone with mudrock lenses and siderite 

nodules. This is lithologically consistent with intervals of the Solitude 

Formation and it has been identified thusly on the stratigraphic column 

(see Appendix A, Figure 9). 

 

The formation is thickest (~50 m) in KNP 22, and coarse-grained 

candidate sandstones are present in numerous, northern boreholes (KNP 

8, 10, 13, and 15). Southern boreholes lack the Fripp Formation, or good 

candidate sandstone bodies identifiable as the Fripp. This fits with 

McCourt and Brandl’s (1980) account of the Fripp thickening to the north. 

The Fripp may pinch out to the south or could have been removed prior to 

deposition of overlying Triassic strata.  

 

Solitude Formation 
The Solitude Formation was only identified by core loggers in KNP 12A, 

but candidate sequences appear as part of the “Beaufort series” identified 

in KNP 7, 10, 15 and 22. Minor silts and muds (less than 5 m thick) 

between the two thick, coarse-grained sandstone bodies (likely the Fripp 

and Klopperfontein Formations) in KNP 13 might also represent the 

Solitude Formation.  

 

The Solitude is represented by ~50 m of strata in KNP 15 and KNP 22 and 

generally thins to the south and east to less than 15 m (KNP 7 and 12A), 

and is absent in boreholes further south. This trend matches the reduction 

of the Solitude in Kruger Park from 85 m in the north to 10 in the south 

reported by McCourt and Brandl (1980), and a decrease from 120 m to 60 
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m to the west in the northern arm of the Lebombo-Tshipise Basin (Brandl, 

2002).  

 

Klopperfontein Sandstone 
This coarse-grained, felspathic sandstone unit was only identified in KNP 

12A, however, this 20 m of sediments was likely misidentified by core 

loggers. The reddish-brown conglomerate bracketed by fine-grained 

sandstone more closely resembles conglomerate present at the base of 

the Red Rocks Member of the Clarens Formation found in “some 

boreholes” (McCourt & Brandl, 1980; see Elliot and Clarens Formations in 

this chapter for more description).  

 

However, other boreholes including KNP 7, 8, 10, 13, and 15 have 

candidate sandstone bodies that could represent the Klopperfontein 

Sandstone. Surprisingly, no candidate sandstone is present in the deepest 

borehole, KNP 22 (1178.16 m). The formation reaches a maximum of ~40 

m (KNP 13 and 15) and thins to the southwest to a minimum of ~15-20 

(KNP 7 and 10).  

 

McCourt and Brandl (1980) note the formation is ~20 m in the Kruger 

National Park and that it thins to ~10 m east of Tshipise, where it is 

described as coarse-grained and gritty with “abundant” pink feldspar. 

Brandl (2002) notes that in the “extreme west” the formation is very thin or 

absent.  

 
Elliot and Clarens Formations 
Previous workers have neglected to describe the contact between the 

Elliot Formation and the underlying Klopperfontein. In places where the 

Klopperfontein is missing, Brandl (2002) describes the contact between 

the Elliot and Solitude as “arbitrary,” which implies a gradual contact.  

 



73 
	

The overlying Red Rocks member of the Clarens Formation share a 

gradational contact with the Elliot Formation (Brandl, 2002), and core 

loggers did not differentiate the Elliot Formation from the Red Rocks 

Member, but referred to the red sandstones, siltstones, and mudrocks 

below the “Cave Sandstone” (Tshipise Member of the Clarens) together as 

“Red Beds.” This move presaged Bordy and Eriksson’s (2015) 

recommendation to subsume the Red Rocks Member into the Elliot 

Formation. 

 

The Elliot Formation is typically composed of siltstones and mudrocks and 

is described as poorly developed in Kruger Park, but reaches maximum 

thickness of 150 m near the town of Tshipise in the central Tshipise sub-

basin of the Lebombo-Tshipise Basin (McCourt & Brandl, 1980). The Red 

Rocks Member of the Clarens Formation consists of red, argillaceous 

sandstones with irregular patches of beige or cream sandstone identical to 

the overlying Tshipise Member (McCourt and Brandl, 1980). The Red 

Rocks Member disappears east of Tshipise according to McCourt and 

Brandl (1980), though this likely strictly refers to the Tshipise sub-basin, as 

the type locality of this member crops out 100 km southeast of Tshipise at 

the Red Rocks locality field area in the Pafuri sub-basin. These authors 

also note that in “some boreholes,” the Red Rocks Member is represented 

by conglomerate units. 

 

South-eastern boreholes KNP 7, 12, and 12A contain pebble 

conglomerates at the base of the Clarens Formation instead of typical 

Elliot or Red Rocks Member deposits. The compositions of these 

conglomerates vary slightly; in the Makanya Hill field area the 

conglomerate is primarily composed of quartzite pebbles, while KNP 12 

and 12A’s units have angular quartzite, arenaceous sandstone, and 

Soutpansberg quartzite clasts. The conglomerate in KNP 7 is composed of 

quartzite, calcareous concretions and occasional mudrock rip-ups, and the 
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succession has numerous sharp, “downcutting” contacts which evoke 

channel lags deposited in high energy fluvial successions. 

 

The northern boreholes KNP 8, 10, and 15 preserve 20-60 m of the typical 

Elliot/Red Rocks sequence of mudrocks capped with fine-grained 

sandstones. In the north (KNP 13), east (KNP 12A), and southernmost 

boreholes (KNP 14 and 23) the red beds are not represented by 

mudstones but only 5-20 m of red sandstones. The nearby Red Rocks 

field locality likewise preserves ~15 m of fine-grained sandstone and minor 

siltstones directly overlying Precambrian basement.  

 

Beige or cream-colored “Cave Sandstone” deposits (the Tshipise Member 

of the Clarens Formation) sharply overlies the Red Rocks Member in all 

the eastern boreholes except for KNP 22 where it overlies “Beaufort” 

multicolored mudrocks, siltstones and grits. The Tshipise Member is 

thickest near the central portion of the eastern boreholes, reaching a 

maximum of ~130 m (KNP 22) and approximately 100 m less than 10 km 

to the south (KNP 10). These sediments are thicker in the western 

periphery of the eastern boreholes, measuring between 30 and 60 m (KNP 

7 and 8, respectively), while the thinnest sequences <10-20 m occur at the 

eastern margin (KNP 12 and 12A respectively). To the north, the formation 

thins drastically to 40 m (KNP 13), but doubles to ~80 m (KNP 15) at the 

northern margin, and measures some 70-100 m at Makanya Hill field 

locality. The Tshipise Member disappears completely in the southernmost 

boreholes (KNP 14 and 23).  

 

The Elliot and Clarens together are thickest in the north and central 

portions, especially if the coarse-grained lithology currently marked as 

“Solitude?” in KNP 22 instead represents the basal conglomerate of the 

Clarens Formation. These formations thin towards the south and east of 

the basin; reduced to nearly a tenth (10-20 m thick in KNP 7, 12, 14, and 

23) of the maximum ~180 m (KNP 10).  
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3.2 Clay Composition and Quantitative Palaeoenvironmental 
Reconstruction of the Elliot Formation 

The majority of methods used to quantitatively reconstruct 

paleoenvironment are preferentially performed on palaeosol samples, as 

authigenic clay formed in this environment most accurately records 

environmental signatures such as temperature and precipitation (see 

Sheldon and Tabor, 2009 for nuanced explanations of various methods, 

techniques and calculations). As palaeosols were only found and sampled 

in the Elliot Formation of the upper Makanya Hill area, quantitative 

palaeoenvironmental reconstruction was only undertaken for the Elliot 

Formation.  

 

3.2.1 X-Ray Diffraction (XRD) and Scanning Electron Microscopy 
(SEM) 

XRD 
X-Ray Diffraction (XRD) analyses were performed on seven palaeosol 

samples from the Lebombo-Tshipise Basin and one from the Main Karoo 

Basin. Whole rock compositions of these samples indicate lithological 

similarity of the palaeosols/mudrocks in both basins; this data is 

summarized in Table 3-4. For individual sample XRD spectra and SEM 

images with associated Energy Dispersive Spectra (EDS) results, see 

Appendix C. The pattern for albite is preferred to anorthite or other Ca-Na 

intermediate feldspars in terms of fit to sample spectra, but represents all 

plagioclase present in the samples. Illite/Smectite + Mica in Table 3-4 

corresponds to the combined XRD patterns of the 2M form of muscovite 

and illite which represents interlayered illite and smectite, as these 

minerals often occur together. Additional analyses of separate clay 

fractions from these samples using glycol solvation (Moore & Reynolds, 

1997) would be required to quantify the amount of interlayered smectite 

present in the illite structure. Though the high temperature stable 
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polymorph of muscovite (2M) is unlikely to actually be present in these 

samples, the pattern provided a better fit to the data, and is employed to 

represent all forms of mica. 

Table 3-4: XRD Major (M), minor (m), and trace (t) summary of whole rock palaeosol 
and mudrock samples  
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Upper 
Makanya 
Hill: P-A 

KDS-1 M t m   t  t t  t 

 
 
 
 
 
 
 
 
 

M m t 
KDS-2 M m m      t t  M m t 
KDS-

3B M t M  t  t t t   t m m 

KDS-4 M t m     t t t  M m t 
KDS-5 M t m      t t t M m t 

Upper 
Makanya 
Hill: 
P-B 

KDS-6 M t M      t   M  t 

Upper 
Makanya 
Hill: P-C 

KDS-7 M t m t   t    t M m  

Upper 
Makanya Hill 

KDS-
10 M t M t   t t t   m t m 

Blikana Field 
Area BPS-1 M m M t     t   M M  

 

All samples have major quartz peaks and major/minor amounts of 

feldspar; more plagioclase appears to be present than potassium feldspar 

in all the samples. As expected, the palaeosol samples are enriched in 

clay, and have major/minor peaks for illite/smectite and mica, and 

minor/trace peaks for kaolinite and chlorite. All samples except KDS-7 

have trace amounts of iron oxides including maghemite, hematite, and 

goethite, while only one sample (KDS-1) has small peaks consistent with 

pyrite. A few samples additionally have trace amounts of barite, calcite 

and the titanium oxide anatase. Ankerite (iron-dolomite) is present in trace 

amounts in KDS-3B. 
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Samples from P-A (KDS-1 – KDS-5) were collected in stratigraphic order 

from the outcrop base to the top. KDS-3B was collected from a horizon in 

the palaeosol directly adjacent to a small dyke, and has compositional 

differences from other samples in the palaeosol including an enrichment in 

plagioclase, reduction in clay species, and the presence of ankerite/iron-

dolomite and barite, which are not present in other samples from P-A. 

These differences suggest diagenic alteration of this horizon, whereby 

illite/smectite clay common in the other palaeosol samples has been 

altered to kaolinite/chlorite. KDS-10 is the only other sample lacking in 

clay; less weathering and clay genesis is expected to have occurred in a 

mudrock sample compared to palaeosol samples.  

 

BPS-1 is more enriched in feldspar than the other samples, indicating that 

massive weathering massive weathering (i.e. chemical weathering 

dominating physical weathering sensu Pédro in Paquet & Clauer, 1997) 

was likely not occurring in the Main Karoo Basin, or at least not the extent 

present in the Lebombo-Tshipise samples.  

 

SEM 
Minerals most commonly identified by Scanning Electron Microscopy 

(SEM) analyses of seven Lebombo-Tshipise Basin and one Main Karoo 

Basin palaeosol samples include mixed layer illite/smectite, quartz, mica, 

potassium and sodium feldspars, chlorite, and iron oxides. Many spectra 

include unidentified peaks near 2 and 10 keV; these are palladium and 

gold peaks contributed by sample coatings. 

 

Micas and clays are especially vulnerable to cation substitutions, 

impurities and highly variable structures, largely due to the high surface 

area to volume ratio of the phyllosilicate crystal structure and the 

electrically active nature of these surfaces (Velde, 1995). It is unsurprising, 

then, that none of the micas in the SEM samples produced EDS results 

that exactly match those of the mica end-members biotite and muscovite, 
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but the closer match is indicated in parentheses after the identification of 

mica (e.g. mica (biotite) in Appendix C). 

 

No reference EDS spectrum for mixed layer illite/smectite is provided in 

the literature, though mixed layer illite and smectite is common in nature, 

forming in a variety of environments through weathering, burial diagenesis, 

and hydrothermal alteration (Weaver, 1958; Velde, 1995; Kahle et al., 

2002). Complex spectra with subequal aluminum and silicon peaks and 

relevant associated peaks (K, Na, Mg, and Fe) are interpreted as mixed-

layer illite and smectite. Calcium and titanium, and sulfur and chlorine are 

typical cation and anion substitutions in smectite, so spectra including 

these peaks are also identified as illite/smectite clay. These spectra 

closely resemble the spectrum of stilpnomelane, but this mineral is typical 

of metamorphic and igneous rocks and therefore unlikely to be present in 

palaeosol samples.  

 

The maximum magnification (>20 µm) was often inadequate to capture 

exceedingly small and delicate, singular iron oxides. There are no spectra 

of solitary iron/titanium oxides, though the pervasive presence of iron and 

titanium peaks throughout the analyses strongly indicate these are present 

in abundance, especially as thin crusts.  

 

In contrast to the XRD results, potassium feldspar was encountered more 

frequently than plagioclase during SEM analyses. The dominant clay 

identified by EDS is authigenic mixed layer illite and smectite, though 

some morphologies indicate detrital clay is also present (e.g. rounded 

grains). The most common morphologies are flakes and lathes, often 

formed as pore linings or grain coatings, and non-aligned pore fillings 

typical of authigenic clays (Wilson & Pittman, 1977). Copper replacement 

in the octahedral sheets of smectite is the likely source for large copper 

peaks in KDS-3B (Mosser et al., 1990). Chlorite was detected in most 
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samples, while kaolinite was tentatively identified only in KDS-3B. Chlorite 

in the samples is almost entirely authigenic flakes and laths.  

 

SEM images of BPS-1 are visibly less clay-rich than other samples and 

are primarily composed of blocky quartz and mica grains with clay flakes 

filling instead of lining pores. The grains on average are larger than the 

other samples and less covered in iron and clay coverings. 

 

Mineral EDS spectra from “Electron Microprobe Analysis and Scanning 

Electron Microscopy in Geology” S.J.B. Reed (2005) are provided in 

Appendix C for comparisons to the subsequent sample analyses. 

 

3.2.2 X-Ray Fluorescence (XRF) and Chemical Indices of Alteration 
(CIA) 

The major element geochemistry for nine palaeosol samples and one 

mudrock sample from the Lebombo-Tshipise Basin, and one palaeosol 

sample from the Main Karoo Basin are presented in Table 3-5 and trace 

element geochemistry and loss on ignition results are presented in Table 

3-6.  
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Table 3-5. XRF Major Elements and CIA values      
Location Sample 

ID 
SiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O TiO2 P2O5 Cr2O NiO LOI Total CIA CIA 

(m) 
Palaeosol 

A 
KDS-1 73.27 12.35 0.46 3.73 0.01 0.78 0.10 0.86 1.86 0.72 0.02 0.01 0.00 5.75 99.91 76.92 2.82 
KDS-2 65.15 16.11 0.58 4.65 0.01 1.04 0.08 0.84 2.30 0.79 0.03 0.01 0.01 8.54 100.14 79.11 3.23 
KDS-3A 84.51 6.05 0.24 1.94 0.07 0.59 0.94 0.70 1.38 0.48 0.12 0.02 0.00 2.80 99.85 60.31 1.36 
KDS-3B 84.30 5.76 0.25 2.04 0.07 0.54 0.94 0.57 1.35 0.48 0.10 0.02 0.00 3.19 99.61 60.35 1.36 
KDS-4 68.27 14.76 0.54 4.34 0.01 1.03 0.07 1.04 1.93 0.71 0.02 0.02 0.00 7.31 100.04 78.77 3.18 
KDS-5 84.65 4.10 0.23 1.79 0.04 0.27 0.50 0.23 0.98 0.51 0.08 0.01 0.00 6.13 99.52 64.26 1.49 

Palaeosol 
B 

KDS-6 87.08 3.61 0.19 1.51 0.15 0.12 0.16 0.13 0.99 0.59 0.08 0.02 0.00 5.11 99.73 67.75 1.59 

Palaeosol 
C 

KDS-7 84.92 3.38 0.18 1.49 0.04 0.08 0.10 0.13 0.97 0.58 0.06 0.02 0.00 8.23 100.17 67.72 1.57 

Makanya 
Hill 

KDS-10 88.52 3.99 0.17 1.42 0.03 0.10 0.11 0.16 1.10 0.50 0.06 0.02 0.00 4.31 100.48 68.47 1.73 

Blikana 
Field Site 

BPS-1 90.14 2.58 0.09 0.71 0.00 0.04 0.05 0.06 0.88 0.22 0.02 0.01 0.00 4.83 99.62 65.87 1.67 

Major Elements are presented as a weight percentage of the total sample weight 
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Table 3-6. Trace Elements and Loss on Ignition values       
Sample ID Sc V Cr Co Ni Cu Zn Ga Rb Sr Y Zr Nb Mo Ba Pb Th U LOI 
KDS-1 10.44 52.14 45.11 11.45 26.61 16.82 56.05 15.83 115.27 46.45 21.47 416.24 16.94 1.41 258.32 20.24 17.82 d.l. 5.61 
KDS-2 12.24 99.68 47.43 10.33 30.79 24.14 57.40 22.53 134.75 52.45 21.44 297.34 19.27 1.38 275.45 36.42 10.15 d.l. 8.83 
KDS-3A 5.49 26.62 37.90 18.49 12.17 25.26 42.94 7.39 31.52 58.25 17.67 466.91 9.63 0.63 224.46 13.34 6.39 d.l. 3.03 
KDS-3B 8.14 37.13 37.36 19.03 18.90 18.66 63.66 7.99 37.55 71.38 19.40 550.54 11.40 1.14 333.88 15.92 7.82 d.l. 3.30 
KDS-4 11.04 68.16 43.00 3.57 26.66 17.12 42.32 17.22 106.40 44.66 20.71 292.62 16.73 1.80 263.01 22.63 9.48 d.l. 7.51 
KDS-5 9.97 72.47 55.10 14.42 22.17 22.02 32.78 15.54 101.76 72.34 23.65 388.69 16.89 1.15 254.07 17.05 15.60 2.51 6.09 
KDS-6 7.89 54.49 70.54 2.38 29.73 19.69 33.43 14.22 131.74 55.55 27.09 328.15 14.97 0.27 424.62 29.57 12.59 2.25 5.11 
KDS-7 7.95 100.04 81.03 3.92 69.34 16.24 22.38 13.16 62.84 64.97 20.05 425.26 10.79 d.l. 1026.18 20.37 8.77 0.94 8.21 
KDS-10 10.84 54.87 68.23 16.41 28.74 24.40 32.65 9.38 41.97 75.42 27.66 637.37 12.45 0.52 622.33 13.27 10.39 d.l. 3.96 
BPS-1 9.66 47.51 42.79 7.82 16.15 22.97 49.66 14.53 119.46 158.80 22.39 281.02 12.34 0.80 594.52 25.61 12.14 1.94 4.83 
LOI is measured in grams and Trace elements are measured in Parts Per Million            
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XRF Major Element Geochemistry: 
The Lebombo-Tshipise samples display positive linear co-variance of 

Al2O3 with Fe2O3, MgO, Na2O and K2O (R2 ≥ 0.8), while there is a weaker 

co-variance with TiO2 (R2 = 0.63859) (Figure 3-15 A- G). The weaker 

correlation between TiO2 and Al2O3 could indicate TiO2 is hosted in other 

minerals besides clays, consistent with the identification of titanium oxides 

in the XRD results (see Appendix C), while the stronger relationships 

suggest these other oxides are constituents of clay and other 

aluminosilicates (Jin et al., 2006). Co-variance is not established with CaO 

(R2 = 0.0581) (Figure 3-15 F), and this is resultant of very small 

concentrations of CaO present in all samples (0.05-0.94). CaO 

concentration is especially low in comparison results from the Elliot 

Formation in the Main Karoo Basin (avg. 4.42, Sciscio & Bordy, 2016).  

 
Figure	3-15:	Various	oxides	present	in	relation	to	alumina	from	9	samples	from	the	
Lebombo-Tshipise	Basin	(see	Table	2-1	for	sample	list)	as	measured	by	XRF.		
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The ratio of silica to aluminum in samples can be employed as a proxy for 

sediment maturation, with larger ratios reflecting more mature sediment as 

resistive quartz increases while feldspars, micas and other aluminosilicate 

content decreases during transport and recycling (Akarish & El-Gohary, 

2011). In general, SiO2/Al2O3 ratios for the Lebombo Tshipise Basin are 

high, with an average (mean) of 17.02, considering Roser et al. (1996) 

report values between and greater than 5 and 6 as indicative of 

sedimentary maturation. The largest ratios are from the Main Karoo Basin 

palaeosol sample (BPS-1: 34.94), samples from P-B and C (KDS-6: 24.12, 

KDS-7: 25.12), the LTB mudrock sample (KDS-10: 22.19), and the 

uppermost sample from P-A (KDS-5: 20.65). Samples KDS-3A and B also 

have high ratios (13.97 and 14.64, respectively), however quartz 

enrichment may be a result of diagenic alteration; these samples are 

significantly enriched in CaO compared to the other samples by as great 

as a factor of 18. Additional evidence for alteration is presented in Chapter 

3.2.1 (SEM and XRD) and Appendix C. Only two of the palaeosol samples 

(KDS-2 and 4) are considered immature with ratios of 4.04 and 4.63 

respectively. 

 

Excluding samples BPS-1, KDS-10, and KDS-3A and B, to further 

elucidate the sediment maturation of strictly Lebombo-Tshipise palaeosols 

that do not show evidence of alteration, the mean SiO2/Al2O3 ratio is 

reduced to 14.08 with a standard deviation of 9.33, indicating there is still 

a very large variance in ratios and therefore soil maturation throughout 

these soil horizons. Most surprisingly, there is no upward trend in less 

mature sediment in the extensively sampled P-A; the largest ratio comes 

from the uppermost strata in the deposit. KDS-5 may represent a new, 

less weathered generation of soil development on top of older, more clay-

rich soil.  

 

All of the Lebombo-Tshipise samples have larger amounts of iron (2.86 

avg) and titanium (0.59) than the Main Karoo Basin sample and the 
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average of samples reported from the Main Karoo Basin in Sciscio and 

Bordy (2016; 0.8 and 0.22; 2.28 and 0.48, respectively). Samples from 

Sciscio and Bordy (2016) do not report FeO (due to instrumentation), so a 

direct comparison to this study’s samples cannot be made. These samples 

have, on average, 8 times more FeO than Fe2O3 present. The resultant 

abundance of soluble ferrous iron in the Lebombo-Tshipise samples 

suggests the soils were poorly drained.  

 

XRF Trace Element Geochemistry 
All trace elements are present in concentrations below 100 ppm with the 

exceptions of Rb (31.52 – 131.74) Zr (281.02 – 637.37) and Ba (224.46 – 

1026.18); this is comparable to results published from the Elliot Formation 

of the Main Karoo Basin: Sr (86.4 – 268 ppm), Zr (143 – 215 ppm), and Ba 

(335 – 1884 ppm) (Sciscio and Bordy, 2016).  

 

CIA  
Chemical Indices of Alteration are calculated to determine overall 

weathering of fresh parent material. These values can be compared to the 

relative amounts of potassium (K), alumina (A), calcium and sodium (CN) 

determined by XRF, and plotted in a ternary diagram to represent clay 

species likely to be present and degree of weathering (Figure 3-16). 

Samples from the present study are plotted and compared with three 

locations from the Main Karoo Basin published by Sciscio and Bordy 

(2016), which indicate that the Lebombo-Tshipise samples are more likely 

to contain greater amounts of illite compared to smectite, and are more 

weathered (intermediate weathering vs. weak weathering) than the Main 

Karoo Basin counterparts. The sample taken from Blikana field area 

surprisingly plots out very close to the illite line, and more closely 

resembles samples from the Lebombo-Tshipise Basin than the Main 

Karoo Basin samples.  
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Figure	3-16:	Ternary	diagram	of	Chemical	Indices	of	Alteration	(CIA)	values	vs.	Combined	
calcium	(C)/sodium	(N),	Potassium	(K),	and	alumina	(A)	amounts	present	in	10	samples	
from	the	present	study	and	126	samples	published	by	Sciscio	and	Bordy	(2016).	
Amounts	of	cations	and	CIA	values	are	calculated	from	XRF	results.	Samples	below	CIA	
50	represent	relatively	unweathered	rocks,	while	samples	enriched	in	alumina	are	highly	
weathered	and	have	lost	mobile	cations.	
	

CIA molar values can be compared to potassium (K)/sodium (Na), and 

alumina (Al) values as determined by XRF to determine the relative aridity 

of the environment in which the samples were formed (Figure 3-17). 

Samples from the present study are again compared to data published by 

Sciscio and Bordy (2016) from the Main Karoo Basin. The samples from 

the present study tend to have higher CIA values consistent with more 
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subtropical (i.e. wetter) weathering conditions than samples from the Main 

Karoo Basin.  

 

 
Figure	3-17:	Chemical	Indices	of	Alteration	(CIA)	molar	values	compared	to	
potassium/sodium	ratio,	and	alumina	(XRF	values)	from	10	samples	from	the	present	
study	(blue	and	red)	and	126	samples	published	by	Sciscio	and	Bordy	(2016).	Samples	
from	the	present	study	plot	closer	to	and	within	the	subtropical	depositional	climate	as	
established	by	Goldberg	and	Humayun	(2010).		
 

  



87 
	

3.3 Fossils of the Elliot and Clarens Formations 

3.3.1 Sauropodomorph Fossils 
The fossil material recovered from Kruger National Park and Makuya 

National Reserve had originally been assigned by Durand (2001) to 

Euskelosaurus browni based primarily on the size and robust nature of the 

large, adult specimens recovered. This interpretation followed the 

biostratigraphic range zones established by Kitching and Raath (1984) for 

the Elliot Formation within the main Karoo Basin: the Euskelosaurus 

Range Zone for the lowermost subunit (typified by the nearly exclusive 

occurrence of large-bodied ‘prosauropods’), and the Massospondylus 

Range Zone for the ‘middle’ and uppermost subunits (typified by abundant 

remains of the comparatively gracile Massospondylus). However, recent 

taxonomic revision has demonstrated Euskelosaurus to be a “waste-

basket” taxon (Yates & Kitching, 2003; Yates 2003; 2004; 2007a,b), and 

numerous new sauropodomorph taxa have since been described from 

both the upper and lower sections of the Elliot Formation (Yates, 2003b; 

2004b; 2007a,b; Yates et al., 20010; McPhee et al., 2015a, b).  

 

Current consensus recognizes five species occurring in the lower Elliot 

Formation (LEF): Blikanasaurus cromptoni, Melanorosaurus readi, 

Eucnemesaurus entaxonis, Plateosauravus cullingworthi, and Antetonitrus 

ingenipes (Yates, 2007; McPhee et al., 2015a); and four genera occurring 

in the upper Elliot Formation (UEF): Massospondylus, Aardonyx, 

Pulanesaura, and Arcusaurus (McPhee et al., 2015b), though this is 

subject to increase due to the uncertain status of taxa referred to as 

Massospondylus (i.e. Ignavusaurus and Gyposaurus, Cooper 1981; Yates 

et al., 2011). This stratigraphic distribution represents a marked departure 

from older assessments of sauropodomorph biostratigraphy of the Elliot 

Formation that assumed a more morphologically and taxonomically 

diverse assemblage of sauropodomorphs within the Late Triassic lower 

Elliot Formation compared to the ‘depauperate’ Early Jurassic upper Elliot 

Formation (Barrett, 2004, 2009; McPhee et al., 2016).  
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The Lebombo-Tshipise sauropodomorph material was found ex situ, and 

represents numerous individuals from multiple ontogenetic phases and 

potentially several different genera. Elements were recovered from dry 

stream beds in topographic lows between two highlands and could have 

originated from a single bonebed or multiple deposits of unknown 

composition. Thus, this material does not necessarily represent a single 

population of animals, a monospecific assemblage, or even single 

temporal horizon. Nonetheless, a select subset of these fossils present a 

modest amount of informative morphology that allows comparison with the 

better-known fossil remains from the main Karoo Basin. This subset 

includes an anterior caudal vertebra, first metacarpal, and proximal left 

femoral head which are described and discussed below.    

 

Caudal vertebra: The anterior caudal vertebra (Figure 3-18) has a 

centrum that is much taller dorsoventrally than it is anteroposteriorly long, 

with an anteroposterior length 0.32 times its dorsoventral height. 

Anteroposterior shortening of anterior caudal vertebrae is considered a 

putatively derived feature in Sauropodomorpha, and is noted in 

Pulanesaura (McPhee et al., 2015b) and Tazoudasaurus naimi (Allain & 

Aquesbi, 2008). However, this feature is otherwise rare within the Elliot 

sauropodomorph assemblage. Similar features observed in a referred 

specimen of Melanorosaurus (NMQR 1551; Galton et al., 2005) 

complicate the phylogenetic connotations of this character. The transverse 

processes are positioned high on the centrum and are located roughly the 

level of the neurocentral suture. This feature distinguishes it from the 

anterior caudal vertebrae of Pulanesaura and from more derived sauropod 

taxa in which the transverse processes extend well onto the lateral 

surfaces of the centrum. The phylogenetic distribution of this feature is 

ambiguous, with the basal sauropods Tazoudasaurus and ‘Kotasaurus’ 

possibly retaining the plesiomorphic condition in the positioning of the 

transverse processes (Yadagiri, 1988; Allain et al., 2004). 



89 
	

 

 
Figure	3-18:	Sauropodomorph	anterior	caudal	vertebra	in	anterior	(A),	posterior	(B),	
lateral	(C),	and	dorsal	(D)	views.	Note	the	high	positioning	of	the	transverse	processs	(tp)	
and	anteroposterior	shortening.		
	

Metacarpal I: The first metacarpal (mc I) is volumetrically large but 

relatively elongate in comparison to the similarly-sized taxa like Aardonyx 

(Figure 3-19 and 3-20). The proximal surface is roughly trapezoidal, with 

nearly equidimensional mediolateral (5.5 cm) and dorsovental (5.4 cm) 

maximum measurements. This surface is flat, lacking the proximal 

concavity typical of phalanges. The mediolateral width of the proximal end 

is approximately 0.60 of the length of the total length of the bone (9.1 cm), 

in marked contrast to the similar-sized animal Aardonyx celestae which 

has a very stout mc I with a ratio of 1.12 (McPhee et al., 2014). 

Anchisaurus and Plateosaurus have similarly elongate first metacarpals 

with ratios of 0.65 and 0.7, respectively (McPhee et al., 2014). The medial 

condyle is bulbous while the lateral appears much reduced.  
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Figure	3-19:	Sauropodomorph	first	metacarpal	in	dorsal	(A),	palmer	(B),	medial	(C),	and	
proximal	(D)	views.	This	elongate	element	is	heavily	encrusted	in	ferricrete;	lat	=	lateral,	
and	med	=	medial	condyles,	li	=	ligament	pit.			
 

The relative elongation of the Lebombo-Tshipise mc I is intriguing as no 

equivalent from such a large specimen is known from the Elliot 

sauropodomorph assemblage (see Figure 3-20 for comparison with other 

Elliot sauropodomorph metacarpals). In the Main Karoo Basin the 

morphology of sauropodomorph metacarpals appears to have a vague 

correlation with stratigraphic position (i.e. short and stocky in the upper 

Elliot Formation and elongate in the lower Elliot Formation). As few Early 

Jurassic taxa from southern Africa display a similarly elongate mc I (even 

morphologically disparate Antetonitrus and Massospondylus have 

proximodistally shortened first metacarpals), the element’s morphology 

could motivate a lower Elliot stratigraphic placement for the Lebombo-
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Tshipise assemblage. However, the Elliot assemblage (and especially that 

of the lower Elliot), is depauperate in sauropodomorph manus material, 

which may play a role in overstating the correlation of mc I morphology 

and stratigraphic placement. Additionally, a relatively elongate mc I exists 

in the putative near-sauropod Lamplughsaura from the Early Jurassic of 

India (Kutty et al., 2007), so caution should be taken when associating 

atomized anatomical information with stratigraphic position.  

 
Figure	3-20:	Sauropodomorph	first	metacarpals:	(A)	Lebombo-Tshipise	specimen,	(B)	
Antetonitrus	(BPI/1/4952),	and	(C)	Aardonyx	(BPI/1/5379).	While	these	animals	are	
similar	in	size,	their	manual	architecture	is	markedly	different.		
	

Femur: A number of isolated femora were figured by Durand (2001), who 

cited the appreciable size range of these elements from several 

ontogenetic stages as evidence of gregarious herding behaviour in basal 

Sauropodomorpha. However, this conclusion was drawn with minimal 

discussion of the elements’ taphonomic context which refutes this 

hypothesis, and the material was not figured in detail to establish 

taxonomic affinity beyond indet. Sauropodmorpha. The fragmentary 

femora encountered in the study do not present autapomorphies that 

enable identification at low taxonomic levels; however, recovery of a 

partial left femur offers modest taxonomic insight.  

 

The left femur is represented only by the head and the proximal-most 

portion of the shaft (Figure 3-21). The circumference of the shaft 

measured proximal to the lesser trochanter and distal to the greater 

trochanter is 31.1 cm, which places this element in the same size class as 
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Eucnemesaurus fortis (BPI/1/6111) and Aardonyx celestae (BPI/1/6510) 

which measure 31.5 and 32.5 cm, respectively. These animals probably 

weighed close to 700 kg, significantly smaller than the estimated 5,600 kg 

of Antetonitrus ingenipes (BPI/1/4952) which measures 42.3 cm in 

circumference (Benson et al., 2014).  

 

 
Figure	3-21:	Sauropodomorph	proximal	left	femur	in	anterior	(A),	posterior	(B),	and	
proximal	(C)	views,	fh	=	femoral	head,	gt	=	greater	trochanter,	pt	=	posterior	tubercle.		
	

Of particular interest is the presence of a pronounced protuberance on the 

posterior surface of the femoral head. This posterior tubercle was 

suggested as a possible autapomorphy of Eucnemesaurus by Yates 

(2007a,b). However, McPhee et al. (2015a) have recently suggested that 
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this feature is probably more variable than generally appreciated, and 

question its utility as a diagnostic character. 

 

Diagnosis: The absence of articulated, in situ specimens makes 

taxonomic assessment of this material particularly difficult. However, this 

assemblage compares well to the Elliot Formation sauropodomorph 

assemblage in overall morphology and relative body size, belonging to 

animals similar to Eucnemesaurus though smaller than Antetonitrus. As 

the material lacks any evidence of the presence of gracile, 

massospondylid-like morphologies typical of the upper Elliot Formation, 

the study can tentatively suggest a lower Elliot equivalent stratigraphic 

placement of this material. 

  

Should the femoral posterior tubercle remain a valid autapomorphy, this 

would place some of the material within ‘Riojasauridae’ at the base of 

Massopoda. Though the anterior caudal vertebra features a putatively 

derived (i.e. sauropod-like) condition, this is less pronounced than in 

Pulanesaura.  

 

The pleisomorphic, elongate metacarpal suggests affinities with both 

Plateosaurus, which falls outside of Massopoda, and Anchisaurus which is 

recovered within Massopoda but sister-taxon to Massospondylidae 

(McPhee et al., 2015). Phylogenetically, the animal to which it belonged is 

most likely to occur at the base or just outside of Massopoda. The 

metacarpal’s morphology suggests it belongs to a new species, or 

represents an unknown element from a described species.  

 
3.3.2 Trace Fossils 
Burrows from the Elliot Formation at the Red Rock locality (Figure 3-22) 

are unlined, unbranched, cylindrical and elongate, ranging in size from 5-

50 cm in length and 0.5-8 cm in diameter. Their infill, when present, is 

typically finer-grained and different coloured (dustier, or yellow) from the 
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surrounding, massive sediment. These burrows are preserved in full and 

epirelief, and are oriented vertically through the substrate (Skolithos isp.) 

and horizontally along bedding planes (Planolites isp.) (Figure 3-22 B), 

and in some places, gently aligned to dune foresets (Figure 3-22 C). They 

are typically discrete and do not overlap, but commonly occur together in 

clusters (Figure 3-22 A and E).      

 

 
Figure	3-22:	Trace	fossils	from	the	Elliot/Clarens	Formation	at	the	Red	Rocks	locality.	(A)	
Small	burrows	often	cluster	in	transect,	but	do	not	overlap	(FA	VII	A).	(B)	Planolites	isp.	
present	on	the	palaeosurface	and	Skolithos	isp.		vertically	oriented	through	strata	(FA	VII	
A).	(C)	Small	burrows	in	beige	are	aligned	to	dune	foresets	in	cryptic	dune	(FA	VII	B).	(D)	
Circular	traces	in	epirelief	likely	represent	Skolithos	isp.	in	epirelief	(FA	VII	A).	(E)	Small	
burrows	preserved	in	epirelief	are	clustered	but	to	not	significantly	overlap	each	other	
(FA	VII	A).	(F)	Elongate	traces	(Planolites?)	in	epirelief	are	sparse	and	delicate	in	
appearance	and	only	found	in	FA	VII	B.		
 

The trace fossil assemblage from the Clarens Formation at Makanya Hill is 

dominated by kidney-shaped to circular, unlined, oblique burrows (2-4 cm 

in diameter) that penetrate underlying strata up to 8 cm deep. These 

burrows appear to have a faint, meniscate infill. Circular to almond-

shaped, convex bodies 2-3 cm in length are preserved in epirelief above 
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these burrows (Figure 3-23 A, C, D). The convex bodies in epirelief 

combined with the unlined and oblique burrowing orientation are 

consistent with Taenidium isp. (Good & Ekdale, 2014). These burrows are 

not nested in ellipsoidal packets, so the term AMB (adhesive meniscate 

burrows) is not applicable to these traces (Bown and Kraus 1983; Hasiotis 

and Dubiel 1994; Smith et al. 2008). Other traces include elongate, low-

sinuosity, unlined, traces approximately 15-25 mm in width. These are 

present in epirelief, and commonly found in association with Taenidium 

isp. Many of these have meniscate infill and are assigned to Entradichnus 

isp. (after Ekdale et al., 2007), while burrows without this interior structure 

are assigned to Planolites isp. (Figure 3-23-F, and C, G respectively). 

Additionally, numerous small (1-5 cm in diameter) circular burrows which 

are typically paired are assigned to Arenicolites isp. Figure 3-23-H). 

 

The abundance of Arenicolites isp., Planolites isp., Entradichnus isp., 

Skolithos isp., and Taenidium isp. indicate the presence of communal 

invertebrates (Ekdale et al. 2007). There are several possible tracemakers 

present in Late Triassic aeolian environments including gastropods, 

isopods, myriapods, arachnids, and a variety of insects such as non-

gregarious wasps, crickets, flies, cockroaches, beetles, and cicadas (from 

the orders Hymenoptera, Orthoptera, Diptera, Blattodea, Coeloptera, and 

Hemiptera respectively) (Good & Ekdale, 2014). There are a variety of 

behaviours represented by these tracemakers; meniscate traces like 

Taenidium and Entradichnus are related to either locomotion (repichnia) or 

feeding (pascichnia) behaviours, while Skolithos, Planolites, and 

Arenicolites are dwelling structures (dominichnia).  

 

Taken together, these ichnofossils are consistent with both Scoyenia and 

Octopodichnus-Entradichus ichnofacies. However, neither assemblage 

has arthropod trackways, but this omission is likely a preservational 

artefact as these delicate traces rarely preserve (Seilacher, 1964; Hunt & 

Lucas, 2007). This assemblage is therefore consistent with freshwater 
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lacustrine, fluvial, and aeolian environments (Benton & Harper, 1997; 

Ekdale et al., 2007). The aeolian sedimentary features of both field sites is 

consistent with a desert palaeoenvironment, though abundance of traces 

would require fairly wet conditions for sustaining life and preserving these 

ichnofossils (Ekdale et al., 2007). 
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Figure	3-23:	Trace	fossils	from	the	Clarens	Formation	at	Makanya	Hill	locality.	(A)	
Almond-shaped	Taenidium	isp.	in	epirelief	(note	hammer	~30	cm	for	scale),	and	(B)	
associated	disturbed	bedding.	(C)	Taenidium	isp.	and	meniscate,	undulatory	
Entradichnus	isp.	in	epirelief.	(D)	Oblique	Taenidium	isp.	burrows	in	full	relief.	(E)	
Arenicolites	isp.	and	other	large,	cylindrical	traces	in	epirelief.	(F)	Entradichnus	isp.	
showing	meniscate	infill	in	epirelief.	(G)	Undulatory	Planolites	isp.	in	epirelief.	(H)	Paired,	
minute	Arenicolites	isp.	in	epirelief.	 
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3.3.3 Fossil Wood  
In contrast to the relatively rare preservation of wood in the Elliot 

Formation of the Main Karoo Basin, the upper Makanya Hill locality and 

the Makuya field site are littered with ex situ fossil wood, with fragments 

ranging in size from 2-3 cm thick to 15 x 30 cm. The samples exhibit 

structures typical to Agathoxylon, a well-known Gondwanan conifer. 

However, the lobes viewed in transverse section (Figure 21 A) are similar 

to Rhexoxylon, which has been identified in the Late Triassic Molteno 

Formation (Bamford, 2004). Several species of Rhexoxylon are known 

from South Africa and South America (Archangelsky & Brett, 1961; 

Anderson & Anderson 1985; Artabe et al., 1999), but further diagnosis was 

not possible due to the small size of the sample and generally poor 

preservation of its internal structure, typical of wood from the Late Triassic 

Molteno Formation (Bamford, 2004).  

 

 
Figure	3-24:	Fossil	wood	thin	sections	from	the	Elliot	Formation	at	Makanya	Hill	locality.	
(A)	Transverse	section	showing	arrangement	of	tracheids	is	irregular	with	gaps	and	
lobes,	magnification	=	40x.	(B)	Tangential	longitudinal	section	shows	uniserite	rays	30-14	
cells	high	(arrow),	magnification	=	40x.	(C)	Radial	longitudinal	section	shows	the	
crowded,	compressed	uniserate	bordered	pits	on	the	radial	walls	of	the	tracheids	(white	
box),	numerous	cross-file	pits	are	also	visible	(arrow),	magnification	=	200x.		

	

Assignment of this wood to Rhexoxylon indicates a Triassic age for the 

sediments. The Elliot Formation is notorious for very rare preservation of 

plant material, with only one sphenophyte, one bennettitalean and three 
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conifers identified as Agathoxylon reported from this formation until this 

present study (Bamford, 2004). This paucity of preserved wood has been 

explained in the literature (Bamford, 2004) as reflective of climactic 

change: as the warm, wet environment during the deposition of the 

Molteno Formation changed to a drier climate of the Elliot Formation, the 

geographic distribution of plants would have become more localized, 

reducing the likelihood of preservation. 
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Chapter 4: Discussion 
4.1 Palaeoenvironments of the Karoo Supergroup: 
The Karoo sediments of the Lebombo-Tshipise Basin record similar 

environments present in the Main Karoo Basin. Though previous workers 

suspected the Tshidize Formation might represent pre-Karoo 

sedimentation (McCourt & Brandl, 1980), researchers generally regard this 

formation as part of the Dwyka Group. When present, this formation 

directly overlies the Precambrian basement (Brandl, 2002; Durand, 2012; 

Malaza et al., 2013). The formation is composed of diamictite with pebble 

to boulder-sized clasts that reach up to a maximum of 2 m in diameter at 

the type location southwest of Masisi, though typically clasts are smaller 

(~60 cm maximum) (Brandl, 2002). At the Makanya Hill locality, the upper 

unit of the deposit fines upward, with fewer large, cobble-sized clasts 

upsection, attesting to diminishing energy in the debris flow consistent with 

fluvioglacial processes. Thought to be deposited during the end of 

glaciation during the Late Carboniferous/Early Permian (Malaza et al., 

2013), this diamictite represents fluvio-glacial deposits which are 

preserved sporadically throughout the Pafuri sub-basin. The discontinuous 

presence and irregular thickness of the Tshizie is likely due to the highly 

variable discharge associated with glacial processes.  

 

Throughout the Permian, mud, silts, and coarse-grained felspathic sands 

were deposited in well-drained swamps, lakes and fluvial systems in the 

Lebombo-Tshipise Basin (Malaza et al., 2013). The landscape was well 

vegetated as evidenced by rip-up clasts including plant matter, plant 

fossils described by Louw (1981), and coal seams during the deposition of 

the Madzaringwe and Mikembeni Formations. The Madzaringwe 

Formation, in addition to laminated silts, muds and coal seams, records 

high energy fluvial deposits in coarse-grained sandstones deposited in 

bars and channels. The Mikembeni conformably overlies the Madzaringwe 

(McCourt & Brandl, 1980; Malaza et al., 2013), recording a lower energy 

environment dominated by lakes, ponds, swamps and overbank deposits. 



101 
	

Ferriginous concretions in mudrock from the “upper unit” identified by 

McCourt and Brandl (1980) and observed in the Lower Makanya Hill field 

area (see Chapter 3.1) could have formed in water-logged, anoxic 

conditions.  

 

The Fripp Sandstone was laid down as point bars and channel lags 

deposited unconformably on top of the Mikembeni Formation (Brandl, 

2002). This coarse-grained sandstone is similar to deposits in the 

Madzaringwe, but much thicker, reaching up to 125 m at its type locality 

(Brandl, 2002). Shale lenses, in addition to coalified wood and other plant 

rip-up clasts were observed in outcrop, and attest to well vegetated 

overbank environments. The coarse-grained sandstone bodies are 

consistent with high energy fluvial environments. This formation has been 

posited as a clastic wedge formed in response to tectonic uplift in the 

north, and as such has no direct correlative in the Main Karoo Basin 

(Brandl, 2002), though Bordy and Catuneanu (2002c) contend the Fripp 

may represent a facies equivalent of the Molteno Formation due to the 

presence of dicrodium fossils.  

 

The Solitude Formation consists of mudrock, siltstone, and gritty 

sandstones deposited in fluvial systems with well-developed overbank 

environments which gradually overlie the Fripp Sandstone (Brandl, 2002). 

These fluvial overbank deposits are correlated to the Beaufort Group 

mudrocks by previous researchers (McCourt & Brandl, 1980; Brandl, 

2002), though the lack of developed palaeosols may indicate wet, 

saturated conditions, in contrast to the aridification events evidenced by 

pedogenic carbonate horizons, desiccation cracks, and gypsum rosettes in 

the Main Karoo Basin (Keyser, 1966; Catuneanu et al., 2005). 

 

The Klopperfontein Sandstone consists of grit and sandstone with minor 

shale and mudrock units and lenses, in addition to calcareous nodules and 

other rip-up clasts from underlying sediments. These sand bodies and the 
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formation’s unconformable relationship with the underlying Solitude 

Formation indicate high energy, fluvial environments. Like the Fripp, this 

formation has been posited as evidence of renewed tectonism from the 

northeast, and likely represents a clastic wedge. Previous workers have 

noted its similarity in terms of lithology and timing (i.e., directly before Elliot 

Formation sedimentation) to the Molteno Formation in the Main Karoo 

Basin (de Jager, 1983b; Chidley, 1985; Johnson, 1994; Johnson et al., 

1996; Catuneanu et al., 2005).  

 

4.2 Late Triassic-Early Jurassic Palaeoenvironments and Climate:  
The Elliot Formation muds and palaeosols preserved in the Lebombo-

Tshipise Basin are similar to floodplain environments preserved in the 

Main Karoo basin. These floodplain and associated fluvial sediments were 

abruptly drowned in aeolian deposits of an erg or series of dune fields 

across the whole of southern Africa. Previous workers have long 

interpreted these sedimentological and associated palaeontological data 

to correlate to progressive aridification in southern Africa across the Late 

Triassic and into the Early Jurassic (Haughton, 1924; Beukes, 1970; 

Ellenberger, 1970; Eriksson 1984; 1985; Bordy & Eriksson, 2015). 

However, more recent studies have focused on climate change in the 

Tethyan realm during the Early Jurassic, which documents a precipitous 

change to stronger seasonality and increased humidity (Ruckwied et al., 

2008; Ruckwied & Götz, 2009; Götz et al., 2009; Bonis et al., 2009; 2010; 

Ryseth, 2014; Pálfy & Kocsis, 2014) though this is mostly documented in 

south-western Europe, and the southern extent of this humidification event 

is unknown.  

 

Most palaeoclimate reconstructions of Gondwanan Triassic-Jurassic 

formations are based exclusively on lithologic indicators such as the 

locations of coal, laterite, tillite, evaporite, and calcrete deposits, in addition 

to relevant palaeofaunal and floral occurrences (e.g. crocodiles and 

mangrove swamps; Péron et al., 2005; Rais et al., 2007; Stigall et al., 
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2008; Bond & Wignall, 2010; Bialik et al., 2013). While these data are not 

as accurate as quantitative methods, they do allow for areas to be 

assigned to climatic zones corresponding to widely available lithological 

and palaeobiological data (see maps from Paleomap Project, Scotese, 

2001). These zones include: tropical (warm and moist year-round); arid 

(warm or cool but dry year-round); warm temperate (seasonal climate); 

cold temperate (seasonal climate); and cold (typically identified by 

evidence of glaciers) (Scotese, 2001). It’s important to note that these 

zones do not always correspond to modern geographical zonations (i.e. 

modern “tropical” climates restricted to those present between the Tropics 

of Cancer and Capricorn).  

 

Palaeosol samples from the Elliot Formation of the Lebombo-Tshipise 

Basin are enriched in smectite, corresponding to “intermittently poorly 

drained environments, including monsoonal and xeric climates, 

characterized by strongly seasonal precipitation” (Sheldon & Tabor, 2009). 

The presence of large amounts of authigenic smectite indicates massive 

weathering (i.e. large-scale replacement of stable aluminosilicates by 

secondary minerals such as gibbsite, kaolinite, or smectite as defined in 

Pedro, 1997) occurred during the Late Triassic. This massive weathering 

regime is not consistent with truly arid environments, and unlike most of 

the Elliot Formation described in the Lebombo-Tshipise (McCourt & 

Brandl, 1980; Brandl, 2002) the palaeosol samples were very low in 

calcium and lacked calcic pedogenic nodules or calcrete horizons typical 

of the upper Elliot in the Main Karoo Basin (Bordy et al., 2004 b and c).  

 

The presence of iron and titanium oxides observed from XRD and SEM 

analyses indicates that periodically dry conditions occurred during 

formation of the soil during Elliot time. Iron and titanium substitution in 

authigenic smectite indicates that these elements were present in fairly 

high concentrations during, and likely after, soil formation. This is likely to 

have affected the preservation of sauropodomorph fossils, which were all 
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found heavily encrusted in ferricrete. While hematite coverings are typical 

of the upper Elliot Formation (Kitching & Raath, 1984), the thickness and 

completeness of the coverings is exceptional in the Lebombo-Tshipise 

Basin. The thicker iron oxide coatings may be caused by higher 

concentrations of dissolved iron in the groundwater subsequent to carcass 

burial (Bao et al., 1998). Alternately, these authigenic mineral coatings 

may have formed significantly after fossilization, and may not correlate to 

palaeoclimate. However, Bao et al., (1998) suggest these coatings are 

primarily a pedogenic feature and could serve as a source for studying 

continental palaeoclimate. Further research on the origin and geochemical 

nature of these coatings could elucidate groundwater conditions either at 

the time of burial, or the divergence between diagenetic conditions in 

these two basins.  

 

Perhaps the most meaningful fossil evidence for palaeoclimate in the 

Lebombo-Tshipise, is from fossilized wood in the Elliot Formation. The 

large chunks of Rhexoxylon indicate the presence of fairly large trees. 

While no in situ fossils evincing a petrified forest were found, the large 

amount of scattered fossil fragments represents multiple trees, which may 

indicate fairly humid conditions, or the presence of oases as suggested by 

Bordy and Catuneanu (2002a).  

 

Recently developed quantitative methods have been applied to palaeosols 

to investigate palaeoclimate proxies, including provenance, weathering 

intensity, mean annual precipitation and others (e.g. Sheldon & Tabor, 

2009). Many of these were calculated for a suite of samples in the Elliot 

Formation of the Main Karoo Basin (Sciscio & Bordy, 2016), though these 

were performed not on palaeosols, but instead on mudrocks and 

sandstones.  Because the formation of authigenic clays and other minerals 

in the soil record the environment in which they form, analyses of detrital 

grains in sandstones and mudrocks (as in Sciscio and Bordy, 2016) may 

not as accurately represent the palaeoenvironment present in the Main 
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Karoo Basin at the time of deposition. This may account for the differences 

found in the single Main Karoo Basin sample in this study and the 

published results of in Sciscio and Bordy (2016).  

 

Chemical Indices of Alteration derived from X-Ray Fluorescence values 

ranging from 60.31-79.11 indicate intermediate weathering consistent with 

sediments that have been cycled or that are particularly clay-rich. Though 

this range appears to overlap with samples from the Main Karoo Basin 

(CIA values: 8.8-60.3 in Sciscio & Bordy, 2016), only two samples actually 

overlap (KDS-3A and B) with CIA values of 60.31 and 60.35 respectively. 

These samples have undergone diagenetic alteration (for more discussion 

see Chapter 3.2 XRD and XRF), and thus these two datasets do not have 

a continuous relationship, but represent two distinct clusters on an A-CN-K 

ternary diagram (see Figure 13). Sample BPS-1, which is the only sample 

from the Main Karoo Basin in our dataset, has CIA value of 65.87, which is 

much higher than any values from Sciscio and Bordy’s dataset (2016). 

These intermediate CIA values, when plotted on an A-CN-K ternary 

diagram indicate illite enrichment of the Lebombo-Tshipise samples 

compared to samples from the Main Karoo Basin. This is likely due to 

overall larger volumes of clay in palaeosol samples compared to 

sandstones and mudrocks. The trend of this data on an A-CN-K diagram 

indicates less smectite than amounts suggested by SEM and XRD, and 

this is likely due to the very low concentrations of calcium as carbonate or 

oxides present in the Lebombo-Tshipise samples (average value of CaO 

in our dataset is 0.31% compared to the 1.19% in the Main Karoo Basin).  

 

CIA molar values have been demonstrated to provide a more sensitive 

measure of humidity than CIA values (Goldberg & Huyaman, 2010) during 

soil formation, with values tightly clustered at 1 representing arid 

conditions, and values greater than 1 and less than 10 representing sub-

tropical conditions, in this case simply meaning wetter conditions than 

found in arid environments. CIA molar values from our dataset range from 
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1.36-3.23, but removing diagenetically altered samples KDS-3A and B 

shortens this range to 1.49-3.23 with an average of 2.15. This contrasts 

with the very low average of 1.10 reported from the Main Karoo Basin 

samples, which led Sciscio and Bordy (2016) to interpret the deposition of 

the Elliot Formation as occurring in semi-arid to arid settings where 

chemical weathering was less dominant than physical weathering. CIA 

molar values from the Lebombo-Tshipise basin indicate a “subtropical” 

environment, characterized by well developed palaeosols formed in warm, 

periodically wet conditions (see Figure 3-16 for comparison of CIA molar 

values in the Lebombo-Tshipise and Main Karoo Basins).  

 

While no suitable palaeosols were found in the overlying Red Rocks unit 

or Clarens Formation to provide quantitative results comparable to the 

Elliot Formation, ichnofossils can provide some clues to 

palaeoenvironment and climate at the interface of the Triassic and 

Jurassic periods.  

 

Both the Red Rocks site in the south of the basin and Makanya Hill field 

site in the north preserve Scoyenia ichnofacies in aeolian-dominated 

strata. While dune fields form under arid conditions, modern studies have 

shown that desert-dwellers prefer to burrow in moist substrate (Hadley et 

al., 1990), suggesting this environment was wet enough to support animal 

life and preserve its traces. 

 

The Red Rocks site preserves ichnofossils primarily in dune foresets, 

though they are also present on horizontal surfaces likely representing 

interdune environments. To preserve tracks or other impressions in sand, 

clay content and moisture have been determined to be the two most 

important factors (Walker & Harms, 1972; McKeever, 1991). While the 

sand is very clay-poor, resulting in poor preservation of bedding features, 

the delicate, often minute traces indicate moist enough conditions for 

preservation. Though Scoyenia typically is characterized by plenty of 
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trackways, tracks are often unlikely to preserve even under ideal 

conditions. The lack of trackways at Red Rocks is likely due to slow 

sedimentation rates resulting in non-preservation. The burrow containing 

Facies VII A is succeeded by heavily bioturbated Facies VII B that only 

rarely preserves traces, indicating that preservational biases changed at 

this time. This change could be an aridification event in which burrows 

simply fell in on themselves, or a reduction in sedimentation rate leading to 

more pervasive bioturbation by animals living near the surface. 

 

The ichnofauna present in the Clarens Formation at Makanya Hill is similar 

to that at Red Rocks, but its distribution and frequency suggest wetter 

conditions were present for longer periods of time than at the Red Rocks 

locality. Ichnofossils here are primarily found in interdune deposits 

characterized by horizontal, irregularly bounded sand sheets, bioturbated 

beds, and soft sediment deformation. As Taenidium-like traces are formed 

in moist sand (Counts & Hasiotis 2009), and it is posited that the 

meniscate structure in Entradichnus needs moisture to form (Ekdale et al., 

2007), the presence of these traces are evidence of a relatively wet 

environment.  

 

The irregularly bounded sheets of FA XI are reminiscent of the non-

carbonate interdunal lakes present in the Jurassic Nugget Sandstone 

Formation in the western United States (Britt et al., 2016), though these 

deposits are thicker. The Saints and Sinner’s Quarry (Nugget Sandstone) 

in Utah, preserves a similar ichnofauna consisting of Entradichnus, 

Taenidium, Planolites, Skolithos, and the trackways Octopodichnus and 

Paleohelcura (Good & Ekdale, 2014). Additionally, modern studies of 

burrows and tracks show that Taenidium and Scoyenia are often present 

along lake shorelines (Buatois & Mángano, 2011). The repeated 

sequences of aeolian dunes with soft sediment deformation and heavily 

bioturbated layers associated with thin sand sheets, suggest repeated 
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flooding events that could have created ephemeral, interdune lakes within 

the erg. 

 

Similar trace fossils have been described in the Clarens Formation from 

the Main Karoo, Tuli and Tshipise basins which occur preferentially in 

structureless, massive facies (Bordy, 2008). While playa lakes are known 

from the Clarens in the Main Karoo Basin, the northernmost portion of the 

Main Karoo and other northern basins appear to have been subjected to 

wetter conditions than most of the Main Karoo basin during deposition of 

the Clarens (see Beukes, 1970; Eriksson 1981, 1986). This has been 

linked to the rain shadow effect of the Cape Fold Belt, and to the latitudinal 

drift of Gondwana at this time (Bordy, 2008).  

 

4.3 Stratigraphy and basin development discussion 
The Palaeozoic and Mesozoic (Carbonifeous-Jurassic) Karoo Supergroup 

makes up the fill of the Lebombo-Tshipise Basin and rests 

nonconformably on top of Palaeoproterozoic schists and quartzites of the 

Soutpansberg Group. This basin likely formed initially as a sag basin along 

established weaknesses in the crust over the Limpopo belt between the 

Kaapval and Zimbabwe cratons (Cox, 1970; Bordy, 2000). The basin fill 

varies in presence and thickness at every stage, recording a complex 

history of changing subsidence and basin partitioning throughout the 

deposition of the Karoo Supergroup.  

 

The Carboniferous-Permian strata (Tshidize, Madzaringwe, and 

Mikembeni Formations), wedge out southwards from a maximum of ~430 

m in KNP 22, to <150 m in KNP 7, and eventually disappear completely in 

KNP 14 and 23.  

 

The Tshidize Formation is the most discontinuous formation in the 

boreholes. Three boreholes (KNP 10, 13, and 15) do not intersect the 

Tshidize or underlying formations, and in another three (KNP 4, 8, and 11) 
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the Tshidize Formation is missing and the overlying Madzaringwe 

Formation directly contacts crystalline basement. These latter three 

boreholes may represent central and southern palaeotopographic highs 

where the Tshidize Formation was never deposited. The Tshidize 

Formation is rarer in the eastern boreholes; only ~10 m is present in 

south-central KNP 7, 12 and 22. Variation in the presence of Tshidize 

Formation may be due to erosion prior to deposition of the Madzaringwe 

Formation, but is most likely caused by irregular fluvio-glacial deposition 

across a landscape characterized by small hills and ridges (Stagman, 

1978).  

 

The Madzaringwe Formation appears to gently thicken towards the centre 

of the western boreholes, reaching a maximum of ~200 m in KNP 22. 

However, because the northern boreholes (KNP 13, 15, and 15 “Wedge”) 

were not drilled into the basement or Tshidize Formation, the 

Madzaringwe Formation could be more extensive than the 80-150 m 

present in these cores. Towards the south, the Madzaringwe Formation 

thins slightly from 150 m (KNP 8) to ~80-100 m (KNP 7 and 12A). It’s note 

worthy that the shortest sequence recorded (KNP 7) identifies the “Main 

Seam” (coal) near the top of the Madzaringwe Formation, consistent with 

other boreholes across the basin, meaning that the formation’s variation in 

thickness in this area is not due to erosion of the top of the formation prior 

to deposition of the Mikembeni Formation.  

 

The basin was likely undergoing more rapid subsidence where the 

Madzaringwe Formation is thickest (150-180 m), near the centre of the 

borehole cluster. The thicker, more prevalent sandy intervals in the north 

indicate this portion of the basin was more proximal to source areas. The 

“Main Seam” and “Middle Member” markers near the top of the formation 

are consistently identified throughout the basin, indicating variation in 

thickness is intrinsic to the ancient landscape or the formation’s deposition, 

and not subsequent erosion. 
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Like the Madzaringwe Formation, the Mikembeni Formation is thickest in 

the central portion of the basin, and reaches a maximum of ~200 m in 

KNP 22. This formation thickens by 10 m northwards, while towards the 

south it thins dramatically to 15 m in KNP 7 before disappearing 

completely in the southernmost boreholes KNP 14 and 23.  

 

The low energy deposits of the Mikembeni Formation reflect a period of 

quiescence in the basin, as the tectonic events which drove deposition of 

coarse-grained sandstone bodies in the Madzaringwe Formation ceased. 

Subsidence may have decreased as the result of decreasing tectonic 

loading. Subsequent erosion of at least one south-eastern borehole (KNP 

12A) indicates subaerial erosion may have affected portions of the basin 

and contributed to significant thinning of the Mikembeni Formation in the 

south. Figure 4-1 illustrates formation variation north to south.  

 

Trends in the Triassic strata are more difficult to summarize as 

identification of the Fripp, Solitude, Klopperfontein, and Elliot Formations 

was largely ignored by core loggers. In general, the Triassic strata are the 

most variable in presence and depth of all the Karoo formations in the 

boreholes.  

 

The Fripp Sandstone was laid down as point bars and channel lags 

deposited unconformably on top of the Mikembeni Formation (Brandl, 

2002). If coarse-grained basal candidate sandstones present in the 

Triassic sequences indeed represent the Fripp Sandstone, numerous 

boreholes intersect this formation (KNP 8, 10, 13, and 15). This formation 

was positively identified by core loggers and is thickest (~50 m) in KNP 22. 

The sandstone thins westward from ~60 m in KNP 15 to less than 5 m in 

KNP 8.
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Figure	4-1:	North-south	transect	of	ten	boreholes	from	the	western	cluster	drilled	in	Kruger	National	Park.	The	stratigraphic	sections	are	centred	
across	the	boundary	between	the	Madzaringwe	and	Mikembeni	Formations,	as	markers	from	the	Madzaringwe	noted	by	core	loggers	indicate	little	to	
no	erosion	of	this	formation. 
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This formation has been posited as a clastic wedge formed in response to 

tectonic uplift in the north (Brandl, 2002). McCourt & Brandl (1980), and 

Brandl (2002) report that the Fripp is thickest (125 m) at its type locality 

southwest of Tshipise and that it wedges out eastwards from Punda Milia 

(southwest of KNP 22).  

 

McCourt and Brandl (1980) noted the Fripp Sandstone is extremely 

felspathic in the Tuli Basin (often in excess of 25% feldspar, (Brandl, 

2002)), and is increasingly quartzitic (and correspondingly, less felspathic) 

in the northern part of Kruger and east of Masisi in the northern (east-west 

trending) arm of the Lebombo-Tshipise Basin. This distribution indicates a 

northwesterly granitic source area, consistent with south-east 

palaeocurrent data taken from the Pafuri sub-basin (Figure 3-5, Chapter 

3.1.1).  

 

The Fripp Sandstone may have been preferentially deposited in the 

northeastern portion of the Pafuri sub-basin as subsidence rapidly 

increased in response to tectonic unloading from the north. Alternatively, 

the Fripp Sandstone may have been preferentially eroded in the southern 

and western portions of the basin prior to deposition of the Solitude 

Formation (see KNP 7, 12A; as the underlying Mikembeni Formation is 

substantially shortened by erosion in these boreholes, absent overlying 

formations are to be expected). As underlying sediments (the 

Madzaringwe and Mikembeni Formations) wedge out southwards, the 

Fripp Sandstone’s disappearance in the east may represent a transition 

from axial flow in the under-filled rift to transverse flow across the overfilled 

rift. Another possibility is thickness change along the rift axis consistent 

with formation of a bajada.  

 

The Solitude Formation was only identified in KNP 12A by core loggers, 

but “Beaufort Group” mudrocks and siltstones were identified in several 

boreholes. “Beaufort” grit and mud were identified in KNP 22, though this 
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coarse-grained section, which contains evidence of faulting (slickensides, 

recementation, etc.), might actually represent a basal conglomerate known 

to replace the Red Rocks Member in some areas of the basin as 

described by McCourt and Brandl (1980). The Solitude or undifferentiated 

“Beaufort Group” is thickest in KNP 15 and wedges out to the south and 

east. 

 

The Solitude Formation mudrocks and overbank deposits represent 

another period of quiescence in the basin. Trends in thickness (wedging 

out in the south and east) could be the result of palaeotopogphy, 

subsequent erosion prior to deposition of the overlying Klopperfontein 

Sandstone, or a continuation of transverse deposition across an overfilled 

rift.  

 

The Klopperfontein Sandstone was deposited unconformably on top of the 

Solitude Formation and is thought to have formed in response to renewed 

tectonism in the north and syndepositional scarp development (Brandl, 

2002). The sandstone thins west and southwards from a maximum of ~40 

m in KNP 15 to ~15-20 m in KNP 8 and 10. The formation is approximately 

20 m thick in the Kruger National Park (McCourt and Brandl, 1980). These 

authors note that the formation is thinner, ~10 m, but coarse-grained and 

gritty with “abundant” pink feldspar, east of Tshipise. Brandl (2002) notes 

that in the “extreme west” the formation is very thin or absent. Southwest-

wards thinning of the formation is consistent with the northeast rift flank, 

which fits the coarse, braid-channel nature of the deposits. 

 

De Jager (1983) identified the Klopperfontein Sandstone as a 

contemporary of the Molteno Formation in the Main Karoo Basin, which 

has also been noted by subsequent researchers (Chidley, 1985; Johnson, 

1994; Johnson et al., 1996; Brandl, 2002; Catuneanu et al., 2005). As the 

Molteno Formation in the main Karoo Basin represents a northwards 

thinning, clastic wedge sourced from the Cape Fold Belt (Catuneanu et al., 
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2005), the Molteno Formation does not share the same source area as the 

Klopperfontein Sandstone. Should the two formations represent 

synchronous deposition, we can broadly state that the Lebombo-Tshipise 

and other northern, peripheral basins were undergoing rift flank uplift at 

the same time as orogenic uplift in the Main Karoo Basin. As the southern 

basin was compressed, northern impactogens extended. Further studies 

might focus on uncovering the link between compressive tectonism in 

southern Africa and scarp genesis in the north, where progressively south-

moving extensional tectonism dominated the landscape (Catuneanu et al., 

2005). 

 

The siltstones and mudrocks of the Elliot Formation are thickest in KNP 8 

and 10 and in Makanya Hill field area (~20-30 m). Though the siltstones 

and mudrocks do not crop out well at Makanya Hill, sauropodomorph 

fossils from the field site are morphologically consistent with Elliot 

Formation fauna in the Main Karoo Basin (see Chapter 3.2.1 for more 

detailed descriptions of recovered fossils).  

 

Ephemeral fluvial, loessic and aeolian deposits that resemble the Red 

Rocks Member have been described from the upper Elliot Formation in 

other basins (Visser and Botha, 1980; Eriksson 1983; 1986; Smith et al., 

1993; Bordy et al., 2004b, Bordy & Eriksson 2015). A thick, red and beige 

sandstone body representing the Red Rocks Member appears to overlie 

the silts and mudrocks of the Elliot Formation in KNP 8, 10, 13 and 15. 

The southernmost basins contain 10-20 m of red fine-grained sandstones; 

these are the only Karoo Supergroup formations in the southern margin of 

the Pafuri sub-basin and directly overlie Precambrian basement. Their 

presence indicates the extent of subsidence in the basin increased 

southwards during the latest Triassic.  

 

The Red Rocks Member is described by McCourt and Brandl (1980) as 

being replaced by conglomerates in several boreholes. At Makanya Hill 
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there are no red sandstone units consistent with the Red Rocks Member; 

instead siltstones and mudrocks of the Elliot Formation are overlain by ~25 

m of coarse-grained, cross-bedded sandstones with basal conglomerate 

channel scours and east-flowing palaeocurrents (FA III). Similar 

conglomerates in Makuya Reserve west of the Makanya Hill field locality 

interfinger with bioturbated, flooded interdune deposits (FA XI), instead of 

aeolian dune deposits (FA X) like at Makanya Hill. The conglomerates and 

sandstones crop out at the base of the Clarens at Makanya Hill, but at 

Makuya Reserve, these coarse-grained deposits crop out near the top of 

the Clarens Formation. Possibly, capping aeolian Clarens sediments have 

been eroded in the west at Makuya Reserve, and these coarse 

sandstones and conglomerates are stratigraphically equivalent to those at 

Makanya Hill. Alternatively, this distribution could represent a stream-

dominated alluvial fan shifting west-ward during the early Jurassic, or that 

wetter conditions resulted in bioturbation near active braided fluvial 

systems in the west, while bioturbation primarily took place in physical and 

temporal proximity to ephemeral flooding events in the east.  

 

At the southern end of the boreholes, conglomerates in KNP 7 are 

composed of quartzite pebbles, calcareous concretions and occasional 

mudrock rip-ups. The succession has numerous sharp, “downcutting” 

contacts which evoke channel lags deposited in high energy fluvial 

successions. Similar conglomerates in KNP 12, 12A, and 22 are present 

and likely represent the same fluvial facies association at Makanya Hill 

and Makuya Reserve.  

 

McCourt and Brandl (1980) suggest the Red Rocks Member may be a 

lateral correlative to the poorly developed Elliot Formation which is only 

sporadically present in the Kruger National Park. Eriksson and Bordy 

(2015) likewise have included the Red Rocks Member in the Elliot 

Formation. However, the Red Rocks member is described as lithologically 

identical to the overlying Tshipise Member of the Clarens Formation which 
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it gradationally overlies (McCourt and Brandl, 1980). The only 

differentiable aspect of the Red Rocks and Tshipise members are their 

respective red and beige colours. Colour is a notoriously poor quality to 

divide lithological units, as the characteristic color of many Triassic red 

beds has been shown to be a diagenetic feature and, therefore not an 

intrinsic quality of the sediment itself (Turner, 1980). The contact between 

these two members is described by McCourt and Brandl (1980) as 

“gradual”, implying no hiatus in deposition. In terms of depositional 

environments, the Red Rocks type locality preserves similar desert 

environments to those present in the Tshipise Member outcrop at 

Makanya Hill field locality, which contrasts with the fluvial sandstones and 

floodplain siltstones and mudstones of the Elliot Formation described from 

numerous African basins (Bordy, 2004 a, b, c; Catuneau et al., 2005). 

Contact between the Red Rocks Member and the Elliot Formation was not 

observed in the field and has not been described in the literature.  

 

The beige, cream-coloured Tshipise Member of the Clarens gradually 

overlies the Red Rock Member sandstones or conglomerates in all the 

eastern boreholes except for KNP 22 where it overlies multicolored 

mudrocks, siltstones and grits identified as “Beaufort” sediments. This 

central area of the basin may have experienced erosion during the early 

Late Triassic which removed the Klopperfontein Sandstone and Elliot 

Formation. Deposition of the Clarens Formation then took place when 

rapid subsidence resumed in the Early Jurassic.  

 

The distribution of late Triassic and early Jurassic formations indicates that 

Elliot Formation siltstones and mudrocks were only deposited in the 

deepest portions of the basin. Renewed tectonism then formed multiple 

alluvial fans along the northern and eastern margins of the basin where 

coarse-grained grits, conglomerates and sandstones were deposited. This 

tectonic activity is correlated with a southwards increase in basin 

subsidence as Red Rock Member aeolianites were deposited in a newly 
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subsiding southern portion of the Pafuri sub-basin. Fluvial flows measured 

from the Red Rocks field locality reflect rapid subsidence towards the west 

along the large fault which separates the eastern from the western 

boreholes.  

 

Following this last spasm of tectonic activity, the dune fields of the 

Tshipise Member of the Clarens Formation blanketed the topography. 

However, in the southernmost portion of the basin, either rapid erosion of 

these deposits, scarp development cut off deposition in this part of the 

basin, or changes in subsidence affected deposition here. Soft sediment 

deformation structures observed in the Clarens Formation at Makanya Hill 

field locality and by Bordy (2008) have been attributed to sediment 

saturation, but the tee-pee like structures could also be interpreted as 

seismites and suggest tectonic activity continued during Clarens 

Formation deposition, as suggested by Bordy and Catuneanu (2001) and 

Bordy (2008).  
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Chapter 5: Conclusions 
 

The Limpopo Mobile belt, sandwiched between the Kaapvaal Craton to the 

south and the Zimbabwe Craton in the north, has a long history of 

deformation which has been associated with the location and formation of 

the Lebombo-Tshipise basin (Cox, 1970). By the end of the Palaeozoic, 

this area had been tectonically quiet and had undergone erosion for 

hundreds of millions of years, likely resulting in an uneven topography 

(Cox et al., 1965; Stagman, 1978) which influenced subsequent Karoo 

deposition. This explains many absences of the otherwise thin Tshidize 

Formation throughout the Pafuri sub-basin, with variations in thickness due 

to the nature of fluvioglacial deposits and possibly some erosion prior to 

deposition of the swamps, lakes, and river systems of the Madzaringwe 

Formation.  

 

While the Madzaringwe Formation has many coarse-grained, micaceous 

fluvial and lacustrine sandstone bodies, the Mikembeni Formation is 

characterized by significantly more mud and fines than sandstones (see 

borehole stratigraphic columns in Appendix A). The Mikembeni Formation 

varies in thickness across the basin, though this variation is most 

noticeable in the eastern boreholes where erosion has removed much of 

the sediment and overlying formations. The southern and eastern-most 

boreholes of the western cluster in addition to displaying evidence of 

subaerial erosion of the Mikembeni Formation, contain truncated overlying 

Triassic sequences; these boreholes may represent basin flanks or horsts. 

However, the Madzaringwe Formation is fairly uniform in thickness across 

the boreholes indicating a period of steady subsidence, coincident with 

findings of Malaza et al. (2016) of rapid subsidence dominating the 

Permian in the Tshipise and Pafuri sub-basins.  

 

The arenaceous Fripp Sandstone marks renewed tectonism at the 

beginning of the Triassic in the area, where a granitic source was uplifted 
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to the northwest and a clastic wedge built into the basin. Thickness 

changes from north to south may represent a bajada-type morphology 

where thickness varies along the basin axis, or preferential erosion as 

southern portions of the basin is where the underlying Mikembeni is 

truncated and shows evidence of subaerial weathering. 

 

The mudrocks, siltstones, and occasional sandstone bodies of the 

Solitude Formation represent quiescence in the basin and a return to 

steady subsidence, coincident with Malaza et al.’s (2016) second period of 

rapid subsidence as determined by backstripping. Variations of the strata 

in the western boreholes can be attributed to erosion or non-deposition in 

the southernmost boreholes, and flank or horsts in the eastern-most 

boreholes where the formation is often present but thin.  

 

The Klopperfontein Formation represents another period of tectonism and 

flank uplift. Syndepositional scarp formation at this time may have been 

the driver of other faulting in the basin, and perhaps the cause of the 

apparent vertical offset of the western and eastern boreholes. The 

Klopperfontein Formation is thickest in the northern portion of the eastern 

boreholes, but missing or thin along the eastern margin, where either the 

clastic wedge was not deposited due to topographic highs, or where it has 

been subsequently eroded.  

 

Deposition of the mudrocks and palaeosols of the Elliot Formation 

represent a return to subsidence in the basin coincident with the first of 

two slow subsidence phases identified by Malaza et al. (2016). 

Geochemical analyses indicate deposition of the Elliot Formation occurred 

under subtropical conditions and massive weathering. The environment 

appears to have been wetter than that recorded from this formation in the 

Main Karoo Basin. Fossil discoveries suggest conditions were wet enough 

to support large sauropodomorph dinosaurs and trees. 
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If the Red Rocks unit formerly of the Clarens Formation actually 

represents the Elliot Formation, this period of subsidence represents the 

southernmost extent of sedimentation in the Pafuri sub-basin. While 

aeolian facies of the Red Rocks field locality indicate desert conditions, 

exceptional preservation of trace fossils show conditions capable of 

supporting significant invertebrate communities.  

 

Conglomerate units at the base of the Clarens Formation from the 

Makanya Hill and Makuya Reserve field areas and KNP 7, 12, 12A 

indicate high energy alluvial fan building episodes at this time. As these 

conglomerates appear to interfinger with the bioturbated interdune facies 

(FA XI) of the Clarens’ Formation at Makuya Hill, further research could be 

aimed at fully explaining the timing of this period of apparent tectonic 

renewal that has received little attention from past researchers.  

 

The dune fields of the Tshipise Member of the Clarens Formation were 

deposited during the second subsidence phase of the Early Jurassic 

described by Malaza et al. (2016). As this formation is not found in the 

southern-most eastern basins, the aerial extent of sedimentation 

decreased at this time, or the dunes were eroded prior to eruption of the 

Letaba Formation lavas. While facies associations consistent with aeolian 

dunes comprise the majority of outcrop in this formation, bioturbated 

interdune deposits and soft sediment deformation features indicate the 

desert was subjected to wet conditions during deposition. 	 	
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APPENDIX	A:	KRUGER	NATIONAL	PARK	(KNP)	BOREHOLES	
	
Legend	to	KNP	borehole	stratigraphic	sections 
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Figure	A1.	
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APPENDIX B: PETROGRAPHY OF SAMPLES FROM STUDY AREA 

 

Figure B1: QFL Diagram of 10 petrography samples collected from 
Lower and Upper Makanya Hill (KDC-1,2,3,4,5, KDS-8,9) and Red 
Rocks Localities (KRR-1,2,3) 
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Base of Facies Association VII A: 

 
Figure B2: Facies Association VII A in outcrop 

consists of alternating fine-grained red 
sandstone and fine, altered blue layers. 

 

 
Figure B3: Thin section of FA VII A. Overview illustrates contact 
between fine red sandstone (left) and altered calcretized blue layers 
(right) in KRR-1. Cross-polarized light, scale bar = 1000 µm 
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Figure B4: Thin section of FA VII A. Blue interlayers have 
large vugs that appear to contain re-crystallized quartz in 
KRR-1. Cross- polarized light, scale bar = 1000 µm 
 
KRR-1 is composed of very fine (70-80 µm), sub to well-rounded, well-
sorted quartz grains which are tightly packed, sharing point and long 
contacts. By point count, the sample consists of 62% quartz, 24% feldspar, 
the majority of which are orthoclase, and 14% lithics, of which 43% are 
polycrystalline quartz. Additionally, minor amounts of clay grains were also 
present. The clay matrix is in places slightly calcretized and accounts for 
less than 5% of the sample; the fabric is homogenous. This thin section 
was taken from the base of the Red Rocks locality and contains 
pervasively altered, siliceous nodules. In hand sample, this alteration is 
blue with large white veins. In thin section, the alterations are primarily 
composed of microcrystalline quartz, while veins are composed of calcite 
and quartz. Calcite veins tend to have smaller crystals near the vein 
margin and much larger crystals in the center. Quartz veins contain 
isopachous quartz crystals. Also within this nodule are large vugs, typically 
around quartz grains. This sample is classified as an arkosic arenite and is 
texturally mature while mineralogically submature. 
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Facies Association VII A: 

 
Figure B5: Outcrop of Facies Association IA 

consists of fine-grained, bioturbated sandstone 
with numerous burrows. 

 

 
Figure B6: Thin section of FA VII A. KRR-2 has clay-rich 
matrix, but invertebrate burrows (external boundary 
marked by arrow) has significantly more clay 
enrichment, with few grains. Cross-polarized light with 
gypsum plate, scale bar = 1000 µm 
 
KRR-2 is a clay matrix-supported sample (~20%) with fine (70-80 µm) 
grains that are sub to well-rounded, and moderately to poorly sorted. 
Some grains share point contacts. By point counts, this sample consists of 
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56% quartz, 20% feldspar, and 24% lithics of which 75% are 
polycrystalline quartz. The fabric of this sample is homogenous, excluding 
what appears to be an invertebrate burrow, which is significantly enriched 
in clay with few, larger (80 µm) grains and diagenic calcite veins. This 
sample is classified as a lithic greywacke, and is texturally and 
mineralogically immature. 
 
 
Facies Association VIII: 

 
Figure B7: Facies Association VIII consists of 
fine-grained, red sandstone fluvial deposits. 

 

 
Figure B8: Thin section of FA VIII. KRR-3 is very fine-grained and 
quartz rich. Cross-polarized light,  
scale bar = 500 µm. 
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KRR-3 is composed of very fine (70-100 µm), sub to well-rounded, well-
sorted grains, with ~15% clayey matrix. Grains are closely packed, sharing 
point and long contacts. By point counts, the sample consists of 56% 
quartz, 18% feldspar, and 26% lithics, 62%% of which are polycrystalline 
quartz. Biotite and clay grains are also present in this sample. The fabric is 
homogenous and lacks any apparent bedding features. The sample is 
classified as a lithic arenite and is texturally and mineralogically immature. 
 
 
Facies Association XI: 

 
Figure B9: Facies Association XI in outcrop 
contains numerous Arenicolites burrows, 
and is heavily bioturbated. 

 

 
Figure B10: Thin section of FA XI. KDS-9 is feldspar-
rich in contrast to typical Clarens arenites. Cross-
polarized light and gypsum plate, scale bar = 1000 µm 
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KDS-9 is composed of fine to medium (80-120 µm), well rounded, well 
sorted, tightly packed grains with ~5% clay matrix. Grains share long 
contacts, though some concave-convex contacts are also observed. The 
fabric is homogenous. By point counts these grains are composed of 70% 
quartz, 16% feldspar, and 14% lithics of which 57% are polycrystalline 
quartz. Minor amounts of detrital clay grains are present. This sample is 
mineralogically and texturally submature and classified as a feldspathic 
greywacke.  
 
 
 
Facies Association III: 

 
Figure B11: Facies Association III represents fluvial channels, bars, 
and bedforms. In the Mikembeni or Fripp Formation (left), the 
sandstone is coarse and micaceous. The sandstone is medium-
coarse and has high energy scours near the base of the Clarens 
Formation (right), filled with small quartzite pebbles. 
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Figure B22: Thin section of FA III. KDC-3 from the 
Madzaringwe or Fripp Formation is poorly sorted 
and contains micas aligned to bedding planes, 
roughly horizontal here. In hand sample, this 
sandstone is very micaceous. Cross-polarized light, 
scale bar = 1000 µm 
 
KDC-3 is composed of fine to coarse (200-600µm), angular, poorly sorted, 
loosely packed grains which share point and long contacts and ~15% clay 
matrix. By point counts the sample consists of 46% quartz, 16% feldspar, 
and 38% lithics of which 84% are represented by polycrystalline quartz. 
Mica, biotite and clay grains are also abundant and are aligned along 
bedding planes. This sample is mineralogically and texturally immature, 
classified as a lithic greywacke. 
Error! No text of specified style in document.  
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Figure B13: KDC-4 has large feldspar grains (f), and lots 
of red and orange micas and biotite in cross-polarized 
light. Scale bar = 1000 µm 
 
KDC-4 is composed of fine to coarse (100-1000µm), subangular to 
subrounded, poorly sorted, tightly packed grains which share long, 
concavo-convex, and sutured contacts. The sample contains ~10% clay 
matrix, and by point counts the grains are composed of 50% quartz, 34% 
feldspar, of which the majority is potassium feldspar, and 16% lithics, of 
which 75% are polycrystalline quartz. Detrital clay, mica and biotite are 
also abundant. Clays and micas aren’t necessarily aligned to bedding 
planes, and the sample’s fabric is homogenous. This sample is 
mineralogically and texturally immature, is classified as an arkosic arenite.  
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Figure B14: KDS-8 has fairly large grains and lots of 
lithics and feldspars in contrast to the aeolianite 
sandstones of the Clarens Formation. Cross-polarized 
light, scale bar = 1000 µm 
 
 
KDS-8 is composed of fine to coarse (100-1000µm), subangular to 
subrounded, moderate to well-sorted, packed grains with 5% clay matrix. 
The grains mostly share long contacts, though concave-convex contacts 
are also observed. These grains by point counts are composed of 50% 
quartz, 24% feldspar, of which the majority is potassium feldspar, and 26% 
lithics of which 84% are polycrystalline quartz. Mica, biotite and authigenic 
and detrital clay are also abundant. This sample is mineralogically 
immature and texturally submature, and classified as a lithic arenite. 
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Facies Association I: 
 

 
Figure B35: Facies Association I in outcrop 
has numerous pebble and cobble clasts in a 
fine mud. This conglomerate was formed 
during a high energy event. 

 

 
Figure B46:  KDC-5 is clay rich with poorly sorted, 
mineralogically immature grains. Cross-polarized 
light, scale bar = 1000 µm 
KDC-5 is composed of ~ 20% clay matrix and fine to coarse (100-
1000µm), sub-angular to well rounded, very poorly sorted, grains. Grains 
are matrix supported, but some share point and long contacts. By point 
counts, the grains are composed of 70% quartz, 10% feldspar and 20% 
lithics of which 60% are polycrystalline quartz. Micas and clay grains are 
aligned to bedding planes, and rare zircons are present in the sample. 
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Many clay grains are authigenic and formed by conversion of feldspars. 
This sample is mineralogically submature, classified as a lithic greywacke. 
 
 
 
Loskop Formation: 
 

 
Figure B17: KDC-1 has numerous lithics and tightly 
packed, large grains. Cross-polarized light, scale bar = 
1000 µm 
	

 
Figure B58: Degraded grain has converted partially to 
clay. Scale bar = 100 µm 
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KDC-1 is composed of fine to coarse (200-600µm), angular, moderate to 
well-sorted, tightly-packed grains with ~10% clay matrix. By point counts, 
the sample consists of 42% quartz, 14% feldspars, and 44% lithics, of 
which 86% are represented by polycrystalline quartz. Micas, biotite and 
both detrital and authigenic clay grains are abundant. Grains are tightly 
packed, sharing long, concavo-convex and sutured contacts. Some grains 
are heavily degraded and are a likely source for authigenic clay. This 
sample is mineralogically immature and texturally immature, and is 
classified as a lithic arenite. 

 
 

 
Figure B19: KDC-2 also has tightly packed grains. Well-rounded, 
lithic grains are abundant. Cross-polarized light, scale bar = 
1000 µm 
 
KDC-2 is composed of fine to medium (200-400µm), sub-angular to sub-
rounded, moderate to poorly sorted, tightly packed grains with ~2% clay 
matrix. Grain composition by point counts consists of 42% quartz, 10% 
feldspar plagioclase, 48% lithics of which 88% are represented by 
polycrystalline quartz. Zircons, micas and detrital clay grains are also 
abundant. Grains are tightly packed, and share long, concavo-convex, and 
sutured contacts. This sample is mineralogically immature and texturally 
sub-mature, and is classified as a lithic arenite.  
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Reference	EDS	spectra	of	relevant	minerals	from	Reed,	2016.	
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BPS-1 Image 1 

 

 

BPS-1 was collected from the Main Karoo Basin from a brick red (Munsell code), 
indurated palaesol with blue (Munsell code), forked rhizoliths. The above overview image 
shows a mix of very large grains, especially in comparison to the other samples collected 
from the Lebombo-Tshipise Basin. There is a less well developed clay matrix. The 
sample’s XRD spectrum has strong peaks for quartz, sodium feldspar, plagioclase, mixed 
illite/smectite, and mica, and trace peaks for calcite and hematite. Note the XRD 
spectrum is shifted about +6 degrees (to the right) 2θ. 

Spectrum X is consistent with mica (biotite), and though the grain (X) appears to be 
heavily degraded and webby, the spectrum does not seem to include extra clay. 
Spectrum Y has an even smaller aluminium peak, and likely represents a large quartz 
grain covered with minor smectitic clay which could account for small aluminium, 
potassium, calcium and iron peaks. 
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BPS-1 XRD Spectrum 
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BPS-1 Image 3 

 

 

Spectrum X has unexpectedly large potassium and calcium peaks, but otherwise is 
similar to illite clay. X has a webby, flaky appearance consistent with clay. Large amounts 
of potassium and calcium may represent zeolites or other alteration products. Grain Y is 
large and polygonal and is likely quartz. Minor additional peaks may be clay products 
covering the grain or nearby. Z marks a crust forming over a grain. Its spectrum (Z) has a 
very large potassium peak, with smaller calcium, silicon and iron peaks, and a very small 
aluminium peak (the iodine peak is erroneous and overlaps with potassium). This 
spectrum is difficult to interpret, but this crust appears to be an alteration product of mica 
or feldspar. Spectrum W has very large iron peaks and resembles chlorite with intermixed 
illite. Zinc is likely an impurity in the chlorite. 
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KDS-1 Image 1 

 

 

 

Sample KDS-1 was collected from Palaeosol A, 0.5 m from the base of the outcrop, and 
26.5 m east of a large (~3m wide), subvertically oriented, dolerite dike.  The above 
overview image of the sample shows some dissolution pockets where grains have been 
disolved. A variety of clay morphologies, and large quartz and/or feldspar grains are 
present. The sample’s XRD spectrum has strong quartz, mixed layer illite/smectite, and 
mica peaks, and sodium plagioclase, and kaolinite peaks. Trace potassium feldspar, 
pyrite, maghemite, hematite, anatase and chlorite peaks are also identified. 
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KDS-1 XRD Spectrum 
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KDS-1 Image 3 

 

  

Spectrum X is relatively complex and likely represents mica or illite with minor iron and 
titanium oxides. The grain appears to be heavily degraded, and small, light colored flakes 
at its periphery might be authigenic clay. Spectrum Y is more complex containing sodium, 
potassium, and a relative increase in aluminium to sodium, magnesium, and potassium in 
comparison to X. This is consistent with mixed illite and smectite clay. The clumpy 
morphology of Y may be representative of a more advanced decay of mica to authigenic 
clay. Z is a quartz grain, which is rounded and appears to be larger than other mica, 
feldspar or clay grains. Spectrum W is very similar to X and likely represents a slightly 
different morphology of the same illite with minor iron and titanium oxides; this grain 
appears more separated from the matrix than X and may represent a detrital grain. 
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KDS-1 Image 4 

 

 

Image 4 shows the same grains as Image 3, but is more magnified (840x). Spectrum X is 
consistent with mixed illite and iron-rich smectite clay. Spectrum Y has smaller iron and 
titanium peaks, and lacks sodium, making this grain more consistent with illite with minor 
iron and titanium oxides. Z marks albite grains encased in clay matrix. These are the 
likely source of sodium for authigenic smectite clay. 
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KDS-1 Image 5 

 

 

X represents flakey, calcium-containing smectite and illite clay which appears to be a fine, 
authigenic covering over a rectangular mineral. Y appears to be a quartz grain with minor 
iron and aluminium forming an oxide covering. The large, platey flakes of Z and W both 
represent illite and iron containing smectite clays with chlorine and sulfur likely 
substituting in the hydroxyl group. Z lacks sodium, while W contains sodium and relatively 
more calcium than is present in Z. These differences are likely due to different cation 
replacement after burial. 
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KDS-1 Image 6 

 

 

X and W are iron-containing smectite with minor iron, and chlorine substitution in the 
hydroxyl group. The platy, stacked morphology of these grains indicates they are detrital, 
rather than authigenic. Spectrum Y is most consistent with a mica (biotite) grain, though 
the aluminium peak’s proportion to silicon is similar to illite clay, perhaps indicating a 
break-down of mica to constituent clays. Z is a rather large (~100 µm across) grain 
embedded in clay matrix which likely represents intermediate (Ca-Na) plagioclase, though 
the spectrums overall small number of counts (72) obfuscates the true proportion of 
aluminium to silicon, the morphology of the grain indicates this is not likely to be clay or 
mica. 
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KDS-1 Image 7 

 

  

X appears to be a rounded smectite grain with iron and titanium likely present within the 
clay through cation replacement. The grain morphology is consistent either with a fine 
authigenic covering of a mineral grain, or a detrital clay grain. Spectrum Y is intermediate 
between biotite and muscovite, and the platy, boxy morphology of the grain (Y) is typical 
of mica. Spectrum Z likely represents illite and smectite clay, though the aluminium peak 
is much reduced. However this is likely caused by the EDS spot penetrating a 
topographic low in the sample. Spectrum W is difficult to interpret due to its exceedingly 
small aluminium peak which is inconsistent with calcium plagioclase- it could represent 
either a quartz grain with smectite-like clay, or a mica (biotite) grain with calcium and iron 
replacing potassium and magnesium. Its large, platy appearance favors a large mica 
grain with an irregular spectrum, though additional flakes of authigenic appearing clay on 
grain W complicate interpretation. 
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KDS-2 Image 1 

 

Sample KDS-2 was collected from Palaeosol A, 4.5 m above the outcrop base and 29.5 
m east from the intrusive dolerite dike. It is purple in color and very fine grained. The fine-
grained texture of the sample crumbs is evident in the above overview image. The 
sample’s XRD spectrum has strong quartz, mixed layer illite/smectite and mica peaks, 
and minor potassium feldspar, plagioclase, and kaolinite peaks. Trace peaks for hematite, 
goethite and chlorite are also present.  
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KDS-2 XRD Spectrum
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KDS-2 Image 3 

 

 

Spectrum X is very iron-rich and could either represent a crusty covering of iron oxides 
with minor aluminiumo silicates, or iron-rich chlorite (chamosite) with a reduced 
aluminium peak. Though Y appears to be a similar crusty covering, large sulfur and iron 
peaks are consistent with pyrite, while the presence of chlorine complicates this 
interpretation. The most likely explanation for such a large chlorine peak is the presence 
of salts or as a hydroxyl substitution in clay. However, the lack of sodium or other typical 
cations (e.g. calcium, potassium, magnesium) and aluminium is problematic. These 
cations and/or an aluminium peak may be obscured by the broad silicon peak near 2 keV. 
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KDS-2 Image 8 

  

 

Spectrum X appears to represent iron-rich chlorite, or chamosite with minor potassium 
and titanium peaks either representing adsorbed cations or additional clay. The spectrum 
is taken from an apparent, rounded grain, however the morphology does not resemble 
detrital chlorite grains. It is likely a clayey covering of some other mineral grain. 
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KDS-2 Image 9 

 

  

 

Spectrum X appears to be mica (biotite) which is consistent with its sub-rounded 
appearance, though the webby covering indicates the presence of clays. Spectrum Y 
appears to be illite with iron oxides. The clay mass appears to be a detrital grain. 
Spectrum Z is most consistent with quartz, with the minor aluminium shoulder likely 
contributed by nearby clay. 
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KDS-2 Image 10 

 

   

 

Square and blocky grain X is potassium feldspar, and the small iron peaks in Spectrum X 
are likely contributed by iron oxides such as hematite, or goethite which were identified in 
the XRD analysis. The large, slightly flaky grain Y likely represents mica (biotite), though 
it could be illite with iron replacing magnesium. Spectrum Z is consistent with illite and 
smectite clay, as is the grains’ webby appearance. 
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KDS-3B Image 1 

 

Sample KDS-3B was collected from Palaeosol A 4.5 meters from the base of the outcrop 
and 34 meters east of the large dolerite dike. The partner sample (KDS3-A) appeared to 
be an altered, greenish contact aureole of this sample and some other, indurated 
potential dike. XRF results show an enrichment of calcium (0.94 wt%) compared to others 
from Palaeosol A (0.07-0.50 wt%), and quartz (84.51 wt%) to stratigraphically bracketing 
samples KDS2 (65.15 wt%) and KDS4 (68.27 wt%). Proportionately less aluminium is 
present in this sample (6.05%) to KDS2 (16.11%) and KDS4 (14.76%), which indicate this 
sample is clay-poor. Trace amounts of ankerite/iron-rich dolomite were detected in the 
XRD spectrum. These data indicate diagenetic processes have affected this sample. This 
sample’s XRD spectrum has strong peaks for quartz and sodium plagioclase, and minor 
peaks for mixed layer illite/smectite, chlorite, and kaolinite. Trace amounts of potassium 
feldspar, ankerite/Fe-dolomite, barite, maghemite, hematite and mica are also present. 
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KDS-3 XRD Spectrum
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KDS-3B Image 5 

 

 

 

Spectrum X is particularly enriched in aluminium and potassium, consistent with kalsilite. 
However, as this mineral primarily occurs in igneous rocks (www.webmineral.com), this 
similarity is likely superficial. Sodium, magnesium, iron and potassium are all 
characteristic of mixed layer smectite/illite clay, while the enrichment of aluminium may 
represent additional kaolinite. Potassium enrichment may further indicate diagenetic 
processes apparent in the sample. The grain is similar to other described detrital 
illite/smectites from previous samples. Spectrum Y is consistent with potassium feldspar 
while, the relatively large oxygen peak and iron peaks may indicate the presence of 
additional iron oxides such as hematite or maghemite, which were detected by XRD 
analysis. The webby morphology of grains Z and W is typical of illite/smectite clay, and 
these spectra contain smectite components including calcium, sodium, magnesium, iron, 
and potassium. The large oxygen peak may indicate that some of the iron and titanium 
(Z) may be present in oxides. Palladium peaks are from the sample coating. 
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KDS-3B Image 6 

 

 

  

Spectra X, Z and W are consistent with mixed layer smectite and illite, though the 
enrichment of aluminium relative to silicon in X is not typical of these clay groups and may 
indicate the additional presence of kaolinite. Chlorine is likely substituting in the hydroxyl 
groups. The morphology of grain X indicates this webby mass of clay is detrital, while Z 
appears to be a clay crust that is likely authigenic. Grain W is most atypical of webby clay, 
and may be another mineral grain covered by a fine, authigenic covering of clay, 
indicated by the small flakes. Calcium in Spectrum Z may therefore represent diagenetic 
cation adsorption by smectitic clays, and indicate that calcium enrichment of the sample 
was related to fluid flow after burial. Spectrum Y appears to be very complex smectite 
clay with typical cations (potassium, sodium, calcium) in addition to cation replacement by 
iron, titanium, and copper. Sulfur and chlorine are likely substituting in the hydroxyl group, 
while copper may be a substitute for the Al-Mg-Fe atoms in octahedral sheets of smectite 
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(Mosser et al., 1990). While the grain shows some texture consistent with clay, it is far 
less webby in appearance than grains X or W, and may represent a microcrystalline, 
authigenic crust. 
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KDS-4 Image 1 

 

Sample KDS-4 was collected from Palaeosol A approximately 4.5 meters above the base 
of the outcrop and less than a meter (0.3 m) east of the large dolerite dike. The sample is 
dark purple (Munsell code) in color. The sample’s XRD spectrum has strong peaks for 
quartz, mixed layer illite/smectite, and mica, and minor peaks for sodic plagioclase, 
kaolinite and chlorite. Trace peaks for potassium feldspar, maghemite, hematite and 
goethite are also present. 
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KDS-4 XRD Spectrum
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KDS-4 Image 2 

 

 

 

Spectrum X has a large proportion of aluminium to silicon and a large iron peak, 
consistent with mica (biotite), though the potassium peak is relatively small.  Additional 
calcium and titanium may represent smectitic clay flakes or detrital titanite, though this 
was not detected in the XRD spectrum. The grain (X) appears to be rounded and detrital. 
Spectrum Y is fairly complex; the aluminium peak is smaller than associated iron peaks, 
which is consistent with chlorite (chamosite), though the additional sodium, magnesium, 
potassium and calcium peaks more closely resemble smectite.  Y likely represents mixed 
chlorite and smectite which forms a fine, authigenic matrix. Alternately, this could be mica 
covered with iron oxides and smectite clay. Spectrum Z is consistent with potassium 
feldspar, while associated minor iron peaks may represent iron oxides. 
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KDS-4 Image 4 

 

 

 

Spectrum X is consistent with potassium feldspar. The large oxygen peak and smaller 
iron peaks likely represent iron oxides coating the grain. The large silicon peak and 
relatively smaller aluminium and sodium peaks in spectrum Y are consistent with sodium 
feldspar, while the persistent presence of minor iron peaks are likely iron oxides present 
in the surrounding crust. Spectrum Z is typical of mixed illite/smectite; the webby mass of 
clay (Z) appears to be detrital rather than authigenic. 
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KDS-5 Image 1 

  

 

Spectrum X and Y are consistent with potassium feldspar. Minor iron and calcium peaks 
may represent smectitic clay surrounding and covering the large grains. Grain Y appears 
to have a crusty, iron oxide covering, though the iron peaks from both grains do not differ 
in intensity in the EDX spectra. The strong silicon peak in Spectrum Z shows quartz with 
traces of iron oxides evidenced by the small iron peaks. 

 

KDS-5 a gray (Munsell code), clay sample collected from Palaeosol A approximately 0.8 
meters from the top of the outcrop, and 34 meters east of the intrusive dolerite dike. The 
sample has the lowest amount of aluminium (4.1% by weight) of samples taken from this 
palaeosol (5.76 – 16.11% by weight; see Table 6); this is likely due to a smaller amount 
of clay relative to other samples. The above overview image shows relatively large quartz 
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and feldspar grains, some of which are encrusted with iron oxide and authigenic clay. The 
sample’s XRD spectrum has major quartz, sodium plagioclase, mixed layer illite/smectite, 
and mica peaks, and minor kaolinite. Trace peaks for potassium feldspar, hematite, 
goethite, anatase and chlorite are also present. 

 

 

 

KDS-5 XRD Spectrum
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KDS-5 Picture 3 

 

 

Spectra X, Y and Z are all consistent with mica (biotite) with minor impurities. Iron and 
calcium (Spectrum Z) can substitute for magnesium in mica. The varying morphologies of 
these grains may represent varying states of diagenesis or clay covering. The flakes and 
crusts are likewise variable in  morphology; The small flakes on grain Y are barely 
noticable, whereas grain Z has an almost webby appearance from the authigenic clay 
covering it. While X is large and roughly polygonal, the thick-appearing encrustation, 
however the spectra of all three grains are nearly identical. 
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KDS-5 Picture 4 

 

 

Spectrum X represents mixed illite/smectite, with calcium substituing for sodium or 
magnesium, and iron substituting for magnesium. Grain X is very large and polygonal, not 
webby and flaky as is typical of clay. The EDX spectrum may represent microcrystalline 
clay coverings of another, larger grain. Spectrum Y has subequal aluminium and iron 
peaks typical of chlorite (chamosite), but the larger silicon peak and relatively large 
potassium peak indicate the presence of illite. This platy morphology may represent illite 
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with chlorite films, or mixed layer illite and chlorite. Spectrum Z likely represents illite with 
calcium impurities, while the associated iron peaks indicate iron oxides in the fine crust 
covering Z. V is a small, webby appearing grain, while W is a large, polygonal grain with 
thin flakes on the surface, however their spectra are nearly identical. They both are 
consistent with smectite clay with calcium, iron and potassium substituting for 
magnesium. Grain V appears to be detrital while W’s spectrum is likely derived from flaky, 
authigenic coverings. 

 

KDS-5 Picture 5 

 

 

Though X appears to be a large, polygonal grain, the EDX spectrum is consistent with 
smectite-rich mixed illite/smectite clay with magnsium substituted by calcium and iron. Y 
is flakier in appearance, and contains magnsium more typical to smectite, with chlorine 
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substituting in the hydroxyl group. Spectra Z and W have a very small aluminium peak 
relative to silicon, consistent with mica. Iron may be present in an iron oxide coating. 

 

 

KDS-5 Picture 6 
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X is a very large, polygonal grain with an EDX spectrum similar to mica. Y and Z have 
nearly identical EDX spectra to X, despite their different morphologies. W likewise 
indicates mica (biotite), which is an intermediate size between the largest X, and smaller 
Y and Z. White, small, webby grains V and U are smectite clay;  barium peaks present in 
Spectrum V likely represent titanium, not barium which has an overlapping pattern. The 
sulfur and chlorine peaks indicate these elements are susbstituting in the hydroxyl group 
of the clay. V is rounded and likely detrital, while U is flaky and appears to be forming 
authigenically on top of mica grains. 
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KDS-6 Image 2 

 

KDS-6 was collected from Palaeosol C, approximately 20 meters above Palaesol A. Like 
Palaeosol C, Palaesol B is orange and yellow-green (Munsell Code) in color. The 
sample’s XRD spectrum has strong peaks for quartz, plagioclase, mixed illite/smectite, 
and mica, and trace peaks for potassium feldspar, and chlorite. The above overview 
image shows a heterogeneous mix of angular grain morphologies and a crusty covering 
that may represent iron oxides. Grain X has a very strong peak of manganese and a 
difficult spectrum to interpret. X may be covered by iron oxides with manganese 
impurities, or manganese oxides. 
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KDS-6 XRD Spectrum
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KDS-6 Image 1 

 

  

Grains X and Y have similar spectra which both likely represent mica (biotite) with 
impurities. Sodium peaks in X may come from surrounding clay. Halfnium peaks identified 
in the spectra are likely erroneous as Halfnium’s pattern overlaps with silicon and iron. 
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KDS-6 Image 3 

 

  

The webby, clayey covering of grain X has a complicated spectrum which likely 
represents mixed layer illite/smectite. The image is dominated by webby clay surrounding 
grains and dissolution pockets. The clay forms matrix as well as authigenic coverings on 
other grains. Spectrum Y represents a mica (biotite). Halfnium peaks may have been 
erroneously detected as an overlap with silicon and iron. 
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KDS-6 Image 4 

 

 

 

 

Grain X has a spectrum consistent with quartz and minor smectite/illite clay with sulfur 
substituting in the hydroxyl group. This grain likely has a thin, clay covering. Spectrum Y 
also has a much stronger silicon peak, indicating this is also a quartz grain and that EDX 
has picked up smaller aluminum, potassium and iron from nearby clay and/or iron oxides. 
Spectrum Z has very large iron peaks and the spectrum is consistent with mixed illite and 
chlorite. The grain (Z) appears to be platey and smooth, it is likely detrital. V marks a 
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large, webby mass, but has a spectrum lower in aluminum than clay, and is more 
consistent with mica (biotite) with some impurities (titanium, sodium). Alternatively, these 
minor peaks may represent authigenic clay growth on the decaying mica grain. Spectrum 
W is consistent with  mixed illite and smectite clay, though the strong potassium peak 
indicates more illite than smectite. Sulfur and chlorine are likely substitutes for hyrodoxyls 
in clay. The morphology of the grain is smooth and polygonal, and appears to be a 
detrital grain. 
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						KDS-7	Image	1	 	 	 KDS-7	Image	5	

	 	

Sample	KDS-7	was	collected	from	Palaeosol	C	approximately	40	meters	above	Palaeosol	
A.	The	sample	 is	orange,	and	yellow-green	 (Munsell	 codes)	 in	color.	The	sample’s	XRD	
spectrum	has	strong	peaks	for	quartz,	plagioclase,	mixed	layer	illite/smectite,	mica	and	
kaolinite,	and	minor	peaks	for	potassium	plagioclase,	calcite,	barite	and	anatase.	Trace	
peaks	 for	 hematite	 are	 also	 present.	 The	 overview	 (left)	 image	 shows	 authigenic	 clay	
crusts,	and	white	spots	(lower	right)	likely	indicate	iron	oxides.	Another	overview	image	
views	 the	 surface	perpendicular	 to	 the	 loose	bedding	planes	 (above	 right),	 and	 shows	
the	clay	matrix	still	present	around	dissolved	grains.	
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KDS-7	XRD	Spectrum	
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KDS-7	Image	2	

	

	

	

Grains	marked	 by	 X	 have	 a	 fine,	 flaky	 covering	which	 appear	 to	 be	 reacting	with	 the	
electron	 beam.	 The	 spectrum	 (X)	 is	 consistent	 with	 smectite	 clay,	 with	 chlorine	
substituting	 in	 the	 hydroxyl	 group,	 and	 calcium	 substituting	 for	 sodium.	 The	 small	
aluminum,	 potassium,	 iron,	 calcium	 and	 magnesium	 peaks	 in	 Spectrum	 Y	 likely	
represent	mica	 (biotite)	 with	 impurities.	 Large,	 flat	 grain	 Z	 has	 a	 spectrum	 consistent	
with	potassium	feldspar,	while	minor	iron	peaks	represent	iron	oxides.	
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KDS-7	Image	3	

	

	

	

The	fresh	surface	of	flake	X	has	a	spectrum	with	a	strong	aluminum	peak	consistent	with	
mica	 (muscovite).	 Sodium	 and	 titanium	 peaks	 represent	 impurities.	 The	 folded	 layers	
marked	 by	 Y	 appear	 to	 be	mixed	 illite	 and	 smectite	 clay.	 The	 clay	 matrix	 completely	
envelops	grains	and	dissolution	pockets,	and	appears	to	be	authigenic.	The	pitted,	round	
grain	Z	could	either	be	quartz	with	minor	peaks	representing	traces	of	clay,	or	potassium	
feldspar	with	associated	iron	oxides.	
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KDS-7	Image	4	

	

	

	

Image	 4	 is	 a	 higher	magnification	 image	 (1646x)	 of	 grains	 from	 Image	 3.	 The	 smooth	
surface	marked	by	X	has	a	spectrum	consistent	with	mixed	layer	illite	and	smectite.	The	
curved	 appearance	 of	 the	 flake	 indicates	 authigenic	 growth	 in	 pore	 spaces	 between	
detrital	grains.	The	webby,	clumped	morphology	of	Y	is	similar	to	smectite	clays,	though	
the	strong	aluminum	and	sodium	peaks	may	represent	some	sort	of	zeolite	(sodium-rich	
thomsonite?)	or	other	alteration	products.	This	webby	authigenic	covering	is	forming	on	
top	of	a	clay-encrusted	grain	behind	X.	Though	Z	marks	a	flat	surface	that	appears	like	a	
grain,	 the	 spectrum	 (Z)	 is	 similar	 to	 X	 and	 also	 likely	 represents	mixed	 layer	 illite	 and	
smectite	(though	it	is	more	sodium-rich,	perhaps	containing	more	smectite).	
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