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Permutation codes provide the required redundancy for error correction in a noisy

communication channel. Combined with MFSK modulation, the outcome produces

an efficient system reliable in combating background and impulse noise in the com-

munication channel. Part of this can be associated with how the redundancy scales

up the amount of frequencies used in transmission.

Permutation coding has also shown to be a good candidate for error correction in

harsh channels such as the Powerline Communication channel. Extensive work has

been done to construct permutation code books but existing decoding algorithms

become impractical for large codebook sizes. This is because the algorithms need

to compare the received codeword with all the codewords in the codebook used in

encoding.

This research therefore designs an efficient soft-decision decoder of Permutation

codes. The decoder’s decision mechanism does not require lookup comparison with

all the codewords in the codebook. The code construction technique that derives the

codebook is also irrelevant to the decoder.
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Results compare the decoding algorithm with Hard-decision plus Envelope Detec-

tion in the Additive White Gaussian Noise (AWGN) and Rayleigh Fading Channels.

The results show that with lesser iterations, improved error correction performance

is achieved for high-rate codes. Lower rate codes require additional iterations for

significant error correction performance. The decoder also requires much less comup-

tational complexity compared with existing decoding algorithms.
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Chapter 1

Introduction

In Communication systems, quality of information at the receiver is largely dependent

on the conditions in the channel used during the transmission process. The Powerline

Communication (PLC) channel for example, is a harsh channel affected by fading,

background noise, narrowband and broadband noise. M -ary Frequency Shift Keying

(MFSK) modulation spreads the information message over more timeslots in the

frequency spectrum. When MFSK is combined with coding, the frequency spreading

and time spreading properties provide better resistance to errors in channels with

frequency disturbance and impulse noise [1]. MFSK provides constant envelope

modulation [2] and assuming all the possible transmitted signals are of equal energy,

Envelope Detection is used to detect and demodulate the signal. This requires a

bank of M correlators to correlate the received signal with all possible transmitted

signals. The output of the correlator will be the signal with the highest correlation

value [2].

MFSK has proved to be a good candidate for modulation in PLC with Mengi and

Vinck using Reed-Solomon coding with MFSK (that conforms with the CENELEC

Band) to achieve considerably large SNR gain [3]. While Vinck [4] showed the effects

of different noise conditions on MFSK signals, Vinck, Haring and Wadayama [5]

also showed that Permutation coding with MFSK can handle narrowband, impulse

and background noise within a certain distance of transmission. The combination of

1
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MFSK with Permutation codes increases the number of frequencies mapped to each

message in the sequence, thus providing frequency spreading that helps avoid bad

portions of the channel. This has been shown to be an efficient way of combating

impulse and narrowband noise [6].

Shum [7] showed that Permutation codes give better performance than when the

message is not encoded, with a gain of about 2dB at a bit error rate of 10−5. He

further showed that Permutation block codes give better bit error rate performance

when compared with convolutional codes soft-decoded with the Viterbi algorithm

in some signal-to-noise ratio regions. Vinck [4] was also able to show the error

correction capabilities of Permutation codes and used a simple soft-decision decoder

that produces a 1 or 0 for values above a threshold or otherwise respectively. Chee

and Purkayastha [8], Swart and Ferreira [9] further showed efficient ways of decoding

Permutation codes but codes must have been constructed from distance-preserving

or distance-increasing mapping algorithms.

With extensive construction of Permutation codes found in [10] [11] [12] [13] [14],

there is no efficient soft-decision decoder of permutation codes. The decoder pre-

sented in Chee and Purkayastha [8] depends on the encoding algorithm while Bali

and Rebai [15] present the maximum likelihood decoding performance of permuta-

tion codes. The soft-decision decoder designed in this research is however relevant

irrespective of the code construction algorithm and remains relatively efficient for

large codebooks.

1.1 Research Question

In order to design a soft-decision decoder with improved computational complex-

ity that can decode large Permutation codebooks, this research aims to answer the

following question:

1. Can a soft-decision decoder of Permutation Codes be designed using the Hun-

garian Algorithm?
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- How can the performance of the Hungarian algorithm as a soft-decision

decoder be improved?

- For codebook C, if the maximum assignment solution A /∈ C, what intel-

ligent decision can be made in order to correct more errors at the receiver?

- Can the next highest assignment cost improve the performance of the

Hungarian Algorithm?

- If the above is true, at what point of iteration does the next highest

assignment stop improving the decoder’s performance?

1.2 Research Objectives

In this study, we introduce an efficient soft-decision decoder of Permutation block

codes in a one-to-one symbol-to-codeword mapping system. Each codeword is a

Permutation of k-different positive integers, each integer appearing only once in each

codeword. Given a Permutation codebook of all possible codewords P , we select C,

a subset of P to encode the message. We modulate with MFSK and evaluate the

performance of a soft-decision decoder that implements the Hungarian Algorithm [16]

for maximum assignment to decode the received noisy signals. The channel noise for

this research is assumed to be either the Additive White Gaussian Noise (AWGN)

and Rayleigh Fading or a combination of both channels.

The AWGN channel, known to be one of the first channel impairments is a model use-

ful in studying deep space channels [2]. Noise is also common in many communication

channels and therefore important to understand its contribution to communication

systems.

The Rayleigh Fading channel on the other hand, is a multipath medium with prop-

erties that are applicable in radio communication channel models that experience

ionospheric and tropospheric scattering [2]. The impairments experienced in this

channel are found in everyday activities which include scattering as a result of mov-

ing and stationary objects such as vehicles and trees respectively.
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The objectives of this research are:

1. Design a soft-decision decoder for efficiently decoding Permutation codes with

codebooks of relatively large sizes

2. Reduce computational complexity of decoding Permutation codebooks.

3. Improve the error correction performance of Permutation codes in channels

such as the AWGN and Rayleigh Fading Channel by improving on the coding

gain at the receiver.

4. Investigate the Hungarian algorithm for maximum assignment and its char-

acteristics in order to determine if the algorithm can be adapted to decode

Permutation block codes.

5. Investigate and determine if the next cost assignments can improve the perfor-

mance of the maximum assignment algorithm.

6. Recommend the point/iteration at which the decoder stops improving in per-

formance, putting into consideration different code rates and codebooks.

1.3 Research Significance

This significance of this research is to contribute:

1. A soft-decision decoder that efficiently decodes and achieves considerably large

coding gain of Permutation codes in the AWGN and Rayleigh Fading channels.

2. Current decoding algorithms for Permutation codes quickly become impractical

as the codebook size increases. The soft-decision decoder remains practical for

large codebooks with considerable computational complexity.

3. An improvement in the error correction performance and a reduction in the

complexity involved in systems when encoding with Permutation codes.
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1.4 Author’s Contribution

Experiments were carried out by the author to solve the research objectives. The

solution by the author produced a soft-decision decoder that combines the Hungarian

algorithm and Murty’s algorithm. The author leveraged on existing modulation

systems, encoding methods and mathematical algorithms in order to achieve these

objectives. The research is built upon the following systems and algorithms which

were modelled using MATLAB:

1. MFSK

2. Permutation Codes construction

3. AWGN Channel

4. Rayleigh Fading Channel

5. Envelope Detector

6. Minimum Distance Decoder

7. Maximum Likelihood Decoder

8. The Hungarian Algorithm Decoder

9. Murty’s Algorithm Decoder

In this dissertation, Chapter 2 discusses existing literature upon which the research

is built such as MFSK modulation, Permutation codes, Hungarian and Murty’s algo-

rithm. Chapter 3 explains the experiment’s methodology, including how the adopted

methods solve the research problem and eventually describes the author’s contribu-

tion. The results from the simulations are discussed in Chapter 4 while the conclusion

and recommendations are discussed in Chapter 5.



Chapter 2

Background Review

2.1 Modulation

In analog and digital transmission of data through channels, the data is converted

to a form that is suitable for the channel to transmit the data, a process generally

known as modulation. The type of modulation technique used usually depends on

the nature of the channel, the overall design of the system among other factors.

The amount of bandwidth available for example, can influence the choice of the

modulation technique.

2.1.1 Frequency Modulation

Frequency Modulation is an analog process transmitting data through a channel.

Generally, a signal waveform can be represented as

s(t) = Acos (2πfct+ θ) , (2.1)

with amplitude A, carrier frequency fc and phase θ. A simple signal waveform from

2.1 is shown in Fig. 2.1

6
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Figure 2.1: Analog Signal Cosine Waveform

The frequency of the signal to be transmitted is varied while keeping the amplitude

constant in frequency modulation. The information message is mapped onto a carrier

frequency thereby using the carrier frequency to transmit the message from point to

point. The selected carrier frequency depends on the message that is transmitted at

the instance with respect to the mapping between the frequencies and the message.

The carrier frequency is given by

fi(t) = fc + kfm(t), (2.2)

where m(t) is the baseband transmitted signal and kf is a constant or scaling fac-

tor to determine the change in frequency in the process of selecting frequency for

transmission.

The digital equivalent of analog frequency modulation can be simply explained by

using 2 frequencies, f1 and f2. A sample signal waveform of a digital message
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0111101111 is shown in Fig. 2.2. The mapping here is such that the symbol mapped

to frequency f1 is mapped to 0 while the symbol mapped to frequency f2 is mapped

to 1. Therefore, the signal changes with respect to the incoming message from the

transmitter.

time
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Figure 2.2: Sample 2FSK transmitting 0111101111

2.1.2 M-ary Frequency Shift Keying (MFSK)

M -ary Frequency Shift Keying (MFSK) is the digital equivalent of FM. Therefore, it

is suitable for modulating digital signals that require transmission in digital channels.

The same concept as FM however remains. A set of selected frequencies are mapped

onto the set of messages to be transmitted. Frequency switching therefore happens

each time a different message is to be transmitted. It can be seen as similar to

frequency hopping in its simplest form. The M in MFSK is the number of frequencies

used and is 2k.
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Given that the desired frequency was transmitted with energy Es, the function of

the noncoherent M -FSK detector is to choose the most likely frequency from a set

of M frequencies, by choosing the one with the highest energy present at a sampling

instance T . The SNR for such a system is calculated as SNR = Es/N0 (refer to

[2]). The noncoherent M -FSK detector consists of a bank of M pairs of quadrature

correlators, one pair for each frequency to be detected.

The output of each quadrature pair is a metric, which is calculated using the square

law. Each metric corresponds to each possible frequency. The most likely transmitted

symbol for sampling instance T is determined based on these M metrics. The symbol

corresponding to the metric with the highest value is chosen as the candidate for

envelope detection [2].

MFSK is an orthogonal signaling system and in this research, we assume the signals

are of equal energy. Therefore, the signals can be represented using vectors as follows:

s1 = (
√
E, 0, 0, 0)

s2 = (0,
√
E, 0, 0)

... =
...

sM = (0, 0, 0
√
E)

, (2.3)

or

si =





√
E, if f = fi

0, otherwise,

, (2.4)

where E is the symbol energy. Energy is found only in the frequency that is trans-

mitted while other frequencies are 0 at that instance.

Consider a sample random message sequence i = (2, 3, 4, 1, 2) to be modulated before

transmitting across a channel. Assuming the energy in the signal is 1, the MFSK

representation using (2.3) is
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S =




t1 t2 t3 t4 t5

f1 0 0 0 1 0

f2 1 0 0 0 1

f3 0 1 0 0 0

f4 0 0 1 0 0




2.2 Communication Channel

In the encoding decoding paradigm, knowledge of the channel conditions for trans-

mission is key. The effect of noise of transmitted signals helps to estimate the ex-

pectations at the receiver. This knowledge largely informs the processes required to

recover the message. A good decoding algorithm therefore must cater for the channel

conditions in its design.

2.2.1 AWGN Channel

This research investigates the decoder’s performance with Additive White Gaussian

Noise (AWGN) channel characteristics. Additive noise is very common in electronic

communication systems and exist in most channel designs as thermal noise [2]. Ther-

mal noise is commonly generated from electronic components in the communication

system. It is a random process and considered a power signal. The random process

is non-finite and therefore is modelled to have infinite energy.

The signals transmitted across the channel can be defined by vectors distinct in

Rn vector space. Statistically, the noise values of an AWGN channel are mutually

independent random variables with mean µ = 0 and same variance σ and power

spectral density N0/2. The variance of the noise values is expressed as σ2 = N0/2.
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Figure 2.3: Block Diagram of System with AWGN Channel Model

2.2.1.1 Coherent Detection in AWGN Channels

If the transmitter and receiver are perfectly synchronised, then we assume the signal

arrives at the receiver without a phase change. This implies the signal can be detected

coherently [2] and the output of the channel as shown in Fig. 2.3 can be represented

as

r(t) = s(t) + n(t). (2.5)

Therefore, using 2.5 to introduce AWGN to the vector representation in (2.4) and

assuming f1 was transmitted, a corresponding element-wise addition of s(t) to n(t)

is

r1 = (
√
E + n1, n2, n3, n4), (2.6)

where n1, . . . , n4 are Gaussian random variables with zero-mean µ and equal variance

σ2.

In order for the detector to make a decision, the received signal is correlated with all

possible transmitted signals s1...M as shown in block diagram Fig. 2.4 adapted from

[2]. The receiver selects the signal with the largest correlation value as the likely

transmitted signal which satisfies the condition
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m̂ = arg max (r . sm), for 1 6 m 6M, (2.7)

where r is the received signal.

With the assumption that f1 was transmitted, correlation of the received signal with

all possible transmitted signals sm is

R1 = r1.sm for f = 1. (2.8)

The vector representation of the receiver output values to be correlated with all

possible transmitted signals can therefore be represented as

Ri =





√
Es + ni, if f = fi

ni, otherwise.

(2.9)

In order to generate AWGN noise values for each chosen SNR, we determine the

variance σ as follows [2]:

N0 =
E

SNR
, (2.10)

and therefore,

σ =

√
N0

2
. (2.11)

2.2.1.2 Noncoherent Detection in AWGN Channels

Unlike coherent detection which assumes the transmitter and receiver are in perfect

synchronisation for all time intervals, this is often times not practical in real-time
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Figure 2.4: Envelope Detector in AWGN Channel

communication systems. Imperfect synchronisation of transmitter and receiver im-

plies random phase shifts and time delays of the transmitted signal at the receiver.

Although the time delay at each interval is negligible, the multiplicative effect of a

large carrier frequency means the shift φ = 2πfct becomes noticeable [2]. To the user,

the effect of the phase shift on the signal is random. However, φ can be modelled as

a uniformly distributed random variable between 0 and 2π.

The equivalent lowpass signal detected at the receiver at each interval is represented

as

r(t) = s(t)ejφ + n(t), (2.12)

where ejφ = cosφ+ jsinφ and n(t) are complex-valued zero-mean Gaussian random

variables. The condition for the receiver to make a correct decision is obtained using

(2.7) and a block diagram in Fig. 2.7 adapted from [2] to illustrate the components

of the Envelope Detector. The receiver however calculates the magnitude of the

correlated values for Envelope Detection. Therefore,

Rm = |r.sm| for 1 6 m 6M, (2.13)
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where Rm are independent random variables. Assuming f1 is transmitted, then R1

has a Ricean distribution with σ =
√

2EsN0 and Rm, for 2 6 m 6M have Rayleigh

distribution [2] also with σ =
√

2EsN0.

The probability of a symbol error for orthogonal signaling noncoherently detected in

AWGN channel is given by [2]

Pc =
M−1∑

n=0

(−1)n

n+ 1

(
M − 1

n

)
e
− n

n+1
E
N0 . (2.14)

Fig. 2.5 shows the plot of (2.14) and compared with a Monte Carlo simulation of a

100,000 random messages selected with equal probability Pm and detected noncoher-

ently.
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2.2.2 Rayleigh Fading Channel

A transmitted signal experiences multipath propagation when received from the chan-

nel that has signal fading characteristics. The effect of signal fading on the received

signal includes varying arrival times with each path having its delay parameters.

Each path also has an attenuation factor that scales the signal transmitted along

the path. The combination of the attenuation factor and transmission delay on the

transmitted signal produces a received lowpass signal r(t) and can be expresses as

r(t) =
∑

n

αn(t)ejθn(t), (2.15)

where αn is the attenutation factor for path n and θn is −2πfcτn(t). τn(t) represents

the time delay for the n-th path. A change of τn by 1
fc

changes θn(t) by 2π rad.

The time delays τn are assumed as random and can be modelled statistically as

a complex-valued random Gaussian process [2]. A channel is assumed to have a

Rayleigh distribution if the process is Gaussian with zero-mean. This model is as

a result of scattering in the ionosphere and troposphere during signal propagation

in both mediums. For such zero-mean Gaussian process, the phase is random and

distributed between 0 and 2π [2].

2.2.2.1 Frequency-nonselective Slowly Fading Channel

Signals transmitted via radio communication channels experience scattering in the

ionosphere and troposphere. For example, if the same impulse signal is transmitted

at two different time intervals, the received signals will however not be the same.

The reflection can be caused by moving reflectors such as ions in motion or a moving

vehicle. The reflection can also be stationary such as signals reflecting off buildings.

This scattering process can be modelled as a set of random events that can be rep-

resented statistically. The receiver design is such that is capable of combining the

scattered signals. When the signals are combined at the receiver, the effect of the
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× + r(t) = αs(t) + n(t)
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Figure 2.6: Block Diagram of System with AWGN & Rayleigh Fading Channels

combination can either attenuate the signal constructively or destructively. This ef-

fect on the signal is characterised as fading and the fading constant which attenuates

the signal has a multiplicative effect on the signal. If a fading constant applies over

a period of intervals before it changes, this is considered as a slowly fading channel.

× ∫T
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r(t) select the largest output

cos2πf1t

× ∫T
0

sin2πf1t

× ∫T
0

cos2πfmt

× ∫T
0

sin2πfmt

||

||

:

:

:

:

:

:

Figure 2.7: Block Diagram of MFSK Noncoherent Detector

For a signal transmitted over a frequency-nonselective slowly fading channel, the

equivalent lowpass signal detected at the receiver at each interval as shown in Fig.

2.6 is represented as

r(t) = α s(t)ejφ + n(t), (2.16)
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where α is the fading constant and equals x + jy, θ = 2πfit and ψ = arctan(y/x)

and n(t) is a complex-valued white gaussian random variable.

The fading constant α can be modelled as zero-mean complex-valued Gaussian dis-

tribution in order to be Rayleigh-distributed or otherwise Rayleigh Fading Channel.

Therefore,

r(t) = α s(t)(cosφ+ jsinφ) + n(t). (2.17)

Assuming f1 is transmitted and using s(t) = Acos(2πf1t + φ), correlation therefore

will be

r(t) = |α| cosψ Acos(2πf1t+ φ) (cos2πf1t+ jsin2πf1t) + n(t) (2.18)

The real part of the eq. 2.18 becomes

Re[r(t)] = αAcos(2πf1t+ φ)(cos2πf1t) + n(t). (2.19)

Using cosAcosB = 1
2
[cos(A - B) + cos(A + B)] and expanding the real part of (2.19),

Re[r(t)] =
αA

2
[

∫ T

0

cos 4πft dt+

∫ T

0

cos φ dt] +Re[n(t)] (2.20)

∫ T

0

cos 4πft dt = 0, (2.21)

therefore

Re[r(t)] =
αA

2

∫ T

0

cosφ dt+Re[n(t)] (2.22)

Re[r(t)] =
|α|A

2
cosψ cosφ+Re[n(t)] (2.23)
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Im[r(t)] = αAcos(2πf1t+ φ)(sin2πf1t) + n(t). (2.24)

Using cosAsinB = 1
2
[sin(A + B) - sin(A - B)] and expanding the imaginary part of

(2.24),

Im[r(t)] =

∫ T

0

αA

2
[sin(4πf1t+ φ)− sinφ] dt+ Im[n(t)] (2.25)

∫ T

0

sin 4πft dt = 0, (2.26)

therefore

Im[r(t)] = −αA
2

∫ T

0

sinφ dt+ Im[n(t)] (2.27)

Im[r(t)] = −|α|A
2

∫ T

0

cosψ sinφ dt+ Im[n(t)] (2.28)

The real part in (2.23) and imaginary part in (2.28) are modelled for MATLAB

simulations. The outcome of the model produces noise signals that can be decoded

using Hard-decision or Soft-decision decoding.

2.3 Permutation Codes

Given a set of integers i = {i1, i2, . . . , iK}, a permutation codebook C is defined as a

subset of permutations of the integers i, such that the minimum Hamming distance

dmin of the codebook C is the largest, i.e., the minimum of the Hamming distances

between any two permutations for the codebook C is optimised. A permutation

codebook is therefore a K×|C|matrix such that each row of the matrix is a codeword.

The first codeword being a set of integers such that each symbol appears only once,
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the remaining codewords in the codebook are formed by reordering the symbols of

the first codeword [10]. Generally, a permutation array with N codewords can be

written as PA(N , dmin) and have the following properties:

The coderate of the code C is defined as [7]

R =
log2 (|C|)
K log2(K)

, (2.29)

where K is the length of each codeword. The coderate in the case of permutation

codes is a measure of the size of data that can be encoded. For example, a codebook

with 12 codewords can map onto more unique messages compared with a codebook

with 4 codewords.

2.3.1 Definition 1

The Hamming distance dm between any two vectors v and w, denoted by dm(v, w),

is defined as the number of positions where the values are not the same [17].

2.3.2 Definition 2

The minimum Hamming distance dmin of a permutation codebook is defined as

[17]

dmin = min{d(v̄, w̄) : v̄, w̄ ∈ C, v̄ 6= w̄}

2.3.3 Definition 3

An invalid codeword is referred to as a codeword Ai not in C i.e. Ai /∈ C. Such

codeword might either be a valid or invalid permutation codeword.
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2.3.4 Definition 4

A hard-decision decoder of permutation codes is a decoder that finds the codeword

in C that has the smallest dm with a received codeword Ai by performing a one-to-one

comparison of Ai with each codeword in C.

Consider a set of messages mapped onto a permutation codebook and transmit-

ted via an AWGN channel, the received codeword may arrive at the receiver as

invalid. A hard-decision decoder therefore performs a maximum likelihood operation

by choosing the codeword with the smallest dm with the decoded vector as the likely

transmitted codeword. A hard-decision decoder can detect dm− 1 errors and correct

dm−1
2

.

2.3.5 Types of Permutation Codes

Permutation modulation, introduced in [10] showed the concept of substituting known

modulation methods such as FM, AM with a permutation code book. Permutation

code books are simply formed by reordering the symbols that form the first codeword.

Slepian [10] classifies permutation codes as follows:

2.3.5.1 Variant 1

Variant I permutation codes include positive and negative real integers [10]. The

symbols of each codeword do not necessarily have to be unique. Equation 2.30

defines the range of each codeword in the codebook.

i = {i1, i2, . . . , iK} −∞ < K <∞ (2.30)

2.3.5.2 Variant 2

Variant II permutation codes include positive non-zero integers [10]. The symbols

of each codeword do not also necessarily have to be unique. The equation in (2.31)
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defines the range of each codeword in the codebook.

i = {i1, i2, . . . , iK} − 1 < K <∞ (2.31)

2.4 The Assignment Problem

In linear programming, if the cost A is such that we minimize [16]

A =
i=n∑

i=1

j=n∑

j=1

cijxij, (2.32)

subject to
i=n∑

i=1

xij = 1(i = 1, . . . , n)

i=n∑

i=1

xij = 1(j = 1, . . . , n),

(2.33)

where xij = 0, then Ai is the cost of the assignment and X = (xij) is a n × n

permutation matrix in which all n assigned row-column pair is 1 while unassigned

n2 − n row-column pairs are 0.

2.4.1 Example 2.1

A sample permutation matrix is given as

X =




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



.

The row-column pair of an assignment solution which can be represented as
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ak = {(1, j1), . . . , (n, jn)} (2.34)

solves ak = 2134 for X.

2.4.2 The Hungarian Algorithm

The Hungarian algorithm [16] falls under a branch of combinatorial mathematics to

solve the assignment problem. In 1955, Harold Kuhn [16] was able to extend the

work of D. Konig and E. Egervary in linear programming to derive a solution to

the assignment problem. Before then, linear programming was able to solve small

assignment problems that can be arranged in a relatively small-sized matrix. The

solution however grows in complexity exponentially for linear programming methods

when required to solve larger sizes from 12× 12 matrices which presents 144 values

for the computer to process.

The order of complexity of the Hungarian algorithm is O(N3) [18]. Depending on the

complexity of the cost matrix, the required number of steps, iterations and recursions

to arrive at a solution varies. The complexity required to solve different assignment

problems is therefore not always at its maximum.

Given the cost for each of n workers to perform n tasks is known, the Hungarian

algorithm solves (2.36) by assigning all n tasks to n workers such that

1. A worker can only perform not more than a single task.

2. If a task is assigned to a worker, such task can no longer be assigned to any

other worker. Using matrix column-row terms, once a cost is assigned, no other

cost can be selected from that row or column.

3. The sum of all the costs for each worker to perform a task each is the minimum

cost the employer has to pay for all the tasks to be assigned as described

above. Therefore, the algorithm’s outcome should give the minimum total cost
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and does not necessarily have to select the least cost for each row or column to

determine the minimum cost.

4. There are as many number of workers as number of tasks. Therefore, arranging

the costs to satisfy this condition gives a square cost matrix. If there are not

as many costs as workers or otherwise, least additional rows and columns that

are needed to complete the cost matrix as square are added to the end of the

matrix.

2.4.3 Definition 5

The first iteration A1 of the soft-decision decoder is the solution of the Hungarian

algorithm.

2.4.4 Example 2.2

A sample cost matrix is given as

C =




90 75 75 80

35 85 55 65

125 95 90 105

45 110 95 115



,

Applying the Hungarian algorithm to solve for the minimum assignment to C, the

solution to C therefore is:

C =




90 75 75 80

35 85 55 65

125 95 90 105

45 110 95 115



.
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Using (2.34),

a1 = {(1, 4), (2, 3), (3, 2), (4, 1)}. (2.35)

Algorithm 1: Hungarian Algorithm

Data: Square cost (n× n) matrix

Result: Minimum cost row-column assignment

1 initialization;

2 subtract from each item of each row, the row’s lowest item;

3 subtract from each item of each column, the column’s lowest item;

4 if minimum number of horizontal and vertical lines to cover zeros is less than n

then

5 repeat

6 subtract from all items of each uncovered row, the smallest item uncovered

by a line;

7 add to all items of each covered column, the smallest item uncovered by a

line;

8 until minimum number of horizontal and vertical lines to cover zeros is less

than n;

9 else

10 return

11 end

Although, the above conditions use tasks and workers for illustration, the assignment

problem can be found in wider applications. For example, a coach needs to assign

players to positions such that the entire team is effective as a whole or optimising

employees’ skills without overworking them.
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2.5 Murty’s Algorithm

Murty’s algorithm [19] extends the minimum assignment solution by ranking the costs

of a square matrix in order of increasing costs. Using the Hungarian algorithm or

some other algorithm such as Jonker-Volgenant algorithm, the next best assignment

ai+1 . . . ak can be solved.

The Hungarian algorithm solves the minimum cost required to assign jobs to workers

with each worker performing a job. What if however, the employer is willing to know

the next minimum cost?

Murty’s algorithm [19] was derived to find the 2nd up to the k-th cost in order of

increasing costs.

2.6 The k-th Assignment Problem

The Hungarian algorithm stops at the minimum cost of the assignment problem.

In order to be able to find the second, third up to the k-th minimum cost of the

assignment problem, Murty’s algorithm was derived with order of complexity O(kN4)

[20]. Part of this can be attributed to its high dependence on the Hungarian algorithm

while it solves for the k-th assignment. Its starting point is the solution of the first

assignment A1. Unlike the Hungarian algorithm, all steps of Murty’s algorithm have

to be completed in order to arrive at the final solution and the Hungarian algorithm

has to be used N − 1 times for a N ×N matrix.

The row-column constraint is also kept for the k-th assignment. Therefore, every

output of Murty’s algorithm is also definitely a permutation code. This maintains

the higher probability of correctly decoding the received signal.

Consider the solution a1 in (2.34), the algorithm extracts n−1 non-empty subsets of

Cs into nodes N1 . . . Nn−1, a process referred to as partitioning. Nodes in this case

are defined as:
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N1 = {(i1, j1)},

N2 = {(i1, j1); (i2, j2)},
...,

Nr = {(i1, j1), . . . , (ir−1, jr−1); (ir, jr)}.

(for r = 1, . . . , n− 1) (2.36)

The row-column pair without the bar implies the elements on the row and column

are removed from Cs for that node while the row-column pair with the bar implies

the item at that row-column position is replaced with a very large value or infinity.

The minimum cost is then solved for each node. The node with the least cost forms

the next assignment which can be represented with (2.34) and is used to partition

for the next assignment.

The minimum assignment costs of the nodes can be arranged in a row-vector as
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(N1 . . . Nr). The node with the lowest minimum assignment cost is the next assign-

ment cost A1+i.

Algorithm 2: Murty’s Algorithm

Data: Square cost (n× n) solution matrix of the Hungarian algorithm

Result: row-column assignment vector

1 initialize n to row length of matrix;

2 initialize i to 1;

3 initialize 1× (n− 1) row-vector v̂;

4 generate n− 1 nodes from the n× n solution matrix;

5 in

6 while i is less than or equal to n− 1 do

7 generate node Ni;

8 determine minimum cost of node Ni;

9 add minimum assignment cost of Ni to v̂;

10 add 1 to i;

11 end

12 find vmin which is the smallest cost value in v̂ ;

13 the node that produces vmin produces the next assignment solution a1+k

2.6.1 Definition 6

The second iteration A2 of the soft-decision decoder is the first solution of Murty’s

algorithm while the decoder’s third iteration A3 is Murty’s second solution. The

k-th iteration of the decoder therefore produces a solution Ak which is the k − 1

solution of Murty’s algorithm.

2.6.2 Example 2.3

Using C and a1, the list for the next stage are formed using the nodes from a1 as

follows:
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N1 = {(1, 4)} =




40 0 5 ∞
0 25 0 0

55 0 0 5

0 40 30 40



,

with minimum cost of 0,

N3 = {(1, 4); (2, 3)} =




0 25 ∞
55 0 0

0 40 30


 ,

with minimum cost of 25 and

N3 = {(1, 4), (2, 3); (3, 2)} =


 55 ∞

0 40


 ,

with minimum cost of 95.

Since node N3 has the lowest cost from the 3 nodes, node N3 solves for a2 as {(1, 3),

(2, 1), (3, 4), (4, 3)}. a2 is then used to partition N3 in order to find a3.

2.7 Maximum Likelihood

Since the cost matrix includes the actual costs each worker requires to carry out a

task, ranking the costs of all possible permutations of the matrix also produces a

solution.

The Maximum Likelihood (ML) decoder uses the brute-force method of ranking of

all costs of a square matrix and is equivalent to the combination of the Hungarian

Algorithm and Murty’s algorithm. The brute-force method computes the costs of

all possible codewords |P | and then sorts in descending order. The cost ranking of

|C| is a subset of the cost ranking of |P | and can therefore be extracted. This ML

decoder’s process is irrespective of the codebook size.
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Figure 2.8: Trial and Error Method of Computing Costs for given
√
n

The process of computing the cost of all possible codewords requires n! trials [21] or

O(n!). For small n, the computational complexity is trivial. However, as n increases,

the number of computations required to rank all the costs becomes large at an expo-

nential rate as shown in Fig. 2.8. The computational complexity required to decode

for large n is too high and renders the decoding method infeasible. This method

however gives the maximum likelihood performance for decoding Permutation codes

using the cost ranking method.



Chapter 3

Research Methodology

This chapter investigates the characteristics of the assignment problem that makes

the Hungarian algorithm and Murty’s algorithm suitable for a soft-decision decoder

of permutation codes.

An efficient way of decoding permutation codes was derived in [8]. The decoding

algorithm however depends on the algorithm used in the code construction process.

Soft-decoding described in [15] relies on knowledge of the message sent at the decoder.

Practicality of such decoding method reduces quickly as code rate increases.

Similar to the assignment problem, generation of permutations is a concept in com-

binatorial mathematics as is the assignment problem. An analysis of the Hungarian

algorithm and Murty’s algorithm is done in order to link the characteristics that make

the soft-decision decoder and permutation codes compatible. Experimental simula-

tions are carried out to discover to what extent this algorithm can efficiently decode

in the AWGN and Rayleigh fading channels. The performance is also judged based

on the complexity of the algorithm because it is important the algorithm remains

considerably practical while the size and complexity of the codes increase.

Simulations are done using engineering computing software, MATLAB. Discrete ran-

dom messages will be generated, each with equal probability of occurrence. This

helps introduce some level of unpredictability into the system. Each symbol in the

30
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message is then encoded by mapping each message to a codeword in the codebook

such that similar messages are mapped to the same codeword. Each message is

assumed to be transmitted at regular time intervals. The implication is that each

message will be encoded for modulation with n frequencies where n is the length of

each codeword.

The channel model in the simulations include coherent and noncoherent detection in

AWGN. Rayleigh fading is also added to the noncoherent detection in AWGN. The

AWGN channel is modelled by generating a vector of random integers with zero mean,

equal variance relative to the signal-to-noise ratio [2]. Noncoherent detection has the

same statistical distribution but is modelled as complex-valued. First, the message

is recovered from the noisy signal using hard-decision which uses envelope detection

and a lookup with the codebook. Secondly, the soft-decision decoder comprises of

the Hungarian algorithm for maximum assignment and Murty’s algorithm that ranks

costs in descending order. Both the hard-decision and soft-decision methods are

compared to each other using Symbol Error Rate (SER) versus Signal to noise (SNR)

plots.

This simulation will be done for different codebooks and at different code rates.

The research investigates ways to recognise codewords that fall outside the set of

codewords used in encoding the message. These codewords introduce errors in the

system and will therefore find ways of making an intelligent decision in decoding

some of these codewords correctly.

The success criterion therefore is to achieve a significant dB gain using the SER vs

SNR plot. The performance of the soft-decision decoder is compared with hard-

decision. The Hungarian algorithm is considered as the first iteration and is the first

point-of-call in the decoding process.

Should the first iteration produce a decoded vector Ai /∈ C, then the next set of

iterations are done using Murty’s algorithm. The aim is to run enough iterations to
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find the next highest assignment cost Ai+1 of the square matrix for only outputs

Ai /∈ C, (i > 1).

Each step to solve Ai+1 will be applied as a means of complementing the Ai outputs.

If these iterative steps improve the algorithm, the research will investigate the satu-

ration point of the performance of the algorithm. Simulations will consider different

code rates and codebooks in order to recommend the iteration beyond which further

iteration will not necessarily improve the performance algorithm.

3.1 Experimental Setup

An end-to-end setup of the system consists of a message transmitter, Rayleigh slow

Fading channel, AWGN channel and receiver in respective order as shown in Figure

3.1. The transmitter comprises of a random message generator, an encoder and

MFSK modulator while the receiver includes correlators and a decoder which decodes

and demodulates simultaneously the signals at the output of the channel.

3.2 System Description

The message generator generates a sequence of random messages, each message is a

positive integer vi such that 1 ≤ vi ≤ |C|. This sequence is assumed to represent

messages at regular time intervals. Consider a codebook P containing all possible

permutations |P |, the encoder selects a subset C from P for a chosen code rate

and Hamming distance. One-to-one mapping operation is then performed at the

encoder, the outcome which is fed into the MFSK modulator. In the modulator, the

transmitted frequency is represented as 1 while other unused M − 1 frequencies at

that timeslot remain 0.
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Figure 3.1: Experiment Block Diagram

The Rayleigh Fading channel is modelled as a block fading channel. It is multiplica-

tive in nature and therefore attenuates the signal either constructively or destruc-

tively. The AWGN channel on the other hand is additive and is an M × N matrix

that can be added to the signal from the modulator.

The Hungarian algorithm for maximum assignment and Murty’s algorithm for the

k-th assignment always require square matrices to operate. Therefore, in the decoder

and demodulator, the noisy signal at the output of the channel is broken into blocks

of square matrices, each block equivalent to the message at that interval. The out-

come of the Hungarian algorithm is always a permutation codeword and in this case

considered the first iteration. If the output codeword does not exist in the codebook

this outputs an error at the receiver. The second iteration up to the k-th iteration

employs Murty’s algorithm for the k-th assignment by ranking the costs of the square

matrix in order of decreasing costs.

For each message to be decoded at the receiver, the algorithms run iteratively until

either the k-th iteration produces a valid codeword or reaches the maximum k set

for the simulation.
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3.3 The Hungarian Algorithm as a Soft-Decision

Decoder

It was defined earlier that Variant II permutation codes include positive non-zero in-

tegers, the row-column constraint of the assignment solution implies that the solution

to an assignment problem will always be a Variant II permutation code.

Consider a set of randomly generated positve integers v̂ = {v1, v2, . . . , vE} of length

E. Each message at each symbol period is randomly selected from 1 ≤ |C|. Using

one-to-one mapping onto a permutation codebook C and modulating with MFSK,

the signal, with timeslots increased to M × E is fed to the AWGN channel. At the

output of the AWGN channel, the received signal using Equation 2.9 is

R =




n11 n12 n13 ...
√
E + n1L

n21

√
E + n22 n23 ... n2L

√
E + n31 n32 n33 ... n3L

n41 n42

√
E + n43 ... n4L



, (3.1)

or

R =




r11 r12 r13 ... r1L

r21 r22 r23 ... r2L

r31 r32 r33 ... r3L

r41 r42 r43 ... r4L



, (3.2)

where L = M × E, the length of the entire message sent at the transmitter and nij

could be either positive or negative noise values.



Chapter 3. Research Methodology 35

To decode this signal using the Hungarian algorithm, the signal is divided into L/M

blocks of square M ×M matrices such as

R1 =




r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44



. (3.3)

In a case where the last block in the matrix is not a square, additional columns filled

with zeros are added to the matrix in order to convert to a square matrix as shown

in Equation 3.4

RL−1 =




r1L−3 r1L−2 r1L−1 0

r2L−3 r2L−2 r2L−1 0

r3L−3 r3L−2 r3L−1 0

r4L−3 r4L−2 r4L−1 0



. (3.4)

The Hungarian algorithm is then solved for each block in order to decode the sig-

nals. Although, the steps described above in solving the algorithm are for minimum

assignment solution, the maximum assignment solution is rather of interest here. In

order to calculate the maximum assignment solution, the cost matrix is negated as

shown in Equation 3.5

R
′

Ni = −1× [RNi]. (3.5)

By applying the same steps to the negated matrix, the outcome will be the maximum

cost solution.

An example below uses a one-to-one mapping of messages to the cyclically rotated

codebook C with dmin = 4 [7]
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C =




1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1



.

A sample block of a signal from an AWGN output is:

R
′

1 =




−0.0048 0.1998 −0.6410 0.6190

1.4252 −1.3300 0.7402 −0.6016

0.7114 0.3415 −0.1570 0.8115

−0.4108 1.1389 1.6880 0.5057



.

Using Equation 3.5,

R
′

1 =




0.0048 −0.1998 0.6410 −0.6190

−1.4252 1.3300 −0.7402 0.6016

−0.7114 −0.3415 0.1570 −0.8115

0.4108 −1.1389 −1.6880 −0.5057



.

Applying the Hungarian algorithm reduces R1 to

R
′

1 =




0.6237 0 1.2599 0

0 2.3360 0.6849 2.0268

0.1001 0.0509 0.9685 0

2.0988 0.1300 0 1.1824



,

produces an assignment solution A1 = 2143, which is also a permutation codeword.

Its row-column representation

a1 = {(1, 2), (2, 1), (3, 4), (4, 3)}. (3.6)
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Applying this step to each signal matrix always decodes to a permutation codeword.

The decoder however needs to search the codebook for the decoded codeword. An

assignment solution that is not a valid codeword is interpreted as an error.

An important edge the Hungarian algorithm gives in decoding permutation codes

is that while Envelope Detection always relies on one-to-one comparison with every

codeword in order to determine the minimum distance, the outcome of the algorithm

is always a codeword. This largely reduces the complexity of the decoder. The

decoder then needs to check if the received codeword is valid or a member of the

codebook. Efficient algorithms in programming are in existence to solve this without

having to perform a one-to-one comparison with each codeword in the codebook.

Every solution to the assignment problem obeys the row-column constraint. There-

fore, the solution will always be a permutation codeword. This similarity can be said

to make the Hungarian algorithm suitable for decoding permutation codes.

3.4 Murty’s Algorithm as a Soft-Decision Decoder

Murty’s algorithm is dependent on the first assignment from the Hungarian algo-

rithm, the algorithm is therefore not always executed at every instance of the de-

coding process. The algorithm is triggered in the decoder when the output of the

Hungarian algorithm results in a codeword A1 /∈ C. Because the resulting code-

word is definitely invalid, the decoder probes further into the next highest cost to

determine if Ai ∈ C.

Murty’s algorithm therefore helps in finding the next reliable codeword using its

ability to determine the next highest cost. Again, although the algorithm solves for

the next minimum cost, negating the cost matrix solves for the next highest cost up

to the k-th highest cost (lowest cost).
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The solution a1 in Equation 3.6 represents a decoded codeword A1 /∈ C. A1 is

therefore an error decoded message. This triggers Murty’s algorithm to find the next

reliable codeword from the received signal.

The row-column pair without the bar implies the values on the row and column are

removed from R1 for that node while the row-column pair with the bar implies the

item at that row-column position is replaced with a very large value or infinity. The

minimum cost is then solved for each node. The node with the least cost forms the

next assignment a2.

Using the solution matrix of R
′
1,

R
′

1 =




0.6237 0 1.2599 0

0 2.3360 0.6849 2.0268

0.1001 0.0509 0.9685 0

2.0988 0.1300 0 1.1824



,

n− 1 nodes of R
′
1 are

N1 =




0.6237 ∞ 1.2599 0

0 2.3360 0.6849 2.0268

0.1001 0.0509 0.9685 0

2.0988 0.1300 0 1.1824



,

with an assignment cost of 0.0508,

N2 =




∞ 0.6849 2.0268

0.1001 0.9685 0

2.0988 0 1.1824


 ,

with an assignment cost of 1.9674 and
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N3 =


 0.9685 ∞

0 1.1824


 ,

with an assignment cost of 2.1508.

Therefore, for N = (N1 . . . Ni), the minimum value in Nmin is N1. The next assign-

ment solution A2 is therefore 4123. Since A2 ∈ C, the decoder operation concludes

for the current signal and proceeds to the next signal in the sequence.

If however A2 /∈ C, the decoder proceeds to find A3 using the solution matrix of A2

and applying the same steps that solve A2. Unlike the Hungarian algorithm that

solves for the first assignment, Murty’s algorithm can be repeated for k−1 iterations

to solve up to the k − th assignment.
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Combining the Hungarian algorithm and Murty’s algorithm to form a soft decision

decoder, the algorithm’s pseudocode can be represented as

Algorithm 3: Soft-decision Decoder

Data: Signal output of Correlator

Result: Soft Decision Decoder: Hungarian Algorithm and Murty’s Algorithm

1 initialization;

2 if A1 ∈ C then

3 r̂l ← A1;

4 else

5 if A2 ∈ C then

6 r̂l ← A2;

7 else

8 if A3 ∈ C then

9 r̂l ← A3;

10 else
...

11 end

12 end

13 end



Chapter 4

Results

This section discusses the outcome of simulations carried out using MATLAB. The

aim is to investigate how many errors the algorithms can correct at the receiver.

Given a sequence of message symbols of length E comprising positive integers

ŝ = {s1, s2, . . . , sl} and set of decoded messages r̂ = {r1, r2, . . . , rl}. The non-zero

items in r̂ − ŝ is the number of messages decoded in error. The performance of the

decoder is therefore a measure of how much we reduce the non-zero items in r̂ − ŝ
especially at low signal to noise ratio (SNR). The data transmission is done via an

AWGN channel with zero-mean and equal variance of σ2 =
√

N0

2
and detection is

done both coherently and noncoherently. Rayleigh Fading is further introduced into

the channel conditions. The effect of Rayleigh Fading on the transmitted signals are

then shown and analysed.

At the output of the channel using an MFSK system, the received signal is a cost

matrix R = (rij) of order M×M . Every assignment in R is a permutation matrix and

its column-wise index is therefore a permutation codeword. A permutation matrix

is formed such that only one element in each column and row is set to 1 while other

elements on the same column and row are set to 0 [19]. An example of a permutation

matrix is

41
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Pm =




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



.

The column-wise index of Pm is a permutation codeword vector {2134}. There are

M ! possible permutation matrices and therefore M ! possible assignments for every

received signal matrix R. By ranking all possible assignments Ai in R in order

of decreasing costs, simulation results show that the error-correction performance

improves. We define an iteration of the decoding process as the rank of an assignment.

Unlike the maximum likelihood method, the size of M in MFSK determines the size

of the cost matrix at the input and output of the channel. M is therefore equivalent

to n, the sample size of the cost matrix. For example, a 4FSK system produces a 4

× 4 matrix for the decoder while an 8FSK produces an 8 × 8 matrix.

The combination of the Hungarian algorithm is O(n3) [21] and Murty’s algorithm is

O(n4) [22]. A combination of both algorithms in the decoder is O(n3) + O(n4) which

gives a worst case complexity of O(n4).

Consider a matrix comprising of the set of all permutations P , a codebook C is

defined as C ⊆ P for all codewords or C ( P . In the experiment, each iteration

compares the assignment of the iteration with the codebook C. Each iteration after

the first is a combination of the performances of all previous iterations. For example,

decoding a message with the third iteration means the first and second iteration

failed to find A ∈ C. However, decoding the next message may stop at the first

iteration but still counts as performance of the third iteration. The next iteration is

only activated if A /∈ C.

We discuss each iteration’s performance for different code rates, codebook sizes and

dmin. The decoder’s performance at each iteration is also compared with Envelope

detection (ED). We refer to Hard-decision decoding as a combination of ED and

minimum distance decoding.
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We determine the code rates using Equation 2.29 to generate codebooks. Minimum

Hamming distance is also of concern in analysing the performance of the algorithm.

The first iteration uses the Hungarian algorithm decoding while the second up to the

n-th iteration uses Murty’s algorithm.

4.1 4FSK in AWGN Channel - Coherent Detec-

tion

A 4FSK system, combined with a permutation codebook with K = 4 is a simple

system that can be used to analyse the decoder’s performance. It is also easier

to compare the performance of codebooks with same dmin but different codeword

composition. The codebook mapped to the 4FSK system has |P | = 24 and the

decoder input receives 4× 4 matrix in this case.

4.1.1 4 Codewords

A simple codebook with |C| = 4 and K = 4 can be formed by cyclically rotating

the first codeword 1234 in order to create the remaining 3 codewords. The outcome

of this produces a codebook with dmin = 4. From Figure 4.1, the first iteration

gives similar performance compared with hard-decision. However, a significant gain

is observed at the second iteration with more than 1dB gain. The third and fourth

iteration produce similar performance but improve the performance of the second

iteration by additional 0.6dB.

4.1.2 8 Codewords

Increasing |C| to 8 also increases the code rate slightly to 0.375 and |C||P | is 0.33. Figure

4.2 shows the performances of the first three iterations. First iteration still remains

similar in performance with hard-decision although slight but negligible improvement
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Figure 4.1: 4 Codewords (CW): Performance of Hard-decision and Soft-decision
Decoding in AWGN Channel, , Coherent Detection. dmin = 4, code rate = 0.25

is observed in some SNR regions. The second iteration however improves performance

with up to 1.8dB gain. The third and fourth iteration both produce performance

similar to the second iteration with minimal 0.1 dB gain improvement in some SNR

regions.

4.1.3 16 Codewords

In Figure 4.3, results of the first three iterations are shown for increased code rate

of 0.5. With |C|
|P | = 0.67, there is reduced probability the decoder will output a

codeword in the remaining 33% of codewords in P but not in C. This is why the

performance of the first iteration improves compared with hard-decision. Another

reason for improved performance is that dmin has also reduced, thereby reducing the

error correction performance of minimum distance decoding. The first iteration gives
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Figure 4.2: 8 Codewords (CW): Performance of Hard-decision and Soft-decision
Decoding in AWGN, Coherent Detection. dmin = 3, code rate = 0.375

more than 2dB gain with up to 2.5dB in some SNR regions. Performance is similar

when codebook consists of a different subset of P but with the same dmin.

With the exception of matrices with same costs at different iterations, the second

iteration only has to produce a codeword in |P | − 1 and the third, |P | − 2. There-

fore, the percentage of codewords that can result in decoding error reduces for each

iteration. However, the probability of producing a codeword in C is higher for 16

codewords and this probability increases for the next iteration. Producing a code-

word in C does not however guarantee the codeword is correctly decoded. The second

iteration therefore does not improve in performance compared with the first iteration

as it appears in Figure 4.3 to be nearing its performance limit. The performance of

the third iteration is almost exactly the same as the second iteration. In terms of

computational complexity, decoding may not be necessary beyond the second itera-

tion. However, between the first and second iteration, the computational complexity
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Figure 4.3: 16 Codewords (CW): Performance of Hard-decision and Soft-decision
Decoding in AWGN Channel, , Coherent Detection. dmin = 2, code rate = 0.5

required may be too high compared with the achievable gain.

4.1.4 24 Codewords

Simulation for a code rate of 0.57 as shown in Figure 4.4 uses 100% of the codewords in

P . The performance of the Hungarian algorithm gives up to 3dB gain. As mentioned

earlier, the more codewords in C, the better the performance of the algorithm. The

other iterations after the first are not needed because the condition A ∈ C is always

satisfied in the decoding process because the outcome of the Hungarian algorithm is

always a permutation codeword. Therefore, the next iteration is never triggered.

Table 4.1 contains the properties and performance results of each codebook used

in the 4FSK system described. It also shows the performance of each iteration up
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Figure 4.4: 24 Codewords (CW): Performance of Hard-decision and Soft-decision
Decoding in AWGN Channel, Coherent Detection. dmin = 2, code rate = 0.57

Table 4.1: Performance of Soft-decision Decoder using 4FSK in AWGN Channel,
Coherent Detection

|C| Code
rate

|C|
|P | dmin

Gain
(dB) at
A1

Gain
(dB) at
A2

Gain
(dB) at
A3

Gain
(dB) at
A4

4 0.25 0.1667 4 0.2 1.0 1.8 1.8
8 0.375 0.33 3 0.2 1.6 1.7 1.7
12 0.45 0.5 3 1.0 2.4 2.4 2.4
12 0.45 0.5 2 2.8 3.0 3.0 3.0
16 0.5 0.67 2 2.8 3.0 3.0 3.0
24 0.57 1 2 3.0 3.0 3.0 3.0
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Figure 4.5: SNR (dB) Gain vs |C||P | for 4 Iterations for |P | = 24, 4FSK, Coherent
Detection

to the fourth iteration. This performance is compared with the combination of the

Envelope Detection plus hard-decision.

As mentioned earlier, the performance is irrespective of the subset of P chosen to form

the codebook with |C| = 16. However, for codebook with |C| = 12, the codebook can

be constructed with either dmin = 2 or dmin = 3. The performance of both codebooks

differ and this is associated with the size of dmin. As shown in Table 4.1, the decoder

performs better when the dmin is 2 than when dmin is 3 for |C| = 12. Therefore, the

higher the dmin, the poorer the performance of decoder.

The plots in Figure 4.5 describe the results obtained by varying the |C||P | ratio with

the coding gain.
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4.2 8FSK in AWGN Channel - Coherent Detec-

tion

The decoder solves for each 8 × 8 matrix that represents a message. Since both

algorithms output a codeword, there is no need to lookup with the codebook. Total

possible permutations |P | is 8! or 40320. The increased size of K to 8 means the

encoder has more codewords and code rates to select from. Simulations for this set

of experiments run iterations up to the 7th best assignment.

C =




1 2 3 4 5 6 7 8

8 1 2 3 4 5 6 7

7 8 1 2 3 4 5 6

6 7 8 1 2 3 4 5

5 6 7 8 1 2 3 4

4 5 6 7 8 1 2 3

3 4 5 6 7 8 1 2

2 3 4 5 6 7 8 1




.

4.2.1 8 Codewords

The codebook used for this simulation is the cyclically rotated codebook C with

|C| = 8, K = 8 and dmin = 8. This codebook is however only 0.02% of P . Most

decoded codewords are far more likely to fall in the other 99.98% codewords not

in C. As shown in Figure 4.6, the Hungarian algorithm decoding performs poorer

than hard-decision. Probability of decoding the wrong codeword is very high. More

iterations up to the 7th iteration does little to improve the performance. Although

the performance at the 7th iteration can be seen to perform slightly better than

hard-decision, the gain in decibels (dB) is quite minimal, the highest being about

0.1dB.
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Figure 4.6: 8 Codewords (CW): Performance of Hard-decision and Soft-decision
Decoding in AWGN Channel, Coherent Detection. dmin = 8

4.2.2 305 codewords

|C|
|P | increases to 0.0076 while dmin of the codebook is reduced to 5. There is still higher

probability of decoding Ai /∈ C for each of the 7 iterations. While the Hungarian

algorithm’s performance remains similar with hard-decision, 1dB gain is observed at

the 3rd iteration. Subsequent iterations’ respective performances are similar to the

performance at the 3rd iteration with negligible gain in between.

4.2.3 1417 codewords

With |C|
|P | = 0.035, the probability of the decoder producing an output Ai /∈ C is

reduced compared with 305 codewords. The effect of this is evident in Figure 4.8

where performance is improved at the second iteration with up to 1dB gain over
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Figure 4.7: 305 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in AWGN Channel, Coherent Detection. dmin = 5

hard-decision. The algorithm however stops improving after the 3rd iteration which

improves performance with 1.8dB gain.

4.2.4 20160 codewords

The dmin of this codebook is 3. As shown in Figure 4.9. The Hungarian algorithm’s

decoding performance out-performs hard-decision by 1dB unlike in codebooks with

greater dmin. The second iteration further adds 1dB improvement to the Hungar-

ian algorithm. The decoder however stops improving performance after the second

iteration.

4.2.5 40320 codewords

The code rate of this codebook is 1.91, dmin = 2 and |C| = |P |. The performance of

all iterations are equal as seen in Figure 4.10. This is also similar to the performance
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Figure 4.8: 1417 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in AWGN Channel, Coherent Detection. dmin = 4

results observed in the 4FSK system in Figure 4.4. As explained earlier, the stopping

condition of the decoder is to decode a codeword Ai ∈ C. This condition will always

be satisfied at iteration of the Hungarian algorithm.

The performance of the Hungarian algorithm can therefore be used to represent the

performance of all subsequent iterations in the decoder. Coding gain of the Hungarian

algorithm compared with hard-decision is over 2dB in some SNR regions.

Table 4.2 summarises the properties of each codebook used in the 8FSK system.

It also shows the performance of each iteration up to the seventh iteration. This

performance is compared with the combination of the Envelope Detection and hard-

decision. The plots in Figure 4.11 describe the results obtained by varying the |C||P |

ratio with the coding gain.
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Figure 4.9: 20160 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in AWGN Channel, Coherent Detection. dmin = 3

Table 4.2: Performance of Soft-decision Decoder using 8FSK in AWGN Channel,
Coherent Detection

|C| Code
rate

|C|
|P | dmin

Gain
(dB)

at
A1

Gain
(dB)

at
A2

Gain
(dB)

at
A3

Gain
(dB)

at
A4

Gain
(dB)

at
A5

Gain
(dB)

at
A6

Gain
(dB)

at
A7

8 0.125 0.0002 8 -0.2 0 0 0.1 0.1 0.2 0.2
305 0.344 0.0075 5 0.2 0.5 0.7 0.8 0.9 0.9 0.9
1417 0.436 0.035 4 0.2 0.8 1.2 1.4 1.4 1.4 1.4
5000 0.512 0.124 3 0.8 1.8 1.8 1.8 1.8 1.8 1.8
10000 0.554 0.0248 3 1.0 1.8 2.0 2.0 2.0 2.0 2.0
15000 0.578 0.372 3 1.0 1.8 2.0 2.0 2.0 2.0 2.0
20160 0.596 0.5 3 1.1 2.4 2.4 2.4 2.4 2.4 2.4
40320 0.637 1 2 2.5 2.4 2.4 2.4 2.4 2.4 2.4
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Figure 4.10: 40320 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in AWGN Channel, Coherent Detection. dmin = 2

4.3 MFSK in AWGN Channel - Noncoherent De-

tection

Due to the properties of noncoherent detection, it is expected that the performance of

the decoder degrades as more uncertainty has been introduced by the random phase

shifts. The system is therefore more random in nature unlike coherent detection

because the receiver and transmitter are out of phase. Part of detection of the received

signal is therefore predictive due to the random process involved. The following

sections show the performance of the decoder when the received signal is not in

phase with the transmitted signal.

The performance of each iteration remains similar to coherent detection in terms of

whether or not the iteration out-performs hard-decision.
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Figure 4.11: SNR (dB) Gain vs |C|/|P | for First 7 Iterations for |P | = 40320,
8FSK Modulation, Noncoherent Detection.

4.3.1 4 Codewords

As shown in Figure 4.12, the performance of the Hungarian algorithm remains sim-

ilar in performance with hard-decision although negligible 0.1dB improvements are

observed in some SNR regions. The second iteration adds 1dB gain to the decoder

while the third and fourth iterations produce similar performance, adding some 0.5dB

gain to the second iteration.

4.3.2 8 Codewords

Figure 4.13 shows that the second iteration improves the Hungarian algorithm by

1dB. Subsequent iterations however perform in very similarly manner with the second

iteration.
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Figure 4.12: 4 Codewords (CW): Performance of Hard-decision and Soft-decision
Decoding. dmin = 4, code rate = 0.25

4.3.3 16 Codewords

Figure 4.14 shows a 2dB gain at the Hungarian algorithm iteration. Subsequent

iterations however could only improve the Hungarian algorithm by 0.1dB. Similar to

coherent detection, the performance is irrespective of the subset of P chosen to form

the codebook |C| = 16.

4.3.4 24 Codewords

This codebook defines the optimum performance of the decoder. The best coding

gain is observed right from the first iteration (Hungarian algorithm) which is about

2.3dB. Subsequent iterations are not necessary as shown in Figure 4.15.
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Figure 4.13: 8 Codewords (CW): Performance of Hard-decision and Soft-decision
Decoding in AWGN Channel, Noncoherent Detection. dmin = 3, code rate = 0.375

Table 4.3: Performance of Soft-decision Decoder using 4FSK in AWGN Channel,
Noncoherent Detection

|C| Code
rate

|C|
|P | dmin

Gain
(dB) at
A1

Gain
(dB) at
A2

Gain
(dB) at
A3

Gain
(dB) at
A4

4 0.25 0.1667 4 0.2 0.8 1.4 1.4
8 0.375 0.33 3 0.0 1.2 1.2 1.2
12 0.45 0.5 3 0.1 1.1 1.1 1.1
12 0.45 0.5 2 2 2.2 2.2 2.2
16 0.5 0.67 2 2.0 2.2 2.2 2.2
24 0.57 1 2 2.2 2.2 2.2 2.2



Chapter 4. Simulation Results 58

Signal to Noise Ratio (dB)
0 2 4 6 8 10 12 14

S
ym

bo
l E

rr
or

 R
at

e

10-5

10-4

10-3

10-2

10-1

100

16 CW Envelope Detection + HD
16 CW Hungarian Algorithm
16 CW Hungarian -- Murty (2nd)
16 CW Hungarian -- Murty (3rd)
16 CW Hungarian -- Murty (4th)

Figure 4.14: 16 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in AWGN Channel, Noncoherent Detection. dmin = 2, code

rate = 0.5

Table 4.3 summarises the properties of each codebook used in the 4FSK noncoherent

detection. It also shows the performance of each iteration up to the fourth iteration.

This performance is compared with the combination of the Envelope Detection plus

hard-decision.

The performance of codebook with |C| = 16 is irrespective of the subset of P chosen

to form the codebook. Unlike the codebook with |C| = 16, the codebook with

|C| = 12 on the other hand can be constructed with either dmin = 2 or dmin = 3. The

performance of both codebooks differ and this is also associated with the size of dmin

as observed in coherent detection. Table 4.3 shows that the decoder performs better

when the dmin is 2 than when dmin is 3 for |C| = 12. The Hungarian algorithm’s

performance is negligible while considerable performance improvement is observed

from the second iteration. This performance behaviour is quite similar to |C| = 8
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Figure 4.15: 24 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in AWGN Channel, Noncoherent Detection. dmin = 2, code

rate = 1

codebook and the poorer performance of the decoder can be attributed to the higher

dmin.

The plots in Figure 4.16 describe the results obtained by varying the |C||P | ratio with

the coding gain at each iteration.

4.4 8FSK

This section shows simulation results using 8FSK with codebooks each having |C| =
8. Performances are made among iterations up to the 7th iteration. It is also of in-

terest to know how much the noncoherent property affects the decoder’s performance

compared with the noncoherent detection system.
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Figure 4.16: SNR (dB) Gain vs |C||P | for First 4 Iterations for |P | = 24, 4FSK
Modulation, Noncoherent Detection

4.4.1 8 Codewords

The codebook remains the cyclically rotated codebook in section 5.2, performance

remains similar to coherent detection where hard-decision performs better than all

other iterations as seen in Figure 4.17. This is as a result of the high dmin and low

|C|
|P | ratio which are advantages for hard-decision decoding. Hard-decision however is

more computationally complex than the decoder because the hard-decision decoder

relies on a lookup with all possible 40320 codewords in order to make decision.

4.4.2 305 codewords

The percentage of P used to form C increases to 0.75% while dmin of the codebook

is reduced to 5. There is still higher probability of decoding Ai /∈ C for each of the 7
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Figure 4.17: 8 Codewords (CW): Performance of Hard-decision and Soft-decision
Decoding in AWGN Channel, Noncoherent Detection. dmin = 8

iterations. While the Hungarian algorithm’s performance remains similar with hard-

decision, 1dB gain is achieved at the 3rd iteration. Subsequent iterations’ respective

performances are similar to the performance at the 3rd iteration.

4.4.3 1417 codewords

For a codebook P with each codeword of length |C| = 8, this codebook contains all

possible codewords in P with dmin = 4. As shown in Figure 4.19, while the Hun-

garian algorithm’s performance still remains similar with hard-decision, the second

iteration improves performance up to 1dB. Third iteration improves the second itera-

tion by up to additional 1dB. Further iterations up to the 7th iteration show minimal

improvement in performance with an average of less than 0.1dB between them.
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Figure 4.18: 305 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in AWGN Channel, Noncoherent Detection. dmin = 5

4.4.4 20160 codewords

This codebook utilises half of |P |. Therefore, the Hungarian algorithm still performs

better than Envelope detection plus hard-decision but degrades to about 0.8dB unlike

the 1dB gain in coherent detection. Subsequent iterations perform similarly but

improve the Hungatrian algorithm with additional 1dB as shown in Figure 4.20.

4.4.5 40320 codewords

The optimum performance the highest iteration can produce in noncoherent detec-

tion is observed in this codebook. Figure 4.21. Approximately 2dB is observed

from the Hungarian algorithm and as expected, further iterations do not add any

improvements to the performance.

Table 4.4 summarises the properties of each codebook with different code rates for

noncoherent detection of 8FSK. It also shows the performance of each iteration up
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Figure 4.19: 1417 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in AWGN Channel, Noncoherent Detection. dmin = 4

Table 4.4: Performance of Soft-decision Decoder using 8FSK in AWGN Channel,
Noncoherent Detection

|C| Code
rate

|C|
|P | dmin

Gain
(dB)
at
A1

Gain
(dB)
at
A2

Gain
(dB)
at
A3

Gain
(dB)
at
A4

Gain
(dB)
at
A5

Gain
(dB)
at
A6

Gain
(dB)
at
A7

8 0.125 0.0002 8 -0.3 -0.3 -0.2 -0.2 -0.2 -0.2 -0.2
305 0.344 0.0075 5 0 0.1 0.2 0.4 0.5 0.5 0.5
1417 0.436 0.035 4 0 0.8 1.0 1.0 1.0 1.0 1.0
5000 0.512 0.124 3 0.6 1.2 1.3 1.3 1.3 1.3 1.3
10000 0.554 0.248 3 0.6 1.3 1.4 1.4 1.4 1.4 1.4
15000 0.578 0.372 3 0.6 1.2 1.3 1.3 1.3 1.3 1.3
20160 0.596 0.5 3 0.8 1.5 1.6 1.6 1.6 1.6 1.6
40320 0.637 1 2 2.3 2.3 2.3 2.3 2.3 2.3 2.3
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Figure 4.20: 20160 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in AWGN Channel, Noncoherent Detection. dmin = 3

to the seventh iteration. This performance is compared with the combination of the

Envelope Detection and hard-decision. The plots in Figure 4.22 describe the results

obtained by varying the |C||P | ratio with the coding gain.

4.5 Noncoherent MFSK in AWGN and Rayleigh

Fading Channels

In this section, the Rayleigh Slow Fading channel is added to the channel conditions

which already includes AWGN. Transmitted signals are detected noncoherently and

simulation results are discussed for 4FSK and 8FSK using different codebooks at the

encoder.
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Figure 4.21: 40320 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in AWGN Noncoherent Detection. dmin = 2

4.5.1 4 Codewords

Performance of the decoder improves significantly at the fourth iteration with ap-

proximately 1dB gain as shown in Figure 4.23. Previous iterations perform closely

to Envelope Detection plus hard-decision with negligible dB gains between them.

4.5.2 8 Codewords

Increasing the code words and therefore the code rates improves the decoder’s per-

formance from the second iteration with about 1dB gain as shown in Figure 4.24.

The decoder however fails to improve beyond the second iteration with subsequent

iterations performing closely with the second iteration.



Chapter 4. Simulation Results 66

|C|/|P|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
N

R
 (

dB
) 

G
ai

n

-0.5

0

0.5

1

1.5

2

2.5

1st Iteration
2nd Iteration
3rd Iteration
4th Iteration
5th Iteration
6th Iteration
7th Iteration

Figure 4.22: SNR (dB) Gain vs |C|/|P | for First 7 Iterations for |P | = 40320,
8FSK Modulation, Noncoherent Detection.

4.5.3 16 Codewords

With higher |C||P | , less codewords exist outside |C|. The Hungarian algorithm im-

proves performance with more than 1dB gain compared with envelope detection plus

hard-decision as shown in Figure 4.25. Subsequent iterations produce similar perfor-

mance but improve the performance of the Hungarian algorithm, adding 0.2dB to

the performance.

4.5.4 24 Codewords

The optimum performance of the decoder is observed in Figure 4.23 with about 2dB

gain in some SNR regions.
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Figure 4.23: 4 Codewords (CW): Performance of Hard-decision and Soft-decision
Decoding in Noncoherent Detection, AWGN and Rayleigh Slow Fading Channels.

dmin = 4, code rate = 0.25

Table 4.5 summarises the properties of each codebook used in the 4FSK system

described. It also shows the performance of each iteration up to the third iteration.

This performance is compared with the combination of the Envelope Detection and

hard-decision.

The plots in Figure 4.27 describe the results obtained by varying the |C||P | ratio with

the coding gain.

4.6 8FSK

This section analyses the performance of the Soft-decision decoder in AWGN and

Rayleigh Fading channels when the codebook size is increased, with |C| = 8. Gener-

ally, the performance of both soft-decision and hard-decision reduce in coding gain
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Figure 4.24: 8 Codewords (CW): Performance of Hard-decision and Soft-decision
Decoding in Noncoherent Detection, AWGN and Rayleigh Slow Fading Channels.

dmin = 3, code rate = 0.25

Table 4.5: Performance of Soft-decision Decoder using 4FSK in AWGN and
Rayleigh Fading Channels

|C| Code
rate

|C|
|P | dmin

Gain
(dB) at
A1

Gain
(dB) at
A2

Gain
(dB) at
A3

Gain
(dB) at
A4

4 0.25 0.1667 4 0.2 0.4 1.4 1.4
8 0.375 0.33 3 0.1 1.0 1.1 1.1
12 0.45 0.5 3 0.4 0.6 0.6 0.6
12 0.45 0.5 2 1.8 2.0 2.0 2.0
16 0.5 0.67 3 1.8 2.0 2.0 2.0
24 0.57 1 2 2.0 2.0 2.0 2.0
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Figure 4.25: 16 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in Noncoherent Detection, AWGN and Rayleigh Slow Fading

Channels. dmin = 2, code rate = 0.25

compared with the performances obtained without the inclusion of Rayleigh Fading

channel. However, the soft-decision decoder still out-performs the hard-decision de-

coder at high code rates. Hard-decision performs better than soft-decision when the

code rate is very low.

4.6.1 8 Codewords

Hard-decision decoding out-performs all 7 iterations of the soft-decision decoder.

At this code rate, |C|/|P | is too low for the soft-decision decoder to out-perform

hard-decision even after 7 iterations as shown in Figure 4.28. The computational

complexity of hard-decision is also very low and therefore makes hard-decision a

better decoding candidate at this code rate.
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Figure 4.26: 24 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in Noncoherent Detection, AWGN and Rayleigh Slow Fading

Channels. dmin = 2, code rate = 0.25

4.6.2 305 codewords

The soft-decision out-performs the hard-decision decoder but only after the fourth

iteration with 1dB gain as seen in Figure 4.29. Up until the second iteration, the

hard-decision decoder still out-performs soft-decision decoder. |C|/|P | is very low

and therefore accounts for the poor performance of the soft-decision decoder.

4.6.3 1417 codewords

The performance of the first iteration and hard-decision are very similar because

|C|/|P | is very low. However, the performance becomes noticeable from the second

iteration. An approximate dB gain of 1 is accounted for at the fourth iteration as

seen in Figure 4.30.
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Figure 4.27: SNR (dB) Gain vs |C|/|P | for First 4 Iterations for |P | = 24, 4FSK
Modulation, AWGN and Rayleigh Fading Channels

4.6.4 20160 codewords

With half of the codewords used, the first iterations out-performs hard-decision with

up to 2dB gain as shown in Figure 4.31. Subsequent iterations produce negligible

improvement to the performance of the first iteration.

4.6.5 40320 codewords

The optimum performance of the soft-decision decoder is observed when all the code-

words are used in encoding. The coding gain for all iterations are the same as seen

in Figure 4.32 which is about 2dB gain in some SNR regions. It is however obvious

that the Rayleigh channel dominates the channel noise, with a significant reduction

in the performance of the decoders.



Chapter 4. Simulation Results 72

Signal to Noise Ratio (dB)
9 9.5 10 10.5 11 11.5

S
ym

bo
l E

rr
or

 R
at

e

10-2

10-1

100

8 CW Envelope Detection + HD
8 CW Hungarian Algorithm
8 CW Hungarian -- Murty (2nd)
8 CW Hungarian -- Murty (3rd)
8 CW Hungarian -- Murty (4th)
8 CW Hungarian -- Murty (5th)
8 CW Hungarian -- Murty (6th)
8 CW Hungarian -- Murty (7th)

Figure 4.28: 8 Codewords (CW): Performance of Hard-decision and Soft-decision
Decoding in Noncoherent Detection, AWGN and Rayleigh Slow Fading Channels.

dmin = 8

Table 4.6 summarises the performance of different codebooks selected from |P | =

40320. It also shows the performance of each iteration up to the seventh iteration.

This performance is compared with the combination of the Envelope Detection and

hard-decision. The plots in Figure 4.33 describe the results obtained by varying the

|C|
|P | ratio with the coding gain.

The reason why the next iteration tends to improve the performance of the decoder

is that whenever an iteration produces an invalid codeword, the next iteration only

has to find a codeword in |C| and |P | − 1. The probability of Ai /∈ C is therefore

reduced. The closer |C||P | is to 1, the higher the probability of producing a codeword in

C and therefore lessens the additional iterations required for improving coding gain

performance.
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Figure 4.29: 305 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in Noncoherent Detection, AWGN and Rayleigh Slow Fading

Channels. dmin = 5

Table 4.6: Performance of Soft-decision Decoder using 8FSK in AWGN and
Rayleigh Fading Channels

|C| Code
rate

|C|
|P | dmin

Gain
(dB)
at
A1

Gain
(dB)
at
A2

Gain
(dB)
at
A3

Gain
(dB)
at
A4

Gain
(dB)
at
A5

Gain
(dB)
at
A6

Gain
(dB)
at
A7

8 0.125 0.0002 8 -0.3 -0.3 -0.2 -0.2 -0.2 -0.2 -0.2
305 0.344 0.0075 5 0 0.1 0.2 0.2 0.2 0.2 0.2
1417 0.436 0.035 4 0 0.4 0.5 0.5 0.5 0.5 0.5
5000 0.512 0.124 3 0.8 1.5 1.5 1.5 1.5 1.5 1.5
10000 0.554 0.248 3 1.0 1.5 1.5 1.5 1.5 1.5 1.5
15000 0.578 0.372 3 1.2 1.8 1.8 1.8 1.8 1.8 1.8
20160 0.596 0.5 3 1.8 1.8 1.8 1.8 1.8 1.8 1.8
40320 0.637 1 2 2.0 2.0 2.0 2.0 2.0 2.0 2.0
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Figure 4.30: 1417 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in Noncoherent Detection, AWGN and Rayleigh Slow Fading

Channels. dmin = 4
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Figure 4.31: 20160 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in Noncoherent Detection, AWGN and Rayleigh Slow Fading

Channels. dmin = 3
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Figure 4.32: 40320 Codewords (CW): Performance of Hard-decision and Soft-
decision Decoding in Noncoherent Detection, AWGN and Rayleigh Slow Fading

Channels. dmin = 2
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Figure 4.33: SNR (dB) Gain vs |C|/|P | for First 7 Iterations for |P | = 40320,
8FSK Modulation, AWGN and Rayleigh Channels



Chapter 5

Conclusion and Recommendations

5.1 Conclusion

We designed a soft-decision decoder to decode Permutation codes. The decoder com-

bines the Hungarian algorithm (HA) for maximum assignment and Murty’s algorithm

(MA) for the k-th assignment. The Hungarian algorithm is the first attempt or first

iteration by the decoder to correctly decode the noisy signal. Subsequent iterations

are done by Murty’s algorithm. Both algorithms were designed to solve the assign-

ment problem. The solution to the assignment problem produces a permutation

matrix which has similar characteristics with Permutation codes. The outcome of

both algorithms in the decoder will therefore both produce a permutation codeword.

Simulations analysed the performance of the decoder using different codebook sizes

compatible with 4FSK and 8FSK modulation. Each codebook differs from the other

in terms of its coderate, therefore enables simulations be carried out for a variety of

coderates. This analysis aims at understanding the performance of the decoder as

we vary the amount of information that can be transmitted in the communication

system.

For a set of all possible permutations P , a code book C can either be a subset of P

or C = P . In either case, given a square signal matrix at the output of the AWGN

78
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channel, the decoder produces the first assignment solution A1 which is a Permutation

codeword. Additional intelligence is built into the decoder such that it iteratively

tries to find Ai ∈ C for i > 1. The performance of Ai is a combination of the

performances of Ai and Ai−1 for i > 1. Any codeword Ai /∈ C is an error and

the decoder therefore proceeds to try decoding using the next iteration. Simulations

carried out in this research stopped at the 4th iteration for 4FSK and 7th iteration

for 8FSK.

Irrespective of the size of the codebook, the decoder will only require M ×M signal

matrix in order to decode a signal, M being the number of frequencies used for

modulation. The computational complexity required to carry out this operation is

O(n4). An alternative is a Maximum Likelihood (ML) soft-decision decoder that

ranks all the costs in P for any given codebook C. The complexity required to

achieve this is O(n!). The soft-decision decoder derived from both the HA and MA

algorithms therefore remains practical for code books of large sizes. The decoder

only stops decoding a received signal once Ai ∈ C. It does not necessarily have to

run all iterations.

Results compared the performance of the soft-decision decoder with Envelope Detec-

tion combined with minimum distance decoding by plotting SNR versus SER. The

Hungarian algorithm improved coding gain at high rate codes. The largest gain and

lowest complexity of the soft-decision decoder are observed when C = P . This is be-

cause the outcome of the HA always produces a Permutation codeword and therefore

always satisfies the stopping condition A ∈ C.

5.2 Recommendations

This research is a able to determine the performance of the designed decoder com-

pared with Hard decision. However, most simulations showed the decoder’s perfor-

mance did not increase significantly after the fourth iteration.
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Simulations only stopped at the 7th iteration. It may be important to understand

the performance for additional iterations. This research did not probe deep into the

actual complexity each additional iteration adds to the decoder. It may be important

to analyse the cost an additional iteration adds to the soft-decision decoder and

determine if the coding gain justifies the added complexity. The result of this may

help understand the computational cost required for each additional iteration.
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