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Abstract 

 

Introduction 

Senecio serratuloides is widely used for wound healing in South Africa but minimal information 

regarding its efficacy is available. Furthermore toxic pyrrolizidine alkaloids may be present. 

The following investigation sought firstly to evaluate the efficacy and safety of Senecio 

serratuloides in a porcine wound model; secondly to assess for a potential mechanism and 

finally isolate and identify fractions in in-vitro assays. 

 

Assessment of Efficacy and Safety 

Materials and Methods: Deep partial thickness and full thickness wounds were created on 9 

pigs. Treatment included an occlusive dressing (negative control), activated carbon, or the 

Senecio preparation. Wounds were monitored using photographic documentation, pH 

measurement and histological analysis (skin thickness and collagen content). Toxicity was 

monitored on blood and liver samples. 

Results and Discussion: Efficacy of Senecio serratuloides was established with a significantly 

thicker epidermis, maximal at day 7 post-operative, 2 days before the controls. Effects on 

collagen content was negligible with no toxicity detected. 

 

Mechanistic investigation 

Materials and Methods: Wound fluid was analysed for IL-10, IL-12, IL-1β, IL-6, IL-8, TNF-α 

using flow cytometry based assays. Tyrosine phosphorylation and cellular proliferation was 

assessed using dual immunofluorescence staining. 

Results and Discussion: IL-1β levels were significantly greater in the Senecio treatment. 

Tyrosine phosphorylation increased to day 9 post-operative where it stabilised in all groups. 

In the same period, cellular proliferation was sustained in the Senecio treated wounds but not 

in the controls. Keratinocyte proliferation was identified as the target for in-vitro assays. 

 

Extraction, Isolation and Partial Identification using In-vitro Proliferation Assays. 

Materials and Methods: The plant was fractionated using solid phase extraction cartridges. 

Keratinocytes were grown under standard conditions in 96-well plates. Cellular proliferation 

was assessed spectrophotometrically using a resazurin dye technique. Active fractions were 

analysed using gas chromatography and mass spectrometry. 



 
 

xv 

Results and Discussion: Identified fractions increased the rate of proliferation by 300-400%. 

Potential lead compounds were identified. Importantly, pyrrolizidine alkaloids could not be 

detected. 

 

Conclusion 

Senecio serratuloides is efficacious in treating deep partial thickness wounds without inducing 

liver toxicity. Sustained keratinocyte proliferation linked to tyrosine phosphorylation may be an 

underlying mechanism. Although successful, in-vitro detection of active fractions requires 

further characterisation. 

 

 

Keywords:  Senecio serratuloides, Wound healing, Porcine Wound Model, Deep partial 

thickness wound, Epidermal thickness, Collagen,  Inflammatory cytokines, Tyrosine 

phosphorylation, Proliferating cell nuclear antigen, Plant extraction and fractionation, 

Proliferation assays, Gas chromatography and mass  spectrometry, Alkaloids.
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Chapter 1 - Introduction and Background 

 

1.1 Introduction  

Traumatic injury and surgical interventions create a wound that normally heals in an 

acceptable time period, leaving a scar that diminishes over time. Although most wounds can 

be treated at a modest cost, wounds in sick or diabetic patients can become infected and take 

longer to heal. Some of these may develop into a chronic wound that fails to heal. These 

wounds are therefore difficult to treat, can impact on the well-being of the patient, and delay 

the discharge of the patient from hospital with an associated cost to the patient or health care 

provider. The cost of caring for wounds to ensure healing in a developed country such as the 

United States of America was estimated to be approximately 16 billion dollars in 2012 (1). The 

increasing prevalence of non-communicable diseases of lifestyle, such as diabetes, will result 

in more diabetic wounds being treated and that often take longer to heal (2). Treating these 

chronic wounds will add significantly to the costs to the health care providers. Therefore 

considerable effort is being invested to find substances that will accelerate or improve 

outcomes in wound healing. 

 
Sophisticated treatments have been developed in first world countries that are simply 

unaffordable and consequently unavailable in poorer developing countries. In these countries, 

the World Health Organisation (WHO) has reported that patients still rely heavily on traditional 

remedies and knowledge when caring for wounds (3). Such remedies are readily accessible 

at a low cost and are widely accepted by the community. However, as the treatment of wounds 

with unregistered remedies is seldom recorded by traditional healers, there is a lack of reliable 

information of the burden and the cost of treating wounds on health care systems in these 

countries. 

 
There has always been an interest in traditional remedies from a personal consumer level, 

and more recently from the multinational pharmaceutical companies (4). It is well known that 

the origins of many pharmaceutical companies were based on traditional or folk remedies. For 

example, the original product of the pharmaceutical giant Bayer AG’s, acetylsalicyclic, was 

marketed as Aspirin. Aspirin is derived from salicyclic acid, a folk remedy for headaches found 

in willow bark. Another instance, Metformin, was originally extracted from the French lilac 

plant, Galega officinalis, and used since the 1400s in the treatment of type 2 diabetes (5). It 

can therefore be seen that traditional remedies offer a potential source of lead compounds to 

treat disease and symptoms, including wound healing (6). 
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However, despite the major efforts invested in identifying novel agents which enhance wound 

healing, the very complexity of the wound healing process makes elucidating the effect of a 

single active compound difficult to determine. Although gross effects of a substance on wound 

healing may be measured, there is often a lack of evidence with regard to the mechanism of 

action to substantiate the use of these products, even when these products are produced by 

major industry players. A recent article has suggested this issue is being addressed (7). 

Furthermore the approach of measuring gross parameters would not be subtle enough to 

detect the effect of a single candidate compounds which acts at a particular point in time, or 

one that is effective only within a narrow concentration range during wound healing (8). 

 
The complexity of wound healing and with somewhat limited samples available from 

experimental animal models, has resulted in a reductionist and simplified approach to 

determining the effects of novel compounds. Parameters and variables (to be discussed at a 

later time point) investigated in many studies describing the wound healing process often do 

not encompass the process entirely and this may simply be due to the overall complexity not 

permitting in-depth analysis (8). Therefore the question posed in the present study queries the 

ideal model with the appropriate variables for evaluation to screen for the efficacy of plant 

based therapeutic agents. 

 

 
1.2 Background 

The literature regarding traditional medicine for the use of wound healing using Mesh search 

including the phrases “wound healing” and “traditional medicine”, yielded 190 search results 

over a time period from 1991 to 2012. Table 1.1 summarises the results arranged by 1) 

geographical region, 2) the wound healing model, including the animal used and the type of 

wound created, 3) the gross, histological and biochemical parameters used to analyse the 

efficacy of the plant and 4) investigations to determine the plant constituents. 

 
 

1.2.1 Regions of Origin 

A vast majority of studies reporting on the efficacy of plant based therapies were sourced from 

developing countries, where, as noted previously, up to 80% of people are reliant on traditional 

medicines. Most reports were from India and Turkey, with reports from Africa, including 

Ghana, Uganda, Ethiopia, and South Africa. Relatively standardised protocols appear to have 

been used, perhaps due in part to previous success, costs and simplicity of the experimental 

approaches. However, two studies from South Africa will be discussed further below as the 

experimental approach was different (9, 10).  
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1.2.2 Wound Models 

To determine the efficacy of a plant based therapies on wound healing in a human, the ideal 

experimental model would be human test subjects. However, obvious ethical considerations 

prohibit this, and therefore alternative models are required. Both in-vitro and in-vivo models 

have been developed. In-vitro models are often culture-based experiments, using either 

individual keratinocyte or fibroblast cell cultures, or as co-cultures of these cell types (11).  

 
Alternatively In-vivo models rely on an “ideal” test animal wherein experimental conditions can 

be controlled. Additional factors in determining such an approach include the cost, the number 

of animal’s required and available veterinary expertise. Furthermore, available analytical 

reagents must be biologically compatible with the chosen models (11). 

 
Rodent models, including the Sprague-Dawley rat, Swiss Albino mouse, Wistar Albino rat and 

Guinea pig, are preferred because of their small size, cost, availability and surgical/operational 

procedure (12). However, a particular disadvantage of rodent models is the primary 

mechanism whereby their cutaneous wounds heal; in rodents, full thickness wounds contract 

such that the free edges oppose, whereas in human skin, wound closure is mediated by active 

keratinocyte migration these cells being derived from both the wound edges and hair follicles 

(13). 
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Table 1.1. Pubmed search results for “wound healing” and “traditional medicine”. Emphasis was placed on the experimental design and “o” indicates that 

these variables and models were used in these studies.  
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Achyranthes aspera 

L. 
Ethiopia Africa Rat 

Incision / 

Excision  o o  o o o o o o   o         (14) 

Ficus asperifolia 

Miq. 
Ghana Africa NA Culture Anti-microbial                o     

(15) 

Gossypium 

arboreum L. 
Ghana Africa NA Culture Anti-microbial                o     

Flabellaria 

paniculata 
Nigeria Africa Rat Excision Anti-microbial o  o                  (16) 

Bulbine Natalensis RSA Africa Pigs Excision  o o o     o o  o o o     
VEGF, TGF-

βR1, TGF-βR1   

(9) (10) 

Bulbine frutescens RSA Africa Pigs Excision  o o o     o o  o o o     
VEGF, TGF-

βR1, TGF-βR1   

Urtica urens RSA Africa NA Culture Anti-microbial          
 

     o     

(17) 

 

Capparis tomentosa RSA Africa NA Culture Anti-microbial                o     

Dicoma anomala RSA Africa NA Culture Anti-microbial                o     

Leonotis leonorus RSA Africa NA Culture Anti-microbial                o     

Xysmalobium 

undulatum 
RSA Africa NA Culture Anti-microbial                o     

Helichrysum 

foetidum 
RSA Africa NA Culture Anti-microbial                o     

Pterocarpus 

angolensis 
RSA Africa NA Culture Anti-microbial                o     

Terminalia sericea RSA Africa NA Culture Anti-microbial 

               
o 
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    Model Gross Histological Biochemical 
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Gunnera perpensa RSA Africa NA Culture Anti-microbial 

 
              o     

Zantboxylum 

chalybeum 
Uganda Africa Rat Excision 

 
o  o    o  o           o 

 

 

(18) 
Warbugiaugandensi

s 
Uganda Africa Rat Excision  o  o    o  o           o 

MEND 
Zimbab

we 
Africa 

Guinea 

Pig 
Excision  o        o            (19) 

Shibao powder China Asia Rabbit Excision                   TGF - β, b-FGF   (20) 

Siegebeckia 

pubescens 
China Asia 

Rat and 

Culture 

Incision / 

Excision  o o    o  o o o           (21) 

Jatyadi Taila India Asia 
Rat and 

Rabbit 
Excision  o   o o o o o  o o         o (22) 

Acalypha indica India Asia Rat Excision  o o        o  o  o   TNF-α TGF-β 
Col 1 α,  

Col 3 α  (23) 

Semecarpus 

anacardium 
India Asia Rat 

Incision / 

Dead 

Space 
 o o o      o           o (24) 

Tridax Procumbans India Asia Rat Excision   o           o   o     (25) 

Euphorbia 

caducifolia 
India Asia Mouse 

Incision / 

Excision  o o        o  o        o (26) 

Trichosanthes 

dioica 
India Asia Rat 

Incision / 

Excision  o o o   o  o o o          o (27) 

Glycosmis arborea India Asia Rat 

Excision 

/ Incision 

/ Dead 

Space 

Toxicity o o        o          o (28) 

Hypericum patulum India Asia Rat 
Incision / 

Excision  o o       o           o (29) 

Leucus 

lavandulaefolia 
India Asia Rat 

Incision / 

Excision  o o                   (30) 



 
 

6 

    Model Gross Histological Biochemical 
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Thespesia populnea India Asia Rat 
Incision / 

Excision  o o        o           (31) 

Plagiochasma 

appendiculatum 

Lehm. et Lind. 

India Asia Rat 
Incision / 

Excision 
Anti-microbial o o        o      o    o (32) 

Sesamum indicum 

(L.) 
India Asia Rat 

Incision / 

Excision 

/ Dead 

Space 

 o o o    o o o o  o    o    o (33) 

Ghee based 

formulation 
India Asia Rat 

Incision / 

Excision  o o        o           (34) 

Terminalia arjuna India Asia Rat 
Incision / 

Excision  o o        o          o (35) 

Dendrophthoe 

falcata (L.f) Ettingsh 
India Asia Rat 

Incision / 

Excision 
Anti-microbial o o        o o     o    o (36) 

Holoptelea 

integrifolia 
India Asia Rat 

Incision / 

Excision 
Anti-microbial o o o   o  o  o      o    o (37) 

Aristolochia 

bracteolata Lam. 
India Asia Rat 

Incision / 

Excision 

/ Dead 

Space 

Toxicity  o o      o o      o   
 

 (38) 

Lithospermum 

erythrorhizon 
Korea Asia Culture 

Migratio

n  
                    (39) 

Murraya koenigii L. Malaysia Asia Rat Excision  o  o   o o o o           o (31) 

Sphaeranthus 

indicus 
Pakistan Asia 

Guinae 

Pig 
Excision  o                    (40) 

Opuntia ficus-indica 
South 

Korea 
Asia Rat Incision  o  

 
                 (41) 

Memecylon edule 

Roxb. 
Thailand Asia NA Culture                  IL - 10    (42) 

Abies cilicica subsp. 

cilicica 
Turkey Asia 

Rat and 

Mouse 

Incision / 

Excision  o o  o o o o o o            (43) 
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    Model Gross Histological Biochemical 
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Abies nordmanniana 

subsp. 

bornmulleriana 

Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o o  o o o o o o            

Abies nordmanniana 

subsp. equitrajani 
Turkey Asia 

Rat and 

Mouse 

Incision / 

Excision  o o  o o o o o o            

Abies nordmanniana 

subsp. 

nordmanniana 

Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o o  o o o o o o            

Cedrus libani Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o o  o o o o o o            

Picea orientalis Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o o  o o o o o o            

Cichorium intybus 

L. 
Turkey Asia 

Rat and 

Mouse 

Incision / 

Excision  o o  o o o o o o     o o o    o 

(44) 

Daphne oleoides Turkey Asia Rat 
Incision / 

Excision   o  o o o o o o  o    o o    o 

Ranunculus pedatus Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o  o o o o o o o o          o 

(45) 
Ranunculus 

constantinapolitanu

s 

Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o  o o o o o o o o          o 

Michauxia 

campanuloides: 
Turkey Asia 

Rat and 

Mouse 

Incision / 

Excision  o  o o o o o o o       o   
Anti-

inflamma

tory 

o 

 

 

(46)  

 

 

 

 

(46) 

Michauxia laevigata Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o  o o o o o o o       o   
Anti-

inflamma

tory 

o 

Michauxia 

tchihatchewii 
Turkey Asia 

Rat and 

Mouse 

Incision / 

Excision  o  o o o o o o o       o   
Anti-

inflamma

tory 

o 

Michauxia 

thyrsoidea 
Turkey Asia 

Rat and 

Mouse 

Incision / 

Excision  o  o o o o o o o       o   
Anti-

inflamma

tory 

o 

Michauxia nuda Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o  o o o o o o o       o   
Anti-

inflamma

tory 

o 
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    Model Gross Histological Biochemical 
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Pinus halepensis 

Mill 
Turkey Asia 

Rat and 

Mouse 

Incision / 

Excision  o  o o o o o o o o           

(47) 

Pinus pinea L Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o  o o o o o o o o           

Pinus sylvestris L Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o  o o o o o o o o           

Pinus nigra Arn Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o  o o o o o o o o           

Pinus brutia Ten Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o  o o o o o o o o           

Salvia cryptantha Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o     o o o o       o   
Tyrosina

se 

activity 
 

(48) 

Salvia cyanescens Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision  o     o o o o  
 

    o   
Tyrosina

se 

activity  

Multiple Plants Turkey Asia 
Rat and 

Mouse 

Incision / 

Excision                      (49) 

Anglo Saxon Britain Europe NA Culture Anti-microbial                     (50) 

Phyllanthus 

muellerianus 

(Kuntze) Exell. 

German

y 
Europe NA Culture                      (51) 

Calendula officinalis 

and more 

German

y 
Europe NA Culture                      (52) 

Compound R America 
North 

America 

Guinea 

Pig 
Burns  o                    (53) 

Croton zehntneri Brazil 
South 

America 
Mouse Excision  o     o o o o           o (54) 

Vernonia 

scorpioides 
Brazil 

South 

America 

Guinea 

Pig 
Excision  o                    (55) 

Multiple plants Brazil 
South 

America 
NA Culture                  TNF - α  

Cell 

signallin

g 
 (56) 
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    Model Gross Histological Biochemical 
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Arrabidaea chica Brazil 
South 

America 
Rat 

Excision 

and 

Culture 
 o o        o           (57) 

Peperomia galioides Peru 
South 

America 

Mouse 

and 

Culture 

Incision / 

Excision 
Proliferation  o                   

(58) 

Mentzelia cordifolia Peru 
South 

America 

Mouse 

and 

Culture 

Incision / 

Excision 
Proliferation  o                   

Mutisia acuminata Peru 
South 

America 

Mouse 

and 

Culture 

Incision / 

Excision 
Proliferation  o                   

Himatanthus 

sucuuba 
Peru 

South 

America 

Mouse 

and 

Culture 

Incision / 

Excision 
Proliferation  o  

 
                

Spondias mombin Peru 
South 

America 

Mouse 

and 

Culture 

Incision / 

Excision 
Proliferation  o                   

Eleutherine bulbosa Peru 
South 

America 

Mouse 

and 

Culture 

Incision / 

Excision 
Proliferation  o                   

Muehlenbeckia 

tamnifolia 
Peru 

South 

America 

Mouse 

and 

Culture 

Incision / 

Excision 
Proliferation  o                   

Anredera diffusa Peru 
South 

America 

Mouse 

and 

Culture 

Incision / 

Excision 
Proliferation  o                   

Jatropha curcas Peru 
South 

America 

Mouse 

and 

Culture 

Incision / 

Excision 
Proliferation  o                   

Anredera diffusa Peru 
South 

America 
Rat Incision   o                  o (59) 

Hamelia patens 
El 

Salvador 

South 

America 
Rat Incision   o                   (60) 
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A more comparable animal model is porcine skin with Sullivan, et al. (13) highlighting the 

similarities between the human and porcine skin from both an anatomical and functional 

perspective, as well as the similarities in wound healing. Important similarities highlighted by 

the authors include firstly from a gross anatomical perspective a similar pattern of hair 

distribution. Secondly, at a micro-anatomical level, the comparison between the porcine and 

human dermis shows similarities in dermal thickness, number and distribution of blood vessels 

and the presence of rete-ridges and dermal papillary bodies. Furthermore the epidermal layers 

in both species have a similar keratinocyte turnover time and expression of native proteins. 

With regards to wound healing while both human and porcine skin heal by similar processes, 

the response to treatment modalities correlates only 78% of the time. This however is greater 

than that of smaller rodent based models and in-vitro culture assays which correlate with the 

human response 53% and 57% of the time respectively. Porcine models have previously been 

used in wound healing studies, but quite infrequently to evaluate plant based therapies. 

Recently, two studies from the University of the Witwatersrand utilised the porcine model to 

evaluate the effects of Bulbine natalensis and Bulbine frutensis and followed a similar protocol 

to that used for rodent models of wound healing (9, 10). 

 
It is evident that the model animal chosen will dictate the type of wound which can be created 

experimentally and how the resultant wound can be analysed. Most studies have employed 

incisional and excisional wounds created on the dorsum of the rodents. Incisional wounds 

usually produced using a scalpel, extended from the epidermis to the fascial planes and may 

be allowed to close by either primary intention, that is with sutures, or by secondary intention, 

that is, without sutures. In the majority of studies, sutures were removed up to one week later, 

and often used in tensiometer assays to measure wound breaking strength. The excisional 

wounds were usually created with punch biopsies, and harvested at various timepoints 

allowing for gross anatomical, histochemical and biochemical analyses of these samples. 

Other models used in wound healing experiments include burn models and deep partial 

thickness wounds. Deadspace models have been used to evaluate Semecarpus anacardium 

(24), Glycosmis arborea (28), Sesamum indicum (L.) (33), Aristolochia bracteolata Lam. (38). 

In these models, an artificially created subcutaneous space was made with an implant made 

from various materials and was allowed to be infiltrated by the cellular and connective tissue 

components which can be analysed thereafter (61). This technique is best suited to rodents 

as the skin of these animals is loose and easily manipulated for this purpose. 
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1.2.3 Gross Assessment 

Billingham and Russell (62) stated that contraction of wounds was the generally accepted 

method by which tissue continuity and functionality could be restored. They based their 

findings on a rabbit model which included a full thickness excisional wound coupled with 

sequential planimetric measurements of the wound area. Although this study did not evaluate 

any traditional remedy, it identified important determinants of wound contracture. These 

included the depth of the wound, shape of the wound, age of the animal, species of the animal 

and type of skin (loose or fixed). The driving mechanism behind wound contraction was not 

proposed in this study.  

 
Subsequently a wound healing sequence was proposed that included 1) a raised marginal 

tissue pressure due to inflammation, 2) migrating embryonal fibroblasts carrying the wound 

margins, 3) circumferential collagen fibres acting as a sphincter and the 4) contractibility of 

regenerating tissue opposing wound margins. More recent consensus, from publications in 

1995 and 2007, is that fibroblast populations infiltrate the wounded area, where some deposit 

collagen and some differentiate into myofibroblasts which are contractile in nature, thus 

explaining the contractile nature of the wound healing process (63, 64).  

 
Wound tensiometry or determination of the tensile strength is a technique that was proposed 

as a surrogate marker of wound healing and was originally described in 1929 by Howes, et al. 

(65). It has been shown to correlate with collagen content and is also related to structural 

orientation (66). However, White, et al. (66) showed that although maximal collagen formation 

was measured 17-20 days after injury, maximal tensile strength was only reached months 

after wounding. Tensile strength is therefore not entirely related to collagen production, but 

rather a multitude of additional factors including non-collagenous skin constituents, such as 

the epidermis, fibroblasts, endothelia, inflammatory cells, keratins and mucopolysaccharides 

(67). Despite these findings, this approach has been sensitive enough to detect differences 

between different treatment modalities and has become a widely utilised technique in many of 

the studies seen in Table 1.1 and include Hypericum patulum (29), Achillea biebersteinii Afan. 

(68), and in herbal formulations containing extracts of Terminalia arjuna (69).  

 

1.2.4 Process of Wound Healing 

Wound healing is required to effectively stabilize and repair injury (2, 70). In an optimal system, 

the process of wound healing occurs in an orderly and controlled series of overlapping phases, 

including, haemostasis, inflammation, proliferation, and remodelling (71, 72). To understand 

the rationale behind measuring other possible parameters in models of wound healing, it is 
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important to comprehend the sequence of events and factors regulating the process of wound 

healing.  

 

Cutaneous wound healing is a highly dynamic and complex process and in an optimal system, 

is orchestrated to not only effectively and timeously re-establish the homeostatic properties of 

the integument but also to be functionally similar to intact (non-wounded) tissues (8). However, 

when the normal process or aspects of the process are altered either by the body’s own 

system or by external factors (73), aberrations occur that may be detrimental to wound healing 

and in extreme cases lead to complete degradation of the skin and progression to non-healing 

wounds. On the other hand, careful manipulation of the right biochemical pathways could lead 

to accelerated healing with the eventual aim of attaining the formation of an aesthetically and 

physiologically normal epithelium. This poses a challenge as biochemical pathways in the 

healing wound have been shown to be highly variable with synergistic, agonistic and 

antagonist effects of many key constituents.  

 

Multiple reviews summarise the physiology of wound healing describing four distinct phases 

of haemostasis, inflammation, proliferation and remodelling (64, 71, 74, 75). These phases 

are classically described as overlapping and are depicted by Figure 1.1. Additionally multiple 

factors seen in Table 1.2 adapted from Baum and Arpey (76) summarise the soluble factors 

affecting wound healing which are also important targets for investigation. Each of these 

phases, together with key associated growth factors are described below. 
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Figure 1.1. Phases of wound healing. 
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Table 1.2. Components active in the various stages of wound healing (adapted from Baum 

and Arpey, (76). 

 

Phase Timing Cellular 

Components 

Non-Cellular 

Components 

Regulators 

a) Haemostasis 

  

Injury to 

15-30 

minutes 

  

Endothelial Cells Fibrin Prostagalandins  

Platelets Fibronectin Thromboxanes 

    Thrombin 

b) Inflammatory  

  

15-30 

minutes 

to 1 week 

  

Endothelial Cells Fibrin provisional 

matrix 

Cytokines: TNF-α, IL-1α and β, IL-6, 

IL-8   

Neutrophils  Growth Factors: TGF-β, PDGF 

Macrophages  Others: Histamine, Leukotrines, 

Complement 

Lymphocytes     

c) Proliferative  

  

2 days to 

a few 

weeks 

  

Endothelial Cells Provisional matrix Growth Factors: FGF-2, FGF-7, FGF-

10, VEGF, EGF, TGF-β, PDGF 
Macrophages Collagen 

Fibroblasts Proteoglycans Others: MMP/TIMP, Nitric Oxide, 

Angiopoietin 

Keratinocytes     

d) Remodelling  

  

Weeks to 

months 

  

Myofibroblasts Collagen Growth Factors: TGF-β, PDGF 

Fibroblasts Proteoglycans Cytokines: IL-1, IL-10 

Macrophages  Others: MMP/TIMP 

Lymphocytes     
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a) Haemostatic Phase: Restoring homeostasis must occur rapidly and occurs directly 

after a traumatic or intentional surgical insult. Blood vessels respond by contracting 

and activating the clotting cascade. The resultant fibrin plug forms from fibronectin and 

fibrinogen and associated platelet aggregation. Platelets are an important component 

of this process as they contain growth factors, cytokines, coagulation factors and 

protease inhibitors in their α-granules (77). Importantly, the fibrin plug forms the 

provisional matrix necessary to promote and support cell infiltration into the wounded 

area (78). It further, serves as a temporary repair mechanism before the following 

repair phases can come into effect (79). It is this early infiltration of cells that, through 

their production of appropriate cytokines, regulate the subsequent phases of wound 

healing.  

 

b) Inflammatory Phase: In response to cytokine, chemokine and other signals, 

inflammatory cells migrate into the wounded area. The predominant cell types are 

initially the short-lived polymorphonuclear leukocytes or neutrophils which are slowly 

replaced by the macrophage population (64). During this phase there is a release of 

soluble factors of multiple origins and functions and has been extensively reviewed by 

Werner and Grose (80). As is listed inTable 1.1, several soluble factors were 

investigated with regards to plant based therapies. These factors include the growth 

factors, transforming growth factor–β (TGF–β), basic fibroblast growth factor (bFGF), 

vasoendothethial growth factor (VEGF); and the cytokines, tumor necrosis factor–α 

(TNF-α) and interleukin 10 (IL–10). The factors listed here are by no means 

comprehensive in terms of the overall number of factors described by Werner and 

Grose (80), but rather represent the factors analysed when considering plant based 

therapies and will be further discussed at a later stage.   

 

c) Proliferative Phase: In an extensive review by Baum and Arpey (76), two important 

components of this phase were identified as 1) the formation of granulation tissue 

following the migration and proliferation of fibroblasts, with the subsequent production 

of collagen, 2) re-epithelialisation where the granulation tissue is covered by migrating 

keratinocytes. The migration and proliferation of these various cellular components is 

due to chemotactic signals generated within the wound.    

 

The source of these fibroblasts is from neighbouring unwounded tissue and from 

undifferentiated mesenchymal cells (76) and respond to signals by TGF-β, bFGF and 

PDGF (80). In culture based experiments, within the first 24 hours, these factors have 

similar effects on the migration of fibroblasts within the first 24 hours but thereafter 
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differential effects are seen with PDGF having the greatest effect and TGF- β the least 

(81). Additional factors have been linked to the migration and proliferation of fibroblasts 

namely epidermal growth factor (EGF), FGF and Insulin like growth factor (IGF) (80). 

The role of EGF to some degree is that of a modulating one as reported by Ware, Wells 

and Lauffenburger (82). Together with a matrix ground substance as a migratory 

surface, the speed and direction of fibroblast migration is manipulated by various 

concentrations of EGF (82). 

 

Re-epithelialisation is achieved by the migration, proliferation and differentiation of 

keratinocytes (83). Keratinocytes are derived from the adjacent non-wounded sites 

and if the hair follicles are intact, cells from these appendages are also mobilised. 

Keratinocytes migrate as sheets of cells and cease migrating on contact with opposing 

migratory keratinocytes. These migratory sheets of keratinocytes are fed by 

proliferating cells immediately posterior to the leading edge (84).  

 

To analyse these specific features of re-epithelialisation various markers present in the 

skin can be analysed using histochemical staining techniques of epidermal keratins. 

Migratory keratinocytes express and show a reorganisation of keratins 6 and 16 in 

response to wounding (83), proliferating cells express keratins 5 and 14 (85) and the 

differentiating suprabasal cells express keratins 1, 10 and K2 (83). Re-epithelialising 

tissue shows variation in differentiation state but evaluation of the keratin sub-types 

does not feature in the studies seen in Table 1.1. 

 

Various key factors regulate keratinocyte migration, proliferation and differentiation. In 

addition to calcium, magnesium, pH and hypoxia, growth factors involved in migration 

include neuronal growth factor (NGF) and hepatocyte growth factor (HGF), both of 

which are linked to tyrosine kinases and tyrosine phosphorylation (86, 87). Additionally 

(Table 1.2) factors affecting keratinocytes can be viewed as migratory stimulators and 

include FGF-2, 7, 10 and TGF-β, as well as those stimulating proliferation including 

NGF, HGF, IL-6, nitric oxide, leptin, and others (76). Although analysis of many of 

these factors is mostly absent from studies focussing on plant based therapies, it is 

clear that their roles are important in wound healing. 

 
d) Remodelling Phase: The remodelling phase is the synthesis and remodelling of the 

extracellular matrix which starts early with the deposition of granulation tissue and 

continues for months after the wound has been closed (70). Key to this phase is the 

synthesis and enzymatic breakdown of collagen fibres (88) by matrix 
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metalloproteinases (MMP’s) (64). However the activity of MMP’s is not only limited to 

the remodelling phase as they are directly involved with cell migration, cytokine and 

growth factor release from the cells producing them, in concert with the degradation of 

these factors (64). This phase is under the control of factors such as IL-1β and TNF-α 

which up-regulate expression and down-regulate their natural antagonists, the tissue 

inhibitors of metalloproteinases (TIMP) (74). 

  
Few studies, utilising either plant based therapies or commercially available products, 

have followed the wound healing process in its entirety. Limited data suggests that the 

final strength of the wounds is only about 80% of non-injured skin several months post-

treatment (70). It would appear that this phase is not well documented in the literature 

and neither has it been well investigated as opposed to the prior phases.   

 

1.2.5 Soluble Growth Factors 

The following factors described are those analysed by the authors in Table 1.1. Although by 

no means an extensive list, the factors presented here are those reported when considering 

the roles or mechanisms of plant based products in wound healing.  

 
Transforming growth factor–β (TGF- β). TGF- β is a ligand superfamily that is further divided 

into five sub-families designated TGF- β 1-5 (89). The membrane receptors of these ligands 

are linked to serine and threonine kinases that phosphorylate to transduce the ligand signal 

(89). Whereas the Epidermal Growth Factor (EGF) family ligand transmembrane receptors 

are coupled to tyrosine kinase activity a link between the TGF and EGF families exist where 

the former enhances the mitogenic effects of the later (80). The significance of these signalling 

mechanisms within the context of the present study is further reviewed in Chapter 3.  

 

TGF-β acts throughout all the wound healing phases by exerting mostly chemotactic and 

proliferative signals on monocytes, endothelial cells, fibroblasts and keratinocytes (89). Faler, 

et al. (89) emphasized that the role of this factor differs in some instances, where it could be 

anti-proliferative when endothelial cells and keratinocytes are involved, possibly due to the 

wound models used. However, with regards to experimentally assessing the efficacy of  

traditional medicines, TGF-β was found to be beneficial in wound healing studies reported by  

Zhao, et al. (20), Ganeshkumar, et al. (23), and Pather and Kramer (10) and are described 

below. 

 
The study by Zhao, et al. (20) was conducted using rabbit full thickness wounds to assess the 

effects of Shibao powder on soft tissue healing, where the authors evaluated the expression 
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of bFGF and TGF-β in the granulation tissue of these wounds. In response to the treatments 

there was an increased expression of bFGF at 6 days post operatively and increased levels 

of TGF-β at days 10 and 14, all of which were significant.  

 
Similarly, Ganeshkumar, et al. (23) showed elevated levels of  TGF- β at day 7 post-operatively 

when  the effects of ethanolic extracts of the plant Acalypha indica were assessed on full 

thickness excisional rat wounds. In association with raised TGF- β levels were increased rates 

of wound contraction, epithelialisation and tensile strength (23).  As the approach taken here 

was to quantify ribonucleic acid (RNA) expression levels from harvested wound tissue, no 

distinction was made as to the specific cellular localisation of the expression of TGF- β. 

 
Conversely, Pather and Kramer (10), assessed the expression of TGF- β by utilising 

immunohistochemical staining of the tissues harvested from porcine full-thickness models, 

where extracts of Bulbine natalensis  and Bulbine frutensis were used. Compared to the 

controls Bulbine natalensis and Bulbine frutensis treated wounds showed an increase in TGF- 

β expression which was linked to earlier epithelialisation of the wounds compared within the 

different treatment groups.  

 
Basic fibroblast growth factor (bFGF). bFGF is a member of the fibroblast growth factor 

family, whose signal is similarly transduced via transmembrane receptors coupled to tyrosine 

kinases, producing proliferative signals in endothelial, fibroblastic and keratinocyte cell lines 

(80, 90). McGee, et al. (91) reported that recombinant bFGF increased tensile strength and 

breaking energy but not collagen content in a full thickness incisional rat wound model. It was 

suggested that its effects may be more related to increased numbers of fibroblasts or their 

contractile counterparts, myofibroblasts. There is a paucity of data  regarding plant based 

therapies and their potential effects on bFGF expression.  Zhao, et al. (20) however reported 

significantly increased levels of bFGF expression, altered composition of the granulation 

tissue with regards to collagen content and organisation in response to Shibao powder in a 

rabbit tendon incisional wound model.   

 
Vasoendothethial growth factor (VEGF). VEGF is a growth factor whose receptors are also 

linked to transmembrane tyrosine receptor kinases (80). VEGF has been shown to be 

produced by multiple cells active in the wound healing process, including neutrophils, 

macrophages, endothelial cells, fibroblasts, myofibroblasts and keratinocytes (92) and exerts 

effects throughout the entire wound healing process. Additionally VEGF has also been 

implicated in scarless wound healing (93), an attractive aesthetic variable in wound healing. 

From the articles documented in Table 1.1, the expression and localisation of VEGF was 

demonstrated with the use of Bulbine natalensis and Bulbine frutescens full thickness wounds 
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in a pig model (10). Here, increased VEGF expression in the basal layers of the regenerating 

epidermis as well as scattered expression through the granulation tissue was established. 

Further, this increased expression correlated with an elevated break strength and 

angiogenesis.  

 
Interleukin-10. IL-10 has been shown to be a prominent anti-inflammatory cytokine active in 

the skin. Berg, et al. (94) demonstrated the role of IL-10 in Croton oil irritated skin in a mouse 

model. The effects of IL-10 were assessed based on its potential to reduce the inflammatory 

induced necrosis of skin tissue in wild type mice as well as IL-10 knockout mice. It was seen 

here that the inflammatory response based on macrophage infiltration, oedema and ulcer 

formation. Furthermore, the extent of damage was greater, with an increased inflammatory 

response in the knockout mice. In addition levels of other inflammatory cytokines, specifically 

IL-1β and IL-6, were also shown to decrease in response to IL-10. Other responses included 

an inhibition of chemotaxis of neutrophils and macrophages to the affected site (95). 

 
Nualkaew, et al. (42) investigated the anti-inflammatory effects of Memecylon edule Roxb. 

showed various fractions of the plant, in a macrophage culture model combined with a rabbit 

ear oedema model, produced an elevation of the IL-10 with a corresponding decrease in 

oedema suggesting a beneficial effect. In contrast, Eming, et al. (72) found that in IL-10 

knockout mice decreased levels of IL-10 accelerated wound closure in a mouse model where 

accelerated epithelialisation and wound contraction was observed. This suggests that 

cytokines inhibited by IL-10 may have a beneficial contribution to the wound healing process 

and these pro-inflammatory agents but quite possibly act as chemotactic agents for cells active 

in the wound healing process.  

 
Tumour necrosis factor-α (TNF-α). In contrast to the anti-inflammatory effects of IL-10, TNF-

α has more of a detrimental role and has indeed been linked to non-healing chronic wounds 

(96). TNF- α is a cytokine that is primarily produced by activated macrophages (97) but has 

also been shown to be produced by neutrophils (98). Its role in wound healing is a complex 

one, as its beneficial effects may be dose dependent, with roles in inflammation, mitogenicity 

and angiogenesis. Its role is however better explained as a synergistic molecule with regards 

to platelet derived growth factor (PDGF), but shows antagonistic effects with respect to TGF-

β (99).  

 
In utilising both a rat dead space and in-vitro cell culture wound models, Rapala (97) assessed 

the effects of TNF-α. In the dead space model, TNF-α decreased wound associated collagen 

production, but only with the continual addition of the cytokine and more specifically, only at 

days 4-7. In fibroblast cultures, TNF-α also reduced the production of collagen. While in culture 
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the effects of TNF-α are easily seen, the impact in animal models is not as great. Added to 

this, evidence from TNF-α null mice show that without the cytokine, expression of TGF-β 

expression is uncontrolled leading to excessive granulation tissue production and ineffective 

epithelialization (100). In light of this, the Brazilian study by Schmidt, et al. (56) where a 

multitude of plants were examined only Xanthium cavanillesii was capable of reducing the 

expression of TNF- α significantly (up to 70%) in fibrolast cultures after lipopolysacharide 

stimulation. 

 

1.2.6 Histological and Biochemical Analysis 

Determining the mechanism whereby a plant based therapeutic agent enhances healing 

requires the simultaneous measurement of a number of parameters. Interpreting 

concentrations of chemokine, cytokines and other parameters which orchestrate optimal 

wound healing has been made in the context of the wound healing phases. However such 

inferences may not be valid as measures may not be specific to one phase and may overlap 

with other phases. What is apparent is that the histological and biochemical variables that are 

commonly measured are in essence the outcomes of multiple underlying processes which are 

never fully evaluated when investigating a potential plant based therapy. They describe the 

wound in general terms but may not be adequate for mechanistic descriptions of the 

investigated plants. In light of this, histological and biochemical investigations are relatively 

cheap, remain the basis of wound healing investigations and therefore require further 

elaboration. 

 
Histological measures in wound healing including inflammatory infiltration, neovascularisation, 

fibroblast infiltration, epithelialisation, collagen deposition and remodelling are common 

variables determined when evaluating the efficacy of plant based therapies. Although these 

measures provide qualitative assessment of wound healing, the assays are mostly operator 

dependent. While there was a correlation between experienced observers and histological 

measurements, automated tissue processing was proven superior since it removes both 

inter/intra observer error and was more reproducible (101).  

 
In contrast, biochemical assays reduce the subjectivity associated with the histological 

analyses. An example is the reproducible colorimetric determination of hydroxyproline 

concentrations, which have been widely used to determine collagen content in connective 

tissues (102). Correct sampling appears to be a drawback of the assay. Additional biochemical 

parameters assessed when evaluating traditional medicines are DNA concentrations, elastase 

and collagenase activity, total protein and the frequently measured assessment of anti-

oxidants in plants.  



 
 

21 
 

 

Free radicals (i.e. superoxide’s and hydroxyls) are produced in healing wounds and have 

potent antimicrobial activity (103). They are also involved in signalling mechanisms within the 

wound environment (104). Excessive release of free radicals result in an elevated pain 

response and are responsible for excessive viable tissue damage (105). Concentrations of 

free radicals at micromolar concentrations enhance the wound healing process, whereas 

millimolar concentrations result in uncontrolled damage, to cause prolonged wound healing 

and possible formation of a chronic wound (106). Elevated free radical concentrations have 

been demonstrated in vascular insufficiency, diabetes and advanced age, conditions wherein 

chronic wounds are more common (107). Therefore anti-oxidants in traditional medicines may 

be important variables in the context of chronic wounds rather than in acute wound healing. 

 
Few studies have determined the toxicity of plant derived compounds. While, for example, the 

toxicity of orally administered extracts of Glycosmis arborea (28) and Aristolochia bracteolate 

Lam (38) have been determined,  there is a lack of information relating to toxicities of topically 

administered natural plant products to wounds. 

 
1.2.7 Plant Compound Detection and Isolation 

Given the complexity of the wound healing process, measuring panels of variables and 

determining interactions between these variables, should lead to a more complete 

understanding of wound healing and allow for the elucidation of some mechanisms of action 

of plant based therapies. In this regard, the isolation of the individual active compounds would 

better disclose the mechanism and the potential effects of concentration variability. Beneficial 

synergistic and antagonistic interactions between such compounds could also be elucidated 

(108). Indeed most beneficial outcomes may be from individual compounds isolated from 

different plants or even polyherbal pharmacy (109).  

 
The studies listed in Table 1.1 indicate the wound healing potential of  many relevant plants 

although the underlying mechanisms remain largely unknown. This may be due to the the 

limited number of variables that can be measured in a single experiment in the highly complex 

setting. If an outcome can be identified from the variables easily assessed such as wound 

closure, high throughput assays can be employed to identify the active fractions, component 

or components which affect the measured variable. 

 
From the studies reviewed in Table 1.1, it can be seen that a number of authors have 

documented potential components of the plants based on previously documented protocols 

seen in Trease and Evans (110), and here the majority of the authors employed the 

phytochemical screen. Furthermore chromatographic techniques including high performance 
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liquid chromataography (HPLC) and gas chromatography coupled with mass spectrometry 

(GCMS) have been used to identify potential compounds. Nagappan, et al. (31), for example, 

identified essential oils from Murraya koenigii by GCMS and isolated a carbazole alkaloid, 

mahanimbicine with potential anti-inflammatory properties. This was shown to increase both 

collagen depositon and organisation. β-Sitosterol from Cichorium intybus (L.) was firstly 

isolated by column chromatography and then identified by nuclear magnetic resonance (NMR) 

It’s benefit in wound healing was due to its anti-oxidant and anti-inflammatory properties (47). 

 

1.2.8 Current State of Wound Healing Investigations  

The complexity of the wound healing process has led investigators to determine general 

screening outcomes such as the wound tensile strength and contracture, as well as qualitative 

histological measures, including inflammatory cell infiltrate and epithelialisation of the wounds. 

Relatively few studies have continued to further determine molecular mechanisms of action of 

these plant remedies. Such molecular studies may allow for the development of rapid 

screening techniques of potential extracts, ultimately identifying  lead compounds of benefit in 

wound healing (6). 
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1.2.9 Senecio serratuloides 

Senecio serratuloides, a plant widely used for wound healing. It is referred to by the traditional 

healers of South Africa as “umsukumbili” or the “2 day cure” and belongs to the family 

Asteraceae/ Compositae. Although the plant is widespread throughout South Africa, 

information available on Senecio serratuloides is recent and mainly derived from books 

published on the various plants utilized in South African traditional medicine settings. The 

indications for this plant are for cutaneous cuts, sores, and burns (111, 112). The plant is 

simply prepared for use as dried leaves which are then burnt, crushed and applied directly to 

the affected areas. 

 

 

Figure 1.2. Senecio serratuloides. Leaves that are routinely used for wound healing are 

clearly defined from the stem. (Image taken from iSpot web page: 

http://www.ispot.org.za/node/195582). 

 

Although little information is available as to the efficacy of the plant some beneficial effects 

have been described by Fawole, et al. (113) including anti-inflammatory properties (COX-1/2 

assays), anti-cholinesterase, and anti-oxidant activity. These attributes were determined 

directly from plant preparations including 50% methanol, dichloromethane, petroleum ether 

and ethanolic extracts.  

 
A major limitation with this plant is that the genus is known to contain pyrrolizidine alkaloids 

(114, 115). Although these have not been specifically identified in this particular plant, there 

are reports of hepatic and pulmonary disorders observed with pyrrolizidine alkaloid poisoning 
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(116, 117). Senecio serratuloides was included in a screen of South African medicinal plants 

for genotoxicity using the AMES and VITOTOX® test where toxicity was only seen at high 

concentrations in the VITOTOX® assay (118). Since these in-vitro assays do not take into 

account the hepatic and pulmonary toxicity secondary to pyrrolizidine alkaloid poisoning, it 

would be an expansive leap to infer toxicity of the plant this warranting further investigation.    

 
Importantly, in most reports of pyrrolizidine alkaloid poisoning, the route of entry into the body 

is through the accidental contamination and consumption of food (119). In contrast as a wound 

healing remedy, this plant is applied topically on the wounded areas of the skin and there 

appear to be no reports of toxicity following this application. Thus the route of administration 

of the plant appears to have toxicological implications. 

 
The practice of charring the plant introduces the question of delivery and availability of the 

active ingredients. Traditional healers gently char this plant during preparation and this 

produces a slow release system known as biochar (120). Mawera, et al. (19) report an 

“ashened” local plant used for wound healing in Zimbabwe. Although the name of the plant 

was not disclosed, it is the first report of plant material prepared in this way.  

 
In summary, inappropriate wound healing and the development of a chronic wound can be a 

costly complication of simple surgical procedures. Interventions which accelerate the process 

are continually being sought and investigated. Although the efficacies of traditional wound 

healing remedies have been reported anecdotally, few have been subjected to any rigorous 

scientific investigation. Senecio serratuloides is one such local South African remedy which 

will be the subject of the present investigation. As accidental ingestion of this plant has resulted 

in hepatic failure, the question whether this plant is safe to use topically requires thorough 

testing. Moreover, the molecular mechanism whereby this plant accelerates the healing 

process has not been investigated.  

 
It is clear that multiple issues are present. Firstly the wound healing process that is described 

as being complex allows for multiple targets to be manipulated in order to accelerate the 

process and so assaying one particular target loses the sensitivity needed to identify lead 

compounds. Secondly very little is known about Senecio serratuloides with regards to efficacy, 

mechanism by which the plant works, and toxicity. It can therefore be seen that there is no 

indication as to how the plant works and if it is safe. There is additionally little indication as to 

what compounds in the plant could be active.   
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1.3 Aims 

In this investigation, the aim was to develop an objective set of parameters to assess wound 

healing that: 

a) Could be reproducibly measured to describe the overall effect of the plant in question; 

b) May identify suitable end-point parameters to elucidate the mode of action of the active 

compounds in the healing process; 

c) Identify a suitable in-vitro assay that could be used in high throughput screening 

assays when screening for active substances in the plant material. 
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Chapter 2 - Efficacy and Safety of Senecio serratuloides in treating Deep Partial 

Thickness and Full Thickness Wounds; Macroscopic and Histological Assessment 

 

2.1 Introduction 

Treating and caring for wounds places an enormous, and escalating burden on hospital and 

health care resources, with an estimated cost in 2010 of $15.3 billion in the USA alone (2). 

Sophisticated care is often unaffordable and unavailable in developing countries, where many 

patients rely on familiar, readily accessible and inexpensive traditional wound healing 

remedies.  

In South Africa, the plant, Senecio serratuloides (DC; Asteraceae/ Compositae), the “2 day 

cure”, has been anecdotally reported by traditional healers to promote the healing of cuts, 

sores, and burns (112). Traditional healers apply fresh, dried or even charred leaves directly 

onto the wound, that may then be covered with pig or zebra fat. Despite being used widely, its 

wound healing efficacy has yet to be fully evaluated particularly as there are reports of 

deliberate or accidental oral consumption of this plant causing hepatic, renal and pulmonary 

dysfunction and death in stock animals.  

This toxicity has been attributed to the presence of pyrrolizidine alkaloids (116) found within 

plants of the genus Senecio, although these have not specifically been reported from Senecio 

serratuloides. However, we are unaware of reports of cases of pyrrolizidine alkaloid poisoning 

following the topical application of Senecio serratuloides to cutaneous wounds. AMES and 

VITOTOX® assays of solvent extracts of this plant have shown no signs of mutagenicity, 

except at concentrations exceeding 2000 μg/ml (118). Despite these reports, Fawole, et al. 

(113) have demonstrated anti-oxidant and other beneficial properties in the plant to partly 

explain the beneficial wound healing properties. As the plant is widely used by traditional 

healers, a more detailed investigation of the wound healing potential and safety of Senecio 

serratuloides is required.  
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2.2 Aims 

Therefore the aims of this Chapter where to: 

a) Establish the efficacy of Senecio serratuloides in the healing of deep partial and full 

thickness cutaneous wounds in a porcine model, by assessing the effect of the 

treatment on wound closure, contraction and collagen infiltration; 

b) Determine changes in the pH, epidermal thickness and collagen infiltration of the 

recovering wound to provide potential mechanisms responsible for accelerating the 

healing process; 

c) Determine the toxicity and safety of topically applied Senecio serratuloides preparation 

in the porcine model. 
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2.3 Materials and Methods 

 

2.3.1 Collection and Preparation of Plant Material  

The plant material was purchased between 2008 and 2010 from the Mooi Street Traditional 

Market, Johannesburg, and was identified and deposited at the C.E. Moss Herbarium of the 

School of Animal, Plant and Environmental Sciences, University of the Witwatersrand. 

Specimen voucher numbers include 08/05/2009, 09/08/2009, 09/05/2009, and 27/02/2010. 

For simplicity Senecio serratuloides will be referred to as Senecio from this point forward. 

 

The material was air dried and stored at -20 oC until used. The preparation and application of 

the plant material was according to the traditional healer’s instructions. Leaves were dried in 

an oven at 40 oC overnight, after which they were crushed to a fine powder using a pestle and 

mortar and heated on a hot plate until charred to a black “ash”. The material was ground again, 

and the resultant powder placed directly on the wounds (described below). 

 

2.3.2 Animal Model and Test Groups 

Large white pigs (Sus scrofa domesticus) were selected for experimentation due to the 

similarities to human skin (13). Ethical clearance was obtained from the Animal Ethics 

Committee (Clearance number: 2008/15/04) of the University of the Witwatersrand. 

 
Surgery and Wound Generation: Nine (n = 9) female pigs (±30 kg) were anaesthetized using 

injectable midazolam (0.3 mg/kg) (Dormicum, Roche) and ketamine (11 mg/kg) (AnaketV; 

Bayer HealthCare). Anaesthesia was maintained by Isofor (Bayer HealthCare) as a volatile 

agent. Dr. Patel performed the surgery at the Central Animal Unit within the Faculty of Health 

Sciences. Deep partial thickness wounds were created with an electric dermatome, set to 

800μm (Aesculap HH Dermatome Ga 630) to remove six square sections of skin (2.5 cm by 

2.5 cm) spaced 4 cm apart, and either side of the midline of the dorsum of each pig. Additional 

to the deep partial thickness wounds, full thickness punch biopsies were created adjacent to 

the partial thickness wounds (Figure 2.1 and Figure 2.2). 

 
Treatment and Dressing: Wounds were treated with one of the following: 1) prepared Senecio 

material (0.2 g); 2) activated carbon (0.2 g, Merck South Africa; Cat. No. 102186), as the 

positive control; or 3) left untreated as the negative control. Each treated wound was also 

dressed with separate standard occlusive dressing, with an integrated absorptive pad (3M 

Tegaderm® Cat. No. 3584) (Figure 2.3). The test area of each pig was wrapped in a stocking 

to hold the dressings in place. Each pig was housed separately in the Central Animal Unit and 
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buprenorphine (0.3 - 0.6 ml) (Temgesic, Reckitt Benckiser Pharmaceuticals) was administered 

as post-operative analgesia. 

 

2.3.3 Wound sample Collection and Analysis 

The dressings were changed on days: 2, 5, 7, 8, 9, 12, and day 16, based on the schedule of 

the Central Animal Unit. At each dressing change photographs of the wounds were taken to 

record the overall healing pattern. Wound surface pH was measured, the wound fluid was 

collected from the absorptive pads and jugular venous blood was taken. Wound and control 

biopsies were taken as has been described in a later chapters. Liver biopsies were collected 

one month post-completion of the experiments. 

 

2.3.4 pH Measurement 

On the days of sample collection, the wound pH was measured using a surface electrode 

(Separations Scientific ST P17-BNC) and the average of three measurements plotted against 

the post-operative time in days. Before measuring the pH the wounds were cleaned with de-

ionised water and the electrode was rinsed in de-ionised water between measurements to 

negate any potential effects on the pH that could be ascribed to the treatments or cleasing 

regimen. 
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Figure 2.1. Preparation of the dorsum of the pigs. Left: the animals were shaved and the demarcated areas outlined with a permanent marker. 

Right: a schematic diagram of the 2.5 cm by 2.5 cm deep partial thickness wounds with adjacent full thickness wounds created with a 6 mm 

core biopsy. Wounds 1, 4, 7, 10 were treated as the negative control. Wounds 2, 5, 8, 11 were treated with activated carbon. Wounds 3, 6, 9, 

12 were treated with the test plant, Senecio. 
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Figure 2.2. A schematic diagram of one of the 2.5 cm by 2.5 cm deep partial thickness experimental wounds, 800 µm in depth, created on the 

back of the pig. The location of the core biopsy sites, relative to the wound area are illustrated. A biopsy of normal uninjured skin, outside the 

wound area, was taken as the control external reference tissue. B. Schematic diagram of samples taken from a full thickness wound. 
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Figure 2.3. Dressings used to hold the treatments in place. The image above shows the animal’s dorsum once all the wounds were treated as 

per protocol. The wounds were dressed with the occlusive dressings which were held in place with zinc-oxide tape and a surgical stocking (not 

shown). 
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2.3.5 Skin Biopsy Collection 

The remaining wounds were dressed and covered as described above and biopsied on 

subsequent days according to the schedule. This process was repeated for the three treatment 

groups on these days. Full thickness wounds (Figure 2.2) were completely excised with a 8 

mm punch biopsy. 

 

2.3.6 Histological Analysis 

The skin biopsies obtained for histological analysis were immediately placed in 10% buffered 

formalin. The biopsies were subsequently dehydrated through a graded ethanol series, 

followed by clearing in Xylene and embedded in paraffin wax; and sections were cut at a 

thickness of 5µm on a sledge microtome. Sections were floated on a water bath pre-heated 

to 50 oC, containing premixed Sta-On (Leica Biosystems, Cat. No.3803105). Sections 

retrieved on alcohol washed microscopy slides were heat adhered to the slides at 60 oC 

overnight in preparation for subsequent histological analyses.  

All basic histology, including tissue processing, sectioning and staining was conducted in the 

School of Anatomical Sciences, situated within the Faculty of Health Sciences at the University 

of the Witwatersrand. The staining procedures included routine haematoxylin and eosin (H 

and E) staining of biopsy material for morphometric analysis and Picrosirius red staining for 

evaluating collagen deposition. The same biopsy specimens provided source material for the 

immunofluorescence studies, as described in Chapter 3.   

Sections were imaged at 100x magnification on a Zeiss Axioskop 2 microscope and images 

captured with a Sony 3CCD camera. For each wound, 2 representative sections were chosen 

with further morphometric analysis being performed with the planimetric software package 

IMAGE J (version 1.4.3.67).  

 

2.3.7 Deep Partial Thickness Wound Morphometric Analysis 

To account for the variability of the epidermal thickness along the dorsum of the pigs (13) 

control biopsies were made immediately adjacent to the wounds. Ten measurements of the 

newly forming epidermis were taken along both sections (five measurements per slide) for 

each wound and adjacent control samples. A ratio was then determined from the 

measurements inside the wound to that for the adjacent control epidermal thickness. To avoid 

bias that could arise from determining the ratio from highly variable tissues, the measurements 

for each section were ranked from largest to smallest and from this series the ratios were 

calculated. The largest measurement in the wound was equated with the largest measurement 
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in the control samples. An average of the ten measurements per wound was determined and 

plotted against time. The approach was summarised as: 

 

Step 1: 10 measurements from inside wound and ranked from largest to smallest. 

Step 2: 10 measurements from adjacent skin considered “normal” and ranked from largest to 

smallest. 

Step 3: Ratio determined by the equation: 

 

Epidermal Thickness Ratio (ETR) = 

 

Wound Skin Thickness (μm) 

  

Adjacent Normal Skin Thickness (μm) 

 

Corresponding ranked measurements where used at this point to determine the ratio, i.e. rank number 

1 of the wounded skin thickness and rank number 1 of adjacent normal skin thickness. 

 Step 4: Average epidermal thickness ratio was calculated for each wound. 

Step 5: Calculated epidermal ratio was used as the final descriptive parameter for each wound. 

 

The results were reported as the epidermal thickness (ET) of the epidermis and the calculated 

epidermal thickness ratio (ETR).  

 

2.3.8 Full Thickness Wound Morphometric Analysis 

Full thickness wounds were analysed using the measurements illustrated in Figure 2.4 below. 

Measurements include; 1) Epidermal Tongue Length, 2) Inter-Epidermal deficit as a proxy of 

wound epithelialisation and 3) Mid-Dermal Deficit. Full thickness wounds were analysed on 

days 8 and 16 post-operative and results plotted against time (days post-operative). 
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Figure 2.4. Representative full thickness wound with the measurements labelled. Black 

arrows indicate the epidermal tongues that migrate into the wounded area. Inter-epidermal 

deficit was used as an indication of whether or not the wounds were epithelialized. (Original 

H & E image at 100x magnification) 
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2.3.9 Collagen Analysis 

Picrosirius Red (PSR) Staining Procedure 

To determine the effect of the treatments on collagen infiltration, a Picrosirius red (PSR) stain 

was employed to stain for collagen in an in-situ form of analysis. Prepared histological sections 

were immersed in 500 ml of saturated picric acid containing 0.5 g of Sirius or Direct red dye 

(SIGMA, St Louis, Mo) for an hour. Sections were then washed in 2 changes of 1% glacial 

acetic acid for 10 minutes at each interval. After the 2 washes in 1% glacial acetic acid 

(AnalaR, BDH; UK) the sections were dehydrated through a graded series of alcohols, 

infiltrated with Xylene and mounted using Entellen (SIGMA). 

PSR Section Imaging and Image Analysis 

The prepared sections were imaged on an Olympus IX71 fluorescence microscope fitted with 

the appropriate filters. The images were processed using the analysis LifeScience® software 

package in the Oncology Research Laboratory, Department of Internal Medicine. A composite 

red-green-blue image was produced by capturing the images using red, green and blue filters 

fitted to the microscope. The deep partial thickness wounds were imaged at 20x magnification 

to incorporate the epidermis and underlying granulation tissue. The regions of interest (ROI’s) 

were created as 200 pixels wide and 300 pixels high immediately below the epidermis (Figure 

2.5). This measure was repeated three times across the entire length of the captured image. 

The ROI’s were analysed as described below. The full thickness wounds were imaged in the 

middle of the wound site midway of the dermis. The entire image was considered as the region 

of interest and was analysed as described below. 

The image analysis performed was based on the method of McMullen, et al. (121). Briefly, the 

image was analysed on the grey scale luminosity and the resulting image histogram. The 

image histogram quantifies the number of pixels per shade of 256 shades of grey. Each shade 

was referred to as a “bin” and from the image histogram the number of pixels per bin (shade 

of grey) was determined. In this case the images were desaturated using the GIMP software 

package (version 2.6.8). Following desaturation, each image was saved as a high quality 

JPEG and re-opened in IMAGE J (version 1.4.3.67) and the histogram generated. The pixel 

count for each bin was calculated by the software and the copied into Microsoft’s Office 2013 

EXCEL package.  

The specimens that were analysed included control sections that were used to optimise the 

analysis of the histogram pixel distributions. Due to the nature of the histogram distributions 

being skewed the 1st, 2nd, and 3rd quartiles were calculated for each of the control sections. 

The positions of each of the quartiles within the series of 256 bins were determined and this 

served as the parameters around which the experimental sections could be analysed. From 
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the control section distributions, the average bin position for each of the quartiles provided a 

gate within which the total sum of the pixels was calculated. The following gates were used 

and further referred to as; Area 1 = Bin 0 – 1st Quartile Bin position, Area 2 = 1st Quartile Bin 

position – 2nd Quartile Bin position, Area 3 = 2nd Quartile Bin position – 3rd Quartile Bin position, 

Area 4 = 3rd Quartile Bin position – Bin 256.  

From the control sections it was seen that the majority of the mature collagen occurred in Area 

4. In the deep partial thickness wounds 81% and 72% of pixels occurred in the deep partial 

thickness and full thickness control sections respectively. As the majority of the pixels occurred 

in Area 4, only this area was considered for statistical analysis. A ratio was calculated for the 

experimental sections by taking the pixel count in area 4 of the experimental sections over the 

pixel count of area 4 of the control sections (as is seen in the equation below). The resultant 

collagen infiltrations were plotted against time (days post-operative). 

  

Collagen Content = 
Experimental Area 4 Pixel Count

Control Area 4 Pixel Count
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Figure 2.5. Picrosirius red analysis algorithm. The image A, represents the original PSR 

stained section imaged under fluorescence light as described above. Image B represents the 

desaturated image that is generated for further analysis. The yellow areas represent the 

ROI’s that were considered for the analysis. The pixel distributions for each ROI were 

averaged and the gating system applied to describe the distributions. 
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2.3.10 Safety Analysis of Liver Hepato-toxicity 

Jugular venous blood was collected on the sample collection days for liver function tests in 

8.5ml yellow top SST gel tubes (BD Biosciences) and sent to Contract Lab Services (CLS) at 

the National Institute for Occupational Health (NIOH), Braamfontein for analysis. In addition to 

the experimental pigs that were exposed to the Senecio based therapy, blood was taken for 

comparison purposes from 3 other pigs involved in another similar study with the same wound 

model. These pigs were exposed to the same anaesthetic agents, wounding mechanism, diet 

and sample collection days.  

A month post completion of the experiments, seven of the animals were euthanized and liver 

biopsies were taken from 2 lobes of the liver and placed in 10% buffered formalin. The samples 

were sent to Golden Vet Pathologists (Onderstepoort, Pretoria) for analysis of acute and 

chronic pyrrolizidine alkaloid poisoning.  

 

2.3.11 Statistical Analysis 

Statistical significance was determined using Statistica (Version 9). Analysis between the 

treatment groups was determined using the Kruskal-Wallis test, coupled with a post-hoc 

analysis. Significance was accepted at p < 0.05. 
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2.4 Results 

 

2.4.1 Deep Partial Thickness Wound pH 

Measured wound surface pH over the course of the experiment can be seen in Figure 2.6, 

with the corresponding data and statistical analysis was tabulated in Table 2.1. The pH of 

fresh wounds at day 0 post-operative, increased from between 7.93 and 7.97, then spiked to 

around 8.02 for the Senecio treated wounds, 8.37 for the activated carbon wound group (p = 

0.001 compared to the plant treated group), and 8.41 for the negative control treated group (p 

= 0.013 compared to the plant treated group) on day 2 post-operatively. 

From day 2 post-operatively, the pH in all treatment groups decreased to reach a similar end 

point by day 16 post-operatively. Additionally, throughout the observational period, the rates 

of decline differed. Day 5 post-operative marked a point where the initial rapid decrease 

changed to a more gradual decrease in all treatment groups. Thereafter, the rate of decline in 

pH reduced further and from day 12 post-operative onwards stabilised in the Senecio treated 

wounds. In contrast, the pH of the other two treatment groups continued to decline, without 

statistically significant differences compared to the Senecio treated wounds. 

 

Table 2.1. Wound pH at specific post-operative days. Data are presented as mean ± SEM 

(n). Underlined p – values are significant at p < 0.05. 

 

 

Days Post-

operative 
Negative Control 

Activated 

Carbon 
Senecio 

Group 

wise p - 

value 

Senecio vs. 

Negative 

Control p - 

value 

Senecio vs. 

Activated 

Carbon p - 

value 

Negative Control 

vs. Activated 

Carbon p - value 

0 7.93 ± 0.07 (12) 7.97 ± 0.08 (12) 7.95 ± 0.08 (12) 0.928 0.596 0.259 0.895 

2 8.39 ± 0.05 (11) 8.47 ± 0.04 (11) 8.02 ± 0.09 (9) 0.001 0.001 0.013 0.658 

5 7.17 ± 0.08 (10) 7.29 ± 0.12 (10) 7.02 ± 0.06 (11) 0.107 0.480 0.064 0.724 

7 6.62 ± 0.14 (6) 6.82 ± 0.16 (6) 6.87 ± 0.13 (8) 0.470 0.220 0.358 0.897 

8 6.70 ± 0.08 (9) 6.75 ± 0.08 (6) 6.73 ± 0.09 (9) 0.932 0.665 0.508 0.149 

9 6.67 ± 0.09 (7) 6.43 ± 0.09 (6) 6.56 ± 0.08 (7) 0.165 0.418 0.284 0.156 

12 6.23 ± 0.12 (9) 6.24 ± 0.12 (7) 6.22 ± 0.12 (9) 0.996 0.962 0.916 0.563 

16 5.75 ± 0.16 (6) 5.83 ± 0.14 (6) 6.20 ± 0.20 (6) 0.138 0.284 0.452 0.949 
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Figure 2.6. Wound pH plotted against time (Days post-operative). Error bars represent the SEM.
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2.4.2 Deep Partial Thickness Wound Gross and Histological Analysis  

Sequential photographs of the deep partial thickness wounds recorded the overall wound 

healing pattern. On day 2 post-operatively, all wounds appeared the same, with the fresh 

wound beds easily seen after the residual Senecio material and activated carbon was removed 

(Figure 2.7 - A, B and C). No epidermis was observed on histology in any of the treatment 

groups (Figure 2.7 - D, E and F). There also appear to be no differences between treatments 

as to whether debriding the residual material from the wound bed had affected the wounds.  

At day 5 post-operatively, histological sections demonstrated a newly formed epidermis in all 

three treatment groups which appeared similar in thickness (Figure 2.8 - D, E and F) and at 

this point the wounds were regarded as being ‘re-epithelialised’. At day 7 post-operative, the 

epidermis in the Senecio treated wounds appeared thicker when compared to the controls 

(Figure 2.9 - D, E and F). On debriding, the integrity of the newly formed epidermis in the 

Senecio group and in the activated carbon treated wounds differed. The epidermis in the 

Senecio group appeared to be more resilient to debriding and less prone to rupture compared 

to the activated carbon treated wound where the epidermis was easily ruptured with 

associated haemorrhaging. 

Figure 2.10, Figure 2.11 and Figure 2.12 were representive of the remainder of the 

observational days. The epidermis is seen to become thinner from days 7/9 post-operative 

where a similar thickness is seen in all three treatment groups at day 16 post-operative 

(Figures 2.9 to Figure 2.11 - D, E and F). 
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Figure 2.7. Wounds viewed on day 2 post-operative with the negative control (A), activated carbon (B), and Senecio (C). Corresponding 

histological sections are represented in D, E, and F being negative control (D), activated carbon (E), and Senecio (F). In the gross pictures (A, 

B and C) the initial wound edges are still evident with minimal contraction noted. The black arrows indicate the remaining dermis 2 days after 

the wounds were created. Histological sections were imaged at 100x magnification. 
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Figure 2.8. Wounds viewed on day 5 post-operative with the negative control (A), activated carbon (B), and Senecio (C). Corresponding 

histological sections are seen in D, E, and F being negative control (D), activated carbon (E), and Senecio (F). In the gross images (A, B and C) 

a prominent epithelial layer is present in the Senecio treated wounds, which was not evident in the control. In the histological sections, the 

arrows that are not filled indicate the regenerating epidermis, which was not evident in the corresponding gross images of the control wounds. 

The solid arrows indicate the granulation tissue deep to the epidermis. Histological sections were imaged at 100x magnification. 
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Figure 2.9. Wounds viewed on day 7 post-operative with the negative control (A), activated carbon (B), and Senecio (C). Corresponding 

histological sections are seen in D, E, and F being negative control (D), activated carbon (E), and Senecio (F). In the gross images (A, B and C) 

a prominent eschar was seen in the control wounds (A and B) but was not seen in the Senecio treated wounds. In the histological sections, the 

arrows that are not filled indicate the regenerating epidermis, which was thicker in the Senecio treated wounds. The solid arrows indicate the 

granulation tissue deep to the epidermis. Histological sections were imaged at 100x magnification. 
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Figure 2.10. Wounds viewed on day 9 post-operative with the negative control (A), activated carbon (B), and Senecio (C). Corresponding 

histological sections are seen in D, E, and F being negative control (D), activated carbon (E), and Senecio (F). In the gross images (A, B and C) 

the Senecio treated wounds have a more prominent epithelial layer but the control also has a more established epithelial layer. In the 

histological sections, the arrows that are not filled indicate the regenerating epidermis, which was thicker in the control treated wounds. The 

solid arrows indicate the granulation tissue deep to the epidermis. Histological sections were imaged at 100x magnification. 
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Figure 2.11. Wounds viewed on day 12 post-operative with the negative control (A), activated carbon (B), and Senecio (C). Corresponding 

histological sections are seen in D, E, and F being negative control (D), activated carbon (E), and Senecio (F). In the gross images (A, B and C) 

the eschar on the control treated wounds is still evident but is absent in the Senecio treated wounds. In the histological sections, the arrows that 

are not filled indicate the regenerating epidermis, which was equal in all treatment groups. The solid arrows indicate the granulation tissue deep 

to the epidermis. Histological sections were imaged at 100x magnification. 
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Figure 2.12. Wounds viewed on day 16 post-operative with the negative control (A), activated carbon (B), and Senecio (C). Corresponding 

histological sections are seen in D, E, and F being negative control (D), activated carbon (E), and Senecio (F). In the gross images (A, B and C) 

minimal eschar is present in all treatment groups. The original wound area is no longer present in the Senecio treated wounds but can still be 

seen in the controls. In the histological sections, the arrows that are not filled indicate the regenerating epidermis, which was equal in all 

treatment groups. The presence of desquamating keratinised epidermal layers is evident in all treatment groups. The solid arrows indicate the 

granulation tissue deep to the epidermis. Histological sections were imaged at 100x magnification. 
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2.4.3 Morphometric Analysis 

 

Deep Partial Thickness Wound Morphometric Analysis 

 

Epidermal Thickness 

Significant differences in the thickness of the epidermis was seen at all days except at day 16 

(Table 2.2). Compared to the negative control, the Senecio treated group had a significantly 

thicker epidermis at days 5 (p = 0.0001), 7 (p = 0.0002) and 9 (p = 0.031) but not at days 12 

(p = 0.121) and 16 (p = 0.623). When comparing the Senecio treated group to the activated 

carbon treated group there was a significantly thicker epidermis in the Senecio group at days 

5 (p = 0.017) and 7 (p = 0.002) but not at days 9 (p = 0.231), 12 (p = 0.241) and 16 (p = 0.212). 

The comparison between the vehicle and negative control shows that the vehicle had a 

significantly thicker epidermis at days 7 (p = 0.005), 9 (p = 0.009), and 12 (p = 0.011) but not 

at day 5 (p = 0.140) and 16 (p = 0.427). 

These data above are represented graphically (Figure 2.13) and showed a rapid increase in 

the epidermal thickness to a maximum value followed by a progressive decline to similar 

values at day 16. Compared to the other groups, the initial thickness of the Senecio treated 

group was greater, with an earlier maximum thickness at day 7, followed by the decline (Figure 

2.13). The other two treatments followed a similar pattern, with the maximum value later at 

day 9 with for the negative control and vehicle groups.  

 

Epidermal Thickness Ratio 

The epidermal thickness ratio of the Senecio treated group was significantly greater than the 

negative control (opsite only) at post-operative days 7 (p = 0.005) and 12 (p = 0.026) but not 

at other times (Table 2.3). The ratio of Senecio treated group was also significantly greater 

than the vehicle treated group (actvated carbon) at post-operative days 5 (p = 0.0002) and 7 

(p = 0.004). Finally, compared to the vehicle, the negative control had a statistically 

significantly greater ratio at post-operative days 5 (p = 0.004), 9 (p = 0.009), whereas the ratio 

of the vehicle was only greater than the negative control at day 12 (p = 0.010). The graphical 

representation (Figure 2.14) of the ratio follows a similar pattern as before with the peak in the 

Senecio being 2 days before that of the controls.
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Table 2.2. Epidermal thickness measurements (μm) at specific post-operative days. Data are presented as mean ± SEM (n). Underlined p – 

values are significant. 

 

Days Post-

operative Negative Control Activated Carbon Senecio 

Group wise 

p - value 

Senecio vs. 

Negative Control 

p - value 

Senecio vs. 

Activated Carbon p 

- value 

Negative Control 

vs. Activated 

Carbon p - value 

5 122.30 ± 2.30 (10) 125.74 ± 19.20 (10) 186.51 ± 9.81 (10) 0.001 0.000 0.017 0.141 

7 116.14 ± 10.34 (10) 161.51 ± 13.54 (10) 263.30 ± 21.20 (10) 0.000 0.000 0.002 0.005 

9 148.27 ± 14.58 (10) 247.76 ± 21.70 (10) 217.98 ± 20.83 (10) 0.012 0.031 0.241 0.009 

12 116.59 ± 8.28 (10) 153.75 ± 10.38 (10) 137.68 ± 8.48 (10) 0.028 0.121 0.241 0.011 

16 134.35 ± 9.00 (10) 147.99 ± 12.40 (10) 124.55 ± 3.95 (10) 0.412 0.623 0.212 0.427 

 

Table 2.3. Epidermal thickness ratio at specific post-operative days. Data are presented as mean ± SEM (n). Underlined p – values are 

significant. 

 

Days Post-

operative Negative Control Activated Carbon Senecio 

Group 

wise p - 

value 

Senecio vs. 

Negative Control 

p - value 

Senecio vs. 

Activated Carbon p 

- value 

Negative Control 

vs. Activated 

Carbon p - value 

5 2.32 ± 0.15 (10) 1.80 ± 0.09 (10) 2.39 ± 0.07 (10) 0.000 0.325 0.000 0.005 

7 2.02 ± 0.21 (10) 2.15 ± 0.15 (10) 3.54 ± 0.43 (10) 0.003 0.005 0.004 0.791 

9 2.79 ± 0.26 (10) 3.21 ± 0.18 (10) 3.04 ± 0.25 (10) 0.328 0.121 0.650 0.473 

12 1.70 ± 0.14 (10) 2.24 ± 0.08 (10) 2.36 ± 0.19 (10) 0.013 0.026 0.521 0.007 

16 2.03 ± 0.14 (10) 2.33 ± 0.12 (10) 2.29 ± 0.11 (10) 0.157 0.141 0.880 0.082 
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Figure 2.13. The mean epidermal thickness (μm) of the deep partial thickness wounds plotted against time (Days Post-operative). Error bars 

represent the SEM.  
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Figure 2.14. Epidermal thickness ratio (mean) of the deep partial thickness wounds plotted against time (Days Post-operative). Error bars 

represent the SEM. 
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Full Thickness Wound Morphometric Analysis 

By day 8 post-operatively, 44% of the Senecio treated wounds had closed compared to the 

activated carbon treated wounds where only 33% of the wounds had closed. In the negative 

control treated wounds, 100% of wounds had closed by day 8 post-operatively. By day 16 all 

the wounds in all 3 treatment groups had closed.  

The average tongue length at day 8 post-operative was not significantly different between the 

Senecio and activated carbon treatment groups (p = 0.566). No other comparisons could be 

drawn between the negative control group treated wounds and the other two treatment groups. 

By day 16 post-operative all the wounds had closed and it was not possible to measure the 

tongue lengths. 

The mid-dermal deficit at day 8 and day 16 post-operative was not significantly different 

between any of the treatment groups.  

The data represented graphically (Figure 2.15) shows a steep decline in the mid-dermal deficit 

in all treatment groups from day 0 to day 8 post-operatively. From day 8 to day 16 post-

operative the decline is not as marked, however the decline in the Senecio treated wounds 

was greater compared to the negative control and activated carbon treated wound groups.  
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Table 2.4. Full thickness wound morphological analysis at specific post-operative days. Data are presented as mean ± SEM (n). Underlined p – 

values are significant. 

Treatment 
Days Post-
Operative 

Percentage Wounds Closed (%) 
   

Negative Control 8 100    

Activated Carbon 8 33    

Senecio 8 44    

Negative Control 16 100    

Activated Carbon 16 100    

Senecio 16 100    

      

Treatment 
Days Post-
Operative 

Average Tongue Length 
Group wise p 

- value 
Post-hoc Analysis 

Negative Control 8 Wound Closed 

0.054 

Senecio vs. Negative Control NA 

Activated Carbon 8 741.88 ± 190.38 (9) Senecio vs. Activated Carbon 0.566 

Senecio 8 558.39 ± 231.37 (9) Negative Control vs. Activated Carbon NA 

Negative Control 16 Wound Closed       

Activated Carbon 16 Wound Closed NA     

Senecio 16 Wound Closed       

      

Treatment 
Days Post-
Operative 

Mid-Dermal Deficit 
Group wise p 

- value 
Post-hoc Analysis 

Negative Control 8 2159.33 ± 116.29 (9) 

0.759 

Senecio vs. Negative Control 0.810 

Activated Carbon 8 2237.08 ± 82.68 (9) Senecio vs. Activated Carbon 0.885 

Senecio 8 2214.19 ± 435.51 (8) Negative Control vs. Activated Carbon 0.427 

Negative Control 16 1936.26 ± 256.02 (6) 

0.365 

Senecio vs. Negative Control 0.575 

Activated Carbon 16 2251.18 ± 254.77 (6) Senecio vs. Activated Carbon 0.230 

Senecio 16 1726.27 ± 193.49 (6) Negative Control vs. Activated Carbon 0.379 
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Figure 2.15. Mid-dermal deficit plotted against time (Days Post-operative). Error bars represent the SEM.
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2.4.4 Collagen Analysis 

Deep Partial Thickness Wound Collagen Analysis 

Representative Picrosirius red stained sections of collagen deposition can be seen in Figure 

2.16. For the analysis purposes, desaturated images that were generated have been shown 

immediately below each of the original stained sections. More mature collagen appears 

brighter in the desaturated images. This however is minimal at day 8 post-operative in all 3 

treatment groups (Figure 2.16 - B, D, and F).  At day 16, brighter collagen fibres can be seen 

in the Senecio and negative control treated wounds (Figure 2.16 - H and L) when compared 

to the activated carbon treated group (Figure 2.16 - J). The collagen fibres in the Senecio and 

negative control treated groups differ with the Senecio treated wounds showing a finer 

distribution of collagen fibres when compared to the negative control where fibres are 

generally thicker.  

 

Table 2.5. Collagen content of the deep partial thickness wounds at specific post-operative 

days. Data are presented as mean ± SEM (n). Underlined p – values are significant at p < 

0.05. 

 

Days Post-

operative Negative Control Activated Carbon Senecio 

Group 

wise p - 

value 

Senecio 

vs. 

Negative 

Control p - 

value 

Senecio 

vs. 

Activated 

Carbon p - 

value 

Negative 

Control vs. 

Activated 

Carbon p - 

value 

8 35.95 ± 2.42 (10) 67.60 ± 3.12 (10) 52.59 ± 2.78 (10) 0.001 0.002 0.003 0.045 

16 79.82 ± 4.88 (10) 59.43 ± 8.88 (10) 77.99 ± 8.04 (10) 0.129 0.970 0.090 0.089 

 

The analysis of the collagen content immediately deep to the epidermis of the DPT wounds 

(Table 2.5) shows a significant difference at day 8 only (p = 0.001). The Senecio and negative 

control treated groups, had a significantly lower collagen content compared to the activated 

carbon treated group (p = 0.003 and 0.045 respectively). The Senecio group had a significantly 

greater collagen content than the negative control treated group (p = 0.002). At day 16 there 

was no significant differences between any of the groups (p = 0.129).    

The data represented graphically (Figure 2.17) shows that from wounding at day 0 to day 8 

post-operatively, there is an increase in collagen content in all treatment groups. From day 8 

to 16 there is a continued increase in the Senecio and negative control groups. The activated 

carbon treated wounds show a change in trend with a subsequent decrease in the collagen 

content from day 8 to day 16 post-operatively.  
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Figure 2.16. Deep partial thickness wounds post Picrosirius red staining. Images are shown 

as the original colour image with the later desaturation process shown immediately below as 

described in the materials and methods section. Senecio treated wounds are seen by A and 

B (Day 8) and G and H (day 16). The activated carbon treated wounds are seen in images C 

and D (day 8) and I and J (day 16). The negative control treated wounds are seen in images 

E and F (day 8) and K and L (day 16). At day 8 post-operative the collagen content in the 

Senecio and negative control treated wounds is less than that of the activated carbon treated 

wounds which is seen in the luminosity of the granulation tissue. From day 8 to day 16 post-

operative it can be seen that collagen fibres are being laid down at an equal rate in all 

treatment groups. 
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Figure 2.17. Collagen content of the deep partial thickness wounds plotted against time (Days Post-operative). Error bars represent the SEM. 
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Full Thickness Wound Collagen Analysis 

 

 

 

Figure 2.18. Full thickness wounds seen as the entire section above with the corresponding 

area analysed for collagen deposition below. The wound areas or dermal deficits are 

outlined in green in each of the sections. The same desaturation process and analysis was 

followed as described in the text before. The original stained images are not shown. Senecio 

treated wounds are seen by A and B (Day 8) and G and H (day 16). The activated carbon 

treated wounds are seen in images C and D (day 8) and I and J (day 16).  The negative 

control treated wounds are seen in images E and F (day 8) and K and L (day 16). No 

difference in collagen content can be seen in any of the treatment groups at any of the 

observational days. 
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Table 2.6. Full thickness wound collagen analysis at specific post-operative days. Data are 

presented as mean ± SEM (n). Underlined p – values are significant. 

 

Days Post-

operative Negative Control Activated Carbon Senecio 

Group 

wise p - 

value 

Senecio 

vs. 

Negative 

Control p - 

value 

Senecio 

vs. 

Activated 

Carbon p - 

value 

Negative 

Control vs. 

Activated 

Carbon p - 

value 

8 85.48 ± 4.96 (7) 73.58 ± 9.00 (6) 77.44 ± 11.85 (7) 0.639 0.617 0.898 0.353 

16 88.46 ± 6.01 (6) 96.17 ± 10.37 (6) 89.52 ± 6.08 (6) 0.796 0.936 0.575 0.689 

 

 

Desaturated images show brighter collagen fibres in the Senecio (Figure 2.18 - B) and 

negative control (Figure 2.18 - F) treated wound groups at day 8 post-operative compared to 

the activated carbon treated wounds (Figure 2.18 - D). At day 16, brighter collagen fibres can 

be seen in the Senecio and negative control treated wounds (Figure 2.18 – H and L) when 

compared to the activated carbon treated group (Figure 2.18 - J).  

There was no significant difference in collagen content on day 8 and 16 post-operative (Table 

2.6) with p = 0.639 and 0.796 respectively. Graphical representation of the data (Figure 2.19) 

shows a marked increase from day 0 to 8 after which the rise in the collagen content of all 3 

treatment groups decreases.  
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Figure 2.19. Full thickness wound collagen content plotted against time (Days Post-operative). Error bars represent the SEM.
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2.4.5 Safety and Toxicity 

With regards to the toxicity studies, LFTs were raised in all pigs with the majority of the 

elevations seen in the alanine aminotransferase (ALT) enzymes. There was no difference 

between the elevations seen in the pigs exposed to the plant and those that were not. 

Additionally, the liver samples that were sent to Golden Vet Pathologists for analysis, showed 

no signs of acute or chronic pyrrolizidine alkaloid poisoning. 

 

Table 2.7. Screen for potential pyrrolizidine alkaloid toxicity.  

 

Pig Identification Raised LFT's 
Acute Pyrrolizidine 

Alkaloid Poisoning 

Chronic Pyrrolizidine 

Alkaloid Poisoning 

Experimental Pig 1 + - - 

Experimental Pig 2 + - - 

Experimental Pig 3 + - - 

Experimental Pig 4 + - - 

Experimental Pig 5 + - - 

Experimental Pig 6 + - - 

Experimental Pig 7 + - - 

    

Control Pig 1 + NA NA 

Control Pig 2 + NA NA 

Control Pig 3 + NA 
NA 

 

LFT – liver function tests from jugular venous blood. Normal range as dictated by the Merck 
Veterinary guidelines, Reference Serum Biochemical Markers, Table 7 

(http://www.merckvetmanual.com/mvm/htm/bc/tref7.htm). 
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 2.5 Discussion 

The majority of poisonings associated with the Senecio genus was due to consumption of the 

plants by livestock and humans in the various preparations (114). Despite the known toxicity, 

whether topical administration of the plant material causes toxicity has not been determined. This 

study evaluated the wound healing efficacy, morphological aspects of the healing process and 

carried out preliminary investigation of potential toxic effects of topically applied Senecio 

serratuloides. 

  

2.5.1 Experimental Wound Model 

To evaluate traditional wound healing remedies an appropriate animal model was required. Many 

studies have used readily available, easy to handle, affordable and versatile rodent models. 

Wounds created on rodents have been full thickness incisional or excisional wounds. Inert porous 

substrates (dead space models) can be embedded within these wounds to absorb fluids for 

determining important biochemical molecules within the wound space that may affect the healing 

process (Table 1.1 of Chapter 1). However, rodent skin has been regarded as a poor proxy for 

human skin as the panniculus carnosus contracts and closes the wounds rapidly, which does not 

allow the re-epithelialisation of the wound to be monitored (122).  

In contrast, pig skin is similar to human skin (13) and a porcine model has previously been 

established in the Central Animal Unit at the University of the Witwatersrand (9, 10).  Furthermore, 

according to Van Wyk, et al. (112) and Hutchings (111), the indications for the use of Senecio are 

abrasions and burns which are partial thickness wounds and therefore rodent models which can 

mostly accommodate full thickness wounds would not be appropriate. Furthermore for deep 

partial thickness wounds, rodent skin is not appplicable. Therefore a porcine deep partial 

thickness wound model was initially selected for these experiments. 

Due to the erratic nature of wounds that can present it was important to include a full thickness 

wound model in this investigation. Full thickness wound models allow for the rate of wound 

contraction to be assessed from morphometric analysis of histological sections of the wound. The 

extent and rate of epithelialisation, dermal remodelling, fibroblast proliferation, inflammatory 

infiltrates, neovascularisation and collagen deposition can additionally be determined (Table 1.1 

of Chapter 1). However, many such measures are often reported on subjective scoring scales. 

This has additional implications and is discussed further below. 
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2.5.2 Wound pH 

With other investigations into the use of plant based therapies for wound healing ‘broad’ variables 

can be used whose outcome depicts multiple processes that are ongoing within the wound. As a 

commonly encountered example of a “broad” variable the measurement of wound tensile strength 

is seen in many of the studies listed in Table 1.1. Tensile strength has been measured in 

determining the effects of Hypericum patulum (29), Achillea biebersteinii Afan. (68), and in herbal 

formulations containing extracts of Terminalia arjuna (69). As previously stated in Chapter 1, the 

strength of a wound in the initial period is not nearly that of a wound that has remodelled over 

months or even when compared to normal uninjured skin. What is seen is that other factors in the 

wound environment such as the epithelial layers add to the tensile strength (123). With deep 

partial thickness wound models, measuring the tensile strength variable would not be suitable as 

a certain amount of the uninjured dermis could potentially interfere with overall results. Measuring 

tensile strength of a wound is therefore suited mostly to full thickness wounds.  

In this case the alternative broad variable chosen was the pH of the wounds. Intact skin produces 

and maintains an acidic environment and is important for the barrier function ascribed to skin 

(124). What is also known is that a gradient exists from the neutral deeper skin layers to the more 

acidic mantle of the stratum corneum but the mechanism by which the epidermis is acidified is 

currently hypothetical (125). What is seen is that for the skin to produce a normal pH it needs to 

be intact and so makes an excellent “broad” variable to describe the overall integrity of the newly 

formed skin and specific to this investigation where deep partial thickness wounds were assessed. 

From the investigations seen here, the pH on day 2 post-operative was lower for the Senecio 

treated wounds after which no other differences were detected statistically. The pH decreased at 

a similar rate in all treatment groups with a change in the rate around day 5 post-operative. This 

change could be associated with development of the newly formed epidermis which was 

documented histologically here. With the presence of the newly formed epidermis, a modulatory 

effect on the pH may be developing. Moreover, at day 5 post-operative, the pH would reflect the 

state of the newly formed epidermis and not the state of the acute wound environment. On this 

premise there appears to be no difference from a functional perspective in that all rates of pH 

changes for the treatment groups were similar. But from a wound environment perspective, 

metabolic activity could be affected due to the differing pH in the Senecio treated wounds group 

on day 2 post-operatively where no epidermis is present.  
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2.5.3 Deep Partial Thickness Wound Morphometric Analysis 

Histological analyses of the wounds is mostly employed which includes the variables 

epithelialisation, dermal remodelling, fibroblast proliferation, inflammatory infiltrates, 

neovascularisation and collagen deposition. These variables are mostly assessed in full thickness 

wound models and an additional drawback of this approach is that in many instances these results 

were based on subjective scoring systems. In this investigation it was important to develop an 

objective parameter that could be easily reproducible with minimal intra and inter observer error. 

The major variable for assessment identified here was the epidermal thickness. Quantification of 

the thickness of the epidermis may identify a variable that could be used for in-vitro assays at a 

later stage.  

Previous studies measuring epidermal thickness examined only the actual epidermal thickness 

at one time point only (126, 127) and without expressing the thickness as a ratio relative to normal 

skin. Here the epidermal thickness was monitored over an extended period where it was apparent 

that the epidermis thickens substantially for a certain period of time after which it thins to resemble 

the thickness of normal skin. The process by which the epidermis thickens in these investigations 

is unknown at this point but multiple processes may be at play namely, epidermal proliferation, 

epidermal hypertrophy or migration from outer uninjured skin.  

With the documentation of the increase and subsequent decrease in epidermal thickness, there 

is no indication as to whether the skin is actually normal from a thickness perspective at the end 

of the observational period. In this event the use of an epidermal thickness ratio would indicate at 

which point the newly formed skin’s thickness is indeed that of un-injured skin. The premise can 

therefore be made that when the epidermal thickness ratio reaches 1, it may serve as an end-

point at which epidermal layers have completed a process of thickening and then subsequent 

thickening. 

The skin thickness and thickness ratio increased and then decreased and we postulate that the 

ratio followed sequential phases of proliferation/hypertrophy/migration followed by maturation. 

The peak in the epidermal ratio for the Senecio treated wounds was 2 days earlier than that of 

the other treatment groups with all 3 three treatment groups having a similar epidermal ratio on 

day 16. This may suggest that the Senecio plant accelerated the proliferation/hypertrophy/ 

migration of the epidermal layer which was then followed by an earlier maturation phase. 

However, the epidermal thickness and epidermal thickness ratio measurements are limited when 

determining treatment efficacy as they do not describe the functional state of the epidermis and 

therefore further analysis may be required to fully evaluate efficacy.  
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2.5.4 Full Thickness Wound Morphometric Analysis 

In previous studies the rate of contraction was measured macroscopically by visualizing the 

wound area and determining the change in the size of the wound over successive days. In this 

study, histological sections were examined and the change in mid-dermal deficit represented the 

contraction of the wound. The change in the dermal deficit size in this case is a product of the 

contraction due to myofibroblasts but this only accounts for roughly 40% of the decrease in wound 

size (63, 64), therefore the collagen content is responsible for the rest of the dermal regeneration.  

With the collagen content being a major component of wound contraction it is also vital for the 

migration of keratinocytes into wounds. In the case of the activated carbon treated wounds, the 

epidermis was seen to be delicate during debriding on sample collection days which may be 

accounted for by the lower collagen concentrations even though they were not significant. This 

point was also noted by Abercrombie, et al. (128).   

 

2.5.5 Collagen Deposition 

Investigations into collagen deposition in the wound are an important variables in the healing 

wound. Assessment of the collagen deposition is commonly achieved by tensiometry experiments 

or biochemical colorimetric assays to determine the concentration of hydroxyproline, a surrogate 

marker of collagen turnover (102). Tensile strength was shown to correlate with collagen content 

of wounds and became an early measured variable in wound healing investigations (129). It has 

also been measured in multiple studies regarding plant based therapies as was listed above. 

Colorimetric estimation of collagen has been used in studies on Catharanthus roseus (130), 

Calotropis procera (131), Terminalia chebula (132), and Mimosa pudica (133).  

A qualitative technique that has shown to be particularly useful is the Picrosirius red staining 

method of histological sections. Although, the highly specific Picrosirius red stain for thin and thick 

collagen fibres has an advantage over other more commonly used modalities but the use of this 

technique is limited to qualitative studies (134). This validated staining technique (135) has been 

used for formalin fixed, paraffin embedded tissue samples (136) and coupled with fluorescence 

microscopy, this approach allows for greater image resolution (137).  More commonly, polarised 

light has been used to view and image collagen subtypes (134). However in this case the 

fluorescent imaging allowed for the best resolution. It is therefore proposed that the image can be 

subjected to image analysis techniques to quantify the collagen content.   
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In this Chapter, an algorithm was developed to analyse and quantify collagen deposition in deep 

partial thickness and full thickness wounds. With the image analysis approach here, the change 

in luminosity from darker to lighter distributions is expected as more collagen is deposited within 

the wound. Additionally with the shift in luminosity it was clear that with the gating system 

proposed here, direct quantification of the more mature collagen could be performed and 

ultimately compared between treatment groups.  

In the deep partial thickness wounds at day 8 post-operative, using this technique, the Senecio 

group had more collagen than the negative control treated wounds but not as much as the 

activated carbon treatment wounds. Subsequently, the collagen content in the Senecio and 

negative control treated wounds continue to increase, whereas the activated carbon treated 

wounds decreased, and at the end of experiment the groups were similar. 

Importantly the described technique may allow quantification of collagen directly as compared to 

colorimetric techniques. The limitation of collagen colorimetric assays was (138) the requirement 

for accurate collection of wound samples, free of unwounded skin collagen which would be difficult 

to obtain. Furthermore, the method was based on the measurement of hydroxyproline which is 

not incorporated directly into the newly formed collagen but is rather a by-product of the synthetic 

process and its measurement may be more suited to collagen turnover (138). This technique may 

therefore be more suited to the deep partial thickness wounds as it represents an “in vitro” 

measurement where residual collagen from unwounded tissue could be excluded. 

In the full thickness wound model, a similar pattern was seen with collagen concentrations similar 

in the Senecio and negative control treated wounds, which were not significantly less than the 

activated carbon treated wounds. At day 16 there was a significant difference between the 

activated carbon treated wounds and both the Senecio and negative control treated wounds. 

 

2.5.6 Plant Toxicity 

Toxicity associated with plants within the genus Senecio, and specifically with Senecio 

serratuloides, has been demonstrated by Elgorashi, et al. (118) using the AMES and VITOTOX® 

assays. These assays are based on bacterial cultures that are susceptible to various toxins. 

Importantly the majority of poisonings associated with the Senecio genus are due to consumption 

of the plant and are so subjected to the acids and conditions in the gastrointestinal tract (114). In 

human subjects, and commonly in the paediatric patients, the oral administration of traditional 
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medicines containing species from the Senecio genus leads to hepatic veno-occlusive disease 

(139) and has also been associated with hepatic malignancies (140). This was demonstrated by 

Zuckerman, et al. (141) where traditional preparations containing Senecio latifolius lead to the 

rapid decompensation of a three year old infant. Additionally they isolated pyrrolizidine alkaloids 

from the traditional preparations and their demonstrated their toxic potential in an in-vitro assay.  

At present, little is known about the chemical composition of pyrrolizidine alkaloids and the 

relevant concentrations used in this and other studies. Senecio is classified as poisonous 

according to the South African National Biodiversity Institute (SANBI), with pyrrolizidine alkaloids 

existing as either the hepatotoxic free base form or the less toxic N-oxide form. However when 

the plants are ingested, the N-oxides are converted to the free base form in the gastro-intestinal 

tract resulting in the reported hepatotoxicity (142).  

The topical administration of application may result in direct action of any active substances, 

including toxic compounds directly within the wound site where they may or may not be absorbed 

systemically. In this study, to determine possible toxicity, liver function tests were performed, and 

livers of the test animals were biopsied one month after completion of the experiments. Here no 

toxicity was detected in liver samples sent to accredited pathologists.  

A possibility for the lack of toxicity may be due to observations made by Brauchli, et al. (143), who 

showed that the conversion to the toxic free base format was not as pronounced when 

administered percutaneously and could therefore explain why no toxicity was detected. In this 

model, the extent of the experimental wounds exposed to the potential toxic compounds was less 

than would be seen when ingested or in a clinical wound setting, especially in extensive burn 

injuries. Therefore the toxicity, if any, cannot be completely ruled out. In addition, the lack of 

knowledge with regards to the chemical composition of the plant investigated here is limited and 

more detailed investigations are warranted. 
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2.6 Conclusion  

The results suggest that the Senecio based therapy prepared according to traditional healer’s 

instructions and applied topically: 

a) Decreased the initial wound pH; 

b) Lead to an earlier increase and decrease of the thickness of the epidermis suggesting 

effects on cell proliferation or maturation; 

c) Did not appear to alter collagen content in the wounds; 

d) Preliminary data suggested signs of pyrrolizidine alkaloid toxicity were not present when 

the plant was applied topically. 

Further isolation and identification of the possible active compounds would need to be done in 

order develop the application of the Senecio based therapy and to further validate the safety of 

these preparations. 
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Chapter 3 – Mechanistic Investigation of Senecio serratuloides: Cytokine, Tyrosine 

Phosphorylation and Proliferating Cell Nuclear Antigen Quantification 

 

3.1 Introduction 

The importance of cellular signalling needs to be investigated as a possible mechanism by which 

the plant acts. The basis of this is due to a study by Toma, et al. (144) where extracts of the plant 

Senecio brasilliensis (known to contain pyrrolizidine alkaloids) was used to treat acute and chronic 

gastric ulcers in a shorter time period when compared to proton pump inhibitors and 0,9% saline. 

This mechanim by which this occurred was through the upregulation of epidermal growth factor 

(EGF). With minimal evidence available on the plant in question together with the complexity of 

the wound healing process, this provides a starting point for the investigation into the potential 

mechanism by which the plant acts. 

To further complicate the scenario proposed here, multiple additional factors are known to play 

important roles in wound healing. An extensive review by Werner and Grose, (80) focussed on 

the regulation of wound healing by growth factors and cytokines which have been shown to be 

key regulators in the wound healing process. Even though the effects and applications of these 

factors are well documented with extensive work gone into their application in wound healing, 

their success could be measured based on their routine application in the clinical setting. To date 

only recombinant PDGF (becaplermin, marketed as Regranex by OMJ Pharmaceuticals) has 

been registered with the United States Food and Drug Administration as a biological agent (a 

term used for cytokine/growth factor derived interventions) used for wound healing (145).  

More recent information from a search for wound healing products on the DrugBank website 

(http://www.drugbank.ca) shows that the only other product that has been investigated and 

approved is Oprelvekin (an active ingredient of Neumega, Genetic Institute Inc.), a recombinant 

IL-11 used for intestinal wound healing. With only two products approved for clinical use, it is clear 

that the application of growth factors has not been a success. A link between in-vitro discovery 

and clinical application has been missed, Robson and Mustoe, (146) postulate that this may 

possibly be due to the mode of delivery of these factors and synergistic effects seen between 

various factors. Quite possibly an additional cost related factor or legislation may come into play.   

Another possible reason for the lack of marketable products is the concept of synergism with 

many of the factors (146).  Multiple authors demonstrate this concept as can be seen in the 

application of platelet gels (containing a cocktail of factors namely TGF-α and β, PDGF, EGF, and 

VEGF) (77) or different combinations of growth factors (namely EGF, TGF-α and β, FGF, IGF-1 

http://www.drugbank.ca/
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and PDGF) (127) with the observation that the individual components are not as effective 

compared to the combinations. 

It is therefore clear that analysing a couple of factors that are potentially applicable to wound 

healing may not be extensive enough in identifying a mechanism by which a plant based therapy 

may act. In light of this another approach may be to assay a common feature of these factors. 

The available literature describes phosphorylation of the receptor linked tyrosine residues as a 

potential target for analysis.  

 

3.1.2 The Role of Tyrosine Phosphorylation  

In the review by Werner and Grose (80), a significant proportion of factors bind to receptors that 

act via tyrosine residue phosphorylation thereby transmiting their signals down various cascades 

and are therefore known as the receptor linked tyrosine kinase (RLTK) receptors. It has been 

shown that while activation of the RTLK via their ligands does lead to improved wound healing, 

due to the complexity of the process and the known synergistic effects of the ligands, analysing 

single or at most two ligands has the potential to miss possible actions of wound care modalities 

(147). In the present study, it was therefore a logical assumption to focus on a common link 

between most of the ligands and their receptors, this being the phosphorylation of the tyrosine 

residues on the membrane bound receptors as well as the cytoplasmic response messenger 

proteins. Table 3.1 lists the recognised factors with the associated receptor phosphorylation. 
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Table 3.1. Tabulation of the recognised growth factors and associated receptor activity known to 

be beneficial in the wound healing process. 

 

Ligand Receptor Phosphorylation Reference 

Epidermal growth factor 

(EGF) 
Tyrosine 148, 149, 150 

Basic fibroblast growth 

factor (bFGF) 
Tyrosine 151, 152, 153, 154, 155 

Insulin-like growth factor 

(IGF) 
Tyrosine 156, 157 

Keratinocyte growth factor-1 

(KGF-1), platelet derived 

growth factor (PDGF) 

Tyrosine 158, 159, 160 

Transforming growth factor 

(TGF) - α 
Tyrosine 161, 162 

Interleukins 1β, 6, 8, 10, and 

TNF-α 
Tyrosine 95, 163, 164, 165, 166 

 

 

Cell membrane receptors that function through tyrosine phosphorylation contain 20 subfamilies, 

and these subfamilies are based on the ligands that bind to and activate them (167). The 

activation of these receptors is known to control cell survival, proliferation and differentiation, all 

of which are important to wound healing (168). The generic receptor format includes a 

glycosylated extra-cellular ligand binding domain, linked to the intra-cellular domains via a single 

transmembrane helix (169). It is the intracellular domain that contains the tyrosine residues that 

are phosphorylated resulting in the downstream activation of cytoplasmic messenger molecules 

that transduce signals to the cell nucleus, thus influencing gene transcription (170).  

Once the receptor has been activated, further signalling pathways are activated through the 

recruitment of regulatory proteins known as the adaptor and scaffolding proteins. On these 

adaptor and scaffolding proteins various amino acid domains are present that activate the 

respective pathways, importantly the Src homology 2 (SH2) and Phosphotyrosine-binding (PTB) 

domains are known act via tyrosine phosphorylation (171). Pathways that are generally activated 

by receptor tyrosine phosphorylation include the phosphoinositide 3-kinase (PI3k) pathway, the 

extracellular signal-related kinase (ERK) or mitogen-activated protein kinase (MAPK) pathway, 

the phospholipase C-γ (PLC- γ) pathway and the Janus kinase / signal transducer and activator 
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of transcription (Jak/STAT) pathway (172). Although these pathways have predominant actions 

via their associated signalling cascades, there exists a significant overlap between many of these 

pathways. This point is highlighted in review articles by Morrison (173) and by Bennasrourne, et 

al. (171). However, the scope and complexity of these pathways is beyond this investigation.  

Thus in this investigation, there is a broad focus on tyrosine phosphorylation without making a 

distinction between any one of the signalling pathways. The addition of an outcome response 

(and in this case, cellular proliferation) is important as it has been proposed that the amount of 

tyrosine phosphorylation does not necessarily correlate with the amount of response (174). 

 

3.1.3 Proliferating Cell Nuclear Antigen 

Proliferating cell nuclear antigen (PCNA) is a protein that is highly conserved from an evolutionary 

perspective and is up-regulated in the G1 and S phases of cellular proliferation and so correlates 

with the proliferative state seen in most eukaryotic cells (175). The information available on PCNA 

within the cutaneous wound healing context is few. Examination of the available literature 

concerning wound healing shows that PCNA is mostly used as a marker of proliferation with little 

consideration for the activity or function of the molecule. 

The importance of PCNA is as an outcome measure of cellular proliferation secondary to tyrosine 

phosphorylation, but a close relationship between these targets is also recognised. The PCNA 

molecule has been shown to be phosphorylated on the 211 tyrosine residue in response to 

activation of EGFR (176) additionally the phosphorylation of this residue is important to maintain 

the function of PCNA in proliferating cells (177) by protecting the PCNA molecule from 

ubiquitylation-mediated degradation but this is only of the chromatin bound moiety and not the 

free form (178). Furthermore proliferating cell nuclear antigen is expressed in migrating cells 

(179). 

 

3.1.4 Inflammatory Cytokines 

Even with extensive work on the role of the above mentioned growth factors, there is a clear 

failure in their clinical application. The role of inflammatory cytokines however, has been largely 

ignored when plant based therapies are concerned. However, it is of particular interest that select 

inflammatory cytokines also act through tyrosine phosphorylation. Table 3.1 tabulates the 

cytokines linked to tyrosine phosphorylation which includes the pro-inflammatory cytokines, 

interleukins-1β, 6, 8, TNF-α and the anti-inflammatory cytokine interleukin-10.  
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Interleukin - 1β (IL-1β): IL-1β is known to be an important mediator of inflammation in the wound 

milieu and has various synergistic effects with other mediators active in the wound healing 

process. IL-1β is however site and injury specific with regards to expression and activity (180). IL-

1β has a role in the induction of keratinocyte migration and proliferation together with the induction 

of fibroblast proliferation and synthetic functions (being mostly collagen synthesis) (181).  

Furthermore the activity of IL-1 is not only limited to the proliferative response of various cell 

populations but also important in their distribution within tissues which was demonstrated by 

Wilson, et al. (182) in a corneal tissue wound model. The authors found that keratinocytes and 

fibroblasts were redistributed and underwent apoptosis in response to IL-1 which was either a 

normal or pathological response to mechanical injury. Although these results were obtained in 

corneal tissues, the fundamental response of fibroblasts and keratinocytes is universal in the 

wound healing process.    

 

Interleukin – 12p70 (IL-12p70): Little is known regarding to the role of IL-12p70 in wound healing. 

However, IL-12p70 is a major contributor in the development of T-helper cells to mature into either 

TH1 (inflammatory) or TH2 (anti-inflammatory) mediators, with high IL-12p70 concentrations 

favouring the TH1 response (183). The various TH responses manipulate the functionality of 

macrophages and may determine wound healing outcomes (184). IL-12p70 induces Inducible 

Nitric Oxide Synthase (iNOS) due to the activation of the pro-inflammatory functionalities (185). 

The authors demonstrated this relationship in an allograft rat model, where the rate of rejection 

was decreased with an increase in iNOS when treated with IL-12p70.  

 

Interleukin – 6 (IL-6): IL-6 has a modulatory effect as it has roles in producing inflammatory 

responses and in the differentiation of lymphocyte populations (186). The IL-6 ligand is able to 

bind directly to the IL-6 receptor on cell surfaces and induce dimerization of the gp-130 molecule, 

however a soluble form (not membrane bound) of the receptor is expressed which bind the ligand 

thereafter activating the gp-130 molecule (187). This allows IL-6 to interact with cells that do not 

express the receptor and so increases the scope of the activity.  

The extent of IL-6’s role in inflammation has been demonstrated in inflammatory conditions such 

as Sjögren’s syndrome (188) and uveitis (189). These conditions are clearly more related to the 

eye, but in a study by Mc Farland-Mancini, et al. (186) the role of IL-6 was demonstrated in a 
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cutaneous wound model. Detrimental effects were shown in mice lacking a combination of IL-6 

and its receptor where a reduction in macrophage infiltration, fibrin clearance and wound 

contraction was seen. Interestingly this study showed that the effects were mediated through the 

phosphorylation of the tyrosine residues on the gp130 intracellular receptor domains.  

 

Interleukin – 8 (IL-8): IL-8 has a major role in chemotaxis of polymorphonuclear cells whose 

main function is to debride the wound of cellular debris and foreign materials (190). Although this 

is an important component of wound healing additional interest in IL-8 lies in its ability to modulate 

keratinocyte proliferation in a time dependent manner (191). Kleinbeck, et al. (191) describe an 

important concept in that the cytokines seem to operate to a satisfactory level at a narrow 

concentration range.  

 

Tumour Necrosis Factor – α (TNF-α): As an integral component of the inflammatory process 

during wound healing, excessive concentrations are associated with the formation of chronic 

wounds (192). Although it is known to be mostly derived from monocyte/macrophage populations 

(97) evidence has shown that it may also be produced by neutrophils (98). As the evidence 

suggests that TNF-α may be associated with chronic non-healing wounds, there is also a role for 

the cytokine in normal wounds, as it important for mitogenic and angiogenic events (99). Steenfos, 

et al. (99) showed that TNF-α has the potential to inhibit key growth factors specifically TGF-β, 

but in these rat studies the effect of this inhibition was not detrimental to the wound healing 

process. Similar to IL-1, TNF-α is able to induce cellular proliferation through the activation of 

fibroblastic growth factors but when acting alone the unwanted result of chronic wound formation 

predominates (193).  

 

Interleukin-10 (IL-10): As a prominent anti-inflammatory cytokine active in the skin, Berg, et al. 

(94) demonstrated the role of IL-10 in Croton oil irritated skin in a mouse model where the effects 

of IL-10 were assessed based on its potential to reduce the inflammatory induced necrosis of skin 

tissue. Results showed that IL10 was active in decreasing the expression of TNF-α which is a 

prominent pro-inflammatory cytokine, an observation also made by Sato, et al.  (95). In addition 

to this observation other cytokines were also shown to be decreased namely IL-1β and IL-6. In 

addition to the suppression of inflammatory cytokine expression, Sato, et al. (95) also 

demonstrated the inhibition of chemotaxis of neutrophils and macrophages to the affected site. 
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However evidence presented by Eming, et al. (72) shows that depression of IL-10 accelerates 

the closure of wounds in a mouse model. In the IL-10 knockout mice, they observed accelerated 

epithelialisation and wound contraction. This suggests that the role of other cytokines inhibited by 

the actions of IL-10 may have a positive contribution to the wound healing process and not only 

active as pro-inflammatory agents. 
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3.2 Aims 

The aims of this Chapter where to:  

a) Quantify the relative concentrations of IL-10, IL-12, IL-1β, IL-6, IL-8 and TNF-α; 

b) Quantify the extent of tyrosine phosphorylation in the epidermis; 

c) Quantify the outcome response of cellular proliferation by assessing the concentration of 

proliferating cell nuclear antigen.  
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3.3 Materials and Methods 

 

3.3.1 Animal Model and Test Groups 

The wound model, surgery, treatment groups, dressings, the timing of and taking of skin biopsies 

was as described in Chapter 2. The occlusive dressings contained an absorptive pad to trap the 

wound exudate for this part of the study. 

 

3.3.2 Wound Exudate Collection and Analysis 

On day 5 post-operative, the absorptive pads of the occlusive dressings were cut free and placed 

in sample collection tubes and placed immediately on ice. Once in the laboratory the absorptive 

pads were placed in syringe barrels and inserted into collection tubes. The dressings were spun 

down at 2000 rpm; the supernatant/exudate was collected, aliquoted into 500 µl Eppendorf tubes 

and frozen at -70 oC. The wound fluid from the treated and control wounds were analysed to 

quantify the concentrations of the inflammatory cytokines namely IL-10, IL-12, IL-1β, IL-6, IL-8, 

TNF-α.  

 

3.3.3 Cytokine Analysis 

The concentrations of the inflammatory cytokines in the wound exudates were analysed using the 

Multiplexed Human Inflammatory Cytokine Bead Array kit (BD Biosciences, Cat. No: 551811). 

The manufacturer’s instructions were followed with some modifications during the initial sample 

processing. EDTA was added due to the associated proteolytic activity associated with wounded 

tissue.  

Twelve standard concentrations for each interleukin were prepared by serial dilution ranging from 

0 pg/ml to 5000 pg/ml. Eighteen samples were analysed in duplicate therefore 36 samples with 

twelve standards resulted in 48 preparations all together. According to manufacturer’s instruction, 

25 µl per sample of each cytokine capture bead was combined to produce a stock solution 

amounting to 6 different cytokines x 48 samples x 25 µl capture beads = 7 200 µl combined 

capture beads. The combined reconstituted capture beads were centrifuged at 2000 rpm and the 

supernatant discarded. The capture beads were suspended in 7 200 µl serum enhancement 

buffer, vortexed and incubated at room temperature for 30 minutes. During this incubation period, 

150 µl of each wound fluid sample was placed separately in EDTA Vacutainers (BD Vacutainer) 

and incubated for 20 minutes.  
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Standard samples were reconstituted in 2 ml assay diluents and allowed to equilibrate for 15 

minutes. They were then mixed by pipette and a serial dilution prepared from 5000 pg/ml of protein 

to 0 pg/ml of protein. Standards were prepared in 15 ml BD Falcon tubes (Cat. No. 352008). 

Standards and experimental samples (100 µl) were placed into separate Eppendorf tubes and 

incubated for 2 hours with 25 µl of combined capture beads. All samples were centrifuged in 500 

µl wash buffer, supernatant discarded, 25 µl PE detection reagent added and incubated for a 

further 2 hours at room temperature. Samples were centrifuged with 500 µl wash buffer, 

reconstituted in a further 100µl wash buffer and transferred to a 96 well plate. The labelled beads 

were be analysed on a FACSArray Flow Cytometer (BD biosciences). Instrument settings can be 

seen in Table 3.2 below. Final cytokine concentrations were determined using the software 

supplied with the instrument. 

 

Table 3.2. Flow Cytometer Parameters as run on the FACSArray Flow Cytometer. 

 

 

Physical Properties 

 

Voltage (mV) 

Forward Scatter 249 

Side Scatter 270 

 

Laser Properties 

 

Far Red 578 

Yellow 480 

NIR 500 

Red 

 

395 

       

3.3.4 Immunofluorescence Staining and Analysis 

Solutions and buffers used were made up in the Department of Surgery and all staining was 

performed in the Oncology Research Laboratory, Department of Internal Medicine. On the days 

of incubation sections were dewaxed in two changes of Xylene and then rehydrated through a 

graded series of alcohols and then rinsed in distilled, de-ionised water. Following this, sections 
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were placed in a microwavable slide rack, immersed in tris-ethylenediamine tetra-acetic acid (Tris-

EDTA) buffer (pH 9.0) and microwaved at medium heat for 5 minutes and then allowed to cool for 

20 minutes on the bench top. Next, sections were placed in phosphate buffered saline (PBS) for 

5 minutes, after which they were permeabilised in 0.1% Triton-X100 in 0.1% Bovine Serum 

Albumin (BSA)/PBS for 10 minutes. Once permiabelised, sections were washed in 3 changes of 

0.1% BSA/PBS, then aspirated and marked with a DAKO pen around each section. 

Primary antibodies include Mouse anti-Proliferating Cell Nuclear Antigen (PCNA), clone 10, 

isotype IgG2a (Invitrogen, Cat. No. 13-3900) and anti-Phosphotyrosine (4G10), mouse 

monoclonal IgG2bk (Millipore, Cat. No. 05-321). The PCNA anti-body was detected when 

conjugated to the Alexa Fluor® 488 secondary antibody (Molecular Probes®, Cat. No. A 21131) 

that specifically targets the IgG2a isotype and fluoresces on a green fluorescent channel. The 

anti-phosphotyrosine antibody was detected when conjugated to the Alexa Fluor® 568 secondary 

antibody, (Molecular Probes®, Cat. No. A 21124) specifically targeted to the IgG2bk isotype that 

fluoresces on a red fluorescent channel. Both positive and negative controls were included in the 

immunofluorescence staining runs. The positive control used was paraffin embedded sections of 

rat kidney and the negative control was skin sections obtained from this study wherein the primary 

antibody mixture was omitted and substituted with an equivalent volume of 0.1 % BSA/PBS.  

For dual immunofluorescence labelling of the sections, dilutions were determined prior to 

complete analysis on separate sections at a dilution of 1:150 for each of the primary antibodies. 

For dual labelling purposes the dilutions were maintained at 1:150 diluted in 0.1% BSA/PBS. 

Sections were incubated overnight with 25 µl of the primary antibody mixture at 4 oC in an airtight 

container lined with moistened blotting paper. 

The slides were washed in three changes of 0.1% BSA/PBS for 5 minutes at each wash. The 

secondary antibodies used were prepared with a dilution ratio of 1:200 diluted in 0.1% BSA/PBS. 

Sections were incubated with 25 µl of the secondary antibody mixture for an hour at room 

temperature in the dark. After incubation with the secondary antibodies, sections were washed in 

3 changes of PBS after which they were mounted with 100 µl of Fluoro-mount (Sigma, RSA). 

 

3.3.5 Section Imaging and Image Analysis 

Sections were imaged on an Olympus IX71 fluorescent microscope and processed using the 

analysis LifeScience® software package in the Oncology Research Laboratory, Department of 

Internal Medicine. Images were captured at a 40x magnification and exposure time of 1000 
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milliseconds (ms). At this magnification, three images were taken for analysis, laterally at either 

side of the section and in the midline to supply an evenly distributed representation of the sections. 

The images generated were a RGB composite which were then decomposed into the separate 

channels for further analysis (Figure 3.1). The blue channel was omitted as no signal was 

expected there and only the red (denoting tyrosine phosphorylation positivity) and green (denoting 

proliferating cell nuclear antigen) channels were analysed. 

Each channel was further analysed by importing the image into the planimetric software package 

IMAGE J (version 1.4.3.67) where the regions of interest were isolated and the mean fluorescence 

intensity (MFI) calculated. This was done in all the images on each of the sampling days. An 

average MFI of each treatment on each day was calculated and represented graphically. 

 

3.3.6 Statistical Analysis 

Statistical Analysis was done using the software package Statistica (ver. 9). All data was tested 

for normality using the Shapiro-Wilk Normality test accepting non-parametric data at p < 0.05. 

Data was found to be non-parametric; therefore the Kruskal-Wallis test was used for significance 

testing. 
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Initial Fluorescence Image with the ROI 
indicated by the yellow outline. 

Initial fluorescence Image decomposed into the green (PCNA) and red (4G10) Channels. At this 
point the mean intensity of the ROI is calculated which is denoted by the yellow lines. 

Figure 3.1. Immunofluorescence analysis algorithm. 
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3.4 Results 

 

3.4.1 Cytokine Analysis 

The results from the cytokine analysis at day 5 post-operative are shown in Table 3.3. The 

Senecio treatment group had a significantly greater IL - 1β when compared to the negative 

control (p = 0.017) but not when compared to the activated carbon treated wounds (p = 0.566). 

The activated carbon treated wounds had a significantly greater concentrations of IL - 1β than 

the negative control (p = 0.005). There were no significant differences in the other cytokines 

analysed. 

 

Table 3.3. Cytokine concentrations (pg. protein/ml wound fluid) at day 5 post-operative. Data 

are presented as mean ± SEM (n). Underlined p – values are significant. 

 

Cytokine 

Negative 

Control 

Activated 

Carbon Senecio 

Group 

wise p - 

value 

Senecio 

vs. 

Negative 

Control p - 

value 

Senecio 

vs. 

Activated 

Carbon p - 

value 

Negative 

Control vs. 

Activated 

Carbon p - 

value 

IL - 8 13.50 ± 2.78 (9) 20.50 ± 2.69 (9) 20.30 ± 4.84 (9) 0.325 0.158 0.724 0.331 

IL - 1β 8.02 ± 1.05 (9) 17.91 ± 2.66 (9) 25.52 ± 5.79 (9) 0.009 0.005 0.566 0.017 

IL - 6 8.93 ± 2.19 (9) 13.03 ± 2.29 (9) 15.43 ± 3.80 (9) 0.163 0.112 0.930 0.112 

IL - 10 9.09 ± 2.23 (9) 16.87 ± 3.39 (9) 11.93 ± 3.21 (9) 0.095 0.058 0.133 0.377 

TNF - α 18.09 ± 3.56 (9) 19.86 ± 3.14 (9) 18.63 ± 4.19 (9) 0.797 0.627 0.566 0.965 

IL - 12p70 18.40 ± 2.62 (9) 22.88 ± 2.93 (9) 25.32 ± 8.11 (9) 0.505 0.270 0.427 0.724 
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3.4.2 Tyrosine Phosphorylation and Cellular Proliferation 

Results for the tyrosine phosphorylation of the healing epidermis are shown in Table 3.4. 

Tyrosine phosphorylation in the healing epidermis for the Senecio and negative control treated 

wounds were similar throughout the duration of the experiment with no difference detected 

statistically throughout the observation period.  

The Senecio treated wounds had significantly greater tyrosine phosphorylation than the 

activated carbon treated wounds on days 9 (p = 0.042) and day 12 (p = 0.034) post-operative 

but was significantly lower at day 16 (p = 0.017). The negative control treated wounds were 

only significantly greater than the activated carbon treated wounds (p = 0.015) on day 7 post-

operative.   

 
Table 3.4. Epidermal tyrosine phosphorylation (4G10 MFI) at specific post-operative days. 

Data are presented as mean ± SEM (n). Underlined p – values are significant.  

 

Days 

Post-

operative Negative Control Activated Carbon Senecio 

Group 

wise p - 

value 

Senecio 

vs. 

Negative 

Control p 

- value 

Senecio 

vs. 

Activated 

Carbon p 

- value 

Negative 

Control vs. 

Activated 

Carbon p - 

value 

5 107.10 ± 2.13 (9) 98.06 ± 10.57 (9) 99.59 ± 6.53 (9) 0.377 0.537 0.4799 0.185 

7 113.67 ± 3.19 (9) 100.89 ± 5.77 (9) 120.84 ± 6.46 (9) 0.038 0.251 0.077 0.015 

9 116.25 ± 11.62 (9) 99.54 ± 6.78 (9) 119.55 ± 3.04 (9) 0.180 0.659 0.042 0.289 

12 114.91 ± 9.17 (9) 100.76 ± 9.54 (9) 126.43 ± 4.74 (9) 0.107 0.427 0.034 0.289 

16 118.40 ± 6.61 (9) 131.92 ± 5.55 (9) 113.01 ± 4.08 (9) 0.075 0.659 0.017 0.216 

 

Shown graphically the levels of tyrosine phosphorylation (Figure 3.2) increased rapidly for the 

Senecio treated wounds from day 5 to day 7, and remained elevated to day 12 post-operative 

and decreased after day 12. The negative control treated wounds showed a moderate 

elevation in tyrosine phosphorylation from day 5 to day 9 post-operative, after which it 

remained constant until day 16 post-operative. The activated carbon treated wounds remained 

constant at lower levels compared to the other treatments until day 12 when it increased to 

day 16 post-operative. 
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Figure 3.2.  Epidermal tyrosine phosphorylation (4G10 MFI) plotted against time (Days Post-operative). Error bars represent the SEM.

85

95

105

115

125

135

4 6 8 10 12 14 16

4
G

1
0

 M
e

a
n

 F
lu

o
re

s
c

e
n

t 
In

te
n

s
it

y
 (

M
F

I)

Days Post-operative

Negative Control

Activated Carbon

Senecio



 
 

86 
 

Results for epidermal proliferation seen in the healing epidermis are shown in Table 3.5. The 

Senecio treated wounds had significantly less proliferation at day 5 post-operative when 

compared to both the negative control negative control treated wounds (p = 0.001) and 

activated carbon treated wounds (p = 0.003). From day 7 to day 16 post-operative, no other 

differences were noted when the Senecio treated wounds were compared to the negative 

control treated wounds. The Senecio treated wounds had significantly greater levels of 

proliferation than the activated carbon treated wounds at days 9 (p = 0.013) and 12 (p = 0.017). 

At day 16, the activated carbon treated wounds had significantly more proliferation than the 

negative control treated wounds (p = 0.042).  

 

Table 3.5. Epidermal proliferation (PCNA MFI) at specific post-operative days. Data are 

presented as mean ± SEM (n). Underlined p – values are significant. 

 

Days Post-

operative 

Negative 

Control 

Activated 

Carbon Senecio 

Group 

wise p 

- value 

Senecio 

vs. 

Negative 

Control p 

- value 

Senecio vs. 

Activated 

Carbon p - 

value 

Negative 

Control vs. 

Activated 

Carbon p - 

value 

5 86.91 ± 3.51 (9) 84.03 ± 3.87 (9) 66.71 ± 2.47 (9) 0.001 0.001 0.003 0.595 

7 69.47 ± 6.05 (9) 75.21 ± 6.27 (9) 70.49 ± 5.58 (9) 0.783 0.930 0.427 0.957 

9 53.87 ± 4.53 (9) 49.92 ± 4.46 (9) 71.17 ± 7.29 (9) 0.052 0.157 0.013 0.596 

12 83.77 ± 9.56 (9) 66.23 ± 8.85 (9) 95.78 ± 7.06 (9) 0.030 0.185 0.017 0.112 

16 70.88 ± 6.61 (9) 84.87 ± 4.30 (9) 73.68 ± 7.83 (9) 0.080 0.589 0.093 0.042 

 

Shown graphically in Figure 3.3, the level of proliferation in the Senecio treated wounds was 

maintained from day 5 to day 9 post-operative, whereas the level of proliferation in the 

negative control and activated carbon treated wounds decrease in the same time period. From 

day 9 to day 12 post-operative, all treatments show an increase in levels of proliferation. At 

day 12 post-operative, the Senecio and negative control treated wounds show a decline in 

levels of proliferation to day 16 post-operative, whereas the activated carbon treated wounds 

continue to increase. 
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Figure 3.3. Epidermal Proliferation (PCNA MFI) plotted against time (Days Post-operative). Error bars represent the SEM.
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3.5 Discussion 

The main finding from the cytokine assays shows that on day 5 post-operative, the IL-

1β concentration was significantly higher in the Senecio and activated carbon treated 

wounds. At the same time point, although the Senecio treated wounds had a 

significantly lower level of proliferation, the level of tyrosine phosphorylation was the 

same for all treatment groups. From day 5 post-operative, the level of proliferation in 

the Senecio treated wounds is maintained at a steady state. This was not seen in the 

activated carbon or negative control treated wounds where a rapid decline is seen at 

the same point in time which recovers later. From day 5 post-operative there is an 

increase in tyrosine phosphorylation in the Senecio treated wounds which was not 

evident in the controls. 

The specific mechanisms by which a wound is re-epithelialized is proliferation and 

migration of keratinocytes from the wound edges and remaining hair follicles. It is quite 

possible that the cells in all treatment groups are migrating into the wound which would 

account for the thickening of the epidermal layers. In addition to the migratory input in 

the Senecio treated wounds, there was an added proliferative response (from days 5 

to 9 post-operative) as was shown by the sustained levels of the proliferating cell 

nuclear antigen which may also account for the epidermal thickness.  

Reasons for why the proliferative response was sustained in the Senecio treated 

wounds may be related to the tyrosine phosphorylation. Tyrosine phosphorylation has 

a role in cellular signalling mechanisms which are important in cell migration, 

proliferation and differentiation (168). Although, significant at day 7 post-operative the 

Senecio treated wounds maintained greater and sustained levels of tyrosine 

phosphorylation. These findings were similar to those of Murphy and Blenis (194) 

where the sustained and elevated levels of cellular signalling may be account for the 

differences observed in outcomes such as cellular proliferation and not neccesarily the 

actual amount of signal or tyrosine phosphorylation.  

The cell signalling pathways that are activated by tyrosine phosphorylation, although 

distinct are seen to overlap, and multiple ligands may bind to the same receptor linked 

pathway but with different effects. For example, MAPK pathways can be triggered by 

growth factors as well as inflammatory cytokines (194). Murphy and Blenis (194) 

reviewed the hypothesis that the same pathway could be manipulated to produce 

specific effects via different control mechanisms. Signal transduction could be 

manipulated by the density of membrane receptors and the duration of the tyrosine 

phosphorylation or the half-life of the specific phosphorylated protein.  
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The idea that ligand concentration is not the only factor driving cell responses and may 

be reason for the previously noted complexity of cell responses to stimulation. This 

contributing factor in the differential results of various growth factors brings into 

question the biochemical properties and kinetics of tyrosine phosphoryation, a topic 

that is highly complex and not yet fully elucidated.  

Responses to tyrosine phosphorylation is also determined by cell type and locality. 

The concept of signal transduction as a regulatory factor was initially proposed by 

Marshall (172) due to Fibroblast Growth Factor induces proliferation in fibroblasts but 

in PC12 cells the same growth factor induces differentiation. Signalling pathways in 

keratinocytes and fibroblasts (key cell populations in wound healing), a “proliferative” 

signal in keratinocytes has the opposite effect on fibroblasts where a “differentiation” 

signal is expected (195). An important pathway that is linked to keratinocyte 

differentiation is the activation of protein kinase C (intially activated by PLC- γ) with the 

concurrent influx of calcium, a potent mediator of this process (196). In keeping with 

the observation of Miteva (195) where the converse occures in fibroblasts who 

proliferate when the protein kinase C pathway is activated. 

PCNA is both a marker for cellular proliferation and has a key role in maintaining the 

proliferative response. Specifically PCNA assists with the tethering of DNA polymerase 

epsilon, a key enzyme involved in DNA synthesis and repair, to its DNA targets (197). 

Once bound to chromatin, its function is dependent on the tyrosine kinase activity of 

the EGF receptor (EGFR) within the nucleus (198) which leads to the phosphorylation 

of Tyrosine 211 residue of chromatin bound PCNA molecule to stabilize it. 

Furthermore, consistently raised PCNA Tyrosine 211 residue phosphorylation is 

correlated with pronounced cell proliferation (198). Thus the sustained expression of 

PCNA, possibly due to elevated or sustained levels of tyrosine phosphorylation, may 

have contributed to the significantly thicker epidermis measured on day 7 post-

operative, as described in the previous Chapter. 

As simple as this explanation might be, prior to the increase in the epidermal thickness 

there are lower levels of PCNA in all treatment groups which requires explanation. In 

the negative control and activated carbon treated wounds the lowest concentrations of 

PCNA are noted at day 9 post-operative coinciding with the point at which the 

epidermal thickness is maximal for these treatment groups. In the Senecio treated 

wounds the lowest concentrations of PCNA are seen around day 5 and 7 post-

operative, again coinciding with the time point at which the epidermal thickness is 

maximal. At day 5 post-operative where the Senecio treated group had significantly 
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lower concentration of PCNA compared to the controls, it had a significantly thicker 

epidermis than both the controls but, with the sustained levels of PCNA the epidermis 

continued to thicken until day 7 post-operative.  

In summary, the Senecio treated group’s initial low levels of PCNA coincide with a 

significantly thicker epidermis and sustained levels of PCNA coincided with an earlier 

maximum in epidermal thickness. In the control groups, a lower level of PCNA also 

coincided with an increase in epidermal thickness. These data may suggest that the 

role of PCNA was to maintain a proliferative response and, with greater sustained 

levels of tyrosine phosphorylation may have resulted in the greater epidermal 

thickness between days 5 to 7 after creating the wounds. Of note within the Senecio 

treated wounds, data was absent prior to day 5 post-operative and the trend of PCNA 

expression before the thickening of the epidermis could not be determined. 

Importantly in this study, IL – 1β was the only cytokine which was shown to be 

significantly higher in the Senecio group and only on day 5 post-operative. With the 

related functions being keratinocyte migration, keratinocyte and fibroblast proliferation 

and fibroblast synthetic function (181) the responses observed in the Senecio treated 

wounds may well be linked to the raised levels of this cytokine. 

Even though there were no observed differences in the other cytokines their roles are 

vital in wound healing and even though a significant elevation of IL – 1β was detected 

it would be naïve to consider this the important distinguishing feature because not all 

the potentially implicated ligands were measured here. The reason for this is that it 

was not financially possible to do so and again the importance of measuring the 

tyrosine phosphorylation is emphasised as it is a common link between many of the 

ligands (80).      

Although significant differences between the groups were determined, the specific 

proteins that were phosphorylated were not analysed. It is thus not currently known 

whether different signalling cascades were activated by diffferent ligands which was a 

limitation of this study. Furthermore as overlap between the signalling cascades (173) 

would further complicate determining the specific pathways involved, the approach of 

measuring overall tyrosine phosphoryation and proliferation was probably correct. 
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3.6 Conclusion 

Tyrosine phosphorylation and PCNA was elevated in Senecio treated wounds. The 

sustained elevated levels of tyrosine phosphorylation seen in these wounds may 

maintain and stabilise the function of PCNA, a factor known to be important in DNA 

synthesis and cellular proliferation. It is feasible that the raised levels of tyrosine 

phosphorylation in the Senecio treated wounds more than the controls was associated 

with the significantly greater concentrations of IL-1β. This cytokine is known to be 

important in keratinocyte proliferation and is also associated with receptor linked 

tyrosine kinases. Given the morphometric analysis showing that the epidermal 

thickness and cellular proliferation were significantly increased when the wounds were 

treated with the Senecio preparation, suggests that an assay determining keratinocyte 

proliferation could be used to measure accelerated wound healing by Senecio 

serratuloides var. Such an in-vitro assay could be used in a high throughput assay to 

identify possible lead compounds from plant extractions and isolates.  
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Chapter 4 - Plant Extraction, Isolation and Partial Identification through Culture 

Based Proliferation Assays 

 
4.1 Introduction 

In Chapters 2 and 3 it was shown that treating deep partial thickness wounds in a 

porcine model with Senecio preparations lead to the formation of a significantly thicker 

epidermis associated with increased tyrosine phosphorylation and sustained 

proliferation of the epidermal layers. The data therefore suggests that active 

compounds in the plant increase cellular proliferation in the epidermal layers. 

In the epidermal layer, 95% of the cell population are keratinocytes (199). In-vitro 

keratinocyte cultures can be used in a cell proliferation assay to screen for active 

fractions of the plant to isolate and characterise lead molecules. These molecules and 

their derivatives could potentially be patented to protect the indigenous knowledge and 

possibly secure an income for the owners of such knowledge.  

To identify lead compounds, active fractions needed to be assayed for wound healing 

activity. This requires the simultaneous extraction and fractionation of the plant 

together with the development of a simple and rapid screening in-vitro assay. 

Furthermore the development of the in-vitro assay needs to be compatible with the 

high-throughput assay format, for reasons that will be discussed further.  

 

4.1.2 Previous Plant Based Studies 

Studies focussing on plants described with wound healing activity have been reviewed 

in Chapter 1 and highlighted again in Table 4.1. Colorimetric tests were used to identify 

the chemical class of active components in Semecarpus anacardium (24), 

Zantboxylum chalybeum and Warbugiaugandensis (18), Ranunculus pedatus (45), 

Euphorbia caducifolia (26), Trichosanthes dioica Roxb (27), Glycosmis arborea (28), 

Hypericum patulum (29), Terminalia arjuna (35), Dendrophthoe falcata (L.f) Ettingsh 

(36). Such approaches identified tannins, saponins, steroids, flavonoids, phenols, 

glycosides and alkaloids all of which react to specific staining agents that can 

visualised under normal light, UV light or spectrophotometrically. Following these 

phytochemical screens, the “whole” extracts were tested on various wound models to 

prove efficacy but few studies continued to isolate and identify active components. An 

example was the study of the Michauxia species (46) that specifically determined 

polyphenols spectrophotometrically (200). These were then tested on rodent incisional 
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and excisional wound models and demonstrated efficacy but no further attempt was 

made to separate or identify specific phenolic compounds.  

In contrast, studies on Murraya koenigii (31), Croton zehntneri (54), Holoptelea 

integrifolia (37) and Cichorium intybus L. (47) used HPLC/MS. This approached 

identified carbazole alkaloids (important pro-apoptotic agents in leukaemia’s, 

lymphomas, and prostatic malignancies) and sesquiterpine phenolic compounds from 

essential oils from Murraya koenigii (31). Several alkaloids fractions and the essential 

oils as a whole, showed significantly enhanced epithelialisation at the midpoint of the 

observational period in rodent wound model experiments but not at the end of the 

experiment, an observation also made in this study (please see Chapters 2 and 3). 

Furthermore the activities of the separated alkaloids were compared and identified as 

previously described compounds.  

Suntar, et al. (201) investigated and characterised the active fractions from Cichorium 

intybus L. using a rodent model, solvent extractions, thin layer chromatography (TLC) 

and spectrophotometric techniques (mass spectrometry, UV spectrometry, 1H-13C and 

nuclear magnetic resonance) and determined β-sitosterol as the active compound.  
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Table 4.1. Selected studies where plants used for wound healing have been assessed for 

potential active compounds. 

Plant Name Extraction Solvent 
Further 

Evaluation 
Compounds Reference 

Jatyadi Taila 100% Methanol HPTLC 
Flavonoids, Essential oils, Tannins, 

Glycosides, Alkaloids, Resins, Steroids 
(22) 

Cichorium intybus L 
85% Methanol and 

sub fractionation 
Nil Phenolics (201) 

Semecarpus anacardium 100% Methanol Nil 
Flavonoids, Phenolics, Glycosides, 

Tannins 
(24) 

Zanthoxylum chalybeum 

and Warbugia ugandensis 
Ethanol Nil 

Polyurinides, Reducing Compounds, 

Saponins, Tannins, Alkaloids, Glycosides, 

Anthracenisides, Coumarin Derivatives, 

Flavonoids 

(18) 

Murraya koenigii Ethanol GCMS Alkaloids, Essential oils (31) 

Ranunculus pedatus and 

Ranunculus 

constantipolitanus 

Diethyl ether, n-

hexane, Ethyl 

acetate, Methanol, 

Water 

Nil 

Steroids, Triterpenes, Alkaloids, Saponins, 

Tannin, Anthraquinones, Flavonoids, 

Flavonoids, Sugars, Starch, Coumarins, 

Starch 

(45) 

Michauxia L'Herit Methanol Nil Polyphenols (46) 

Pinus species 
Water - Hydro 

distillation 
Nil Essential oils (47) 

Euphorbia caducifolia Latex resin Nil 
Carbohydrates, Amino acids, Phytosterols, 

Saponins, Glycosides, Fatty acids 
(26) 

Croton zehntneri Steam distillation GCMS Essential oils (54) 

Trichosanthes dioca Roxb Methanol Nil Alkaloids, Flavonoids (27) 

Glycomis arborea 50 % Ethanol Nil 
Flavonoids, Triterpinoids, Alkaloids, 

Phenols 
(28) 

Hypericum patulum Methanol Nil Steroids, Flavonoids (29) 

Plagiochasma 

appendiculatum Lehm. Et 

Lind 

Petroleum Ether, 

acetone, chloroform, 

ethanol, water, 

hydro alcoholic acid 

Nil 
Alkaloids, Anthraquinones, Saponins, 

Flavonoids, Sesquiterpenes, Terpines 
(32) 

Sesamum indicum No active extraction Nil Constituent Sesamol used (33) 

Terminalia arjuna 50% Ethanol Nil Tannins, Saponins, Reducing Sugars (35) 

Dendrophthoe falcata Ethanol Nil 
Alkaloids, Saponins, Flavonoids, Terpines, 

Steroids, Glycosides, Tannins 
(36) 

Holoptelea integrifolia Methanol HPTLC 

Alkaloids, Saponins, Flavonoids, Terpines, 

Steroids, Glycosides, Tannins, 

Anthraquinolones 

(37) 

Anredera diffusa 90% Ethanol NMR, HPLC Oleonolic Acid (59) 
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When determining and identifying active components, experimental controls are 

critical and should be based on previously established treatments with proven efficacy 

and market related success. For example, Reddy, et al. (37) investigated the chemical 

constituents in Holoptelea integrifolia using high performance thin layer 

chromatography (HPTLC) and assessed both wound healing efficacy and anti-

microbial effects of the extract. Comparison was made between the plant and 

Nitrofurazone, a common topical anti-microbial. In contrast, Malveira Cavalcanti, et al. 

(54) separated and identified essential oils from Croton zehntneri by gas 

chromatography and mass spectrometry (GC/MS) and tested these tested for wound 

healing effect. The most abundant essential oil was trans-anethole. To determine 

whether trans-anethole was the compound of interest, its efficacy was compared to 

the whole essential oil extract, with corticosteroids and fibrinolysin controls in a rodent 

model. Such controls are not commonly used in clinical practice and therefore may not 

be appropriate. 

 

4.1.3 Approach to Identifying Potential Compounds of Interest 

A number of protocols have been used to isolate active substances in plants. Neutral, 

acidic or basic water or solvent extracts of plant material provide a convenient means 

of extracting active substances from large amounts of plant material in sufficient 

quantities to undertake further isolation, assay and analysis of the active substances. 

The initial extract will indicate whether the substances are polar or non-polar and 

simple screening by thin layer chromatography (TLC) with colorimetric spray reagents 

can indicate the class of potential substances with activity. Further separation including 

high performance liquid chromatography (HPLC) and gas chromatography (GC), 

coupled with mass spectrometry (MS) allows for elucidation of chemical structures. 

Scale-up and fractionation from nano- or microgram scale to the gram scale may 

involve large and expensive preparative columns. Once purified, the isolated 

compound’s structure can be confirmed using techniques including infra-red 

spectroscopy, nuclear magnetic resonance and X-ray crystallography. 

 

4.1.4 Alkaloid Detection and Characterisation – Gas Chromatography and Mass 

Spectrometry 

Available literature suggests a potential compound class of interest in wound healing 

are the pyrrolizidine alkaloids with their role in gastric ulcer healing (144) and 

furthermore, many useful drugs in use today are alkaloid based. 
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The alkaloid group of plant compounds is generally described as being nitrogen 

containing cyclic compounds often synthesized from an amino acid precursor.  The 

class of alkaloids is known to contain many compounds and with more sophisticated 

investigations being routinely employed, the isolation and characterization of these 

compounds has accelerated. Currently known alkaloids have been classified (110). 

Four classification criteria are used: 

a) Chemical Classification – the most widely used classification based on the 

chemical nucleus. 

b) Biosynthetic Classification – based on the amino acid precursor being 

tryptophan, lysine, ornithine, tyrosine and histidine. 

c) Pharmacological Classification – based on the therapeutic outcome which is a 

broad classification and somewhat simplistic for novel agent identification. 

d) Taxonomic Classification – based on the plant taxonomy, again being an 

extremely broad classification. 

 

Chemical classification has an additional sub-classification based on the cyclic nucleus 

common to those alkaloids (Figure 4.1) and are either non-heterocyclic (one element 

– usually carbon) or heterocyclic with more than one element in the nucleus (carbon 

and nitrogen). In alkaloids with non-heterocyclic nuclei nitrogen resides within the side 

chains or functional groups. Additionally a distinction can be made on the number of 

rings present within each of these nuclei. Our investigation used GC/MS and mass 

spectra data from the nuclei is readily available from the National Institute of Standards 

and Technology (NIST) (202). If possible once a potential nucleus was identified 

further investigation of functional groups was made.  

Alkaloids are derived from amino acid precursors such as ornithine, lysine, tyrosine 

and tryptophan derived classes, and similar fragmentation patterns are observable 

within each of the amino acid sub-groups. Pyrrolizidine and tropane type alkaloids 

have base ions of 80-82 m/z for the pyrrolizidine alkaloids and the ion at 82 m/z as the 

base ion with a second peak 20% of the base ion at 83 m/z is commonly seen in the 

tropane alkaloids (203). Distinguishing ions for these 2 compounds are based on triplet 

fragments of 93-95, 119-121 and 136-138 m/z for the pyrrolizidine alkaloids (204) and 

an additional fragment at 94 m/z is common for the tropane alkaloids (203). 
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Figure 4.1. Common alkaloid nuclei making up a major classification system. Taken 

from Trease and Evans Pharmacognosy (110). 
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4.1.5 Approach to Identifying Potential Compounds 

Mass spectral fragmentation patterns allow for the identification of the common 

alkaloid nuclei which are represented in Figure 4.1 and with the corresponding 

fragmentation patterns seen in Table 4.2. Such data provides a starting point for 

identification of the possible class of compounds of interest. In general the fragments 

less than 100 m/z are fairly non-specific and are present in most cases. However, 

fragments around 40 m/z (± 5 m/z), specifically less than 40 m/z, are seen in the 

glycine, tyrosine, tryptophan, and pyridine type alkaloids. Those more than 40 m/z are 

common in the ornithine, lysine and histidine type alkaloids. Additional fragments 

greater than 55 m/z but less than 60 m/z are common in the ornithine and lysine type 

alkaloids and less than 55 m/z are common in the tyrosine, tryptophan and pyridine 

type alkaloids. Fragments greater than 60 m/z but less than 65 m/z are more common 

in the tyrosine and tryptophan classes. Identification of the alkaloid nuclei in the smaller 

fragments can lead to identification of the functional groups that are attached to the 

alkaloid nuclei and would be represented in the larger fragments. 

These ions and the fragmentation pattern are matched to similar fragmentation 

patterns in databases and in most cases this is an automated process and multiple 

computational algorithms have been developed for this purpose. When comparing 

unknown molecules, comparisons to spectral libraries will lead to non- or miss 

identifications and therefore additional algorithms have been developed to analyse the 

generated spectra of unknown compounds (205). These include 1) searching for 

similar spectra in a database and generating a percentage similarity, 2) rule based 

spectrum prediction using fragmentation principles, 3) combinational fragmentation 

using fragments to describe the compounds structure, 4) fragmentation trees and 5) 

mass spectral classifiers (205). 

Fragmentation patterns generated by electron impact ionization have been useful for 

identification of alkaloids using the mass spectral classifiers approach. Electron impact 

ionization gives rise to abundant molecular or parent masses, and complex 

fragmentation patterns to provide mass spectral classifiers (206).  

 

 

 



 
 

99 
 

Table 4.2. GCMS data for the relevant alkaloid bases. Data is presented as compounds occurring within an amino acid group with examples 

included. The formula and mass ion are shown with the mass ion represented as a range with the most common ion bolded. The fragmentation 

pattern depicted here is based on those from the NIST database with the prominent ions represented as a range and most common ion being 

bolded and in brackets. Key or base ions of each compound are underlined. 

 

Amino Acid 

Precursor Alkaloid Base Important Example Formula 

M m/z           (range 

of M) Fragmentation Pattern (m/z) 

Glycine Pyrrole Basic Building Block C4H5N 67.01 (66-68) 50-53 (52) , 36-42 (39) , 25-28 (28) 

Ornithine 

Pyrrolidine Nicotine C4H9N 71.12 (68-71) 37-44 (43) , 26-30 (28) 

Pyrrolizidine Senecionine/Retrosine C7H13N 111.18 (109-112) 93-98 , 80-85 (83) , 67-70 , 52-58 (55) , 39-44 (42) , 27-30 (28) 

Tropane Cocaine C8H15N 125.21 (122-126) 112-113 (113) , 91-98 (96) , 77-84 (82) , 66-71 (67) , 51-58 (57) , 39-44 (42) , 27-31 (27) 

Lysine 

Piperidine Basic Building Block C5H11N 85.15 (84-86) 67-70 (70) , 51-58 (56/57) , 39-44 (44) , 26-30 (29) 

Quinolizidine Sparteine C7H17N 139.24 (138-140) 110 , 96-97 (96) , 81-83 (82) , 67-68 , 53-55 , 39-41 

Indolizidine Swanisionine C8H15N 125.21 (120-126) 108-110 (110) , 93-98 (97) , 81-84 (83) , 67-71 (69) , 52-57 (55) , 39-43(41), 26-30 (27) 

Tyrosine 

Isoquinoline Morphine C9H7N 129.16 (128-130) 100-103 (102) , 74-78 (76) , 61-64 (63) , 50-52 (51) , 38-39 

Mescaline Mescaline C11H17NO3 211.26 (209-211) 

179-183 (182) , 165-168 (166) , 151-152 , 133-139 (136) , 120-124 (121) , 105-109 (105) , 89-95 

(91) , 77-81 (80) , 63-67 (65) , 50-54 (52) , 38-45 (39), 29-31 (30) 

Tryptophan 
Indole Ergotamine C8H7N 117.15 (116-118) 89-91 (90) , 61-64 (63) , 50-52 (51) , 37-39 (39) 

Quinoline Quinine C9H7N 129.16 (128-130) 100-103 (102) , 74-78 (76) , 61-64 (63) , 50-52 (51) , 38-39 

Histidine Imidazole Pilocarpine C3H4N2 68.08 ( 67-69) 38-42 (41) , 26-28 (28) 

Pyridine Pyridine Basic Building Block C5H5N 79.10 (75-80) 49-53 (52) , 37-40 (39) , 26-27 
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4.1.6 In-vitro Wound Healing Assays 

Scratch assays are widely used cell culture based bioassays where a cell monolayer is grown 

on a coverslip and the monolayer is “scratched” to create a wound or disruption. The cells can 

be treated with the substance being assessed and the migration of the cells back into the 

wounded area can be quantified (207). 

Previous Chapters demonstrated that in the in-vivo porcine wound model, cell migration was 

not significantly affected when comparing the various treatment modalities. In the deep partial 

thickness wounds, all wounds, regardless of treatment, were re-epithelialised to some degree 

by day 5 post-operative and in the full thickness wounds there was no difference in the extent 

of the migrating epidermal tongues. Although the process of wound healing requires cell 

migration into the wound space, this was not seen to be affected by the treatment modalities. 

From the immunofluorescence investigations, it was evident that cellular proliferation was the 

key variable and simple and inexpensive assays were required to assess this parameter when 

determining potential active constituents that affect wounds in the Senecio plant preparation.  

Cellular proliferation assays using tetrazolium salt and bromodeoxyuridine (BrdU) have been 

widely used to assess the potential of novel compounds for therapeutic use. However, despite 

their widespread use the tetrazolium salts are known to be toxic as the formazin dye that is 

produced has been shown to be carcinogenic. Furthermore these assays require the lysis of 

the cells to release and quantify the dye to determine cell proliferation. These assays cannot 

be used in on-going real time assays and would be difficult to adapt to high-throughput assays. 

An alternative to the tetrazolium salt and BrdU based assays is the use of resazurin based 

detection reagents. The resazurin based dyes have been used in cell proliferation assays for 

over 50 years and may offer significant advantages over the tetrazolium and BrdU approaches 

(208). Firstly the resultant fluorescent resorufin and is non-toxic to the cells and operator, 

making it a safer option (209). Secondly and importantly for our purposes, the cells do not 

need to be lysed to release the fluorescent metabolite for spectrophotometric quatification and 

therefore allow for a real time assessment of cellular proliferation.  

With the known complexity of the wound healing process single time point assays have the 

potential to miss important prior or subsequent events or effects. In-vivo monitoring and 

sampling of the wounds at multiple time points as opposed to a single time point has led to 

the detection of when the plant based therapy differs from controls and when it exerts specific 

effects. The development of a real time assay would be particularly useful to gain further 

insight into the wound healing effects.  
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Figure 4.2. Reduction of the Resazurin dye (accessed from www.pharmacelsus.de.). 

 

Past studies where resazurin assays have been employed in traditional or plant based 

therapies focus on the anti-proliferative aspects of potential lead compounds and so were 

mostly utilised in oncological investigations. The study of the antiproliferative properties of 

citrus flavonoids by Kawaii, et al. (210), using human lung carcinoma, mouse melanoma, 

human T-cell leukaemia and human gastric cancer cells emphasises this point. Studies on 

plant based therapeutics (Table 1.1) for wound healing made use of the tetrazolium salt and 

BrdU based assays and include Bulbine natalensis and Bulbine frutescens (9), the Astragalus 

genus (211) and multiple Brazilian derived plants (56). A PubMed search for the use of 

resazurin based assays in wound healing was unable to detect any previous publications in 

this regard and therefore makes our approach here a novel one.  

 

4.1.7 High-Throughput Assay Platform 

After identifying an in-vitro assay which could be used to identify potential lead compounds, 

the development of a high-throughput assay platform was explored. Such platforms have 

become the current pharmaceutical gold standard (212) and allow the screening of numerous 

compounds obtained from databases and in our case plant based therapies for a particular 

http://www.pharmacelsus.de/
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desired response. These assays have often been automated to reduce the investigators input 

required to identify and develop therapeutic agents. Furthermore high throughput assays allow 

for screening of known compounds in established databases and identification of compound 

classes from preliminary investigations when testing synthetic molecules. Furthermore such 

assays avoid expensive and time-consuming in-vivo models. However unlike in-vivo models, 

in vitro assays do not fully account for the complexity of the healing wound. 

Scratch assays have been the standard protocol for many investigations into wound healing 

and lead molecule identification, but it does not lend itself entirely to the high-throughput assay 

platform as its application to automated systems using multiwell plates is complex. Attempts 

have been made to adapt cell migration assays to high-throughput screening modalities (213). 

These authors were able to apply scratch based assays to multiwell plates (96 and 384) which 

were monitored using time lapse microscopy and then further quantified. Although this format 

fulfils the requirements for a high throughput assay, factors pertinent to wound healing appear 

to have been neglected and for our purposes would not suffice. Importantly cell proliferation 

could not be taken into account unless further staining techniques were employed thereby 

reducing the potential to automate the assay. As cellular proliferation was shown to be key to 

the present investigations, scratch assays would be difficult to adapt to high through assays 

for determining cellular proliferation. 

In development of the high throughput assays, a suitable target needs to be identified that 

responds in such a way that a therapeutic effect can be measured and compared (214).  

Suitable targets are mostly in the format of membrane receptors, enzymatic activity, ion 

channels and DNA responses (215). Additional general cellular responses could be measured 

but would require additional cell culture steps with longer preparation and assay times. The 

goal in the present experiments was to rapidly measure cellular proliferation. The format of 

these assays could be in 96 up to 384 multi-well plates.  
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4.2 Aims 

The aims of this study are therefore to:  

a) Develop an easily reproducible plant extraction protocol that can be adapted to scaling 

up isolation of lead fractions; 

b) Develop an in-vitro assay, which has high throughput assay applications, to identify 

possible lead fractions; 

c) Determine the constituents of the possible lead fractions.  
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4.3 Materials and Methods 

 

4.3.1 Plant Extraction and Analysis 

Whole Plant Extract 

The plant material was prepared as previously described in Chapter 2. A whole plant extract 

was prepared by extracting 5 g of previously prepared plant material in 100ml of deionised 

water. The extraction was continued for 24 hours after which it was sonicated for 90 minutes 

in a 200ml flat bottomed flask. The extract was filtered through a Number 1 Whattman filter 

paper and then filtered through a 0.22 µm syringe filter (Millex, Millipore). The extract was 

aliquoted into 5ml aliquots and stored at -70oC until use. Prior to experimentation the whole 

extract was prepared by serial dilution ranging from a 1:40 dilution to a 1:10 240 dilution. 

 

Plant Fractionation 

A water based solvent was used with the aim of extracting basic, neutral and acidic 

compounds. Therefore 5g of previously prepared plant material was extracted in either pure 

de-ionised water, 0.05M sulphuric acid in deionised water or 5% (v/v) ammonia in deionised 

water. The extraction volumes were each at 100 ml and the extraction continued for 24 hours. 

The extracts were sonicated for 90 minutes in 200 ml flat bottomed flasks. Following 

sonication, the extracts were filtered through no, 1 Whattman filter papers and then through a 

0.22 µm syringe filter (Millex, Millipore).   

For further extraction, 3 preconditioned 35cc/6g hydrophobic lipophilic (HLB) solid phase 

extraction cartridges (Oasis, Waters) were used. The solvents that were used were allowed to 

pass through the columns by gravitational force and each extraction took place over 6 hours. 

As per the manufacturers protocol, the cartridges were pre-conditioned with 100% methanol 

and equilibrated with deionised water. The sample was loaded and the resultant effluent was 

retained after which the cartridges were washed with 5% methanol in deionised water (wash 

1).  

For elution of the acidic compounds the acidic extract was subjected to a 2nd wash of 2% 

formic acid in methanol after which the cartridge was eluted firstly with 5% ammonia and 

secondly in 0.05M sulphuric acid in deionised water. The procedure for the neutral and basic 

compounds was the same up to the first wash after which the second wash was 5% ammonia 

in methanol; and eluted firstly with 2% formic acid in methanol, followed by the second elution 

of 0.05 M sulphuric acid.  
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Once all the extracts had been passed through the cartridges, the presence of alkaloids in 

each of the various fractions was detected by spotting the fractions on thin layer 

chromatography plates, and spraying the plates with Dragendorff’s reagent followed by 

heating the plates in an oven set to 150oC for 20 minutes. The first wash and the subsequent 

elutions were retained for the cell culture based assays with a resultant twelve fractions in total 

being tested. Prior to the in-vitro proliferation assay, the various fractions were evaporated to 

dryness after which they were reconstituted in phosphate buffered saline (PBS) at a 

concentration of 1:40 of the original extraction volume. The fractions were sterile filtered using 

a 0.22 µm syringe filter (Millex, Millipore) and then serial dilutions were prepared for use for 

the proliferation assays. All serial dilutions were stored at -70 oC until use. 

 

Table 4.3. Description of the various extractions and resultant fractions. 

 

Solvent Step Acidic Extract Neutral Extract Basic Extract 

Water Extract Whole plant Extract 

5% MeOH Acidic Extract Wash 1 Neutral Extract Wash 1 Basic Extract Wash 1 

2% formic acid / 5% ammonia Acidic Extract Wash 2 Neutral Extract Wash 2 Basic Extract Wash 2 

2% formic acid / 5% ammonia Acidic Extract Elution 1 Neutral Extract Elution 1 Basic Extract Elution 1 

0,05 M sulphuric acid Acidic Extract Elution 2 Neutral Extract Elution 2 Basic Extract Elution 2 

 

 

4.3.2 Proliferation Assays 

Cell Culture Conditions  

Based on the animal work described above, keratinocytes were identified as cells which are 

potentially the target of the active fractions of Senecio. Immortalised keratinocytes (HaCat) 

were obtained from Dr Nalini Pather from the School of Anatomy, University of the 

Witwatersrand. The protocol for in-vitro analysis was based on work by Hsu, et al. (216). Cells 

for the analysis were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) (Highveld 

Biological, South Africa, P02) supplemented with 5% Foetal Bovine Serum (FBS) (Gibco – 

Invitrogen, South Africa, 41F5180F). The cells were grown in 25 cm3 Corning culture flasks 
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(Sigma, South Africa) with 5 ml of cultured media. Subculture of the cells was done when the 

flasks were 80-90% confluent. The used media was discarded and the cells were washed with 

phosphate buffered saline (PBS) after which the flasks were trypsinised with 2 ml Trypsin-

EDTA for 5 minutes after which it was neutralised with a further 2 ml of culture media. Once 

detached the cells were centrifuged at 1500 rpm in 15ml culture tubes for 2 minutes. The 

supernatant was discarded and the pellet re-suspended in 10 ml of culture media. Once re-

suspended, the final volume was split into two flasks each containing 5ml of culture media and 

cells. The flasks were incubated in 5% carbon dioxide at 37 oC. 

 

Resazurin Based Proliferation Assay 

In order to conduct the proliferation assays, the cells were harvested from the culture flasks 

and counted using a haemocytometer. Cells for analysis were seeded into 96-well plates at a 

concentration of 0.5 X 104 cells/ml. Plates where further incubated for a further 24 hours after 

which they were treated with either the extracts as described above or the controls.  

 

Proliferation Assay Optimisation 

To assess the validity of the resazurin based assay multiple controls were employed. To 

negate any possible effects of the plant fractions as possible reducing agents, wells were left 

unseeded with cells and then treated with concentrated fractions (1:80). To negate any 

possible effects of the media, wells were seeded with cells, and left un-treated and the 

resazurin dye was omitted from these wells. 

 

Control and Resazurin Dye Preparation 

Controls included the vehicle (PBS only) acting as a negative control and epidermal growth 

factor (EGF) as the positive control. Lyophilised murine submandibular EGF (Sigma, South 

Africa) was reconstituted in 1% FBS in PBS to produce a stock solution of 340 ng/ml. From 

this stock solution, aliquots were prepared to adjust the concentration of EGF to 6.5 ng/20µl.   

For the quantification of proliferation, resazurin sodium salt (Sigma, South Africa) was made 

up to a standard 10% solution in DMEM and sterile filtered through a 0.22 µm syringe filter 

(Millex, Millipore) prior to use.   

 

Whole Plant Extract and Plant Fraction Proliferation Assays 

After the intial 24 hour incubation period and with the cells nearing confluence, they were 

treated with the various plant extract fractions and controls. A volume of 20 µl of either plant 
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fraction or control was added to the wells. Thereafter 10 µl of the Resazurin solution per 100 

µl culture media was added to each of the wells at the time of treatment.  

 

All treatments can therefore be summarised as: 

a) Negative control – 20 µl PBS 

b) EGF – 6.5 ng/20µl 

c) Whole plant extract – 20 µl of each serial dilution ranging from 1:40 to 1:5120 

d) Acidic extract fractions – 20 µl of each serial dilution ranging from 1:80 to 1:10240 

e) Neutral extract fractions – 20 µl of each serial dilution ranging from 1:80 to 1:10240  

f) Basic extract fractions – 20 µl of each serial dilution ranging from 1:80 to 1:10240 

 

After 4 hours of incubation of the cells the plates were read on a Biotek PowerWave HT UV – 

vis microplate spectrophotometer at a wavelength of 570 nm and 600 nm. All treatment 

modalities and controls were run in quadruplicate. According to Al-Nasiry, et al. (208) the 

percentage reduction can be extrapolated from the absorbance measurements using the 

following equation: 

 

% Resozurin reduction =  
(εoxλ2)(𝐴 λ1)  −  (εoxλ1)(𝐴 λ2) 

(εredλ1)(ᾈλ2)  − (εredλ2)(ᾈλ1)
 x 100 

Key: εox x1 
= extinction co-efficient of Resazurin at 570 nm wavelength in the oxidised state, 

εox x2 
= extinction co-efficient of Resazurin at 600 nm wavelength in the oxidised state, εred λ

1 
= extinction co-efficient of Resazurin at 570 nm wavelength in the reduced state, εred λ2 = 

extinction co-efficient of Resazurin at 630 nm wavelength in the reduced state, ᾈλ1 
= 

 

Absorbance of negative control wells at 540 nm wavelength , ᾈλ2 
= Absorbance of negative 

control wells at 630 nm wavelength, Aλ1 
= 

 Absorbance of the test wells at 540 nm wavelength, 

Aλ2 
= Absorbance of the test wells at 630 nm wavelength. 

 

Real Time Proliferation Assays 

To produce a real time assay the fractions at that specific dilution showing the best activity 

were repeated and monitored over 12 hours. The rate of proliferation was determined by 

generating linear equations for the first 4 hours of the experiments where the wells were 

treated with the identified fractions. Once the formulae’s were generated the gradient was 

determined for all test wells and the fractions and was compared to each of the controls. The 



 
 

108 
 

rate of proliferation for each fraction was expressed as a percentage of the controls, namely 

the negative control and EGF controls.   

 

4.3.3 Statistical Analysis 

All results were presented as percentage (%) reduction of resazurin dye. Statistical Analysis 

was done using the software package Statistica (ver. 9). The one-way ANOVA test with the 

Tukey post-hoc analysis was used and significance was accepted at p < 0.05. 
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Identification of potential lead fractions 

Gas Chromatography and Mass Spectrometry to 

identify potential lead compounds 

Figure 4.3. Schematic representation of the fractionation of the plant and subsequent steps thereafter. 
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4.3.4 Extract Analysis 

The fractions that showed significant activity were further analysed using gas chromatography 

coupled with electron ionisation mass spectrometry namely a 7890A GC system coupled with 

a 5975C inert XL EI/CI MSD triple axis detector (Agilent Technologies) fitted with a DB5 gas 

chromatography column (30m x 250 µm x 25 µm) (Agilent Technologies). The instrument used 

was based in the Department of Chemical Pathology, School of Pathology, University of the 

Witwatersrand.  

Samples for analysis were evaporated and reconstituted in 5 ml of HPLC grade methanol. The 

operation conditions for the analysis were as follows: samples were injected at a volume of 2 

µl with an initial starting temperature of 100 oC for 5 minutes thereafter an incremental increase 

of 5 oC to 310 oC which was maintained for a further 15 minutes. The entire run time was 62 

minutes. Nitrogen was used as the inert carrier gas with a pressure of 184.22 kPa at a flow 

rate of 1.0034 ml/min with an average velocity of 32.447 cm/sec.  

The resultant chromatograms were further analysed for significant peaks. In each 

chromatogram the peaks were noted and the retention times, molecular ion (M), base ion and 

absolute abundance and fragmentation pattern recorded. To account for potential background 

noise, pure methanol was run in between the sample runs and background peaks identified 

here were subtracted from the plant fraction spectra to obtain an accurate mass spectrum. To 

compare the two fractions, the retention times for the major peaks previously recorded were 

analysed for similarities in the two fractions i.e., retention time A in the neutral extract was 

identified in the basic extract and the data recorded as before. Mass spectra obtained were 

also compared to common fragmentation patterns for alkaloid bases obtained from the NIST 

database.  
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4.4 Results 

 

4.4.1 Cell Culture and Proliferation Assay  

 

Assay optimisation 

The results for the optimisation experiments are seen in Table 4.4. When the cells were not 

treated with either control or plant fraction, no resazurin reduction is seen until 2 hours after 

which they follow an incremental increase. The wells containing Cells + Resazurin dye and 

the wells without cells but with resazurin dye + 1:80 plant fraction show no reduction of the 

dye.   

Results were represented graphically in Figure 4.3. The wells that were seeded with cells 

showed minimal resazurin dye reduction up to 2 hours after which an incremental reduction of 

the resazurin dye is seen up to 12 hours. The wells containing no cells (Cell–less) but with 

either the resazurin dye only and with the resazurin dye + 1:80 plant fraction showed no 

reduction of the resazurin dye throughout the observational period as is seen as flat lines in 

the graphical representation of the optimisation experiments. 

 

Table 4.4. Percentage reductions of the optimisation of the resazurin based assays. Data are 

presented as mean ± SD (n).  

Time (hours) 

 

Negative Control 

 

Cell-less + Resazurin + 1:80 

 

Cells – Resazurin 

 

0 29.22 ± 4.74 (6) 22.39 ± 4.55 (9) 24.24 ± 5.18 (9) 

2 31.69 ± 2.11 (6) 22.43 ± 4.52 (9) 24.02 ± 4.82 (8) 

4 43.42 ± 7.20 (6) 22.35 ± 4.50 (9) 23.81 ± 4.77 (9) 

8 63.96 ± 13.84 (6) 21.71 ± 5.44 (6) 22.59 ± 5.39 (6) 

12 89.70 ± 10.46 (6) 22.28 ± 4.54 (6) 23.52 ± 4.67 (6) 
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Figure 4.3 Graphical representation of the optimisation experiments plotted against time (hours). Each marker represents mean % reduction 

and the error bars represent the SD.
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4.4.2 Whole Plant Extract Proliferation Assay 

Results for the whole plant proliferation assay were shown in Table 4.5. At a dilution of 1:160 

the whole plant extract had a significantly greater percentage reduction of the resazurin dye 

when compared to the negative control (p = 0.022) and EGF control (p = 0.008). No other 

significant differences were detected. The data is represented graphically in Figure 4.5. The 

whole plant extract shows increases in percentage reduction of the resazurin dye from a 

dilution of 1:160 to 1:1280 but was only significantly greater at the lower dilution. 

 

Table 4.5. Percentage reductions of the whole plant extract. Data are presented as mean ± 

SEM (n). Corresponding comparisons between the negative control and EGF control were 

shown with p –values. Underlined p – values are significant. 

  

 

Dilution % Reduction Negative Control 
Comparison p - 

value 

Epidermal Growth 
Factor Comparison 

p - value 

Negative Control 43.42 ± 7.09 (48)  

Epidermal Growth Factor 41.01 ± 6.52 (48) 

1:40 38.57 ± 1.24 (3) 0.485 0.825 

1:80 41.60 ± 3.81 (3) 0.903 0.989 

1:160 55.54 ± 3.74 (3) 0.022 0.008 

1:320 53.39 ± 9.40 (3) 0.139 0.060 

1:640 53.33 ± 9.39 (3) 0.142 0.061 

1:1280 49.12 ± 2.34 (3) 0.383 0.165 

1:2560 40.08 ± 5.67 (3) 0.732 0.976 

1:5120 40.38 ± 5.60 (3) 0.770 0.989 
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Figure 4.4. Graphical representation of the percentage reduction of the whole plant extract at 4 hours post treatment. Each bar represents 

mean % reduction and the error bars represent the SD. Significant differences were seen at the 1:160 dilution.
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4.4.3 Plant Fraction Proliferation Assay 

The generalised approach in this chapter is summarised in Figure 4.3. The results from the 

fraction’s proliferation assays were shown in Tables 4.7 to 4.10. There was no significant 

increases in the first three collected fractions, being Wash 1 (Table 4.7), Wash 2 (Table 4.8) 

and the Elution 1 fraction (Table 4.9). There were significant increases in proliferation relative 

to the controls in the Elution 2 fraction (Table 4.10). The differences seen were in the basic 

and neutral extraction at the dilutions of 1:160 to 1:640.  

At a dilution of 1:160, the basic extract had a significantly greater percentage reduction than 

the EGF control (p = 0.029) but not the negative control (p = 0.136). The neutral extract had a 

significantly greater percentage reduction than the EGF control (p = 0.000) and the negative 

control (p = 0.000).  

At the dilution of 1:320 the neutral extract had a significantly greater percentage reduction than 

the EGF control treatment (p = 0.001) and the negative control (p = 0.000). At the 1:640 dilution 

the neutral extract had a significantly greater percentage reduction than the EGF control (p = 

0.042) but not the negative control (p = 0.160).  

Graphical representation can be seen in Figures 4.6 to 4.9. The majority of the proliferative 

activity were seen in Figure 4.9, the Elution 2 fraction. The percentage reduction for this 

fraction show levels elevated above that of the controls but the significant differences were 

seen in the 1:160 to 1:640 concentrations as stated previously. 
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Table 4.6. Percentage reduction of Wash 1 fraction of the acidic, neutral and basic extracts. 

Data are presented as mean ± SD (n). Corresponding comparisons between the negative 

control and EGF control were shown with p –values. 

 

Extraction Dilution % Reduction 

Negative 
Control 

Comparison p 
- value 

Epidermal 
Growth Factor 
Comparison p 

- value 

 

Controls 
Negative Control 43.42 ± 7.09 (48) 

 
Epidermal Growth Factor 41.01 ± 6.52 (48) 

 

Acidic Extract 

1:80 33.87 ± 6.52 (4) 0.654 0.916 

1:160 33.70 ± 2.87 (4) 0.496 0.874 

1:320 32.04 ± 7.91 (4) 0.543 0.889 

1:640 34.49 ± 7.79 (4) 0.675 0.945 

1:1280 33.13 ± 7.52 (4) 0.358 0.747 

1:2560 34.98 ± 5.70 (4) 0.757 0.976 

1:5120 35.70 ± 0.46 (4) 0.999 1.000 

1:10240 34.63 ± 3.49 (4) 0.974 1.000 

 

Neutral Extract 

1:80 33.45 ± 3.82 (4) 0.703 0.939 

1:160 34.77 ± 5.50 (4) 0.450 0.842 

1:320 35.37 ± 2.41 (4) 0.657 0.944 

1:640 34.29 ± 2.58 (4) 0.437 0.803 

1:1280 34.21 ± 10.27 (4) 0.486 0.856 

1:2560 35.78 ± 6.83 (4) 0.560 0.902 

1:5120 37.81 ± 9.92 (4) 1.000 1.000 

1:10240 36.18 ± 5.73 (4) 0.922 0.998 

 

Basic Extract 

1:80 35.43 ± 4.72 (4) 0.970 0.999 

1:160 32.38 ± 4.13 (4) 0.114 0.382 

1:320 34.20 ± 8.31 (4) 0.178 0.491 

1:640 33.44 ± 5.31 (4) 0.424 0.792 

1:1280 33.83 ± 6.74 (4) 0.491 0.859 

1:2560 35.54 ± 9.27 (4) 0.449 0.829 

1:5120 36.41 ± 10.38 (4) 0.994 1.000 

1:10240 35.30 ± 7.93 (4) 0.951 0.999 
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Figure 4.5. Graphical representation of the percentage reduction of the Wash 1 fraction at 4 hours post treatment. Each bar represents mean % 

reduction and the error bars represent the SD. No significant differences were detected. Each bar represents mean % reduction and the error bars 

represent the standard deviation.
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Table 4.7. Percentage reduction of Wash 2 fraction of the acidic, neutral and basic extracts. 

Data are presented as mean ± SD (n). Corresponding comparisons between the negative 

control and EGF control were shown with p –values. 

 

Extraction Dilution % Reduction 

Negative 
Control 

Comparison p 

- value 

Epidermal 
Growth Factor 
Comparison p 

- value 

 

Controls 
Negative Control 43.42 ± 7.09 (48) 

 
Epidermal Growth Factor 41.01 ± 6.52 (48) 

 

Acidic 
Extract 

1:80 37.03 ± 10.20 (4) 0.991 1.000 

1:160 34.09 ± 6.44 (4) 0.540 0.900 

1:320 34.35 ± 9.13 (4) 0.670 0.949 

1:640 36.40 ± 8.45 (4) 0.942 0.999 

1:1280 34.90 ± 6.40 (4) 0.735 0.970 

1:2560 37.88 ± 5.39 (4) 0.987 1.000 

1:5120 36.48 ± 7.68 (4) 0.987 1.000 

1:10240 45.52 ± 6.80 (4) 1.000 0.998 

 

Neutral 
Extract 

1:80 40.03 ± 7.52 (4) 1.000 1.000 

1:160 35.98 ± 5.43 (4) 0.843 0.993 

1:320 33.89 ± 6.39 (4) 0.595 0.917 

1:640 36.10 ± 6.67 (4) 0.922 0.998 

1:1280 37.64 ± 5.93 (4) 0.982 1.000 

1:2560 39.99 ± 9.41 (4) 1.000 1.000 

1:5120 36.78 ± 11.44 (4) 0.991 1.000 

1:10240 35.63 ± 8.67 (4) 0.813 0.988 

 

Basic 
Extract 

1:80 37.82 ± 9.76 (4) 0.997 1.000 

1:160 34.18 ± 8.96 (4) 0.556 0.908 

1:320 31.09 ± 4.27 (4) 0.200 0.529 

1:640 31.91 ± 2.71 (4) 0.349 0.718 

1:1280 31.90 ± 3.90 (4) 0.270 0.642 

1:2560 36.12 ± 4.62 (4) 0.890 0.996 

1:5120 36.77 ± 5.18 (4) 0.991 1.000 

1:10240 34.97 ± 3.84 (4) 0.715 0.967 
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Figure 4.6. Graphical representation of the percentage reduction of the Wash 2 fraction at 4 hours post treatment. Each bar represents mean % 

reduction and the error bars represent the SD. No significant differences were detected. Each bar represents mean % reduction and the error bars 

represent the standard deviation.
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Table 4.8. Percentage reduction of Elution 1 fraction of the acidic, neutral and basic extracts. 

Data are presented as mean ± SD (n). Corresponding comparisons between the negative 

control and EGF control were shown with p –values. 

  

Extraction Dilution % Reduction 

Negative 
Control 

Comparison p 

- value 

Epidermal 
Growth Factor 
Comparison p - 

value 

 

Controls 
Negative Control 43.42 ± 7.09 (48) 

 
Epidermal Growth Factor 41.01 ± 6.52 (48) 

 

Acidic 
Extract 

1:80 37.85 ± 5.84 (4) 0.998 1.000 

1:160 35.02 ± 8.52 (4) 0.700 0.965 

1:320 36.11 ± 12.42 (4) 0.900 0.997 

1:640 35.35 ± 7.79 (4) 0.852 0.990 

1:1280 34.79 ± 4.86 (4) 0.718 0.966 

1:2560 34.62 ± 11.89 (4) 0.689 0.957 

1:5120 35.46 ± 3.58 (4) 0.957 0.998 

1:10240 38.59 ± 4.53 (4) 0.996 1.000 

 

Neutral 
Extract 

1:80 39.89 ± 6.58 (4) 1.000 1.000 

1:160 33.63 ± 5.96 (4) 0.461 0.850 

1:320 35.16 ± 5.42 (4) 0.792 0.982 

1:640 35.99 ± 9.27 (4) 0.913 0.997 

1:1280 34.89 ± 6.84 (4) 0.735 0.970 

1:2560 42.32 ± 11.98 (4) 1.000 1.000 

1:5120 35.73 ± 4.84 (4) 0.967 0.999 

1:10240 39.54 ± 3.96 (4) 1.000 1.000 

 

Basic Extract 

1:80 37.93 ± 7.08 (4) 0.998 1.000 

1:160 35.98 ± 4.09 (4) 0.842 0.992 

1:320 30.47 ± 9.30 (4) 0.145 0.430 

1:640 34.18 ± 2.49 (4) 0.697 0.953 

1:1280 36.46 ± 2.86 (4) 0.921 0.998 

1:2560 35.92 ± 14.94 (4) 0.869 0.994 

1:5120 33.69 ± 2.56 (4) 0.832 0.978 

1:10240 36.67 ± 10.14 (4) 0.925 0.999 
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Figure 4.7. Graphical representation of the percentage reduction of the Elution 1 fraction at 4 hours post treatment. Each bar represents mean 

% reduction and the error bars represent the SD. No significant differences were detected. Each bar represents mean % reduction and the 

error bars represent the standard deviation.
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Table 4.9. Percentage reduction of Elution 2 fraction of the acidic, neutral and basic extracts. 

Data are presented as mean ± SD (n). Corresponding comparisons between the negative 

control and EGF control were shown with p –values. Underlined p – values were significant. 

 

Extraction Dilution % Reduction 

Negative 
Control 

Comparison p 

- value 

Epidermal 
Growth Factor 
Comparison p 

- value 

 

Controls 
Negative Control 43.42 ± 7.09 (48) 

 
Epidermal Growth Factor 41.01 ± 6.52 (48) 

 

Acidic 
Extract 

1:80 36.73 ± 4.51 (4) 0.581 0.875 

1:160 31.50 ± 3.96 (4) 0.030 0.136 

1:320 32.70 ± 5.68 (4) 0.098 0.324 

1:640 34.08 ± 4.10 (4) 0.191 0.501 

1:1280 34.52 ± 3.69 (4) 0.263 0.632 

1:2560 32.73 ± 6.14 (4) 0.257 0.625 

1:5120 34.66 ± 3.57 (4) 0.752 0.954 

1:10240 33.46 ± 5.27 (4) 0.247 0.619 

 

Neutral 
Extract 

1:80 39.69 ± 4.12 (4) 1.000 1.000 

1:160 64.10 ± 3.98 (4) 0.000 0.000 

1:320 63.29 ± 4.48 (4) 0.001 0.000 

1:640 57.25 ± 4.94 (4) 0.160 0.042 

1:1280 52.15 ± 4.68 (4) 0.389 0.123 

1:2560 59.14 ± 6.12 (4) 0.999 0.944 

1:5120 62.14 ± 9.48 (4) 0.998 0.949 

1:10240 50.14 ± 5.23 (4) 0.980 0.766 

 

Basic 
Extract 

1:80 55.25 ± 6.02 (4) 0.539 0.244 

1:160 57.01 ± 5.86 (4) 0.136 0.029 

1:320 51.28 ± 5.06 (4) 0.585 0.235 

1:640 54.52 ± 6.66 (4) 0.560 0.228 

1:1280 47.03 ± 6.70 (4) 1.000 0.993 

1:2560 51.96 ± 3.33 (4) 0.962 0.705 

1:5120 50.43 ± 6.50 (4) 1.000 0.996 

1:10240 46.90 ± 5.11 (4) 1.000 0.997 
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Figure 4.8 Graphical representation of the percentage reduction of the Elution 2 fraction. Each bar represents mean % reduction and the error 

bars represent the SD. No significant differences were detected. Each bar represents mean % reduction and the error bars represent the 

standard deviation. Significant differences were seen at the dilutions 1: 160, 1:320 and 1:640.
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4.4.4 Real Time Proliferation Assay 

The real time assay results (Table 4.11 and Figure 4.10) shows that the two fractions identified 

as potential leads have a significantly greater percentage reduction when compared to the 

controls at 4 hours. From the point of treatment (0 hours) the controls exhibit a period of delay 

after which at 2 hours the percentage proliferation starts to increase. The lead fractions exhibit 

no delay period and immediately start to increase. The lead fractions show a change in the 

rate of percentage reduction at 4 hours to reach an eventual end point at 12 hours equal to 

that of the controls.  

When considering the first 4 hours and specifically the rate at which the cells are proliferating 

(Figure 4.11 and Table 4.12), the neutral and basic fractions have greater rates of proliferation 

when compared to the negative control (353% and 264% respectively) and the epidermal 

growth factor (383% and 286% respectively). 
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 Table 4.10. Real time assay with the two fractions where activity was shown at 4 hours. Data are presented as mean ± SD (n). Corresponding 

comparisons between the negative control and EGF control were shown with p –values. Underlined p – values were significant. 

Time 

 Basic Extract Elution 2 Neutral Extract Elution 2 

Negative Control % 
Reduction 

Epidermal Growth 
Factor % Reduction 

% Reduction 
Negative Control 
Comparison p = 

value 

Epidermal Growth 
Factor Comparison 

p = value 
% Reduction 

Negative Control 
Comparison p = 

value 

Epidermal Growth 
Factor Comparison 

p = value 

0 29.22 ± 4.74 (6) 27.93 ± 3.98 (6) 19.48 ± 7.02 (4) 0.990 0.539 13.87 ± 2.18 (4) 0.690 0.170 

2 31.69 ± 2.11 (6) 30.88 ± 2.82 (6) 35.68 ± 5.86 (4) 0.697 0.926 40.63 ± 2.42 (4) 0.689 0.930 

4 43.42 ± 7.20 (6) 41.01 ± 6.21 (6) 57.01 ± 10.80 (4) 0.001 0.001 64.10 ± 1.38 (4) 0.136 0.050 

8 63.96 ± 13.84 (6) 62.87 ± 13.24 (6) 74.07 ± 1.15 (4) 0.691 0.751 73.23 ± 3.20 (4) 0.750 0.493 

12 89.70 ± 10.46 (6) 88.49 ± 10.96 (6) 91.38 ± 1.70 (4) 0.615 0.822 91.76 ± 3.98 (4) 0.570 0.783 
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Figure 4.9. Real time assay of the two lead fractions compared to the controls. Means were plotted against hours post treatment. Markers 

represent the mean percentage reduction and the error bars represent the SD.  

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12

%
 R

e
d

u
c
ti

o
n

 o
f 

R
e

s
a

z
u

ri
n

Hours Post Treatment

Negative Control

Epidermal Growth Factor

Basic Extract Elution 2

Neutral Extract Elution 2



 
 

127 
 

 

Figure 4.10. Analysis of the first 4 hours of the real time proliferation assay. Means were plotted against hours pot treatment. Markers represent 

the mean percentage reduction and the error bars represent them SD. Corresponding linear equations for each treatment are shown for further 

evaluation.
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Table 4.11. Gradient and rate comparison of the fractions where activity was seen. The 

gradients shown here depict the rate of proliferation. Rates of proliferation were compared to 

both the negative control and epidermal growth factor and expressed as percentage of the 

relevant control.  

 

Treatment Equation Gradient 
Gradient Comparison of Extracts 

Compared to Controls (% of Control) 

   
Negative 

Control 

Epidermal Growth 

Factor 

Negative 

Control 
y = 3.5505x + 27.675 3.551 

 
Epidermal 

Growth Factor 
y = 3.2705x + 26.731 3.271 

Neutral Extract 

Elution 2 
y = 12.556x + 14.42 12.556 353.640 383.917 

Basic Extract 

Elution 2 
y = 9.3823x + 18.627 9.382 264.253 286.877 

 

 

4.4.5 Gas Chromatography and Mass Spectrometry  

The two fractions identified by the proliferation assays being the 2nd elution’s of the neutral 

and basic extractions were further analysed by gas chromatography coupled with mass 

spectrometry. Gas chromatograms are seen in Figure 4.11 and Figure 4.12. Fragmentation 

patterns are seen in Table 4.12.  

With the same GCMS run conditions, the neutral extract produced better peak separation and 

peak abundances when compared to the basic extract. In the neutral extract fraction, five 

peaks were identified as being significant and are labelled 1-5 in Figure 4.11. Corresponding 

peaks (based on retention time) of the basic extract fraction were labelled 6-8 in Figure 4.12 

but peaks 3 and 5 were not identifiable in the basic extract fraction. Significant peak 

abundances in the neutral extract fraction ranged from 2 x 106 to 9 x 106  units compared to 

the basic extract fraction which ranged from 4 x 105 to 8 x 105 units.   

The similarities between the 2 fractions were identified between the retention times of 18 and 

25 minutes. The data produced for the parent ions (M) shows masses of 534.9, 539.3, 537.1, 

538.9, 539.4, 493.0, 538.0 and 544.4 m/z for peaks 1 to 8 respectively. For simplification the 
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similar peaks were assessed based on base ions, similarities in the detected peaks, and 

parent ion indicated by the largest mass ion on the spectra.  

At the retention time of 18.821 minutes, both peaks 1 and 6 have base ions of 199 m/z. Further 

similarities in the peak abundance (relative to base ion) are seen at 230, 135, 104, 76, 50 m/z. 

An additional peak at 253 m/z was noted in the basic extract fraction. The parent masses for 

these peaks are at 534.9 and 493.0 m/z for the neutral and basic extracts respectively 

indicating a difference of 41.9 m/z. Important fragmentation patterns are seen in peaks 1 and 

6 with significant ions seen at 50, 76, 104 and 135 m/z with base ions at 199 m/z detected in 

both peaks. 

At the retention time of 19.522 minutes, in peaks 2 and 7 both have base ions of 253 m/z. 

Similar peaks in the mass spectra can be seen at the ions 191, 64, and 48 m/z although the 

relative abundances are greater in the basic extract fraction at the ions 64 and 48 m/z. 

Additional peaks were noted in the basic extract at the ions 493, 346.1, 331.1, 301.1 and 269 

m/z. The neutral extract had an additional ion at 207 m/z. The parent masses for these peaks 

are at 539.3 and 538.0 m/z for the neutral and basic extracts respectively indicating a 

difference of 1.3 m/z. 

At the retention time of 20.047 minutes, peak 3 was detected in the neutral extract fraction but 

not the basic extract fraction. The fragmentation pattern here was the same as that of peak 2 

with a base ion of 253 m/z. Differences were noted in the parent mass of 537.1 m/z and the 

abundance of the ion 207 m/z relative to the base ion was greater than that of peaks 2 and 7. 

Additional ions were detected here at 347.1 and 281 m/z. 

At the retention time of 22.325 minutes peaks 4 and 8 were detected but were different. The 

base ions of the neutral extract was detected at 405 m/z and the basic extract detected at 301 

m/z. The prominent ions in both fractions were detected at 405, 343.1, 64 and 48 m/z. In the 

neutral extract additional ions were detected at 373, 223, 131 and 119 m/z which were not 

present in the basic extract. The basic extract had additional ions detected at 389.1, 253, 191 

and 135 m/z. The basic extract fraction had additional ions at 301 (base peak) and 156 m/z. 

The parent masses for these peaks were 538.9 and 544.4 m/z for the neutral and basic 

extracts respectively with a difference of 5.5 m/z. 

At the retention time of  26.247 minutes peak 5 was seen in the neutral extract but not in the 

basic extract. Prominent base ions at 207 and 135.1 m/z were seen with a prominent ion at 

472 m/z. Other significant ions were detected at 417. 64 and 48 m/z. The total parent mass 

ion was at 539.4 m/z.
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Figure 4.11. Gas chromatogram of the 2nd elution of the neutral extract. Significant peaks are labelled 1 – 5 on the chromatogram. 
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Figure 4.12. Gas chromatogram of the 2nd elution of the basic extract. Peaks labelled 6 – 8 are those correspond with the peaks 

identified in neutral extract. Peak 6 correlates with peak 1, peak 7 correlates with peak 2 and peak 8 correlates with peak 4. Peak 3 

and 5 seen in the neutral extract were not detectable. 
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Table 4.12. GCMS results. Data presented – Extract either neutral or basic, Peak number corresponding to the labelled peaks in Figure 4.12 

and Figure 4.13, Retention Time, Absolute Abundance, M or parent ion, and fragmentation pattern with the base ion bolded and underlined. M 

and fragmentation masses reported correspond with m/z. The fragmentation pattern for the pyrrolizidine and Isoquinoline type alkaloids are 

taken from the NIST database. 

 

Extract 
Peak 

Number 

Retention 
Time 
(min) 

Absolute 
Abundance 

M Fragmentation Pattern (Base ion is bolded and underlined) (M+) - Base Ion 

Neutral 
Extraction 

1 18.821 9000000 534.9 534,9 , 230 , 199 , 135 , 104 , 76 , 50,1 335.9 

2 19.522 2200000 539.3 539,3 , 253 , 207 , 191 , 64 , 48 286.3 

3 20.047 1600000 537.1 537,1 , 347,1 , 331,1 , 281,1 , 253 , 165,1 , 64 , 48 284.1 

4 22.325 6300000 538.9 538,9 , 405,1 , 389,1 , 343,1 , 253 , 191 , 135,1 , 64 , 48 133.9 

5 26.247 2000000 539.4 539,4 , 417,2 , 207 , 135,1 , 64 , 48 332.4 / 404.4 

Basic 
Extraction 

6 18.821 800000 493.0 493 , 253 , 230 , 199 , 135 , 104 , 76,1 , 50,1 340.0 

7 19.522 500000 538.0 538 , 493 , 346,1 , 331,1 , 301,1 , 269 , 253 , 191 , 165,1 , 91 , 64 , 48 285.0 

 20.047 Not detected   

8 22.325 400000 544.4 544,4 , 405,1 , 343,1 , 301 , 156 , 64 , 48 243.4 

 26.247 Not detected   

Pyrrolizidine Alkaloid Base Comparison 93-98 , 80-85 (83) , 67-70 , 52-58 (55) , 39-44 (42) , 27-30 (28)  

Isoquinoline Alkaloids Base Comparison 100-103 (102) , 74-78 (76) , 61-64 (63) , 50-52 (51) , 38-39  
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4.5 Discussion 

4.5.1 Cell Proliferation Assay 

The extraction protocol followed here yielded multiple fractions based on the pH and relative 

solubilities of the wash and elution steps. Of the twelve fractions collected, two were seen to 

be efficacious based on the resazurin proliferation assay. The identified fractions were from 

the second elution steps of the neutral and basic extractions. Compared to the controls at 4 

hours after treatment of the culture wells, the neutral extracts showed significantly greater 

percentage reductions of 64.1 ± 3.98% and 63.29 ± 4.48% (dilutions of 1:160 and 1:320 

respectively) and the basic extracts showing percentage reductions of 57.01 ± 5.86%  and 

57.25 ± 4.94% (dilutions of 1:160 and 1:320 respectively) which was almost 20% greater than 

the controls. 

With further experimentation over an extended observational period interesting differences 

were seen. The controls show a delayed response in that the percentage reductions here only 

increased appreciably after 2 hours. Compared to the identified fractions, the delay was not 

present and the treated cells exhibited an immediate increase in the reduction of the dye 

thereby bypassing the “lag” phase. Additionally, when the rate of proliferation was calculated, 

it was noted that the plant fractions increased the rate of proliferation by up to 380% when 

compared to the controls.  

At the end of the observational period the percentage reductions were however equal but this 

is in keeping with the animal based assays where similar results were seen. Equal end points 

in experimental and controls was also seen in the work by Nagappan, et al. (31) which 

establishes the importance sequential measurements in a real time based assay which was 

achieved here.  

Development of this assay was conducted with multiple controls to account for possible 

confounding factors. To establish the optimal time point for observation in mass 

experimentation, the negative control was run separately over a 12 hour observational period 

with a sequential increase in the percentage reduction noted. From this an optimal time period 

was identified at 4 hours after the cells where treated with a percentage reduction of 43.42 ± 

7.2% close to 50% of the total amount of resazurin reduction that was possible.  

The possibility of the plant fractions acting as possible reducing agents of the dye was also 

considered. At this optimisation stage, the fractions were shown not to affect the reduction of 

the dye. With the wells not having been seeded with cells, the percentage reduction was 

maintained at 30%. As there were no cells in the wells it was expected that the reduction of 

the dye should be 0% but this was not the case as was stated before however all the wells 

regardless of treatment and cells started at roughly the same point of around 20-30% reduction 
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and therefore the plant fractions were assessed as not being the cause of the reduction of the 

dye but rather the response of the cells to the plant fractions. It is currently unclear why the 

percentage reductions all started at 30% could be found. 

With the confounding factors in mind, the assay results seen at 4 hours was sensitive enough 

to identify two lead fractions which were then followed up with further experimentation over a 

longer period of time converting the assay to a real time assay. With the evidence seen 

previously as being a good identification of the lead fractions, the real time assay revealed 

interesting trends which was seen with the loss of the lag phase. To our knowledge this has 

not been described before and is an interesting possibility when considering wound healing. 

It is also a possibility that the significant differences in percentage reduction seen at 4 hours 

was a product of the immediate proliferation induced by the plant fractions. 

Importantly to the aims of this Chapter, the process of extraction and fractionation described 

here was found to be reproducible with scaling up of the procedure with large quantities of 

isolates being the eventual goal. Additionally an important aim achieved here is that 2 similar 

fractions were identified with the only difference being the pH at which they were initially 

extracted, all conditions were otherwise the same. For reasons unknown the acidic extracts 

second elution step did not show any activity.  

Deductively any similar compounds identified between the active fractions should be the 

eventual molecules of interest. Here we have identified a number of similarities between the 

two fractions but the abundance obtained from each extraction differed and may be the reason 

for the differing proliferation assay results. It was shown that the neutral extract performed 

better compared to the basic extract but may be due to a concentration effect of the potential 

compounds. This is substantiated by a higher percentage reduction at the higher dilution of 

1:180 of the basic extract (however not significant) compared to the neutral extract at the same 

dilution (55.25 ± 6.02 compared to 39.69 ± 4.12 respectively).  At lower dilutions the neutral 

extract performed better (see dilutions 1:160 and 1:360) but at greater dilutions no effect was 

noted. This may be a toxic effect and further experimentation is warranted. 

The assay developed here is not routinely performed for investigations concerning wound 

healing. As was previously stated, the most widely used approach is scratch assays, which 

are labour intensive and characterise the cell migration aspect of wound healing. The assay 

developed here is simple to perform making it highly reproducible, allows for real time 

applications and importantly can be applied to automated platforms for further development 

into a high-throughput assay. 
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Multiple advantages of conversion to a high-throughput assay exist. Firstly, by virtue of the 

fact that plants contain numerous potential lead compounds, they may be assessed quickly 

and efficiently with quantification of the effect as opposed to subjective assessments 

commonly seen in wound healing investigations. Secondly, there exists a possibility that other 

previously documented compounds existing in extensive databases may produce a similar 

effect which could be assessed singularly, in combination with other known compounds or 

used to augment the effects of the plant compounds that have been identified here. 

 

4.5.2 Gas Chromatography and Mass Spectrometry  

It is well known that members of the Senecio genus are known to contain pyrrolizidine 

alkaloids which prompted the search for a possible lead compound of this class. Significantly 

the report by Toma, et al. (144) identified this class as having a potential to promote healing 

however this was shown in the gastric mucosa of a rodent ulcer model. Additionally throughout 

the extraction process, the fractions where activity was shown where assessed for the 

presence of alkaloid type compounds by the use of Dragendorff’s reagent. There is therefore 

a strong possibility that a pyrrolizidine-type alkaloid may be the reason for the beneficial effects 

noted in Senecio based therapy assessed here. The possibility that another compound type 

may also be of interest should not be ignored and therefore the extraction protocol followed 

here are not specifically aimed at isolating pyrrolizidine alkaloids but rather compounds with 

similar properties. 

The choice of extraction and chromatographic techniques has varied considerably when 

alkaloids are concerned and even vary as to the various plant components from which they 

are isolated. Early descriptions of generic protocols were based on extractions performed with 

a chosen solvent followed by evaporation and protonation of the extract. From here the 

extracts were made basic with an alkali solution rendering the compound of interest insoluble 

in water. From here liquid-liquid extractions could be performed dissolving the compounds into 

a solvent with differing densities and polarities to that of the original extract and 

dichloromethane was commonly used.  

Solid phase extraction protocols are now seen to be superior when isolating compounds from 

complex biological mixtures. Compared to the original liquid-liquid extraction techniques, solid 

phase extraction allows for faster processing times and higher isolate yields compared to the 

former but cost and extensive sorbent possibilities tend to be complicating factors (217). The 

use of this approach has mostly been seen in samples where the compound of interest was 

known and were used to identify and quantify the relevant compounds in samples. For 
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pyrrolizidine alkaloids specifically the packing sorbent material of the SPE cartridges is mostly 

strong cation exchange resins. This was used by Colgate, et al. (218) and Boppre, et al. (219) 

to identify pyrrolizidine alklaoids in food sources. Interestingly, Yoshimatsu, et al. (220) made 

use of the same cartridges that were used in this investigation, namely the hydrophobic-

lipophilic (HLB) reverse phase based sorbent.   

Ideally the sorbent material of the cartridges is selected based on the properties of the 

compounds of interest. An algorithm described by Zwir-Ference and Bizuik (221) shows that 

ideally water based extractions are best processed using cation or anion exchange resins 

once the extract is either acidified or alkalinised whereas neutral water and organic solvent 

extractions are mostly processed using phase dependent sorbent materials. Otherwisely 

described as separation based on polarity being more suited to phase dependent sorbent 

materials and charged based separations more suited ion exchange sorbent materials. The 

extractions of Senecio here, being either acidic, neutral or basic produced both of the 

previously mentioned scenarios. The acidic and basic extractions were most likely charged 

and therefore the ideal sorbent material should have been the relevant ion exchange resins. 

The neutral extract therefore performed better on the HLB reverse phase material and this 

may be a reason for the differing results obtained from the gas chromatography and mass 

spectrometry.    

In theory, selection of the appropriate sorbent material is based on prior knowledge of the 

analyte of interest making the use of solid phase extraction controversial when used in the 

context of this investigation. To counteract this problem the use of the HLB cartridges allowed 

for a wider range of polarities to be isolated. According to the manufacturers insert, protocols 

have been designed to accommodate acidic, neutral and basic extractions. Also important to 

these experiments was the ability of the packing materials to tolerate water as the mobile 

phase for loading the samples. As the initial extractions were water based, there was no 

necessity to evaporate the samples to suspend them in organic solvents thus minimising 

sample processing steps and losses. 

Literature concerning the chromatographic separation of plant extractions describe liquid 

chromatography as the technique of choice. This was seen in the study of Murraya koenigii 

(31) which is one of the few reports concerning alkaloid isolation for the use of wound healing. 

Again the work concerning Daphne oleoides (44) also employed the use of liquid 

chromatography to identify potential lead compounds. The use of chromatography with 

regards to wound healing has led to significant compound identification and so was considered 

ideal for the work described here.  
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This investigation included gas chromatography and mass spectrometry to characterise the 

compounds present in the extract fractions. Gas chromatography was preferred due to its 

advantages over liquid chromatography when analysing complex unknown mixtures but may 

not be the best option for pyrrolizidine alkaloids detection as further derivitisation techniques 

may be indicated (222). Nevertheless, reports of the use of gas chromatography for 

pyrrolizidine alkaloids have been reported in identification of toxic PA’s in Senecio cineraria 

(223) and selected Senecio species from Egypt (224). In these instances a crucial step was 

included which was the reduction of the extracts using zinc powder which results in the 

reduction of the N-oxide form (which cannot be analysed on GCMS) to the free base form. 

The importance of this step is seen in the relative concentrations of these forms being roughly 

90% of the N-oxide form and 10% of the free base form therefore allowing greater detection 

of pyrrolizidine alkaloids (225). As the fractions analysed here were largely unknown, omission 

of the derivitisation step was permissible.   

The identification of potential compounds present in the plant was a partial success. Firstly as 

it was theorised that if multiple fractions elicite a certain reaction (i.e. keratinocyte 

proliferation), then the compounds that are similar within those fractions should be the 

compounds of interest. In these experiments, the compounds that were most similar were 

those seen in peaks 1 and 6. The similarities recorded here was the retention time, base ion, 

and fragmentation patterns. No other similarities were noted between the other identified 

peaks and therefore the possibility that peaks 1 and 6 contained the compound/s of interest 

was greatly supported.  

Investigations of this nature typically aim to characterise the compounds with a molecular 

formula and structure as the end point. However mass spectrometry is not sufficient to achieve 

this and therefore further investigation such as nuclear magnetic resonance would be 

indicated. The goal of mass spectrometry would be to identify a compound based on reference 

spectra but as discussed previously this may be problematic when unknown samples are 

investigated. The mass spectra produced here were not identifiable on the NIST database, 

which may be advantageous as unknown compounds are promising for potential patents. 

Possibly the most important question here is whether the compounds/peaks identified here 

are in fact pyrrolizidine alkaloids. As was previously stated, the pyrrolizidine alkaloids have 

characteristic mass spectra with a characteristic ion at 80/82 m/z depending on the saturation 

of the necine base with additional features that include the triplet fragments of 93-95, 119-121 

and 136-138, none of which were evident in any of the identified peaks which suggests that 

the compound of interest may not be a pyrrolizidine alkaloids.  
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An important feature seen here was that the parent mass ions identified in the peaks where in 

the order 500 + m/z. The potential that the molecular mass of the compounds could be a 

general indicator as to the possibility that these compounds are not pyrrolizidine alkaloids was 

not substantiated as selected reports have shown a wide range in the parent masses of 

pyrrolizidine alkaloids. Witte, et al. (1993)  reported extensively on about 100 different 

pyrrolizidine alkaloids with a range in parent masses extending from 155 m/z up to 483 m/z. 

Colgate, et al. (218) identified pyrrolizidine alkaloids in Crotalaria juncea with mass ions of up 

to 360 m/z with the presence of the characterisitc fragmentation ions. Boppre, et al. (219) 

characterised multiple pyrrolizidine alkaloids from commerically available honey extracts and 

showed that the masses of these compounds ranged from 380 m/z up to 500 m/z.   

The work by Witte, et al. (226) documents of pyrrolizidine alkaloids extensively, based on 

separation by gas chromatography and identification by mass spectrometry, based on the 

retention time and mass ions. These important features provided adequate comparison here.  

Additionally they documented the use of a DB-5 column, which was used in the experiments 

reported here. In comparing retention times and mass ions, no similarities in any of the peaks 

were identified thereby reducing the possibility of the presence of pyrrolizidine alkaloids in the 

plant fractions analysed here.  

The fragmentation patterns obtained here do provided information as to the potential class of 

compounds. From the peaks identified here it was seen that peaks 2, 3, 4 and 8 did not show 

any similarities with the alkaloid base fragmentation paterns identified in the NIST database 

but their potential as compounds of interest cannot be excluded.  

Peaks 1 and 6 display similar fragmentation patterns with the potential that these are the same 

compounds. Additionally examination of the fragmentation patterns is not in keeping with any 

data consistent with pyrrolizidine alkaloids. The possibility therefore is that that the peaks 

identified here may be another type of alkaloid and comparrisons with the NIST data (table 1 

and again in table 8) shows similarities with the isoquinolone type alkaloid bases, an important 

class due to the examples here being morphine and codeine normally extracted from the 

Papaveraceae family (227). 

Although the bases show significant similarities between each other and with the bases 

identified in the NIST database, it was difficult to compare published data, as other mass 

spectrometric approaches were employed. Wu-Nan and Cheng-Hong (228) used ion spray 

tandem mass spectrometry to assess the various isoquinolone, benzylisoquinoline, aporphine 

and phenanthrene alkaloids. Schmidt, et al. (227) used tandem mass spectrometry to analyse 

these types of alkaloids but with atmospheric pressure photoionisation. Although the 
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experiments here did not use tandem mass spectrometry, similarities could be seen in the 

base peak ions occuring in the 180-200 ranges similar to what was seen in this investigation 

but the base ion of 199 m/z and mass ions could not be found in published reports concerning 

alkaloids. 

With the speculation as to the possible types of compounds that have been identified, it is not 

certain as to what class of alkaloid could be exerting the effects seen in the in-vitro assays. It 

is clear that further isolation of the identified peaks is necessary and from this point the in-vitro 

assays would need to be repeated to identifiy the compound/s of interest. Further 

characterisation of the compound can be done using other modalities such as nuclear 

magnetic resonance. 
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4.6 Conclusion 

The approach adopted here is different to that reported in the literature. In this investigation 

we used a porcine model to establish if efficacy indeed existed. In-vitro experiments were then 

used to further establish the efficacy and serve as an assay when fractionating the plant. The 

use of keratinocytes allowed for the development of an in-vitro assay that led to the 

identification of two potential active fractions. Furthermore the assay described here has the 

potential for high throughput applications. Analysis of these lead fractions by gas 

chromatography and mass spectrometry did not identify the pyrrolizidine alkaloids reported in 

the literature, but another class of alkaloids was identified which requires further 

characterisation.  
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Chapter 5 – Final Conclusion and Future Studies 

 
With the aims of this project defined in Chapter 1, it was clear that multiple questions needed 

to be answered in order to accomplish the aims. It was clear that minimal information was 

present regarding the plant and moreover the effect that it could potentially have on the 

process of wound healing was largely if not completely unknown. Additionally, the wound 

healing process is extremely complex with multiple variables present and important at different 

phases throughout the process. This makes it particularly challenging to identify a mechanism 

through which potential agents may work. The project was therefore divided into Chapters 

dealing with: 1) efficacy and safety, 2) mechanistic investigation and 3) plant fractionation and 

assay development. 

 

5.1 Efficacy and Safety 

It was therefore decided that the first phase in this project would establish efficacy and safety; 

key concepts that needed to be proven as motivation for subsequent experimentation. This 

phase required in-vivo experimentation, mostly due to the complexities of wound healing being 

poorly translated into in-vitro experimentation. A porcine model was used with deep partial 

thickness and full thickness wounds created on the animal’s dorsum. The reason for using 

deep partial thickness wounds lies in the traditional healer’s indication being for superficial 

cuts and abrasions. However the addition of full thickness wounds was to provide important 

information that could not be obtained from the deep partial thickness wounds.  

The information obtained from the deep partial thickness wounds included wound pH and 

epidermal thickness. The information obtained from the full thickness wounds included 

keratinocyte migration and wound contraction. An image analysis algorithm was also devised 

to assess the collagen production within both kinds of wounds, with a method which is believed 

to be novel, as opposed to the traditional colorimetric approaches.  

The plant under investigation here is known colloquially as the “2 day cure” but its potential 

was only seen at day 5 post-operative by gross inspection. With clear differences seen at this 

time point it was necessary to quantify these differences in the most objective approach 

possible hence the development of the algorithms employed to describe and quantitate the 

elements of the wounds. It is believed that this is still a general approach to assess the efficacy 

of the plant but it was necessary to determine the viability of further investigations.  

The wound pH was seen as a variable that describes the overall functionality of the 

regenerated skin. This concept is based on the presumption that normal intact skin maintains 

a specific pH. In general there were no major differences noted between the treatment groups 
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but interestingly, the wound pH in all treatment modalities stabilized at a later time point 

compared to when the epidermis was in situ. This suggests that that the physiological 

functionality of the skin was established at a time point later than when the perceived 

anatomical integrity was established.  

The only difference in wound pH was at day 2 post-operative where the plant had a 

significantly lower pH as compared to the controls and the reason for this is not quite clear. 

Catabolic events may have contributed to this altered pH, but without objective evidence for 

this, the issue remains unsolved and may be a potential point of interest for further 

investigation. The advantage of the wound pH measurement lies in its simplicity and minimal 

invasiveness of the approach which may have both experimental and clinical applications. 

Assessment of the epidermal thickness has not been commonly determined in wound healing 

investigations. Furthermore in this investigation a novel parameter, epidermal thickness ratio 

was determined to compare the epidermal thickness relative to the unwounded skin. In this 

instance it was necessary as the model included deep partial thickness wounds and minimal 

wound contraction would be expected. Interestingly the scenario that came to light included 

the epidermal thickness, which showed extensive thickening of the epidermis in the Senecio 

and activated carbon treated wounds but not in the negative control treated wounds. However, 

when the wounds were adjusted for regional variation of the thickness of the dorsal skin, this 

was not evident.  

Controlling for regional skin thickness appears to have a great effect on the data as it could 

be seen that in the negative control treatment group, the epidermis did not thicken compared 

to the other treatments. It would therefore suggest that normal wound healing without the 

application of any therapy would not show the thickening followed by thinning of the epidermis. 

When the epidermal thickness ratio was considered, the process of thickening and thinning 

was more apparent in the negative control treated wounds. It is possible that the normal skin 

in the negative control groups was just naturally thinner. Important in this evaluation was the 

time point at which the skin thickness peaked which was 2 days before that of the controls. 

This therefore suggests that proliferative events occurred at an earlier point in time compared 

to the control groups. 

The collagen content of the wounds was assessed which was seen to be similar within all 

treatment groups and regardless of the wound type. However the approach devised here was 

novel and requires further validation, but it could be seen as more sensitive when compared 

to the previously reported colorimetric and histological approaches reviewed in Chapter 1. 

Furthermore it is not subject to observer error as in the score based histological approaches 
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and secondly the potential for assaying normal skin is reduced as compared to the colorimetric 

approaches. 

The issue of whether the plant is safe as a topical agent for wound healing was partially 

addressed here with liver function tests throughout the observational period and liver biopsies 

one month after the observation period. The liver function tests were deranged at some points 

in the observation period but histologically no evidence of hepato-toxicity could be detected. 

The topical administration of the plant is possibly the reason for why there was no toxicity 

detected histologically. Topical application of the plant compounds bypasses the gastro-

intestinal system where the acidic pH of the stomach converts pyrrolizidine alkaloids to their 

free n-oxide bases, which are the molecules responsible for hepatotoxicity. It is however 

possible that the quantity of plant material that the pigs were exposed to was insufficient to 

elicit a toxic response and would require further investigation, but with the lead fractions or 

compounds. 

 

5.3 Mechanistic Investigation 

Attempts were made to identify a pathway by which the plant exerted it activity on the 

keratinocytes that were identified from the experiments in Chapter 2. In terms of the phases 

of wound healing, the phases that theoretically coincide with the differences noted in Chapter 

2 (around days 5 -7) are the inflammatory and proliferative phases. Although this narrows 

down the potential targets for investigation, it is still extremely broad due to the multiple factors 

seen in each of these phases. 

Assessment of the inflammatory phase focused on the inflammatory cytokines with the 

addition of the anti-inflammatory cytokine, IL-10. A limitation of this study was that few of these 

factors were determined. They only represent the messengers present within the wound and 

not the cellular components that react to or produce the messengers. However they may 

identify the state of the wound being either pro-inflammatory or anti-inflammatory. This 

designation should be made relative to the negative control treated wounds, as this is the 

natural course a wound should follow.  

Compared to the negative control treated wounds at day 5 post-operative, it appeared that the 

activated carbon treated wounds displayed more of a pro-inflammatory status with elevated 

levels of IL-8, 1β and 6 together with an increase in the anti-inflammatory interleukin-10, but 

these concentrations were not significantly different. In the Senecio treated wounds, a similar 

picture was seen but the anti-inflammatory interleukin-10 was not as raised, suggesting the 

elevated pro-inflammatory cytokines may be necessary to the wound healing process. 

However in the case of the Senecio treated wounds a significantly raised interleukin-1β 
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concentration was seen compared to the negative control treated wounds. Interestingly 

interleukin-1β is known to play roles in induction of keratinocyte and fibroblast proliferation, 

fibroblast synthetic functions and keratinocyte migration. The above mentioned roles 

associated with interleukin-1β added to the possibility that the Senecio based therapy exerted 

its effects through keratinocyte proliferation.  

Important to this investigation was the effects that pyrrolizidine alkaloids have on epidermal 

growth factor (EGF) that was shown by the work of Toma, et al. (134). Again the role of this 

growth factor is significant but it is well known that multiple growth factors beneficially affect 

wound healing to the extent that certain factors are currently approved for human therapeutic 

intervention. Of significance is that many of these growth factors, including various cytokines 

bind to their respective receptors and induce tyrosine phosphorylation, thereby identifying a 

common link to many of the factors.  

The levels of tyrosine phosphorylation and resultant keratinocyte proliferation were assayed 

through immunofluorescence staining techniques. It was seen that the plant induced sustained 

cellular proliferation through increased tyrosine phosphorylation although. Additionally the 

initial increase from day 5 to 7 was much greater in the Senecio treated wounds compared to 

the controls. The possibility remains that other signalling events may also play a role in the 

sustained proliferation reported here due to the fact that the difference between the plant and 

negative control group was negligible. Again there is also the possibility that interleukin-1β is 

playing a role here. 

The effects of ligand tyrosine phosphorylation are mostly mediated through various signalling 

cascades which were not assessed. Future investigations will be aimed at identifying the 

possible pathways that are activated by the plant in question through micro-array based 

assays. These can identify multiple signalling cascades which are important as the activation 

of many of these cascades simultaneously is a very real possibility. This may allow for future 

interventions where the cascades may be preferentially activated within a wound. 

The level of proliferation from day 5 to day 9 post-operative was seen to decrease in the control 

treated wounds but in the Senecio treated wounds the levels were sustained which may be 

the reason for the increased epidermal thickness and ratio seen in Chapter 2. The reason for 

the decrease seen in the controls is unknown at this point but because the assumption that 

the negative control represents the normal wound healing process, this may be the normal 

response of keratinocytes.  

The fact that at day 2 post-operative the epidermis was absent and but present by day 5 shows 

that important time points were missed. In the initial efficacy experiments in Chapter 2, this 

was not seen to be of any significance but at this stage there was a deficiency in the tyrosine 
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phosphorylation and cellular proliferation data. This is a point to be addressed in future 

investigations but is more appropriate once an active or lead compound is identified and 

isolated. However the investigations here did help identify a target for the identification and 

isolation of potential compounds.  

 

5.4 Plant Extraction and Culture 

It was clear that keratinocyte proliferation was the target that needed to be exploited to identify 

potential lead fractions/compounds. The prior experiments conducted, looked at broad events 

seen in wound healing from where was possible to narrow down to a quantifiable target. 

Additionally the advantage of this was that high-throughput assay modalities could be 

considered. This was due to the nature of plant-based investigations leading to multiple 

potential compounds/fractions. Additionally, compound databases could be accessed to 

produce the same effects or augment the effects of other compounds.  

Initially it was suspected that pyrrolizidine alkaloids may be the class of compounds of interest 

to this investigation, but isolating only these compounds may be extremely naïve as previous 

plant based investigations by a number of authors have shown that many different compounds 

are beneficial to wound healing. It was therefore decided that extraction protocols employed 

should not be specific for pyrrolizidine alkaloids but should allow for extraction of multiple 

potential compounds. For this reason the extraction procedure used here with the chosen solid 

phase extraction cartridges allowed for the fractionation of the plant extracts based on 

chromatographic principles and provided extracts with as many potential compounds as 

possible. Additionally this approach was seen to be easily reproducible through commonly 

established protocols.  

Once multiple fractions are produced, it is commonplace to analyse these fractions for the 

possible compounds that are present. It was decided that a more goal directed approach to 

optimize time and resources was to identify the fractions that show proliferative activity and 

thereafter analyse the fractions for possible lead compounds. With keratinocyte proliferation 

identified as the target for further investigation, the assay chosen to conduct these 

experiments was real time, resazurin-based proliferations. With the introduction of real time 

assays it was shown that two fractions were able to significantly increase the level and rate of 

cellular proliferation, up to 380%, an observation that would quite likely have been missed had 

traditional approaches been used.  

The advantage of developing this assay for this application is that it is highly amenable to high-

though put assays for the reasons previously mentioned. Additionally the resazurin-based 

assay demonstrated here is extremely compatible with automated culture systems. It is 
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important to state that the culture experiments conducted here were not high-throughput 

assays by strict definition, but did provide the framework for further development and 

application. 

Analysis of the identified fractions was conducted using gas chromatography and mass 

spectrometry allowed for the identification of a potential alkaloid class. Additionally these 

compounds were not identifiable on the NIST database. The presence of pyrrolizidine 

alkaloids in this plant was not confirmed and still needs to be considered in future 

investigations. 

The identification of two active fractions allowed for comparison between the fractions. An 

assumption was made that similar compounds would be present in both of the fractions were 

potentially the compounds of interest. Here a compound was identified in both fractions based 

on retention time and spectral fragmentation patterns. The fragmentation pattern of the lower 

mass to charge ratios was more in keeping with the Isoquinoline type alkaloids than to the 

pyrrolizidine type alkaloids and may be class of compounds of interest. 

Future investigations will focus on the identified peaks seen here. These would be isolated 

further and tested using the developed proliferation assay. Animal models would be required 

to confirm the efficacy of the lead compounds. Furthermore the isolated compounds would be 

further characterized using physicochemical techniques.  
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