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ABSTRACT

The report describes the design of an algorithm which can be used for automatic
controller tuning purposes. It uses an on-line parameter estimator and a pole as-
signrnent design method. The resulting control law is formulated to approximate a
proportional-integral (PI) industrial controller. The development ofthe algorithm
is based on the delta-operator, Some implementation aspects such as covariance re-
setting, deadzone, and signal conditioning are also discussed. Robust stability and
performance are two issues that govern the design approach. Addltlonaliy J,ransient
and steady state system response criteria are utilized from the tirl<$}11l'.d flvquenc:y
domains. The design work is substantiated with the use of simulation and ff':~lplant
tests.

iv



Contents

1 Introduction
1.1 Background.......... •....
1.2 Objective and Overview of the Report

1.2.1 Objective of the Research
1.2.2 Overview of the Report .. .

5
5
8
8
8

2 Principles of Parameter Estimation
2.1 Introduction .
2.2 Linear Parametric Process Model.
2.3 Projection Algorithms . . . . . . . .

2.3.1 Gradient Algorithm .....
2.3.2 Orthogonalized Gradient Algorithm

2.4 Least Squares Algorithm. . . . . . . . . . .
2.4.1 Least Squares with Covariance Resetting
2.4.2 Least Squares with Exponential Data Weighting
2.4.3 Least Squares with Deadzone

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . ,

10
10
11
12
12
12
13
13
13
14
16

3 Control Principles
3.1 Introduction .
3.2 Linear Deterministic System Model in Predictor Form
3.3 Minimum Prediction Error Controllers ..

3.3.1 One-Step-Ahead Control .
3.3.2 Weighted One-Step-Ahead Control
3.3.3 Model Reference Control ... ...

3A Closed-Loop Pole Assignment Controllers
3.5 Summary . . . . . . . . • . .

11
17
18
19
19
19
20
23
26

4 Discrete Control Using Delta-Operators
4.1 Introduction .
4.2 The Delta-Operator .
4.3 The Delta-Operator Transform Domain
4.4 Summary . . . . . • . . . . . . . . . . .

27
27
28
30
32

5 Design of the Regulator Tuning System
5.1 Introduction.....,
5.2 Parameter Estimator .
5.3 Controller Design ...

33
33
34
31

1



5.3.1 Controller Design for First-Order Plant
5.4 Approximation to a I l Regulator.
5.5 Summary . . • . . . . . . . . . . . . . . . . . .

40
42
48

6 Implementation Aspects
6.1 Introduction .
6.2 Sample Rate Selection .
6.3 Signal Conditioning ..

6.:U The Low-Pass Filter
6.3.2 The High-Pass Filter ..

6.4 Exponential Discounting and Deadzone
6.4.1 Exponential Discounting . . . . .
6.4.2 Deadzoile.............

6.5 Selection of the Closed-Loop Polynomial .
6.6 Summary . . . . . . . . . . . . . . . . . .

49
49
50
51
51
52
59
59
59
61
63

7 Experimental Results
7.1 Introduction ..•
7.2 Simulation....

7.2.1 Summary
7.3 Simulation....

7.3.1 Summary
704 Real Plant Test .

7.4.1 Summary

64
64
65
67
75
77
85
87

8 Conclusion
8.1 General .
8.2 Results of the Study . . . . .
8.3 Suggestions for Future Work .

93
93
95
96

A Bierman's U..D Covariance Factorization 97

B Alternative Method of Expressing the PI Controller in o-Operator
Fermat 101

C Formulation of the Pole Placement Controller as a PIn Controllerl02

D The Computer Program 1(;4

2



List of Figures

1.1 Block Diagram of the Computer Control System

3.1 Model Reference Control System .
3.2 General Feedback Loop
3.3 Closed -Loop Control . . . . . . . .

7

22
24
25

4.1 The Discrete Integrator ..;....
4.2 Stability Region of the ,-Transform "'. f" .•

29
31
38
39
44
45
46
47

5.1 Closed-Loop System with Output Disturbance
5.2 The Closed-Loop System with D and S Included
5.3 Typical PI Control Loop .•........
5.4 Pole-zero Locations of the PI Regulator .
5.5 Frequency Response of.the PI Regulator .
5.6 Block Diagram of the Tuning System ...

6.1 Discrete Low-Pass Filter .
6.2 Frequency Response of the Analog LPF
6.3 Frequency Response of the Digital LPF
6.4 Frequency Response of the HPF .•..
6.5 Block Diagram of High-Pass Filter ...

7.1 Plot of Actual and Estimated Plant Output Values.
7.2 Plot of Estimated Error and Deadzone ..
7.3 Plot of Estimated Parameters aO and bO .
7.4 Root Locus of the System . • . • . . . . .'
7.5 Response of the System to a Step Series .
7.6 Response of the System to a Step Series .
7.7 Response ofthe Ccmpensated System to a Step Input
7.8 Plot of the Real and Estimated Plant Values .....
7.9 Plot of the Random Disturbance and Estimation Error . .
1.10 Plot of the Estimated Parameters •...
7.11 Plot of the Two Estimated Models . . .
7.1? Plot of the Variable Deadzone and DMZ
7.13 Root Locus of the System . . . . .
7.14 System Response to a Step Input ....
7.15 Block Diagram of the Process . . . . . .
7.16 Plot of the Real and Estimated Plant Output
7.17 Plot of the Plant Input and ihe Estimation Error •.
T.IS Plot of the Estimated Plant Parameters . . . . . . .

sa
54
55
5'7
58

68
69
10
71
72
73
74
78
79
80
81
82
83
84
86
88
89
90

3



7.19 Plot of the Variable Deadzone and BMZ •.
7.20 Plot of the Parameter Estimation Error . .

91
92

4



Intro duct ion

1.1 Background

The proportional-integral (PI) feedback controller is unquestionably the most rom-
monly used controller in the chemical process industry. Its robust performance in
a wide range of applications is the main reason behind its popularity. However,
the large number of PI feedback control loops in a chemical plaJit .makes it im-
practical to tune (or adjust) the parameters of every controller accurately. Frequent
re-adjustment of controller parameters as process operating conditions change is also
impractical.

Several manual methods have been developed in the past for the tuning of con-
trollers. The most well known is the Ziegler and N1chols[1,2]method developed in
the early 1940's. The closed-loopcyclingmethod obtains the parameters using both
the plant oscillation period and the observed system gain that causes the system
to cycle. 'I'he open-loop method is all. extension of the closed-loop cycling method.
It determines the required \:'I\l'ametersfrom the open-loop response of the system
to a step input. Also, Shinskey [3), Cohen and Coon [4], and Hazebroek and Van
Der Wa.erden[5Jhave developed similar methods that gained wide acceptance. At-
taining the controller parameters using these methods can be a cumbersome and
time consuming exercise. Additionally, they often cause the system response to be
rather oscillatory, Therefore, it seems there is a need for a robust and reliable algo-
rithm which can be utilized to automatically tune PI feedback controllers either on
a continuous basis or upon a request initiated by the operator.

The idea of automatic controller tuning has been investigated by several authors
such as Kalman[6], Astrom [7J, Peterka[S}, Clarke and Gawthrop [9], and Borison
[IDJ. The recent hardware and software developments in the computer field and the
price drop in computer equipment resultedin the widespread application of comput-
ers in. the process industry. The availability and robustness of microprocessor based
controllers especially the programmable logic controller (PLe), also, strengthen the
industry's move towards automation. These reasons could possibly explain the re-
cent increase in research funds and efforts ill the fields of system identification and
control.

This report considers the development of a generalized robust system which
produces reliable identification of plant parameters as well as reliable and robust
controller parameters. The aim of' the study is for the algorithm to eventually he
implemented in a plant supervisory computer system so that controller parameters
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can be automa.tically down-loaded into the programmable logic controllers (PLGs)
which perform the front-end PI feedback control. The concept is illustrated in
Figure 1.1.
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1.2 Objective and Overview of the Report

1.2.1 Objective of the Research
The objective of the research is to design a system that can be used to perform
automatic controller 'tuning. The approach consists of a recursive parameter ~,sti·
tllati'on algorithm and a controller design algorithm. The controller design algorithm
.isbased on the closed-loop pole assignment method and when the process is modeled
by a first-order system, the pole assignment approximates tl~~ standard PI feedback
controller. The method. diffees from others because the overall design is formulated
using the delta-operator.

Some of the design's basic characteristics are the following.

s 'I'he delta-operator and its associated tr~.n',;fQ..tal.

• Signal conditioning for. proper conditioning tlf the measured signals to improve
the estimator pe1"fbrmance.

• A generalized pH)CeSSmodel that includes. both measured and unmeasured
distur bances.

e A rule-based mechanlsm fo./.establishing the location of the closed-loop poles.

1.2.2 Overview of the Report
The r(!port is organized in the following way.

• ChapteJ.' 2 disc1l:lc<t,~Scurrent technil!~le~s used for estimating unknown parame-
ters. of deternllnis.t1C syster;;.:;;s.

• Chapter 3 di:SCl'!.SS<:S. k'.'>memodern methods for designing controllers for the
control of linear deterministic systems,

• Chapter 4 examines the concept of the new shift-operator namely .the delta-
opera·tor •.It, also, shows how the delta-operator can be related to the standard
c(mtinuous and discrete time operators.

~ Ch.ap:ter.5 presents the structures of the parameter estimator algorithm and the
pole assignment al,gorit}u:nused for the design ofthe controller para-meters. It,
<l[SO'1 pMsents the method for formulating the pole assignment to approximate
.a. S'ta:ndatd Pl1oportional.integral controller.

• Cnl:tpter 6 discusses some implementation aspects of the design such as signal
co1td.1tiolling '~ndrobustness. It, also, y;reseIllts the methods of tran.slating the
perfdrJ:n;mG~.iIeqm:n~mentsinto the desired lecation for the closed-loop poles.

• Oll!ap~el"7 pne$ents the ptoperties of the algorithm using simulation and real
p.1~'nt1Icsts.

• C~a.ptel' S Cltln;~l)ldes tIle rEl;PQrtand p:rese1lts the main findings and recommen-
d!atiions of the S·t;fi.d;y.

t 4PP~~f4xAptes~~ts tile~jer~an U-D covariance factorization method which
is me,d:i'Jiedto .i,n:c1udet1re deQ;dz0n:eand forgetting factors,.
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• Appendix B pl'esents ... '. .\lternative method for expressing a PI controller in a.
delta-operator format .

• AppeIldixC presents the method of approximating a. pole placement controller
to a PID controller.
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2.2 Linear Paramerric Process Model
A process model format which can be used for parameter estimation purposes is the
Il~tel'minlsticAI};tol'egressive 'Moving Averages (DARMA) Model given by:

y{k)+d.l y(k-l)+·. '4-an Y(k "7n) = bo u(k-d)+b1 u(k-d-l)+.· ·+bm u(k-d-m)
(2.1)

where: k :: '* = 0,1,2, ... is die discrete time, T; is the sampling time, .d is the
time delCliY,y and 'It are th.e plaJtlt output and i~put, respectively, and n and m give
the order of the mode].

#;$itg*h~'ba,c~wa;rd ~llIft opeta,toF, the model can b(J represented by:~-_ :,. -.-'"_ -. _." ...•, ".._ - .-~,_-- .,. - -.~

(2.2)

wh.ere:
A(q~l) == 1+al g-l + a2,q~2 + + an g~n

B{q'-l) = (bo + hI«:+ b2.q-2 + + bm«:)q-d
Th'a DARMA Model can, also, lyeexpressed as:

y{k):.: ,p(l. - 1) 8(k - 1) (2.3)

l.vher(J:
ll(ky:rs'tne system. output a~timek
q>('k...., 1) is the system's output and input history vector
(I{k - 1) is the pai.'a.rnete-r v~ctOi'

The model palrameters are the unknown factors and need to be identified. The
above niodel farms the basis for the parameter estimation schemes and it is partie-
ularlr c<:lnv~nientfQr tlte s'l1hseqll:eritdevelo,p!ment of the autotunlng a1gf'rlthrn.
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2.3 Projection Algorithms

2.3.1 Gradient Algorithm
The gradient algorithm or projection algorithm is expressed as:

lX¢(k ~ 1) .. T
B(-/:)= O(k -1) + c +¢(k _l)T rp(k _l)[y(k) - ¢(k - 1) (J(k - 1)] (2.4)

The term y(k) - 4>(k - I)T O(k -1) can be expressed as:

e(k) = y(k) - 4>(k - If B(k - 1)

where e(k) is called the modeling error.
It is shown by Goodwin and Sin [12) that the algorithm minimizes the cost

function.
1

J ::: - IO(k) ~ O(k - 1)122 (2.5)

The c > 0 is added to the regression vector to ensure that division by zero does
not take place. The choiceof the gain variable a: is usually between 0 and 1. In some
fdtering literature, the sane algorithm is called the normalized least-mean-squares
algorithm (NLSA). The algorithm has a very slow convergence and although, it
always converges, it does not guarantee convergence to the true plant parameters.

2.3.2 Orthogcnalized Gradient Algorithm
An improvement to the basic gradient algorithm is the orthogonalized gradient al-
gorithm. It is given by:

P(k - 2)4>(l; - 1) . \. .. T
O(k)::: O(k -1) + c+ 4>(k _l)T P(k _ 2)4>(k-1)[y,k;- 4>(k -1) 8(k -1)] (2.6)

P(k -1) .:::P(k _ 2)_ P(k - 2)4>(k - 1)4>(1:-ll P{k - 2) (2.7)
c+ 4>(k - l)T P(k - 2) 4>(k -1)

with the initial estimation vector 0(0) given, and P( -1) = I.
The P(k - 1) matrix is a projection operator which ensures the orthogonality

of the algorithm. 1'0 avoid divisioa by zero, the constant c > 0 is added in the
denominator.

12



2.4 Least Squares Algorithm

It is by far the most popular algorithm and as Goodwin and Sin [13}show is based
on the minimization of the quadratic cost function

IN(O) = ~.-£(y(k) - <f;(k- II()/+ ~(O - O(O»T Fb'l(O - 0(0» (2.8)
k=-'!

The algorithm is written as follows:

P(k-2)cf>(k-l) ... . . T (
B(k)=O(k-l)+ l+<f;(k-l)T P(k..;.2)<f;(k.;_1)fy(k)-<f;(k-l) e k-l») (2.9)

P(k _ 1) = P(k _ 2) _ P(k - 2)<f;(k -l)<f;(k - l?P(k - 2) (2.10)
1+ <f;(k_1)T P(k - 2)cf>(k- 1)

with 8(0) given and PC-I) any positive definite matrix Po.
The least squares algorithm is almost identical to the orthogonalized projection

algorithm. The covariance matrix P is an indication of the parameter convergence
and a measure the estimation error e(kJ. Usually the Po diagonal coefficient in P
is a large number due to the poor confidence in the starting parameter vector 0(0).
Only when 8(0) is a reliable estimate is Po given smaller values to enable faster
convergence.

The algorithm is a fast convergingone initially, but, when the P matrix diagonal
elements begin to get smezler due to the convergence of the estimates, the algorithm
becomes more and more insensitive. Remedies that deal with the problem, modify
the covariance matrix to sustain the agility of the algorithm. Some variations to the
original least square algorithm that deal with the algorithm "falling asleep"(14) and
with estimation in the presence of bounded noise are presented next.

2.4.1 Least Squares with Covar-ianceResetting

This schemeis based on the resetting of the covariancematrix P at various intervals.
During the time intervals k1,k2,k3, ...• the covariance matrix is reset to:

(2.11)
where Ni.is a constant ranging between 0 < Ni < 00. Otherwise, the normal least
squares update is used.

2.4.2 Least Squares with Exponential Data Weighting

The least squares algorithm can be modified by enabling memory to purge itself from
redundant data. The weighted least squares method achieves that by minimizing
the weighted cost function.

N
J:::: l:).N-k le(k)f

k=l
(2.12)

where:

e(k) :;::y(k} - cf>(k~ IJTiJ(k)

13



and the forgetting factor A is a constant ranging between 0 and 1.
The modified algorithm appears as:

P(k - 2) cfJ(k -1)
O(k) = O(k -1) + AU: _ 1)+ cfJ(k _l)T P(k _ 2)cfJ(k -1) .e(k} (2.13)

1 [. P(k - 2) cfJ(k - 1) q;(k - I)TP(k - 2) ]
P(k - 1) = "5.(k -1) P(k - 2) - >'(k _ 1)+ cfJ(k ~ l)T PCk _ 2)cfJ(k _ 1). (2.14)

For most cases, Isermann [15) states that the range. of the forgetting factor is
between 0.95 s X$ 0.995.

The number of historical samples N that are significant to the estimate of the
parameters can be aTproximated by:

1N ~ -..._..-I-A (2.15)

The performance of the algorithm improves according to Soderstrom, Ljung, and
Gustaveson [16J due to the increase in the weight.

XCk) = AoX(k - 1)+ (1- Xo) (2.16)

Which combined with XN-k gives

XCk) = XoX(k -1) + >'(1- >'0) (2.17)

with >'0 < 1 and >.(0) < 1-
The time dependent forgetting factor discards data during initial estimation at

time increments. When >. reaches unity, the normal recursive least squares algo-
rithms emerges.

'2.4.3 Least Squares with Deadzone

The robustness of the least squares algorithm when operating in the presence of
bounded noise can be improved with the use of a deadzone in the parameter update
equation. Additionally, the introduction of deadzone in the algorithm helps to con-
trol "bursting", where due to lack of persistent excitation the gain increases quickly
resulting in erroneous parameter estimates.

A recursive least squares algorithm with dead zone is defined as:

a.(k-l)P(k-2)cfJ(k-1)..[ A]
O(k) = 8(k -1) + 1+ a.(k -l),/>(k _ l)T P(k _ 2)¢(k _ 1) y(k) - y(k) (2.18)

where:
ii(k) = ¢(k -ll O(k - 1)

is the estimated plant output and

P(k -1) :::;P(k ....2) _ a(k - 1)P(k - 2)cfJU.-1) cfJ(k - If P(k - 2) (2.19)
1+ a(k - 1) cfJ(k .... l)T P(k - 2) cfJ(k - 1)

with the initial parameter vector 0(0) given and PC-I) any positive definite matrix
Po.

14



The factor a( k - 1) is defined as:

{

1 'f ... e(k)2. . A 2 0
, 1 .1+if>(k-l.FP(k-2)t/>(k-l) > u > ;a(k -1) =

0, otherwise,
where:

~ is a constant error limit and

e(k) = y(k) - tiCk)
is the estimation error,

15



2.5 Summary

In this chapter, a number of on-line parameter estimation techniques have been de-
scribed. The formulation of all the algorithms was based on the DARMA m.odel.
Although the methods were presented for deterministic systems, they also produce
good results when used for stochastic estimation purposes. The recursive least
squares algorithm being the most commonly used one Was presented in more de-
tail. Also, presented were some important modifications to the basic least squares
which improve its performance and robustness for specific problem areas.

16
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Chapter 3

Control Principles

3.1 Introduction
The chapter presents Some current control design strategies based on discrete-time
theory. In general terms, the techniques can he separated into two main categories,
The first is the minimum prediction error controller category. The second is the
closed-loop pole assignment category.

The minimum prediction error method designs controllers which generate an.
output at the present instant of time which forces the future output of the system
to obtaln some predefined value. The dose-loop pole assignment method assigns the
closed-loop poles to some desired locations trying to accommodate some predefined
design specifications.

The control schemes discussed here address the linear deterministic systems case.

17



3.2 Linear Deterministic System. Model in Predictor
Form

A single input single output (8I80) linear deterministic system can he represented
by the following deterministic autoregressive moving averages (DARMA) model:

(3.1)

where:

A(q-l) :::: 1+alq-1+a2q-2+"'+anq-n
B(q-l) :::: (bo + b1 q-l + ... + bmq-m) q-d

:::: q-d B,<;f.l)

andd is the time delay.
The aim is to use the past and present values available to predict a future value

at a time d.
According to the Prediction Equality, there exist the unique polynomials.

F(q-l) = 1+ h q-l + + fd-l q~d+l
G(q-l) = 90 + g1 q-l + +9n-l q-n+l

(3.2)
(3.3)

that satisfy

1:::: .F'(q-l )A(q-l) +q-d G(q-1)

The Equation 3.4 can be expressed as

(3.4)

1 _ FC. -1) + -d. G(q-l)
A(q-l) -. q . q A(q-l) (3.5)

The original DARMA model can he expressed in the {allowing predictor form:

y(k + d) = a(q-1 )y(k) + f3(q-~")u(h) (3.6)

where:

( -1) + -1 + + -(n-1)ex q = 0'0 0:1q . .. ...O'n-l q

and
0'(q-1)= G(q-I)

(3(q-l):::: F(q-l)B'(q-l)

The above equation is the manner in which the DARMA model is expressed in
predictor form. It forms the basis for the design of prediction controllers.

18



3.3 Minimum Prediction Error Controllers
This section discusses techniques for designing controllers based on the d-step-ahead
prediction form.

3.3.1 One-Step-Ahead Control
The one-step-ahead control algorithm forces the plant output y(k) to be equal to
the setpoint y·(k + d) in one step (in one sampling period). The controller that
matches the y( k) to the y.{ k+ d) at time k + d has the form

P(q-l)u(k) = y"'(k + d) - a(q-l)y(k)

The dosed-loop system is expressed as

(3.7)

y(k) = y·(k) k ~ d
B(q-l)U(k) = A(.;-l)y·(k)

(3.8)
(3.9)

The one. step-ahead control law minimizes the quadratic cost function

J(k + d):;-:: ~le(k)12
2 (3.10)

with

e(k) = y(k + d) -1I"'(k + d) (3.11)

A stahility requirement is that the zeros of B(q-l), which are the poles of the
dosed-loop system, are inside the unit circle. A concern when using the one-step-
ahead algorithm is that it generates a large signal to drive the plant output to match
the setpoint, which often is not desirable.

3.3, 2, Weighted One-Step-Ahead Control
The weighted one-step-ahead control is given by

with

f3'(q-l) = q[p(q-l}:"" ,80]
= P1 + fhq;"'l +...+ Pm+d-l q-(m+d-2)

The closed-loop system response is given by

P(q-l)y(k+d) = B'(q-l)y*(k+d)
P(q-l)u(k) = A(q-l)y·(k + d)

(3.13)
(3.14)
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with

The control law minimizes the cost function

J(k + d) = {~(Y(k + d) - y*(k + d))2 + ~U(l~)2} (3.15)

The modification restricts the controller signal strength and assists in avoiding
system eseillationsin between samples. When>. == 0, the algorithm reduces to the
basic ana-step. ahead algorithm,

3.3.3 Model Reference Control
'I'he system again is represented by the DARMA model

(3.16)

The requirement is that the system output y(k) follows the setpoint y"'(k) gen-
erated by a reference model which in term is driven by a reference input r(k).

The reference racdel is represented by

with

R(g-I) = 1+ hl q,...l + +hl q~J
B(g-I) = 1 -I- el q-l + + er q-l

(3.17)
(3.18)

A requirement is that the roots ofE(q-l) are inside the unit circle.
The aim of the algorithm is to try and make the process output y(k) identical

to the reference model output y*(l.), so that

y(k) = y*(k)

and

(3.19)

An illustration of the control method is given in Figure 3.1. To design the con-
trol law, we follow a similar approach to the one-step-ahead control. First, the
E(q-l)y(k) is predtcter .and i;Len set equal be q-d H(q-1) r(k) to generate Equa-
tion 3.19.

Using the generalized predkaion equality

(3.20)

and multiplying the DARMA monel by F(q-l) we extract the predictor form

(3.21)
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with:

n(q-l) = G(q-l)
(i(q-l) = F( q-l )Et( q-l)

and, also, the controller which is descoihed hy

(3.22)

The model reference control can be seen M being a generalization of the one-
step-ahead control philosophy aiming at limiting the controller driving signal.
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3.5 Summary
This chapter presented some controller design techniques for linear deterministic
systems. Also, examined were some areas for which the described algorithm could be
a;ppIied. It is clear tha.t using the control schemes is not a straightforward procedure,
~'l1ld~t~~~tio~ fIT~st be given to the constraints that govern each case. The pole
~1<tGem:emt1'$t'he most preferred technique of all due to its simplicity. Also, a point
tha;t sdtou4d be made is that all the techniques presented in this chapter ate special
ea:s~5olthe·pole.plateznent algorithm.
",,/" ',...,: -K . '.

r.

26



Chapter 4

Discrete Control Using
Delta-Operators

·4.l Introduction
~,11.e9flaip'ter presents the incremental difference operator or delta-operator intro-
ducecl. 'bY(jao;awin et al[18J.lt offers a number oi advantages which can be gained
hy using the delta-operator as an alternative to the discrete shift-operator,

The delta-operator concept is not something new. It was used in the past in
applIcations such as motivating the z-transforms, improving digital filter behav-
lot, ap,ltl ;,t,o. improve finite word length characteristics regarding. controller design,
J:<;)U[l;d.Qff noise ana coefficient representation as recently presented by Middletan and
GQ~qwin[19].The delta-operator Call, also, be used to resolve problems that arise
'froID the sa;mp:ling of continuous systems and converting continuous transfer func-
ti011S t.o their discrete counterparts.
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4.2 The Delta-Operator
The delta operator is defined by:

q-l
6 = -z;;- (4.1)

where q is the usual forward shift-operator and ti is the sampling interval.
Equation 4.1 represents 6' as a Euler approximation to the derivative-operator

D == -it which as indicated by MacLeod[20] is proven by:

.0 x(t) x(k +.6.) - x(k)
~

ti
= q - 1a:(k)

b.
= 6' x(k) (4.2)

The above relationship shows that assuming fast sampling, the derivative oper-
ator can be approximated by the delta-operator for purposes of translating analog
designs.

The delta-operator can be represented as:

6-1::;.~ ::;. b.q-l
q -1 1-s:' (4.3)

TIle above formula establishes that the o-operato:t can substitute the backward
shift-operator q-l.for plant model representation. Analyzing the expression below,
We have

and

(1 .....q-l)Yout(k) = .D.Q-1Uin(k) so

yout(k) - q-1Yout(k) = .6.q-1Uin.(k)

finally
Yout{k) = Yout(k - 1) + AUin(k - 1) (4.4)

which indicates that the 6-1 operator can be used to build a discrete integrator
block illustrated in Figure 4.1.

An important point to be made is that the replacement of the shift-operator
with the 8"opera,tor preserves the degree of the polynomial in q and the degree of its
associated transfer function.

28



,.-
I

...-." • ~
~.._.....=:0
>-

~

I

er
~

I, I

+
.""'-

+
~I

<J
........ A "
~........

C-

Figure 4.1: 'l'he Discrete Integrator

29



4.3 The Delta..Operator Transform Domain

The transformation of the Cooperator is defined as the "(- transform. A distinction
between continuous and discrete models regarding stability is that for the former,
the system poles must be in the left plane of the S domain where the later requires
that the poles are inside the unit circle. In the "(~transform domain, this problem
is overcome. The stability region of the ,-transform is the inside. of a circle with
center -k and radius t. It is obvious that as the sampling interval decreases or the
sampling rate increases, the stability region increases and approaches the continuous
stability region as illustrated in Figure 4.2.

The definition of the ,-transform is given by:

co

F..,(i) = AFz(l + 6"() == A Ef(kA)(l + 6,)-k
i=O

(4.5)

where Fz is the z-transform and z is replaced by 1 + A"( and it represents the
transform of the e-opera,tor models where q = 1+ 6e.

It has been proven that the ,-transform converges to the s-transform as the
sampling rate increases. This is shown by:

lim {F..,(/)} = Psls=.., == (>0 f(t)e-..,tdt
~_O h

where the integral is a Riemann integral.
The standard formula for replacing a ~ model with a .6-model is:

(4.6)

ACe) = ~n A'(Ab + 1) (4.7)

where:
A' = A(q) == qn + an..;.lqn-l+ ... + ao

and n the order of the polynomial A( q).
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4.4 Summary
This chapter described the a-operator and its associated I-transform It discussed the
principles behind the a-operator and the advantage it has over the shift-operator and
its z-transforrn in various applications. An important issue is that the replacement
ofa system model expressed in a shift-operator by a-operator model does not affect
the order and relative degree of the model. Also, presented was the rapprochement
between discrete and continuous control where the I-transform is the catalyst.

32



Chapter 5

Design of the Regulator Tuning
System

5.1 Introduction
This chapter presents the approach followedfor the design of the robust controller
tuner. The system is comprised of two parts. The first is the robust parameter
estimator and the second, the controller design. Separating the system into these
two distinct parts results in a so-called explicit algorithm.

The recursive least squares algorithm was identified as a suitable identification
method for determining the process parameters. It was used for developing the
structure of the parameter identification algorithm. Modifications were performed
on the basic least squares scheme to improve its performance.

The second step of the explicit algorithm is to use the parameters estimated from .
the first step to determine the regulator parameters. The design method for the
second step must he a suitable and robust method. The closed-looppole placement
algorithm described by Astrom and Wittenmark[21) has been shown to fulfill these
requirements. Due to its robustness and simplicity, the pole placement algorithm
was identified as the most suitable controller design algorithm for determining the
regulator parameters.

The complete structure of the regulator tuner is formulated based on the 0-
operator.
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5.2 Parameter Estimator
The process model given in terms of the 8-operator is described by the DARMA
model

A( 8) y(k) = B(S) u(k) + FCS) z(k) + d(k) + €(k) (5.1)

The expression includes both deterministic distt,,:nance and random disturbance and
modeling errors.

• z( k) = measurable disturbance

• d( k) = deterministic disturbance

• e(k) = random disturbance/modeling error

The polynomial degrees ate:

dey A(8) = n
deg.13(t5) ;:: m:5n-1
degF(§) = r:5n

/ Polynomials A(S), B(t), and Ji'(S) are monic described as

A( 3) = §n + (Zn-l 8n-1 + + CZl0 + ao
B(e) - om + bm-1 sm-l + + bio + bo
F(S) :::: ST+fr_lsr-1+···+ho+fo

Inclusion of the measurable disturbance term z(k) in the model, allows the de-
velopment of a feedforward model which can be used for determining Ieedforward
regulators.

The unmeasurable deterministic disturbance signal d(k} can be modeled as:

D(S)d(k) = 0 (5.2)

where D(\5) is a monic polynomial with non-repeated roots on the stability boundary.
IUs a nulling polynomial since it eliminates the deterministic signal.

For a constant disturbance signal having the form

d( k + 1) == d( k )

MacLeod[22] has shown that

d(k + 1) - d(k)
d(k + 1) -- d(k) ;:: 0

(q-1)d(k) = 0

It. shows that the nulling polynomial in q-operatot is

D(q) = q-1 (5.3)

and D expressed in cooperator form becomes

(5.4)
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where:
q-l

0=--·
~

Along the same lines, it is shown th1\t for a sinusoidal disturbance signal

til(k) = Asin(wk k+ 4» (5.5)

the D polynomial in o-operator is

(5.6)

where:
w::: l-COSWk

Operating on both sides of Equation 5.1 by D(o), the random deterministic
disturbance d(k) is eliminated. The expression becomes

ACe) D(8)!J(k) == B(S) nco) u(k) + pro) D(o) z(k) + D(o)e(k) (5.7)

Since 1)(8) has roots on the stability boundary, the noIse/error modeling term
~(lc) could be amplified at high frequencies. The phenomenon can be avoided by
introducing a stable polynomial D'(S) "close" to the DCo) polynomial. .

Assuming that the dete' mlnlstic disturbance d(k) is a constant (d. c. offset dis-
turbance) then the nulling polynomialls

DCS) = 0

The stable polynomial, n'(S), then is

D'(o)=o+e (5.8)

where e is some small positive number.
The function if, removes the deterministic disturbance and does not distort the

spectrum. It is obvious that tile function 1ft is a high- ....1SS filter. By approximating
8 ::::! jw, the filter has the frequency transfer function

D(jw) jw
D'(jw) = jw + t (5.9)

with corner frequency the small number s.
To avoid having high frequencies present which are above the Nyquist frequency,

alow-pass filter is also introduced. It ensures that {.Iteband limited model is excited
only by frequencies which ate necessary to give a good process model. The structure
of the filter is described in the next chapter.

The "filtered model" is described by

(5.10)

where YJ, Uh kf, nJ are the filtered process measurements,
The DARMA model can be represented in the regression format:

en VI(k) ::: rjJ(k - l)'I'O(k) + nf(k) (5.11)
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where

4>T ::: [ct1-ly/(k), ... y{(.k),cm uJ(k} •. · uf(k), 81·~f(k)· .. zJ(k)] (5.12)
Ii ::: [-an-1,'" - ao,bm1• .. bodr'''' fo] (5.13)

This is compatible with the recursive least squares algorithm described in Chap-
ter 2.

To enhance the robustness of the estimator, the algorithm was modified to in-
clude both the deadzone a(k} and exponential weight >'(k) factors,

The modified recursive least squares algorithm expressed in t5.operator format is
given below.

... .' '. '. .. . P(k -2)4>(k -1) .." .
e(h)::: fJ(k - 1}+ ark - 1). >'(k -1) + ¢(k -1)T P(k _ 2)4>(k"";1).e(k) (5.14)

......' 1 .. [., " P(k-2)4>(k-1)¢(k-1)TP(k-2) 1
P(k ....1)= >.(k _ 1) P(k - 2) - a(k -1) ...\(k -1) + ¢(k -1)1' P(k..:, 2)¢(k - 1)]

(5.1.5)
with

e(k) :=. Yf(k) - ru(k) (5.16)

with flJCk) the estimate'd plant output.
Finally, to improve the numerical sensitivity of the algorithm the Bie;rman[23]

UDr;T factorization technique is used. The technique is presented in Appendix A
modified to include the deadzone and exponential forgetting factors.



5.3 Controller Design
The design of the contrQUer emerges from the use of the P ~.~placement algorithm
described in Cha.pter Two and the application of the internal model principle. The
common error driven control system including a.n output disturbance d(k), as Illus-
ti:'ate~l j,n FigUre 5.1, is the principal hlock diagt<llltl.the design is based on.

TIre setpoint y"'(k) is defined as a sequence that can be generated through a
Iinear finite dimensional system described by

S(8)y"'(k) = 0 (5.17)

where S(8) is a monic polynqrnial with its roots lying on the stability boundary.
The nulling polynomial, D(c), is used to negate the output disturbanc~l d(k), as

it was desr.:r.ibedin th.e previQus section.
The feedback control law 'used in developing the design is given by

L(8)u(k) ~ !/Il(8)ll"(k) - P(c)y(k) (5.18)

where

1.(8) ::$. 0" + 171' .. 1811--1 + ... +h 8+ 10
~-:I•. · .,

J>(8) ;:;; 8P + Pp--l 8P--1 + ... + Pl 8+Po

Applylng the Inuernal M~del Ptinciple[241, we assign

11'1(8) = P( 8)
L'(e) == L(8)D(o) S(c)

thus modifying the contrpller poles to inotude the reference model poles S(8) and
the distm'bance poles .o(8}•.Tlle control law becomes

L(8)}).(8) S(~)'lt{k)#: P(o) [y*(k) ~ y(k)] (5.19)

I;'(8)v/(k) ::::P(6) e(k) (5.20)
"<.;/'

'\Viherae(k} ::::;rl·(~i~:,YKk}t~~he£eed\b.ad: error slgnal.
!tn.. a tl9:t. sfl!niq1ft~~:~9'wn... .. IDod:Uied clQs.ed-loop H1ustl'ated in Fig~re 5.2 can

b.;e ;E~ltie$\)niPe.Q: !b"y ',tlie irll;l:n:s ;tVitrot1'Qn \l
:;.' _, - - -: ': - - -~ ., - '. - -,~ - .._ '_ - - :

(5.21)

(5.;2.2)





y(k)



5.3.1; , Oont.l1a:HerD'esi.gJil for First-Orde,r Plant

A wide rron;ge.of ch:~fi:i!i~alj,)j;.ocess p1<lints..can a4equa.tely he modeled by first-order
m(jd~l$. When the pole placement algorithm developed previously is worked out
base'd on a. fill's,t"0-l'de.r.illlodel, the atgorNllul1 develops as follows.

The control law .is represented by

L'(8)u{k)::: P(5)e(k)

or .bl;·:~:·¥r8insf~rfU'ltctfon farmat

u(~) __ ....... p ."",.'.p
eek:,' .,...Gs - tl:- 'L,DS

(5.23)

(5.24)

fl.)I~~.pTbGessis lle.p:resented as.:a,fhst-order model given by the linear deterministic
e!l~a:~ijj1;'( .

(5.25)
'!l'ijt~)al~t~t.nlmi's.tlcd:i'S.t\ttban!c~isaSsumed to he acansi,a:nt d.c, offset disturbance

!1j~ M -. -; ,- , J)~iYi).~fW~,a;l. " .." ,

19(8);:;: 8

,$ ::= 1

kj~ep;enaJl ru;Ie for d<'Thning the a.egree of the controller polynomials Land P is

',1ilL~d:Me~L.', == (}:e!J;r~e.,4,,,,,, 1
d~:g.r~eP Q degree A + deg1'ee D + degree S ~ 1

4'&g,1'eeL == @

d'etliree P = 1

wlulGh; \I1~§,'U1;ts t~~p.i:l¥qementeOIl\1i!101law

(5.26)

~~Pt1iii~1l'~~(~gn:Qul1i'Iia,hp:rls> the n)~'l3!LI!;~!l'('il;ynomi.aft 1)( c). It is
~iW~l,~~i~l\igf~:~~H:;bill)J!(;l,*l>,;~~~:g~p:¢t:aJ~~~~h~httegral t¢'l'01 in the

'::''(',:.\. ':\'.~- '. .

(5.27)

'~~'I4~:fp";*'tl~~Ytefts - '1
~§!~;MlYa

(5.28)



(5.29)

'2 ',"" ", ",' , " 2, * '*108 + ao/o/S +P1boo +Pobo == 8' +a18+ ao

:it3~I[tta~ingc(J{!':ffi:cientson e!<tlte.rsi{ie of Equation 5.30 results

(5.30)

"f 10 'J' ,[" 1 1M:a.,. P,l =,., a[ ,.
Lpo, "ao

~~B··.~·!~
jij4\fi:~M6ri§;,3@ 'c~n b~ soPvea ,s,eq!!i'eIl.tially 'for 10,Pl, Po by
",:.,:"":",, ';;,:, -: 'j

M -- 1 (5.31)
)t itt - aop~; _':!1-

1)"
(5.32)

0
aj"I.

(5.33)Po ",0,

tie
, ,"~h:g\llext $],ep isto correlate the pole placement coefficients with those of a PI

l'egU)}i;Mloj)'. '



5.4 Approximation to a PI Regulator
'lPhe ideal analog PI controller is given by

u(t) = tc, [eft) + i; J e(t)dt] (5.34)

where JIrp is '6h'eproportional gain andZ] is the integral or reset time.
Equati.on 5.34 written in the Laplace domain becomes

U(s) = l{p{l + is)E(8) (5.35)

(5.36)

where ires) and E(s) are the Laplace transforms of the controller output and error
signal" te$pectively and l(i is the integral or reset gain and K; = :A.

A typical cascade PI closed-loop is illustrated in Figure 5.3.
The ;PI regulator operates on the actuating signal and produces Cine that is

proportional to both the magnitude and the integral of this signal. TI'e integral
pairt continues to Increase aJS long as an error signal is present. The locations of the
pole and zero of the regulator are illustrated ill Figure 5.4.

Examining the PI controller in the frequency domain, it becomes obvious that
the regulator has a phase lag frequency response as illustrated in Figure 5.5.

At low frequencies the regulator amplifies the system gain thus reducing the
system sensitivity., It reduces the steady state error and improves the stability of
the lQop.

The Equation 5.36 can be rearranged to:

Us = Gpl(S):::: Kps +J(pKi
Es S

(5.37)

Using; the app.roxlroa;tfon .s :::: {; (assuming fast sampling), the equation becomes

GP1(8) = '{pc ~ [(pKi

Ccilll'l>a:dng.Equation 5.38 with Equation 5.26, we have:

(5.38)

GpJ(C) = Ce(o)

(5.39)

i~t·\isQ~'vious th~t the. Goeffl!:ieltts of the two control laws correspond to each
Gtlter. ri['iie :fhll(>w,i\~g..r.e1aitiol'1is,htipsex,lst:

[,(p - PI__ poI<i .
PI

(5.40)

(5.41)
0r

(5.42)



The proportional and integral gain tan be determined by the Pl and PO coeffi-
cients. Figure 5.6 illustrates the general block diagram for the generation of the PI
parameter.

Another method of approximating the pole placement controller to a PI controller
can be seen in Appendix B.

It isapparent that we can use pole placement techniques to tune the PI controller.
It is, also, apparent that the closed loop polynomial A" is of great importance to the
algorithm. Correct selection of A" is essential. The A" can be generated based on the
time and frequency design requirements, i.e, damping ratio, phase margin, etc. The
selection of a suitable A 1ft is given in the next chapter. . litionally, Appendix C
presents the formulation of the pole placement for a second-order model and its
approximation to a PID controller.

4.3
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5.5 Summary
This chapter has presented the design philosophy that forms the basis for the con-
troller tuning system. The algorithm was constructed using the 8-operator.

The estimator agrees with the recursive least squares method modified to handle
covariance resetting and bounded noise. The controller was designed utilizing the
pole placement and the internal model principle. The controller coefficients are
found solving the Diophantine Equation. The inclusion of the disturbance nulling
polynomial generated an integral part in the control law and solving;the control
law for a first-order plant model enabled the approximation of the pole placement
controller to a PI controller, l.180, some discussion was made on the importance of
selecting a suitable closed loop polynomial A*.
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Chapter 6

Implementation Aspects

6.1 Introduction
The chapter discusses some practical' Issues that can influence the implementation
01 the estimator and controller algor;UnTI s, More specifically issues such as the
choice of the sampling rate, signal cond.tloning, and selection of the correct startup
parameters Le, dead zone and forgetting factot, come under examination.

The performance of the estimator is heavily dependent on the Implementation of
appropriate filtering techniques. Filtering i" necessary to enable the removal of high
frequency noise, and d.c, values which can Jnfluence tllC ablllty of the estimator to
converge to the real parameter values.

A very important issue in achieving optimum performance of the system is the
selection of the closed-loop polynomial A". The A" is established using a set of rules
that convert the design specifications to a set of dosed-loop pole locations ..·
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6.2 Sample Rate Selection
The selection of the best sample rate for a dig-ita! control system depends on many
factors. The absolute lower limi,t to the sample Irate is based on the SaItlplil'6 the-
orem. The sampling theorem states that to reconstruct a band limited signal from
samples of that signal, one must sample at twice the rate of the highest frequency
contained. i,n the si,gn;al.Ths theorem can be expressed as:

(6.1)

where:

Ie is the sampling frequency
Jb is the plant bandwidth

Quite often in practice, the Nyquist criterion given by Equation 6.1, can be
insufficient in terms, of system responses and system sensitivity thus, the need to
sample faster arises. Franklin and Powell[251state that faster sampling reduces
dela~'between input change and system response and smoothes the system output
response applied to a plant through a zero-order hold. Also, Goodwin and Sin[26]
recommend that the sampling period be an even multiple of the time delay when
the plant delay is a priori.

50



6.3 Signal Conditioning

This section describes the design method of the high-pass filter (hpf') and low-pass
filter (lpf] which are implemented for proper conditioning of the measurement sig-
nals.

6.3.1 The Low-Pass Filter
The filter is implemented so that the noise above filter breakpoint is attenuated.
A design requirement is to select the filter cutoff frequency, We, in such a, way
as to encompass the plant bandwidth. Another requirement is to provide enough
signal attenuation so that the noise when aliased does not affect the estimators
performance. The two requirements tan be formulated as:

1
we ~ '2ws

We == 1
Wb

(6.2)

(6.3)

where:

Ws ii the sampling frequency
Wb is the plant bandwidth
We is the lpf cutoff frequency

The discrete filter implemented in the algorithm is the realization of an analog
filter with the transfer function.

~
HI (8) __ Wr

PJ - 82 + 2as +w;
The magillitude 'of the filter is given by:

(6.4)

W2
A(w)== r ..V( 10; - 'UP? + 4a2w

The d. c. magnitude of the filter is:

(6.5)

which is a ~onst:Q.int that, if not satisfied, could as stated by Bergensen[27] render
111reintetnal es't~matClrV3:tla,);llesnumerically sensitive to finite-word length errors.

Setting the real paxt 11. of the filter's complex roots equal to imaginary part b,
the 'fitter Is testl''i'<;tea to -'1. no-overshoot resp<1n$e.

T4e magnltude of the filter at the cutoff frequency hl:

and
Wo ;:: Wr
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The analog filter has the following characteristics.

=/3 Wea = J2
We _- Wr

(6.6)

(6.7)

The discrete filter is constructed using the bilinear transfermatlon,

(6.8)

thus we have
W9(8) _ .. .. . r ..

. - 82 + 2as +w~
which re$tl!litlSthe discrete low pass filter

(6.9)

(6.10)

where:

It'!}1 = w2']."2r

p,v2 = 4aT

and
e2 = 4p,v2 + p,v!
Cl = 2p,vl- 8!C2
eo = 4.,_ #v2 + P,VJ!e2

72 ~ P,?)!!e2
71 = Zp,vl! C2

70 = p,vl!e2
A block diagram of the dlscrete low-pass filter is illustrat¢d in Figure 6.1. Also,

illustrated in }rig,ute 6.2 ana Figure 6.3 are the frequen~y responses of both the
analog and digital filt~TI'. Tll(~~repetition of the digital filt~r response is due .he
fact. thatthe filter mi; ,shltud~ ahap'n~e are periodic functioIls ofw with perk fs,
where is is the Nyqli.hst frequency. To determine the resulting response, it. sumces
therefore to cOli·s!1>dertIre h~11>(lNjorof the digital fiLter in the fllhdamenta.l interval
( - 1'& I is)· only. ,.

~h:e c.uit.~fff1lequ,ell!ct.~f the flitter .).Sdefined by the designer during the actual
(l;pplicati(!)iJ,'lZIf the alg~ti\'lil1rrn"'iFh.ei syst~m, ailsa, makes the neG~ssary checks ensuring
that tM t:~q;l,til'~llleXLtsd:i6hl1tell 'by ID!Ji~a:lllQns 6.2 and 6.3 are a.dl~er~d to.

6,,$.2 The ~ig:h..~~~~$. ~ll~~r
,':,~,- '""-

In Chll1pter Five, dXIi'!.lip,l$ ~Rede:velep:Uileltt of the to:b:ust estimator the hlgh-pass filter
(hpf)

@;rtpl'(o) ~- ire (6.11)

Was g~~eratecl .. The :fi1t¢f,1~1);1u:!>ed.W,fihe~atg(;jri.t'h\m te eli,rrtl>,vatethe d.c, values during
th~ parameter Ide1tt.ifiiGa1J.lollsitate.
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The frequency response of the filter depends on the value of the corner frequency
e. The choice of e is not very critical although the following constraints should be
adhered to. The value of e must be greater than the very slow frequency measure-
ments ~nd must he less than the frequency range of the plant so as not to alter
the plant1s dynamic behavior. A general indication of the frequency response of the
filter is i\Uustrated in Figure 6.4.

Th~ high-pass filter equation can also he written as:

'!lout 1
Yin = I+ £0-1

which te,sults tQ the recursive form:

(6.12)

(6.13)

Whe;ll~v~~term £0-..1 '!I(lut is the state variable of the filter. A block diagram repre-
sOIil[~li~~!r,()f ID:q.urotloIl6.12 is iHllstrated in Figure 6.5
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High Poss filter Response

Frequency x 1O,,{-3~

Fig,ute 6.4: Frequency Response of the rIPF
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in

1

Q r-- ........;-oY.... out

Figure 6.5: Block Diagram of High-Pass Filter
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6.4 Exponential Discounting and Deadzone

6.4.1 Exponential Discounting

A simple way of ensuring good parameter variation tracking is to use exponential
discounting to discard old data. Astrom et.al[281 have presented good practical
results with application of the forgetting factor '\.

The choice of the forgetting factor ;\ for the parameter estima.tion depends on.the
speed with which the parameters vary, the model order, and the type of disturbances
that are present. For constant processes or very slow varying processes ,\ = 0.99 is
recommended. For slow varying processes and stochastic disturbances, 0.85 :::;,\ :::;
0.90 is an appropriate choice. The "'factor influences the memory length N of the
estimator and thur the number of samples that are used by ' .. The relationship
between Nand ,\ is given by:

1
N == ---.1-,\ (6.14)

For instance, when:
,\ ~ 0.99 N::: 100.0
,\ == 0.85 N == 6.666
,\ == 0.90 N == 10.00

Also, effective is the application. of the variable forgetting factor

'\(k) == '\o'\(k -1) + (1- '\0) (6.15)

which imposes exponential data weighting for a transient period. Typical starting
values for the algorithm are:

'\(0) == 0.95
AO == 0.99

Included in the tuning algorithm, is the option of using the fixed or the variable ,\
factor.

6.4.2 Deadzone

The lack of excitation for a long time can affect the gain PC k) of the parameter
update equation and cause an output burst. TIle estimator performance can be
enhanced and avoid an estimator wind-up with the use of the deadzone method,
The aim of the deadzone is to allow the update of the parameter vector only when
the data from the :,lant contains useful information. It achieves this by "switching
off" the parameter update equation when the estimation error e(k) is smaller than
some specific threshold. Ega,rdt[29] and H1igglund[30] have designed very good tech-
niques based on this idea. The two principal deadzone methods used to turn off the
estimator are presented next.

Constant 'I'hreshold Deadzone

In this case, the deadzone threshold is a priori factor. The deadzone a( k) depending
on the comparison between the estimation error and the noise size takes the fixed
values:

() {
0 if le(k)1 s 2A',

a k == ..1.,' if le(k)1 > 2A

59



where e(k) is the error between the actual plant output y(k) and the estimated
output y( k). Thedeadzone simply turns off the parameter vector update when the
error e(k) ::; 2& and TJ( k) is a bounded noise sequence such that I:l. ~ 11J(k) I.

Variable Threshold Deadzone

This method implements the idea of using varying threshold, adjusting to the mag-
nitude changes of the plant measurements. It is based on the reasoning that the
estimation error, due to the bounded noise, is directly related to the magnitude of
the plant data used by the estimator.

The deadzone a(k) is defined as:

a k _{ 0, jf liCk)1 < /3m(k);
(.) - a» f(e(k),(3m(~~)/e(k) otherwise.

The function m(~') is given by

m(k) = crom(k ·~·1)+(l- ao)eo+ c1lu(k - 1)1 + £2Iy(k -1)1 (6.16)

The COnstants are co, ell £2 ~ 0 and aot( 0, 1).
A constraint is that m(k) must be greater or equal to the bounded noise sequence

TI(k) at all time thus,
m(r.) 2;: 1J(k) k2;: 0

with trIO) = moi mo 2;: O.
The function (3 is defined as

with a, ~ 0 and a€(O, 1).
The tuning system has been designed to allow the user the option of utilizing

either the fixed or the variable deadzone. Establishing the values for the variable
deadzone constants is a difficult process. Often the conditions the estimator operates
under do not warrant the complexity associated with the relative dead zone thus the
fixed deadzone is used.
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6.5 Selection of the Closed-LoopPolynomial

The behavior of the process must agree with some desired dosed-loop performance
specifications. It is necessary to appropriately choose the polynomial A* SO that the
design specification can be achieved and translated into a set of dosed-loop pole
locations.

When the process is represented by a first-order model, the closed-loop polyno-
mial is given by:

A"'(o) = 62 + ail + ao (6.17)

Approximating 0 ::: S enables A·Co) to be identified with the second-order
continuous-time system

A*Co) = 02 + 2(wlIc + w~ (6.18)

with ( and WlI the damping ratio and natural frequency respectlvely. Correlation of
the coefficients of the two equations results to:

a* ::: 2(WlI1

a* = w2
0 11

thus relating the Aoj< polynomial coefficients to the transient performance specifica-
tions for the system.

The A" coefficients are generated using a set of rules[31J which are built into the
algorithm. The rules address both the time and frequency domain areas. These ate
as follows.

a. Time Domain

P.O. ::: 100e-('rr/~ (6.19)

(6.20)NT
(wn

where P.O. is the percent overshoot of the system, Ts is the required settling time,
and NT is the number of time constants r within which the system is expected to
settle.

The user defines the P.O. and T; and the algorithm identifies the corresponding
damping ratio, (, and natural frequency, w'7' A normal range for ( is 0.450 ::; ( ::;
0.7D'l.

h. Frequency domain

( = O.Ol<ppm. (6.21)

Wr = wnJl ~ 2(2 (6.22)

Mpw ::: (2(jl- (2rl (6.23)

W3db ::: wnCJ(2 + 1+ () (6.24)

'where c/>pm is the phase margin, w,. is the resonant frequency, Mpw the peak magni-
tude, and Wsdb the 3db frequency. The above equations hold when ( $ 0.707. When
( ::: 0 then WI' ::: Wn• With the above rules the desired system is examined for
relative stability in the frequency domain. The phase margin is established from the
damping ratio. If the resulting <Ppm does not meet the given specifications the user
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can define the required <Ppm' The algorithm produces the closed-loop system param-
eters by examining both the frequency and time domains. and enabling the user to
make the appropriate modifications if necessary. Also, the algorithm ensures that
the bandwidth of tht: compensated system does not violate the sampling theorem
constraints by ensuring that the system bandwidth does not overbound the low-pass
:filtercutoff frequency We' The rules are described in the following pseudo-code.

BEGIN

DEFINE THE PERCENT OVERSHOOT

DEFINE THE SETTLING TIME

CALCULATE THE DAMPING RATIO

CALCULATE THE PHASE MARGIN

IF PHASE MARGIN NOT WITHIN LIMITS THEN

DEFINE THE PHASE MARGIN

CALCULATE THE PERCENT OVERSHOOT

IF PERCENT OVERSHOOT NOT WITHIN LIMITS THEN

GO TO BEGIN

ENDIF

ENDIF

CALCULATE THE RESONANT FREQUENCY

CALCULATE THE PEAK MAGNITUDE

CALCULATE THE 3DB .I!'REQUENCY

IF 3DB FREQUENCY IS .GT. THAN THE LPF WC FREQUENCY THEN

GO TO BEGIN

ENbIF
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6.6 Summary
This chapter presented some implementation issues which axe essential for ensuring
the robustness and good performance of the ali. orithm. It formulated a methodology
for choosing the correct sampling rate, for implementing the correct signal condi-
tioning methods, and for choosing the appropriate initial parameter values such as
the deadzone and forgetting factor;

The close-loop characteristic polynomial A"' is constructed using continuous-time
design specifications such as the damping ratio, settling time, natural frequency, and
phase margin. These variables get used by set of rules that convert them to a set of
close-loop poles that form the A"'.

I
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Chapter 7

Experimental Results

7.1 Introduction
The design work is substantiated witb the use of simulation and teal plant tests.
This chapter describes the tests that were performed to evaluate the algorithm with
regard to:

a. Performance of the parameter estimator in terms of convergence, parameter
tracking error minimization, and data discounting.

h. Controller robustness, adherence to design specifications, closed-loop perfor-
mance to reference signal changes, and system stability.

Some comparisons are made with results obtained from using the Matlab ARX
estimation routine. Finally, the performance of the variable deadzone is examined
against that of the fixed deadzone and some results are presented.
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7.2 Simulation
The continuous-time system used was a first-order system described by

dy(t) + yet) == u(t)
dt

The transfer function of the system is:

Yes) ( ) 1.0
U(s} :::::G s :::::s+ 1.0

with
ao = 1.0

bo:::::1.0

The algorithm was started with the following fixed parameters.

We == 3.0 LPF cutoff frequency

A = 0.1 Sampling time

A :::::0.97 Exponential forgetting factor

P(O) :::::100.0 Initial value for covariance matrix

0(0) = 0.0 Initial value for parameter vector

e :::::0.0008 HPF corner frequency

The open-loop system was excited by a rich input signal to ensure good conver-
gence performance. The algorithm succeeded in producing a very good estimated
output y(.k) in comparison with the actual plant output Y(k} as it is shown in Fig-
ure 7.1. The estimation error e(k) and dead zone a(k) are shown in Figure 7.2. The
error is quite large at the initial stages of the estimation process. The fixed deadzone
ark) takes the value ofl.O when the estimation error isgreater than the estimation
error limit eUm. The deadzone behavior follows the error e( k) very closely. The
parameter updating occurred mostly during the start-up period. This can, also, be
seen in Figure 7.3. The parameters converge rapidly during the initial stages with
only sprradlc fluctuations during the later stages.

The algorithm produced the estimated parameters.

0.0 :::::1.009796

bo:::::1.012243

which represent a o"operator model:

8y(k) + 1.009796 y( k}::::: 1.012243 u( k)

The estimated model approximates the continuous time first order plant very
closely. The estimated parameters are very near to the true system parameters.
This is an indication that the 8-operatol: concept under fast sampling conditions
produces good models of continuous time systems. It also indicates that the 8 == s
approximation is valid under fast sampling conditions.
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It is understood that the very close tracking of the plant output by the estimator
and the very good convergence of the estimated parameters tothe real ones is influ-
enced by the fact that the plant order is the same as the plant order the algorithm
is designed to cater for, namely, to produce first-order estimation models.

The open-loop system has a damping factor of ( = 1 and Wn = 1. The speci-
fications for the closed loop system were a) percent overshoot PO = 10%, and b)
settling time T« = 4 seconds. This resulted in

(= 0.5912

WIl = 1.6916

W3dB :: 2.9651

<Ppm = 59°
The closed loop polynomial A" was given by;

A* = 0'2 + 2.00015 + 2.862

having the roots
$1 = -1+ 1.36455j

8.2 ::·-1- 1.36455j

The roots of A"'(O') are depicted on a s-plane diagram SHownin Figure 7.4.
The controller design parameters generated by the algorithm were:

J(p = 1.0000
s, = 2.8615 or

Ti = 0.3495

The dosed loop response to a step input can be seen in Figure 7.7. The settling
time of the system is less than four seconds and the overshoot is ten percent. It is
cleat that the compensated system meets the design specifications. Also, Figure 7.5
shows the response of the compensated system when the reference signal is a series
of steps. The system is stable and the output follows the input signal smoothly.
The algorithm generated PI parameter which produced very good tracking of the
setpolnt,

Next, the percent overshoot requirement was reduced drastically, but the settling
time requirement was kept the same. The design specifications were PO = 0.3%
and T" = 4 seconds. This allowed the system almost no overshoot and still required
a four second limit for reaching steady state. The controller parameters produced
were:

f(p = 2.000
Ki = 1.4308 or
To = 0.6989,

Figure 7.6 illustrates the response of the compensated system to a series of steps.
The system again tracked the setpoint in a satisfactory manner.
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7.2.1 Summary
The algorithm was used to model a first order continuous-time system. The es-
thnator. produced parameters that were vp,ry dose to the 'true plant parameters,
reinforcing the idea that under fast sampling conditions, th~ delta-model can ap-
proximate the continuous-model well. The controller design produced PI parameters
that produce stable closed-loop system responses and good setpoint tracking.
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7.3 Simulation
The simulation used a second order system described by the differential equation.

d2 yet) + 0 5dy(t) + 0 2y·(t) = d~l(t) + 15u(t) + tP'r/(t) . d'r/(t) + 'net)
dt2 • dt' dt' dt2 1"" dt "

Using the Laplace transform, the system becomes

(S2 + 0.5s + 0.2)Y(8) = (8 -I- l.5)U(s) + (S2 + 8 + 1) 1](s)

with 'r/es) the random disturbance signal.
The algorithm was executed with the following fixed parameters.

We = 0.5 .LPF cutoff frequency

1::. = 1.0 Sampling time

);= 0.97 Exponential forgetting factor

peO) ::: 100.0 Initial value for the covariance matrix

0(0) = 0.0 Initial value for parameter vector

e = 0.0008 lIPF corner frequency

0: = 0.4 Maximum value for variable deadzone

fJ = 1.3 Variable deadzone scaling factor

0' = 0.98 Variable dead zone pole

eo ;= 0.0002 Threshold coefficient

el = 0.0001 Va-riable deadzone coefficient for input signal

e2 == 0.00005 Variable deadzone coefficient for output signal

The algorithm was used to estimate the first order 8 model of the simulated plant.
A series of very fast changing steps is used as the input signal to the process. The
plant output y(k) and the estimated output y(k) are shown in Figure 7.8 indicating
good tracking ability by the algorithm. TIle low pass filter manages to partially
negate the effect of the disturbance on the estimator. The estimation error shown
in Figure 7.9 is substantially large .;'\1'\ expected due to the effect of the disturbance
'r/(k) also shown in Figure 7.9.

The convergence of the estimated parameters is also influenced by the random
disturbance. Although they converge to the right region -iuite rapidly, the parameter
updating is sustained.Ior much of the simulation run time. The plot of the estimated
parameters is shown in Figure "(.10. The presence of 'I'J(k) Influences the converging
ability of the algorithm.

The algorithm produced the estimated model.

8 y(k) + O.1723'l8y(k) == 1.273907 u(k)

with
ao = 0.172378
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bo = 1.273907
The parameter estimates produced by the algorithm were compared against the

estimates produced by a sophisticated commercial routine. The same data were used
by the Matlab Arx estimation routine. The resulting first-order plant was:

qy( k) .".0.8225 y( k) = 1.2693 u(k)

Using the relationship,
s= ac.+ 1

and for Ll ;:::1.0, the q-model becomes

ay(k) + O.1775y(k) = 1.2693tt(k)

I
11

i
I

which Is very similar to the c-operator model given by the estimator. A plot of the
response of the a-operator model produced by the estimator and the response of the
q-operator model given by the Matlab Arx routine is shown in Figure 7.11. As it
was expected, they were very similar.

The performance of the estimator was also examined using the variable deadzone
option. The variable deadzone Q,(k) takes zero values only when the estimation e(k)
is less than f3 m(k). The magnitude of a(k) after the first sample is limited by the
value ofc = 0.4.

TIle deadaone cx(k) has remained mostly at the cr region indicating that the error
remained greater than the deadzone limits. The plot of the bme and deadzone can
be seen in Figure 7.12. The bm(k) limit remained around the bmz = 0.003 region
for the duration of the simulation. It is again clear that the disturbance Influences
the convergence of the estimator. It must be noted that since E:l is greater than
e2 the deadzone error limit bm(k) is influenced a lot more by the input u(k) and
obviously, the disturbance 7J(k) than the output y(k).

The estimated plant parameters given by the estimator when the variable dead-
zone was used were:

ao = 0.25,<)151

bo:::; 1.898636

which are not as appropriate as the estimated parameters obtained with the fixed
deadzone,

The results obtained with the use of the variable deadzone indicated that the
fixed deadzone can produce even better results than the variable deadzone with less
complexity and calculation time.

The specification for the closed-loop system were: a) percent overshoot P.O. =
10% and b) settling time T,= 25 seconds. This resulted in:

( :::; 0.5912
w'l :::; 0.2710

W3dB :::; 0.4744
q'pm = 59.0

The cutoff frequency of the low-pass filter is We :::;0.5 r~d/sec. It adheres to the
first rule.
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with W8. = 6.283 roo/sec and also to the second rule

In this case, We is almost equal to the closed-loop bandwidth so that the random
disturbance does not influence the convergence of the estimated parameters. The
algorithm ensures that the designed closed-loop bandwidth does not exceed the LPF
cutoff frequency. .

The closed-loop polynomial A" was given by

A* :=; 62 + 0.32040 + 0.0734

having the roots
81 = -0.1602 + 0.43704j

82 ::: -0.1602 - 0.43704j

The roots of A"(c) are illustrated in Figure 7.13.
The controller parameters produced by the algorithm are given below as:

I(p = 0.1159
J(i = 0.4963 or
Ti = 2.0150

The closed loop response to a step input is shown in Figure 7.14. The settling
time of the compensated system is within the T., ::: 25 seconds requirement.

7.3.1 Summary

The algorithm operated under severe conditions caused by the presence of the ran-
dom disturbance. It achieved to produce a good first-order model for the plant
under investigation. The use of a variable deadzone did not produce better results
than the fixed deadzone. Also, the robustness of the algorithm was enhanced by
the use of the low-pass filter. Finally, the controller design achieved to produce PI
parameters that enabled the closed-loop system to meet the design specifications.
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7.4 Real Plant Test

Th~ lPemer$aIH1e of th:e rugerJthm was examined using real-time plant data. The
aim of the test was to observe the behavior and robustness of the estimator under
plant oper:a;ting conditi9ns. The Raw Gas Compressors Section of the Ammonia
.Plant, located at the AIDe! Modderfontein Factory, was used for the estimator trial
tests.

TIre two taw gas compressors deliver raw gas, produced by the Gasification
SeGtion~tothe CO Conversion Section where the hydrogen needed for the production
of liquid amilloma is extracted from the raw gas, The compressors are driven by
two,Dela.val s:tea!R turbines. The speed elf the compressors is controlled by two
Col'npiIies~orsControl Corporation (CCC) Load Sharing Centrollers. The 4-20 rnA
COfi\bol \si!~al V<1l'!ier;the posi:tion of the stearn inlet mnltiports thus controlling the
ste~IIl, ~'f!>W ':i,rttothe. ,turbine., The lO,~a .s~tari)ngcontrollers are, part of a complex
co.Ii!~lloL.,s~heme tha~ G.cmt:rolsthe load ,and;, cons~quently~ the speed ofeach compressor
based on thel~v.el of tIr~a;ccuimulated xawgas inside the Raw Gas Holder and, also,
on t:11eposition of the oIt~l'3)tingpoint -of each compressor in. comparison tb the surge
cu.t;:veo£,eac:li!,macill':ne.An f.Uustration ofthe process is given in Figure 7.15.

The eSjji;~Med modelJ'ehlltes the load sharing control signal to the steam. flow
in't'G: vAe tu:r'lHne',Th.e pi'a'fit d;~ta used hy the esti$8ltot were taken' by sampling. the

c lQa® sIr~J'~fj;¢ont~QJ,sI~al (I1YB 8123) an:d .the 13 stream, steam flQw. signal (FIB
SlOl)., .':Chesi~zy~s·w~r~~a;mpled ~very ten seconds, .•Thelopp was 0Jle7:atin~ under
closed loop ~qp:fti0n.S alnd. the cantrol signal was sufficiently act!· .... > was not
nee~ssar~ ]0 J,njeci'a:ny l~indof sp.ecial.test. signal.

The estitnafn;~rwas set '1.!ipfbr the paratneter iden:tificatiol,\ test with the following
paranretells. d~zy~e~~. '
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With the control signal LYE 8123 as the plant input and :nB 8101 as the plant
output I the estimator ran for a duration of 50minutes. The estimated plant param-
eters were:

ao = 0.029910
bo :::; 0.028973

The estimated plant model is given by

8y(k) + 0,029910y(k):::: 0.028978u(k)

The plots of the plant output FIB 8101 and the estimated plant output @FIB
8101 are shown in Figure ".16. Also, Figure 7.17 shows the plot of the input signal
LYB 8123. A comparison between the FIB 8101 and @Fm 8101 plots shows good
agreement between the measured plant output and the predicted output from the
model using the same input. It must be noted that the plant output was affected by
measurement noise and non-Iinearltles that were not incorporated into the model.

The low-pass filter performed well in filtering out the high frequency noise affect-
ing the measured signals. It is an indication that in this experiment, the We = ~Ws

rule didprovide a good restriction regarding the frequency range of the filter.
Heavy parameter updating occurred during the initial stages of the algorithm.

The measurement noise present during the estimation influenced the speed with
which the estimator converged to the real plant values. After the first 20 minutes,
the estimator succeeded to convergeto the correct parameter region and soon settled
'to the right values. A plot of the estimated parameters is given in Figure 7.18. A
plot of the estimated error e( k) is shown in figure 7.17. The plot shows the error
to be SUbstantial during the Initial stages of the estimation, but to minimize as the
time progresses and eventually to reaches the zero value.

The same plant data were used by the algorithm to produce plant parameters
using the variable deadzone, The algorithm produced the followingparameters.

ao = -0.100309
bo = -0.096794

It. I;; clear that the algorithm using the variable deadzone option produced an
uns'Ltl,:":aplant model. A pIN 'If the variable deadzone and the variable error limit
range (bmz) indicates that the algorithm never managed to produce estimated values
close to the measured ones. The deadzone after an initial dip remained at a value
a(k) = 0.25 and never achieved a zero value. A plot of the variable deadzone and
bmz is shown in Figure 7.19. A plot of the variable deadzone estimation error is
given In Fig'.tre 7.20 which also, shows the same results. It tracks the bmz without
ever reaching zero.

7.4.1 Summary

The algorithm was tested using real plant data and produced very good results.
4- good agreement between the real plant and the estimated values was a.c1).ieved.
This is an Indicatlon that the algorithm can operate under adverse plant conditions
and still produce reliable plant models, Although, due to plant operational and
safety restrictions, the controller design algorlthm was not tested. The good results
achieved by the estimator indicate that the overall system can be used in the plant
environment.
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Chapter 8

Conclusion

S.l General

The report has presented the philosophy and the design methodology of a robust
automatic tuning algorithm. This chapter gives a summary of the developments of
the previous chapters and discusses some of the most important findings emerging
from the research. Also, it lists a number of recommendations that can improve the
design and enable its use in a real plant environment.

A review of a number of on-line parameter estimation and control techniques
has been presented. The o-operator and its associated transform have also been
discussed. The o-ope:rator was used to formulate the structure of the estimator and
controller algorithms.

The robust estimator has been developed based on the general DARMA Model
modified to accommodate random and unmeasurable disturbances. Techniques such
as the deadzone, the exponential data weighting, the Bierman U-D covariance fac-
torization have also, been used to enhance the estimator's performance.

The controller was designed based on the closed-loop pole assignment principle.
The USe of the o-operator facilitated the use of continuous-time design specifica-
tions to he directly applied in establishing the appropriate closed-loop characteristic
polynomial.

It is believed that this research is significant in that a number of new concepts
have been successfully combined to produce a reliable algorithm. These are the
following.

1. Use of the o-opera.tor and its associated transform to formulate the estimator
and controller design.

2. It uses a generalized process model that includes measured and unmeasured
disturbances. The estimator is developed based on this model and its robust-
ness improved by including in the normal algorithm the covariance resetting
and deadzone options. Use of the U-D factorization technique to improve the
numerical performance of the algorithm. It, also, allows the user to vary the
sampling time of the. algorithm.

3. Use of a low-pass filter and a high-pass filter to improve the signal conditioning
of the measured signals and ensure the algorithm only receives information that
is vital to its functionality.
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4. Use of a closed-loop pole placement method for the design of the controller.
It translates the pole placement controller to an industrial PI controller and
furnishes I{p and K; parameters.

5. It uses continuous-time specifications to establish the location of the closed-
loop poles.
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8.2 Results of the Study
A set of simulations was used to substantiate the design work. The simulation of
a first-order plant produced excellent estimation and control design results. Good
results were also achieved from the simulation of a second-order plant with the
addition of a random disturbance signal indicating the robustness of the design.
The system produced good PI control parameters so that the specified dosed-loop
requirements were met. Reinforced was, also, the concept that under fast sampling
conditions the c-operator model tends to approach the continuous time model.

The estimator was tested under real plant conditions. The results emerging
from the test were good. A good agreement was achieved between real plant output
and estimated model output indicating that the algorithm can operate under noisy
plant conditions.·An observation arising from the behavior of the algorithm is that
a good prior knowledge of the plant is desirable to avoid large initial estimation
errors. Also, the choke of the start-up parameters has a direct effecton the speed
of convergence of the estimator and, also, on its robustness. The achieved results
are of great significance in that the overall performance ofthe estimator reinforced
the possibility of using the complete system in the plant environment in the future.
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8.3 Suggestions for Future Work
Additional work which may yield interesting results can be considered for the fol-
lowing r, I~ J.

1. Improve the method of establishing the closed-loop poles using continuous-
tiine design. criteria. A possibility is to use a knowledge based system which
will provide the rules for the design of the control law.

2. EXPa.nd the system to design a second order pole placement control law which
can he translated into an:industrial PID controller. Also, modify the algorithm
to accommodate higher order processes.

3. Expanif the system to include a feedforward compensator design facility.

4. PerforJl). additional real plant tests and test not only the estimator, but also
Jhe controller design.

:AHl'illrge' hiflmber of r:hemicaJ.'facto;ries use computer systems for supervisory and
cont.t<iilP'Ul']:r()Ses.• 1'lre a:vmlaMiTityof these computer systeme enhance the opportu-
nities of using the algorithm in a variety of industrial applications.

One option is to use the algorithm in a self-tuning. mode, It could he used
to estimate the process model and to generate the required PI and PID control
p,arameters. The. calculated parameters could then be downloaded to the PtC which
are performing th~ actual plant control. Otherwise, the downloading of the controller
par.almete].'sQan. be initiated by the process operator.

Another option is to use the algorithm in an adaptive controller mode where it
monitors the process continuously estimating the process model and adjusting the
conttOllaw to cater for a new region of operatien.

Good results have been achieved by this work.however, additional theoretical and
practical research is required to guarantee a good and reliable system performance
for any circumstance which may arise in practice.



Appendix A

Bierman's U...D Covariance
Factorization

The Bierman 's U-I) factorization method is adapted to include the deadzone (b(k;)
and the for,getti,nlgfantol' erCk)).

The otiginalltLS algorithm is:

iJ(k)

P(k -1)

ark ~ l}P(k - 2)¢(k - 1) . .... T
= O(k - 1) + ..\(k -1) + 4>(k_ l)T P(k _ 2) ¢(k _l)'[y(k) - 4> (k - 1) 8(k - 1»)

1 .:[.... . a(k--1)P(k-2)cf;(k-l)</J(k ....l)Tp(k-,-2)
= "\(k-1) P(k-2)- X(k-l)+4>(k-l)TP(k~2)4>(k~1)']

The RoLSalgorithm expressed in Bierman notation ;3:

X = X + k(~ - aTx)
0' = r + aTPa, k = bPa/a
P = !(p._ kaTp)

r

with r=forgetting factor and beerelative dead zone.
By ract8ri:¢ing.P{k) as,

P(k) = U(k)D(k)UT(k)

where U(k) , and DCk) are the upper triangular and diagonal terms of the initial
1118,'We' get;

ubfiT
fJnuT

".'''' T-'.J_'f';
= ![0nuT _ tJUvv U .1

r C!

= ~lulj) ....ba-1vvi]0 l. (A.I)

with
f =
v =:

a =

. fJTa = fI(k - 2)¢(k - 1)
j;}f ~. . 1J{k _,.2)Jj(k - 2)tfJ(k - 1)

r + bvj;:;. r + b</JT(k- IJ P{k - 2)</J(k - 1)
,'," -i

with
fJ - U (k ~ 1), (J;: '. U(k - 2)
fJ == D(k _:l),D::: 1J(k - 2)



lllit!>t .!l,t1>m.et'hat D - bar 1VVT = fj f)i]T. For the assumption to he correct,
'l!epla:$ing (:jj;fjjT in' Bq_,uai;ion 1 should~prod1tGe (JbuT. By Substitution, we get

_- . - .

1'4<11$We nave that:
, = --a:. ,'~ -J: T '

}c "'; ,~./#t''!''''' "Jzy;,@llfl,,:, ~j lJ).,'f-' Qt¥ ' ",ViW', ,~:.4g.y.~e;"":~1'urner F(l:lttorization]
.;'0' -.. _,_ --" - - .~.:...

_.

l~t~ntt~lt¢,'~w~~~i!f,Ei'S4l:t:,we >s~e;,;t:h._2lt:'Ji»:e;~@,Jl;~tTuctionof tl,l.e up:c1ate u~nl~tQJls

~'~~~,~~" ~"&r.~'R

",\IJlg·t1t~Al~~_¢"iJfu:rJIer.fa(;tP;t1i:Ga:ti~il'a:dlj)l$t~dso as to coinoUh~ with out notMioll,

1= n,···2,....,1 (A.2)
(A.a)
(AA)

(A.S)

~qW~~·~~~,.p:,~wei~~t)Il
'~'::';

(A.7)



(A.S:)



and

T.'. (Iv
.l~ =--

at

t~l;:: .'1' + 'l:).j11

![{9, == (Vl' , (l ••• ,0)
dl = cJV/O!l

O!.i ==
dj ==
Ai .::;:.
up:

Jr.i+i=
If ::::'

t<ri....l + V;1j

dJ Ctj"-l!aj
-1Sl'l;):j ...l
iii + )..jkj
hj +v31~
1(n+1/O:n



Appendix B

Alte'rnative Method of
E:x:pressil1g the PI Controller
~....Operator Format

•In

The P1 controlier is giv¢n by:

u(t) == Kp[e(t) + ;iJ e(t)dt]

If
Ul(t)~ iii e(i) then

U'tll(t) 1=s": Tie(t)

a,nd using Euler's ap:proximation, we get:

dl~l(t) ~ 'IL(/~+ 1) - u(k) == q ....1u(k)
dt D.' . ~

where !J is the forward shift-operator.
The analog PI controller can bA approximated by

where
11.-

'~I - Ti
T}l'e transfer function of the discrc'te PI controller is

G( .) ....If I(.p1fiD. _ ...J(..;..p=(q_-_l...:..) __+,::-li......(p_I~...;..··iD._
PI lJ - ~p + q .... 1 . - q':"" 2

Ustn:g lJ == 81:::. + 1 results in:

G' »i(.1:)._ 1(11.0 t lfp!_.(t
Plu .... 6

whid\ Is the $.a.me :result acltieved hy dl;rectly substituting $ == c.



Appendix C

Formulation of the Pole
Placement Controller as a PID
Controller

Assuming a second order plal~~.described by

B'lV(h) + aloy(k) + aoy{k) ;:: b10U(k) + bouCk)

and

• degree A::;: :2

• degree B:::: 1

• degree S ;::0
., degree :0 ;:: 1

• d~!J'te,e.D;:: de!J'teeA - 1':;1

• degreeP;:: aegnteA. + de(JreeD + degreeS - 1 == 2

a.n.~d~gllee4;'" ::;: '.{..de"g't6ll.A+degl'(1eD + degreeS - 1 ;:: 4.
'Xlhe ;pole pl?<tem.'eitt al'gari:tluu.pl'od1:lces the eensrol law,

@c(8).::;: ~g:9~:~:li!~Pn

The ,(l)naJ1c:>g :PIE) cc:>n:ttc:>lter ls ghten, by

ats)·.... .l(p(l + ~. +1{d~,S;)
t J,'1" 'I'.r

J(·(l··. _:"_. ,..XIi:;[;.!-);;:. » ...+XtP+ N+Tc(s
1 Ns

.::;:~i'p(~+'f.}8 + is +.~)

I( t s, 1#8)
.... r,p'\l + -; + $+1ir;
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where:

and ~ is the derivative filter.
The transfer function can be written as:

0(.9) = I(p(s(s + ](d) + 1(i(S + I(d)+ NsZ)
s(s + ](d)

= ](p(82 + 1(dS + ms + ](i](d +N 82)

= J(.p(N + 1)32,. ](P(Iid + 1(.)8 + Ii,J(dJ(p
s(3+1(d) N .

By approximating, s = 6 we get

J(p(N + 1)82 + J(p(](d + J(i)3+l(j1{dJ(p .. P202 +P18 +Po
S(s+J(d) . =- . 0(110+ Iv;
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Appendix D

The Computer Program

The algQrithm was implemented using Microsoft Fortran. The complete program is
listed below.
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c
C
C
C
015
DOl
002
003
004
005

006
007

013
008
009
010

THE HEADER Foa THE AUTOTUNING PROGRAM

WRITE(:i:,015)
FORMAT(20X.'PRESS <RETURN) TO CONTINUE')
READ (* , 001 )LA
FO:Rl-iAT(20X, rz:
WRITE(:I:.002)
FORMAT(20X,'THE MODEL REFERENCE IS TYPE: COliiTROLLER')
WR I'l' E ( :t tOO 3 )
FORMAT (20X t· ' -:..- ....~------~-~----------~------- ... -----, )

WRITE.(':s:t 004 )
FORMAT(20X,'THE SYSTEM READS THE PLANT rio AND THEN')
WRITE(*,005) ,
FORMA.T(20X, 'GENERATES A PLANT HODEL. THE MODEL' )
W:RITE(:I:,006)
FORMAT (2ox I •PARAMETERS ARE USED TO PltODUCt: THE')
WRITE(:a:,007)
FORNAT(20X,'PI & PID CONTROLLER PARAHETERS')
WRITE(:t,0031
WRITE( *, on 1
FORMAT(20X,' .)
WRITE(*,008)
FORMAT(20X,'NOTE: YOU MUST SATISFY THE FOLLOWING RULES')
WRITtH:I:,009)
FORMAT(20X,' a. ItIS ~ 2wb ')
WRITE(.;t,OlO)
FORMAT(20X.' b. we s 1/2ws ')
WRITE(:I:,Ol.3)
WRITE(*~013)
WRITE(*,015)
READ(*,OO) )IA
END
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C
C
C
C
C
C DELTA
C EPSHP
C CFACTOR
C WC
C Z
C E1
C
C

EO
GAM2

C GAMl
C GAMO
C ERRLIM
C SIGMA
C EPSO
C EPSl
C EPS2
C NPAR
C NUVEC
C ALPHA
C BETA
C SiGMA1
C DZL!MIT
C AZONE
C ALPHA
C BETA
C PHI
C THETA
C K
C ALPHAJ
C YHAT
C YH
C UH
C Y
C U
C E
C LAMDA
C LAMDAO
C YSPAN
C USPAN
C END
C
C

AUTOTUNER FOR PI CONTROLLERSUSING THE DELTA OPERATOR
COMMENTS
= SAMPLING INTERVAL
= OUTPU'r STATE OF HPF FOR CONSTANT DISTURBANCE
= INITILIZATION VALUJi:FOR THE U-O DIAGONAL TERM
=: CUT-OFF FREQUENCY OF THE SECOND ORDER FILTER
= DAMPING FACTOR FOR THE SECOND C:;',DERFILTER
=: FiRST PARAMETER OF 'l'HESECOND ORDER FILTER
= SECOND PARAMETER OF THE SECOND ORDER FILTER
= FIRST DENOMINATOR PAR.AMETER OF THE SECOND ORDER FILTER·= SECOND DENOMINATOR PARAMETER OF THE SECOND ORDER FILTER
= THIRD DENOMINATOR PARAMETER OF THE SECOND ORDER FILTER
= FIXED DEAlJZONE PARAMETER
= ADJUSTABLE DEAD ZONE PARAMETER= 1l:DJUSTABLE DEAD ZONE PARAMETER
= ADJUSTABLE DEAD ZONE PARAMETER= ADJUSTABLE DEAD ZONE PARAMETER
= NUMBER OF PARAMETERS
= DIMENSION OF THE U VECTOR
= ADJUSTABLE DEADZONE PARAMETER
= ADJUSTABLE DEADZONE PARAMETER
= ADJUSTABLE !lEADZONE PARAMETER
= ERROR LIMIT FOR DEADZONE= THE DEADZONE
= THE VARIABLE DEAD ZONE GAIN LIMIT
= THE VARIABLE DEADZONE SCALING FACTOR
= THE DATA REGRESSION VECTOR
• THE PARAMETER VECTOR
= THE GAiN VECTOR
;:::BIERMAN U-D VARIABLE
=·THE PRED1CTED OUTPUT VALUE
== THE PLANT OUTPUT AFTER THE HPF
= THE PLANT INPUT AFTER THE HPF
= THE PLANT OUTPUT AFTER THE LPF
= THE PLANT INPUT AFTER THE LPF
= THE PREDICTED ERROR
= THE EXPONENTIAL FORGETTING FACTOR= ADJUSTABLE FORGETTING FACTOR CONSTANT
'"THE RANGE OF THE PLANT OUTPUT SIGNAL
= THE RANGE OF THE PLANT INPUT SIGNAL
= EOF

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C

C

C

C

C
C
C

INTEGER N,FINI,HPF,LPF,AZONEFLAG,LAMDAFLAG,NN
HITEGER ))ZFLAG,INTERATION
REAL LAMDAO,ERRLIM,E,BMZ,MZO,MZ
REAL LPFF.(4) ,LPFBAR( 4) , atn ;MU2
REAL Fl (4) t THETA (4) I K( 4) , DIAG (4) , OFFDIAG (6) , LAH.bAtALPHAJ ,.\ZONE
COMMON/AREAl/FIt THE'rA,K, lHAG, OFFDIAG, LA~1PA,ALPHAJ,AZONE
PARAMETER(SIGMA=0.98,EPSO=2.5E-3,EPS1=1.0E-3,EPS2=0.5E-3)
PARAMETElt(ALPHA=O. 4, BETA:::l•3, CFACTOR=l 00.0, PI=3. 141592654 )

WRIT.!!:',*,001 )
001 FORMAT(ilX,'':eHE OPERATOR IS TO DEFINE THE FOLLOWl:NG VARIABLES',).
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WRITE(*IOO2.)
002 FORMAT(21X,;~=========~======================================')

PRINT;t,' •
PRINTlI:,'•
PRINT;:,' ,
WRITE(*.003)
FORMAT(2lX,'PLEASE DEFtNE NUMBER OF PARAMETERS;a)2.b)4')
READ(:t,004)~
FORMAT(I2)
WRITE(*,005)
FORMAT(21X,'SET HPF FLAG:FLAG=l(HPF IS O~).FLAG=O(HPF IS OFF)')
READ(;t,006)HPF
FORMAT(Il)
WRITE(:t,007)
FORMAT(21X. 'SET L1?F FLAG:FLAG=l (LPF IS ON),FLAG:::O(LPF IS OFF)')
READ(t,OOS)LPpo
FORMAT(Il)
WIUTE(*,009)
FORMAT(21X,'SET LAMDAFLAG:FLAG=l(CON. FORFACJFLAG=O(VAR.FORFAC), )
READ (* ,010 )LAMDAFLAG '
FORMAT(ll)
WRITE(;I:,Oll)
PORMAT{21X.'SET AZONEFLAG:FLAG=l(CON.DZONE),FLAG=O(VAR.DZONE)~)
READ(*~012)A20NEFLAG
FORMAT(Il )
WRITE(t,070)
FORMAT(21X,'SET THE OUTPUT ZERO-BASE AND SPAN')
READ(t,071)YZERO,YSPAN
FORMAT(F6.3,F6.3)
WRITE (:6:.072)
FORMAT(21X,'SET THE INPUT ZERO-BASE AND SPAN')
READ(*,073)UZERO,USPAN
FORl~AT(F6. 3, F6 •3 )
WRITE(*,074)
FORMAT(2~r 'SET THE SAMPLING RATE')
RE:AD(t,O}:J)DELTA
FORMAT(F6.3l
WRITE(;I:,076)
FOR~AT(21X,'SET THE We CUTOFF OF THE LPF')
READ(*,077)WC
FORMAT(F7.4)
WRITE(*,078)
FO)\MAT(21X,'SET THE WIlliRESTRICTION FREQUENCY')
READ(*,077)WL

003
004

005

006

007
008
009

010

011
012

070
011

on
073

074

075
688
076
077
078

C
PRINT;t:,WC,WL

cc ....- __- ....._~_, .... ... .... -'-_
CI
Ct PAR.T ONE:
CI INITIALIZER
Ct
CI
CI r
C I -----~-------- ....--_-_----_. - .~_~ ... I
C
C

,C
NN=(N:t;'o,') )/2
TIME=O.O
INTERA'l'ION=O
l\LPHA..)"::::]'•0
IF(N.EQ.2)THEN

AO=O.O
BO=O.O
.YHll'l'=O.O
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ELSEIF(N.EQ.4)THEN
AO=O.O
Al=O.O
BO=O.O
Bl=O.O
YHAT=O.O

ELSE
PAUSE'NUMBER OF PARAMETERS MUST BE 2 OR 4'
STOP

ENDIF
c
C INITIALIZATION OF THE RLS VARIABLES
C

IF(HPF.EQ.l)THEN
EPSH=O.0008
XHPY=O.
XHPU=O. "

ENDIF
c
C INITIALIZATION OF THE LPF .VARIABLE
C

80

WS=2.0~PI*(1.O/DELTA)
PRINT:I:.WS

IF(WC.GT.O.5*WS)1HEN
WRITE(:t,080)
FOR1'1AT(21X,'THE WC IS GRE!TER THAN 1I2 WS RE-DEFINE WC')
GO TO 588

ENDlF
IF(WC.GT.WL)THEN

WRITE(*,31)
FORMAT(21X,'THE we IS GREATER THAN WL RE-DEFINE WC')
GO TO 6fjB

ENDIF
ALPF=WG/SQRT(2.0l
MUl=(WC**2)*(DBLTA**2)
MU2=ALPF:t4.0*DELTA
E2=4.0+MU2+l-IUl
El=«2.0*MUll-8.0)/E2
EO=(4.0-MU2+MUl)/E2
GAM2=MUI/E2
GAMl=(2.0:tMUl)/E2
GAMO=MUI/E2

81

c

DO 16 I=1..4
LPFF(I)=O.O
LPF13AR(I)=O.O

15 CONTINUE
C

IF(LAMD!FLAG.EQ.l)THEN
LAMDA=O.970

ELSEIF(LAMDAFLAG.EQ.O)THEN
LAMDA=O.9S0

108



Ll'.MDAO=O.985
ELSE

PAUSE'LAMDA PLAG MUST BE EITHER 1 OR O'
STOP

ENDIF
c

IF(AZONEFLAG.EQ.l)THEN
ERRI,.IM",O.003
AZONE=l.O

ELSEIF(AZONEFLAG.EO.O)THE;N
SIGMA1=1.0-SIGMA
MZO=EPSO
AZONE::l.O

ELSE
PAUSE'AZONE FLAG MUST BE EITHER 1 OR 0'
STOP

ENDIF
c

OPEN(UNIT=l,FILE='PLANTY')
OPEN(UNIT=2,FILE='PLANTU')
OPEN(UNIT=3,FILE='PAR.DAT'.STATUS='NEW')
OPEN(UNIT=4,FILE='IO.DAT',STATUS::'NEW· )
OPEN(UNIT=7,FILE='PHI.DAT',STATUS='NE;W')
OPEN(UNIT=8,FILE;::'THETA.DAT',STATUS='NEW· )

c
c

, C_~ .... ........ .... .~. _

C
C
C PART TWO:
C ESTIMATOR AND CONROLLER DESIGN
C
C
C •C ..... • _

C
C
C
500 INTERATION=INTERATION+l

TIME,=DELTA*INTERATION
c

CAL,L GETOHT (YOUT t FINI )
YXX=(YOUT-YZERO)/YSPAN
CALL GE;TIlHUIN )
UXX=,()JIN-UZE:RO)IUSPAN
IF(HPF.EQ.l)THEN

YB=YXX-EPSF1*XHPY
XHPY=XHPY+DELTA*YH
UH=UXX-EPSH*liPU
XHPU=XHPU+DELTA*UH

ELSEIF(HPF.EQ.O)THEN
YH=YIX
UH=UXX

ELSE
Pl1.USE'HPF FLAG MUST BE EITHER 1 OR 0'
STOP

ENDIF
c

IF(Ll?F.J'.:Q.l)THE~
QY;:;GAM2:+:YH+GAMl:+:LP'FBAR(1)+GAMO:t::r./PFBAR(2)
Y::::...EhLPFF(l )-EO:+:LPFFC2)+0'1
LPF:F,(2 )=LPFF (1)
LPFF (l. )=y
L1?P'lM.lt ( 2 ) =L1'lP'EAlt ( 1 )

..LPFBAR (1 )=Y8
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QU=G~M2:tUH+GAMliLPFBAR(3)+GAMO;i:LPFBAR(4)
U=-EltLPFF(3)-EO:tLPFF(4)+OU
LPFF (4 )=LPFF (3)
LPFF(3).=U
LPFBAR(4)=LPFBAR(3)
LPFBAR(3)=UHELSEIF(LPF.EQ.O)THEN
Y=YH
U=UH

ELSE
PAUSE'ijPF F.i:.AGMUST BE EITHER 1 OR 0'
STOP

ENDIF
c
.c

c

IF (LAMDAFLAG. EO. 0)THEN .
LAMDA=LAMDbLAMDAO+(l.O-LAMDAO)

ENDIF
IF(UONEFLAG.EQ.O)THEN

MZ=MZO
BMZ=aETAtMZ
MZO=SIGHA:tMZ+SIGMAh (Hi..O+EPSl:tABS (UH) +EPS2tABS (YXX) I

ENDIF .
c
C THE GEN!RATION OF THE PREDICTED ERROR
C

YHAT=O.O
DO 20 hl.N

YHAT=YHAT+(THETA(I)*FI(I»
20 CONTINUE

C

c
E='{-YHAT
IF(AZONEFLAG.EQ.l)THEN

IF(ABS(E).GT.ERRLIM)THEN
DZFtM=l
AZONE==l.O

ELSE
DZFLAG=O
AZONE=O.O

ENDIF
ENDIF
Il"(AZONEFLAG.EO.O)THEN

IF(ABS(E).GT.BMZ)THEN
DZFLAG=l
AZONE=(ALPHA/E hDEAD( -BMZ ,13MZ,:g}

ELSE
DZFLAG::O

ENDIF
ENDIF

c

c
CALL LS(Y,U,N,DELTA,DZFLAG,E,AO,Al.BO,Bll

C
WRITE(*,lOOlAl,AO,Bl.BO

100 FORMA'rOX,FlO. 6,lX,Fl 0.6 t 1X.Fl 0.6. lX,FIe. ~1
WRITE(3;200IAl,AO,Bl,BO,YH,UH

200 FORMATH'lO. 6 ,lX,FIO. 6 ,lX,FlO. 6 .rx.n e. 6 t ix, FlO. 6, lX,F10. 6)
WRITE(4,ZOO)Y,'fHAT,lt.K(lJ,K(21,K(3)
WRITE(?, 200)Fl (1) ,Fl(2) ,FI (3) ,n(4) ,AZONE,BM~
WRITE( B,2J 0 )THETA( 1) t THETA ( 2) I THETA ( 3) I THET.A.( 4)

210 FORMAT(lX,F13.10,lX,F13.10,lX,F13. 10, ix.n s.:0)
c

I).1'(FIN1.SQ.0.AND. TIME.LT.24000.0)THEN
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\:IV !V .)uv
ENDIF
CLOSE(3.STATUS='KEEP')
CLOSE(4,STATUS='KEEP')
CLOS~(7,STATUS='KEEPtl
CLOSEr~8.STATUS = , KEEP' )

~. GENERATION OF THE CONTROLLER PAlWfETERS
CALL COltTROL(AO,Al,BO,BliN,WCl

S~OP
END

~.FUNCTION DEAD .FOR VARIABLE DEADZORE VALUES

FUNCTION PEAa (BM:~L IBMZH t ElUWR 1
REAL BMZt,BM,ZHtERROR
IF (ERROR. LE. BMZI,l'l'HEN
DSAD:::ERROR-13MZ,L

ELSEIF(:ERROR.GT.BMZH)'1'HEN
DEAD:::ERROR-BMZH

ELSE
DEAD=O.O

ENDIF
RSTURN
END

SUBROUTINE GETOUT(YOUT,F!N)
REAL YOUT
INTEGER FlN
READ(1;400)YOUT

aeo FORMM'(F15.l0)
lTi't.NOT. EOF(l))~HEN

FIN,::O
RUSE

F!'H:;:1
ENDU
REJI'URN
Elll'

400

SUBMum:UlE G'E;TIN (UIN)
itE~f=_UIN
19~1:lC2t 4.00 lUIN
F0lUiAT(FlS.10)
RE:reUiRNgND

,.,.
S:J:L VTINE LS(YtUtNtDEt'llA,IllZFLAG,PER1ttAO~AltBOtBl)
. .. .. P~F:~~'I·;~ . . .. .

PJEl.L. lJ:~Rlt,tY.tP:,A.l.M .si ,B:O; DELTi\.
R:E1tiI;!;.~JJ4J,'J.ltt 4Jt~( 4) ,Dl.AG( 4) I OE'FDUG( 6) ,LAM!)A.ALPHAJ ,M.ONE
C·O~ONl~~'E~ll ' • I-{<EjlA,K, DIAG, OF~rirAG, LAMl},1\,ALPH!J, AZONE
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,
"

".;.'.

3D

11' I vt.,!, LAl>. r:U. 1 J 'l'H~.h
FJ=FIO)
VJ=DIAG(l):tFJ
K( ll=VJ
ALPHAJ=l.O+VJ:tFJ
DlAG(l );::DIAG( 1 )/ALPHAJ/LAMDA
IF(N.G'i'.l)THEN

KF=O
1\U=O
DO 20 J=.2.N

FJ=FI(J)
DO 30 1=1• .1-1
. KF=KFtl

F,i=FJ+FI (I·lt·OFFDlAG(KF)
CONTINUE
~J=FJ*DIAG (J I
K(J)='JJ
AJLAST=ALPRAJ
ALPHAJ=ULASTt V;Jt.F J
DlAG (,j l=D1AG( J ):t.AJLASTIALPHAJ / LAMDA
PJ=- (:.FJ*A:ZONE) IULlST
0.0 4,0 1=11.1-1

lW::;KIJ+l
W=OF'l;?Jl!AG(l{U)+I{( Il:tPJ
:K:(iEl=K(I)+O}lFOlAG(KU):tVJ
OFFDIAG(KU)=W

CQ,NTINUE
CONTINUE

EN'O!F
·ALPHAJ=ALPHAJI· :'()Jg)';l

EN'PIF
I;F'(>i:!'ZFr.AG. EQ.

l\LPUAJ·=l • 0
PO 50 l=l tN

Kfll=O.O
CON'l'INU;E

EN:lliF

40
20

50

60

00· '60 .,l:;:l , N
. ['ali:'l'~(1 )=Tij~TA( I) +~E-1U<:tK( 1)/ALPHAJ

QQN'nU].1,l;E;
·$:~{N•.E9.2 )'l1ijEN
,;~(!!~"''l'R~T:Af1)
8!01=TH1';'1'1.( 2 )

i~,ij"O)lF
. ;l,F:(i.li. ElO,;4')"ll!i'~N

~." ,:''l1,l,~='''!J!H'E''l,'A(1 )
'~O'7,_THt;'\I'A ( 2 )

.'·.'fli19!flii~!l1A(3.)
.,i.:~'QJ='J11l~'~A(,,4;:)

·:~~N.~lc~

'~fJ)~lF't~,,~,~!.~,J'Ta~N
'''',';:,lp:,lE (:~ ~:?~l t,l )'i:,a:~m~*,Y
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. 8,00

END

SUBROUTINE GONTROL(Ad,Ai,BO,Bl,N,WC)
REAL MPW, l(p ,KI
P.AR.AMETERtJ> I =3 .141 5926 54 )

100
001

WRXTE(* I 001 )FORMAT I2l XI ' _~ ........ .., ... ........._......._...__.. J. }

PUNT :1:,' I

PR.INT *,' ,
WlU'l'E:( tt 0(2)
FORMAT(2U.'THE lISTI!!ATED PLANT PARAMETERS ARE:')
PRINT :t.' ~
Ili'CN.Ea. 2)T}{EN

WRlTE( 11:,003 lAO
:FORMk'}:'(42X, 'aO=·,F10.6)
W:RI'P,iH*,O(4).BO
F:ORM~T'(42YJ 'hO=' ,FlO. 6)

ENPIF
IF (N. EI)):,.4 )TIHn~

WUT:E(,:t,OOS)AO
FORMATt42X,' a,Q:::' ,FlO. 6)
WRITE(t,O'OS)Al
W~ITE (:t tOO'S) S:O
WlUT·E{*, 005 )21

EijiDIF
WRr'l'E(t,799)
FO:RMA'l'(2lX, 'OK=1 ELsll: 0')
REAI),'(i t MD ) 1<1<
FORMA'1.'(I1 )
IF(KK.EO. 0 )THEN

:RE,M~(*,aOl lAO,!l ,BO,lll
FORMAT (l~l0.6 t FlO. 6. FtO. 6, FlO. 6)
PRIN'l':t,AO,BO
~NiD,IF
PRINT :tt' ,
PRINT't, I I

Wll.I'l'E.( t ,0!l7 )
FO~MiA'1.'tZlX, 'PRESS ANY KEY TO CONTINUE')
ll.ll:'A:Ptt,600)LA
'~F:<:),RMlll'12lXI l2 )
PRUI',h,' •
l?1tI\N:T!~l' J

WR;l\rE(j..'OO)
F0~T ( ~JX. •THE CO~\rltOt, l?ARAME1'ERS MUST Bl': IN ltEArJ FU:JMBEP.S·)
.tl~N'!.niCrl' ,
PIt!N,1~~I' .;
WU'l'E;fi• I0:0:8 )
F'ORH,p..T ( 21,l(, 'PEFIN:E' :IJJ;H~ DEJiSl·ltlgD }?5Ridlt'NT OV~'RS'ROOor')
ltEAl)I (~*I Q1('),9ll?,O .
Fo.~HtA::r:lr;'6• 3 )

JO)
.. '. .... 'Xt"ln';'F1iN'E ~ltE aE'SI.lt~fl 'S;~'l''l''lJIN~ 'rIME')
,Il:~~P(:t!,lelll )"1':S :'.
f\O:~'M~\'l\I(iU:&')3 )
J;1lt~;R:V-);,. 'I ,

ltll:iliNIlMi,' ,

002

00.3

004

007

6,0'0

O:OS

009

01.0

OLl

.,
" a~((LOG('POll 00. (')).,* ("'1. 0) ) Il?H:tl\i2

\ l'I '~;~'~'""~~!.\'" ';(1"" " :n~l\ j -J ..... ~'f"
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o
eo CAL13ULATION OF TI{E PliASE MARGIN
C

e

~....

012

0'13

Ol4

IQ,1OJ

O,lS

("ZiPl )/SQR'I' (1. 0-Zu2) )
;)
't:S'THE PERCENT OVERSHOOT ACCEPTABLE?')

.mrt:rmi\'/(+ > j!,,:n1 fPC)
!,p,EltClmT OVEMiIOOT=' ,1"6.3)

ELSE l?ltgSS ....0....·)

e
\0', ,G);'l1G.tJ\l"J!:Tl;~N: (liE TilE N,A';rUJl{A.L FREOI1:e:N:CY
,~" .

ti
,0 Cl'Ai':tG.l:1:)JA'rI·!O,N OF Tlil! PE:M< AM1>t.I'I'UTE
;~
. '~;~W'=l..,al (2 •ad i (,S¢Rtt'(l •0- Z·lt-* 2) ) )
J@ .. '" . ' ....
re '~A,~(lll,:L~'W'I:()NOF 'l!ltll: RESONANT Fl,tEOll,ENCY
.'.~ W!E,:::wrti~;$'qlV1Hl. Q.. (2. OtZ:tll:2))
,~ . .

'0 ·~~~~l1,rtA\'l'L.QJl"P'~W:fl£ QUIll~n'FRT$QUEN'C'l (3d)))
'~,.' . ,

wai~~'~.w.~,*~,SORT((bt2) +1.0) +Z)

I

We: <1>1J $ij!E S¥$T'EM IS GREATER THAN FU/l'l):~
itlU~!~:'R$''F'~E0.l:1$NQ!l{ltE-·PltFl1Ui! Tltn SETTLING IflME')

.'{~a:~~,lX.· ~:;;i i Fa. 4 ,IX. j l?M=I ,re. 4 )

."-~a,,.'4'•.t'X I' WjR~'t 11'8.4.1 Xl )·w3DJ3'~' .ra, 4,)
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lF~N.EO.2)THEN
AlST~.,::a. OtZtWN
AOST:AR=W.Ni t 2

c
Pi ::::(AlS1IM~ ....AOj/BO
t>O:::A.O'STldtlBO,e

'i' K:p=Pl
! ~.1;1:::1>.. 0.)/~P

'.·tte
! WRl'.l':lH*.(20)Kl,),K!

;,FO:R.MA;T(lX, -6AJN Kp=',FB. 4,1 OX, ' INTEGRAL GAtN Ki=t ,ta. 4.)
"ENr~~I~F. .

lliE'lIlliRll
t·Uip

;;,."'
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